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ABSTRACT OF THE THESIS

Dynamics of Microcapsules and Red Blood Cells

in Time-dependent Shear Flow

by

Mengye Zhao

Thesis Director: Professor Prosenjit Bagchi

This thesis presents a three-dimensional numerical study on the dynamics of

deformable capsules in sinusoidally oscillating shear flow. For this study, we

consider capsules of spherical and oblate spheroid resting shapes. For spheri-

cal resting shapes, we find identical deformation response during positive and

negative vorticity. However, the deformation response becomes unequal and

shows complex behavior for nonspherical resting shapes. The average elonga-

tion is higher in the retarding phase of the shear flow than in the accelerating

phase. Primarily two types of dynamics are observed for nonspherical shapes:

a clockwise/counter-clockwise swinging motion in response to the altering flow

ii



direction that occurs at both high and low values of shear rate amplitudes, and

a continuous/unidirectional tumbling motion that occurs at intermediate values.

The unidirectional tumbling motion occurs despite the fact that the time-average

vorticity is zero. Such a tumbling motion is accompanied by a continuous tank-

treading motion of the membrane in the opposite direction. We obtain phase

diagram that shows existence of two critical shear rates and two oscillation fre-

quencies. The unidirectional tumbling motion occurs in the intermediate range,

and the clockwise/counter-clockwise swinging motion occurs otherwise. We also

find that the dynamics is highly sensitive to the initial condition. A swinging is

generally observed when the capsule is released aligned with the extensional or

compressional axis of the shear flow, and a tumbling is observed otherwise. These

results suggest the possibility of chaotic behavior of cells in time-dependent flows.

We provide explanations of such complex dynamics by analyzing the coupling be-

tween the shape and angular oscillation and the imposed flow oscillation.

iii



Acknowledgements

This research is partly funded by National Science Foundation. Computational

supports from the NSF-funded Teragrid resources at TACC and NCSA are ac-

knowledged.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Red Blood Cell: Structure and Geometry . . . . . . . . . . . . . . 1

1.2. Capsules and Vesicles . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Dynamics of Red Blood Cells, Capsules and Vesicles in Steady

Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4. Theory of Shape-preserving Cells . . . . . . . . . . . . . . . . . . 5

1.4.1. Keller and Skalak model . . . . . . . . . . . . . . . . . . . 6

1.4.2. Skotheim and Secomb’s model . . . . . . . . . . . . . . . . 11

1.5. Analysis of Capsule Deformation . . . . . . . . . . . . . . . . . . 12

1.6. Dynamics of Capsules and Red Blood Cells in Unsteady Shear Flow 13

1.7. Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Problem Description and Simulation Methodology . . . . . . . 17

2.1. Background flow and capsule model . . . . . . . . . . . . . . . . . 17

v



2.2. Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1. Fluid-sturcture interaction . . . . . . . . . . . . . . . . . . 20

2.2.2. Numerical treatment of membrane deformation . . . . . . 23

2.2.3. Flow solver . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4. Interface tracking . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5. Dimensionless parameters . . . . . . . . . . . . . . . . . . 25

2.3. Quantifying capsule dynamics . . . . . . . . . . . . . . . . . . . . 26

3. Dynamics of Microcapsules in Oscillating Shear Flow . . . . . . 28

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. Dynamics at Identical Internal and External Fluid Viscosity . . . 32

3.2.1. Spherical capsule . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2. Oblate spheroid . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3. Effect of initial condition: evidence of chaotic motion . . . 56

3.3. Dynamics at Unequal Internal and External Fluid Viscosity . . . 61

3.3.1. Dynamics under steady shear flow: effect of varying viscos-

ity ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2. Dynamics under oscillating shear flow: effect of varying vis-

cosity ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4. Dynamics of Initially Spherical Capsules at Finite Mean Oscillating

Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5. Sensitivity to the Direction of Shear Start-up . . . . . . . . . . . . 75

vi



3.6. Non-periodic Dynamics at Finite-mean Oscillating Shear Flow . . 75

3.7. Dynamics of Red Blood Cells in Zero-mean Oscillating Flow . . . 77

3.7.1. RBC dynamics in steady shear flow . . . . . . . . . . . . . 80

3.7.2. RBC dynamics in zero-mean oscillating shear flow . . . . . 82

4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



List of Figures

1.1. Schematic of an RBC showing its dimensions and the typical values

of hemoglobin and plasma viscosities. Part of the RBC is magnified

to show the lipid bilayer composition of the RBC membrane. . . 3

1.2. Schematic of tank-treading motion (a) and tumbling motion (b),

represented by a marker surface point. . . . . . . . . . . . . . . . 6

1.3. Schematic showing a capsule in shear flow. Here θ is the inclination

angle of the major axis with the flow direction (x), and φ is the

phase angle of a surface Lagrangian point. 0 < θ < π/2 is the

extensional quadrant, and −π/2 < θ < 0 is the compressional

quadrant of the shear flow u = {γ̇y, 0, 0}. . . . . . . . . . . . . . . 7

2.1. Schematic of a capsule in oscillating shear flow u∞ = {γ̇y, 0, 0},

where γ̇(t) = γ̇a sin(2πt/Tsh) is the instantaneous shear rate, γ̇a is

the shear rate amplitude, and Tsh is the oscillation period. . . . . 18

2.2. The Eulerian and Lagrangian grids . . . . . . . . . . . . . . . . . 21

viii



3.1. Dynamics of an initially spherical capsule in a steady shear flow.

The steady shapes are shown for Ca = 0.05 and 1.0. The time

history of the Taylor deformation parameter D and the inclination

angle θ is shown for Ca = 0.02 (−− −− −−), 0.05 (− · ·−), 0.2

(—–), 0.8 (- - - - -), 1.0 (-·-·-). . . . . . . . . . . . . . . . . . . . 30

3.2. Transition from tank-treading/oscillatory (TT/OS) motion to vacillating-

breathing motion (VB) to tumbling motion (TU) under varying

capillary numbers at a constant λ = 5 and α = 0.7: (a) TT/OS

(Ca = 0.1), (b) VB (Ca = 0.05), and (c) TU (Ca = 0.02). Time

increases from top to bottom. A marker point on the membrane is

shown to illustrate the tank-treading. Time instants are t∗ = 12,

14, 16, 18 in (a), t∗ = 8, 13, 14, 16 in (b), and t∗ = 8, 11, 13, 15 in

(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. (a) Instantaneous orientation θ, and (b) deformation parameter D

for the three cases shown in Fig. 3.2: Ca = 0.1 (solid line), 0.05

(dash line), 0.02 (dotted line) correspond to the tank-treading/oscillatory

mode (TT/OS), vacillating-breathing mode (VB), and tumbling

mode (TU), respectively. In (b) we indicate D0 = D(t = 0). . . . 34

ix



3.4. Color online. Dynamics of initially spherical capsules (α = 1) in

oscillating shear flow at Ca = 0.2, T ∗

sh = 15. (a) Capsule shapes at

successive times. A marker point on the surface is shown. (b) In-

stantaneous shear rate (in arbitrary scale), deformation parameter

D, and angle θ for Ca = 0.2, T ∗

sh = 15. . . . . . . . . . . . . . . . 36

3.5. Color online. (a) Time-averaged deformation D, and (b) phase-

lag between deformation response and applied shear for initially

spherical capsule as a function of T ∗

sh for different values of Ca as

0.04(2), 0.1 (∆), 0.2 (∇), 0.4 (�), 0.8 (�), 1.2 (◦). The dash-

dotted line in (a) represents the deformation (Dγ̇a) in a steady

shear flow for Ca =µoaγ̇a/Es = 1.2. The dashed line represents the

deformation (Dγ̇) in a steady shear flow at Ca = µoaγ̇/Es = 2Ca/π

where γ̇ =
∫ Tsh/2

0
γ̇dt/(Tsh/2) = 2γ̇a/π. . . . . . . . . . . . . . . . 37

3.6. Color online. Effect of increasing non-sphericity on deformation

response. The shear rate is shown in arbitrary scale. . . . . . . . 39

x



3.7. Color online. Effect of Ca on capsule dynamics. (a) Time-dependent

snapshots. Arrows indicate the direction of capsule rotation. (b)

Instantaneous inclination angle (θ/π, left scale, solid red line)and

deformation parameter (D, right scale, dashed black line) for a cap-

sule at Ca = 1.2. Other parameters are: γ̇aTsh = 15, α = 0.6, θo =

0, λ = 1. The dotted line shows the instantaneous shear rate in

arbitrary scale. A CW/CCW swinging motion (see definition in

Section. 2.3) is observed here that is characterized by the capsule

rotating both clockwise and counter-clockwise in response to the

altering flow directions, without making a full 2π rotation. . . . . 42

3.8. Color online. Same as in Fig. 3.7 except that Ca = 0.2. A contin-

uous/unidirectional tumbling is observed here although the time-

averaged vorticity is zero. . . . . . . . . . . . . . . . . . . . . . . 43

3.9. Color online. Same as in Fig. 3.7 except that Ca is reduced to

0.04. A CW/CCW swinging motion similar to that in Fig. 3.7

occurs here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10. Color online. Angular location of a Lagrangian marker point on

capsule surface relative to the capsule major axis inclination angle

versus time. Here Ca is varied while α = 0.6 and T ∗

sh = 15 are held

constant. · · · · · · γ̇; —— Ca = 1.2 (in black); – · – Ca = 0.04 (in

black);— ·· — Ca = 0.1 (in green); - - - - Ca = 0.2 (in black); —

— — Ca = 0.4 (in red). . . . . . . . . . . . . . . . . . . . . . . . 48

xi



3.11. Color online. Effect of Tsh on capsule dynamics. γ̇aTsh is varied

as 30, 15, and 5 in (a), (b), (c), respectively, while Ca is held

constant at 0.2. A CW/CCW swing occurs in (a) and (c) which

is characterized by the capsule oscillating both in clockwise and

counter-clockwise directions without making a full 2π rotation. A

tumbling motion occurs in (b) that is characterized by a continuous

and unidirectional (counter-clockwise) rotation of the capsule and

θ goes beyond 2π. Other parameters are: α = 0.6, θo = 0, λ = 1.—

– θ/π (left scale, red line), - - - - - D (right scale, black line), · · · · · ·

γ̇(t)(arbitrary scale). . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12. Color online. Results from the theory of shape-preserving capsules

in oscillating shear flow [1] for α = 0.6, and θo = 0.(a), (b), and
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Chapter 1

Introduction

1.1 Red Blood Cell: Structure and Geometry

Blood is a multiphase suspension that is primarily consist of microscopic cellular

particles like red blood cells or erythrocytes, white blood cells or leukocytes, and

platelets. The cells are suspended in a liquid called plasma which is mostly made

of water and other submicron elements such as proteins, glucose, mineral ions,

hormones and gas. The red blood cells or erythrocytes consititute the major

pariticulate component of the blood which is 40− 45% by volume. The primary

function of the red blood cells is to carry oxygen. The cells are filled with a liquid

called hemoglobin which facilitates the transport of oxygen to the tissues. In

absence of any external fluid flow and force, a normal healthy human red blood

cell assumes a biconcave disk shape that is flattenned at the center (see Fig.

1.1). The physical dimensions of the cell are about 8µm in end-to-end length and

about 2µm in thickness. The cell volume is about 94 µm3, and the surface area is

about 134µm2. The hemoglobin is enclosed by a membrane that is made of a lipid

bilayer and a two-dimensional network of spectrin filaments [2,3]. The membrane

is generally permeable to gas molecules to facillitate their diffusion in and out of
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the cell. The membrane is also permeable to water molecules. The permeability

to water is necessary to maintain the osmotic balance, and hence, the resting

biconcave shape which is obtained under the normal tonicity condition of the

human blood. The cell shape can change if the tonicity of the suspensind medium

is changed. At a significantly reduced tonicity, the biconcave shape disappears,

and a nearly spherical shape is attained. Under the osmolarity-induced swelling,

the cell volume increases while the surface area remains constant.

The red blood cells are extremely deformable cells. The deformability arised

due to the fluidic nature of the hemoglobin, and the elastic nature of the cell

membrane. The hemoglobin and plasma behave as Newtonian fluids. For normal

cells, the typical values of hemoglobin and plasma viscosities are 6 and 1.2 cP, re-

spectively. The cell membrane exhibits a strong resistance against area dilatation,

but a very week resistance against shear deformation. The cells flow in the blood

in a highly deformed shape that rarely resembles the resting biconcave shape.

The deformation occurs due to the hydrodynamic shear, cell-cell interaction, and

cell-wall interaction. The extreme deformability allows the cells to squeeze with-

out any damage through the blood vessels that are much smaller than the cell

size.

1.2 Capsules and Vesicles

Understanding the behavior of red blood cells in flow is fundamental to un-

derstanding the complex motion of blood. On a continuum scale, the detailed
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Figure 1.1: Schematic of an RBC showing its dimensions and the typical values
of hemoglobin and plasma viscosities. Part of the RBC is magnified to show the
lipid bilayer composition of the RBC membrane.

molecular structure of the cell membrane can be neglected. The entire cell is

then modeled as a viscous liquid drop of Newtonian fluid surrounded by a zero-

thickness elastic membrane. For the red blood cell, the mechanical properties

of the membrane includes a resistance against shear deformation, area dilatation,

and bending. The associated elastic modulus are 0.005 dyn/cm, 500 dyn/cm, and

10−12 dyn/cm. Due to the high value of the area dilatation modulus, the surface

area of the red blood cell remains nearly constant while the cell can undergo a

large deformation. In addition, the cell membrane, which is a 2D sheet of incom-

pressible fluid, can also have a viscosity (hereafter, called membrane viscosity).
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In vitro experiments often use alternative artificial microparticles called cap-

sules and vesicles that are structurally similar to the red blood cells, and exhibit

similar dynamics. Such microparticles are also highly deformable, but can be

easily made in the laboratory. Artificial capsules and vesicles are also used as

potential drug carriers. Some differences however exist between a red blood cell

membrane and the membrane of a vesicle or capsule. A vesicle membrane be-

haves like a two-dimensional sheet of incompressible fluid. In other words, a

vesicle membrane is strongly area preserving. In addition, the vesicle membrane

also exhibits a resistance against bending, but no resistance against shear de-

formation. In contrast, a capsule membrane exhibits a resistance against shear

deformation. It can be shown that the time scale of the deformation response

associated with the shear deformation is much shorter than that associated with

the bending resistance. Thus, the dynamics of the red blood cell is, in a major

way, determined by the shear elasticity. Further, the resting shape of the artifi-

cially made capsules and vesicles usually are spherical or non-spherical, and do

not have the biconcave shape of the red blood cells. Further, artificial capsules of-

ten do not exhibit a strong resistance against area dilatation and bending. Hence,

in many theoretical and computational studies of capsules, often the resistance

against area dilatation and bending has been neglected. The membrane viscosity

of the artificial capsules have been rarely measured, and hence, also ignored in

the theoretical models and computational studies. Nevertheless, these micropar-

ticles are also extremely deformable due to the fluidic nature of the inner liquid

and elastic nature of the membrane, and hence, are widely used to model the red
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blood cell behaviors in flow.

1.3 Dynamics of Red Blood Cells, Capsules and Vesicles

in Steady Shear Flow

In a steady linear shear flow, an isolated red blood cell exhibits complex unsteady

dynamics [4–9]. Primarily, a freely suspended red blood cell makes two types of

dynamical motion: a tank-treading motion (TT) in which the cell membrane and

the interior liquid make a rotational motion, while the cell aligns at an angle

with the flow direction, and a tumbling motion (TU) that is characterized by the

flipping of the cell resembling a rigid-body motion. These two types of motion

are illustrated in Fig. 1.2. Qualitatively similar dynamics has been observed for

capsules and vesicles as well [10–18]. A significant shape deformation may occur

during either type of motion. For a given shape, the occurrence of the TT or TU

motion depends on two parameters: λ, the ratio of the internal to suspending

fluid viscosities, and γ̇, the shear rate of the imposed flow. Qualitatively, the

tank-treading motion is typically observed at high shear rates, and at low values

of the interior to exterior fluid viscosity ratio. In contrast, the tumbling motion

is observed at lower shear rates, and at higher values of the viscosity ratio.

1.4 Theory of Shape-preserving Cells

The tank-treading and tumbling dynamics can be predicted to some degree of

accuracy by analytical models. One of the biggest foundation of such models is
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Figure 1.2: Schematic of tank-treading motion (a) and tumbling motion (b),
represented by a marker surface point.

that they assume a shape-preserving cell. In other words, the deformation of the

cell is neglected. These theories are based on the celebrated work of Keller and

Skalak [19]. In the following section we briefly review some of these works starting

with the theory of Keller and Skalak. It may be mentioned that inertia does not

play any role in cell dynamics due to the small size.

1.4.1 Keller and Skalak model

The Keller-Skalak model assumes that a shape-preserving cell that is made of a

viscous liquid drop surrounded by an in-extensible membrane. Since the mem-

brane is inextensible, and the cell is non-deformable, the mechanical properties

of the membrane does not appear in the problem. Then, the dynamics is entirely

determined by the geometry of the cell which remains unchanged, the ratio of

the internal to external fluid viscosity, and the shear rate of the imposed flow.

Consider a neutrally buoyant ellipsoidal particle of half-major and minor axes

lengths L and B, that is immersed in a linear shear flow u = {γ̇y, 0, 0}, where
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Figure 1.3: Schematic showing a capsule in shear flow. Here θ is the inclination
angle of the major axis with the flow direction (x), and φ is the phase angle
of a surface Lagrangian point. 0 < θ < π/2 is the extensional quadrant, and
−π/2 < θ < 0 is the compressional quadrant of the shear flow u = {γ̇y, 0, 0}.
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γ̇ is the shear rate [19]. The internal and suspending fluid to the particle are

all assumed to be incompressible Newtonian fluid with viscosities λµo, and µo

respectively (Fig. 1.3). The membrane is assumed to have zero viscosity. Under

equilibrium condition, the net torque acting on the particle is zero. Further, the

work done by the external fluid on the particle is equal to the energy dissipation

in the internal fluid. These two conditions led to the following set of ordinary

differential equations governing the particle dynamics within the Keller-Skalak

model:

θ̇ = − γ̇

2
− 2LB

L2 +B2
φ̇+

γ̇

2

L2 − B2

L2 +B2
cos 2θ , (1.1)

φ̇ = − γ̇f3
f2 − λf1

cos 2θ (1.2)

where θ is the angle that the major axis of the ellipsoid makes with the flow

direction x, φ is the angular location of a point on the particle surface, and

f1, f2 and f3 are dimensionless quantities, which depend on the particle geometry

[19, 20]. The above system of equations yields two possible solution. A steady

solution (i.e. θ̇ = 0) is obtained when the viscosity ratio λ is less than a critical

value λc. Under the steady solution, the particle’s major axis is inclined at a

steady angle θ∗ with the flow direction, while the particle surface and the interior

fluid make a continuous rotation. Thus, the steady solution correspond to the
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tank-treading motion. The rate of rotation of the particle surface, known as the

tank-treading frequency, can be found directly from the expression of φ̇ above.

The second possibility is an unsteady solution in which θ changes continuously,

and φ̇ oscillates, meaning that the particle flips constantly like a rigid body in

flow. This solution corresponds to the tumbling dynamics, and occurs when the

viscosity ratio is higher than the critical value. The rate of tumbling, and the

instantaneous orientation of the particle can be found using the expression of θ̇

above.

The critical viscosity ratio λc for the transition between tank-treading and

tumbling motion can be obtained by setting θ∗ equals zero,

λc =
1

f1


f2 −

2f3
1

2

(
r2 +

1

r2

)
− z1


 (1.3)

Despite its apparent success in predicting the tank-treading and tumbling

dynamics, there are several limitations of the Keller-Skalak theory. First, as

already mentioned before, the theory assumes a shape-preserving particle, while

red blood cells, capsule and vesicles depart significantly from their resting shape

under the action of the hydrodynamic shear. Further, the deformation could also

be unsteady. While small deformation of capsules and vesicles has been addressed

by the analytical theories [21–23], one needs to resort to the numerical simulations

when large deformations are considered.

Second, the theory predicts that dynamics is independent of the imposed



10

shear rate. Recent experiments and full-scale computational simulations [8, 24]

have shown that the dynamics is shear-rate dependent as well. Specifically, for a

given shape and viscosity ratio, the tank-treading motion occurs at a shear rate

above a critical shear rate, and the tumbling motion occurs below the critical

shear rate. Very recently, analytical theories are being developed to account for

the shear rate dependence dynamics.

Third, recent experiments, computer simulations, and theoretical works have

demonstrated that in addition to the TT and TU motion, erythrocytes, capsules

and vesicles can exhibit an unsteady swinging or oscillatory dynamics (TT/OS)

that is characterized by a time-dependent variation of the inclination angle with

the flow direction, but without a complete tumbling motion [8,14,15,18,20,24–27].

Experiments by Abkarian et al. carried out on a red blood cell (RBC) show that

for high shear values, RBC exhibits a quasi-steady tank-treading motion. With

the decrease in shear rate, the RBC inclination oscillates about a mean angle.

With further decrease in the shear rate, the RBC begins to tumble which is a

departure from the KS theory.

The shear dependent transition and the oscillatory behavior of the RBCs were

modeled by Skotheim and Secomb (SS) [20] as an extension to the Keller-Skalak

theory.



11

1.4.2 Skotheim and Secomb’s model

Skotheim and Secomb’s [20] theory seeks to predict the shear-rate dependence by

introducing an additional elastic energy term of the form E = Eo sin
2 φ into the

equations 1.1 and 1.2. As a result, the conservation of energy requires the work

done by the suspending liquid on the capsule is equal to the sum of the dissipation

inside the capsule and the change in capsule membrane elastic energy. This leads

to the following energy conservation equation

V µ0

(
f2∂tφ

2 + f3γ̇∂tφ cos 2θ
)
= V µf1∂tφ

2 + E0 sin (2φ)∂tφ (1.4)

Solving for φ̇ gives the following modified form of equation 1.2

φ̇ =
f3γ̇

(f2 − λf1)
(Ue sin 2φ− cos 2θ) (1.5)

where, Ue = Eo/V µoγ̇f3, and V is the volume of the particle. Ue can be

interpreted as the ratio of the change in the elastic energy to the work done

by the external fluid during the rotation. It also denotes the stiffness of the

capsule relative to the external shear flow. The dynamics is now dependent on the

dimensionless value of Ue, and hence, on the shear rate and the ad hoc membrane

elastic modulus Eo. There are several advantages of the SS model over the KS

model. First, the SS model predicts the shear-rate dependent dynamics. Second,
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it also predicts the swinging motion which often occurs for the red blood cell in the

tank-treading mode. Third, additionally, the SS model predicts an intermittent

dynamics which is characterized by a combination of the swinging motion and

the tumbling motion. Experimental verification of the intermittent dynamics is

rather scarce except the experimental work by Abkarian et al. [8] for isolated red

blood cells. Despite its apparent success, however, the SS model still neglects

shape deformation.

1.5 Analysis of Capsule Deformation

Deformation dynamics of single capsule has been a subject of investigation for

several decades. Deformation of a capsule suspended in a shear flow was measured

by Chang & Olbright (1993) [28]. Recently, Risso et al. (2006) [29] experimentally

investigated single-file motion of artificial capsules flowing through narrow tubes.

Barthes-Biesel and co-workers (Barthes-Biesel 1980; Barthes-Biesel & Rallison

1981; Barthes-Biesel & Sgaier 1985; Barthes-Biesel 1991) [21, 30–32] developed

the theory of small deformation for a capsule suspended in a shear (or, a general

linear) flow. Li et al. (1988) [33] computed axisymmetric large deformation of

capsules in a pure straining flow, and Leyrat-Maurin & Barthes-Biesel (1994) [34]

studied axisymmetric large deformation of a capsule during its passage through

a hyperbolic constriction. Queguiner & Barthes-Biesel (1997) [35] studied the

axisymmetric motion of capsules through cylindrical tubes. Pozrikidis (1995) [36]

and Ramanujan & Pozrikidis (1998) [11] used boundary integral simulation to
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consider large deformation of capsules in shear flow. Pozrikidis (2001) [37] and

Kwak & Pozrikidis (2001) [38] have also studied the effect of membrane bending

resistance on the deformation of a capsule suspended in shear flow and in ax-

isymmetric straining flow. Effect of membrane viscosity on the dynamic response

of a capsule was studied by Diaz et al. (2000, 2001) [39, 40]. Capsule deforma-

tion under various constitutive laws for the membrane material was studied by

Barthes-Biesel et al. (2002) [41] and Lac et al. (2004) [42]. Effect of membrane

pre-stress was studied by Lac & Barthes-Biesel (2005) [43]. Eggleton & Popel

(1998) [44] studied the large deformation of red blood cell ghosts using immersed

boundary method. They have used both the neo-Hookean and Evans-Skalak

model to study the deformation of initially spherical and biconcave capsules in

shear flow.

1.6 Dynamics of Capsules and Red Blood Cells in Un-

steady Shear Flow

The tank-treading/swinging and tumbling dynamics of capsules and red blood

cells in a steady shear flow have been a subject of intense research for many years.

In contrast, the red blood cells in circulation are subject to an unsteady flow,

and recoil of smaller arteries regulating local circulation [45]. There have been

a few studies that address the effect of the pulsatile flow on the cell dynamics.

Nakajima et al. [46] studied the red cell deformation response in a sinusoidally

varying shear flow generated in a cone-and-plate viscometer. A major finding
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of their experiment is that the deformation response is not identical during the

accelerating and retarding phases of the shear flow; the deformation is higher

during the retarding phase, and lower during the accelerating phase. Nakajima

et al. [46] noted that such an unequal response was not due to the viscoelastic

nature of the cell membrane, but probably due to the rheological property of the

intracellular fluid and its interaction with the membrane. Using the Skotheim-

Secomb model [20] for shape-preserving capsules, Kessler et al. [47] obtained

analytical solutions for quasi-spherical shapes in time-dependent shear flow. Their

analysis reveals a resonant behavior under harmonically varying shear rate: For

some frequencies and phase, it is possible to observe a tumbling motion of the

capsule, which otherwise would swing under a steady shear flow corresponding to

the time-averaged shear rate. Using a similar model for shape-preserving capsules

[8], and supported by experiments, Dupire et al. [1] showed that the red blood cells

can present either a stable motion or a chaotic motion under a sinusoidally varying

shear flow. A stable tumbling motion is observed for shear rate amplitudes less

than the critical shear rate for the tank-treading-to-tumbling transition in a steady

flow. For higher shear rate amplitudes, the cell swings when the instantaneous

shear rate is greater than the critical shear rate, and tumbles when it is less. In

this range, an unstable nonperiodic motion that is highly sensitive to the initial

condition is predicted by the theory, and also observed in the experiments. Using

a phenomenological model that included cell deformation and constructed within

the general framework of the Keller-Skalak theory [19], Noguchi [48] found that

at a low shear frequency the cell swings at a high or low shear amplitude; the
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former is termed as a tank-treading (TT)-based swing while the latter is termed

as a tumbling (TB)-based swing. At the intermediate shear amplitude, a non-

periodic motionis predicted. At higher frequencies, multiple stable solutions are

found that depend on the initial inclination.

1.7 Scope of the Thesis

As evident from the above discussion, the cells/capsules exhibit interesting and

complex dynamics in time-dependent shear flow. However, several aspects of the

cell dynamics were not addressed or considered in the above studies. The analyti-

cal models used by Kessler et al. [47] and Dupire et al. [1] are for shape-preserving

cells (though local deformation is permitted), while the large deformation of cells

and capsules are well known. The experimental work of Nakajima et al. [46] did

not mention the swinging motion, while such a motion is always observed for

red blood cells and nonspherical capsules in moderate values of shear rate and

viscosity ratio [8, 18, 20, 24–26, 49]. The swinging motion is always accompanied

with periodic shape oscillation, and the angular and shape oscillations are highly

synchronized. A recent review by Finken et al. [50] finds that shape changes play

a dominant role in capsule dynamics. It is not clear how this synchronized shape

and angular oscillation is affected when the imposed shear flow also oscillates with

time. It is not clear also if the cells would exhibit chaotic dynamics when they

are allowed to deform.
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The overall objective of this thesis is, therefore, to study cell/capsule dynam-

ics in a sinusoidally oscillating shear flow in presence of deformation. While the

real flow oscillation is expected to be more complex than a harmonic one, this

study serves as the first step towards understanding the complex cell dynamics

in more realistic unsteady environment. Towards that end, we use a previously-

developed in-house immersed-boundary/front-tracking methodology to study un-

steady three-dimensional cell dynamics in the oscillating shear flow. We address

four sub-problems in the thesis as follows:

First, we consider the capsule dynamics in a zero-mean oscillating shear flow

under the condition of identical internal and external fluid viscosity. We consider

both the initially spherical and non-spherical capsule shapes. The majority of the

thesis is devoted to this work.

Second, we briefly address the role of internal fluid viscosity for both initially

spherical and oblate capsules.

Third, we study the dynamics in finite-mean oscillating shear flow for initially

non-spherical capsules.

And, finally, the dynamics of red blood cells in a zero-mean oscillating shear

is also briefly addressed.

The numerical method is outlined in the next chapter. Since the code devel-

opment is not a part of this thesis, we present only the salient features. This is

followed by the detail presentation and analysis of the computational results in

Chapter 3. The summary and conclusion are presented in Chapter 4.
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Chapter 2

Problem Description and Simulation

Methodology

2.1 Background flow and capsule model

Three-dimensional numerical simulations using front-tracking methods [51] are

considered for capsules immersed in a time-dependent shear flow, and undergoing

large deformation. The problem setup is depicted in Fig. 2.1. The imposed flow is

a zero-mean sinusoidally oscillating linear shear flow given by u∞ = [yγ̇(t), 0, 0],

where γ̇(t) is the instantaneous shear rate specified as

γ̇(t) = γ̇a sin

[
2π

t

Tsh

]
, (2.1)

where γ̇a is the shear rate amplitude and Tsh is the oscillation period. Flow di-

rection changes at every Tsh/2 interval. We consider two different initial (resting)

shapes of capsules: a spherical shape, and an oblate spheroid of initial aspect ratio

α = B0/L0 where B0 and L0 are the semi-minor and major axes of the spheroid.

The axis of symmetry of the initial shape lies in the shear plane. The capsule
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Figure 2.1: Schematic of a capsule in oscillating shear flow u∞ = {γ̇y, 0, 0},
where γ̇(t) = γ̇a sin(2πt/Tsh) is the instantaneous shear rate, γ̇a is the shear rate
amplitude, and Tsh is the oscillation period.

is represented as a liquid drop surrounded by a zero-thickness elastic membrane.

The interior and suspending fluids are assumed to be incompressible and Newto-

nian with viscosities λµo and µo, respectively; here, λ is the viscosity ratio. The

membrane is assumed to possess the resistance against shear deformation, area

dilatation, and bending. The shear deformation and area dilatation are modeled

using the strain energy function developed by Skalak et al. [52] as

W =
Es

4

[
(ǫ2

1
+ ǫ2

2
− 2)2 + 2(ǫ2

1
+ ǫ2

2
− ǫ2

1
ǫ2
2
− 1) + C

(
ǫ2
1
ǫ2
2
− 1

)2]
(2.2)

where ǫ1 and ǫ2 are the principal stretch ratios, and Es and Es(1 + 2C) are
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the surface shear modulus, and the area dilatation modulus, respectively. The

bending resistance is modeled using the Helfrich formulation [53] as

fb = Eb

[
(2κ+ co)

(
2κ2 − 2κg − coκ

)
+ 2∆s κ

]
n , (2.3)

where fb is the force arising due to the bending resistance, Eb is the membrane

bending modulus, κ is the mean curvature, κg is the Gaussian curvature, co is

the spontaneous curvature of the membrane, n is the unit outward normal vector

to the membrane, and ∆s is the Laplace-Beltrami operator. We note that the

constitutive law chosen for the in-plane elasticity is highly nonlinear, but that

for the bending resistance is linear as Eq. (2.3) was derived by considering the

first variation of the bending energy. Our choice of the Helfrich force is based on

its earlier success in the study of vesicle dynamics, as well as its straightforward

implementation within the framework of the front-tracking method. The Helfrich

model has been used extensively to model bending resistance of vesicle membrane

and in the study of complex (non-linear) vesicle dynamics (e.g., Danker et al. [22])

It is not known if the bilayer would behave differently in the present context.
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2.2 Simulation Methodology

2.2.1 Fluid-sturcture interaction

For the multiple fluids with different properties considered for this problem,

the simulation technique applied here is the front-tracking/immersed boundary

method (Peskin et al. [54]; Unverdi & Tryggvason [55]; Tryggvason et al. [51])

The main idea of the front-tracking method is to use a single set of equations for

both the internal and the suspending fluids of the capsule. The fluid equations

are solved on a fixed Eulerian grid, and the interface is tracked in a Lagrangian

manner by a set of marker points as shown in Fig. 2.2.

Since both the internal and the suspending fluid are considered to be imcom-

pressible, the fluid motion interior and exterior to the capsule is governed by the

continuity and Navier-Stokes equations

∇ · u = 0 , (2.4)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p +∇ · µ

[
∇u+ (∇u)T

]
. (2.5)

where u (x, t) is the fluid velocity, ρ is density, p is pressure, and µ is the

viscosity. Here µ (x, t) is a single variable used to denote the viscosity of the

entire fluid. Therefore, µ = µc for the inner fluid and µ = µ0 for the outer fluid
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Lagrangian grid

Eulerian grid

Figure 2.2: The Eulerian and Lagrangian grids
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of the capsule. An indicator function I(x) is mathematically defined which is

unity inside the capsule and zero everywhere outside. Thus, µ is given by a single

expression for every point in the fluid as

µ(x) = µ0 + (µc − µ0)I(x). (2.6)

The coupling between the membrane forces and the bulk flow is achieved

by adding a source term
∫
S
(fe + fb) δ(x − x′)dx′ to (2.5) where δ is the three-

dimensional Dirac-Delta function, fe is the membrane force due to shear deforma-

tion and area dilatation obtained from (2.2), x is a fixed (Eulerian) location in the

flow, and x′ is a Lagrangian location on the capsule surface S. The membrane

is advected as dx/dt = um where the membrane velocity um at a Lagrangian

location is obtained by interpolating the local fluid velocity u using the Delta

function. As a result, the membrane force varies smoothly over four Eulerian grid

points surrounding the interface. For numerical implementation, the 3D δ func-

tion used in the source term is constructed by multiplying three 1D δ functions

as

D(x− x′) =
1

64∆3

3∏

i=1

(
1 + cos

π

2∆
(xi − x′

i)
)

for |xi − x′

i| ≤ 2∆, i = 1, 2, 3,

D(x− x′) = 0 otherwise, (2.7)

where ∆ is the Eulerian grid size (Unverdi & Tryggvason [55]).
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2.2.2 Numerical treatment of membrane deformation

The capsule membrance govern by the constitutive law is described by a strain

energy funcion W due to Skalak et al. . The elastic forces acting on the vertices

of a triangular element is obtained from the strain energy function W using the

principal of virtual work given as: f(x′, t) = −∂W/∂x′.

The elastic force fe is computed using a finite-element method [56]. The

membrae is discretized using 2D triangular elements. The major advantage of this

idea is that it reduces a general 3D deformation of the membrane to a 2D problem

by using the assumption that individual triangular element on the membrane

remains flat during and after the deformation. The forces acting of the vertices of

the element are therefore obtained by computing the displacements of the vertices

of those deformed elements with respect to those undeformed elements.

The curvatures κ and κg are calculated by fitting a quadratic surface locally

on the capsule surface, and using a least-square method to find the coefficients.

Iterations are performed until a satisfactory convergence to the estimated nor-

mal vector is obtained. The curvatures are then found in terms of the fitted

coefficients. By considering prescribed shapes, such as, spheres, spheroids, and

biconcave discoids, we verified that the numerically estimated curvatures are sat-

isfactory in comparison with their analytical counterparts. The computation of

the Laplace-Beltrami operator on a triangulated surface follows the technique

given in Reuter et al. [57].
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2.2.3 Flow solver

The Navier-Stokes equations are solved on a fixed rectangular grid. A combined

second-order finite difference scheme and Fourier transform is used for the spa-

tial discretization, and a second-order time-split scheme is used for the temporal

discretization of the Navier-Stokes equations. In this method, we split the mo-

mentum equation into an advection-diffusion equation and a Poisson equation for

solving the pressure. The body-force term is included in the advection-diffusion

equation. For numerical treatments, a second-order Adams-Bashforth scheme is

used for the nonlinear terms, and a semi-implicit second-order Crank-Nicholson

scheme is used for viscous terms. The resulting linear equations are inverted

using ADI (alternating direction implicit) scheme to obtain a predicted velocity

field. The pressure field of next time step is then obtained by solving the Poisson

equation. Using the new pressure to correct the predicted velocity field, so that

it satisfies the divergence-free condition.

2.2.4 Interface tracking

After obtained velocity and pressure fields by solving the Navier-Stokes equations,

Lagrangian manner is used to track the capsule membrane. No-slip condition

on the capsule surface is imposed by extracting the surface velocity from the

suspending fluid at each time step as

uS(x
′, t) =

∫

S

u(x, t)δ(x− x′)dx, (2.8)
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where, S indicates the entire flow domain. Though the summation is over

all fixed Eulerian nodes in the computational domain, only the ‘local’ nodes con-

tribute to the membrane velocity. The discrete form of the delta function used

here is the same as that given in equation 2.7. The Lagrangian points on the

capsule membrane are then advected as

dx′

dt
= uS(x

′, t). (2.9)

Numerical treatment for the above equation is explicit second-order Adams-

Bashforth scheme.

As the capsule moves and deforms, µ needs to be updated by solving a Poisson

equation for the indicator function I(x, t) as

∇2I = ∇ ·G, (2.10)

where, G =
∫
S
δ(x − x′)ndx, and n is the unit vector normal to the capsule

surface.

2.2.5 Dimensionless parameters

To cast the equations in dimensionless form, we use the radius a of the ini-

tial spherical shape (or, the radius of a sphere having the same volume of the

spheroid) as the length scale, and the inverse shear rate amplitude γ̇−1

a as the

time scale. Then, the relevant dimensionless parameters are: the viscosity ratio



26

λ, the aspect ratio α, the capillary number Ca = µoaγ̇a/Es, dimensionless period

of flow oscillation T ∗

sh = γ̇a Tsh, the dimensionless bending rigidity E∗

b = Eb/a
2Es,

and the parameter C associated with area dilation. We study capsule dynam-

ics under varying α, Ca and T ∗

sh, and keep λ, E∗

b , and C constant at 1, 0.01,

and 1, respectively. The choice of E∗

b = 0.01 is based on the experimentally

measured values for erythrocytes as Eb = 1 − 9 × 10−19 J [58–62], Es = 2 − 6

µN/m [3, 63], and a = 2.82 µm [64]. However, unlike an erythrocyte membrane

for which the surface is nearly incompressible, the capsule surface in the present

case is allowed to dilate since we are using C = 1. Similar to many previous

studies on vesicles of nonspherical shapes (e.g., [22]), we take the spontaneous

curvature to be spatially-independent, as in the Helfrich formulation [53], and set

it equal to co = 0, although it should be recognized that the reference curvature is

space-dependent for the nonspherical resting shape. The Reynolds number Re =

ρa2γ̇a/µo = 0.01. The flow domain is a cubic box of length 2πa, and is periodic in

the x and z directions, and wall-bounded in the y direction. We use 803 Eulerian

points to discretize the box, and 5120 triangular elements to discretize the capsule

surface.

2.3 Quantifying capsule dynamics

The capsule dynamics will be quantified in terms of the Taylor deformation pa-

rameter D(t) = (L − B)/(L + B) where L and B are the instantaneous lengths

of the major and minor axes in the shear plane, and the instantaneous angle θ(t)
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that the major axis makes with the positive x direction (Fig. 2.1). The numerical

methodology has been presented in greater details and well tested in [65, 66] for

capsules with neo-Hookean membranes without considering the bending rigidity.

We have further verified that when using Skalak et al.’s formula, we obtain re-

sults that are in agreement with the previously published ones; for example, for

initially spherical capsules with C = 1, and in absence of the bending rigidity, we

get steady deformation D = 0.186, 0.33, 0.42, 0.49 at Ca = 0.1, 0.3, 0.6, and 1.2,

respectively, which agree with the results of Lac et al. [42] and Li & Sarkar [67].

The tumbling and swinging motion will be identified here by the major axis

inclination angle θ. As shown in Chapter 3, two types of dynamics are observed.

In one case, the capsule makes clockwise and counter-clockwise swing in response

to the altering flow directions, and θ remains bounded within 0 and 2π; such

a motion is termed here as ‘clockwise/counter-clockwise (CW/CCW) swing’. It

can occur at high or low shear rates: Following Noguchi [48], the first one will

be termed as the tank-treading (TT)-based swing as a material point on the cap-

sule surface shows a significant oscillation (shown later in Fig. 3.10); the second

one will be termed as the tumbling (TB)-based swing as a material point shows

no significant oscillation. For other cases, the capsule makes a continuous and

unidirectional rotating motion, so that θ continuously changes in only one direc-

tion beyond 2π. Such a motion is termed here as a ‘continuous/unidirectional

tumbling’.
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Chapter 3

Dynamics of Microcapsules in Oscillating Shear

Flow

3.1 Introduction

Before presenting the results on the capsule dynamics in oscillating shear flow,

first we briefly present some salient results on the capsule dynamics in a steady

linear shear flow as obtained from the present simulations. We consider two

initial shapes: a spherical shape, and an oblate spheroid. At time t∗ = 0, the

capsule is released in the flow. It gradually deforms under the action of the

hydrodynamic force, and eventually attains a steady or a quasi-steady dynamics.

When the spherical initial shape is considered, the capsule deforms in to an obtale

shape, and attains a steady deformation and an inclination angle with the flow

direction. The steady shape of the capsule is shown in Fig. 3.1 for Ca = 0.05

and 1.0. In the former case deformation away from the initial spherical shape

is evident, though not severe. In the latter case, severe deformation occurs, and

the capsule attains highly oblate disc shape with high curvatures at the tips.

The membrane and the interior fluid make a continous rotation. Thus, only a

steady tank-treading motion is observed for the initially spherical shape. The
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time history of the deformation response is also shown in the figure by plotting

the instantansous Taylor deformation parameter D and the inclination angle θ.

Clearly, the deformation increases with increasing capillary number. Note that

when the steady state value ofD versus Ca is considered, it appears thatD reaches

a saturation with increasing Ca. This is because the membrane is behaving as

strain-hardening as we are using the constitutive law of Skalak et al. (Section.

2.2.2). Also note that the inclination angle decreases with increasing Ca as the

capsule aligns more with the flow direction.

Next, we present some salient features of the dynamics of an initially non-

spherical capsule. As discussed in the Introduction, there are primarily two types

of motion that occur for a nonspherical capsule: an oscillatory motion combined

with the tank-treading (usually, called the ‘swinging’ motion), and a tumbling

motion. Significant deformation can exist in both modes. The former type of

motion is observed for high capillary number, low viscosity ratio, and moderate

oblate shapes. The latter type of motion is observed for low capillary number,

high viscosity ratio, and highly nonspherical shapes. In this example we consider

three cases for which λ is kept constant at 5, but Ca is varied as 0.1, 0.05 and

0.02. The capsule shapes at different time instants are shown in Fig. 3.2, and the

instantaneous deformation D and inclination angle θ are shown in Fig. 3.3.

Consider first the Ca = 0.1 case (Fig. 3.2a). For this, an oscillatory or swinging

motion (TT/OS) is observed during which the capsule orientation varies period-

ically in time with the major axis remaining in the extensional quadrant of the
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Figure 3.1: Dynamics of an initially spherical capsule in a steady shear flow. The
steady shapes are shown for Ca = 0.05 and 1.0. The time history of the Taylor
deformation parameter D and the inclination angle θ is shown for Ca = 0.02 (−−
−− −−), 0.05 (− · ·−), 0.2 (—–), 0.8 (- - - - -), 1.0 (-·-·-).
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flow, while the membrane and the internal fluid make a tank-treading motion. As

Fig. 3.3 shows, the inclination angle for this case oscillates in time between θmin

and θmax, but always remains positive. The oscillatory motion is accompanied

by a periodic shape deformation, and as Fig. 3.3 shows, the deformation param-

eter D varies between Dmax and Dmin with Dmax > D0 and Dmin < D0, where

D0 = D(t = 0). We also find that high tensile stresses develop in the membrane

when D > D0, and compressive stresses develop when D < D0 (shown later). We

do not observe membrane wrinkling within the span of our simulation (t∗ < 25).

Perhaps longer simulations will magnify such instabilities.

For Ca = 0.05 (Fig. 3.2b), a large amplitude swinging motion occurs during

which θ periodically becomes positive and negative, but a full tumbling motion

does not happen. A large-amplitude shape oscillation is present in this case in

which the capsule instantly reaches a nearly circular shape in the shear plane,

and hence, D momentarily approaches zero. A sharp increase in θ occurs while

going from θmin to θmax due to the large shape oscillation (Fig. 3.3). We identify

this case as a vacillating-breathing (VB) capsule. It appears that the amplitude

of shape oscillation, defined as Dmax −Dmin, is the maximum for the VB motion.

For Ca = 0.02 (Fig. 3.2c), the tank-treading ceases, and a full tumbling mo-

tion (TU) is observed in which θ varies between ±π/2. Even for this case, the

deformation parameter D oscillates in time implying that a shape oscillation can

co-exist with the tumbling motion. The time-averaged deformation decreases

with decreasing Ca as evident from Fig. 3.3.
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In summary, our numerical results suggest three types of unsteady dynam-

ics: (i) an oscillatory motion (TT/OS) co-existing with the tank-treading motion

at higher values of Ca, (ii) a vacillating-breathing motion (VB) at intermediate

values of Ca for which the inclination angle periodically becomes positive and

negative but a full tumbling does not happen, and (iii) a full tumbling motion

at sufficiently lower values of Ca. Periodic shape oscillation co-exists in all cases,

with the maximum shape oscillation occurring for the VB motion. The membrane

stresses also vary periodically and are synchronized with the capsule elongation or

compression. Similar observations are made when the transition triggered by in-

creasing λ is considered: the TT/OS occurs at relatively low values of λ, followed

by VB and TU motions at higher values.

3.2 Dynamics at Identical Internal and External Fluid

Viscosity

First we present the results of capsules of initial spherical shape, followed by

those of oblate spheroid shape. It should be mentioned that an initially spherical

capsule, when subject to a steady shear flow, usually attains a steady deformed

shape and inclination after an initial transience, while the membrane and interior

fluid undergo a steady tank-treading motion. In contrast, a nonspherical capsule

in a steady shear flow is observed to exhibit the swinging or tumbling motion

with simultaneous periodic shape oscillation. A steady motion of a nonspherical

capsule is often not observed.
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Figure 3.2: Transition from tank-treading/oscillatory (TT/OS) motion to
vacillating-breathing motion (VB) to tumbling motion (TU) under varying cap-
illary numbers at a constant λ = 5 and α = 0.7: (a) TT/OS (Ca = 0.1), (b)
VB (Ca = 0.05), and (c) TU (Ca = 0.02). Time increases from top to bottom.
A marker point on the membrane is shown to illustrate the tank-treading. Time
instants are t∗ = 12, 14, 16, 18 in (a), t∗ = 8, 13, 14, 16 in (b), and t∗ = 8, 11,
13, 15 in (c).
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Figure 3.3: (a) Instantaneous orientation θ, and (b) deformation parameter D
for the three cases shown in Fig. 3.2: Ca = 0.1 (solid line), 0.05 (dash line),
0.02 (dotted line) correspond to the tank-treading/oscillatory mode (TT/OS),
vacillating-breathing mode (VB), and tumbling mode (TU), respectively. In (b)
we indicate D0 = D(t = 0).
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3.2.1 Spherical capsule

Fig. 3.4 describes the dynamics of an initially spherical capsule in an oscillating

shear flow for Ca = 0.2 and T ∗

sh = 15. The capsule undergoes a swinging motion

between θ ≈ ±π/4 in response to the sinusoidal shear. Periodic shape deformation

accompanies the swinging motion. In any general shear flow, a capsule always

seeks to align with the extensional quadrant. As a result,for 0 < t∗ < T ∗

sh/2,

the capsule aligns in the positive quadrant (0 < θ < π/2). Elongation occurs

during the accelerating phase (0 < t∗ < T ∗

sh/4), and the deformation approaches

a maximum when γ̇ ≈ |γ̇a|. Contraction occurs during the retardation phase,

and the spherical shape is recovered at flow reversal (t∗ = T ∗

sh/2). After the flow

reversal (t∗ > T ∗

sh/2), the capsule aligns in the negative quadrant (−π/2 < θ < 0),

and the elongation and contraction cycle is repeated.

The time-dependent deformation parameter D(t) is shown in Fig. 3.4(b). It is

important to note in the figure that the deformation response is identical during

accelerating and retarding phases of the shear flow. The accelerating phase refers

to the time window (e.g., 3T ∗

sh/4 < t∗ < 5T ∗

sh/4) during which γ̇ changes from

−γ̇a to γ̇a, and the retarding phase refers to the time window (e.g., T ∗

sh/4 < t∗ <

3T ∗

sh/4) during which γ̇ changes from γ̇a to −γ̇a. For the present case, we can

compare the deformation responses during the positive and negative values of

the vorticity. Note that the vorticity is negative during 0 < t∗ < T ∗

sh/2, and

positive during T ∗

sh/2 < t∗ < T ∗

sh. From Fig. 3.4(b) we see that the deformation

responses are identical during positive and negative vorticity. We have verified
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Figure 3.4: Color online. Dynamics of initially spherical capsules (α = 1) in
oscillating shear flow at Ca = 0.2, T ∗

sh = 15. (a) Capsule shapes at successive
times. A marker point on the surface is shown. (b) Instantaneous shear rate (in
arbitrary scale), deformation parameter D, and angle θ for Ca = 0.2, T ∗

sh = 15.
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Figure 3.5: Color online. (a) Time-averaged deformation D, and (b) phase-lag
between deformation response and applied shear for initially spherical capsule
as a function of T ∗

sh for different values of Ca as 0.04(2), 0.1 (∆), 0.2 (∇), 0.4
(�), 0.8 (�), 1.2 (◦). The dash-dotted line in (a) represents the deformation
(Dγ̇a) in a steady shear flow for Ca =µoaγ̇a/Es = 1.2. The dashed line represents
the deformation (Dγ̇) in a steady shear flow at Ca = µoaγ̇/Es = 2Ca/π where

γ̇ =
∫ Tsh/2

0
γ̇dt/(Tsh/2) = 2γ̇a/π.
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that the identical deformation occurs for spherical capsules over a wide range:

0.04 ≤ Ca ≤ 1.2, and 5 ≤ T ∗

sh ≤ 30. Hence, the results for spherical capsule

differ from the experimental finding of Nakajima et al. [46] who observed unequal

deformation response of the red blood cells. However, as we will show later,

unequal deformation response is observed for nonspherical capsules. The role of

shape oscillation becomes more important in case of nonspherical capsules, as will

be seen later.

Fig. 3.5(a) shows the time-averaged deformation parameterD =
∫ T ∗

sh

0
D dt∗/T ∗

sh.

For low values of Ca, the capsule responds fast, and hence D is independent of

T ∗

sh over the range considered. For higher Ca values, the response is slow. Hence

D increases with increasing T ∗

sh and approaches an asymptotic value for larger

oscillating periods. As Fig. 3.5 shows, this asymptotic D is less than the defor-

mation ( indicated by Dγ̇ in Fig. 3.5(a)) that would occur in a steady shear flow

corresponding to the mean shear rate γ̇ =
∫ Tsh/2

0
γ̇dt/(Tsh/2) = 2γ̇a/π, and also

less than the deformation (indicated by Dγ̇a in Fig. 3.5(a)) that would occur in a

steady shear flow corresponding to the shear rate amplitude γ̇a. Fig. 3.5(b) shows

the phase-lag between the deformation response and the applied shear. At a given

value of T ∗

sh, the phase-lag increases with increasing Ca, since the response time

increases. For a given Ca, the phase-lag also increases with increasing oscillating

frequency since the capsule has less time to respond to the flow. This result is

consistent with the prediction made by Noguchi [48].
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3.2.2 Oblate spheroid

In time-dependent flows, one important parameter for the nonspherical capsules,

unlike for the spherical capsules, is the initial inclination angle θo between the

major axis and the positive x direction. First, we will study the effect of non-

sphericity, capillary number and oscillating period while keeping θo = 0 fixed.

Later, we will consider the effect of θo. The effect of non-sphericity on the defor-

mation response is shown in Fig. 3.6. Unlike the spherical capsules, the deforma-

tion responses of the nonspherical capsules are not identical during the positive

and negative vorticity. Also, the deformation responses are not identical during

the accelerating and retarding phases of the shear flow. The asymmetry in the

deformation response increases with increasing non-sphericity (i.e., with decreas-

ing α). The average deformation during the retarding phase is higher than that

during the accelerating phase. Hence, our results agree qualitatively with the

experimental results of Nakajima et al. [46] for non-spherical capsules. Since our

model does not include membrane viscosity, the results suggest that the mem-

brane viscosity is not essential to account for the unequal deformation response.

However, based on our results it cannot be concluded if the asymmetry in de-

formation response increases or decreases with changing Ca and T ∗

sh when α is

kept constant (see also Fig. 3.11). Also interesting to note that for lower values

of α and T ∗

sh as in Fig. 3.6(a), unequal number of peaks of D are observed during

positive and negative values of vorticity. Hence, the deformation response can be

quite complex, and is due to the coupling between the imposed flow oscillation
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and the natural swinging/tumbling of the capsule. In the following, we illustrate

this coupling in greater details.

First we consider the effect of the capillary number on capsule dynamics which

is shown in Fig. 3.7, 3.8, 3.9 where Ca is varied as 1.2, 0.2, and 0.04, respectively,

while the oscillation period is held constant at T ∗

sh = 15. As evidence in the

figures, a CW/CCW swinging motion (see definition in Section. 2.3) occurs at Ca

= 1.2 and 0.04 in which the capsule rotates both clockwise and counter-clockwise

in response to the altering flow directions, but does not make a full 2π rotation. In

contrast, a continuous/unidirectional tumbling motion occurs at Ca = 0.2. This

result is remarkably different from that observed in a steady shear flow in which

the tumbling motion would occur at Ca = 0.04 and swinging motion would occur

at Ca = 0.2 and 1.2. Hence, unlike in a steady shear flow in which the tumbling

motion occurs at low values of Ca and the swinging motion occurs at higher

values, in an oscillating shear, a continuous/unidirectional tumbling motion is

observed to appear in the intermediate values of Ca, and a CW/CCW swinging

motion occurs at both high and low values of Ca. Further, the tumbling motion

occurs continuously in the counter-clockwise direction for the case shown. This

is also surprising since the time-averaged vorticity of the imposed shear flow is

zero.

Several interesting features about the coupling between the shape and angular

oscillation, and time-dependent shear-rate are revealed by examining D and θ as

presented in Fig. 3.7, 3.8, 3.9. Consider Fig. 3.7 which corresponds to a swinging
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Figure 3.7: Color online. Effect of Ca on capsule dynamics. (a) Time-dependent
snapshots. Arrows indicate the direction of capsule rotation. (b) Instantaneous
inclination angle (θ/π, left scale, solid red line)and deformation parameter (D,
right scale, dashed black line) for a capsule at Ca = 1.2. Other parameters are:
γ̇aTsh = 15, α = 0.6, θo = 0, λ = 1. The dotted line shows the instantaneous shear
rate in arbitrary scale. A CW/CCW swinging motion (see definition in Section.
2.3) is observed here that is characterized by the capsule rotating both clockwise
and counter-clockwise in response to the altering flow directions, without making
a full 2π rotation.
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Figure 3.8: Color online. Same as in Fig. 3.7 except that Ca = 0.2. A continu-
ous/unidirectional tumbling is observed here although the time-averaged vorticity
is zero.
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motion at Ca = 1.2. Between t∗ = 0, and T ∗

sh/4, the instantaneous shear rate

increases, and D and θ increase continually till the shear rate becomes maximum.

The inclination appears to attain a steady value as γ̇ −→ γ̇a. For T ∗

sh/4 <

t∗ < T ∗

sh/2, γ̇ decreases, and hence D decreases but θ increases to its maximum

value θmax/π = 0.25. For t∗ < T ∗

sh/2, the capsule major axis remains in the

positive quadrant (0 < θ < π/2). The flow reversal occurs at t∗ = T ∗

sh/2, and

the capsule orientation is now along the compressional quadrant of the reversed

flow. For 3T ∗

sh/8 < t∗ < 5T ∗

sh/8, a rapid compression of the capsule occurs.

For t∗ > 5T ∗

sh/8, an elongation starts in the negative quadrant −π/2 < θ < 0

which is the extensional quadrant of the reversed flow. As γ̇ −→ −γ̇a, elongation

of the capsule continues, and the inclination angle approaches a plateau in the

negative quadrant at around t∗ = 7T ∗

sh/8. Another maximum in D is reached

near t∗ ≈ 3T ∗

sh/4. For 3T ∗

sh/4 < t∗ < T ∗

sh, capsule deformation decreases due to

decreasing magnitude of the shear rate. The next flow reversal occurs at t∗ = T ∗

sh.

For T ∗

sh < t∗ < 9T ∗

sh/8, the capsule orientation is along the compressional quadrant

of the shear which trigger the compression of the capsule during which it swings

back to the positive quadrant(0 < θ < π/2).

For Ca = 0.04 in Fig. 3.9, the shape deformation is relatively small, and so

the dynamics is similar to that of a rigid ellipsoid. The capsule swings clockwise

for 0 < t∗ < T ∗

sh/2, and counter-clockwise for T ∗

sh/2 < t∗ < T ∗

sh, in accordance

with the vorticity direction. For Ca = 0.2 in Fig. 3.8, a continuous/unidirectional

(counter-clockwise) tumbling motion is observed. Between 0 < t∗ < T ∗

sh/4, the
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Figure 3.9: Color online. Same as in Fig. 3.7 except that Ca is reduced to 0.04.
A CW/CCW swinging motion similar to that in Fig. 3.7 occurs here.
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capsule elongates and rotates counter-clockwise as it tries to align with the exten-

sion direction of the shear flow. For T ∗

sh/4 < t∗ < T ∗

sh/2, it slowly relaxes, while

the inclination approaches π/4 as γ̇ −→ 0. This is because in the limit of small

deformation, the inclination angle is π/4. The flow reversal occurs at t∗ = T ∗

sh/2.

The reverse hydrodynamic torque then rotates the capsule counter-clockwise and

in to the negative quadrant −π/2 < θ < 0. The capsule continues to elongate,

and the inclination angle decreases until the maximum shear rate is reached at

3T ∗

sh/4. For 3T ∗

sh/4 < t∗ < T ∗

sh, a shape contraction occurs due to decreasing γ̇,

and the capsule seeks to align with the compressional direction of the shear flow

which causes further counter-clockwise rotation. The major axis aligns with the

flow direction at t∗ ≈ T ∗

sh at which time the next flow reversal occurs, and the

cycle is repeated. Some insight can be gained by following a Lagrangian marker

point over time on the capsule surface as shown in Fig. 3.7, 3.8, 3.9. The phase

angle of a marker point with respect to the capsule inclination angle (φ − θ, see

Fig. 2.1) is plotted in Fig. 3.10. As seen in this figure, for Ca = 1.2, the phase

angle oscillates with relatively large amplitude about a mean. In a steady shear

flow at this value of Ca, the capsule would exhibit a tank-treading motion with

the phase angle making a full 2π rotation while θ oscillates. In the oscillating

shear flow, the phase angle can not make a full rotation due to faster change in

the flow direction although a large oscillation of the phase angle occurs. This im-

plies that a large relative motion between a material point on the capsule surface

and any axis is occurring as in case of a tank-treading capsule in a steady shear

flow. Following Noguchi [48], we further specify this dynamics as tank-treading
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(TT)-based swing. In contrast, for Ca = 0.04, the oscillation of the phase angle

is very small which implies that the capsule membrane is ‘solidified’ as in case

of a tumbling capsule in a steady shear flow. Following Noguchi [48] again, we

term this dynamics as tumbling (TB)-based swing. The dynamics at Ca = 0.04

and 1.2 is qualitatively similar to that predicted by Noguchi [48] at low and high

shear amplitudes, respectively, at low shear frequency.

For intermediate capillary numbers (Ca = 0.1, 0.2, 0.4 as in Fig. 3.10), the

phase angle decreases continuously. This is surprising, because a continuous

change in the phase angle cannot occur in a tumbling motion in a steady shear.

Hence, the characteristics of the tumbling motion seen in Fig. 3.8 in oscillating

shear is different from that in a steady shear. Here, the membrane tank-treads

continuously in the clockwise direction, while the capsule makes a continuous

tumbling motion in the counter-clockwise direction.

The effect of the oscillation period T ∗

sh is shown in Fig. 3.11 by varying T ∗

sh

as 5, 15, and 30, while the capillary number Ca is fixed at 0.2. Here also non-

intuitive behavior is observed: a tank-treading-based swing occurs for high and

low frequency oscillations (e.g., T ∗

sh = 5 and 30 in the figure) in which the capsules

rotate clockwise and counter-clockwise in response to the altering flow direction

without making a full 360o rotation. In contrast, a tumbling motion that is char-

acterized by a continuous and unidirectional (counter-clockwise) rotation occurs

for intermediate periods (T ∗

sh = 15 in the figure).

In Fig. 3.12 we present the results from the analytical model of Dupire et
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Figure 3.10: Color online. Angular location of a Lagrangian marker point on
capsule surface relative to the capsule major axis inclination angle versus time.
Here Ca is varied while α = 0.6 and T ∗

sh = 15 are held constant. · · · · · · γ̇; ——
Ca = 1.2 (in black); – · – Ca = 0.04 (in black);— ·· — Ca = 0.1 (in green); - - -
- Ca = 0.2 (in black); — — — Ca = 0.4 (in red).
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Figure 3.11: Color online. Effect of Tsh on capsule dynamics. γ̇aTsh is varied
as 30, 15, and 5 in (a), (b), (c), respectively, while Ca is held constant at 0.2.
A CW/CCW swing occurs in (a) and (c) which is characterized by the capsule
oscillating both in clockwise and counter-clockwise directions without making a
full 2π rotation. A tumbling motion occurs in (b) that is characterized by a
continuous and unidirectional (counter-clockwise) rotation of the capsule and θ
goes beyond 2π. Other parameters are: α = 0.6, θo = 0, λ = 1.—– θ/π (left scale,
red line), - - - - - D (right scale, black line), · · · · · · γ̇(t)(arbitrary scale).
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al. [1] for shape-preserving capsules. The capsule dynamics is described in terms

of two coupled equations for the inclination angle θ and the Lagrangian angular

location ω as

dθ

dt
= γ̇a sin(2πt/Tsh)

[
−1

2
+

1

2

1− α2

1 + α2
cos(2θ)

]
− 2α

1 + α2

dω

dt
(3.1)

dω

dt
=

γ̇af3
f2 − λf1

[
f1
2f3

1

Ĉa
sin(2ω)− cos(2θ)

]
sin(2πt/Tsh) (3.2)

where f1, f2 and f3 are dimensionless functions of α, Ĉa = µoγ̇aV/ηΩ, V is the

cell volume, Ω is the membrane volume, and η is membrane shear modulus. Here

we have assumed that the membrane viscosity is zero, as in our numerical model.

Using the values given in [1] (Ω/V = 7.48×10−2, µo = 34×10−3 Pa·s and η = 1.6

Pa) we get Ĉa ≈ 28 for γ̇a = 100 1/s. We choose Ĉa = 0.1, 1, and 100, and

T ∗

sh = 5, 15, 30. For Ĉa = 0.1, only CW/CCW oscillation is observed for all three

values of T ∗

sh. This result is qualitatively similar to our conclusion that a periodic

CW/CCW oscillation occurs at low shear rates (Fig. 3.9). For Ĉa = 1 and 100,

the model predicts different dynamics depending on T ∗

sh. For T
∗

sh = 5 and 30, the

CW/CCW oscillationis predicted, which is in agreement with our conclusion that

such an oscillatory motion occurs at high or low period as was seen in Fig. 3.11a

and c. At an intermediate period, as T ∗

sh = 15, the model predicts a nonperiodic

motion in which tumbling and swinging occur intermittently. In contrast, our
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simulation predicts only a continuous/unidirectional tumbling motion within the

length of simulation; beyond t∗ ≈ 100, capsule shapes become distorted and the

simulations are discontinued. Hence we are unable to confirm the nonperiodic

behavior. It is possible that large deformation that occurs at high shear rates

would prevent the nonperiodic motion [68].

We have simulated a large number of cases by varying Ca and T ∗

sh to generate

a phase diagram of swinging/tumbling dynamics in oscillating shear flow which is

shown in Fig. 3.13. Clearly, the continuous/unidirectional tumbling motion (sim-

ilar to Fig. 3.8) occurs for intermediate values of Ca and T ∗

sh. The phase diagram

suggests that at a fixed T ∗

sh, there exists two critical capillary numbers Caucr and

Calcr, and hence, two critical shear rate amplitudes, γ̇u
cr, and γ̇l

cr. The CW/CCW

swinging motion (similar to Fig. 3.7 and 3.9) occurs for any capillary number

above Caucr and belowCalcr, and the continuous/unidirectional tumbling motion

occurs in between. For Ca > Caucr, the swinging motion is TT-based [48] and

accompanied by a significant back-and-forth oscillation of a membrane point. For

Ca < Calcr, the swinging motion is TB-based [48], and a membrane point shows

negligible oscillation. The existence of two critical shear rates in an oscillating

shear flow is remarkable since in a steady shear the transition is determined by

one critical shear rate. Fig. 3.13 also suggests that at a fixed value of Ca, there

exists two critical oscillation periods T ∗u
sh and T ∗l

sh. The continuous/unidirectional

tumbling motion occurs for T ∗l
sh < T ∗

sh < T ∗u
sh , and the CW/CCW swinging motion

occurs otherwise.
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Figure 3.12: Color online. Results from the theory of shape-preserving capsules
in oscillating shear flow [1] for α = 0.6, and θo = 0.(a), (b), and (c) are for

Ĉa = µoγ̇aV/ηΩ = 0.1, 1 and 100, respectively. T ∗

sh = 5 (black solid line), 15 (red
dashed line), 30 (green dotted line).
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Figure 3.13: Phase diagram for α = 0.6, θo = 0. Open circles represent the
CW/CCW swinging motion characterized by clockwise/counter-clockwise oscilla-
tion of the capsule without making a full 2π rotation (similar to Fig. 3.7 and 3.9),
and filled circles represent a continuous/unidirectional tumbling motion(similar
to Fig. 3.8).
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Fig. 3.14 shows the amplitude of shape oscillation, ∆D = Dmax−Dmin. In the

context of steady shear flows, it has been shown in recent studies that ∆D is non-

monotonic with respect to varying Ca, and attains a maximum at intermediate

values of Ca when the capsule is about make the transition from tank-treading to

tumbling [24–26]. In oscillating shear flow, as shown in Fig. 3.14, our simulations

show a non-monotonic behavior of ∆D with respect to T ∗

sh; ∆D first increases with

increasing T ∗

sh reaching a maximum and then drops again. This result suggests

a resonance between the natural frequency of the capsule and the frequency of

imposed flow.

We now consider the effect of the aspect ratio α on the tumbling/swinging

dynamics. It is well known that in a steady shear flow, the transition to tumbling



55

t*

θ/
π

 

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4

γ.

Figure 3.15: Color online. Effect of the aspect ratio α on capsule dynamics. —–
α = 1; — — — α = 0.9; – · – α = 0.8; - - - - - α = 0.7; – ·· – α = 0.5; thick solid
line is γ̇. Here Ca = 0.2, θo = 0, and T ∗

sh = 15.

occurs at progressively higher values of Ca [20, 25, 26], and lower values of λ

[19, 20, 25], as the non-sphericity increases. Hence, it is of interest to see if the

tumbling dynamics shown in Fig. 3.8 for α = 0.6 will change to a swinging

dynamics as α increases. This is illustrated in Fig. 3.15 where θ versus time

is plotted for different values of α. As evidence, the continuous/unidirectional

tumbling motion is observed even for α = 0.9. Hence, we conclude that even

a slight non-spherical initial shape leads to the tumbling motion in oscillating

shear. For all values of α ≤ 0.9, a counter-clockwise tumbling is observed, while

the membrane makes clockwise tank-treading motion.

The effect of the aspect ratio on the phase diagram is shown in Fig. 3.16 by

considering α = 0.7 and 0.8. The overall nature of the diagram remains the same
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as observed before for α = 0.6. The continuous/unidirectional tumbling motion

is observed for intermediate values of Ca and T ∗

sh, and the clockwise/counter-

clockwise swinging motion is observed otherwise. The critical capillary numbers

shift towards lower values of Ca with increasing α, as expected [19, 20].

3.2.3 Effect of initial condition: evidence of chaotic mo-

tion

As mentioned in the Introduction, Dupire et al. [1] found that the motion of the

red blood cells in oscillating shear flow is highly sensitive to the initial condi-

tion. As discussed by them, chaos can be predicted by the Skotheim-Secomb’s

model [20] due to the coupled nature of the ordinary differential equations de-

scribing the capsule dynamics. Noguchi [48] also observed that at high shear

frequency, multiple stable solutions exist that depend on the initial condition.

Since our simulations are deterministic, it is of interest to see if the dynamics

described above depends on the initial capsule orientation θo. Note that the re-

sults presented so far are for θo = 0. Fig. 3.17 shows the capsule dynamics for six

representative cases by varying θo from π/12 to −π/4 while the capillary number

and oscillation period are held fixed at 0.2 and 15, respectively. Note that for this

Ca and T ∗

sh, a continuous/unidirectional tumbling motion was seen when θo = 0

(refer to Fig. 3.8). As evident in Fig. 3.17 a similar tumbling motion is also ob-

served for θo = π/12, π/2,−π/12 and −π/4, but a clockwise/counter-clockwise
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Figure 3.16: Phase diagram for α = 0.7 and 0.8. Here θo = 0. Symbols have the
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swinging motion is observed for θo = π/4 and −π/6. The direction of the tum-

bling motion is also sensitive to θo: it is counter-clockwise for θo = ±π/12, but

clockwise for π/2 and −π/4. The deformation response is also sensitive to θo. For

example, identical deformation response during positive and negative vorticity is

observed for θo = π/4, but not for other values of θo. The dependence on θo is

further illustrated using a phase diagram in Fig. 3.18 for α = 0.6, Ca = 0.2, and

T ∗

sh = 15. In general, a clockwise/counter-clockwise swing is observed when the

initial inclination is close to either the extensional or compressional axis of the

shear flow; otherwise a continuous/unidirectional tumbling motion is observed.

A counter-clockwise tumbling occurs when the capsule is released with its major

axis aligned with the flow direction, and a clockwise tumbling occurs when it is

perpendicular. The figure shows that a slight change in the initial condition near

the extensional or compressional axis can lead to different dynamics.

Fig. 3.18 can also be used to explain why swinging or tumbling motion is

observed for different θo, and also the clockwise and counter-clockwise direction of

tumbling. In doing so, we keep in mind that a deformable capsule always ‘prefers’

to align with the extensional direction of the shear flow, and has its own natural

timescale of shape oscillation. If the capsule is released nearly horizontally, it first

elongates and seeks to align with θ = π/4, and hence rotates counter-clockwise.

The rotation rate is rather slow as it is in the direction opposite to the vorticity.

By the time it reaches θ = π/4, the flow reversal occurs, and the counter-clockwise

rotation continues. In contrast, if the capsule is released nearly vertical, it has to



59

t*
5 10 15 20 25 30 35 40

-0.4

-0.2

0

0.2

0.4

(f) θ  = − π/o 4

t*
5 10 15 20 25 30 35 40

-0.4

-0.2

0

0.2

0.4

(e) θ  = − π/o 6

t*
5 10 15 20 25 30 35 40

-0.4

-0.2

0

0.2

0.4

(b) θ  = π/o 4

t*
5 10 15 20 25 30 35 40

-0.4

-0.2

0

0.2

0.4

(a) θ  = π/o(a) 12

t*
5 10 15 20 25 30 35 40

-0.4

-0.2

0

0.2

0.4

(c) θ  = π/o 2

t*
5 10 15 20 25 30 35 40

-0.4

-0.2

0

0.2

0.4

(d) θ  = − π/o 12

Figure 3.17: Color online. Effect of initial inclination θo. (a) to (f) correspond to
θo = π/12, π/4, π/2,−π/12,−π/6,−π/4, respectively. The aspect ratio α = 0.6
and oscillation period T ∗

sh = 15 are held fixed. —— θ/π, - - - - - D, · · · · · · γ̇.
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Figure 3.18: Dependence of swinging/tumbling motion on θo for α = 0.6, Ca =
0.2, and T ∗

sh = 15. The white areas represent the range of θo that yields the
continuous and unidirectional tumbling motion, and the gray areas represent the
clockwise/counter-clockwise swinging. The dashed lines are the extensional and
compressional axes (±π/4).
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rotate clockwise to align with θ = π/4. This rotation occurs relatively faster due

to a higher hydrodynamic torque acting on the vertically aligned capsule. After

it reaches close to θ = π/4, the natural shape compression starts before the flow

reversal can occur. As a result, the capsule continues to rotate clockwise, and the

major axis drops below θ = 0. At this time flow reversal occurs, and the capsule

seeks to align with the extension direction of this reversed flow causing further

clockwise rotation. Evidently, the tumbling dynamics here is due to the strong

shape oscillation, and would not occur if deformation was inhibited.

3.3 Dynamics at Unequal Internal and External Fluid Vis-

cosity

In the previous section, we considered the internal to external viscosity ratio

λ = 1. In this section, we will consider the effect of the viscosity ratio on the

capsule dynamics under oscillating shear.

3.3.1 Dynamics under steady shear flow: effect of varying

viscosity ratio

Before considering the oscillating shear, we review the capsule dynamics in steady

shear under varying viscosity ratio. Fig. 3.19 shows the effect of increasing vis-

cosity ratio on the capsule dynamics for an initially spherical resting shape. As

before, the initially spherical capsule attains a steady deformed shape in the form

of an oblate spheroid, and a fixed inclination angle with the flow direction, while
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the membrane and the internal fluid make a tank-treading motion. Thus, for a

spherical capsule, a steady tank-treading motion is observed even when the vis-

cosity ratio is increased to a very high value. The time history of deformation

and inclination angle is also shown in the figure. We see that both deformation

and inclination angle decreases with increasing viscosity raito since capsule is

increasingly solidified.

Next, we show some sample results for a nonspherical capsule in a steady shear

flow and under varying internal to external fluid viscosity ratio in Fig. 3.20. As

mentioned before, the nonspherical capsule undergoes unsteady dynamics even

in a steady shear flow. Here we consider the initial aspect ratio α = 0.7, and

Ca = 0.05, and vary the viscosity ratio as λ = 2 and 10. For λ = 2, a swinging

dynamics is observed, where as for λ = 10 a tumbling motion is observed. In both

cases, a significant shape oscillation is evident which suggests that deformation

plays an important role in capsule dynamics. These results depict that a swinging

dynamics occurs at a low viscosity ratio, but a tumbling dynamics occurs at a high

viscosity ratio, as predicted by the Keller-Skalak theory for a shape-preserving

capsule.

3.3.2 Dynamics under oscillating shear flow: effect of vary-

ing viscosity ratio

Now we present some results on the dynamics in oscillating shear flow under

varying viscosity ratio. Here we take the initial shape corresponding to α = 0.6.
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Figure 3.19: Dynamics of an initially spherical capsule in a steady shear flow:
effect of the internal to external viscosity ratio λ is shown. Here Ca = 0.2. The
steady shapes are shown for λ = 1 and 10. The time history of the Taylor
deformation parameter D and the inclination angle θ is shown for λ = 1 (—–), 2
(- - - - -), 5 (-·-·-), and 10 (-··-··-).



64

t*

θ/
π

0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

t*

D

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3.20: Dynamics of an initially nonspherical capsule in a steady shear flow:
effect of the internal to external viscosity ratio λ is shown. Here α = 0.7, and Ca
= 0.05. The top figure is for λ = 2, and the next for λ = 10. The shapes are
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The results for Ca = 0.1 and 0.4 are shown in Figs. 3.21 and 3.22, respectively.

The viscosity ratio λ is varied as 1, 5, and 10. In general we see that the dynamics

at λ = 1 and 5 are similar, although the detailed time-dependence is different.

In contrast, the dynamics at λ = 10 is different. Specifically, we see that at

T ∗

sh = 15, and Ca = 0.1, a continuous and unidirectional tumbling motion occurs

for both λ = 1 and 5. In contrast, a large amplitude swinging motion occurs

for λ = 10. This is bacause the capsule is ‘rigidified’ at thi high viscosity ratio,

and the dynamics is similar to that of a rigid ellipsoid which undergoes only

a swinging motion. When we increase the capillary number to 0.4, a swinging

motion is observed for all viscosity ratios. However, the capsule with λ = 10 again

behaves like a nearly rigid body, and hence shows a large-amplitude swinging.

The time dependence of the Taylor deformation parameter is shown in Figs.

3.23 and 3.24 for Ca = 0.1 and 0.4, respectively. In general we see that the

deformation response is smoother for λ = 10, but more complex for the lower

viscosity ratios with subharmonic variations appearing. This is because at the

lower viscosity raitos, the natural shape oscillation dominates. In contrast, at

λ = 10, the natural shape oscillation is rather small, and the capsule deformation

is primarily dictated by the altering shear flow.

Thus, we can conclude that the complex dynamics that was observed in the

earlier section, that is, the unidirectional tumbling motion at intermediate oscil-

lation period and shear rate amplitudes, is absent at higher viscosity ratio due to

the reduction of deformability.
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Figure 3.21: Dynamics of nonspherical capsule in oscillating shear flow: effect of
the internal to external viscosity ratio λ is shown on the instantaneous inclination
angle. Here α = 0.6, and Ca = 0.1 are kept constant, and λ is varied as 1 (——),
5 (- - - - -), and 10 (-·-·-). Three different oscillation periods are considered. The
instantaneous shear rate is shown by the dotted line in arbitrary scale.
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Figure 3.22: Dynamics of nonspherical capsule in oscillating shear flow: effect of
the internal to external viscosity ratio λ is shown on the instantaneous inclination
angle. Here α = 0.6, and Ca = 0.4 are kept constant, and λ is varied as 1 (——),
5 (- - - - -), and 10 (-·-·-). Three different oscillation periods are considered. The
instantaneous shear rate is shown by the dotted line in arbitrary scale.
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Figure 3.23: Dynamics of nonspherical capsule in oscillating shear flow: effect of
the internal to external viscosity ratio λ is shown on the time dependent deforma-
tion. Here α = 0.6, and Ca = 0.1 are kept constant, and λ is varied as 1 (——),
5 (- - - - -), and 10 (-·-·-). Three different oscillation periods are considered. The
instantaneous shear rate is shown by the dotted line in arbitrary scale.
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Figure 3.24: Dynamics of nonspherical capsule in oscillating shear flow: effect of
the internal to external viscosity ratio λ is shown on the time dependent deforma-
tion. Here α = 0.6, and Ca = 0.4 are kept constant, and λ is varied as 1 (——),
5 (- - - - -), and 10 (-·-·-). Three different oscillation periods are considered. The
instantaneous shear rate is shown by the dotted line in arbitrary scale.
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3.4 Dynamics of Initially Spherical Capsules at Finite Mean

Oscillating Shear

The imposed shear flow considered in the previous sections has a zero mean when

averaged over an oscillation period. In this section we will consider an oscillating

shear flow for which the time-average is non-zero. That is, we impose a shear flow

as

γ̇ = γ̇o

[
1 + ǫ sin

(
2πt

Tsh

)]
(3.3)

where γ̇o is the finite mean shear rate, ǫ is the dimensionless amplitude of the

time-dependent perturbation and is positive, and Tsh is the oscillation period.

Note that unlike in the previous sections on zero-mean shear flow in which the

imposed flow reverses its direction at every half period, in the present case no flow

reversal can occur if 0 < ǫ < 1. Thus the zero-mean shear is a special case of the

present situation when ǫ → ∞ but ǫγ̇o is finite. Here we restrict our attention to

0 < ǫ < 1. Further, the capillary number here is defined slightly differently using

the mean shear rate as Ca =µoaγ̇o/Es, and the dimensionless oscillation period as

T ∗

sh = γ̇oTsh. Thus, the relevant dimensionless parameters here are: the capillary

number Ca, the perturbation amplitude ǫ, the viscosity ratio λ, the oscillation

period T ∗

sh, and the aspect ratio α of the initial shape of the capsule.

Let us first restrict our attention the initially spherical capsules only. The
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time dependent Taylor deformation parameter D and the inclination angle of the

capsule major axis θ are shown in Fig. 3.25 and 3.26 for λ = 5 and 10, respec-

tively. In each figure, we consider four different values of Ca as 0.05, 0.1, 0.4 and

1.0. For each case, we vary the perturbation amplitude ǫ as 0.1, 0.5 and 1.0. The

oscillation frequency T ∗

sh is kept constant at 10. Time dependent capsule shapes

are show in Fig. 3.27 for two representative cases. The deformation and inclina-

tion angle oscillate with time in response to the oscillating perturbation, and the

amplitudes of their oscillation increase with increasing ǫ. The maximum elonga-

tion occurs when the instantaneous shear rate γ̇ reaches its maximum. But the

minimum deformation lags behind the minimum shear rate. This is because the

elongation occurs at a faster time scale than the compression of the capsule. This

is also evident from the deformation curves which show non-harmonic behavior:

the elongation phase of the curves are much steeper than the compression phase.

Also interesting to note is the time average deformation that appears to decrease

with increasing perturbation amplitude. Note that the rate of flow acceleration

and retardation defines another time scale which is much smaller at higher pertur-

bation amplitude, and smaller than the capsule response time. Thus the capsule

is unable to responds to the flow at higher perturbation amplitudes leading to a

reduced mean deformation. Also interesting is the amplitude of the deformation

response and inclination angle which appear to decrease with increasing Ca. This

is due to the increased response time for highly deformable capsules.
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Figure 3.25: Dynamics of initially spherical capsule in finite-mean oscillating shear
flow: effect of the shear amplitude ǫ is shown at different capillary numbers. Here
the viscosity ratio is kept constant at λ = 5 and the oscillation period at T ∗

sh = 10.
Time dependence of the deformation parameter (right scale, thick lines) and the
inclination angle (left scale, thin lines) is shown. ǫ = 0.1 (—–), 0.5 (- - - - -), 1.0
(-·-·-). The instantaneous shear rate is also shown using arbitrary scale.
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Figure 3.26: Dynamics of initially spherical capsule in finite-mean oscillating shear
flow: effect of the shear amplitude ǫ is shown at different capillary numbers. Here
the viscosity ratio is kept constant at λ = 10 and the oscillation period at T ∗

sh = 10.
Time dependence of the deformation parameter (right scale, thick lines) and the
inclination angle (left scale, thin lines) is shown. ǫ = 0.1 (—–), 0.5 (- - - - -), 1.0
(-·-·-). The instantaneous shear rate is also shown using arbitrary scale.
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Figure 3.27: Dynamics of initially spherical capsule in finite-mean oscillating
shear flow: instantaneous capsule shapes are shown for Ca = 1.0 (top) and 0.05
(bottom) for λ = 10 and T ∗

sh = 10.
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3.5 Sensitivity to the Direction of Shear Start-up

Fig. 3.28 shows the sensitivity of the dynamics when the direction of the starting

flow is reversed. We will consider only a zero-mean shear flow. Equivalently, we

consider the effect of positive and negative values of the shear amplitude γ̇. The

results are shown for a spherical capsule and for a non-spherical capsule released

at θo = 0. As seen in the figure, the deformation responses are identical in the

two cases, and the inclination angles are just the mirror image about θ = 0. Note

that for the spherical capsule case, the initial release angle is immaterial. Thus,

it is expected that the results would be independent of positive or negative shear

amplitude. For the non-spherical capsules, the release angle is important. In the

latter case, if θo = 0, the reversing direction has no effect on the results. However,

for θo 6= 0, the reversing direction does have a significant effect on the dynamics

as discussed in earlier section giving rise to chaotic behavior.

3.6 Non-periodic Dynamics at Finite-mean Oscillating Shear

Flow

Our study on zero-mean oscillatory shear flow shows only the presence of a peri-

odic motion, in contrast to the non-periodic motion experimentally observed and

theoretically predicted by Dupire et al. using red blood cells. Here we present

some preliminary results for nonspherical capsules in finite-mean oscillating shear

flow as shown in Fig. 3.29. We also consider the effect of altering the direction

of the flow start-up while the capsule release angle is maintained the same. As
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Figure 3.28: Sensitivity of the dynamics to the reversal of the starting flow di-
rection. Black solid and dashed lines are positive and negative shear rates, re-
spectively, green solid and dashed lines are the corresponding inclination angles,
and red line is the Taylor deformation parameter for which solid and dashed lines
are identical. Top figure is for initially spherical capsules at Ca = 0.1, λ = 1,
T ∗

sh = 15, and the bottom figure for an oblate capsule at α = 0.5, Ca = 0.05,
λ = 5, T ∗

sh = 15, and θo = 0.
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expected, the response is not identical in the two cases. More interestingly, we see

that over a longer time, a non-periodic motion characterized by a combination of

swinging and occassional tumbling is present. It should be mentioned though that

the identification of swinging and tumbling for this case is difficult as we consider

α = 0.5 for which the capsule momentraily becomes spherical in the shear plane

(as indicated by D → 0). Further study along this line is left for the future.

3.7 Dynamics of Red Blood Cells in Zero-mean Oscillating

Flow

In previous sections, we studied capsules of initial spherical and oblate spheroid

shapes. These resting shapes are usually encountered for artificially made cap-

sules. For a healthy human red blood cells, spherical and oblate resting shapes

are possible when at reduced osmolarity (or, tonicity) of the suspending medium.

For example, at a tonocity of about 131 mosmol, a human red bood cell attains

a spherical resting shape, due to an increased transmural pressure. Spherical and

oblate resting shapes are also possible under disease conditions, or at some times

during the life cycle of the cell, or under non-hydrodynamic external fields. Under

normal physiological conditions, however, the resting shape of a red blood cell is

the well-known biconcave discoid shape. Such a shape provides a high value of

surface area to volume ratio for enhanced diffusion of gasses across the cell mem-

brane. This ‘excess area’, however, provides a huge numerical difficulty as the

simulated cell shapes often exhibit sharp kinks if not properly resolved. Further,
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Figure 3.29: Non-periodic dynamics at finite-mean oscillating shear flow. Here
α = 0.5, Ca = 0.1, λ = 5, ǫ = 0.5, and θo = π/4 are fixed, and T ∗

sh is varied as
5 and 10 in top and bottom figures. Black lines are the shear rates, green lines
represent the Taylor deformation parameter, and the red lines are the instan-
taneous inclination angle. Solid and dashed lines are the positive and negative
perturbation amplitude.
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unlike in the previous sections, where the capsule surface area is allowed to dilate,

the red blood cell surface area is nearly preserved during deformation. This also

proves to be numerically challenging within the framework of the front-tracking

method as the immersed boundary forces tend to become singular in the limit

that the area is perfectly incompressible. Nevertheless, the present effort is mo-

tivated by the experimental works of Dupire et al. using the human red blood

cells. Note that unlike in Dupire et al., we do not observe non-periodic dynamics

for capsules, and we argued that the lack of non-periodicity is due to the presence

of the deformability in our simulations. Further, the aspect ratio considered so

far is α ≥ 0.6. In contrast, for a resting red blood cell, it is about 0.25. The

different aspect ratio considered in the two studies could also be the reason for

the discrepancy. Thus, it is our objective in this section to extend our simulations

to actual red blood cells to see if non-periodic motion is possible.

Description of the numerical method is the same as in Chapter 2. The bicon-

cave resting shape is prescribed as

x = Rη, y =
R

2

√
1− r2(C0 + C2r

2 + C4r
4), z = Rζ, (3.4)

where η2 + ζ2 = r2, and R is adjusted to control the cell volume. The surface

area and the volume of the red blood cell are taken to be 134.1µm2 and 94.1µm3,

respectively. The initial shape is stress-free. The coefficients C0, C2, and C4
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depend on the osmolarity, and are taken to be 0.207, 2.003, and −1.123, respec-

tively. We use a = (3V/4π)1/3 as the length scale where V is the cell volume. The

flow field is discretized using 1203 Eulerian mesh points, whereas the cell surface

is discretized using 20480 triangular elements. The spontaneous curvature is set

to coao = −2.09. The area dilatation parameter C is varied from 50 to 400 to

ensure that the global and local area dilatation is less than 0.5%. Note that for

a real cell the parameter C ≈ 105; however, using such a high value results in

numerical instability. It appears that numerical instability occurs at progressively

lower values of C as Ca decreases. The range of C used here is found using a

series of numerical tests so that the area can be conserved as far as possible with-

out creating numerical instability. Hence, the RBC surface is nearly, not entirely,

area-incompressible in our model.

3.7.1 RBC dynamics in steady shear flow

For the purpose of completeness, we present some salient features of the RBC

dynamics in a steady shear flow in Fig. 3.31. The details of this work can be found

in Yazdani and Bagchi, Phys Rev E 84, 026314 (2011) [69]. In general, an isolated

red blood cell exhibits tank-treading, swinging and tumbling motion, similar to

the nonspherical capsule dynamics described earlier. However, due to its ‘excess

area’, the deformation and inclination dynamics of the red blood cell is more

complex. Fig. 3.31a shows the dynamics at high capillary number in which the

biconcave shape is completely absent, and the cell assumes rather a convex shape.



81

Figure 3.30: Schematic of a red blood cell in oscillating shear flow.

No significant shape or angular oscillation is visible here. The cell membrane and

the interior fluid undergo a tank-treading motion. When the capillary number is

decreased, a swinging motion is observed in which the cell oscillates about a mean

inclination while the membrane and the interior fluid make a oscillating tank-

treading motion. Upon further decrease in capillary number, a tumbling motion

is observed as shown in Fig. 3.31c. In many situations, however, more complex

dynamics is observed in which the cell undergoes a significant shape oscillation,

and a clear swinging or tumbling cannot be established as shown for one case

in Fig. 3.31b, Here we term them as a ‘breathing’ dynamics, as the animations

resemble a similar process. For the dimensionless bending rigidity E∗

B = 0.01, the

tank-treading biconvex shape is obtained for Ca > 0.6, the swinging dynamics for
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0.05 < Ca < 0.6, and the tumbling dynamics for Ca < 0.05. The transition from

the tank-treading to the tumbling motion also occurs with increasing viscosity

ratio when the capillary number is held constant. For λ > 5, mostly the tumbling

motion occurs for a capillary number as high as 1.

3.7.2 RBC dynamics in zero-mean oscillating shear flow

We have performed simulations with RBC over a wide range of the three relevant

parameters: capillary number Ca varying from 0.02 to 0.6, the viscosity ratio λ

varied as 0.5, 1 and 5, and the dimensionless oscillation period T ∗

sh ranging from

10 to 100. First we will present the results for λ = 1, followed by that for λ = 5.

We find that the results for λ = 0.5 are qualitatively similar to those at λ = 1,

and hence, not presented.

First we consider Ca = 0.05 for which the RBC tumbles in a steady shear flow.

Hence, in the oscillating shear for Ca = 0.05, the RBC dynamics is similar to a

rigid ellipsoid. Fig. 3.32 shows the snapshots for T ∗

sh = 20. Nearly no significant

shape deformation can be observed here. The marker point shown on the cell

surface exhibits no relative motion. Thus the tank-treading is absent. Instead,

the cell swings CW and CCW like a rigid ellipsoid in resposne to the altering

shear flow. The oscillation is harmonic, as expected for a rigid ellipsoid.

Fig. 3.32 also shows the time dependence of the inclination angle for various

shear oscillation periods. In a steady shear, the tumbling period at Ca = 0.05 is

T ∗

n ≈ 21. Hence, at low oscillating period, a full swinging motion is not possible
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Figure 3.31: Dynamics of red blood cells in a steady shear flow. First row: tank-
treading without any significant cell shape and angular oscillation (Ca = 0.8,
λ = 0.5, E∗

b = 0.01), second row: swinging (Ca=0.1, λ = 0.1, E∗

b = 0.05), third
row: tumbling (Ca = 0.03, λ = 0.1, E∗

b = 0.01), last two rows: breathing (Ca =
0.08, λ = 0.2, E∗

b = 0.01). Yazdani & Bagchi, Phys Rev E 84, 026314 (2011).
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as the flow reversal happens earlier. Evidently, for T ∗

sh = 10 and 20, a CW/CCW

swinging occurs. A full tumbling motion is observed for the oscillating periods

that are greter than T ∗

n = 21, e.g. for T ∗

sh = 60.

Next we show a representative run at a high shear rate given by Ca = 0.6,

and low oscillation period of T ∗

sh = 10. Under a steady shear flow, the cell at this

Ca undergoes a tank-treading motion with a small angular and shape oscillation.

Qualitatively similar dynamics is observed in the oscillating shear flow. Also

important to note that the deformation and inclination are nearly periodic, and

that the marker point moves back-and-forth on the cell membrane. At the end of

one cycle, the marker point comes back to its starting location. The inclination

angle lags behind the shear, since the cell response time is larger at this high shear

rate. The deformation is characterized by the maximum instantaneous cell length

L measured on the shear plane, and Z measured along the vorticity direction.

Both L and Z oscillate in time. While the incination angle varies harmonically,

the deformation response shows subharmonic oscillations arising from the natural

cell oscillation. The deformation response also shows asymmetry. The maximum

elongation (L) is noted when γ̇ becomes zero while going from negative to positive

value, but not the otherway. In other words, the maximum elongation occurs

during the accelerating phase. The maximum elongation leads to a compression

in the vorticity direction since the cell volume and surface area are preserved.

We conclude that at high Ca and low oscillation period, the dynamics is periodic

as the capsule response time is much larger than the flow time scale. Only a
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Figure 3.32: RBC dynamics in zero-mean oscillating shear flow at low shear rates.
Snapshots for Ca = 0.05, λ = 1, T ∗

sh = 20. Orientation angle θ/π for Ca = 0.05,
λ = 1 under varying oscillation period T ∗

sh = 10 (—–), 20 (- - - - -), 30 (-·-·-), 45
(– – –), 60 (–··–). The red line is the instantansous shear rate shown on arbitrary
scale.
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CW/CCW swinging motion is possible in this range of Ca and T ∗

sh.

At intermediate capillary numbers and oscillation poriods, the dynamics is

more complex than that described above. One such example is shown in Fig.

3.7.2 for Ca = 0.1, T ∗

sh = 45. For 1 < t∗ < 25, the cell motion resembles a

tumbling-like dynamics – the marker point shows no apparent movement. The

cell rotates about 210 degree clockwise. For 25 < t∗ < 45, the dynamics resembles

a tank-treading motion: the cell oreintation remains nearly fixed and along the

negative quadrant while the marker point moves counter-clockwise. During this

time the cell undergoes a significant deformation. Comparing figures at t∗ = 1

and 45, no net displacement of the marker point is seen. So durng the forward

phase, no motion of marker point, only the cell tumbles. The reverse phase: no

cell motion, the marker point moves back to its original location. Second cycle

is also shown. Here a tumbling-like motion occurs for 45 < t∗ < 60 during which

the cell rotates clockwise about 120 degree. During this time, deformation is

very small and the marker point shows no movement. Then for 60 < t∗ < 73, a

significant deformation occurs by which the cell aligns in the negative quadrant.

Even during this time, the marker point does not move implying that this phase

is a tumbling-like motion combined with deformation. For 75 < t∗ < 90, a

tank-treading-like motion is seen during which the cell orientation remains nearly

the same while the marker point moves CCW back to its original location. The

minimum in L occurs when θ = 0, and the maximum and minimum in Z occur

at zero shear and maximum shear, respectively.
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Figure 3.34: RBC dynamics in zero-mean oscillating shear flow at intermediate
shear rate and oscillation period. Top: snapshots for Ca = 0.1, T ∗
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instantaneous inclination, shear rate, maximum cell length in the shear plane (L)
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A similar dynamics is observed for Ca = 0.4, T ∗

sh = 20 as shown in Fig. 3.7.2

that is characterized by a swinging motion accompanied by a large deformation

for t∗ < 45, followed by a tumbling, and then swinging. Thus, we conclude that

at the intermediate shear ampliutudes and oscillation periods, the dynamics is

characterized by a non-periodic motion similar to the experimental findings of

Dupire et al.. However, in the present case, the cell deformaiton is the reason

behind such non-periodic dynamics. We recall that at the intermediate shear

rates, the RBC undergoes a significant shape oscillation. The natural shape

oscillation when superimposed on the imposed shear oscillation yields the non-

periodic dynamics. If deformation is inhibited, such non-periodic motion would

not be possible in our deterministic simulations.

Finally we consider the physiological value of λ = 5 for which a smaple case is

shown in Fig. 3.36. At the physiological value, only a periodic motion is observed

similar to CW/CCW oscillation of a rigid ellipsoid. We have extended the simu-

lations to consider high shear amplitudes as Ca = 1.0 for a time window of two

shear periods. Periodic motion is observed even at this value of Ca. Thus, we

conclude that the loss of deformation at the physiological value of the viscosity

ratio prohibits the occurance of the non-periodic motion.
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Figure 3.36: Cell dynamics at physiological value of λ = 5. Ca = 0.4, T ∗sh = 45.
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Chapter 4

Summary

4.1 Summary

We presented a 3D numerical study on the dynamics of deformable capsules in

oscillating shear flow. In the present work, we mainly focused on the scenario

when the internal and external fluids have the same dynamic viscosity, and the

amplitude of the shear flow is zero. A detailed analysis of the capsule dynam-

ics obtained from our direct simulaiton is presented under this condition. For

the purpose of completeness, we also presented some preliminary results on the

dynamics of a red blood cells in zero-mean shear flow. It appears that the anal-

ysis of the red blood cell dynamics is more complex due to its biconcave resting

shape. Further, we presented some preliminary results on the effect of internal to

external viscosity ratio, and the finite-mean shear flow. Detailed investigations of

these topics are left for the future.

On the dynamics of capsules under zero-mean shear, and identical internal

and external fluid viscosities, which is the main focus of this thesis, our findings

can be summarized as follows.

1. For spherical resting shapes, we find identical deformation response during
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positive and negative vorticity. We also find that the average deformation in-

creases with increasing flow oscillation period reaching an asymptote that is less

than the deformation that would occur in a steady shear flow corresponding to

the mean shear rate. The phase lag increases with increasing Ca and increasing

shear frequency as in [48].

2. The deformation response becomes unequal and shows complex behavior

for nonspherical capsules due to the coupling with the natural shape oscillation.

The average elongation is higher in the retarding phase than in the accelerating

phase although the membrane viscosity is neglected.

3. Unlike in a steady shear flow, we find that the capsules swing clockwise

and counter-clockwise in response to the altering flow direction at both high and

low values of shear rate amplitude, but tumble continuously in one direction at

intermediate values although the time-average vorticity is zero. Such a tumbling

dynamics is accompanied by a continuous tank-treading motion of the membrane

in the opposite direction.

4. We obtained phase diagram that shows existence of two critical shear rates

and two oscillation frequencies. The continuous/unidirectional tumbling motion

occurs in the intermediate range, and the clockwise/counter-clockwise swinging

motion occurs otherwise. The swinging motion at low Ca is TB-based, while that

at high Ca is TT-based [48].

5. As an evidence of ‘chaotic’ motion, we find that the dynamics is highly

sensitive to the initial condition. A swinging is generally observed when the
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capsule is released aligned with the extensional or compressional axis, and a

tumbling is observed otherwise. However, since our simulations are deterministic,

we have provided explanations of the dependence on the initial condition by

analyzing the synchronized shape and angular oscillation which also illustrate

the role of deformation. There are both qualitative agreement and discrepancy

between the present study and that of Dupire et al. [1], and Noguchi [48] as

discussed before. We are unable to confirm a nonperiodic motion observed by

Dupire et al.. One possible reason is that the physical time simulated is much

shorter than that required to confirm such a behavior. The second possible reason

is that large deformation may suppress the nonperiodic motion [68]. On the other

hand, similar to the findings of [1] and [48], we find that only the CW/CCW

oscillatory motion occurs at low shear amplitude, and at low and high shear

frequencies, and that the dynamics is sensitive to the initial condition, as an

indirect evidence to the chaotic behavior.

For the red blood cells with biconcave resting shapes, the dynamics is, how-

ever, more complex. Under the condition of the same internal and external fluid

viscosity, we find that the cell always undergoes periodic motion at low shear

rates for which deformation is negligible. A periodic motion is also observed for

high shear rates and low oscillation periods. However, a non-periodic motion

characterized by a combination of swinging and tumbling occurs at intermediate

shear rates. In this respect, there is some qualitaitve similarity to the experi-

mental findings of Dupire et al.. When the physiological value of the viscosity
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ratio is considered, the periodic motion is recovered due to loss of deformation.

Thus, we can conclude that the non-periodic motion observed here is driven by

the deformation dynamics of the cell, and would not be present if cell deformation

is inhibited.

4.2 Future Work

It is clear from the present thesis that the dynamics of capsules and red blood

cells in an oscillating shear flow is significantly complex than its counterpart in a

steady shear flow. While a significant progress has been made in the past decades

by the cell/vesicle/capsule research community on the understanding of single

particle dynamics in steady shear flow, we only started to address the dynamics

in oscillating shear flow. Understanding this topic in its fullest depth is beyond

the scope of one Master’s thesis. In the following we discuss some of the issues

that can be further addressed with the present numerical method to improve our

understanding of this complex but immensely important branch of science.

First, our model for the cell membrane neglects the membrane viscosity. The

presence of viscosity of the membrane introduces a ‘memory’ effect by which the

cell responds on a slower time scale to any change in the flow. Experimental

measurment of the membrane viscosity is notoriously difficult, and as such, there

is a significant debate in the literature as to the range of values of the membrane

viscosity. While artificial capsules and vesicles often lack the membrane viscosity,

the red blood cells are known to possess this property. It is important in future
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to repeat the direct simulations results presented here with the inclusion of the

membrane viscosity in the numerical model, and regenerate the phase diagrams.

The membrane viscosity may also suppress the deformation, and hence some of

the complex dynamics observed and the chaotic motion suggested here may be

absent when the membrane viscosity is included.

Secondly, the dynamics of the red blood cells is not fully addressed here. It

appears that the nonperiodic motion similar to that observed in the experiments

may be reproducible in the simulations provided that we are able to run for a

much longer time. This requires a more robust numerical methodology. Presently,

numerical instabilities often develop if simulations are continued beyond a dimen-

sionless time of 100 or so. One way of mitigate the instability is to re-mesh the

capsule/cell surface. Our future efforts should be directed along this line.

Thirdly, we addressed the dynamics of only isolated capsule and red blood

cell. In other words, we considered a dilute suspension. In reality, the blood is

a dense suspension. It is would important, and a very interesting problem, to

consider a dense suspension in an oscillating flow, and to extract the viscoelastic

behavior of the suspension. The current methodology can be readily extended to

consider this problem.

Finally, the physiological blood flow is not a linear shear flow as considered

here, rather it is pressure-driven and often deviates from the well-known parabolic

Poiseuille flow. In small vessels, flow remains unidrectional but oscillates with

time. In large vessels, the oscillations are significant, and the flow reversal can
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take place. Future research can investigate how the individual red blood cell, as

well as cell suspension behaves under such complex background flow.
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