
PREVENTING AND DIAGNOSING SOFTWARE
UPGRADE FAILURES

BY REKHA BACHWANI

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Ricardo Bianchini

and approved by

New Brunswick, New Jersey

January, 2012

c© 2012

Rekha Bachwani

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Preventing and Diagnosing Software Upgrade Failures

by Rekha Bachwani

Dissertation Director: Ricardo Bianchini

Modern software systems are complex and comprise many interacting and dependent

components. Frequent upgrades are required to fix bugs, patch security vulnerabilities,

and add or remove features. Unfortunately, many upgrades either fail or produce

undesired behavior resulting in service disruption, user dissatisfaction, and/or monetary

loss. To make matters worse, when upgrades fail or misbehave, developers are given

limited (and often unstructured) information to pinpoint and correct the problems.

In this dissertation, we propose two systems to improve the management of software

upgrades. Both systems rely on environment information and dynamic execution data

collected from users who have previously upgraded the software. The first (called

Mojave) is an upgrade recommendation system that informs a user who intends to

upgrade the software about whether the upgrade is likely to succeed. Regardless of

Mojave’s recommendation, if the user decides to upgrade and it fails, our second system

(called Sahara) comes into play. Sahara is a failed upgrade debugging system that

identifies a small subset of routines that are likely to contain the root cause of the

failure. We evaluate both systems using several real upgrade failures with widely used

software. Our results demonstrate that our systems are very accurate in predicting

upgrade failures and identifying the likely culprits for upgrade failures.

ii

Acknowledgements

This dissertation is a culmination of an exciting and consuming journey of discovery,

learning and hard work. I would like to take this opportunity to express my gratitude

to all the people who have helped me in consummating this dissertation.

First and foremost, I would like to thank my advisor, Ricardo Bianchini. His

guidance, insatiable quest for perfection, perseverance, and support throughout my

Ph.D have helped me complete this thesis, and become a better researcher. In addition

to Ricardo, I was very fortunate to work with Willy Zwaenepoel and Dejan Kostic. I

could always count on their feedback and advice for my work, despite their busy schedule

and the thousands of miles separating us. Thank you Willy and Dejan! Furthermore,

I am grateful to Thu Nguyen and Rich Martin for guiding me early on in my Ph.D,

and providing invaluable feedback to improve my thesis towards the end as committee

members.

I had the pleasure of working with many able minds during my Ph.D. I would

like to thank my collaborators and co-authors Olivier Crameri, Leszek Gryz, Cezary

Dubnicki, and Fabio Oliviera for working with me. In addition, I would like to extend

my gratitude to my colleagues Mangesh Gupte, Inigo Goiri, Luiz Ramos, Kien Le, Wei

Zheng, Ana Paula Centeno, and Qingyuan Deng for the myriad brainstorming sessions

and invigorating conversations over caffeine and meal breaks. My life as a graduate

student would not have been as much fun without your company and support.

Last but not the least, I would like thank my family for being there for me whenever

I needed them. I am grateful to you all for your unwavering belief in me, and for being

my continual source of encouragement and strength. Finally, I would like to thank my

close friends, Prashant and Preethi, for letting me lean on their shoulders throughout

my Ph.D.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Tables . vi

List of Figures . vii

List of Code Listings . viii

1. Introduction . 1

2. Bug Characterization . 5

2.1. Introduction . 5

2.2. Methodology . 6

2.3. Survey Results . 6

2.3.1. Frequency of environment-related bugs 6

2.3.2. Frequency of upgrade bugs . 7

2.3.3. Frequency of input-related bugs 8

2.4. Categories of Upgrade Bugs . 9

2.4.1. Categorization of environment-related upgrade bugs 9

2.4.2. Frequency of input and/or environment-related upgrade bugs . . 11

2.5. Discussion . 12

2.6. OpenSSH upgrade bugs . 12

3. Mojave: An Upgrade Recommendation System 15

3.1. Introduction . 15

3.2. Motivating Example . 16

iv

3.3. Overview . 18

3.3.1. Learning phase . 18

3.3.2. Recommendation phase . 20

3.4. Design and Implementation . 21

3.4.1. Learning Phase . 21

3.4.2. Recommendation Phase . 28

3.4.3. Discussion . 29

3.5. Evaluation . 31

3.5.1. Methodology . 31

3.5.2. Results . 35

4. Sahara: An Upgrade Debugging System 42

4.1. Introduction . 42

4.2. A Motivating Example . 43

4.3. Design and Implementation . 45

4.4. Discussion . 51

4.5. Evaluation . 54

4.5.1. Methodology . 54

4.5.2. Results . 56

5. Related Work . 65

5.1. Characterizing Upgrades . 65

5.2. Upgrade Deployment and Testing . 66

5.3. Recommendation Systems . 66

5.4. Automated Debugging . 66

6. Conclusion . 73

References . 75

v

List of Tables

3.1. Experimental setup parameters. 32

3.2. Parsers. 32

3.3. Mojave experiments. 34

3.4. Results for the learning phase (Port = Port forwarding; X11 = X11 forwarding;

Proxy = ProxyCommand; SSim = SSimilarity; FSim = FSimilarity). 35

3.5. Recommendations for OpenSSH (three), SQLite (one) and uServer (one) bugs

(Port = Port forwarding; X11 = X11 forwarding; Proxy = ProxyCommand). . 37

4.1. Sahara experiments. 55

4.2. Results for three OpenSSH bugs (Port = Port forwarding; X11 = X11

forwarding; Proxy = ProxyCommand; dRs = diff Routines; SRs = Suspect

Routines; DRs = Deviated Routines). 57

4.3. Impact of number of profiles with failure-inducing settings (Port = Port

Forwarding; X11 = X11 forwarding; Proxy = ProxyCommand; SRs = Suspect

Routines; DRs = Deviated Routines). 62

vi

List of Figures

2.1. Environment-related bugs in OpenSSH. 7

2.2. Upgrade bugs in OpenSSH. 8

2.3. Input-related bugs in OpenSSH. 9

2.4. Environment-related upgrade bugs in OpenSSH. 10

2.5. Categories of environment-related upgrade bugs in OpenSSH. 10

2.6. Environment and input related upgrade bugs in OpenSSH. 11

3.1. Learning phase in Mojave. 19

3.2. Recommendation phase in Mojave. 21

3.3. Def-use chain, suspect variables and routines for the example. 25

3.4. Call sequences for the example program. 27

4.1. Overview of Sahara. 46

4.2. Def-use chain, suspect variables and routines for Sahara’s simple example. 48

vii

List of Code Listings

3.1. Example upgrade . 17

4.1. Sahara: Example program. 44

4.2. Execution log of current version. 50

4.3. Execution log of upgraded version. 51

viii

1

Chapter 1

Introduction

Modern software systems are complex and comprise many interacting and dependent

components. Upgrades for such systems are frequent, and may involve new and

enhanced versions of some or all components, added or removed features, patches or

bug fixes, or other software modifications. Unfortunately, the process of deploying

and integrating these upgrades is labor-intensive and error-prone. For developers, it

is infeasible (or maybe impossible) to foresee, much less test their software for every

possible environment setting and input with which the user drives the software. As a

result, many of the upgrades either crash the software or produce unwanted behavior

for some users. We refer to these scenarios as upgrade failures. Upgrade failures can

cause severe disruption, user dissatisfaction, and potential monetary loss.

A survey conducted by Crameri et al. [12] showed that 90% of system administrators

perform upgrades at least once a month, and that 5 - 10% of these upgrades are

problematic. Interestingly, they also found that the most common source of upgrade

failures is the difference between the environment (i.e., version of operating system

and libraries, configuration settings, environment variables, hardware, etc.) at the

developer’s site and the users’ sites. To further study the prevalence of upgrade

failures (among all the issues reported), and the reasons for these problems, we

surveyed 96 bug reports spanning five versions of OpenSSH. The results show that

a significant percentage of the bugs reported in OpenSSH are due to software upgrades.

Furthermore, the survey confirms that most upgrade failures are caused by one or more

aspects of the user’s environment, and/or the user’s input.

In an attempt to avoid installing buggy upgrades, developers typically deploy

upgrades as packages to be handled by package-management systems. However,

2

package-management systems only try to enforce that the right packages are in place;

they provide no help with testing the upgrades for correct behavior at individual user

sites. To make matters worse, when the upgrades misbehave, developers are given

limited (and often unstructured) information to pinpoint and correct the problems. In

some cases, the developers may also receive logs of failed executions and/or core dumps.

Developers often undergo several exchanges with the users to gather all the pertinent

information. Thereafter, the developers examine the information to locate the likely

causes of the misbehavior. This process is long and tedious, as developers may have

to consider large chunks of code to locate the root cause of the misbehavior, provide a

(locally tested) fix, and restart the deployment process.

One approach that users take is to delay installing the upgrades until after a

significant number of other users have installed and provided positive feedback for

that upgrade. The survey [12] showed that 70% of the administrators refrain from

installing the upgrade, regardless of their experience level. However, feedback from

other users may be incomplete or not relevant if the user’s environment and/or input

is (significantly) different.

Obviously, neither deploying upgrades as packages nor delaying upgrades is enough

to prevent upgrade failures. Furthermore, the user feedback is typically scattered across

various mailing lists and discussion forums. As a result, the process of collecting and

aggregating it is riddled with problems and inefficiencies.

In this dissertation, we argue that the developer and the users could collaborate

to prevent many of the upgrade failures, and simplify the debugging of such failures.

The developer can aggregate feedback from the (willing) users that have installed the

upgrade, along with their environment settings and execution data, to predict success

or failure for new users, and aid in debugging of the observed failures. To this end,

we present two systems that simplify the management of software upgrades. Both

systems rely on environment information and dynamic execution data collected from

users who have previously upgraded the software (we refer to these users as ”existing

users”). First, we propose Mojave, a recommendation system for software upgrades

that predicts the likelihood of upgrade failures for new users, given their environment

3

settings and execution behavior with the current version of the program. Second, we

propose Sahara, a system that simplifies the debugging of environment-related upgrade

failures by pinpointing the subset of routines and variables that is most likely the source

of misbehavior.

Mojave collects and aggregates success/failure feedback from (willing) existing users,

along with their environment settings and execution behavior data from before the

upgrade was installed (collectively called user “attributes”). It then uses machine

learning, and static and dynamic source analyses to identify the attributes that are most

likely related to the upgrade failures. Mojave then compares these suspect attributes

to those of each new user to predict whether the upgrade would fail for him/her. Based

on this prediction, Mojave recommends in favor or against the upgrade.

The developer may use the number of times Mojave recommends against an upgrade

as an indication of the quality of the upgrade. This quality measure may be leveraged to

prioritize the debugging of the most critical failures (to reduce the number of negative

recommendations for future users). Furthermore, the developers can plan sophisticated

upgrade testing plans that would include testing the program with the user attributes

that are highly correlated to the observed failures.

In cases when the new user decides to upgrade (regardless of Mojave’s

recommendation) and it fails, and for the upgrade failures observed by the initial

users, our second system, Sahara, comes into play. Sahara identifies the aspects of

the environment that are most likely the culprits of the misbehavior, finds the subset of

routines that relate directly or indirectly to those aspects, and selects an even smaller

subset of routines to debug first. Sahara leverages feedback from a large number of

user sites, machine learning, and static and dynamic source analyses to compute prime

suspects (including the culprit routines).

Sahara provides valuable insights in the form of the suspect aspects of the user’s

environment, and a small set of routines that are highly correlated with the upgrade

failures. This data can reduce the debugging time and effort significantly. In addition,

the developers can gather this information over a period of time, and identify the

environment settings that are the most (or least) frequently (and highly) correlated

4

with the upgrade failures. Such knowledge can reveal the most critical (or bug-

revealing) testing environments, and can be leveraged to perform more informed

upgrade deployment and testing.

In summary, this thesis makes the following contributions:

• We characterize 96 bugs spanning 5 versions of OpenSSH.

• We propose Mojave, the first recommendation system for software upgrades.

• We propose Sahara, a system for simplifying upgrade debugging that is driven by

user environments and includes a novel combination of techniques.

• We evaluate Mojave and Sahara with five upgrade failures from three widely used

applications.

Based on our experience and results, we conclude that Mojave and Sahara can be

extremely useful to software developers and users in practice. More fundamentally,

we conclude that combining user feedback, machine learning, and static and dynamic

analyses can achieve excellent results in preventing and debugging upgrade failures.

5

Chapter 2

Bug Characterization

2.1 Introduction

The surveys done by Beattie et al. [5], Crameri et al. [12], and the Secunia survey [48]

revealed interesting results: (a) upgrade failures are frequent [5, 12]; (b) differences

in vendor and user environments are a major source of upgrade failures [12]; and (c)

the majority of administrators delay deploying upgrades to avoid the impact of buggy

upgrades [12,48]. However, none of these works studied (a) multiple versions of a single

software in detail; (b) the prevalence of upgrade problems among all the bugs reported

for a software; and (c) the correlation between upgrade failures and the various aspects

of user’s attributes (environment and the input)

To bridge these gaps in the literature, we surveyed the problems reported in five

versions of the ssh and sshd applications in the OpenSSH suite. OpenSSH is an

open source implementation the SSH connectivity tools derived originally from ssh

1.2.12. OpenSSH encrypts all traffic (including passwords) to effectively eliminate

eavesdropping, connection hijacking, and other attacks. Additionally, OpenSSH

provides secure tunneling capabilities and several authentication methods, and supports

all SSH protocol versions.

OpenSSH comprises many components: (1) sshd, the daemon that listens for

connections coming from clients; (2) ssh, the client that logs and executes commands

on a remote machine; (3) scp, the program to copy files between hosts; (4) sftp, an

interactive file transfer program atop the SSH transport; and (5) utilities such as ssh-

add, ssh-agent, ssh-keysign, ssh-keyscan, ssh-keygen, and sftp-server. In all, OpenSSH

has around 400 distinct files and 50-70K lines of code (LOC).

6

We chose OpenSSH because it is widely deployed in diverse user environments. Its

upgrades are fairly frequent, typically once every 3-6 months [41].

2.2 Methodology

Wemanually inspected the OpenSSH bugzilla to estimate the frequency and types of the

bugs reported, the types of upgrade bugs, and the frequency of types of upgrade bugs.

Our intention was to study around 100 bug reports spanning 5 versions of OpenSSH.

The following set of five versions comprises 99 bug reports: 4.1p1, 4.2p1, 4.3p1, 4.3p2,

and 4.5p1. However, we considered only 96 of those bug reports because two out of the

99 bugs were not valid (the users never followed up on those bugs and the developers

could not reproduce the problems), and one bug was a duplicate. For every bug report,

we determine if the bug is: (a) an upgrade bug (caused by a software upgrade), and if

so, in which version it was introduced; (b) an environment-related bug; (c) an input-

related bug (a specific set of inputs activates the bug); (d) a misconfiguration; or (e) a

combination of the previous categories.

2.3 Survey Results

In this section, we present the results of the characterization of 96 OpenSSH bugs. In

addition, we explore the categories of the upgrade related bugs in detail.

2.3.1 Frequency of environment-related bugs

We analyze the bug reports to ascertain if the bugs were caused by one or more aspects

of the user’s environment. Note that the user’s environment comprises the version of

operating system and libraries, configuration settings, environment variables, hardware,

and so on. Figure 2.1 illustrates that 80−97% of the bugs were environment related. The

high number of environment-related bugs indicates that (a) many bugs are uncovered

in the users’ environment; and (b) the developer is unable to test the software in many

diverse environments. This result confirms previous studies [12] in the context of a

specific widely used application.

7

Figure 2.1: Environment-related bugs in OpenSSH.

Given such a high frequency of environment-related bugs, the developer would

benefit from testing the software in diverse user environments during the software

deployment cycle, and recording their feedback. In addition, identifying the aspects

of the users’ environment that are most frequently correlated with the reported bugs

can provide valuable insights for testing of the future versions.

2.3.2 Frequency of upgrade bugs

For every bug, we determine the version in which it was discovered, and whether it

resulted directly or indirectly from a source change due to an upgrade. If the bug was

introduced as result of an upgrade, it is considered an upgrade bug, otherwise it is

considered a bootstrapping bug. A bootstrapping bug is the one that has always been

present in the source code, but not discovered until the version in which it was reported.

Note that some of the upgrade bugs may have been introduced in the earlier versions,

but were reported in a later version. This mismatch could occur because (1) many users

do not update their software every time an upgrade is released; (2) the users did not

exercise the buggy code; or (3) the bugs are non-deterministic.

8

Figure 2.2: Upgrade bugs in OpenSSH.

Figure 2.2 shows that 27 − 53% of all the bugs reported for each version were

upgrade failures. The large number of upgrade bugs indicates that: (a) many upgrades

misbehave at user sites; and (b) the developers cannot test for all environment settings

and/or inputs. Many of the upgrade bugs could be prevented if the user site testing

were integrated in the software deployment cycle.

The presence of a large number of bootstrapping bugs even in the later versions of

OpenSSH implies that, although the software is upgraded frequently to fix bugs, many

latent bugs linger on in the software until much later in its life-cycle. Furthermore, as

evident from the Figure 2.2, the total number of bugs (and the types of bugs) reported

against a version does not depend on the number of revisions of the software.

2.3.3 Frequency of input-related bugs

We examined the reports to find out the inputs that activate the bug. A bug can be

activated by multiple input strings and may be dependent on the user’s environment

settings. As shown in Figure 2.3, 70 − 100% of the reported bugs are triggered by

specific input strings. Therefore, a dynamic component that can reflect the impact of

users’ inputs is crucial for understanding and dealing with upgrade problems.

9

Figure 2.3: Input-related bugs in OpenSSH.

2.4 Categories of Upgrade Bugs

Now we focus solely on the upgrade bugs. We classify them as environment-related,

input-related, or both. In addition, we categorize the environment-related upgrade bugs

based on the specific aspects of the user’s environment. A bug may belong to more

than one category as these categories are not mutually exclusive.

2.4.1 Categorization of environment-related upgrade bugs

This category captures the upgrade failures that were caused by one or more aspects of

the user’s environment. As shown in Figure 2.4, the majority of the upgrade bugs

are environment-related. Specifically, 77 − 100% of the upgrade bugs are caused

by one or more aspects of the user environment. Next, we breakdown the user

environment into three categories: (a) application-specific environment (OpenSSH

configuration settings), (b) system-environment (system libraries and their version data,

shell environment, OS, etc.), and (c) hardware. Note that a bug can be caused by

more than one aspect (and/or category) of the environment. Figure 2.5 plots the

breakdown of the environment-related upgrade bugs by category. The majority of the

environment-related upgrade bugs are caused by the application environment (33−75%)

10

Figure 2.4: Environment-related upgrade bugs in OpenSSH.

Figure 2.5: Categories of environment-related upgrade bugs in OpenSSH.

11

Figure 2.6: Environment and input related upgrade bugs in OpenSSH.

and/or system environment settings (66− 100%); very few are caused by the hardware

(0− 33%).

Given such a high frequency of environment-related upgrade bugs, it is beneficial

for the developer to (a) include the users in the upgrade testing cycle to enable testing

in diverse user environments; and (b) collect their environment information and their

feedback with (current and previous versions of) the software. The developer can

analyze this user data to better allocate resources for upgrade deployment and testing,

and debugging of upgrade failures. For instance, the developer could (1) test the new

version of the software first at the user sites with environment settings that reveal the

most bugs; or (2) choose to release the new version to only user sites where the upgrade

can be installed with high confidence.

2.4.2 Frequency of input and/or environment-related upgrade bugs

This category captures the bugs that are caused by the user’s environment and/or

activated by his/her input for every version. Figure 2.6 demonstrates that a significant

percentage of the upgrade bugs are both input- and environment-related (as described

12

above). Therefore, capturing user’s input (either directly or indirectly via execution

traces, for instance) and environment settings, and testing the upgrade with those

inputs and environment settings is imperative to deploy high quality upgrades. In

addition, classifying users based on their inputs and/or environment settings can help

predict upgrade failures for similar users.

2.5 Discussion

We did not strive to perform a comprehensive, statistically rigorous survey of all the

bug reports in the field. Our main goals were to motivate Mojave and Sahara, and

sample the data on real upgrade problems and classify them based on the causes of

those failures. These restricted goals allowed us to focus on only OpenSSH bugs.

Undoubtedly, this survey is narrower in its focus than other works in the literature

[5, 12]. Nevertheless, our survey looks at upgrade problems in depth to determine the

aspects of user attributes that cause them, and provides useful information about the

ubiquity of upgrade problems and their various categories.

In summary, our analysis establishes that the significant number of OpenSSH bugs

are actuated by upgrades, and are caused by the user’s input and environment. In

addition, the same trend is also observed for the upgrade problems: a majority of the

upgrade problems were caused by the environment settings at the user sites and/or

their input. Therefore, leveraging environment and execution (input) data from users

can help prevent most of the upgrade failures, and expedite the debugging of those

failures.

Next, we describe the three OpenSSH upgrade bugs that we use to evaluate Mojave

and Sahara.

2.6 OpenSSH upgrade bugs

Port forwarding bug. Port forwarding is commonly used to create an SSH tunnel. To

setup the tunnel, one forwards a specified local port to a port on the remote machine.

SSH tunnels provide a means to bypass firewalls, so long as the site allows outgoing

13

connections. The bug [8] was a regression bug in OpenSSH version 4.7. When using

SSH port forwarding for large transfers, the transfer aborts. Some users observed the

following buffer error:

buffer get string ret: bad string length 557056

buffer get string: buffer error

These transfers executed successfully until version 4.6, but the behavior changed

after upgrading to version 4.7. The failure was observed at a small subset of user sites.

The abort was not reproducible at the developer site, so the developer needed volunteer

users to reproduce the bug and test its fix. A correct and complete fix was submitted

and tested by the users on the second attempt after almost three months from the time

it was submitted [8].

The failure was caused by the following issues: (a) the users had enabled port

forwarding in the ssh configuration file; (b) change in default window size from 128KB to

2MB in the ssh client code in version 4.7; (c) port forwarding code advertising the default

window size as the default packet size; and (d) the maximum packet size set to 256KB

in sshd. Given these characteristics, when users issued large transfers through the ssh

tunnel, some of the packets had size larger than the daemon’s maximum, resulting in

the buffer error after the upgrade. The port forwarding code using the default window

size as the default packet size was not an issue before the upgrade, as the size was

always below the maximum.

X11 forwarding bug. This bug [7] manifested when users upgraded to OpenSSH

version 4.2p1 from 4.1p1 and tried to start X11 forwarding. The failure was observed

at the user sites that had X11 forwarding support enabled and the command was

executed in the background. Users observed the following error:

xterm Xt error: Can’t open display: localhost:10.0

In version 4.2p1, developers modified the X11 forwarding code to fill a number of

X11 channel leaks, including destroying the X11 sessions whose session has ended. As

a result, when the X11 forwarding process is started in the background, the child (and

the channel) starting it would exit immediately. It took the developers more than two

14

weeks to fix this bug [7].

ProxyCommand bug. The ProxyCommand option specifies the command that will

be used by the SSH client to connect to the remote server. The bug [43] was a regression

in OpenSSH version 4.9; ssh with ProxyCommand would fail for users with a "No such

file" error.

Until version 4.7, ProxyCommand would use /bin/sh to execute the command.

However, in version 4.9, the code changed to use the $SHELL environment variable,

causing the command to fail at user sites where $SHELL was set to an empty string. The

developers fixed this bug in one week, after one user had already done a large amount

of debugging [43].

15

Chapter 3

Mojave: An Upgrade Recommendation
System

3.1 Introduction

It is difficult for the developers to deploy upgrades that will integrate properly into

the users’ systems and that will behave as users expect. The developers simply cannot

anticipate and test their upgrades for all the applications and configurations that may

be affected by the upgrades at the users’ sites. As a result, enterprise users often

wait for the upgrades to mature before applying them to a large number of machines.

Individual users often postpone their upgrades arbitrarily or until they find enough

positive feedback about the upgrade in public forums.

Obviously, neither delaying upgrades nor seeking feedback from other users is enough

to prevent upgrade failures. Instead, we argue that the developer and the users of the

software can collaborate to achieve this goal. The developer can aggregate data from

the “existing users” (users who have already installed the upgrade) and use it to predict

success or failure for “new users” who intend to upgrade their software.

Along these lines, we propose Mojave, the first recommendation system for software

upgrades. Mojave’s design is based on three observations: (1) the upgrade failures

are most likely caused by the particular characteristics of the corresponding users’

environments or inputs; (2) new users that have characteristics similar to those of the

existing users where the upgrade has failed are likely to experience similar failures;

and (3) if the behavior of the software at two users’ sites was similar in the past

(execution behavior prior to the upgrade), then it is likely to behave similarly in the

future (execution behavior after the upgrade). This latter observation is the basis for

many recommendation systems based on collaborative filtering [22, 47, 49].

16

Given these observations, Mojave gather the following information from (willing)

existing users: (1) success/failure feedback, (2) their environment settings, and (3) their

execution behavior data from before the upgrade was installed. Mojave aggregates this

data with machine learning, and static and dynamic source analyses to identify the

attributes that are most likely related to the upgrade failures. Mojave then compares

the attributes of a new user with these suspect attributes to ascertain whether the

upgrade would fail for him/her. Based on this prognosis, Mojave recommends in favor

or against the upgrade.

A recommendation against the upgrade means that the user should wait until the

developer has debugged the upgrade for the existing users for which it has already

failed. However, the new user may decide to upgrade anyway.

We evaluate Mojave on three real upgrade problems with the widely used OpenSSH

suite, one synthetic problem in the SQLite database engine, and one synthetic problem

with the uServer Web server. The results demonstrate that Mojave produces accurate

recommendations to the new users. The exact number of correct recommendations

depends on the characteristics of the failure and the user feedback. Across all our

experiments, Mojave accurately predicts the upgrade failure for 93−100% of the users.

Given its accuracy, we expect that Mojave would be able to prevent most upgrade

failures in the field.

3.2 Motivating Example

Let us look at a simple example in Figure 3.1. The example reads input strings (lines

16-18) one at a time. If one of the strings is Option1, it calls do option (lines 18-19) to

process them (lines 10-12). If one of the strings is Proxycmd, it assigns PSHELL as the

shell, computes its length, and calls checklength (line 21-24). checklength checks if

the length of the string is less than or equal to 9, returns the length of the string if it

is, −1 otherwise (lines 4-9).

Now let us assume that the upgrade replaces line 22 with the following three lines

to get the value of $SHELL from the user’s environment.

17

1 #define PSHELL ”/bin/sh”
2 int env2 = 0;
3
4 int checklength(int len) {
5 if (len <= 9)
6 return len;
7 else

8 return −1;
9 }

10 void do option(int x) {
11 printf(”\nGot option %d”,x);
12 }
13 int main(int argc, char ∗argv[]) {
14 int retval1 = 0, i = 1;
15 char shell[80];
16 if (argc >= 2) {
17 while (argv[i] != NULL) {
18 if (strcmp(argv[i],”Option1”) == 0) {
19 do option(1);
20 }//end strcmp
21 if (strcmp(argv[i],”Proxycmd”) == 0) {
22 strcpy(shell,PSHELL);
23 env2 = strlen(shell);
24 retval1 = checklength(env2);
25 if (retval1 > 0)
26 printf(”\nSuccess:proxycmd”);
27 else

28 printf(”\nOops:checklength failed”);
29 }//end strcmp
30 i++;
31 }//end while
32 }//end argc
33 }//end main

Listing 3.1: Example upgrade

strcpy(shell, getenv("SHELL"));

if (shell == NULL)

strcpy (shell,PSHELL);

The upgrade will fail at the user sites where (1) Proxycmd is passed as input, and

(2) the $SHELL variable is a string of length 0. Note that a NULL string is different from

a string of length 0. Specifically, the upgrade will fail when checklength returns 0,

because the length of the shell variable is 0. However, the program ran successfully at

these sites before the upgrade, because it was not dependent on the user’s setting of

$SHELL. This upgrade failure is similar to the ProxyCommand bug [43] that we detail

in Section 2.6.

Despite the fact that the two versions are input-compatible, the execution behavior

18

changes with the upgrade, both in terms of the path (call sequence) executed, and

the output produced. This was not the intended behavior of the upgrade. Therefore,

the key to preventing this failure for future users is to check if they have the failure-

inducing environment ($SHELL set to an empty string), and if their execution path with

the current version of the software has the failure-relating routine call, checklength.

Mojave avoids asking the users for their input because of privacy concerns. Instead,

Mojave provides the user with the instrumented version of the software, which

automatically logs the sequence of calls executed at the user site, excluding any

confidential data (e.g. routine arguments and return values). The call sequence does not

uniquely correspond to the user input, however it represents the program’s execution

behavior at the user’s site, and can be leveraged to predict its behavior after the

upgrade.

3.3 Overview

Mojave comprises two phases: a) learning phase, and b) recommendation phase. In

the learning phase, Mojave deploys and tests the upgrade at initial users’ sites, collects

their feedback, and uses the feedback to learn a prediction model for the upgrade.

Mojave continues in the learning phase till the prediction accuracy on the training set

becomes high. Mojave then moves to the recommendation phase, when the new users

can request a recommendation by providing their environment and execution behavior

data before deciding to install the upgrade.

3.3.1 Learning phase

Figure 3.1 details the steps that Mojave takes in the learning phase. First, Mojave

deploys the upgrade to an initial set of users (step 0). Mojave then collects user

input, environment, and call sequence data for the current (pre-upgrade) version of

the software (step 1). The user input includes any command line arguments and data

manually entered as input. The environment information includes the version of the

operating system, the version of the libraries, the configuration settings, the name and

19

Figure 3.1: Learning phase in Mojave.

version of the other software packages installed, and a description of the hardware [12].

A call sequence comprises the routines executed during one run of the software. Mojave

may collect multiple call sequences from each user.

After these pre-upgrade runs, Mojave installs the upgrade and tests it with the

previously saved inputs (step 2). At the end of each test run, Mojave asks the user for

a success/failure flag. When the user provides it, Mojave sends this information, along

with the environment and call sequence data, back to the developer’s site (step 3).

Mojave collects these data from all users that are willing to participate. Now suppose

that the upgrade misbehaved at one user site at least. With the users’ environment

and upgrade success/failure information, Mojave runs a machine learning algorithm to

determine if the misbehavior is likely to be caused by any aspects of the environment

20

(step 4). Next, using def-use static analysis, Mojave isolates the variables in the pre-

upgrade code that derive directly or indirectly from those aspects; the routines that use

these variables are considered suspect (step 5).

Mojave then filters the call sequence(s) from the initial users into sequence(s)

connecting only the suspect routines (step 6). Next, Mojave measures the similarity

between the call sequence(s) from a user’s site and other users where the upgrade

succeeded and failed respectively (step 7). With the two similarity measures, and

the environment and success/failure data from all users, Mojave runs a classification

algorithm to build a prediction model (step 8).

3.3.2 Recommendation phase

Mojave stays in the learning phase till the prediction accuracy on the training set

becomes high. When this is achieved, Mojave moves to the recommendation phase.

Figure 3.2 illustrates this phase.

When a new user arrives to download the upgrade, Mojave first collects the user’s

environment and call sequence information (step 9), and transfers this data to the

developer site (step 10). If the upgrade is likely to have environment-related bugs,

Mojave filters the call sequence(s) of the new user into sequence(s) containing only

the suspect routines (step 11). Thereafter, Mojave computes the success and failure

similarity measures for each sequence of the new user, combines them with the new

user’s environment, and passes the combined attributes to the prediction model (step

12). The prediction model outputs if the upgrade is likely to succeed or fail at the new

user’s site, and accordingly recommends for or against the upgrade (steps 13 and 14).

Note that Mojave does filtering and similarity computation using existing user data for

the same version of the software currently installed at the new user’s site.

Next we detail the implementation of these steps.

21

Figure 3.2: Recommendation phase in Mojave.

3.4 Design and Implementation

3.4.1 Learning Phase

Upgrade deployment, tracing, and user feedback (steps 0-3). Upgrade

deployment in Mojave is trivial. The upgraded code is available via a Web interface

and can be downloaded as a package/patch by any user that wants it. Mojave uses the

Mirage tracing infrastructure, which has been described in detail in [12]. For this reason,

next we only describe the most important aspects of it. The infrastructure identifies

the “environmental resources” an application depends on and then fingerprints (i.e.,

derives a compact representation for) them.

The infrastructure creates a log of all the external resources accessed by an

application by intercepting process creation, read or write, file descriptor-related and

socket-related system calls. For environment variables, it intercepts the calls to the

getenv() function in libc. The log may include data files, in addition to environmental

resources. To separate them out, Mojave uses a four-part heuristic to identify the

22

environment resources from multiple runs of the application. The heuristic identifies

as environmental resources: (1) all files accessed in the longest common prefix of the

sequence of files accessed in the logs; (2) all files accessed read-only in all logs; (3)

all files of certain types (such as libraries) accessed in any single log; and (4) all files

named in the package of the application to be upgraded. This heuristic allows Mojave to

exclude unimportant files, such as temporary and log files, that are written but never

read by the application. To complement the heuristic, Mojave also includes an API

that allows the developer to include or exclude files or directories. Mojave also collects

information about the hardware and software installed, such as type and amount of

memory, CPU data, the types and number of devices present, and the list of kernel

symbols and modules.

Mojave creates a concise representation (fingerprint) for each environmental

resource. Depending on the resource type, a different fingerprint is generated. First,

Mojave provides parsers that produce the fingerprint for common types such as libraries

and executables. A parser knows how to extract the relevant information from a file

based on its type. Second, the developer may provide parsers for certain application-

specific resources, such as configuration files. Third, if there are no parsers for a

resource, the fingerprint is a sequence of hashes of chunks of the file that are content-

delineated using Rabin fingerprinting [46]. In practice, we expect most resources to be

handled by parsers, so resorting to Rabin fingerprinting should be the exception.

In each fingerprint, the name of the resource serves as a key and the hash of

its contents as the value. The parsers for the most common resource types produce

fingerprints in the following formats:

• Environment variables: Name:HASH

• Libraries: Name:HASH+Version

• Configuration files: Filename.KEY:HASH

• Binary files: Filename:CHUNK HASH

The content-based fingerprints are of the form: Filename:CHUNK HASH. These

23

fingerprints are more coarse grained than what is possible with parsers, since a parser

can choose the granularity at which the fingerprint for an environment resource is

produced. For instance, the granularity at which binary files are fingerprinted is

typically coarser than that for configuration files. We use SHA-1 to compute fingerprints

of the resources.

For the users that choose to participate, Mojave sends the tracing infrastructure

and the parsers to their sites. During the first several executions of the upgraded

software (the number of executions can be defined by the developer), Mojave collects

the environment resource information and produces the respective fingerprints. After

each of these executions, Mojave also queries the user about whether the upgrade has

succeeded or failed. We ask the user to provide this success/failure flag, because it may

be difficult to determine failure in some cases. For example, a software misbehavior is

considered a failure, even if it does not cause a crash or any other OS-visible event. In

addition, the upgrade may cause another software to misbehave [12].

In addition to environment data, Mojave collects the execution call sequences for

the software before the upgrade. Mojave uses the C Intermediate Language (CIL) [38]

to automatically instrument the application. The instrumentation is introduced by a

new CIL module, call-logger. The call-logger module inserts calls to our runtime library

that logs names of all the routines executed in a particular invocation of the software.

In case multiple processes are forked during an instance, it logs the call sequence for

each process individually. Mojave drives the instrumented version of the software with

the previously saved input to generate the call sequences.

The developer can configure Mojave to collect call sequences corresponding to

multiple executions of the (pre-upgrade) software at each user site. For clarity and

without loss of generality, the remainder of this dissertation assumes that Mojave

collects call sequence data corresponding to a single execution at each user site. The

extension to multiple executions per site is straightforward.

After the user provides each success/failure flag, Mojave obscures and then transfers

the collected environment fingerprints and call sequence data to the developer’s site,

along with the flag. The call sequences (excluding any confidential data such as routine

24

arguments and return data) are a proxy for the real environment settings and inputs,

which Mojave does not transfer to the developer because of privacy concerns. These

data represent the profile of the user site. User profiles from all sites serve as the input

to the other steps.

Call sequence filtering for environment-related failures (steps 4-6). Based

on the environment information collected from the user sites, this step ascertains

if the upgrade failure is environment-related. Mojave runs feature selection on

the environment data and the success/failure flags to select environment resources

(called features) with the strongest correlation to the observed upgrade failures. The

fingerprints are never “unhashed” during feature selection (or after it); it is enough for

Mojave to know how many different fingerprints there are for each feature.

Mojave uses the decision tree algorithm with feature ranking from the WEKA tool

[32] for selection. The algorithm builds a decision tree by first selecting a feature to

place at the root node, and creating a tree branch for each possible value of the feature.

This splits up the dataset into subsets, one for each value of the feature. The choice of

the root feature is based on Gain Ratio [45], a measure of a feature’s ability to create

subsets with homogeneous classes. In Mojave, there are only two classes: success or

failure. The Gain Ratio is higher for the features that create subsets with mostly success

or mostly failure user profiles.

For instance, in the example of Listing 3.1, the root feature would be the SHELL

environment variable. The subsets that include SHELL strings of length greater than

0 characters are successes, whereas those that have strings of length 0 are failures.

After selecting the root feature, the process is repeated recursively for each branch,

using only those profiles that actually reach the branch. When all the profiles at a node

have the same classification, the algorithm has completed that part of the tree. The

output of the algorithm is a set of features, their Gain Ratios, and their ranks.

To validate the feature selection, Mojave uses 10-fold cross-validation [25] to

compute the standard deviation of the ranks of each feature. When the standard

deviations of the top-ranked features are high, the reason for the failures is unlikely to

25

Figure 3.3: Def-use chain, suspect variables and routines for the example.

be the environment. In that case, Mojave skips to the call sequence similarity step.

When this condition is not met, Mojave considers all the features that have Gain

Ratios within 30% of the highest ranked feature as Suspect Environment Resources

(SERs). These SERs serve as input to the static analysis.

Mojave performs static analysis using CIL [38]. Specifically, it implements two CIL

modules, the call-graph module and the def-use module. As the name suggests, the

call-graph module computes a whole-program static call graph by traversing all the

source files, a routine at a time. Every node in the call graph is a routine, and its

children nodes are the routines it calls. The root of the call graph is always the main()

routine.

The def-use module creates def-use chains [1] for each SER. A def-use chain links

all the variables that derive directly or indirectly from one SER. Each array is handled

as a single variable, whereas struct and union fields are handled separately. Figure 3.3

shows the def-use chain (thin arrows) for our example program.

Since SuspectRoutines is the set of routines that are highly correlated with the

26

failure, Mojave filters out the call sequence data to comprise only the sequence

connecting the suspect routines (SCSR). Specifically, it removes all the routines that

are not suspect from the execution call sequence, resulting in shorter sequences, and

potentially faster similarity computation (next step). This step updates the call

sequence data for all the users.

Call sequence similarity (step 7). In this step, Mojave determines how similar a

(pre-upgrade) execution at a user site is (in terms of its call sequence) to other users’

(pre-upgrade) executions where the upgrade succeeded or failed. Mojave measures

similarity as the length of the longest common subsequence (LCS); the longer the

LCS, the greater the similarity. Mojave computes the pairwise length of the LCS as a

percentage, between call sequences for every existing user. For each user and sequence,

Mojave then computes the 90th percentile length of the LCS with the sequences of the

users where the upgrade has failed (FSimilarity), and with those where the upgrade

has succeeded (SSimilarity).

Figure 3.4 illustrates the possible call sequences for the example in Figure 3.1.

Figure 3.4(a) shows the call sequence when the program is run without the input

arguments “Option1” and “ProxyCommand”. Figures 3.4(b) and 3.4(c) depict the

call sequence when the program is executed with “Option1” or “ProxyCommand”

arguments, but not both. Figures 3.4(d) and 3.4(e) exhibit the call sequence when

the program is executed with both arguments.

The LCS between the call sequences in Figure 3.4(a) and Figure 3.4(b), and between

Figure 3.4(a) and 3.4(c) is the main routine. Since the length of the longer of the two

sequences is 2 routines, the length of the LCS as a percentage is 50% for both these

cases. Similarly, the length of the LCS as a percentage between Figure 3.4(a) and

Figure 3.4(d), and between Figure 3.4(a) and 3.4(e) is 33% (the LCS contains only

the main routine and the length of the longer sequence is 3 routines). Note that two

users may have the exact same call sequence, in which case the length of the LCS as

a percentage for those users would be 100%. The two similarity measures, FSimilarity

and SSimilarity, range from 33− 100% for the example depending on the total number

27

(a) No option or
proxy as args.

(b) Option arg. (c) Proxycmd arg.

(d) Option and Proxycmd
args.

(e) Proxycmd and Option
args.

Figure 3.4: Call sequences for the example program.

of initial users, the number of users where the upgrade passed or failed, and their

respective call sequences.

Mojave computes the two similarity measures for every user and sequence, and adds

them as attributes to the user’s profile. The updated profiles comprising environment

data, call sequences, similarity measures, and upgrade success/failure labels form the

training set for the classification step.

Classification (step 8). The classification step takes the user profiles and attempts

to learn a binary classifier that gives good predictions on the test set. Specifically,

Mojave uses the Logistic Regression [26] classification algorithm. Logistic Regression

is a method of learning a binary classifier where the output function is assumed to

be logistic. The logistic function is a continuous S-shaped curve approaching 0 on

one end, and 1 on the other. The output can be interpreted as a probability that

the data point falls within class 0 or 1. Quantizing the logistic function output then

gives us a binary classifier: if the output is greater than 0.5, then the data point is

28

classified as class 1 (failure), otherwise it falls in class 0 (success). The algorithm learns

the relationship between all attributes (except for call sequences) and the binary class

variable. It outputs a model that predicts whether an upgrade will succeed or fail for

a new user, given his/her attributes. The model is a linear equation, where each term

is the multiplication of an attribute rule (testing whether the attribute has a specific

value) and a weight assigned to the rule. The following equation shows the model for

the example in Figure 3.1:

p(fail) = a0 + a1 ∗ (SHELL = HashOfOffendingShellName)

where ai are the weights that are learned from the training set, and

HashOfOffendingShellName is the hash of the failure-inducing shell name (empty

string). If the value of p(fail) is greater than 0.5, then the predicted class is fail,

otherwise it is success. In some cases, the model may include separate equations for

the two classes; the predicted class is the one with the higher of the two probabilities.

3.4.2 Recommendation Phase

User feedback (steps 9-10). In this step, Mojave collects the fingerprints of the new

user’s environment settings, and the call sequence(s) from the current version of the

software. Mojave collects these data using the tracing infrastructure described above.

Mojave then obscures and transfers the data back to the developer.

Filtering for environment-related failures (step 11). In this step, Mojave filters

the new user’s call sequence data with SuspectRoutines (computed in the learning phase)

to contain only the SCSR, in cases when the existing users observed failures that are

likely environment-related. The SCSR is then passed on to the call sequence similarity

step.

Call sequence similarity (step 12). In this step, Mojave quantifies the similarity of

the call sequence(s) from the current version of the software at the new user’s site with

the call sequences from the same version at the existing users’ sites where the upgrade

has succeeded or failed. Specifically, Mojave (a) computes the pairwise length of the

29

LCS of each user’s sequence (or the SCSR if the failure is environment-related) with

other users where the upgrade succeeded and failed, respectively; (b) takes the 90th

percentile length of the LCS to compute the two similarity measures, SSimilarity and

FSimilarity, for each sequence of the new user; and (c) updates the user’s profile with

the similarity measures for each sequence. This step is similar to that performed in the

learning phase to compute similarity between initial users.

Note that a new user may have skipped the most recent upgrades of the software.

This does not pose a problem, since Mojave compares the new user’s profile only to

those of existing users who ran the same version of the software and have installed the

current upgrade.

Recommendation (steps 13-14). Mojave inputs the user’s updated profile to the

prediction model (built in the learning phase) to compute the probability that the new

user belongs to the class 0 (success) or 1 (failure). The predicted class for the new user

is the one that has the highest probability. If the predicted class for the new user is

success, Mojave recommends the upgrade to the user. Otherwise, Mojave recommends

the user to not upgrade the software.

3.4.3 Discussion

Upgrades that change the environment and/or call sequence. Recall that

Mojave uses environment and call sequence data about a pre-upgrade version of the

software to predict its post-upgrade behavior for other users. Mojave works well even for

upgrades that change the environment and the call sequence, because it also associates

the post-upgrade success/failure flags from some users to their respective pre-upgrade

data. With this post-upgrade information, Mojave can learn the pre-upgrade behaviors

that will likely lead to success/failure for new users.

Multiple bugs in an upgrade. Most components of Mojave are unaffected by the

presence of multiple bugs. However, multiple bugs may negatively affect the feature

selection, similarity computation, and classification steps, when the bugs are caused by

different environmental resources. In these cases, the feature selection might mis-rank

30

the features that are related to the less frequent bugs, such that they are not selected as

SERs. This could cause the static analysis to miss some suspect routines, causing some

relevant calls to be filtered out of the sequences from the user sites exposed to the less

frequent bugs. This in turn could make the similarity computation for those sites less

accurate, causing the prediction model to become inaccurate. This inaccuracy would

cause Mojave to stay in the learning phase longer, until more data could be collected

on those less frequent bugs.

To reduce this delay in entering the recommendation phase, Mojave can be combined

with systems that classify bugs into buckets, each of which comprising a single bug

(e.g., [13]). In such cases, Mojave would compute a prediction model for each bucket.

In the recommendation phase, Mojave could calculate the failure likelihood at the

new user’s site for each of the buckets, and provide a recommendation based on some

aggregation of these likelihoods.

Limitations of the current implementation. Mojave limits the user information

transferred to the developer’s site to the resource fingerprints and call sequence data. In

our current implementation, these data are transferred in hashed form (SHA-1), which

does not provide foolproof privacy guarantees. However, Mojave can easily use more

sophisticated schemes for these transfers. For long-running software (e.g., servers),

the network bandwidth required by the call sequence transfers may be significant for

the initial users (in the learning phase), since these sequences have to be transferred

in their entirety. New users may transfer shortened sequences (filtered based on the

suspect routines), but even those can be long. This sequence length problem can be

mitigated by using sampling techniques, as in [2].

Mojave employs feature selection and static analysis to narrow the set of routines

that are highly correlated with failures. However, under certain conditions, these

techniques may be unable to do so. In the worst case, all routines may be affected

by the SERs, making static analysis ineffective. Fortunately, these worst-case scenarios

are extremely unlikely in a single upgrade. Furthermore, our results with the uServer

bug show (Section 3.5) that Mojave can provide accurate recommendations even when

31

these techniques are absent or not applicable.

Finally, Mojave currently computes the LCS between every pair of (possibly

shortened) call sequences for the same version of the software in its database. We do

not consider this high computational complexity a problem for large software vendors,

since they can dedicate massive resources to these computations. For smaller vendors

or open-source developers, this complexity can be a problem. Possible optimizations

would be (1) using a subset of call sequences as representatives for the others, and/or

(2) using an approach to similarity that does not involve computing the LCS. We leave

these optimizations as future work.

3.5 Evaluation

In this section, we describe our methodology and evaluate Mojave with three real

upgrade bugs in OpenSSH, a synthetic bug in SQLite, and a synthetic bug in uServer.

We describe OpenSSH in Section 2.1. SQLite is the most widely deployed SQL

database [50]. It implements a serverless, transactional SQL engine. SQLite has 67K

LOC spread across 4 files. uServer [10] is an open-source, event-driven Web server

sometimes used for performance studies. It has 37K LOC spread across 161 files.

3.5.1 Methodology

We describe the OpenSSH bugs we study in Section 2.6. Next, we describe the bugs

we introduced in SQLite and uServer.

SQLite and uServer bugs. To demonstrate Mojave’s generality, we synthetically

created one buggy upgrade for SQLite version 3.6.14.2 and one for uServer version

0.6.0. Note that these two bugs are trivial, however, our goal is simply to demonstrate

that our systems works without modification for a variety of applications and it can

also help prevent bugs that are not environment related.

Before the upgrade of SQLite, the option echo on caused its shell to output each

command before executing it. After our synthetic upgrade, it does not output the

command when executing in interactive mode. The bug we inject into the upgrade of

32

Parameter Name Default Value
Config files 8
Files with failure-inducing settings 3
Total user profiles 87
Failed user profiles 20
Total inputs 8
Failure-activating inputs 3
Feature selection threshold 30%

Table 3.1: Experimental setup parameters.

Parser Name Description
CHUNKS Chunks and fingerprints a binary file into 1KB chunks
CHUNKS2 Chunks and fingerprints a file into variable sized chunks
KEYVAL Chunks and fingerprints a key-value pair file
LIBS4 Chunks and fingerprints a library and all its dependencies
LINES.c Fingerprints a file line-by-line
SSHD Application-specific parser to fingerprint the sshd config file
SSH Application-specific parser to fingerprint the ssh config file

Table 3.2: Parsers.

uServer is not environment-related. The bug is a typo in the function that parses user

input causing dropped POST requests and occasional crashes.

Upgrade deployment and user data collection. To simulate a real-world

deployment of a software upgrade to a large number of users with varied environment

settings, we collected environment data from 87 machines at our site across two clusters.

The settings of the machines within a cluster are similar, but they are different across

clusters. Table 3.1 lists the default values of the parameters in our experimental setup.

We used the methodology described in Section 3.4 to (1) automatically

generate instrumented versions of OpenSSH, SQLite, and uServer; (2) identify their

environmental resources; and (3) collect call sequence data and compute success and

failure similarity measures. While Mojave collects the call sequence data and identifies

the environmental resources, the software takes longer to execute. Specifically, for the

five bugs we analyzed, the software ran 1.5X − 3X slower than when the data is not

being collected. We ran all the experiments on 2.80GHz Intel Pentium 4 machines with

512MB RAM and the Ubuntu 8.04.4 Linux distribution.

33

Table 3.2 lists the parsers used to parse and fingerprint these environmental

resources. CHUNKS and CHUNKS2 chunk and fingerprint the binary files, such as the

kernel symbols; KEYVAL parses and chunks any file in the key-delimiter-value format,

such as shell environment or cpu data; LIBS chunks and fingerprints all the libraries;

LINES.c parses and fingerprints a file one line at a time, such as the file containing

the list of kernel modules; and SSH and SSHD are application-specific parsers to parse

and fingerprint the ssh config and sshd config configuration files, respectively. It took

us only 8 person-hours to implement these parsers. SQLite and uServer did not require

any application-specific parsers.

In addition, we downloaded eight different complete OpenSSH configuration files

from the Web, and generated eight synthetic configurations for SQLite and uServer.

For each of the bugs, we modify three of these files to include the settings that activate

the bug. Furthermore, we use eight inputs, three of them would trigger the bugs if

the suspect environment settings were present, and the other five would not. One of

the eight configuration files (three with problematic settings and five with only good

settings) and one input is assigned to each of the 87 user profiles randomly. We assume

by default that 20 profiles include environment settings and input that can activate

a bug, whereas 67 of them do not. Some of the 67 profiles may have failure-inducing

input, but not the environment settings that can activate the bug.

To mimic the situation where some users have failure inducing settings, but do not

observe the failure or misbehavior because they do not have the input that triggers the

bug, we perform three types of experiments: perfect, imperfect60, and imperfect20.

Table 3.3 enumerates the experiments, the type of values that the environment settings

are assigned, and the number of failure-inducing profiles for each of the experiments.

In the perfect case, the 20 profiles with environment settings that can activate the bug

are classified as failed profiles, whereas the other 67 are classified as successful ones.

As a result, there is 100% correlation between those resources and the failure. This is

the best case for the feature selection for environment-related failures, and possibly the

recommendation accuracy of Mojave.

In the two imperfect cases, the environment settings are the same as in the perfect

34

Experiment
Type of Values Profiles

System Env Application Specific Env Failure Inducing Actually Failed

perfect Real Real 20 20

imperfect60 Real Real 20 12

imperfect20 Real Real 20 4

Table 3.3: Mojave experiments.

case. However, not all profiles with environment settings that cause the failure are

assigned an input that activates the bug, and therefore, not labeled as failures. In

particular, only 60% of these profiles are assigned failure-inducing input (and labeled

failures) in the imperfect60 case, and 20% in the imperfect20 case. These scenarios

may result in the feature selection picking more SERs for the environment-related

failures than in the perfect case.

In all of the experiments, the feature selection step considers the features ranked

within 30% of the highest ranked feature as suspects. This step takes 1− 3 seconds for

each experiment across all the five bugs. The static analysis step takes 66−124 seconds

to compute the set of suspect routines for the environment-related bugs.

Learning and recommendation. We execute the instrumented version of the

software (before the upgrade is applied) with the configuration file and the input

assigned to collect the call sequence data. The call sequence data and the success/failure

flags are then used to calculate the SSimilarity and FSimilarity measures for all the

users. The computation of the two similarity measures requires a quadratic number of

pairwise LCS calculations, each of which is quadratic in the length of the sequences. In

our experiments, each pairwise LCS computation takes 1 − 2 seconds to execute, and

the time to compute each similarity measure is at most 120 seconds.

The environmental resources of a single machine, parsed/chunked and fingerprinted,

along with the two similarity measures and success/failure flag constitute a single user

profile. The 87 user profiles serve as the input to the classification algorithm.

In all of our experiments, we use two-thirds (57) of the profiles as the training data

to learn the prediction model, and the remaining one-third (30) as the test data for

35

Bug SERs SRs
|CallSequence| |SCSR| |90th percentile LCS| Prediction

Success Failure Success Failure SSim FSim (Model)

Port 3 22 6K-47K 29K-73K 275-605 380-632 79-100 80-98 1-7

X11 3 20-21 2.7K-81K 2.8K-2.9K 99-390 104-107 28-100 50-100 2-7

Proxy 3 15 538-58K 797-37K 70-1.7K 98-1.4K 38-100 36-99 1-11

SQLite 2-3 12-13 10K-22K 1.4K-15K 19-92 24-168 54-100 34-88 5-12

uServer NA NA 829-8K 811-1.9K 829-8K 811-1.9K 46-100 19-95 2-8

Table 3.4: Results for the learning phase (Port = Port forwarding; X11 = X11 forwarding;
Proxy = ProxyCommand; SSim = SSimilarity; FSim = FSimilarity).

the recommendation phase. In our experiments, the classification step takes 22 − 231

seconds to learn the prediction model. In particular, it takes 22−59 seconds for the four

environment-related bugs, and 129− 231 seconds for the bug that is not environment-

related (uServer bug).

3.5.2 Results

OpenSSH: Port forwarding bug. Recall that this bug was introduced in the ssh

code by version 4.7. Mojave collects call sequence data using the instrumented version

of the software before the upgrade. As shown in the Table 3.4, the length of the call

sequences collected by Mojave ranges from 6K to 47K for the success, and 29K to

almost 73K for the failed instances. In addition, Mojave identified 101 environmental

resources, including the parameters in the configuration files, the operating system and

library dependencies, hardware data, and other relevant files. Many of these resources,

such as library files, are split into smaller chunks; for others, such as configuration files,

each parameter is considered a separate feature. Overall, there are 325 features, forming

the input to the feature selection step to determine if the bug is environment-related.

The feature selection step determines that the bug is indeed environment related,

and selects three features across all the experiments: configuration parameters Tunnel,

BatchMode, and RSAAuthentication. Features BatchMode and RSAAuthentication

have three possible values: yes, no, or missing. In the configurations we collected, it

so happened that RSAAuthentication was set to yes, and BatchMode to no in two of

the three failed profiles, causing them to be highly correlated with the failure. Recall

36

that we did not assign these values; we retrieved the configurations from the Web and

changed only the setting of the Tunnel parameter. These three parameters correspond

to 8 suspect variables in ssh. The static analysis results in 22 suspect routines. Mojave

uses the suspect routines to filter out the call sequence data to contain only the sequence

connecting suspect routines (SCSR).

As shown in Table 3.4, the filtering step reduces the length of the sequences by

22 − 115X to 275 − 605 for the users where the upgrade succeeded, and 380 − 632

for the users where the upgrade failed. This reduction speeds up the call sequence

similarity computation significantly. The success and failure similarity measures range

from 79 − 100% and 80 − 98%, respectively. Mojave updates the user profiles with

these similarity measures, and passes 57 of the updated profiles to the classification

algorithm.

The classification algorithm outputs the prediction model comprising only 1 feature

for the perfect case, 7 for the imperfect60 case, and 5 for the imperfect20 case.

The only feature in the perfect case is the OpenSSH configuration parameter Tunnel,

the culprit environment feature. In the imperfect60 case, in addition to Tunnel,

SSimilarity (the success similarity measure for the call sequence), FSimilarity

(the failure similarity measure of the call sequence), the OpenSSH configuration

parameter HostbasedAuthentication, and system environment resources: cpuinfo,

filesystems, and kallsyms. In the imperfect20 case, the prediction model includes

the two similarity measures: SSimilarity and FSimilarity, the Tunnel OpenSSH

configuration parameter, and the system configuration settings libcom err and

cpuinfo.

Using the learned prediction model, Mojave computes the recommendations for

the remaining 30 profiles. Table 3.5 presents the recommendation results for the

three experiments. In the perfect and the imperfect20 cases, Mojave correctly

predicts whether the upgrade will succeed or fail for all new users resulting in 100%

recommendation accuracy. In the imperfect60 case, it correctly predicts success or

failure for all but one user, an accuracy of 97%. Specifically, it incorrectly predicts that

37

Bug Experiment
Training Test Mojave Accuracy

Success Fail Success Fail TP TN FP FN

Port

perfect 42 15 25 5 25 5 0 0

imperfect60 48 9 27 3 27 2 0 1

imperfect20 34 3 29 1 29 1 0 0

X11

perfect 42 15 25 5 25 5 0 0

imperfect60 48 9 27 3 27 3 0 0

imperfect20 34 3 29 1 29 1 0 0

Proxy

perfect 42 15 25 5 25 5 0 0

imperfect60 48 9 27 3 25 3 2 0

imperfect20 34 3 29 1 29 1 0 0

SQLite

perfect 42 15 25 5 25 5 0 0

imperfect60 48 9 27 3 26 3 1 0

imperfect20 34 3 29 1 29 0 0 1

uServer

perfect 42 15 25 5 25 4 0 1

imperfect60 48 9 27 3 27 3 0 0

imperfect20 34 3 29 1 29 0 0 1

Table 3.5: Recommendations for OpenSSH (three), SQLite (one) and uServer (one) bugs (Port
= Port forwarding; X11 = X11 forwarding; Proxy = ProxyCommand).

the upgrade will pass for the user, but the upgrade failed at that user site. Mojave mis-

predicted the failure likelihood for this user because the user’s attribute values (values

of the similarity measures and the cpuinfo) were similar to the other users where the

upgrade passed.

OpenSSH: X11 forwarding bug. Recall that the X11 forwarding bug affected

the sshd program of OpenSSH version 4.2. Mojave identified 123 environmental

resources, resulting in a total of 354 features. The feature selection step for the

perfect experiment selects 3 features: configuration parameters X11Forwarding,

AuthorizedKeysFile, and ChallengeResponseAuthentication. In the imperfect60

and imperfect20 cases, Mojave selects three features: configuration parameters

X11Forwarding, AuthorizedKeysFile, and PidFile. AuthorizedKeysFile and PidFile

were assigned the default value in two out of the three failed real user profiles, whereas

ChallengeResponseAuthentication was set to no value in two of them. These four

features correspond to seven actual variables in sshd.

38

The static analysis results in 20 suspect routines in the perfect, and 21 suspect

routines in the imperfect cases. Using the SuspectRoutines, the filtering step reduces

the length of the sequences by 27 − 200X to 104 − 107 for the success instances, and

99−390 for the failed instances. The success and failure similarity measures range from

28− 100% and 50− 100%, respectively. Mojave then updates the user profiles with the

similarity measures, and passes them to the classification algorithm.

The classification algorithm outputs the prediction model comprising 2 features

for the perfect case, 7 for the imperfect60, and 5 for the imperfect20 case. In

the perfect case, X11Forwarding (the configuration parameter that activates the

bug) and SSimilarityLoginit (success similarity measure of the call sequence that

starts with loginit routine) are the two features in the prediction model. The

imperfect60 case includes the OpenSSH configuration parameters X11Forwarding

and AuthorizedKeysFile, the three similarity measures: FSimilarityMain and

SSimilarityMain (failure and success similarity measures for the call sequence

beginning with the main routine) and SSimilarityLoginit (success similarity measure

for the call sequence starting with the loginit routine), and HOSTNAME and swaps

system environment resources. The imperfect20 case includes libcom err and cpuinfo

in addition to the three similarity measures: SSimilarityMain, SSimilarityLoginit,

and FSimilarityLoginit. Presence of the similarity measures in the model imply that

the similarity between the new user’s program behavior and the existing users’ program

behavior is a highly probable failure (or success) predictor.

Using the learned prediction model, Mojave computes the recommendations for the

30 test profiles. Mojave correctly predicts the upgrade’s success or failure for all the

new users, an accuracy of 100%.

OpenSSH: ProxyCommand bug. This bug affected ssh in version 4.9. We

performed the same 3 experiments with this upgrade.

The feature selection step produces 3 SERs and static analysis produces 15 suspect

routines. Filtering the call sequences with these suspect routines reduces the size of the

success sequences from 538− 58K to 70− 1.7K, and failed sequences from 797− 36K

39

to 98 − 1.4K, a reduction of 7 − 34X. The success and fail similarity measures range

from 38− 99% and 36− 94%, respectively. Mojave then updates the user profiles with

the similarity measures, and passes them to the classification algorithm.

The classification algorithm outputs the prediction model comprising 1 feature

for the perfect case, 7 for the imperfect60 case, and 8 for the imperfect20 case.

In the perfect case, SHELL (the environment resource that activates the bug) is the

only feature. The imperfect60 case includes FSimilarity (failure similarity measure)

and SSimilarity (success similarity measure), configuration parameters (Host and

HostbasedAuthentication), system resources (cpuinfo and libcom err) in addition to

SHELL. The imperfect20 case includes kallsyms in addition to the seven features in

the imperfect60 case. Presence of the SHELL and the two similarity measures in the

model imply that the suspect environment and the similarity between the new user and

the current users are failure (or success) predictors.

In the perfect case, Mojave correctly predicts whether the upgrade will succeed or

fail for all new users resulting in 100% recommendation accuracy. In the imperfect60

case, it correctly predicts success or failure for all but two users, an accuracy of 93%.

Specifically, it incorrectly predicts that the upgrade will fail for those users, however,

the upgrade did not fail at those user sites. In the imperfect20 case, it provides

correct recommendation for the 29 users where the upgrade would succeed, but mis-

recommends for the one user where the upgrade would have failed. Mojave missed

identifying the potential upgrade failure for because there are very few failing instances

to accurately learn the failure predictors.

SQLite bug. We injected this bug in SQLite version 3.6.14.2, which comprises 67K

LOC. The results for the three experiments show that feature selection identified

2-3 SERs, and the static analysis produced 12-13 SuspectRoutines. Using the

SuspectRoutines, the filter shortens the length of call sequences from 10 − 22K to

19 − 92 for the users where the upgrade passed, and from 1.4 − 14K to 24 − 168

for the users where the upgrade failed, a reduction of 57− 500X over the original call

sequences. The similarity measures for the updated call sequences is 54 − 100% and

40

34 − 88% respectively. The environment data along with the similarity measures and

the success/fail flags are passed to the classification algorithm.

The classification algorithm outputs the prediction model comprising 4 features for

the perfect case, 9 for the imperfect60 case and 4 for the imperfect20 case. In the

perfect case, the features chosen are the three configuration parameters Echo, Bail and

Batch; and FSimilarity similarity measure. The imperfect60 case includes the system

resources cpuinfo, libc.so, kallsyms, scsi and swap in addition to the five features in

the perfect case. The imperfect20 case includes the configuration parameter Bail,

FSimilarity similarity measure, and system resources cpuinfo and libc.so.

Using the learned prediction model, Mojave computes the recommendations for

the remaining 30 profiles. In the perfect case, Mojave correctly predicts whether the

upgrade will succeed or fail at the new user site for all the users, an accuracy of 100%.

In the imperfect60 case, it misclassified one success instance as failed, and in the

imperfect20 case misclassified one failed instance as success, an accuracy of 97% for

both cases.

uServer bug. We injected this bug in uServer version 0.6.0, which comprises 37K

LOC. Again, we ran the three experiments: perfect, imperfect60 and imperfect20.

Since this bug is not environment related, ranks of the top-ranked features consistently

exhibit high standard deviations at the feature selection step. Thus, feature selection

properly flags this bug as unrelated to the environment, and therefore, Mojave skips

the static analysis and filter (environment-related optimization) steps, and moves on

to the call sequence similarity step. The output of the call sequence similarity step are

the two similarity measures: SSimilarity ranges from 46− 100% and FSimilarity from

19−95%. The similarity measures along with the environment data and the success/fail

flags serve as the input to the classification step.

The classification step outputs the prediction model comprising 6 for the perfect

case, 6 for the imperfect60 case and 2 for the imperfect20 case. The perfect case

includes the two similarity measures FSimilarity and SSimilarity and system resources

cpuinfo, iomem, kallsyms, libcom err.so and mounts. The imperfect60 case includes

41

the two similarity measures, cpuinfo , kallsyms, libcom err.so, devices and mounts. The

imperfect20 case comprises liberr com.so and cpuinfo.

In the perfect case, Mojave correctly predicts whether the upgrade will succeed or

fail for 28 out of 30 new users resulting in 93% recommendation accuracy. Specifically,

it mis-predicts one success and failed instance. In the imperfect60 case, it correctly

predicts success or failure for all the users, an accuracy of 100%. In the imperfect20

case, it provides correct recommendation for the 29 users where the upgrade would

succeed, but mis-recommends for the one user where the upgrade would have failed.

Mojave missed identifying the potential upgrade failure for because there are very few

failing instances to accurately learn the failure predictors.

Again, although trivial, the SQLite and uServer results illustrate that Mojave can

be used without modification to provide accurate recommendations for a variety of

applications.

Summary.The results for the five bugs indicate that Mojave provides recommendations

with very high accuracy (93 − 100%) for all types the upgrade failures (both

environment-related and not environment-related), and across different applications.

Therefore, we expect that Mojave would prevent most upgrade failures in the field.

42

Chapter 4

Sahara: An Upgrade Debugging System

4.1 Introduction

Sahara simplifies the debugging of environment-related upgrade problems by

pinpointing the subset of routines and variables that are most likely the source of

misbehavior [4]. Sahara’s design was motivated by two observations: (1) since the

problem was caused by one or more aspects of the user environment, it is critical to

identify these suspect aspects and their effects throughout the code; and (2) since the

previous version of the software behaved properly, it is critical to identify the behavioral

differences between the previous and upgraded versions.

Given these observations, the root cause of an upgrade problem is most likely to be

in the code that is both (1) affected by the suspect aspects of the environment and (2)

whose behavior has deviated after the upgrade. To isolate this code, Sahara combines

information collected from many users of the software, machine learning techniques,

static and dynamic source analyses. The machine learning and the static analysis run

at the developer’s site, whereas the data collection and dynamic analysis run at the

users’ sites (for those users who are willing to run Sahara). Sahara can be used in

isolation or with Mojave (to debug failures observed by the existing users, and for the

cases where new users decide to upgrade, despite the fact that Mojave recommended

against the upgrade).

In more detail, Sahara applies feature selection [53] on the environment and upgrade

success/failure information received from users to rank the aspects of the environment

that are most likely to be the source of the misbehavior. Then, it uses def-use static

analysis [1] to identify the set of variables whose values derive directly or indirectly from

the suspect aspects. The routines in which these variables are used become the first set

43

of potential culprits. Note that the feature selection and the static analysis steps are the

same as described in Section 3.4. At this point, Sahara deploys instrumented versions

of the current and upgraded codes to the user sites that reported misbehaviors. It then

runs the instrumented versions automatically (and with the same inputs) to collect

information about all routine calls and returns. Using this information, it uses value

spectra [54] to identify the set of routines that caused the behavior to deviate from

one execution to the other at each misbehaving site. These sets of routines are also

considered suspects. Finally, Sahara intersects the sets of suspect routines resulting

from the static and dynamic analyses; those in the intersection should be debugged

first.

To evaluate Sahara, we study three real upgrade problems with the OpenSSH suite,

one synthetic problem in the SQLite database engine, and one synthetic problem

with the uServer Web server described in Section 3.5.1. For each problem and user

information scenario, we isolate the number of routines that changed in the upgrade, and

the number of routines identified through static analysis alone, dynamic analysis alone,

and full-blown Sahara. Our results demonstrate that Sahara produces an offender list

that always includes the routines responsible for the bugs. The exact number of routines

in the offender list depends on the characteristics of the information received from users.

In experiments where we varied these characteristics widely, Sahara recommends 2-21

suspect routines that should be debugged first. These numbers can be 20x smaller than

the number of routines affected by the upgrades. Compared to static and dynamic

analyses alone, Sahara reduces the numbers of suspect routines by 1.4x-6x and 14x-

40x, respectively. Given its accuracy and these large reductions, we expect that Sahara

can significantly reduce debugging time in practice.

4.2 A Motivating Example

To make our exposition more concrete, let us look at a simple example in Listing 4.1.

The example takes the name of an environment variable as input using a call to getenv()

(line 18). It then checks if the length of the string is smaller than or equal to 9 (line

4). Depending on the outcome of the comparison, a different output is produced (lines

44

1 int env2 = 0, glob = 3;
2
3 int checklength(int len) {
4 if (len <= 9) % Upgrade changes sign to <

5 return len;
6 else

7 return −1;
8 }
9 int secondfunction(float a) {

10 int ai = ceil(a);
11 if ((glob + ai) < 5)
12 return 100;
13 else

14 return 10;
15 }
16 int main() {
17 char uname[80];
18 strcpy(uname, getenv(”SHELL”));
19 env2 = strlen(uname);
20 int retval1 = checklength(env2);
21 if (retval1 > 0)
22 printf(”Out1:%d”,secondfunction(2.2));
23 else

24 printf(”Out2:%d”,secondfunction(5.1));
25 return 0;
26 }

Listing 4.1: Sahara: Example program.

21-24).

Let us assume that the upgrade simply changes the sign in line 4 from “<=” to “<”.

This upgrade will fail at user sites where the $SHELL variable is set to /bin/bash or

/bin/tcsh, but not /bin/csh or /bin/ksh, for instance. More generally, the upgrade

will fail where the length of the value of the $SHELL environment variable is exactly 9.

However, the program ran successfully at these sites before the upgrade. This upgrade

failure is similar to the ProxyCommand bug [43], and a variation of this bug was detailed

in Section 3.5.1. Note that the two examples: Listing 4.1 and Listing 3.1 have minor

differences. We created two different variations to enable simpler explanation of their

respective systems. Specifically, the example in Listing 4.1 does not take any input,

and is dependent only on the user’s environment.

The failure for the upgraded code in Listing 4.1 has two interesting characteristics.

First, the upgrade fails only at a subset of user sites, which may have been the reason

the bug went undetected during development. Second, despite the fact that the two

45

versions of the code are input-compatible, the execution behavior changes with the

upgrade both in terms of the path executed and the output produced.

Given these characteristics, identifying the aspects of the environment that correlate

with the failure is a necessary first step for efficiently diagnosing the failure. In this

simple example, the name of the shell is the aspect of the environment that triggers

the failure. It is also important to identify the variables and routines in the code that

are directly or indirectly affected by the environment. Note that the name of the shell

is initially assigned to the uname array; only later does variable env2 become related

to the environment. Thus, variables uname and env2, as well as routines main and

checklength are suspect. However, identifying these suspects is not sufficient, because

the program behaved correctly before the upgrade was applied in the same environment.

We also need to determine how the upgraded version of the program has deviated from

the current version. This analysis would then show that routine checklength and

secondfunction behave differently in the two versions, meaning that they are also

suspects. The root cause of the failure is most likely to be contained in the code that

is affected by both the suspect environment and whose behavior has changed after the

upgrade, i.e. routine checklength. This routine is exactly where the bug is in our

example.

4.3 Design and Implementation

Overview. Figure 4.1 illustrates the steps involved in Sahara. The upgrade

deployment, execution at the user’s site with his/her input, gathering the user’s

environment data and success/failure flags, and transferring the user data back to the

developer site (steps 1-3) in Sahara are similar to the corresponding steps in Mojave.

Note that a failure flag may mean that the upgrade did not install or execute properly,

crashed or misbehaved itself, or resulted in another software to misbehave [12].

In case the upgrade misbehaved at one user site at least, Sahara gathers the user’s

environment settings and success/failure information from the users, and performs

machine learning on the this data to determine the aspects of the environment that

46

Figure 4.1: Overview of Sahara.

are most likely to have caused the misbehavior (step 4). Thereafter, Sahara isolates the

variables in the code that derive directly or indirectly from those suspect aspects using

def-use static analysis. The routines that use these variables are considered suspect

(step 5). Steps 4-5 of Sahara are similar to steps 4-5 of Mojave (Section 3.4).

Sahara then deploys instrumented versions of the current and upgraded codes to the

user sites that reported failures (step 6). At each of those sites, Sahara executes both

versions with the inputs collected in step 2 and collects dynamic routine call/return

information (step 7). Sahara then compares the logs from the two executions to

determine the routines that exhibited different dynamic behavior (step 8). This step

47

is done at the failed user sites to avoid transferring the potentially large execution logs

back to the developer’s site. Sahara then transfers the list of routines that deviated at

each failed user site back to the developer’s site (step 9); the routines on these lists are

considered suspect as well.

Finally, Sahara intersects the suspects from the static and dynamic analyses (step

10). It reports the intersection to the developer as the routines to debug first. If the

problem is not found in this set, other suspect routines should be considered.

Next, we detail the implementation of these steps.

Upgrade deployment, tracing, and user feedback (steps 1-3). The upgrade

deployment, tracing, and the user feedback are similar to steps 1 − 3 in Mojave as

described in Section 3.4. The only difference is that Sahara does not rely on the

execution behavior (call sequence) data from the users; Sahara transfers only the user’s

environment settings and the success/failure data back to the developer site.

This data represents the profile of the corresponding user site. After the first several

executions, Sahara turns its data collection off to minimize overheads. User profiles

from all sites serve as the input to the feature selection step. Section 4.5 systematically

studies the impact of user profiles with various characteristics.

Feature selection (step 4). Based on the information received from the user sites,

this step selects environment resources (called features) with the strongest correlation

to the observed upgrade failures. This step is the same as step 4 of Mojave, and is

described in Section 3.4.

For the example of Listing 4.1, the root feature chosen by the feature selection would

be the SHELL environment variable. The subsets that include SHELL strings of length

different than 9 are successes, whereas those that have strings of exactly 9 characters

are failures.

Note that as in step 4 of Mojave, Sahara considers all the features that have Gain

Ratios within 30% of the highest ranked feature as Suspect Environment Resources

(SERs). These SERs serve as input to the static analysis step. We assess the impact

of the accuracy of the feature selection step in Section 4.5.

48

Figure 4.2: Def-use chain, suspect variables and routines for Sahara’s simple example.

Static analysis and suspect routines (step 5). The static analysis step in Sahara

is the same as step 5 of Mojave (Section 3.4). Sahara uses the same two CIL [38]

modules: call-graph and def-use to create def-use chains [1] for each SER. A def-use

chain links all the variables that derive directly or indirectly from one SER. Each array

is handled as a single variable, whereas struct and union fields are handled separately.

Figure 4.2 shows the def-use chain (thin arrows) for our example program.

Similar to step 5 of Mojave, this step outputs SuspectRoutines (SRs), a set of

routines that are highly correlated with the failures. For the example in Listing 4.1,

main and checklength are the two suspect routines. The block arrows in Figure 4.2

show why these routines were included as suspects.

Creating and distributing instrumented versions (step 6). After the SRs are

identified, Sahara generates the instrumented versions of the current and upgraded

versions of the software.

Sahara uses CIL to automatically instrument the application. The instrumentation

is introduced by two new CIL modules, instrument-calls and ptr-analysis. The

49

instrument-calls module inserts calls to our C runtime library to log routine signatures

for all the routines executed in a particular run. A routine’s signature consists of the

number, name, and values of its parameters, its return value, and any global state that

is accessed by the routine. The global state comprises the number, name, and values

of all the global variables accessed by the routine. This module works well for logging

parameters of basic data types. However, in order to correctly log pointer variables

and variables of complex data types, we have implemented the ptr-analysis module.

This module inserts additional calls to our C library to track all heap allocations and

deallocations.

Re-execution, value spectra analysis, and deviated routines (steps 7-9).

As we do not want to transfer inputs or large logs across the network, these steps

are performed at the failed users’ sites themselves. To do so, Sahara first deploys

infrastructure to those sites that is responsible for re-execution and value spectra

analysis. It then transfers the instrumented binaries of the current and upgraded

versions.

Sahara leverages Mirage’s re-execution infrastructure, which has been detailed in

[12]. This infrastructure executes the instrumented binaries of both versions at the

failed user sites, feeding them the same inputs that had caused the upgrade to fail.

These inputs were collected in the logs recorded during step 2. To allow for some

level of non-determinism during re-execution, Sahara maps the recorded inputs to the

appropriate input operations (identified by their system calls and thread ids), even if

they are executed in a different order in the log.

As the instrumented versions execute, their dynamic routine call/return information

is collected. Listing 4.2 shows the log for the current version, whereas Listing 4.3 does

so for the upgraded version of the program.

With these routine call/return logs, Sahara determines the set of routines, called

DeviatedRoutines, whose dynamic behavior has deviated after the upgrade. Specifically,

we implement fDiff, a diff-like tool that takes two execution logs as input, and

50

1 Function main numArgs 0
2 Globals at ENTRY: 0
3
4 Function check length numArgs 0
5 Globals at ENTRY: 1
6 Global : env2 S i z e : 4 Type : i n t Value : 9
7
8 Globals at EXIT : 1
9 Global : env2 S i z e : 4 Type : i n t Value : 9

10
11 Return : retVal S i z e : 4 Type : i n t Value : 9
12
13 Function second funct ion numArgs 1
14 Globals at ENTRY: 1
15 Global : g lob S i z e : 4 Type : i n t Value : 3
16
17 Parameter : a S i z e : 4 Type : f l o a t Value : 2 . 2
18
19 Globals at EXIT : 1
20 Global : g lob S i z e : 4 Type : i n t Value : 3
21
22 Return : retVal S i z e : 4 Type : i n t Value : 10
23
24 Globals at EXIT : 0
25
26 Return : retVal S i z e : 4 Type : i n t Value : 0

Listing 4.2: Execution log of current version.

converts each of them into a sequence of routine signatures. It uses the longest

common subsequence algorithm to compute the difference between the two sequences

of signatures. A routine has deviated, if one or more of the following differs between

the two versions: (1) the number of arguments passed to it; (2) the value of any of its

arguments; (3) its return value; (4) the number of global variables accessed by it; or

(5) the value of one or more global variables accessed by it. This notion of deviation is

similar to that proposed for value spectra [54].

In Listings 4.2 and 4.3, two routines have deviated: checklength and second-

function. The return value of checklength changed from 9 before the upgrade to

-1 after the upgrade (line 17 in the two figures). The argument to secondfunction

changed from 2.2 to 5.1 (line 17).

Sahara transfers the DeviatedRoutines list to the developer’s site for the final step.

Intersection and list of primary suspects (step 10). Finally, Sahara computes

the union of the DeviatedRoutines from the failed user sites. It then intersects this

51

1 Function main numArgs 0
2 Globals at ENTRY: 0
3
4 Function check length numArgs 0
5 Globals at ENTRY: 1
6 Global : env2 S i z e : 4 Type : i n t Value : 9
7
8 Globals at EXIT : 1
9 Global : env2 S i z e : 4 Type : i n t Value : 9

10
11 Return : retVal S i z e : 4 Type : i n t Value : −1
12
13 Function second funct ion numArgs 1
14 Globals at ENTRY: 1
15 Global : g lob S i z e : 4 Type : i n t Value : 3
16
17 Parameter : a S i z e : 4 Type : f l o a t Value : 5 . 1
18
19 Globals at EXIT : 1
20 Global : g lob S i z e : 4 Type : i n t Value : 3
21
22 Return : retVal S i z e : 4 Type : i n t Value : 10
23
24 Globals at EXIT : 0
25
26 Return : retVal S i z e : 4 Type : i n t Value : 0

Listing 4.3: Execution log of upgraded version.

larger set with the SRs. The intersection forms the set of Prime Suspect Routines

(PSRs), i.e. the routines most likely to contain the root cause of the failure. For the

example, checklength is the prime suspect, despite the fact that all 3 routines have

some relationship to the users’ environment. The root cause is indeed checklength.

4.4 Discussion

Sahara and other systems. Sahara simplifies the debugging of upgrades that fail

due to the user environment. As such, Sahara is less comprehensive than systems

that seek to identify more classes of software bugs (e.g., [51]). However, Sahara takes

advantage of its narrower scope to guide failed upgrade debugging more directly towards

environment-related bugs (which are the most common in practice [12]).

In essence, we see Sahara as complementary to other systems. In fact, an example

combination of systems is the following. Steps 1-4 of Sahara would be executed first. If

the user environment is likely the culprit (as determined by the output of step 4), the

52

other steps are executed. Otherwise, another system is activated.

Dealing with multiple bugs. The feature selection algorithm is the only part of

Sahara that could be negatively affected by an upgrade with multiple bugs. The other

components of Sahara are unaffected because (1) information about each execution (the

resource fingerprints and a success/failure flag) represents at most one bug, (2) static

analysis is independent of the number of bugs, (3) each dynamic analysis finds deviations

associated with a single bug, and (4) the union+intersection step is independent of the

number of bugs.

Sahara is effective when faced with multiple bugs, even when feature selection does

not produce the ideal results. To understand this, consider the two possible scenarios:

(1) all bugs are environment-related; and (2) one or more bugs are unrelated to the

environment.

When all bugs are environment-related and involve the same environment resources,

feature selection works correctly and Sahara easily produces the prime suspects for all

bugs. If different bugs relate to different sets of environment resources, feature selection

could misbehave. In particular, if there is not enough information about all bugs, feature

selection could mis-rank the environment resources that are relevant to the less frequent

bugs to the point that they do not become SERs. This would cause the remaining steps

to eventually produce the prime suspects for the more frequent bugs only. After those

bugs are removed, Sahara can be run again to tackle the less frequent bugs. This

second time, feature selection would rank the environment resources of the remaining

bugs more highly. Other systems rely on similar multi-round approaches for dealing

with multiple bugs, e.g. [19].

When one or more bugs are not related to the environment, feature selection

could again misbehave if there is not enough information about the bugs that are

environment-related. This scenario would most likely cause feature selection to low-

rank all environment resources. In this case, the best approach is to resort to a

different system, as discussed above. In contrast, if there is enough information

about the environment-related bugs, feature selection would select the proper SERs.

53

Despite this good behavior, the dynamic analysis at some failed sites would identify

DeviatedRoutines corresponding to bugs that are not related to the environment.

However, those routines would not intersect with those from the static analysis, leading

to the proper prime suspect results.

Limitations of Sahara’s current implementation. Sahara currently implements

simple versions of its components. As a proof-of-concept, the goal of this initial

implementation is simply to demonstrate how to combine different techniques in a

useful and novel way. However, as we discuss below, more sophisticated components

can easily replace the existing ones.

Sahara shares the limitations of the upgrade deployment, tracing infrastructure,

collection and transfer of the user feedback, and static analysis with Mojave, as

described in Section 3.4.3.

Sahara employs dynamic analysis (along with static analysis) to narrow the set of

routines that are likely to contain the root cause of the failure. However, most (or even

all) routines could be found to deviate from their original behaviors. Fortunately, these

worst-case scenarios are extremely unlikely in a single upgrade.

Execution replay at the failed sites is currently performed without virtualization.

Using virtual machines would enable us to automatically handle applications that have

side-effects, but at the cost of becoming more intrusive and transferring more data to

the failed sites. Sahara can be extended to use replay virtualization. On the positive

side, Sahara performs a single replay at a failed site, which is significantly more efficient

than the many replays of techniques such as delta debugging [58].

Our current approach for handling replay non-determinism is very simple: Sahara

tries to match the recorded inputs to their original system calls when re-executing each

version of the application. Internal non-determinism (e.g., due to random numbers or

race conditions) is currently not handled and may mislead the dynamic analysis if it

changes: the number or value of the arguments passed to any routines, the number or

value of the global variables they touch, or their return values. Sahara can be combined

with existing deterministic replay systems to eliminate these problems.

54

Finally, Sahara guides the debugging process by pinpointing a set of routines to

debug first. Pinpointing a single routine or a single line causing the failure may not even

be possible, since the root cause of the failure may span multiple lines and routines.

Moreover, the systems that attempt such pinpointing (e.g., [27, 51, 58]) often incur

substantial overhead at the users’ sites, such as running instrumented code all the time,

check-pointing state at regular intervals, and multiple replays.

4.5 Evaluation

In this section, we describe our methodology and evaluate Sahara with the same five

bugs as Mojave: three real bugs in OpenSSH (Section 2.6), a synthetic bug in SQLite,

and a synthetic bug in uServer (Section 3.5.1).

4.5.1 Methodology

Upgrade deployment. Sahara uses the same tracing infrastructure, parsers

(Table 3.2) and the upgrade deployment setup as Mojave. Recall that we collected

environment data from 87 machines across two clusters. Table 3.1 denotes the

experimental setup parameters and their default values. Note that a single user

profile comprises the environmental resources of a single machine (parsed/chunked and

fingerprinted), and the success/failure flag.

User site environments. To evaluate Sahara’s behavior in the various real-

world like scenarios, we perform six types of experiments: random perfect,

random imperfect60, random imperfect20, realconfig perfect, realconfig imperfect60, and

realconfig imperfect20. As shown in the Table 4.1, for the random perfect experiments,

the values of all the environment resources related to the application are chosen at

random, except for the resources that relate directly to the bug. Moreover, the 20

profiles with environment settings that can activate the bug are classified as failed

profiles, whereas the other 67 are classified as successful ones. As a result, there is

100% correlation between those resources and the failure. This is the best case for

feature selection in Sahara, as it finds the minimum set of SERs.

55

Experiment
Type of Values Profiles

System Env Application Specific Env Failure Inducing Actually Failed

random perfect Real Random 20 20

random imperfect60 Real Random 20 12

random imperfect20 Real Random 20 4

realconfig perfect Real Real 20 20

realconfig imperfect60 Real Real 20 12

realconfig imperfect20 Real Real 20 4

Table 4.1: Sahara experiments.

In the two random imperfect cases, the environment settings are the same as in the

random perfect case. However, not all profiles with environment settings that cause

the failure are labeled as failures. In particular, only 60% of these profiles are labeled

failures in the random imperfect60 case, and only 20% in the random imperfect20 case.

These imperfect experiments mimic the situation where some users simply have not

activated the bug yet, possibly because they have not exercised the part of the code

that uses the problematic settings. These scenarios may lead feature selection to pick

more SERs than in the random perfect case.

In the three types of experiments described above, the application-related

environment includes random values. The three realconfig scenarios are similar to the

experiments specified in the Section 3.5.1, and listed in the Table 3.3 under the names

perfect, imperfect60, and imperfect20. Recall that in the realconfig perfect case, all

the 20 profiles with problematic settings are labeled as failures, whereas the 67 others

are labeled as successful. In the realconfig imperfect60 and realconfig imperfect20

experiments, only 60% and 20% of the profiles with these settings are labeled as failures,

respectively. The realconfig experiments are likely to lead to more SERs than the

random ones. We do not study realconfig scenarios for SQLite because the bug we

inject into it is synthetic.

In the six types of experiments described above, we assume that there are 20 users

with problematic settings for the OpenSSH-related environment. To assess the impact

of having different numbers of sites with these bad settings, we consider four more

56

types of experiments: random perfect30, random perfect10, realconfig perfect30, and

realconfig perfect10. The 30 and 10 suffixes refer to the number of profiles that exhibit

the environment settings that can cause the upgrades to fail.

As stated in Table 3.1, we consider the features ranked within 30% of the highest

ranked feature as suspects in all of our experiments. In addition, we use inputs that we

know will activate the bugs.

Overheads. The overhead of tracing and feature selection in Sahara is similar to that

in Mojave (Section 3.5.1). The static analysis step in Sahara takes 21 − 27 seconds.

This overhead differs from that in Mojave because Sahara analyzes the post-upgrade

versions of the software, whereas Mojave analyzes the pre-upgrade versions. The time

taken by the dynamic analysis step in Sahara ranges from 5− 109 seconds for the five

bugs.

4.5.2 Results

OpenSSH: Port forwarding bug. Recall that this bug was introduced in the ssh

code by version 4.7. This version has 58K LOC and 1529 routines (729 routines in

ssh). The diff between versions 4.6 and 4.7 comprises approximately 400 LOC and 65

routines. Sahara identified 101 environmental resources, including the parameters in

the configuration files, the operating system and library dependencies, hardware data,

and other relevant files. Many of these resources, such as library files, are split into

smaller chunks; for others, such as configuration files, each parameter is considered

a separate feature. Overall, there are 325 features, forming the input to the feature

selection step.

Table 4.2 shows the results for each of the analyses in Sahara and all techniques

combined for every experiment. The feature selection step results in merely 1 feature

(out of 325) chosen as suspect in the random perfect, random imperfect60, and

random imperfect20 cases. In these experiments, the environment resource that is

actually determinant in the failures, configuration parameter Tunnel, was the only

suspect because the other environmental resources were assigned random values in

57

all user profiles. This resulted in a very high correlation between the failure and this

resource, even in the random imperfect cases. The Tunnel parameter corresponds to 4

suspect variables in ssh.

Bug Experiment dRs
SERs SRs DRs Primary suspects

(feature selection)(static analysis)(dynamic analysis) (Sahara)

Port

random perfect 65 1 12 124 6
random imperfect60 65 1 12 124 6
random imperfect20 65 1 12 124 6
realconfig perfect 65 3 22 124 7

realconfig imperfect60 65 3 22 124 7
realconfig imperfect20 65 3 22 124 7

X11

random perfect 137 1 18 157 6
random imperfect60 137 1 18 157 6
random imperfect20 137 1 18 157 6
realconfig perfect 137 3 21 157 7

realconfig imperfect60 137 3 20 157 6
realconfig imperfect20 137 3 20 157 6

Proxy

random perfect 122 2 10 64 7
random imperfect60 122 2 10 64 7
random imperfect20 122 2 10 64 7
realconfig perfect 122 3 15 64 11

realconfig imperfect60 122 3 15 64 11
realconfig imperfect20 122 3 15 64 11

Table 4.2: Results for three OpenSSH bugs (Port = Port forwarding; X11 = X11 forwarding;
Proxy = ProxyCommand; dRs = diff Routines; SRs = Suspect Routines; DRs = Deviated
Routines).

In contrast, in the realconfig perfect, realconfig imperfect60 and realcon-

fig imperfect20 experiments, 3 features are selected: configuration parameters Tunnel,

BatchMode, and RSAAuthentication. Features BatchMode and RSAAuthentication have

3 possible values: yes, no, or missing. In the real configurations we collected, it so

happened that RSAAuthentication was set to yes, and BatchMode to no in two of

the three failed profiles, causing them to be highly correlated with the failure. Recall

that we did not assign these values; we retrieved the configurations from the Web and

changed only the setting of the Tunnel parameter. These three parameters correspond

to 8 suspect variables in ssh.

The static analysis results in 12 suspect routines in the random cases, and

22 in the realconfig cases. The 12 routines comprise those that (1) read the

configuration file (main and process config line) and initialize the environment of the

ssh client (initialize options and fill default options); (2) create, enable, or disable a

tunnel (tun open and a2tun); (3) place the tunnel data into a buffer or a packet

58

(buffer put int and packet put int); and (4) enable the port forwarding over this tunnel

and create a channel for it (ssh init forwarding, channel new, client request tun fwd,

and clear forwardings). Routine channel new contains the root cause of this failure.

In the realconfig cases, the same 12 routines are suspect, in addition

to those affected by RSAAuthentication (check host key, confirm, key free,

key sign, load identity file, ssh userauth1, try challenge response authentication, try -

password authentication, try rsa authentication, and userauth pubkey). BatchMode is

used only during the initialization in ssh, so it does not produce other suspects.

The dynamic analysis identifies 124 routines whose behavior has deviated when

going from version 4.6 to 4.7. Note that the number of deviations is higher than the

number of routines that actually changed. The reason is that the command succeeds

before the upgrade and many more routines are invoked, as compared to after the

upgrade when the command fails. In our fDiff implementation, the routines that were

not called after the upgrade are considered deviations.

The intersection of SuspectRoutines and DeviatedRoutines is only 6 routines in the

random cases and 7 routines in the realconfig cases. In the random cases, the four

routines pertaining to reading the configuration file and setting up the environment,

and two routines pertaining to enabling or disabling the tunnel, were pruned out after

intersection; their behavior did not change after the upgrade. In the realconfig perfect

case, confirm was the additional routine identified as primary suspect. The 6 or 7

primary suspects reported by Sahara include the actual culprit (routine channel new).

From the top six rows in Table 4.2, we can see that the number of primary suspects

output by Sahara is 2x-3x lower than that by static analysis, 17x-20x lower than that by

dynamic analysis, and 9x-10x lower than the number of routines that were modified in

the upgrade. Furthermore, we can see that Sahara is resilient to users that do not report

their upgrades to have failed despite having problematic settings for the environment

resources that cause the failure.

OpenSSH: X11 forwarding bug. Recall that the X11 forwarding bug affected the

sshd program of OpenSSH version 4.2. This version has 52K LOC and 1439 routines

59

(856 routines in sshd). The diff between versions 4.1 and 4.2 is approximately 900

LOC and 137 routines. Sahara identified 123 environmental resources, resulting in a

total of 354 features.

Table 4.2 presents the results for each of the analyses in Sahara and all techniques

combined for every experiment. The feature selection step again results in 1 feature

(out of 354) chosen as suspect in the random perfect, random imperfect60, and

random imperfect20 cases. This feature is exactly the environment resource that is

directly related to the bug: configuration parameter X11Forwarding. Like before,

feature selection for this bug is extremely accurate in the random experiments, due to

the way we assigned values to the other environment resources. This feature corresponds

to 3 variables in the sshd code.

In the realconfig perfect experiment, Sahara selects 3 features: configuration parameters

X11Forwarding, AuthorizedKeysFile, and ChallengeResponseAuthentication. In

the realconfig imperfect60 and realconfig imperfect20 cases, Sahara also selects three

features: configuration parameters X11Forwarding, AuthorizedKeysFile, and

PidFile. AuthorizedKeysFile and PidFile were assigned the default value in two out

of the three failed real user profiles, whereas ChallengeResponseAuthentication was set

to no value in two of them. These four features correspond to seven actual variables in

sshd.

The static analysis results in 18 suspect routines in the random perfect and

random imperfect cases, 21 in realconfig perfect, and 20 in the realconfig imperfect

cases. The 18 routines comprise those that: (1) read the configuration file

(auth clear options and auth parse options) and initialize the environment of sshd

(initialize server options and fill default server options); (2) authenticate the incoming

client connection with the options specified and setup the connection (do authenticated1,

do child, do exec, do exec pty, do exec no pty, and do login); (3) start a packet for X11

forwarding (packet start); and (4) setup X11 forwarding, create the channel, process

X11 requests, and do the cleanup (server input channel req, session input channel req,

server input channel req, session x11 req, session setup x11fwd, session close, and

disable forwarding).

60

In the realconfig cases, all the 18 routines mentioned above are suspect, in addition to

those affected by AuthorizedKeysFile (authorized keys file and expand authorized keys)

and ChallengeResponseAuthentication (do authentication2). PidFile did not result in

additional suspect routines, because it is used once in the initialization to store the pid

of sshd, and never again. As a result, the realconfig perfect case has 1 more routine

reported as suspect than the realconfig imperfect cases.

The dynamic analysis identifies 157 routines whose behavior has deviated when

going from version 4.1 to 4.2. Again, the number of deviations is higher than the

number of modified routines, because the upgraded code fails much earlier than the

original one.

The intersection of the two analyses results in only 6 routines (do child, do exec,

do exec no pty, packet start, session setup x11fwd, and session close) in the random

case, and 7 (do authentication2 is the additional routine) in the realconfig cases.

3 of the 6 (or 7) primary suspect routines are key to understanding the failure.

However, the single modification in the upgrade that directly causes the failure is in

the session setup x11fwd routine.

OpenSSH: ProxyCommand bug. Recall that this bug affected ssh in version 4.9,

which comprises 58K LOC and 1535 routines (712 routines in ssh). The upgrade to

this version modified 122 routines.

Table 4.2 presents the results for each of the analyses in Sahara and all techniques

combined for every experiment. The feature selection step results in 2 features (out of

354) chosen as suspect in the random cases. Both the features: the shell environment

parameter SHELL, and the configuration parameter Host are related to the bug, though

SHELL is the culprit environment resource. Host feature is related to the ProxyCommand

option in ssh config. Like before, feature selection for this bug is pretty accurate in

the random experiments, due to the way we assigned values to the other environment

resources. These two features correspond to 4 variables in the ssh code.

In case of realconfig cases, the feature selection results in 3 suspect features: the

configuration parameter HostKeyAlias, in addition to SHELL and Host features. Again,

61

HostKeyAlias corresponds to the ProxyCommand option in the ssh config.

The static analysis produces 10 suspect routines for the random experiments, and

15 suspect routines for the realconfig experiments. The 10 suspect routines comprise

those that: (1) issue and setup up a ssh session (main, client loop, ssh session,

ssh session2, and ssh session2 open); (2) setup the proxy and execute a local command

(ssh proxy connect and ssh local cmd); and (3) copy the command into and out

of the buffer (pwcopy, strlcpy, and xstrdup). In the realconfig cases, all the 10

routines described above are suspect, in addition to those affected by HostKeyAlias

(check host key, put host port, ssh connect, ssh login, and verify host key dns).

The dynamic analysis identifies 284 routines whose behavior has deviated between

versions 4.7 and 4.9. The intersection of SuspectedRoutines and DeviatedRoutines is only

7 routines in the random cases and 11 routines in the realconfig cases. The 4 routines

pertaining to the session setup get filtered out as their behavior did not change after

the upgrade.

From these results, we can see that the number of primary suspects found by Sahara

is at least 1.4x lower than when using static analysis alone, at least 14x lower than

when using dynamic analysis alone, and 15x lower than the number of routines that

were actually modified. Again, these results illustrate Sahara’s ability to focus the

debugging of failed upgrades on a small number of routines, even when many users do

not experience failures despite having environment resources that could trigger bugs in

the upgrade.

Impact of number of profiles with failure-inducing settings. So far, we have

studied the impact of imperfections in the categorization of success/failure of the

upgrades on the behavior of Sahara. Another key factor for the effectiveness of feature

selection is the percentage of user profiles that actually include the environment resource

settings that cause the upgrade failures. On one hand, the lower this percentage, the

less information we have about the failures and, thus, the worse the feature selection

results should be. On the other hand, lowering this percentage reduces noise (i.e.,

supporting evidence for resources that are not related to the failures) in the dataset

62

Bug Experiment
SERs SRs DRs Primary Suspects

(feature selection)(static analysis)(dynamic analysis) (Sahara)

Port

random perfect30 1 12 124 6
random perfect 1 12 124 6

random perfect10 1 12 124 6
realconfig perfect30 1 12 124 6
realconfig perfect 3 22 124 7

realconfig perfect10 3 22 124 7

X11

random perfect30 1 18 157 6
random perfect 1 18 157 6

random perfect10 1 18 157 6
realconfig perfect30 1 18 157 6
realconfig perfect 3 21 157 7

realconfig perfect10 2 20 157 6

Proxy

random perfect30 2 10 284 7
random perfect 2 10 284 7

random perfect10 2 10 284 7
realconfig perfect30 3 15 284 11
realconfig perfect 3 15 284 11

realconfig perfect10 5 29 284 21

Table 4.3: Impact of number of profiles with failure-inducing settings (Port = Port Forwarding;
X11 = X11 forwarding; Proxy = ProxyCommand; SRs = Suspect Routines; DRs = Deviated
Routines).

and may lead to better selection results. To confirm these observations, we performed

some experiments in which we varied the number of such profiles. In particular, we

considered cases in which 30 or 10 profiles (out of 87) had the failure-inducing settings.

Recall that our default results above assumed 20 such profiles.

Table 4.3 presents the “perfect” results from these experiments. The default results

(random perfect and realconfig perfect) and the dynamic analysis results are included

for clarity. As expected, the number of SERs (as well as suspect routines and primary

suspects) tends to increase when we lower the number of profiles with failure-inducing

settings. Interestingly, the realconfig results for the X11 forwarding bug show that

lowering noise (going from realconfig perfect to realconfig perfect10) can indeed improve

results as well.

Impact of feature selection accuracy. Feature selection is a major component of

Sahara in that it defines the scope of the static analysis. Recall that Sahara’s feature

selection considers all the features that are within 30% of the highest ranked feature

as SERs by default. Here, we study two additional scenarios: (1) all features that are

within 50% of the highest ranked feature are considered SERs, and (2) all OpenSSH

63

configuration parameters are considered SERs. These scenarios cause an increasing

number of unnecessary SERs.

For the port forwarding bug and scenario (1), the number of SERs remains the same

in all the random cases and the realconfig perfect case. In the realconfig imperfect60

case, the SERs increase from 3 to 4 and the prime suspects from 7 to 14. In the

realconfig imperfect20 case, the SERs increase from 3 to 6 and the prime suspects from

7 to 18. In scenario (2), the number of SERs is 22 (all ssh parameters) and the number

of prime suspects is 34.

For the X11 forwarding bug and scenario (1), the number of SERs remain the same

in all the random cases. In the realconfig perfect case, the SERs increase to 9 and the

prime suspects to 10. In the realconfig imperfect60 case, the SERs increase to 11 and

the prime suspects to 10, whereas in the realconfig imperfect20 case, the SERs increase

to 12 and the prime suspects to 11. In scenario (2), the number of SERs increases to

51 (all sshd parameters) and the number of prime suspects to 43.

These results illustrate the behavior we expected: the less accurate feature selection

is, the more prime suspects Sahara finds. Defining a few more SERs than necessary

does not increase the number of prime suspects excessively (roughly by 2x at most, in

comparison to our default results). However, adding too many unnecessary SERs can

increase the number of prime suspects by 6x-7x, as in scenario (2).

SQLite bug. We injected this bug in SQLite version 3.6.14.2, which comprises

67K LOC and 1338 routines. The upgrade modified two routines. We ran only

the random family of experiments, since this was not a real upgrade bug. These

results show that feature selection identified 2-3 SERs, static analysis produced 12-13

SuspectRoutines, and dynamic analysis identified 14 DeviatedRoutines. Sahara outputs

2 primary suspects in each of the three random cases (exactly the routines that were

modified); one of the prime suspects is the root cause of the failure. Again, although

trivial, these experiments illustrate that Sahara can be used without modification for a

variety of applications.

uServer bug. We injected this bug in uServer version 0.6.0, which comprises 37K LOC

64

and 404 routines. The upgrade modified 10 routines. Again, we ran only the random

family of experiments, since this was not a real upgrade bug. The experiments stopped

at the feature selection step, since the ranks of the top-ranked features consistently

exhibit high standard deviations. Thus, feature selection properly flags this bug as

unrelated to the environment.

Summary. The Sahara results for the five bugs and the different imperfections we

studied indicate that our system may significantly reduce the time and effort required

to diagnose the root cause of upgrade failures.

65

Chapter 5

Related Work

5.1 Characterizing Upgrades

A few prior works have characterized upgrades [5, 12, 18, 48]. Beattie et al. [5] tried to

determine the best time to apply security patches. They built mathematical models

to determine when to patch, and validated their models using the empirical data.

They focused solely on security patches and did not consider the reasons for the

buggy patches. Gkantsidis et al. [18] focused on the Windows environment and on

the networking aspects of deploying upgrades. They did not consider several important

issues, including frequency of upgrade problems or their root causes. An inspection

of 350,000 machines by Secunia [48] found that 28% of all major applications lack the

latest security upgrades. However, they focused on security upgrades alone, and did

not address upgrade problems. In contrast to all these studies, our characterization

focuses on all types of problems reported of a single application (OpenSSH) extending

multiple versions. Furthermore, we perform a more detailed characterization of the

upgrade problems and their root causes.

The survey done by Crameri et al. is the closest in motivation to our work. They

surveyed 50 system administrators to ascertain the frequency of upgrades and their

problems, and characterize the reasons for the upgrade problems. However, their focus

was much broader and therefore, shallower than ours. In this thesis, we do an in-depth

analysis of the bugs reported across different versions of an application. We manually

inspected 96 OpenSSH bug reports to determine the frequency of the problems caused

by user’s input and/or environment, frequency of the upgrade problems, and the types

and frequency of various upgrade problems.

66

5.2 Upgrade Deployment and Testing

A few studies [12, 33, 34] have proposed automated upgrade deployment and testing

techniques. McCamant and Ernst [33,34] automatically identify incompatibilities when

upgrading a component in a multi-component system. However, neither of these works

attempted to prevent the incompatibilities. Crameri et al. [12] proposed deploying

upgrades in stages to clusters of users that have similar environments. However, none

of the studies attempted to identify the aspects of the environment that are correlated

with the failure, considered user’s past execution behavior, or tried to isolate the root

cause of the failures at the users’ sites.

5.3 Recommendation Systems

Prior research [22,47,49] has used collaborative filtering to recommend videos, articles

and music based on the preferences of other users with similar tastes. They build on

the principle that past similarity between users is a good predictor of the user’s future

behavior (choices). Mojave employs the principles of collaborative filtering to build the

first upgrade recommendation system. Specifically, Mojave uses similarity between a

new user’s environment settings and past program execution behavior with other users

where the upgrade failed (or succeeded) to recommend for or against an upgrade.

5.4 Automated Debugging

Classification of failure reports. [13, 42] grouped failure reports using machine

learning and call sequence similarity to aid the diagnosis and debugging of software

failures. [42] applied supervised and unsupervised learning to assess the frequency

and severity of failures caused by particular defects, and to help with diagnosis of

those defects. The approach samples execution profiles through the feedback from the

instrumented code running at user sites. In addition, it uses a profiling tool to identify

the features (aspects of the execution) that are significant to the reported failures.

Then, it runs feature selection to identify a subset of features that are most useful

in grouping failures, and use this subset to group the bug reports. [13] used average

67

levenshtein distance between two stack traces to measure similarity. The approach

analyzed crash reports to group reports such that each class has reports from only one

bug (could result in faster bug resolution).

Mojave also relies on call sequence (dis)similarity, along with users’ environment

settings, and leverages classification to learn a failure prediction model. Specifically,

Mojave uses 90th percentile length of LCS between (success or failed) call sequences to

measure similarity between the program behavior at different user sites. Furthermore,

Mojave performs feature selection on the user attributes to identify the aspects of the

user site that are the most likely causes of the failures. However, Mojave seeks to

prevent upgrade failures for new users, rather than isolate the root cause of the failure.

Troubleshooting mis-configurations. The idea of Snitch [35] and PeerPressure [52]

is to identify the root cause of software mis-configurations using machine learning

techniques. PeerPressure performs statistical analysis of Windows registry snapshots

from a large number of machines. After a misconfiguration is detected, PeerPressure re-

executes the program in a special tracing environment to capture the relevant registry

data. It then uses Bayesian estimation to compare each mis-configured machine’s

registry values with those of the machines that can successfully run the same program.

Rare registry values that correlate well with mis-configurations are coerced to the

more common values. Snitch introduces Interactive Decision Trees (IDT) to allow

the developer to guide the troubleshooting process, starting from configuration traces

from many users.

ConfAid [3] helps debug mis-configurations without information from other users.

Instead, it instruments the binaries to track the causal dependencies between

application-level configuration parameters and output behavior. The binaries,

parameters, and outputs of interest are specified manually.

These three systems assume that the software is correct, but was mis-configured

by its users. Mojave and Sahara are fundamentally different. Mojave seeks to prevent

upgrade failures for future users by isolating the failure characteristics and leveraging

(dis)similarity between the new user and the existing users. Mojave uses machine

68

learning to determine if an upgrade failure is environment-related, and to learn the

prediction model. Sahara aims to help find upgrade bugs that are triggered by proper

configurations and environments. Moreover, both Mojave and Sahara go well beyond

finding the environment resources most likely to be related to a bug (i.e., feature

selection).

Qin et al. [44] observe that many bugs are correlated with the “execution

environment” (which they define to include configurations and the behavior of the

operating and runtime systems). Based on this observation, they propose Rx, a

system that tries to survive bugs at run time by dynamically changing the execution

environment. A follow-up to Rx, Triage [51] goes further by dynamically changing the

execution environment while attempting to diagnose failures at users’ sites.

In this work, Mojave seeks to prevent upgrade bugs or misbehavior for new users

before they install the upgrade, rather than the bugs that appear much after they have

applied the upgrade. In addition, Sahara focuses on simplifying debugging of upgrade

bugs or misbehavior, rather than software bugs in general as Rx and Triage do. For this

reason, Sahara can be much more specific about which variables and routines should

be considered first during debugging. Moreover, Sahara can handle bugs due to aspects

of the environment that would be difficult (or impossible) to change without semantic

knowledge of the application. Finally, Rx and Triage do not leverage data from many

users, machine learning, or static analysis. Using any of these features could speed up

Triage’s diagnosis. In fact, as we argue in Section 4.4, Sahara is complementary to

systems like Triage.

Diagnosis using execution profile mining. Several previous papers [6,14,15,31,36,

55] have employed data mining and machine learning techniques on execution profiles

for problem diagnosis. [31, 55] used graph mining, feature selection, and classification

algorithms to localize non-crash bugs. Specifically, they analyzed the differences among

the graphs of success and failed executions to identify the subgraphs that are correlated

with the failures. They used these subgraphs to determine if a given graph is a success

or failed execution, and to localize the root cause of the problem. In contrast, Mojave

69

compares the environment settings and past execution sequences of the new user with

other users that have installed the upgrade to predict if an upgrade will misbehave for

him or her. Mojave aims to prevent failures (crashes and non-crashes) for the new user.

Sahara isolates a small subset of routines that are likely to be the root cause of the

upgrade failures by leveraging the user’s environment settings, and a novel combination

of machine learning and program analyses.

Dickinson et al. [14] used cluster analysis of execution profiles to find failures among

the executions induced by a set of test cases. Specifically, the analysis used the

dissimilarity or the peculiarity of a few executions as an indication of a failed execution.

They attempted to label the execution profiles as success or failure using clustering. In

our work, we use similarity between a user’s past execution profile with that of other

users where the upgrade succeeded (or failed) to predict if the upgrade would fail for

this user. Furthermore, we simplify debugging of environment-related upgrade failures.

In [36], Mirgorodskiy et al. used lightweight dynamic instrumentation to collect

function call traces from software running at user sites. They compared the call traces,

and run classification to isolate the subset of the trace or a single function that is the root

cause of the failure. Mojave uses call sequences as program behavior representatives

too. However, it computes similarity between users’ call sequences and environment

settings to predict if the upgrade is likely to succeed or fail, not isolate the root cause

of the failure. In addition, in Mojave the instrumented code runs briefly at the time of

upgrade to collect data.

Statistical debugging with user feedback. Several previous works [2, 11, 19, 28–

30,42,58] relied on low-overhead, privacy-preserving instrumentation infrastructures to

provide user execution data back to developers. For example, Cooperative Bug Isolation

(CBI) [27] constitutes a feedback loop between developers and users. Developers provide

instrumented software to users, and users provide data about that software’s behavior

in their environments. The instrumentation consists of predicates placed at different

points of the program. Developers then use sophisticated statistical and regression

algorithms to rank predicates based on how well they correlate to bugs. To reduce

70

the manual work, [24] extended CBI to find the control flow paths connecting the

highly ranked predicates. In our work, we rely on information gathered at user sites,

but the data collection lasts temporarily after the upgrade for initial users, and only

before the upgrade for the new users. We employ regression algorithms to identify

user attributes that are highly correlated with the upgrade misbehavior. Mojave goes

further by leveraging those attributes to predict and prevent similar misbehavior for

new users.

Arnold et al. [2] sampled stack traces over a period of time, and generated a call

graph prefix tree to assemble a profile of the application’s behavior. The prefix tree

enabled comparison of stack traces to identify anomalies between stack traces from

different sites, and locate errors. Unlike this work, Mojave compares past execution

call sequences (along with environment settings) to predict if an upgrade is likely to

misbehave for a user; not locate errors or identify anomalies. Furthermore, Sahara

compares call sequences from two versions of the program at a single user site to reduce

the scope of debugging.

Static analysis. Several researchers have used static analysis for debugging, e.g.

[16, 37, 40]. In [16], authors used static analysis to infer key program properties, and

then check the system against these beliefs to uncover bugs. [37] used the rate of past

failure occurrences and complexity of a software component as predictors for future

failures. In patchAdvisor [40], authors combine static analysis of control-flow graphs

with dynamic execution traces to study the potential impact of a patch in the field.

However, none of these approaches considered the impact of the users’ environment

and/or inputs on the upgrade failures. In addition, our use of static analysis differs

from these approaches: we do not use it to find the bugs themselves; rather, we use

it to reduce the length of the call sequences for environment-related bugs (resulting in

speedier similarity computation) in case of Mojave, and to reduce the scope of debugging

in case of Sahara.

Dynamic analysis. Some studies [6, 17, 20] automatically extracted likely program

invariants based on dynamic program behavior (possibly after running multiple times

71

with different inputs to increase coverage). The detection of invariants may involve

significant overhead. Software can be deployed to users with instrumentation to check

the invariants. Developers can then use the invariants and any violations of them to

aid in debugging, just as the predicates above can be used. Our work is different from

theirs in the following ways: 1) We consider user environment as a failure predictor

and they do not; 2) We use the commonality between execution profiles (or the lack

thereof) as a failure predictor rather than the invariants over the executions; 3) We use

the learned prediction model and execution similarity to prevent upgrade failures for

future users; and 4) We restrict the execution of instrumented versions of the software

to a very short time (just before or briefly after the upgrade).

A few prior works [11,23,58] have used delta debugging to resolve regression faults

automatically and effectively. They focused on comparing program states of failed

and successful runs to identify the space of variables or rank program statements that

are correlated with the failure. In this thesis, we use dynamic analysis to compute

similarity between users, or to compute the difference between two runs of a program.

However, our approach is driven by environment resources and combines information

from a collection of users, machine learning, static analysis, and dynamic analysis.

Furthermore, unlike delta debugging, we neither require instrumenting the production

code nor replaying the execution multiple times at the users’ sites.

Xie and Notkin [54] proposed program spectra to compare versions and get insights

into their internal behavior. Harrold et al. [21] found that the deviations between

spectra of two versions frequently correlate with regression faults. Sahara uses value

spectra to compare the execution call traces from before and after the upgrade is

applied. However, merely identifying the deviations in the upgraded version leads to

a large number of candidates for exploration, as our experiments demonstrate. The

same is likely to occur for most large applications or major upgrades. Sahara further

narrows down the deviation sources by cross-referencing them with suspect routines

found through information from users, machine learning, and static analysis.

The aim of [39, 57] is to detect the root cause of regression failures automatically.

Ness and Ngo [39] used a linear search algorithm on the fully-ordered source

72

management archive to identify a single failure-inducing change. In [57], the authors

proposed an algorithm to determine the minimal set of failure-inducing changes.

These studies sought to isolate the fault-inducing change after a regression test

fails at the developer’s site. In contrast, Sahara assumes that the upgrade has

been tested thoroughly at the developer’s site and is deployed after all tests have

passed. Sahara helps isolate the fault-inducing code that is affected by specific user

environments. These failures are not easily reproducible at the developer’s site because

of environmental differences.

Other approaches. Researchers have actively been considering other approaches to

automated debugging, such as static analysis, model checking, and symbolic execution,

e.g. [9, 16, 56]. Our work is not closely related to any of these approaches, except

peripherally for our use of static def-use analysis.

73

Chapter 6

Conclusion

In this dissertation, we sought to simplify the management of software upgrades by

preventing upgrade failures for new users, and guiding the debugging of failed software

upgrades.

We motivated our work using a survey of 96 OpenSSH bugs spanning five versions.

The results confirm that upgrade failures are frequent, and that the majority of the

upgrade bugs are caused by the users’ environment settings and/or their inputs. We

argue that the developer and the users could collaborate to prevent most of these

upgrade problems, and considerably reduce the debugging effort. To this end, we

introduced two systems that leverage environment information and dynamic execution

data from many users to prevent upgrade failures and simplify their debugging.

Mojave, the first upgrade recommendation system, recommends in favor or against

an upgrade to new users. Driven by the fact that most upgrade failures are environment-

and/or input-related, Mojave gathers existing users’ environment, dynamic execution

data and success/failure flags. Mojave then combines machine learning, and dynamic

and static source analyses to identify the user attributes that are highly correlated

with the failure, compares them to the new users’ attributes to predict whether the

upgrade would succeed or fail for them. Our evaluation with five upgrade failures across

three applications demonstrates that Mojave provides accurate recommendations to the

majority of users.

Sahara, the upgrade debugging system, reduces the effort developers must spend to

debug failed upgrades by prioritizing the set of routines to consider when debugging.

Given that most upgrade failures result from differences between the developers’

and users’ environments, Sahara combines information from user site executions and

74

environments, machine learning, and static and dynamic analyses. We evaluated Sahara

for five bugs in three widely used applications. Our results showed that Sahara produces

accurate and a small set of prime suspect routines. Importantly, the set of recommended

routines remains small and accurate, even when the user site information is misleading

or limited.

In conclusion, our results demonstrate that combining user feedback, machine

learning, and dynamic and source analyses can prevent most of the upgrade failures

for new users, and their debugging can be largely simplified.

Looking to the future, we expect that this particular combination of techniques can

become even more useful in improving software quality. In particular, an increasing

number of users are willing to provide extensive information about their interests and

preferences. Internet services have used this information for service personalization and

performance improvement, both of which require machine learning. These users may

also be willing to provide information about their systems and many aspects of their

experience with and use of software. This wealth of information will be invaluable to

future developers.

75

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Practices and
Techniques. Addison-Wesley, 1986.

[2] D. Arnold, D. Ahn, B. Supinski, G. Lee, B. Miller, and M. Schulz. Stack
trace analysis for large scale debugging. In Proceedings of the Symposium on
International Parallel and Distributed Processing, 2007.

[3] M. Attariyan and J. Flinn. Automating Configuration Troubleshooting With
Dynamic Information Flow Analysis. In Proceedings of the Symposium on
Operating Systems Design and Implementation, 2010.

[4] R. Bachwani, O. Crameri, R. Bianchini, D. Kostić, and W. Zwaenepoel. Sahara:
Guiding the debugging of failed software upgrades. In Proceedings of IEEE
International Conference on Software Maintenance, 2011.

[5] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright. Timing the application
of security patches for optimal uptime. In Proceedings of the Large Installation
System Administration Conference, 2002.

[6] Y. Brun and M. D. Ernst. Finding latent code errors via machine learning over
program executions. In Proceedings of the International Conference on Software
Engineering, 2004.

[7] X forwarding will not start when a command is executed in background.
https://bugzilla.mindrot.org/show bug.cgi?id=1086.

[8] Connection aborted on large data -R transfer. https://bugzilla.mindrot.org/-
show bug.cgi?id=1360.

[9] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings
of the International Symposium on Operating Systems Design and Implementation,
2008.

[10] A. Chandra, D. Mosberger, and Linux Performance. Scalability of linux event-
dispatch mechanisms. In Proceedings of the USENIX Annual Technical Conference,
2001.

[11] H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of
International conference on Software engineering, 2005.

[12] O. Crameri, N. Knezevic, D. Kostić, R. Bianchini, and W. Zwaenepoel. Staged
deployment in mirage, an integrated software upgrade testing and distribution
system. In Proceedings of ACM Symposium on Operating Systems Principles, 2007.

76

[13] T. Dhaliwal, F. Khomh, and Y. Zou. Classifying field crash reports for fixing bugs:
A case study of mozilla firefox. In Proceedings of the International Conference on
Software Maintenance, 2006.

[14] William Dickinson, David Leon, and Andy Podgurski. Finding failures by cluster
analysis of execution profiles. In Proceedings of the International Conference on
Software engineering, 2001.

[15] F. Eichinger, K. Böhm, and M. Huber. Mining edge-weighted call graphs to localise
software bugs. In Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases, 2008.

[16] D. Engler et al. Bugs as Deviant Behavior: A General Approach to Inferring Errors
in Systems Code. In Proceedings of the International Symposium on Operating
Systems Principles, 2001.

[17] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. In Proceedings of
International conference on Software engineering, 1999.

[18] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and M. Vojnović. Planet scale
software updates. In Proceedings of the ACM Conference on Communications
Architectures and Protocols, 2006.

[19] K. Glerum et al. Debugging in the (very) large: Ten years of implementation and
experience. In Proceedings of Symposium on Operating Systems Principles, 2009.

[20] S. Hangal and M. Lam. Tracking down software bugs using automatic anomaly
detection. In Proceedings of International conference on Software engineering,
2002.

[21] M. J. Harrold, Y. G. Rothermel, Z. K. Sayre, Z. R. Wu, and L. Y. Z. An empirical
investigation of the relationship between spectra differences and regression faults.
Journal of Software Testing, Verification and Reliability, 2000.

[22] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. In Proceedings of the SIGCHI conference
on Human factors in computing systems, 1995.

[23] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value replacement.
In Proceedings of the International Symposium on Software Testing and Analysis,
2008.

[24] L. Jiang and Z. Su. Context-aware statistical debugging: from bug predictors
to faulty control flow paths. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, 2007.

[25] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the International Joint Conference on Artificial
Intellligence, 1995.

[26] N. Landwehr, M. Hall, and E. Frank. Logistic model trees. In Machine Learning,
2003.

77

[27] B. Liblit. Cooperative Bug Isolation. PhD thesis, University of California, Berkeley,
2004.

[28] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Scalable statistical bug
isolation. In Proceedings of ACM Conference on Programming Language Design
and Implementation, 2005.

[29] B. Liblit et al. Bug isolation via remote program sampling. In Proceedings of ACM
Conference on Programming Language Design and Implementation, 2003.

[30] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. Sober: Statistical model-based bug
localization. Proceedings of European Software Engineering conference held jointly
with the ACM Symposium on Foundations of software Engineering, 2005.

[31] C. Liu, X. Yan, H. Yu, J. Han, and P. Yu. Mining behavior graphs for backtrace
of noncrashing bugs, 2005.

[32] Z. Markov and I. Russell. An introduction to the weka data mining system.
In Proceedings of Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, 2006.

[33] S. Mccamant and M. Ernst. Predicting problems caused by component upgrades.
In Proceedings of European Software Engineering conference held jointly with the
ACM Symposium on Foundations of Software Engineering, 2003.

[34] S. Mccamant and M. Ernst. Early identification of incompatibilities in multi-
component upgrades. In Proceedings of the European Conference on Object-
Oriented Programming, 2004.

[35] J. Mickens, M. Szummer, and D. Narayanan. Snitch: interactive decision trees for
troubleshooting misconfigurations. In Workshop on Tackling Computer Systems
Problems with Machine Learning Techniques, 2007.

[36] A. Mirgorodskiy, N. Maruyama, and B. Miller. Problem diagnosis in large-scale
computing environments. In Proceedings of the Conference on Supercomputing,
2006.

[37] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures.
In Proceedings of the International Conference on Software engineering, 2006.

[38] G. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate language
and tools for analysis and transformation of c programs. In Proceedings of the
International Conference on Compiler Construction, 2002.

[39] B. Ness and V. Ngo. Regression containment through source change isolation.
In Proceedings of International Computer Software and Applications Conference,
1997.

[40] J. Oberheide, E. Cooke, and F. Jahanian. If it ain’t broke, don’t fix it: challenges
and new directions for inferring the impact of software patches. In Proceedings of
the 12th conference on Hot topics in operating systems, 2009.

[41] OpenSSH release dates. http://openbsd.mirrors.hoobly.com/OpenSSH/portable.

78

[42] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang.
Automated support for classifying software failure reports. In Proceedings of the
25th International Conference on Software Engineering, 2003.

[43] ProxyCommand not working if $SHELL not defined.
http://marc.info/?l=openssh-unix-dev&m=125268210501780&w=2.

[44] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as allergies - a
safe method to survive software failures. In Proceedings of ACM Symposium on
Operating Systems Principles, 2005.

[45] J. R. Quinlan. Induction of decision trees. Machine Learning, 1986.

[46] M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81,
Center for Research in Computing Technology, Harvard University, 1981.

[47] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An
open architecture for collaborative filtering of netnews. In Proceedings of the ACM
conference on Computer supported cooperative work, 1994.

[48] Secunia ”Security Watchdog” Blog. http://secunia.com/blog/11.

[49] U. Shardanand and M. Pattie. Social information filtering: Algorithms for
automating ”word of mouth”. In Proceedings of the conference on Human factors
in computing systems, 1995.

[50] SQLite home page. http://www.sqlite.org/.

[51] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: diagnosing production
run failures at the user’s site. In Proceedings of ACM Symposium on Operating
Systems Principles, 2007.

[52] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y. Wang. Automatic
misconfiguration troubleshooting with peerpressure. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, 2004.

[53] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2005.

[54] T. Xie and D. Notkin. Checking inside the black box: Regression testing based
on value spectra differences. In Proceedings of IEEE International Conference on
Software Maintenance, 2004.

[55] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang, and W. Ma. Automated known
problem diagnosis with event traces. In Proceedings of the European Conference
on Computer Systems 2006, 2006.

[56] C. Zamfir and G. Candea. Execution Synthesis: A Technique for Automated
Software Debugging. In Proceedings of Eurosys, 2010.

[57] A. Zeller. Yesterday, my program worked. today it does not. why? In Proceedings
of European Software Engineering conference held jointly with the ACM Symposium
on Foundations of Software Engineering, 1999.

79

[58] A. Zeller. Isolating cause-effect chains from computer programs. In Proceedings of
the ACM Symposium on Foundations of Software Engineering, 2002.

