
 
 
 
 
 
 
 
 
 
 
 
 

[2011] 
 

Kevin P. Nikitczuk 
 
 

ALL RIGHTS RESERVED 



POLYMER BASED IMMUNE MODULATION FOR THE GENERATION OF AN 

ANTI-TUMOR IMMUNE RESPONSE 

by 

KEVIN P. NIKITCZUK 

A Dissertation submitted to the 

Graduate School-New Brunswick  
 

Rutgers, The State University of New Jersey 
 

and 
  

The Graduate School of Biomedical Sciences  
  

University of Medicine and Dentistry of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

Graduate Program in Biomedical Engineering 
 

written under the direction of 

Dr. Martin Yarmush 

and approved by 

________________________ 

________________________ 

________________________ 

________________________ 

New Brunswick, New Jersey 

[October, 2011] 

  



ii 
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Dissertation Director:  
Martin Yarmush, M.D., Ph.D. 

 

 

Increasing emphasis is being placed on overcoming tumor-associate immune escape mechanisms 

that facilitate disease progression.  Understanding this immune tolerance and developing methods 

to overcome it provide advanced understanding to further develop vaccine strategies. In the 

current work we have engineered a polymer based therapy that enhances cellular immunity 

capable of generating anti-tumor activity. We have determined that a poly(lactic-co-glycolic acid) 

(PLGA) based delivery system encapsulating tumor associated antigen (ovalbumin, OVA) and 

the TLR9 agonist CpG motif DNA can initiate an effective type 1 mediated response. Local 

administration of the polymer therapy on E.G7-OVA lymphoma bearing mice significantly 

delayed tumor progression by eliciting a strong local and systemic IFN-γ mediated anti-tumor 

response. It was found that this response worked independently of antigen specific CTLs, which 

were active in the tumor draining lymph nodes yet incapable of retarding tumor formation. In 

analyzing the dendritic cell response to this polymer system, it was demonstrated that this 

delivery system indeed increased the Th1 phenotype of dendritic cells as measured by an increase 

in cell surface expression of CD80, CD86 and MHCII and secretion of the cytokines IL-12 and 

IFN-γ. In addition, introducing the immune modulator 1-Methyl Tryptophan (1-MT) in concert 

with the antigen and adjuvant enhanced the dendritic cell Th1 profile when delivered via the 

PLGA vesicle. Taken together, these studies demonstrate the immunological mechanisms and 

benefits of a PLGA based delivery system. 
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CHAPTER 1: INTRODUCTION 

1.1 IMMUNOLOGY AND ANTIGEN PRESENTING CELLS: DENDRITIC CELLS 

The human body has internal defense mechanisms to protect itself against invading 

pathogens. Via two main responses, the immune system provides this defensive shield. 

The innate immune response provides the first line of protection against invading 

pathogens by nonspecific defense mechanisms. This is mainly composed of general and 

nonspecific protection against foreign pathogens. It includes factors such as the skin, 

mucous membranes, temperature, chemical mediators (i.e. cytokines) and cellular 

phagocytosis. Cells of the innate response, such as antigen presenting cells (APCs), play 

the role of scavengers to phagocytose foreign matter, process the material, and 

subsequently interact with the adaptive immune response.  This adaptive (or acquired) 

immune response, also known as the specific defense mechanisms, is then tailored to 

combat foreign pathogens by directing the immune response to particular antigens 

associated with the pathogen. This response occurs through both cell and antibody 

mediated pathways and is what aids in conferring long term and enhanced immunity 

against an antigen and its associated pathogen. T lymphocytes are one family of cells of 

the adaptive defense mechanism that produce specific responses to modulate the immune 

response. CD8+ T cells, for example, recognize and destroy cells expressing foreign 

antigen while CD4+ T cells help activate or enhance immune responses.  

As implied, these adaptive and innate immune responses do not function independently 

of each other. There are dynamic and complex cellular and biochemical interactions 

between the innate and adaptive systems. APCs of the innate immune response, for 

example dendritic cells (DCs), phagocytose and subsequently degrade foreign pathogens, 
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such as in the form of protein. These degraded proteins are processed into peptides and 

presented on the extracellular regions of the major histocompatibility complex (MHC) I 

or II. Based on this and other stimuli received from the pathogen, DCs are differentiated 

to various phenotypes. For example, CpG motif DNA or lipopolysaccharide (LPS) from 

bacteria will stimulate DCs to upgregulate a number of processes, including increased 

cell surface expression of CD80 and CD86 molecules and increased secretion of IL-12 

and TNF-α to name a few1,2. In conjunction with the antigen harboring MHC complexes, 

these costimulatory molecules, CD80 and CD86, will bind receptors on T cells and 

initiate a cascade of events. In the classical inflammatory model, the binding of these 

costimulatory molecules along with MHC complexes result in the active killing and 

removal of cells expressing the antigens first processed by the DCs. However, binding of 

CD80/CD86 to different receptors on T cells, namely CD28 or CTLA-4, result in 

differential stimulation of T cells. Interactions with CD28 result in positive signals that 

activate and expand the effector T cells3,4. In contrast, binding of the CTLA-4 molecules 

results in a negative response by attenuating T cell activity5,6. These divergent responses 

generated by DCs are essential for the regulation of the overall T cell response and aid in 

maintaining T cell homeostasis.  

It is now increasingly clear that DCs play a powerful role in immune system modulation 

and can interact in various ways with the many T cell subsets. DCs original known role 

of activating T cells to direct the killing and removing of pathogenic cells is now only a 

partial known role of these potent APCs. As previously implied DCs interact with CD4+ 

and CD8+ T cells in order to initiate or augment antigen specific immune response. Some 

of the costimulatory molecules, i.e. CD80/CD86, utilized in these interactions though can 
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also result in inhibition, as previously discussed with the CTLA-4 pathways7. More 

evidence is being presented that demonstrate the ability of DCs to also stimulate a subset 

T cells now termed T regulatory cells (Tregs), originally exposed as a subset of 

lymphocytes that provided a degree of tolerance8. It is now believed that there are both 

CD4+ and CD8+ Tregs, each performing distinct yet complementary functions9. In 

general, these Tregs mitigate the T cell milieu, inducing immune tolerance. As depicted 

in Figure 1.1, these Tregs are known to inhibit effector T cell stimulation and activity, via 

cell to cell contact and soluble factors. Interestingly however, it is being shown that DCs 

can interact and activate both branches of Tregs10,11. Typically, immature DCs pulsed 

with high levels of antigen in the absence of inflammatory signals can differentiate, 

activate, and/or expand CD4+CD25+ Tregs12,13. However, detailed studies also indicate 

that there is a fine control over DC stimulation and that different DC subsets stimulate 

different T cells. For example, LPS, which typically is shown to mature DCs to activate 

CD8+ and CD4+ Tcells, can have differential effects on DC function depending on 

timing and exposure. As a result, LPS induced DCs can paradoxically also expand Treg 

populations14. Supporting this is the response of DCs to CpG DNA. Although normally 

seen as a stimulating factor, CpG DNA at high doses can induce elevated IL-10 secretion 

from DCs, a known negative regulator15. Despite these findings demonstrating the DC 

and Treg interface, one aspect that eludes science is how DCs interact with Tregs to arrest 

their activity and thus reverse anergy. Considering the power and versatility of DCs with 

regards to their ability to modulate T cell activity, understanding the various DC subsets 

and their behaviors becomes increasingly significant.  
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As science progresses, we are learning that there are more subsets of DCs than the simply 

immature vs. mature populations, creating a misnomer. In conjunction, as more T cell 

subsets are discovered, we are learning how these different DCs can interact with the 

various T cells. The implications for understanding and being able to control these 

pathways span various fields of biomedical sciences. It is thus crucial to understand the 

DC activation process and what their immune modulatory properties are.  Doing so will 

provide great benefits in viral, cancer, and bacterial therapies. Knowing how the innate 

and adaptive immune response process antigen and danger signals will provide great 

insight into developing better therapies.  
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in America, second only to heart disease16. The number of cancer diagnoses has also 

increased in the past 30 years, yet many arguably attribute this to improved diagnostic 

methods. Fortunately the incidence of cancer related deaths has been decreasing over this 

time period, showing promise in current therapies16. To further reduce these statistics, 

advance and multifaceted approaches are required. As science sheds more light into the 

complexities of cancer and tumor progression, we are learning that attacking cancer in a 

monotypic approach, e.g. with a single drug, will not be adequate in most cases. A 

combinatorial approach will be needed that attacks the cancer as well as the supporting 

deficiencies that facilitate its progression. 

There are many immunotherapeutic methods currently under investigation which address 

the problem of cancer treatment, including, but certainly not limited to, antibodies, viral 

vaccines, cell based therapies, and polymer delivery systems17,18,19. In general, the goal of 

these approaches increases the immunogenicity of the cancer and/or creates an antitumor 

response by increasing the activity of, among others, effector T cells. These approaches 

have been found to successfully induce and/or augment the immune response, which is 

necessary in any immunotherapeutic approach. The current study adopts one of these 

approaches, a polymer based delivery vehicle, to modulate the immune system to combat 

cancer. The versatility of polymer based delivery systems has allowed them to be used to 

deliver chemotherapeutic payloads directly to cancer cells20 or packaged with stimulants 

such as CpG motif DNA to stimulate dendritic cells of the immune system21. These 

polymer systems have the ability to prime an immune response against, for example, 

tumor antigens, providing an advantageous platform for use in cancer therapies. 
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As with most experimental therapeutics, there are problems that limit the full potential of 

the therapy. It is now apparent that much of the limiting factors are a result of the 

disrupted immune response caused by cancer. For example, tumor progression, relapse 

and/or therapeutic evasion may be due to tolerance and immune inhibition initiated 

directly by the cancer22,23,24. In many systems, regulatory T cells (Tregs) are activated and 

suppress key immune cells such as dendritic and/or CD4+ / CD8+ T cells that are 

necessary to successfully mount an anti-tumor response. Tregs can be stimulated by 

dendritic cells, yet have conversely been demonstrated to inhibit the dendritic cell and 

effector T cell interactions. In addition to these cell dependent mechanisms, there are 

pathways mediated by soluble factors or cytokines that can also disrupt the natural 

activity of these same cells. IDO, IL-10, TGF-β, and VEGF are some examples of 

mediators that are either secreted by cancer cells or immune system cells and contribute 

to tumor progression and immune suppression25,26,27,28. Cancer cells and the tumor 

microenvironment have established ways to evade and/or mitigate the immune response. 

To circumvent this, therapies will need to target various branches of the immune 

response. In attempts to develop these therapies, tumor models are required that display 

this immune escape mechanisms.  It is critical to study the effects of a therapy on these in 

vivo tumor models to gain a deeper understanding of its effects. 

Several studies have fortunately begun to investigate the role of therapeutic enhancement 

by blocking immune suppression. For example, there are antibodies available that can 

inhibit Treg activity29. When applied in combination with tumor specific therapies, one 

study reportedly induced increased specific tumor immunity compared to therapy alone30. 

However, even in these types of combinatorial studies, complete tumor regression is 
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rarely seen. For obvious reasons, an antibody based therapy works only for as long as the 

antibody is available. Once cleared, if the proper immune response was not generated, 

relapse will occur. These studies however, as many others, fail to understand how a 

therapy modulates the immune response on a tumor bearing host, where the immune 

system is greatly altered. Considering this, elucidating the effects any immune modulator 

has on a cellular and holistic level becomes critical.  

1.3 IMMUNE MODULATION: 1-METHYL-TRYPTOPHAN 

Among approaches to increase our understanding of Treg control is the identification of 

specific biochemical pathways that can be blocked and subsequently lead to Treg 

inhibition and greater effector T cell stimulation. For example, activation of indoleamine 

2,3-dioxygenase (IDO)  pathways is considered to be an important tolerogenic 

mechanism in tumor progression, suppressing T cell immunity and increasing Treg based 

immune suppression31. IDO production from stimulated dendritic cells has been shown to 

directly inhibit T cell proliferation and other studies have demonstrated that IDO is 

critical in allowing dendritic cells to activate Tregs, ultimately minimizing effector T cell 

activity32,33,34. There is thus undoubtedly an IDO mediated balance between dendritic cell 

activation of Tregs and effector T cells. Although literature provides  evidence of IDO 

regulated suppression, the in vivo role of IDO and its interactions with dendritic cells and 

T cells remains arguably elusive35.  

Current evidence therefore suggests that an efficient immunotherapy must not only 

induce maturation of dendritic cells to stimulate effector CD4+ and CD8+ T cells, but 

also block IDO expression to inhibit Treg activation. It is a hypothesis that by activating 
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dendritic cells while silencing the effects of IDO one can overcome the immune tolerance 

induced by Tregs and simultaneously stimulate effector T cells. There have been multiple 

methods used to inhibit IDO, such as 1-methyl-tryptophan (1-MT) supplementation and 

IDO-siRNA, both leading to a decrease in Treg suppression and subsequent increase in 

antitumor T cell activity36,37. Using a polymer based delivery system components such as 

these can be readily encapsulated and delivered to suppress IDO.  Although the use of 1-

MT, for example, is widely used for IDO inhibition, little is known of the role 1-MT 

plays on modulating the immune response. As previously described, the immune 

response can be greatly altered as a result of the tumor microenvironment. Although 1-

MT may be effective at ultimately blocking Tregs, literature is uncertain what effects it 

has on DC stimulation and the immunological responses. One goal of these studies was to 

expound our understanding of its effects on the immune system independent of IDO. 

 

1.4 POLYMER BASED IMMUNOTHERAPY 

Therapies that utilize polymers, more particularly polymers that can be engineered to act 

as delivery vehicles, have been studies for decades38. In addition to being studies in 

laboratories, polymer carriers are being used widely in clinical medicine39,40. More 

particularly, polymers created into submicron and nanometer scaled vesicles have 

attracted increased attention over the years. For example, poly(lactic-co-glycolic acid), 

PLGA, has been widely studied, characterized, has gained FDA approval, and thus been 

used in clinical trials. Due to PLGAs many benefits over traditional and even newer 

therapies, literature is filled with different applications for this polymer based systems. It 

has been used to encapsulate and deliver proteins, viruses, bacteriophages, small 
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molecules, DNA and RNA40,41,42,43,44,45.  As the name implies, PLGA is composed of 

varying portions of lactic acid and glycolic acid. Upon degradation via enzymes or 

hydrolysis, the acid monomers are released, but due to their presence in many metabolic 

pathways, the polymer is considered biocompatible/bioresorbable and thus has low 

toxicity. In relation to their ability to deliver components to cells, in vivo and in vitro, 

they have far reaching benefits aside from ensuring a controlled delivery of encapsulated 

components to cell. These PLGA delivery systems help prevent enzymatic and 

protetolytic degradation, naturally target macrophages and dendritic cells in vivo, can be 

modified to include targeting moieties, prolong and enhance the delivery of antigens to 

dendritic cells, and increase antigen presentation and cross-presentation of antigens on 

dendritic cells 46,47,48,49. These PLGA molecules provide a power platform for adoption in 

many different biomedical studies. In the current study we adopted PLGA to engineer 

nanometer scaled vesicles for the delivery of key components to dendritic cells with the 

aim of modulating the immune response.   

In most applications that target immune cells with the goal of increasing immunity 

require delivery of multiple components simultaneously; allowing cells to capture the 

payload and process it. Using a polymer based vehicle has been a popular choice to 

accomplish this in the past. In many studies, polymers have been shown to deliver 

components to maturate dendritic cells and consequently stimulate T cells with antigen 

specificity, a critical component to creating antitumor therapies21. Numerous studies as 

these have utilized polymers as a vehicle to stimulate dendritic cells for purposes of 

inducing immunogenic responses against cancer. Inclusive in these approaches are 

encapsulating the tumor specific antigen, which has been accomplished by using tumor 
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lysate or encapsulating a single specific antigen30,50, as well as a stimulant such as the 

TLR9 agonist CpG DNA or MLPA51.  

Using this PLGA based delivery system, we engineered a combinatorial therapy and 

demonstrated its stimulatory effects on dendritic cells and the immunological effects on 

tumor bearing mice. We used the well characterized antigen ovalbumin (OVA) as the 

tumor associated antigen, expressed by the lymphoma cell line E.G7-OVA. As an 

immune stimulant we chose to encapsulate the adjuvant CpG motif DNA, a TLR9 agonist 

commonly found in bacterial DNA known to initiate an inflammatory response in 

dendritic cells. We first demonstrated this delivery system’s ability to initiate an anti-

tumor immune response and overcome immune tolerance of a tumor bearing mouse. By 

monitoring tumor growth, CTL activity and the Th1 response, it was found that the 

polymer system could prime for a Th1 response and consequently retard the tumor 

growth. With this fundamental understanding of the in vivo immune response, we next 

demonstrated how the combination of components affects dendritic cells on an individual 

cells basis, analyzing cell surface molecules and secretion of key cytokines. It was 

determined that the polymer system was able to generate a robust Th1 response from 

dendritic cells. Finally, as a step towards modulating Treg activity, the IDO inhibitor 1-

methyl-tryptophan (1-MT) was encapsulated along with the antigen and adjuvant and 

delivered to dendritic cells. When combined, these components elicit and even higher 

Th1 response. Taken together, this combination of components, delivered via PLGA, 

generates a strong, antigen specific, Th1 based, immune response capable of fighting 

tumor growth and prolonging survival in a tumor bearing host. 
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CHAPTER 2: LOCAL INJECTIONS OF A POLYMER DELIVER SYSTEM ELICITS A 

TH1 MEDIATE ANTI-TUMOR IMMUNE RESPONSE 

 

2.1 ABSTRACT 

Overcoming tumor-associated immune escape has increasingly become a requirement of 

immunotherapy treatment strategies. Towards this end, we have developed a polymer 

based vaccine approach for enhancing immunization of tumor-bearing mice with 

resulting systemic anti-tumor activity. We demonstrate here that a poly(lactic-co-glycolic 

acid) (PLGA) based delivery system encapsulating tumor antigen (OVA) and the TLR9 

agonist CpG motif DNA can initiate an effective type 1 (IFN-γ producing) mediated anti-

tumor response in a tumor bearing mouse model. While E.G7-OVA tumors 

spontaneously generate antigen specific CTLs in draining lymph nodes, these CTLs do 

not protect against tumor progression. Intratumoral stimulation with the PLGA based 

therapy failed to enhance the already present CTLs. However, treatment led to the 

generation of an elevated antigen specific Th1 response as a result of the PLGA based 

therapy. Administering intratumoral injections of PLGA with OVA and CpG DNA 

generated an enhanced systemic and local antigen specific Th1 response as measured by 

elevated IFN-γ levels. This method significantly delayed tumor growth and prolonged 

survival. These studies provide insight into the immunological mechanisms and benefits 

of a PLGA based delivery system on a tumor bearing host. 
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2.2 INTRODUCTION 

Studies from our and other laboratories have focused on identifying immune escape 

mechanisms and developing targeted strategies to overcome these mechanism18,52,53. In 

particular, our work has focused on approaches to modulate the tumor microenvironment 

to enhance effective systemic immunity. Studies clearly demonstrate that the tumor 

microenvironment involves a complicated interface between the immune system and the 

tumor, leading to poor antigen presentation, elevated levels of IL-10 or increased Treg 

activity22,23,24,26,54. The immune escape mechanisms have significant impact on the 

development of spontaneous anti-tumor immunity as well as potentially inhibiting 

immunotherapies. In efforts to overcome escape, our and other studies have identified the 

need to both include tumor antigen as well as immune regulatory mediators in the 

treatment regimens for optimal therapeutic success.  

In light of this, there is a clear need to understand and target alternative branches of the 

immune response to fight cancer. CD4+ T cells, for example, have been studied for their 

helper cell properties as well as antitumor activities. These helper cells are known to 

augment the in vivo effects of CTLs, boosting tumor immunity55,56.  Increasing evidence 

is now demonstrating the anti-tumor properties of these CD4+ T cells, mediating the 

killing of tumor cells independent of CD8+ T cells57,58. The hallmark cytokine of this Th1 

response, IFN-γ, is a key component in this CD4+ mediated tumor killing. IFN-γ is 

responsible for recruiting NK cells and macrophage and inhibiting angiogenesis59,60. 

Armed with this knowledge, researchers attempt to understand how their therapies affect 

both CD8+ and CD4+ activity and in turn design better therapies to elicit stronger 
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responses. As described, the in vivo environment greatly alters the immune response and 

understanding how a therapy can alter it is paramount in generating effective anti-tumor 

therapies.  

In the current study we evaluated the de-novo response at both the local and systemic 

compartments of a tumor bearing host as a result of a polymer based therapy. Tumor 

associated antigen in the form of ovalbumin (OVA) and the immune adjuvant CpG motif 

DNA were encapsulated in poly(lactic-co-glycolic acid) (PLGA) and administered to 

E.G7-OVA bearing mice. PLGA, an FDA approved resorbable polymer widely utilized 

as a delivery vehicle offers numerous advantages over soluble delivery of therapeutic 

agents; enhancing and prolonging antigen presentation, increasing cross presentation, 

ensuring co-delivery of antigen and adjuvant to antigen presenting cells, and protection 

from proteolytic degradation46,47,61,62. Despite these benefits and evidence of potent 

immune stimulation from PLGA based systems, there is often a failure to analyze the 

immunological effects of a this delivery system on a tumor bearing model50,51,63.  Here 

we demonstrate the mechanism used to escape immune tolerance and induce anti-tumor 

behavior in response to a PLGA based therapy. In our studies we find that despite a 

significant CTL response in the local lymph nodes of tumor bearing mice, tumor growth 

progresses. It was found that with the PLGA based therapy a Th1 response is 

significantly elevated and consequently delays tumor growth. 
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2.3 MATERIALS AND METHODS 

2.3.1 Tumor model 

The OVA expressing cell line E.G7-OVA (ATCC), derived from the EL4 lymphoma cell, 

was maintained in TCM media (RPMI 1640 based media supplemented with 10% FBS, 

2mM L-Glutamine, essential AA, non-essential AA, 110mg/L  Na-Pyruvate, 50IU/mL 

penicillin/streptomycin). Cells were maintained in 37°C incubators with 5% CO2. Cells 

were split two days prior to implantation to ensure consistent growth.   

2.3.2 PLGA based delivery system 

Poly(lactic-co-glycolic acid) (PLGA) based vesicles were generated using the 

water/oil/water double emulsion method48, with the following modification. In brief, 0.1g 

of PLGA (Sigma-Aldrich, MW 7-17kDa, 50:50 ratio) was dissolved in 0.4mL of 

chloroform (Sigma-Aldrich). 50mg/mL of OVA (ovalbumin, Sigma-Aldrich) and/or 

5mg/mL of CpG DNA (ODN-1668, phosphorothiated TCCATGACGTTCCTGATGCT, 

IDT) was added to the PLGA mixture at 0.05mL per 0.4mL of chloroform/PLGA. A 

microtip sonicator (Branson Ultrasonics) created the primary emulsion at 60% magnitude 

for 5sec pulses and repeated for 4 cycles. This primary emulsion was combined with a 

2mL solution of 7% PVA (Sigma-Aldrich, MW 31-50kDa, 87-89% hydrolyzed) and 

sonicated for another round. Secondary emulsion was added drop-wise to an 8mL bath of 

a 7% PVA solution under constant stirring overnight at 4°C. Final product was collected 

by centrifuging at 16,000xg for 2 hours, washed with dH2O, resuspended in 2% sucrose 

and lyophilized.  
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To determine loading efficiency, FITC labeled BSA (Sigma-Aldrich) was dissolved to 

50mg/mL and Cy5 labeled CpG DNA (IDT) was dissolved to 5mg/mL and incorporated 

into the polymer fabrication as before. Lyophilized polymer was weighed and lysed with 

3M NaOH. Supernatant was collected and scanned on a fluorescent plate reader at 495nm 

and 655nm, corresponding to the labeled BSA and CpG DNA respectively. Standard 

curves were generated and loading concentrations calculated.  

Scanning electron microscopy (SEM) was performed on washed and dried PLGA vesicle 

samples. Samples were first sputter coated with gold for 2min at 30-40mA. Imaging was 

performed at the indicated magnifications with a 20kV electron beam.  

2.3.3 Murine model and therapy 

6-8 week old female C57BL/6 mice (Jackson Laboratories) were immunized via s.c. 

injections into the lower left ventral abdomen with 5mg of polymer in 100µL of PBS 

(day -14), followed by another 5mg injection of the same polymer after 2 weeks (day -7). 

Saline solution was used as a sham control. After an additional one week, mice were 

challenged with 250x103 EG7-OVA cells s.c. in the lower left ventral abdomen (day 0). 

For the treatment model, 250x103 E.G7-OVA cells were implanted s.c. into the lower left 

ventral abdomen. On days 3, 5, and 7, i.t. injections of 5mg of the respective polymer 

were administered. Mice were monitored and the tumor sizes were measured every 2 

days with metric calipers by measuring the largest two diameters. Mice were sacrificed 

when the longest diameter of the tumor reached 1.5cm. Kaplan Meier survival plots were 

generated using MedCalc commercial software. Mean tumor sizes were calculated and 

statistical analysis performed using a two sample Student t-test.  
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2.3.4 51Cr release assay 

Cytotoxic T Lymphocyte (CTL) assays were performed as previously reported with the 

following modifications26. Stimulators were generated from processed spleens of naïve 

female C57BL/6 mice. Spleens were homogenized, incubated with ammonium chloride 

buffer (ACK, 0.15M NH4Cl, 1.0mM KHCO3, 0.1mM EDTA) for 5 min to lyse red blood 

cells, washed with TCM then filtered through a 70µm mesh (BD Falcon). Cells were 

resuspended in TCM media, supplemented with 2-mercaptoethanol (2-ME), at 4x106 

cells/mL an restimulated with or without 300µg/mL of OVA overnight. Effector cells 

were harvested and processed from the inguinal lymph nodes and spleens of day 16 

treated mice. 3x106 stimulator splenocytes were then added to 7x106 effector cells in 2mL 

total volume. On day 4, 50µL of supernatant was harvested from each condition and 

analyzed for INF-γ via a sandwich ELISA. On day 5, effector cells were harvested and 

added to target cells. 2x106 E.G7-OVA target cells were incubated with 100uCi of 51Cr 

for 1 hour at 37°C and 5% CO2. 
51Cr-labeled target cells (5x103) and effector cells were 

combined at known effector:target (E:T) ratios in 200µL of TCM media. After 4hrs in 

37°C and 5% CO2, 100µL of supernatant was collected and measured for 51Cr with a 

gamma counter (Packard Bioscience). Percentage of specific lysis was calculated from 

the formula (experimental release-spontaneous release) x 100/(maximal release in 1% 

SDS+0.5%NaOH spontaneous release).  

2.3.5 ELISA 

Purified rat anti-mouse IFN-γ (PharMingen) were diluted in coating buffer (NaHCO3) to 

2µg/mL and incubated overnight at 4°C on 96 well flat bottom plates (Nunc). Plates were 



18 

blocked with PBS/10%FBS for 2 hours at room temperature. Standards and sample were 

added at 100µL per well and incubated overnight at 4°C. After washing, biotin anti-

mouse IFN-γ (PharMingen) were dissolved to 1µg/mL and added at room temperature for 

45min. Wells were washed and avidin-peroxidase diluted to 2.5µg/mL in 

PBS/Tween/0.1%FBS for 30 minutes at room temperature. Enzyme activity was 

determined using O-phenylenediamine dihydrochloride reagent (OPD, Sigma) dissolved 

to 1mg/mL citrate buffer (pH 4.5) with 3% H2O2. Reaction was stopped with 3M HCl 

and color read at 492 nm. Statistical comparison between experimental averages was 

done using a two sample equal variance Student’s t-test.  

2.4 RESULTS 

2.4.1 Polymer delivery system 

With the goal of developing a vaccine platform which would allow incorporation of both 

varied antigenic material and immune-regulating agents, we have adopted the FDA-

approved, resorbable copolymer PLGA. Based on the water/oil/water emulsion 

technique50, PLGA was utilized to fabricate submicron diameter vesicles. SEM images 

(Figure 2.1A) visualize the polymer vesicles when fabricated as described, having an 

average diameter of 500nm. With a starting concentration of 50mg/mL, final 

encapsulation of the tumor associated antigen OVA was measured to be 11µg of OVA 

per mg of polymer vesicle. Final CpG DNA encapsulation with a starting concentration 

of 5mg/mL yielded a final 150pg of CpG DNA per mg of vesicle. To verify the ability of 

the polymers to be phagocytosed by antigen presenting cells, mainly dendritic cells 

(DCs), we delivered PLGA particles containing rhodamine labeled dextran to DCs in 

vitro. As seen in Figure 2.1B, these DCs readily uptake the polymer vesicles. 
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11,000x magnification, respectively. (B) To quantify the amount of protein and CpG DNA, 

fluorescently labeled BSA and CpG DNA were encapsulated within the PLGA vesicles. Standard 

curves were generated and the concentration of the vesicles were calculated to determine the 

loading efficiency; µg of BSA or CpG DNA per mg of PLGA vesicle. (C) Bone marrow derived 

dendritic cells were cultured for 48hrs with PLGA particles containing TMR dextran. Cells were 

stained with FITC labeled CD11c.  

 

2.4.2 Prophylactic immunization protects against tumor formation 

To demonstrate the capacity of the polymer complex to effectively generate tumor-

specific immunity, mice were pretreated with the polymer vaccine then challenged with 

the lymphoma tumor line E.G7-OVA.  We chose the combination of tumor antigen OVA 

and CpG DNA based on the impetus to include tumor antigen with an adjuvant. 

Unmethylated CpG motif DNA is a popular TLR9 agonist, as it provokes a power 

defense mechanism from B cells and antigen presenting cells. It is known to create 

vigorous IFN-γ responses, capable of inducing robust anti-tumor behavior, particularly 

when used in concert with tumor associated antigen64,65. Based on this, mice were 

pretreated with the polymer vaccine then challenged with tumor. In the ten mice per 

condition of two independent experiments, we see significant protection against tumor 

formation after administration of the polymer (Figure 2.2A). In sham mice, tumors were 

palpable on average by day 7, while tumor onset was delayed until day 9 for CpG DNA 

treated mice, day 13 for OVA treated mice and day 17 for OVA+CpG DNA treated mice. 

At the average time of death for non-treated mice, day 17, all mice treated with antigen 

and adjuvant had either no palpable tumors or below 10mm2 tumor cross-sections while 

sham had most tumors above 100mm2 cross-sections (p < 0 .01, Figure 2.2B). There were 
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challenge on day 0.  Tumor size was monitored and reported as the cross sectional area using 

largest two diameters. Two independent experiments with 5 mice each (10 total) were conducted 

and mice with no tumor formation were omitted from growth curves. (B) Day 17 tumor size 

distribution where each point represents one mouse in each respective condition.  (C) Kaplan-

Meier survival curves demonstrate the probability of survival in response to polymer treatment. 

Significance calculated by standard ANOVA followed by Tukey-Kramer post-hoc analysis and 

reported as p < 0.05 (*).  For Kaplan-Meier, significance reported as p < 0.01 (*) or p = .02 (¥) in 

comparison to sham unless otherwise noted. 

 

2.4.3 Therapeutic treatment significantly delays tumor growth 

While prophylactic immunization is able to demonstrate the ability to vaccinate against 

an antigen specific tumor, the overall goal must be therapeutic studies on established 

tumors. As a means to drive a therapy towards the clinic, determining the responses of 

treatment on a tumor bearing host is essential. Towards this end, tumor bearing mice 

were administered the PLGA based therapy intratumorally and responses investigated. 

The studies show that a significant delay in tumor growth is observed after administration 

of polymer treatment (Figure 2.3A).  While empty PLGA vesicles had no effect on tumor 

growth compared to sham (not reported), we did observed that all other polymer 

treatment conditions delayed tumor growth in comparison to sham (15 mice from 3 

independent experiments, p < 0.01, Figure 2.3B). Although no significant difference 

between OVA and CpG DNA treatment was observed, PLGA with both OVA and CpG 

DNA did significantly delayed tumor growth better than any other polymer treatment (p 

< 0.02, Figure 2.3A). By day 17, all OVA and CpG DNA treated mice had tumors below 

50mm2, while all other polymer conditions had numerous if not most tumors above 



5

op

2

(A

(B

 

F

on

0mm2 (p < 0

ptimal survi

.3C). 

A)

B) 

Figure 2.3 Tu

n day 0 and t

0.05, Figure

ival probabi

umor treatmen

treatments w

 2.3B). Add

ility, with s

nt model with

ere administe

ditionally, po

everal mice

(C)

h polymer ve

ered i.t. on da

olymer with 

e not formin

esicles. (A) E

ays 3, 5 and 

OVA and C

ng tumors (p

.G7-OVA ce

7 with the in

CpG provide

p < 0.01, F

 

lls were impl

ndicated cond

23 

ed the 

Figure 

 

lanted 

ditions 



24 

(PBS (♦ sham), PLGA with CpG (■ P-CpG), PLGA with OVA (▲ P-OVA), PLGA with OVA 

and CpG DNA (× P-O+C), OVA and CpG in solution/PBS (□ sol:O+C)). Tumor size reported as 

the cross sectional area using largest two diameters. Three independent experiments with 5 mice 

each (15 total) were conducted and mice with no tumor formation were omitted from growth 

curves. (B) Day 17 tumor size distribution where each point represents one mouse in each 

respective condition. (C) Kaplan-Meier survival curves demonstrate the probability of survival in 

response to polymer treatment. Significance calculated by standard ANOVA followed by Tukey-

Kramer post-hoc analysis and reported as p < 0.05 (*). For Kaplan-Meier, significance reported 

as p < 0.01 (*) and p < 0.05 (**) calculated by standard t-test. 

 

2.4.4 E.G7-OVA spontaneously elicits local but not systemic CTL response 

Given the well-established role of CTLs in anti-tumor responses66, we analyzed these 

cells in our current therapeutic system. The studies demonstrate that while CTLs prove 

effective at killing tumor cells, they fail at inhibiting in vivo tumor progression. Figure 

2.4 shows a representative result of one of three 51Cr release assays demonstrating the 

systemic (spleen) and local (tumor draining lymph node) antigen specific CTL response 

of tumor bearing mice post treatment. We observed that tumors alone lead to a significant 

local lymph node, but not systemic (spleen), CTL response. Mice can spontaneously 

generate antigen specific cells to target and kill E.G7-OVA cells. It was also 

demonstrated that the polymer treatments were unable to increase this response, as there 

was still no detectable systemic CTL activity and no measurable change in local CTLs 

after polymer treatment. This divergence should be noted, as polymer treatments were 

still able to retard tumor growth, providing evidence of the dysfunctional CTL in vivo 

activity.  
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This study provides an alternative approach to common immunotherapies for inducing 

anti-tumor immune responses. 

As we and others have shown, there is a niche of mechanisms identified that are 

responsible for immune escape. It has been well documented that tumors can curb the 

immune response by producing and/or inducing factors such as IL-1026,67,68, TGF-beta69, 

VEGF70, and by activating Tregs71. Our prior studies in the murine bladder cancer model 

MB49 showed that IL-10 can render antigen presenting cells deficient and inhibit 

immune stimulation26. It was demonstrated in this MB49 model that local but not 

systemic CTLs were generated by the tumor. This lack of systemic immunity could be 

overcome by local administration of a recombinant viral vaccine producing antigen and 

GMCSF. However, it was unable to induce tumor regression18. In the current cancer 

lymphoma model, E.G7-OVA, tumors induced local CTL activity as well (Figure 2.4) but 

are also unable to block tumor progression (Figure 2.3A). In an attempt to broaden the 

therapeutic immunization techniques and also investigate non-viral platforms, we aimed 

to elicit a similar anti-tumor response by utilizing intratumoral injections of a polymer 

based delivery system that administers both an antigen and an immune stimulant. 

Although methods such as viral vectors provide effective anti-tumor immunity, PLGA 

was chosen as an alternative vehicle for delivery for its many benefits. PLGA is FDA 

approved, is easily adaptable to different systems and cost effective. It has high bio-

compatibility with minimal toxicity; the original monomers, lactic acid and glycolic acid, 

are byproducts of various metabolic pathways72. In addition, these vesicles are 

phagocytosed in vivo by macrophages and antigen presenting cells (APCs), facilitating 
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the development of adaptive immunity48. As we have shown in prior studies, PLGA 

based vaccines provide a superior platform to increase the activation of dendritic cells 

and the overall Th1 response from these profession antigen presenting cells (in press). It 

was shown that delivery of antigen and adjuvant via PLGA vesicles could increase the 

Th1 profile of bone marrow derived dendritic cells in vitro. Cell surface expression of 

CD80, CD86, MHCII and secretion of IL-12 were upregulated as a result of treatment. It 

was hypothesized that this dendritic cell response would provide optimal utility in a 

tumor study. To demonstrate the ability of this polymer system to induce an antigen 

specific anti-tumor response, the polymer was adopted for use in the E.G7-OVA tumor 

bearing mouse model.  

Studies were conducted to demonstrate the ability of the polymer system to reverse the 

anergy observed in tumor bearing mice. It was found in our studies that intratumoral 

injections of the PLGA vesicles were unable to produce measurable systemic CTLs as 

previously anticipated and seen in our viral vector based MB49 studies. However, PLGA 

administration could reverse immune escape by greatly elevating the IFN-γ mediated Th1 

response. The PLGA based delivery system was able to induce elevated IFN-γ levels both 

systemically and locally when OVA and CpG DNA were delivered together. This 

elevated Th1 response is directly correlated with tumor growth, as mice treated with the 

polymer vesicles provide the greatest protection against tumor growth in both a 

prophylactic and treatment study. It is interesting to note that soluble delivery of the same 

components was unable to generate any increase in IFN-γ secretion both locally and 

systemically (Figure 2.5B). These results further demonstrate the benefits and motivation 

of using a polymer based delivery system. Similar findings support this phenomena and 
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show the advantage of a PLGA based antigen delivery system at enhancing humoral 

immunity, inducing elevated antibody levels, and generating Th1 responses73,74,75,76,77. In 

particular, elevated IFN-γ is commonly attributed to a strong CD4+ mediate Th1 

response59, and has been shown to act directly on tumor cells to inhibit both proliferation 

and angiogenesis to facilitate apoptosis78,79,80. The current data thus supports this 

hypothesis that PLGA delivery to a tumor bearing host generates a strong IFN-γ mediated 

Th1 response that supports combating tumor growth.  

In conclusion, this PLGA based delivery system provides an effective means to deliver 

antigen and adjuvant to initiate anti-tumor responses. Although tumor cells are able to 

elicit local antigen specific CTL responses in mice without vaccination or stimulation, 

this alone is insufficient at perturbing tumor growth. The data suggest tumor cells fail to 

prime for a functional type 1 (IFN-γ) response in normal mice, allowing tumor 

progression. Treatment with a polymer system such as PLGA provides a means of 

escaping immune tolerance, in this case by priming and protect via an elevated IFN-γ 

mediated, antigen specific response. With a broader understanding of the immune 

responses in tumor bearing hosts and the roles therapies play at modulating those 

responses, we can better assess and subsequently design therapeutic strategies. 
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CHAPTER 3. ANALYSIS OF DENDRITIC CELL STIMULATION UTILIZING A 

MULTI-FACETED NANOPOLYMER DELIVERY SYSTEM AND THE IMMUNE 

MODULATOR 1-METHYL TRYPTOPHAN 

 

3.1 ABSTRACT 

Dendritic cells (DCs) play a pivotal role in immune modulation.  Therefore, 

understanding and regulating the mechanism of DC activation is paramount for 

functional optimization of any immunotherapy strategy. In particular, the paradoxical 

ability of DCs to secrete the immune suppressive enzyme indoleamine 2,3-dioxygenase 

(IDO) and the suppressive cytokine IL10 during the course of, and in response to, 

stimulation is of great interest. 1-Methyl-Tryptophan (1MT) is a known inhibitor of IDO 

and has thus been administered in numerous in vitro and in vivo systems to block IDO 

activity.  However, the effect 1MT has on DCs beyond inhibiting IDO, especially in 

therapeutic models, has rarely been analyzed. In the current study, we have administered 

1MT via a nanopolymer based delivery system in conjunction with an antigen 

(ovalbumin, OVA) and an adjuvant (CpG motif DNA) to determine both the effects of 

1MT on DCs and the resulting efficacy of the polymer based treatments. 1MT delivery 

alone, either via the polymer based delivery vehicle or dissolved in solution, induced no 

significant change in DC activation as measured by surface expression of CD80, CD86, 

and MHCII and several secreted products such as IL-12. These same factors were up-

regulated however, when 1MT was delivered in conjunction with OVA and CpG. 

Although soluble delivery of these components increased the levels of expression and 

secretion of key proteins, a differential effect of DC stimulation was seen as a result of 
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the polymer delivery system. The T cell suppressive IL10 secretion was lower with the 

polymer based treatments and IL-12 immune enhancing secretion was elevated when 

1MT was supplemented into the polymer system. As a result, including 1MT in the 

polymers along with OVA and CpG was seen to have additional effects on DC 

stimulation and was able to shift DCs to a state more indicative of inducing a Th1 type 

response. 

3.2 INTRODUCTION 

Dendritic cells (DCs) play a powerful role in immune system modulation and interact in 

various ways with many T cell subsets. CpG motif DNA or lipopolysaccharide (LPS) 

from bacteria stimulate DCs to upgregulate a number of critical immunomodulatory 

molecules, including, for example, increased expression of CD80 and CD86 and 

increased secretion of IL-12 and TNF-α 1,2.  DCs interact with specific T cell subsets to 

initiate or augment antigen specific immune responses. However, binding of CD80(B7-

1)/CD86(B7-2) to different receptors on T cells, specifically CD28 or CTLA-4, result in 

differential stimulation of T cells. Interaction with CD28 results in an expansion of T 

cells3,4, while binding of CTLA-4 results in an attenuated T cell response5,6. These 

divergent responses are essential for the regulation of T cell activity and in coordination 

with the cytokines secreted by DCs, aid in maintaining T cell homeostasis. Hence, the 

classic role of DC activation of T cells for the purpose of killing and removing 

pathogenic cells is now known to be only a partial immunomodulatory role of these 

potent APCs.  
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It is known that DCs can directly facilitate and induce immune suppression, for example 

via the CTLA-4 pathways7,81. DCs can stimulate a subset of T cells now termed T 

regulatory cells (Tregs), originally identified as a subset of lymphocytes that provided a 

degree of tolerance8. It is believed that both CD4+ and CD8+ Tregs exist, each 

performing distinct yet complementary functions9. DCs can interact and activate both 

Treg subsets10,11, typically mitigating the T cell milieu. Studies have begun to investigate 

methods of blocking this immune suppression, via antibodies against Tregs, which are 

proving to be effective therapeutic supplements29,30. Biochemical enzymes and pathways 

are also potential avenues for Treg blockade. The indoleamine 2,3-dioxygenase (IDO) 

enzyme pathway has been described as an important tolerogenic target in tumor 

progression, suppressing T cell immunity and increasing Treg based immune 

suppression31. Stimulated DCs increase their levels of IDO production and can directly 

inhibit T cell proliferation and activate Tregs, minimizing effector T cell activity32,33,34. 

With this clear IDO mediated balance within DC activation, there is a need to minimize 

its activity. Multiple methods have been used to inhibit IDO, the most popular being 1-

methyl-tryptophan (1MT) supplementation, which leads to a decrease in Treg 

suppression and subsequent increase in effector T cell activity36. However, the literature 

is sparse in details concerning the cellular and biochemical effects 1MT has on DCs.  

Considering the power and versatility of DCs with regards to their ability to modulate T 

cell activity, understanding how 1MT affects DC subsets becomes increasingly 

significant. A major goal in DC therapy is to induce antigen specific immunity while 

inhibiting IDO activity, providing a strong effector T cell response, while inhibiting 

Tregs. In the current study, we aimed to develop an efficient and quantitative method to 
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deliver 1MT in conjunction with antigen and a known adjuvant, CpG motif DNA, to bone 

marrow derived DCs. The ultimate goal is to provide antigen specific stimulation, while 

minimizing and/or inhibiting the suppressive capabilities of DCs.  In such a process 

though, 1MT can have collateral effects on DC activation. We sought to elucidate the 

effects, either negative or positive, of 1MT treatment on DCs by delivering 1MT via a 

polymer deliver vehicle. DCs were treated with 1MT alone or in conjunction with 

stimulatory factors and analyzed for secreted products and their cell surface expression of 

key proteins responsible for costimulation. Our results indicate 1MT may be playing a 

larger role in DC stimulation than was previously thought. 

3.3 MATERIALS AND METHODS 

3.3.1 PLGA polymer characterization 

Polymer vesicles were generated using a water/oil/water double emulsion method48, with 

the following modification. In brief, 0.1g of poly(lactic-co-glycolic acid) (Sigma-Aldrich, 

MW 7-17kDa, 50:50 ratio) was dissolved in 0.4mL of chloroform (Sigma-Aldrich) using 

a sonicator water bath to expedite dissolution. Aqueous phase, containing OVA 

(ovalbumin, Sigma-Aldrich), CpG DNA (ODN-1668 TCCATGACGTTCCTGATGCT, 

phosphorothiated, IDT) and/or 1MT (1-Methyl-DL-tryptophan, Sigma-Aldrich), or 

Dextran-TMR (40kDa, Invitrogen) was added to the organic PLGA mixture at 0.05mL 

per 0.4mL of chloroform/PLGA. To create the primary emulsion, a mirotip sonicator 

(Branson Ultrasonics) was placed in the first aqueous and organic phase and ran at 60% 

magnitude for 5sec pulses, followed by 30sec pauses, repeated for 4 cycles. To create the 

secondary emulsion, the resulting primary emulsion was placed in 2mL of a 9% PVA 

solution (Sigma-Aldrich, MW 31-50kDa, 87-89% hydrolyzed) and subjected to identical 
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sonication as the primary emulsion. To finalize the secondary emulsion, all of secondary 

emulsion was added drop-wise to an 8mL bath of a 9% PVA solution under constant 

stirring. Solution was kept under constant stirring for at minimum 5 hours to evaporate 

the organic solvent. Final product was collected by centrifuging at 17,500xg for 2 hours, 

washed twice with dH2O, resuspended in 2% sucrose and lyophilized.  

Particle size was determined by dynamic light scattering using a Zetasizer (Malvern 

Instruments Ltd). Antigen loading was determined by first lysing the polymer vesicles in 

0.1M NaOH for 24 hrs then analyzing the supernatant with UV spectroscopy at 280nm 

and 260nm or using a BCA protein assay. Due to interference in the BCA assay, 1MT 

loading capacity was estimated based on the OVA encapsulation results. To load 1MT 

into PLGA vesicles at specific amounts, the starting concentrations of OVA used to 

obtain a desired final loading concentration was used as the starting concentration for 

1MT. To determine vesicle weight, 10mg of polymer vesicle was dissolved in 200uL 

PBS and analyzed via flow cytometry (BD FACSCalibur) at a constant flow rate of 

12µL/sec for 30sec. Using BD CellQuest software, polymer count was established and 

the average weight of each polymer capsule calculated. 

3.3.2 DC generation 

Dendritic cells were generated from murine bone marrow as previously described with 

slight modification26. Briefly, the femurs and tibias of six to eight-week-old male 

C57BL/6 mice (Jackson Laboratory) were removed and cleaned of excess tissue then 

washed with 75% EtOH for 60 seconds. Marrow was flushed out with 1x PBS using a 

syringe and 27 1/2 gauge needle. Bone marrow plugs were dissociated by vigorous inverse 
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pipetting. Red blood cells were lysed using 5mL of ammonium chloride buffer (0.15M 

NH4Cl, 1.0mM KHCO3, 0.1mM EDTA) for 5 min. Cells were washed twice with media 

(Invitrogen Advanced RPMI 1640, 110mg/L Na Pyruvate, 10% FBS, 50IU/mL 

penicillin/streptomycin, and 2mM L-Glutamine) and filtered through a 70µm cell 

strainer. Resulting cell pellet was resuspended to a concentration of 2x106 cells/mL in 

media with 10ng/mL of GM-CSF and 10ng/mL of IL-4 (R&D) and plated at 5mL per 

well on 6 well plates (BD). Cells were then incubated at 37°C and 5%CO2. Every 48hrs 

floating cells were removed and the media was replaced with fresh media and cytokines. 

On day 7-9, all cells were harvested using a cell scrapper and characterized as immature 

DCs for subsequent analysis and experimentation.  

3.3.3 Polymer treatments 

Bone marrow derived DCs were resuspended at 1x106cells/mL in media at 1mL per well 

of a 24 well plate (BD Falcon). Prepared polymer vesicles was weighed, sterilized by UV 

light for 10 minutes, and dissolved in media and added to cell suspensions. LPS (055:B5, 

Sigma-Aldrich) was used a control for stimulation at a final concentration of 2µg/mL. 

Cells remained in 37°C and 5%CO2 during the remainder of treatment.  

3.3.4 Immunocytochemistry and flow cytometry 

DCs were harvested from culture via vigorous inverse pipetting and washed with PBS. 

Cells were blocked with FC block (BD Pharmingen) for 10min then stained in 100uL 

with 2ug/mL of antibodies for the following surface proteins; CD80, CD86, CD11c, 

MHCII, CD8a, CD11b (BD Pharmingen). Expression levels were analyzed via flow 
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cytometry using a BD FACSCalibur with BD CellQuest or a Coulter Cytomics FC500 

and analyzed with the Coulter CXP software. Geometric mean fluorescent intensities are 

calculated by subtracting the intensities of the respective isotype controls from the Ab 

treated conditions. Flow cytometry on the Coulter Cytomics FC500 was performed using 

the CINJ Shared Resource. 

3.3.5 ELISA/Bioplex 

Supernatants from cell cultures were harvested and run through an ELISA with paired 

antibodies or run on a Bio-Rad Bioplex Suspension Array System. For the ELISA, a 

standard sandwich assay was performed. For the Bioplex system, 50uL of sample was 

used and the protocol for the assay was followed as per manufacturer’s 

recommendations, analyzing samples in duplicate. Statistical comparison between 

experimental conditions was done using a two sample equal variance Student’s t-test. 

Differences were considered significant at p < .05 and thus reported.   

3.4 RESULTS 

3.4.1 Polymer delivery system 

We chose to utilize the FDA-approved, resorbable copolymer PLGA due to its versatility 

and well characterized properties, that allow one to deliver any specified tumor 

associated antigen and/or immune stimulant at desired concentrations. Based on the 

water/oil/water emulsion technique50, particles were constructed in an array of sizes 

starting as low as 200nm with highest sonication power settings available. Decreasing 

sonication power to 10% increases the vesicle average diameter to 500nm. The set time 

of exposure to sonication strength ensures a homogenous population at the reported 
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average vesicle size, while shorter exposures results in large polydispersity and 

heterogeneous sizes. Longer exposures would further decrease the polydispersity, 

however this causes excessive heat to develop within the system. Using dynamic light 

scattering, we verified the reproducibility of particle size generation (Figure 3.1A) with 

an average polydispersity below 0.1, demonstrating near homogeneity. Lyophilized 

polymer was weighed and lysed, and it was determined that up to 10µg of OVA could be 

encapsulated per mg of vesicle when the starting concentration during particle generation 

is at 100mg/mL. Starting concentration was incrementally decreased to 25mg/ml (Figure 

3.1B), yielding vesicles containing as low as 2µg per mg of particles. Starting 

concentrations higher than 100mg/mL induced aggregation and prevented individual 

particle formation, while concentrations lower than 25mg/mL proved difficult with 

regard to measuring encapsulation efficiency.  

To first verify the ability of the polymer vesicles to be internalized by DCs, tetramethyl 

rhodamine (TMR) labeled dextran was encapsulated and delivered to DCs over a 30 hour 

period, shown in the flow cytometry plot of Figure 3.1C. Throughout the incubation 

period, polymer vesicles are seen entering the cells, as indicated by an increase in 

fluorescent levels. As seen in the fluorescent microscopy images of Figure 3.2, polymer 

vesicles are in fact within the cells in high numbers. 
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ensure comparison between the delivery methods though, overlapping values of 0.5mg 

and 1mg for both soluble form and polymer delivery are reported. Supernatants were also 

collected and analyzed for secretion profiles, with data normalized to non-stimulated and 

LPS treated cells. Figure 3.4 shows that OVA+CpG treated cells increased their secretion 

of IL-12(p40 and p70), IFN-γ, TNF-α, MCP-1 and IL-10.  

While 1MT is known to inhibit IDO activity, the effects it has on DC stimulation is still 

unclear. To gain insight into the effect of 1MT on altering DC maturation, 1MT was 

administered to cells in solution, either alone or with OVA and CpG. 1MT delivered 

alone significantly altered CD11b expression, as indicated by higher fluorescent 

intensities, with the largest effects seen at highest concentrations (Figure 3.3). 1MT 

delivered in conjunction with OVA and CpG did not alter the expression of any markers 

as compared to OVA+CpG. 1MT alone was also unable to alter the secretion of any 

measured cytokine and no significant change in secretion was observed when 1MT was 

added in conjunction with OVA and CpG.  
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DCs were treated with different variations and concentrations of the polymer vesicles. 

Figure 3.5 shows representative histograms of CD86 expression on CD11c+ DCs treated 

with up to 500µg of PLGA vesicle per 106cells.  In analyzing the immunological effects 

of PLGA itself, PBS was encapsulated (PLGA-PBS) and delivered to DCs. We noticed 

no significant change to DC phenotype or secretion profiles in response to empty PLGA 

particles. Only when doses up to 5mg of vesicles were administered per 1x106 DCs did 

the empty vesicles elicit a small response from DCs (data not shown). From this we can 

confirm that any changes in DC properties and/or function resulted from encapsulated 

components and their route of delivery. OVA and CpG was then encapsulated in PLGA 

(PLGA-OVA, and PLGA-CpG), but also did not change DC CD86 expression profiles 

throughout the administered doses. However, DCs treated with PLGA containing both 

the CpG DNA and OVA (PLGA-CpG+OVA) displayed an increase in CD86 expression. 

The DC population expressing elevated levels of CD86 was expanded, with more cells 

expressing higher amounts of CD86 as the dose of polymer vesicle was increased.  
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stimulation with increasing dose, including 1MT with the OVA and CpG helped increase 

the levels of CD80, CD86 and MHCII to even more elevated levels. Secretion profiles of 

these DCs (shown in Figure 3.7) corroborate this finding, as significant increases in IL-

10, IL-12 and MCP-1 were observed as a result of adding 1MT to OVA and CpG in the 

polymer vesicles. This increase was more evident at the higher concentrations of vesicles. 

As with delivery in soluble form, 1MT alone delivered via the polymer vesicles had no 

significant change in any surface protein throughout the doses (Figure 3.6). However, 

there was arguably some effect in the secretion profiles of DCs treated with 1MT via the 

polymer vesicles, as shown in the IFN-γ and GM-CSF profiles (Figure 3.7), but 

variability between experiments was high and thus not statistically significant.  
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efficiency and the potential deviation from the observed processing of encapsulated 

components may vary at larger sizes. Smaller particles, i.e. nanoparticles, offer an 

advantage of greater cellular uptake as compared to larger microparticles. It has been 

shown that 100nm size nanoparticles have 2.5 times greater uptake compared to 1mm 

particles and 6 fold higher uptake compared to 10mm particles88. Larger particles will 

also degrade differently, both within cells and in tissue, altering the timing of release and 

potential stimulation. To minimize this variation, polymer vesicles with average diameter 

of 250nm were used throughout our studies. Although a limit for protein encapsulation 

was found, the limit for DNA encapsulation was not analyzed. Ranges up to a starting 

concentration of 20mg/mL was used and proved successful (data not shown), but a 

starting concentration of 5mg/mL was sufficient to create polymer vesicles that 

stimulated DCs. This property is one potential hypothesis for the reason CpG DNA alone 

in the polymer vesicle was unable to stimulate DCs. Perhaps increasing this DNA starting 

concentration would allow for vesicles containing CpG alone to stimulate DCs, and will 

thus be an aim of future studies. From the current results though, we have demonstrated 

the ability to create a wide range of polymer compositions containing antigen and 

adjuvant at various ratios. This allows us to fabricate a specifically tailored system to 

expand various DC populations.  

As seen in Figure 3.5, particles with either OVA or CpG DNA alone did not induce any 

significant change in CD86 expression, nor in the cytokine secretion profiles (data not 

shown). In solution though, this same CpG DNA was able to stimulate DCs to increase 

CD80, CD86 and MHCII expression (Figure 3.3), as well as a vast array of cytokines 

(Figure 3.4). When these concentrations of CpG DNA and OVA were encapsulated 
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simultaneously within the polymer vesicle, the resulting polymer vesicle was able to 

stimulate DCs. Figures 3.6 and 3.7 show that these polymer based vesicles were able to 

stimulate DCs to a highly mature state. There are several hypotheses which could explain 

why CpG requires OVA within the polymer to stimulate the DCs; OVA helps protect 

CpG from degradation once internalized within the cell and/or OVA helps increase the 

loading capacity of CpG DNA within the polymer. Yet another possibility lies in the fact 

that the internalization and intracellular pathways targeted may differ in DCs as a result 

of polymer delivery. These results and hypotheses are not unique though, as others have 

reported similar events. For example, it has been shown that there is enhanced CTL 

activity against OVA from immunized mice as a result of coencapsulating both OVA and 

CpG, as compared to decoupled delivery or inoculation in soluble form21. It has also been 

shown in studies that delivery of antigen via a polymer vesicle such as PLGA both 

enhances and prolongs the cross presentation of exogenous protein on MHCI complexes, 

a result absent when antigen is delivered in soluble form47. These findings demonstrate 

the importance and hidden benefits of delivering components to DCs in a combined and 

controlled manner such as through a polymer delivery vehicle.  

This benefit of utilizing PLGA was further exemplified when 1MT was introduced into 

the polymer system. 1MT is commonly utilized to inhibit or minimize the activity of IDO 

either within DCs or Tregs. It has thus been proposed as an agent for use in antitumor 

therapies to abrogate the immunosuppressive effects of Tregs. In relevance to this study, 

reports show that stimulating DCs with CpG can induce immune suppression of T cells 

via the IDO pathway, but can be reversed with 1MT treatment89. Although delivering 

CpG can stimulate DCs to increase costimulatory molecules and induce an inflammatory 
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cytokine milieu, CpG DNA can also paradoxically increase IDO secretion, thus 

potentially creating a suppressive environment. This finding, coupled with the 

understanding that secreted IDO can encourage Treg activity, leads to a need to block 

IDO activity during DC activation, antigen presentation and costimulation. However, 

very little work has been performed to analyze the effects 1MT has on DCs in addition to 

directly blocking IDO activity. To emphasize the importance of this, studies have claimed 

that 1MT delivered with LPS or TNF-α decrease the stimulation levels of DCs as 

measured by, among other things, CD80 and CD86 expression and secretion of key 

cytokines90,91. Hence, 1MT may be inhibiting beneficial factors required for a successful 

therapy. We therefore sought to analyze the delivery of 1MT in a therapeutically relevant 

system; PLGA containing antigen (OVA) and adjuvant (CpG DNA).  

We observed that IL-10 was increased significantly as a result of the polymer based 

treatment, even more so when 1MT was introduced into the polymer vesicles. It should 

be noted though that these levels were lower than those levels observed with the soluble 

delivery method.  Although it is not abnormal for levels of IL-10 to increase after 

stimulation, IL-10 is an accepted immune suppressant and has been known to skew 

lymphocytes from a Th1 to a Th2 response. In addition, our group has reported an IL-10-

dependent inhibition of DC function in a model of tumor-induced immune suppression26. 

Effects of increased IL-10 would consequently be detrimental in most systems. For 

example, IL-10 has been demonstrated to not only have autocrine effects, but can down-

regulate CD86 and MHCII expression and can decrease the amount of IL-12 secreted 

from DCs92,93,94. These effects would normally further encourage Th2 responses. 

However, as a result of the polymer based delivery system, a deviation from this pattern 
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was observed, unlike that seen in soluble delivery. Introducing 1MT into the polymer 

vehicle with OVA and CpG was also able to greatly increase IL-12 secretion (Figure 3.7) 

and not only maintain but increase the expression of CD86 and MHCII  (Figure 3.6), 

seemingly reversing the effects of having elevated IL-10 levels. Whether this is a result 

of 1MT inhibiting IDO or influencing another alternative biochemical pathway will 

require further studies.  

It is also unknown what effects increasing the MHCII to CD86 ratio will have on T cell 

interactions (Figure 3.8) without further studies. It has been shown that when this ratio is 

elevated, a decrease in immune competence can be observed95. Although an increase in 

this ratio was observed as a result of the polymer based treatments, CD86 was still 

significantly high. Perhaps this elevated level of both cell surface proteins, in addition to 

the increased ratio and elevated IL-12 secretion, will provide an overall stronger TCR 

binding and subsequent costimulation, allowing superior antigen priming and/or 

activation of T cells. Summarized in Table 1, these DCs generated as a result of the 

polymer based treatment provide an advantageous environment to skew lymphocytes to a 

Th1 phenotype. Cell surface proteins CD80, CD86, and MHCII are elevated along with 

secretion of IL-12. Although IL-10 is also elevated in each OVA and CpG treatment, the 

fold increase is significantly less than LPS stimulated cells. The resulting DC population 

generated by the polymer based delivery system will potentially greatly improve the 

efficacy of antigen specific therapy. This hypothesis would require further testing, where 

cytotoxic T cell assays and mixed lymphocyte reactions would help verify the claim.  
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CHAPTER 4: IMMUNOLOGICAL INSIGHT INTO THE EFFECTS OF 1-MT 

4.1 Introduction 

The PLGA based delivery system was able to induce elevated IFN-γ levels systemically 

and locally when OVA and CpG DNA were delivered together. Soluble delivery of the 

same components however was unable to induce any increase in IFN-γ secretion. Aside 

from providing a controlled and protected delivery mechanism, PLGA based delivery 

systems, as confirmed here, elicit stronger immune responses than soluble delivery. 

Others have reported similar findings that demonstrate the advantage of PLGA based 

antigen delivery at enhancing humoral immunity, inducing elevated antibody levels, and 

generating Th1 responses73,74,75,76,77. In particular, elevated IFN-γ is commonly attributed 

to a strong CD4+ mediate Th1 response59, and has been shown to act directly on tumor 

cells to inhibit both proliferation and angiogenesis, facilitating apoptosis78,79,80. The 

current data thus supports the hypothesis that delivery of OVA and CpG via the PLGA 

vesicles generates a strong IFN-γ mediated Th1 response.  

While increasing the immunogenicity of tumor associated antigens, such as through 

polymer delivery systems, has proven efficacious, the field of cancer immunology has 

also recognized the important role of regulatory T cells (Tregs). Particularly in cancer 

models, Tregs are known to attenuate the response of ACPs, B cells, NK cells, CD8+ T 

cells and other CD4+ T cells96,97,98,99,100. While they are upregulated in cancer models and 

obviously present a challenge, Tregs have proven successful targets for improving 

antitumor responses101,102,103,104,105. In the current lymphoma model, Tregs are 

upregulated and comprise up to 15% of the T cell population in tumor draining lymph 
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nodes106,107,108. Blocking these Tregs would thus potentially increase the effectiveness of 

our PLGA therapy. To do so, we encapsulated and delivered 1-methyl-tryptophan (1-MT) 

on its own or in concert with OVA and CpG DNA. 1-MT is a known IDO inhibitor and 

has antitumor effects but only recently has it been utilized in a combinatorial treatment 

regime109,110. We observed in the detailed in vitro studies that 1-MT delivered via the 

PLGA based polymer can expand the Th1 phenotype from dendritic cells. It was thus a 

goal of this work to analyze the effects 1-MT had on modulating the immune 

environment and enhancing therapeutic efficacy. 

4.2 Delivery of 1-MT reverses Treg induced CD4+ inhibition 

Bone marrow derived dendritic cells were generated as before and stimulated with the 

polymer delivery system. After 48hrs, dendritic cells were treated with mitomycin-c for 

1hr then co-cultured at a 1:5 ratio with syngeneic CD4+ T cells with or without 

CD4+CD25+ T cells. T cells were obtained from spleens of previously OVA immunized 

mice. Spleens were harvested and T cells isolated with the Miltenyi Biotec cell separation 

systems using kits for CD4+ T cells and for CD4+CD25+ Regulatory T cells. CD4+ T 

cells were stained with CFSE dye per manufacturer’s recommendations prior to co-

culture (CellTrace CFSE Cell Proliferation Kit, Invitrogen). T cell proliferation was 

monitored after 5 days of incubation by measuring the decrease in fluorescence intensity 

associated with cell division.  

Dendritic cells treated with PLGA encapsulating OVA and CpG DNA (POC) or PLGA 

encapsulating OVA, CpG DNA and 1-MT were able to induce significant stimulation of 

CD4+ T cells, as demonstrated in Figure 4.1. As controls, dendritic cells were not 
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4.3 Delivery of 1-MT to tumor bearing mice alters the immune response 

1-MT delivered alone via the PLGA vesicle was able to moderately delay the growth of 

tumor, yet had significantly less effect than OVA and CpG DNA (Figure 4.2). In 

addition, there is no difference in local CTL activity from the different treatment 

modalities (Figure 4.3A). Systemic CTL activity was still not measurable in any 

treatment condition. Being that 1-MT does not increase CTL activity (Figure 4.3A) and is 

unable to elicit a systemic or local IFN-γ response (Figure 4.5), 1-MT is curbing a 

different branch of the immune response; such as inhibiting IDO and subsequently 

blocking Tregs. When 1-MT is included with OVA and CpG DNA in the PLGA vesicles, 

there is no statistically significance in tumor sizes. Analyzing tumor sections on days 9 

and 17 via H&E staining (Figure 4.4), significant scar tissue is observed, due to the rapid 

growth and turnover of E.G7-OVA cells, but no major infiltration of immune cells or 

macrophages.   
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amount of IFN- γ was overall significantly lower and 1-MT did not have as great of an 

attenuation effect. Delivery of OVA, CpG DNA or 1-MT dissolved in PBS induced little 

expression of IFN-γ as compared to the polymer delivery system. In the polymer system, a 

significance of p < 0.01 (*) or p < 0.05 (**) was observed in comparison to sham. 

 

CAHPTER 5: CONCLUSIONS 

5.1 KEY FINDINGS 

It was found that the lymphoma tumor line E.G7-OVA is capable of eliciting an antigen 

specific, CTL response. Although a syngeneic model, the murine hosts are capable of 

generating a spontaneous anti-tumor response in the local but not systemic environment. 

These CTLs are functionally ineffective, as tumors progress rapidly after implantation.  

Additionally, there is no significant local or systemic Th1 response in the tumor bearing 

hosts, as levels of IFN-γ are low.  

With administration of the polymer delivery system, we observe a significant reduction in 

tumor growth and prolonged survival. Delivering OVA and CpG DNA independently had 

some effect on tumor progression, but was dwarfed by the ability of OVA and CpG DNA 

delivered together to delay the growth of a tumor. The polymer system however was 

unable to change the antigen specific CTL response, as the local activity remained the 

same and there was no measurable systemic effect.  

Delivering OVA and CpG DNA via PLGA was able to induce a Th1 response that 

provided a means to counteract the immune escape exhibited by the tumor. In both the 

systemic and local compartments levels of antigen specific IFN-γ were elevated as a 
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result of the polymer treatment. These results directly correlate with the delay of tumor 

growth and the demonstrated ability of the polymer system to vaccinate against tumor 

challenge. The polymer system generates an anti-tumor Th1 response that functions 

independently of CTLs to reduce tumor growth.  

In vitro data supports this Th1 response as DC increase their Th1 phenotype as a result of 

polymer treatment. In a dose dependent manner, OVA and CpG DNA delivered to DCs 

via PLGA increase their Th1 phenotype. A marked increase in the levels of CD80, CD86, 

MHCII, IL-12 and IFN-γ are observed after polymer treatment. Soluble delivery of OVA 

and CpG increased these cytokines and cell surface molecules as well, but also elevated 

Th2 markers such as IL-10 to a much greater level than with polymer delivery. This data 

further demonstrates the benefits of utilizing the PLGA delivery system to administer 

OVA and CpG to generate a Th1 response.  

Lastly, delivery of 1-MT via PLGA has the ability to increase the Th1 response in vitro.  

While 1-MT had no effect on DC stimulation when delivered on its own, it greatly 

enhanced the Th1 phenotype of DCs as a result of treatment. There was a significant 

increase in CD80, CD86, MHCII and IL-12 levels as a result of the combinatorial 

treatment. 

5.2 FUTURE OUTLOOK 

PLGA based delivery systems have been used for a vast array of applications. Here we 

have detailed one such application where PLGA was utilized to induce an immune 

response on systemic level generated from a single dendritic cell population. It was 
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demonstrated that the delivery system could generate a robust and antigen specific Th1 

based immune response within a tumor environment. As a result, this immune response 

was able to delay the growth of the tumor and prolong survival. Analyzing the discreet 

cellular response to this therapy further demonstrated that a Th1 response was induced 

within dendritic cells to initiate the cascade of adaptive immunity.  

Although conclusive in its ability to initiate an effective anti-tumor response, this PLGA 

delivery system opens a broad door for future studies. To begin, the studies presented in 

this work contribute to the characterization of immunological responses in tumor bearing 

mice.  Broader understanding of the complex interaction within the immune system in a 

tumor bearing host provides insight into advancing treatment strategies. The studies 

shown were developed from previous known regimens, as they were well characterized 

or accepted. However, there are numerous methods to advance the treatments. For 

example, testing different routes of injection, providing continued administration of the 

polymer and providing increasing doses are all feasible methods to investigate the 

therapeutic potential of the polymer system. For example, upon further investigation it 

was found that by co-encapsulating both CpG DNA and OVA an increase in the amount 

of CpG DNA was observed within the PLGA vesicles (Figure 5.1). It is hypothesized that 

the ionic interactions of the largely positive OVA and highly negative CpG DNA induce 

aggregation and therefore increase the encapsulation efficiency of CpG DNA. This would 

result in increased stimulation of dendritic cells, as was observed in the in vitro studies 

where CpG DNA alone in the PLGA was unable to stimulate dendritic cells (Chapter 3).  
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can be used to treat a variety of cancers and other debilitating diseases. Albeit a tedious 

path, the promising results presenting in this body of work provide a first step towards 

translating therapy from research and development into applications within a clinical 

setting.  
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