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Vehicular networking has significant potential to enable diverse range of applications,

including safety and convenience. As the number of vehicles and applications using

wireless spectrum grow, one can expect to see a shortage of either spatially or tem-

porally available spectrum. In this thesis, we advocate that dynamic spectrum access

for vehicles be the first step towards solving the spectrum shortage. For this, vehicles

must be able to sense the availability of spectrum before attempting to transmit. The

existence of other transmitters should be detected in order not to cause or experience

interference. However, spectrum sensing in vehicular environments is a challenging

task due to mobility, shadowing and other factors that govern vehicular environments.

Therefore, spectrum sensing by a single vehicle may not be able to provide accurate

information about the spectrum vacancies. Cooperative spectrum sensing, on the other

hand, uses spatial diversity and can be employed to overcome the limitations associated

with a single sensor/vehicle. Moreover, spectrum sensing in vehicular environments is

challenged by mobility of sensors and reflectors causing significant variations in received

signal power. Signal power variations over time were not included in sensing system
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models dealing with wide spectrum sensing.

In the first part of this thesis we investigate cooperative spectrum sensing perfor-

mance in a vehicular environment for sensing signals transmitted from i) a roadside

infrastructure and ii) radios located on other vehicles, by using energy-based detec-

tion of a transmitted pilot tone as an example. Our goal is to characterize the limits

on detection speed and reliability of simple hard and soft cooperative energy-based

schemes for this environment. We show how cooperation reduces sensing time by a

factor of five in an AWGN channel. The cooperative sensing time reduction is far

more significant in a vehicular environment with fading and shadowing. Finally, we

illustrate how infrastructure-to-vehicle scenario favors soft equal gain combining while

vehicle-to-vehicle scenario favors hard fusion OR rule.

In the second part of this thesis we propose a sensing system model for wide band

spectrum sensing that encompasses signal power variations over time. Then we propose

to use Maximum Likelihood (ML) channel occupancy detection to determine spectrum

sub-band activity vector. We are using adjacent lane traffic channel model with set of

parameters validated in Winlab experiments, and focus on determining sensing time

needed to achieve certain sensing performance. We focus on NTSC TV spectrum and

show how using energy-based ML channel occupancy detector of three adjacent NTSC

channels, with transmit power of 1 kW, at 10km distance from transmitter, with power

variance higher than 3dB, sensing time of 1msec is sufficient to obtain PMZSS = 0 :01

for range of speeds from 20 to 140 km/h. Moreover, since we use ML which minimizes

overall probability of error when all activity vectors are equally probable, this work

provides not only a sensing approach but an assessment of how well any other technique

may perform in a mobile environment.
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Chapter 1

Introduction

1.1 Background Overview

Future Intelligent Transportation Systems are expected to support many new applica-

tions including safety, traffic information, comfort and convenience to drivers [1]. Based

on the type of application, whether it is safety, information dissemination or comfort,

communication requirements will be different. These technologies may not only uti-

lize current wireless infrastructure technologies like Cellular and WiFi but also require

proprietary wireless technologies (Ex. 5.9GHz DSRC in US) specific to vehicular ap-

plications.

Numerous projects are under progress in US, Europe and Asia for enhancing safety

and comfort in transportation systems by using wireless communication technologies [2].

As a major development in this direction, FCC in US allocated 75MHz spectrum for

Dedicated Short-Range Communications DSRC services [3]. Furthermore, FCC re-

cently ruled that TV white-spaces (unused TV channels) may be utilized for un-licensed

secondary communications [4]. Still, having a large number of vehicular wireless nodes

communicating in a limited space may quickly exhaust available spectrum. Due to

stringent QoS requirements on DSRC spectrum, it is not-possible for all applications

to depend only on licensed DSRC spectrum. Non-safety and comfort applications may

have to look for un-licensed spectrum bands like TV white space for their communica-

tion requirements [5]. Also, a significant number of radio transmitters/receivers used

by large number of applications with limited number of available channels increases the

possibility of network congestion and spectrum shortage. Coordination of channel usage

and CSMA/CA may lead to congestion as both simulations [6] and experiments [7] in-

dicate. Furthermore, data broadcast, which is a predominant scheme for safety message
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delivery, is the most vulnerable to failure since no handshake mechanism is involved.

Quick and reliable detection of available channels in this band is necessary to make

spectrum usage and congestion control more efficient.

1.2 Cooperative Sensing Approach

Here, we consider energy detector as an example since it requires no other knowledge

of the primary signal and because of implementation simplicity. Detection performance

of a single sensor using energy detection depends on the received signal level, the ob-

servation time, the observed bandwidth and ability to accurately determine the noise

level [8]. However,such detector is sensitive to fading and/or shadowing in the envi-

ronment. Cooperative spectrum sensing is considered here since it takes advantage of

spatial diversity and may overcome single sensor limitations. Detection performance of

cooperative spectrum sensing depends on both the selected fusion technique and the

sensor topology. Previous work shows that cooperative spectrum sensing brings benefits

even in the case of an AWGN channel [9]. Beneficial influence of spatial diversity on

cooperative detection was extensively studied under different fading conditions [10-12].

In [10] and [12] the effect of log-normal shadowing and Ricean and Nakagami fading on

hard decision combining is analyzed. Soft combining performance in Nakagami fading

was studied in [11]. However, vehicular environment in the sense of sensor topologies

and appropriate channels has not been considered. This research contributes to ongo-

ing research by examining influence of these effects to the overall cooperative spectrum

sensing system performance. In particular, this thesis focuses on the time to reliably de-

tect channel availability as a measure critical for fast changing vehicular environments

and their typical safety applications.

We examine the performance of a set of hard and soft fusion rules when applied to

two canonical vehicular environment topologies. Whenever difficult to evaluate/derive

analytical expressions, we use simulations of a pilot tone signal and the choice of appro-

priate vehicular environment channel to show benefits of cooperation on sensing. We

study sensing reliability as a function of the sensing time interval. Studied test cases
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suggest that selecting hard decision combining as universal rule for cooperative spec-

trum sensing in vehicular environment would be a good option in terms of overhead,

while not sacrificing too much on the performance in the I2V scenario.

1.3 Multi-channel Energy Based Sensing Approach

In this research we are dealing with wideband sensing by dividing wide band into sub-

bands and analyzing if sub-bands are occupied or free of transmission. We propose

system model with parameters that characterize vehicular environments, and use Max-

imum Likelihood (ML) to determine spectrum occupancy from measured data. We use

ML Estimation since, when available, it minimizes the probability of error in finding

spectrum occupancy and hence its performance provides an upper bound to the per-

formance of any other sensing technique. The performance limits have been evaluated

for realistic parameters, in terms of the primary's distance, transmit power, vehicu-

lar speeds, etc.. The channel model includes assessment of the signal power variation

magnitude due to adjacent channel vehicular reflections following our experimental

works [13].

1.4 Thesis Organization

Chapter 2 provides details of using cooperative sensing of to improve time needed to ob-

tain certain sensing performance. Chapter 3 describes multi-channel sensing approach

using ML estimation. Appendices A and B provide details of ML Estimation and Linear

Gaussian Model used in Chapter 3.
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Chapter 2

On the Delay to Reliably Detect Channel Availability in

Cooperative Vehicular Environments

2.1 System model

In order to perform wide band sensing consisting of several channels (and sub-channels),

we assume that sensors perform sensing algorithm one channel at a time sequentially.

We assume that coordination channel for exchange of sensing information is available,

such as the one we proposed in [14], and that any sensing node can perform fusion, so

fusion decision is available to all sensors.

2.1.1 Single sensor sensing technique

The goal of detection is to decide between two hypotheses:

8
>
<>n (t),	 H0

x (t) _
>>:hs (t) + n (t), H1

Where x (t) is received signal, s (t) is signal which presence has to be detected, n (t) is

additive Gaussian noise (AWGN) and h is channel gain. We assume that every sensor

performs energy detection of received signal as shown in Fig. 2.1.

Received signal x (t) is prefiltered by bandpass filter of width W. Filtered signal is

squared and integrated over observation time T. Integrator output y creates a decision

statistic for two hypothesis H0 when signal is absent and H1 when signal is present.

In [8] it has been shown that distribution of y can be approximated as Gaussian for

large time-bandwidth product TW (i.e. number of samples observed). Then, for a

given threshold A, probability of false alarm of a single i-th sensor can be determined

(2.1)
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Figure 2.1: Energy detector block diagram
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Probability of detection can be determined as:

1	 A — 2TW — SNRZ

Pd Z = 2 er f c 
2

vf

2vfTW + SNRZ

where, for given two-sided noise power spectrum density N0/2, signal-to-noise ratio

SNRZ is defined as:

SNRZ = 1	 s
2 (t)dt = 

Es

N0 J0	
N0

T

(2.4)

This "energy based" definition of SNR is related to more widely used "power based"

definition as: SNRenergy = SNRpower/TW . We also assume that all sensors have the

same TW.

We first study how sensing performance depends on observation time for different

bandwidths. In Fig. 2.2 are given the analytical results for the following single sensor

setting: transmit power 200mW ,free space propagation with propagation exponent a =

2 receiver at 500m distance, N0/2 = —120dBW/Hz and observed 100kHz , 1MHz, and

10MHz bands. We can observe how with increasing observation bandwidth, sensing

performance deteriorates since more noise is introduced. On the other hand, increasing

observation time improves sensing performance. Clearly, there is a need to balance

these three parameters as we want to have good sensing performance when observing

band as wide as possible, in as short as possible time. Curves of this type provide data

needed for such balancing. At the same time overall sensing time has to be as short

as possible in order to ensure usage of communication opportunity. In next sections
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Figure 2.2: Single sensor performance: PmjSS vs sensing time for different bandwidth

observed. Transmitter power 200 mW , propagation exponent a = 2, distance from

transmitter 500m , N012 = —120dBW=Hz and Pfa = 0 .01

we investigate limits of detection time while improving energy detection performance

through cooperation.

2.1.2 Channel Modeling and Vehicular Sensing Scenarios

Wireless channel modeling for vehicular environment has been intensively studied with

several different approaches as summarized in [15] and [16]. Wireless channel character-

istics strongly depend on the environment and setting (frequency band used, antenna

positioning [17], reflections from other cars [18] etc.).

Vehicle to Vehicle (V2V) Scenario

We examine the topology that consists of 1 transmitter and 5 sensors as presented in Fig.

2.3. Distances between vehicles (D1) follow 1 second rule at 40mph i.e. D1 = 11m ,

D2 = 1 . 6m , and we assume zero relative speeds of transmitter and sensors. This

assumption would be equal to claiming that observation time is much smaller than

the time it takes vehicle topology to change. Observation time has to be as small

as possible in order to ensure usage of communication opportunity. Examples of this
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Figure 2.3: Vehicle-to-vehicle scenario

topology would be approaching emergency vehicle warning, vehicle-based road condition

warning, etc.

Infrastructure to Vehicle (I2V) Scenario

We examine the topology that consists of 1 roadside transmitter and 5 sensors as

presented in Figure 2.4. Examples of this topology would be work zone warning, curve

speed warning, intersection collision warning, low bridge warning, etc. We assume that

distances D1 between vehicles again follow 1 second rule at 40mph, and we assume zero

relative speed between sensors.

Channel Model

We focus on channel model for 5 . 9GHz band presented in [19]. The model was derived

using sets of measurements in suburban environment to describe path loss, shadowing

and fading conditions. Using continuously present signal at transmitter with antennas

mounted on the roofs of the driven cars, dual slope path loss model with lognormal

shadowing was derived as shown in 2.5.

8
>
>>P (d0 ) — 10°1 log10 ( d

d0 ) + X11
 if d0 < d < d^

>>>
<>

>>> P (d0 ) if

>>>>:
—10°2 log10 (

ddc)

Pd =

 — 10ry1 log10 (do ) — ^> d

(2.5)

 + X12
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Figure 2.4: Infrastructure-to-vehicle scenario

We use set of parameters where ry1 = 2 . 1, ¾1 = 2 . 6dB ry2 = 3 .8, and Q2 = 4 . 4dB with

break point at d, = 100m . Fading analysis has shown alignment with Nakagami model

with p parameters depending on the distance between transmitter and sensor.

2.2 Cooperative Spectrum Sensing

2.2.1 Hard decision fusion

Hard decision combining assumes that each sensor performs sensing algorithm and

detection decision by comparing sensing data to local threshold. The input of fusion

center is the binary value where zero indicates spectrum hole one indicates occupied

spectrum bin. Universal logical hard decision combining rule for M sensors would

be "decide 1 if K out of M sensors says 1" also known as K — out — of — M [9].

Cooperative sensing increases overall probability of false alarm Q fa, , but also increases

overall probability of detection Q d. Assuming all sensors have the same performance

i.e. Pd;Z = Pd and uncorrelated decisions, overall probability of detection depending on

threshold K is:

M 

(M)

Q d =
	

Pd (1 — Pd)M

n=K

	 (2.6)

At the same time Q fa change has a similar form.
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2.2.2 Soft decision fusion - weighted summation

Soft decision combining assumes that single sensor observations yz are delivered from

all sensors. At the fusion center these observations are linearly combined:

M

yf = Ewzyz

	
(2.7)

z=1

Equal gain combining (EGC) would assume all wz = 1. Optimization problem of

maximizing Qd by choosing appropriate values of wz has been approximately solved in

[20] and in [11] SNR weighted summation was found to be optimal. In [21] instantaneous

SNR based cooperative scheme was given. Since these techniques require SNR to be

estimated, which is also time consuming, we examine only simpler, faster techniques.

2.3 Analytical and Simulation Results

2.3.1 Timing Analysis of Cooperation in AWGN Channel

In order to show how cooperation influences sensing time and sensing performance we

firstly analyze the following scenario: pilot tone transmitter of power 200 mW , free space

propagation with propagation exponent a = 2, all sensors are at the same distance

of 500m from transmitter , W = 1MHz, N0/2 = —120dBW/Hz and Qfa = 0 . 01.

Analytical results in Fig. 2.5 indicate that even in only AWGN environment using

2-out-of-5 hard fusion rule in order to achieve QMISS = 10-2 would reduce sensing

time 3.5 times. Similarly, as simulation results show in Fig. 2.6, in order to achieve

QMISS = 10-2 when 5 nodes cooperate using EGC sensing time is reduced 5 times.

2.3.2 Timing Analysis of Cooperation in Vehicular Environment

I2V Scenario

We simulated I2V topology described above. For the channel we applied appropri-

ate parameters of attenuation, shadowing and fading. Transmitter is at D2 = 300m

distance from the closest receiver, transmit power is 2 W , N0/2 = —120dBW/Hz, and

Qfa = 0 .01. Simulation results are shown in Figure 2.7. The fact that vehicles are much



single sensor

1 out-of-5 -OR

2 out-of-5

3-out-of-5

4-out-of-5

5 out-of-5 - ANC

Xle

10

Figure 2.5: Hard fusion performance in AWGN channel: QMISS vs sensing time for

5 nodes cooperating using different hard fusion rules. Transmitter power 200 mW ,

propagation exponent a = 2, distance from transmitter 500 m, W = 1MHz, N012 =

—120dBW1Hz and Qfa = 0 .01

closer to each other than to transmitter results in similar average SNR of all sensors. We

can observe that of all hard decision fusion techniques OR yields the biggest improve-

ment for this scenario, while using AND rule yields no improvements when compared

to a single user. Also, it is shown that EGC soft combining results in the biggest gains

for this scenario. On the other hand, soft combining creates communication overhead

since measurements have to be transmitted to fusion center, not single bit decisions.

Overall, cooperative sensing in this scenario results in significantly shorter sensing time

needed to achieve certain QMISS.

V2V Scenario

We simulated V2V topology and channel model described above, with the following

parameters: transmit power is 10mW , N012 = —100dBW1Hz, and Q fa = 0 . 01. Sim-

ulation results are shown in Figure 2.8. This topology has two extreme single nodes -

one the closest (node 1) and the other the furthest (node 5) from the transmitter, so

we compare fusion results to performance of these nodes. Influence of node 1 as the

closest to transmitter is dominant, and thus cooperation using OR rule results in the
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Figure 2.6: EGC fusion performance in AWGN channel: QMISS vs sensing time for

different number of nodes cooperating. Transmitter power is 200mW , propagation

exponent a = 2, distance from transmitter 500m , W = 1MHz, N012 = —120dBW=Hz

and Qfa = 0 . 01

most improved performance. Using soft EGC does not outperform OR rule because of

influence of nodes further from the transmitter on EGC fusion.

2.3.3 Simulation Results Conclusions

Simulation results illustrate the delay of various fusion rules for canonical vehicular

scenarios. We observe that cooperation gain, in the AWGN channel, with the OR

fusion rule is 2.5 (to achieve QMISS = 0 .01), while in channel with fading and shadowing

increases to over 20 times relative to the delay of a single sensor detector. Similarly,

EGC cooperation gain increases from 5 for the AWGN channel to 50 with fading and

shadowing. As is intuitive, fading/shadowing in the channel improve cooperation gains.

Moreover, while I2V scenario favors soft decision combining, V2V scenario gains the

most when the OR hard fusion rule is employed. This is an important observation,

since previous work suggests that EGC soft combining outperforms hard combining.
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Figure 2.7: I2V topology: QMISS vs sensing time for hard and soft fusion and a single

node. Transmit power is 2 W, D 1 = 11m, D2 = 300m , lognormal shadowing with

Q = 4 . 4dB, Nakagami fading p = 0 . 84, N0 12 = —120dBW=Hz, and Q fa = 0 . 01.

2.4 Conclusion

The goal of this work is to examine how to balance the need for fast and reliable

wide band sensing in vehicular environments. Through analytical results we first show

how a choice of sensing bandwidth affects the overall sensing delay. Next, we consider

cooperative spectrum sensing for two canonical vehicular scenarios - I2V and V2V.

Simulation results indicate how fusion rules decrease overall sensing time for these

scenarios. Studied test cases suggest selecting hard decision combining as universal

rule for cooperative spectrum sensing in vehicular environment would be a good option

in terms of overhead, while not sacrificing too much on the performance in the I2V

scenario.
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Figure 2.8: V2V topology: QMZSS vs sensing time for hard and soft fusion and typical

single nodes. Transmit power is 10mW , D1 = 11m , D2 = 1 . 6m , lognormal shadowing

with Q = 2 . 6dB, Nakagami fading p = 3 . 08, N0 12 = —100dBW=Hz, and Q fa, = 0 . 01.
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Chapter 3

Multi-Channel Energy-Based Sensing in the Vehicular

Environment: On the Minimum Time to Sense

3.1 Problem statement and our approach

Spectrum sensing has been subject of in depth analysis in recent years, as appearance of

idea of cognitive radios [22] brought into light need for fast and reliable sensing of weak

radio signals. Several sensing techniques are wide accepted as having most potential in

to be used in cognitive radios [23]. Among them energy detector is the most general

as it does not need any prior knowledge about signal it is sensing. In Chapter 2 we

explored how speed and reliability of spectrum sensing in vehicular environments can be

improved by cooperative sensing. However, single sensor sensing algorithms investigated

earlier model static scenarios which do not include into model changes of signal over

time. Therefore, our goal is to construct primary sensing algorithm for an environment

with varying signal power (due to mobility).

We use power spectrum estimator to obtain power in frequency bins within wide

band of interest. Then, we use Maximum Likelihood estimation derived for system

model that includes modeling of power changes over time. Output of this algorithm is

spectrum activity vector describing sub-bands occupancy (0 vacant and 1 occupied sub-

bands). Again, by using ML estimation, results presented provide not only a sensing

approach but also an assessment on how well any other technique may perform in a

mobile environment.
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3.1.1 Why ML estimation?

We use Maximum Likelihood Estimation (MLE) since it is mathematically efficient and

optimal even for finite sample size in that it minimizes the overall error rate [24]. Here,

it minimizes overall probability of error when channel occupancy is detected. MLE con-

verts into Generalized Likelihood problem when some parameters are unknown (noise,

changing signal power) [24]. Also, MLE has numerous applications for different statisti-

cal models: linear, general linear, factor analysis, hypothesis testing, confidence interval

formation..) MLE is widely used in different areas of application: electromagnetic and

acoustics detection, path-choice in transport networks, magnetic resonance imaging..).

Drawback to using MLE are the limitations it has in non-normal complex problems as

it may be too complex to determine.

In Appendix A we give theory background and definitions associated with MLE. In

Appendix B we give one example of well-defined MLE: Linear Gaussian Model.

3.2 Previous work on similar systems

In our previous work we showed the need to balance energy detector observation band-

width and sensing time to achieve certain sensing performance. Here, we examine

wideband sensing by dividing wide band into sub-bands. Out of plethora of sensing

approaches [23], we present details of two approaches similar to ours as they use power

spectrum density and ML for sensing of wide spectrum band. While [25] explores cor-

relation between frequency sub-bands to determine spectrum occupancy, in [26] second

order statistics are used to determine activity of OFDM sub-band channels. Details are

given in the following sections.

3.2.1 Energy based spectrum sensing: sub-band correlation approach

In [25] ML based sensing algorithm of multiple sub-band signal was derived. Also,

power spectrum density is used to create data observation. Then auto-regressive mod-

eling of sub-band correlation is performed. Method is mathematically complex, so

dynamic programming (DL) is employed to deal with complexity of finding MLE of
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noise and occupied sub-bands. Method has general approach since it does not make

any assumptions about the signal being sensed.

Model proposed does not consider change in power of received signal over time, but

assumes that for next time instance whole algorithm has to be repeated. Challenge to

apply this model in vehicular environment would be the fact that it is computationally

complex. Also when applying it in fast changing environment, to obtain valuable results

observation time would have to be short and whole algorithm repeated often.

3.2.2 Sensing of OFDM signal: exploiting cyclic prefix signal struc-

ture

In [26] ML based spectrum sensing algorithm of multiple sub-band OFDM signal was

derived using second order statistics. System model models non-stationary correlation

structure of observed OFDM signal and then Generalized Likelihood is employed to

determine unknown parameters (noise variance, variance of complex signal samples

and synchronization mis-match). It was proposed that complexity of approach can be

reduced if some of the parameters are empirically known.

Also, important conclusion is given in this work that energy detector is near-optimal

when noise is known, so there is no need to employ more complex approaches. Again,

this model does not model signal level change over time.

3.3 Our approach motivation

Measurements of radio channel in vehicular environment [27], [13], [28] have shown that

there are significant and fast received power variations due to numerous reflectors and

fast changes in vehicular environment. Here, we are motivated by adjacent lane channel

model [13], which experimentally confirmed parameter values for vehicular environment

channel modeling. We are using Maximum Likelihood detection of spectrum sub-bands

activity since it minimizes the probability of error in finding spectrum occupancy and

hence its performance provides an upper bound to the performance of any other sensing

technique.
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Figure 3.1: V2V topology example with PSD example at different time instances k

Therefore, we propose sensing algorithm that:

• Has low complexity (i.e. is implementation ready) - attempting complexity linear

with number of sub-bands

• Does not exploit specific signal structure - we use energy detection based approach

• Can use either Generalized Likelihood to estimate spectrum activity vector with

unknown parameters (noise and power level) or simpler techniques

• Is able to take into account power level variability (due to mobility)

• Incorporates specifics of vehicular environment - modeling power changes for I2V

and V2V scenarios

In Fig. 3.1 and 3.2 we give examples of measured Power Spectral Density for I2V and

V2V scenarios.

3.4 System model and problem formulation

Firstly, we define system parameters that we use to model conditions in different vehic-

ular environments. Then we give details on how received signal samples are processed

to finally obtain matrix of measured values. These are the "observations" at which
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Figure 3.2: I2V topology example with PSD example at different time instances k

our ML algorithm is applied. Then we give details of derivations of ML detector of

spectrum activity for this model.

To describe conditions in different vehicular environments we use the following two

parameters:

1. Fading conditions in bandwidth of interest:

• Frequency non-selective fading - Flat fading (measured power over different

frequency bins is correlated)

• Frequency selective fading (no correlation in measured power over different

frequency bins)

2. Measured power change over time due to mobility:

• Rapid changes (small "coherence time")

• Slow changes (large "coherence time")

Where coherence time is defined as time period within which received power values

are strongly correlated and can be calculated as [29] :

At p 
1	 c

2fdm 2vfc

(3.1)
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Figure 3.3: Functional diagram of periodogram calculation at one time instance

where fdm = v
c
fc is maximal Doppler shift c is speed of light, v relative velocity

between transmitter and receiver and fe is carrier frequency).

NOTE: Here, we examine "small-scale fading" a condition, assuming that sensor

moves over very short distance during observation time. Having in mind goal that

sensing time has to be as short as possible, this assumptions is very realistic.

3.4.1 System model data set creation

We assume that for a single time snapshot, sensor creates one sample set, by computing

a periodogram estimate of the Power Spectral Density (PSD).

Functional diagram of this procedure is given in Fig. 3.3 where M is number of

samples observed in each sample set, and I is number of output frequency bins (size of

FFT).

For a fixed, known sampling frequency fsample = 1=Tsample, M is related to coher-

ence time as

M = 
Tsample

This relation reflect the fact that during coherence time assumption about power

level not changing significantly holds. I is determined by desired frequency resolution

or by structure of signal being sensed.

Mathematically, we model received signal samples of i-th channel as:

zz (m) = az  Pz + nz (m)	 (3.3)

At
(3.2)

Where both power and noise have Gaussian distribution: Pz
 — N(P0 ; ¾2

p ) and nz (m) —
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Figure 3.4: Block diagram of data set creation for a set of time instances

N(0, Qn).Variance Qp is used here as a parameter to describe variations of power due

to mobility.

Now, power in each frequency bin can be determined as:

1 
M

Xi = 
M z

Z (m) ^ aZ
Pi + wz

where E [wz ] = Qn and Var [wz ] = 2

M
Qn.

We assume that this periodogram calculation is repeated K times in subsequent

time instances. Block diagram of this procedure is shown in Fig.3.4 . For each k-th

time instance , one vector of measurements X (i) of size I is calculated.

For a certain observation time Ts , K is related to M and Ts as

K =	
Ts	

(3.5)

MTsample

By applying this procedure, we assume that during taking M samples for each

sample set, power does not change ( i.e. choice of M depends on how fast signal power

changes). As mentioned earlier, to make this assumption realistic, M has to be related

to coherence time as stated above.

(3.4)

m=1
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Data set creation described above results in the following matrix of measured values:

X1 (1) X1 (2)	 ... X1 (k)	 ... X1 (K)

X2 (1) X2 (2)	 ... X2 (k)	 ... X2 (K)

..

..

. .

Xi (1) Xi (2)	 ... Xi (k)	 ... Xi (K)

..

....

X, (1) X, (2)	 ... X, (k)	 ... X, (K)

Matrix of measured values has dimensions I x K where I is number of frequency

bins and K number of time instances.

3.4.2 Proposed system model

3.5 Model derivations

In order to derive MLE for proposed model, let's first revisit assumptions we will use

during derivation:

• We are observing I channels over K sample sets

• Each sample set is of size M samples

• We assume received signal samples are in AWGN

• Spectrum occupancy vector does not change over K time instances i.e. we assume

that during observation time primary signal activity did not change i.e. ai (1) =

ai (2) = .. = ai (K) for each i = 1, .., I.

We assume that each value in matrix of measured values from above is modeled as

sum of received power level and noise (which we approximated above to be Gaussian

with non-zero mean). This modeling approximation is similar to measurements results

for vehicular channel in [27]. Mathematically this can be presented as:

Xi (k) = aiP (k) + ni (k)	 (3.6)
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where aZ is transmitter spectrum activity (on/off), P (k) received power level, and

nZ (k) is Gaussian noise nZ (k) — N(µn , u
2
n). On-off activity of primary user in the band

of interest is modeled using parameter:

8

>
<>0 , off

aZ =

	

	 (3.7)
>>:1, on

We describe variations of received power values using up i.e. we assume power real-

izations for different index k are independent and Gaussian. Finally we use averaging

over received power vectors within T3 . Therefore, power in each frequency bin is

XZK = 
K 

E XZ (k) ^ a
2

 K E PZ (k) + 
K 

E wZ (k)
	

(3.8)

k=1	 k=1	 k=1

where E [wZ (k)] = u2
n and Var [wZ (k)] = 2

M
u

4

n

Finally, for i-th frequency bin we obtain the following model:

XZK = aZ ;kgK + NZK

	

(3.9)

where gK
 — N (P0 , 1

K
u

2
p ) and NZK — N (u2

n , 
2KM

u
4
n).

Let's introduce the following vector notation to accommodate multiple frequency

bins:

X=

2

X1

... a =

2

a1

...
Da, = q= (3.10)

4 XI

4	 5

0	 ... aI

Taking into account these vector notations, system model becomes:

X = Da,q + N	 (3.11)

Where q — N (P0 1, 1
K

u
2
p I) and N — N (u2

n
1 ,

2

KM
u

4

n
I).

4

aI
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In order to derive maximum likelihood function, i.e. distribution of X conditioned

on vector a we examine two cases:

1. Assuming that band of interest experiences frequency selective fading (i.e. values

of vector q are uncorrelated and independent for each time instance) yields:

E [X l a] = P0a + ¾
2

n
1
	

(3.12)

1
CXX^a = 

KQ
PDa + 

KM¾

4

n
I
	

(3.13)

2. Assuming all bands of interest experiences flat fading (i.e. power change at one

time instance over all frequency bins) yields:

E [X la] = P0a + ¾
2
n

1	 (3.14)

1 2 H	
2	  4C

XX^a = 
KU

P
aa + 

KMa
n
I (3.15)

These two cases would be two extreme cases of usual circumstances of wireless prop-

agation in vehicular environment. By examining performances of these two cases, we

obtain boundary results.

Maximization of likelihood function derived above, would be equal to the following

maximization problem:

ma (lnP [X la]) = maxa { —2 ln IIC
XX^a

II — 
2

(X — E [X la] )TCa
cX ^a

(X — E [X la]) }

l	 (3.1)J6)

Result of the above maximization problem is spectrum occupancy vector, for which

overall detection error is minimized if all values of occupancy vector are equally likely.

3.6 Simulation Results

In our simulations we use example of sensing NTSC TV signal, focusing on three TV

channels (each of 6MHz width) from 590MHz to 608MHz.
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3.6.1 Detector performance in static environment

Firstly, we want to show how our sensing algorithm performs as detector i.e. what prob-

ability od miss it can achieve for different values of SNR. Firstly we assume completely

static case (i.e. up = 0 ) , where neither receiver nor reflectors move, uncorrelated fad-

ing and the following setting: transmitter power Pt = 1kW ; bandwidth W = 18MHz

10
0

, N0/2 = —120dBW/Hz , sensing time T3 = 10psec , propagation exponent a = 3 . 5

,sensor at distance d = 10km from transmitter. We want to observe how probability

of miss PMZSS (i.e. how often we did not get true value of activity vector) depends on

the distance from transmitter d . Simulation results are shown in Fig. 3.5.

Figure 3.5: PMZSS vs distance from transmitter for detection of three channels of NTSC

signal in static environment. up = 0, uncorrelated fading, Pt = 1kW ; W = 18MHz ,

N0/2 = —120dBW/Hz , T3 = 10psec , d = 10km , a = 3 . 5

Results indicate how ML algorithm performs as sensor for static environment. It

also shows that sensor performance in static case does not depend on the value of

activity vector, so in the following simulations choice of activity vector does not affect

results.

Now we want to investigate for a static case how sensor performance depends on
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Figure 3.6: PMISS for different sensing time ( up = 0, uncorrelated fading, Pt = 1kW,

W = 18MHz, N012 = —120dBW=Hz, d = 10km , a = 3 . 5)

sensing time. We assume the same transmitter setting from above, with sensor at

distance d = 10km from transmitter, and propagation exponent a = 3 . 5 . For a range

of sensing time values from T3 = 1psec to T3 = 1msec simulation results are shown in

Fig.3.6. Again, value of activity vector does not affect sensor performance.

3.6.2 Detector performance in environment with mobility

Now we want to understand how changes in environment affect overall performance of

the sensor. Firstly, we assume that only reflectors move, and sensor is static. Effects

of reflectors to static receivers was experimentally examined in [18], where it was de-

termined that variations in power can be approximated Gaussian with up up to 5dB

in reference to received power level. Here we examine sensor performance for static

sensor and range of values for up . We assume transmitter settings are the same as

above, sensor at d = 10km distance from transmitter and again we want to observe

how fast certain sensing performance can be achieved. Also, here we assume "case 1"

from above, when fading is frequency selective and values in vector of received power
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Figure 3.7: PMZSS vs sensing time for a range of values for up (uncorrelated fading,

Pt = 1kW, W = 18MHz , N012 = —120dBW=Hz, d = 10km , a = 3 . 5 )

are uncorrelated.

Simulation results are given in Fig. 3.7 . Results indicate how much increase of

sensing time improves sensing performance, and how sensing performance decreases

with increase in up i.e. scattering from reflectors.

Performance dependence on the value of spectrum occupancy vector

Also, in order to understand how sensing performance depends on the value of occu-

pancy vector, we simulated above result for all possible values of activity vector of length

3 and up = 1 . 7dB . Results for two extreme cases when a = [000]T and a = [111]T are

shown in Fig.3.8. Again, we assume frequency selective fading.

Results show that the worst performance is obtained for a = [111], so we will use

that value of activity vector in the following simulations.
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Figure 3.8: Sensor performance for two extreme values of activity vector, up = 1 . 7dB,

uncorrelated fading, Pt = 1kW ; W = 18MHz , N012 = —120dBW=Hz , d = 10km ,

a = 3 . 5

Performance dependence on the fading nature

In order to understand how fading influences performance, we simulated extreme cases

considered - one when band of interest experiences frequency selective fading, and the

other when band of interest experiences flat fading. Results of this simulation are shown

in Fig. 3.9.

Results indicate that in frequency selective fading sensor performs the worst. There-

fore, we will use frequency selective fading in the following simulations. In reality,

sensors in vehicular environment experience somewhat frequency selective fading, so

performance is somewhere between these two border cases.

Sensing time needed to obtain certain performance

Now we want to emphasize context of vehicular environments and timing of changes

caused by mobility of sensor.

We showed earlier that period for which signal power can be considered unchanged
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Figure 3.9: Sensor performance for flat and frequency selective fading ( up = 1 . 7dB,

Pt = 1kW, W = 18MHz, N012 = —120dBW=Hz , d = 10km , a = 3 . 5)

by channel is related to the speed of sensor as:

At p 
1	 c

2fd1n 2vfc

For example, taking that fc = 600MHz then At = 0, 000251 1
v [sec] if velocity is

given in km/hour. This shows that each car speed has its own coherence time. Here we

assume we know sensor (car) speed. Therefore from expression above, we can determine

coherence time that corresponds to each speed.

We want to show how, using this relation between speed and coherence time, we

can determine sensor performance for each speed. To do so, we use values of K =

50, 75 , 100 , 125, and150 as multiples of coherence time. Sensing time at each speed is

determined as

(3.17)

Since coherence time decreases as vehicle velocity increases, overall sensing time
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Figure 3.10: PMZSS vs sensor velocity for a set of values of coherence times ( up = 0 . 4dB,

Pt = 1kW, W = 18MHz, N0/2 = —120dBW/Hz, d = 10km , a = 3 . 5, f, = 600MHz)

decreases which, for fixed K, results in increase of PMZSS.

Simulation settings are as follows: Transmitter settings are the same as above and

sensor at d = 10km distance from transmitter. Again, we assume 3 channels, to-

tal of 18MHz bandwidth, carrier frequency f, = 600MHz, up = 0 . 4dB, N0/2 =

—120dBW/Hz. Results of the simulation are shown in Fig. 3.10.

Now, our final goal is to determine how long sensing time has to be to meet certain

PMZSS requirement for a mobile sensor.

Assuming that PMZSS = 0 . 01 is a design requirement, using the result from Fig.3.10

,we can obtain values of K and speeds for which that requirement is met. Then using

the relationship 3.18 , knowing K and v , assuming f, = 600MHz , Ts can be calculated.

Results are shown in Fig. 3.11. dB values are obtained in reference to received signal

power.

Firstly, results indicate that keeping sensing time below 1msec is sufficient to obtain

PMZSS = 0 . 01 when sensing three channels of NTSC TV signals at relative speeds

between transmitter and receiver ranging from 10 to 140km/h. Also, results indicate
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Figure 3.11: Sensing time needed for different sensor velocities to obtain PMZSS = 0 . 01

(Pt = 1kW, W = 18MHz, N012 = —120dBW=Hz, d = 10km , a = 3 .5, = 600MHz

)

how adapting sensor parameters according to relative sensor speed can decrease sensing

time required to meet PMZSS = 0 . 01. For example, having up > 3dB, to achieve

PMZSS = 0 .01 for the same set of sensor speeds takes less than 1 msec. In other words,

information of sensor speed can be used to adapt sensing time while still preserving the

desired performance.

3.7 Conclusion

In this work we developed multi-band sensing algorithm motivated by the specifics of

vehicular environment: fast changing environment resulting in fast changes of received

signal power. Motivated by earlier experimental results of channel measurements for ve-

hicular environment, we proposed a system model which includes received signal power

change due to mobility. Then we apply Maximum Likelihood detection of spectrum

occupancy for our approach to provide upper bound for any energy-based spectrum

occupancy detector.
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Using example of sensing 3 adjacent channels of TV NTSC spectrum, we showed

how this approach performs using realistic set of values for parameters of algorithm

and speed of vehicle. Our simulation results indicate that when sensing 3 adjacent

NTSC channels at 10km distance from 1kW transmitter at transmitter-sensor relative

speeds from 10 to 140km/h, having power variation up > 3dB, sensing time of 1msec is

sufficient to meet PMISS = 0 . 01. Also, results indicate how adapting sensor parameters

according to relative sensor speed can decrease sensing time required to meet the same

design requirement. In other words, approach shows how information about sensor

speed can be used to adapt sensing time while still preserving the desired performance.
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Chapter 4

APPENDIX A: Background on ML estimation

Firstly let's revisit definitions of some terms associated with ML estimation:

1. Model is mathematical description of data from natural process. Realistic simpli-

fications are usually added to make model mathematically tractable.

2. Likelihood function is mathematical representation of dependence of signal char-

acteristic on different parameters

3. Maximum Likelihood (ML) estimation is mathematically efficient method for de-

termining unknown parameters when a priori distributions are not known

Definition of maximum likelihood estimate (MLE) of O:

ÔML (X) = argmaxp (X; O)	 (4.1)

where X is received/observed and O is parameter to be observed. In other words,

for a fixed data (X) and probability model MLE selects model parameters that produce

most likely distribution for observed data. For example, O can be spectrum activity

vector, noise level.. and X can be sample output of A/D converter, FFT block, PSD

estimator..
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Chapter 5

APPENDIX B: Linear Gaussian Model

ML estimation example - Linear Gaussian model [24] is example of well-defined MLE

for Gaussian distribution. Linear Gaussian model is given by:

x = HO + w	 (5.1)

where H is known N x p matrix, and w is N x 1 noise vector, w — JU(0 , C), where C

is N x N noise covariance matrix. Maximization of likelihood function would give:

aln (x; O) — a(HO)TC-1
(x — HO) = 0	 (5.2)

aOk - aO

And finally, parameter value for which upper derivative is zero i.e. value that maximizes

likelihood function - ML estimate is given by:

O = (HTC-1H) -1HTC-1x	
(5.3)
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