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Burn injury and infections can lead to an uncontrolled and prolonged action of 

inflammatory response in the body, which increases the mortality rate of patients. To gain 

a more comprehensive understanding of these complex physiological changes and to 

propose therapeutic approaches to combat the deleterious consequences of burn and 

septic shocks, it is essential to develop animal models exhibiting patho-physiological 

behaviors similar to those of patients. This was addressed, in this study, by a systematic 

analysis of local and systemic responses -including the measurements of inflammatory 

mediators, gene expression and metabolic profiles of liver- in rat models receiving 20% 

total body surface area (TBSA) scald burn injury or cecal ligation and puncture (CLP) 

treatment. 

 

All animal groups had 100% survival for at least 10 days following treatments. CLP 

caused a ~10% weight loss indicating an accelerated breakdown of skeletal muscle 
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protein. It was found that a certain number of cytokines and chemokines, such as MCP-1, 

GROK/KC, IL-12, IL-18, and IL-10, were significantly altered following the treatments 

including SCLP (control of CLP) which is a sterile surgical treatment where cecum is not 

ligated and punctured. Gene expression analysis elucidated that hepatic transcriptional 

response to burn injury was mainly related to pro-inflammatory and anti-inflammatory 

gene groups and genes involved in lipid biosynthesis and central carbon metabolism. 

Shortly after the CLP treatment, genes related to Toll like receptors and MAPK signaling 

pathway were significantly up-regulated. Significant changes in the genes associated with 

acute phase protein synthesis were also observed following the burn and CLP.  

Furthermore, perfusion experiments elucidated that hepatic metabolic response to burn 

injury and sepsis was characterized by an up-regulation of pathways including 

gluconeogenic reactions (sources of which are mainly lactate, aspartate, glycerol and 

glutamine), urea production from arginine, and serine-glycine inter-conversion. On the 

other hand, weight values of these pathways were dramatically decreased following the 

SCLP treatment. In summary, in this study, bioinformatics tools (clustering and 

metabolic network analysis algorithms) and animal models of burn and CLP were utilized 

to understand the various layers of regulation and capture the entire scope and complexity 

of the inflammatory response.  
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CHAPTER I 

1 INTRODUCTION 

Burns and infections result in a hypermetabolic state characterized by an accelerated 

breakdown of skeletal muscle protein in the patient which leads to muscle "wasting" and 

reduction of lean body mass. During the hypermetabolic state significant alterations in 

the utilization of amino acids, glucose and fatty acids, increased resting energy 

expenditure as well as a negative nitrogen balance at the whole body level take place 

(Bessey et al. 1989; Mizock 1995; Wolfe et al. 1987). Severe burn and trauma is 

generally associated with bacterial infections which cause more persistent inflammatory 

response with an ongoing hypermetabolic and catabolic state. Depending on the severity 

of the injury and septic complications, hyper-metabolism and other changes associated 

with the systemic inflammatory response can progress to multiple organ dysfunction 

syndromes, which can have a mortality rate as high as 90-100% (Beal and Cerra 1994).  

 

Liver is one of the important players in systemic hyper metabolism since it is the main 

organ controlling circulating levels of metabolites and proteins. Moreover it is the major 

site for gluconeogenesis and disposal of amino acid nitrogen as urea. During catabolic 

state, muscle protein is converted into amino acids which are then released into the blood 

stream, where they are taken up by the liver. It is known that the hepatic response to 

severe injury and other stressors is characterized by a significant up-regulation of 

glucose, fatty acid, and amino acid turnover in the liver (Banta et al. 2007; Lee et al. 

2000; Lee et al. 2003; Vemula et al. 2004). Yarmush and his co-workers (Yarmush et al. 
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1999) found that burn injury results in an increase in gluconeogenesis from lactate and 

the contribution of pyruvate to the oxaloacetate pool. Furthermore, up-regulation in the 

expression levels of genes involved in the urea cycle, gluconeogenesis, and the 

metabolism of several amino acids were also reported (Banta et al. 2007; Vemula et al. 

2004). 

 

Prior studies have analyzed the changes in gene expression levels (Banta et al. 2007; 

Jayaraman et al. 2009; Vemula et al. 2004) and metabolic fluxes (Banta et al. 2007; Lee 

et al. 2000; Lee et al. 2003) within liver after burn injury. The studies using perfused rat 

livers have identified intrinsic metabolic flux changes that were not only depend on the 

continual presence of elevated stress hormones and substrate loads. Therefore, it is 

essential to analyze the physiological behaviors of important players during the 

inflammation such as circulatory cytokines/chemokines concentrations as well as 

metabolic and gene expression profiles in the liver controlling the metabolic activity of 

the body and production of acute phase proteins. This is also critical to propose 

therapeutic approaches to combat the deleterious consequences of burn and septic shocks. 

However, nutritional and hormonal therapies that have been applied for patients are still 

partially effective. One of the main reasons of this is the lack of understanding of the 

integrated system as prior studies examined individual mediators/pathways in isolation 

from each other.  
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This research program mainly focused on the short term dynamic changes in systemic 

inflammatory mediators as well as liver gene expression levels and metabolic fluxes 

following the burn injury and CLP, which have been explained in subsequent chapters in 

great detail. In the second chapter, we briefly review the studies available in literature 

regarding the inflammatory mediators’ (cytokines and chemokines) changes, and liver 

gene expression and metabolic flux alterations in burn and septic animals. We further 

provide a very profound review of basic concepts of metabolic network analysis which 

have been used to analyze the perfused liver metabolism in this study.  
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CHAPTER II 

2 LITERATURE REVIEW 

2.1 Inflammatory Mediators Following Burn and Sepsis 

Inflammation is a complex biological response to injuries and infections, involving 

different inflammatory mediators, such as cytokines and chemokines, as well as nervous 

system reflexes, and hormones. Precise regulation and coordination of the processes 

linking them is necessary to mount an appropriate response enabling an eventual return to 

homeostasis (Tracey 2002). It is generally accepted that the severity of the inflammatory 

response and the involvement of the various components can vary depending on type and 

severity of the injury, infectious agent, as well as genetic and physiological factors (sex, 

body weight, preexisting conditions including immune system deficiencies). 

 

Burn injury leads to denaturation of proteins and loss of membrane integrity of cells on 

injured area, which results in secretion of local mediators and endotoxins such as 

histamine, nitric oxide, oxygen-free radicals and cytokines such as IL-6, PDGF and TGF-

α (Evers et al. 2010; Ono et al. 1995; Summer et al. 2008). This eventually recruits 

different blood cells including neutrophils, lymphocytes, macro-phages and fibroblasts to 

the injured area, thus causing a further increase in circulatory proteins and cytokines 

levels (Evers et al. 2010).  A detailed analysis of experimental observations published in 

literature (Cannon et al. 1992; Damas et al. 1997; Debandt et al. 1994; Dehne et al. 2002; 

Drost et al. 1993b; Finnerty et al. 2006; Jeschke et al. 2007; Ono et al. 1995; Ozbalkan et 
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al. 2004; Struzyna et al. 1995; Summer et al. 2008; Vindenes et al. 1998; Yamada et al. 

1996) reveals that at least one potential pre-inflammatory cytokine (for example TNF-α, 

or IL-1β) and one potential mediator or pro-inflammatory cytokine (such as IL-6 and IL-

8) are elevated in the blood circulation after the injury. Pre and pro inflammatory 

cytokines also activates anti inflammatory reflex by up-regulating the secretion of anti-

inflammatory cytokines such as IL-10 (Blackwell and Christman 1996). Inflammatory 

cytokines affects the afferent signals of nervous system which in turn increase the 

secretion of anti inflammatory stress hormones (Correa et al. 2007). Endotoxins and 

cytokines also activate the vagus efferent activity of nervous system inhibiting cytokine 

synthesis through cholinergic anti-inflammatory pathway (Tracey 2002).  

 

Inflammation is known as a self limiting process but persistent response can lead to 

excessive tissue injury. Although burn wound is an important portal of entry for microbes 

(Church et al. 2006), pathogen originating from gastrointestinal tract is one of the most 

serious complications, which is not fully understood. Experimental observations 

demonstrate that there is a loss of physical barrier function in gastrointestinal tract after 

burn injury, which might be because of physical disruption of the mucosal barrier, 

intestinal over-growth of bacteria and suppression of the immune defense (Gosain and 

Gamelli 2005). Increasing endotoxin concentrations secreted by damaged tissues and 

inflammatory cytokines in circulation can behave as immunosuppressive agents which 

decrease T-cells population (Heideman and Bengtsson 1992; Kelly et al. 1999), and 

affect the mesenteric lymph (Olofsson et al. 1985; Olofsson et al. 1986). Decreases in 
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intestinal blood flow due to the vasoconstriction (Gosain and Gamelli 2005) and increase 

in nitric oxide and free radicals production stimulated by cytokines and endotoxin agents 

(Nadler and Ford 2000; Parihar et al. 2008; Wallace and Ma 2001) further damage the 

endothelial cells in gut/digestive system and minimize the mucosal barrier, which 

increase the intestinal permeability.  

2.2 Alterations in Gene Expression Levels in Liver 

Liver regulates metabolic activity of body and production of acute phase proteins 

(Vemula et al. 2004). Therefore, liver is one of the target organs to understand the 

underlying mechanisms of hypermetabolic state and to propose therapeutic techniques. 

Genetic studies show that inflammatory mediators activate important signaling pathways. 

Along with these mediators, metabolic changes in circulation systems might also result in 

persistent alterations in gene expression levels in liver.  

 

There are numerous studies regarding the individual gene expression analysis where RT-

PCR and immune-histochemical methods have been utilized. These studies reveal that 

many signaling pathways including MAPK, Jac/STAT, and Ik-B/NF-kB cascades which 

have key roles in expression of stress related enzymes and proteins as well as cytokines 

are activated in liver following burn and sepsis (Andrejko et al. 1998; Cho et al. 2004a; 

Klein et al. 2003; Ogle et al. 2000). Alterations in different and numerous signaling 

pathways in the cells are reasonable since burn and sepsis disrupt circulatory levels of 

hormones, cytokines, chemokines and endotoxins which interact with their corresponding 

receptors on the cell surface initiating signaling cascades at different levels. Moreover, 
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although a soluble factor might activate its specific transcription factor, upstream 

regulation of this specific transcription factor might also activate another transcript factor 

(Foteinou et al. 2009). Therefore, gene expression studies reveal that upregulation of 

some important receptors (such as CD14 receptors, protease activated receptors, 

histamine H-1 and H-2 receptors), transcription factors (NFk-beta, Stat3, and C/EBP-

beta) and other proteins or kinases (such as ERK, JNK, and p38) involved in the MAPK, 

Jac/STAT, and Ik-B/NF-kB signaling pathways is observed in animals receiving burn 

injury and sepsis (Andrejko et al. 1998; Cho et al. 2004a; Cho et al. 2004b; Jeong et al. 

2003; Jesmin et al. 2006; Klein et al. 2003; Masaki et al. 2005; Nishiura et al. 2000; Yang 

et al. 1999).                   

 

Although there are significant number of  studies in the literature regarding the individual 

gene expression levels in the liver, microarray studies showing gene expression changes 

under stress condition are limited (Dasu et al. 2004; Jayaraman et al. 2009; Vemula et al. 

2004). Vemula and co-workers (Vemula et al. 2004) analyzed the changes in gene 

expression in rat livers during the first 24 h after burn injury. Functional analysis of 

differentially expressed 339 genes revealed that metabolism and inflammation accounted 

for nearly 42 %. They showed that the inflammatory genes that were altered included 

several classic acute phase response markers, and other genes involved in the 

complement, kinin, clotting, and fibrinolytic protein systems. On the other hand 

metabolic genes showed that fatty acid and B-oxidation increased after burn to meet the 

enhanced energy demands. The same group (Jayaraman et al. 2009) also studied the gene 
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expression profiling of long term (1, 2, 4 and 7 day) changes in rat liver following burn 

injury. They identified that 60 % of 740 differentially expressed genes showed significant 

changes either on day 1 or on day 7 postburn. Detailed analysis of the data also revealed 

that fatty acids are used in the liver as energy substrates for the first 4 days after injury 

but not at later time point.  

 

In the study of Banta and co-workers (Banta et al. 2007), systemic hypermetabolic 

response was induced in rats by applying a moderate burn injury followed 2 days later by 

cecum ligation and puncture (CLP) to produce sepsis. On fourth day after burn, 

alterations in gene expression levels in liver have been analyzed. Dual injury model 

revealed that mRNA levels of genes involved in the urea cycle, the respiratory chain, 

gluconeogenesis, the metabolism of some amino acid and the specific transporters of 

glutamine and arginine were significantly up-regulated.  

 

Another interesting study published by Jayaraman and co-workers (Jayaraman et al. 

2005) aimed to profile gene expression dynamics during IL-6 stimulated inflammation in 

hepatocytes maintained in stable, collagen double gel in vitro model system.  They 

compared this response with that of an in vivo acute-phase response induced by burn 

injury (Vemula et al. 2004). Although they found that in vitro model captures many of 

the features of the in vivo setting at a systems level, significant differences in expression 

patterns of individual genes were observed including inflammatory signaling molecules 

(p38, SAPK) and transcription factors (STAT3 and C/EBP-beta). But, multiple mediators 
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in vivo compared with a single stimulus in vitro might result in significantly different 

results.  

2.3 Metabolic Changes in Liver 

Although metabolic changes at whole body level have been profoundly investigated, 

there are not many studies analyzing these changes at organ level. To analyze the 

metabolic activity of liver following the burn and sepsis, the isolated perfused liver model 

has been commonly used (Lee et al. 2000; Yamaguchi et al. 1997; Yarmush et al. 1999). 

Yamaguchi and co-workers (Yamaguchi et al. 1997) analyzed the glucose, urea and 

various amino acid concentration changes in perfusate medium during the isolated rat-

liver perfusion after the burn injury. Their results showed that burn injury increased urea 

productions and oxygen consumption as well as net protein breakdown, but it did not 

alter the rate of gluconeogenesis. Yarmush and co-workers  (Yarmush et al. 1999) 

determined fluxes in TCA cycle in perfused rat livers by supplying with labeled 13C-

lactate. Isotopomer mass balance model of the TCA cycle showed that there was an 

increase in gluconeogenesis from lactate. Moreover, burn injury also resulted in an 

increase in the contribution of pyruvate to the oxaloacetate pool at the expense of non-

TCA cycle sources.  

 

Recently metabolic flux analysis has been used to determine the effects of burn injury 

and sepsis on the flux distribution through the major pathways in the liver associated with 

carbohydrate, fatty acid, and amino acid metabolism (Lee et al. 2000; Lee et al. 2003).  

Lee and co-workers (Lee et al. 2000) found that the fluxes in mitochondrial electron 
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transports, the TCA and urea cycles, gluconeogenesis, and pentose phosphate pathway 

significantly increased on day 4 post-burn in the rat liver. They also confirmed that 

glucose-6-phosphate was diverted into the PPP with the increase activity of glucose-6-

phosphate dehydrogenase. The same group also profiled the dynamic changes of fluxes in 

the rat livers up to 7 days after burn injury (Lee et al. 2003). They observed that burn 

injury sequentially up-regulated the urea cycle, the PPP and the TCA cycle whereas no 

changes were observed in beta-oxidation and gluconeogenesis.  

 

Banta and co-workers (Banta et al. 2007) compared the gene expression levels and 

metabolic fluxes in rat livers after burn and cecum ligation and puncture (CLP). The 

results showed that burn injury prior to CLP increased fluxes while metabolic gene 

expression levels were decreased. Conversely, CLP alone significantly increased 

metabolic gene expression, but decreased many of the corresponding metabolic fluxes. 

On the other hand both burn and CLP resulted in the most dramatic changes, where 

concurrent changes in fluxes and gene expression levels were observed. 

 

2.4 Metabolic Network Analysis 

Recently, metabolic engineering approaches developed for stoichiometric network 

analysis have been also applied to mammalian systems to gain a comprehensive 

understanding of metabolic network properties and to improve the existing processes or 

systems involving mammalian cells. These approaches are generally used (a) to 

reconstruct the metabolic networks (Terzer et al. 2009), (b) to identify metabolic flux 
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patterns using metabolic flux analysis (MFA) (Dauner 2010; Martens 2007; Niklas et al. 

2010; Quek et al. 2010; Wiechert 2001; Zamboni) and flux balance analysis (FBA) 

(Kauffman et al. 2003; Raman and Chandra 2009), and (c) to characterize topology of the 

networks using pathway analysis (Klamt and Stelling 2003; Trinh et al. 2009) and other 

optimization based methods. In this section, we mainly focus on the basic techniques and 

principles of how stoichiometric network analysis used for mammalian systems.  

 

 
Figure 2.1. A small metabolic network. 

The network includes four internal reactions (v1, v2, v3, and v4 ) and four external 

reactions (v5, v6, v7 and v8) which are given as “output” fluxes. The stoichiometric matrix 

(S) is constructed according to material balance equations.   

 

 

2.4.1 Metabolic Flux Analysis (MFA) 

Stoichiometric modeling framework is mostly characterized by metabolic flux analysis 

where a set of measured extracellular metabolite concentration rates of change are fitted 

to relatively simple mass balance models using the stoichiometric mass balance analysis 
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to derive comprehensive metabolic flux maps. Such quantitative maps have turned out to 

be extremely useful to compare the effects of various stressors on metabolism, as they 

provide a global picture and understanding of the changes in relevant metabolic 

pathways. 

 

The flux distribution is calculated by using the basic idea of metabolic flux analysis 

(Varma and Palsson 1994) . The mass balances of all internal metabolites can be written 

as follows:  

.dX S v
dt

=                                                                                (2.1) 

where X is vector of metabolite concentrations, v is the flux distribution vector, and S is 

the stoichiometric matrix where rows correspond to the metabolites and columns 

represent the reaction rates (Figure 2.1). It is generally assumed that the internal 

metabolites are at pseudo steady state, since metabolic transients are fast compared to 

environmental changes (Varma and Palsson 1994). Therefore, the mass balance is 

rewritten as follows:                              

. 0S v =                                                                                  (2.2) 

The measured fluxes are used to reduce the possible solution space given in equation 

(2.2). Therefore, the vector of reaction v is divided into the vector of measured fluxes vm, 

and unknown fluxes vu. In the same way, the matrix S is partitioned in Sm and Su. So 

equation (2.2) can be rewritten in the following way:  
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. . . 0
. .

u u m m

u u m m

S v S v S v
S v S v

= + =
= −                                                                 (2.3) 

 

The rank of the Su determines the maximum number of the metabolite balances linearly 

independent. If the number of equations is less than the number of unknown fluxes, the 

system is undetermined implying that there are insufficient metabolite balances to 

determine the intracellular or unknown metabolic fluxes. For determined system where 

enough measurements are available, problem (2.3) can be easily calculated in order to 

determine the unknown fluxes uniquely. In over-determined or redundant system, the 

rank of Su is greater than the number of unknown fluxes, which ensures to test statistical 

consistency of the measurements. To assess for the presence of measurement errors and 

consistency of the metabolic network, a test function that is generally assumed to have a 

Chi-square distribution is calculated. For over-determined system, unknown fluxes are 

usually identified by minimizing the sum of square errors between the measured and the 

estimated fluxes. 

 

The null space of the stoichiometric matrix, ( ) { }: 0Nul S v Sv= = , determines the basis 

for the null space whose column vectors can give actual flux distribution when combined 

linearly. This analysis is also used to perform consistency validations of the considered 

metabolic network (Terzer et al. 2009). The dimension of the null space of the 

stoichiometric matrix also identifies the minimum number of fluxes (independent 

variables) required to determine the unknown fluxes (dependent variables) uniquely. 
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Independent reactions or fluxes should not be necessarily external fluxes, since 

determining all external fluxes may not necessarily result in the calculation of all the 

unknown fluxes because metabolic networks are very complex given the cyclic pathways 

or futile cycles (Figure 2.3). Therefore, to identify the flux distribution more accurately, 

fluxes of some internal reactions are measured. In this context, mass isotopomer analysis 

has been extensively used to quantify internal fluxes with substrates labeled with stable 

isotopes such as 13C.     

 

 

Figure 2.2. Nullspace of metabolic networks. 

Nullspaces of these two simplified metabolic networks have the same dimension which is 

equal to 2. This means that at least two independent variables or fluxes should be known 

in order to determine the flux distribution vector. Although any two external fluxes 

(represented by double arrows) in the metabolic network A can determine all unknown 

fluxes, those in network B can not identify the flux distribution vector due to the cyclic 

reactions. This can be determined by either isotope tracers or expanding the model by 

adding the material balances of energy metabolites such as ATP, NADH if they are 

associated with cyclic reactions (however this requires a complete metabolic network).   
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In general, metabolic stationary conditions with constant intracellular fluxes are 

established during the carbon-labeling experiments. Then, NMR and MS techniques are 

utilized to obtain intracellular isotopomer distribution. Isotope balancing is very similar 

to metabolite balancing, i.e. the sum of labeled carbon atoms entering a given position of 

a metabolite has to equal the sum of labeled carbon atoms leaving this position 

(Christensen and Nielsen 2000). However, isotopomer balancing might be very 

complicated when the fraction of molecules having a certain combination of labeled 

carbon atoms is considered. For a metabolite consisting of n atoms which might be in 

labeled or unlabeled states (e.g. C atom in glucose), 2n isotopomers are possible. Using a 

13C tracer, there are 64 carbon atom isotopomers of glucose, and 396 isotopomer models 

for simulating glucose labeling in the gluconeogenesis pathway (Antoniewicz et al. 

2007). The number of isotopomer equations increases tremendously when different 

combinations of stable isotopes (such as 13C, 2H, 18O) are used. In order to determine 

metabolic fluxes, the residuals between the experimental and the simulated isotopomer 

distribution is generally minimized. This technique has been described extensively in the 

literature and used in mammalian systems to characterize the metabolic networks under 

different environmental conditions and to provide information on specific metabolic 

pathways or key reactions being investigated (Bonarius et al. 2001; Bonarius et al. 1998; 

Goudar et al. 2010; Maier et al. 2009; Maier et al. 2008; Metallo et al. 2009; Munger et 

al. 2008; Portais et al. 1993; Santos et al. 2007). 
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2.4.2 Flux Balance Analysis 

One of the common problems in solving problem (2.3) to obtain vu is that the rank of Su 

is generally smaller than the number of unknown fluxes which leads to an 

underdetermined system. Actually in most cases, the mass balance analysis typically does 

not yield a unique solution. To overcome this limitation, some metabolic engineering 

tools based on well known biological properties have been used in the literature. The 

solution space of steady state flux vectors can be reduced by incorporating additional 

constraints relying on well known regulatory mechanisms (Covert and Palsson 2002; 

Covert et al. 2001) or thermodynamic properties of biochemical reactions (Beard and 

Qian 2005; Nolan et al. 2006). Using flux balance analysis (Ibarra et al. 2002), it is also 

possible that a flux distribution can be uniquely determined when an objective function is 

defined such as maximization of biomass production (Ibarra et al. 2002) or minimization 

of ATP production (Ramakrishna et al. 2001).  

 

FBA analysis has been widely used to calculate the intracellular fluxes by constructing an 

optimization problem having a specific objective function (z) restricted by mass balance 

equations, reaction reversibility constraints and other constraints. A typical optimization 

formula is given as following: 

 

 

 (2.4) 

      

{ }
{ }

min max

/         
    . 0

             ,       measured fluxes

                   0,                irreversible fluxes   
                    

m m m

i

Maximize Minimize z
Subject to S v

v v v m

v i

=

≤ ≤ ∀ ∈

≥ ∀ ∈
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The steady state solution space defined by linear equations and inequalities given in 

problem (2.4) is called flux cone and any programming method depending on the 

formulation of the problem can be used to choose an optimum point described by the 

objective function z. Various constraints can be incorporated to the stoichiometric 

modeling. For example, based on the measurement data from different in vitro or in vivo 

experiments, the external fluxes can be restricted by their minimum and maximum 

values. Thermodynamic or reaction directionality constraints can be further added to 

refine the steady state flux space. For example, pathway energy balance obtained from 

elementary modes weighted by Gibbs energy of reactions was used for hepatic metabolic 

network to reduce the feasible range of intracellular fluxes (Iyer et al. 2010a; Iyer et al. 

2010b; Nolan et al. 2006; Yoon et al. 2007).    

 

Flux balance analysis was used in the early 1990s for hybridoma cell lines by Savinell 

and Palsson to explore the optimum flux distribution corresponding to maximum growth 

rate (Savinell and Palsson 1992a; Savinell and Palsson 1992b).  Recently, a significant 

number of studies utilized FBA to describe the metabolic network properties of 

mammalian cells. Wahl and co-workers (Wahl et al. 2008; Wahl et al. 2010) used the 

MDCK model to calculate a theoretical flux distribution representing an optimized cell 

that only consumes a minimum of carbon sources. Heino et al. (Heino et al. 2007)  

proposed an effective Markov chain Monte Carlo (MCMC) scheme to explore a two-

compartment model for skeletal muscle metabolism. Tekir and co-workers (Tekir et al. 
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2006) investigated the human red blood cell (RBC) metabolism by performing FBA via 

optimization of alternative objective functions, and the maximization of production of 

ATP and NADPH. In order to observe the relative changes in the flux distribution of the 

deficient network, they applied two well known approaches, minimization of metabolic 

adjustment (MOMA) that minimize the Euclidean distance from a wild type flux 

distribution (Segrè et al. 2002) and regulatory on-off minimization (ROOM)  that 

minimizes the number of significant flux changes with respect to wild type (Shlomi et al. 

2005). Obrzut et al. (Obrzut et al. 2010) used FBA to characterize myocardial metabolic 

phenotypes among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing 

cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma 

concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids, and 22 amino acids 

were obtained from 19 male and 2 female patients. Using a metabolic network of the 

cardiac mitochondria (189 reactions, 230 metabolites), an objective function maximizing 

ATP production was chosen for the calculations of unknown fluxes. They concluded that 

analysis of the myocardial metabolic network using FBA may provide unique and 

clinically useful prognostic information in patients with NIDCM undergoing therapy. 

Yang et al. (Yang et al. 2009b) demonstrated a proof of principle for the use of 

constraint-based modeling to achieve enhanced performance of liver-specific functions of 

cultured hepatocytes during plasma exposure by optimizing amino acid supplementation 

and hormone levels in the medium. FBA model was developed for the maximization of 

urea output. However since it is possible that alternative flux distribution exists that 

produces the same maximal output they applied a recursive mixed integer linear 
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programming (MILP) to enumerate all solutions. Uygun and co-workers (Uygun et al. 

2007) investigated and identified possible metabolic objectives for hepatocytes cultured 

in vitro by a data-mining procedure including multi-level optimization based algorithm. 

The multi-level optimization problem formulated was to identify a minimum set of fluxes 

that are of major importance to the cells while minimizing difference between the fluxes 

measured and those predicted by the model and maximizing the summation of weighted 

fluxes.  This problem creates a mixed integer nonlinear programming (MINLP) problem 

with multiple inner LPs, which is computationally challenging and requires a suitable 

algorithm for the solution. They solved the problem in an iterative scheme where 

different flux combinations are considered in the objective and tested for sufficient 

prediction accuracy. 

 

Proposing an objective function for mammalian cells is a major obstacle for FBA. 

Mammalian cells exhibit various phenotypic states regarding the cell proliferation, 

differentiation, and organ-specific functions. Metabolic network properties of mammalian 

cells under different phenotypic states should be further investigated to provide clues 

regarding the metabolic objectives. Calik and Akbay (Çalik and Akbay 2000) determined 

the theoretical flux distributions in the fibrotic and healthy liver cells by maximizing 

respectively the collagen and palmitate synthesis in the objective function for the solution 

of the model. A mammalian cell type such as hepatocytes might exhibit multiple 

functions that need to be considered simultaneously when exploring the optimal fluxes. 

In this case, Pareto-optimal solutions satisfying all the objectives simultaneously can be 
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analyzed (Nagrath et al. 2007; Nagrath et al. 2010; Sharma et al. 2005). Nagrath and co-

workers (Nagrath et al. 2007; Nagrath et al. 2010) developed a multi-objective 

optimization approach that couples the normalized Normal Constraint (NC) with both 

flux balance analysis (FBA) and energy balance analysis (EBA) to obtain multi-objective 

Pareto-optimal solutions. They investigated the Pareto frontiers in gluconeogenic and 

glycolytic hepatocytes for various combinations of liver-specific objectives (albumin 

synthesis, glutathione synthesis, NADPH synthesis, ATP generation, and urea secretion). 

Sharma et al. (Sharma et al. 2005) investigated the importance of amino acids in the 

supplementation and the criticality of the metabolic pathways using a Pareto optimal set 

of solutions corresponding to liver-specific functions of urea and albumin secretion in the 

metabolic framework using multiobjective optimization. Furthermore, they have used the 

concept of two stage stochastic programming to obtain robust solutions by considering 

extracellular variability. Since the metabolite measurements are subject to variability; 

uncertainty has to be integrated with system analysis to improve the prediction of hepatic 

function.  

2.4.3 Metabolic Pathway Analysis (MPA) 

Pathway analysis (based on stoichiometry of the network only) systematically 

characterizes the structure of a metabolic network and elucidates its important properties 

by decomposing the highly interconnected reactions into more organized pathways. 

Metabolic pathway analysis mainly based on extreme pathways and elementary modes 

has proven to be a useful tool (Klamt and Stelling 2003; Trinh et al. 2009) and has been 

extensively applied in the literature. Elementary modes consist of the minimum number 
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of reactions that exist as a functional unit whereas extreme pathways are the independent 

subset of elementary modes (Klamt and Stelling 2003). Pathway analysis identifies 

pathways which are important for desired products (yield analysis), evaluates how much 

of a flux is carried out by each pathway and to what extent an external metabolite taken 

by the cell affects the output of the pathway (Orman et al. 2011a). This analysis can 

elucidate important information about metabolic regulatory mechanisms and how 

dominant pathways are controlled. 

 

It is noteworthy to mention that every flux distribution can be written as a linear 

combination of the elementary modes, or extreme pathways, thus a weight can be 

assigned to each corresponding pathway and can be interpreted as an indication of the 

importance of that pathway in the network (Llaneras and Picó 2007; Wiback et al. 2003): 

{ }
.
0,   k

v P w
w k irreversible pathways
=

≥ ∀ ∈
                                            (2.5) 

where w denotes a vector involving the weight for each elementary mode; and P is the 

matrix of elementary modes. One of the main problems in pathway analysis is that the 

decomposition of a steady state flux vector into pathways is not always unique because 

for large networks the number of pathways is not usually equal to the dimension of the 

null space of the stoichiometric matrix (Schilling et al. 2000) (Figure 2.3). To provide a 

unique decomposition of the steady state flux distributions into elementary modes or 

pathways, different objective functions have been proposed in the literature including 

maximization of the number of elementary modes, minimization of the elementary mode 
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activity and the entropy maximization principle (Nookaew et al. 2007; Schwartz and 

Kanehisa 2005; Schwartz and Kanehisa 2006; Zhao and Kurata 2009).  

 

Figure 2.3. Metabolic pathways of two different networks.  

A.The number of pathways in this network is 5 which is greater than the dimension of the 

null space of the stoichiometric matrix (equal to 2). The system is redundant and the 

decomposition of the steady state flux vector into pathways is not unique. B. The number 

of pathways is equal to the dimension of the null space of the stoichiometric matrix, thus 

the decomposition method is unique. 

 

 

Pathway analysis has been used to characterize the red blood cell metabolism (Cakir et al. 

2004; Price et al. 2003; Wiback et al. 2003; Wiback and Palsson 2002). Wiback et al. 

(Wiback and Palsson 2002) interpreted the extreme pathways of red blood cell metabolic 

network in a biochemical and physiological context and divided them into groups based 

on different criteria such as cofactor and by-product production, and carbon inputs. They 
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also described how physiological steady state solutions can be reconstructed from a 

network's extreme pathways by using a linear optimization problem which maximizes 

and minimizes the weights of a particular extreme pathway in the reconstruction to find a 

weight-spectrum (α-spectrum)  (Wiback et al. 2003). The α-spectrum showed which 

extreme pathways can and cannot be included in the reconstruction of a given steady state 

flux distribution and to what extent they individually contribute to the reconstruction. 

Moreover it was also shown that accounting for transcriptional regulatory constraints can 

considerably reduce the alpha-spectrum (Wiback et al. 2003). Price et al. (Price et al. 

2003) used singular value decomposition (SVD) method for extreme pathway matrix of 

human red blood cell. They observed that the first five eigenpathways, out of a total of 

23, effectively characterize all the relevant physiological states of red blood cell 

metabolism. Moreover it was also shown that the dominant features of these first five 

eigenpathways described key metabolic splits regulated in the human red blood cell. 

Cakir et al. (Cakir et al. 2004) investigated five enzymopathies (G6PDH, TPI, PGI, 

DPGM and PGK deficiencies) in the human red blood cells using metabolic pathway 

analysis. They analyzed the elementary modes corresponding to each enzyme deficiency 

case given the functional capabilities. 

 

The basic idea of metabolic pathway analysis was also utilized to characterize CHO and 

hepatic metabolic networks as well. Provost and Bastin (Provost and Bastin 2004) 

translated the elementary flux modes of CHO metabolism into a set of macro-reactions 

connecting the extracellular substrates and products. Then they built a dynamical model 
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using these macro-reactions. In order to provide weight values for all possible pathways 

within hepatic metabolic network, Orman et al. (Orman et al. 2011a) presented different 

approaches, considering the structural and physiological properties of metabolic network, 

aiming at a unique decomposition of the flux vector into pathways. These approaches 

based on optimization functions (including maximization of the number of elementary 

modes, maximization of the entropy of the system, and maximization of activity of short 

pathways, and the minimization of the elementary mode activity) were used to analyze 

the hepatic metabolism considering available data sets obtained from perfused livers of 

fasted rats receiving burn injury. Elementary modes were also used to formulate 

thermodynamic feasibility constraints for hepatic metabolic network to shrink the feasible 

range of intracellular fluxes (Iyer et al. 2010a; Iyer et al. 2010b; Nolan et al. 2006; Yoon 

et al. 2007).  The underlying assumption behind pathway based energy balance is that an 

exergonic reaction can be a “driving-force” for an endergonic reaction if these two 

reactions are coupled in the same pathway.  
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CHAPTER III 

 

3 COMPARISION OF THE CYTOKINE AND CHEMOKINE DYNAMICS OF 

THE EARLY INFLAMMATORY RESPONSE IN MODELS OF BURN 

INJURY AND INFECTION 

 

Abstract 

The inflammatory response, and its subsequent resolution, are the result of a very 

complex cascade of events originating at the site of injury or infection. When the 

response is severe and persistent, Systemic Inflammatory Response Syndrome can set in, 

which is associated with a severely debilitating systemic hypercatabolic state. This 

complex behavior, mediated by cytokines and chemokines, needs to be further explored 

to better understand its systems properties and potentially identify multiple targets that 

could be addressed simultaneously. In this context, short term responses of serum 

cytokines and chemokines were analyzed in two types of insults: rats receiving a “sterile” 

cutaneous dorsal burn on 20% of the total body surface area (TBSA); rats receiving a 

cecum ligation and puncture treatment (CLP) to induce infection. Considering the 

temporal variability observed in the baseline corresponding to the control group, the 

concept of area under the curve (AUC) was explored to assess the dynamic responses of 

cytokines and chemokines. MCP-1, GROK/KC, IL-12, IL-18 and IL-10 were observed in 

both burn and CLP groups. While IL-10 concentration was only increased in the burn 
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group, Eotaxin was only elevated in CLP group. It was also observed that Leptin and IP-

10 concentrations were decreased in both CLP and sham-CLP groups. The link between 

the circulating protein mediators and putative transcription factors regulating the 

cytokine/chemokine gene expression was explored by searching the promoter regions of 

cytokine/chemokine genes in order to characterize and differentiate the inflammatory 

responses based on the dynamic data. Integrating multiple sources together with the 

bioinformatics tools identified mediators sensitive to type and extent of injury, and 

provided putative regulatory mechanisms. This is essential to gain a better understanding 

for the important regulatory points that can be used to modulate the inflammatory state at 

molecular level. 

3.1 Introduction  

Burns and infections lead to one or several of the following “primary” events in the 

inflammatory cascade: denaturation of proteins, loss of plasma membrane integrity, 

activation of complement proteins, and secretion of local mediators, such as histamine, 

nitric oxide, and reactive oxygen species (Evers et al. 2010; Ono et al. 1995; Summer et 

al. 2008). This is quickly followed by the production of pro-inflammatory cytokines 

(such as IL-1, TNF-α, IL-18, IL-6, and IL-12), and chemokines (such as Eotaxin, G-CSF, 

GM-CSF, GRO/KC, MCP-1, MIP-1, Rantes). The initial pro-inflammatory response also 

activates a modulating anti-inflammatory reaction consisting of anti-inflammatory 

cytokines (such as IL-4, IL-10, IL-13). Inflammatory cytokines also impact afferent 

signals to the nervous system which in turn increase the secretion of anti-inflammatory 

stress hormones (Correa et al. 2007) and activate the cholinergic anti-inflammatory 
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pathway (Tracey 2002). Although these different signals may result in distinct cellular 

responses depending on the type and severity of the injury, there is a large degree of 

overlap in the underlying signaling pathways, including MAPK, Jac/STAT, and Ik-B/NF-

kβ activated during the inflammation.  

 

Animal models of burn injury, cecal ligation and puncture, and endotoxin injection have 

previously been used to profile circulating mediator concentrations after an insult (Barber 

et al. 2008; Ertel et al. 1991; Finnerty et al. 2009; Gauglitz et al. 2008; Kataranovski et al. 

1999; Klein et al. 2003; Shelley et al. 2003; Walley et al. 1996). Gauglitz et al. (Gauglitz 

et al. 2008) used male rats receiving a full thickness burn over 60% of the total body 

surface area (TBSA), where they observed that serum concentrations of several pro- and 

anti-inflammatory mediators (IL-1 beta, IL-6, IL-10, MCP-1, and CINC)  were 

significantly elevated after burn. Barber et al. (Barber et al. 2008) studied the relation 

between burn size (20%, 30%, 40%, and 60% TBSA) and cytokine concentrations (TNA-

alpha, IL-1 beta, and IL-6) at one time point (24 h) after burn injury, and observed burn 

size-dependent increases. Ertel et al. (Ertel et al. 1991) induced sepsis by CLP in male 

rats and analyzed the TNF, IL-1 and IL-6 cytokines profiles in serum within 20 hour time 

course after CLP. They observed a persistent elevation of plasma TNF until 10 hours, 

steadily increasing IL-1 plasma concentrations, and enhanced IL-6 plasma concentrations 

at all time points compared to the sham group.  
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It is noteworthy that these studies are limited to one type of insult or a limited number of 

cytokines. Chemokines and other inflammatory mediators including Leptin and IL18 are 

gaining more attention in the attempts to characterize the inflammatory responses. For 

example, elevated concentrations of IL-18, which is a proinflammatory cytokine involved 

in the regulation of cell-mediated and innate immune responses, have been reported to 

correlate with organ dysfunction after injury (Stassen et al. 2003).  Peter et al. observed 

that GCSF, a chemokine mainly produced by monocytes and macrophages, modified the 

immune system by increasing the white blood cells and decreasing the TNF-α and IFN-γ 

concentrations in a rat animal model receiving 30 % TBSA burn injury (Peter et al. 

1999).  Leptin is also playing an important role in regulating energy metabolism. It was 

observed that Leptin reduced elevated tissue associated myeloperoxidase activity and 

microscopic damage scores in various tissues including liver, stomach, colon and kidney 

in rats receiving 30 % TBSA burn (ÇakIr et al. 2005).   

 

In this study, we used nonlethal rat models of burn injury and cecal ligation and puncture 

(CLP) to profile the early temporal inflammatory response by measuring 23 different 

cytokines and chemokines. Moreover, the binding sites of promoter regions of the 

cytokines and chemokines whose concentrations were significantly altered in the 

treatment groups were explored to identify putative transcription factors. Comparison of 

the timing of cytokine/chemokine concentration changes among the groups revealed 

mediators sensitive to type and extent of injury. Connecting the cytokine/chemokine 
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dynamic patterns to transcription factor activation further provided insights on the 

regulatory mechanism of inflammation process.   

3.2 Materials and Methods 

3.2.1 Animals 

Male Sprague-Dawley rats (Charles River Labs, Wilmington, MA) weighing between 

150 and 200 g were used. The animals were housed in a temperature-controlled 

environment (25°C) with a 12-hour light-dark cycle and provided water and standard 

chow ad libitum. All experimental procedures were carried out in accordance with 

National Research Council guidelines and approved by the Rutgers University Animal 

Care and Facilities Committee. 

3.2.2 Experimental Plan 

Animals were randomly divided into four groups. Two different insults were 

investigated: a dorsal cutaneous burn (B) to mimic trauma with no infection, and cecal 

ligation and puncture (CLP) to mimic infection and sepsis. Control treatments included 

sham burn and sham CLP. In total four different groups of animals were investigated: 

sham-burn, burn, sham-CLP and CLP (labeled S, B, SCLP, and CLP, respectively).   

3.2.3 Burn Injury 

A full-thickness burn on the dorsal skin corresponding to 20% of the total body surface 

area (TBSA) was performed as described previously (Banta et al. 2007). This model was 

chosen because it has nearly 100% long-term survival, no evidence of systemic 

hypoperfusion, and no significant effect on the feeding pattern (Herndon et al. 1978). 
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Rats were anesthetized by intraperitoneal injection of 80 to 100 mg/kg ketamine + 12 to 

10 mg/kg xylazine. All hair removed from the dorsal abdominal area using electric 

clippers. The animal's back was immersed in water at 100°C for 10 s to produce a full-

thickness scald injury over 20% TBSA (Figure 3.1). Immediately after burns, the 

animals were resuscitated with 50 mL/kg of saline injected intraperitoneally. Sham burn 

controls consisted of animals treated identically but immersed in warm water (37°C). 

Rats were single caged after burn or sham burn and given standard rat chow and water ad 

libitum until sacrifice. No post-burn analgesics were administered, consistent with other 

studies with this full thickness burn model since the nerve endings in the skin are 

destroyed and the skin becomes insensate (Valenti et al. 2005). Furthermore, after the 

animals woke up, they ate, drank, moved freely about the cage, responded to external 

stimuli, and did not show clinical signs of pain or distress.  

 

 

Figure 3.1. Experimental burn injury. 

All hair is removed from the dorsal abdominal area (A), and the animal's back is 

immersed in water at 100°C for 10 s to produce a full-thickness scald injury (B). 



31 

 

 

 

 

Figure 3.2. Experimental of CLP treatment. 

The cecum is first ligated (A) and punctured using a 20 gauge needle (B). After replacing 

the cecum in the peritoneum, the abdominal incision is sutured (C). 

 

 

3.2.4 Cecum Ligation and Puncture 

CLP was used as an infection model because it is thought to closely mimic the 

physiological changes in human sepsis (Rittirsch et al. 2009). Rats were anesthetized and 

given the analgesic buprenorphrine subcutaneously at 0.01 to 0.05 mg/kg. Animals were 

then placed in supine position and hair was shaved on the abdomen. Bupivicaine (0.125% 

to 0.25%) was applied subcutaneously around the incision site for additional 

perioperative and postoperative analgesia. The abdominal cavity was cut open by a 2 cm 

midline incision. The cecum of the rat was exposed and ligated just below the ileocecal 

valve so as to avoid intestinal obstruction (Figure 3.2 A). Suture was passed between the 

body of the cecum and the main artery, so that the latter was not ligated. The cecum was 

punctured 4 times (not through and through) with a 20 gauge needle and replaced in the 
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peritoneum (Figure 3.2 B). The abdominal incision was then sutured in layers using 

interrupted monofilament sutures (Figure 3.2 C). The animal received 10 mL/kg saline 

intraperitoneally for resuscitation. Sham-CLP controls consisted of animals treated 

identically without receiving CLP, i.e. they were anesthetized, underwent laparotomy as 

described above, but no surgical manipulation of the cecum was performed. Rats were 

single caged after the treatments and given standard rat chow and water ad libitum until 

sacrifice. 

3.2.5 Cytokine Analysis 

Animals were anesthetized at different time points (2, 4, 8, 12, 16, 20, and 24) (n=3 per 

time point per group) post burn or CLP. Blood samples were immediately collected from 

the vena cava by heparinized catheters, kepted on ice, and then centrifuged at 4500 rpm 

for 3 min at 4 °C. The serum supernatant was collected and stored at -80 °C until 

analysis. A MILLIPLEX MAP Rat Cytokine/Chemokine Panel (Millipore) was used for 

the simultaneous quantification of 23 different cytokines (Eotaxin, G-CSF, GM-CSF, 

GRO/KC, IFN-γ, IL-10, IL-12 (p70), IL-13, IL-17, IL-18, IL-1α, IL-1β, IL-2, IL-4, IL-5, 

IL-6, IP-10, Leptin, MCP-1, MIP-1α, RANTES, TNF-α, VEGF) according to the 

manufacturer’s guidelines. 

 

3.2.6 Data Analysis 

We recently  developed an algorithm to estimate the area under the curve (AUC) of a 

variable baseline and compare it with the AUC of the response curve (Scheff et al. 2011). 
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This method was used to discover significant net responses such as transcriptional 

regulatory effects in gene expression data. Given the fact that cytokine production may be 

altered throughout the observation period, the concept of area under the curve can be 

used to assess the dynamic responses and the deviation from their baseline values (Heinzl 

1996; Wolfsegger 2007). This method was selected here since it is proven to be more 

informative for experiments having high sampling frequencies after the experimental 

perturbations (Scheff et al. 2011). In this study, for each cytokine, the overall AUC (area 

under the cytokine concentration–time curve in treatment group, i.e. B and CLP groups) 

and baseline AUC (area under the cytokine concentration–time curve in control group, 

i.e. S group) were calculated numerically (Wolfsegger 2007). These values were then 

compared  to determine if the overall AUC significantly deviates from the baseline AUC 

by identifying p-values using a t-distribution and Sattertwaite’s approximation for 

degrees of freedom (Heinzl 1996). Finally, the algorithm proposed by Benjamini and 

Hochberg (Benjamini and Hochberg 1995) was used to determine a data-based p-value 

threshold controlling the false discovery rate at the level α (α=0.05 in this study).  

 

Briefly, AUC was calculated by the trapezoidal rule using the means of replicates, jkX , 

at each time point tj  (Wolfsegger 2007) as follows: 
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where m and f are the total number of time points and number of groups, respectively, 

and njk is the total number of replicates or animals at time points tj and group k. The 

variance of linear AUC estimator is obtained as: 
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where σjk is the standard deviation of the concentration values at time j in group k.  A test 

of null hypothesis of no difference between two AUCs has been presented by Heinzl 

(Heinzl 1996).  The null hypothesis of equality among two AUC’s (k=1, 2) is given as: 
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Assuming t-distribution and Sattertwaite’s approximation, t value and degree of freedom, 

v, are calculated as follows in order to obtain p-value (tobs, v): 
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Then, the calculated p-values are ordered, (1) ( ).... zp p≤ ≤ , where z is total number of 

cytokines. Using  Benjamini and Hochberg approach  (Benjamini and Hochberg 1995),  

l̂  is calculated as: 

( ){ }( )
ˆ max 1 : . /ll l z p l zα= ≤ ≤ ≤                                             (3.6) 

If l̂ exists, the first l̂ null hypotheses are rejected, implying that the cytokines 

corresponding to ˆ(1) ( )
....

l
p p≤ ≤ are significantly changed.    

 

Heat maps were generated by the “clustergram” function in MATLAB, which was used 

to cluster the differentially produced cytokines and chemokines (hierarchical clustering). 

This further enabled to compare and analyze the dynamic patterns of the inflammatory 

mediators.   
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3.2.7 Predicting Putative Transcription Factors 

In order to identify potential transcription factors (TFs) that regulate cytokine gene 

expression, we explored the basic underlying assumption of comparative genomics which 

states that functional regions evolve in a constrained fashion and therefore at a lower rate 

than non-functional regions (Doniger et al. 2005; Hardison 2000). It implies that 

conserved regions in a set of orthologous sequences survive due to their special 

functional implications i.e. TF families associated with binding sites identified on these 

conserved regions are more likely to function as transcriptional regulators. Promoters of 

cytokine genes of rats were extracted from the Genomatix database of promoter 

information with a default length (500bp upstream and 100bp downstream of the 

transcription start site) unless an experimentally defined length has been reported 

(Genomatix). Each promoter is characterized by a set of orthologous promoters from the 

same gene of other vertebrate species, if available (e.g. Homo sapiens, Macaca mulatta, 

Pan troglodytes, Mus musculus, Equus caballus, Canis lupus familiaris, and Bos Taurus). 

DiAlign TF (Genomatix) with default parameters (core similarity: 0.75, matrix similarity: 

optimal threshold for each position weight matrix suggested from MatBase (Genomatix)) 

was subsequently applied to identify conserved regions on promoter P and then 

transcription factor binding sites (TFBSs) that are enriched on corresponding conserved 

regions from the set of orthologous promoters with a common threshold (70% in this 

study). In addition, in order to increase the confidence of the predicted binding sites 

ModelInspector (Genomatix) was used to search for a list of cis-regulatory modules (L) 

from a library of functional, experimentally-verified, modules (MatBase(Genomatix)) 
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that match on promoter P. Identified TFBSs on P are then scanned over L and only those 

that are present on modules in L are selected. Associated TF families with those selected 

TFBSs are inferred and considered as transcriptional regulators for corresponding 

cytokines. 

3.3 Results and Discussion 

3.3.1 Animal Weight Changes and Mortality 

All animal groups had 100% survival for at least one week following treatment (n≥3 for 

each treatment). The time course of whole body weight changes was also monitored. CLP 

caused a ~10% weight loss, although after 24 hours, the animals started to regain weight 

at a rate similar to that observed pre-CLP (Figure 3.3). Sham-CLP did not cause any 

change in body weight gain rate. These observations are consistent with prior literature 

using a similar model (Banta et al. 2007). Burn injury and sham-burn did not result in any 

significant change in the rate of body weight gain (data not shown). 
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Figure 3.3. Body weight change (%) in CLP (solid line) and SCLP (dotted line) 

groups. n≥10. 
 

 

CLP in rodents results in a hypermetabolic and catabolic state (Banta et al. 2007) and has 

been extensively used as a model of sepsis. While it is generally viewed as more realistic 

than endotoxin injection models, it is important to note that the response and mortality 

rate to CLP can vary depending on the specific procedural details (e.g. length of the 

cecum ligated, size of the needle, and the number of punctures) of the technique used, as 

well as rat strain (Otero-Anton et al. 2001; Rittirsch et al. 2009). In the procedure used 

herein, we took care to not ligate the cecal branch of the ileocecal artery, thus preserving 

viability of the cecum itself, which explains our high survival rate, consistent with 

observations published by Banta and co workers (Banta et al. 2007). We did not want 

high mortality since our purpose was to compare injury vs. infection induced systemic 

inflammatory responses in nonlethal and reversible conditions. 
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3.3.2 Cytokine Profiles  

Cytokine profiles in the Sham group (which did not receive any injury or surgical 

manipulation) were used as reference to which the profiles obtained for all other groups 

were compared. Table 3.1 shows the cytokines which have been filtered out by the AUC 

method incorporated with Benjamin and Hochberg false discovery rate correction. MCP-

1 (Monocyte chemotactic protein), IL-18 (Interleukin-18), GCSF (granulocyte colony-

stimulating factor), GRO/KC (growth related oncogene), IL-10 (Interleukin-10), IL-

12P70 (Interleukin-12 or IL-12) and IL-1α (Interleukin-1α) were significantly altered in 

the animals receiving a 20% TBSA burn injury.  Concentrations of the chemokines 

GRO/KC (P=0.003), MCP-1 (P=0.0002) and GCSF (P=0.0017) - which are chemotactic 

for leukocytes to injured areas- were increased in the burn group. GRO/KC showed a 

peak around t=8 h after the burn injury whereas MCP-1 steadily increased within 24 

hours postburn (Figure 3.4). Similarly, IL-12 (P=0.004), which can be regarded as both a 

pro- and an anti-inflammatory cytokine, IL-10, an anti inflammatory cytokine (P=0.004), 

and IL-18 (P=0.0008), a pro inflammatory cytokine, reached a maximum at t=4h. On the 

other hand, IL-1α (P=0.007), a pro-inflammatory cytokine, seems to be down-regulated 

after burn.  

 

SCLP, which involves laparotomy without ligation or puncturing of the cecum, caused 

changes in several markers. It was observed that some of the chemokines, including IP-

10 (interferon gamma induced protein) (P=0.0001), GRO/KC (P=0.0004), and MCP-1 

(P=0.0004) were significantly different from the Sham group (Table 3.1). GRO/KC and 
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MCP-1 peaked around t=8 h after SCLP treatment (Figure 3.5). On the other hand, IP-10 

concentrations decreased (Figure 3.5). Similarly, some pro-inflammatory cytokines, 

including IL-1β, IL-17, and IFN-γ (P = 0.002, 0.01 and 0.01, respectively) and Leptin (P= 

0.004), a hormone regulating energy intake and energy expenditure, were decreased after 

SCLP treatment.  

 

 

Table 3.1. Differentially produced cytokines and chemokines. 

Observed P values of cytokines obtained from AUC method which are filtered out by 

Benjamin & Hochberg criteria are only given. 
 

S vs B S vs SCLP S vs CLP SCLP vs CLP 
Benjamin & 

Hochberg  
Cytokines & 
Chemokines 

P value 
(AUC) 

Cytokines & 
Chemokines 

P value 
(AUC) 

Cytokines & 
Chemokines 

P value 
(AUC) 

Cytokines & 
Chemokines 

P value 
(AUC) l pl=α.(l/z) 

MCP-1 
0.00023 
(P ≤ pl=1) IP-10 

0.00012 
(P ≤ pl=1) MCP-1 

1.00E-05 
(P ≤ pl=1) IL-12P70 

0.0005 
(P ≤ pl=1) l=1 0.0022 

IL-18 
0.0008 

(P ≤ pl=1) GROKC 
0.00036 
(P ≤ pl=1) GMCSF 

0.00037 
(P ≤ pl=1) IL-18 

0.001 
(P ≤ pl=1) l=2 0.0044 

GCSF 
0.0017 

(P ≤ pl=3) MCP-1 
0.0004 

(P ≤ pl=3) IP-10 
0.0004 

(P ≤ pl=3) Eotaxin 
0.0014 

(P ≤ pl=3) l=3 0.0065 

GROKC 
0.003 

(P ≤ pl=4) IL-1beta 
0.0024 

(P ≤ pl=4) IL-18 
0.0008 

(P ≤ pl=4) IL-4 
0.009 

(P ≤ pl=4) l=4 0.009 

IL-10 
0.004 

(P ≤ pl=5) Leptin 
0.004 

(P ≤ pl=5) IL-12P70 
0.001 

(P ≤ pl=5)   l=5 0.011 

IL-12P70 
0.004 

(P ≤ pl=6) IL-17 
0.01 

(P ≤ pl=6) Leptin 
0.0022 

(P ≤ pl=6)   l=6 0.013 

IL-1alpha 
0.007 

(P ≤ pl=7) IFN 
0.011 

(P ≤ pl=7) GROKC 
0.012 

(P ≤ pl=7)   l=7 0.015 

    Eotaxin 
0.012 

(P ≤pl=8)   l=8 0.017 
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Figure 3.4. Cytokine and chemokine profiles in Burn (red dot) and Sham (blue 

circle) groups. 
 

Each circle or dot represents an independent sample, and lines pass through average 

cytokine profiles at each time point. The white and grey colors represent light and dark 

cycles respectively.  
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Figure 3.5. Cytokine and chemokine profiles in SCLP (red dot) and Sham (blue 

circle) groups. 

 

 

Figure 3.6. Cytokine and chemokine profiles in CLP (red dot) and Sham (blue 

circle) groups. 
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Figure 3.7. Cytokine and chemokine profiles in CLP (red dot) and SCLP (blue 

circle) groups. 

 

 

 

MCP-1, GMCSF, IP-10, IL-18, IL-12, Leptin, GRO/KC and Eotaxin were significantly 

altered by CLP treatment compared to the Sham group (Table 3.1 and Figure 3.6). IL-

18, a pro inflammatory cytokine, was significantly elevated (P=0.0008) and demonstrated 

two peaks at around t=2 h and t=24 h. Similar to previous observations, GRO/KC peaked 

at 8 h post-CLP. On the other hand, IL-12 peaked later, at t= 16 h, which is also later than 

the observed IL-12 profile in the burn group (Figure 3.4). Eotaxin, a chemoattractant 

protein, also showed significant elevation at t=16 h (P=0.01). MCP-1 (P=0.00002) 

significant increased within the 24 h post-burn period. Other chemokines, namely 

GMCSF, IP-10, and Leptin, decreased after the CLP treatment. 

 

Finally we compared the CLP group to the SCLP group to identify infection-specific 

effects.  IL-12, IL-18, Eotaxin, and IL-4 were significantly different (Table 3.1). IL-4, an 

anti-inflammatory cytokine, was significantly decreased compared to the SCLP group 
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(P= 0.01) (Figure 3.7). On the other hand, IL-12, IL-18, and Eotaxin were increased in 

the CLP group compared to the SCLP group (as well as the Sham group).  

 

When baseline values of the control group (S) were used for comparison to the injured 

animals (B, SCLP and CLP), we observed that GRO/KC and MCP-1 chemokine 

concentrations were significantly elevated in all treatment groups. Moreover, significant 

alterations in IP-10, Leptin and Eotaxin profiles in CLP and/or SCLP group (Figures 3.5 

and 3.6) were also detected. Leptin is a hormone regulating food intake and metabolic 

functions, and its concentration was decreased in CLP and SCLP groups in this study. 

Although IL-1β and TNF-α contribute to the up-regulation of leptin production in 

animals, results from studies conducted in septic patients are contradictory since both up 

or down regulation in leptin production could be observed in the patients (Fantuzzi and 

Faggioni 2000). MCP-1 and Eotaxin are CC chemokines where the first two cysteines are 

adjacent to each other. They attract mononuclear cells to sites of chronic inflammation 

(Charo and Ransohoff 2006). GRO/KC and IP-10 are chemokines in CXC group (the first 

two cysteines are separated by an amino acid) which are neutrophil and lymphocytes 

chemo-attractants and induce granule exocytose, fibroblast differentiation and restrain 

angiogenesis (Charo and Ransohoff 2006). 

 

IL-18, a pro-inflammatory cytokine, was increased in the early phase of inflammation in 

burn and CLP groups in this study. It has structural similarities with IL-1 family proteins 

(Arend et al. 2008) . It can be expressed by different cell types including macrophages, 
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Kupffer cells, keratinocytes and adrenal cortical cells (Lin et al. 2000). Similar to IL-1 

and TNF-α pro inflammatory cytokines, IL-18 activates similar signaling molecules 

(Thomassen et al. 1998); thus, one can speculate that IL-18 might be functionally similar 

to TNF-α and IL-1β. In fact, Bohn and co-workers demonstrated that IL-18 is involved in 

the regulation of cytokine production during the early phase of bacterial infections and in 

the clearance of bacteria in mice (Bohn et al. 1998). IL-12 was another cytokine 

demonstrating increased concentrations in both the burn and CLP groups in this study. 

IL-12 plays an important role in the development of T helper (Th) 1 autoimmune 

responses (Lin et al. 2000). It is produced by monocytes, macrophages, dendritic cells, 

neutrophils and B cells (Paunovic et al. 2008). Administration of IL-12 in chimpanzees 

by intravenous injection induced increases in plasma concentrations of IL-15, IL-18, and 

IFN-γ, and a marked anti-inflammatory cytokine response (IL-10, IL-1 receptor 

antagonist) and secretion of different chemokines (Lauw et al. 1999). IL-10 is one of the 

most important anti-inflammatory cytokines which has been studied extensively to 

characterize the immune responses in different animal models. However, only in the burn 

group an increase in IL-10 concentration was detected. IL-10  is mainly synthesized by 

CD4+ Th2 cells, monocytes and B cells (Opal and DePalo 2000). IL- 10 is regarded as 

modulator of the pro- inflammatory response by inhibiting production of TNF-α and IL-

1β. IL-10 is also capable of decreasing the IL-18 mRNA expression in monocytes 

(Marshall et al. 1999).   
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Table 3.2. Grouping the cytokines and chemokines based on their concentration 

changes in three injury models. 

Some mediators (MCP-1 and GRO/KC) are observed in more than one group whereas 

some are specific to an injury type.  
 

Cytokines/Chemokines Sham vs Burn Sham vs CLP Sham vs SCLP 

GCSF √ 

IL-10 √ 

IL-1A √ 

GMCSF √ 

EOTAXIN √ 

IL-17 √ 

IFN √ 

IL-1beta √ 

IL-18 √ √ 

IL-12 √ √ 

IP-10 √ √ 

LEPTIN √ √ 

MCP-1 √ √ √ 

GRO/KC √ √ √ 

 

3.3.3 Comparison of Injury Models 

In this study three different injury models were analyzed. When these are compared, 

certain mediators exhibit insult-specific behavior whereas others exhibit similar response 

across all animal groups (Table 3.2).  GCSF, IL-10 and IL-1alpha were only identified in 

the burn group, whereas GMCSF and Eotaxin were specific to CLP. IL-17, IFN and IL-

1beta were only observed in Sham-CLP group which received a sterile surgical treatment. 

A significant number of overlapping cytokines/chemokines between CLP and other 

groups were identified, including IL-18, IL-12, IP-10, Leptin, MCP-1 and GROKC 
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(Table 3.2). Among them, MCP-1 and GROKC are the only mediators observed in all 

groups.  

 

 

Figure 3.8. Heat maps comparing the treatment groups (Burn, CLP and SCLP) with 

the control group (Sham). 

Green indicates the lowest level while red indicates the highest and black average level.   

 

 

 

We further clustered the temporal profiles of the differentially produced cytokines in all 

three groups and represented them as heat maps (Figure 3.8) to elucidate and compare 

the dynamic patterns.  IL-1alpha was down regulated in the burn group whereas GMCSF, 

Leptin and IP-10 concentrations decreased following the CLP treatment in a similar 

fashion. In SCLP group, additional cytokines and chemokines were down-regulated 

including IFN, IL-1beta, IP-10, Leptin and IL-17. In the burn group, IL-12, IL-10, IL-18 

and GCSF were up-regulated at the early stage while GRO/KC and MCP-1 at the late 

stage around t=8-12 h. Similarly, early up-regulation of IL-10 concentration was also 
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reported by Gauglitz et al. (Gauglitz et al. 2008) whereas they showed MCP-1 

concentration was increased at the early stage in the rat model receiving 60 % TBSA 

burn. Finnerty et al. (Finnerty et al. 2009) also elucidated an early up-regulation in 

GRO/KC concentration in mice following the 35 % TBSA burn. The chemokine/cytokine 

dynamic patterns in the burn group (Figure 3.8) were not observed in SCLP or CLP 

groups in this study. MCP-1 and GRO/KC concentrations were increased at the early 

stage and moreover MCP-1concentration showed a persistent elevation in both groups. It 

is noteworthy that IL-12 profile peaked early around 4 hour postburn, while it peaked 

much later, at 16 hours following CLP (Figure 3.8). Similarly, Eotaxin concentration was 

only increased in the CLP group and also exhibited a peak around t=16 h. However 

concentrations of both Eotaxin and IL-12 were up-regulated for a short period of time in 

CLP group.    

 

In this study, we did not observe any significant change in the concentration of TNF-α, 

IL-1 β and IL-6, in either burn or CLP groups. Similarly, Murphy et al. (Murphy et al. 

2005) observed no significant differences between sham and burn (25 % TBSA) mice in 

the plasma concentrations of TNF-α, IL-6 and IL-10 after the injury. In fact, conflicting 

observations regarding the cytokine expressions in animal models have been extensively 

reported in literature. It is obvious that variations in experimental procedures, and size 

and severity of injuries as well as utilizing different species might result in different 

consequences in cytokine profiles. Barber and co-workers (Barber et al. 2008) observed 

that cytokine concentrations significantly increased when burn size increased in rats. 
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Walley et al. (Walley et al. 1996) used mice and three needle sizes (18 GA, 21 GA and 

26 GA) for CLP treatments. They observed that as the diameter of the CLP needle 

decreased, the TNF-α and IL-6 concentrations decreased and IL-10 concentration 

increased. Klein and co-workers (Klein et al. 2003) used rats for 30% TBSA burn, and 

observed that IL-1 beta and TNFalpha increased after burn. On the other hand, Gauglitz 

and co-workers (Gauglitz et al. 2008) utilized rats receiving full thickness burn of 60% 

TBSA. They observed that serum concentrations of TNF-α were not found to be 

significantly different although other cytokines or chemokines including IL-10, MCP-1 

and GRO (CINC-1) were significantly elevated after burn.  We also observed significant 

elevations in IL-10, MCP-1 and GRO concentrations in rats receiving 20 % TBSA burn 

injury. Conflicting observations were also reported in the studies conducted in burn or 

septic patients or human subjects. Interestingly in some studies, a transient increase in 

TNF-α concentration was observed in burn patients (Vindenes et al. 1998). It has been 

also shown that IL-1β was not detected in the plasma of burn patients (Debandt et al. 

1994) although its plasma concentration generally increases after burn injury with septic 

shocks in human or it is positively correlated with burn size (Drost et al. 1993b).   

3.3.4 Putative Transcription Factors 

By searching the conserved regions of promoters, we identified putative transcription 

factors (TFs) of the significantly altered cytokines that might participate in the regulation 

of their corresponding genes (Table 3.3). It is well known that many signaling pathways 

including MAPK, Jac/STAT, and Ik-B/NF-kβ cascades where NF-kβ, Stat, and C/EBP-β 

transcription factors play key roles are activated in various tissues in the early phase of 
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burn and septic shocks (Andrejko et al. 1998; Cho et al. 2004a; Klein et al. 2003; Ogle et 

al. 2000).  NF-kβ, Stat, and C/EBP-β are well known regulators involved in cytokine 

production. These were also identified in our analysis (Table 3.3) and were found to be 

associated with GRO/KC, MCP-1, Eotaxin and IL-10. It is also remarkable to say that 

cytokines or chemokines produced by these TFs eventually trigger the signaling 

pathways activating the similar TFs. IL-18, IL-12 and most of the chemokines activate 

JAK/STAT and MAPK signaling pathways  (Soriano et al. 2003).  IL-10 (which was 

significantly elevated in the burn group in our study) induces STAT activation which 

promotes the transcription of Suppressor of Cytokine Signaling 3 (SOCS3), a negative 

feedback regulator inhibiting many inflammatory cytokines such as TNF-α, IL-6, and IL-

1. There are also other putative TFs identified (Table 3.3) such as ETS, SP1, GATA and 

VTBP which have been known to regulate the function of immune system and play 

important role in the inflammation. ETS transcription factors activate immunity-related 

genes including promoters of IL-12 and IL-18 (Gallant and Gilkeson 2006).  
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Table 3.3. Putative transcription factors of some cytokines and chemokines observed 

in burn and CLP groups. 
 

Transcription factors  
GRO/K

C 
MCP-

1 
Eotaxi

n 
Lepti

n 
IL-
18 

lL-
12 

IL-
10 

ETSF 
(Human and murine ETS1 factor- E-twenty six family) √ √     √ √   

MYOD 
(Myoblast determining factors) √           √ 

NFKB 
(Nuclear factor kappa B/c-rel) √   √         

PBXC 
(PBX1 - MEIS1 complexes) √             

SORY 
(SOX/SRY-sex/testis determining and related HMG box 

factors) √             
STAT 

(Signal Transducer and Activator of Transcription)   √ √       √ 
PARF 

(PAR/bZIP family)     √         
CEBP 

(CCAAT-enhancer-binding proteins)     √       √ 
SP1F 

(GC-Box factors SP1/GC)     √ √ √     
EREF 

(Estrogen Response Element family)               
VTBP 

(TATA binding protein factor)     √   √   √ 
BRNF 

(Brn POU domain factors)         √     
CAAT 

(CCAAT binding factors)         √     
CREB 

(cAMP response element-binding)         √     
FKHD 

(Fork head domain factors)         √     
HNF1 

(Hepatocyte nuclear factor 1)         √     
NF1F 

(Nuclear Factor 1)         √     
OCT1 

(Octamer-binding transcription factor 1)         √     
GATA 

(GATA binding factors)       √   √   
HAND 

(Twist subfamily of class B bHLH transcription factors)           √   
KLFS 

(Krupple like factor family)       √       

 

Note: These are transcription factor families, each of which includes several TFs that 

have similar binding sites. 
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Although more complicated experimental analysis is required to identify the functional 

transcription factors regulating cytokine expression levels, bioinformatics analysis like 

the one presented in this work provides insights on the signaling system and identifies 

possible targets for the experimental researches. It is well known that NF-kβ regulates the 

expression of a number of cytokines and chemokines including IL-1, TNF and IL-6 (Pahl 

1999). It is also known that the transcription factor CREB might show an anti-

inflammatory behavior by inhibiting NF-kβ signaling (Wen et al. 2010). We identified 

that CREB is a putative TF of IL-18 whose concentration was elevated in both burn and 

CLP groups. On the other hand, IL-1, TNF and IL-6, mainly regulated by NF- kβ, were 

not identified in burn and CLP groups in this study. Another interesting finding is that 

ETS1 factors might have potential to regulate the MCP-1 and GRO/KC chemokines 

which had similar temporal profiles. It has also been reported in literature that inhibition 

of ETS1 up-regulates IL-10 concentration (Russell and Garrett-Sinha 2010). IL-10 was 

significantly elevated at the early phase of the inflammatory response in the burn group. 

However, MCP-1 and GRO/KC concentrations were elevated when IL-10 concentration 

decreased in the burn group (see Figure 3.8). On the other hand, in CLP and SCLP 

groups, we did not observe significant changes in IL-10 concentration, but GRO/KC and 

MCP-1 were increased at the early stage and more persistent elevated MCP-1 was 

observed in CLP and SCLP groups when compared to the burn group (Figure 3.8). Due 

to the high interdependency of physiological processes, integrating multiple sources 

together with the bioinformatics tools in attempt to answer the question to what extend 

transcription factor activation affects the circulatory inflammatory mediators provide an 
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overview of the global regulation. This is also crucial to elucidate important regulatory 

points that can be used to modulate the inflammatory state at molecular level. 

 

It is interesting that there is a certain number of putative TFs that might regulate the same 

cytokine (Table 3.3). Similarly, a TF might also regulate more than one cytokines. It 

should be noted that the tissue specificity was not considered in this study to determine 

the binding sites in the promoters. The sequence of the promoter regions of the cytokine 

genes was only analyzed to determine the putative TF binding sites. Although a set of 

TFs has potential to regulate the same cytokine, the question is whether, and how, this 

affects cytokine expression patterns in different injury models. It should be kept in mind 

that peripherally circulating cytokines are secreted by various tissues or cells including 

leukocytes, glial cells and liver, etc. It is well known that inflammatory response of a 

tissue might be different than that of another tissue, and similarly the host response 

depends on type of the injury (Feezor et al. 2005). Temporal and quantitative differences 

in the activation of TFs in various injury models explain the diversity of cytokines’ 

patterns.      

 

Complex interactions of cytokines or chemokines through the signaling network is a big 

challenge for studies aiming at determining new therapeutic targets to eliminate 

deleterious effects of chemokine or cytokine related disease states. Inhibition of certain 

mediator receptor interactions might be required in order to eliminate the negative effects 

of disorders caused by inappropriate mediator receptor regulations. However, this might 
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lead to activation or deactivation of undesired upstream signaling pathways. For example, 

using inhibitors or animal models deficient in certain chemokines-receptors including 

CXCR2 or CCR1 demonstrated improvement in sepsis formation and sepsis related 

lethality in animals (Ness et al. 2004; Ness et al. 2003). On the other hand, inhibiting 

chemokine receptors might also weaken antibacterial resistance of host by up-regulating 

the IL-10 (Feterowski et al. 2004). Consequently, a comprehensive understanding of 

underlying mechanisms of the inflammatory response is essential to have a more control 

over the proposed therapeutic approaches.  

 

 

Figure 3.9. Putative regulatory mechanisms. 
 

A. The regulatory mechanism between NF-kβ and CREB. In burn and CLP groups, only 

IL-18 of which CREB is a putative TF was elevated, however no changes in IL-1, IL-6 

and TNF concentrations were observed in both treatment groups. B. The regulatory 

mechanism of ETS1. ETS1 was identified as a putative TF of MCP-1 and GRO/KC. In 

burn group, these two cytokines’ concentrations were increased while IL-10 
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concentration was decreased. Note that straight lines indicate known regulatory 

mechanisms (based on literature) and dashed lines represent putative mechanisms 

estimated from this study based on experimental observations and TF analysis.      

 

 

The mammalian regulatory landscape is highly complex and redundant conferring highly 

robust characteristics to the host (Carninci et al. 2005; Tan et al. 2008). Although very 

preliminary, the results of our TF analysis begin to point towards the direction of 

elucidating the structure and networks of transcription factors  as these emerge as major 

contributors to regulation (Kyrmizi et al. 2006). The idea of inferring functional 

interactions by observing the dynamics of regulated signals has been previously explored 

in the context of liver-specific responses to soluble signals (King et al. 2007), whereas we 

recently demonstrated how the regulated dynamics can begin to elucidate implicit 

upstream  interactions among transcription factors (Yang et al. 2007a; Yang et al. 2009a). 

In this context the information generated through our preliminary analyses enables the 

initial formulation of putative injury-specific modules of regulatory interactions (Figure 

3.9). Undoubtedly, a lot of work still remains to be accomplished, but we wish to 

demonstrate that it is indeed plausible to integrate in vivo responses and bioinformatics 

tools towards the ultimate goal of describing testable hypotheses related to critical 

regulatory interactions. 
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3.4 Conclusions 

In this study, we characterized the circulating cytokine profiles in the first 24 hours 

following 20% TBSA burn injury, SCLP, and CLP. Burn injury alone was used to 

investigate the effect of a systemic but “sterile” pro-inflammatory insult. CLP was used 

to investigate the effect of a bacterial infection, also a pro-inflammatory, but different, 

stimulus. Since CLP involves laparotomy, a surgical procedure, it was also necessary to 

include a SCLP group to ascertain the effect of the surgical procedure vs. that of the 

infection itself. While none of the insults caused mortality, CLP caused a transient 

decrease in body weight. We found that a certain number of cytokines and chemokines, 

belonging to the pro- and anti- inflammatory types, were altered by these insults. 

Furthermore, each insult was associated with a different cytokine signature profile.  

 

Experimental observations can be very noisy. Problems can always arise in multiplex 

assays because of potential interactions between different antibodies and cytokines, and 

the presence of varying dynamic mutual-effects between rare and abundant cytokines in 

the samples (Zhou et al. 2010). The limited number of replicates in animal experiments 

can be also an additional complicating factor. In serial sacrifice designs where only one 

sample is taken from each animal, significant differences in the physiologic 

concentrations of circulatory proteins between the samples can be observed. Moreover, 

cyclic fluctuations (or circadian rhythm) in cytokine expressions, which affects the 

inflammatory response of the body (Holzheimer et al. 2002), can display 24 h period  and 

even persist in the absence of external timing information (Keller et al. 2009). Therefore, 
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due to the dynamic behaviors and fluctuations observed in physiological processes, it was 

important to utilize an appropriate statistical approach to identify differentially expressed 

proteins over a time course. Although existing statistical methods such as ANOVA test 

are more appropriate for static sampling designs, these might not be applicable for time 

course experiments where detecting differences in the physiological behaviors of two or 

more groups over time is essential (Storey et al. 2005). The AUC is considered as an 

important indicator for drug availability and assessing the net pharmacological response 

of a given dose of drug (Heinzl 1996; Wolfsegger 2007). We recently explored this 

method to analyze gene expression time course data (Scheff et al. 2011). Similarly, the 

same concept can be applied for temporal experiments aiming at identifying differentially 

expressed proteins. This provides a quantitative estimate of overall exposure to cytokines 

which can be obtained by integrating the concentration curve over time. This also 

considers the temporal variability in the cytokine concentrations of control groups.  

 

In conclusion, we analyzed the early stage (first 24 hours) serum cytokine and chemokine 

profiles in moderately injured rats receiving 20 % TBSA burn injury and CLP treatment. 

We identified cytokines and chemokines which were significantly elevated in the burn 

and CLP groups. Determining cytokine expression patterns in different animal models 

receiving different injuries would provide critical insights regarding the complex 

interactions of those inflammatory mediators at the cellular level enabling a better 

characterization of the inflammatory response.      
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CHAPTER IV 

 

4 DYNAMICS OF SHORT TERM GENE EXPRESSION PROFILING IN 

LIVER FOLLOWING THERMAL INJURY AND SEPSIS 

 
Abstract 

Severe trauma, including burns and infections, triggers a systemic response that 

significantly impacts on the liver, which plays a key role in the metabolic and immune 

responses aimed at restoring homeostasis. While many of these changes are likely 

regulated at the gene expression level, there is a need to better understand the dynamics 

and expression patterns of burn injury or sepsis induced genes in order to identify 

potential regulatory targets in the liver. Herein we characterized the response within the 

first 24 h in a standard animal model of burn injury or sepsis induced by cecum ligation 

and puncture (CLP) using a time series of microarray gene expression data.  

 

The clustering method of expression data identified 621 burn-responsive probesets in 4 

different co-expressed clusters. Functional characterization revealed that these 4 clusters 

are mainly associated with pro-inflammatory response, anti-inflammatory response, lipid 

biosynthesis, and insulin-regulated metabolism. Cluster 1 pro-inflammatory response is 

rapidly up-regulated (within the first 2 h) following burn injury, while Cluster 2 anti-

inflammatory response is activated later on (around 8 h post burn). Cluster 3 lipid 

biosynthesis is downregulated rapidly following burn, possibly indicating a shift in the 
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utilization of energy sources to produce acute phase proteins which serve the anti-

inflammatory response. Cluster 4 insulin-regulated metabolism was down-regulated late 

in the observation window (around 16 h postburn), which suggests a potential mechanism 

to explain the onset of hypermetabolism, a delayed but well-known response that is 

characteristic of severe burns and trauma with potential adverse outcome.  

 

Following the CLP treatment, three major clusters have been identified. The first cluster 

which is enriched by the genes involved in Toll like signaling and MAPK signaling 

pathways are activated around 2 h following the treatment. The gene expression profile of 

CLP group in the second cluster is activated around 4h and peaks around 12h, later than 

that of SCLP. This group is mainly related to genes involved in acute phase protein 

synthesis. The third cluster is slightly down-regulated following the CLP, which is 

associated with the genes in transcription system.   

 

Simultaneous analysis and comparison of gene expression profiles for both burn and 

sham control groups provided a more accurate estimation of the activation time, 

expression patterns, and characteristics of a certain burn-induced response based on 

which the cause-effect relationship among responses were revealed.  

 

4.1 Introduction 

Thermal injury, one of the most severe forms of trauma, triggers a number of 

physiological responses including local and systemic inflammation, hyper-metabolism, 
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immune-suppression, and eventually organ dysfunction (Dasu et al. 2004). Severe burn 

injuries are generally associated with bacterial infections trans-located from 

gastrointestinal tract to circulatory system, which results in an ongoing hyper-metabolic 

state in the body. Cecal ligation and puncture (CLP) model is an animal model that 

mimics the physiological changes of human sepsis, which is considered as the gold 

standard for sepsis researches (Wichterman et al. 1980). Following CLP, animals 

generally develop bacteremia, hypothermia, hypotension, and hyper-metabolic and 

catabolic state at whole body level. Clinical studies have shown that an uncontrolled and 

prolonged action of inflammatory cytokines, which is evidenced by a sustained release of 

acute phase proteins, may contribute to detrimental complications (Drost et al. 1993a). 

Liver is an important player in the modulation of the inflammatory response since it 

largely controls circulating levels of metabolites and the production of acute phase 

proteins. It is known that inflammatory mediators as well as metabolic changes in the 

circulation result in alterations in gene expression levels in the liver (Dasu et al. 2004; 

Vemula et al. 2004). Therefore, understanding the liver response at the molecular level is 

critical to understand the systemic inflammatory disease, as well as its potential as a 

target for therapeutic approaches.  

 

Prior studies using classical RT-PCR to analyze gene expression in liver have shown that 

inflammation upregulated specific receptors (such as CD14 receptors, protease activated 

receptors, histamine H-1 and H-2 receptors), transcription factors (NF-κβ, Stat3, and 

C/EBP-β) and other proteins or kinases (such as ERK, JNK, and p38) involved in the 
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MAPK, Jac/STAT, and Ik-B/NF-kB signaling pathways (Andrejko et al. 1998; Cho et al. 

2004a; Cho et al. 2004b; Jeong et al. 2003; Jesmin et al. 2006; Klein et al. 2003; Masaki 

et al. 2005; Nishiura et al. 2000; Yang et al. 1999). Recently, microarray technology and 

transcriptional profiling have been used to elucidate genome-wide changes in the liver 

following the burn injury (Dasu et al. 2004; Jayaraman et al. 2009; Vemula et al. 2004) 

and CLP (Chinnaiyan et al. 2001; Cobb et al. 2005; Li et al. 2007).  

 

In general, unsupervised hierarchical clustering was applied in order to identify specific 

patterns of gene expression in the liver associated with burn injury or CLP. A limitation 

of the aforementioned studies is that the control group was defined as the initial pre-

treatment condition corresponding to the 0 h time point. However, gene expression in a 

healthy animal liver naturally fluctuates over time due to circadian rhythms (Almon et al. 

2008). In order to obtain a better resolution of the dynamics of the injury response, it is 

therefore necessary to account for the dynamics of the control group as well. 

 

In this study, we used a standard burn injury model of the rat to compare the dynamics of 

gene expression in liver in burn vs. sham burn (control of burn) and CLP vs. sham CLP 

(control of CLP) conditions during the first 24 h. The differentially expressed genes 

between control and treatment conditions over time whose expression patterns were 

significantly altered following the treatment were identified and clustered. Simultaneous 

analysis of the expression profiles of these groups enabled to characterize the dynamic 

patterns of both groups and reveal a comprehensive picture regarding the temporally 
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coordinated inflammatory and metabolic changes in the liver following burn injury or 

CLP.  

4.2 Materials and Methods 

4.2.1 Animal Model 

Male Sprague-Dawley rats (Charles River Labs, Wilmington, MA) weighing between 

150 and 200 g were used. The animals were housed in a temperature-controlled 

environment (25°C) with a 12-hour light-dark cycle and provided water and standard 

chow ad libitum. All experimental procedures were carried out in accordance with 

National Research Council guidelines and approved by the Rutgers University Animal 

Care and Facilities Committee. 

 

Animals were randomly divided into four groups. Two different insults were 

investigated: a 20% total body surface area scald burn injury (B) to mimic trauma with no 

infection, and cecal ligation and puncture (CLP) to mimic infection and sepsis. Control 

treatments included sham burn and sham CLP. Detailed explanation regarding the 

experimental injury models and methodology was provided in previous sections.  

 

Microarray experiments to generate liver gene expression data have been explained 

elsewhere (Vemula et al. 2004). Briefly, animals were sacrificed (starting at 9am) at 

different time points (0, 2, 4, 8, 16 and 24hr post-treatment) and liver tissues were 

collected, snap frozen in liquid nitrogen  and stored at -80ºC (n=3 per time point per 
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group). The tissues were lysed and homogenized using Trizol, and the RNAs were further 

purified and treated with DNase using RNeasy columns (Qiagen). Then cRNAs prepared 

from the RNAs of liver tissues using protocols provided by Affymetrix were utilized to 

hybridize Rat Genome 230 2.0 Array (GeneChip, Affymetrix) comprised of more than 

31,000 probe sets.  

 

 

Figure 4.1. Schematic overview of the microarray data analysis. 

Microarray data was preprocessed by using dChip. Then, two data sets corresponding to 

burn and sham groups, respectively, were analyzed to identify the differentially expressed 

probesets by using EDGE with ‘between classes’ option under the statistical threshold 

q<0.01, p<0.01. Finally, the data sets corresponding to those differentially expressed 
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probesets in burn and sham groups were combined to form one single matrix, which was 

then clustered using the approach of “consensus clustering” with threshold p<0.01.  

 

 

4.2.2 Data Analysis 

In this study gene expression data analysis includes data preprocessing, filtering for 

“between class temporal differential expressions”, combining the datasets and clustering 

as seen in Figure 4.1. First, DNA chip analyzer (dChip) software (Li and Wong 2001) 

was used with invariant-set normalization and perfect match (PM) model to generate 

expression values. Microarray outlier filter analysis (Yang et al. 2007b) identified that 

there were approximately 10% outliers in the gene expression data sets, which is typically 

observed in a microarray data. The outliers were replaced by the mean of the replicates 

(Pearson et al. 2003).  Then the data sets corresponding to treatment and control groups 

were investigated to identify the differentially expressed probesets by using the method 

(EDGE) proposed by Storey et al. (Leek et al. 2006). The statistical test used is analogue 

to an F statistics which compares the goodness of fit of the model under the null 

hypothesis to that under the alternative hypothesis. The null hypothesis model is obtained 

by fitting a time-dependent curve to the two or more groups combined, and the 

alternative hypothesis model is obtained by fitting a separate curve to each group. The 

significance threshold for this analysis was set as q-value <0.01 and p-value<0.01. This 

step determined a set of probesets whose expression patterns were significantly altered 

following the treatment considering the temporal differences between the control and 
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treatment groups. Finally the data sets corresponding to those differentially expressed 

probesets in either treatment and/ or control groups were combined to form one single 

matrix, which was then clustered using the a approach “consensus clustering” (Nguyen et 

al. 2009), in an unsupervised manner. This provided a set of burn (or CLP) responsive 

genes, which is significantly different than that of control group. We further applied one-

way ANOVA test (p<0.01) independently for each gene in each cluster and animal group 

in order to verify if the gene has been differentially expressed across the time only. 

Moreover, t-test was used additionally for pair-wise comparison of burn and sham genes 

(or CLP and SCLP genes) identified in the clusters at each time point in order to estimate 

the activation time of a certain response related to injury. We characterized the biological 

relevance of the intrinsic responses by evaluating the enrichment of the corresponding 

gene subsets using the KEGG database through ARRAYTRACK (Tong et al. 2003) as 

well as analyzing the functions of  each individual gene (Twigger et al. 2002). 

 

4.3 Results and Discussion 

4.3.1 Gene Expression Profiles Following the Burn Injury 

 

We examined the gene expression levels at 0, 2, 4, 8, 16, and 24 h in the livers of rats 

after a 20% total body surface area (TBSA) burn injury or sham-burn (control of burn) by 

using microarray measurement. Differentially expressed burn responsive genes with their 

short term dynamic profiles were identified considering the time-dependent variations in 

the gene expression profiles of control group in this study. 1534 probe sets in burn group 
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exhibit altered gene expression patterns over time compared to the corresponding sham 

control. Consensus clustering further determined 4 statistically significant clusters 

composed of 62, 82, 404, and 73 probe sets respectively. The average expression patterns 

of the 4 clusters are depicted in Figure 4.2 (right panel) while a heat map of all probe sets 

is shown in the left panel. ArrayTrack as well as single gene ontology analysis was used 

to further elaborate the functional annotations of burn injury responsive genes. 

 

Cluster 1 (Figure 4.2, cluster 1) exhibits an early up-regulation during the first two hours 

following thermal injury. One-way ANOVA (p<0.01) indicates that the majority of the 

probesets in this cluster are not differentially expressed in the sham-burn condition over 

time while all the probesets in the burn group show time-dependent expression 

variability. Burn injury induced a rapid, but transient, up-regulation of the genes in this 

cluster in the early post-burn stage (solid line). However, within less than 8 hours, this 

response returned to baseline implying that the pro-inflammatory response returns to 

homeostasis.  
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Figure 4.2. Gene expression profiles of rat livers in response to sham-burn or burn 

injury. 

Left Panel, expressions of 62, 82, 404 and 73 probesets in 4 clusters in sham-burn rats 

and burn rats at 0, 2, 4, 8, 16, 24 h post-treatment are exhibited in a heatmap.  

Right Panel, the expression patterns are shown by plotting the average normalized (z-

score) expression values of 62, 82, 404 and 73 probe sets in 4 clusters in sham-burn and 

burn groups (displayed as the means± SEM) 
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A group of inflammatory genes are involved in this cluster including cytokines, 

chemokines and chemokine receptors (1l1a, Cxcl16, Ccl11 and Ccl9), as well as genes 

related to the modulation of innate and adaptive immune responses (Ceacam1). IL-1α is a 

pro-inflammatory cytokine which plays central role in the regulation of the immune 

response by binding to the IL-1 receptor (Dinarello 1989). In the liver, cutaneous burn 

injury induced marked elevations of pro-inflammatory cytokines such as IL-1α which 

exhibits a peak in the early stage of inflammatory response (Mester et al. 1994). 

Chemokine (C-X-C motif) ligand 16 (CXCL16) is a chemoattractant belonging to the 

CXC chemokine family. Expression of Cxcl16 is induced by the inflammatory cytokines 

IFN-γ and TNF-γ (Abel et al. 2004). Chemokine (C-C motif) ligand 11 (CCL11) is also 

an inflammatory mediator belonging to the CC chemokine family that is known as 

Eotaxin-1. Chemokine (C-C motif) ligand 9 is known as macrophage inflammatory 

protein (MIP)-1γ which is constitutively expressed in macrophages (Youn et al. 1995). 

The systemic inflammatory response encompasses the release of numerous pro-

inflammatory cytokines postburn which are the primary mediators of inflammatory 

reaction to trauma of severe burn injury. Pro-inflammatory cytokines were thought to 

trigger and enhance inflammatory response and to mediate catabolic effects (Gauglitz et 

al. 2008). 

 

Cluster 2 can be considered to be down-regulated following burn injury (Figure 4.2, 

cluster 2). The majority of the probesets in this cluster were not temporally differentially 

expressed over time following burn injury, while almost all of them pass the ANOVA 
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test (p<0.01) in the sham-burn condition. This indicates that the expression of the genes 

in the sham-burn group varies with time, and burn injury appears to disrupt this 

expression pattern. The sham-burn cluster exhibited an early and sustained upregulation 

until 16 h and a late downregulation around 24 h post-burn. Burn injury significantly 

suppressed the expression of the genes in this cluster starting around 2 h post-burn. A 

Student t-test (p<0.01) reveals that the most significant suppression occurred at 8 h and 

16 h. 

 

The genes in this cluster are involved in the unsaturated fatty acid biosynthetic pathway 

(Acot1, Acot2, and Acot3), fatty acid metabolism (Acaa2, Cpt1a, Dci), and synthesis of 

ketone bodies (Hmgcs2). Many other genes in this motif also participate in lipid 

metabolism and lipid transport such as Eci1, Pigo, cyp4b1, Adfp, Pnpla8, Pank4, Crot, 

Etfdh. Phosphatidylinositol glycan anchor biosynthesis, class O, is encoded by Pigo 

which plays a role in the synthesis of glycosylphosphatidylinositol (GPI), a glycolipid. 

CYP4B1 is a member of the cytochrome P450 superfamily, and one of its functions is to 

catalyze reactions involved in lipid synthesis (Motamed-Khorasani et al. 2007). Adipose 

differentiation related protein encoded by Adfp gene is an intrinsic lipid storage droplet 

protein. It is suggested that ADFP protects neutral lipids from degradation by lipases (Xu 

et al. 2005). The absence of Pnpla8 is linked to reduced biosynthesis of lipid mediators in 

vivo (Yoda et al. 2010). Pank4 encodes a key enzyme in the biosynthesis of coenzyme A 

(CoA) in bacteria and mammalian cells. CoA is well known for its role in the synthesis 

and oxidation of fatty acids. HMGCS2 participates in ketone body biosynthesis. The 
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enzyme carnitine octanoyl transferase encoded by Crot gene is responsible for the 

transfer of fatty acids from peroxisomes to mitochondria. Previous observations 

elucidating the circadian rhythmicity in the gene expression patterns of rat liver indicated 

that the genes mainly related to fatty acid biosynthesis were up-regulated in the late 

afternoon and early evening hours (Ovacik et al. 2010). Our results, consistent with their 

observation, showed that fatty acid biosynthesis in the sham-burn group undergo a daily 

oscillation and returns to the starting level at 24 h. However, following burn injury, it was 

observed that the genes in this cluster lost rhythmicity and were suppressed early (~2 h 

post burn) compared to the dynamic gene expression profiles of the control group. 

Vemula et al. reported that expression of genes involved in the synthesis of mono-

unsaturated fatty acid (FA) and the precursor for FA biosynthesis were both significantly 

reduced between 16-24 h postburn (Vemula et al. 2004). Fatty acid biosynthesis 

associated enzymes are observed to be downregulated following the burn, possibly 

implying an enhanced energy demand.  

 

In addition, genes related to cell-cell junctions are also found in this cluster. ABLIM3 is a 

molecular component of adherence junctions (AJs) which can be detected in liver. It is 

thought that ABLIM3 is a novel component of adherens junctions with actin-binding 

activity (Matsuda et al.). Alkaline ceramidase 2 encoded by Acer2 was recently reported 

to play an important role in regulating β1 maturation and cell adhesion mediated by β1 

integrins (Sun et al. 2009). Cadherin 17 is a Ca(2+)-dependent cell-cell adhesion 

molecule expressed in liver and intestine which plays a role in the morphological 
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organization of liver and intestine (Berndorff et al. 1994). Genes participating in cell-cell 

junctions are associated with the integrity of the barrier function of hepatocytes linings 

and were suppressed around 2 h postburn. Though no direct report on the damage of the 

liver hepatocytes cells by burn injury is available, many studies reveal that intestinal 

permeability is increased in burn patient shortly after the injury partly due to the junction 

integrity alterations (Bjarnason et al. 1995). Thus, the suppression of probe sets 

functioning as cell-cell junctions and membrane structural integrity may be indication of 

the damage on the liver caused by the burn injury.   

 

Cluster 3, is activated later, around 8 h post-burn as seen in Figure 4.2, cluster 3. 

ANOVA (p<0.01) revealed that almost all the probesets were differentially expressed 

after burn injury while the most majority of these probesets were not differentially 

expressed over time in the sham group. The probesets in both groups show similar 

expression patterns in the early time period (from 0 to 8 h post treatment). However, burn 

injury significantly activated the probesets in this cluster starting around 8 h and the 

maximum deviation between the groups was observed  at 16h and 24h postburn (two- 

sample t-test, p<0.01).  

 

Genes in this major temporal class are important in the complement and coagulation 

cascade pathways (C2, C4bpa, C8a, Cfh, Masp1, and Serping1), N-Glycan biosynthesis 

pathway (B4galt1, Dad1, Ddost, Dpagt1, Ganab, and Man1b1), ribosome (Rps25, Rps2), 

Jak-STAT signaling pathway (Il13, Il4, Il7, Jak3). Ribosome is the component of the cell 
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that produces protein from mRNA. N-linked glycans are extremely important in proper 

protein folding in eukaryotic cells (Helenius and Aebi 2001). All the proteins encoded by 

the genes in complement and coagulation cascades are important positive acute phase 

proteins (APP) which are diffusible anti-inflammatory mediators (Tracey 2002). It is also 

well known that the anti-inflammatory response is induced by the suppressor of cytokine 

signaling proteins (SOCS) activated by Jak/STAT signaling pathway. Thus these gene 

groups represent the anti-inflammatory response resulting in an increase in the synthesis 

of the acute phase proteins and important anti-inflammatory cytokines. Moreover, many 

other genes in this group participate in various processes such as transcription (Brca1, 

Mcm7, Tcf25, Kdm1, Nfyb, Tef, Cited4, Otx1, Sox4, Acvr1, Tbx2, Zfhx2, Dmrt2, Tsc22d1, 

Ccdc101), translation (Atpif1, Mrps21, Rps25, Rps2, Mrps11), protein folding (Dnajb11, 

Ppib, Hyou1, Edem2, Sep15, Pdia6, Dnajc3, Pdia3, Ugcgl1, Sec63, Mlec, Mecp2), 

protein degradation (Pcolce, Cpn1, caspase 12, Cdc34, Spink3, Hspa5, RGD1306508, 

Erlec1, Aph1a, Derl2, Os9, Rnf20, Ppp2r5c, Aurkaip1, Prss32, Prepl, Tbl1xr1, St14, 

P4hb) and protein target (Tmed3, Ssr4, Tram1, Sec61a1, Rrbp1, Arfgap2, Gabarap, 

Erp29, Ssr3, Rrbp1, Sec61a1, Derl1, Gosr2, Cope, Tmed2, Copz1, Copg, Sec13, Abcb10, 

Kdelr1, Kdelr2, Tram1, Serp1, Ssr3, Atp6v0d1, Rabac1, Vps28). Protein synthesis is a 

complex multistep process including transcription, translation in ribosome, post-

translational modification and protein folding, and protein targeting. Thus, taken together 

these observations are consistent with the notion that the protein machinery is activated to 

produce APPs following burn injury.  
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The most significant feature of this response is the enhanced production of APPs because 

approximately 20% of all differentially expressed probesets in this study are associated 

with this function. It was previously reported that the increase in the levels of APPs 

produced by the liver is a prominent characteristic of the acute phase response following 

thermal injury, which is believed to be critical for the adaptation of the body to stress 

(Kataranovski et al. 1999). In addition, the transcription of APPs is activated in the late 

phase starting around 8 h post-burn, consistent with previous observations that the level 

of amyloid A, a APP, is not increased until the concentration of IL-6, a late phase 

cytokine, increases (Plackett et al. 2007). The requirement of the energy and amino acids 

(AA)  to produce large amount of APP in liver are satisfied by the increased flux of 

amino acids from the periphery to the liver, especially from the accelerated breakdown of 

muscle proteins (Hasselgren et al. 1988). The alterations in nitrogen and protein 

metabolism represent a major threat for the organism, as it leads to a debilitating loss of 

lean body mass (Windsor and Hill 1988). Thus, a sustained or exaggerated acute phase 

response has been shown to be an indicator of a potentially life threatening uncontrolled 

and prolonged action of proinflammatory cytokines leading to multiple-organ failure.  

 

Critical cytokines in this cluster are well known anti-inflammatory cytokines such as IL-

13 and IL-4. IL-13 inhibits the ability of host immune cells to destroy intracellular 

pathogens by recruiting a large number of Th2 cells while IL-4 induces differentiation of 

naive helper T cells (Th0 cells) to Th2 cells. IL-4 promotes the activation of macrophages 

into repair macrophages which is coupled with secretion of IL-10 and TGF-beta that 
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result in the diminution of pathological inflammation. It is reported that the anti-

inflammatory cytokines, such as IL-4, are released later on in an attempt to counter-

regulate the effects of the pro-inflammatory cytokines (Finnerty et al. 2009). Moreover, 

following the burn injury, a state of immunosuppression occurs whose intensity and 

duration is closely related to morbidity and mortality in burn patients (Moran and 

Munster 1987). Interestingly, the inflammatory response after burn injury may play a role 

in the induction of adaptive immunosuppression. Both in vivo and in vitro studies 

manifest the altered adaptive immunity after burn which have shown that there is a 

decreased production of Th1- type cytokines (IL-2 and IFN-γ) and an increased 

production of Th2- type cytokines (IL-4 and IL-10) (Lederer et al. 1999). In the current 

study, the gene expression of Th2- type cytokines, IL-4 and IL-13, is enhanced starting 

from 8 h post burn, which may imply the onset of the host immunosuppression.  

 

Our results reveal that the gene expression of critical proteins (IRAK1, LBP, and 

TRAF3) in the TLR4 signaling pathway is upregulated at 8 h post burn injury (Figure 

4.2, cluster 3). The TLR4 signaling pathway is critical for Gram-negative bacterial 

infections. It is well known that patients with severe burn injury are exceedingly 

susceptible to bacterial infections. Not only bacterial infection from the injured area but 

also bacterial translocation from the gut cause septic complications in the hosts. 

Mesenteric lymph nodes and liver indeed contain bacteria after burn injury in mice 

(Maejima et al. 1984). It is generally accented that the decreased resistance to infection 

and enhanced secondary inflammatory response following serious injury is associated 
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with abnormalities of both natural and adaptive immunity. Fang et al. (Fang et al. 2002) 

observed that thermal injury can markedly up-regulate lipopolysaccharide-binding 

protein (LBP) gene expression in various organs. LBP, a soluble acute-phase protein, 

binds to bacterial LPS to facilitate the immune response. Excessive LBP mRNA 

expression may be associated with enhanced synthesis and release of TNF-α stimulated 

by burn induced-endotoxin. Paterson et al.  demonstrated that burn injury significantly 

increased TLR2- and TLR4-induced IL-1, IL-6, and TNF- α production by liver cells as 

early as 1 day after injury and they were found to be persistent for at least 7 days 

(Paterson et al. 2003). Thus, the alteration of the TLR4 signaling pathway may imply that 

burn injury primes the innate immune system for enhanced TLR4-mediated responses to 

subsequent infection and provides evidence to suggest that an augmented Toll-like 

receptor signaling pathway might contribute to the development of increased systemic 

inflammation following severe burn injury.  

 

Finally, a number of bile acid production related genes were also identified in this cluster 

including Idi1, tmem97, Npc2, and Hsd17b4.  Isopentenyl-diphosphate delta isomerase 1 

encoded by Idi1 is an enzyme participating in the cholesterol biosynthesis pathway. 

TMEM97 is identified as a novel transporter binding to the NPC1 protein in the 

regulation of endosomal uptake of cholesterol from LDL particles (Bartz et al. 2009). 

Niemann-Pick type C2 encoded by Npc2, a small soluble cholesterol-binding protein, is a 

key molecule for normal intracellular trafficking of cholesterol. It is proposed that NPC2 

is secreted from the liver into bile, where it may play a functional role in cholesterol 
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transport (Klein et al. 2006). It was revealed that HSD17B4 functions in peroxisomal β-

oxidation and bile acid metabolism in mouse (Baes et al. 2000). Bile acids are end 

products of cholesterol and the major driving force for bile formation, and the major 

excretory products of cholesterol. Previous studies revealed that bile acid production 

increased following burn injury (Vemula et al. 2004). The main function of bile acids is 

to promote the formation of micelles, which facilitate fat digesting and absorption. 

Therefore, the enhanced production of bile acids may also reflect the demand of the 

energy from food intake. In fact, nutritional therapy is commonly used with burn patients 

(Chan and Chan 2009). This approach attempts to compensate for burn injury-induced 

metabolic abnormalities although it is limited given that it does not address the 

underlying mechanisms that are responsible for hypermetabolic and catabolic induction. 

Although nutritional supplements partially alleviate the hyper-catabolic condition, it 

cannot reverse it or completely restore the nitrogen balance.  

 

Finally, cluster 4 is downregulated around 16 h post burn (Figure 4.2, cluster 4). The 

probesets of this cluster in both sham and burn groups exhibit an early down-regulation. 

Although the control group seems to recover their expression within 24 h, persistent 

downregulation is observed in the burn group. The maximum deviation between the 

sham-burn and burn groups occurs at 24 h postburn (two sample t-test, p<0.01).  
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The genes in this cluster are involved in the insulin signaling pathway (Gck, Irs1, Mknk2, 

Trip10), phenylalanine metabolism (Ddc), glycine, serine and threonine metabolism 

(Bhmt), and galactose metabolism (Gck). The insulin signaling pathway is activated 

through the phosphorylation of insulin receptor substrate-1(IRS-1) at a critical tyrosine 

residue after insulin binds to its receptor. IRS-1-deficient mice exhibits generalized pre- 

and post- natal growth retardation, as well as insulin resistance in peripheral tissues 

(Tamemoto et al. 1994). Glucokinase encoded by Gck catalyzes the phosphorylation of 

glucose to glucose-6 phosphate, which has a major impact on glucose homeostasis. It 

plays a critical role in the regulation of carbohydrate metabolism by acting as a glucose 

sensor, facilitating storage of glucose as glycogen. Hepatic glucokinase activities are 

reported to be controlled primarily at the transcriptional level, mainly regulated by insulin 

and glucagon (Jung et al. 2006). The expression of genes associated with amino acid 

metabolism are reported to be regulated by the circadian rhythm in rat liver (Ovacik et al. 

2010). Consistent with this observation, the insulin and amino acid metabolism-related 

genes in the sham-burn group also exhibited daily oscillation reaching a nadir at the 

interface of the light and dark phases. However, this daily oscillation was disrupted and 

suppressed maximally 24 h postburn, as demonstrated by the dynamic gene expression 

profile of the burn group (Figure 4.2, cluster 4). Among the downregulated genes in this 

cluster are IRS-1 and GK, which are known to play a major role in the insulin signaling 

pathway and insulin resistance. Gauglitz and co-workers previously reported that total 

IRS-1 transcriptional expression was noticeably decreased at 24, 72 and 192 h postburn. 

In addition, the significantly impaired insulin signaling pathway was associated with an 
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inactivation of signaling molecules acting downstream of IRS-1, leading to significantly 

decreased mRNA expression of GK (Gauglitz et al. 2009). Insulin is an anabolic 

hormone which promotes the storage of substrates in liver by stimulating lipogenesis, 

glycogen and protein synthesis (Saltiel and Kahn 2001). Thus, downregulation of the 

genes involved in the insulin signaling pathway suggests a potential mechanism to 

explain the onset of a hypercatabolic state which is characteristic of hypermetabolism. 

 

4.3.2 Gene Expression Profiles Following the CLP 

 

Consensus clustering analysis determined 3 important groups composed of 202, 456 and 

214, probe sets respectively when CLP group was compared to SCLP group. ArrayTrack 

as well as single gene ontology analysis was used to further elaborate the functional 

annotations of CLP injury responsive genes.  

 

Cluster 1 (Figure 4.3) shows an early up-regulation during the first 2 hours following 

CLP treatment. The majority of the probesets in this cluster are not differentially 

expressed following SCLP treatment while almost all probesets show time-dependent 

expression variability in CLP group (one way-ANOVA p<0.01). The SCLP-response 

was slightly up-regulated around 2 hours while CLP treatment results in a significant up-

regulation in this cluster which peaks around 4h. However, within less than 8 h, this 

response goes back to baseline values corresponding to SCLP induced response. 

According to t-test, the most significant difference occurs around 4h. 
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The genes in this cluster participate in Toll-like receptor signaling pathway (Cxcl10, Il1b, 

Map3k8, Nfkbia), MAPK signaling pathway (Dusp14, Gadd45a, IL1b, Map3k8, Nr4a1, 

Tgfb2), complement and coagulation cascades (Plaur, Serpina5, Thbd) and chemokine 

signaling pathway (Cxcl10, Foxo3, NFkbia). Increasing evidence suggest that Toll-like 

receptors (TLRs) play a key role in the mediation of systemic responses to invading 

pathogens during sepsis. TLRs are from a family of transmembrane receptors which 

interacts with relevant pathogen-associated molecular patterns and an intracellular 

Toll/IL-1 receptor domain involved in signaling. It has been demonstrated that the 

expression of TLR-2 and TLR4/MD-2 in hepatic macrophages is significantly up-

regulated in mice with experimental peritonitis induced by CLP (Tsujimoto et al. 2005). 

Williams et al. also demonstrated that TLR-2 and TLR-4 mRNA expression in liver of 

CLP mice were significantly up-regulated as compared with that in sham-operated mice, 

which occurred as early as 1h after the onset of peritonitis (Williams et al. 2003). It is 

likely that the expression and function of TLRs greatly influence the quality and control 

of innate immune response in patients with infectious disease. TLRs are essential for 

triggering the host’s immune response, acting as a sensor against invading pathogens 

(Tsujimoto et al. 2005). Besides,  MAPK pathway, another critical signaling pathway, 

can be activated by a wide variety of different stimuli acting through diverse receptor 

families, including LPS, leading to transcription of cytokines genes (Kyriakis and Avruch 

2001).  
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Figure 4.3. Gene expression profiles of rat livers in response to sham-CLP and CLP. 

 

In addition to the important immune related signaling pathway, the genes activated by 

CLP stimulus in this cluster are highly related to pro-inflammation and immune system 

including Il1b, Cebpd, Cish, cxcl10, Ikba, Plscr1, Tgfb2, and CD44. IL-1β is a well-

known marker of pro-inflammation and important mediator of inflammatory response 

which participates in a variety of cellular activities. The expression of IL-1β in the liver is 

significantly increased post CLP treatment (Salkowski et al. 1998). C/EBPδ encoded by 
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Cebpd gene is involved in the regulation of genes participating in immune and 

inflammatory responses, which is shown to discriminate between transient and persistent 

TLR4- induced signals in response to LPS induced infection (Litvak et al. 2009). CISH 

belongs to the suppressor of cytokine signaling (SOCS), whose expression is upregulated 

by LPS. The transcription of this inhibitor is upregulated as a feedback response to 

immune activation by a variety of immune cytokines and by LPS (Wormald and Hilton 

2007).  CXCL10 is an IFN-γ induced cytokine which has been attributed to several 

functions including chemoattraction for diverse immune cells. CXCL10 was shown to be 

an early marker of sepsis. CXCL10 is identified to play a critical role in host defense 

during polymicrobial sepsis by increasing neutrophil recruitment and function in a low 

lethality sepsis model (Kelly-Scumpia et al.). And in CLP induced sepsis, CXCL10 

protected mice from sepsis-induced mice lethality (Ness et al. 2003). Vcam1, a cell 

surface antigen and adhesion molecule, whose gene was upregulated from 4 to 24h after 

LPS stimulation (Saban et al. 2001). IkBα, encoded by Nfkbia, is a member of cellular 

proteins that function to inhibit the NF-κB transcription factor. Phospholipid scramblase 

1 encoded by Plscr1 is an IFN- inducible protein which is localized in nucleus or cell 

membrane with a role in antiviral effect. PLSCR1 offers mechanisms for amplifying and 

enhancing the IFN response through increased expression of a selected subset of potent 

antiviral genes (Dong et al. 2004). TGF-β2 is a cytokine which plays roles in wound 

healing. Alterations in the regulation of CD44 expression play a key role in modulating 

cell migration, adhesion and inflammation. The activation of CD44 expression is a 

critical event in the monocytic cells migration to sites of inflammation or injury. LPS has 
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the ability to enhance CD44 expression which may modulate CD44- mediated biological 

effects in monocytic cells during inflammation and immune responses (Gee et al. 2002).  

 

In Cluster 2 (Figure 4.3), SCLP induced response is up-regulated around 2h and reaching 

its maximum at 8h post SCLP, however, the response in CLP group is activated later, 

around 4h post –CLP surgery and peaks around 12h. Genes in this major temporal class 

are critical in ubiquitin mediated proteolysis (Herc2, RGD69425, Rchy1, Ube2e3, 

Ube2q2, Ube4a), antigen processing and presentation (Canx, Ciita, Ctsb, Hspa5, Lgmn), 

ribosome (Rpl22l1, Rpl23a, Rol27, Rps15a), N-Glycan biosynthesis (Dad1, Man1b1), 

and complement and coagulation cascade (C9, Fga). Ribosome is the component of the 

cell that produces protein from mRNA. N-linked glycans are important for proper protein 

folding in eukaryotic cells (Helenius and Aebi 2001). All proteins encoded by the genes 

in complement and coagulation cascades are important positive acute phase proteins 

(APP) which are diffusible anti-inflammatory mediators (Tracey 2002). Moreover, many 

other genes in this group participate in various processes such as translation (Rpl22l1, 

Serp1, Rpl23a, Rpl27, Rps15a, Srp9, Rps4x, Serp1), protein folding (Txndc4, Fkbp14, 

Canx, Sgtb, Tra1), protein degradation (Spink3, Tmem67, Spink3, Usp54, Ube4a, 

Man1b1, Usp33, Lgmn, Derl1, Rchy1, Serpini1, Solh, Ubxd4, Usp32, Yme1l1, Hspa5, 

Ubxd4, Herc2) and protein target (Tmed2, Chmp5, Synrg, Bet1, Ppp3ca, Fxc1, 

RGD1560633, Stx5, Nsf, Wipi1, Ssr3, Arl2bp, Tmed3, Tmed10, Ssr3, Rab33b). One 

characteristics of the metabolic response to trauma and sepsis is acute- phase protein 

synthesis in liver. Hepatic uptake of amino acids is stimulated and protein synthesis in the 
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liver are enhanced. It is assumed that the synthesis of the acute-phase proteins is 

beneficial to the host (Gabay and Kushner 1999). 

 

Many important genes induced by CLP found in this clusters are also involved in 

antimicrobial responses (Lcn2, Reg3b, Hepcidin, Fgr) or in anti-inflammatory response 

(Sels, Ebi3, cxcl3, cxcr4, Osmr), or protective effect (sod2). The transcription of lipocalin 

2 (lcn2) is markedly increased in macrophages in response to LPS stimulation. Recently, 

it is reported that this protein is required to mediate an innate immune response to 

bacterial infection. During the infection, the transcription, translation and secretion of 

lipocalin2 is stimulated in immune cells upon encountering invading bacteria to limit 

bacterial growth (Flo et al. 2004). Thus, the induction of lipocalin is required to protect 

host from bacterial infection. Reg3b is a lectin-related protein which may be involved in 

stress response to control bacterial proliferation during acute pancreatitis. Hepcidin 

encoded by Hamp is found primarily in the liver with the role in inflammation and 

antimicrobial defense (Park et al. 2001). Fgr is involved in defense response to Gram-

positive bacterium. Selenoprotein S, as a modulator of inflammatory response in 

infectious and autoimmune disease, plays a pivotal role in the anti oxidative and anti-

inflammatory action (Duntas 2009). EBI3 plays a role in regulating cell-mediated 

immune response. EBI3 mRNA is induced by LPS whose maximal expression level is 

between 12 and 24 h in human monocytes (Pflanz et al. 2002). CXCL3 is involved in 

cytokine-cytokine receptor interaction and inflammatory response which is reported to be 

up-regulated by LPS (Selleri et al. 2008). Chemokine receptor 4 (Cxcr4) is involved in 



84 

 

 

 

regulation of cell migration and viral infection. Though Surface expression of neutrophil 

CXCR4 is down-modulated by bacterial endotoxin, Cxc4r4 gene expression is gradually 

up-regulated in neutrophiles cultured with LPS (Kim et al. 2007). OSMR is a member of 

the type I cytokine receptor family whose expression can be induced in monocytes 

treated with LPS. Superoxide dismutase 2, mitochondrial (sod2), a key antioxidant 

enzyme in inflammatory condition is elevated in the whole liver under LPS stimulation 

(Shilo et al. 2008). The upregulation of SOD2 is considered to protect the cell against 

damage by superoxide radicals (Tian et al. 1998). LPS resulted in a higher level of 

ADAM8 expression in immature dendritic cells (Richens et al. 2007). S100a9 is 

phagocyte- specific calcium-binding protein belonging to the S100 family. Recent studies 

have shown that phagocyte-specific S100 proteins play an important role in the regulation 

of the innate immune response. Binding of S100A 8 /S 100A9 complexes to carboxylated 

N-glycan on endothelial cells enhances the subsequent adhesion of phagocytes to the 

vascular endothelium (Srikrishna et al. 2001). In addition, S100A8 and S100 A9 have 

been identified as potent chemoattractants for neutrophils and macrophages (Ryckman et 

al. 2003). The expression of S100a9 is induced by LPS (Zhang et al. 2007).  

 

Given the control gene profile, the cluster 3 (Figure 4.3) can be considered to be down-

regulated following CLP injury. Almost all of the probe sets pass the ANOVA test 

(p<0.01) in the SCLP group, while the majority of the probesets in this cluster are not 

differentially expressed over time following CLP injury. This indicates that the 

expression of the gene in the SCLP varies with time, and CLP surgery appears to exhibits 



85 

 

 

 

a further downregulation effect. The SCLP induced expression is activated around 2h and 

peak at 4h, while the gene profile in CLP is constantly expressed overtime with a slight 

upregulation at 12h. The most majority of the genes in this cluster are related to 

transcription system including Iqwd1, Tshz1, Jmjd5, Trps1, RGD1304792, LOC682097, 

Zfp112, Nr1d2, Znf688, Pou1f1, Tshz1, Nr1d2, Phf3, Nr1d2, Kdm5b, Narg1, Tbpl1, 

LOC680222, RGD1560762, Elk1, Ctr9, Otx1, Hey2, Fzd7, Epc1, Med23. Many of these 

genes have been reported to be downregulated following LPS stimulus in previous 

studies. Nr1d1 (Rev-erbA alpha) and Nr1d2 (Rev-erbA beta) are highly expressed in liver 

participating in both circadian regulation and inflammation.  It has been reported that in 

vivo CLP suppresses Nr1d expression in human peripheral blood leukocytes (Haimovich 

et al. 2010). Mcl1 is identified to be decreased in LPS-stimulated monocytes (Suzuki et 

al. 2000). Egln1component of transcriptional complex that plays a central role in 

mammalian oxygen homeostasis is reported to be downregulated in human whole blood 

incubated with LPS (Ghielmetti et al. 2006).  

4.4 Conclusions 

We have shown a short-term liver gene expression profiling in response to thermal injury 

or sepsis. The analysis characterizing the dynamic patterns of both burn and sham groups 

elucidated that temporal changes in the expression levels after the injury are mainly 

associated with the pro-inflammatory response, fatty acid biosynthesis, the anti-

inflammatory response, and insulin-regulated metabolic responses. The network of 

dynamic changes in gene expression observed in this study revealed the possible links 

between the diverse burn-induced responses. Based on our results, the pro-inflammatory 
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response is activated immediately around 2 h following burn treatment which triggers the 

anti-inflammatory response starting around 8 h postburn. The biosynthesis of unsaturated 

fatty acid starts to be suppressed around 2 h which may imply the preservation of the 

energy sources for the synthesis of APPs whose genes were activated later around 8 h 

post burn. In addition, the impaired insulin signaling pathway, starting from around 16 h 

postburn and putatively as a result of the alterations in inflammatory gene expression, is 

expected to further strengthen the catabolic response. A Suppression of fatty acid 

synthesis and enhanced production of bile acids were also observed, but were not likely 

due to the impaired insulin signaling because of the discrepancy in the dynamics of these 

responses. The analysis of CLP treatment revealed that Toll-like receptor signaling 

pathway, MAPK signaling pathway, acute phase protein synthesis and the genes involved 

in transcription system were activated in the liver following the induction of sepsis. Toll-

like receptor signaling pathway is essential for triggering the host’s immune response, 

acting as a sensor against invading pathogens. MAPK pathway, another critical signaling 

pathway, can be activated by LPS, which leads to transcription of cytokines and 

chemokines. In conclusion, simultaneous analysis of treatment and control groups’ 

expression profiles enables to characterize the dynamic patterns of both groups. Our 

results reveal critical gene expression pattern changes triggered by the injuries, which 

reflects host physiological and biological alterations and provides a more comprehensive 

understanding of the pathophysiology of the disease state.  
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CHAPTER V 

 

5 METABOLIC FLUX ALTERATIONS IN LIVER FOLLOWING BURN AND 

SEPSIS 

 

Abstract 

Isolated liver perfusion systems have been used to characterize intrinsic metabolic 

changes in liver as a result of various perturbations, including systemic injury, 

hepatotoxin exposure, and warm ischemia. Most of these studies were done using 

hyperoxic conditions (95% O2) but without the use of oxygen carriers in the perfusate. 

Prior literature data do not clearly establish the impact of oxygenation, and in particular 

that of adding oxygen carriers to the perfusate, on the metabolic functions of the liver. 

Moreover, these studies were performed utilizing fasted animals prior to perfusion so that 

a simplified metabolic network could be used in order to determine intracellular fluxes. 

However, fasting-induced metabolic alterations might interfere with disease related 

changes. Therefore, there is a need to develop a “unified” metabolic flux analysis 

approach that could be similarly applied to both fed and fasted states.   

 

First, in this study we explored a methodology based on elementary mode analysis to 

determine intracellular fluxes and active pathways simultaneously. In order to decrease 

the solution space, thermodynamic constraints, and enzymatic regulatory properties for 
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the formation of futile cycles were further considered in the model, resulting in a mixed 

integer quadratic programming problem.  

 

Then the effects of oxygen delivery in the perfusion system on liver metabolism were 

investigated by comparing three modes of oxygenation. We found that perfused livers 

consumed oxygen up to the rate of 400 μmole/g liver/h when the perfusate contained 

RBCs. Even when using 95% O2, in the absence of oxygen carriers, oxygen uptake was 

significantly reduced; urea and ketone body production were significantly decreased, and 

metabolic pathway analysis suggests that significant anaerobic glycolysis occurred. 

 

Using red blood cells in the perfusate which facilitate the oxygen utilization rate, we 

further analyzed the effect of fasting on the liver metabolism of burn animals. Rats first 

received a 20% total body surface area (TBSA) scald burn injury or sham-burn treatment. 

The livers were perfused 4 days after the treatment. One day prior to liver perfusion 

experiments, some animals in burn and sham groups were fasted for 24 h, whereas the 

rest were not. It was found that fasting further increased the urea production and amino 

acid uptake rates including glutamine, arginine, methionine and glycine in burn animals, 

which was not observed in sham-burn animal group.  It also increased lactate uptake in 

sham-treated animals, but not in burned animals. These results showed that fasting did 

not result in parallel responses in burn and sham-burn animals, therefore care must be 

taken to define the nutritional state of the animal model used in such studies.  
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Finally, we investigated the effects of burn injury or CLP treatment on liver metabolism. 

The animals were sacrificed 24 h after the treatment. Animals were not fasted and the 

livers were perfused with perfusate which contained RBCs at 10 % Htc. It was observed 

that burn injury increased gluconeogenic reactions while the opposite was observed 

following the SCLP. Moreover, most of the pathways in burn and CLP groups were 

found to have significantly higher weight values compared to other groups.      

 

5.1 Introduction 

The liver has many complex physiological functions including detoxification, lipid, 

protein, and carbohydrate metabolism, as well as bile and urea production. It also plays a 

major role in the onset and maintenance of aberrant “hyper-metabolic” patterns 

associated with various disease states, such as burns, infections and major trauma, which 

are characterized by an accelerated breakdown of skeletal muscle protein, increased 

resting energy expenditure, and a negative nitrogen balance. Isolated organ perfusion 

systems have been used to characterize the related metabolic changes at the individual 

organ level, including liver (Arai et al. 2001; Banta et al. 2007; Banta et al. 2005; Lee et 

al. 2000; Lee et al. 2003; Orman et al. 2010; Yokoyama et al. 2005). Normothermic liver 

perfusion systems are also being developed as an alternative to cold preservation 

techniques in the context of liver transplantation (Schon et al. 2001). A better 

understanding of the metabolic pattern in such systems may be helpful to assess the status 

of a liver graft before transplantation. 
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While the isolated perfusion approach enables one to determine the intrinsic changes in 

the organ by removing external influences, an obvious drawback is the artificial ex vivo 

environment of the perfusion which may potentially induce artifactual metabolic patterns. 

In particular, adequate oxygen transport and delivery is critical to correctly assess the 

metabolic state of organs that are suspected to undergo increased energy expenditure as a 

result of systemic inflammation due to disease and/or injury. Inadequate oxygenation 

could by itself alter gene expression levels (Rosmorduc and Housset 2010) and/or 

promote anaerobic pathways, including glycolysis, and would obviously limit the ability 

to observe a putative increase. However, the majority of liver perfusion studies were done 

without oxygen carriers, and it was also claimed that hyperoxic oxygenation without the 

use of oxygen carriers was adequate to support perfused rat liver function (Bessems et al. 

2006). The importance of using oxygen carriers in liver perfusion studies remains 

controversial, and the full ramifications of the impact of oxygenation have not been well 

characterized. 

 

Several isolated liver perfusion studies have identified relevant changes in the hepatic 

central carbon and nitrogen metabolism following systemic injury as well as infection. In 

this approach, livers were isolated from animals at different time points after injury, the 

rates of uptake/release of a panel of ~30 metabolites were measured during ex vivo 

normothermic perfusion, and the data used as input to a metabolic network model 

accounting for mass balance constraints of the major biochemical pathway reactions to 

derive a metabolic flux map distribution. A limitation of these studies is that animals 
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were typically fasted overnight prior to liver perfusion. In this case, one could assume 

that glycogen storage was depleted and there was inhibition of all strictly glycolytic 

enzymes, thus reducing the number of unknown fluxes as well as eliminating potential 

futile metabolic cycles (Banta et al. 2007; Lee et al. 2000; Lee et al. 2003). This allowed 

a relatively simple metabolic network model and a unique flux distribution could be 

generated solely based on mass balance constraints. However, the effect of 

superimposing fasting on injury has not been investigated, while there is likely to be 

some interaction between these stimuli because they are both known to impact on many 

of the same reactions within glucose and nitrogen metabolism. 

 

We recently applied a mass balance analysis on the perfused rat liver system to identify 

the metabolic fluxes in both fed and fasted conditions using a more comprehensive 

metabolic network including all liver specific pathways (Orman et al. 2010). Since the 

stoichiometric model was underdetermined given the experimentally determined external 

fluxes, the flux spectrum or variability approach which returns a range of values for each 

flux that is consistent with external flux measurements was used. However, the calculated 

flux ranges for both states were too large to determine the most distinctive patterns 

between the two states. Therefore, more comprehensive stoichiometric based 

mathematical approaches should be explored to estimate the steady state flux distribution 

vectors which are necessary to identify distinctive features of experimental conditions 

investigated.   
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Flux balance analysis (FBA) is a very powerful metabolic engineering tool which 

uniquely determines the flux vector by formulating an objective function. Pathway 

analysis based on extreme pathways and elementary modes is another approach used to 

characterize the structure of the metabolic network and elucidate important topological 

and physiological properties. Since every flux distribution can be written as a linear 

combination of the elementary modes or extreme pathways, the solution space of steady 

state flux vector can be also described by these more organized pathways. The solution 

space obtained from pathway analysis or flux balance analysis  can be further reduced by 

incorporating additional constraints relying on well known regulatory mechanisms 

(Covert and Palsson 2002; Covert et al. 2001) or thermodynamic properties of 

biochemical reactions (Beard and Qian 2005; Nolan et al. 2006). Thermodynamics has 

been applied to many areas of biology. Beard and Qian (Beard and Qian 2005) used 

optimization based methodology with thermodynamic and enzyme activity constraints to 

determine the concentration profiles of metabolites in a relatively small scale hepatic 

metabolic network.  Recently, elementary modes have been also used to formulate 

thermodynamic feasibility constraints for metabolic network models (Boghigian et al. 

2010; Iyer et al. 2010a; Iyer et al. 2010b; Nolan et al. 2006; Yang et al. 2011; Yoon et al. 

2007). In these studies, Gibbs free energy change across the systematically enumerated 

pathways/modes were forced to be less than or equal to zero.   

 

The decomposition of a steady state flux vector into pathways is not always unique 

because for large networks the number of pathways is not usually equal to the dimension 
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of the null space of the stoichiometric matrix (Schilling et al. 2000). Proposing an 

appropriate objective function is necessary to obtain a unique solution, however this is 

one of the obstacles in mammalian systems because of lack of knowledge regarding 

metabolic properties of these complex systems. Schwarz and his co-workers (Schwarz et 

al. 2005) discussed the importance of short pathways in elementary mode analysis and 

they assumed that short pathways are the modes which contribute most to gene 

expression (Stelling et al. 2002; Wagner and Fell 2001). By examining amino acid 

biosynthetic pathways across 48 sequenced organisms, Rutter and Zufall (Rutter and 

Zufall 2004) investigated whether the evolutionary properties of a metabolic network 

could be determined by the network characteristics such as the pathway length. They 

showed that longer pathways exhibit lower rates of change in pathway structure than 

shorter pathways. They suggested that short pathways with high variability in structure 

across the organisms can also be regarded as important properties since they are specific 

to the organism, which has been developed as a result of adaptive responses to 

environmental changes. We have previously presented different optimization problems 

based on different underlying assumptions (such as maximizing the activity of short 

pathways, maximizing the activity of pathways including glucose and/or urea production, 

etc) to decompose the flux vectors into pathways (Orman et al. 2011a). The methods 

were applied to the hepatic network and data set obtained from perfused livers of rats 

receiving various treatments. It was found that short pathways have higher weights given 

the topological properties of hepatic metabolic network and flux distribution obtained 

from perfusion experiments.  
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In this chapter, we first developed a stoichiometric based optimization methodology 

incorporating (1) flux balance and metabolic pathway analyses (elementary mode 

analysis) in order to identify the intracellular fluxes and active pathways simultaneously; 

(2) pathway based thermodynamic analysis to reduce the solution space and eliminate 

thermodynamically infeasible pathways; (3) a mixed integer binary formulation to 

represent the formation of futile cycles. Then, the effects of three modes of oxygen 

delivery to perfused livers: normoxic (arterial) perfusate (21% O2), hyperoxic perfusate 

(95% O2), and hyperoxic perfusate with oxygen carriers (95% O2 + 10% hematocrit using 

bovine red blood cells) were compared to identify the most adequate oxygenation 

condition which improves the perfused livers functions. Thirdly, we investigated the 

effect of fasting on the metabolic flux distribution in perfused livers isolated from rats 4 

days after being subjected to systemic burn injury or “sham”- burn control treatment. 

Totally four animal groups were compared: Sham+Fed, Sham+Fasted, Burn+Fed, 

Burn+Fasted. Finally, the flux distributions were identified in the livers from the animals 

24 h after being subjected to burn injury or CLP using modified network model and 

experimental strategies.   
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5.2 Materials and Methods 

5.2.1 Animal Model and Perfusion Experiments 

Male Sprague-Dawley rats (Charles River Labs, Wilmington, MA) weighing between 

150 and 200 g were used. The animals were housed in a temperature-controlled 

environment (25°C) with a 12-hour light-dark cycle and provided water and standard 

chow ad libitum. All experimental procedures were carried out in accordance with 

National Research Council guidelines and approved by the Rutgers University Animal 

Care and Facilities Committee. 

 

Figure 5.1. Perfusion system. 

 

The isolated perfused rat liver studies for all animals were performed following a 

modification of Mortimore’s methods as described previously (Yamaguchi et al. 1997) 

(Figure 5.1). The rats were anesthetized with an intraperitoneal injection of ketamine (80 
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to 100 mg/kg) and xylazine (12 to 10 mg/kg). The abdominal cavity was opened and 

heparin (1000 U/kg) was injected by transphrenic cardiac puncture, and then the liver was 

perfused in situ via the portal vein at a constant flow rate by a peristaltic pump. The 

hepatic artery and the suprarenal vena cava were ligated, and the liver outflow from the 

hepatic vein collected through the catheter which was cannulated into the inferior vena 

cava via the right atrium. After blood was washed out from the liver by flushing with 

perfusate for 10 minutes, the end of the tube connecting to the outflow catheter was 

placed into the perfusate reservoir to initiate the recirculating perfusion. In all perfusion 

experiments, the perfusion pressure was kept below 15cm H2O while the flow rate was 

set to 3.0 ml/min/g liver. The perfusate consisted of Dulbecco’s Modified Eagle’s 

Medium (DMEM, Gibco BRL) used as basal medium supplemented with 3% w/v bovine 

serum albumin (Fraction V; Sigma-Aldrich, St. Louis, MO). The concentrations of 

nutrients (lactate, glucose, amino acids, etc) in the perfusate (500 ml total volume) have 

been reported elsewhere (Yamaguchi et al. 1997). The pH of the perfusate solution was 

initially adjusted to 7.3, but reached the target pH of 7.4 after filling the perfusion system. 

Throughout the perfusion pH was close to 7.4 entering the liver but slightly lower at 

around 7.3 exiting the liver presumably due to production of acidic metabolites such as 

CO2 and lactate. Gas exchange in the oxygenator and the buffering capacity of the 

perfusate were sufficient to return the perfusate to the desired pH before reentering the 

liver, therefore no adjustments (i.e. addition of NaOH or the like) were necessary. The 

temperature of the heating fluid in the heat exchanger was set to a temperature higher 

than 37°C to account for heat losses between the heat exchanger and the liver inlet. The 
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temperature of the liver was frequently measured during the perfusion by inserting a 

thermocouple between the lobes, and the range was 37±0.5°C. Perfusate samples were 

taken from the reservoir every 10 minutes for 1 hour to measure the metabolite 

concentrations (Arai et al. 2001; Banta et al. 2007; Banta et al. 2005; Lee et al. 2000; Lee 

et al. 2003; Yokoyama et al. 2005). Samples were also withdrawn every 20 minutes for 1 

hour from ports adjacent to both cannulae to measure the O2 concentrations across the 

liver.  

 

In order to investigate the effect of oxygen delivery mode on liver metabolism, rats were 

divided into three experimental groups (n=4 for each group). The groups consisted of 

Group 95% O2, Group 95% O2+10% Hct and Group 21% O2. For Group 95%O2, the 

perfusate was oxygenated by passing through 3 m of silicone tubing in contact with a 

95% O2 / 5% CO2 gas mixture. For Group 95% O2+10% Hct, the perfusate was 

supplemented with washed bovine red blood cells (RBCs) (Lampire, Pipersville, PA) at 

10% hematocrit and otherwise oxygenated with the same 95% O2 / 5% CO2 gas mixture. 

For Group 21% O2, perfusate medium was oxygenated using room air. 

 

In order to investigate the effect of fasting on burn animals, the rats were first randomized 

into two groups of equal size. The first group received scald burn injury (described 

further below) and the second group received a sham burn injury. Three days post injury, 

food was removed from half of the animals in each group to initiate fasting. One day later 

(four days post injury), animals underwent isolated liver perfusion (also described further 
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below). Thus, totally four groups were investigated: Sham+Fed, Sham+Fasted, 

Burn+Fed, Burn+Fasted (n≥3 for each group). 

 

Finally, the effects of burn injury and sepsis on carbohydrate and amino acid metabolism 

were investigated. More specifically, rats were subjected to a full-thickness scald burn or 

CLP. Some animals received a “sham-burn,” where animals were anesthetized and 

prepped but not burned, as well as a “sham-CLP” where animals underwent laparotomy 

but no cecal damage. Totally four different groups were investigated: Sham-burn, Burn, 

Sham-CLP and CLP. 24 h after the treatment, the animals were sacrificed for liver 

perfusion experiments.  

 

The concentrations of metabolites (glucose, urea, lactate, glutamine, glutamate, β-

hydroxybutyrate, triglycerides, glycerol, and O2) were measured as described previously 

(Banta et al. 2005; Yamaguchi et al. 1997). Urea content in the perfusate was measured 

based on its specific reaction with diacetyl monoxime using a commercial assay kit 

(Stanbio Laboratory, Boerne, TX). Glucose concentrations were determined using 

enzymatic and colorimetric methods with commercially available assay kits (Sigma 

Chemical Co., St. Louis, MO). The concentrations of β-hydroxybutyrate in the perfusate 

samples were measured by means of an enzymatic assay using a Stanbio Diagnostic Kit 

(Stanbio Laboratory, Boerne, TX). Lactate was quantified using a commercial kit (Trinity 

Biotech, Berkeley Heights, NJ). Glutamine, glutamate, triglycerides and glycerol kits 

were purchased from Sigma (Sigma Chemical Co., St. Louis, MO). Amino acid 
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measurements (except glutamine and glutamate) were performed using HPLC system. 

LDH activity measurements from perfusate samples were carried out using a cytotoxicity 

detection kit (Roche, Indianapolis, IN). 

 

The dissolved O2 and total hemoglobin concentrations were immediately measured using 

blood gas analyzer during the perfusion experiments (Bayer Rapidlab 855, Diamond 

Diagnostics, MA). The oxygen concentration is calculated using the equation described 

in the results section. Since the liver inlet and outlet oxygen concentrations are known, 

the difference multiplied by the perfusate flow rate gives the oxygen uptake rate. 

 

Metabolite concentrations were multiplied by the total perfusate volume at the time of 

sampling to obtain the total amount of each metabolite remaining at the time of sampling. 

This quantity changed linearly with time, indicating that the perfused liver was 

metabolically stable for the duration of the perfusion, consistent with prior observations 

(Arai et al. 2001; Banta et al. 2005; Lee et al. 2000; Lee et al. 2003). The slope was 

determined to obtain the rate of production or consumption of each metabolite. Multiple 

comparisons among the groups were performed using analysis of variance (ANOVA) 

followed by Tukey’s studentized range test.  The criterion for statistical significance was 

chosen as P<0.05. 
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5.2.2 Metabolic Network  

The liver metabolic network used in this work was originally developed for perfused 

livers and hepatocyte cultures (Banta et al. 2007; Chan et al. 2003; Lee et al. 2000; Lee et 

al. 2003) and was modified to simultaneously include both glycolytic and gluconeogenic 

pathways, fatty acid synthesis and oxidation, as well as glycogenesis and glycogenolysis 

(see “APPENDIX” for details). Given the physiological properties of the liver and the 

perfusate composition, the network involves all major liver-specific pathways involved in 

central carbon and nitrogen metabolism such as gluconeogenesis, glycolysis, urea cycle, 

fatty acid metabolism, pentose phosphate pathway, TCA cycle, glycogen metabolism and 

amino acid metabolism. Given that protein metabolism only accounts for a small portion 

of the nitrogen metabolism in the liver during perfusion (Orman et al. 2010), a detailed 

description of protein metabolism was not considered herein. 

5.2.3 Metabolic Network Model 

The flux distribution was calculated using the mass balances of internal metabolites by 

assuming that internal metabolites are at pseudo steady state due to the insignificant 

intracellular accumulation rates. Therefore, steady state flux space is described by the 

following formulation:  
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where Skj is the stoichiometric coefficient of metabolite k in reaction j; vj is the flux of 

reaction j; nm and nr  are the total number of metabolites, and total number of reactions, 

respectively.  

Any flux vector v in a metabolic network can be also expressed as a linear combination of 

elementary modes as given in Figure 5.2 (Wiback et al. 2003), therefore a weight can be 

assigned for each pathway: 

  ,    .
pn

j ji i r
i

v P w j n= ∀ ∈∑                                                                       (5.2) 

where wi is the weight of pathway i; Pji corresponds to the relative flux level (normalized) 

of  reaction j in pathway i; and np is the total number of pathways. Note that each 

pathway also satisfies the reaction reversibility constraint given in Equation (5.1). 

Substituting Equation (5.2) into Equation (5.1) results in the following set of constraints: 
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Thus, the flux space can be described by elementary modes with their corresponding 

weight values as shown in Equation (5.3). Since reversible pathways are split into two 

irreversible pathways, the system is defined as a non-negative linear combination of 

irreversible elementary modes. 
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Figure 5.2. A simplified metabolic network example with its reactions (v1, v2, v3 and 

v4) and pathways (P1 and P2). 

Each pathway is represented by a normalized flux distribution vector. A linear 

combination of the weighted pathways gives the net flux distribution in the network 

(Equation 1). The rate of heat dissipation of each pathway should be less than zero so 

that the pathway can be thermodynamically feasible (Equation 2).   

 

5.2.3.1 Pathway based thermodynamic constraints 

The model described by Equation (5.3) is further modified by incorporating additional 

constraints such as thermodynamic constraints. Recently, pathway based energy balance 

has been commonly applied to reduce the steady state flux space (Boghigian et al. 2010; 

Iyer et al. 2010a; Iyer et al. 2010b; Nolan et al. 2006; Yang et al. 2011; Yoon et al. 2007). 

The underlying assumption behind the energy balance analysis is that an exergonic 
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reaction can be a “driving-force” for an endergonic reaction if these two reactions are 

coupled in the same pathway. 

 

Thermodynamic feasibility condition of a reaction determined by Gibbs free energy 

change of that reaction is given as follows: 

 

A ==> B
0rxnGΔ ≤

                                                                                   (5.5) 

where  rxnGΔ  is the Gibbs free energy of the reaction and rxnv   is the reaction’ flux. The 

condition   0rxnGΔ ≤  implies that the product .rxn rxnv GΔ  should negative or equal to zero 

( 0rxnv ≥ ). The product .rxn rxnv GΔ  corresponds to the rate of heat dissipation of the 

reaction in non-equilibrium steady state (Qian and Beard 2005; Qian et al. 2003). 

 

As proposed by Xu and co-workers (Xu et al. 2008), a pathway can be also regarded as a 

macroscopic reaction which should satisfy the thermodynamic constraint, i.e. the rate of 

heat dissipation of the pathway should be less or equal to zero, similar to the constraint 

represented by Equation (5.5). A very simple example of a metabolic network with its 

pathway based thermodynamic constraints is illustrated in Figure 5.2. The Gibbs free 

energy of the pathway i, P
iGΔ , is the summation of the Gibbs free energies of reactions 

involved in that pathway which should be less than or equal to zero:  

 0,      
rn

P
i j ji p

j
G G P i nΔ = Δ ≤ ∀ ∈∑                                                           (5.6) 
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where jGΔ is the Gibbs free energy of reaction j and is calculated by using the standard 

Gibbs free energy of the reaction and metabolite concentrations involved in that reaction 

as follows: 

,

min max
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where Lk is the logarithmic concentration of metabolite k, and ,
o
f kGΔ  is the standard 

Gibbs free energy of metabolite k. Given that we can identify a range of values for 

each P
iGΔ using the maximum and minimum values of logarithmic concentrations of 

metabolites (Yang et al. 2011), and considering the weight values, we formulated the 

pathway based thermodynamic constraints as follows: 

                       

,min ,max
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The condition 0P
i iG wΔ ≤  implies that the pathway i can be active (wi≥0) if its Gibbs free 

energy is less than zero ( 0P
iGΔ ≤ ), otherwise it is not active (wi=0). Equation (5.8) is 

nonlinear due the bilinear term P
i iG wΔ . Since wi is a positive variable as explained 

before, any wi satisfying the inequality ,max 0P
i iG wΔ ≤  also satisfies 0P

i iG wΔ ≤  

and ,min 0P
i iG wΔ ≤ . Thus, the constraint described in Equation (5.8) is replaced by 

,max 0P
i iG wΔ ≤ which further tightens the solution space although this can cause the 

elimination of certain solutions. 
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The proposed method has certain advantages compared to traditional metabolic flux 

analysis method. The proposed thermodynamic constraint not only reduces the solution 

space, but also eliminates thermodynamically infeasible pathways. Considering the 

overall free energy of a pathway also decreases the number of unknown parameters since 

the concentrations of internal or transient metabolites are not required.     

5.2.3.2 Integration of enzymatic regulatory constraints for futile cycles 

When two metabolic reactions or pathways in opposite directions are active 

simultaneously, a futile cycle is formed, which results in energy waste. In general, 

reciprocal control between the enzymes inhibits the formation of futile cycles. We 

proposed a mathematical formulation by introducing binary variables to prevent futile 

cycle from occurring:   
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The constraint given by Equation (5.9) describes the reciprocal control between two 

reactions (such as the reaction of glucokinase and the reaction of glucose-6-phosphatase) 

forming a futile cycle. This constraint allows the two reactions (VA and VB) to inhibit 

each other and prevent the formation of the cycle. y is a binary variable, and β is a very 

large number which forces y to be 0 (thus VB  is zero) if the reaction VA is active. If the 

reaction VA is zero, then VB can take any value. Note that another advantage of this 

formulation is that it provides a net flux in the futile cycle with a direction in case the 
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cycle is active. Constraint (5.9) can be also described by the elementary modes with their 

weight values: 
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The metabolic network used in this study includes both glycolytic and gluconeogenic 

pathways, fatty acid synthesis and oxidation, as well as glycogenesis and glycogenolysis. 

Three reactions calatalyzed by glucokinase, phosphofructokinase and pyruvate kinase in 

glycolysis (reactions 10, 9 and 8 respectively in “APPENDIX”) are replaced by three 

gluconeogenic reactions in the opposite direction which are catalyzed by glucose-6-

phosphatase, fructose-1,6-bisphosphatase and pyruvate carboxylase (reactions 1, 3 and 7 

respectively).  These reaction pairs form three different futile cycles. It has been assumed 

that, due to the reciprocal regulatory mechanisms of these enzyme complexes, 

gluconeogenesis and glycolysis are mutually exclusive (Chan et al. 2003). The lumped 

reactions 44 and 45 (see “APPENDIX”) represent fatty acid oxidation and fatty acid 

synthesis, which form another cycle. Reactions 49 and 50 corresponding to glycogen 

synthesis and glycogen breakdown (these reactions are also lumped) are reaction pairs 

forming a futile cycle too. One of the main forms of control in these complex systems is 

the allosteric regulatory properties of some key substrates, such as glucose-6-phosphate 

which is an activator of the glycogen synthase. The constraint described by Equation 

(5.10) was independently applied for each futile cycle in this study.  
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5.2.3.3 Determining Weight and Flux Vectors 

The decomposition of a steady state flux vector into pathways is not always unique, 

because the number of pathways (more than 130000 in this study) is not usually equal to 

the dimension of the null space of the stoichiometric matrix of larger networks. An 

objective function should be used in order to resolve this system. Some objective 

functions including maximization of the number of elementary modes, minimization of 

the elementary mode activity and the entropy maximization principle have been proposed 

in the literature (Nookaew et al. 2007; Schwartz and Kanehisa 2005; Schwartz and 

Kanehisa 2006; Zhao and Kurata 2009). We previously published a comprehensive 

analysis exploring different objective functions of perfused livers’ metabolism  in order 

to decompose the flux vector into pathways uniquely  and  it was observed that short 

pathways always had higher weight values (Orman et al. 2011a). Considering the 

thermodynamic constraints and enzymatic regulatory constraints for the futile cycles, we 

formulated a mixed integer quadratic programming (MIQP) to identify the weight values 

and fluxes simultaneously by maximizing the activity of short pathways (Orman et al. 

2011a): 
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The length (l) of any pathway is equal to the number of reactions involved in that 

pathway and is calculated using the binary matrix of elementary modes, F, where jiF  is 

equal to 1 if jiP  is different than zero, otherwise jiF  is zero. The indices A and B 

represent any two reactions forming a futile cycle. 

 

In this work, elementary modes were used to analyse the topology of the metabolic 

network. Since, extreme pathways are a subset of elementary modes, analyzing a 

biological system through a set of extreme pathways can result in the exclusion of 

possibly important modes (Klamt and Stelling 2003; Trinh et al. 2009). Elementary 
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modes were calculated using a MATLAB package, CellNetAnalyzer (Klamt et al. 2007). 

The mixed integer quadratic programming problem was solved using GAMS/CPLEX.  

 

We used the data for the intracellular metabolite concentrations and standard Gibbs free 

energies that have been presented by Yang et al. (Yang et al. 2011). They have already 

explained the calculation of Gibbs free energies in details. Based on a very 

comprehensive literature survey, they also provided concentration ranges for the 

metabolites involved in the central carbon metabolism of hepatic cells. The constraints 

for the ranges of extracellular flux rates (known fluxes) were previously provided (Orman 

et al. 2010). Based on an extensive analysis of published perfused liver studies (Arai et al. 

2001; Banta et al. 2007; Banta et al. 2005; Lee et al. 2000; Lee et al. 2003), the upper and 

lower limit of each unknown flux was typically assumed to be ±500 μmol/g liver/h.  

 

 

5.3 Results 

5.3.1 Metabolic Response of Perfused Livers to Various Oxygenation Conditions  

5.3.1.1 Extracellular Fluxes 

In this study, we investigated the impact of the oxygen delivery mode, namely 21% O2, 

95% O2, and 95% O2 + 10% Hct, on the metabolic activity of perfused livers, for a 

constant flow rate of 3 mL/min/g liver. Increasing the oxygen concentration in the gas 

phase from 21% to 95%, and then adding 10% Hct RBCs to the perfusate, significantly 
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increased the oxygen content of the fluid entering the liver (Table 5.1). Interestingly, the 

oxygen partial pressure of the fluid exiting the liver was similar in all three groups. 

Computing the oxygen consumption rate of the livers showed a parallel increase in 

oxygen utilization rate (Figure 5.3).  

 

The concentrations of other metabolites (glucose, lactate, urea, β-hydroxybutyrate, 

glycerol, triglyceride, glutamate and glutamine) in the perfusate reservoir were found to 

change linearly as a function of time; for example, urea and β-hydroxybutyrate are shown 

in Figure 5.4, panels A and C. The data were fitted with lines to estimate the average 

uptake/release rates of these metabolites (Figure 5.4, panels B and D). Both urea and β-

hydroxybutyrate production were significantly elevated by increasing oxygen partial 

pressure, and in turn, adding 10% Hct. Conversely, triglyceride and glycerol production 

rates, which were measurable in the 21% O2 and 95% O2 groups, decreased to near-zero 

values upon the addition of 10% Hct (Figure 5.5). A similar observation was made for 

lactate release from the perfused livers (Figure 5.5). In the 95% O2 + 10% Hct group, 

some animals showed a net consumption of lactate, although on average the rate was 

close to zero. Glucose output was also affected by the oxygen delivery mode, increasing 

when going from 21% O2 to 95% O2, but then decreasing to a value between these two 

groups after adding 10% Hct. Glutamate and glutamine release/uptake rates were also 

measured but no significant difference among the groups was observed.  
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Table 5.1. Pre- and post-liver oxygen content of perfusate solutions. 

 

Animal Groups Group 21%O2 Group 95% O2 Group 95% O2+10% Hct 

Liver inlet 

pO2 (mmHg) 184.3±36.1 612.3±6.1 610.3±9.2 

O2-Hb (μmole/L) - - 2.0±0.1 

Total O2 (μmole/L) 0.315±0.062 1.047±0.01 3.05±0.1 

Liver outlet 

pO2 (mmHg) 26.1±6.4 42.84.8 24.2±2.4 

O2-Hb (μmole/L) - - 0.78±0.005 

Total O2 (μmole/L) 0.045±0.01 0.073±0.008 0.83±0.005 

 

pO2: Partial pressure of O2. 

O2-Hb: O2 concentration carried by hemoglobin, which is calculated from the first part of the equation for 

total oxygen shown below. 

Total O2: Total oxygen concentration calculated using the equation:
 

 2 2 21.39 0.00314ctO FO Hb ctHb pO= × × + ×
                   

 

and then    Total O2 = ctO2 x 0.00314-1 x 0.00171 

where ctO2 (ml/dL) and ctHb (g/dL) are the concentrations of oxygen and hemoglobin, respectively. FO2Hb 

is the fraction of hemoglobin occupied by oxygen, and pO2 (mmHg) is the partial pressure. The value 1.39 

represents the oxygen binding factor of hemoglobin and 0.00314 is the oxygen solubility coefficient which 

is a conversion factor for    mmHg  O2 perfusate   to   ml O2/dL perfusate. Value of 0.00171 is the Henry 

constant (mmol /mmHg-L).  
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Figure 5.3. Perfused liver oxygen uptake rates (-) as a function of oxygen delivery 

mode at 20 min (black bar), 40 min (dark grey), and 60 min (light grey) after the 

beginning of perfusion. 

 

All rats were in a fed state (n=4 per group). Note: Letters indicate statistically significant 

(P<0.05) differences among groups: a is significantly different than either b or c; and b 

is significantly different than c. No significant difference is observed within the groups. 
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Figure 5.4. Urea and β-hydroxybutyrate production during perfusion as a function 

of oxygen delivery mode. 
 

A. Urea accumulation as a function of time. B. Urea production rate, calculated from 

slope of panel A. C. β-hydroxybutyrate accumulation as a function of time. D. β-

hydroxybutyrate production rate, calculated from slope of panel C. All rats were in a fed 

state (n=4 per group). Note: Letters indicate statistically significant (P<0.05) differences 

among groups: a is significantly different than either b or c; and b is significantly 

different than c. 
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Figure 5.5. Glucose, lactate, TG and glycerol uptake (-) or production rates (+) 

during perfusion. All rats were fed. 
 

n=4 per group. Note: Letters indicate statistically significant (P<0.05) differences 

among groups: a is significantly different than either b or c; and b is significantly 

different than c. For example, lactate secretion rates in Group 21%O2 (a) and Group 

95%O2 (a) are not significantly different, whereas Group 95%O2+10%Hct (b) is 

significantly different than either Group 21%O2 (a) or Group 95%O2 (a). 

 

 



115 

 

 

 

5.3.1.2 Steady State Flux Distribution 

Flux vectors were uniquely determined by implementing the optimization method 

described by Equation 5.11 in the Materials and Methods section (note that 

thermodynamic and futile cycle associated constraints were not included). Since the 

perfused liver was metabolically stable for the duration of the perfusion, the pseudo 

steady-state assumption used to formulate the Equation 5.11 is reasonably valid. The 

calculated fluxes are shown in Figure 5.6. Reactions 1-7 are those in the gluconeogenic 

pathway, although some of them are also used (in a reverse direction) by the glycolysis 

pathway. For example, reaction 2 (generation of glucose-6-P from fructose-6-P), and 

reactions 4-5 (generation of phosphoenolpyruvate [PEP] from glyceraldehyde-3-P), had 

negative fluxes in the 21% O2 and 95% O2 groups, implying that they were operating in a 

glycolytic mode. Conversely, these reactions had positive fluxes, indicating a 

gluconeogenic pattern, in the 95% O2 + 10% Hct group.  Interestingly, flux values for 

reaction 1 (converting glucose-6-P to glucose) were positive, consistent with a 

gluconeogenic pattern, while flux values for reaction 8 (glucose-6-P generation from 

glucose), which is strictly glycolytic, were near zero in all groups. However, glycolytic 

reactions 9 and 10 (generation of pyruvate from PEP and fructose-1,6-P2 from fructose-

6-P, respectively) were found to be active in all groups, which results in the futile cycles 

with the gluconeogenic reactions 3, 6-7 which are the opposite of reactions 9-10. 

Reaction 11 (conversion of pyruvate into acetyl-coA) had a significantly higher flux in 

the 95% O2 + 10% Hct group compared to other groups. 
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Reaction 12 (a lumped reaction term representing the PPP) had a higher flux value in the 

95% O2 + 10% Hct group compared to other groups. Reaction 13 is catalyzed by lactate 

dehydrogenase, and represents the inter-conversion of pyruvate and lactate. A negative 

value, as was the case for the 21% O2 and 95% O2 groups, indicates that the reaction was 

producing lactate from pyruvate, while the opposite (net conversion of lactate to 

pyruvate) was true in the 95% O2 + 10% Hct group.  

 

 

Figure 5.6. Calculated internal fluxes using Equation (5.11). 

 

 

 

Reactions 14-19, which account for the TCA cycle, had their lowest fluxes in the 21% O2 

group, and increased in unison in the 95% O2 group, and subsequently even more in the 

95% O2+10% Hct group. These changes largely reflect the observed changes in oxygen 

uptake rates (Figure 5.3), and not surprisingly parallel observed increases in the electron 
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transport reaction fluxes (reactions 51-52). These changes are also consistent with the 

increased production of pyruvate and acetyl-coA by reactions 11 and 13 in the 95% 

O2+10%Hct group, which are the direct precursors entering the TCA cycle. 

 

Fluxes in the urea cycle (reactions 20-22 in Figure 5.6) were higher when perfusate 

oxygen partial pressure was increased from 21% to 95%, and then by addition of 10% 

Hct. Fluxes in amino acid metabolism, represented by reactions 23-42, were not 

significantly different and relatively lower when compared to other fluxes, as previously 

observed (Arai et al. 2001; Banta et al. 2007; Banta et al. 2005; Lee et al. 2000; Lee et al. 

2003). 

 

Fatty acid oxidation and ketone body production (reactions 43-48) were generally lower 

in the 21%O2 group compared to the other groups, but there was little difference between 

the 95%O2 and 95%O2+10%Hct groups. In all three groups, glycogen production 

(reaction 49) was essentially zero, while glycogen degradation (reaction 50) was very 

active; interestingly, this flux was significantly higher in the 95%O2 group, but there was 

no difference between the 21%O2 and 95%+10% Hct groups. 

 

The predicted values of CO2 generation from the various relevant pathways which were 

calculated by the optimization method are reported in Table 5.2. The predictions show 

the quantitative productions from the TCA cycle, amino acid metabolism, and PPP, and 

usage in gluconeogenesis and the urea cycle for each group. CO2 production from the 
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TCA cycle in the 95% O2+10% Hct group were found to be significantly higher 

consistent with the increased TCA cycle fluxes. Due to the increased fluxes in PPP in 

95% O2 group, CO2 production from the PPP was the highest in this group.  

 

Table 5.2. Predicted CO2 utilization and production rates (μmole/g liver/h) by key 

pathways in the perfused liver. 

21 % O2 95 % O2 95 % O2+10 % Hct 
TCA cycle 41.1 102.4 155.8 

PPP 58.9 84.7 13.6 
Amino acid metabolism 10.0 5.6 6.3 

Gluconeogenesis -28.5 -80.9 -90.1 
Urea -15.1 -23.6 -29.1 

Overall CO2 production 66.4 88.2 56.5 
 

 

5.3.1.3 Pathway Analysis 

Elementary modes were used to analyse the topology of the metabolic network. The 

number of all possible elementary modes of the hepatic metabolic network was found to 

be 134175. Among them, only 6 pathways are reversible (note that in this article we use 

the term “pathways” to denote the “elementary modes”). The optimization problem 

(Equation 5.11) identified possible important pathways with their weight values that 

characterize their importance in hepatic metabolism (Figure 5.7). It was observed that 

increasing the oxygen partial pressure from 21% to 95%, the number of active pathways 

whose weight values are greater than zero increased from 176 to 199. Adding 10% Hct 

then increased this number to 410. Furthermore, relatively longer pathways were found to 
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be active in the 95%O2+10% Hct group when compared to other groups, although these 

pathways were generally with low weight values. 

 

 

Figure 5.7. Weight values of pathways. A: Group 21%O2; B: Group 95%O2; C: 

Group 95%O2+10%Hct. 
 

Note that in each method all weights values are normalized to the largest one observed 

among the groups. Only P7, which is not shown in this figure, has a weight value greater 

than 0.2 in the three experimental groups (see Table 6 for details). 
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Table 5.3. Important elementary modes having larger weight values (w > 0.01 for 

each group). 

 

Pathways Explanation 
Weights 

Group 21%O2

Weights 
Group 95%O2  

Weights  
Group 

95%O2+10%Hct

P7 
This is a very short pathway including glycogen 
breakdown, and glucose production and secretion. 0.45237 1 0.208647 

P10 
This pathway includes glycogen breakdown, glycolysis 
and lactate production. 0.079201 0.118951 0 

P12 
This includes glucose production from lactate through 
gluconeogenesis. 0 0.06365 0.026165 

P23 
This pathway includes glucose production from 
cysteine through gluconeogenesis. 0.031115 0.07476 0.07476 

P237 
This is related to aspartate production from 
gluconeogenic glucose through glycolysis. 0.02224 0.057114 0.012991 

P2026 
This is a very short pathway related to glycine and 
serine interconversion. 0.037758 0.096202 0.023511 

P2094 
This includes glucose production from glutamate 
through gluconeogenesis.  0 0.039033 0.011868 

P2830 
This represents energy metabolism including 
glycolysis, TCA cycle and electron transport reactions. 0 0 0.017946 

P2842 
This represents energy metabolism including fatty acid 
oxidation and electron transport reactions. 0 0 0.016352 

P16876 
This pathway includes glycogenolysis, glycolysis and 
PPP. 0.032322 0.084866 0.015341 

P16897 
This pathway includes lactate production from 
glycogenic glucose in addition to PPP. 0.064988 0.093428 0 

P108052 

This elementary mode includes two distinct extreme 
pathways. One represents serine and glycine inter-
conversion. The other includes glucose production from 
aspartate through gluconeogenesis. 0 0.049932 0.013575 

P134172 
This pathway is related to cysteine and lactate inter-
conversion. 0.058845 0.05362 0 

 

 

 

In order to gain a better comprehensive understanding of the metabolic response of the 

liver to the oxygen delivery mode, dominant pathways (having larger weight values) 

were further examined and listed in Table 5.3.  P7, a very short pathway describing 

glucose production from glycogen stores, was found to be active with a very high weight 

value in all groups. The highest weight for P7 was in the 95%O2 group, consistent with 

the experimental observation that glucose output (reaction 1) was highest in that group as 
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well. P10 is also a short pathway, linking glycogen breakdown, glycolysis, and lactate 

production. This pathway was nonexistent in the 95%O2+10%Hct group, but was 

significant in the other two groups. P12 and P13 represent glucose production through 

gluconeogenesis from lactate and cysteine, respectively. These pathways were found to 

be more active in the 95%O2 and 95%O2+10%Hct groups.  P237, which was found to be 

active in all conditions, involves the production of aspartate from glucose. P2026 

represents serine and glycine inter-conversion by glycine dehydrogenase and 

aminomethyltransferase, and had a higher weight value in the 95%O2+10%Hct group 

when compared to the other groups. 

 

P2094 involves glutamate uptake (including glutamine uptake followed by deamination 

to glutamate), formation of oxaloacetate by an anaplerotic route via the TCA cycle and 

gluconeogenesis. The activity of this pathway was increased when perfusate oxygen 

content was increased. P2830 and P2842 were only active in the 95%O2+10%Hct group 

and are related to energy metabolism (Table 5.3). They represent ATP production 

through electron transport chain reactions from high energy metabolites (e.g. NADH) 

produced by glycolysis, the TCA cycle, or fatty acid oxidation. P16876 and P16897 had 

higher weights in the 21%O2 and 95% O2 groups. These pathways show the possible 

paths for metabolizing intracellular glucose (generated from glycogen), namely either via 

the PPP or via glycolysis towards lactate. P10852 has two different pathways. One is 

related to glucose production from aspartate through the gluconeogenic pathway, and the 

other shows the inter-conversion of serine and glycine. P134172 involves lactate 
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production from cysteine by lactate dehydrogenase, and cysteine transaminase.  This 

pathway was upregulated in the 21% O2 and 95% O2 groups (Table 5.3).  Similarly, there 

were other pathways (such as P47434 and P48418, not shown) involving lactate 

production through glycolysis, which were also significantly upregulated in the 21% O2 

and 95% O2 groups. 

  

5.3.2 Liver Metabolic Response to Experimental Burn Injury Associated with 

Fasting  

5.3.2.1 Extracellular Fluxes 

In this study, we investigated the metabolic response of liver to fasting and/or burn 

systemic injury in rats. Totally, four different animal groups, Sham+Fed, Sham+Fasted, 

Burn+Fed, Burn+Fasted, were compared. The average uptake and release rates of major 

metabolites, including glucose, urea, lactate, β-hydroxybutyrate, oxygen, and amino acids 

were obtained from livers isolated 4 days post injury and perfused for 1 hr (Orman et al. 

2011b). For fasted groups, fasting was applied 24 h prior to perfusion.  

 

Figure 5.8 shows glucose, lactate, urea and β-hydroxybutyrate production or utilization 

rates in the four different groups. Note that positive values indicate net release rates 

whereas negative values represent net uptake rates. Following fasting, glucose production 

rates were significantly decreased in both the burn and sham-burn groups. Interestingly, 

glucose production increased as a result of burn injury in the fed groups (Burn+Fed vs. 
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Sham+Fed), while the opposite (i.e. glucose production decreased as a result of burn 

injury) was observed in the sham groups (Burn+Sham vs. Sham+ Sham). The uptake of 

lactate, a typical substrate for the gluconeogenic pathway, was increased over 5 fold by 

fasting in the sham groups, but not in the burn groups. As expected, burn injury 

significantly increased urea production when evaluated in both fed and fasted conditions. 

Of note is that the magnitude of the increase was less than 2 fold in the fed groups, but 

more than 3.5 fold in the fasted groups. In addition, fasting reduced urea production in 

sham animals but increased it in burn animals. Beta-hydroxybutyrate production, on the 

other hand, was significantly – albeit slightly - increased after fasting in the sham 

animals, as well as in both burn groups. 

 

Among the amino acids, the uptake or release rates of glutamine, ornithine, arginine, 

glycine and methionine showed significant variations among the groups (Figure 5.9). 

Glutamate production rates were higher in the Burn+Fasted and Burn+Fed groups when 

compared to the Sham+Fed group; however, there was no statistically significant 

difference between the Sham+Fed and Sham+Fasted groups. Glutamine, arginine, and 

methionine utilization rates were significantly higher in the Burn+Fasted group, whereas 

no significant differences were observed among the other groups. Ornithine production 

was also significantly elevated in the Burn+Fasted group compared to the other groups. 
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Figure 5.8. Glucose, lactate, urea and β-hydroxybutyrate uptake (-) or production 

rates (+) during perfusion. 
 

Bars are labeled with letters to indicate statistically significant (P<0.05; N≥3) 

differences among groups: a is significantly different than b, c and d; and b is 

significantly different than c and d. For example, lactate secretion rates in Sham+Fed 

group (a), Burn+Fed group (a) and Burn+Fasted group (a) are not significantly 

different, whereas Sham+Fasted (b) is significantly different than other groups. 
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Figure 5.9. Uptake (-) or production rates (+) of important amino acids during 

perfusion. 
 

Bars are labeled with letters to indicate statistically significant (P<0.05; N≥3) 

differences among groups: a is significantly different than b, c and d; and b is 

significantly different than c and d.  

* Glutamate uptake rate in burn+fasted group was found to be significantly higher than 

that of sham+fed group (P<0.05).  

** Glutamate uptake rate in burn+fed group was found to be significantly higher than 

that of sham+fed group (P<0.05). 
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Figure 5.10. Oxygen utilization rates. 

Bars are labeled with letters to indicate statistically significant (P<0.05; N≥3) 

differences among groups: a is significantly different than b. 

 

 

Oxygen consumption rates were slightly but significantly elevated in response to burn 

injury when comparing all the burn groups vs. all the sham groups (Figure 5.10). To 

assess tissue damage, we monitored the release of intracellular lactate dehydrogenase 

(LDH) during the perfusion (Figure 5.11). All groups showed an increase in LDH 

activity as a function of time. By the end of the 1 hr perfusion, LDH accumulation was 

greater in both burn groups compared to the sham groups. These results indicate that 

prior burn injury results in evidence of greater tissue damage during perfusion.     
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Figure 5.11. Lactate dehydrogenase (LDH) activity in perfusate as a function of time 

during the perfusion. 
 

N≥3 for each group.  

*LDH activity in burn groups were significantly different than that of sham groups 

(P<0.05).  

 

5.3.2.2 Intracellular Fluxes 

Flux vectors were uniquely determined by utilizing the optimization methodology based 

on elementary mode analysis which is summarized in equation 5.11 and described in 

greater detail in the Materials and Methods section. Since the perfused liver was 

metabolically stable for the duration of the perfusion as observed previously (Arai et al. 

2001; Banta et al. 2007; Banta et al. 2005; Lee et al. 2000; Lee et al. 2003; Orman et al. 

2010; Yokoyama et al. 2005), it is quite reasonable to assume that the metabolic fluxes 
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were at pseudo steady-state. Given that the metabolic network utilized in this study 

simultaneously accounts for the glycolytic and gluconeogenic pathways, fatty acid 

synthesis and oxidation, as well as glycogenesis and glycogenolysis, we used a mixed 

integer quadratic programming to prevent futile cycle from occurring. The binary 

variables in this formulation allow the reactions (forming a futile cycle) to inhibit each 

other. The model further includes thermodynamic constraints to reduce the solution 

space. A flux distribution vector was uniquely determined by maximizing the activity of 

short pathways (Orman et al. 2011a; Orman et al. 2011b). The calculated fluxes for all 

four groups are shown in Figure 5.12. Fluxes exhibiting significant differences among 

the groups are described in further detail in Figures 5.13 and 5.14. The modeling results 

suggest that gluconeogenesis, glycogenolysis and fatty acid oxidation were active in all 

groups (Figure 5.12).  

 

 

Figure 5.12. Calculated internal fluxes using the optimization method (equation 

5.11). 
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Figure 5.13. Calculated fluxes of most important reactions. 
 

Note that several reaction pairs (Rxn 1 vs. Rxn 10; Rxn 3 vs. Rxn 9; Rxn 6 vs. Rxn 8; Rxn 

49 vs. Rxn 50; and Rxn 44 vs. Rxn 45) form futile cycles. Black straight lines indicate 

active (or dominant) reactions whereas gray lines represent inactive (i.e. flux = 0) 

reactions. Dashed lines are used to depict reaction steps not shown in detail. Flux units 

are μmol/g liver/h. A: Sham+Fed group; B: Sham+Fasted group; C: Burn+Fed group; 

D: Burn+Fasted group. 
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Figure 5.14. Calculated fluxes of important reactions in TCA and urea cycles. 

Dashed lines are used to depict reaction steps not shown in detail. Flux units are μmol/g 

liver/h. A: Sham+Fed group; B: Sham+Fasted group; C: Burn+Fed group; D: 

Burn+Fasted group. 

 

The rate of reaction 1 (generation of glucose from glucose-6-P) was significantly up-

regulated in fed groups due to the increased rate of glycogen breakdown (reaction 50). 

Reaction 11 (a lumped reaction term representing the PPP) had a slightly higher flux 

value in the Burn+Fasted group (group A). Fatty acid oxidation (reaction 44) and fatty 

acid synthesis (reaction 45) also form a futile cycle, although our analysis suggests that 

fatty acid synthesis was negligible in all groups. Fatty acid oxidation was generally 

higher in the fed groups (groups A and B). 
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Figure 5.14 provides the overall picture of the changes in the TCA cycle and urea cycle 

fluxes. Reactions 14 and 15 fluxes were higher in the Sham+Fasted group (group C) 

compared to other groups, which likely reflects the contribution of pyruvate to 

oxaloacetate as a result of increased lactate uptake rate in the same group. Reactions 16-

19 fluxes, where oxaloacetate is generated from α-ketoglutarate, were higher in the fasted 

groups (groups B and D) compared to the fed groups (groups A and C). In the case of the 

Burn+Fasted group (group D), there was a dramatic increase in reaction fluxes 31 and 

32, indicating an increased supply of α-ketoglutarate through glutamine and glutamate. 

The rate of reaction 20, where urea is generated from arginine, was also higher in the 

Burn+Fasted group (group D), consistent with the previously measured increase in urea 

output (Figure 5.9). Electron chain reactions (Figure 5.12) were increased in the burn 

groups (groups C and D), which correlates with the increased TCA fluxes in 

Burn+Fasted group and increased fatty acid oxidation in the Burn+Fed group. In spite of 

the increased TCA fluxes in the Sham+Fasted (group B) group, the electron chain 

reactions were not elevated compared to the other groups, which might be the result of 

decreased fatty acid oxidation in that particular group.  

 

5.3.3 Metabolic Flux Distributions in the Liver Following Burn or Sepsis  

5.3.3.1 Steady State Flux Distribution 

In this section, we investigated the effects of burn or CLP on liver metabolism. The livers 

were isolated for perfusion experiments 24 h after the treatments. Flux vectors were 
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uniquely determined using the weights of pathways calculated from the optimization 

problem described by Equation (5.11). Detailed description of flux distribution of 

gluconeogenic and glycolytic pathways for different groups are given in Figure 5.15. 

Reactions 1-7 are gluconeogenic reactions, although some of them are also used (in a 

reverse direction) by the glycolysis pathway. Application of optimization programming 

revealed that gluconeogenic pathway was active or dominant in four groups.  The fluxes 

in gluconeogenic reactions 2-6 had higher values in burn animals compared to other 

groups. However these fluxes had the lowest values in SCLP group. Reaction 11 (a 

lumped reaction term representing the PPP) had a slightly higher flux value in the burn 

group, and it was found to be almost zero in CLP group during 1-h of liver perfusion. 

Reaction 12 is catalyzed by lactate dehydrogenase, and represents the inter-conversion of 

pyruvate and lactate. A significant amount of lactate was taken in Burn group. This was 

significantly decreased in SCLP group, which explains the decrease of gluconeogenic 

reactions rates in SCLP group. Fatty acid oxidation (reaction 44) and fatty acid synthesis 

(reaction 45) also form a potential futile cycle, and our method identified that fatty acid 

oxidation was dominant in all conditions. Glycogen production (reaction 49) was 

essentially zero, while glycogen degradation (reaction 50) was found to be active. 

Interestingly, in SCLP group, the glucose production from glycogen was significantly 

lower compared to other groups.  

 

We did not observed significant differences between the groups in TCA cycle reactions. 

Similarly, fluxes in amino acid metabolismwere not significantly different and relatively 
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lower when compared to other fluxes, as previously observed (Arai et al. 2001; Banta et 

al. 2007; Banta et al. 2005; Lee et al. 2000; Lee et al. 2003) 

 

 
Figure 5.15. Calculated fluxes of most important reactions. 

Note that several reaction pairs (Rxn 1 vs. Rxn 10; Rxn 3 vs. Rxn 9; Rxn 6 vs. Rxn 8; Rxn 

49 vs. Rxn 50; and Rxn 44 vs. Rxn 45) form futile cycles. Black straight lines indicate 

active (or dominant) reactions whereas gray lines represent inactive (i.e. flux = 0) 

reactions. Dashed lines are used to depict reaction steps not shown in detail. Flux units 

are μmol/g liver/h. A: Sham group; B: Burn group; C: CLP group; D: SCLP group. 

 

.   
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5.3.3.2 Pathway analysis 

Application of optimization programming (Equation 5.11) identified the weight values of 

134175 different pathways found in the network. The pathways with the highest weight 

values in all conditions were given in Table 5.4. P4 is a very short pathway representing 

the urea production from arginine (Figure 5.16). The weight of this pathway was 

increased in burn group. P7, a pathway describing glucose production from glycogen 

stores, was found to be active in all groups. Its weight value is significantly higher in 

burn group compared to others. However, its value is the lowest in SCLP group. P1802 

and P1817 are related to lactate metabolism (Figure 5.16), and their weight values were 

slightly increased in burn group.  P1802 represents alanine production whereas P1817 

cysteine from lactate. P2026 represents serine and glycine inter-conversion by glycine 

dehydrogenase and aminomethyltransferase, and had a higher weight value following the 

burn injury. P106764 is long pathway which has the lowest weight value in SCLP group. 

This pathway (not shown in Figure 5.16) represents glucose production from glycerol 

moiety of triglycerides.  P107249 represent glucose production from lactate through 

gluconeogenic pathway. P108052 includes glucose production from aspartate. These two 

pathways were found to have highest weight values in burn group while they had lowest 

values in SCLP group. There are also other pathways which have been found to be 

slightly up-regulated following the burn injury including modes where glucose 

production from glutamine, acetyl-coA from ketone bodies, and other amino acids takes 

place. These metabolites are generally converted to glucose through an anaplerotic route 

via the TCA cycle.   
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Figure 5.16. Important pathways. 
 

 

 

Table 5.4. Pathways and their weight values. 

Pathways Sham Burn CLP SCLP 
P4 1.158159 7.374255 3.379989 0.484268 
P7 7.656045 14.08193 10.36079 0.667422 

P1802 0.611389 1.004788 0.566645 0.084998 
P1817 0.611389 1.447353 0.543593 0.084998 
P2026 0.677453 1.324446 0.551893 0.060123 

P106764 0.586166 0.984844 0.495505 0.084342 
P107249 0.823529 1.020031 0.722303 0.181982 
P108052 0.949969 1.334128 0.670894 0.159344 
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5.4 Discussion 

In this study we used a medium scale metabolic network that has been extensively used 

to characterize the flux distribution of central carbon metabolism in perfused rat livers 

(Arai et al. 2001; Banta et al. 2007; Banta et al. 2005; Lee et al. 2000; Lee et al. 2003). It 

has been well established that there is a consistency between the perfused liver-

measurements and assumed biochemistry of the network (Lee et al. 2000; Lee et al. 

2003). Thermodynamic properties of this network has been also extensively characterized 

in literature (Iyer et al. 2010a; Iyer et al. 2010b; Nolan et al. 2006; Yang et al. 2011; 

Yoon et al. 2007). In this study, a metabolic network analysis based on elementary modes 

was used. In order to determine the flux distribution vector and weights of pathways 

simultaneously, activity of short pathways was maximized.  

 

Thermodynamic constraints were applied to further narrow and refine the flux and 

activity of elementary mode predictions. Although thermodynamics have been applied to 

many areas of biological systems, many studies have been performed on relatively small 

scale pathways or networks with non detailed thermodynamic models. Incomplete 

knowledge regarding the intracellular conditions, lack of thermodynamic data on 

metabolic reactions obviously the main reasons of these problems. Maskow and Stockar 

(Maskow and von Stockar 2005) emphasized that intracellular conditions should be 

known for thermodynamic feasibility of unknown pathways. In this study, we assumed 

that each pathway can be represented as a macroscopic reaction which should satisfy the 

thermodynamic constraint. Underlying assumption behind this formulation is based on 
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the fact that a reaction can be a driving force for its subsequent reaction given the Gibbs 

free energies they have. Based on a very comprehensive analysis regarding the standard 

Gibbs free energies of reactions and hepatic metabolic concentrations provided by Yang 

and co-workers (Yang et al. 2011), we determined the upper and lower limits of free 

energies of pathways. Solving the nonlinear inequality term, 0P
i iG wΔ ≤ where two 

variables are multiplied, is quite difficult in the model given the total number of 

variables. Therefore we introduced the inequality constraint, ,max 0P
i iG wΔ ≤ , to the model 

in order to eliminate the nonlinear inequality terms in the model and further tighten the 

solution space as it has been justified in the Materials and Method section. In our study, 

elementary modes were calculated considering the stoichiometric matrix and well known 

reaction reversibility constraints; therefore each pathway satisfies the mass balance and 

reaction reversibility constraints that have been imposed. However this does not mean 

that the overall Gibbs free energy of each pathway is less than zero. In this very 

redundant system (134175 pathways were analyzed in this study), imposing energy 

balance eliminates thermodynamically infeasible pathways in the networks and thus 

reduces the feasible solution space.  

 

In most of the perfused liver studies, some certain assumptions such as lack of glycogen 

and lipid storage and inhibition of all strictly glycolytic enzymes have been made since 

the animals have typically been fasted prior to liver perfusion experiments. Eliminating 

these reactions or pathways results in relatively small scale network without futile cycles 

so that the intracellular fluxes can be easily calculated. On the other hand, for non-fasted 
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animals, these major reactions or pathways should be considered in the model, which 

causes an underdetermined system. In some cases, a different metabolic model was used 

for the fed state, and both the fed and fasted models were fitted to the data; the best fitting 

model was then used to calculate the fluxes (Arai et al. 2001; Banta et al. 2007; Banta et 

al. 2005; Lee et al. 2000; Lee et al. 2003; Yokoyama et al. 2005). Therefore, there is a 

need to develop a “unified” metabolic flux analysis approach that could be similarly 

applied to both fed and fasted states. We applied a mathematical formulation (including 

binary variables preventing the formation of futile cycles) to each reaction pair forming a 

cycle in glycolysis/gluconeogenesis pathways, glycogen metabolism and fatty acid 

metabolism. We identified that gluconeogenic reactions, glycogen breakdown and fatty 

acid oxidation were found to be active in all perfusion experiments.  

 

First, we investigated the effect of increasing oxygen delivery by increasing oxygen 

partial pressure and adding bovine RBCs to the perfusate on rat liver metabolism in an ex 

vivo perfusion system. Increasing oxygen delivery enhanced oxygen uptake rate and 

fluxes through the TCA cycle and electron transport chain, suggesting an upregulation of 

oxidative phosphorylation and intrahepatic energy production. Concomitantly, we 

observed increased β-hydroxybutyrate production, and decreased lipogenesis and lactate 

production, consistent with an upregulation of lipid oxidation pathways and a 

downregulation of anaerobic glycolysis. We also found that increasing oxygen delivery 

increased urea cycle fluxes. 
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Animal-based perfusion systems using hyperoxic oxygen but without oxygen carriers 

have been extensively used to characterize the hepatic response to various injury models 

(Arai et al. 2001; Banta et al. 2007; Banta et al. 2005; Lee et al. 2000; Lee et al. 2003). 

Herein we aimed to analyze the effect of oxygen carriers on perfused liver metabolism, 

and our results suggest that greater oxygen uptake is achieved in this experimental 

system. Normothermic liver perfusion systems are being developed as an alternative to 

cold preservation techniques in the context of liver transplantation, and the perfusates 

used typically contain oxygen carriers. A better understanding of the metabolic pattern in 

such systems may be helpful to assess the status of a liver graft before transplantation. 

 

Perfusion parameters critically impact on liver viability and function during ex vivo 

perfusion. Oxygen delivery is a particularly challenging problem due to the low solubility 

of oxygen in perfusion media. Supraphysiological flow rates are often used to 

compensate for that low solubility. For example, Bessems et al. (Bessems et al. 2006) 

claimed that a flow rate of 3 mL/min/g liver will adequately oxygenate a 10-12 g rat liver 

as long as the inlet pO2 is greater than 500 mmHg without using any oxygen carrier. 

Numerous other studies have used similar flow rates (Arai et al. 2001; Banta et al. 2007; 

Banta et al. 2005; Lee et al. 2000; Lee et al. 2003). The data presented herein suggest that 

with a similar flow rate, an inlet pO2 of ~600 mmHg results in an oxygen uptake rate of 

~200 μmol/h/g liver (Table 5.1 and Figure 5.3). In contrast, in vivo measurements show 

that the rat liver oxygen demand can be up to 400 μmol/h/g liver after experimental burn 

injury (Izamis et al. 2011). Since more than 90 % of the oxygen available in the perfusate 
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of the 95% O2 group was used (Table 5.1), it would not possible to ever match this rate 

without roughly doubling the flow rate, which would likely cause shear stress damage to 

the liver. This is consistent with other literature data suggesting that hepatic functions 

(e.g. bile production) and histological appearance are improved when perfusate is 

supplemented with RBCs or diluted blood (Alexander et al. 1995; Cheung et al. 1996; 

Rupenko et al. 2008). It is interesting to note, however, that the outlet oxygen partial 

pressure did not go below ~20 mmHg in any of the groups (Table 5.1), and a similar 

observation was made in vivo (Izamis et al. 2011). Further studies to establish whether or 

not this represents the lower limit for oxygen extraction by the liver are warranted. 

 

The addition of red blood cells to the perfusate at a hematocrit level of 10% is expected 

to increase perfusate viscosity by as much as a factor of 2, although in vivo 

measurements such as those carried out in the classical work of Whittaker & Winton 

(Whittaker and Winton 1933) show little effect of hematocrit on apparent viscosity at 

hematocrits below 20%. Since perfusion pressure did not increase significantly 

(remaining around 15 cm H2O) with the addition of red blood cells, it is indeed possible 

that some vasodilation occurred, and one could speculate that it may be due to shear 

stress induced nitric oxide production (Paniagua et al. 2001). Incidentally red blood cells 

can carry nitric oxide and the impact on vasoactivity could be propagated throughout the 

liver. We did not measure nitric oxide production rate or include its metabolism in the 

network model because the expected flux is too small to impact on the metabolic flux 
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distribution map. However, this is an intriguing possibility that could explain the 

increased oxygen consumption observed upon the addition of red blood cells. 

 

Another purpose of this research was to investigate the effect of preexisiting systemic 

injury (20% TBSA scald burn) on the fasting response of liver in a rat model, as well as 

to identify metabolic changes in response to burn injury that are sensitive to the feeding 

state of the animal. The data show that burn injury significantly up-regulated glycine and 

oxygen uptake as well as urea production irrespective of the feeding status of the animal; 

however, the increases were more dramatic fasted animals. Interestingly, fasting 

decreased urea production in sham-burned control animals, but increased it in burned 

animals. In addition, fasting significantly increased glutamine, arginine, and methionine 

uptake in burned animals but not in sham-burned controls. Conversely, fasting increased 

lactate uptake in sham-burned controls but not burned animals. Our flux analysis also 

determined that gluconeogenesis, glycogenolysis and fatty acid oxidation were active in 

all conditions. The results suggest that the main substrate for fasting-induced 

gluconeogenesis in sham-burned controls is lactate, but switches to glutamine and 

arginine in the burned animals.  

 

Several prior studies have reported on the response of isolated perfused livers (albeit in 

the absence of oxygen carriers) to a systemic burn injury similar to that applied in the 

current study evaluated under fasting conditions. The experimental data for fasted 

animals herein are largely consistent with those of Lee and Banta (Banta et al. 2007; Lee 
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et al. 2000; Lee et al. 2003). Notably, the uptake of oxygen and lactate, and the 

production of urea increased while net glucose output and glutamine utilization did not 

change. However, in these studies, RBCs were not used to facilitate the oxygen uptake 

rate of liver. Our results showed that perfusate with RBCs significantly increased the 

oxygen uptake rate and ketone body formation when compared to previous observations 

(Banta et al. 2007; Lee et al. 2000; Lee et al. 2003).  On the other hand, in-vivo 

measurements published by Izamis and co-workers (Izamis et al. 2011) showed lactate 

and glutamine uptake rates by the liver were insignificant in burn rats which have been 

fasted prior to perfusion. It should be kept in mind that the liver is not exposed to 

circulating factors such as insulin, glucagon and other hormones in perfusion system. 

Moreover, the metabolite concentrations in the circulating system are not constant, which 

might affect the in-vivo flux-rates in the liver.  

 

Furthermore, we elucidated that fasting further increased the urea production in burn 

animals, but it slightly down-regulated the urea secretion in sham animals. It is well 

known that initial response of a healthy body to fasting is the breakdown of liver and 

muscle glycogen stores to produce glucose required by the body. Consequently, the 

metabolites are mainly used for glucose production (Orman et al. 2011a), which might 

reduce urea secretion after a short period of fasting (24 h) in control animals as 

previously observed (Orman et al. 2010). Typical response of the body to burn injury is 

accelerated protein breakdown and increased amino acid concentration in the circulation. 

24 h fasting might further up-regulate protein catabolism in burn animals. Consequently 
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this might result in up-regulation of urea production to remove the ammonia (the toxic 

byproduct of protein catabolism). Moreover, increased amino acids including glutamine 

(the most abundant free amino acid) and arginine in the circulation of the burn animals 

further up-regulate the urea production. In addition to continual presence of elevated 

stress hormones and substrate loads during the inflammation, the persistent intrinsic 

changes caused by gene expression and enzyme protein levels might also up-regulate the 

urea metabolism. 

 

Finally, we used our network model and experimental methodologies to identify flux 

distribution in the liver following the burn injury or CLP. The animals were not fasted 

and all perfusion experiments were performed by utilizing RBCs in order to eliminate 

fasting and inadequate oxygenation-related metabolic alterations.  Our analysis showed 

that following the burn injury, gluconeogenic fluxes and glucose production from 

glycogen were found to be increased whereas these were significantly decreased in SCLP 

group. Moreover, pathway analysis elucidated that some pathways representing glucose 

production from glycogen, lactate and aspartate were found to be important. We also 

identified the pathways where alanine and cysteine are produced from lactate.  It was 

shown that these pathways had highest weight values in burn group whereas they had 

lowest weight values following the SCLP.   

 

There are also other dominant pathways in all conditions which are generally related to 

glycogen breakdown (P7), urea and ornithine production from arginine (P4), serine-
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glycine interconversion (P2026) and glucose production from glycerol and ketone bodies 

resulted from fatty acid oxidation (P106764). Attribution of higher weight to P7 indicates 

a strong relationship between arginine uptake and urea secretion. Nolan and his co-

workers (Nolan et al. 2006) also identified that urea and ornithine exchange reactions are 

important properties of hepatic metabolic network. Liver likely plays a critical role in 

regulating the serine concentration in the body (De Koning et al. 2003) since it is a 

precursor for neurotransmitters glycine, and taurine. Ketone bodies are also important 

metabolites produced by the liver. They reduce proteolysis during periods of glucose 

deficiency, and stimulate insulin release (Laffel 1999). They are also important as 

alternative energy sources.  

 

Although livers were harvested from animals in a fed state, we measured a net glucose 

output (as opposed to consumption) and the model predicted glycogen breakdown (as 

opposed to glycogen synthesis), which is more typical of a fasted pattern. These findings 

are in fact similar to that reported in a prior study using perfused livers isolated from fed 

rats (Orman et al. 2010). A plausible explanation is that in the perfusion system, the liver 

is not exposed to circulating factors such as insulin and glucagon that control glucose 

production and utilization in vivo. Moreover, our analysis showed that the PPP is up-

regulated in burn group. The oxidative branch of the PPP produces NADPH, which is 

used in cells to recycle anti-oxidants and thus may indicate the presence of the oxidative 

stress caused by burn (Lee et al. 2003). The increased PPP flux in this group is a 
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significant draw from the glucose 6-phosphate pool and could also explain the increased 

glycogen breakdown. 

 

5.5 Conclusions 

In this study, first we explored a methodology based on elementary mode analysis where 

thermodynamic as well as other metabolic constraints for the formation of futile cycles 

are integrated. This “unified” metabolic network analysis that could be simultaneously 

applied to both fed and fasted states successfully identified internal fluxes and active 

pathways. This analysis was further used to identify the paths of main metabolites in the 

hepatic metabolic network and essential extracellular fluxes required to characterize the 

perfused liver.  

 

Second, this study shows that when perfusing rat livers ex vivo, it is essential to 

supplement the perfusate with oxygen carriers to meet the oxygen demand of the liver at 

typical flow rates of 3 mL/min/g liver. When using red blood cells, we found that a 10% 

hematocrit was adequate to meet the oxygen demand, and livers perfused under these 

conditions consumed oxygen at in vivo rates. Even when using 95% O2, in the absence of 

oxygen carriers, oxygen uptake was only half the in vivo rate, urea and ketone body 

production were significantly decreased, and pathway analysis suggests that significant 

anaerobic glycolysis occurred. Conversely, when RBCs were used, glucose production 

from lactate and glutamate, as well as pathways related to energy metabolism were 

upregulated. The improved physiological relevance of a perfusion system using oxygen 
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carriers makes it a more attractive tool to investigate the effect of various perturbations 

on liver metabolism, including the response to toxicants and drugs, as well as disease 

conditions known to alter liver metabolism, such as burns and trauma leading to systemic 

hypermetabolism. 

 

Then we analyzed the effect of fasting on the hepatic metabolic functions in animal 

groups receiving a 20 % TBSA scald burn or sham-burn treatment. It was revealed that 

hepatic metabolic response is more complicated in the present of multiple stresses (e.g. 

burn and fasting together). We observed fasting further up-regulated the urea production 

and amino acid uptake rates including glutamine, arginine, glycine, and methionine, 

which have been used for the gluconeogenesis and urea production. On the other hand, 

not very significant differences were observed between Sham+Fed and Burn+Fed 

groups. Altough previous studies concluded that burn injury increased the urea 

production and gluconeogenic fluxes (Banta et al. 2007; Lee et al. 2000; Lee et al. 2003), 

these studies were carried out by utilizing fasted animals, and perfusion experiments were 

performed without using oxygen carriers. However, these might result in 

misinterpretation of experimental observations analyzed to elucidate burn-induced 

effects. Our results showed that fasting resulted in distinct metabolic responses in sham 

and burn animal groups.  

 

Finally, we investigated the effects of burn or CLP on liver metabolism. The animals 

were sacrificed 24 h following the treatment. They were not fasted and the livers were 
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perfused with perfusate solutions including RBCs at 10 % Htc. It was observed that burn 

injury up-regulated gluconeogenic reactions whereas these reactions were significantly 

down-regulated following the SCLP. Glucose production from glycogen was 

significantly reduced in SCLP group which indicates depletion of glycogen stores. Burn 

injury slightly increased the PPP implying burn induced oxidative stress, however PPP 

flux was found to be very low in CLP group. Moreover, most of pathways in burn and 

CLP groups had significantly higher weight values compared to other groups.      
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CHAPTER VI 

 

6 CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 

In this study, a systematic analysis of short term (24 h) local and systemic responses, 

including the measurements of inflammatory mediators, gene expression and metabolic 

profiles of liver, in rat models receiving 20% total body surface area (TBSA) scald burn 

injury or cecal ligation and puncture (CLP) treatment was performed. Consistent with 

physiological alterations in burn and septic patients characterized by accelerated 

breakdown of skeletal muscle protein as well as significant alterations in the utilization of 

amino acids, glucose, fatty acids, and nitrogen balance, similar observations were 

monitored in our animal models. All animal groups had 100% survival for at least 10 

days following treatments. The time course of whole body weight changes was also 

monitored. CLP caused a ~10% weight loss indicating an accelerated breakdown of 

skeletal muscle protein. It was found that a certain number of cytokines and chemokines, 

such as MCP-1, GROK/KC, IL-12, IL-18, and IL-10, were changed following the 

treatments including SCLP which is a sterile surgical treatment where cecum is not 

ligated and punctured. This is also consistent with the observations related to abdominal 

surgeries resulting in systemic inflammation in human. Gene expression analysis also 

showed that hepatic transcriptional response to burn injury was mainly related to pro-

inflammatory and anti-inflammatory gene groups and genes involved in lipid 

biosynthesis and central carbon metabolism. Shortly after the CLP treatment, genes 
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related to Toll like receptors and MAPK signaling pathway were significantly up-

regulated. Furthermore, perfusion experiments elucidated that hepatic metabolic response 

to burn injury and CLP was characterized by a significant up-regulation of pathways 

including gluconeogenic reactions (sources of which are mainly lactate, aspartate, 

glycerol and glutamine), urea production from arginine, and serine-glycine inter-

conversion. On the other hand, weight values of these pathways were significantly 

decreased following the SCLP treatment.   

 

In order to propose therapeutic approaches to modulate the abnormal inflammatory 

response, it is essential to analyze the physiological behaviors of important players during 

the inflammation including circulatory cytokines/chemokines concentrations as well as 

metabolic and gene expression profiles in the liver controlling the metabolic activity of 

the body and production of acute phase proteins. Proposing a therapeutic strategy for 

burn and septic patients by interfering with circulatory inflammatory mediators is quite 

challenging due to the complex interactions of cytokines or chemokines through a very 

redundant and interconnected network.  Therefore, a comprehensive understanding of the 

behaviors of inflammatory mediators following various injuries is essential.  

Unfortunately, the results from experimental researches and clinical trials of 

immunomodulatory therapies are quite controversial. As suggested by Vincent et al., the 

timing and dose of these interventions are critical, and single therapy might not be 

ineffective (Vincent et al. 2002). Moreover, variations in experimental procedures, and 

size and severity of injuries and utilizing different species might also result in different 
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outcomes.  Holzheimer et al. investigated the relationship between the circadian rhythm 

and cytokine production (Holzheimer et al. 2002). They showed that cytokines’ 

production was altered by the time of injury. These quantitative and temporal differences 

in the secretion of endotaxins by the damaged tissues as well as the physiological 

dynamics of host body result in more complex and unpredictable responses to the 

injuries. Herein, we used non-lethal animal models which eventually recover from the 

injuries. Therefore, it can be speculated that the inflammatory response of host body to 

the injuries should be protective and under control. We have observed that IL-18 and 

MCP-1 have been significantly up-regulated in our animal groups, which might be 

essential to induce cell mediated immunity. It has been shown that administration of IL-

18  significantly improved the survival rates of animals (Kinoshita et al. 2011). MCP-1 is 

also known as an important mediator for the development of burn associated type 2 T-cell 

response (Furukawa et al. 2002). Another interesting observation in this study is that IP-

10 and Leptin concentrations were down-regulated in both CLP and SCLP groups. Leptin 

is playing an important role in regulating energy metabolism and reducing the food 

intake. Although it has been shown that Leptin reduced elevated tissue associated 

myeloperoxidase activity in burn animals (ÇakIr et al. 2005), the reason of down-

regulation of Leptin in this study may be to reverse the CLP or surgery induced anorexia, 

which might be a protective response.  Similarly, down-regulation of IP-10, a chemo-

tactic cytokine, can be also a protective response in order to balance the excessive up-

regulation of other chemokines. Anti-Leptin and anti-IP-10 treatment strategies should be 

further investigated to elucidate their therapeutic effects. Interfering with IL10, IL6, 
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TNF-alpha cytokines has been relatively disappointing with regard to identifying 

treatments to improve the survival (Angele and Faist 2002; Blackwell and Christman 

1996; Vincent et al. 2002). These cytokines play key roles therefore these treatments may 

inhibit the host defense functions or result in inadequate inflammatory response. 

However, administration of a moderate mediator exhibiting both pro and anti 

inflammatory behaviors (such as IL-12) might balance the system and improve the host 

immune functions. In our study, IL-12 was observed in burn and CLP models. This 

cytokine can activate both pro and anti-inflammatory pathways and treatment of burn 

animals with IL-12 have significantly improved the survival rates in previous studies 

(Göebel et al. 2000; Osuilleabhain et al. 1996). It is essential to further analyze the effects 

of these cytokines/chemokines’ treatments on the injury models to gain a more 

comprehensive understanding of these complex physiological changes and to propose 

medical treatments. 

 

Nutrional supplementation is another approach to eliminate the metabolic stress caused 

by injuries or infections. It has been previously observed that the hepatic response to 

severe injury is described by a significant up-regulation of glucose, and amino acid 

turnover (Lee et al. 2000; Lee et al. 2003; Yarmush et al. 1999)  and up-regulation in the 

expression levels of genes involved in the urea cycle, gluconeogenesis, and the 

metabolism of several amino acids, with specific transporters for glutamine and arginine 

(Banta et al. 2007; Vemula et al. 2004). It is also known that burn injury leads to a 

negative nitrogen balance with accelerated hepatic amino acid metabolism in patients. It 
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is estimated that 80-90% of urinary nitrogen loss in burn patients occurs as urea (Tredget 

and Yu 1992). Therefore, glutamine and arginine serving as substrates in urea production 

might play a critical role (Pan et al. 2004; Pawlik et al. 2000). Arginine and glutamine 

have already been proposed as a dietary supplement to enhance hepatic functions during 

catabolic state (Espat et al. 1996). Besides these amino acids, our analysis showed that 

serine and asparagine are also other important amino acids found to be main sources for 

the production of urea (Orman et al. 2011a).  Moreover, these amino acids as well as 

lactate are also used for the production of glucose which is needed to maintain a fuel 

supply required for other organs during the catabolic state. Therefore, these metabolites 

could be potential nutrients which might be utilized to manipulate biochemical 

environment in order to reduce physiologic stress caused by burn. 

 

Figure 6.1. Proposed network of changes in the liver following burn injury. 

Italics represent outcomes following burn-induced gene expression alterations. Arrows 

indicate activation and/or induction, and circles indicate inhibition.  
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Figure 6.2. Interaction between different systems. 

 

 

 

Due to the high interdependency of physiological processes from whole body level to 

organ level, integrating multiple sources together with the computational methodologies 

provide an overview of the global regulation in attempt to answer the question to what 

extend a change in circulatory inflammatory mediators affect the gene expression profiles 

of a regulatory organ, liver, and to what extend these genomic alterations consequently 

impact on the metabolic alterations. For example, Figure 6.1 depicts a network of 

temporally coordinated changes in the liver in response to burn injury, which has been 

interpreted from our results. Italics represent outcomes following burn-induced gene 

expression alterations. Arrows indicate activation and/or induction, and circles indicate 

inhibition. The early upregulation of pro-inflammatory cytokines and chemokines, and 

their corresponding receptors in Cluster 1 indicates the activation of the immune system 

and a pro-inflammatory response. Then, the suppression of fatty acid biosynthesis 

associated genes in Cluster 2 implies an enhanced energy demand. In Cluster 3, the 



154 

 

 

 

downregulation of the genes functioning as cell-cell junctions and providing membrane 

structural integrity indicate possible damage caused by the injury. Around 8 h following 

the injury, activation of the expression of well known anti-inflammatory cytokines 

(including IL-4 and IL-13) may suggest the upcoming immune suppression. The 

activation of the Toll-like receptor signaling pathway, also in the Cluster 3, has been 

reported to have a priming effect to a subsequent secondary stimulus, i.e., infection. The 

most significant feature of Cluster 3 is the enhanced production of positive APPs, which 

is correlated to hyper-catabolism in muscle. In the same cluster, the enhanced expression 

of bile acid synthesis related genes may also be an indication of enhanced energy demand 

from nutrition supply. Finally, the late downregulation of the insulin signaling pathway-

associated genes in Cluster 4 leads to the catabolism and insulin resistance. Our model 

analyzing the metabolic network of liver has already predicted that central carbon 

metabolism was increased in perfused livers from the animals 24h after being exposed to 

burn injury. Similarly, a number of cytokines and chemokines were activated in the early 

stage of 24 h post-injury period, which would affect the signaling network (including 

MAPK and Toll like receptor signaling pathways) in the liver cells. However, a complete 

analysis to establish the interactions between these physiological changes at systemic and 

cellular level is warranted (Figure 6.2).  This can be achieved by characterizing the 

possible signaling pathways which have been activated by the inflammatory mediators 

that have been already monitored. This eventually affects the expression levels of a 

certain number of genes, consequently the metabolic reaction rates.    
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APPENDIX: Hepatic Metabolic Network 
 

Reaction no 
Enzymes and 
explanations Glycolysis & Gluconeogenesis 

Reaction 1 Glucose-6-Pase Glucose-6-P + H2O ==> Glucose + Pi 

Reaction 2 
Phosphoglucose 
isomerase Fructose-6-P <==> Glucose-6-P 

Reaction 3 Fructose-1,6-Pase-1 Fructose-1,6-P2 + H2O ==> Fructose-6-P + Pi 

Reaction 4 

Triose P-isomerase, 
fructose biphosphate 
aldolase 2 Glyceraldehyde-3-P <==> Fructose-1,6-P2 

Reaction 5 

Glyceraldehyde-P 
dehydrogenase, 3-
phosphoglycerate kinase, 
phosphoglyceromutase, 
enolase ATP + NADH + PEP + H+ + H2O <==> Glyceraldehyde-3-P + Pi + NAD+ + ADP 

Reaction 6 PEPCK Oxaloacetate + GTP <==> CO2 + PEP + GDP 
Reaction 7 Pyruvate carboxylase CO2 + ATP + Pyruvate + H2O ==> Pi + ADP + Oxaloacetate 
Reaction 8 Hexokinase Glucose + ATP ==> Glucose-6-P + ADP 
Reaction 9 PFK-1 Fructose-6-P + ATP ==> Fructose-1,6-P2 + ADP 
Reaction 10 Pyruvate kinase ADP + PEP ==> ATP + Pyruvate 
Reaction 11 PDH NAD+ + Pyruvate + CoA-SH ==> CO2 + NADH + Acetyl-CoA + H+ 
  PPP 

Reaction 12 

Glucose-6-P 
dehydrogenase and 3 
additional steps Glucose-6-P + 12 NADP+ + 7 H2O ==> 6 CO2 + 12 NADPH + Pi + 12 H+ 

  Lactate 
Reaction 13 Lactate dehydrogenase NAD+ + Lactate <==> NADH + Pyruvate + H+ 
  TCA 
Reaction 14 Citrate synthase Oxaloacetate + Acetyl-CoA + H2O ==> Citrate + CoA-SH + H+ 

Reaction 15 
Aconitase, isocitrate 
dehydrogenase NAD+ + Citrate <==> CO2 + NADH + a-ketoglutarate 

Reaction 16 
a-ketoglutarate 
dehydrogenase NAD+ + CoA-SH + a-ketoglutarate ==> CO2 + NADH + Succinyl-CoA + H+ 

Reaction 17 

Succinyl-CoA synthase  
and succinate 
dehydrogenase Pi + GDP + Succinyl-CoA + FAD <==> GTP + CoA-SH + Fumarate + FADH2 

Reaction 18 Fumarase Fumarate + H2O <==> Malate 
Reaction 19 Malate dehydrogenase NAD+ + Malate <==> NADH + Oxaloacetate + H+ 
  Urea  
Reaction 20 Arginase Arginine + H2O ==> Urea + Ornithine 

Reaction 21 

Carbonate dehydratase, 
carbamoyl-P synthase, 
ornithine 
transcarbamylase CO2 + 2 ATP + Ornithine + NH4+ + H2O <==> 2 Pi + 2 ADP + Citrulline + 3 H+ 

Reaction 22 

Argininosuccinate 
synthetase, 
argininosuccinase. ATP + Citrulline + Aspartate ==> Fumarate + Arginine + AMP + PPi 

  Amino acid metabolism 
Reaction 23 Alanine aminotranferase NAD+ + Alanine + H2O <==> NADH + Pyruvate + NH4+ + H+ 
Reaction 24 Serine dehydratase Serine ==> Pyruvate + NH4+ 

Reaction 25 

Transaminase, 3-
mercaptopyruvate 
sulfurtransferase 

NAD+ + Cysteine + H2SO3 + H2O <==> NADH + Pyruvate + NH4+ + H2S2O3 + 
H+ 

Reaction 26 

Threonine 3-
dehydrogenase, acetyl-
CoA ligase NAD+ + CoA-SH + Threonine ==> NADH + Acetyl-CoA + Glycine 

Reaction 27 

Glycine 
hydroxymethyltranferase, 
glycine cleavage system NAD+ + 2 Glycine <==> CO2 + NADH + NH4+ + Serine 

Reaction 28 Lysine metabolism (8 5 NAD+ + CoA-SH + FAD + Lysine + 3 H2O ==> 2 CO2 + 5 NADH + FADH2 + 2 
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steps) NH4+ + Acetoacetyl-CoA + 5 H+ 

Reaction 29 
Phenylalanine 
hydroxylase Phenylalanine + Tetrahydrobiopterin + O2 ==> Dihydrobiopterin + Tyrosine + H2O 

Reaction 30 
Tyrosine metabolism  
(5 steps) 

NAD+ + 2 O2 + Tyrosine + H2O ==> CO2 + NADH + Fumarate + NH4+ + H+ + 
Acetoacetate 

Reaction 31 
Glutamate 
dehydrogenase NAD+ + Glutamate + H2O <==> NADH + a-ketoglutarate + NH4+ + H+ 

Reaction 32 Glutaminase Glutamine + H2O ==> NH4+ + Glutamate 

Reaction 33 
Ornithine metabolism  
(2 steps) 

NADP+ + NAD+ + Ornithine + H2O ==> NADPH + NADH + NH4+ + Glutamate + 
H+ 

Reaction 34 

Proline oxidase, 1-
pyrroline-5-carboxylate 
dehydrogenase 

0.5 NADP+ + 0.5 NAD+ + 0.5 O2 + Proline ==> 0.5 NADPH + 0.5 NADH + 
Glutamate + H+ 

Reaction 35 
Histidine metabolism  
(4 steps) Histidine + THF + 2 H2O ==> NH4+ + Glutamate + 2-formimino-THF 

Reaction 36 
Methionine metabolism 
(5 steps) 

ATP + NAD+ + CoA-SH + Serine + Methionine ==> CO2 + Pi + NADH + NH4+ + 
Cysteine + PPi + Adenosine + Propinoyl-CoA 

Reaction 37 

Propinoyl-CoA 
carboxylase, 
Methylmalonyl-CoA 
epimerase, 
Methylmalonyl-CoA 
mutase CO2 + ATP + Propinoyl-CoA ==> Succinyl-CoA + AMP + PPi 

Reaction 38 
Aspartate 
aminotransferase NAD+ + Aspartate + H2O <==> NADH + Oxaloacetate + NH4+ + H+ 

Reaction 39 Asparaginase Asparagine + H2O ==> NH4+ + Aspartate 

Reaction 40 
Valine metabolism  
(7 steps) 

0.5 NADP+ + 3.5 NAD+ + FAD + 2 H2O + valine ==> 2 CO2 + 0.5 NADPH + 3.5 
NADH + FADH2 + NH4+ + Propinoyl-CoA + 3 H+ 

Reaction 41 
Isoleucine Metabolism  
(6 steps) 

0.5 NADP+ + 2.5 NAD+ + FAD + 2 H2O + isoleucine ==> CO2 + 0.5 NADPH + 2.5 
NADH + Acetyl-CoA + FADH2 + NH4+ + Propinoyl-CoA + 3 H+ 

Reaction 42 
Leucine Metabolism  
(6 steps) 

0.5 NADP+ + ATP + 1.5 NAD+ + FAD + H2O + leucine ==> 0.5 NADPH + Pi + 
ADP + 1.5 NADH + Acetyl-CoA + FADH2 + NH4+ + 2 H+ + Acetoacetate 

  Lipid 

Reaction 43 

Hepatic Lipase, 
Glycerol-3-P 
dehydrogenase 

Palmitoylglycerol + NAD+ + 3 H2O <==> Glyceraldehyde-3-P + 3 Palmitate + 
NADH + 4 H+ 

Reaction 44 
Fatty acid oxidation 
 (7x4 steps) 

ATP + 7 NAD+ + Palmitate + 8 CoA-SH + 7 FAD ==> 2 Pi + 7 NADH + 8 Acetyl-
CoA + 7 FADH2 + AMP 

Reaction 45 
Fatty acid synthesis  
(7x4 steps) 

14 NADPH + 7 ATP + 8 Acetyl-CoA + 14 H+ ==> 14 NADP+ + 7 Pi + Palmitate + 7 
ADP + 6 H2O 

Reaction 46 Thiolase (Ketogenesis) 2 Acetyl-CoA <==> 2 CoA-SH + Acetoacetyl-CoA 

Reaction 47 
HMG-CoA synthase and 
lyase  (Ketogenesis) Acetoacetyl-CoA + H2O ==> CoA-SH + Acetoacetate 

Reaction 48 

B-OH-butyrate 
dehydrogenase 
(Ketogenesis) NADH + H+ + Acetoacetate <==> NAD+ + B-OH-butyrate 

  Glycogen 
Reaction 49 Glycogenolysis Glucose-6-P + ATP + H2O + Glycogen(n-1) ==> ADP + Glycogen 
Reaction 50 Glycogenesis Pi + Glycogen ==> Glucose-6-P + Glycogen(n-1) 
  Electron 
Reaction 51 Electron transport system 3 ADP + NADH + 0.5 O2 + H+ ==> 3 ATP + NAD+ + H2O 
Reaction 52 Electron transport system 2 ADP + FADH2 + 0.5 O2 ==> 2 ATP + FAD + H2O 
  Exchange Reactions 
Reaction 53  Glycogen <==>  
Reaction 54  Palmitoylglycerol <==>  
Reaction 55  valine <==>  
Reaction 56  isoleucine <==>  
Reaction 57  leucine <==>  
Reaction 58  Glucose <==>  
Reaction 59  Lactate <==>  
Reaction 60  Urea <==>  
Reaction 61  NH4+ <==>  
Reaction 62  Ornithine <==>  
Reaction 63  Arginine <==>  
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Reaction 64  Alanine <==>  
Reaction 65  Serine <==>  
Reaction 66  Cysteine <==>  
Reaction 67  Threonine <==>  
Reaction 68  Glycine <==>  
Reaction 69  Glutamate <==>  
Reaction 70  Glutamine <==>  
Reaction 71  Proline <==>  
Reaction 72  Histidine <==>  
Reaction 73  Methionine <==>  
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