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ABSTRACT OF THE DISSERTATION

Modeling Regulation of Transcription Initiation

By ELIANE ZERBETTO TRALDI

Dissertation Director:

Konstantin Mischaikow

The concept of activation in transcriptional regulation is based on the assumption that

product mRNA increases monotonically as a function of regulator concentration. We

analyze the Shea-Ackers model of transcription and find this assumption to be correct

only for the simplest of promoters. We define a new regulatory constant that is a

nonlinear combination of association and transcription initiation constants character-

izing activation and repression for more complicated promoters. Our results can guide

the synthesis of new promoters and lead to a deeper understanding of the constraints

guiding the natural promoters evolution.

Using a validated mathematical model based on the Shea-Ackers transcription rate

function, we then show that two modes of upregulation have very different effects on

the function of promoter PRM in phage lambda. We predict that if CI2 bound to

OR2 produced equal increase in RNAP-DNA binding constant (compared to wild-type

increase in the closed-open transition probability), the lysogen would be significantly

less stable.

We then focus on the promoter clearance process during transcription initiation.

Our work builds upon an initial sequence-dependent three-pathway model proposed
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by Xue et al. After making several modifications to this model and not being able to

satisfactorily match experimental data, we introduce a new parameter to the model:

the possible formation of secondary structure in the single stranded scrunched DNA

accumulated before RNA polymerase is able to escape the promoter .
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Chapter 1

Introduction

All cells, whether from a single-celled organism, the complex human organism with more

than 1013 cells, or from any other living organism, amazingly share many fundamental

features.

In all species individual cells carry all the genetic information storing it as double-

stranded DNAs – long complementary paired polymer chains formed from four possible

different monomers, called nucleotides. The genetic information in all living organisms

can be seen as a code based on a four-letter alphabet – A, T, G and C, corresponding

to the four monomer types.

In order to carry out the instructions given in the DNA, all cells produce two other

types of polymers: RNAs and proteins. RNA is a polymer closely related to DNA

and it is also a code based on a four-letter alphabet – A, U, G and C. The process of

RNA synthesis, called transcription, uses the same strategy of template polymerization

used in DNA replication in which segments of the DNA sequence are used as templates

for the production of RNAs. Different types of RNAs exist, but most of them are

messenger RNAs (mRNAs) whose function is to instruct protein synthesis, a process

called translation. Proteins, just like DNAs and RNAs, are long polymer chains, and

all cells translate RNA to protein essentially in the same way. Proteins are formed

from 20 different monomers called amino acids. Proteins are used in all cells to direct

most of the chemical reactions. The specific function of each protein is determined

by its amino acid sequence, which in turn is determined by the nucleotide sequence of

the corresponding DNA segment. Each DNA segment corresponding to one protein is

called a gene.

In all cells, gene expression is regulated. That is, instead of producing all possible
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proteins all the time, decisions are continuously made about at which rate transcription

and translation of different genes should occur, depending on what the cell needs to

accomplish. While these decisions are made on a case-by-case basis using a wide range

of cellular and extra-celllular signals, the execution of the orders happend through the

fundamental processes of DNA, RNA and protein synthesis, and those processes are

essentially the same in all living cells. See Figure 1.1.
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Figure 1.1: Central Dogma of Molecular Biology: genetic information flows from DNA
to RNA to protein.
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Most of our understanding of fundamental processes like DNA replication, tran-

scription and translation have come to light through studies of Escherichia coli, or E.

coli. Since, in essence, these mechanisms are the same in all living organisms, we learn

a lot through studies in E. coli, or other model organisms. Bacteria and their phages

(or bacteriophages, viruses that infect bacteria) have been of central importance to the

development of molecular genetics.

E. coli, as a model system, has been intensively studied, and much more is known

about E. coli than about any other living organism. E. coli, like other bacteria, has

properties that facilitate genetic experiments, making it a good organism of choice when

trying to study basic cellular processes:

• E. coli is a haploid organism, that is, it has only one copy of each gene, making

it easier to identify cells with a particular mutation.

• E. coli reproduces asexually by cell division, producing offspring that are geneti-

cally identical to their parent and to each other.

• E. coli has a very short generation time.

• E. coli can be easily and inexpensively grown in laboratories and it can adapt to

variable chemical conditions.

The focus of this thesis is on bacterial transcription, more specifically, on modeling

the initial phase of transcription in E. coli.

Transcription

Transcription is the synthesis of RNA from a DNA template, and is the first step in

the process leading to the highly regulated mechanism of gene expression.

Transcription is catalyzed by the enzyme RNA polymerase and, in contrast to DNA

replication in which the whole DNA strand is copied, in transcription only a compara-

tively short molecule is produced. Therefore RNA polymerase must have the ability to

recognize where along the DNA strand to start and and where to terminate transcrip-

tion.
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RNA polymerase is highly conserved from bacteria to humans [1, 2, 3, 4], making

the simpler bacterial RNA polymerase a good model for the study of RNA polymerases

in general. E. coli ’s RNA polymerase is by far the best studied and characterized of all

RNA polymerases.

Bacteria have only one type of RNA polymerase, while eukaryotic cells have three [5].

The bacterial RNA polymerase core enzyme has five subunits: two copies of the α

subunit, and one copy of each β, β’ and ω subunits [6]. The core enzyme alone is

capable of binding the RNA with no specificity, and can initiate RNA synthesis at any

point on the DNA, without recognizing the promoter. This can be observed in vitro [5].

In cells, RNA polymerase will only initiate transcription at promoters and this happens

due to the addition of another subunit to the core enzyme, the initiation factor called

the σ factor. Its addition decreases the affinity of RNA polymerase to non-specific

DNA and increases its affinity to DNA promoters. Therefore the σ factor directs RNA

polymerase to the promoters to ensure transcription will only be initiated there [7].

The core enzyme together with the σ factor is referred to as the RNA polymerase

holoenzyme.

There are different types of σ factor and E. coli has 7 types [8]. The primary one

is called σ70 (so called since the protein is 70 kD in size).The holoenzyme with σ70

transcribes most genes in a growing cell including most of the housekeeping genes.

Promoters recognized by RNA polymerase containing σ70 are often referred to as

σ70-promoters. The majority of σ70-promoters share some specific sequence character-

istics: two conserved sequences of six nucleotides, that are separated by a non-specific

sequence of 17 − 19 nucleotides, and are centered, respectively, at positions −10 and

−35 [9]. These sequences are called −35 and −10 regions. See Figure 1.2.

Some σ70-promoters have an additional DNA element, called the UP-element, that

increases RNA polymerase binding through an additional specific interaction between

the enzyme and the DNA [10, 11]. Other σ70-promoters lack a −35 region and instead

have an “extended −10 region”, which is the standard −10 region with an additional

short sequence element at its upstream end [5].
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An additional DNA element just downstream from the −10 region, called the dis-

criminator, has recently been found to bind RNA polymerase and influences the stability

of the holoenzyme-promoter complex [12].

!"#"$#%&

'(#)*)+),- ./012/+/,3-42
&5

&5%5

%5

)6-),.).7#"$

Figure 1.2: Common features of σ70 promoters include typical −35 and −10 regions,
the UP-element, the extended −10 region and the discriminator.

Transcription can be divided in three phases: initiation, elongation and termination.

Initiation

Transcription initiation is the first and most highly regulated of the three transcription

phases. Transcription initiation itself is divided in three steps.

In the first step, called RNA polymerase binding or just binding, RNA polymerase

binds the DNA in the promoter region, forming the RNA polymerase-promoter closed

complex, in which the DNA is in double-stranded form (Figure 1.3). The promoter

determines where transcription should start and which strand should be used. As

described above, this is guided by the binding specificity of the σ factor to the promoter.

In the second step, called isomerization or open complex formation, RNA polymerase

melts, or unwinds, 13–14 base pairs of DNA between positions −11 and +2/+3, forming

the RNAP-promoter open complex, or transcription bubble. In the open complex the

bases of the coding strand are exposed, and therefore available for base-pairing of the

complementary NTPs for RNA synthesis. The +1 nucleotide is positioned in the active

site of RNA polymerase, where the polymerization reactions occur. See Figure 1.4.

In contrast with RNA polymerase binding, isomerization is essentially an irreversible

process and usually guarantees that transcription will initiate [5].

The third step in transcription initiation is called promoter clearance or promoter
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Figure 1.3: The first step in transcription initiation is RNA polymerase binding.
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escape, and it is in this phase that RNA synthesis is initiated, while RNA polymerase

is still physically attached to the promoter. Since RNA polymerase synthesizes a new

RNA chain on a DNA template, it does not need a primer. Instead, the NTPs must

enter its active site through its secondary channel, or NTP-uptake channel. In order to

initiate transcription, the first complementary NTP enters the RNA polymerase active

site and is held stably on the template while the next complementary NTP arrives for

polymerization to occur. After the first polymerization reaction is performed, RNA

polymerase’s active site must be made available again for the next reaction. See Fig-

ure 1.5. While several models have been proposed for how the enzyme’s active site

translocates along the DNA template during transcription initiation, recent experi-

ments [13, 14] have shown that RNA polymerase remains stationary on the promoter

while it unwinds the downstream DNA and pulls, or scrunches, that DNA into itself.

The DNA accumulated within the enzyme is accomodated as single stranded bulges.

See Figure 1.6.

Typically before RNA polymerase is able to break the bonds with the promoter to

enter the elongation phase of transcription, it goes through a process called abortive

transcription or abortive initiation. During abortive initiation RNA polymerase syn-

thesizes and releases short RNA segments, or abortive transcripts, typically ranging in

size from 2 to 15 nucleotides. Abortive transcripts were first observed in [15] in tran-

scription reactions containing only the first two NTP substrates. Later experiments

have shown existence of longer abortive transcripts. For a review on abortive initiation

see [16]. Abortive transcripts have also been detected in vivo [17].

After the release of an abortive transcript, RNA polymerase goes back to the inital

open complex conformation, and RNA synthesis starts again. This process is repeated

until RNA polymerase is able to clear, or escape, the promoter and enter the elongation

phase of transcription.

Promoter escape can therefore be seen as the transition between transcription ini-

tiation and elongation. It is a complicated process and involves large conformational

changes. The transition to the elongation phase is associated with the breaking of

all the interactions between RNA polymerase and the promoter (including σ-promoter



8

GT T TC T

T T

A
A A

CA A A A
T

T T
-35

A

T

+1

5'

3'

3'

5'

A

G

A

A

T T C A

A G T

G G A A A

C C T T T

T T T T T

A A A A A

C T G

G A C

A G

C T

T T C

A A G

A
A

T

T

T

A

T T

A A

A T

AT

A A T T

T T
A A

A U

T
A A A G A A

T T T C T

A

A

A

T T
A

T C T
A A G

T
A

G

C

T

A

A

TT

A
T

A

T
T

+1

A
U

Figure 1.5: After the first polymerization reaction is performed, RNA polymerase needs
to make its active site available for the next reaction, in order to elongate the nascent
RNA.
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Figure 1.6: While RNA polymerase is still bound to the promoter it pulls, or scrunches,
the DNA strands into itself in order to make its active site available for the next
polymerization reaction.
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contacts), simultaneous collapse of the transcription bubble back to a size of 12−14 nu-

cleotides, and forward movement of RNA polymerase. Promoter escape was thought to

coincide with the release of the σ-factor [18, 19, 20]. Recent studies showed that while

loss of σ-promoter occurs during promoter escape, the σ-factor may not necesseraly be

released immediately [21, 22]. Likely, σ-factor release occurs at different positions for

different promoters [23, 24, 25, 26].

Elongation

During elongation, RNA polymerase is no longer bound to the promoter, and therefore

is free to move along the DNA template in a 5′ to 3′ direction, elongating the growing

RNA chain one nucleotide at time using the nucleotides that enter its active site through

its secondary channel, and guided by the DNA template. While doing so it performs

several functions. In order to move along the DNA, at each step it unwinds one base pair

of the downstream DNA. It re-anneals the upstream DNA one base pair at time, keeping

the size of the transcription bubble constant throughout elongation. It dissociates the

growing RNA chain from the template, directing the RNA chain thorough the exit

channel, leaving only the last 8 or 9 incorporated nucleotides base-paired to the template

DNA. In addition, RNA polymerase also performs proofreading functions.

Termination

Termination occurs after RNA polymerase has copied, or transcribed, a stretch of DNA

corresponding to a gene (or genes in the case of an operon). At this stage, it stops

elongating the RNA chain, releases the RNA product and dissociates itself from the

DNA, in order to become available to perform another transcription reaction. Sequences

called terminators, present at the end of genes, are the triggers for RNA polymerase

dissociation and RNA release.
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Motivation

Our motivation to study transcription initiation comes from the thermodynamical ap-

proach introduced by Ackers et. al in 1982 [27]. Let {x1, x2, ..., xn} be the set of

regulatory proteins for a gene. Let S be the set of all possible binding states for the

regulatory region of this gene. Given a state s ∈ S, si denotes the number of molecules

of protein xi bound to the regulatory region; and s0 ∈ {0, 1} indicates whether RNA

polymerase is bound to the promoter. The probability of a binding state σ ∈ S is

Pσ =
e−

∆Gσ
RT

[RNAP ]σ0
Qn
i=1[xi]

σi∑
s∈S e

−∆Gs
RT

[RNAP ]s0
Qn
i=1[xi]si

, (1.1)

where [·] denotes concentration, ∆Gs is the free energy of the the state s, R is the

universal gas constant, and T is the temperature. The derivation of equation (1.1) is

taken from [28] and presented in Appendix A.

The transcription rate is then defined as

f([RNAP ], [x1], ..., [xn]) =
∑

{s|s0=1}

k(s)Ps, (1.2)

where k(s) is the rate of transcription initiation. Notice that both RNA polymerase

and protein binding are represented in the probability function. Both opening and

clearance processes must then be incorporated in this constant k(s), and therefore k(s)

must be fitted to the data. Since it is difficult to distinguish experimentally between

rates corresponding to different states, only one rate is often used for all states with

bound RNA polymerase. It should be emphasized that k(s) and ∆Gs in (1.1) are both

functions of the DNA sequence and it is clear that k(s) and ∆Gs have a non-linear

relationship. We want to explore ways to quantify this non-linear relationship, and

hopefully this will bring insights on how to compute the rates k(s) as functions of the

DNA sequence using modeling of the opening and escape processes.
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Outline

When modeling transcriptional regulation, the concept of activation is commonly based

on the assumption that product mRNA increases monotonically as a function of regula-

tor concentration. In Chapter 2 we present a mathematical analysis of the Shea-Ackers

transcription rate function given by (1.2) and find this assumption to be correct only for

the simplest promoters. We define a new regulatory constant that is a nonlinear com-

bination of association and transcription initiation constants characterizing activation

and repression for more complicated promoters. The material in this chapter is part of

collaborative work with Konstantin Mischaikow, Kate Patterson and Tomáš Gedeon,

and has been published in [29]. Reproduction of this material here is done with kind per-

mission from Springer Science and Business Media: Bulletin of Mathematical Biology,

When activators repress and repressors activate: A qualitative analysis of the Shea-

Ackers model, volume 70, 2008, 1660–1683, Tomáš Gedeon, Konstantin Mischaikow,

Kate Patterson, and Eliane Traldi.

In Chapter 3 we use the Shea-Ackers model to show that two different modes of up-

regulation have very different effects on the promoter PRM function in the bacteriophage

λ. More specifically, we show that in the context of proper functioning of the phage

λ induction, the binding constant KB plays a fundamentally different role from the

opening and clearing constant k. The material in this chapter is part of collaborative

work with Konstantin Mischaikow, Kate Patterson and Tomáš Gedeon, and has been

published in [30]. Reproduction of this material here is done with kind permission from

Elsevier: Biophysical Journal, Binding Cooperativity in Phage λ is Not Sufficient to

Produce an Effective Switch, volume 94, 2008, 3384–3392, Tomáš Gedeon, Konstantin

Mischaikow, Kathryn Patterson, and Eliane Traldi.

In Chapter 4 we look only at the last phase of transcription initiation, the promoter

clearance process. We start by presenting a model by Xue, Liu and Ou-Yang [31].

While still following the main idea of their model, we introduce several modifications

and improvements, without being able to satisfactory match experimental data. We

introduce a new feature to the model: the formation of secondary structure in the
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scrunched DNA. While there is no biological evidence that secondary structure will

form in the scrunched DNA, there seems to be no biological evidence against its for-

mation. We believe the addition of this feature results in an overall improvement to

the model. The material in this chapter is part of collaborative work with Konstantin

Mischaikow,Tomáš Gedeon and Richard Ebright.
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Chapter 2

A Qualitative Analysis of the Shea-Ackers Model

Synthetic biology suggests the possibility of developing organisms with different func-

tional abilities that may provide solutions to a wide variety of fundamental problems

ranging from medicine to renewable energy. Producing such organisms may require

a deep understanding of existing as well as novel signal transduction/gene regulatory

network designs. Recent work has shown the feasibility of complete genome trans-

plantation [32], thus, in theory, completely original networks could be employed. In

practice synthetic circuits have already been constructed [33, 34]. However, for many

aspects ranging from the construction of the individual components to the design of

the architecture of the networks themselves, much remains to be understood.

On the network level Alon [35] provides a compelling framework for understanding

the design principles of biological circuits as it relates local models for transcriptional

regulation and network design to phenomenological function of the system as a whole.

The local model is in accordance with the concept of regulated recruitment [36], wherein

the rate of transcription of mRNA is determined by the local structure of the DNA and

concentrations of regulatory proteins, often referred to as activators and repressors. As

the names suggest activators enhance and repressors decrease the rate of transcription.

For the most part, Hill functions are used in [35] to model the transcription rate:

f(r) = arn/(b + rn) for activators and f(r) = a/(b + rn) for repressors with n ≥ 1.

Observe that these are monotone functions of the regulatory protein r.

The assumption of monotone regulatory interaction is widespread. The most com-

mon representation of a regulatory network is a graph with vertices corresponding to

the chemical species or genes and edges corresponding to reactions. Each reaction



15

is usually labelled with a positive or a negative sign corresponding to up- or down-

regulation. Considerable effort has been spent deducing dynamics and function from

such representations of a network [35, 37]. The theory of motifs is a result of such

activity.

Assuming all chemical reactions on the regulatory region involving the regulatory

proteins and RNA polymerase (RNAP) equilibrate on a much faster time scale than

transcription, Shea and Ackers [38] construct a nonlinear model for the rate of tran-

scription. Since the first time scale is on the order of milliseconds (bacteria) to seconds

(eukaryotes) and the other on the order of minutes [35], this is a reasonable assumption

in both bacterial and eukaryotic cells. The Shea-Ackers model provides a broadly ac-

cepted quantitative framework [39] and has been experimentally validated for a variety

of gene networks [27, 30, 38, 40, 41]. It should also be noted that since the Hill function

is derived from the assumption of equilibrium binding of one transcription factor to

the promoter, the Shea-Ackers nonlinearity is a generalization of the Hill function that

naturally allows for multiple binding factors.

There are many ways in which transcription initiation is controlled and very likely

more ways will be discovered in the future, but, as described before, there are three

main steps in this process. The first is the binding of RNA polymerase to the DNA

(characterized by the association constant KB that is directly related to the binding

energy of RNA polymerase to DNA). The second is the isomerization of the closed

RNAP-DNA complex to an open complex (characterized by a rate constant kf ), and

finally successful clearance of the promoter by RNA polymerase (characterized by the

constant kclear). In the Shea-Ackers framework the last two processes are modeled as

a transcription initiation rate and are lumped into one constant k. Both the binding

energy of RNA polymerase and the transcription initiation rate are controlled by the

transcription factors. Thus to each control state s, which is a particular configuration

of regulatory proteins and RNA polymerase bound to the DNA, there is an association

constant KB(s) and an initiation rate constant k(s).

Within the context of the model of regulated recruitment the set of control states,

the association constants and the initiation rate constants are the fine levers by which
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the cell controls transcription. These can be measured. Of course, what is of interest to

systems biologists is the effect of particular regulators on transcription. Transcription

factors are activators if an increase in their concentration leads to an increase in the

rate of transcription and they are repressors if an increase in their concentration leads

to a decrease in the rate of transcription. The Shea-Ackers transcription rate function

is a sufficiently well established quantitative model of these interactions to justify a

mathematical investigation of its behavior as a function of association constants KB,

and transcription initiation rates k.

Observe that the above definition of an activator or repressor is equivalent to an

assumption of monotonicity with respect to the concentration of the regulatory protein.

While this is true for Hill functions, we show here that it need not be the case for

the Shea-Ackers function. While this should not be a surprise to biologists - in low

concentrations the regulatory protein CI2 in the phage lambda switch is an activator

for the cI gene, but at high concentrations it becomes a repressor - the theoretical extent

to which non-monotonicity may occur has not, to the best of our knowledge, been made

clear.

The mathematical implications of non-monotone reaction functions can be signifi-

cant. As an example, the global dynamics of cyclic feedback systems with arbitrarily

many components with monotone reaction functions exhibits very simple dynamics;

asymptotically one can have only equilibria or periodic orbits [42]. However, if the

reaction functions are not monotone, then one can have chaotic dynamics [43].

In principle, the lack of monotonicity of the Shea-Ackers function could have an

equally significant impact on the conclusions expressed in [35] concerning the design

principles of biological circuits. In reality, it is quite possible that the biologically con-

strained parameters prevent this non-monotonicity. Understanding and design of tran-

scriptional regulation require the ability to easily identify the appropriate constraints

on the set of states, their association constants, and their initiation rate constants.

With this in mind we introduce what we refer to as the regulatory constant, ρ, which

is a nonlinear combination of various association and initiation rate constants, that
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reduces the determination of regions of monotonicity to linear equations. If r is a regu-

latory protein with regulatory constant ρr, then in the absence of any other regulatory

proteins ρr > 1 implies that r is an activator and ρr < 1 implies that r is a repressor.

An outline of this chapter is as follows. In Section 2.1 we review the Shea-Ackers

model and illustrate it in the context of the trp and lac operons of E. coli. In Section 2.2

we introduce various concepts and notation. We begin our analysis of the Shea-Ackers

model by showing that in this model the transcription rate is entirely controlled by

the association and initiation rate constants (see Theorem 2.2.6). Section 2.3 contains

the main results of this chapter. In Section 2.3.1 we examine the case of a regulatory

region with a single binding site and a single regulatory protein. Though the Shea-

Ackers function is more general than a Hill function, monotonicity is still preserved.

We also derive a relationship between the association constant and the initiation rate

constant for the regulatory protein that determines whether the protein is an activator

or a repressor (see Figure 2.6).

This relation leads to the definition of the regulatory constant ρr. Since it is well

known [44] that multiple regulatory proteins can bind at the same site, in Section 2.3.2

we consider the case of a regulatory region with a single binding site but multiple reg-

ulatory proteins. Formulas which exactly determine when proteins will be activators

or repressors as a function of their regulatory constants are presented. A complete

classification for the case of two regulatory proteins is given in Theorem 2.3.6 and

Corollary 2.3.7. Section 2.3.3 examines the unequal impact of the association constant

KB and transcription initiation rate constant k on the Shea-Ackers function. In Sec-

tion 2.3.4 we extend the results of Section 2.3.2 to a generic gene with one regulatory

protein that has two possible binding sites. We define a regulatory constant for a pair

ρ12 and again we are able to determine if the regulatory protein r is an activator or a

repressor using values of the regulatory constants ρ1, ρ2, and ρ12. We apply our results

to a phage λ model. Finally in Section 2.3.5 we calculate the Shea-Ackers function for a

gene with two regulators and two binding sites where one of the regulator binding sites

overlaps the RNA polymerase binding site. Imposing further restrictions we recover a

model of the lac operon.
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2.1 The Shea-Ackers Model

The model for regulated recruitment begins with the concept of regulatory proteins

binding in various configurations and at different sites in the regulatory region of a

particular gene. To capture this we consider a collection of control states. The simplest

state is the empty state which occurs when no regulatory proteins and no RNA poly-

merase is bound to the regulatory region. We denote this by s∅. The set of possible

non-empty states is denoted by S. For the purposes of this analysis a state in S is

typically determined by the configurations of the regulatory proteins for that particular

gene, {r1, . . . , rn}, and the presence or absence of RNA polymerase, though in principle

other control factors could be included. The simplest non-empty states consist of those

for which a single regulatory protein or a single RNA polymerase is bound to the DNA.

These states are called elementary states and denoted by E ⊂ S. Within the context

of the model of regulated recruitment we can use the elementary states to describe the

minimal information associated with any non-empty state s ∈ S. This leads to the

following definition.

Definition 2.1.1 A decomposition of the state s ∈ S is the list of elementary states

{si | i = 1, . . . , I} ⊂ E which indicates whether regulatory proteins and/or RNA poly-

merase are bound to the DNA when the state s occurs. In an abuse of notation we will

often write s = {si | i = 1, . . . , I}.

RNA polymerase plays an essential role in that without its presence transcription

cannot occur. We use [·] to denote concentration, and RNAP represents RNA poly-

merase. Although the concentration of RNA polymerase is a variable, [RNAP], in order

to keep our focus on the effects of regulatory proteins, it will be treated as a constant.

The elementary state where only RNA polymerase is bound to the DNA is denoted by

sP . Let S0 ⊂ S be the set of states which do not have RNA polymerase bound to the

promoter.

Under the assumption that the binding of RNA polymerase and proteins ri to the

DNA is sufficiently more rapid than the transcription process Ackers et al. [27] define
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the probability of the occurrence of the control state s to be

Ps = Ps([RNAP ], [r1], . . . , [rm]) =
KB(s)[RNAP ]αs [r1]α

1
s [r2]α

2
s ...[rm]α

m
s

Z
,

where

KB(s) := e−
∆Gs
RT (2.1)

and the partition function Z is given by

Z([RNAP ], [r1], . . . , [rm]) = 1 +
∑
s∈S

KB(s)[RNAP ]αs [r1]α
1
s [r2]α

2
s ...[rm]α

m
s . (2.2)

In this formula ∆Gs denotes the energy associated to the state s ∈ S under the nor-

malization that ∆Gs∅ = 0. The exponents αis indicate the number of ri molecules

bound to the regulatory region in state s and similarly, αs denotes the number of RNA

polymerase molecules bound to the regulatory region in state s. As is standard, T is

the temperature and R is the universal gas constant [28].

Let k(s) be the rate of transcription initiation of the binding state s. In particular,

if αs = 0, i.e. s ∈ S0, then it is assumed that k(s) = 0. Under these assumptions the

Shea-Ackers transcription rate function [38] of the gene in question is

f([RNAP ], [r1], . . . , [rm]) =
∑
s∈S

k(s)Ps. (2.3)

Remark 2.1.2 From (2.3) it should be clear that to describe transcription regulation

of a gene within the context of the Shea-Ackers function it is sufficient to know the

set of states S and for each state s to know the association constant KB(s) and the

transcription initiation rate k(s). Because of its frequent use we define KP := KB(sP )

and kP := k(sP ).

Example 2.1.3 The trp operon of E. coli is regulated by the TrpR repressor protein

(see Figure 2.1). When tryptophan is present, it binds the TrpR repressor inducing

conformational change in that protein and enabling it to bind the trp operator. This

binding prevents transcription, since the operator overlaps with the RNA polymerase
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binding site. When tryptophan is limiting, the TrpR repressor is free of its corepressor

(tryptophan) and cannot bind to the operator, allowing RNA polymerase to bind the

promoter and start transcription [45].

For this genetic regulatory region, there are three states, s∅, sP , and the elementary

state sr in which TrpR is bound to the DNA. Let [r] denote the concentration of

TrpR. To simplify the notation let Kr := KB(sr). The partition function is given by

Z([r], [RNAP ]) = 1+Kr[r]+KP [RNAP ]. Since sP is the only regulatory state leading

to transcription, the Shea-Ackers function for the trp operon is

f([r], [RNAP ]) =
kPKP [RNAP ]

1 +Kr[r] +KP [RNAP ]
. (2.4)

This function can be viewed as a generalization of the Hill function for protein binding,

with the addition of RNA polymerase. When [RNAP ] is assumed to be constant f

becomes a Hill function for a repressor with a = kPKP [RNAP ] and b = 1+KP [RNAP ].

! "
#$%

Figure 2.1: Regulatory region of trp operon in E. Coli: The trp operator O (binding
site for TrpR) overlaps the trp promoter Ptrp (RNA polymerase binding site). When
TrpR is bound to the DNA transcription cannot occur.

Remark 2.1.4 The trp operon is also subject to transcription attenuation and feed-

back inhibition [45]. Within the context of this model we do not consider these types

of regulation.

Example 2.1.5 The transcription of the E. coli lac operon is controlled by lacI and

CAP-cAMP complex. The lacI binding region (operator O1) overlaps with the RNA

polymerase binding site and the CAP-cAMP complex binding site is located upstream

of the promoter [44] (see Figure 2.2). In the absence of the inducer allolactose, lacI will

bind to the operator and prevent binding of RNA polymerase which prevents transcrip-

tion. In the presence of allolactose, the repressor can no longer bind to the operator
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because of the interaction of the inducer with the repressor. Only in the absence of ad-

equate glucose supply will the CAP-cAMP complex bind to the DNA, which is required

for RNA polymerase to effectively bind the promoter. Therefore transcription will oc-

cur only in the presence of allolactose and absence of glucose, that is, only when the

CAP-cAMP complex is bound to the DNA and lacI is not bound. The set of possible

regulatory states are s∅, sP , sc, sr, scP = {sc, sP }, and scr = {sc, sr}. The elementary

states sc and sr correspond to binding of the CAP-cAMP complex to the DNA and

the repressor to the DNA, respectively. To simplify notation let us denote k(s∗) and

KB(s∗) by k∗ and K∗, respectively. The Shea-Ackers function is given by

f([c], [r], [RNAP ]) =
[RNAP ]

Z
(kPKP + kcPKcP [c]), (2.5)

where

Z([c], [r], [RNAP ]) = 1 +Kc[c] +Kr[r] +Kcr[c][r] +KP [RNAP ]

+KcP [c][RNAP ].

! "
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Figure 2.2: Regulatory region of lac operon in E. Coli: The lac operator O1 (binding site
for lacI) overlaps the lac promoter Plac. When lacI is bound to the DNA, transcription
cannot occur. The CAP binding site is upstream of the lac promoter and when bound
by the CAP-cAMP complex it enhances the probability of RNA polymerase binding to
the promoter.

2.2 Activators and Repressors

The simplest control design would involve each regulatory protein acting as either an

“activator” or a “repressor.” Heuristically, increasing the presence of an activator should

result in a higher expression of the gene, while increasing the presence of a repressor
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should lead to a lower level of gene expression. To analyze the behavior of the Shea-

Ackers function, we begin our analysis with a generic regulatory region. We use this

to extract a binding dependence constant and a normalized transcription initiation

constant. These constants define control within the Shea-Ackers function. This is the

macroscopic characterization of the activator and the repressor. With this in mind we

make the following definitions.

Definition 2.2.1 A regulatory protein r is a phenomenological activator for a gene if

the transcription rate of this gene always increases with the concentration of r, that is,

∂f
∂[r] > 0 for all [r] ≥ 0. Conversely, r is a phenomenological repressor for the gene in

question if the transcription rate of this gene always decreases with the concentration

of r, that is, ∂f
∂[r] < 0 for all [r] ≥ 0.

Example 2.2.2 Consider the trp operon as in Example 2.1.3. The Shea-Ackers func-

tion is given by (2.4). Differentiation gives

∂f

∂[r]
([r], [RNAP ]) = −kPKrKP [RNAP ]

Z2
< 0,

and hence the regulator r is a phenomenological repressor.

Example 2.2.3 Consider the tox gene regulation by DtxR protein. The diphtheria

toxin is composed of two subunits that are synthesized from the tox gene. The regulatory

region for the tox gene consists of an operator overlapping with the RNA polymerase

binding site [45] (see Figure 2.3). The DtxR protein binds to the operator for the tox

gene only in the presence of ferrous ions (Fe2+) and prevents transcription. The tox

gene is turned on when there is a low level of free iron. Since the regulatory region for

the tox gene has the same configuration of Example 2.2.2, the Shea-Ackers function will

be given by (2.4) with r representing the DtxR protein. It follows from Example 2.2.2

that the regulator DtxR is a phenomenological repressor.

An argument following the lines of Examples 2.2.2 and 2.2.3 leads to the following

result.
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Figure 2.3: The tox operon regulatory region: The tox operator O (binding site for
DtxR) overlaps with the tox promoter Ptox. When DtxR is bound to the DNA tran-
scription cannot occur.

Proposition 2.2.4 Consider a gene with regulators ri all of whose binding sites overlap

with the RNA polymerase binding site, and whose binding excludes binding of RNA

polymerase. Then the regulators ri are phenomenological repressors.

As the name suggests, we use the adjective phenomenological to indicate the most

directly observable relationship between the concentration of a regulatory protein and

the production of the associated mRNA of the gene. However, given a set of possi-

ble states, the Shea-Ackers function has two free parameters, the association constant,

KB(s), and the transcription initiation rate constant, k(s). In principle these quanti-

ties can be determined by experiment. Thus, it makes sense to try to understand the

phenomenological properties of regulatory proteins in terms of their association con-

stants and transcription initiation rates. We begin with the following definition, which

is justified by Theorem 2.2.6.

Definition 2.2.5 The decomposition {si | i = 1, . . . , I} of a state s in terms of its

elementary states is independent if

KB(s) =
I∏
i=1

KB(si)

or equivalently

∆Gs =
I∑
i=1

∆Gsi .

The following theorem shows that within the Shea-Ackers function all the regula-

tion of gene transcription occurs because of the interactions of binding energies and

transcription initiation rates. Without this, the Shea-Ackers function reduces to a Hill

function describing interaction of RNA polymerase and the promoter. In particular,
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the transcription rate is constant with respect to concentrations of regulatory proteins.

Theorem 2.2.6 Consider a gene with the set of regulatory states S which satisfies the

following two conditions:

1. for each state s ∈ S its decomposition into its elementary states is independent,

2. the rate of transcription initiation k(s) does not depend on the state, i.e. k(s) = k

for all the states s 6∈ S0.

Then the transcription rate is given by

f([RNAP ], [r1], . . . , [rm]) = k
KP [RNAP ]

1 +KP [RNAP ]
.

Proof. Consider a gene with a regulatory region that contains n distinct binding sites

for m proteins, {r1, . . . , rm}, and one binding site for RNA polymerase. Let k be the

state independent rate of transcription initiation. To simplify notation we will denote

KB(si) by Ksi . Since each state is decomposed independently into its elementary states

Ps = k
Ks1Ks2 . . .KsnKP [r1]α

1
s [r2]α

2
s . . . [rm]α

m
s [RNAP ]

Z
,

and the partition function Z([RNAP ], [r1], . . . , [rm]) is given by

Z = 1 +
∑
s∈S

(Ks1Ks2 . . .KsnKsn+1 [r1]α
1
s [r2]α

2
s . . . [rm]α

m
s [RNAP ]αs),

where si ∈ {r1, . . . , rm, ∅} for i = 1, . . . , n and either sn+1=sP when RNA polymerase

is bound, or sn+1=s∅ when the RNA polymerase binding site is empty.

Therefore the transcription rate f([RNAP ], [r1], . . . , [rm]) is of the form

f = k
A([RNAP ], [r1], [r2], . . . , [rm])

A([RNAP ], [r1], [r2], . . . , [rm]) +B([r1], [r2], . . . , [rm])
,

with B =
∑

s∈S0
Ks1 . . .Ksn [r1]α

1
s . . . [rm]α

m
s and A = KP [RNAP ]B.
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Then

f([RNAP ], [r1], . . . , [rm]) = k
KP [RNAP ]B

KP [RNAP ]B +B
= k

KP [RNAP ]
1 +KP [RNAP ]

,

which is a Hill function of the concentration of RNA polymerase, which is independent

of the concentration [ri] of the transcription factors. �

Theorem 2.2.6 indicates that for control to occur there must be dependence of states

and/or differences in the transcription initiation rate. To quantify these differences we

introduce two new parameters.

Definition 2.2.7 Given a state {si | i = 1, . . . , I} its binding dependence constant is

defined by

βs :=
KB(s)∏I
i=1KB(si)

and if s ∈ S \ S0 its normalized transcription initiation constant is

φs :=
k(s)
kP

.

Example 2.2.8 (Case of φ < 1) Gyrase, an enzyme found in bacteria and plants, is

composed of two subunits GyrA and GyrB, both of which are inhibited by Fis, a nucleoid

protein [46, 47]. Fis inhibits GyrA by directly competing with RNA polymerase for the

gyrA promoter. The control of GyrB expression is more interesting. In the presence of

Fis, RNA polymerase stably binds the gyrB promoter, and even forms an open complex,

but transcription still fails to initiate [48], see Figure 2.4. Because RNA polymerase

in the presence of Fis freely and stably binds to the gyrB promoter, but transcription

fails, this is an example of φ < 1.

Example 2.2.9 (Case of φ > 1) The right operator OR in phage λ has three regions

designated OR1, OR2 and OR3 (see Figure 2.5). The OR region also contains two

disjoint promoters PR (Right promoter) and PRM (Repression Maintenance promoter).

The promoter PR completely overlaps OR1 and partially overlaps OR2; PRM completely
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Figure 2.4: The regulatory region of gyrB as an example of φ < 1. In the regulatory
region of gyrB there are Fis binding sites upstream of the RNA polymerase binding site.
When Fis is bound to the DNA it enhances RNA polymerase binding, but transcription
fails to initiate.

overlaps OR3 and partially overlaps OR2. The gene cI, that codes for the repressor

protein, and a gene cro, that codes for Cro protein, flank the OR region. The binding

of RNA polymerase to PR initiates transcription of cro gene, while RNA polymerase

binding to PRM initiates transcription of the cI gene. When a CI2 protein binds OR2

it assists PRM bound RNA polymerase to isomerize from a closed complex to an open

complex, increasing the transcription rate [44]. This is an example of φ > 1.

!
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Figure 2.5: The right operator of phage λ as an example of φ > 1. The cro gene is
transcribed from the PR promoter, while the cI gene is transcribed from PRM promoter.
The DNA regions OR1, OR2 and OR3 are binding sites for either CI or Cro proteins.

2.3 Binding and Initiation Regulation

The key question we want to address is the correspondence between activation and

repression on the biochemical level and on the macroscopic, or phenomenological level.

We define a regulatory constant ρ which has a non-linear dependence on both the

binding dependence constant and the normalized transcription initiation constant. In

Proposition 2.3.3 we characterize a phenomenological regulator using ρ and show that

in the simplest of settings a phenomenological activator is equivalent to ρ > 1 and a

phenomenological repressor is equivalent to ρ < 1.



27

In Section 2.3.2 we find that the constant ρ determines whether a regulator is an

activator or a repressor in a situation where multiple regulators compete for the same

binding site. In section 2.3.3 we explore in more depth the unequal effect of KB and

k, two key parameters of the Shea-Ackers function, on the rate of transcription. In

Section 2.3.4 and Section 2.3.5 we discuss activation and repression for the operators

with two binding sites and one, or two regulators, respectively. We illustrate our results

on examples of phage λ and lac operon.

2.3.1 The Simple Regulatory Region

The simplest nontrivial regulatory region has one binding site for the RNA polymerase

and another for a single regulatory protein. We capture this in the following definition.

Definition 2.3.1 A simple regulatory region is defined by the set of states S = {s∅, sr, sP , srP }

where srP = {sr, sP }.

The existence of the state srP implies that both RNA polymerase and the protein

r can be bound to the DNA simultaneously. To simplify the notation, let

βr :=
KB(srP )
KB(r)KP

and φr :=
k(srP )
kP

.

Observe that the Shea-Ackers function is

f([r], [RNAP ]) =
kPKP [RNAP ] + k(srP )KB(srP )[r][RNAP ]

1 +KB(sr)[r] +KP [RNAP ] +KB(srP )[r][RNAP ]

=
kPKP [RNAP ]

Z
(1 + φrβrKr[r]) . (2.6)

Whether r is an activator or repressor is determined by the sign of the derivative of f .

Differentiating (2.6) gives

∂f

∂[r]
([r], [RNAP ]) =

kPKrKP [RNAP ]
Z2

(φrβr(1 +KP [RNAP ])− 1− βrKP [RNAP ]) .

(2.7)

Failure of the regulatory protein to be an activator or a repressor at a particular

concentration is equivalent to ∂f
∂[r]([r], [RNAP ]) = 0, that is,
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φrβr(1 +KP [RNAP ])
1 + βrKP [RNAP ]

= 1.

This leads to the following definition.

Definition 2.3.2 Consider a regulatory region with a regulatory protein r for which

the state srP = {sr, sP } exists. The regulatory constant of r is

ρr :=
φrβr(1 +KP [RNAP ])

1 + βrKP [RNAP ]
. (2.8)

As an example, consider an E. coli culture with growth rate µ ≈ 0.02 min−1, which

corresponds to a doubling time of 30 minutes, then there are approximately 1500 active

RNA polymerase molecules per cell [49]. This corresponds to [RNAP ] ≈ 3.0 µM and

hence

ρr :=
φrβr(1 + 3.0 ·KP )

1 + 3.0 · βrKP
.

Rewriting (2.7) in terms of the regulatory constant we obtain

∂f

∂[r]
([r], [RNAP ]) =

kPKrKP [RNAP ]
Z2

(1 + βrKP [RNAP ]) (ρr − 1). (2.9)

Thus, as expected the sign of the derivative is determined by ρr. This gives the following

result.

Proposition 2.3.3 Consider a simple regulatory region with regulatory protein r. Then

r is a phenomenological activator ⇐⇒ ρr > 1

and

r is a phenomenological repressor ⇐⇒ ρr < 1.

As immediate consequences of Proposition 2.3.3 we have the cases when either the

binding constant βr or the normalized transcription initiation constant ρr is one.
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Corollary 2.3.4 Consider a simple regulatory region and suppose that the rate of tran-

scription initiation is independent of state, i.e. k(sP ) = k(s) = k. Then,

r is a phenomenological activator ⇐⇒ βr > 1

and

r is a phenomenological repressor ⇐⇒ βr < 1.

Corollary 2.3.5 Consider a simple regulatory region and assume that the decomposi-

tion of s into its elementary states is independent. Then,

r is a phenomenological activator ⇐⇒ φr > 1

and

r is a phenomenological repressor ⇐⇒ φr < 1.

Observe that if ρr = 1, then ∂f
∂[r] ≡ 0, and hence r has no regulatory impact. Fig-

ure 2.6 indicates the ρr = 1 isocline in the binding dependence constant and normalized

transcription initiation constant plane.

-

6

βr

φr φr = 1+βrKP [RNAP ]
βr(1+KP [RNAP ])

r1

1

KP [RNAP ]
1+KP [RNAP ]

ρr > 1

ρr < 1

Figure 2.6: The relative importance of the dependence constant as opposed to the
normalized transcription initiation constant in determining whether a single regulator
is a phenomenological activator or repressor.
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One of the consequences of this result is that the regulatory protein r is either a

phenomenological activator or phenomenological repressor, but it cannot take on both

functions. As is indicated in later subsections, the introduction of multiple regulatory

proteins or multiple binding sites changes this.

2.3.2 Multiple Regulators, One Binding Site

The examples of multiple proteins competitively binding to the same site are ubiquitous

and range from λ phage Cro and CI proteins [44] to eukaryotes [5].

With this in mind we turn our attention to the setting of a gene with n regulatory

proteins ri, i = 1, . . . , n, one regulator binding site, and one RNA polymerase binding

site. The associated collection of states is S = {s∅, si, sP , siP | i = 1, . . . , n}, where

siP = {si, sP }. The initiation rate function is given by

f([r1], . . . , [rn], [RNAP ]) =
kPKP [RNAP ]

Z

(
1 +

n∑
i=1

φiβiKi[ri]

)
(2.10)

where Z = 1 +
∑n

i=1Ki[ri] +KP [RNAP ] +
∑n

i=1 βiKiKP [ri][RNAP ].

Straightforward differentiation and substitution of (2.8) gives

∂f

∂[ri]
=

kPKiKP [RNAP ]
Z2

· 1 + βiKP [RNAP ]
1 +KP [RNAP ]

(2.11)

·

(1 +KP [RNAP ])(ρi − 1) +
n∑
j=1

Kj(1 + βjKP [RNAP ])[rj ](ρi − ρj)

 .

From an experimental point of view, perhaps the easiest test for the regulatory na-

ture of the protein ri is to measure whether production of mRNA increases or decreases

with respect to [ri] in the absence of the other regulatory proteins. Observe that

∂f

∂[ri]

∣∣∣∣
[rj ]=0,j 6=i

=
kPKiKP [RNAP ]

Z2
· (1 + βiKP [RNAP ])(ρi − 1). (2.12)

Therefore the sign of ∂f
∂[ri]

for low concentrations of other proteins [rj ], j 6= i, is deter-

mined by the regulatory constant ρi.

To determine whether or not a regulator can change between an activator and
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repressor requires identifying the regions where ∂f
∂[ri]

= 0. Solving (2.11) for zero gives

rise to the following hyperplane

n∑
j=1

Kj(1 + βjKP [RNAP ])(ρi − ρj)[rj ] = (1 +KP [RNAP ])(1− ρi). (2.13)

-
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Figure 2.7: The regulatory constants ρy and ρz determine the roles of the regulatory
proteins y and z as activators or repressors. In region (1) z is a phenomenological
activator and y is a phenomenological repressor. For all values of ρz and ρy in region
(2), there is a particular [z]∗ which designates whether y is an activator or repressor.
Similarly, region (3) has a [y]∗ where z is an activator or repressor.

As a first application of this formalism we completely characterize the behavior of

the regulatory proteins when n = 2. To make the notation more transparent let y = r1

and z = r2. Without loss of generality we restrict our attention to the case where

ρz ≥ ρy. (See Figure 2.7.)

Theorem 2.3.6 Consider a gene with two regulatory proteins y and z, one regulator

binding site, and one RNA polymerase binding site.

1. If ρz > 1 > ρy, then z is a phenomenological activator and y is a phenomenological

repressor.

2. If ρz > ρy > 1, then z is a phenomenological activator and there exists [z]∗ > 0

such that if [z] > [z]∗ then y is an activator and if [z]∗ > [z] then y is a repressor.
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3. If 1 > ρz > ρy, then y is a phenomenological repressor and there exists [y]∗ > 0

such that if [y] > [y]∗ then z is an activator and if [y]∗ > [y] then z is a repressor.

We also have the following special cases.

Corollary 2.3.7 Consider a gene with two regulatory proteins y and z, one regulator

binding site, and one RNA polymerase binding site.

a. If 1 = ρz > ρy, then z is an activator for all [y] > 0 and y is a phenomenological

repressor.

b. If ρz > ρy = 1, then z is a phenomenological activator and y is a repressor for all

[z] > 0.

c. If ρz = ρy > 1, then z and y are phenomenological activators.

d. If 1 > ρz = ρy, then z and y are phenomenological repressors.

e. If ρz = ρy = 1, then ∂f
∂[z] = ∂f

∂[y] ≡ 0. Thus neither z nor y are phenomenological

activators or repressors.

Proof of Theorem 2.3.6. In this simpler setting, (2.13) reduces to two equations which

can be solved explicitly:

[y]∗ =
(1 +KP [RNAP ])(ρz − 1)

Ky(1 + βyKP [RNAP ])(ρy − ρz)
(2.14)

and

[z]∗ =
(1 +KP [RNAP ])(ρy − 1)

Kz(1 + βzKP [RNAP ])(ρz − ρy)
. (2.15)

Observe that there exists at most one positive value for [y]∗ and [z]∗.

1. Both [y]∗ < 0 and [z]∗ < 0, thus f is monotone in [z] and [y]. The result follows

from (2.12).

2. In this case, [y]∗ < 0 and [z]∗ > 0. Again, the signs of the derivatives are

determined by (2.12).

Similar arguments prove 3 as well as Corollary 2.3.7 �
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A presentation of the complete characterization of the behavior of more than two

regulatory proteins is possible, but tedious. Instead we present a typical result in the

case of three regulatory proteins.

Proposition 2.3.8 Consider a gene with three regulatory proteins ri, i = 1, 2, 3, one

regulator binding site, and one RNA polymerase binding site. Assume ρ3 > ρ2 > 1 > ρ1.

Then

1. r3 is a phenomenological activator.

2. r1 is a phenomenological repressor.

3. If

[r3] >
K1(1 + β1KP [RNAP ])(ρ1 − ρ2)
K3(1 + β3KP [RNAP ])(ρ2 − ρ3)

[r1] +
(1 +KP [RNAP ])(1− ρ2)

K3(1 + β3KP [RNAP ])(ρ2 − ρ3)

then r2 is a phenomenological repressor, and if

[r3] <
K1(1 + β1KP [RNAP ])(ρ1 − ρ2)
K3(1 + β3KP [RNAP ])(ρ2 − ρ3)

[r1] +
(1 +KP [RNAP ])(1− ρ2)

K3(1 + β3KP [RNAP ])(ρ2 − ρ3)

then r2 is a phenomenological activator. (See Figure 2.8.)

We note that the curve in the [r1], [r3] plane that separates regions where r2 is an

activator and where r2 is a repressor is a line where both the slope and the intercepts are

functions of ρ1, ρ2 and ρ3. This underscores the effectiveness of the regulatory constants

in the characterization of activation and repression.

2.3.3 KB- versus k-cooperativity

Consider a regulatory region with states S. Let r be a regulatory protein. Denote the

elementary state in which r is bound to the DNA by sr. Define Sr ⊂ (S \S0) to be the

set of states s which contain the elementary state sr in their decomposition. The protein

r exhibits KB-cooperativity (k-cooperativity) if β(s) > 1 (φ(s) > 1) for all s ∈ Sr. We

wish to compare the relative effect of KB-cooperativity against k-cooperativity.
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r2 is a repressor
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Figure 2.8: Under the assumption that ρ3 > ρ2 > 1 > ρ1 we show that r3 is
a phenomenological activator and r1 is a phenomenological repressor. A line in
[r1], [r3] plane separates regions where r2 is an activator and where r2 is a repres-
sor, see Proposition 2.3.8. The slope a = K1(1+β1KP [RNAP ])(ρ1−ρ2)

K3(1+β3KP [RNAP ])(ρ2−ρ3) and the intercept

b = (1+KP [RNAP ])(1−ρ2)
K3(1+β3KP [RNAP ])(ρ2−ρ3) are functions of ρ1, ρ2 and ρ3.

The following theorem indicates that if a particular regulatory protein can produce

either an “equal” amount of KB-cooperativity or k-cooperativity, then the latter results

in a greater rate of production of mRNA. Apart from the maximal production of mRNA

there are very likely other evolutionary constraints imposed on the cell. A corollary of

our result is that if a particular protein interacts with RNA polymerase by only KB

cooperativity, then there must be additional constraints worth the trade-off of decreased

mRNA production.

Theorem 2.3.9 Consider a regulatory region with states S and regulatory proteins

{r, r1, . . . , rn}. Let srP = {sr, sP } where sr is the elementary state where r is bound to

the DNA. Assume that for all s ∈ Sr, as defined above,

KB(s) = K(srP )Ko and k(s) = k(srP ),

where Ko represents the association constant for the possible binding of {r1, . . . , rn}.

Let fa,b denote the initiation rate function under the assumption that βsr = K(srP )
KrKP

= a
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and φsr = kr
kP

= b. If c > 0, then

f1,1+c([r], [r1], . . . [rn], [RNAP ]) > f1+c,1([r], [r1], . . . [rn], [RNAP ]).

Proof. The initiation rate function fa,b has the form

ab
∑

s∈Sr kPKrKPKo[r]α0 · · · [RNAP ]α +
∑

s∈(S\(Sr∪S0)) k(s)KB(s)[r1]α1 · · · [RNAP ]α

1 + a
∑

s∈Sr KrKPKo[r]α0 · · · [RNAP ]α +
∑

s∈S\Sr KB(s)[r1]α1 · · · [RNAP ]α

Thus, f1,1+c is given by

(1 + c)
∑

s∈Sr kPKrKPKo[r]α0 · · · [RNAP ]α +
∑

s∈(S\(Sr∪S0)) k(s)KB(s)[r1]α1 · · · [RNAP ]α

1 +
∑

s∈Sr KrKPKo[r]α0 · · · [RNAP ]α +
∑

s∈S\Sr KB(s)[r1]α1 · · · [RNAP ]α

while f1+c,1 is given by

(1 + c)
∑

s∈Sr kPKrKPKo[r]α0 · · · [RNAP ]α +
∑

s∈(S\(Sr∪S0)) k(s)KB(s)[r1]α1 · · · [RNAP ]α

1 + (1 + c)
∑

s∈Sr KrKPKo[r]α0 · · · [RNAP ]α +
∑

s∈S\Sr KB(s)[r1]α1 · · · [RNAP ]α

The numerators of the two terms are identical but the denominator of f1+c,1 is larger

since c > 0. �

The difference between KB- and k-cooperativity may have consequences for the

function of the organism. On the PRM promoter of the phage λ, the CI2 repressor

interacts with RNA polymerase using k-cooperativity [44]. By using a detailed model

of the induction process, which is based on experimental data, we predict in Chapter 3

that replacing k-cooperativity with the same amount of KB-cooperativity yields a de-

fective phage [30]. This mutant phage induces at a much lower level of radiation and

is inherently unstable to noise.

Finally, our result can be viewed in the context of design of tightly controllable

promoters in synthetic biology. Lanzer and Bujard [50] studied which factors most

affect repressibility of promoters. They found that both the association constant of the

RNA polymerase KP and the promoter clearance rate kP play key roles. In a later

paper Lutz and Bujard [51] put the emphasis on the rate KP , since stronger binding

of RNA polymerase puts the repressor at a competitive disadvantage and hence a gene
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with high KP is difficult to repress. They construct tightly repressible and highly

inducible synthetic operators from promoters with low to moderate KP . Our results

suggest that on highly inducible operators the cooperativity between the regulator and

RNA polymerase will be characterized by a moderate binding dependence constant β

and a very high normalized transcription initiation constant φ.

2.3.4 One Regulator, Two Binding Sites

We now consider a gene with one regulator r, two regulator binding sites, and one RNA

polymerase binding site. The collection of non-empty states is

S = {s1, s2, s12, sP , s1P , s2P , s12P }

where si, i = 1, 2 denotes the elementary state of r bound in the i-th binding site and

s12 = {s1, s2} , s1P = {s1, sP } , s2P = {s2, sP } , s12P = {s1, s2, sP } .

To simplify the notation, let K∗ := KB(s∗) and φ∗ := φs∗ .

Then the Shea-Ackers function takes the form

f([r], [RNAP ]) =
kPKP [RNAP ]

Z
(1 + (φ1Pβ1PK1 + φ2Pβ2PK2)[r]

+φ12Pβ12PK1K2[r]2), (2.16)

where

Z([r], [RNAP ]) = 1 +KP [RNAP ] + (K1 +K2)[r]

+(β1PK1 + β2PK2)KP [r][RNAP ] + β12K1K2[r]2

+β12PK1K2KP [r]2[RNAP ].

Recall the regulatory constants for each protein-binding site pair

ρ1 :=
φ1Pβ1P (1 +KP [RNAP ])

1 + β1PKP [RNAP ]
and ρ2 :=

φ2Pβ2P (1 +KP [RNAP ])
1 + β2PKP [RNAP ]

.
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With two binding sites there is an additional state where both sites are occupied by

the protein. We define a regulatory constant for a pair by

ρ12 :=
φ12Pβ12P (1 +KP [RNAP ])
β12 + β12PKP [RNAP ]

. (2.17)

Then after tedious computation the derivative of (2.16) can be written as

∂f

∂[r]
([r], [RNAP ]) =

kPKP [RNAP ]
Z2

(α1(ρ1 − 1) + α2(ρ2 − 1)

+2α12(ρ12 − 1)[r] (2.18)

+[r]2
α12

αP
(α1(ρ12 − ρ1) + α2(ρ12 − ρ2) ) ),

where

αP := 1 +KP [RNAP ]

α1 := K1(1 + β1PKP [RNAP ])

α2 := K2(1 + β2PKP [RNAP ])

α12 := K1K2(β12 + β12PKP [RNAP ])

are all positive constants.

Observe that kPKP [RNAP ]
Z2 is nonzero for all [r] and the remainder of the derivative

is a quadratic function

df

d[r]
=
kPKP [RNAP ]

Z2
(A[r]2 +B[r] + C) (2.19)

where

A :=
α12

αP
(α1(ρ12 − ρ1) + α2(ρ12 − ρ2))

B := 2α12(ρ12 − 1) (2.20)

C := α1(ρ1 − 1) + α2(ρ2 − 1).

When the coefficients A,B,C have the same sign we have the following corollary.
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Corollary 2.3.10 Consider a gene with one regulator r, two regulator binding sites,

and one RNA polymerase binding site. If

ρ12 ≥ ρ1 ≥ 1 and ρ12 ≥ ρ2 ≥ 1,

and at least one inequality is strict, then r is a phenomenological activator. If

ρ12 ≤ ρ1 ≤ 1 and ρ12 ≤ ρ2 ≤ 1

and at least one inequality is strict, then r is a phenomenological repressor.

However, if the signs of the coefficients are not the same then r may be an activator

for small [r] and a repressor for large [r]. This indeed is the case in phage λ PRM

promoter where CI acts as an activator at low concentrations and as a repressor at high

concentrations [44].

Example 2.3.11 The center of the regulatory processes in the phage λ is the right

operator OR, see Figure 2.5.

The lysogenic pathway corresponds to the state of the OR where CI dimers are

bound to both OR2 and OR1, blocking the PR promoter and thus transcription of the

cro gene, while RNA polymerase is free to bind PRM, maintaining the transcription of

the cI gene. In the lysogen OR1 is almost always bound by a CI2 protein and thus the

production of Cro is very low. We simplify the situation by assuming that in fact OR1

is always occupied by CI2 and there is no production of Cro in lysogeny. Therefore we

will only consider OR2 and OR3 binding sites and only the regulatory protein CI.

These assumptions imply that we are in the setting of a single regulatory protein

with two binding sites. Let s1 and s2 correspond to the elementary states where CI

is bound to OR2 and OR3, respectively. However, in the phage λ, OR3 overlaps with

PRM. Mathematically this is incorporated by setting β2P = β12P = 0 which implies that

ρ12 = ρ2 = 0. This immediately implies that A < 0 and B < 0. The value of C can in

principle be of both signs; if C < 0 then the CI would be a phenomenological repressor

and if C > 0 then there is a unique positive value [r]∗ at which r switches from being
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an activator to being a repressor. At the value [r]∗ the transcription initiation rate is

at its maximum and in this respect the promoter is at its peak performance. Based on

the experimental values collected in Santillan and Mackey [40] β1P = 1, φ1P = 12.26

and thus ρ1 = 12.26. Further K1 > K2 and (1 +KP [RNAP ]) > 1 and therefore C > 0

in phage λ.

The next question we address is whether it is possible to choose values of A,B,C

in such a way that equation (2.19) has two positive roots. If it is possible and A < 0,

then the regulatory protein r is an activator at low [r], a repressor at intermediate [r],

and then an activator for large [r]. (For A > 0 the switch would be from repressor to

activator and back to the repressor.)

While such A,B and C certainly exist for a general quadratic equation, as the next

Proposition shows, for A,B and C as specified in (2.20) this is not possible.

Proposition 2.3.12 Consider a gene with one regulator r, two regulator binding sites,

and one RNA polymerase binding site. Then there is at most one positive value [r]∗ at

which the derivative of the transcription rate function f([r]) can change the sign.

Proof. For (2.19) to have two positive zeros either A < 0, C < 0 and B > 0 or all

signs are reversed. We will show that this cannot happen. Assume A < 0, C < 0 and

B > 0, the other case being analogous. The condition B > 0 is equivalent to

ρ12 > 1. (2.21)

The conditions A < 0 and C < 0 are equivalent to solving

α1(ρ12 − ρ1) + α2(ρ12 − ρ2) < 0 (2.22)

α1(ρ1 − 1) + α2(ρ2 − 1) < 0.

Since αi > 0, i = 1, 2 the terms ρ12 − ρ2 and ρ12 − ρ1 have opposite signs. The same is

true of ρ1 − 1 and ρ2 − 1. Assume that ρ1 − 1 > 0 and ρ2 − 1 < 0, the opposite case

being analogous. Since ρ12 > 1 this forces ρ12 − ρ2 > 0 and thus ρ12 − ρ1 < 0. Then
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the solution of the set of inequalities (2.22) is the region in the positive quadrant of the

α1, α2 plane given by

α2 <
−(ρ12 − ρ1)
ρ12 − ρ2

α1, α2 >
ρ1 − 1
−(ρ2 − 1)

α1

where both slopes are positive. This set has non-empty intersection in the positive

quadrant if and only if
−(ρ12 − ρ1)
ρ12 − ρ2

>
ρ1 − 1
−(ρ2 − 1)

which is equivalent to

(ρ12 − ρ1)(ρ2 − 1) > (ρ12 − ρ2)(ρ1 − 1).

After simplification this inequality is equivalent to

ρ12(ρ2 − ρ1) > ρ2 − ρ1.

Since ρ2 < ρ1 this contradicts (2.21). �

Example 2.3.13 (Optimal transcription depends on KB- vs. k-cooperativity.)

We revisit our simplified λ phage lysogen maintenance model and discuss the depen-

dence of the critical value [r]∗ on φ1P and β1P (see Section 2.3.3). The cooperativity

between CI2 and RNA polymerase is accomplished by OR2 bound CI2 increasing φ

about 12-fold (φ1P ≈ 12) without having any significant effect on binding probability

of the polymerase) [52, 53] (β1P ≈ 1).

When β12P = β2 = 0 the coefficients of the quadratic equation in (2.19) are

A = −K2
1K2β12φ1Pβ1P , B = −2K1K2β12

and

C = K1(φ1Pβ1P − 1)−K2) + β1PK1(φ1P − 1)KP [RNAP ].
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Solving for the positive root of the quadratic equation in [r] we get [r]∗ = 1
2A(−B+

√
B2 − 4AC).

Now we discuss two cases. First, corresponding to the wild type phage, we let

β1P = 1 and φ1P = δ > 1. Then

[r]∗wt =
1

−K2
1K2β12δ

(
−B +

√
B2 + 4K2

1K2β12δ(K1(δ − 1)(1 + β1PKP [RNAP ])−K2)
)
.

(2.23)

The second case we analyze is in certain sense the opposite of the first one. For this

fictitious mutant we set β1P = δ > 1 and φ1P = 1, which means that there a CI-RNAP

binding cooperation, but CI does not enhance the transcription initiation. Then the

critical concentration value is

[r]∗mut =
1

−K2
1K2β12δ

(
−B +

√
B2 + 4K2

1K2β12δ(K1(δ − 1)−K2)
)
. (2.24)

Since 1 + β1PKP [RNAP ] > 0 comparing (2.23) and (2.24) we see that

[r]∗wt > [r]∗mut (2.25)

at the same δ.

Li et. al. [53] removed the positive control of the phage λ by an Arg to His change

in the σ70 subunit of RNA polymerase. This corresponds to β1P = 1 and φ1P = 1 in

our model. In the same paper Li et. al report that when the mutant RNA polymerase

was combined with the wild type CI, β1P was increased, without significantly affecting

φ1P . By comparing the value of [r∗] in such a mutant with the wild type value of [r∗]wt

the prediction (2.25) can be verified experimentally.

Using k-cooperativity (φ1P = δ > 1 and β1P = 1) it takes a lower value of cooper-

ation level δ to guarantee that CI2 is an activator at low concentrations, compared to

KB-cooperativity (β1P = δ > 1 and φ1P = 1).



42

2.3.5 Two Binding Sites for Two Regulators

A canonical example for transcriptional control using two regulators is the E. coli lac

operon. The transcription of the lac operon is controlled by lacI and CAP-cAMP

complex (see Figure 2.1). This type of promoter has two regulators y and z, one

binding site for regulator y, one binding site for regulator z and one RNA polymerase

binding site. The feasible states are

S = {s∅, sz, sy, sP , szP , szy} ,

where szP = {sz, sP } and szy = {sz, sy} . In particular, we assume that the states

s = {sz, sy, sP } and syP = {sy, sP } are not possible because of the mutual overlap

between the y and P binding sites. Then the transcription rate is (compare (2.5))

f([z], [y], [RNAP ]) =
kPKP [RNAP ]

Z
(1 + φzβzPKz[z]), (2.26)

where

Z([z], [y], [RNAP ]) = 1 +Kz[z] +Ky[y] + βzyKzKy[z][y]

+KP [RNAP ](1 + βzPKz[z]).

Furthermore,

∂f

∂[z]
([z], [y], [RNAP ]) =

kPKPKz[RNAP ]
Z2

((ρz − 1)(1 + βzPKP [RNAP ])

+(φzβzP − βzy)Ky[y]) (2.27)

∂f

∂[y]
([z], [y], [RNAP ]) = −kPKP [RNAP ]

Z2
(1 + φzβzPKz[z])

·(Ky + βzyKzKy[z]) (2.28)

It is clear from expression (2.28) that the regulatory protein y is a phenomenological

repressor. But in general we cannot label z as a phenomenological activator or repressor.
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Example 2.3.14 Now we specialize further to the lac operon where y represents lacI

and z represents the CAP-cAMP complex. By [54] it is known that φzP = 1, and by

[41] we know βzy = 1 and βzP > 1, therefore (2.27) simplifies to

∂f

∂[z]
([z], [y], [RNAP ]) =

kPKPKz[RNAP ]
Z2

(βzP − 1)(1 +Ky[y]) > 0.

It follows that z (CAP-cAMP) is a phenomenological activator. Therefore in the lac

operon setup with the repressor blocking transcription by preventing RNA polymerase

binding we recover the correspondence between biochemical and macroscopic markers

of activation and repression.

An immediate consequence of having φzP = 1 is that the sign of (2.27) has no

dependence on RNA polymerase concentration. It is interesting to notice though that

if φzP > 1 instead of φzP = 1, then z would still be a phenomenological activator and y

a phenomenological repressor. Not only that, but z would be a more effective activator

and y a more effective repressor since the derivatives would be greater in absolute value,

but would keep the same signs. This situation could be achieved by moving the CAP

binding region. This is the situation in the gal operon promoter P1 [54]. It is not clear

why this is not the regulation process adopted in the lac operon, since it seems that

would be more effective regulation. It would be interesting to investigate whether there

are other constraints that force E. coli to use this less than optimal regulator.

Another observation is that βzy = 1 is also not a requirement for z to be a phe-

nomenological activator and y a phenomenological repressor. Assuming βzP > 1, it

is sufficient to have βzy ≤ φzPβzP to still have the same result. However, with these

changes z would be less effective as an activator, and y less effective as a repressor.

On the other hand, if βzy > φzPβzP , then for high concentrations of y the regulator z

would work as a repressor instead.
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2.4 Discussion

Most of the conceptual models of transcriptional regulation assume monotonicity of the

function relating product mRNA and the concentration of the regulator. This perhaps

reflects the prevailing mode of data collection through knockout experiments where the

absence of the putative regulator causes either an increase or a decrease of the mRNA

production. On the modeling front this assumption leads to widespread use of Hill type

response functions.

The Shea-Ackers model of transcriptional regulation was introduced more then 20

years ago. Using the chemical equilibrium assumption and using experimentally acces-

sible parameters the resulting Shea-Ackers function relates concentrations of regulatory

proteins, RNA polymerase and the geometry of the promoter to the transcription rate.

The model has been matched to experimental data and the necessary parameters have

been measured for at least a couple of canonical examples like lac operon in E. coli and

phage λ switch.

The Shea-Ackers function reduces to a Hill function only in the case when there

are no regulatory proteins. We show however that the Shea-Ackers function is still

monotone for a promoter that contains a single binding site for a single regulatory

protein in addition to a RNA polymerase binding site. If there are more binding

sites, or more regulatory proteins, then non-monotonicity is common. While this non-

monotonicity is used by certain organisms (CI2 control of its own expression in phage

λ), it may be tightly controlled in other cases by keeping concentrations of regulatory

proteins in monotone regions. This opens up many new questions about regulatory

circuit design and perhaps points to a need to revisit results that were obtained using

the Hill model response function.

For all but the simplest of operators the key parameters of the Shea-Ackers model

have a complicated, nonlinear effect of monotonicity of the transcription rate. We de-

fine a new regulatory constant ρ which greatly simplifies characterization of activation

and repression for several complicated promoter designs. Since the constant is exper-

imentally accessible it provides a new tool for the understanding of existing operators
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as well as the design of new ones.



46

Chapter 3

Binding Cooperativity in Phage λ is Not Sufficient to

Produce an Effective Switch

Transcriptional control plays a fundamental role in gene expression. The initiation of

transcription involves a series of reactions which, as described before, can be summa-

rized into three steps: binding, open complex formation and promoter escape. The

activation and repression of transcription initiation is primarily caused by regulatory

proteins and the structure of DNA. Regulated recruitment [44] provides a conceptual

model for this process. Considerable progress has been made in understanding the

biochemistry of the various reactions in the process [55, 14] and, in particular, it is

clear that while the three steps are physically coupled there is considerable freedom for

varying the respective energy profiles. To model these steps in the simplest way we will

again treat opening and escape as a single chemical reaction with forward reaction rate

k determined by the regulatory proteins and their interaction with the DNA. Binding

will be treated as a reversible reaction with an equilibrium constant KB.

This simplification of the biochemistry allows one to develop thermodynamic models

to quantify the rates of transcription initiation [55, 27, 39] that can be validated against

experimental data [56, 41]. However, as described in Chapter 2, the combination of ac-

tivators, repressors, and the above mentioned steps implies that control of transcription

initiation is a highly nonlinear process, which in turn suggests that systematic math-

ematical analysis may lead to a deeper understanding of this regulatory mechanism.

Given the goal of synthetic biology, claims based on the mathematical models must be

experimentally verifiable.

More is known about the phage λ machinery than any other gene regulation mech-

anism [44, 57]. After infecting E. coli, the phage λ follows one of two pathways: lysis,
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where it uses the bacterial molecular machinery to make many viral copies, kills the

host bacterium and leaves to infect other cells; or lysogeny, where it integrates its DNA

into the bacterial DNA and divides for generations with the bacterium. The lysogen

exhibits great stability, yet it induces (switches to lysis) readily when the bacteria are

irradiated with ultraviolet light.

The primary objective here is to use the above mentioned mathematical models to

demonstrate that, in the context of the proper functioning of the phage λ induction, the

binding constant KB plays a fundamentally different role from the opening and clearing

constant k. In particular, they are not interchangeable; that is, modifications in KB

cannot be directly compensated for by modifications in k and vice versa. To make this

argument we begin, in Section 3.1 with a review of a simplified biological model of the

phage λ switch and a precise statement of why increases in KB are not equivalent to

increases in k. In Section 3.2 we recall and explain the associated mathematical model

and in Section 3.3 relate it back to the biology. We validate the model in Section 3.4 by

considering several mutants, where our model recovers experimental observations of the

lysogen stability. With this justification, in Section 3.5 we make several mathematical

predictions concerning the unequal role played by RNA polymerase binding versus

closed-open complex transition in transcription initiation process. These predictions

are in principle experimentally testable.

3.1 The Phage λ Switch

The central controlling region for the lysogen maintenance is the right operator OR, even

though the long range cooperative binding with the OL operator plays a crucial role in

stability of the lysogen. (For a more complete description of the regulatory mechanisms,

refer to [44].) OR has three subregions designated OR1, OR2 and OR3 (see Figure 2.5).

The OR region also contains two disjoint promoters PR (Right promoter) and PRM

(Repression Maintanence promoter). The promoter PR completely overlaps OR1 and

partially overlaps OR2, while PRM completely overlaps OR3 and partially overlaps OR2.

The gene cI, that codes for the repressor protein CI and the gene cro, that codes for

Cro protein, flank the OR region. Binding of either CI or Cro dimers (CI2, Cro2) to



48

OR2 prevents binding of RNA polymerase to PR, but it does not prevent such binding

to PRM. The initiation of transcription of cro occurs only if RNA polymerase binds to

PR. Similarly, the initiation of transcription of cI occurs only if RNA polymerase binds

to PRM.

The lytic pathway corresponds to a state where Cro2 protein is bound to OR3, block-

ing the PRM promoter and thus transcription of cI. At the same time RNA polymerase

is free to bind PR, thus maintaining the transcription of cro. The lysogenic pathway

corresponds to the state of OR where CI2 binds to both OR2 and OR1 blocking the PR

promoter and hence the transcription of cro. RNA polymerase is free to bind PRM and

thus maintain the transcription of cI. Even though these pathways are stable, the change

from lysogeny to lysis, called induction, is experimentally well documented. When the

bacterial population is subject to irradiation by UV light, the phage λ starts to lyse

the bacteria and emerge in about 45 minutes. The irradiation causes RecA protein-

mediated cleavage of CI which lowers its effective concentration [44, 58, 59, 60]. There

are several key features which makes lysogen very stable and the induction “switch-

like” [44].

1. High level of cooperativity between CI molecules: CI forms dimers CI2 in the

solution; when bound to neighboring regions OR2 and OR1 (or OR2 and OR3) it

forms tetramers, and as described in [44], it forms octomers with CI2 bound to

the OL operator, which is fairly distant, at 3.6kb, from OR along the DNA strand.

2. Cooperative binding of CI2 to OR2 and OR1: binding of CI2 to OR1 facilitates

binding of another CI2 molecule to OR2.

3. Variable binding affinities of CI2 and Cro2 to different OR regions: CI2 has the

highest affinity to OR1, lower for OR2 and lowest for OR3, while Cro2 has the

highest affinity to OR3, lower for OR2 and OR1.

4. Cooperative binding of CI2 to OR2 and RNA polymerase at PRM: that is, OR2

bound CI2 increases the forward rate constant k at PRM about 10-fold with-

out having any significant effect on the binding of the RNA polymerase to the

DNA [52].
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We refer to the cooperativity in 4 as k-cooperativity. In an intriguing paper Li et.

al. [53] have shown that after an Arg to His change in the σ subunit of RNA polymerase,

the wild type CI activates mutant RNA polymerase by increasing KB. We will refer

to this cooperativity as KB-cooperativity. This suggests that mutations allowing for

an increase in KB were (and are) evolutionary accessible to the phage. It is therefore

likely that k-cooperativity, as opposed to an increase in KB, has been selected for

functional reasons. Further support for this hypothesis is provided by the fact that not

all activators increase k. In fact in phage λ the factor CII acting on PRE promoter uses

both the KB- and k-cooperativity [61] and the CAP activation of the lac operon in E.

coli uses KB-cooperativity [36].

To investigate this hypothesis we model the dynamics of the entire switch and study

the effect of the KB- and k-cooperativity on the stability of the lysogenic state. We

show that the stability of the lysogen depends crucially not only on the fact that CI2

interacts cooperatively with RNA polymerase, but also on the fact that this coopera-

tivity increases k rather than KB. In fact, our computations suggest that increasing KB

100 fold while abolishing k-cooperativity yields phage with lysogen that is significantly

less stable than the wild type.

3.2 The Mathematical Model

We make use of a delay differential equation model developed by Santillán and Mackey [40]:

d[McI ]
dt

= [OR]f cRM ([CI2]τM , [Cro2]τM ) (3.1)

+[OR]fRM ([CI2]τM , [Cro2]τM )− (γM + µ)[McI ]

d[Mcro]
dt

= [OR]fR([CI2]τM , [Cro2]τM )− (γM + µ)[Mcro] (3.2)

d[CI]
dt

= νcI [McI ]τcI − (γcI + µ)[CI] (3.3)

d[Cro]
dt

= νcro[Mcro]τcro − (γcro + µ)[Cro] (3.4)

which, as is explained below, tracks concentrations of cI mRNA, cro mRNA, CI protein

and Cro protein. Concentrations are denoted by square brackets; that is [CI] is the
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total concentration of CI protein while [Mcro] is the concentration of cro mRNA.

We will use [Cro2] and [CI2] to denote the concentration of CI and Cro dimers and

[RNAP ] to denote concentration of the RNA polymerase. The concentration of the

right operator is [OR]. The subscript notation [Mcro]τcro indicates that the concentration

of cro mRNA is evaluated at time t− τcro where t is the present time. The time delays

τcI and τcro are incorporated to take into account the fact that the production of

the proteins from the associated mRNA and the actual process of transcription is not

instantaneous.

Equations (3.3) and (3.4) are based on the assumption that the changes in protein

concentrations are linear functions of the corresponding mRNA concentrations. There

are two sets of positive decay constants. Since the volume of the growing bacteria

increases, concentrations of all chemicals in a cell decrease. This is modeled by the

decay constant δ which is the same in all equations. In addition, each chemical species

experiences a specific degradation rate denoted by γ∗. Of particular interest is the

constant γcI . We will model the effect of UV light, which, as observed earlier, lowers

the effective concentration of CI dimers, by increasing the degradation rate γcI of the

CI protein.

The ν∗ are positive translation initiation constants.

The change in concentration of mRNA is described by equations (3.1) and (3.2). The

nonlinear function fR([CI2]τM , [Cro2]τM ) describes the rate of transcription initiation

at the promoter PR. For the sake of clarity the rate of transcription initiation at the

promoter PRM is expressed as the sum of two functions f cRM ([CI2]τM , [Cro2]τM ) and

fRM ([CI2]τM , [Cro2]τM ), where the first applies to the state of the operator in which

CI2 is bound to OR2 and the second when it is not.

Santillán and Mackey’s [40] construction of these functions is based on the work

of Ackers et. al. [27] and, as described in Chapter 2, begins with expressions of the

probability of binding of RNA polymerase to the promoter in the presence or absence

of the regulatory proteins. The probability of a particular macroscopic state s of the
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operator takes the form

Ps([CI2], [Cro2]) =
KB(s)[Cro2]αs [CI2]βs [RNAP ]γs∑
i

KB(si)[Cro2]αi [CI2]βi [RNAP ]γi
(3.5)

where

KB(s) = e
−∆Gs
RT (3.6)

and the summation in the denominator is taken over all possible states. Since ∆Gs

denotes the binding energy of the state, KB(s) determines the equilibrium constant

for the biochemical reaction that results in binding of the regulatory proteins and/or

RNA polymerase to the DNA in a closed form. The right (OR), the left (OL) operator

(each of which has three subdomains) and the three promoters (PR, PRM, and PL)

are included in the model of Santillán and Mackey [40]. Therefore the state s of the

operator is a description of which of the nine sites are empty or occupied by which of

the three possible molecules CI2, Cro2, or RNA polymerase.

These probabilities need to be multiplied by an appropriate constant, k(s), to in-

corporate the forward reaction rates of the opening and escape steps in order to obtain

a rate of transcription initiation. Thus for each state, the transcription initiation rate

has the form

fs([CI2], [Cro2]) = k(s)
KB(s)[Cro2]αs [CI2]βs [RNAP ]γs∑
i

KB(si)[Cro2]αi [CI2]βi [RNAP ]γi
. (3.7)

Though clearly a simplification, we assume that the rate constants k(s) take on three

values: kcro when RNA polymerase is bound to PR, kccI when RNA polymerase is bound

to PRM and CI2 is bound to OR2, and kcI when RNA polymerase is bound to PRM and

CI2 is not bound to OR2.

Finally, fR is the sum of all combinations of (3.7) with the restriction that each state

s has a RNA polymerase bound to PR, with OR1 and OR2 unbound. Similarly, f cRM

is the sum of (3.7) for all states s which have RNA polymerase bound to PRM and CI2

bound to OR2, and fRM the sum of (3.7) for all states s which have RNA polymerase
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bound to PRM but CI2 is not bound to OR2.

To compare this model against experimental data, requires knowledge of the above

mentioned constants. The experimentally determined values are taken from [40] and

presented in Tables 3.1 and 3.2.

The binding energies ∆Gs are calculate using the following formula

∆Gs =
∑

X=R,L

∑
Y=CI2,Cro2

3∑
ν=1

∆GYOXνΓYOXν (s)

+
∑

X=R,L

∑
Y=CI2,Cro2

2∑
ν=1

∆GYOXνν+1
ΓYOXν (s)ΓYOXν+1

(s)ΓCro2OX123
(s)

+
∑

X=R,L

∆GCro2OX123
ΓCro2OX1

(s)ΓCro2OX2
(s)ΓCro2OX3

(s)

+
∑

X=RM,R,L

∆GRNAPPX ΓRNAPPX (s) +
3∑

ν=1

∆GRLΓCI2ORν
(s)ΓCI2OLν

(s)

where

ΓYX(k) =


1, if molecule Y is bound to site X;

0, otherwise

and

ΓCro2OX123
(s) =


0, if Cro2 is bound to OR1, OR2, and OR3

1, otherwise

All ∆G∗∗ values in Table 3.2 are computed from [62]. The detailed explanation of how these

energies have been computed can be found in [40]. The first sum includes all binding energies

of transcription factors to the six binding sites on both left and right operator. The second

sum includes all cooperation energies between any two adjacent factors and the third takes into

account cooperativity that results from having Cro bound to all three binding sites on either

OR or OL. It should be noted that in the measurements by Darling et. al. [62], the cooperative

binding energies when Cro is bound to all three subdomains of OR or OL are not equal to

the sum of the cooperative binding energies ∆GCro2
OX12 and ∆GCro2

OX23 (see Table 3.2). The term

ΓCro2OX123
(s) in the second sum guarantees that when Cro occupies all three subdomains in OR or

OL, the cooperative energies ∆GCro2
OX12 and ∆GCro2

OX23 are not included in this sum. The energies

∆GCro2
OX123 are then added in the third sum. The fourth sum adds the RNA polymerase binding

energy for the state, and the last one contributes any cross cooperation between CI2 molecules
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bound to PR and PL.

Table 3.1: Estimated parameter values from [40] (with the addition of φ) for equations
(3.1)-(3.4).

µ ' 2.0× 10−2 min−1 kcro ' 2.76 min−1

kccI ' 4.29 min−1 kcI ' 0.35 min−1

γM ' 0.12 min−1 γcI ' 0.0 min−1

γcro ' 1.6× 10−2 min−1 νcI ' 0.09 min−1

νcro ' 3.2 min−1 τcI ' 0.24 min
τcro ' 6.6× 10−2 min τM ' 5.1× 10−3 min
KcI
D ' 5.56× 10−3µM Kcro

D ' 3.26× 10−1µM
[OR] ' 5.0× 10−3µM [RNAP] ' 3.0 µM
∆GRL ' −3.1 kcal/mol φ ' 4.29/.35 = 12.26

3.3 Interpreting the Model

Based on the biochemistry of the phage λ switch, the phenomenological state of lysogeny is

associated with low levels of Cro and high levels of CI. Similarly, lysis is associated with low

levels of CI and high levels of Cro. With this in mind, we look for equilibria of the system (3.1)-

(3.4) and declare that an equilibrium for which 0 ≈ [Cro] << [CI] is a lysogenic equilibrium

and an equilibrium for which 0 ≈ [CI] << [Cro] is a lytic equilibrium.

The equilibria of this system are steady (time independent) states of the system and thus

are not dependent on delays. Notice that since both CI and Cro proteins form dimers, the

right hand side of the equations (3.1)-(3.4) depend on the concentration of dimers. We need

the conversion formula for computing the concentration of dimers from total concentration of

monomers.

Consider the chemical reaction

2a1
k+←−→
k−

a2

where a1 is a free monomer form of the protein a and a2 represents a dimer of protein a, k+

and k− are the forward and backward rate constants respectively.

In chemical equilibrium with KD = k−/k+, we have the following relation:

[a1]2 = KD[a2]. (3.8)
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Table 3.2: Estimated binding energies from [40].

∆GCI2
OR1 ' −12.5 kcal/mol ∆GCI2

OL1 ' −11.5 kcal/mol

∆GCI2
OR2 ' −10.5 kcal/mol ∆GCI2

OL2 ' −9.7 kcal/mol

∆GCI2
OR3 ' −9.5 kcal/mol ∆GCI2

OL3 ' −9.7 kcal/mol

∆GCI2
OR12 ' −2.7 kcal/mol ∆GCI2

OL12 ' −2.7 kcal/mol

∆GCI2
OR23 ' −2.9 kcal/mol ∆GCI2

OL23 ' −2.9 kcal/mol

∆GCro2
OR1 ' −12.0 kcal/mol ∆GCro2

OL1 ' −12.0 kcal/mol

∆GCro2
OR2 ' −10.8 kcal/mol ∆GCro2

OL2 ' −10.8 kcal/mol

∆GCro2
OR3 ' −13.4 kcal/mol ∆GCro2

OL3 ' −13.4 kcal/mol

∆GCro2
OR12 ' −1.0 kcal/mol ∆GCro2

OL12 ' −1.0 kcal/mol

∆GCro2
OR23 ' −0.6 kcal/mol ∆GCro2

OL23 ' −0.6 kcal/mol

∆GCro2
OR123 ' −0.9 kcal/mol ∆GCro2

OL123 ' −0.9 kcal/mol

∆GRNAP
PR

' −12.5 kcal/mol ∆GRNAP
PL

' −11.3 kcal/mol

∆GRNAP
PRM

' −11.5 kcal/mol

KD is the dissociation constant. In addition, if [a] is the total monomer concentration,

[a] = [a1] + 2[a2]. (3.9)

The equations (3.8)-(3.9) can be used to solve for [a2] leading to

[a2] =
[a]
2
− KD

8

√1 + 8
[a]
KD
− 1


from which follows that

[CI2] =
1
2

[CI]− KcI
D

8

(√
1 + 8

[CI]
KcI
D

− 1

)
(3.10)

[Cro2] =
1
2

[Cro]− Kcro
D

8

(√
1 + 8

[Cro]
Kcro
D

− 1

)
(3.11)

Let

φ :=
kccI
kcI

.
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Observe that this provides a measure of the effect of OR2 bound CI2 on the forward reaction rate

associated with opening and escape. In particular, φ > 1 implies that the rate of transcription

initiation with OR2 bound CI2 is higher than that without. We refer to this as k-cooperativity.

As is indicated in Section 3.2, γcI indicates the degradation rate of [CI], induced for example

by exposure to UV radiation. Since this is known to trigger induction of phage, we study the

equilibria as a function of γcI . Observe that the equilibria satisfy the two equations

Φ([CI], [Cro], γcI) = 0 and Θ([CI], [Cro]) = 0

where

Φ([CI], [Cro], γcI) =
νcI

γM + µ
[OR] (f cRM ([CI2], [Cro2]) + fRM ([CI2], [Cro2]))

−(γcI + µ)[CI]

Θ([CI], [Cro]) =
νcro

γM + µ
[OR]fR([CI2], [Cro2])− (γcro + µ)[Cro].

The intersection of these two curves in the [CI], [Cro] plane determines two protein concentra-

tions at a dynamical equilibrium; the remaining two concentrations [McI ] and [Mcro] can be

found from equations (3.3) and (3.4) with the left hand side set equal to zero.

Observe that Θ is independent of γcI . The set Θ([CI], [Cro]) = 0 is given by the black

curve in Figure 3.1. According to Table 3.1, for wild type phage in the absence of UV radiation,

γcI = 0 min−1. The set Φ([CI], [Cro], 0) = 0 is plotted in red dash in Figure 3.1. There is a

unique equilibrium, i.e. intersection point of Θ([CI], [Cro]) = 0 and Φ([CI], [Cro], 0) = 0, for

which [CI] = 0.528 µM and [Cro] = 1.04× 10−5µM . This is a lysogenic equilibrium.

As the parameter γcI increases the Φ = 0 curve shifts its relative position relative to the

Θ = 0 curve. When γcI is 0.00039 min−1, a pair of new intersections corresponding to new

equilibria appear. Plotted in blue dots in Figure 3.1 is Φ([CI], [Cro], 0.05) = 0. The equilibrium

with high value of [Cro] and low value of [CI] corresponds to lytic state and we call it a lytic

equilibrium. Observe that there are three equilibria: a lysogenic equilibrium, a lytic equilib-

rium, and an unstable intermediate equilibrium. Finally, the green dash-dot curve represents

Φ([CI], [Cro], 0.35) = 0 which intersects Θ = 0 in a single point corresponding to the lytic

equilibrium.

Clearly, the set of equilibria changes as a function of γcI . This is indicated in the bifurcation

diagram of Figure 3.2, where the equilibrium values of [Cro] are plotted on the vertical axis

as a function of γcI . This graph allows us to describe the induction process. When no UV
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Figure 3.1: Nullclines for Θ = 0 (black solid) and Φ = 0 with γcI = 0 min−1 (red dash),
γcI = 0.05 min−1 (blue dots) and γcI = 0.35 min−1 (green dash-dot).

radiation is applied to bacterial population, γcI = 0 min−1 and the phage occupies lysogenic

equilibrium. As γcI is slowly increased, the lysogenic equilibrium moves and the phage state

tracks this slowly moving equilibrium. Immediately after γcI crosses the value of 0.343 the

lysogenic equilibrium disappears and the state rapidly approaches the lytic equilibrium.

Therefore we define the value γ∗WT := 0.343 min−1 as the wild type induction value. The

color code in Figure 3.2 shows the values of γcI that correspond to the same color curves in

Figure 3.1.

In Sections 3.4 and 3.5 we make use of bifurcation diagrams such as that of Figure 3.2, thus

we point out some of the important features. For the parameter values 0.00039 min−1 ≤ γcI ≤

0.343 min−1 the wild type phage λ switch is bistable; that is there are two stable equilibria,

the lysogenic equilibrium (corresponding to the lower branch) and the lytic equilibrium (corre-

sponding to the upper branch), and furthermore, for some initial concentrations the state of the

phage will evolve toward the lysogenic equilibrium and for other initial concentrations toward

the lytic equilibrium.
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Figure 3.2: Bifurcation diagram of γcI versus [Cro].

We introduced the dimensionless parameter φ to have a measure of the change in the forward

reaction rate associated with opening and escape. We wish to have a similar measure for the

binding probabilities. When the binding of a transcription factor increases RNA polymerase

residence time on the promoter, it is reflected in the Ackers model in the cooperative increase

of the binding energy of the transcription factor-RNAP pair. We denote the binding energy

between CI2 and OR2 by ∆GCI2
OR2 and binding energy between RNA polymerase and PRM by

∆GRNAP
PRM

. In the absence of binding cooperation, as is the case in the wild type phage λ, the

binding energy contribution from OR2-bound CI and PRM-bound RNA polymerase to any state

s that contains them is

∆Gind(s) := ∆GCI2
OR2 + ∆GRNAP

PRM
+ ∆Grest(s),

where subscript ‘ind’ stands for independent binding of the binding factors and ∆Grest(s) is the

binding energy of the other factors in state s.

The cooperative binding between CI2 and RNA polymerase is reflected in additional binding

energy ∆GCI2RNAP
OR2PRM

. If this energy is positive we refer to this as KB-cooperativity. We express
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the cooperativity in terms of the binding constant KB(s) (see (3.6))

KB(s) := βK ind
B (s)

where K ind
B (s) = exp(− 1

RT (∆Gind(s))) and the state s independent multiplicative factor

β := exp(− 1
RT

(∆GCI2RNAP
OR2PRM

)).

In this formulation β > 1 represents the cooperative binding.

In summary, the k-cooperativity is manifested by the constant φ > 1 (see Section 3.2) and

KB-cooperativity by β > 1.

3.4 Model Validation

In order to validate our biological interpretation of the equilibria of equations (3.1)-(3.4) we

model the induction scenarios for several different phage mutants which are described in the

literature.

3.4.1 OR323 Mutant

Little et. al. [63] constructed a mutant OR323 in which the OR1 domain was replaced by OR3

and reported the following results:

R1 OR323 can lysogenize;

R2 OR323 has a threshold response, but at lower doses of UV radiation and at a higher level

of free phage in the lysogen than the wild type;

R3 in the lytic state the burst size i.e. the number of phages per infected cell, of OR323 is

lower than that of wild type.

This mutation is easily incorporated into the mathematical model. To replace the OR1

binding site by the OR3 binding site we set the binding energy of CI2 to OR1 to be that of CI2

to OR3 (−9.5 kcal/mol). Similarly, the binding energy of Cro to OR1 is set to that of Cro to

OR3 (−12.0 kcal/mol).

The bifurcation curves for the OR323 mutation as compared with the wild type are presented

in Figure 3.3. The graph shows the concentration of Cro as a function of γcI . The blue solid

curve represents the wild type phage, while the black dashed curve represents the OR323. The
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lower branch on both curves corresponds to the lysogenic equilibrium and the upper branch to

the lytic equilibrium.
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Figure 3.3: Bifurcation diagrams for wild type and OR323. The concentration of Cro
is graphed as a function of γcI . The blue solid curve represents the wild type phage,
while the black dashed curve represents the mutant.

The existence of the lower branch in Figure 3.3 implies that OR323 can lysogenize (com-

pare R1). However, the induction value for the OR323 mutant is γ∗OR323 = 0.09 min−1 <

0.34 min−1 = γ∗WT , which suggests that a lower level of UV radiation is required to induce

lytic growth (compare R2). Observe that when γcI = 0 min−1 there are three equilibria in the

system describing OR323. Thus a stable lytic equilibrium is present even in the absence of UV

radiation and thus in the presence of noise some phages can spontaneously induce and switch

to lytic state. This would manifest itself experimentally in increased number of free phages

(compare R2).

Finally, it is possible that the burst size (number of phages per infected cell) is proportional

to the transcription level of the lytic pathway in phage’s genome, which in turn may be pro-

portional to the level of Cro production in the lytic state. This theory is in agreement with

Figure 3.3 in which the Cro production in the lytic state for OR323 (the upper black dashed
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branch) is significantly lower than in the wild-type lytic state (the upper blue solid branch)

(compare R3). Of course, the burst size can also be determined by energetics of the cell or by

available resources, and therefore the suggested relationship between Cro production and the

burst size is, at best, speculative.

3.4.2 PRM Mutant

Michalowski and Little [64] (see also [65]) obtained multiple mutants of phage λ by subjecting

the PRM binding site to mutagenesis. These were then compared to wild type by three criteria:

the ability to grow lytically, the ability to establish and maintain a stable lysogenic state, and

the ability to undergo prophage induction. In the experiments they were particularly careful

not to affect the OR2 and OR3 binding sites. Of these isolates they further analyzed nine which

were selected because they were comparable to or more difficult to induce than the wild type.

When compared to wild type these nine strains seem to share three properties: they had an

equal or increased PRM binding affinity, a decreased PR binding affinity, and an increase in the

k-cooperativity between CI2 and RNA polymerase. To model such mutant we set PRM= −12.5

kcal/mol, PR= −10.5 kcal/mol, and φ = 4.5/.35, which should be compared to wild type values

PRM= −11.5 kcal/mol, PR= −12.5 kcal/mol and φ = 4.29/.35. The resulting bifurcation

diagrams are presented in Figure 3.4 The induction parameter γ∗PRM
' 0.85 min−1 for the

mutation is much higher then the wild type γ∗WT ' 0.35 min−1 implying greater stability of the

lysogen.

3.4.3 cI-pc Mutant

When a pc mutation is introduced to CI it eliminates the k-cooperativity between CI2 protein

bound to OR2 and RNA polymerase [44]. This mutant forms lysogen in a wild-type bacteria,

but suffers from high rate of spontaneous induction and induction at a very low levels of UV

light.

To model this mutant we replace the kccI in the function f cRM (see equation (3.2)) by kcI .

This implies φ = 1. The associated bifurcation curves are indicated in Figure 3.5. Observe that

our model predicts that the induction value is dramatically lower (γ∗WT = 0.34 min−1 in wild

type, γ∗CIpc = 0.01 min−1 in the mutant). In the noisy environment of a cell we expect that

this low stability threshold will yield a high spontaneous induction rate.
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Figure 3.4: Bifurcation diagram of wild type vs. a phage with mutated PRM binding site
which resulted in having PRM= −12.5 kcal/mol, φ = 4.5/.35, and PR= −10.5 kcal/mol.
For comparison, the wild type values were PRM= −11.5kcal/mol, φ = 4.29/.35, and
PR= −12.5kcal/mol.

3.5 KB- and k-cooperativity Are Not Interchangeable

Our most significant prediction is that KB- and k-cooperativity affect the stability of the lysogen

differently, and thus are not interchangeable. To demonstrate this we compare the stability of

the lysogen under k-cooperativity, β = 1, φ = α > 1, against KB-cooperativity, φ = 1, β = α >

1, for different values of α. The analysis of the stability of the cI-pc mutant in Section 3.4.3

provides the first step of this analysis. In this mutant both φ = 1 and β = 1, thus all cooperation

is abolished and our model predicts that the induction value is dramatically lower.

To test the ability of KB-cooperativity to restore the lysogen stability, we fix φ = 1 and solve

for the equilibria at β = 10 and β = 100. The bifurcation diagrams are presented in Figure 3.6

where they can be compared against the cI-pc mutant and the wild type (recall that for the wild

type φ ≈ 12 and β = 1). Observe that when β = 10, the induction value is γ∗β=10 = 0.04 min−1

which is much lower than γ∗WT = 0.34 min−1. We predict that this produces a very unstable

lysogen. Even in the case of unrealistically strong KB-cooperativity, β = 100, the induction
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Figure 3.5: Bifurcation diagram of wild type vs. cI-pc mutant where all positive control
between CI2 and RNA polymerase has been eliminated (β = 1, φ = 1).

value is only γ∗β=100 = 0.07 min−1.

Figure 3.6 clearly indicates that KB- and k-cooperativity are not equivalent. This difference

is highlighted in Figure 3.7 where isoclines of the induction value γ∗ are plotted as a function

of β and φ. The deviation of symmetry across the diagonal β = φ indicates the extent to which

KB- and k-cooperativity fail to be equivalent in maintaining the stability of the lysogenic state.

While Figures 3.6 and 3.7 clearly indicate that there is a difference between KB- and k-

cooperativity, they provide no explanation for this difference. Since the interactions between

the binding factors are mediated through nonlinear functions we do not expect there to be

a simple, but complete quantitative description of this difference. However, there are two

mathematical results that provide a partial explanation.

The first has to do with the rate of production of CI. Let

fβ,φRM ([CI2], [Cro2]) := f cRM ([CI2], [Cro2]) + fRM ([CI2], [Cro2])
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Figure 3.6: Results from eliminating positive control (φ = 1) with values of β = 1
(black dashed curve), β = 10 (green dotted curve) and β = 100 (red dash-dot curve).
We graph concentration of Cro as a function of γcI .

for fixed values of β and φ. By Theorem 2.3.9, if α > 1, then

f1,α
RM ([CI2], [Cro2]) > fα,1RM ([CI2], [Cro2]).

This means that the rate of transcription of cI mRNA is greater under k-cooperativity than

under an equal amount of KB-cooperativity.

The second has do with the biological fact that at low concentrations CI2 up regulates its

own transcription, while at high concentrations is down regulates its own transcription [44].

In the lysogen OR1 is almost always bound by CI2 protein and thus the production of Cro is

very low. To produce a simple model that can be easily analyzed we assume CI2 is always

bound to OR1, and thus the states of interest involve the binding of CI2 to OR2 and OR3.

In Example 2.3.13 it is proven that under these assumptions there exists a unique critical

concentration κ, such that if [CI2] < κ, then CI2 is an activator and if [CI2] > κ, then CI2 is

a repressor. This implies that the maximal production rate of CI mRNA occurs at [CI]2 = κ.
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Figure 3.7: Level curves of the induction value γ∗ as a function of both β and φ. Here
β > 1 represents KB-cooperativity and φ > 1 represents k-cooperativity.

As is shown in Example 2.3.13 κ is larger under k-cooperativity than under an equal amount

of KB-cooperativity. In particular, the critical concentration for the wild type is greater than

the critical concentration for the cI-pc mutant.

3.6 Discussion

One of the common features of transcriptional control in bacteria and eukaryotes is “activation

by recruitment”, where subtle interactions between the transcription factors and RNA poly-

merase control the rate of transcription. The three essential steps in this process (binding,

opening and escape) coalesce in the Ackers modeling framework into two sets of constants. One

set captures binding energies, while the other models the transcription initiation process which

includes both opening and escape. If for some state of the operator the binding of a factor in-

creases the binding probability of RNA polymerase we call it KB-cooperativity. If on the other

hand the factor increases the probability of transcription initiation we call it k-cooperativity.

At the first glance it may appear that these two types of activation are interchangeable.
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We have shown using an experimentally validated dynamic model of phage λ that with respect

to induction of the lysogenic state k- and KB-cooperativity are not substitutable. Without

k-cooperativity the lysogenic state of the phage λ switch is quite unstable and comparable to

some known mutants like OR323 [63].

Our model produced experimentally verifiable predictions and can serve to test hypothesis

about induction of phage λ various mutants before they are constructed in the lab. Furthermore,

the mathematical techniques and arguments used to obtain these predictions are quite general

and thus in the long run we believe that this type of analysis will prove useful for bioengineers

who are trying to design novel genetic control units.
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Chapter 4

Modeling Promoter Clearance

Several theoretical models have been proposed for the elongation phase of transcription, and

they are in reasonably good agreement with what is observed experimentally [66, 67]. However,

much less is available in the literature in terms of models for the initiation phase.

Much progress has been made in understanding the biochemistry of the various reactions

in transcription initiation [68, 69, 70, 13, 14] and it is clear that binding, opening and promoter

clearance are physically coupled processes. Each one of these steps depends on the DNA se-

quence and its binding affinity to RNA polymerase and to the regulatory proteins. This opens

up the possibility of providing a comprehensive model of the entire initiation process, where a

DNA sequence is the input and expected rate of transcription initiation is the output.

As described before, transcription initiation can be divided in three main processes: binding,

open complex formation and promoter clearance. The binding of RNA polymerase to the

promoter is a well understood process, and characterized by the binding constant KB. In

Chapters 2 and 3, using the Shea-Ackers framework, we combine open complex formation and

promoter clearance. This is represented by the constant k that we call transcription initiation

rate. Here we present our work on modeling promoter clearance.

In Section 4.1 we present and discuss a model of promoter clearance introduced by Xue, Liu

and Ou-Yang [31]. While we agree with the main idea of the model, we propose modifications,

which we introduce in Section 4.2. However, this model fits experimental data poorly. In

Section 4.3 we introduce a new feature to the model: formation of secondary structure in the

scrunched DNA. Since the secondary structure is sequence-dependent, it will have a non-uniform

impact to the model (as opposed to just varying one parameter that will have the same value

for all sequences).While we are still not satisfied with the results, we believe the introduction

of secondary structure in the scrunched DNA provides an overall improvement to the model.
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4.1 XLO-Y Model

Based on the description of the promoter clearance process given in the Introduction, it seems

natural that a model of this phase of transcription should include the scrunching, abortive and

escape processes.

In [31], Xue, Liu and Ou-Yang introduce a model for this stage of transcription. We will refer

to this model as the XLO-Y model. The main idea of this model is that, after RNA polymerase

binds the promoter and forms the open complex, there are three competitive reaction pathways

that can be followed, which are the abortive pathway, the scrunching pathway and the escape

pathway.

The initial set configuration in this model is the RNA polymerase-promoter open complex,

which is assumed to be 14 bp long. Using the first two complementary NTPs RNA polymerase

performs the first polymerization reaction, starting to create the RNA, which has length 2 at

this point, and keeping the open bubble length at 14 bp long. With the first polymerization

reaction the active site of RNA polymerase becomes unavailable, so in this conformation it is

not able to elongate the nascent RNA. At this point, the RNA polymerase-promoter complex

needs to follow one of the competitive pathways to proceed with the transcription process. The

three competitive pathways are the scrunching, abortive and escape pathways, and are described

below as used in [31].

In the scrunching pathway, RNA polymerase, while still attached to the promoter, unwinds

another base pair of the downstream DNA and scrunchs it past its active site, increasing the

bubble length by 1 bp. Then it performs a polymerization reaction using the next complemen-

tary NTP.

In the abortive pathway RNA polymerase remains attached to the promoter, and for RNAs

of length 3 or longer the scrunched DNA is “unscrunched” in a series of reversible reactions.

When the RNA-DNA hybrid is of length 2 the short RNA segment that has just been created

is irreversibly released with assistance of the first two incoming complementary NTPs. RNA

polymerase performs the polymerization reaction and the complex returns to the conformation

of a bubble of length 14 with a DNA-RNA hybrid of length 2.

In the escape pathway, RNA polymerase is able to “escape” the promoter: it releases the

scrunched DNA, translocates 1 bp ahead in order to make its active site available for the next

polymerization reaction, and only leaves a bubble of length 12 inside itself.
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4.1.1 XLO-Y Reaction Rates

The RNA polymerase-promoter complex together with the nascent RNA form what is called

the initial transcribing complex (ITS). After escape, when the RNA polymerase escapes the

promoter and enters the elongation phase, the complex is called elongation complex (EC).

Using similar notation to the one used in the literature for elongation [66, 67], these complexes

are denoted by

Pm(M,N, n)

where

• m represents the pathway RNA polymerase is following, where

– m = 0 represents the scrunching pathway,

– m = −1 represents the abortive pathway, and

– m = +1 represents the escape pathway;

• M is the length of the transcription bubble;

• N is the length of the nascent RNA, which is assumed always less or equal to 9;

• n is the length of the RNA-DNA hybrid.

Using similar notation, the state energy of each configuration of the ITC or EC is denoted

by ∆GmM,N,n and it has three components: the energy of the transcription bubble, the energy

of the RNA-DNA hybrid and the binding energy of the RNA polymerase to the promoter.

∆GmM,N,n = ∆Gbubble
M,N,n + ∆Ghybrid

M,N,n + ∆Gbinding
M,N,n

The reactions involved in the scrunching pathway are described by Michaelis-Menten enzyme

kinetics in the presence of competitive inhibitors, using rapid equilibrium kinetics to describe

the “unscrunching” reactions. The scrunching rate from state P0(M,N, n) to state P0(M +

1, N + 1,min(n+ 1, 9)) is given by

kN0 =
k1C

C +KN
d1

(4.1)

where

KN
d1 = KC

{
1 +

N−1∑
i=2

e
−β(∆G−1

i+12,N,min(i,9)−∆G0
N+13,N,min(N,8))

+ e−β(∆G0
N+12,N,min(N,9)−∆G0

N+13,N,min(N,8))
}
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and

• β = 1
kBT

, with kB the Boltzmann’s constant and T the absolute temperature,

• C is the concentration of the complementary NTP,

• KC is the equilibrium dissociation constant for the complementary NTP,

• k1 represents the polymerization rate

The reaction rates in the abortive pathway are also obtained using the same rapid equilib-

rium kinetics, except that the abortive pathway contains a two-substrate enzymatic reaction.

The abortive rate from state P0(M,N, n) to state P0(14, 2, 2) is given by

kN−1 =
k2AB

AB +KBA+KBKN
d2

(4.2)

with

KN
d2 = KA

{
e−β(∆G0

N+13,N,min(N,8)−∆G0
14,N,2) +

N−1∑
i=2

e
−β(∆G−1

i+12,N,min(i,9)−∆G0
14,N,2)

+e−β(∆G0
N+12,N,min(N,9)−∆G0

14,N,2)
}

where

• A and B are the concentrations of the first and second complementary NTPs, respectively

• KA and KB are the equilibrium dissociation constants for the first and second comple-

mentary NTPs, respectively

• k2 represents the polymerization rate.

Since no polymerization reaction is involved in the escape reaction, Michaelis-Menten ki-

netics are not used in the escape pathway, and instead the escape reaction is treated as an

irreversible reaction and the escape rate is calculated using Arrhenius kinetics. The escape rate

from state P0(M,N, n) to state P+1(12, N,min(n, 8)) is given by

kN+1 =
k3e
−β∆G+1

12,N,min(N,8)

V N
(4.3)

where k3 is the Arrhenius pre-factor constant and

V N = e−β∆G0
N+12,N,min(N,9) + e−β∆G0

N+13,N,min(N,8) +
N−1∑
i=2

e
−β∆G−1

i+12,N,min(i,9) (4.4)
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4.1.2 Parameters

There are various parameters involved in this model.

• The DNA-DNA and DNA-RNA hybrid energies are calculated using the nearest-neighbor

model with energy values at 37oC [71, 72], with ionic conditions considered.

• The values for the polymerization rates k1 and k2, and the equilibrium dissociation con-

stant KC are taken from [66] as:

– k1 = k2 = 24.7 s−1 and

– KC = 15.6 µM.

• The values for the equilibrium dissociation constants for the first and second complemen-

tary NTPs are taken from [68] as:

– KA = 1800 µM and

– KB = 31 µM.

• The Arrhenius constant for the escape reaction is used as k3 = 0.8 s−1 [13].

• The energy difference between the binding energies of the RNAP-DNA interaction during

scrunching and escape pathways is denoted by

∆∆Gbinding = ∆Gbinding+1 −∆Gbinding0

and the value used is 3.5 kcal/mol.

Table 4.1 summarizes the list of parameters and its values, as used in [31].

k1 24.7 s−1

k2 24.7 s−1

KC 15.6 µM
KA 1800 µM
KB 31 µM
k3 0.8 s−1

∆∆G 3.5 kcal/mol

Table 4.1: XLO-Y parameters
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4.1.3 XLO-Y Model Results

In [31] Xue, Liu and Ou-Yang define the abortive probability at DNA site i by

Pi =
Xi

T −
∑i−1
j=2(Xj + Yj)

, (4.5)

where Xj and Yj represent, respectively, the number of transcripts that abort or escape at DNA

site j in Monte Carlo simulation, and T =
∑∞
i=2(Xi + Yi) is the total number of times RNA

polymerase leaves the scrunching pathway. The maximum size of abortive transcript, MSAT,

is assigned as the maximum site (ie, RNA size) that has nonzero abortive probability, and

the abortive-productive ratio, APR, is the average number of abortive products per successful

escape event.

MSAT APR
Sequence Experiment Xue Experiment Xue
T5N25 10 10 31 ± 5 31

T5N25anti 15 12 174 ± 27 102
T7A1 8 8 7 ± 2 12

Table 4.2: MSATs and APRs comparison

The sequences for these three promoters are listed in Figure 4.1.

−40 −35 −10 + 1 + 20

T5N25 TTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTC ATAAATTTGAGAGAGGAGTT

T5N25anti TTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTC ATCCGGAATCCTCTTCCCGG

T7A1 GAGTATTGACTTAAAGTCTAACCTATAGGATACTTACAGCCATCGAGAGGGACACGGCGAA

Figure 4.1: The three promoter sequences used in [31] to compare the XLO-Y model
to experimental data [73].

4.2 Modifications to the XLO-Y Model

While we agree with the main idea of the model (the three competitive pathways), there is room

for improvements.

The main observation we have is on the hypothesis of NTP-assisted release in the abortive

pathway used in [31]. This hypothesis does not seem to be realistic, as there is no biological

evidence for it. Instead we look at the release of the short RNA segments as an irreversible

reaction, and use Arrhenius kinetics to describe the abortive rate since, like in the escape
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pathway, there is no polymerization reaction involved. We define the abortive rate from state

P0(M,N, n) to state P0(M + 1, N + 1,min(n+ 1, 9)) as

aN =
kae
−β∆G0

14,0,0

V N
(4.6)

where ka is the Arrhenius pre-factor constant for the abortive reaction, and V N is defined as

(4.4):

V N = e−β∆G0
N+12,N,min(N,9) + e−β∆G0

N+13,N,min(N,8) +
N−1∑
i=2

e
−β∆G−1

i+12,N,min(i,9) (4.7)

We also reconsider the escape rate. In [31] the assumption is that when escape occurs,

the transcription bubble becomes 12 bp long, and it will remain the same length through

elongation. This assumption is due to the release of the σ factor which has been thought to

occur simultaneously with the transition to elongation [18, 19, 20]. This hypothesis has been

questioned since studies have found that RNA polymerase can retain its σ70 subunit after the

transition to elongation [21, 22]. The release of the σ factor may occur stochastically [23, 24,

25, 26]. We assume that when escape occurs, the σ factor is still associated to RNA polymerase,

and therefore in this state the bubble length is back to 14 instead of 12. With this assumption

we define the escape rate from state P0(M,N, n) to state P+1(14, N,min(n, 8)) as

eN =
kee
−β∆G+1

14,N,min(N,8)

V N
(4.8)

where ke is the Arrhenius pre-factor constant for the escape reaction, and V N is given by (4.7).

We do not modify the scrunching rates. Just to be consistent with our notation, we define

the scrunching rate as

sN = kN0 (4.9)

where kN0 is given by (4.1). The derivation of the formula for the scrunching rates is given in

Appendix B

We observe that while the −35 and −10 regions are identical for promoters T5N25 and

T5N25anti, they are both different for the promoter T7A1. See Figure 4.1. Since these regions

directly affect the binding affinity for the RNA polymerase, and therefore its binding energy,

it does not seem appropriate to use the same value of ∆∆Gbinding for promoters that are not

identical in those regions. We therefore do not use the promoter T7A1 in our comparisons.

T5N25anti is a T5N25 ITS variant, that is, T5N25anti is obtained by replacing the ITS of
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T5N25 from position +3 to +20 with an antisense mutation, i.e., A � C and G � T. In [76]

the abortive initiation-promoter escape properties of 43 T5N25 promoter random-ITS variants

are analyzed. See Table 4.3 for the sequences. Instead of using the data from [73] for T5N25 and

T5N25anti, we use the data for the 43 sequences in [76]. Data for the 43 sequences presented

in Table 4.3 was kindly provided by Lilian Hsu. For simplicity, from now on we will refer to

T5N25 and T5N25anti as N25 and N25anti, respectively.

Promoter ITS (+1 – +20) PY (%) APR MSAT

DG146a ATTAAAAAAC CTGCTAGGAT 8.0± 2.4 13± 4 20

N25/A1 ATCGAGAGGG ACACGGCGAA 7.1± 0.9 13± 2 19

DG122 ATAAAGGAAA ACGGTCAGGT 7.0± 1.1 14± 1 18

DG130a ATATAGTGAA CAAGGATTAA 6.9± 0.5 14± 1 18

DG131a ATAGGTTAAA AGCCAGACAT 5.1± 2.2 21± 9 16

N25 ATAAATTTGA GAGAGGAGTT 6.0± 1.9 18± 5 11

DG151a ATCAGGATAC AAGAAGGTTT 6.0± 2.7 19± 9 16

DG161a ATAAAAGTAC TCAGTTCAAA 5.1± 2.1 22± 10 15

DG159 ATAACTAGGG AAAATAATAT 4.6± 2.2 26± 16 18

DG121 ATACACCATA AAGAAACAGT 3.4± 1.5 33± 17 17

DG132a ATTCTAGTGA AAATCCCCAT 3.8± 1.5 30± 12 16

DG115a ATCCCGCTCA AGAGCAACAT 3.5± 0.2 28± 2 18

DG162 ATGTAAATAA GGTAGGCAAT 3.9± 1.1 27± 8 16

DG128a ATCCCAGTAA GGAATGATAT 3.7± 1.4 30± 11 18

DG126 ATAAGCACAC GGATACCTTT 2.5± 0.7 40± 14 16

DG163a ATTATACACG GTAATCGCTT 3.4± 1.4 34± 14 18

DG164 ATTAAGAAAA ATCTTCTATT 3.1± 0.6 34± 6 17

DG149 ATAGCGGATG GTAACAGAAT 2.9± 1.2 38± 11 14

DG165b ATCATCTGAA ATCATAGTGT 3.1± 0.9 33± 14 16

DG169a ATCCAGACGA ACTGGGGAAT 3.1± 0.3 31± 3 20

DG155 ATTAAAAATC CTTTCCTCTT 2.8± 0.4 38± 2 15

DG168a ATCACGCAAC CGGACTAACT 2.7± 0.7 38± 10 16

DG127 ATCCTAGTAT ATGGAACTGT 2.7± 1.2 40± 16 14

DG135a ATAATGCTGT GAACGCGAGT 2.2± 0.6 53± 16 20

DG160a ATATACTAGC AGCACCAATT 2.4± 1.0 50± 17 15

DG133 ATATCGAATT ACTCAGATAT 1.8± 0.3 58± 14 16
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DG147a ATAATGGTCG GTTACACGAT 1.8± 1.0 70± 43 19

DG125a ATATCGTTCC CTTGACCCAT 1.3± 0.1 76± 6 16

N25anti ATCCGGAATC CTCTTCCCGG 1.4± 1.0 68± 31 15

DG156-3 ATCGCCGATA AATACGTAGT 1.4± 0.6 76± 25 15

DG138a ATCTTCTTCG TAACTGGAGT 0.9± 0.3 121± 40 16

DG142 ATGATTTCAT CTGACTCTAT 0.9± 0.1 121± 5 16

DG170a ATTACTGCAC ATTAATGAAT 0.8± 0.1 118± 25 16

DG167 ATTACATCTG CCGCCTTCCT 0.9± 0.5 151± 95 20

DG166 ATCTAATCTC TGATAATATT 0.8± 0.3 142± 60 17

DG152a ATTACTATGC CCCATATCCT 0.8± 0.3 144± 52 15

DG148 ATAATTGTAC ATTTGAAACT 1.0± 0.5 135± 82 17

DG145 ATAACCCTTG ACTCCGAAAT 0.5± 0.2 202± 62 15

DG141 ATACATTATC AACGCATGCT 0.6± 0.2 169± 65 14

DG124a ATCGCAACCT CCTAAATGAT 0.4± 0.2 205± 51 15

N25/A1anti ATATCTCTTT CACATTATCC 0.4± 0.1 255± 52 16

DG154a ATGGTTCATT TTTCCACACT 0.5± 0.3 217± 101 17

DG137a ATCGCTCTAC TAAATGTCTT 0.3± 0.1 386± 27 15

Table 4.3: N25 promoter random-ITS variants constructed in [76]: sequences and prop-
erties.

While the expected range for ∆∆G is 15− 18 kcal/mol [77], the value of 3.5 kcal/mol used

in [31] is extremely low. As we will show in Section 4.2.4 our computations also suggest a value

lower than the expected range may be more appropriate for the model.

We also observe that the abortive probabilities (4.5), computed in [31] to be compared to

the abortive profiles in [73], are slightly different from the abortive probabilities defined in [73].

The denominator in (4.5) corresponds to the number of transcripts that aborted or escaped at or

after position i, while the corresponding quantity in [73] would be the total number of full length

transcripts plus the number of transcripts that aborted at or after position i. In Section 4.2.2

we describe how we calculate and compare the abortive probabilities in the abortive profiles.

There are other simple modifications we make in order to optimize parameters. In [31] a

single value is used for the polymerization rate, k1 = k2 = 24.7s−1 [66], and a single value is

used for the NTP-dissociation constant, KC = 15.6µM [66] (except for the first and second
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NTPs). Instead we use four NTP-specific values for both the polymerization rate and the

NTP-dissociation constant, based on elongation studies in [78]. The values for the NTP-specific

polymerization rates as in [78] are kA = 50 ± 6 s−1, kU = 18 ± 1 s−1, kG = 36 ± 5 s−1, and

kC = 33±6 s−1, while the values for the NTP-dissociation constants are KA = 38±7 kcal/mol,

KU = 24± 4 kcal/mol, KG = 62± 18 kcal/mol and KC = 7± 4 kcal/mol. We use the average

value for each of these quantities.

We also note that while the APR and MSAT are very important parameters that one should

be interested in matching when trying to reasonably describe the behavior of specific promoters,

an overall agreement with the whole abortive profile is expected. Although the XLO-Y model

provides a good agreement on APR and MSAT, the comparison with the abortive profiles is

less satisfactory.

As in [31], we also estimate the DNA-DNA and DNA-RNA hybrid energies using the nearest-

neighbor model with energy values at 37oC. For the DNA-DNA values we use the unified

nearest-neighbor values from [79], with the salt correction done by using the empirical equation

given in [79]:

∆G37(polymer NN, [Na+]) = ∆G37(unified NN, [Na+] = 1M)− 0.175ln[Na+]− 0.20

We believe these values are the same as the ones used in [31]. For the DNA-RNA we use values

from [72] also taking the ionic conditions into consideration. As there is no published formula

for the salt correction for DNA-RNA hybrids, we predicted the corrections using the HYTHER

server from John SantaLucia group [80]. We estimate the salt correction results in values that

are approximately 90% of those in [72].

4.2.1 Probabilities

We define the probability of the reactions aN , sN and eN , given respectively by (4.6), (4.9)

and (4.8), to be

Pa(N) =
aN

aN + sN + eN
× 100%

Ps(N) =
sN

aN + sN + eN
× 100% (4.10)

Pe(N) =
eN

aN + sN + eN
× 100%

We refer to the probabilities in (4.10) as abortive, scrunching and escape probability at

position N , respectively. For simplicity, we will also refer to the correspondent rates as abortive,
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scrunching and escape rates at position N .

We can also define the probabilities in (4.10) in terms of the number of times the abortive,

scrunching and escape reactions occurred at each position. For that, let a(N), s(N) and e(N)

be the number of abortive, scrunching and escape reactions, respectively, at position N . We

can then write

Pa(N) =
a(N)

a(N) + s(N) + e(N)
× 100%

Ps(N) =
s(N)

a(N) + s(N) + e(N)
× 100%

Pe(N) =
e(N)

a(N) + s(N) + e(N)
× 100%.

We need to impose a restriction on how long scrunching can happen. Let M be the RNA

length for which we assume only abortive and escape reactions can occur, that is, scrunching

can only occur while the RNA length is less than M .

4.2.2 Comparing Abortive Probabilities

We want to compare the results of the model with experimental data. The experimental data

is usually presented in the form of an abortive profile. Let Pn be the abortive probability

represented in the abortive probability profiles. This quantity is defined in [81] as

PN =
XN

100%−
∑N−1
i=2 Xi

× 100%, (4.11)

where Xi is the abortive yield, in percent, of the ith RNA species, i.e., the sum of abortive

RNAs of length i as a percentage of the total number of RNAs that were produced.

Using the abortive, scrunching and escape rates at position N , we defined the abortive,

scrunching and escape probabilities Pa(N), Ps(N) and Pe(N). In order to compare results with

the experimental data we need to express PN in terms of the probabilities Pa(N), Ps(N) and

Pe(N).

The abortive yield Xi can be expressed in terms of the numbers a(i) and e(i) as

Xi =
a(i)∑M

j=2(a(j) + e(j))



77

We can then rewrite the expression (4.11) for PN in terms of the numbers a(N) and e(N)

PN =
a(N)∑M

i=N a(i) +
∑M
i=2 e(i)

× 100%.

Notice that

a(N) + s(N) + e(N) = s(N − 1), for N = 3, . . . ,M − 1

a(M) + e(M) = s(M − 1).

Therefore

P2 =
a(2)

a(M) + e(M) +
∑M−1
i=2 (a(i) + e(i))

=
a(2)

s(M − 1) +
∑M−1
i=2 (a(i) + e(i))

=
a(2)

s(M − 1) + a(M − 1) + e(M − 1) +
∑M−2
i=2 (a(i) + e(i))

=
a(2)

s(M − 2) +
∑M−2
i=2 (a(i) + e(i))

...

=
a(2)

s(2) + a(2) + e(2)

= Pa(2)

and for N = 3, . . . ,M

PN =
a(N)

a(M) + e(M) +
∑M−1
i=N a(i) +

∑M−1
i=2 e(i)

=
a(N)

s(M − 1) +
∑N−1
i=N a(i) +

∑N−1
i=2 e(i)

=
a(N)

s(M − 1) + a(M − 1) + e(M − 1) +
∑M−2
i=N a(i) +

∑M−2
i=2 e(i)

=
a(N)

s(M − 2) +
∑M−2
i=N a(i) +

∑M−2
i=2 e(i)

...

=
a(N)

s(N − 1) +
∑N−1
i=2 e(i)

.

Notice that PN = Pa(N) only when N = 2.
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For N = 3, . . . ,M we have

PN =
Pa(N)Ps(N − 1)Ps(N − 2) . . . Ps(2)

(1− P2)(1− P3) . . . (1− PN−1)
,

or, writing recursively,

PN =
Pa(N)Ps(N − 1)PN−1

Pa(N − 1)(1− PN−1)
. (4.12)

To prove (4.12), first notice that, for N = 3, . . . ,M , we have

1− PN−1 =
s(N − 2) +

∑N−2
i=2 e(i)− a(N − 1)

s(N − 2) +
∑N−2
i=2 e(i)

=
a(N − 1) + s(N − 1) + e(N − 1) +

∑N−2
i=2 e(i)− a(N − 1)

s(N − 2) +
∑N−2
i=2 e(i)

=
s(N − 1) + e(N − 1) +

∑N−2
i=2 e(i)

s(N − 2) +
∑N−2
i=2 e(i)

and then
PN−1

1− PN−1
=

a(N − 1)

s(N − 1) + e(N − 1) +
∑N−2
i=2 e(i)

.

Now

PN =
a(N)

s(N − 1) +
∑N−1
i=2 e(i)

=
a(N)

a(N)+s(N)+e(N)

s(N−1)+
PN−1
i=2 e(i)

a(N)+s(N)+e(N)

=
Pa(N)

s(N−1)+
PN−1
i=2 e(i)

s(N−1)

=
Pa(N)s(N − 1)

s(N − 1) +
∑N−1
i=2 e(i)

=
Pa(N)s(N−1)

a(N−1)+s(N−1)+e(N−1)

s(N−1)+
PN−1
i=2 e(i)

a(N−1)+s(N−1)+e(N−1)

=
Pa(N)Ps(N − 1)
s(N−1)+

PN−1
i=2 e(i)

a(N−1)+s(N−1)+e(N−1)

= Pa(N)Ps(N − 1)
a(N − 1) + s(N − 1) + e(N − 1)

s(N − 1) +
∑N−1
i=2 e(i)

= Pa(N)Ps(N − 1)
a(N−1)+s(N−1)+e(N−1)

a(N−1)

s(N−1)+
PN−1
i=2 e(i)

a(N−1)

=
Pa(N)Ps(N − 1)

Pa(N − 1)
a(N − 1)

s(N − 1) +
∑N−1
i=2 e(i)

=
Pa(N)Ps(N − 1)PN−1

Pa(N − 1)(1− PN−1)

and (4.12) holds.

The percentage of full length transcripts, which will be denoted by PFL, corresponds to the

percentage of escape reactions over the positions 2 through M , i.e.,

PFL =
∑M
i=2 e(i)∑M

i=2(a(i) + e(i))
,

where a(i) and e(i) are the number of abortive and escape reactions, respectively, occurred at
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position i.

We can express PFL in terms of the escape and scrunching probabilities Pe(N) and Ps(N).

We have

PFL =
∑M−1
i=2 e(i) + e(M)∑M−1

i=2 (a(i) + e(i)) + a(M) + e(M)
=

∑M−1
i=2 e(i) + e(M)∑M−1

i=2 (a(i) + e(i)) + s(M − 1)

=

∑M−1
i=2

e(i)
a(M)+e(M) + e(M)

a(M)+e(M)∑M−1
i=2

a(i)+e(i)
a(M)+e(M) + s(M−1)

a(M)+e(M)

=

∑M−1
i=2

e(i)
s(M−1) + Pe(M)∑M−1

i=2
a(i)+e(i)
s(M−1) + 1

=

∑M−2
i=2

e(i)
s(M−1) + e(M−1)

s(M−1) + Pe(M)∑M−2
i=2

a(i)+e(i)
s(M−1) + a(M−1)+e(M−1)

s(M−1) + 1

=

∑M−2
i=2

e(i)
a(M−1)+s(M−1)+e(M−1)

Ps(M−1) + Pe(M−1)
Ps(M−1) + Pe(M)∑M−2

i=2

a(i)+e(i)
a(M−1)+s(M−1)+e(M−1)

Ps(M−1) + 1−Ps(M−1)
Ps(M−1) + 1

=

∑M−2
i=2

e(i)
a(M−1)+s(M−1)+e(M−1) + Pe(M − 1) + Ps(M − 1)Pe(M)∑M−2

i=2
a(i)+e(i)

a(M−1)+s(M−1)+e(M−1) + 1

=

∑M−2
i=2

e(i)
s(M−2) + Pe(M − 1) + Ps(M − 1)Pe(M)∑M−2

i=2
a(i)+e(i)
s(M−2) + 1

=

∑M−3
i=2

e(i)
s(M−2) + e(M−2)

s(M−2) + Pe(M − 1) + Ps(M − 1)Pe(M)∑M−3
i=2

a(i)+e(i)
s(M−2) + a(M−2)+e(M−2)

s(M−2) + 1

=

∑M−3
i=2

e(i)
a(M−2)+s(M−2)+e(M−2)

Ps(M−2) + Pe(M−2)
Ps(M−2) + Pe(M − 1) + Ps(M − 1)Pe(M)∑M−3

i=2

a(i)+e(i)
a(M−2)+s(M−2)+e(M−2)

Ps(M−2) + 1−Ps(M−2)
Ps(M−2) + 1

=

∑M−3
i=2

e(i)
s(M−3) + Pe(M − 2) + Ps(M − 2)Pe(M − 1) + Ps(M − 2)Ps(M − 1)Pe(M)∑M−3

i=2
a(i)+e(i)
s(M−3) + 1

= . . .

=
e(2)
s(2) + Pe(3) + Ps(3)Pe(4) + . . .+ Ps(3)Ps(4) . . . Ps(M − 1)Pe(M)

a(2)+s(2)
s(2) + 1

= Pe(2) + Ps(2)Pe(3) + Ps(2)Ps(3)Pe(4) + . . .+ Ps(2)Ps(3) . . . Ps(M − 1)Pe(M)
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4.2.3 Promoter Clearance as a Markov Chain

For each 2 ≤ N ≤ M , we defined the scrunching, abortive and escape rates when RNA length

is N as the transition rates between states

P0(12 +N,N,min(N, 9))
sN

GGGGGGA P0(13 +N,N + 1,min(N + 1, 9))

P0(12 +N,N,min(N, 9))
aN

GGGGGGGA P0(14, 0, 0)

P0(12 +N,N,min(N, 9))
eN

GGGGGGA P+1(14, N,min(N, 9))

and, then, based on these rates, we defined the probabilities Ps(N), Pa(N), Pe(N) of a scrunch-

ing, abortive or escape reaction occur when RNA length is N . Therefore, when RNA length

is N , for each 2 ≤ N ≤ M , with probability Ps(N) the RNA length will be increased by 1

while RNA polymerase is still physically attached to the promoter; with probability Pa(N)

an abortive reaction will occur, an abortive transcript of length N will be released and then

RNAP-promoter will return to the original open-bubble conformation; and with probability

Pe(N) RNA polymerase will break the bounds with the promoter DNA and will enter the

elongation phase. We summarize this information with the diagram in Figure 4.2.

To simplify the notation, we rewrite the diagram in Figure 4.2 by representing each state by

its RNA length. To avoid confusion, the escape states with RNA length N will be represented

by EN . We rewrite the diagram of Figure 4.2 as

0 0 0 0

↑Pa(2) ↑Pa(3) ↑Pa(N) ↑Pa(N+1)

2
Ps(2)−−−→ 3

Ps(3)−−−→ . . . N
Ps(N)−−−−→ N + 1 −→

↓Pe(2) ↓Pe(3) ↓Pe(N) ↓Pe(N+1)

E2 E3 EN EN+1
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After an abortive reaction the system returns to the initial open bubble configuration

P0(14, 0, 0). Then the first two complementary nucleotides can bind, RNA polymerase per-

forms a polymerization reaction, and the system returns to the configuration with RNA of

length 2, P0(14, 2, 2). We assume then that the probability of going from state P0(14, 0, 0)

to state P0(14, 2, 2) is 1, and we can look to Pa(N) as the probability going from the state

P0(12 +N,N,min(N, 9)) to state P0(14, 2, 2). We again rewrite the diagram of Figure 4.2 as:

2 2 2 2

↑Pa(2) ↑Pa(3) ↑Pa(N) ↑Pa(N+1)

2
Ps(2)−−−→ 3

Ps(3)−−−→ . . . N
Ps(N)−−−−→ N + 1 −→

↓Pe(2) ↓Pe(3) ↓Pe(N) ↓Pe(N+1)

E2 E3 EN EN+1

For each N ≥ 2 the probabilities Ps(N), Pa(N) and Pe(N) are the probabilities of taking one

of the three possible paths, assuming the process is at state N . Clearly they do not depend on

how the process reached this particular state. Also, since after an escape event the system enters

the elongation phase instead of returning to any of the previous possible states, we can assume

that if the system reaches the escape state it remains at that state with probability 1. Therefore

this is a stationary Markov chain with state space S = {2, 3, 4, . . . ,M,E2, E3, . . . , EM} =

{T,E2, E3, . . . , EM}. (See Appendix C for basic definitions and properties of Markov chains [82,

83].) The escape states E2, E3, . . . , EM are clearly closed. The states T = {2, 3, . . . ,M} are

transient. The transition probabilities matrix is given by

P =

 Q R

0 I


where the matrix Q represents the transition probabilities between the states in T

Q =



2 3 4 . . . M − 1 M

2 Pa(2) Ps(2) 0 . . . 0 0

3 Pa(3) 0 Ps(3) . . . 0 0

4 Pa(4) 0 0 0 0
...

...
...

...
. . .

...

M − 1 Pa(M − 1) 0 0 . . . 0 Ps(M − 1)

M Pa(M) 0 0 . . . 0 0


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while the matrix R represents the transition probabilities from states in T to the escape states

E2, E3, . . . , EM :

R =



E2 E3 E4 . . . EM

2 Pe(2) 0 0 . . . 0

3 0 Pe(3) 0 . . . 0

4 0 0 Pe(4) 0
...

...
...

...
. . .

...

M 0 0 0 . . . Pe(M)


and 0 is the (M − 1)× (M − 1) null matrix, and I is the (M − 1)× (M − 1) identity matrix.

There are several quantities of interest that describe the promoter clearance process, and

they can be easily computed with the Markov chain approach:

• Number of abortive transcripts at each position until escape

For each 2 ≤ N ≤ M , in order to compute the number of abortive transcripts of length

n produced before escape we need to estimate the number of visits to state 2 coming

from state N . By considering the set of states we are considering at the moment, we can

calculate the expected number of visits to state 2, but it is not possible to know from

which state each visit is coming from. So we will add additional states T1, T2, . . . , TM

representing transition states between N and 2, for N = 2, 3, . . . ,M . The new matrices

that compose the transition probability matrix P are

Q̄ =



2 T2 3 T3 4 . . . M TM

2 0 Pa(2) Ps(2) 0 0 . . . 0 0

T2 1 0 0 0 0 . . . 0 0

3 0 0 0 Pa(3) Ps(3) . . . 0 0

T3 1 0 0 0 0 0 0
...

...
...

...
...

...
. . . 0 0

M 0 0 0 0 0 . . . 0 Pa(20)

TM 1 0 0 0 0 . . . 0 0


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and

R̄ =



E2 E3 . . . EM

2 Pe(2) 0 . . . 0

T2 0 0 . . . 0

3 0 Pe(3) . . . 0

T3 0 0 0
...

... . . .
. . .

...

M 0 0 . . . Pe(M)

TM 0 0 . . . 0


in addition to the null matrix 0 and the identity matrix I.

To calculate the number of abortive transcripts of length N we compute the expected

number of visits to state TN by

a(N) =
∞∑
j=0

Q̄j1,2N = (I − Q̄)−1
1,2N .

Notice that with these values we build the abortive profile.

• Probability of escape at each position

For each 2 ≤ N ≤M the probability of escape to state eN is given by F (1, N − 1), where

F =
∞∑
j=0

Q̄jR̄ = (I − Q̄)−1R̄.

• APR

The abortive:productive ratio is by definition the total number of abortive transcripts

divided by the total number of full length transcripts. Since in our case the number of

full length transcripts is 1, we simply have

APR = total # of abortive transcripts =
M∑
N=2

a(N)

• MSAT

Since we can calculate the expected number of abortive transcripts of each length N , we

can define the maximum size of abortive transcript as the largest value of N , 2 ≤ N ≤M
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that has expected number of abortive transcripts larger than 1:

MSAT = max2≤N≤M{N |a(N) ≥ 1}

• PY

The productive yield is the total number of full length transcripts divided by the total

number of transcripts produced. Since it is assumed that only one full length transcript

is produced, we have

PY =
1∑M

N=2 a(N) + 1
.

• Abortive Profile

The abortive probabilities (4.11) for the abortive profiles defined in [81] can be computed

here as

PN =
a(N)∑M

i=N a(i) + 1
.

Remark 4.2.1 The Markov approach and the approach from Section 4.2.2 result in the same

abortive profiles.

4.2.4 Comparison to Data

As described in the beginning of this chapter, we will use the 43 sequences from Table 4.3 to

compare experimental data from [76] to the results obtained with the model.

We introduce the changes one at time to observe the impact of each modification to the

original model. We compute the abortive profiles using the expressions derived in Section 4.2.2.

The following notation is used to describe which version of the model we are using.

• Setup I: model using the XLO-Y rates given by (4.1), (4.2) and (4.3)

• Setup II: model using the XLO-Y scrunching and escape rates, and the modified abortive

rate given by (4.6)

• Setup III: model using the XLO-Y scrunching and abortive rates, and with the modified

escape rate given by (4.8)

• Setup IV: model using the XLO-Y rates and ∆∆G = 5 kcal/mol

• Setup V: model using the XLO-Y rates and ∆∆G = 8 kcal/mol

• Setup VI: model using the XLO-Y rates and ∆∆G = 15 kcal/mol
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• Setup VII: model using the XLO-Y scrunching rate, and the modified abortive and escape

rates

• Setup VIII: model using the XLO-Y scrunching rate, modified abortive and escape rates

, and ∆∆G = 5 kcal/mol

• Setup IX: model using the XLO-Y scrunching rate, modified abortive and escape rates ,

and ∆∆G = 8 kcal/mol

• Setup X: model using the XLO-Y scrunching rate, modified abortive and escape rates ,

and ∆∆G = 15 kcal/mol

• Setup XI: model using the XLO-Y scrunching rate, modified abortive and escape rates

, ∆∆G = 5 kcal/mol and NTP-specific values for the polymerization rates and NTP-

dissociation constants

Figures 4.3 – 4.12 show the abortive profiles for each one of the setups described above for

sequences N25, N25anti, DG146a, DG149a and DG137a.

We observe that while Setup I seems to reasonably match the experimental data for promoter

N25 in Figure 4.3b, the same is not true for the other promoters. By comparing the profiles for

Setups I and II we notice that the use of the modified abortive rates results in a decrease in

production of abortive transcripts, and therefore an increase of full length transcripts. When we

compare the profiles for Setups I and III we see that the use of the modified escape rates results

in an increase of abortive transcripts and in production of longer transcripts, and therefore a

decrease of full length transcripts.

It is clear that the increase of ∆∆G in setups IV, V and VI results in an increase of the length

and percentage of abortive transcripts produced, and therefore a decrease in the percentage of

full length transcripts. This is not surprising. We expect that as the binding affinity of the

RNA polymerase to the promoter is increased, it will be more difficult to escape the promoter.

From setups I – VI we conclude that we cannot match the data either by using the Xue, Liu

and Ou-Yang rates (setup I) or by modifying only the abortive rates (setup II), only the escape

rates (setup III), or only the value used for ∆∆G (setups IV, V and VI). We then combine

these three modifications in the Setups VII, VIII, IX and X, and again we are unable to match

the experimental abortive profiles. The NTP-specific parameter values in setup XI do not solve

our problem.

Being unable to match the experimental data by using modified abortive rates, modified

escape rates, increased ∆∆G and NTP-specific values for the polymerization rates and NTP-

dissociation constant, we look into the only other parameters we see as a possibility to fit the
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(a) N25 - Experimental Data
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(b) N25 - Setup I
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(c) N25 - Setup II
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(d) N25 - Setup III
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(e) N25 - Setup IV
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(f) N25 - Setup V

Figure 4.3: Abortive Profiles for N25
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(a) N25 - Setup VI
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(b) N25 - Setup VII
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(c) N25 - Setup VIII
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(d) N25 - Setup IX
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(e) N25 - Setup X
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(f) N25 - Setup XI

Figure 4.4: Abortive Profiles for N25
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(a) N25anti - Experimental Data
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(b) N25anti - Setup I
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(c) N25anti - Setup II
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(d) N25anti - Setup III
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(e) N25anti - Setup IV
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(f) N25anti - Setup V

Figure 4.5: Abortive Profiles for N25anti
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(a) N25anti - Setup VI
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(b) N25anti - Setup VII
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(c) N25anti - Setup VIII
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(d) N25anti - Setup IX
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(e) N25anti - Setup X
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(f) N25anti - Setup XI

Figure 4.6: Abortive Profiles for N25anti
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(a) DG146a - Experimental Data
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(b) DG146a - Setup I
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(c) DG146a - Setup II
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(d) DG146a - Setup III
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(e) DG146a - Setup IV
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(f) DG146a - Setup V

Figure 4.7: Abortive Profiles for DG146a
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(a) DG146a - Setup VI
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(b) DG146a - Setup VII
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(c) DG146a - Setup VIII
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(d) DG146a - Setup IX

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FL
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNA Size

A
bo

rt
iv

e 
P

ro
fil

e

(e) DG146a - Setup X
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(f) DG146a - Setup XI

Figure 4.8: Abortive Profiles for DG146a
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(a) DG149a - Experimental Data

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FL
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNA Size

A
bo

rt
iv

e 
P

ro
fil

e

(b) DG149a - Setup I
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(c) DG149a - Setup II
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(d) DG149a - Setup III
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(e) DG149a - Setup IV
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(f) DG149a - Setup V

Figure 4.9: Abortive Profiles for DG149a
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Figure 4.10: Abortive Profiles for DG149a
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(a) DG137a - Experimental Data
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(b) DG137a - Setup I
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(c) DG137a - Setup II
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(d) DG137a - Setup III
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(e) DG137a - Setup IV
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(f) DG137a - Setup V

Figure 4.11: Abortive Profiles for DG137a
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(f) DG137a - Setup XI

Figure 4.12: Abortive Profiles for DG137a
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model: the Arrhenius constants ka and ke used in the abortive and escape rates, respectively.

4.2.5 Trying to Fit the Data

Since we believe the modified abortive and escape rates make more sense and the NTP-specific

parameters are more accurate, from now on we will focus on the model with these modifications.

We call Modified Model the model represented by Setup XI, that is, the model with abortive,

escape and scrunching rates given by (4.6), (4.8) and (4.9), respectively, with polymerization

rate and NTP-dissociation constants that are NTP-specific, and with ∆∆G = 5 kcal/mol.

We now try to use the Arrhenius constants ka and ke to fit the Modified Model to the

data. Recall the value we have been using so far is ka = ke = 0.8 s−1, which is the same used

in [31] for the Arrhenius constant in the escape rate. Also recall that in the abortive profiles

the percentage Pn of abortive transcripts of length n is given by

Pn =
Pa(n)Ps(n− 1)Ps(n− 2) . . . Ps(2)

(1− P2)(1− P3) . . . (1− Pn−1)

where Pa(.) and Ps(.) represent the abortive and escape probabilities given by (4.10). Since

Pn is given by the experimental data values, and we also have available the standard deviation

for each n, we can find the range for values of the Arrhenius constants that would result in

matching the data.

We start by fixing ke = 0.8 s−1 as in [31] and using ka to fit the data. Table 4.4 shows the

values required in order to match the data for sequences N25 and N25anti using the Modified

Model.

Table 4.4: Abortive Arrhenius constants

Position N25 N25anti
2 9.21 – 76.41 0.35 – 5.1
3 9.02 – 16.36 0.32 – 3.72
4 15.03 – 23.57 0.93 – 1.31
5 2.09 – 3.47 0.1 – 1.8
6 2.45 –3.73 48.43 – 128.47
7 0.17 – 0.29 178.16 – 447.44
8 0.2 – 0.33 5.88 – 50.1
9 0.14 – 0.2 8.48 – 17.16
10 0.02 – 0.04 0.29 – 1.91
11 0.005 – 0.017 0.012 – 0.064
12 0.0021 – 0.0088 0.0334 – 0.0513
13 0 – 0.01 0.015 – 0.1
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We are able to match the data for each of the 43 sequences, but using a different abortive

Arrhenius constant at each position for each different sequence. Moreover, the values needed

often are out of the usual range [0, 1] for Arrhenius constants [77]. We do not believe this is

an acceptable way to match the data. We then try to use both abortive and escape constants

to fit the data. If we vary the Arrhenius constant for the escape reaction in the interval [0, 1],

the results for the abortive constant are basically unaltered. We also try, without success, to

use the same approach for higher values of ∆∆G. We try to find the best-fitting values for the

Arrhenius constants minimizing the error. That does not work either. Therefore we cannot

match the data by fitting these parameters.

It appears we are missing something.

4.3 Secondary Structure in the Scrunched DNA

In Section 4.2 we introduced improvements to the model of Xue, Liu and Ou-Yang, but we

were unable to reasonably match the data in [76], even when we tried to fit parameters. Our

approximations do not seem unreasonable, so we search for a more fundamental change to the

model.

As described before, during the scrunching process RNA polymerase pulls the DNA and

bulges of scrunched DNA occur in both strands. There is no doubt that portions of the ac-

cumulated single stranded DNA will be complementary (see Figure 4.13). From a theoreticaI

point of view, it seems possible and likely that secondary structure will occur when there is

complementarity, since secondary structure formation would result in a more favorable confor-

mation. From a biological point of view there is no evidence that this will happen, but also no

evidence of how this would be prevented.

We introduce this new feature to the Modified Model. If this feature has an effect in the

model, we expect it to be non-uniform since it will be highly sequence-dependent.

The appearance of secondary structure in the scrunched DNA does not change the formulas

for the scrunching, abortive and escape rates. The only difference is that each configuration has

an additional energy contribution. Therefore for each configuration Pm(M,N, n) we now have

∆GmM,N,n = ∆Gbubble
M,N,n + ∆Ghybrid

M,N,n + ∆Gbinding
M,N,n + ∆Gfold

M,N,n

where ∆Gfold
M,N,n will be calculated as

∆Gfold
M,N,n = ∆Ghelix

M,N,n + ∆Ginit
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Figure 4.13: Possible complementarity in the scrunched bulges of DNA.

We use ∆Ginit = −1 kcal/mol and we use the software MFold [84] to predict the secondary

structure in each scrunched strand of DNA and ∆Ghelix
M,N,n.

4.3.1 MFold

The MFold web server and software is used for prediction of secondary structure of single

stranded nucleic acids. The MFold software for RNA folding was developed in the late 1980s

by M. Zucker [85]. DNA folding prediction with the mfold software began in 1996, when

DNA specific parameters were added to the MFold package through a collaboration with the

SantaLucia group [79, 86, 87, 88, 89, 90]. In 1999, corrections for [Na+] and [Mg++] were

incorporated into the MFold package [91]. The MFold web server was first created in 1995 and

DNA folding parameters were added in 1996.

We use the software Mfold to predict scrunched DNA secondary structure. Single stranded

DNA starts accumulating within the transcription bubble with the first scrunching reaction.

Bulges of scrunched DNA will form in both DNA strands. The bulges are not symmetric: we

assume the bulge on the 5′-to-3′ (coding) strand forms just after position −6, while the bulge

on the 3′-to-5′ (template) strand forms just after position −11.

To predict secondary structure we will input the following information:

• sequence to be folded

• whether the sequence is linear or circular
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• constraints, if any, to force or prohibit specific base pair formation

• folding temperature

• ionic conditions

Only the portions of the sequence correspondent to the accumulated bulges during scrunch-

ing are free to fold. Assume we want to fold the sequence in Fgure 4.14. In order to focus only

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!#!$!"!$!%!$!#!$!#!$!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&!!!!!!!!!&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!!!!!!!!%
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&!!!!!!!!!&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!%
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&!!!!!!!!!&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!"
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&!!!!!!!!!&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!!!!!!!'
!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!

"##

$!%!!$!'!$!%

Figure 4.14: Example of a sequence to be folded

on the specific stretch of the sequence that we want to fold, we disregard the specific sequence

composition for the part that will not be folded. We assume that the sequence to be folded is

surrounded by “dummy” nucleotides. More specifically, we substitute the sequence that will

not be folded by Ts. We then tried two approaches to describe our sequences to be folded:

linear and circular DNA. Figure 4.15 shows the linear and circular approaches to the problem.

We tried both approaches with different number of dummy nucleotides inserted and there

was no significant difference, so we choose to use the linear approach, adding 10 dummy nu-

cleotides on each side of the scrunched sequence.

As we are comparing our results with experimental data, we use temperature and ionic

conditions to be consistent with the ones used in [76]. The temperature used is 37oC. Ionic

conditions in [76] are [Mg++] = 10mM and [K+] = 200 mM. Therefore we use [Mg++] = 0.01M

and [Na+] = 0.2M. (For the purposes of folding, Na+ can be considered equivalent to K+ as

they have equivalent effects on nucleic acid thermal stability.)

Note that from a state with a scrunched DNA with n bases to the next state with n + 1

scrunched bases, we do not give preference to secondary structures already formed, instead we

use the most energetically favorable structure.
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Figure 4.15: Linear vs. circular approach to fold scrunched DNA. Red boxes show the
nucleotides for which base pairing will be prohibited.

Example 4.3.1 Let us consider the sequence in Figure 4.14. The sequence correspondent to

the scrunched DNA in this case is

ATTATCTAA

As explained above, instead of using the sequence

. . . ACAT ATTATCTAA︸ ︷︷ ︸
to be folded

GATAGG . . .

as the input for MFold, we will use

dummy nucleotides︷ ︸︸ ︷
TTTTTTTTTT T︸ ︷︷ ︸

cannot base pair

to be folded︷ ︸︸ ︷
ATTATCTAA G

dummy nucleotides︷ ︸︸ ︷
TTTTTTTTTT︸ ︷︷ ︸
cannot base pair

with the constraints that base pairing is only allowed for the sequence correspondent to the

scrunched DNA. In this case our sequence corresponds to a state with 9 scrunched bases.

Figure 4.16 has the resulting secondary structure we obtain from MFold. The helix energy

contribution of the two base pairs is −0.93 kcal/mol.

We then use MFold to predict the secondary structure for the sequence correspondent to the

state with 10 scrunched bases:

dummy nucleotides︷ ︸︸ ︷
TTTTTTTTTT T︸ ︷︷ ︸

cannot base pair

to be folded︷ ︸︸ ︷
ATTATCTAAG A

dummy nucleotides︷ ︸︸ ︷
TTTTTTTTTT︸ ︷︷ ︸
cannot base pair

Figure 4.17 has the resulting secondary structure obtained. We see the result is the same
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Figure 4.16: Mfold resulting plot for sequence correspondent to a state with 9 scrunched
bases.

secondary structure predicted for the state with 9 scrunched bases, and therefore the energy

contribution will be −0.93 kcal/mol.

!!!!!!!!"#

$$$$$$$$$$$%&!%

!!!!!!!!!!!!$$!$

!!!!!!!!!!!!%%!'

$$$$$$$$$$%()!$

!*#!!!!!!!!+#

!
Figure 4.17: Mfold resulting plot for sequence correspondent to a state with 10
scrunched bases.

The correspondent sequence input for the state with 13 scrunched bases is

dummy nucleotides︷ ︸︸ ︷
TTTTTTTTTT T︸ ︷︷ ︸

cannot base pair

to be folded︷ ︸︸ ︷
ATTATCTAAGTAG G

dummy nucleotides︷ ︸︸ ︷
TTTTTTTTTT︸ ︷︷ ︸
cannot base pair

and Figure 4.18 shows the two secondary structures we obtain with MFold. The secondary

structure in Figure 4.18a has a helix energy contribution of −1.21 kcal/mol while the structure

represented in Figure 4.18b has a contribution of −0.93 kcal/mol. The structure in Figure 4.18a

is therefore the most favorable conformation.
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Figure 4.18: Mfold resulting plots for sequence correspondent to a state with 13
scrunched bases.

4.3.2 New Comparison to Data

Figure 4.19 shows the abortive profiles obtained using secondary structure in the scrunched

DNA in comparison to the profiles obtained with the Modified Model and the experimental

data. See Appendix D for additional comparisons.

We see that the secondary structure starts to play a role in the model when the RNA length

is 10, which corresponds to the states with 8 scrunched bases. This makes sense since enough

DNA needs to accumulate in order to secondary structure to appear. We observe that by using

the additional energy we are able to produce longer transcripts. We also notice an improvement

in the percentage of full length transcripts produced. While the comparison to experimental

data is not as satisfactory as we would like, we believe there is an overall improvement in the

model.

4.4 Discussion

Our starting point for modeling promoter clearance is the model by Xue, Liu and Ou-Yang [31].

Although we agree with the main idea of their model, we do not agree with the approach used

to model the rates. We then introduce some modifications to the XLO-Y model:

• modified abortive rates in order to avoid the NTP-assisted release hypothesis

• modified escape rates using transcription bubble of length 14 in the escape rates

• increased ∆∆G

• NTP-specific values for the polymerization rates and NTP-dissociation constants

In Section 4.2.4 we see that the isolated introduction of each of the modifications above

does not result in a good match to experimental data, and neither does the use of all the

modifications.
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Figure 4.19: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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In Section 4.2.5 we try to fit parameters, but the only way we can match the data is by

using values for the Arrhenius constants that are not only different from sequence to sequence,

but also from position to position.

In Section 4.3 we introduce another modification to the model:

• secondary structure of the scrunched DNA

While we are aware that there is no evidence for the secondary structure formation on the

scrunched DNA, we are also unaware of anything which would prevent it. Clearly the only

way to confirm or rule this out is experimentally. The introduction of this feature clearly has

a positive impact to the model: the model now has the ability to produce longer abortive

transcripts and we have an improved prediction of the percentage of full length transcripts

produced. While we believe this resulted in an overall improvement to the model, we still

cannot satisfactorily reproduce the abortive profiles for the experimental data we have been

using.

There are other modifications we consider introducing to the model:

• DNA bending

We believe there is an energy cost for the DNA bending during scrunching. Therefore we

would have another energy contribution for each state with scrunched DNA. We do not

believe this will have a big impact on the model.

• re-usage of short abortive transcripts

Throughout our model we assume the release of abortive transcripts is an irreversible

reaction. We are aware that, after being released, abortive transcripts of length 2 and 3

can be used to start transcription again. We cannot incorporate this fact to the model

presented here, as we would have to be able to keep track of the continuous changes in

the concentrations of these short transcripts. We believe this modification would have an

impact in the model, specially for promoters that produce high percentage of abortive

transcripts of length 2 and 3. And we believe the impact would be more evident for

the initial positions of the abortive profiles in contrast to the secondary structure on the

scrunched DNA. Therefore, in theory, the combination of these two features may provide

a better chance to match the experimental data.
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Appendix A

Statistical Thermodynamics

Suppose we are investigating a system that has volume V , contains N molecules and is immersed

in a large heat bath at temperature T . An ensemble is a collection of a very large numberM of

systems, each constructed to be a replica on a thermodynamic level of the actual system whose

properties we are investigating.

At any instant of time, in an ensemble constructed by replication of a given thermodynamic

system in a given environment, many different energy states are represented in the various

systems of the ensemble. The ensemble average of the energy is then the average over these

instantaneous values of the energy.

First Postulate: The time average of a mechanical variable M in the thermodynamic system

of interest is equal to the ensemble average of M , in the limit as M → ∞, provided that the

systems in the ensemble replicate the thermodynamic state and environment of the system of

interest.

Second Postulate: In an essemble representative of an isolated thermodynamic system, the

systems of the ensemble are distributed uniformly, with equal probability or frequency, over the

possible energy states.

The first postulate tells us that the time average on the actual system may be replaced by

an instantaneous average over a large number of representative systems. The second postulate

says that if a system is selected at random from the ensemble, the probability that it will be

found in a particular energy state is the same for all possible quantum states. An implication of

the two postulates is that the single isolated system of interest spends equal amounts of time,

over a long period of time, in each of the available states.

SinceM is extremely large, the energy levels for the system in the Second Postulate will be

so close together as to be pratically continuous, and furthermore, each of these levels will have

an extremely large degeneracy (i.e., number of energy states). The number of energy states

associated with an energy level E for a system with N molecules and volume V will be denoted

by Ω(N,V,E). Thus the number of “possible energy states” referred to in the Second Postulate
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is Ω.

We can look at the ensemble itself as an isolated system with volume MV , number of

molecules MN and a total energy that will be denoted by Et.

All the possible energy states for such a system can be listed in increasing order of the

energy value, E1, E2, . . . , Ej , . . . When degeneracy occurs, several successive Ej ’s will have the

same value. In the notation introduced above, the energy value E occurs Ω successive times in

the list.

Since each system in the ensemble has the same N and V , all systems have the same set of

energy states, represented by E1, E2, . . . , Ej , . . . Let nj be the number of systems found in state

Ej . The set of numbers n1, n2, . . . is called a distribution. There are, of course, many possible

distributions that might be observed, but obviously all must satisfy

∑
j nj =M (A.1)∑

j njEj = Et. (A.2)

The number of states of the supersystem, Ωt(n), consistent with a given distribution n =

(n1, n2, . . .) is given by

Ωt(n) =
(n1 + n2 + . . .)!

n1!n2! . . .
=

M!∏
j
nj !

(A.3)

The objective here is to find the probability of observing a given energy state Ej in a system

selected from a ensemble. For a particular distribution n = (n1, n2, . . .) this probablility is nj/M

for state Ej . But, in general, given N,V,M and Et there are many possible distributions. What

is needed is the over-all probability, that is, an average of ni/M over these distributions. The

probability of observing a given energy state Ej in an arbitrary system of a canonical ensemble

is

Pj =
1
M

∑
n Ωt(n)nj(n)∑

n Ωt(n)
, (A.4)

where nj(n) represents the value of nj in the distribution n. The sum is over all distributions

satisfying Eqs. (A.1) and (A.2). Of course,
∑
j Pj = 1. Then the desired ensemble averages of,

for example, the energy and pressure are

E =
∑
j

PjEj (A.5)

p =
∑
j

Pjpj ,
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where pj is the pressure in state Ej and is defined by

pj = −(
∂Ej
∂V

)N .

That is, −pjdV = dEj is the work that has to be done on the system, when in state Ej , in

order to increase the volume by dV .

In principle, Eq. (A.4) tells us all we need to know to calculate ensemble averages of

mechanical variables. But in practice, a much more explicit expression for Pj is necessary. In

any particular case we are given M, the Ej (determined by N and V ) and Et (determined by

M, N , V and T ). There are too many possible distributions n consistent with the restrictions

of Equations (A.1) and (A.2). For each of these distributions we can calculate from Eq. (A.3)

the weight Ωt(n) to be used in obtaining averages. Because of large numbers involved, the

most probable distribution, and distributions that differ only negligibly from the most probable

distribution, completely dominate the computation of the average in Eq. (A.6). In practice

this means that, in the limit as M → ∞, we can regard all other weights Ωt(n) as negligible

compared with Ωt(n∗).

Naturally, as we let M → ∞, holding N , V and T fixed, each nj → ∞ also. But all

ensemble averages depend only on the ratio nj/M, which remains finite. Eq. (A.4) becomes,

then,

Pj =
1
M

Ωt(n∗)nj∗

Ωt(n∗)
=
nj
∗

M
, (A.6)

where nj∗ is the value of nj in the most probable distribution, n∗. Equation (A.6) tells us that

in the computation of Pj we can replace the mean value nj by the value of nj in the most

probable (largest Ωt) distribution. This leads us to a purely mathematical question: Which of

the possible sets of nj ’s satisfying Eqs. (A.1) and (A.2) gives us the largest Ωt? This problem

is solved using Lagrange multipliers.

First observe that the distribution giving the largest Ωt is also the distribution giving the

largest ln Ωt, since lnx increases monotonically with x. From Equation (A.3) and the use of

Stirling’s approximation we have

ln Ωt(n) = ln((
∑
j

nj)!)− ln(
∏
j

nj !)

≈ (
∑
j

nj) ln(
∑
j

nj)−
∑
j

nj −
∑
j

ln(nj !)

≈ (
∑
j

nj) ln(
∑
j

nj)−
∑
j

nj −
∑
j

(nj lnnj − nj)
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= (
∑
j

nj) ln(
∑
j

nj)−
∑
j

(nj lnnj)

According to the method of Lagrange multipliers, the set of nj ’s leading to the maximum

value of ln Ωt(n), subject to the conditions (A.1) and (A.2) is found from the equations

∇(ln Ωt(n∗)) = α∇(
∑
i

ni
∗) + β∇(

∑
i

(ni∗Ei)),

that is, for j = 1, 2, ...

∂

∂nj
[ln Ωt(n∗)− α

∑
i

ni
∗ − β

∑
i

(ni∗Ei)] = 0

where α and β are the undetermined multipliers. On carrying out the differentiation, we find

ln(
∑
i

ni) + (
∑
i

ni)
1∑
i ni
− (lnnj∗ + nj

∗ 1
nj

)− α− βEj = 0

or, for j = 1, 2, ...

ln(
∑
i

ni)− lnnj∗ − α− βEj = 0

lnnj∗ = ln(
∑
i

ni)− α− βEj

nj
∗ =

∑
i

ni − α− βEj

nj
∗ =Me−αe−βEj (A.7)

This is the most probable distribution, expressed in terms of α and β.

Substituting n∗j in Equations (A.1) and (A.2), we obtain

∑
j

n∗j =
∑
j

(Me−αe−βEj ) =Me−α
∑
j

e−βEj =M

e−α
∑
j

e−βEj = 1

eα =
∑
j

e−βEj .

Also, for j = 1, 2, ...

Pj =
n∗j
M

=
Me−αe−βEj

M
= e−αe−βEj =

e−βEj∑
i e
−βEi

(A.8)



111

Combining Eqs. (A.8) and (A.5) we have

E =
∑
j

PjEj =
∑
j

Ej
e−βEj∑
i e
−βEi

=

∑
j Eje

−βEj∑
i e
−βEi

(A.9)

Notice that, by the First Postulate, we can associate the thermodynamic pressure p and

energy E with the statistical-mechanical ensemble averages p and E, respectively. Then from

Eq. (A.9), holding N constant, we have:

∇E =
∑
j

Ej∇Pj +
∑
j

Pj∇Ej

Now notice that

∇Ej = (
∂Ej
∂V

)N∇V

Let Q =
∑
j e
−βEj . Then

∑
j

(lnPj + lnQ) =
∑
j

ln(PjQ) =
∑
j

ln(
e−βEj∑
i e
−βEi

(
∑
j

e−βEj )) =
∑
j

−βEj

thus

∇E = − 1
β

∑
j

(lnPj + lnQ)∇Pj +
∑
j

Pj(
∂Ej
∂V

)N∇V.

Since
∑
j Pj = 1, we have

∑
j ∇Pj = 0. Also

∇(
∑
j

Pj lnPj) =
∑
j

(∇(Pj) lnPj) +
∑
j

(Pj∇(lnPj))

=
∑
j

(∇(Pj) lnPj) +
∑
j

(Pj
1
Pj
∇Pj)

=
∑
j

(∇(Pj) lnPj) +
∑
j

∇Pj

=
∑
j

(∇(Pj) lnPj).

Therefore we have

∇E =
−1
β
∇(
∑
j

(Pj lnPj)) +
∑
j

Pj(
∂Ej
∂V

)N∇V,

or
−1
β
∇(
∑
j

(Pj lnPj)) = ∇E + p∇V. (A.10)

Since we already have the associations with thermodynamics E ↔ E and p↔ p, and since
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in thermodynamics (N constant)

T∇S = ∇E + p∇V,

we can deduce from Eq. (A.10) the further association

T∇S ↔ −1
β
∇(
∑
j

(Pj lnPj)) (A.11)

Note that from Eq. (A.10) and ∇E = ∇Q∗ −∇W we have

∇Q∗ = T∇S ↔
∑
j

Ej∇Pj

∇W = p∇V ↔
∑
j

Pj∇Ej ,

where Q∗ and W are heat absorbed and work done by the system, respectively. These relations

provide us, in a general way, with the molecular interpretation of the thermodynamic concepts

of heat and work. We see that when a closed thermodynamic system increases its energy

infinitesimally by the absortion of heat from its surroundings, this is accomplished not by

changing the energy levels of the system but rather by a shift in the fraction of time the system

spends in the various energy states. The converse statement can be made about the work term.

From Eq. (A.11)

∇S ↔ 1
βT
∇G

or

∇S ↔ φ(G)∇G = ∇f(G), (A.12)

where φ(G) = 1
βT , G = −

∑
j Pj lnPj and f(G) is obtained by integrating φ(G). Then

S = f(G) + c, (A.13)

where c is a constant independent of G and therefore independent of the variables on which G

depends (e.g., β and V , with N constant). Experimental information about the entropy always

involves a difference in entropy between two states (e.g., the entropy change ∆S between T1

and T2 at constant N and V ), never an absolute value. The constant c in Eq. (A.13) always

cancels on taking such a difference. Hence its value is completely arbitrary from an operational

point of view. But for convenience and simplicity, we adopt the particular choice c = 0.
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Up to this point we have that S ↔ f(G), but we do not know the function f . To settle this

matter we make use of a thermodynamic property of entropy, namely its additivity. Specifically,

suppose we have two thermodynamic systems A and B at the same temperature and with

entropies SA and SB , respectively. Then if we regard the combined systems as a new system

AB, we have SAB = SA + SB . This relationship suffices to determine f , as we now show.

We first investigate whether the statistical-mechanical quantity G is additive in the above

sense. For this purpose we form an ensemble of M systems AB representative of a thermody-

namic AB system at temperature T . Heat can flow through all interior walls of the ensemble.

The A part of the thermodynamic system is characterized further by NA and V A, and the B

part by NB and V B . In general, the types of molecules may be different in A and B. We

have two sets of energy states for the separate systems, E1
A, E2

A, ... and E1
B , E2

B , .... If

nj
A stands for the number of A systems in the ensemble in state EjA, with similar meaning for

nj
B , then the number of states of the whole ensemble, or supersystem, consistent with given

distributions nA and nB is

Ωt(nA, nB) =
(
∑
j nj

A)!∏
j nj

A!
x

(
∑
j nj

B)!∏
j nj

B !
,

since the A and B systems are independent of each other (except for energy exchange through

the walls). The distributions of interest must satisfy the equations

∑
j

nj
A =M

∑
j

nj
B =M (A.14)

∑
j

(njAEjA + nj
BEj

B) = Et

The argument here on is essentially the same as before. We want to find the distribution

that maximizes the number Ωt(nA, nB), subject to the restrictions given in (A.14). Again we

will use Lagrange multipliers. The distribution, that we will call again n∗, giving the maximum

Ωt(nA, nB) will give also the maximum ln Ωt(nA, nB) and will be given by

∇ ln Ωt(nA, nB) = αA∇(
∑
j

nj
A) + αB∇(

∑
j

nj
B) + β∇(

∑
j

(njAEjA + nj
BEj

B)),
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or, for j = 1, 2, ...

∂

∂njA
(ln Ωt(nA, nB)) = αA

∂

∂njA
(
∑
j

nj
A) + αB

∂

∂njA
(
∑
j

nj
B)

+ β
∂

∂njA
(
∑
j

(njAEjA + nj
BEj

B))

∂

∂njB
(ln Ωt(nA, nB)) = αA

∂

∂njB
(
∑
j

nj
A) + αB

∂

∂njB
(
∑
j

nj
B)

+ β
∂

∂njB
(
∑
j

(njAEjA + nj
BEj

B))

Continuing the differentiation (and using Stirling’s approximation) we will have

nj
A∗ =Me−αAe−βE

A
j

nj
B∗ =Me−αBe−βE

B
j .

Using the fact that
∑
j nj

A =
∑
j nj

B =M, for j = 1, 2, ... we obtain

eαA =
∑
j

e−βEj
A

eαB =
∑
j

e−βEj
B

For the probability that the thermodynamic system AB has its A part in state EiA and its

B part in state EjB , we find

Pij =
e−βEi

A

e−βEj
B

QAQB
= Pi

APj
B , (A.15)

where

QA =
∑
j

e−βEj
A

and QB =
∑
j

e−βEj
B

.

We deduce from equation (A.15) that if two systems are in thermal contact with each other,

they have the same β. This suggests a close connection between β and T , which we verify below.

For the combined system AB,

GAB = −
∑
i,j

Pij lnPij = −
∑
i,j

Pi
APj

B(lnPiA + lnPjB)

= −
∑
i

Pi
A lnPiA −

∑
j

Pj
B lnPjB = GA +GB . (A.16)
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That is, G s additive. Also, since SAB = SA + SB , we have

f(GAB) = f(GA) + f(GB).

Then, from equation (A.16),

f(GA +GB) = f(GA) + f(GB).

The question now is: Given that

f(x+ y) = f(x) + f(y), (A.17)

what is the function f? Differentiating equation (A.17) with espect to x and y we have

∂f(x+ y)
∂x

=
df(x+ y)
d(x+ y)

∂(x+ y)
dx

=
df(x+ y)
d(x+ y)

=
df(x)
dx

∂f(x+ y)
∂y

=
df(x+ y)
d(x+ y)

∂(x+ y)
dy

=
df(x+ y)
d(x+ y)

=
df(y)
dy

Hence
df(x)
dx

=
df(x)
dy

.

This is only possible if the function f is a constant, say k. Then

df(x)
dx

= k, f(x) = kx+ a,

where a is another constant. But we have to choose a = 0 in order to satisfy equation (A.17).

Therefore, finally, we have found that f(x) = kx, and that

S ↔ f(G) = kG = −k
∑
j

Pj lnPj .

Also, from equation ( A.12),
1
βT

= φ(G) = k,

or

β =
1
kT

.

The value of k can be obtained once and for all by comparing statistical-mechanical and

experimental values of the same property, on any convenient system. The numerical value of k
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depends, of course, on the absolute temperature scale employed. With the conventional kelvin

temperature scale, k = 1.38044× 10−16 erg/K.

Summarizing, the probability that the system is in any particular energy state Ej is

Pj(N,V, T ) =
e−Ej(N,V )/kT

Q(N,V, T )

where

Q(N,V, T ) =
∑
j

e−Ej(N,V )/kT .
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Appendix B

Derivation of scrunching rates

The scrunching rate at position N is the rate of transition from state P0(12 +N,N, n) to state

P0(13 +N,N,min(n, 8)), where n ≤ 9. The scrunching rate is defined by

sN =
k1C

C +KN
d1

(B.1)

where

KN
d1 = KC

{
1 +

N−1∑
i=2

e
−β(∆G−1

i+12,N,min(i,9)−∆G0
N+13,N,min(N,8))

+ e−β(∆G0
N+12,N,min(N,9)−∆G0

N+13,N,min(N,8))
}

The reactions involved in this transition are

• the “unscrunching” reactions in the abortive pathway

P0(12 +N,N, n)
k1

GGGGGGBFGGGGGG

k−1

P−1(11 +N,N, n∗)
k2

GGGGGGGBFGGGGGGG

k−2

P−1(10 +N,N, n∗∗)

k3
GGGGGGBFGGGGGG

k−3

. . .
kN−3

GGGGGGGGGBFGGGGGGGGG

k−(N−3)

P−1(15, N, 3)
kN−2

GGGGGGGGGGGGBFGGGGGGGGGGGG

k−(N−2)

P−1(14, N, 2)

where

n∗ =


n if N > 9

n− 1 if N ≤ 9

and

n∗∗ =


n∗ if N > 10

n∗ − 1 if N ≤ 10
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• the scrunching reaction

P0(12 +N,N, n)
kN−1

GGGGGGGGGBFGGGGGGGGG

k−(N−1)

P0(13 +N,N,min(n, 8))

• the NTP binding reaction

P0(13 +N,N,min(n, 8)) +NTP
kN

GGGGGGBFGGGGGG

k−N
P0(13 +N,N,min(n, 8)) ∗NTP

• and the polymerization reaction

P0(13 +N,N,min(n, 8)) ∗NTP
kN+1

GGGGGGGGGAP0(13 +N,N + 1,min(n+ 1, 9))

To simplify the notation we will denote a state P∗(M,N, n) by (M,N, n) and the concen-

tration [P∗(M,N, n)] simply by [M,N, n].

The N + 2 equations that describe the reactions above are given by the system (B.2)

On the system of equations (B.2) we notice the conservation law

[13 +N,N,min(n, 8)] + [(13 +N,N,min(n, 8)) ∗NTP ] + [13 +N,N + 1,min(n+ 1, 9)]

+ [14, N, 2] + [15, N, 3] + [16, N, 4] + . . .+ [11 +N,N, n∗] + [12 +N,N, n] = const := L

Therefore

[(13 +N,N,min(n, 8)) ∗NTP ] = L− ([14, N, 2] + [15, N, 3] + [16, N, 4] + . . .

+ [11 +N,N, n∗] + [12 +N,N, n] + [13 +N,N,min(n, 8)]

+[13 +N,N + 1,min(n+ 1, 9)]) .



119



d[14, N, 2]
dt

= kN−2[15, N, 3]− k−(N−2)[14, N, 2]

d[15, N, 3]
dt

= kN−3[16, N, 4] + k−(N−2)[14, N, 2]− (k−(N−3) + kN−2)[15, N, 3]

...

d[11 +N,N, n∗]
dt

= k1[12 +N,N, n] + k−2[10 +N,N, n∗∗]

− (k−1 + k2)[11 +N,N, n∗]

d[12 +N,N, n]
dt

= k−1[11 +N,N, n∗] + k−(N−1)[13 +N,N,min(n, 8)]

− (k1 + kN−1)[12 +N,N, n]

d[13 +N,N,min(n, 8)]
dt

= kN−1[12 +N,N, n] + k−N [(13 +N,N,N) ∗NTP ]

− (k−(N−1) + kN [NTP ])[13 +N,N,min(n, 8)]

d[(13 +N,N,min(n, 8)) ∗NTP ]
dt

= kN [13 +N,N,min(n, 8)][NTP ]

− (k−N + kN+1)[(13 +N,N,N) ∗NTP ]

d[13 +N,N + 1,min(n+ 1, 9)]
dt

= kN+1[(13 +N,N,N) ∗NTP ]

(B.2)

Assuming kN+1 << k1 we have kN+1/k1 ≈ 0. Dividing all the equations through by k1 and

letting kN+1/k1 = 0 we will get

[13 +N,N + 1,min(n+ 1, 9)] = const := M.

Rewriting the third last equation from (B.2) we have

d[13 +N,N,min(n, 8)]
dt

= kN−1[12 +N,N, n]− (k−(N−1) + kN [NTP ])[13 +N,N,min(n, 8)]

+ k−N (L−M)− k−N ([14, N, 2] + [15, N, 3] + [16, N, 4] + . . .+ [11 +N,N, n∗]

+[12 +N,N, n] + [13 +N,N,min(n, 8)])

= k−N (L−M)− k−N [14, N, 2]− k−N [15, N, 3]− . . .− k−N [11 +N,N, n∗]

+ (kN−1 − k−N )[12 +N,N, n]− (k−(N−1) + k−N + kN [NTP ])[13 +N,N,min(n, 8)]
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The new system of N equations is



d[14, N, 2]
dt

= kN−2[15, N, 3]− k−(N−2)[14, N, 2]

d[15, N, 3]
dt

= kN−3[16, N, 4] + k−(N−2)[14, N, 2]− (k−(N−3) + kN−2)[15, N, 3]

...

d[11 +N,N, n∗]
dt

= k1[12 +N,N, n] + k−2[10 +N,N, n∗∗]

− (k−1 + k2)[11 +N,N, n∗]

d[12 +N,N, n]
dt

= k−1[11 +N,N, n∗] + k−(N−1)[13 +N,N,min(n, 8)]

− (k1 + kN−1)[12 +N,N, n]

d[13 +N,N,min(n, 8)]
dt

= k−N (L−M)− k−N [14, N, 2]− k−N [15, N, 3]− . . .

− k−N [11 +N,N, n∗] + (kN−1 − k−N )[12 +N,N, n]+

− (k−(N−1) + k−N + kN [NTP ])[13 +N,N,min(n, 8)]

(B.3)

We need to find the equilibrium of this system (B.3). It follows from the first equation that

[14, N, 2] =
kN−2

k−(N−2)
[15, N, 3].

From the second equation of (B.3) we have

[16, N, 4] =
k−(N−3)

kN−3
[15, N, 3].

From the third equation of (B.3) we have

kN−4[17, N, 5] + k−(N−3)[15, N, 3]− (kN−4 + kN−3)[16, N, 4]

= kN−4[17, N, 5] + k−(N−3)[15, N, 3]− (kN−4 + kN−3)
k−(N−3)

kN−3
[15, N, 3]

= kN−4[17, N, 5]− kN−4

k−(N−3)

kN−3
[15, N, 3] = 0

and then

[17, N, 5] =
k−(N−4)

kN−4

k−(N−3)

kN−3
[15, N, 3].
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From the fourth equation (B.3) we have

kN−5[18, N, 6] + k−(N−4)[16, N, 4]− (k−(N−5) + kN−4)[17, N, 5]

= kN−5[18, N, 6] + k−(N−4)

k−(N−3)

kN−3
[15, N, 3]

− (k−(N−5) + kN−4)
k−(N−4)

kN−4

k−(N−3)

kN−3
[15, N, 3]

= kN−5[18, N, 6]− k−(N−5)

k−(N−4)

kN−4

k−(N−3)

kN−3
[15, N, 3]

= 0

and then

[18, N, 6] =
k−(N−5)

kN−5

k−(N−4)

kN−4

k−(N−3)

kN−3
[15, N, 3].

Repeat the process, until from the (N − 2)th equation of (B.3) we get

k1[12 +N,N, n] + k−2[10 +N,N, n∗∗]− (k−1 + k2)[11 +N,N, n∗]

= k1[12 +N,N, n] + k−2
k−3

k3
. . .

k−(N−3)

kN−3
[15, N, 3]− (k−1 + k2)

k−2

k2
. . .

k−(N−3)

kN−3
[15, N, 3]

= k1[12 +N,N, n]− k−1
k−2

k2
. . .

k−(N−3)

kN−3
[15, N, 3]

= 0

and then

[12 +N,N, n] =
k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
[15, N, 3].

From the (N − 1)th equation we get

k−(N−1)[13 +N,N,min(n, 8)] + k−1[11 +N,N, n∗]− (k1 + kN−1)[12 +N,N, n]

= k−(N−1)[13 +N,N,min(n, 8)] + k−1
k−2

k2
. . .

k−(N−3)

kN−3
[15, N, 3]

− (k1 + kN−1)
k−1

k1
. . .

k−(N−3)

kN−3
[15, N, 3]

= k−(N−1)[13 +N,N,min(n, 8)]− kN−1
k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
[15, N, 3]

= 0
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and then

[13 +N,N,min(n, 8)] =
kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
[15, N, 3].

From the Nth equation of (B.3) we have

k−N (L−M)− k−N [14, N, 2]− k−N [15, N, 3]− . . .− k−N [11 +N,N, n∗]

+ (kN−1 − k−N )[12 +N,N, n]− (k−(N−1) + k−N

+ kN [NTP ])[13 +N,N,min(n, 8)]

= k−N (L−M)−
(
k−N

kN−2

k−(N−2)
+ k−N + k−N

k−(N−3)

kN−3
+ k−N

k−(N−4)

kN−4

k−(N−3)

kN−3

+ k−N
k−(N−5)

kN−5

k−(N−4)

kN−4

k−(N−3)

kN−3
+ . . .+ k−N

k−2

k2
. . .

k−(N−3)

kN−3

− (kN−1 − k−N )
k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

+ (k−(N−1) + k−N + kN [NTP ])
kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

)
[15, N, 3]

= k−N (L−M)−
(
k−N

(
1 +

kN−2

k−(N−2)
+
k−(N−3)

kN−3
+
k−(N−4)

kN−4

k−(N−3)

kN−3

+
k−(N−5)

kN−5

k−(N−4)

kN−4

k−(N−3)

kN−3
+ . . .+

k−2

k2
. . .

k−(N−3)

kN−3
+
k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

+
kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

)
+ kN

kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
[NTP ]

)
[15, N, 3]

= 0

and then

[15, N, 3] =
k−N (L−M)

D
,

where

D = k−N

(
1 +

kN−2

k−(N−2)
+
k−(N−3)

kN−3
+
k−(N−4)

kN−4

k−(N−3)

kN−3
+
k−(N−5)

kN−5

k−(N−4)

kN−4

k−(N−3)

kN−3

+ . . .+
k−2

k2
. . .

k−(N−3)

kN−3
+
k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
+

kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

)
+ kN

kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
[NTP ].

To simplify notation, let

D = k−NA+ kNB[NTP ]
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where

A = 1 +
kN−2

k−(N−2)
+
k−(N−3)

kN−3
+
k−(N−4)

kN−4

k−(N−3)

kN−3
+
k−(N−5)

kN−5

k−(N−4)

kN−4

k−(N−3)

kN−3

+ . . .+
k−2

k2
. . .

k−(N−3)

kN−3
+
k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
+

kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

and

B =
kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3
.

Now we need to go back to the expression for [(13 +N,N,min(n, 8)) ∗NTP ]. We have

[(13 +N,N,min(n, 8)) ∗NTP ]

= (L−M)− ([14, N, 2] + [15, N, 3] + [16, N, 4] + . . .+ [11 +N,N, n∗]

+ [12 +N,N, n] + [13 +N,N,min(n, 8)])

= (L−M)− k−N (L−M)
D

( kN−2

k−(N−2)
+ 1 +

k−(N−3)

kN−3
+
k−(N−4)

kN−4

k−(N−3)

kN−3

+
k−(N−5)

kN−5

k−(N−4)

kN−4

k−(N−3)

kN−3
+ . . .+

k−2

k2
. . .

k−(N−3)

kN−3
+
k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

+
kN−1

k−(N−1)

k−1

k1

k−2

k2
. . .

k−(N−3)

kN−3

)
= (L−M)− k−N (L−M)

D
A

= (L−M)(1− k−N
A

D
)

= (L−M)(1− k−N
A

k−NA+ kNB[NTP ]
)

= (L−M)
kNB[NTP ]

k−NA+ kNB[NTP ]

= (L−M)
[NTP ]

[NTP ] + k−N
kN

A
B

Therefore

d[13 +N,N + 1,min(n+ 1, 9)]
dt

= (L−M)
kN+1[NTP ]

[NTP ] + k−N
kN

A
B

,

where

A

B
= 1 +

k−(N−1)

kN−1

k1

k−1

k2

k−2
. . .

kN−2

k−(N−2)
+
k−(N−1)

kN−1

k1

k−1
. . .

kN−3

k−(N−3)
+

+
k−(N−1)

kN−1

k1

k−1

k2

k−2
. . .

kN−4

k−(N−4)
+ . . .+

k−(N−1)

kN−1

k1

k−1
+
k−(N−1)

kN−1
.

(B.4)
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Now notice that

• the polymerization rate k1 corresponds to kN+1

• the dissociation constant for the next NTP KC corresponds to
k−N
kN

• the term e−β(∆G0
N+12,N,min(N,9)−∆G0

N+13,N,min(N,8)) corresponds to
k−(N−1)

kN−1

• the sum
N−1∑
i=2

e
−β(∆G−1

i+12,N,min(i,9)−∆G0
N+13,N,min(N,8)) corresponds to

k−(N−1)

kN−1

k1

k−1

k2

k−2
. . .

kN−2

k−(N−2)
+
k−(N−1)

kN−1

k1

k−1
. . .

kN−3

k−(N−3)

+
k−(N−1)

kN−1

k1

k−1

k2

k−2
. . .

kN−4

k−(N−4)
+ . . .+

k−(N−1)

kN−1

k1

k−1

Therefore (B.1) and (B.4) are equivalent.
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Appendix C

Markov Chains

Definition C.0.1 A stochastic or random process is a family of random variables {X(t)|t ∈ T},

where the parameter set T is a subset of the real line R.

Definition C.0.2 A stochastic process {X(t)|t ∈ T} is called a discrete-time stochastic process

if the parameter set T is a countable set. If T is uncountable, then {X(t)|t ∈ T} is called

continuous-time stochastic process.

In the case of discrete-time stochastic processes it is common to write {Xt|t ∈ T} instead

of {X(t)|t ∈ T}.

Definition C.0.3 The set SX(t) of values that the random variables X(t) can take is called

state space of the stochastic process {X(t)|t ∈ T}. If SX(t) is countable, then {X(t)|t ∈ T} is

said to be a discrete-state process. If SX(t) is uncountable then {X(t)|t ∈ T} is a continuous-

state process.

Definition C.0.4 A stochastic process {X(t); t ∈ T} is said to be Markovian, or to possess

the Markov property if

P [X(tn+1) ∈ A|X(t) = xt, t ≤ tn] = P [X(tn+1) ∈ A|X(tn) = xtn ] (C.1)

for all events A and for all time instants tn < tn+1.

Equation (C.1) means that the probability that the process moves from state xtn , where it

is at time tn, to a state included in A at time tn+1 does not depend on the way the process

reached xtn from xt0 , where t0 is the initial time.

When {Xn|n = 0, 1, . . .} is a discrete-time and discrete-state stochastic process, the Markov

property implies that

P [Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0] = P [Xn+1 = j|Xn = i]
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for all states i0, . . . , in−1, i, j and for any time n ≥ 0. This also implies that

P [Xn+1 = j|Xn−1 = i, . . . ,X0 = i0] = P [Xn+1 = j|Xn−1 = i]

etc., which means that the transition probabilities between states depend only on the most

recent information about the process that is available.

Definition C.0.5 A Markov chain is a discrete-time stochastic process that possesses the

Markov property.

Definition C.0.6 A stochastic process {Xn|n = 0, 1, . . .} whose state space SXn is countable

is a stationary (or time-homogeneous) Markov chain if

P [Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0] = P [Xn+1 = j|Xn = i] = pi,j

for all states i0, . . . , in−1, i, j and for any time n ≥ 0.

Definition C.0.7 The one-step transition probability matrix P of a Markov chain is given by

P =



0 1 2 . . .

0 p0,0 p0,1 p0,2 . . .

1 p1,0 p1,1 p1,2 . . .

2 p2,0 p2,1 p2,2 . . .
...

...
...

. . .


Notice that since the process must be in one and only one state at time n+ 1 and the pi,j ’s

are probabilities we then have
∞∑
j=0

pi,j = 1 for all i.

Suppose we have a stationary Markov chain with state space {0, 1, 2, . . .} and transition

probability matrix P , and we are interested in the case when the process moves from state i to

state j in n steps (or transitions). The probability of moving from state i to state j in n steps

will be denoted by

p
(n)
i,j := P [Xm+n = j|Xm = i] for m,n, i, j ≥ 0

and the matrix of transition probabilities in n steps will be denoted by P (n).
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Proposition C.0.8 (Chapman-Kolmogorov equations)

p
(m+n)
i,j =

∞∑
k=0

p
(m)
i,k p

(n)
k,j for m,n, i, j ≥ 0. (C.2)

In matrix form, the various equations (C.2) are written as

P (m+n) = P (m)P (n),

which implies

P (n) = P (1)P (1) . . . P (1)︸ ︷︷ ︸
n times

= Pn.

The probability of moving to state j, from initial state i, for the first time at the nth

transition is denoted by

ρ
(n)
i,j := P [Xn = j,Xn−1 6= j, . . . , X1 6= j|X0 = i] for n ≥ 1 and i, j ≥ 0.

The probabilities p(n)
i,j and ρ

(n)
i,j are related by

p
(n)
i,j =

n∑
k=1

ρ
(k)
i,j p

(n−k)
i,j .

Definition C.0.9 The state j is accessible from state i if there exists an n > 0 such that

p
(n)
i,j > 0. We denote this by i→ j.

Definition C.0.10 If state i is accessible from state j, and j is accessible from i, e say that

the states i and i communicate and we write i↔ j. In this case we say that i and j are in the

same class.

Definition C.0.11 Let C be a subset of the state space if a Markov chain. We say that C is

a closed set if, from any i ∈ C, the process always remains in C, that is,

P [Xn+1 ∈ C|Xn = i ∈ C] = 1 for all i ∈ C.

Definition C.0.12 A Markov chain is said to be irreducible if all the states communicate, that

is, if the state space contains no closed set apart from the set of all states.

Proposition C.0.13 If i → j or j → i for all pairs of states i and j of the Markov chain

{Xn, n = 0, 1, . . .}, then the chain is irreducible.
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Definition C.0.14 The state i is said to be recurrent if

fi,i := P [∪∞n=1{Xn = i}|X0 = i] = 1.

If fi,i < 1, we say that i is a transient state.

Notice that fi,i is the probability of an eventual return of the process to the initial state i.

It is a particular case of

fi,j := P [∪∞n=1{Xn = j}|X0 = i]

which denotes the probability that, starting from state i, the process will eventually visit state

j. We can write

fi,j =
∞∑
n=1

ρ
(n)
i,j .

Proposition C.0.15 Suppose state j is recurrent and for k 6= j we have j → k. Then

• k is recurrent,

• j ↔ k,

• fj,k = fk,j = 1.

Corollary C.0.16 The state space S of a Markov chain may be decomposed as

S = T ∪ C1 ∪ C2 ∪ . . . ,

where T consists of transient states, C1, C2, . . . are closed, disjoint classes of recurrent states,

and if j ∈ Cα then

fj,k =

 1 if k ∈ Cα

0 if k /∈ Cα

Furthermore, if we relabel the states so that for i = 1, 2, /ldots states in Ci have consecutive

labels, then the transition matrix P can be rewritten as

P =

 Q R

0 H


where Q is the restriction of the matrix P to the states corresponding to T , R represent the

transitions from states in T to states in C1, C2, . . ., and H represents the transitions within the

closed states.
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Such decomposition is often called canonical decomposition of the state space S.

Proposition C.0.17 If S is finite, not all states can be transient.

Given a Markov chain with canonical decomposition S = T ∪ C1 ∪ C2 ∪ . . ., we are often

interested in the problem of determining the probability that, starting from an element of T ,

the process will remain indefinitely in T or instead will enter one of the sets Ck, from where

it cannot leave (often called absorption problem). For that let us use the following notation.

Define

τ = inf{n ≥ 0;Xn /∈ T}

to be the exit time of T . There are cases where P [τ = ∞|X0 = i] > 0, but assume that

P [τ < ∞|X0 = i] = 1 for all i (and then Xτ is the first state hit outside T ). Define for i ∈ T

and k /∈ T

ui,k = P [Xτ = k|X0 = i].

Once the chain leaves T , it will ht one of the closed recurrent classes and hence can never return

to T . Thus we can interpret ui,k as the probability that the chain leaves T because of absorption

at state k in the closed, recurrent class when the initial state is i. Quantities related to the

absorption are easily computed from the {ui,k}. For example, the probability that absorption

takes place at class Cl is easily computed by summing the absorption probabilities corresponding

to the states in Cl:

ui(Cl) := P [Xτ ∈ Cl|X0 = i] =
∑
k∈Cl

ui,k.

For i, j ∈ T and n ≥ 0 we have

p
(n)
i,j = Q

(n)
i,j ,

and therefore
∑∞
n=0Q

(n)
i,j is the expected number of visits to the transient state j starting from

transient state i.

For i ∈ T and j /∈ T we can decompose the event [Xτ = j] according to what happens at

the first transition:

[Xτ = j] = ∪k∈S [Xτ = j,X1 = k].
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This gives a recursion for the ui,j ’s. We have

ui,j = P [Xτ = j|X0 = i] =
∑
k∈S

P [Xτ = j,X1 = k|X0 = i]

=
∑
k∈T

P [Xτ = j,X1 = k|X0 = i] +
∑
k/∈T

P [Xτ = j,X1 = k|X0 = i]

= A+B.

To analyze B, observe that if k /∈ T then the events [Xτ = j] and [X1 = k] are disjoint unless

j = k, so we have B = pi,j . For A we have that τ ≥ 2, and by conditioning on X1 and using

the Markov property,

A =
∑
k∈T

∑
n≥2

P [τ = n,Xn = j,X1 = k|X0 = i]

=
∑
k∈T

∑
n≥2

P [X2 ∈ T, . . . ,Xn−1 ∈ T,Xn = j,X1 = k|X0 = i]

=
∑
k∈T

∑
n≥2

P [X2 ∈ T, . . . ,Xn−1 ∈ T,Xn = j|X1 = k,X0 = i]P [X1 = k|X0 = i]

=
∑
k∈T

∑
n≥2

pi,kP [X1 ∈ T, . . . ,Xn−2 ∈ T,Xn−1 = j|X0 = k]

=
∑
k∈T

∑
n≥2

pi,kP [τ = n− 1, Xτ = j|X0 = k]

=
∑
k∈T

pi,kP [Xτ = j|X0 = k] =
∑
k∈T

pi,kuk,j .

Since for i, k ∈ T we have pi,k = Qi,k, by combining A and B, we get that

ui,j =
∑
k∈T

Qi,kuk,j + pi,j for i ∈ T and j /∈ T . (C.3)

This recursion, of course, merely says that absorption by a recurrent state j can take place in

two ways: either absorption is accomplished in one step (with probability pi,j), or, if not in one

step, then a transition must be made to an intermediate transition state k (probability Qi,k)

and then from k the chain must be absorbed by state j (probability uk,j).

If we set U = (ui,j , i ∈ T, j /∈ T ), then in matrix notation (C.3) becomes

U = QU +R

which is the same as U − QU = U(I − Q) + R. If I − Q has an inverse, we get the matrix
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solution

U = (I = Q)−1R.

The matrix (I − Q)−1 arises frequently in absorption calculations and is known as the

fundamental matrix. When the state space is finite (or when T is finite) I − Q indeed has an

inverse, which can be represented as

(I −Q)−1 =
∞∑
n=0

Qn

so that

U =
∞∑
n=0

QnR.
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Appendix D

Additional Figures
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(f) DG151a

Figure D.1: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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Figure D.2: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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Figure D.3: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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Figure D.4: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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Figure D.5: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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Figure D.6: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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Figure D.7: Comparison of abortive profiles obtained using secondary structure in the
scrunched DNA (bar plot), modified model (blue asterisk) and experimental data (red
line).
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