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ABSTRACT OF THE DISSERTATION

OBSTACLES, SLOPES AND TIC-TAC-TOE: AN

EXCURSION IN DISCRETE GEOMETRY AND

COMBINATORIAL GAME THEORY

by V S PADMINI MUKKAMALA

Dissertation Director: János Pach and Mario Szegedy

The minimum number of slopes used in a straight-line drawing of G is called the slope

number of G. We show that every cubic graph can be drawn in the plane with straight-

line edges using only the four basic slopes {0, π/4, π/2,−π/4}. We also prove that four

slopes have this property if and only if we can draw K4 with them.

Given a graph G, an obstacle representation of G is a set of points in the plane

representing the vertices of G, together with a set of obstacles (connected polygons)

such that two vertices of G are joined by an edge if and only if the corresponding points

can be connected by a segment which avoids all obstacles. The obstacle number of G

is the minimum number of obstacles in an obstacle representation of G. We show that

there are graphs on n vertices with obstacle number Ω(n/log n).

We show that there is an m = 2n + o(n), such that, in the Maker-Breaker game

played on Z
d where Maker needs to put at least m of his marks consecutively in one

of n given winning directions, Breaker can force a draw using a pairing strategy. This

improves the result of Kruczek and Sundberg who showed that such a pairing strategy

exits if m ≥ 3n. A simple argument shows that m has to be at least 2n+1 if Breaker is

only allowed to use a pairing strategy, thus the main term of our bound is optimal.
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Chapter 1

Introduction

The field of Graph Theory is said to have first come to light with Euler’s Königsberg

bridge problem in 1736. Since then, it has seen much development and also boasts of

being a subfield of combinatorics that sees intense application. In the beginning, graph

theory solely comprised of treating a graph as an abstract combinatorial object. It could

even suffice to call it a set system with some predefined properties. This outlook was in

itself sufficient to devise and capture some remarkably elegant problems (e.g. traveling

salesman, vertex and edge coloring, extremal graph theory). Besides the large number

of areas it can be applied to (Computer Science, Operations Research, Game Theory,

Decision Theory), some independent and naturally intriguing problems of combinatorial

nature were studied in graph theory. Around the same time however, a new field in

graph theory arose. It can be said that, because of the simplicity of representing so

many things as graphs, the natural question of the simplicity of representing graphs

themselves, on paper or otherwise, came up. Thus started the yet nascent field of graph

drawing, where now the concern was mostly of representing a graph in the plane and

in particular, how simply can it be represented.

This idea in itself had many far reaching applications. Among the first of it was the

four color theorem, where the simplicity of drawing maps was the concern. Since then,

many more questions have arisen. An important one of these was drawing graphs in the

plane without crossings, or in other words, estimating the crossing number of graphs.

Although initially the idea of edges was restricted to being topological curves, before

long, a natural further restriction was introduced. To discretize the problem further

and to add to the aspect of naturally representing graphs, the branch of straight-line

drawings of graphs started. With straight-line drawings, besides the old questions like
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crossing number etc., some new, purely geometrical concerns arose. For example, one

way of simplifying a drawing of a graph could be to try to reduce the number of slopes

used in the drawing. This led to the general notion (introduced by Wade and Chu) of

the slope number, which for a graph is the minimum number of slopes required to draw

it.

The slope number of graphs is at least half their maximum degree. This lead to the

intuitive belief that bounded degree graphs might allow for small slope numbers. This

was shown to the contrary, with a counting argument, that even graphs with maximum

degree at most five need not have a bounded slope number. Graphs with maximum

degree two can trivially be shown to require at most three slopes. This restricts our

attention to graphs with maximum degree three and four. Maximum degree four, still,

to the best of our knowledge, remains an exciting open problem. For maximum degree

three although, using some previous results, we can provide an exact answer. We show

that four slopes, even the four fixed slopes of North, East, Northeast, Northwest are

sufficient to draw all graphs with maximum degree three. Since K4 requires at least

four slopes in the plane, this indeed is an exact answer.

Another interesting notion about straight-line graphs, that arises in many natural

contexts is that of representing it as a visibility graph. Given a set of points and a set

of polygons (obstacles) in the plane, a visibility graph’s edges comprise of exactly all

mutually visible vertex pairs. Visibility graphs have numerous applications in Computer

Science (Vision, Graphics, Robot motion planning). A natural question that arises from

considering the simplicity of such a representation is to find the smallest number of

obstacles one has to use in the plane to represent a graph. This is defined as the obstacle

number of the graph. It was shown that there are graphs on n vertices that require

Ω(
√

log n) obstacles. We improve this to show that there are graphs which require

Ω( n
log n) obstacles, which can be further improved for nicer obstacles. In particular, we

show that there are graphs which require Ω( n2

log n) segment obstacles.

The final chapter of the thesis deals with positional games. Many combinatorial

games (Tic-Tac-Toe, hex, Shannon switching game) can be thought of as played on a
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hypergraph in which a point is claimed by one of the two players at every turn. Winning

in such a game is characterized by the capture of a “winning set” by a player. All the

winning sets form the edges in our hypergraph. Such games are called positional games.

If the second player wins if there is a draw, then the game is called a Maker-Breaker

game, and the players are called respectively, Maker and Breaker. We may also note

that if the Breaker can find a pairing of the vertices such that every winning set contains

a pair, then he can achieve a draw, called a pairing strategy draw.

The classical Tic-Tac-Toe game can be generalized to the hypergraph Z
d with win-

ning sets as consecutive m points in n given directions. For example, in the Five-

in-a-Row game d = 2, m = 5 and n = 4, the winning directions are the vertical,

the horizontal and the two diagonals with slope 1 and −1. It was shown by Hales

and Jewett, that for the four above given directions of the two dimensional grid and

m = 9 the second player can achieve a pairing strategy draw. In the general version,

it was shown by Kruczek and Sundberg that the second player has a pairing strategy

if m ≥ 3n for any d. They conjectured that there is always a pairing strategy for

m ≥ 2n+1, generalizing the result of Hales and Jewett. We show that their conjecture

is asymptotically true, i.e. for m = 2n + o(n). In fact we prove the stronger result

where m− 1 = p ≥ 2n + 1, p a prime. This is indeed stronger because there is a prime

between n and n + o(n).
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Chapter 2

Slope number

2.1 Introduction

A straight-line drawing of a graph, G, in the plane is obtained if the vertices of G are

represented by distinct points in the plane and every edge is represented by a straight-

line segment connecting the corresponding pair of vertices and not passing through any

other vertex of G. If it leads to no confusion, in notation and terminology we make no

distinction between a vertex and the corresponding point, and between an edge and the

corresponding segment. The slope of an edge in a straight-line drawing is the slope of

the corresponding segment. Wade and Chu [69] defined the slope number, sl(G), of a

graph G as the smallest number s with the property that G has a straight-line drawing

with edges of at most s distinct slopes.

Our terminology is somewhat unorthodox: by the slope of a line ℓ, we mean the

angle α modulo π such that a counterclockwise rotation through α takes the x-axis to a

position parallel to ℓ. The slope of an edge (segment) is the slope of the line containing

it. In particular, the slopes of the lines y = x and y = −x are π/4 and −π/4, and they

are called Northeast (or Southwest) and Northwest (or Southeast) lines, respectively.

Directions are often abbreviated by their first letters: N, NE, E, SE, etc. These four

directions are referred to as basic. That is, a line ℓ is said to be of one of the four basic

directions if ℓ is parallel to one of the axes or to one of the NE and NW lines y = x

and y = −x.

Obviously, if G has a vertex of degree d, then its slope number is at least ⌈d/2⌉.

Dujmović et al. [25] asked if the slope number of a graph with bounded maximum degree

d could be arbitrarily large. Pach and Pálvölgyi [63] and Barát, Matoušek, Wood [15]

(independently) showed with a counting argument that the answer is yes for d ≥ 5.
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In [44], it was shown that cubic (3-regular) graphs could be drawn with five slopes.

The major result from which this was concluded was that subcubic graphs1 can be

drawn with the four basic slopes. We note here that the proof of this was slightly

incorrect. We give below a stronger version of that theorem, in which the shortcomings

of the incorrect proof can be overcome. Before the statement of the theorem, we clarify

some terminology used in it.

For any two points p1 = (x1, y1), p2 = (x2, y2) ∈ R2, we say that p2 is to the North

(or to the South of p1 if x2 = x1 and y2 > y1 (or y2 < y1). Analogously, we say that

p2 is to the Northeast (to the Northwest) of p1 if y2 > y1 and p1p2 is a Northeast

(Northwest) line.

Theorem 2.1.1 Let G be a graph without components that are cycles and whose every

vertex has degree at most three. Suppose that G has at least one vertex of degree less

than three, and denote by v1, ..., vm the vertices of degree at most two (m ≥ 1).

Then, for any sequence x1, x2, . . . , xn of real numbers, linearly independent over the

rationals, G has a straight-line drawing with the following properties:

(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);

(2) The slope of every edge is 0, π/2, π/4, or −π/4.

(3) No vertex is to the North of any vertex of degree two.

(4) No vertex is to the North or to the Northwest of any vertex of degree one.

(5) The x-coordinates of all the vertices are a linear combination with rational coeffi-

cients of x1, . . . , xn.

Therefore, cubic graphs require one additional slope and hence, five slopes. We

improve this as following.

Theorem 2.1.2 Every connected cubic graph has a straight-line drawing with only four

slopes.

The above theorem gives a drawing of connected cubic graphs with four slopes, one

1A graph is subcubic if it is a proper subgraph of a cubic graph, i.e. the degree of every vertex is at
most three and it is not cubic (not 3-regular).
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of which is not a basic slope. Further, for disconnected cubic graphs, we require 5

slopes. We show a reduction of cubic graphs with triangles (Lemma 2.3.4) because of

which, instead of the above theorem, our focus will be to prove the following.

Theorem 2.1.3 Every triangle-free connected cubic graph has a straight-line drawing

with only four slopes.

We note that the four slopes used above are not the four basic slopes. Towards this,

it was shown by Max Engelstein [29] that 3-connected cubic graphs with a Hamiltonian

cycle can be drawn with the four basic slopes.

We later improve all these results by the following

Theorem 2.1.4 Every cubic graph has a straight-line drawing with only the four basic

slopes.

Figure 2.1: The Petersen graph and K3,3 drawn with the four basic slopes.

This is the first result about cubic graphs that uses a nice, fixed set of slopes instead

of an unpredictable set, possibly containing slopes that are not rational multiples of π.

Also, since K4 requires at least 4 slopes, this settles the question of determining the

minimum number of slopes required for cubic graphs.

We also prove

Theorem 2.1.5 Call a set of slopes good if every cubic graph has a straight-line draw-

ing with them. Then the following statements are equivalent for a set S of four slopes.

1. S is good.
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2. S is an affine image of the four basic slopes.

3. We can draw K4 with S.

The problem whether the slope number of graphs with maximum degree four is

unbounded or not remains an interesting open problem.

There are many other related graph parameters. The thickness of a graph G is

defined as the smallest number of planar subgraphs it can be decomposed into [58]. It

is one of the several widely known graph parameters that measures how far G is from

being planar. The geometric thickness of G, defined as the smallest number of crossing-

free subgraphs of a straight-line drawing of G whose union is G, is another similar

notion [41]. It follows directly from the definitions that the thickness of any graph is at

most as large as its geometric thickness, which, in turn, cannot exceed its slope number.

For many interesting results about these parameters, consult [23, 28, 25, 26, 30, 39].

A variation of the problem arises if (a) two vertices in a drawing have an edge

between them if and only if the slope between them belongs to a certain set S and, (b)

collinearity of points is allowed. This violates the condition stated before that an edge

cannot pass through vertices other than its end points. For instance, Kn can be drawn

with one slope. The smallest number of slopes that can be used to represent a graph

in such a way is called the slope parameter of the graph. Under these set of conditions,

[10] proves that the slope parameter of subcubic outerplanar graphs is at most 3. It was

shown in [45] that the slope parameter of every cubic graph is at most seven. If only

the four basic slopes are used, then the graphs drawn with the above conditions are

called Queen’s graphs and [9] characterizes certain graphs as Queen’s graphs. Graph

theoretic properties of some specific Queen’s graphs can be found in [18].

Another variation for planar graphs is to demand a planar drawing. The planar slope

number of a planar graph is the smallest number of distinct slopes with the property

that the graph has a straight-line drawing with non-crossing edges using only these

slopes. Dujmović, Eppstein, Suderman, and Wood [24] raised the question whether

there exists a function f with the property that the planar slope number of every

planar graph with maximum degree d can be bounded from above by f(d). Jelinek et
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al. [40] have shown that the answer is yes for outerplanar graphs, that is, for planar

graphs that can be drawn so that all of their vertices lie on the outer face. Eventually

the question was answered in [43] where it was proved that any bounded degree planar

graph has a bounded planar slope number.

Finally we would mention a slightly related problem. Didimo et al. [21] studied

drawings of graphs where edges can only cross each other in a right angle. Such a

drawing is called an RAC (right angle crossing) drawing. They showed that every graph

has an RAC drawing if every edge is a polygonal line with at most three bends (i.e.

it consists of at most four segments). They also gave upper bounds for the maximum

number of edges if less bends are allowed. Later Arikushi et al. [12] showed that such

graphs can have at most O(n) edges. Angelini et al. [11] proved that every cubic

graph admits an RAC drawing with at most one bend. It remained an open problem

whether every cubic graph has an RAC drawing with straight-line segments. If besides

orthogonal crossings, we also allow two edges to cross at 45◦, then it is a straightforward

corollary of Theorem 2.1.4 that every cubic graph admits such a drawing with straight-

line segments.

Figure 2.2: The Heawood graph drawn with the four basic slopes.
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2.2 Correct Proof of the Subcubic Theorem

We would like the reader to note that this is a modification of the proof as it appears

in [44].

Note that it is enough to establish the theorem for connected graphs, because if the

different components of G are drawn separately and placed far above each other, then

none of the properties will be violated.

2.2.1 Embedding Cycles

Let C be a straight-line drawing of a cycle in the plane. A vertex v of C is said to be

a turning point if the slopes of the two edges meeting at v are not the same.

We start with two simple auxiliary statements.

Lemma 2.2.1 Let C be a straight-line drawing of a cycle such that the slope of every

edge is 0, π/4, or −π/4. Then the x-coordinates of the vertices of C are not independent

over the rational numbers.

Moreover, there is a vanishing linear combination of the x-coordinates of the vertices,

with as many nonzero (rational) coefficients as many turning points C has.

Proof. Let v1, v2, . . . , vn denote the vertices of C in cyclic order (vn+1 = v1). Let x(vi)

and y(vi) be the coordinates of vi. For any i (1 ≤ i ≤ n), we have y(vi+1) − y(vi) =

λi (x(vi+1) − x(vi)) , where λi = 0, 1, or −1, depending on the slope of the edge vivi+1.

Adding up these equations for all i, the left-hand sides add up to zero, while the sum of

the right-hand sides is a linear combination of the numbers x(v1), x(v2), . . . , x(vn) with

integer coefficients of absolute value at most two.

Thus, we are done with the first statement of the lemma, unless all of these co-

efficients are zero. Obviously, this could happen if and only if λ1 = λ2 = . . . = λn,

which is impossible, because then all points of C would be collinear, contradicting our

assumption that in a proper straight-line drawing no edge is allowed to pass through

any vertex other than its endpoints.

To prove the second statement, it is sufficient to notice that the coefficient of x(vi)
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vanishes if and only if vi is not a turning point. 2

Lemma 2.2.1 shows that Theorem 2.1.1 does not hold if G is a cycle. Nevertheless,

according to the next claim, cycles satisfy a very similar condition. Observe, that the

main difference is that here we have an exceptional vertex, denoted by v0.

Lemma 2.2.2 Let C be a cycle with vertices v0, v1, . . . , vm, in this cyclic order.

Then, for any real numbers x1, x2, . . . , xm, linearly independent over the rationals,

C has a straight-line drawing with the following properties:

(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);

(2) The slope of every edge is 0, π/4, or −π/4.

(3) No vertex is to the North of any other vertex.

(4) No vertex has a larger y-coordinate than y(v0).

(5) The x-coordinate of v0 is a linear combination with rational coefficients of x1, . . . , xm.

Proof. We can assume without loss of generality that x2 > x1. Place v1 at the point

(x1, 0) of the x-axis. Assume that for some i < m, we have already determined the

positions of v1, v2, . . . vi, satisfying conditions (1)–(3). If xi+1 > xi, then place vi+1 at

the (unique) point Southeast of vi, whose x-coordinate is xi+1. If xi+1 < xi, then put

vi+1 at the point West of xi, whose x-coordinate is xi+1. Clearly, this placement of vi+1

satisfies (1)–(3), and the segment vivi+1 does not pass through any point vj with j < i.

After m steps, we obtain a noncrossing straight-line drawing of the path v1v2 . . . vm,

satisfying conditions (1)–(3). We still have to find a right location for v0. Let RW and

RSE denote the rays (half-lines) starting at v1 and pointing to the West and to the

Southeast. Further, let R be the ray starting at vm and pointing to the Northeast. It

follows from the construction that all points v2, . . . , vm lie in the convex cone below the

x-axis, enclosed by the rays RW and RSE.

Place v0 at the intersection point of R and the x-axis. Obviously, the segment vmv0

does not pass through any other vertex vj (0 < j < m). Otherwise, we could find a

drawing of the cycle vjvj+1 . . . vm with slopes 0, π/4, and −π/4. By Lemma 2.2.1, this

would imply that the numbers xj , xj+1, . . . , xm are not independent over the rationals,
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contradicting our assumption. It is also clear that the horizontal segment v0v1 does

not pass through any vertex different from its endpoints because all other vertices are

below the horizontal line determined by v0v1. Hence, we obtain a proper straight-line

drawing of C satisfying conditions (1),(2), and (4). Note that (5) automatically follows

from Lemma 2.2.1.

It remains to verify (3). The only thing we have to check is that x(v0) does not

coincide with any other x(vi). Suppose it does, that is, x(v0) = x(vi) = xi for some

i > 0. By the second statement of Lemma 2.2.1, there is a vanishing linear combination

λ0x(v0) + λ1x1 + λ2x2 + . . . + λmxm = 0

with rational coefficients λi, where the number of nonzero coefficients is at least the

number of turning points, which cannot be smaller than three. Therefore, if in this linear

combination we replace x(v0) by xi, we still obtain a nontrivial rational combination of

the numbers x1, x2, . . . , xm. This contradicts our assumption that these numbers are

independent over the rationals. 2

2.2.2 Subcubic Graphs - Proof of Theorem 2.1.1

First we settle Theorem 2.1.1 in a special case.

Lemma 2.2.3 Let m,k ≥ 2 and let G be a graph consisting of two disjoint cycles,

C = {v0, v1, . . . , vm} and C ′ = {v′0, v′1, . . . , v′m}, connected by a single edge v0v
′
0.

Then, for any sequence x1, x2, . . . , xm, x′
1, x

′
2, . . . , x

′
k of real numbers, linearly in-

dependent over the rationals, G has a straight-line drawing satisfying the following

conditions:

(1) The vertices vi and v′j are mapped into points with x-coordinates x(vi) = xi (1 ≤

i ≤ m) and x(vj) = x′
j (1 ≤ j ≤ k).

(2) The slope of every edge is 0, π/2, π/4, or −π/4.

(3) No vertex is to the North of any vertex of degree two.
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(4) The x-coordinates of all the vertices are a linear combination with rational coeffi-

cients of x1, x2, . . . , xm, x′
1, x

′
2, . . . , x

′
k.

Proof. Apply Lemma 2.2.2 to cycle C with vertices v0, v1, . . . , vm and with assigned x-

coordinates x1, x2, . . . , xm, and analogously, to the cycle C ′, with vertices v′0, v
′
1, . . . , v

′
k

and assigned x-coordinates x′
1, x

′
2, . . . , x

′
k. For simplicity, the resulting drawings are

also denoted by C and C ′.

Let x0 and x′
0 denote the x-coordinates of v0 ∈ C and v′0 ∈ C ′. It follows from (5)

of Lemma 2.2.2 that x0 is a linear combination of x1, x2, . . . , xm, and x′
0 is a linear

combination of x′
1, x

′
2, . . . , x

′
k with rational coefficients. Therefore, if x0 = x′

0, then

there is a nontrivial linear combination of x1, x2, . . . , xm, x′
1, x

′
2, . . . , x

′
k that gives 0,

contradicting the assumption that these numbers are independent over the rationals.

Thus, we can conclude that x0 6= x′
0. Assume without loss of generality that x0 < x′

0.

Reflect C ′ about the x-axis, and shift it in the vertical direction so that v′0 ends up to

the Northeast from v0. Clearly, we can add the missing edge v0v
′
0. Let D denote the

resulting drawing of G. We claim that D meets all the requirements. Conditions (1),

(2), (3) and (4) are obviously satisfied, we only have to check that no vertex lies in the

interior of an edge. It follows from Lemma 2.2.2 that the y-coordinates of v1, . . . , vm are

all smaller than or equal to the y-coordinate of v0 and the y-coordinates of v′1, . . . , v
′
k

are all greater than or equal to the y-coordinate of v′0. We also have y(v0) < y(v′0).

Therefore, there is no vertex in the interior of v0v
′
0. Moreover, no edge of C (resp. C ′)

can contain any vertex of v′0, v
′
1, . . . , v

′
k (resp. v0, v1, . . . , vm) in its interior. 2

The rest of the proof is by induction on the number of vertices of G. The statement

is trivial if the number of vertices is at most two. Suppose that we have already

established Theorem 2.1.1 for all graphs with fewer than n vertices.

Suppose that G has n vertices, it is not a cycle and not the union of two cycles

connected by one edge.

Unfortunately we have to distinguish several cases. Most of these are very special

and less interesting instances that prevent us from using our main argument, which is

considered last after clearing all obstacles, as Case 9.
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Case 1: G has a vertex of degree one.

Assume, without loss of generality, that v1 is such a vertex. If G has no vertex

of degree three, then it consists of a simple path P = v1v2 . . . vm, say. Place vm at

the point (xm, 0). In general, assuming that vi+1 has already been embedded for some

i < m, and xi < xi+1, place vi at the point West of vi+1, whose x-coordinate is xi. If

xi > xi+1, then put vi at the point Northeast of vi+1, whose x-coordinate is xi. The

resulting drawing of G = P meets all the requirements of the theorem. To see this,

it is sufficient to notice that if vj would be Northwest of vm for some j < m, then we

could apply Lemma 2.2.1 to the cycle vjvj+1 . . . vm, and conclude that the numbers

xj, xj+1, . . . , xm are dependent over the rationals. This contradicts our assumption.

Assume next that v1 is of degree one, and that G has at least one vertex of degree

three. Suppose without loss of generality that v1v2 . . . vkw is a path in G, whose internal

vertices are of degree two, but the degree of w is three. Let G′ denote the graph obtained

from G by removing the vertices v1, v2, . . . , vk. Obviously, G′ is a connected graph, in

which the degree of w is two.

If G′ is a cycle, then apply Lemma 2.2.2 to C = G′ with w playing the role of the

vertex v0 which has no preassigned x-coordinate. We obtain an embedding of G′ with

edges of slopes 0, π/4, and −π/4 such that x(vi) = xi for all i > k and there is no vertex

to the North, to the Northeast, or to the Northwest of w. By (5) of Lemma 2.2.2, x(w) is

a linear combination of xk+1, . . . , xm with rationals coefficients. Therefore, x(w) 6= xk,

so we can place vk at the point to the Northwest or to the Northeast of w, whose

x-coordinate is xk, depending on whether x(w) > xk or x(w) < xk. After this, embed

vk−1, . . . , v1, in this order, so that vi is either to the Northeast or to the West of vi+1

and x(vi) = xi. According to property (4) in Lemma 2.2.1, the path v1v2 . . . vk lies

entirely above G′, so no point of G can lie to the North or to the Northwest of v1.

If G′ is not a cycle, then use the induction hypothesis to find an embedding of G′

that satisfies all conditions of Theorem 2.1.1, with x(w) = xk and x(vi) = xi for every

i > k. Now place vk very far from w, to the North of it, and draw vk−1, . . . , v1, in this

order, in precisely the same way as in the previous case. Now if vk is far enough, then

none of the points vk, vk−1, . . . , v1 is to the Northwest or to the Northeast of any vertex
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of G′. It remains to check that condition (4) is true for v1, but this follows from the

fact that there is no point of G whose y-coordinate is larger than that of v1.

From now on, we can and will assume that G has no vertex of degree one.

A graph with four vertices and five edges between them is said to be a Θ-graph.

Case 2: G contains a Θ-subgraph.

Suppose that G has a Θ-subgraph with vertices a, b, c, d, and edges ab, bc, ac, ad,

bd. If neither c nor d has a third neighbor, then G is identical to this graph, which can

easily be drawn in the plane with all conditions of the theorem satisfied.

If c and d are connected by an edge, then all four points of the Θ-subgraph have

degree three, so that G has no other vertices. So G is a complete graph of four vertices,

and it has a drawing that meets the requirements.

Suppose that c and d have a common neighbor e 6= a, b. If e has no further neighbor,

then a, b, c, d, e are the only vertices of G, and again we can easily find a proper drawing.

Thus, we can assume that e has a third neighbor f . By the induction hypothesis,

G′ = G \ {a, b, c, d, e} has a drawing satisfying the conditions of Theorem 2.1.1. In

particular, no vertex of G′ is to the North of f (and to the Northwest of f , provided

that the degree of f in G′ is one). Further, consider a drawing H of the subgraph of

G induced by the vertices a, b, c, d, e, which satisfies the requirements. We distinguish

two subcases.

If the degree of f in G′ is one, then take a very small homothetic copy of H (i.e.,

similar copy in parallel position), and rotate it about e in the clockwise direction through

3π/4. There is no point of this drawing, denoted by H ′, to the Southeast of e, so that

we can translate it into a position in which e is to the Northwest of f ∈ V (G′) and very

close to it, to a sufficient distance so that (5) is satisfied. Connecting now e to f , we

obtain a drawing of G satisfying the conditions. Note that it was important to make

H ′ very small and to place it very close to f , to make sure that none of its vertices is

to the North of any vertex of G′ whose degree is at most two, or to the Northwest of

any vertex of degree one (other than f).
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If the degree of f in G′ is two, then we follow the same procedure, except that now

H ′ is a small copy of H, rotated by π. We translate H ′ into a position in which e is

to the North of f , and connect e to f by a vertical segment. It is again clear that the

resulting drawing of G meets the requirements in Theorem 2.1.1. Thus, we are done if

c and d have a common neighbor e.

Suppose now that only one of c and d has a third neighbor, different from a and

b. Suppose, without loss of generality, that this vertex is c, so that the degree of d is

two. Then in G′ = G \ {a, b, d}, the degree of c is one. Apply the induction hypothesis

to G′ so that the x-coordinate originally assigned to d is now assigned to c (which had

no preassigned x-coordinate in G). In the resulting drawing, we can easily reinsert the

remaining vertices, a, b, d, by adding a very small square whose lowest vertex is at c and

whose diagonals are parallel to the coordinate axes. The highest vertex of this square

will represent d, and the other two vertices will represent a and b.

We are left with the case when both c and d have a third neighbor, other than a

and b, but these neighbors are different. Denote them by c′ and d′, respectively. Create

a new graph G′ from G, by removing a, b, c, d and adding a new vertex v, which is

connected to c′ and d′. Draw G′ using the induction hypothesis, and reinsert a, b, c, d

in a small neighborhood of v so that they form the vertex set of a very small square

with diagonal ab. (See Figure 2.3.) As before, we have to choose this square sufficiently

small to make sure that a, b, c, d are not to the North of any vertex w 6= c′, d′, v of G′,

whose degree is at most two, or to the Northwest of any vertex of degree one and pick

an appropriate scaling to make sure that (5) is satisfied. Thus, we are done if G has a

Θ-subgraph.

So, from now on we assume that G has no Θ-subgraph.

Case 3: G has no cycle that passes through a vertex of degree two.

Since G is not three-regular, it contains at least one vertex of degree two. Consider

a decomposition of G into 2-connected blocks and edges. If a block contains a vertex

of degree two, then it consists of a single edge. The block decomposition has a treelike

structure, so that there is a vertex w of degree two, such that G can be obtained as the
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Figure 2.3: Replacing v by Θ.

union of two graphs, G1 and G2, having only the vertex w in common, and there is no

vertex of degree two in G1.

By the induction hypothesis, for any assignment of rationally independent x-coordinates

to all vertices of degree less than three, G1 and G2 have proper straight-line embeddings

(drawings) satisfying conditions (1)–(5) of the theorem. The only vertex of G1 with

a preassigned x-coordinate is w. Applying a vertical translation, if necessary, we can

achieve that in both drawings w is mapped into the same point. Using the induction

hypothesis, we obtain that in the union of these two drawings, there is no vertex in G1

or G2 to the North or to the Northwest of w, because the degree of w in G1 and G2 is

one (property (4)). This is stronger than what we need: indeed, in G the degree of w

is two, so that we require only that there is no point of G to the North of w (property

(3)).

The superposition of the drawings of G1 and G2 satisfies all conditions of the theo-

rem. Only two problems may occur:

1. A vertex of G1 may end up at a point to the North of a vertex of G2 with degree

two.

2. The (unique) edges in G1 and G2, incident to w, may partially overlap.

Notice that both of these events can be avoided by enlarging the drawing of G1, if

necessary, from the point w, and rotating it about w by π/4 in the clockwise direction.

The latter operation is needed only if problem 2 occurs. This completes the induction

step in the case when G has no cycle passing through a vertex of degree two.
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Case 4: G has two adjacent vertices of degree two.

Take a longest path that contains only degree two vertices. Without loss of gener-

ality, assume that this path is v1v2 . . . vk. Denote the degree three neighbor of v1 by u

and the degree three neighbor of vk by w. Let G′ = G \ {v1 . . . vk}. Now we distinguish

two subcases depending on whether these two vertices are the same or not.

Case 4/a: u 6= w.

First suppose that G′ is connected.

If G′ is not a cycle, embed it using induction with x1 being the prescribed x-

coordinate of u and xk being the prescribed x-coordinate of w. Now place the vi vertices

one by one high above this drawing, starting with v1, using NW and NE directions.

Finally we embed vk above w and we are done.

If G′ is a cycle, then embed it using Lemma 2.2.2 with v0 = u and prescribed x-

coordinate xk for w. Remember that there are no vertices above u. So first, we can

place v1 to the NW or NE from u. Then we place the vi vertices one by one using NW

and NE directions. Finally we embed vk above w and we are done.

Now suppose G′ has two components. If none of them is a cycle, embed both of

them using induction, high above each other, with x1 being the prescribed x-coordinate

of u and xk being the prescribed x-coordinate of w. Now place the vi vertices one by

one high above the so far drawn components, starting with v1, using NW and NE

directions. Finally we embed vk above w and we are done.

Finally, if G′ = G \ {v1 . . . vk} has two components one of which, say the one

containing w, is a cycle, then embed the component of u using induction with prescribed

x-coordinate x1 for u or, if it is a cycle, Lemma 2.2.2 with v0 = u. It is easy to see

that we can embed the vi vertices one by one, starting with v1, just like in the previous

cases, and then the rest of the vi vertices one by one using NW and NE directions.

Finally we embed the cycle containing w using Lemma 2.2.2 with v0 = w, but upside

down, so that w has (one of) the smallest y-coordinate(s). Shift this cycle vertically

such that the edge vkw has NW or NE direction and we are done.

Note that this last case even works for k = 1.
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Case 4/b: u = w.

Denote the third neighbor of u by t. If the degree of t is two, then deleting the

longest path containing t that contains only degree two vertices, the remaining graph

will have two components, one of which is a cycle. Thus we end up exactly in the last

subcase of Case 4/a, thus we are done.

If the degree of t is three, apply Lemma 2.2.2 with v0 = u to the cycle C = uv1 . . . vk.

Denote the x-coordinate of u by x0. If G \ C is a cycle, we can use Lemma 2.2.3.

Otherwise, embed G \ C using induction with x0 being the prescribed x-coordinate of

t. Now place C sufficiently high above this drawing.

Case 5 (Main case): G has a cycle passing through a vertex of degree two.

By assumption, G itself is not a cycle. Therefore, we can also find a shortest cycle

C whose vertices are denoted by v, u1, . . . , uk, in this order, where the degree of v is

two and the degree of u1 is three. The length of C is k + 1.

It follows from the minimality of C that ui and uj are not connected by an edge

of G, for any |i − j| > 1. Moreover, if |i − j| > 2, then ui and uj do not even have a

common neighbor (1 ≤ i 6= j ≤ k). This implies that any vertex v ∈ V (G \ C) has at

most three neighbors on C, and these neighbors must be consecutive on C. However,

three consecutive vertices of C, together with their common neighbor, would form a

Θ-subgraph in G (see Case 2). Hence, we can assume that every vertex belonging to

G \ C is joined to at most two vertices on C.

Consider the list v1, v2, . . . , vm of all vertices of G with degree two. (Recall that we

have already settled the case when G has a vertex of degree one.) Assume without loss

of generality that v1 = v and that vi belongs to C if and only if 1 ≤ i ≤ j for some

j ≤ m.

Let x denote the assignment of x-coordinates to the vertices of G with degree two,

that is, x = (x(v1), x(v2), . . . ,x(vm))= (x1, x2, . . . , xm). Given G, C, x, and a real

parameter L, we define the following so-called Embedding Procedure(G,C,x, L) to

construct a drawing of G that meets all requirements of the theorem, and satisfies the

additional condition that the y-coordinate of every vertex of C is at least L higher than
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the y-coordinates of all other vertices of G.

Let u′
1 be the neighbor of u1 in G \C. We mark two different cases here and all the

steps in the Embedding Procedure will be defined for both the cases. If u′
1 is a vertex of

degree three in G, we will call it Subcase 5(a), and we define G′ = G \C. On the other

hand, if u′
1 is a vertex of degree two, then by Case 4, its other neighbor (besides v), say

u′′
1, is a degree three vertex. We call this Subcase 5(b) and define G′ = G \ (C ∪ {u′

1}).

The main idea of the Embedding procedure is to inductively embed G′ and place the

rest of the graph in a convenient way.

Let Bi denote the set of all vertices of G′ that have precisely i neighbors on C (i =

0, 1, 2). Thus, we have V (G′) = B0∪B1∪B2. Further, B1 = B2
1 ∪B3

1 , where an element

of B1 belongs to B2
1 or B3

1 , according to whether its degree in G is two or three.

Step 1: If G′ is not a cycle, then construct recursively a drawing of G′ satisfying the

conditions of Theorem 2.1.1 with the assignment x′ of x-coordinates x(vi) = xi for

j < i ≤ m, and x(u′
1) = x1 in Subcase 5(a), and, x(u′′

1) = x(u′
1) in Subcase 5(b).

If G′ is a cycle, then, by assumption, there are at least two edges between C and

G′. One of them connects u1 to u′
1. Let uαu′

α be another such edge, where uα ∈ C and

u′
α ∈ G′. Since the maximum degree is three, u′

1 6= u′
α. Now construct recursively a

drawing of G′ satisfying the conditions of Lemma 2.2.2, with the exceptional vertex as

u′
α.

We note here that if G′ is disconnected, but the components are not cycles, then

we just place them vertically far apart and we still have a good recursive drawing of

G′. Suppose that it is disconnected and some components are cycles. If the component

connected to u1 or u′
1 (based on Subcase 5(a) or 5(b)) is a cycle, we draw the cycle

exactly as in the preceding paragraph. For all other components that are cycles, we

note that since G is connected, there must be at least one vertex of the cycle connected

to G \ G′ (in fact at least two because of Case 4). This is a degree three vertex in G

and we will call this the exceptional vertex and draw the cycle using Lemma 2.2.2. At

the end, we shift all components vertically to place them sufficiently far apart. We note

that this drawing of G′ will satisfy all the conditions in Theorem 2.1.1.
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Step 2: For each element of B2
1 ∪ B2, take two rays starting at this vertex, pointing

to the Northwest and to the North. Further, take a vertical ray pointing to the North

from each element of B3
1 and each element of the set Bx := {(x2, 0), (x3, 0), . . . , (xj , 0)}.

Let R denote the set of all of these rays. Choose the x-axis above all points of G′ and

all intersection points between the rays in R.

For any uh (1 ≤ h ≤ k) whose degree in G is three, define N(uh) as the unique

neighbor of uh in G′. If uh has degree two in G, then uh = vi for some 1 ≤ i ≤ j, and

let N(uh) be the point (xi, 0).

G’

R
u

u

u12u

3

4

Figure 2.4: Recursively place u1, u2, . . . uk on the rays belonging to R.

Step 3: Recursively place u1, u2, . . . uk on the rays belonging to R, as follows. In

Subcase 5(a), place u1 on the vertical ray starting at N(u1) = u′
1 such that y(u1) = L.

In Subcase 5(b), place u′
1 on the vertical ray starting at N(u′

1) = u′′
1 such that y(u′

1) = L.

If x1 < x(u′
1) then place u1 to the West of u′

1 on the line x = x1, otherwise place u1

to the Northeast of u1, again on x = x1. Suppose that for some i < k we have already

placed u1, u2, . . . ui, so that L ≤ y(u1) ≤ y(u2) ≤ . . . ≤ y(ui) and there is no vertex to

the West of ui. Next we determine the place of ui+1.

If N(ui+1) ∈ B2
1 , then let r ∈ R be the ray starting at N(ui+1) and pointing to

the Northwest. If N(ui+1) ∈ B3
1 ∪ Bx, let r ∈ R be the ray starting at N(ui+1) and

pointing to the North. In both cases, place ui+1 on r: if ui lies on the left-hand side of

r, then put ui+1 to the Northeast of ui; otherwise, put ui+1 to the West of ui.
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If N(ui+1) ∈ B2, then let r ∈ R be the ray starting at N(ui+1) and pointing to the

North, or, if we have already placed a point on this ray, let r be the other ray from

N(ui+1), pointing to the Northwest, and proceed as before.

u

u1

k

u1

uk

u0

u0

Figure 2.5: Finding the right position for u0.

Step 4: Suppose we have already placed uk. It remains to find the right position for

u0 := v, which has only two neighbors, u1 and uk. Let r be the ray at u1, pointing to

the North. If uk lies on the left-hand side of r, then put u0 on r to the Northeast of

uk; otherwise, put u0 on r, to the West of uk.

During the whole procedure, we have never placed a vertex on any edge, and all

other conditions of Theorem 2.1.1 are satisfied 2.

Remark that the y-coordinates of the vertices u0 = v, u1, . . . , uk are at least L

higher than the y-coordinates of all vertices in G \ C. If we fix G,C, and x, and

let L tend to infinity, the coordinates of the vertices given by the above Embedding

Procedure(G,C,x, L) change continuously.

2.3 Proof of Theorem 2.1.3

2.3.1 Assumptions

This subsection is dedicated to showing that assuming that the cubic graph is bridgeless

and triangle free does not restrict generality.

We would use theorem 2.1.1 to patch together different components of a cubic graph

obtained after removal of some edges. For this we would want to note that we could

rotate the components by any multiple of π/4 and still have a graph with the four basic

slopes.
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Claim 2.3.1 A cubic graph with a bridge or a minimal two-edge disconnecting set can

be drawn with the four basic slopes.

Proof. We note that the above method cannot be extended to a minimal disconnecting

set with more edges, as then, one of the components might be a cycle and then the

above theorem cannot be invoked.

Both components obtained by removing the bridge can be drawn with four slopes

using Theorem 2.1.1. Both have the north direction free for the vertex of degree two.

To put these together, rotate the second one by π and place the degree two vertices

above each other. Move the components far enough so that none of the other vertices

or edges overlap.

For a two-edge disconnecting set, we may note that these edges must be vertex-

disjoint or the graph would contain a bridge. Then, the same procedure as above can

be used, now keeping the distance between the two vertices of degree two the same in

both components. �

Claim 2.3.2 A cubic graph with a cut-vertex or a two-vertex disconnecting set can be

drawn with the four basic slopes.

Proof. If the graph has a cut-vertex, then it has a bridge. If it has a two-vertex

disconnecting set, then it has a two-edge disconnecting set. In both cases we can then

invoke Claim 2.3.1 to draw the graph with four slopes. �

Remark 2.3.3 A consequence of the above discussion is that any cubic graph that

cannot be drawn with the four basic slopes (N,E,NE,NW) must be three vertex and edge

connected.

Claim 2.3.4 Any cubic graph with a triangle can be drawn with four slopes

Proof. First we note that by using the above claims, we may assume that we only

consider cubic graphs in which all triangles are connected to the rest of the graph by
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vertex disjoint edges. If not, then the graph is either K4 or has a two-vertex discon-

necting set. A K4 can be drawn using the vertices of a square. In the later case, we

can draw the graph with four slopes using Claim 2.3.2.

G′

v
b

b
b

v1

v2
v3

Fourth slope

Figure 2.6: Adding the triangle to the drawing of G′ with four slopes.

We now prove the claim by contradiction. Suppose there exist cubic graphs with

triangles that cannot be drawn with four slopes. By the preceding discussion all trian-

gles in these graphs are necessarily connected to the graphs with vertex-disjoint edges.

Of all such graphs consider the one with minimum number of vertices, say G. The

graph G′ obtained by contracting the edges of the triangle {v1, v2, v3} is also cubic

and has fewer vertices. Either all triangles in G′ are connected to the rest of G′ with

vertex-disjoint edges, in which case we invoke the minimality of G to conclude that G′

can be drawn with 4 slopes (note: here the method of drawing the graph is unknown.

We just know there exists a drawing of G′ with four slopes). Or, some triangles in G′

could be connected to the rest of G′ with edges that are not vertex-disjoint. Here we

can use Theorem 2.1.1 and the argument of the preceding paragraph to draw G′ using

four slopes. And lastly, G′ could be a triangle-free graph. In this case we use Theorem

2.1.3 to draw G′. Hence, G′ can always be drawn with four slopes. In G′, we call the

vertex formed by contracting the edges of the triangle as v. Since there is one slope

that is not used by the edges incident on v, we draw a segment with this slope in a

very small neighborhood of v as shown in the figure, to obtaining a drawing of G with

four slopes. This contradicts the existence of a minimal counterexample and hence all
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graphs with triangles can be drawn with four slopes.

�

Remark 2.3.5 We note here that the preceding Lemma also holds in stricter condi-

tions. To be precise, if the set of basic slopes are sufficient to draw all triangle-free

cubic graphs, then they are sufficient to draw all cubic graphs.

Remark 2.3.6 It must be noted that this also gives an algorithm for drawing cubic

graphs with triangles, namely, we contract triangles until we get a graph that can be

drawn with either the Claims 2.3.1,2.3.2,2.3.4 or Theorem 2.1.1 or with our drawing

strategy for triangle-free bridgeless graphs. Then we can backtrack with placing a series

of edges which give us back all the contracted triangles.

2.3.2 Drawing strategy

Because of the above claims, we would now only focus on graphs that are bridgeless

and triangle-free. Since the graph is bridgeless, Petersen’s theorem implies that it has

a matching. We fix the slope of all the edges in the matching to be π/2 so that they

all lie on (distinct) vertical lines (Figure 2.3.2). If this matching is removed, then the

graph consists of disjoint cycles. Next we isolate one special edge from each cycle. Our

method of drawing the graph with four slopes then is as follows: For each cycle, remove

the selected edge and draw the remaining path by going between corresponding vertical

lines of the cycle alternating with slopes π/4, 3π/4 depending on whether we draw the

edges with increasing/decreasing x-coordinate. This ensures that the cycles all grow

upwards. Since we have the freedom to place the cycles where we want, we place them

vertically on the matching so that they are very far apart (non-intersecting). Also, if

the special edge of each cycle was between adjacent vertical lines then this edge would

not pass through any other vertex of the graph either. Then, the only thing we would

need is that the final edge in each cycle is drawn with the same slope. Figure 2.3.2

illustrates this and the next remark is followed by a formal description of the problem.

Remark 2.3.7 In [29] a similar strategy of drawing the matching on vertical lines
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Figure 2.7: Process of drawing the cycles.
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was employed. However, the cycles were drawn with alternating π/4, 3π/4 slopes for

adjacent edges, so that the cycles were not “growing upwards” as in our construction.

It leads to a different algebraic formulation of the problem giving tight bounds for the

case when the cubic graph contains a Hamiltonian cycle.

Let M be a matching in G. Each cycle C in E(G)\M can be represented as a cyclic

sequence C = (v1, . . . , vk), where each vi is an element of M . The sequence represents

the elements of M as we go around the cycle. We can assume (by Claim 2.3.4) that

k ≥ 4. An edge of C by definition is (vi, vi+1) (all indices are understood mod k), which

is although formally a pair formed by two distinct elements of M , also corresponds to

an actual edge of the cycle. Notice that each element of M is either shared by two

cycles or occurs twice in a single cycle.

b
b

b

b

bb
b

b
b

b
b

b
b

b

Figure 2.8: Distinguished “matching-edges” of Figure 1 are represented by dashed lines
while distinguished cycle-edges are represented by dotted lines.

We now want to pick a distinguished edge (as in Figure 2.3.2) (vi, vi+1) in C (and in

other cycles) such that the set of distinguished cycle-edges will satisfy certain properties.

Notation: Each distinguished cycle-edge is adjacent with two edges from the match-

ing. These would be called the distinguished matching-edges of the cycle. In partic-

ular, the collection of distinguished edges from all cycles form the set of distinguished

matching-edges. We would hope that distinguished matching-edges corresponding to a

distinguished cycle-edge can be drawn as adjacent vertical lines for all cycles so that
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this would naturally enforce that the distinguished cycle-edge would not go through

any other vertex of the graph.

Definition 2.3.8 Two cycles are connected if they share a distinguished matching-

edge, and two cycles belong to the same component if they can be reached one from

another by going through connected cycles. (An alternate way of looking at this would

be that two cycles are adjacent iff the sets of distinguished matching-edges corresponding

to the two cycles have a non-empty intersection). In other words, we define a graph on

the cycles that we call the cycle-connectivity graph. Notice that in this graph each

cycle can have at most two neighbors, thus the graph is a union of paths and cycles.

The set of distinguished matching-edges associated with the component where cycle C

belongs is denoted by D(C). (Clearly, if C1 and C2 belong to the same component, then

D(C1) = D(C2)).

b
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bb
bb

b
bb
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b
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bC1

b

C2

bC3

bC4

Figure 2.9: Graph and its connectivity graph.

Remark 2.3.9 We note that in the cycle-connectivity graph two cycles are not nec-

essarily connected if they share a matching-edge but only if they share a distinguished

matching-edge. We can define another graph, where two cycles are connected if they

share any matching-edge. It is easy to see that G is connected iff the latter graph is

connected.
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Remark 2.3.10 We also note that we may get a multigraph for the cycle-connectivity

graph in the event that two cycles pick distinguished cycle-edges between the same set

of matching-edges. Condition I below avoids that scenario also.

Condition I: The cycle-connectivity graph does not contain cycles (only paths). Equiv-

alently, we can enumerate the distinguished matching-edges associated with the cycles

of a component in some linear order y1, . . . , yl in such a way that the pairs of consec-

utive matching-edges of this order are exactly the distinguished cycle-edges associated

with the cycles in the component.

Condition II: In each component there is at most one cycle C such that C ⊆ D(C).

Assume that the lines of the matching are ordered v1, ..., vn. From Condition I,

we can ensure that every distinguished cycle-edge takes up two adjacent lines in this

ordering. A drawing of these lines would be completely determined by the distance

between consecutive lines. If vi, vi+1 form a distinguished cycle-edge of the kth cycle,

then call the distance between these lines xk. Otherwise fix this distance to be some

arbitrary positive constant ci. This is illustrated in Figure 2.3.2.

c1 x1c3 c4 c5 x2

bcbb
b

b

bbcb
bcb

b
b

b
b

b
b

bcb

Figure 2.10: Definition of variables xi and ci.

Now draw a cycle by starting at one of the distinguished matching-edges and first

drawing the path obtained by removing the distinguished cycle-edge. If an edge of the

cycle is vk, vl where k < l then use a slope of π/4 and 3π/4 otherwise. Notice that
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Figure 2.11: Paths of cycles will have adjacent distinguished cycle-edges in the drawing
(because of the distinguished matching-edge they share). Hence it is necessary to not
have cycles in the connectivity graph.

the vertical distance traveled across this edge is equal to the distance between the lines

vk and vl. Hence the slope of the distinguished cycle-edge would look like gi = Li(x)
xi

where Li(x) = ai,0 +
∑n

j=1 ai,jxj for 1 ≤ i ≤ m (m being the number of cycles) is a

linear equation on x with non-negative coefficients. We will use the following Solvability

Theorem to ensure that these slopes can always be matched. This will be proved in the

next subsection.

Theorem 2.3.11 Let Li(x) = ai,0 +
∑n

j=1 ai,jxj for 1 ≤ i ≤ n be linear forms, such

that all coefficients are non-negative. Define a directed graph, G = G(L) with vertex

set V (G) = {0, 1, . . . , n} and edge set E(G) = {(j, i) | ai,j 6= 0}. Let gi = Li(x)
xi

for

1 ≤ i ≤ n. Assume that in G(L) every node can be reached from 0. Then

g1(x) = g2(x) = · · · = gn(x) (2.1)

has an all-positive solution.

Definition 2.3.12 We define r(i) = dist(0, i) in the above graph G(L) and for a cycle

C if the variable was xi for its distinguished cycle-edge, we would denote r(C) to mean

r(i).

Theorem 2.3.13 If Conditions I and II hold then we can use Theorem 2.3.11 to prove
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that every connected graph G is implementable with four directions.

Proof. Condition I ensures that the slope associated with the distinguished cycle-edge

of each cycle i can be expressed as gi(x) (as we have seen). Condition II is sufficient

for the reachability condition (for G) of Theorem 2.3.11. We will in fact show that

r(C) ≤ 2 for every cycle C. The linear expression for cycle C has a non-zero constant

term iff C \D(C) 6= ∅. Consider a fixed component. By Condition II all cycles, except

perhaps one, have associated linear expressions with non-zero constant terms, therefore

they have r = 1.

.....
v1 v2 v3 v4

.....

c1 x1 x2 x3 x4 x5 c6

b
b

b
b

b

b

b

b

b

b

b

b

Figure 2.12: Here the dotted edges represent a set of adjacent distinguished cycle-edges.
r(C) 6= 1 if all edges of the cycle span over these adjacent distinguished cycle-edges.
But all vi’s in the figure have both vertices of the matching-edges used up by cycles.
So C could at best be a 4 cycle (since the graph is triangle-free) using up the first and
the last vertical lines of this contiguous block and one distinguished cycle-edge.

It is sufficient to show that the single cycle C for which C ⊆ D(C), if exists, has

r(C) = 2. Indeed, let y1, . . . , yl be the distinguished matching-edges belonging to this

component in this linear order, and let yp and yp+1 be the distinguished matching-edges

that belong to cycle C. Since C is at least a four cycle, it either contains some other

yp′ 6∈ {yp, yp+1}, in which case indeed, it is geometrically easy to see that one of the

other variables from the component has to occur in LC or C is a four cycle and both yp

and yp+1 occur with multiplicity two in it. In the latter case C would form a separate

K4 component, thus G = K4. In the former case the variable has r = 1, so r(C) = 2.

�
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We are left with proving that we can pick distinguished cycle-edges from the cycles

such that Conditions I and II are satisfied. Indeed, start from any cycle, and pick an

edge for a distinguished cycle-edge, which has at least one adjacent matching-edge y that

is common with a different cycle. If there is none, the cycle is the single (Hamiltonian)

cycle, and if we distinguish any edge, Conditions I and II are clearly satisfied. Otherwise,

in the cycle that contains y, pick one of the two edges adjacent to y, look at the other

adjacent matching-edge, y′, of this edge, look for another cycle that is adjacent with y′,

etc. The process ends when we get back to any cycle (including the current one) that

has already been visited. There is one reason for back-track and this is when we return

to the other adjacent matching-edge, z, of the starting edge. In this case we choose the

other edge (recall we always have two choices). It would be fatal to get back to z, since

then Condition I would not hold.

Assume that the above procedure has gone through. Then we have distinguished

at most three matching-edges adjacent to any cycle. But this is not all. We have to

do the same procedure from z as well. The procedure terminates when we encounter

a cycle that has already been encountered. Thus in the final step we might create a

fourth distinguished matching-edge adjacent to one of the cycles, but only in one of

them. This can be the single cycle C in the component for which C ⊆ D(C). And

because the graph is triangle-free, all the other components would have C \D(C) 6= ∅.

Once we are done with creating the first component, we select a cycle not involved

in it, and start the same procedure as before with the only difference that in subsequent

rounds we also stop if we encounter a cycle visited in one of the previous rounds. It is

easy to see, that now for the distinguished cycle-edges that we have selected Conditions

I and II hold.

2.3.3 Solvability

Before we prove Theorem 2.3.11, we will look at the following special case when all the

constant terms in Li are positive.

Theorem 2.3.14 Let B1, . . . , Bn > 0 be positive constants, Li(x) =
∑n

j=1 ai,jxj for
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1 ≤ i ≤ n be linear forms. Let gi = Bi+Li(x)
xi

for 1 ≤ i ≤ n. Then

g1(x) = g2(x) = · · · = gn(x) (2.2)

has an all-positive solution.

Proof. The intuition behind the proof is this: Let ǫ be very small and α1, . . . , αn > 0

be fixed. If we set xi = ǫBiα
−1
i then gi(x) ≈ ǫ−1αi. In particular, let α range in the

[1, 2]n solid cube. Then, if ǫ is small enough, the vector (g1(x), . . . , gn(x)) will range

roughly in the [ǫ−1, 2ǫ−1]n cube, thus ǫ−1(1.5, . . . , 1.5), which is the center of this cube,

has to be in the image.

To make this proof idea precise we will use the following version of Brouwer’s well

known fix point theorem:

Theorem 2.3.15 (Brouwer) Let f : [1, 2]n → [1, 2]n be a continuous function. Then

f has a fix point, i.e. an x0 ∈ [1, 2]n for which f(x0) = x0.

We will use the fix point theorem as below. We first define

h(α1, . . . , αn) = (ǫg1(x), . . . , ǫgn(x)),

where x = ǫ(α−1
1 B1, . . . , α

−1
n Bn) = ǫx′, and we think of ǫ as some fixed positive number.

Notice that x′ is just a function of α, independent of ǫ. It is sufficient to show that

if ǫ is small enough, there are α1, . . . , αn such that h(α) = (1.5, . . . , 1.5), since then x

satisfies (2.2) with common value 1.5ǫ−1. We have:

ǫgi(x) = ǫ
Bi + Li(x)

ǫα−1
i Bi

= αi(1 + ǫB−1
i Li(x

′)).

Here we used that Li(ǫx
′) = ǫLi(x

′). We would like to have

αi(1 + ǫB−1
i Li(x

′)) = 1.5 for 1 ≤ i ≤ n. (2.3)
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Define

K = max
i

sup
α∈[1,2]n

B−1
i Li(x

′);

ǫ = 1/(10K).

To use the fix point theorem we consider the map

f : (α1, . . . , αn) →
(

1.5

1 + ǫB−1
1 L1(x′)

, . . . ,
1.5

1 + ǫB−1
n Ln(x′)

)

on the cube [1, 2]n. The image is contained in [1, 2]n, since if α ∈ [1, 2]n then for

1 ≤ i ≤ n we have

1 <
1.5

1 + 0.1
=

1.5

1 + ǫK
≤ 1.5

1 + ǫB−1
i Li(x′)

≤ 1.5

1 − ǫK
=

1.5

1 − 0.1
< 2.

Therefore, by Theorem 2.3.15 there is an α ∈ [1, 2]n such that αi = 1.5
1+ǫB−1

i
Li(x′)

for

1 ≤ i ≤ n, which is equivalent to (2.3). �

In Theorem 2.3.14 all linear forms have non-zero constant terms. We can, however

generalize this to Theorem 2.3.11. We discuss its proof below.

Remark 2.3.16 The non-negativity of the coefficients can be relaxed such that the

theorem becomes a true generalization of Theorem 2.3.14. Since the more general con-

dition is slightly technical, we will stay with the simpler non-negativity condition, which

is sufficient for us.

Proof. For 1 ≤ i ≤ n let r(i) = dist(0, i) in G(L). (In Theorem 2.3.14 each r(i) was

1.) Define

xi = ǫr(i)x′
i,

where ǫ > 0 will be a small enough number that we will appropriately fix later, but as

of now we think about it as a quantity tending to zero. We can rewrite (2.2) as:

ǫg1(x) = ǫg2(x) = · · · = ǫgn(x).
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If we fix x′ and take epsilon tending to zero, then,

ǫgi(x) → βi(x
′)

x′
i

,

where βi(x
′) = ai,0/x

′
i if r(i) = 1, otherwise

βi(x
′) =

∑

j: r(j)=r(i)−1

ai,jx
′
j.

We can now solve the system

βi(x
′)

x′
i

= 1.5

and even the system

βi(x
′)

x′
i

= αi, (2.4)

where 1 ≤ αi ≤ 2 for 1 ≤ i ≤ n. Indeed, the solution can be obtained iteratively, by

first computing the values of the variables xi with r(i) = 0, then with r(i) = 1, etc. We

can again use the fix point theorem of Brouwer to show that if ǫ is sufficiently small,

the system

ǫgi(x) = 1.5 for 1 ≤ i ≤ n

has a solution. For this we again parameterize x′ with α. When α ranges in the solid

cube [1, 2]n then x′ will range in some domain D, where we obtain D by solving the

system (2.4) for all αi ∈ [1, 2]n. Now we have to set ǫ small enough such that everywhere

in D it should hold that

0.9 ≤ βi(x
′)/x′

i

ǫgi(x)
=

αi

ǫgi(x)
≤ 1.1 for 1 ≤ i ≤ n. (2.5)

This is easily seen to be possible, since D is contained in a closed cube in the strictly

positive orthant. We then apply the fix point theorem to

f : α → γ,
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where

γi =
1.5αi

ǫgi(x)
.

The fix point theorem applies, since the range of f remains in the [0.9 · 1.5, 1.1 · 1.5]n ⊂

[1, 2]n cube by Equation (2.5). For the fixed point αi = 1.5αi

ǫgi(x) for 1 ≤ i ≤ n, which

implies ǫgi(x) = 1.5 for 1 ≤ i ≤ n. �

2.4 Proof of Theorem 2.1.4

We start with some definitions we will use throughout this section.

2.4.1 Definitions

Throughout this section log always denotes log2, the logarithm in base 2.

We recall that the girth of a graph is the length of its shortest cycle.

Definition 2.4.1 Define a supercycle as a connected graph where every degree is at

least two and not all are two. Note that a minimal supercycle will look like a “θ” or

like a “dumbbell”.

We recall that a cut is a partition of the vertices into two sets. We say that an edge

is in the cut if its ends are in different subsets of the partition. We also call the edges

in the cut the cut-edges. The size of a cut is the number of cut-edges in it.

Definition 2.4.2 We say that a cut is an M -cut if the cut-edges form a matching, in

other words, if their ends are pairwise different vertices. We also say that an M -cut is

suitable if after deleting the cut-edges, the graph has two components, both of which are

supercycles.

We refer the reader to Section 2.1 for the exact statement of Theorem 2.1.1 [44]

about subcubic graphs.

Note that Theorem 2.1.1 proves the result of Theorem 2.1.4 for subcubic graphs.

Another minor observation is that we may assume that the graph is connected. Since
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we use the basic four slopes, if we can draw the components of a disconnected graph,

then we just place them far apart in the plane so that no two drawings intersect. So

we will assume for the rest of the section that the graph is cubic and connected.

2.4.2 Preliminaries

The results in this subsection are also interesting independent of the current problem

we deal with. The following is also called the Moore bound.

Lemma 2.4.3 Every connected cubic graph on n vertices contains a cycle of length at

most 2⌈log(n
3 + 1)⌉.

v

Figure 2.13: Finding a cycle in the BFS tree using that the left child of v already
occurred.

Proof. Start at any vertex of G and conduct a breadth first search (BFS) of G until

a vertex repeats in the BFS tree. We note here that by iterations we will (for the rest

of the subsection) mean the number of levels of the BFS tree. Since G is cubic, after k

iterations, the number of vertices visited will be 1+3+6+12+. . .+3·2k−2 = 1+3(2k−1−

1). And since G has n vertices, some vertex must repeat after k = ⌈log(n
3 + 1)⌉ + 1

iterations. Tracing back along the two paths obtained for the vertex that reoccurs, we

find a cycle of length at most 2⌈log(n
3 + 1)⌉. �

Lemma 2.4.4 Every connected cubic graph on n vertices with girth g contains a su-

percycle with at most 2⌈log(n+1
g )⌉ + g − 1 vertices.
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Proof. Contract the vertices of a length g cycle, obtaining a multigraph G′ with

n − g + 1 vertices, that is almost 3-regular, except for one vertex of degree g, from

which we start a BFS. It is easy to see that the number of vertices visited after k

iterations is at most 1+ g + 2g + 4g + . . . + g · 2k−2 = g(2k−1 − 1)+ 1. And since G′ has

n−g+1 vertices, some vertex must repeat after k = ⌈log(n−g+1
g +1)⌉+1 = ⌈log(n+1

g )⌉+1

iterations. Tracing back along the two paths obtained for the vertex that reoccurs, we

find a cycle (or two vertices connected by two edges) of length at most 2⌈log(n+1
g )⌉

in G′. This implies that in G we have a supercycle with at most 2⌈log(n+1
g )⌉ + g − 1

vertices. �

Lemma 2.4.5 Every connected cubic graph on n > 2s − 2 vertices with a supercycle

with s vertices contains a suitable M -cut of size at most s − 2.

Proof. The supercycle with s vertices, A, has at least two vertices of degree 3.

The size of the (A,G − A) cut is thus at most s − 2. This cut need not be an M -cut

because the edges may have a common neighbor in G − A. To repair this, we will now

add, iteratively, the common neighbors of edges in the cut to A, until no edges have

a common neighbor in G − A. Note that in any iteration, if a vertex, v, adjacent to

exactly two cut-edges was chosen, then the size of A increases by 1 and the size of the

cut decreases by 1 (since, these two cut-edges will get added to A along with v, but

since the graph is cubic, the third edge from v will become a part of the cut-edges).

If a vertex adjacent to three cut-edges was chosen, then the size of A increases by 1

while the number of cut-edges decreases by 3. From this we can see that the maximum

number of vertices that could have been added to A during this process is s − 3. Now

there are three conditions to check.

The first condition is that this process returns a non-empty second component. This

would occur if

(n − s) − (s − 3) > 0

or,

n > 2s − 3.
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The second condition is that the second component should not be a collection of

disjoint cycles. For this we note that it is enough to check that at every stage, the

number of cut-edges is strictly smaller than the number of vertices in G−A. But since

in the above iterations, the number of cut-edges decreases by a number greater than

or equal to the decrease in the size of G − A, it is enough to check that before the

iterations, the number of cut-edges is strictly smaller than the number of vertices in

G − A. This is the condition

n − s > s − 2

or,

n > 2s − 2.

Note that if this inequality holds then the non-emptiness condition will also hold.

Finally, we need to check that both components are connected. A is connected but

G − A need not be. We pick a component in G − A that has more vertices than the

number of cut-edges adjacent to it. Since the number of cut-edges is strictly smaller

than the number of vertices in G − A, there must be one such component, say B, in

G−A. We add every other component of G−A to A. Note that the size of the cut only

decreases with this step. Since B is connected and has more vertices than the number

of cut-edges, B cannot be a cycle. �

Corollary 2.4.6 Every connected cubic graph on n ≥ 18 vertices contains a suitable

M -cut.

Proof. Using the first two lemmas, we have a supercycle with s ≤ 2⌈log(n+1
g )⌉+g−1

vertices where 3 ≤ g ≤ 2⌈log(n
3 + 1)⌉. Then using the last lemma, we have an M -cut

with both partitions being a supercycle if n > 2s− 2. So all we need to check is that n

is indeed big enough. Note that

s ≤ 2 log(
n + 1

g
) + g + 1 = 2 log(n + 1) + g + 1 − 2 log g ≤

≤ 2 log(n + 1) + 2 log(
n

3
+ 1) − 2 log(2 log(

n

3
+ 1)) + 1
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where the last inequality follows from the fact that x − 2 log x is increasing for

x ≥ 2/ loge 2 ≈ 2.88. So we can bound the right hand side from above by 4 log(n+1)+1.

Now we need that

n > 2(4 log(n + 1) + 1) − 2 = 8 log(n + 1)

which holds if n ≥ 44.

The statement can be checked for 18 ≤ n ≤ 42 with code that can be found in the

Appendix. It outputs for a given value of n, the g for which 2s − 2 is maximum and

this maximum value. Based on the output we can see that for n ≥ 18, this value is

smaller. �

2.4.3 Proof

Lemma 2.4.7 Let G be a connected cubic graph with a suitable M -cut. Then, G can

be drawn with the four basic slopes.

x1

x2

x3

xm−1

xm−xm

−xm−1

−x3

−x2

−x1

Rotated and translated

Figure 2.14: The x-coordinates of the degree 2 vertices is suitably chosen and one
component is rotated and translated to make the M -cut vertical.
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Proof. The proof follows rather straightforwardly from Theorem 2.1.1. Note that

the two components are subcubic graphs and we can choose the x-coordinates of the

vertices of the M -cut (since they are the vertices with degree two in the components). If

we picked coordinates x1, x2, . . . , xm in one component, then for the neighbors of these

vertices in the other component we pick the x-coordinates −x1,−x2, . . . ,−xm. We now

rotate the second component by π and place it very high above the other component

so that the drawings of the components do not intersect and align them so that the

edges of the M -cut will be vertical (slope π/2). Also, since Theorem 2.1.1 guarantees

that degree two vertices have no other vertices on the vertical line above them, hence

the drawing we obtain above is a valid representation of G with the basic slopes. �

By combining Lemma 2.4.6 and Lemma 2.4.7, we can see that Theorem 2.1.4 is true

for all cubic graphs with n ≥ 18. For smaller graphs, we reduce the number of graphs

we have to check with the help of Lemma 2.3.2 and Remark 2.3.3 as a consequence of

which, a graph that cannot be drawn with the four basic slopes must be three vertex

and edge connected.

We also employ the following theorem by Max Engelstein [29].

Lemma 2.4.8 Every 3-connected cubic graph with a Hamiltonian cycle can be drawn

in the plane with the four basic slopes.

Note that combining this with Lemma 2.3.2 we even get

Corollary 2.4.9 Every cubic graph with a Hamiltonian cycle can be drawn in the plane

with the four basic slopes.

The graphs which now need to be checked satisfy the following conditions:

1. the number of vertices is at most 16

2. the graph is 3-connected

3. the graph does not have a Hamiltonian cycle.

Remark 2.4.10 We now bring the attention of our reader to Remark 2.3.5 to add that

we may also add to the above list that the graph does not contain a triangle. However,
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we use our girth lemmas to have an easy way to analyze the graphs excluded by only

the above three assertions.

Figure 2.15: The Tietze’s graph drawn with the four basic slopes.

Note that if the number of vertices is at most 16, then it follows from Lemma 2.4.3

that the girth is at most 6. Luckily there are several lists available of cubic graphs with

a given number of vertices, n and a given girth, g.

If g = 6, then there are only two graphs with at most 16 vertices (see [1, 52]), both

containing a Hamiltonian cycle.

If g = 5 and n = 16, then Lemma 2.4.4 gives a supercycle with at most 8 vertices,

so using Lemma 2.4.5 we are done.

If g = 5 and n = 14, then there are only nine graphs (see [1, 52]), all containing a

Hamiltonian cycle.

If g ≤ 4 and n = 16, then Lemma 2.4.4 gives a supercycle with at most 8 vertices,

so using Lemma 2.4.5 we are done.

If g ≤ 4 and n = 14, then Lemma 2.4.4 gives a supercycle with at most 7 vertices,

so using Lemma 2.4.5 we are done.

Finally, all graphs with at most 12 vertices are either not 3-connected or contain a

Hamiltonian cycle, except for the Petersen graph and Tietze’s Graph (see [2]). For the

drawing of these two graphs, see the respective Figures.
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2.5 Which four slopes? and other concluding questions

After establishing Theorem 2.1.4 the question arises whether we could have used any

other four slopes. Call a set of slopes good if every cubic graph has a straight-line draw-

ing with them. In this section we prove Theorem 2.1.5 that claims that the following

statements are equivalent for a set S of four slopes.

1. S is good.

2. S is an affine image of the four basic slopes.

3. We can draw K4 with S.

Proof. Since affine transformation keeps incidences, any set that is the affine image

of the four basic slopes is good.

On the other hand, if a set S = {s1, s2, s3, s4} is good, then K4 has a straight-line

drawing with S. Since we do not allow a vertex to be in the interior of an edge, the

four vertices must be in general position. This implies that two incident edges cannot

have the same slope. Therefore there are two slopes, without loss of generality s1 and

s2, such that we have two edges of each slope. These four edges must form a cycle

of length four, which means that the vertices are the vertices of a parallelogram. But

in this case there is an affine transformation that takes the parallelogram to a square.

This transformation also takes S into the four basic slopes. �

Note that a similar reasoning shows that no matter how many slopes we take, their

set need not be good, because we cannot even draw K4 with them unless they satisfy

some correlation. The above proofs use the four basic slopes only in a few places (for

rotation invariance and to start induction). Thus, we make the following conjecture.

Conjecture 2.5.1 There is a (not necessarily connected, finite) graph such that a set

of slopes is good if and only if this graph has a straight-line drawing with them.

This finite graph would be the disjoint union of K4, maybe the Petersen graph and

other small graphs. We could not even rule out the possibility that K4 (or maybe
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another, connected graph) is alone sufficient. Note that we can define a partial order

on the graphs this way. Let G < H if any set of slopes that can be used to draw H can

also be used to draw G. This way of course G ⊂ H ⇒ G < H but what else can we say

about this poset?

Is it possible to use this new method to prove that the slope parameter of cubic

graphs is also four?

The main question remains to prove or disprove whether the slope number of graphs

with maximum degree four is unbounded.
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Chapter 3

Obstacle number

3.1 Introduction

Consider a set P of points in the plane and a set of closed polygonal obstacles whose

vertices together with the points in P are in general position, that is, no three of them

are on a line. The corresponding visibility graph has P as its vertex set, two points

p, q ∈ P being connected by an edge if and only if the segment pq does not meet any

of the obstacles. Visibility graphs are extensively studied and used in computational

geometry, robot motion planning, computer vision, sensor networks, etc.; see [20], [35],

[59], [60], [68].

Recently, Alpert, Koch, and Laison [8] introduced an interesting new parameter

of graphs, closely related to visibility graphs. Given a graph G, we say that a set of

points and a set of polygonal obstacles as above constitute an obstacle representation

of G, if the corresponding visibility graph is isomorphic to G. A representation with h

obstacles is also called an h-obstacle representation. The smallest number of obstacles

in an obstacle representation of G is called the obstacle number of G and is denoted

by obs(G). If we are allowed to use only convex obstacles, then the corresponding

parameter obsc(G) is called the convex obstacle number of G. Of course, we have

obs(G) ≤ obsc(G) for every G, but the two parameters can be very far apart.

A special instance of the obstacle problem has received a lot of attention, due

to its connection to the Szemerédi-Trotter theorem on incidences between points and

lines [66], [65], and other classical problems in incidence geometry [62]. It is an exciting

open problem to decide whether the obstacle number of Kn, the empty graph on n

vertices, is O(n) if the obstacles must be points. The best known upper bound is

n2O(
√

log n); see Pach [61], Dumitrescu et al. [27], Matoušek [50], and Aloupis et al. [7].
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Alpert et al. [8] constructed a bipartite graph and a split graph (a graph whose vertex

set is the union of a complete graph and an independent set), both with a fixed number

of vertices, with obstacle number at least two. In [54] another graph, whose vertex set is

the union of two complete subgraphs, was shown to have obstacle number at least two.

Consequently, no graph of obstacle number one can contain a subgraph isomorphic to

these graphs. Using this and some extremal graph theoretic tools developed by Erdős,

Kleitman, Rothschild, Frankl, Rödl, Prömel, Steger, Bollobás, Thomason and others,

the following was proved.

Theorem 3.1.1 ([54]) For any fixed positive integer h, the number of graphs on n

(labeled) vertices with obstacle number at most h is at most 2o(n2).

Since the number of bipartite graphs with n labeled vertices is Ω(2n2/4), this also

implies that there exist bipartite graphs with arbitrarily large obstacle number.

For every sufficiently large n, Alpert et al. constructed a graph with n vertices with

obstacle number at least Ω
(√

log n
)

. By using the existence of graphs with obstacle

number at least 2 and a result by Erdős and Hajnal [31], we show the existence of

graphs with much larger obstacle numbers.

Theorem 3.1.2 For every ε > 0, there exists an integer n0 = n0(ε) such that for all

n ≥ n0, there are graphs G on n vertices such that their obstacle numbers satisfy

obs(G) ≥ Ω
(

n1−ε
)

.

In Section 3.3, we improve on the last two corollaries, using some estimates on

the number of different order types of n points in the Euclidean plane, discovered by

Goodman and Pollack [36], [37] (see also Alon [5]). We establish the following results.

Theorem 3.1.3 For any fixed positive integer h, the number of graphs on n (labeled)

vertices with obstacle number at most h is at most

2O(hn log2 n).
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Theorem 3.1.4 For every n, there exist graphs G on n vertices with obstacle numbers

obs(G) ≥ Ω
(

n/log2 n
)

.

Note that the last statement directly follows from Theorem 3.1.3. Indeed, since

the total number of (labeled) graphs with n vertices is 2Ω(n2), as long as 2O(hn log2 n) is

smaller that this quantity, there is a graph with obstacle number larger than h.

We prove a slightly better bound for convex obstacle numbers.

Theorem 3.1.5 For every n, there exist graphs G on n vertices with convex obstacle

numbers

obsc(G) ≥ Ω (n/log n) .

If we only allow segment obstacles, we get an even better bound. Following Alpert

et al., we define the segment obstacle number obss(G) of a graph G as the minimal

number of obstacles in an obstacle representation of G, in which each obstacle is a

straight-line segment.

Theorem 3.1.6 For every n, there exist graphs G on n vertices with segment obstacle

numbers

obss(G) ≥ Ω
(

n2/log n
)

.

We then improve the bound for the general obstacle number as follows.

Theorem 3.1.7 For every n, there exists a graph G on n vertices with obstacle number

obs(G) ≥ Ω (n/log n) .

This comes close to answering the question in [8] whether there exist graphs with

n vertices and obstacle number at least n. However, we have no upper bound on the

maximum obstacle number of n-vertex graphs, better than O(n2).

Given any placement (embedding) of the vertices of G in general position in the

plane, a drawing of G consists of the image of the embedding and the set of open
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segments connecting all pairs of points that correspond to the edges of G. If there is no

danger of confusion, we make no notational difference between the vertices of G and the

corresponding points, and between the pairs uv and the corresponding open segments.

The complement of the set of all points that correspond to a vertex or belong to at

least one edge of G falls into connected components. These components are called the

faces of the drawing. Notice that if G has an obstacle representation with a particular

placement of its vertex set, then

(1) each obstacle must lie entirely in one face of the drawing, and

(2) each non-edge of G must be blocked by at least one of the obstacles.

3.2 Extremal methods and proof of Theorem 3.1.2

In order to prove Theorem 3.1.2, we need the following result, which shows that if

G avoids at least one induced subgraph with k vertices, for some k ≪ log n, then the

Erdős-Szekeres bound on hom(G) can be substantially improved. We note that hom(G)

for a graph G is defined as the size of the largest clique or independent set in the graph.

Also, a graph is k-universal if it contains every graph on k vertices as induced subgraph.

Theorem 3.2.1 (Erdős, Hajnal [31]) For any fixed positive integer t, there is an

n0 = n0(t) with the following property. Given any graph G on n > n0 vertices and any

integer k < 2c
√

logn/t, either G is t-universal or we have hom(G) ≥ k. (Here c > 0 is a

suitable constant.)

We now prove Theorem 3.1.2.

Proof. For the sake of clarity of the presentation, we systematically omit all floor and

ceiling functions wherever they are not essential. Let H be a graph of t vertices that

does not admit a 1-obstacle representation. Fix any 0 < ε < 1, and choose an integer

N ≥ n0, that satisfies the inequality

2c
√

ε log N/t > 2 log N, (3.1)

where c, n0 are constants that appear in the previous theorem.
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For any n ≥ N , we set m = n1−ε. According to a theorem of Erdős [32], there exists

a graph G with n vertices such that

hom(G) < 2 log n < 2c
√

log(n/m)/t.

G1

G2

Figure 3.1: Division of the graph into m parts each with n/m points. The light grey
obstacle is a common exterior obstacle, while the darker one is an internal obstacle of
G2.

Consider an obstacle representation of G with the smallest number h of obstacles.

Suppose without loss of generality that in our coordinate system all points of G have

different x-coordinates. By vertical lines, partition the plane into m strips, each con-

taining n/m points. Let Gi denote the subgraph of G induced by the vertices lying in

the i-th strip (1 ≤ i ≤ m).

Obviously, we have

hom(Gi) ≤ hom(G) < 2c
√

log(n/m)/t,

for every i. Hence, applying Theorem 3.2.1 to each Gi separately, we conclude that each

must be t-universal. In particular, each Gi contains an induced subgraph isomorphic

to H. That is, we have obs(Gi) > 1 for every i, which means that each Gi requires at

least two obstacles.
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As was explained at the end of the Introduction, each obstacle must be contained in

an interior or in the exterior face of the graph. Therefore, in an h-obstacle representation

of G, each Gi must have at least one internal face that contains an obstacle, and there

must be at least one additional obstacle (which may possibly contained in the interior

face of every Gi). At any rate, we have h > m = n1−ε, as required.

�

3.3 Encoding graphs of low obstacle number

The aim of this section is to prove Theorems 3.1.3–3.1.6. The idea is to find a short

encoding of the obstacle representations of graphs, and to use this to give an upper

bound on the number of graphs with low obstacle number.

We need to review some simple facts from combinatorial geometry. Two sets of

points, P1 and P2, in general position in the plane are said to have the same order

type if there is a one to one correspondence between them with the property that the

orientation of any triple in P1 is the same as the orientation of the corresponding triple

in P2. Counting the number of different order types is a classical task, see e.g.

Theorem 3.3.1 (Goodman, Pollack [36]) The number of different order types of n

points in general position in the plane is 2O(n log n).

Observe that the same upper bound holds for the number of different order types of

n labeled points, because the number of different permutations of n points is n! =

2O(n log n).

In a graph drawing, the complexity of a face is the number of line segment sides

bordering it. The following result was proved by Arkin, Halperin, Kedem, Mitchell,

and Naor (see Matoušek, Valtr [51] for its sharpness).

Theorem 3.3.2 (Arkin et al. [13]) The complexity of a single face in a drawing of

a graph with n vertices is at most O(n log n).

Note that this bound does not depend of the number of edges of the graph. We are

now ready to prove Theorem 3.1.3.
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Proof. For any graph G with n vertices that admits an h-obstacle representation, fix

such a representation. Consider the visibility graph G of the vertices in this representa-

tion. As explained at the end of the Introduction, any obstacle belongs to a single face

in this drawing. In view of Theorem 3.3.2, the complexity of every face is O(n log n).

Replacing each obstacle by a slightly shrunken copy of the face containing it, we can

achieve that every obstacle is a polygonal region with O(n log n) sides.

Notice that the order type of the sequence S starting with the vertices of G, followed

by the vertices of the obstacles (listed one by one, in cyclic order, and properly separated

from one another) completely determines G. That is, we have a sequence of length N

with N ≤ n + c1hn log n. According to Theorem 3.3.1 (and the following comment),

the number of different order types with this many points is at most

2O(N log N) < 2chn log2 n,

for a suitable constant c > 0. This is a very generous upper bound: most of the above

sequences do not correspond to any visibility graph G. �

If in the above proof the average number of sides an obstacle can have is small, then

we obtain

Theorem 3.3.3 The number of graphs admitting an obstacle representation with at

most h obstacles, having a total of at most hs sides, is at most

2O(n log n+hs log(hs)).

In particular, for segment obstacles (s = 2), Theorem 3.3.3 immediately implies

Theorem 3.1.6. Indeed, as long as the bound in Theorem 3.3.3 is smaller than 2(
n

2), the

total number of graphs on n labeled vertices, we can argue that there is a graph with

segment obstacle number larger than h.

We now show how to prove Theorem 3.1.5 with an easier way to encode the drawing

of a graph and its convex obstacles.

Proof. As before, it is enough to bound the number of graphs that admit an obstacle
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representation with at most h convex obstacles. Let us fix such a graph G, together

with a representation. Let V be the set of points representing the vertices, and let

O1, . . . , Oh be the convex obstacles. For any obstacle Oi, rotate an oriented tangent

line ℓ along its boundary in the clockwise direction. We can assume without loss of

generality that ℓ never passes through two points of V . Let us record the sequence of

points met by ℓ. If v ∈ V is met at the right side of ℓ, we add the symbol v+ to the

sequence, otherwise we add v− (Figure 2.2). When ℓ returns to its initial position, we

stop. The resulting sequence consists of 2n characters. From this sequence, it is easy

to reconstruct which pairs of vertices are visible in the presence of the single obstacle

Oi. Hence, knowing these sequences for every obstacle Oi, completely determines the

visibility graph G. The number of distinct sequences assigned to a single obstacle is

at most (2n)!, so that the number of graphs with convex obstacle number at most h

cannot exceed ((2n)!)h/h! < (2n)2hn. As long as this number is smaller than 2(
n

2), there

is a graph with convex obstacle number larger than h. �

3.4 Proof of Theorem 3.1.7

Here we prove Theorem 3.1.7 that claims that for every n, there exists a graph G on n

vertices with obstacle number obs(G) ≥ Ω (n/log n) .

Proof. The proof will be a counting argument. From Theorem 3.1.3 we know that the

number of graphs on k (labeled) vertices with obstacle number at most one is at most

2o(k2). Now we will count the graphs with obstacle number less than n/2k. Suppose G

has a representation with less than n/2k obstacles. Fix one such representation. There

are n! possibilities for the order of the vertices of G from left to right (we can suppose

that no two are below each other). We divide the vertices into n/k groups of size k,

from left to right. Denote the respective induced graphs by Gi.

Claim 3.4.1 At least half of the Gi’s require at most one obstacle.

Proof. By contradiction, suppose that at least half of the Gi’s require at least two

obstacles. One of each of these obstacles must be in an interior face of the respective
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1

2

3

(a) Empty

1

2

3

(b) 2+

1

2

3

(c) 2+1−

1

2

3

(d) 2+1−2−

1

2

3

(e) 2+1−2−3+

1

2

3

(f) 2+1−2−3+1+

1

2

3

(g) 2+1−2−3+1+3−

1

2

3

(h) 2+1−2−3+1+3−

Figure 3.2: Parts (a) to (g) show the construction of the sequence and (h) shows the
visibilities. The arrow on the tangent line indicates the direction from the point of
tangency in which we assign + as a label to the vertex. The additional arrow in (a)
indicates that the tangent line is rotated clockwise around the obstacle.
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Gi’s. Thus these obstacles are pair-wise separated by edges and must be different. This

together would be at least n/2k obstacles which contradicts the choice of G. �

For the subset of Gi’s that require at most one obstacle there are less than 2n/k

possibilities. Since the number of graphs on k vertices whose obstacle number is at

most one is 2o(k2), the probability that a Gi has a representation with at most one

obstacle is 2o(k2)−(k

2
). Therefore, the probability that a random graph G has obstacle

number at most n/2k is at most

n! · 2n/k · (2o(k2)−(k

2))n/2k = 2n log n− kn

4
+o(kn).

If k = Ω (5 log n), this number tends to zero. Therefore some graphs need at least

Ω (n/log n) obstacles. �

3.5 Further properties

In this section, we describe further properties of obstacle numbers. We start with

another question from [8].

Theorem 3.5.1 For every h, there exists a graph with obstacle number exactly h.

Proof. Pick a graph G with obstacle number h′ > h. (The existence of such a graph

follows, e.g., from Corollary 3.1.1.) Let n denote the number of vertices of G. Consider

a complete graph Kn on V (G). Its obstacle number is zero, and G can be obtained from

Kn by successively deleting edges. Observe that as we delete an edge from a graph G′,

its obstacle number cannot increase by more than one. This follows from the fact that

by blocking the deleted edge with an additional small obstacle that does not intersect

any other edge of G′, we obtain a valid obstacle representation of the new graph. (Of

course, the obstacle number of a graph can also decrease by the removal of an edge.)

Since at the beginning of the process, Kn has obstacle number zero, at the end G has

obstacle number h′ > h, and whenever it increases, the increase is one, we can conclude

that at some stage we obtain a graph with obstacle number precisely h. �
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The same argument applies to the convex obstacle number, to the segment obstacle

number, and many similar parameters.

Let H be a fixed graph. According to a classical conjecture of Erdős and Hajnal [31],

any graph with n vertices that does not have an induced subgraph isomorphic to H

contains an independent set or a complete subgraph of size at least nε(H), for some

positive constant ε(H). It follows that for any hereditary graph property there exists

a constant ε > 0 such that every graph G on n vertices with this property satisfies

hom(G) ≥ nε.

Here we show that the last statement holds for the property that the graph has

bounded obstacle number.

Theorem 3.5.2 For any fixed integer h > 0, every graph on n vertices with obsc(G) ≤

h satisfies hom(G) ≥ 1
2n

1

h+1 .

Proof. We proceed by induction on h. For h = 1, Alpert et al. [8] showed that

all graphs with convex obstacle number one are so-called ”circular interval graphs”

(intersection graphs of a collection of arcs along the circle). It is known that all such

graphs G whose maximum complete subgraph is of size x has an independent set of

size at least n
2x ; see [67]. Setting x =

√

n/2, it follows that hom(G) ≥ 1
2

√
n.

Let h > 1, and assume that the statement has already been verified for all graphs

with convex obstacle number smaller than h. Let G be a graph that requires h convex

obstacles, and consider one of its representations. Then we have G = ∩iGi, where Gi

denotes the visibility graph of the same set of points after the removal of all but the

i-th obstacle.

If the size of the largest independent set in G1 is at least 1
2n

1

h+1 , then the statement

holds, because this set is also an independent set in G. If this is not the case, then,

by the above property of circular arc graphs, G must have a complete subgraph K

of size at least n
h

h+1 . Consider now the subgraph of ∩h
i=2Gi induced by the vertices

of K. This graph requires only h − 1 obstacles. Thus, we can apply the induction

hypothesis to obtain that it has a complete subgraph or an independent set of size at

least 1
2(n

h

h+1 )
1

h = 1
2n

1

h+1 . �
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It is easy to see that every graph G on n vertices with convex obstacle number at

most h has the following stronger property, which implies that they satisfy the Erdős-

Hajnal conjecture: There exists a constant ε = ε(h) such that G contains a complete

subgraph of size at least εn or two sets of size at least εn such that no edges between

them belongs to G (cf. [33]).

Finally, we make a comment on higher dimensional representations.

Proposition 3.5.3 In dimensions d = 4 and higher, every graph can be represented

with one convex obstacle.

Proof. Let G be a graph with n vertices. Consider the moment curve

{(t, t2, t3, t4) : t ∈ R}.

Pick n points vi = (ti, ti
2, ti

3, ti
4) on this curve, i = 1, . . . , n. The convex hull of these

points is a cyclic polytope Pn. The vertex set of Pn is {v1, . . . , vn}, and any segment

connecting a pair of vertices of Pn is an edge of Pn (lying on its boundary). Denote the

midpoint of the edge vivj by vij , and let O be the convex hull of the set of all midpoint

vij , for which vi and vj are not connected by an edge in G. Obviously, the points vi and

the obstacle O (or its small perturbation, if we wish to attain general position) show

that G admits a representation with a single convex obstacle. �

3.6 Open Problems

The problems we have considered in the last few sections were to ascertain the obstacle

number of graphs when we restrict the kind of obstacles we use, namely, general poly-

gons, convex polygons and segments. Two other ways to consider the problem would

be, firstly, to consider restrictions on the placement of the obstacles, and secondly, to

consider restrictions on the kind of graphs we consider. For the first question, an inter-

esting problem raised in [8] was to determine graphs which require only one obstacle in

their outer face.
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For the second problem, we realize from Theorem 3.1.1 that the problem is more

interesting if we consider sparse graphs. In [8], it was shown that outerplanar graphs can

be drawn with exactly one obstacle in the outer face that was not necessarily convex.

Hence, they raised the question whether outerplanar graphs can be drawn with a finite

number of convex obstacles. To this, in [34] it was shown that outerplanar graphs can

be drawn with only five convex obstacles. Since every tree is an outerplanar graph, this

also settles the question for trees. It is an interesting open problem if planar graphs

can be drawn with a finite number of (convex) obstacles.

Any graph with e edges can be drawn with 2e segment obstacles, by placing a

segment very close to every vertex between any two adjacent edges in the drawing.

Hence, a sublinear bound on obstacle (or convex obstacle) number of planar graphs

would also be interesting.

In three dimensions, it is easy to see that every graph can be represented with one

obstacle. It is interesting, however, to find a bound when we restrict ourselves to convex

obstacles.

Finally, the upper bound of obstacle numbers is wide open and nothing better is

known than 2n2/3 (this can be achieved since a graph with e edges needs at most

n(n − 1)/2 − e obstacles, or 2e obstacles from the above observation). Hence, even a

subquadratic bound would be interesting.
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Chapter 4

Tic-Tac-Toe

4.1 Introduction

A central topic of combinatorial game theory is the study of positional games. The

interested reader can find the state of the art methods in Beck’s Tic-Tac-Toe book [16].

In general, positional games are played between two players on a board, the points of

which they alternatingly occupy with their marks and whoever first fills a winning set

completely with her/his marks wins the game. Thus a positional game can be played

on any hypergraph, but in this chapter, we only consider semi-infinite games where all

winning sets are finite. If after countably many steps none of them occupied a winning

set, we say that the game ended in a draw. It is easy to see that we can suppose

that the next move of the players depends only on the actual position of the board

and is deterministic.1 We say that a player has a winning strategy if no matter how

the other player plays, she/he always wins. We also say that a player has a drawing

strategy if no matter how the other player plays, she/he can always achieve a draw (or

win). A folklore strategy stealing argument shows that the second player (who puts

his first mark after the first player puts her first mark, as ladies go first) cannot have

a winning strategy, so the best that he can hope for is a draw. Given any semi-infinite

game, either the first player has a winning strategy, or the second player has a drawing

strategy. We say that the second player can achieve a pairing strategy draw if there is a

matching among the points of the board such that every winning set contains at least

one pair. It is easy to see that the second player can now force a draw by putting his

1This is not the case for infinite games and even in semi-infinite games it can happen that the first
player can always win the game but there is no N such that the game could be won in N moves. For
interesting examples, we refer the reader to the antique papers [4, 17, 19].
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mark always on the point which is matched to the point occupied by the first player in

the previous step (or anywhere, if the point in unmatched). Note that in a relaxation

of the game for the first player, by allowing her to win if she occupies a winning set (not

necessarily first), the pairing strategy still lets the second player to force a draw. Such

drawing strategies are called strong draws. Since in these games only the first player

is trying to complete a winning set and the second is only trying to prevent her from

doing so, the first player is called Maker, the second Breaker, and the game is called a

Maker-Breaker game.

This chapter is about a generalization of the Five-in-a-Row game2 which is the more

serious version of the classic Tic-Tac-Toe game. This generalized game is played on the

d-dimensional integer grid, Z
d, and the winning sets consist of m consecutive gridpoints

in n previously given directions. For example, in the Five-in-a-Row game d = 2, m = 5

and n = 4, the winning directions are the vertical, the horizontal and the two diagonals

with slope 1 and −1. Note that we only assume that the greatest common divisor

of the coordinates of each direction is 1, so a direction can be arbitrarily long, e.g.

(5, 0, 24601). The question is, for what values of m can we guarantee that the second

player has a drawing strategy? It was shown by Hales and Jewett [16], that for the four

above given directions of the two dimensional grid and m = 9 the second player can

achieve a pairing strategy draw. In the general version, a somewhat weaker result was

shown by Kruczek and Sundberg [48], who showed that the second player has a pairing

strategy if m ≥ 3n for any d. They conjectured that there is always a pairing strategy

for m ≥ 2n + 1, generalizing the result of Hales and Jewett.3

Conjecture 4.1.1 (Kruczek and Sundberg) If m = 2n + 1, then in the Maker-

Breaker game played on Z
d, where Maker needs to put at least m of his marks consec-

utively in one of n given winning directions, Breaker can force a draw using a pairing

strategy.

2Aka Go-Muku and Amőba.

3It is not hard to show that if m = 2n, then such a strategy might not exist, we show why in Section
3.
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Our main result asymptotically solves their conjecture.

Theorem 4.1.2 There is an m = 2n + o(n) such that in the Maker-Breaker game

played on Z
d, where Maker needs to put at least m of his marks consecutively in one of

n given winning directions, Breaker can force a draw using a pairing strategy.

In fact we prove the following theorem, which is clearly stronger because of the

classical result [38] showing that there is a prime between n and n + o(n).

Theorem 4.1.3 If p = m − 1 ≥ 2n + 1 is a prime, then in the Maker-Breaker game

played on Z
d, where Maker needs to put at least m of his marks consecutively in one of

n given winning directions, Breaker can force a draw using a pairing strategy.

The proof of the theorem is by reduction to a game played on Z and then using

the following recent number theoretic result of Preissmann and Mischler. Later this

result was independently rediscovered by Kohen and Sadofschi [46] and by Karasev and

Petrov [42], they both gave a short proof using the Combinatorial Nullstellansatz [6].

The latter paper also gives an even shorter topological proof and generalizations.

Lemma 4.1.4 [64] Given d1, . . . , dn and p ≥ 2n + 1 prime, we can select 2n numbers,

x1, . . . , xn, y1, . . . , yn all different modulo p such that xi + di ≡ yi mod p.

We prove our theorem in the next section and end the chapter with some additional

remarks.

4.2 Proof of Theorem 4.1.3

We consider the winning directions to be the primitive vectors4 ~v1, ..., ~vn. Using a

standard compactness argument it is enough to show that there is a pairing strategy

if the board is [N ]d, where [N ] stands for {1, . . . , N}. For interested readers, the

compactness argument is discussed in detail at the end of this section.

First we reduce the problem to one dimension. Take a vector ~r = (r1, r2, ..., rd) and

transform each grid point ~v to ~v ·~r. If ~r is such that rj > 0 and rj+1 > N(r1 + . . . + rj)

4A vector (v1, . . . , vd) ∈ Z
d is primitive if gcd(v1, . . . , vd) = 1.
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for all j, then this transformation is injective from [N ]d to Z and each winning direction

is transformed to some number, di = |~r ·~vi|.5 So we have these n differences, d1, . . . , dn,

and the problem reduces to avoiding arithmetic progressions of length m with these

differences. From the reduction it follows that if we have a pairing strategy for this

game, we also have one for the original.

Let p be a prime such that 2n + 1 ≤ p ≤ 2n + 1 + o(n). (In [38] it was shown that

we can always find such a p). If we pick a vector ~u uniformly at random from [p]d,

then for any primitive vector ~v, ~u · ~v will be divisible by p with probability 1/p. Since

each winning direction was a primitive vector, using the union bound, the probability

that at least one of the ~u · ~vi is divisible by p is at most n/p < 1/2. So, there is a

~u′ = (u′
1, u

′
2, .., u

′
d) ∈ [p]d such that none of ~u′ · ~vi is divisible by p. If we now take

~r = (r1, r2, .., rd) such that rj = u′
j + (pN)j−1, then the dot product with ~r is injective

from [N ]d to Z and none of the di = ~r · ~vi are divisible by p, since ∀j rj ≡ u′
j mod p.

We now apply Lemma 4.1.4 for d1, ..., dn to get 2n distinct numbers x1, x2, ...xn, y1, y2, .., yn

such that 0 ≤ xi, yi < p and xi + di ≡ yi mod p. Our pairing strategy is, for every

x ≡ xi mod p, x is paired to x + di and if x ≡ yi mod p, then x is paired to x − di.

To see that this is a good pairing strategy, consider an arithmetic progression

a1, ..., am of m = p+1 numbers with difference, say, di. Since p and di are coprimes, one

of the numbers a1, ..., am−1, say aj, must be such that aj ≡ xi mod p. Hence aj, aj+1

must be paired in our pairing strategy, showing both cannot be occupied by Maker. 2

For completeness here we sketch how the compactness argument goes. We show

that it is sufficient to show that a pairing strategy exists for every finite [N ]d board.

For this we use the following lemma.6

Lemma 4.2.1 [47] (König’s Infinity Lemma) Let V0, V1, .. be an infinite sequence of

disjoint non-empty finite sets, and let G be a graph on their union. Assume that every

vertex v in a set VN with N ≥ 1 has a neighbor f(v) in VN−1. Then G contains an

5It is even possible that some of these numbers are zero, we will take care of this later.

6We use the version stated in [22].
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infinite path, v0v1... with vN ∈ VN for all N .

Given a pairing strategy for [N0]
d, consider a smaller board [N ]d where N < N0.

We can think of a pairing strategy as, essentially, a partition of [N0]
d into pairs and

unpaired elements.7 We can construct a good pairing strategy for the smaller board

by taking the restriction of these set of pairs to [N ]d and leave the elements paired

outside [N ]d as unpaired elements. We call this as a restriction of the pairing strategy

to the new board. As long as we do not change the length of the winning sets and the

prescribed directions, any winning set in the [N ]d board is also a winning set in the

[N0]
d board and hence must have a pair from the restriction. Hence, the Breaker can

block all winning pairs and the restriction of the pairing strategy is a valid strategy for

Breaker for the smaller board.

We can now prove the following theorem,

Theorem 4.2.2 Given a fixed set S, |S| = n, of winning directions, and positive

integer m, if Breaker has a pairing strategy for all boards [N ]d and length of winning

sets equal to m, then Breaker also has a pairing strategy for the Z
d board.

We will apply König’s Infinity Lemma to prove the theorem. Let VN be the set of

all pairing strategies on the {−N, . . . ,N}d board with winning sets as defined in the

theorem. We say a strategy in VN−1 and a strategy in VN have an edge between them

if the former is a restriction of the latter. It is easy to see that every vertex in VN does

have an edge to its restriction in VN−1. Hence, by the lemma, we must have an infinite

path v0v1.... The union of all these pairing strategies gives a valid pairing strategy for

the infinite game.

4.3 Possible further improvements and remarks

As we said before, if m ≤ 2n, then the second player cannot have a pairing strategy

draw. This can be seen as follows. On one hand, in any pairing strategy, from any m

7Note that a pairing strategy does not guarantee that every element is paired. It only states that
every winning set has a pair. Hence there might be many unpaired elements in a pairing strategy.
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consecutive points in a winning direction, there must be at least two points paired to

each other in this direction. On the other hand, there must be a winning direction in

which at most 1/n of all points are matched to another in this direction. If we pick a

set of size m − 1 uniformly randomly in this direction, then the expected number of

points matched in this direction will be at most (m − 1)/n < 2. Thus, there is a set of

size m − 1 that contains only one such point. Its matching point can now be avoided

by extending this set to one way or the other, thereby giving us a winning set with no

matched pair.

If n = 1 or 2, then a not too deep case analysis shows that the first player has

a winning strategy if m = 2n, even in the strong game, where the second player also

wins if he occupies a winning set. Moreover, the second player has a pairing strategy

for m = 2n + 1 if n = 1 or 2, thus, in this case, the conjecture is tight. However, for

higher values, it seems that Breaker can always do better than just playing a pairing

strategy, so we should not expect this strategy the best to achieve a draw. Quite tight

bounds have been proved for Maker-Breaker games with potential based arguments,

for the latest in generalization of Tic-Tac-Toe games, see [49]. Despite this, from a

combinatorial point of view, it still remains an interesting question to determine the

best pairing strategy. Unfortunately our proof can only give 2n+2 (if 2n+1 is a prime)

which is still one bigger than the conjecture.

One could hope that maybe we could achieve a better bound using a stronger result

than Lemma 4.1.4 (see for example the conjecture of Roland Bacher in [64], whom we

would like to thank for directing us to it [14]), however, already for n = 3, our method

cannot work. Consider the three directions (1, 0), (0, 1), (1, 1). Optimally, we would

hope to map them to three numbers, d1, d2, d3, all coprime to 6, such that we can

find x1, x2, x3, y1, y2, y3 all different modulo 6 such that xi +di ≡ yi mod 6. But this is

impossible since d3 = d1+d2, so we cannot even fulfill the condition that the differences

have to be coprimes to 6. But even if we forget about that condition, it would still be

impossible to find a triple satisfying d3 = d1+d2. If we consider a pairing strategy where

the pair of any grid point ~v, depends only on v · r, then the above argument shows that

such a pairing strategy does not exist for the three vectors (1, 0), (0, 1), (1, 1). However,
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it is not hard to find a suitable periodic pairing strategy for these three vectors. We

would like to end with an equivalent formulation of Conjecture 1.

Conjecture 4.3.1 (Kruczek and Sundberg, reformulated) Suppose we are given

n primitive vectors, ~vi of Z
d
2n for i ∈ [n]. Is it always possible to find a partition of Z

d
2n

into ~xj
i , ~y

j
i for i ∈ [n], j ∈ [2n] such that ~xj

i + ~vi = ~yj
i and ~xj

i − ~xj′

i is not a multiple of

~vi for j 6= j′?
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Chapter 5

Program code

The following code is in Maple.

#For accessing log, ceil functions.

with(MTM);

#fmax is a procedure that computes the girth for which a graph on N

#vertices will have the largest supercyle.

#Here, mg denotes the maximum possible girth, max and g will have the

#values of the maximum size of the supercycle and the girth at which

#it occurs respectively. The procedure returns 2s-2, if this value is

#less than N, we can apply Lemma 2.6 and 2.8 to draw the graphs on N

#vertices.

fmax := proc (N) local g, mg, max, i, exp;

#Initializations

max := -1;

g := 0;

mg := 2*ceil(evalf(log2((1/3)*N+1)));

if mg < 3 then RETURN([N, 2*max-2, mg, g]) fi;

#Main search cycle.

for i from 3 while i <= mg do

exp := 2*ceil(evalf(log2((N+1)/i)))+i-1;
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if max < exp then max := exp; g := i fi

end do;

RETURN([N, 2*max-2, mg, g])

end proc;

seq(fmax(i), i = 6 .. 42, 2);

[6,10,4,3], [8,12,4,4], [10,14,6,5], [12,16,6,6], [14,16,6,6],

[16,16,6,4], [18,16,6,4], [20,18,6,5], [22,20,8,8], [24,20,8,6],

[26,20,8,6], [28,22,8,7], [30,22,8,7], [32,24,8,8], [34,24,8,8],

[36,24,8,8], [38,24,8,8], [40,24,8,8], [42,24,8,8]
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