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ABSTRACT OF THE THESIS 

 

PROBABILITY OF A FEASIBLE FLOW IN A 

STOCHASTIC TRANSPORTATION NETWORK 

By SANTINO L. FANELLI 

 

Thesis Director:  

Dr. András Prékopa  

 

Electricity is one of the main sources of energy relied upon throughout the world today to 

power our homes, businesses, and other needs. The electric utility industry is the driving 

force behind the provision of electric service, responsible for generating and delivering 

electric power to end use customers on a reliable basis.  In order to meet this 

responsibility, consideration needs to be given to both the supply of and demand for 

electricity, along with the available capacity through which to deliver it.  A resulting 

fundamental objective of the electric utility industry, then, is to balance supply with 

customer demand by maintaining sufficient generating and delivery capacity.  The 

probability by which this objective can be accomplished lends itself to representation as a 

stochastic transportation network.  Determining this probability is the primary problem 

addressed in this paper. 

 

The general construct of this paper is largely a continuation of  On The Probability Of A 

Feasible Flow In A Stochastic Transportation Network (Prékopa and Boros, 1989).  
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However, it has been updated to incorporate alternative methods to solve the problem and 

also include practical examples based on actual data from the industry.   

 

This paper will seek to accomplish the following:  

– Section 1 provides a general introduction and overview of the electric utility 

industry.  This section includes statistics and additional details on all aspects of 

the electric utility industry, a discussion of upcoming challenges currently facing 

the industry, and a brief overview of a large electric utility company in the United 

States. 

– Section 2 more formally addresses the problem of determining the likelihood that 

the electric utility has sufficient generating and delivery capacity available to 

satisfy customer demand by formulating it as a stochastic transportation network.  

The general formulation is based on the results of a well-established theorem and 

is improved by incorporating a procedure to increase the efficiency by which the 

problem can be solved.   

– Section 3 introduces several methods that can be used to solve the problem and 

focuses specifically on three of them that will be incorporated later on in the 

paper.  A description of each applicable method is provided, along with some 

illustrative examples.  

– Sections 4, 5, and 6 are numerical examples of the problem.  All three examples 

are based on the same general formulation and make use of actual data from the 

electric utility industry.  The underlying assumptions, though, are different in each 
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one, thus providing a range of sensitivity around the results.  Each numerical 

example is solved using all three methods described in Section 3. 

– Section 7 provides a summary of the results from the numerical examples and 

some overall conclusions. 
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1  INTRODUCTION 

1a.  Electric Utility Industry – General Overview 

Within the United States, the electric utility industry employs hundreds of thousands of 

employees and represents approximately 3% of the gross domestic product.  The utility 

companies responsible for the day-to-day activities within the industry are operated under 

a few different ownership structures: 

• Shareholder-Owned – These utility companies are generally financed through the 

sale of stocks or bonds to investors. 

• Cooperatively-Owned – Each customer of the utility is also a member.  These 

utilities tend to be driven by geographic conditions and are popular in large, rural 

areas.   

• Government-Owned – Utilities may also be owned by federal, state, or local 

governments. 

 

The majority of electric utilities, particularly in the United States, are shareholder-owned 

as they serve approximately 70% of all customers in the nation.  These utilities are 

generally regulated by the Federal Energy Regulatory Commission (FERC), and also at 

the state level by the applicable state regulatory agencies.  The Edison Electric Institute 

(EEI) is the association of U.S. shareholder-owned electric utilities and provides a 

number of services to its members, including “public policy leadership, critical industry 

data, market opportunities, and strategic business intelligence.”1 

 

                                                 
1 For more information on EEI, the reader is referred to the EEI website: http://www.eei.org/ 
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As with other industries that provide a consumer product, the electric industry functions 

primarily on the economic concepts of supply and demand.  In order to properly balance 

these concepts, the industry is typically divided into three primary functions: 

• Generation – Production of electricity at power plants 

• Transmission – Transportation of the power through wires from the power plants 

to areas closer to the end use customers 

• Distribution – Delivery of electricity from the Transmission system to the end use 

customers via a subsequent system of poles and wires 

 

The image below provides a high level summary of the flow of electricity from the 

generating power plants to the end use customers.2 

 

                                                 
2 Picture and corresponding explanation courtesy of EEI. 
http://www.eei.org/whoweare/AboutIndustry/Documents/Electricity101.pdf 
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(1) Electricity is generated at a power plant 

(2) Electricity is sent to a substation where the voltage is increased.  Typically the 

power plants are not located near the end use customers, so the increase in the 

voltage allows the electricity to be transmitted more efficiently to areas closer to 

the customers.  

(3) Power is transmitted across the transmission system and arrives at a substation. 

(4) Once the electricity arrives at a substation, the voltage is usually deceased so that 

it can be delivered the remaining distance to, and ultimately consumed by, the end 

use customers. 

(5) The electricity is then transferred across a local Distribution system. 

(6) The electricity arrives at the end use customer. 
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While the above diagram captures the entire flow of electricity from the power plants to 

the end use customers, this paper will focus primarily on the Generation and 

Transmission aspects of the business.  As evidenced by the diagram above, the reliability 

of the Transmission system and the available Generation capacity are critical in ensuring 

that adequate electricity is available to satisfy customers’ demand.  The reliability of the 

Distribution system is relatively insignificant if the combination of available 

Transmission and Generation capacity is insufficient. 

 

The next section provides some additional details and general statistics on the current 

Transmission system and available Generation capacity in the U.S. 
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1b.  Electric Utility Industry – Statistics 

Before providing statistics, it is important to note how electricity is measured for both 

supply and demand.  The general unit of measure is a watt (W), which represents the 

amount of power generated or needed at a given point in time.  Due to the large number 

of electric customers, though, a more commonly used measure is a megawatt (MW), 

which is equivalent to one million watts.  The total electricity generated (consumed) over 

time, then, is a weighted average of individual capacity (demand) values.  The applicable 

time interval typically used to represent this electricity production (consumption) is an 

hour.  So, we say that the amount of electricity produced (consumed) over time is 

measured in megawatt-hours (MWH), where one MWH is equivalent to a constant 

demand of one MW for exactly one hour. 

 

We now proceed with some industry statistics. 

 

Generation 

There are numerous different fuels that can be used to generate electricity.  In fact, 

according to EEI, no individual fuel type is currently capable of producing enough 

electricity to satisfy all customer demand in the U.S., which makes fuel diversification a 

necessity from an economic standpoint.  The most common fuel types used today are: 

coal, natural gas, nuclear, hydropower, oil, and other renewable fuels (solar, wind, etc.).   
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The table below provides the installed Generation capacity (in MW), by fuel type, in the 

U.S. in 2009.3 

 

Capacity (MW)

Installed Summer Winter

Coal 1,436 338,723 314,294 316,363

Oil 3,757 63,254 56,781 60,878

Natural Gas 5,568 462,021 403,204 434,208

Nuclear 104 106,618 101,004 102,489

Hydro 4,005 77,910 78,518 78,127

Renewables

Wind 620 34,683 34,296 34,350

Solar 110 640 619 537

Wood 353 7,829 6,939 6,992

Biomass 1,502 5,007 4,317 4,382

Other

Geothermal 222 3,421 2,382 2,561

Pumped Storage 151 20,538 22,160 22,063

Other 48 1,042 888 900

17,876 1,121,686 1,025,402 1,063,850

Fuel Type
Number of 

Generators

 

 

The second column in the table provides the number of units of each fuel type.  The 

installed capacity in the third column represents the aggregate maximum nameplate 

capability of all units, while the last two columns show the actual available capacity in 

the summer and winter months, respectively.  Depending on the operational efficiency of 

the generating units, the available capacity may be slightly higher or lower than the 

installed nameplate values. 

 

While available capacity is an important measure in determining the adequacy of supply 

to be able to satisfy customer demand, it is also important to note that individual power 

plants do not always operate at full capacity.  For example, certain units may only be 

                                                 
3 Data courtesy of the U.S. Energy Information Administration.  
http://www.eia.gov/cneaf/electricity/epa/epat1p2.html 
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called on to run when customer demand is highest.  Alternatively, there may be instances 

when larger units are shut down temporarily for maintenance.  As such, we will also 

consider the overall amount of electricity produced by each fuel type (in MWH). The 

average fuel mix used to generate electricity in the U.S. in 2009 is provided in the 

following chart.4 

 

 

 

 

We observe that coal produced the most electricity (in MWH) in 2009, even though it is 

not the highest capacity fuel type.  This more than likely is attributable to the high 

operating efficiency of coal-fired power plants, as compared to other fuel sources.  

Natural gas, on the other hand, was the highest capacity but produced the second highest 

                                                 
4 Data courtesy of EEI.  

http://www.eei.org/ourissues/ElectricityGeneration/FuelDiversity/Documents/pie_fueldiversity.pdf 
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amount of electricity.  Many natural gas-fired units are generally used only during peak 

demand times on the system, which explains why they may operate less efficiently than 

coal-fired units. 

 

 

Transmission 

According to EEI, the electric Transmission system in the U.S. consists of approximately 

200,000 miles of wires used to carry electricity from power plants to local Distribution 

systems.  New Transmission infrastructure is constructed on an annual basis in order to 

keep up with changes in Generation capacity and customer demand.  The table below 

shows the estimated Transmission capacity additions for 2011-2016 in miles.5 

 

Estimated Transmission Capacity Additions (Miles)

2011 2012 2013 2014 2015 2016 Average

2,230 3,831 5,503 3,616 3,970 3,451 3,767  

 

We observe that the average annual additions to the Transmission system represent 

approximately 1.9% of the current total mileage.  That is, current estimates indicate that 

the size of the Transmission system (in miles of wire) will need to increase by 

approximately 2% every year in order to maintain feasibility of power flow.   

 

                                                 
5 Data courtesy of U.S. Energy Information Administration.  

http://www.eia.gov/cneaf/electricity/epa/epaxlfile5_5.pdf 
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To quantify the impact of these infrastructure additions, the chart below shows the 

amount of actual and estimated annual investment in the Transmission system by U.S. 

shareholder-owned utility companies from 2004-2013.6 

 

 

 

From the above chart, it is easy to see an upward trend in the amount of money estimated 

to be spent on Transmission system enhancements.  In fact, according to a report issued 

by the Brattle Group in 2008, the electric utility industry will need to invest $298 billion 

in the U.S. Transmission system from 2010 through 2030 in order to maintain reliable 

service. 

                                                 
6 Chart courtesy of EEI.  

http://www.eei.org/ourissues/ElectricityTransmission/Documents/bar_Transmission_Investment.pdf 
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1c.  Customer Demand for Electricity 

As noted in Section 1a, consumers of electricity cover a broad spectrum.  However, 

customers are commonly divided into three main categories: 

• Residential – homes, apartment buildings, etc. 

• Commercial – stores, restaurants, small businesses, etc. 

• Industrial – larger manufacturers, automakers, steel producers, etc. 

 

Obviously, each class of customers has its own unique usage characteristics.  Residential 

customers’ demand tends to be relatively weather sensitive due to use of air conditioners 

in the summer and possibly electric heating options in the winter.  Commercial customers 

may have some sensitivity to weather, but generally not as much as the Residential class.  

For example, consider a recreation center that is located in a popular vacation destination 

and uses electricity for lighting, refrigeration, and kitchen appliances.  Since use of the 

center is dependent on the level of vacation activity, it most likely will not have 

consistent electricity needs throughout the year.  A similar example is a ski resort, whose 

demand will most likely be higher in the winter months than the summer.  There are other 

commercial customers, though, (for example, a shopping mall), that remains open year 

round and would not be as sensitive to weather. 

 

Industrial customers are the least sensitive to weather because their operations tend to be 

more round-the-clock in nature.  However, there may still be instances when a large 

industrial customer has a significant change in its demand.  Consider a large auto 

manufacturer that currently is running three shifts of employees.  If the customer decides 
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to temporarily change to two shifts due to economic conditions, this would result in a 

decrease in the customer’s demand until the economy recovers and the plant returns to a 

round-the-clock operation. 

 

Historically, meters have used to measure customers’ demand and electricity 

consumption for purposes of billing by utility companies.  The customers with more 

sophisticated electric needs tend to also have more sophisticated metering equipment in 

place.  For example, a residential customer’s meter may only show a continuous 

consumption amount so a monthly meter read would entail subtracting the prior month’s 

cumulative consumption total from the current month’s.  A large steel mill, on the other 

hand, may have metering in place to measure its demand on an hourly basis and the meter 

may be read remotely. 

 

The following tables show (i) peak demand across all U.S. electric customers for 2005-

2009; (ii) the total number of end use electric customers in the U.S., by customer class, 

from 2003-2009; and (iii) the total electricity consumed in the U.S., by customer class, 

from 2003-2010.7 

 

U.S. Peak Demand (MW)

2005 2006 2007 2008 2009

758,876 789,475 782,227 752,470 725,958  

 

                                                 
7 Data courtesy of U.S. Energy Information Administration.  
http://www.eia.gov/cneaf/electricity/epa/epaxlfile4_1.pdf 
http://www.eia.gov/cneaf/electricity/epm/table5_1.html 
http://www.eia.gov/cneaf/electricity/epa/epat7p1.html 
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Number of End Use Customers

Year Residential Commercial Industrial Total

2003 117,280,481 16,550,646 713,221 134,544,348

2004 118,763,768 16,607,808 747,600 136,119,176

2005 120,760,839 16,872,458 733,862 138,367,159

2006 122,471,071 17,173,290 759,604 140,403,965

2007 123,949,916 17,377,969 793,767 142,121,652

2008 124,937,469 17,563,453 774,713 143,275,635

2009 125,177,175 17,562,366 757,519 143,497,060  

 

Electricity Consumed (thousand MWH)

Year Residential Commercial Industrial Total

2003 1,275,824 1,205,538 1,012,373 3,493,735

2004 1,291,982 1,237,649 1,017,850 3,547,481

2005 1,359,227 1,282,585 1,019,156 3,660,968

2006 1,351,520 1,307,102 1,011,298 3,669,920

2007 1,392,241 1,344,488 1,027,832 3,764,561

2008 1,379,981 1,343,681 1,009,300 3,732,962

2009 1,364,474 1,314,949 917,442 3,596,865

2010 1,450,758 1,337,062 962,165 3,749,985  

 

We make a few observations.  First, we note that total peak demand in 2009 is less than 

the available generating capacity provided in Section 1b, which we would expect.  It is 

also important to recall that the table in Section 1b represents the total capacity available, 

which may or may not be the amount of capacity actually used to serve customers due to 

various operational reasons. 

 

Second, we notice a decrease in electricity consumption for the Industrial class in recent 

years, as compared to prior historical levels.  This is most likely attributable to the 

economic downturn as Industrial customers were forced to decreases or eliminate 

operations.  However, it should be noted that the U.S. Energy Information Administration 

expects electricity consumption to increase 30% by the year 2035. 
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Third, the differences between customer classes in the amount of electricity consumed 

are less significant than the differences in the numbers of customers.  Most notably, the 

Residential class has significantly more customers than the Industrial class, but the 

annual total consumption amounts are relatively much closer.  This implies that the 

Industrial class uses more electricity per customer than the other classes, which makes 

sense due to the size of an Industrial customer’s operation as compared to a home or a 

small business.    
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1d.  Upcoming Challenges in the Electric Utility Industry 

The history of the electric utility industry dates back to Thomas Edison in the late 1800’s.  

While technology enhancements have obviously been made over the years, the general 

objective of the industry has remained relatively constant – to provide safe and reliable 

electric service to customers.  As discussed above, one of the principal factors in meeting 

this objective, (and also the primary focus of this paper), continues to be the balancing of 

supply and demand through adequate Generation and Transmission capacity.    

 

There are several upcoming challenges, though, that could have a significant impact on 

how the electric industry will continue to achieve its goal of balancing supply with 

demand.   Three of these are described below in more detail.8   

 

 

Environmental Legislation 

The second chart in Section 1b under Generation indicates that coal is the largest 

consumed fuel in the U.S.  This is a significant observation in light of the various 

environmental laws that could go into effect in the near future regarding pollution control 

and emissions. Below is a version of a popular chart in the industry referred to as the 

“Environmental Train Wreck”, which shows a timeline of the proposed environmental 

laws that could have an impact on the electric industry.9 

                                                 
8 There is significant literature available on various upcoming challenges facing the electric utility industry.  
For purposes of this paper, a few of these challenges are addressed in general terms to give the reader a 
better idea of potential impacts to the electric industry. 
9 Slide courtesy of the U.S. Environmental Protection Agency (EPA). 
http://alec.org/AM/Template.cfm?Section=EPATrainWreck&Template=/CM/ContentDis
play.cfm&ContentID=15348 
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This chart is not presented for purposes of delving into details of each specific piece of 

legislation, but rather is intended to simply provide the reader a visual impression of the 

volume of new laws that could impact the generation of electricity in the U.S. in the next 

decade. The implementation of further restrictions on emissions or a tax on the amount of 

coal burned would most likely impact the reliance on coal, which could lead to a shift in 

focus to alternate fuel sources, such as wind and solar.  Thus, the supply side of the 

industry could be forced to modify its investment and operational strategy. 
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Energy Efficiency  

There are also changes afoot on the demand side of the electricity balancing equation.  

The recent emphasis on environmental controls has contributed to an increased focus on 

more efficient use of electricity.  Generation and Transmission infrastructure needs to 

accommodate peak periods, i.e., periods when customer demand is the highest.  

Accordingly, as customer demand increases, so does the need for more infrastructure to 

be built, which is expensive  In order to combat this need for new capacity, utility 

companies in several jurisdictions are offering more programs to customers to incent 

them to decrease usage of electricity during certain peak times and/or to be a more 

efficient consumer of electricity. 

 

Several popular energy efficiency initiatives currently offered include:10 

• Lighting Upgrades – For Residential customers, a common approach is to 

install compact fluorescent light bulbs.  Large customers may seek a lighting 

retrofit of their operation. 

• Equipment Replacement – Commercial and Industrial customers that operate 

machines with large motors may be able to save money on their electric bill in 

the long run by replacing or improving the efficiency of their machines.  

Similarly, homeowners can trade in old appliances for more efficient ones.   

• Remote Thermostats – Primarily marketed towards Residential customers, 

these thermostats can monitor home temperature remotely so that the air 

                                                 
10 For a more comprehensive list of programs, the reader is referred to EEI. 
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conditioning can be adjusted accordingly, eliminating unnecessary use when 

no one is home.   

 

In some states, utility companies are even mandated to achieve a certain level of energy 

efficiency related savings from their customers.  For example, Ohio utility companies are 

order by law to implement energy efficiency programs that achieve a cumulative 22% 

reduction in electricity consumption reduction by 2025. 11  The table below shows the 

annual required reductions. 

 

 

 

Even though it may result in a reduction of overall customer demand, the implementation 

of more energy efficiency programs will serve as a significant contributing factor in the 

balancing of supply and demand in the upcoming years.  The impact of these programs 

will need to be taken into account when making operational and strategic decisions 

regarding the installation of new Generation or Transmission capacity. 

 

                                                 
11 Energy Efficiency targets from Ohio Senate Bill 221, passed in 2008. 
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Smart Metering 

As mentioned above in Section 1c, there are various metering technologies used across 

customer classes in the electric utility industry.  In conjunction with energy efficiency 

and demand reduction mandates, several jurisdictions are also pursuing more stringent 

requirements regarding smart metering.  Smart meters allow customers’ electricity 

demand and usage to be more transparent, with the intent being that they will be more 

efficient users of electricity.  That is, if a customer’s electric demand and corresponding 

price of electricity are more visible to her, it is believed that she will not knowingly 

consume wasted energy.12 

 

One jurisdiction has already taken legislative action towards promoting the 

implementation of smart meters.  According to Pennsylvania Act 129, which was passed 

in 2008, the utility companies in the state must submit plans to the Pennsylvania Public 

Utility Commission to replace all of its existing customer meters with more advanced 

smart meters over the next 15 years.  Some of the provisions that must be included in 

these plans include: 

• Customers must be provided with direct access to hourly pricing information 

so that they may better manage their electricity consumption 

• The utilities must offer different pricing options to customers, e.g., on-peak 

vs. off-peak pricing, or real time pricing. 

                                                 
12 While not specifically addressed in this paper, it should be noted that the cost of implementing such 
smart meter technologies continues to be a debated topic in the industry.   
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• Customers’ electricity consumption must be able to be controlled remotely, 

either by the customer or another party.13 

 

As efforts like those being implemented in Pennsylvania become more popular, and 

customers use the technology to modify their electricity consumption, smart meters will 

also play a significant role in the electric industry’s ongoing efforts to provide a sufficient 

supply of electricity. 

 

 

Environmental legislation, energy efficiency, and smart meters are just a few of the major 

issues currently facing the electric utility industry, but they should provide the reader 

with better perspective on where the industry may be headed in the upcoming years. 

                                                 
13 Source:  Pennsylvania Public Utility Commission.   
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1e.  FirstEnergy Corp. – Company Overview 

In the final section of the Introduction, we will provide a brief overview of one of the 

largest investor-owned electric utility companies in the United States, FirstEnergy Corp. 

(FirstEnergy).  Examples provided later in the paper will be based on FirstEnergy’s 

operations.14 

 

FirstEnergy is headquartered in Akron, Ohio, but has operations in 6 different states:  

Ohio, Pennsylvania, West Virginia, New Jersey, Virginia, and Maryland.  FirstEnergy 

serves approximately 6 million customers across its service territory, which is comprised 

of 10 different operating regions and approximately 67,000 square miles.  FirstEnergy 

does own and operate Distribution assets, but we will continue to focus on its Generation 

and Transmission infrastructure. 

 

 

Generation 

The map below shows FirstEnergy’s service territory along with the location of its 

Generation assets.  Underneath the map is a table showing a breakdown of FirstEnergy’s 

Generation capacity by fuel type.15 

 

                                                 
14 All data and information in this Section is provided by FirstEnergy.  (www.firstenergycorp.com) 
15 The colored areas on the map represent the 10 different operating regions, which are also noted in the 
legend in the bottom left corner.  FirstEnergy’s power plants are represented by the shapes defined in the 
bottom right corner of the chart. 
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Fuel Type
Capacity 

(MW)
% Total

Coal 14,678 63.1%

Gas/Oil 2,195 9.4%

Hydro 1,832 7.9%

Wind 564 2.4%

Nuclear 3,991 17.2%

23,260 100.0%  

 

As indicated in the above chart, FirstEnergy has a relatively balanced mix of fuels in its 

Generation portfolio.  In regards to the prior discussion on pending environmental 

legislation on coal-fired generation, it should be noted that a significant portion of 

FirstEnergy’s coal-fired units have undergone certain operational improvements to 

mitigate the amount of pollution emitted.    
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Units that have undergone these improvements are generally referred to as “scrubbed.”  

Taking these scrubbed units into account, the chart below indicates that only 16% of 

FirstEnergy’s Generation capacity is a significant emitter of pollution, which should 

decrease its risk associated with new environmental laws that may be enacted in the 

future. 
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Transmission 

FirstEnergy also owns and operates approximately 20,000 miles of Transmission lines 

across its service territory, which are depicted on the map below.16 

 

 

 

 

Planning for the Transmission system is an important part of FirstEnergy’s operations, 

particularly given the breadth of its service territory, which covers a significant portion of 

the northeastern United States.   

 

Thus, with its large collection of Generation and Transmission assets, FirstEnergy serves 

as a useful representative of the electric utility industry and provides a practical 

framework for demonstrating its principal objective, which is to balance supply and 

demand by maintaining sufficient Generation and Transmission capacity.   

                                                 
16 The colored lines on the map represent the Transmission system, while the shaded circles represent 
FirstEnergy’s Generation assets. 
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This Introduction and general overview of FirstEnergy are intended to provide the reader 

with a basic understanding of the electric utility industry, as well as a practical 

representation of one its participants.  Some numerical examples involving FirstEnergy 

will be discussed later on in the paper, but first we need to more formally define and 

formulate our problem from a mathematical perspective. 
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2  PROBLEM FORMULATION 

2a.  Definitions and Notations 

With this background, we now move to the formulation of the primary problem to be 

discussed in this paper.  As a preliminary matter, we first reiterate that the general 

construct of this paper is based largely on the work of Prékopa and Boros in their paper, 

On the Existence of a Feasible Flow in a Stochastic Transportation Network (1989).  

Using this work as a guide, we start with the following notations and definitions, many of 

which are consistent with common terminologies used in graph theory. 

 

N = Set of all Demand Nodes (locations of customer demand) 

yij = Transmission Capacity Between Node i and Node j 

xi = Random Generating Capacity at Node i 

ζi = Random Deficiency of Random Generating Capacity at Node i (losses) 

xi - ζi = Available Generating Capacity at Node i (after losses) 

ηi = Random Local Demand at Node i 

ξi = ηi + ζi = Random Local Demand (before losses) 

d(i) = ξi - xi = Net Demand (Supply) at Node i (before losses) 

 d(i) < 0 � Surplus of Generation at Node i (have excess power) 

 d(i) > 0 � Shortage of Generation at Node i (need power) 
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2b.  Network Formulation and Problem Statement 

We use these definitions to construct a graph representing a stochastic network of (net) 

demand nodes and available transmission capacities.  We will proceed with an example 

of 5 nodes to demonstrate the formulation.17  Consider the following network. 

 

 

 

 

 

 

 

 

Our primary objective is to determine the probability of a feasible flow in the network.  

In other words, we want to know how likely it is that all net demand values d(i) = ξi - xi 

are satisfied simultaneously, based on the given transmission capacities and available 

generation.  It turns out that this objective can be generally represented through a series 

of inequalities. 

                                                 
17 This example is based on a subset of FirstEnergy’s operations. 
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2c.  Gale-Hoffman Theorem 

Some additional concepts from graph theory are needed before proceeding with the 

formulation of the problem. In the network established in the previous section, the edges 

are undirected, i.e., for each edge (i,j) in the network, power can flow from node i to node 

j and vice-versa, so long as the sum of the power flowing between the two nodes does not 

exceed the given capacity cij.  The undirected network, however, can be transformed to a 

directed network as follows.  For each undirected edge (i,j) with capacity cij, we create 

directed edges (i,j) and (j,i), each with capacity cij, as shown in the picture below.18 

 

 

 

 

This transformation maintains the same overall capacity as the initial undirected network, 

but more formally permits the flow of power between any two nodes connected by an 

edge.  We assume that power flow in either direction is non-negative.  To demonstrate 

the equivalence of the undirected and directed edges above, consider the following two 

examples.  If the flow from node i to node j in the undirected network is some positive 

value α ≤ cij, then in the transformed directed network, the flow along edge (i,j) will be α 

and the flow along (j,i) will be 0.  If, on the other hand, there is positive flow along both 

edges (i,j) and (j,i) in the directed network, then the absolute value of the difference 

between the two is the flow in the undirected network, where the direction of the flow is 

                                                 
18 More explicit details behind the transformation from an undirected network to a directed one can be 
found in Network Flows (Ahuja, Magnanti, Orlin). 

i j
cij

i j

cij

cij

i j
cij

i j

cij
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dependent upon the larger directional flow value from the directed network.  These 

illustrative flow values are depicted below. 

 

 

 

 

 

 

Without loss of generality, we will focus on the directed network to more formally define 

a flow and a feasible demand function d.  Let E be the set of directed edges in the 

transformed directed network defined as G = (N,E), where N is the set of demand nodes.  

Assume we have a source node s, which is adjacent to only outgoing edges, and a sink 

node t, which is adjacent to only inward edges.   

 

A common problem in computer science is to calculate the maximum flow between two 

nodes in the graph, namely s and t, where a flow is a set of numbers x = {xij} assigned to 

each directed edge (i,j) in the network such that the following conditions hold: 

 

(F1) ∑
∈Ei)(j,

jix  - ∑
∈Ej)(i,

ijx  = 0   for all nodes i∈N \ {s,t} 

(F2) 0 ≤ xij ≤ cij   for all directed edges (i,j)∈E 

 

Condition (F1) is known as the flow balance constraint because it guarantees that the 

amount of flow going into a node equals the flow leaving the node, (for all nodes other 

i j
α - β

i j

α

β

i j
β - α

i j

α

β

if α > β > 0

if β > α > 0

i j
α - β

i j

α

β

i j
β - α

i j

α

β

if α > β > 0

if β > α > 0
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than s and t).  Condition (F2) is the capacity constraint; i.e., the amount of flow between 

any two nodes is non-negative and cannot exceed the given capacity cij.  The sum of all 

flow values leaving node s will be equal to the sum of all flows going into node t, which 

is the overall value of the s,t-flow in the network. 

 

For purposes of this paper, we focus on the determination of a feasible flow, as opposed 

to a maximum flow.  Returning to the transportation network G = (N,E) with demand 

function d(i), we say that d(i) is feasible, i.e., the network G admits a feasible flow, if 

there exists a flow x such that the following similar conditions are met: 19 

 

(FF1) ∑
∈Ei)(j,

jix  - ∑
∈Ej)(i,

ijx  = d(i)   for all nodes i∈N  

(FF2) 0 ≤ xij ≤ cij    for all directed edges (i,j)∈E 

 

Condition (FF1) states that the net power flow at each node is equal to the given demand 

(supply), while condition (FF2) ensures that the amount of power flowing from node i to 

node j is non-negative and does not exceed the given capacity cij.   

 

We note first that feasible flow condition (FF1) can be restated as  

 

∑
∈Ei)(j,

jix  = d(i) + ∑
∈Ej)(i,

ijx . 

 

                                                 
19 We note here that the network G is generic, i.e., it need not have a source node s or a sink node t.   
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In the case of a node with a positive demand value d(i) > 0, since all flow values xij are 

non-negative by condition (FF2), then we say, equivalently, that the demand function is 

feasible if  

 

∑
∈Ei)(j,

jix ≥ d(i) for each node i. 

 

In other words, the flow going into a demand node i from all other nodes in the network 

that share an edge with node i must be at least as large at the demand at node i.   

 

In the case of a supply node with demand function d(i) < 0, condition (FF1) is also 

equivalent to the following: 

 

d(i) – ∑
∈Ei)(j,

jix = – ∑
∈Ej)(i,

ijx � d(i) ≥ – ∑
∈Ej)(i,

ijx  � – d(i) ≤ ∑
∈Ej)(i,

ijx . 

 

That is, the flow going out of a supply node is at least the net supply at that node. 

Finally, we note that the demand values at disjoint nodes (or disjoint subsets of nodes) are 

additive, in which case the above conditions can be extrapolated to the general case 

defined below.20 

 

                                                 
20 Similarly, it should further be noted that flow values and capacities are also additive among nodes and 
edges, respectively. 
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Definition 1 - A demand function d in a network G = (N,E) is said to be feasible if there 

exists a flow x such that  d(S) ≤ ∑
∈ ),(Sj)(i,

ij
C

x
S

, (or equivalently, if –d(S) ≤ ∑
∈ )S(S,j)(i,

ij
C

x ), for all  

S ⊆ N.                       

 

Therefore, the problem of determining the probability of a feasible flow in a stochastic 

transportation network can be stated according to the following theorem from Gale and 

Hoffman. 

 

Theorem – We are given a directed transportation network G = (N,E), a demand function 

d(i) for each node i∈N, and non-negative edge capacities cij for all (i,j)∈E.  We also 

assume that the lower bound on the flow value along any edge in G is zero and that the 

total demand across all nodes is zero, i.e., ∑
∈Ni

d(i) = 0. 

The network G admits a feasible flow, or equivalently, the demand function d(i) is 

feasible, if and only if, for every subset of demand nodes S ⊆ N, we have the inequality  

 

d(S) ≤ ∑
∈ ),(Sj)(i,

ij
C

c
S

 

 

where ∑
∈ ),(Sj)(i,

ij
C

c
S

 is the total available capacity into S. 
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Proof: 21 (⇒ ) Assume first that the network G admits a feasible flow x and let S ⊆ N be a 

subset of nodes in the network.  Since the network admits a feasible flow, then  

 

d(S) ≤ ∑
∈ ),(Sj)(i,

ij
C

x
S

 by Definition 1. 

 

Further, by condition (FF2) in the definition of a feasible flow, we have  

 

d(S) ≤ ∑
∈ ),(Sj)(i,

ij
C

x
S

  ≤ ∑
∈ ),(Sj)(i,

ij
C

c
S

. 

 

Therefore, d(S) ≤ ∑
∈ ),(Sj)(i,

ij
C

x
S

≤ ∑
∈ ),(Sj)(i,

ij
C

c
S

. 

 

                                                 
21 The structure of this proof is courtesy of Network Flows (Ahuja, Magnanti, Orlin).  The reader is also 
referred to A Theorem on Flows in Networks (Gale) for an alternative proof. 
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( ⇐ ) Assume that d(S) ≤ ∑
∈ ),(Sj)(i,

ij
C

c
S

 for all S ⊆ N.  We proceed to construct a modified 

network: 

(i) Create a new node s and let N* = N U {s}. 

(ii) Create an edge (s,i) for every supply node i such that d(i) < 0. 

(iii) Create an edge (j,s) for every demand node j such that d(j) > 0. 

(iv) Let E’ = {(s,i) U (j,s) : i,j∈N} and let lij be the lower bound on the flow along 

a given edge (i,j).  Then define lsi = csi = d(i)  and ljs = cjs = d(j) for all (s,i), 

(j,s)∈E’ and let E* = E U  E’.  (Recall that lij = 0 for all original edges 

(i,j)∈E). 

(v) Call this transformed network G* = (N*, E*). 

 

We will refer to node s as the source node.  Steps (ii) and (iii) above establish new 

directed edges from the source node s to all supply nodes and from all demand nodes to 

the new source node s, respectively.  In step (iv) the upper and lower bounds on these 

new edges are set equal to the absolute value of the demand (supply) at each node in the 

original network G.  That is, the flow along these new edges E’ is fixed.  Further, we 

observe that d(s) = 0 by construction. 

 

Now that we have some non-zero lower bounds, we slightly modify the feasible flow 

problem for the case of general lower bounds lij ≥ 0.  We call a flow in the network G* = 

(N*,E*) that satisfies the following constraints a feasible circulation. 22 

                                                 
22 Unlike condition (F1) the initial definition of a flow, we note that the balance constraint (FC1) in a 
feasible circulation applies to all nodes in the network. 
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(FC1) ∑
∈ *Ei)(j,

jix  – ∑
∈ *Ej)(i,

ijx  = 0   for all nodes i∈N* 

(FC2) lij ≤ xij ≤ cij    for all directed edges (i,j)∈E* 

 

By the construction of G*, we can make the following claim: 

 

Claim 1 - The original network G admits a feasible flow if and only if the transformed 

network G* admits a feasible circulation.   

 

This is because the net demand (supply) values at each node in the network G are forced 

to zero in the network G* by the creation of the edges E’ and associated lower and upper 

bounds, under the assumption that the net demand (supply) values are met exactly in the 

network G.  That is, the demand (supply) values in G are met exactly for each node if and 

only if we have a feasible circulation in G*. 

 

In the interest of completeness, we offer an alternative equivalent formation of the 

feasible circulation problem by transforming the network G* in the above definition to 

remove the non-zero lower bounds.  Introduce the notation '

ijx  and let xij = '

ijx + lij for 

each edge (i,j)∈E*, where '

ijx  represents the incremental flow above the lower bound on 

edge (i,j).  Since we are sending at least lij units of flow from node i to node j, we increase 

d(i) by lij and decrease d(j) by the same amount because we now need more flow at node i 

and less at node j.  Since we have already accounted for the flow of lij units, the lower 

bound and the capacity cij (upper bound) on the flow along edge (i,j) are both also 
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decreased by lij units, with the lower bound going to zero.  The transformation is depicted 

below. 

 

 

 

 

 

Incorporating this transformation for all nodes in the network G*, we can then restate the 

definition of a feasible circulation in terms of the incremental flow values '

ijx . 

 

(FC1’) ∑
∈ *Ei)(j,

'

jix  – ∑
∈ *Ej)(i,

'

ijx  = d(i)   for all nodes i∈N* 

(FC2’) 0 ≤ '

ijx  ≤ cij - lij   for all directed edges (i,j)∈E* 

 

We observe that condition (FC1) in the original network is equivalent to condition (FC1’) 

in the transformed network, since both conditions are simultaneously satisfied if and only 

if the following equalities hold for each node i∈N*:    

 

∑
∈ *Ei)(j,

jix  – ∑
∈ *Ej)(i,

ijx  = 0       

� )l(x ji

*Ei)(j,

'

ji +∑
∈

 – )l(x ij

*Ej)(i,

'

ij +∑
∈

 = 0  

� ∑
∈ *Ei)(j,

'

jix – ∑
∈ *Ej)(i,

'

ijx  =  ∑
∈ *Ej)(i,

ijl – ∑
∈ *Ei)(j,

jil = d(i), 

  

i j
(lij, cij)

d(i) d(j)

i j
(0, cij - lij)

d(j) - lijd(i) + lij

i j
(lij, cij)

d(i) d(j)

i j
(0, cij - lij)

d(j) - lijd(i) + lij
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where the last equality follows directly from the transformation to remove non-zero lower 

bounds. 

 

Similarly, we note that condition (FC2) is equivalent to condition (FC2’) as both 

conditions are satisfied simultaneously if and only the following inequalities hold for all 

edges (i,j): 

lij ≤ xij ≤ cij   

�  lij - lij ≤ xij - lij ≤ cij - lij  

� 0 ≤ '

ijx  ≤ cij - lij , 

 

where the last inequality follows directly from the definition of incremental flow values 

'

ijx . 

 

Therefore, we conclude that the original conditions (FC1) and (FC2) are equivalent to the 

transformed conditions (FC1’) and (FC2’), respectively.   

 

Without loss of generality, we return to our original definition of a feasible circulation 

and restate conditions (FC1) and (FC2) in the general case of subsets of nodes S ⊆ N* 

instead of individual nodes:   

 

(FC1*)  ∑
∈ *ES),(S

ij
C

x  – ∑
∈ *E)S(S,

ij
C

x  = 0 for all S ⊆ N* 

(FC2*)  ∑
∈ *E)S(S,

ij
C

l ≤ ∑
∈ *E)S(S,

ij
C

x ≤ ∑
∈ *E)S(S,

ij
C

c  for all S ⊆ N* 
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Combining conditions (FC1*) and (FC2*), we see that  

 

∑
∈ *E)S(S,

ij
C

l ≤ ∑
∈ *E)S(S,

ij
C

x = ∑
∈ *ES),(S

ij
C

x ≤ ∑
∈ *ES),(S

ij
C

c  for all S ⊆ N*. 

 

We have thus established necessary and sufficient conditions for a feasible circulation. 23 

 

Claim 2 - A feasible circulation exists in the network G* = (N*, E*) if and only if 

 

∑
∈ *E)S(S,

ij
C

l ≤ ∑
∈ *ES),(S

ij
C

c  for all S ⊆ N*. 

 

At this point in the proof, we have assumed that d(S) ≤  ∑
∈ ),(Sj)(i,

ij
C

c
S

for all S ⊆ N in the 

original network G.  For a set of nodes S ⊆ N, denote by S+ and S– the demand and 

supply nodes of S, respectively.  More formally, let S+ = {i∈S : d(i) > 0} and S– = {i∈S 

: d(i) < 0}.  We will proceed with the remainder of the proof by considering two separate 

cases. 

 

Case 1 – Let S ⊆ N be a subset of nodes in the original network G and define S = S0 as 

the same set of nodes in the transformed network G*. 

 

                                                 
23 The reader is also referred to Network Flows (Ahuja, Magnanti, Orlin) for more details behind the 
determination of a feasible circulation and the removal of non-zero lower bounds. 
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By construction of the transformed network G* at the beginning of the proof, namely step 

(iv), we observe that 

 

∑
∈ *E)S,(S

ij
C
oo

l = d(S+). 

 

That is, the sum of the lower bounds leaving subset S0 in G* is equal to the aggregate 

(positive) demand of all demand nodes in S from the original network.  This is because 

all lower bounds in the original network G were assumed to be zero, and the only 

outward edges added in the transformed network G* are those associated with demand 

nodes, as prescribed in steps (iii) and (iv) above. 

Similarly, we note that 

 

∑
∈ *E)S,(S

ij

o
C
o

c = ∑
∈ES),(S

ij
C

c – d(S–). 

 

In other words, the total inward capacity to S0 in the transformed network G* is equal to 

the inward capacity to S in the original network G plus the absolute value of the 

aggregate supply of all supply nodes in S.24 This is because the only inward edges added 

to the transformed network G* are those associated with supply nodes, as prescribed in 

steps (ii) and (iv) above. 

 

 

                                                 
24 Since d(S-) < 0, subtracting it is equivalent to adding its absolute value. 
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Therefore, we have the following: 

 

        d(S) = d(S+) + d(S–)   because demand values are additive 

 

� d(S+) + d(S–) ≤ ∑
∈ ),(Sj)(i,

ij
C

c
S

   by assumption d(S) ≤  ∑
∈ ),(Sj)(i,

ij
C

c
S

 

� d(S+) ≤ ∑
∈ ),(Sj)(i,

ij
C

c
S

– d(S–) 

� ∑
∈ *E)S,(S

ij
C
oo

l ≤ ∑
∈ *E)S,(S

ij

o
C
o

c  .  

 

Case 2 - Let S ⊆ N be a subset of nodes in the original network G and define S U {s} = S0 

as the corresponding subset of nodes in the transformed network G*. 

 

We proceed in a similar fashion as in Case 1.  First, we note that 

 

∑
∈ *E)S,(S

ij
C
oo

l = – d((Sc)–). 

 

Since all edges in the original network are assumed to have zero lower bounds, and node 

s is included in S0, then the only outward edges from S0 in G* (with non-zero lower 

bounds) are those added in the transformation from G to G* connecting node s to the 

supply nodes in Sc.   
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Similarly, we note that 

 

∑
∈ *E)S,(S

ij

o
C
o

c = ∑
∈ES),(S

ij
C

c + d((Sc)+). 

 

This equality is derived from the fact that the only new incoming edges to S0 in G*, 

(relative to the incoming edges to S in the original network G), are those coming into 

node s, namely from the demand nodes in Sc.   

 

It follows that 

      d(Sc) = d((Sc)+) + d((Sc)–)    

 

� – d(Sc) = – d((Sc)+) – d((Sc)–) = d(S)     because d(S) + d(Sc) = 0 

 

� – d((Sc)+) – d((Sc)–) ≤ ∑
∈ES),(S

ij
C

c            by assumption d(S) ≤  ∑
∈ ),(Sj)(i,

ij
C

c
S

 

� – d((Sc)–)  ≤ ∑
∈ES),(S

ij
C

c  + d((Sc)+) 

� ∑
∈ *E)S,(S

ij
C
oo

l ≤ ∑
∈ *E)S,(S

ij

o
C
o

c . 

 

Since node s was the only node added in the formulation of network G*, then the 

combination of Case 1 and Case 2 covers all possible subsets S0 ⊆ N*.  Thus, we 

conclude that the transformed network G* admits a feasible circulation by Claim 2 above.  
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Further, by Claim 1, we know that the original network G admits a feasible flow and the 

given demand function d(i) is feasible. 

 

Based on the results of this theorem, we conclude that the aggregate capacity going into a 

subset of nodes S must be at least as large as the net demand of the set S.  Otherwise, 

there is the potential that the net demand of the set S cannot be satisfied because there is 

insufficient capacity to meet it. 

 

We now return to our 5-node example and set up the Gale-Hoffman inequalities. 
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(1) ξ1 - x1 ≤ y12

(2) ξ2 - x2 ≤ y12 + y23 + y24

(3) ξ3 - x3 ≤ y23 + y35

(4) ξ4 - x4 ≤ y24 + y45

(5) ξ5 - x5 ≤ y35 + y45

(6) ξ1 - x1 + ξ2 - x2 ≤ y23 + y24

(7) ξ1 - x1 + ξ3 - x3 ≤ y12 + y23 + y35

(8) ξ1 - x1 + ξ4 - x4 ≤ y12 + y24 + y45

(9) ξ1 - x1 + ξ5 - x5 ≤ y12 y35 + y45

(10) ξ2 - x2 + ξ3 - x3 ≤ y12 + y24 + y35

(11) ξ2 - x2 + ξ4 - x4 ≤ y12 + y23 + y45

(12) ξ2 - x2 + ξ5 - x5 ≤ y12 + y23 + y24 + y35 + y45

(13) ξ3 - x3 + ξ4 - x4 ≤ y23 + y24 + y35 + y45

(14) ξ3 - x3 + ξ5 - x5 ≤ y23 + y45

(15) ξ4 - x4 + ξ5 - x5 ≤ y24 + y35

(16) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 ≤ y24 + y35

(17) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 ≤ y23 + y45

(18) ξ1 - x1 + ξ2 - x2 + ξ5 - x5 ≤ y23 + y24 + y35 + y45

(19) ξ1 - x1 + ξ3 - x3 + ξ4 - x4 ≤ y12 + y23 + y24 + y35 + y45

(20) ξ1 - x1 + ξ3 - x3 + ξ5 - x5 ≤ y12 + y23 + y45

(21) ξ1 - x1 + ξ4 - x4 + ξ5 - x5 ≤ y12 + y24 + y35

(22) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y12 + y35 + y45

(23) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y12 + y24 + y45

(24) ξ2 - x2 + ξ4 - x4 + ξ5 - x5 ≤ y12 + y23 + y35

(25) ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y23 + y24

(26) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y35 + y45

(27) ξ1 - x1 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y12 + y23 + y24

(28) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 + ξ5 - x5 ≤ y23 + y35

(29) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y24 + y45

(30) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y12

(31) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ 0
 

We observe that there are a total of 31 = 2n – 1 Gale-Hoffman inequalities, where n = 5.  

That is, there is an inequality for each combination of the n=5 nodes in the network, with 

the exception of the case where S is the empty set, which is trivial because d(S) = 0 and 

all transmission capacities are non-negative.  
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2d.  Elimination of Redundant Inequalities 

We observe that the number of inequalities (2n – 1) in the network formulation grows 

exponentially with the number of demand nodes, which can cause run time problems for 

solving.  In an effort to make the problem more manageable, we will discuss and 

implement in our example an algorithm prescribed by Prékopa and Boros to eliminate 

any redundant inequalities, i.e., those inequalities that can be written as a sum of others.25 

 

The algorithm is described as follows: 

0. Let b(H) = 1 and e(H) = 0 for all H ⊆ N, where H is non-empty 

1. Choose a non-empty subset H ⊆ N such that b(H) = 1 and e(H) = 0.  (If no such 

subset exists, then STOP). 

2. Let T ⊆ N \ H be a maximal subset such that there is no arc between T and H 

3. Let b(V) = 0 for all V ⊆ HU T, where VI T and VI H are both non-empty. 

4. Let e(H) = 1 and return to Step 1. 

 

Recall the network formulation in our example and note the initial results from Step 0: 

 

                                                 
25 See Prékopa and Boros (1989). 
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Inequality Set H b(H) e(H)

(1) {1} 1 0

(2) {2} 1 0
(3) {3} 1 0
(4) {4} 1 0

(5) {5} 1 0
(6) {1,2} 1 0

(7) {1,3} 1 0

(8) {1,4} 1 0
(9) {1,5} 1 0

(10) {2,3} 1 0
(11) {2,4} 1 0
(12) {2,5} 1 0

(13) {3,4} 1 0

(14) {3,5} 1 0
(15) {4,5} 1 0

(16) {1,2,3} 1 0
(17) {1,2,4} 1 0
(18) {1,2,5} 1 0

(19) {1,3,4} 1 0

(20) {1,3,5} 1 0
(21) {1,4,5} 1 0

(22) {2,3,4} 1 0
(23) {2,3,5} 1 0
(24) {2,4,5} 1 0

(25) {3,4,5} 1 0

(26) {1,2,3,4} 1 0
(27) {1,3,4,5} 1 0

(28) {1,2,4,5} 1 0
(29) {1,2,3,5} 1 0
(30) {2,3,4,5} 1 0

(31) {1,2,3,4,5} 1 0  

 

We will proceed to process the inequalities in numerical order, starting with H = {1}. 

 

Iteration 1 

Step 1:  H = {1} 

Step 2:  T = {3,4,5} 

Step 3:  Denote by V’ all possible subsets of HU T.  Then we have the following: 

V' {1} {3} {4} {5} {1,3} {1,4} {1,5} {3,4} {3,5} {4,5} {1,3,4} {1,4,5} {3,4,5} {1,3,4,5}

V'     T 0 {3} {4} {5} {3} {4} {5} {3,4} {3,5} {4,5} {3,4} {4,5} {3,4,5} {3,4,5}

V'     H {1} 0 0 0 {1} {1} {1} 0 0 0 {1} {1} 0 {1}

V NO NO NO NO YES YES YES NO NO NO YES YES NO YES
I
I
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It follows that V = {1,3},{1,4},{1,5},{1,3,4},{1,4,5},{1,3,4,5} and b(V) = 0 for all V. 

Step 4:  e({1}) = 1 

We update our initial table of values incorporating the results of Iteration 1: 

 

Iteration 0 Iteration 1

b(H) e(H) b(H) e(H)

(1) {1} 1 0 1 1

(2) {2} 1 0 1 0

(3) {3} 1 0 1 0

(4) {4} 1 0 1 0

(5) {5} 1 0 1 0

(6) {1,2} 1 0 1 0

(7) {1,3} 1 0 0 0

(8) {1,4} 1 0 0 0

(9) {1,5} 1 0 0 0

(10) {2,3} 1 0 1 0

(11) {2,4} 1 0 1 0

(12) {2,5} 1 0 1 0

(13) {3,4} 1 0 1 0

(14) {3,5} 1 0 1 0

(15) {4,5} 1 0 1 0

(16) {1,2,3} 1 0 1 0

(17) {1,2,4} 1 0 1 0

(18) {1,2,5} 1 0 1 0

(19) {1,3,4} 1 0 0 0

(20) {1,3,5} 1 0 1 0

(21) {1,4,5} 1 0 0 0

(22) {2,3,4} 1 0 1 0

(23) {2,3,5} 1 0 1 0

(24) {2,4,5} 1 0 1 0

(25) {3,4,5} 1 0 1 0

(26) {1,2,3,4} 1 0 1 0

(27) {1,3,4,5} 1 0 0 0

(28) {1,2,4,5} 1 0 1 0

(29) {1,2,3,5} 1 0 1 0

(30) {2,3,4,5} 1 0 1 0

(31) {1,2,3,4,5} 1 0 1 0

Inequality Set H

 

Before moving on to the next iteration, we make a few observations.  First, we note that 

each subset H ⊆ N is processed at most once.  Obviously, a given subset H cannot be 

processed more than one time because once its value e(H) changes from 0 to 1, it is no 

longer a candidate to be processed again in Step 1.  Further, there are no other steps in the 
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algorithm to change the value of e(H) back to 0.  Still, not all subsets H ⊆ N need to be 

processed at all.  Consider one of the subsets V from Iteration 1 above.  Since b(V) = 0, 

then V is not an eligible candidate to be processed in Step 1.  Similar to the preceding 

argument regarding a given subset H, once b(V) changes from 1 to 0, there are no other 

steps in the algorithm to change the value back to 1.  Second, we notice that there may be 

iterations in which there are no subsets T defined in Step 2 of the algorithm, i.e., T can be 

the empty set.  In such instances, there are no subsets V defined by Step 3, in which case 

the only update made by the algorithm is to change the value of e(H) from 0 to 1.  

Finally, we comment that a particular subset can be defined as a subset V in Step 3 of 

multiple iterations of the algorithm.  However, since its value b(V) changed from 1 to 0 

the first time it was processed as a subset V, the value does not change again and it 

remains at 0 for the duration of the algorithm. 

 

The binary variable e(H) is simply an indicator of whether a particular subset has been 

processed through step 1 of the algorithm.  The binary variable b(H), though, designates 

which inequalities can be eliminated due to redundancy.  All subsets H with b(H) = 0 at 

the end of the algorithm correspond to the inequalities that can be eliminated due to 

redundancy.26 

 

We conclude that the inequalities corresponding to the subsets V in Step 3 above can be 

eliminated because they are the sum of other inequalities.  More formally, we have 

                                                 
26 Please refer to Prékopa and Boros (On the Existence of a Feasible Flow in a Stochastic Transportation 

Network, 1989) for more details behind the development of the algorithm and corresponding supporting 
theorems. 
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V = {1,3}:     (ξ1 – x1) + (ξ3 – x3) ≤ y12 + y23 + y35 

  =  (ξ1 – x1 ≤ y12)  +  (ξ3 – x3 ≤ y23 + y35) ⇒  (7) = (1) + (3) 

 

V = {1,4}:     (ξ1 – x1) + (ξ4 – x4) ≤ y12 + y24 + y45 

  =  (ξ1 – x1 ≤ y12)  +  (ξ4 – x4 ≤ y24 + y45) ⇒  (8) = (1) + (4) 

 

V = {1,5}:     (ξ1 – x1) + (ξ5 – x5) ≤ y12 + y35 + y45 

  =  (ξ1 – x1 ≤ y12)  +  (ξ5 – x5 ≤ y35 + y45) ⇒  (9) = (1) + (5) 

 

V = {1,3,4}:     (ξ1 – x1) + (ξ3 – x3) + (ξ4 – x4) ≤ y12 + y23 + y24 + y35 + y45 

  =  (ξ1 – x1 ≤ y12)  + (ξ3 – x3 ≤ y23 + y35) + (ξ4 – x4 ≤ y24 + y45) 

⇒  (19) = (1) + (3) + (4) 

 

V = {1,4,5}:     (ξ1 – x1) + (ξ4 – x4) + (ξ5 – x5) ≤ y12 + y24 + y35 

  =  (ξ1 – x1 ≤ y12)  + ((ξ4 – x4) + (ξ5 – x5) ≤ y24 + y35) ⇒ (21) = (1) + (15) 

 

V = {1,3,4,5}:     (ξ1 – x1) + (ξ3 – x3)+ (ξ4 – x4) + (ξ5 – x5) ≤ y12 + y23 + y24 

 =  (ξ1 – x1 ≤ y12)  + ((ξ3 – x3)+ (ξ4 – x4) + (ξ5 – x5) ≤ y23 + y24) ⇒ (27) = (1) + (25) 

 

Based on the above observations and detailed discussion on the results of the first 

iteration, we can proceed in a somewhat abbreviated fashion to complete the remaining 

iterations of the algorithm for our particular example. 
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Iteration 2 

Step 1:  H = {2} 

Step 2:  T = {5} 

Step 3:  V = {2,5} ⇒  b({2,5}) = 0 

Step 4:  e({2}) = 0  

 

V = {2,5}:     (ξ2 – x2) + (ξ5 – x5) ≤ y12 + y23 + y24 + y35 + y45 

  =  (ξ2 – x2 ≤ y12 + y23 + y24)  +  (ξ5 – x5 ≤ y35 + y45) ⇒  (12) = (2) + (5) 

 

Iteration 3 

Step 1:  H = {3} 

Step 2:  T = {1,4} 

Step 3:  V = {1,3}, {3,4}, {1,3,4} ⇒  b(V) = 0 for all V 

Step 4:  e({3}) = 0  

 

Since b({1,3}) = 0 and b({1,3,4}) = 0 from Iteration 1, we only need to process V = 

{3,4}. 

 

V = {3,4}:     (ξ3 – x3) + (ξ4 – x4) ≤ y23 + y24 + y35 + y45 

  =  (ξ3 – x3 ≤ y23 + y35)  +  (ξ4 – x4 ≤ y24 + y45) ⇒  (13) = (3) + (4) 
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Iteration 4 

Step 1:  H = {4} 

Step 2:  T = {1,3} 

Step 3:  V = {1,4}, {3,4}, {1,3,4} ⇒  b(V) = 0 for all V 

Step 4:  e({4}) = 0  

 

All subsets V have already been processed and b(V) = 0, so we move on. 

 

Iteration 5 

Step 1:  H = {5} 

Step 2:  T = {1,2} 

Step 3:  V = {1,5}, {2,5}, {1,2,5} ⇒  b(V) = 0 for all V 

Step 4:  e({5}) = 0  

Since b({1,5}) = 0 from Iteration 1 and b({2,5}) = 0 from Iteration 2, we only need to 

process V = {1,2,5}. 

 

V = {1,2,5}:     (ξ1 – x1) + (ξ2 – x2) + (ξ5 – x5) ≤ y23 + y24 + y35 + y45 

=  ((ξ1 – x1) + (ξ2 – x2) ≤ y23 + y24)  +  (ξ5 – x5 ≤ y35 + y45) ⇒ (18) = (6) +     

     (5) 
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Iteration 6 

Step 1:  H = {1,2} 

Step 2:  T = {5} 

Step 3:  V = {1,5}, {2,5}, {1,2,5} ⇒  b(V) = 0 for all V 

Step 4:  e({1,2}) = 0  

 

All subsets V have already been processed and b(V) = 0, so we move on. 

 

The next subsets to be processed are {1,3}, {1,4}, and {1,5}, all of which have been 

eliminated in previous iterations.  So, we move on to the next subsets H in the listed 

order, namely {2,3} and {2,4} in Iterations 7 and 8, respectively.  However, since both of 

these subsets are adjacent to every other node in the network, then set T is the empty set, 

as defined in Step 2 of the algorithm (and noted in the initial observation following 

Iteration 1).  These two iterations are trivial and the only updates need are to make 

e({2,3}) = 1 and e({2,4}) = 1.   

 

The next two subsets, {2,5}, and {3,4}, have already been eliminated in Iterations 2 and 

3, respectively.  Thus, we move on to the next subset in our list. 
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Iteration 9 

Step 1:  H = {3,5} 

Step 2:  T = {1} 

Step 3:  V = {1,3}, {1,5}, {1,3,5} ⇒  b(V) = 0 for all V 

Step 4:  e({3,5}) = 0  

 

Since b({1,3}) = 0 and b({1,5}) = 0 from Iteration 1, we only need to process V = 

{1,3,5}. 

 

V = {1,3,5}:     (ξ1 – x1) + (ξ3 – x3) + (ξ5 – x5) ≤ y12 + y23 + y45 

  =  (ξ1 – x1 ≤ y12)  +  ((ξ3 – x3) + (ξ5 – x5) ≤ y23 + y45) ⇒  (20) = (1) + (14) 

 

Iteration 10 

Step 1:  H = {4,5} 

Step 2:  T = {1} 

Step 3:  V = {1,4}, {1,5}, {1,4,5} ⇒  b(V) = 0 for all V 

Step 4:  e({4,5}) = 0  

 

All subsets V have already been processed in Iteration 1 and b(V) = 0, so we move on. 

 

Similar to the arguments made for Iterations 7 and 8 above, we have trivial updates for 

the following iterations: 

Iteration 11:  H = {1,2,3} ⇒  e({1,2,3}) = 1 
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Iteration 12:  H = {1,2,4} ⇒  e({1,2,4}) = 1 

27Iteration 13:  H = {2,3,4} ⇒  e({2,3,4}) = 1 

Iteration 14:  H = {2,3,5} ⇒  e({2,3,5}) = 1 

Iteration 15:  H = {2,4,5} ⇒  e({2,4,5}) = 1 

 

Iteration 16 

Step 1:  H = {3,4,5} 

Step 2:  T = {1} 

Step 3:  V = {1,3}, {1,4}, {1,5}, {1,3,4}, {1,4,5}, {1,3,4,5} ⇒  b(V) = 0 for all V 

Step 4:  e({3,4,5}) = 0  

 

All subsets V have already been processed and b(V) = 0, so we move on. 

 

The algorithm terminates following the remaining trivial iterations: 

Iteration 17:  H = {1,2,3,4} ⇒  e({1,2,3,4}) = 1 

28Iteration 18:  H = {1,2,4,5} ⇒  e({1,2,4,5}) = 1 

Iteration 19:  H = {1,2,3,5} ⇒  e({1,2,3,5}) = 1 

Iteration 20:  H = {2,3,4,5} ⇒  e({2,3,4,5}) = 1 

Iteration 21:  H = {1,2,3,4,5} ⇒  e({1,2,3,4,5}) = 1 

 

 

                                                 
27 Subsets {1,2,5}, {1,3,4}, {1,3,5}, and {1,4,5}, while next in sequential order, have already been 
eliminated in prior iterations and therefore do not need to be processed.  Thus, we move on to {2,3,4}. 
28 Subset {1,3,4,5}, while next in sequential order, has already been eliminated in Iteration 1 and therefore 
does not need to be processed.  Thus, we move on to {1,2,4,5}. 
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The final results of the algorithm are summarized in the table below. 

 

FINAL

b(H) e(H)

(1) {1} 1 1

(2) {2} 1 1

(3) {3} 1 1

(4) {4} 1 1

(5) {5} 1 1

(6) {1,2} 1 1

(7) {1,3} 0 0

(8) {1,4} 0 0

(9) {1,5} 0 0

(10) {2,3} 1 1

(11) {2,4} 1 1

(12) {2,5} 0 0

(13) {3,4} 0 0

(14) {3,5} 1 1

(15) {4,5} 1 1

(16) {1,2,3} 1 1

(17) {1,2,4} 1 1

(18) {1,2,5} 0 0

(19) {1,3,4} 0 0

(20) {1,3,5} 0 0

(21) {1,4,5} 0 0

(22) {2,3,4} 1 1

(23) {2,3,5} 1 1

(24) {2,4,5} 1 1

(25) {3,4,5} 1 1

(26) {1,2,3,4} 1 1

(27) {1,3,4,5} 0 0

(28) {1,2,4,5} 1 1

(29) {1,2,3,5} 1 1

(30) {2,3,4,5} 1 1

(31) {1,2,3,4,5} 1 1

Inequality Set H

 

 

The algorithm results in the elimination of 10 of the 31 inequalities.  The remaining 

inequalities, renumbered in numerical order, are: 
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(1) ξ1 - x1 ≤ y12

(2) ξ2 - x2 ≤ y12 + y23 + y24

(3) ξ3 - x3 ≤ y23 + y35

(4) ξ4 - x4 ≤ y24 + y45

(5) ξ5 - x5 ≤ y35 + y45

(6) ξ1 - x1 + ξ2 - x2 ≤ y23 + y24

(7) ξ2 - x2 + ξ3 - x3 ≤ y12 + y24 + y35

(8) ξ2 - x2 + ξ4 - x4 ≤ y12 + y23 + y45

(9) ξ3 - x3 + ξ5 - x5 ≤ y23 + y45

(10) ξ4 - x4 + ξ5 - x5 ≤ y24 + y35

(11) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 ≤ y24 + y35

(12) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 ≤ y23 + y45

(13) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y12 + y35 + y45

(14) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y12 + y24 + y45

(15) ξ2 - x2 + ξ4 - x4 + ξ5 - x5 ≤ y12 + y23 + y35

(16) ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y23 + y24

(17) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y35 + y45

(18) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 + ξ5 - x5 ≤ y23 + y35

(19) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y24 + y45

(20) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y12

(21) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ 0
 

 

Our problem has been significantly reduced from 31 to 21 inequalities, though our 

objective remains the same -- find the probability that the remaining inequalities are 

satisfied simultaneously.29  Thus, we move on to discuss three alternative approaches for 

solving this problem. 

 

                                                 
29 We note that additional inequalities may be eliminated via a subsequent method; however, details around 
the assumed demand and supply values are needed to do so.  We will address a subsequent inequality 
elimination procedure later on in the paper. 
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3  METHODS TO SOLVE 

 

3a.  Multivariate Normal Probability 

 

Background 

Before proceeding with a description of the multivariate normal probability method, we 

first return to our network and elaborate on its formulation from a stochastic perspective. 

 

 

 

 

 

 

 

 

We assume that the local generating capacity values xi are random variables.  Consider an 

individual power plant.  Its generating capacity is generally not constant, but rather, 

fluctuates over time depending on the power plant’s efficiency, fuel type, and operational 

strategy.  Individual power plants often have to take outages.  These outages can be 

forced due to operational issues, or planned for maintenance or refueling.  Further, some 

power plants are designed to run continuously, while others may only be used at certain 

times based on economic or engineering conditions.  The overall efficiency of the 

installed equipment at each power plant also has an impact on its available generating 
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capacity at any point in time.  So the available generating capacity on an individual 

power plant fluctuates over a range of values from zero to the maximum rated capacity of 

the unit.  Thus, the available generating capacity of an individual power plant is a random 

variable.  It follows that the local generating capacity values xi , which represent the sum 

of the capacities of the individual power plants in the area, are also random variables.30  

 

Similarly, we note that the local demand values ξi are also random variables.  Whether in 

the case of a residential customer who turns her lights and appliances on and off at 

different times of the day, a commercial customer whose business is not open around the 

clock, or even a large industrial customer who runs different shifts and may occasionally 

have to take his own internal maintenance outage, an individual customer’s demand for 

electricity is not constant.  Thus, we see that the demand of an individual customer varies 

over a range of possible values from zero to some finite number based on the quantity 

and efficiency of the appliances, machines, etc. that are available to be used by the 

customer at any point in time.  Thus, each customer’s individual demand can be thought 

of as a random variable and the local demand values ξi , which represent the total demand 

of all customers in the area, are also random variables.   Since xi and ξi are random 

variables, it follows that the (net) demand values d(i) = ξi - xi are also random variables.31 

 

We further assume that the random variables d(i) are identically distributed, i.e., each 

random variable d(i) has the same probability distribution.   The value of each net 

                                                 
30 This is due to the fundamental property that the sum (difference) of random variables is a random 
variable.  See Springer (1979). 
31 Id.  The term “– xi” is simply the scalar -1 multiplied by the random variable xi, which is also a random 
variable based on the fundamental properties of random variables. 
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demand value d(i) is based on the available generating capacity of the local power plants 

and the behavior of the customers located in the vicinity.  Given that the network 

presented above is based on a contiguous geographic area, we would expect the power 

plants across the network to have been constructed and operate in a relatively consistent 

fashion.  As noted above, individual generating units can operate at different efficiencies 

and under different conditions; however, each demand node in the network includes a 

mix of different power plants that collectively, on average, are not significantly different 

in the efficiency of their operations as compared to any other node in the network. 

Further, the overall network represents an area of relatively similar socio-economic 

conditions.  Thus, we would expect the average customer behavior within each area to 

behave relatively the same.  A residential customer’s demand profile is going to be 

different than, say, a large industrial customer’s, but each geographic area in the network 

represents a mix of different customers that collectively, on average, are not significantly 

different in their demand for electricity as compared to any other node in the network.  

Thus, the assumption that the random variables d(i) are identically distributed is 

reasonable.32 

 

Finally, we claim that the random variables d(i) are independent.  As previously stated, 

each power plant in the network is operated as a stand-alone entity.  Its available capacity 

generally does not depend on the operation of neighboring generating units or even the 

                                                 
32 As noted above in Section 1, weather can play a significant role in the supply of and demand for 
electricity.  This assumption that the values d(i) are identically distributed is further supported if the values 
of the random variables are considered over a time period of similar weather conditions.  For example, we 
would expect customers to behave in a more similar fashion over the summer months than they would over 
the course of an entire calendar year of different weather conditions.    
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behavior of end-use customers. 33  We also assume that each end-use customer included 

in the network consumes electricity independent of other customers and the available 

generating units.  This again is not unreasonable as each customer, regardless of class, 

has a demand profile that is unique based on his or her individual electricity 

requirements.  Since each power plant and each end-use customer behaves independently, 

and each net demand value d(i) includes the aggregate net impact of multiple generating 

units and customers, the assumption that the random variables d(i) are independent is not 

unreasonable. 

 

Therefore, based on the discussion above, we conclude that the demand values d(i) are 

independent, identically distributed, random variables.  According to the Central Limit 

Theorem, we know that for large enough samples, the average value of each random 

variable  d(i) can be approximated by the normal distribution.34  In the context of this 

paper, we will consider the sample size to be a series of net demand values over a 

particular time interval.  Thus, under these assumptions the net demand values of each 

random variable d(i), when considered over an appropriate time period, will 

approximately follow a normal distribution.  Further, we recall that the left-hand-side 

(LHS) values of the remaining inequalities form Section 2 represent the sums of the net 

demand values of the various combinations of nodes in the network.  It follows that these 

                                                 
33 There may be instances where individual power plants are operated in a manner that follows customer 
demand in the area, in which case the available generating capacity is somewhat dependent on the customer 
demand.  However, the  impact of such instances is not significant for purposes of this analysis, particularly 
when considering that each node in the network represents a number of different power plants..  
34 For a more detailed description of the Central Limit Theorem, the reader is referred to Feller (1968).  
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LHS values can also be approximated by the normal distribution.35  Applying this result 

to the remaining inequalities from Section 2 above, our problem can be solved using the 

multivariate normal probability distribution.   

 

Before proceeding with the mathematical formulation, we next note that the assumption 

of normal distribution, and corresponding use of the multivariate normal probability 

distribution, are not uncommon.  In Fundamentals of Probability and Statistics for 

Engineers (2004), Soong offers an analogous example of gasoline consumption, arguing 

that the amount of gasoline consumed by all vehicles of a particular brand will tend to 

behave under a normal distribution.  Consider the following excerpt: 

 

“…(W)hen the randomness in a physical phenomenon is the culmination of many small additive 
random effects, it tends to a normal distribution irrespective of the distributions of individual 
effects.  For example, the gasoline consumption of all automobiles of a particular brand, 
supposedly manufactured under identical processes, differs from one automobile to another.  This 
randomness stems from a wide variety of sources, including, among other things: inherent 
inaccuracies in manufacturing processes, nonuniformities in materials used, differences in weight 
and other specifications, difference in gasoline quality, and different driver behavior.  If one 
accepts the fact that each of these differences contribute to the randomness in gasoline 
consumption, the central limit theorem tells us that it tends to a normal distribution.”36 

 

Obviously, the commodity of gasoline in Soong’s example is analogous to electricity.  

Further, the sources of randomness noted by Soong are comparable to the characteristics 

of power plants (i.e., “manufacturing processes”) and electric consumers (i.e., “drivers”) 

discussed earlier in this section.  An analogous problem to the one in this paper, then, 

would be to determine the probability that sufficient gasoline is manufactured and 

delivered to gas stations to satisfy drivers’ demand.  Under Soong’s arguments, this 

                                                 
35 This is because the sum of independent, normally distributed random variables is a normally distributed 
random variable.  See Ross (2000). 
36 See Soong (2004, pg. 200). 
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problem could be solved using multivariate normal probability distribution, based on the 

assumption that the relevant data are normally distributed courtesy of the Central Limit 

Theorem. 

 

Finally, we note that the multivariate normal probability distribution has been studied 

extensively by others, including Prékopa (1995), Szántai (1985), and Genz and Bretz 

(2009).37  We now proceed with the mathematical formulation of this method. 

                                                 
37 Complete references are provided in the References section at the end of the paper. 
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Methodology 

As discussed above, we assume that the relevant data in our example are normally 

distributed.  In the general case, suppose we have m random variables (demand nodes) 

and that there are k inequalities remaining after the elimination procedure explained in 

Section 2d.  Based on our assumption, we know that each of the values of each of the m 

demand nodes is normally distributed and further, that the LHS values of each of the 

remaining k inequalities, each represented as a linear combination of the m demand 

nodes, is also a normally distributed random variable.  It follows that our problem can be 

stated as finding the multivariate normal probability distribution of all k random variables 

(inequalities), i.e., in our example, the probability that all 12 remaining inequalities are 

satisfied simultaneously.  This is further explained in mathematical notation below. 

 

Per our definitions above, recall that d(i) is the net demand (supply) at node i, which we 

have assumed to be normally distributed for each i = 1,…,m.  The LHS of each inequality 

j can be written as ηj = ∑
=

m

1i

jid(i)a  for each j=1,…,k, where the coefficient aji is 1 or 0.  By 

our assumption, ηj is also a normally distributed random variable for each j.   

 

Next, let η = [η1, η2, …, ηk]
T be the k-dimensional vector representing the LHS values of 

the remaining k inequalities, each as a linear combination of the m random variables 

(demand nodes).  Then η is said to have multivariate normal distribution, denoted by η = 

Nk(µ,Σ), where µ is the k-dimensional vector representing the means (averages) of each 

random variable ηj and Σ is the k×k covariance matrix representing the covariance 



 62 

   

 

 

between each pair of random variables ηi and ηj.
38  Let b be the k-dimensional vector 

representing the right-hand-side (RHS) values of the remaining inequalities, i.e., the sum 

of the applicable transmission capacities.  Our goal, then, is to find the probability P(η ≤ 

b). 

 

A common approach to solving for this probability is to first standardize each of the 

random variables.  Consider the jth inequality, where ηj = aj1d(1) + aj2d(2) + … + ajmd(2) 

≤ bj.  Then ηj is normally distributed with E(ηj) = µj and standard deviation σj.  We 

standardize ηj by subtracting µj and dividing by σj: 

 

ηj ≤ bj � 
j

jj

σ

µη −
≤ 

j

jj

σ

µb −
 

 

Let η’ = [ '

1η , '

2η ,…, '

kη ]T be the vector of standardized random variables (LHS values of 

the remaining inequalities) and let b’ = [ '

1b , '

2b ,…, '

kb ]T be the comparable vector for the 

standardized RHS values.   

 

Finding the probability of a feasible flow in the given stochastic network can thus be 

restated as finding the multivariate normal probability distribution P(η’ ≤ b’).  Examples 

utilizing the multivariate normal distribution method will be provided later on in the 

paper. 

                                                 
38 We will use the notation σi and σij to represent the standard deviation of random variable i and the 
covariance between random variables ηi and ηj, respectively.   
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3b.  Probability Bounding 

The multivariate normal probability method discussed in Section 3a is a direct way to 

estimate the probability of a feasible flow, based on the assumption that all relevant data 

are normally distributed courtesy of the Central Limit Theorem.  Alternatively, we can 

also solve the problem by estimating this probability using bounding techniques. 

 

In our problem, we have k events A1, A2,…, Ak, where each event represents the 

feasibility of one of the k remaining inequalities from Section 2.  As noted in Section 3a 

immediately above, finding the probability of a feasible flow is equivalent to finding the 

probability of the intersection of the remaining k inequalities. Conceptually, the 

intersection operation must include all k events, whereas the union operation need only 

include at least one event.  It follows that the probability of the intersection of k events 

cannot be greater than the probability of the union of these same k events.  That is, 

 

P(A1 I  A2 I  … I  Ak) ≤  P(A1 U  A2 U  … U  Ak).  (1) 

 

Therefore, finding an appropriate upper bound on the probability of the union of the k 

events also provides an upper bound on the probability of the intersection of these same k 

events. 
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Several bounding techniques are available that could be applied to this example.  While 

this paper will focus on the use of two of these methods to solve the problem, it is 

worthwhile to make mention of a few of the other methods that were considered.39 

 

Recall the general relationship between the probability of the intersection of events and 

the probability of the union of these same events in formula (1).  If all k events were 

mutually exclusive, i.e., the occurrence of each event was independent of the other k-1 

events, then the probability of their collective union would simply be the sum of the 

individual probabilities.  In practice, this rarely occurs as we often have dependence 

among some of the events.  Consider the simple example of two events which are not 

independent.  Then the probability that one occurs is impacted by the probability that the 

other occurs, in which case adding the individual probabilities would overstate the 

probability of the union of the events.  Thus, we have the following upper bound: 

 

P(A1 U  A2 U  … U  Ak) ≤ ∑
=

k

1i

i)P(A .    (2) 

 

We note that inequality (2) above, which shows an upper bound on the probability of the 

union of events, was first obtained by Boole (1854).  This upper bound is generally not 

tight.  In fact, it often exceeds one, which is trivial and not very helpful in practice.   

 

                                                 
39 This paper only addresses these alternative methods at a very high level to provide the reader with a 
general understanding of the probability bounding options available to solve the problem.  The specific 
methods chosen to be used for this paper will be discussed in detail later. 
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Alternatively, consider that for each j∈{1,…,k} in inequality (1) above, we have ( )k

j  

different combinations of size j.  We denote by Sj the sum of the probabilities that any j 

of the remaining k events are satisfied simultaneously, where   

 

Sj = )A...AP(A iji

ii1

i 2

j1

1
III∑

≤≤

. 

 

It follows that P(A1 U  A2 U  … U  Ak) = S1 − S2 + ·  ·  ·  + (−1)k−1Sk.  This is referred to as 

the inclusion-exclusion formula because of the rotating signs among the terms in the 

summation between positive and negative.   

 

Bonferroni (1937) utilized the inclusion-exclusion formula to prove the following bounds 

on the probability of the union of events: 

 

P(A1 U  A2 U  … U  Ak) ≤ ∑
=

−
−

m

1i

i
1i S1)( , if m is odd 

P(A1 U  A2 U  … U  Ak) ≥∑
=

−
−

m

1i

i

1i S1)( , if m is even 

 

We observe that if m = k, then we have the inclusion-exclusion formula and an exact 

value for the probability of the union of events, This suggests that these Bonferroni 

inequalities provide tighter bounds as m increases.  Unfortunately, in practice we often do 

not have this much information, which results in the lower and upper bounds not being 

very close together. 
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Thus, the inequalities derived by Boole and Bonferroni typically do not provide sufficient 

approximations for the probability of the union of events so they are not used in this 

paper.40 

 

Other potential bounding techniques that could be applied to this example include 

Binomial Moment Linear Programming, and Closed Form Two-Sided Bounds. The 

former utilizes the optimum values of maximization and minimization linear 

programming problems to provide upper bounds and lower bounds, respectively, on the 

probability of the union (and probability of the intersection) of events.  The constraints in 

these linear programming problems make use of binomial coefficients as well as the 

values Sj defined previously.  In their work On the Existence of a Feasible Flow in a 

Stochastic Transportation Network (1989), Prékopa and Boros utilize Binomial Moment 

Linear Programming to solve illustrative examples.  

 

Prékopa (with Boros, 1989; and with M. Subasi and E. Subasi, 2008) also studied Closed 

Form Two-Sided Bounds on the probability of the union of events based on certain of the 

values  S1, S2, … Sj.
 41   

 

Others who have contributed significantly to the study of probability bounding methods 

include Hailperin (1965), Gao (with Prékopa) (2005), Subasi (2008), and Billinton (with 

Allen, Shahidehpour, and Singh) (1960).42 

 

                                                 
40 The reader is also referred to Prékopa (1988) and Prékopa (2005) .for more details on these methods. 
41 See Prékopa, Subasi, Subasi (2008) for further details on these bounding methods. 
42 More complete references are provided in the References section at the end of this paper. 
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While these aforementioned techniques are valid approaches for bounding the probability 

of a feasible flow, they are not specifically used in this paper.  Rather, in order to 

distinguish this paper from the work of Prékopa and Boros (1989) and other similar 

studies, we will instead focus on two other probability bounding methods: Hunter’s 

Upper Bound and Boolean Probability Bounding.  Both of these methods are discussed in 

more detail below.   
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3c.  Hunter’s Upper Bound  

In Section 3b, we provided some basic inequalities relating to the probability of the union 

and intersection of events.  We continue with some additional relationships to formulate 

Hunter’s Upper Bound. 

 

We denote by C

iA  the complement of event Ai, where  P( C

iA ) = 1 – P(Ai).  DeMorgan’s 

Law provides a succinct relationship between the probabilities of the intersection of 

events and the union of their complements.  Namely,  

 

P(A1 I  A2 I …  I  Ak) = 1 - P( C

1A  U  C

2A  U  … U  C

kA ).        (3) 

 

In other words, the probability that all k events occur simultaneously is the complement 

of the instance when at least one of the k events is not satisfied.  We will use the results 

of DeMorgan’s Law to derive a lower bound on the probability of the intersection of the 

k events.   

 

Consider inequality (2) with the complement events C

1A , C

2A ,…, C

kA  .  Using the result 

of (3) we have the following: 

 

P( C

1A  U  C

2A  U  … U  C

kA )  ≤ ∑
=

k

1i

)P(A C

i
      

� P( C

1A  U  C

2A  U  … U  C

kA )  ≤ ( )∑
=

k

1i

i )P(A - 1  = k – ∑
=

k

1i

i )P(A  
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� – P( C

1A  U  C

2A  U  … U  C

kA ) ≥ ∑
=

k

1i

i )P(A  – k 

� 1 – P( C

1A  U  C

2A  U  … U  C

kA ) ≥ 1 +∑
=

k

1i

i )P(A  – k 

� P(A1 I  A2 I …  I  Ak) ≥ ∑
=

k

1i

i )P(A  – (k – 1)        (4)  

 

This lower bound on the probability of the intersection of events in (4) was first obtained 

by Boole (1854).   

 

Combining (1), (2), and (4), we have  

 

∑
=

k

1i

i )P(A  – (k – 1) ≤ P(A1 I  A2 I  … I  Ak)  

       ≤  P(A1 U  A2 U  … U  Ak)   

       ≤ ∑
=

k

1i

i)P(A .  

  

While (2) does provide an upper bound on the probability of the union of events, (and a 

corresponding upper bound on the probability of their intersection), we strive for a tighter 

bound to promote more precise results.  Hunter’s Bound does just that.43  While the 

multivariate normal probability distribution considered the joint probability of all k 

remaining inequalities, for purposes of Hunter’s Bound we will utilize only the individual 

                                                 
43 For more details on Hunter’s Bound, the reader is referred to Prékopa (1995). 
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probabilities pi and the pairwise joint probabilities pij.  Hunter’s Upper Bound on the 

probability of the union of these events is given by the following:  

 

P(A1 U  A2 U  … U  Ak) ≤ ∑
=

k

1i

i)P(A  – ∑
∈Tj)(i,

ji )AP(A I                   (5) 

  

where each (i,j) is an edge of T, a maximum spanning tree of the complete graph of the k 

events, and the weight of the edge (i,j) is equal to the joint probability pij between events i 

and j.  In the general case, the complete graph is depicted by k nodes, (one for each 

remaining inequality), and an undirected edge connecting each pair of nodes in the graph.   

 

The concept of a maximum spanning tree and a brief description of a commonly used 

approach to solve it, are provided below.   
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Kruskal’s Algorithm for Finding a Maximum Spanning Tree 

In graph theory, we say that a graph is connected if there is a path between every pair of 

nodes.  A tree, then, is an undirected graph in which each pair of nodes is connected by 

exactly one simple path.  From this definition, we note a couple of resulting 

characteristics of a tree:   

– The number of edges in a tree is one less than the number of nodes.   

– There are no cycles in a tree. 44  

 

A tree can include all nodes in a given graph, or a subset of the nodes.  When all nodes in 

a graph are part of a tree, we say that it is a spanning tree because it spans the entire 

graph.  The edges in a graph are often assigned individual values, typically referred to as 

weights.  Hence, a common task is to find a tree with maximum (or minimum) weight.  

For purposes of Hunter’s Upper Bound, we utilize a maximum spanning tree.   

 

For example, consider the undirected, complete graph of n = 5 nodes below.  In the 

context of Hunter’s Upper Bound, this graph can be interpreted as representing 5 possible 

events, where the edge weights are the pairwise joint probabilities of each pair of nodes 

(events).  The edge weights and corresponding ranking are also provided in the 

supporting table. 

 

 

 

                                                 
44 A cycle is a path such that the beginning and ending nodes are the same.  For more information on trees 
and Kruskal’s algorithm, the reader is referred to Algorithms (Dasgupta, Papadimitriou, Vazirani). 
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Edge Weight Rank

(A,B) 0.75 5

(A,C) 0.55 8

(A,D) 0.85 3

(A,E) 0.60 7

(B,C) 0.80 4

(B,D) 0.45 10

(B,E) 0.95 1

(C,D) 0.70 6

(C,E) 0.90 2

(D,E) 0.50 9  

 

 

Kruskal’s algorithm is prescribed according to the following two basic steps: 

a. Select the heaviest edge in the graph and add it to the tree. 

b. Find the next heaviest edge that has not yet been selected and does not create a 

cycle.  Add it to the tree.  Repeat step (b) until the tree has n-1 edges. 

 

We observe from the table above that the heaviest edge is (B,E).  So we add it as the first 

edge in the tree, per step (a) above. 
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Continuing with step (b), we proceed in a similar fashion to add the next heaviest edges 

(C,E) and (A,D) to the tree, respectively. 

 

 

 

 

 

 

 

 

 

 

A

C

E

D

B

0.95

A

C
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D

B

0.95

A
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E

D

B

0.85

0.95

0.90

A
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D

B

0.85

0.95

0.90
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We note that the next heaviest edge is (B,C); however, if we added this edge to the tree, it 

would result in a cycle (E,B,C,E), which violates the definition of a tree.  Thus, we move 

on to the next heaviest edge (A,B).  Since its addition does not create a cycle, we add it to 

the tree according to step (b). 

 

 

 

 

 

 

 

 

 

 

Since we have n-1 edges with no cycles, we conclude that the tree depicted above is 

indeed a spanning tree of total weight 3.45. 45 

 

We will revisit Hunter’s Upper Bound through examples later on in the paper. 

                                                 
45 The edge weights used in this example are arbitrary and intended only to demonstrate the methodology 
of Kruskal’s algorithm.  More practical examples will be provided later in the paper. 
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3d.  Boolean Probability Bounding 

In addition to Hunter’s Upper Bound, another approach to bounding the union of events 

is the Boolean Probability Bounding method.46  This method considers all 2k possible 

combinations of the k events and their complements, and focuses on a subset of these 

combinations for which probabilities are known.   

 

We denote each possible combination I by the set of events which are true as part of the 

combination, where I ⊆ {1,2,3,..., k}.  [For example, suppose we have k = 6.  Then one 

such combination of events is ( 1A I
C

2A I
C

3A I 4A I 5A I
C

6A ), which we would 

represent as {1,4,5}].  Further, suppose we know the probabilities of certain of these 

combinations, specifically the individual stationary probabilities pi for each event i and 

the pairwise joint probabilities pij.  This information can be represented as an m×n matrix 

A, where m = k +  (k choose 2) is the number of combinations with known probabilities 

(individual and pairs), and n = 2k – 1 is the total number of combinations of events, 

excluding the combination where none of the k events is true.  We will return to the 

reason for the exclusion of this event in a moment, but first we continue with the 

formulation of matrix A. 

 

For each combination I with a known probability and all combinations J, we establish the 

following entries for matrix A:   

                                                 
46 For additional details on the Boolean Probability Bounding method, the reader is referred to Prékopa 
(1995). 
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       1  if I ⊂ J for combinations I and J 

aIJ =  
       0  otherwise. 
 

Next, we set up an m×1 vector b representing the known probabilities of each individual 

event and pair of events and establish an n×1 vector x to represent the probability that 

each combination of events is true.  Based on the known probabilities, we have the 

system of equations Ax = b. 

 

This system of equations lends itself to the following linear programming formulation: 47 

 

 max (min)  ∑
=

n

1i

ix  

 s.t.  Ax = b 

      x ≥ 0    

 

If the above LP is solved as a maximization problem, then the optimum value provides an 

upper bound on the probability of the union of the k events, and vice-versa for a 

minimization problem. 

 

Consider the following example of 3 events, A1, A2, and A3, depicted by the Venn 

diagram below, where each combination of events i is denoted by xi. 

 

                                                 
47 The last constraint ensures that the decision variable x takes only non-negative values as it is not possible 
to have a negative probability.   
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Suppose that we know the individual stationary probabilities pi, as well as the pairwise 

joint probabilities pij, for all events i and j.  These values are shown below. 

 

P(A1) = 0.800  P(A1I  A2) = 0.725 

P(A2) = 0.850  P(A1I  A3) = 0.685 

P(A3) = 0.750  P(A2I  A3) = 0.645 

 

Each of these known probabilities can be written as a sum of the sections of Venn 

diagram.  For example,  P(A1) = x1 + x2 + x4 + x5 = 0.800.  The variables xi, then, 

represent the probability that each combination (section) i is satisfied, while the known 

x1

x4

x2
x3

x5 x6

x7

A3

A1 A2

x1

x4

x2
x3

x5 x6

x7

A3

A1 A2
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probabilities listed above serve as the RHS vector b in the linear programming 

formulation.   

 

Extrapolating this concept to the entire diagram and all known probabilities, we have the 

following linear program: 

 

max (min)  ∑
=

7

1i

ix  

s.t.  x1 + x2         + x4 + x5                   =  0.800 

          x2 + x3 + x4         + x6         =  0.850 

                         x4 + x5 + x6 + x7  =  0.750 

          x2        + x4                         =  0.725 

                         x4 + x5                 =  0.685 

                         x4         + x6         =  0.645 

       xi ≥ 0 for all i 

   

Before proceeding to solve the LP in this example, we return to the formulation of the 

matrix A above, where we excluded one possible event. If we had created a variable x0 

representing the event ( C

1A I
C

2A I
C

3A ), then we would have had one more equality 

constraint 

x0+ x1 + x2+ x3 + x4 + x5+ x6+ x7 = 1 
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and this would be the only constraint where x0 is represented.  The LHS of this constraint, 

though, would be the same as the objective function, in which case the resulting optimum 

value will always be 1 (assuming the LP is feasible).  In terms of the formulation of an 

upper bound, this would be a trivial result.  For this reason, the variable x0 can be 

regarded as a slack variable and excluded from the LP formulation.  Hence, we use n = 2k 

– 1 and combination J cannot represent the empty set. 

 

Several solver packages are available to solve the above LP.  For purposes of this 

particular example, we will use AMPL.  The AMPL code (shown as a maximization 

problem) and associated data file are provided below. 
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When the objective function is maximized, the resulting probability is 0.99: 48 

 

 

We confirm that the optimal solution is feasible: 

 

MAX x1 x2 x3 x4 x5 x6 x7 = Sum

Objective 0.035  0.080  0.125  0.645  0.040  -      0.065  = 0.990  

Constraint 1 0.035  0.080  -      0.645  0.040  -      -      = 0.800

Constraint 2 -      0.080  0.125  0.645  -      -      -      = 0.850

Constraint 3 -      -      -      0.645  0.040  -      0.065  = 0.750

Constraint 4 -      0.080  -      0.645  -      -      -      = 0.725

Constraint 5 -      -      -      0.645  0.040  -      -      = 0.685

Constraint 6 -      -      -      0.645  -      -      -      = 0.645  

 

                                                 
48 AMPL results from CPLEX solver package. 
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Alternatively, when the objective function is minimized, the optimum value is slightly 

less, at 0.955: 

 

MIN x1 x2 x3 x4 x5 x6 x7 = Sum

Objective -      0.115  0.090  0.610  0.075  0.035  0.030  = 0.955  

Constraint 1 -      0.115  -      0.610  0.075  -      -      = 0.800

Constraint 2 -      0.115  0.090  0.610  -      0.035  -      = 0.850

Constraint 3 -      -      -      0.610  0.075  0.035  0.030  = 0.750

Constraint 4 -      0.115  -      0.610  -      -      -      = 0.725

Constraint 5 -      -      -      0.610  0.075  -      -      = 0.685

Constraint 6 -      -      -      0.610  -      0.035  -      = 0.645  

These results imply the following bounds on the probability of the union of events in this 

example: 

0.955 ≤ P( 1A U 2A U 3A )≤ 0.990. 

It follows that the probability of the intersection of events P( 1A I 2A I 3A ) is also 

bounded above by 0.99; however we cannot say solely from these bounds how the 

probability of the intersection compares to 0.955, the lower bound on the probability of 

the union. 

 

The Boolean Probability Bounding method will be applied through examples later on in 

the paper. 
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4  NUMERICAL EXAMPLE #1  
    Summer Demand & Average Annual Generating Capacity 
 

4a.  Assumptions 

For the first example, we consider customer demand in the summer months.  Specifically, 

we will focus on the hourly demand of a subset of FirstEnergy’s customers from June 1, 

2010 – August 31, 2010, which is comprised of 2,208 hourly data points.  As noted in the 

Introduction section above, customer load is typically highest in the summer months, so 

evaluating the feasibility of the network in the summer should be a strong indicator of the 

feasibility of the network year round. 

 

As for the corresponding generating capacity, (which, like the customer demand 

mentioned above, is also based on a subset of FirstEnergy’s total fleet), we assume that 

the average capacity across all applicable generating units is approximately 78%.  This is 

based on the average annual capacity factor achieved by FirstEnergy’s entire generation 

fleet from 2006-2010.  The table below provides historical average annual generating 

capacity factors for all of FirstEnergy, by fuel type. 

 

Fuel Type 2006 2007 2008 2009 2010 Average

Nuclear 87% 89% 93% 84% 88% 88%

Coal 89% 80% 84% 72% 76% 80%

Other * 69% 71% 64% 31% 52% 57%

* Other consists primarily of natural gas, oil, hydro, and wind  
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When applying the average factors calculated above to the total available generating 

capacity applicable to this example (14,975 MW), we see that the weighted average 

capacity factor is approximately 78%. 

 

Using Average Capacity Factors

Nuclear 4,200 3,696 88.0%

Coal 8,110 6,488 80.0%

Other 2,665 1,519 57.0%

14,975 11,703 78.2%

Total 

(MW)

Average 

(MW)

Average 

Factor
Fuel Type

 

 

For purposes of this particular example, hourly capacity values for each applicable 

generating unit were randomly generated via a normal distribution based on maximum 

available capacities and assumed arithmetic means and standard deviations.49  These 

hourly generating capacity values were then aligned with the actual customer demand 

data to represent hourly net demand (supply) values at each node in the network.  The 

results are presented in the table below. 

 

Example #1 Assumptions

Nuclear 4,200 3,502 83.4%

Coal 8,110 6,652 82.0%

Other 2,665 1,524 57.2%

14,975 11,678 78.0%

Total 

(MW)

Average 

Factor

Average 

(MW)
Fuel Type

 

 

Thus, we see that while the average factors used in this example are slightly different 

than the prior table by fuel type, the overall result is consistent at approximately 78%. 
                                                 
49 The reasonableness of the assumption of normal distribution is supported by the Central Limit Theorem, 
as discussed above in Section 3.  Random number generation was performed in Microsoft Excel. 
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Using the historical average annual generating capacity factors to derive the hourly 

generating capacity values in this example is a fairly conservative assumption for a 

couple of reasons: (i) The summer generating capacity is generally higher in the summer 

months than the rest of the year to accommodate the summer customer demand.  For 

example, planned power plant outages are generally scheduled more often in the winter 

months when customer demand is lower, thus driving down the annual average 

generating capacity as compared to the available capacity in the summer months only.  

(ii) Using the straight 5-year average of historical capacity factors, as opposed to a 

normalized approach, may include certain extraordinary occurrences that are not 

reflective of normal operations and therefore, are driving down the 5-year average 

relative to expected performance going forward.  Nonetheless, this assumption is 

reasonable for our initial example and we will proceed accordingly. 

 

Finally, we assume for purposes of this paper that transmission capacities are constant. 50 

 

 

                                                 
50 Historical hourly customer demand data, available generating capacity, and historical average generation 
capacity factors are based on publicly available information from FirstEnergy.  Again, the data is based 
only on a subset of FirstEnergy’s  assets. 
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4b.  Elimination of Trivial Inequalities by Upper Bounds 

Recall the elimination procedure in Section 2d where we eliminated all redundant 

inequalities.  We will consider next any additional remaining trivial inequalities, i.e., 

those inequalities  whose LHS is always less than or equal to its RHS.  Since these trivial 

inequalities are automatically satisfied, they can also be removed from the problem 

formulation.  To put it in terms of electric power flow, we can remove any inequality 

whose maximum net demand (LHS) is always less than or equal to the available 

transmission capacity (RHS) because feasibility is guaranteed.   

 

In order to determine which inequalities can be removed in this step, we need to identify 

(i) transmission capacity values yij; and (ii) upper bounds on the demands for each set S 

appearing on the LHS of the remaining inequalities.  The picture below provides the 

installed transmission capacity values for each edge in the network formulation (in MW), 

based on an applicable subset of FirstEnergy’s Transmission assets.   
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Next, we need to determine upper bounds on the demand values d(i) = ξi - xi for each 

node i.  In this particular example, based on the assumptions described in Section 4a 

above, we have the following summarized demand and generating capacity data: 51 

 

Demand ξi Generating Capacity xi

Min Max Average Min Max Average

1 849 2,006 1,353 0 1,663 1,348

2 1,827 5,024 3,249 0 7,921 6,157

3 1,503 4,043 2,562 0 3,280 2,744

4 319 964 590 0 895 735

5 1,028 3,298 1,868 0 1,085 694

Node

 

 

In terms of feasibility of the network, the extreme case occurs when available generating 

capacity is zero at a particular demand node i and the corresponding local demand value 

is at its respective maximum. 52   Accordingly, for purposes of finding an upper bound on 

the LHS of the remaining inequalities, we consider the following maximum net demand 

values. 

 

i ξi

1 2,006

2 5,024

3 4,043

4 964

5 3,298
 

 

                                                 
51 All demand and generating capacity values presented in terms of MW. 
52 Available generating capacity may be zero in instances of power plant outages.  These outages can be 
planned, (e.g., nuclear refueling), or forced (e.g., unexpected breakdown or malfunction of equipment).  
Either way, the feasibility of the network needs to take these extreme events into consideration.  
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We return now to the remaining 21 inequalities from Section 2d and plug in the 

corresponding LHS and RHS values based on the information above to determine which 

ones are trivial and can be removed. 

 

2,006 5,024 4,043 964 3,298 LHS 2,060 7,075 2,430 1,870 180 RHS

(1) ξ1 - x1 = 2,006 < y12 = 2,060

(2) ξ2 - x2 = 5,024 < y12 + y23 + y24 = 11,565

(3) ξ3 - x3 = 4,043 < y23 + y35 = 8,945

(4) ξ4 - x4 = 964 < y24 + y45 = 2,610

(5) ξ5 - x5 = 3,298 y35 + y45 = 2,050

(6) ξ1 - x1 + ξ2 - x2 = 7,030 < y23 + y24 = 9,505

(7) ξ2 - x2 + ξ3 - x3 = 9,067 y12 + y24 + y35 = 6,360

(8) ξ2 - x2 + ξ4 - x4 = 5,988 < y12 + y23 + y45 = 9,315

(9) ξ3 - x3 + ξ5 - x5 = 7,341 y23 + y45 = 7,255

(10) ξ4 - x4 + ξ5 - x5 = 4,262 < y24 + y35 = 4,300

(11) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 = 11,073 y24 + y35 = 4,300

(12) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 = 7,994 y23 + y45 = 7,255

(13) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 = 10,030 y12 + y35 + y45 = 4,110

(14) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 = 12,365 y12 + y24 + y45 = 4,670

(15) ξ2 - x2 + ξ4 - x4 + ξ5 - x5 = 9,286 < y12 + y23 + y35 = 11,005

(16) ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 8,305 < y23 + y24 = 9,505

(17) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 = 12,037 y35 + y45 = 2,050

(18) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 + ξ5 - x5 = 11,292 y23 + y35 = 8,945

(19) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 = 14,371 y24 + y45 = 2,610

(20) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 13,329 y12 = 2,060

(21) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 15,335 0 = 0  

 

The table above shows that the following 9 inequalities can be removed from the 

formulation because they are trivial:  (1), (2), (3), (4), (6), (8), (10), (15), and (16).  These 

inequalities are trivial because in the extreme case where no generating capacity is 

available and the local demand is at its relative maximum, there is still sufficient 

transmission capacity available for a feasible flow in the network.  The remaining 12 

inequalities are summarized in the next table below, renumbered in numerical order: 
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(1) ξ5 - x5 ≤ y35 + y45

(2) ξ2 - x2 + ξ3 - x3 ≤ y12 + y24 + y35

(3) ξ3 - x3 + ξ5 - x5 ≤ y23 + y45

(4) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 ≤ y24 + y35

(5) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 ≤ y23 + y45

(6) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y12 + y35 + y45

(7) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y12 + y24 + y45

(8) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y35 + y45

(9) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 + ξ5 - x5 ≤ y23 + y35

(10) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y24 + y45

(11) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y12

(12) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ 0
 

 

Decreasing the number of total inequalities from the original 31 down to 12 is a 

significant enhancement in terms of solving the problem more efficiently. 

 

We can now proceed to solve the problem through the three different methods discussed 

above in Section 3. 
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4c.  Solve By Method 1 – Multivariate Normal Probability 

As discussed in Section 3a, we assume that the net demand (supply) ξi – xi is a normally 

distributed random variable for each node i, and that the LHS of each of the remaining 12 

inequalities is also normally distributed as a linear combination of normally distributed 

random variables. 

 

Recall the notation used in Section 3a.  We denote the LHS of each of the remaining 

inequalities by ηj, for j=1,…,12.  Further, we let '

jb  be the normalized RHS of each 

inequality, 

'

jb  = 
j

jj

σ

µ - b
, 

where bj is the initial (non-normalized) RHS value of inequality j, and µj and σj represent 

the average and standard deviation of the initial (non-normalized) LHS value of 

inequality j, respectively.  Denote by b’ the 12×1 vector of all normalized RHS values 

and by η’ the corresponding normalized LHS values. 

 

Our objective for solving the problem via this method is to find the multivariate normal 

probability distribution of the remaining inequalities, P(η’≤ b’).  We will utilize a solver 

package known as NORTEST to compute this probability.53  NORTEST requires the 

following information as input values: 

(1) Coefficients of Correlation, denoted ρij, for each pair of random variables ηi and ηj 

(2) Normalized RHS values '

jb of each remaining inequality j 

                                                 
53 NORTEST solver developed by Dr. Tamas Szántai (Budapest University of Technology and 
Economics). 
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First, we consider the Coefficient of Correlation matrix.  Based on the hourly demand and 

generating capacity data described in Section 4a, we can compute the following averages, 

standard deviations and variances for the random variables ηj associated with each 

remaining inequality. 

 

1 1,174 449 201,212

2 -3,090 1,620 2,623,435

3 993 1,070 1,144,496

4 -3,085 1,815 3,294,744

5 -3,048 1,451 2,104,382

6 -3,234 1,723 2,969,247

7 -1,916 1,915 3,667,697

8 -3,229 1,920 3,686,833

9 -1,874 1,735 3,011,757

10 -1,911 2,121 4,499,319

11 -2,060 2,024 4,097,741

12 -2,055 2,231 4,975,640

σ(ηj)E(ηj) σ
2
(ηj)Inequality

 

 

Next we need to find the Covariance Matrix representing the covariance values between 

each pair of remaining inequalities.54  

 

Covariance Matrix

1 2 3 4 5 6 7 8 9 10 11 12

1 201,212 421,525 391,928 501,681 353,082 463,641 622,736 543,798 554,293 702,893 664,853 745,010

2 421,525 2,623,435 1,312,482 2,887,350 2,131,101 2,758,143 3,044,960 3,022,058 2,552,625 3,308,875 3,179,668 3,443,583

3 391,928 1,312,482 1,144,496 1,509,801 863,381 1,418,631 1,704,410 1,615,949 1,255,309 1,901,729 1,810,558 2,007,877

4 501,681 2,887,350 1,509,801 3,294,744 2,444,471 3,045,197 3,389,031 3,452,590 2,946,152 3,796,425 3,546,878 3,954,272

5 353,082 2,131,101 863,381 2,444,471 2,104,382 2,301,311 2,484,182 2,614,681 2,457,463 2,797,552 2,654,392 2,967,762

6 463,641 2,758,143 1,418,631 3,045,197 2,301,311 2,969,247 3,221,784 3,256,300 2,764,952 3,508,838 3,432,888 3,719,941

7 622,736 3,044,960 1,704,410 3,389,031 2,484,182 3,221,784 3,667,697 3,565,856 3,106,919 4,011,768 3,844,521 4,188,593

8 543,798 3,022,058 1,615,949 3,452,590 2,614,681 3,256,300 3,565,856 3,686,833 3,158,479 3,996,388 3,800,098 4,230,630

9 554,293 2,552,625 1,255,309 2,946,152 2,457,463 2,764,952 3,106,919 3,158,479 3,011,757 3,500,446 3,319,245 3,712,772

10 702,893 3,308,875 1,901,729 3,796,425 2,797,552 3,508,838 4,011,768 3,996,388 3,500,446 4,499,319 4,211,731 4,699,281

11 664,853 3,179,668 1,810,558 3,546,878 2,654,392 3,432,888 3,844,521 3,800,098 3,319,245 4,211,731 4,097,741 4,464,951

12 745,010 3,443,583 2,007,877 3,954,272 2,967,762 3,719,941 4,188,593 4,230,630 3,712,772 4,699,281 4,464,951 4,975,640  

 

                                                 
54 Covariance Matrix solved using Microsoft Excel.  In order to ensure that the covariance matrix is 
positive definite, the variance values down the diagonal of the covariance matrix were rounded up slightly. 
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Using the covariance values for each pair of random variables, along with the individual 

standard deviations, we can compute the Coefficient of Correlation Matrix. 55 

 

Correlation Coefficient Matrix

ρij 1 2 3 4 5 6 7 8 9 10 11 12

1 1.000000 0.580177 0.816717 0.616155 0.542607 0.599834 0.724904 0.631369 0.712037 0.738735 0.732194 0.744578

2 0.580177 1.000000 0.757445 0.982095 0.906998 0.988231 0.981634 0.971720 0.908117 0.963101 0.969782 0.953127

3 0.816717 0.757445 1.000000 0.777502 0.556331 0.769554 0.831898 0.786672 0.676135 0.838046 0.836052 0.841406

4 0.616155 0.982095 0.777502 1.000000 0.928350 0.973602 0.974918 0.990621 0.935264 0.986031 0.965302 0.976633

5 0.542607 0.906998 0.556331 0.928350 1.000000 0.920640 0.894179 0.938706 0.976146 0.909165 0.903921 0.917154

6 0.599834 0.988231 0.769554 0.973602 0.920640 1.000000 0.976285 0.984180 0.924601 0.959990 0.984157 0.967806

7 0.724904 0.981634 0.831898 0.974918 0.894179 0.976285 1.000000 0.969707 0.934810 0.987565 0.991684 0.980499

8 0.631369 0.971720 0.786672 0.990621 0.938706 0.984180 0.969707 1.000000 0.947854 0.981223 0.977678 0.987765

9 0.712037 0.908117 0.676135 0.935264 0.976146 0.924601 0.934810 0.947854 1.000000 0.950911 0.944837 0.959100

10 0.738735 0.963101 0.838046 0.986031 0.909165 0.959990 0.987565 0.981223 0.950911 1.000000 0.980878 0.993193

11 0.732194 0.969782 0.836052 0.965302 0.903921 0.984157 0.991684 0.977678 0.944837 0.980878 1.000000 0.988826

12 0.744578 0.953127 0.841406 0.976633 0.917154 0.967806 0.980499 0.987765 0.959100 0.993193 0.988826 1.000000  

 

Next, we need to calculate the normalized RHS values '

jb .  Again, based on the hourly 

data described in Section 4a, we can compute the average µj and standard deviation σj of 

the random variable ηj associated with each remaining inequality.  The initial RHS values 

bj are also known based on the assumed Transmission capacities provided in Section 4b.  

Thus, we have the following values: 

 

                                                 

55 Recall that the Coefficient of Correlation ρij between random variables ηi and ηj is given by ρij = 
ji

ij

σσ

σ
, 

where σj is the standard deviation of random variable j and σij is the covariance between random variables i 
and j. 
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1 2,050 1,174 449 1.952661

2 6,360 -3,090 1,620 5.834415

3 7,255 993 1,070 5.853807

4 4,300 -3,085 1,815 4.068604

5 7,255 -3,048 1,451 7.102224

6 4,110 -3,234 1,723 4.262147

7 4,670 -1,916 1,915 3.438899

8 2,050 -3,229 1,920 2.749528

9 8,945 -1,874 1,735 6.233994

10 2,610 -1,911 2,121 2.131380

11 2,060 -2,060 2,024 2.035392

12 0 -2,055 2,231 0.921406

b'jInequality RHS E(ηj) σ(ηj)

 

 

The Coefficients of Correlation and normalized RHS values are entered into the 

NORTEST solver, which proceeds to solve the multivariate normal probability.  The 

output from NORTEST is provided in the next table. 

  Results for the distribution function

  -------------------------------------

  Error code = 0

  Estimated value (crude) = 0.820500

  Std. deviation (crude) = 0.003838

  Time = 0.007812

  SADMVN value = 0.818375

  SADER value = 0.000019

  Time = 0.023438

  Lower bound (0,9) = 0.818380

  Time = 0.000000

  Error code = 0

  Estimated value = 0.818380

  Std. deviation = 0.000000

  Time = 0.000000

  Efficiency = ***********

  Upper bound (1,8) = 0.818380

  Time = 0.007812

  -------------------------------------  

The above result indicates that the probability of a feasible flow in our network is 

approximately 0.818375. 
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4d.  Solve By Method 2 – Hunter’s Bound 

Before proceeding with Hunter’s Upper Bound on the probability of the union of the 

remaining 12 inequalities, we will first derive a lower bound on the intersection using 

inequality (4) from Section 3b above.  All we need for this calculation are the individual 

probabilities for each of the remaining 12 inequalities.  These probabilities can be 

calculated using NORTEST and the results are provided below. 

 

Inequality pi

1 0.974570

2 1.000000

3 1.000000

4 0.999976

5 1.000000

6 0.999990

7 0.999708

8 0.997016

9 1.000000

10 0.983471

11 0.979094

12 0.821581

11.755406  

 

Thus, we have the following lower bound: 

P(A1 I  A2 I …  I  A12) ≥ ∑
=

12

1i

i )P(A  – (k – 1) 

� P(A1 I  A2 I …  I  A12) ≥ 11.755406  – (12 – 1) 

� P(A1 I  A2 I …  I  A12) ≥ 0.755406   

 

We conclude the probability of a feasible flow in the transportation network in our 

example is at least 0.755406.  We note that the result of the multivariate normal 

distribution from Section 4c was 0.818375, which exceeds this lower bound. 
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Now we turn our attention to Hunter’s Upper Bound.  Recall the definition of Hunter’s 

Upper Bound on the union of k events A1, A2,…, Ak.  As explained in Section 3b,  

 

P(A1 U  A2 U  … U  Ak) ≤ ∑
=

k

1i

i)P(A  - ∑
∈Tj)(i,

ji )AP(A I , 

  

where (i,j) are the edges of T, a maximum spanning tree of the complete graph of the k 

events, with the weight of the edge (i,j) equal to the joint probability pij between events i 

and j. 56 

 

The first term on the RHS of the inequality is simply the sum of the individual stationary 

probabilities, which is equal to 11.755406, as provided above.  In order to calculate the 

second term on the RHS of the inequality above, we need to first identify a maximum 

spanning tree of the complete graph.  The pairwise joint probabilities pij, which are used 

as the edge weights in the complete graph, are provided below as calculated by 

NORTEST. 

 

Pairwise Joint Probabilities

pij 1 2 3 4 5 6 7 8 9 10 11 12

1 0.974570 0.974570 0.974566 0.974570 0.974568 0.974525 0.973035 0.974570 0.965204 0.961851 0.818381

2 0.974570 1.000000 0.999976 1.000000 0.999990 0.999708 0.997016 1.000000 0.983471 0.979094 0.821581

3 0.974570 1.000000 0.999976 1.000000 0.999990 0.999708 0.997016 1.000000 0.983471 0.979094 0.821581

4 0.974566 0.999976 0.999976 0.999976 0.999975 0.999708 0.997016 0.999976 0.983471 0.979094 0.821581

5 0.974570 1.000000 1.000000 0.999976 0.999990 0.999708 0.997016 1.000000 0.983471 0.979094 0.821581

6 0.974568 0.999990 0.999990 0.999975 0.999990 0.999708 0.997016 0.999990 0.983471 0.979094 0.821581

7 0.974525 0.999708 0.999708 0.999708 0.999708 0.999708 0.997015 0.999708 0.983471 0.979094 0.821581

8 0.973035 0.997016 0.997016 0.997016 0.997016 0.997016 0.997015 0.997016 0.983470 0.979094 0.821581

9 0.974570 1.000000 1.000000 0.999976 1.000000 0.999990 0.999708 0.997016 0.983471 0.979094 0.821581

10 0.965204 0.983471 0.983471 0.983471 0.983471 0.983471 0.983471 0.983470 0.983471 0.977322 0.821581

11 0.961851 0.979094 0.979094 0.979094 0.979094 0.979094 0.979094 0.979094 0.979094 0.977322 0.821581

12 0.818381 0.821581 0.821581 0.821581 0.821581 0.821581 0.821581 0.821581 0.821581 0.821581 0.821581  

                                                 
56 The complete graph in this case is depicted by 12 nodes, (one for each constraint), and an undirected 
edge connecting each pair of nodes in the graph. 
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We note that we have 
2

1)k(k −
 = 66 total edges in the complete graph.  We proceed by 

Kruskal’s algorithm to find a maximum spanning tree.  The tables below show the 

ranking of the weights of the edges in descending order and the corresponding decision as 

to whether to add the edge to the tree (denoted “Tree”) or not to add it because it creates a 

cycle (denoted “Cycle”).  Once we have k-1 = 11 edges in the tree, then the algorithm 

terminates. 

No. Edge Weight Decision No. Edge Weight Decision No. Edge Weight Decision

1 (2,3) 1.000000 Tree 23 (3,8) 0.997016 Cycle 45 (10,11) 0.977322 Cycle

2 (2,5) 1.000000 Tree 24 (4,8) 0.997016 Cycle 46 (1,2) 0.974570 Tree

3 (2,9) 1.000000 Tree 25 (5,8) 0.997016 Cycle 47 (1,3) 0.974570 Cycle

4 (3,5) 1.000000 Cycle 26 (6,8) 0.997016 Cycle 48 (1,5) 0.974570 Cycle

5 (3,9) 1.000000 Cycle 27 (8,9) 0.997016 Cycle 49 (1,9) 0.974570 Cycle

6 (5,9) 1.000000 Cycle 28 (7,8) 0.997015 Cycle 50 (1,6) 0.974568 Cycle

7 (2,6) 0.999990 Tree 29 (2,10) 0.983471 Tree 51 (1,4) 0.974566 Cycle

8 (3,6) 0.999990 Cycle 30 (3,10) 0.983471 Cycle 52 (1,7) 0.974525 Cycle

9 (5,6) 0.999990 Cycle 31 (4,10) 0.983471 Cycle 53 (1,8) 0.973035 Cycle

10 (6,9) 0.999990 Cycle 32 (5,10) 0.983471 Cycle 54 (1,10) 0.965204 Cycle

11 (2,4) 0.999976 Tree 33 (6,10) 0.983471 Cycle 55 (1,11) 0.961851 Cycle

12 (3,4) 0.999976 Cycle 34 (7,10) 0.983471 Cycle 56 (2,12) 0.821581 Tree

13 (4,5) 0.999976 Cycle 35 (9,10) 0.983471 Cycle 57 (3,12) 0.821581 N/A

14 (4,9) 0.999976 Cycle 36 (8,10) 0.983470 Cycle 58 (4,12) 0.821581 N/A

15 (4,6) 0.999975 Cycle 37 (2,11) 0.979094 Tree 59 (5,12) 0.821581 N/A

16 (2,7) 0.999708 Tree 38 (3,11) 0.979094 Cycle 60 (6,12) 0.821581 N/A

17 (3,7) 0.999708 Cycle 39 (4,11) 0.979094 Cycle 61 (7,12) 0.821581 N/A

18 (4,7) 0.999708 Cycle 40 (5,11) 0.979094 Cycle 62 (8,12) 0.821581 N/A

19 (5,7) 0.999708 Cycle 41 (6,11) 0.979094 Cycle 63 (9,12) 0.821581 N/A

20 (6,7) 0.999708 Cycle 42 (7,11) 0.979094 Cycle 64 (10,12) 0.821581 N/A

21 (7,9) 0.999708 Cycle 43 (8,11) 0.979094 Cycle 65 (11,12) 0.821581 N/A

22 (2,8) 0.997016 Tree 44 (9,11) 0.979094 Cycle 66 (1,12) 0.818381 N/A  

 

The results of Kruskal’s algorithm, including the associated spanning tree, are provided 

below. 



 96 

   

 

 

No. Edge Weight

1 (2,3) 1.000000

2 (2,5) 1.000000

3 (2,9) 1.000000

4 (2,6) 0.999990

5 (2,4) 0.999976

6 (2,7) 0.999708

7 (2,8) 0.997016

8 (2,10) 0.983471

9 (2,11) 0.979094

10 (1,2) 0.974570

11 (2,12) 0.821581

10.755406  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

We note that the edges added to the tree are all connected to node 2 directly, which 

confirms that we do not have a cycle.   

1
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0.999976



 97 

   

 

 

 

It follows that Hunter’s Upper Bound on the probability of the union of the 12 events is 

 

P(A1 U  A2 U  … U  Ak)  ≤  11.755406 – 10.755406 = 1.000000. 

 

In terms of probability, this is a trivial result as all probabilities are less than or equal to 1, 

by definition.  Nonetheless, as indicated in Section 3b, this result also serves as an upper 

bound on the probability of the intersection of the remaining events.   

 

Thus, combining Hunter’s Upper Bound with the lower bound results presented earlier in 

this section, we have the following: 

 

0.755406  ≤ P(A1 I  A2 I …  I  A12) ≤  1.000000. 

 

We conclude that the probability of a feasible flow in our example is between these 

bounds.  This range is validated by the results of the multivariate normal distribution 

from Section 4c, which indicated that the probability of a feasible flow is 0.818375. 
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4e.  Solve By Method 3 – Boolean Probability Bounding 

As noted above in Section 3c, the Boolean Probability Bounding method finds upper and 

lower bounds on the probability of the union of events by utilizing linear programming 

and known probabilities.  Similar to the previous discussion on Hunter’s Upper Bound, 

we will use the individual stationary probabilities pi and the joint pairwise probabilities pij 

for purposes of this example.  These values have already been provided in Section 4d. 

 

In our example, we have k=12.  Using the notation from Section 3c, we denote each 

possible combination of events I  by the events which are true as part of the combination, 

where  I ⊆ {1,2,3,...,12}.  For each combination I with a known probability and all 

combinations J, we can establish the following entries for an m × n matrix A, consistent 

with the methodology discussed in Section 3c:   

 
       1  if I ⊂ J for combinations I and J 

aIJ =  
       0  otherwise. 
 

In this example, m = 78 (the number of known probabilities, 12 individual and 66 pairs) 

and  n = 212 – 1 = 4,095. 57 

 

Next, we set up a 78× 1 vector b representing the known probabilities of each individual 

event and pair of events.  A brief excerpt of vector b is provided below. 

 

                                                 
57 Matrix A is too large to present in its entirety, so it is just discussed in general terms.   For purposes of 
this example, matrix A was constructed using Microsoft Excel. 
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p1 0.974570

p2 1.000000

p3 1.000000

… …

p10 0.983471

p11 0.979094

p12 0.821581

p1,2 0.974570

p1,3 0.974570

p1,4 0.974566

… …

p10,11 0.977322

p10,12 0.821581

p11,12 0.821581

=b =

 

 

Finally, let x be an n×1 vector (decision variable).  We now have the following LP.   

 

 max (min)  ∑
=

4,095

1i

ix  

 s.t.  Ax = b 

      x ≥ 0    

 

This LP can be solved using a number of different solver packages; however, for 

purposes of this example, we will utilize MOSEL.  The MOSEL code is provided 

below.58  

 

                                                 
58 The associated data file is too large to present in this paper.  However, the format is consistent with the 
AMPL data file shown in the example in Section 3c. 
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When the objective function is solved as a maximum, we see that the upper bound on the 

union of the 12 events is 1, as presented in the output below from MOSEL. 
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When the LP is instead solved as a minimization problem, we obtain a different optimal 

solution, but the same optimum value of 1.  These results imply the following bounds: 

 

1 ≤ P( 1A U 2A U …U 12A ) ≤ 1 

� P( 1A U 2A U …U 12A ) = 1. 

 

Given that more than one of the individual probabilities pi is equal to 1, it makes sense 

that the probability of the union of all 12 events, i.e., the probability that at least one of 

the events is satisfied, is equal to 1. 
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As discussed in Section 3b, we know that an upper bound on the probability of the union 

of events is also an upper bound on the probability of the intersection of all 12 events.  

Thus, we have the following:  

 

P( 1A I 2A I …I 12A ) ≤ 1. 

 

This again is a trivial result.  However, it is worth noting that this upper bound is 

consistent with Hunter’s Upper Bound and that the result from the multivariate normal 

distribution method fits within this bound.  
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4f.  Summary of Results 

The results of this first example across the three methods are consistent -- the multivariate 

normal distribution method provided the most precise probability, and this result was also 

within the bounds generated via Hunter’s Upper Bound and the Boolean Probability 

Bounding methods.  Thus, we conclude that the probability of a feasible flow in the 

network formulation in Example #1 is approximately 82%.   

 

Recall that our generating capacity assumptions for this example were relatively 

conservative, which suggests that the probability could improve with more aggressive 

assumptions.  Hence, we proceed with another example. 
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5  NUMERICAL EXAMPLE #2  
    Summer Demand & Maximum Annual Generating Capacity 
 

5a.  Assumptions 

Consistent with the first example, Example #2 will consider customer demand in the 

summer months, i.e., hourly demand data from June 1, 2010 – August 31, 2010, which is 

comprised of 2,208 hourly data points.  As noted in the Introduction section above, 

customer load (and generating capacity) are typically highest in the summer months, so 

evaluating the feasibility of the network in the summer should be a strong indicator of the 

feasibility of the network year round. 

 

Instead of using the historical average annual generating capacity factors as we did in 

Example #1, this time we will incorporate a more aggressive approach and assume that 

the average hourly capacity factor across all applicable generating units is approximately 

86%.  This figure represents the weighted average of the maximum capacity factors for 

each fuel type within FirstEnergy’s overall generating fleet from 2006-2010. Returning to 

the historical performance of FirstEnergy’s entire generating fleet, we note the historical 

maximum capacity factors by fuel type. 

 

Fuel Type 2006 2007 2008 2009 2010 MAX

Nuclear 87% 89% 93% 84% 88% 93%

Coal 89% 80% 84% 72% 76% 89%

Other * 69% 71% 64% 31% 52% 71%

* Other consists primarily of natural gas, oil, hydro, and wind  
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If these maximum capacity factors are applied to the total available generating capacity 

relevant to this example (14,975 MW), we see that the weighted average is approximately 

86.9%.59 

 

Using MAX Capacity Factors

Nuclear 4,200 3,906 93.0%

Coal 8,110 7,218 89.0%

Other 2,665 1,892 71.0%

14,975 13,016 86.9%

Fuel Type
Total 

(MW)

Average 

(MW)

Average 

Factor

 

 

Similar to Example #1, the hourly capacity values for each applicable generating unit 

were randomly generated via a normal distribution based on maximum available 

capacities and assumed arithmetic means and standard deviations.  These hourly 

generating capacity values were then aligned with the actual customer demand data to 

represent hourly net demand (supply) values at each node in the network.   

Applying this approach with the aforementioned assumptions, the resulting average 

capacity factors, by fuel type, are summarized in the table below. 

 

Example #2 Assumptions

Nuclear 4,200 3,932 93.6%

Coal 8,110 7,217 89.0%

Other 2,665 1,752 65.7%

14,975 12,901 86.2%

Fuel Type
Total 

(MW)

Average 

(MW)

Average 

Factor

 

 

                                                 
59 The total available generating capacity (in MW) did not change from Example #1 – only the average 
capacity across the 2,208 hourly data points is impacted by this modified assumption. 
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We note that the overall weighted average generating capacity factor assumed in 

Example #2 is approximately 86.2%, which is consistent with the weighted average 

derived using the maximum historical capacity factors, by fuel type, in the preceding 

table.  This is an increase over the comparable assumption from Example #1, which was 

a weighted average of approximately 78%. 

 

We also reiterate our previous assumption that transmission capacities are constant.  

 

 



 107 

   

 

 

5b.  Elimination of Trivial Inequalities by Upper Bounds 

At this point, we recall the 21 remaining inequalities following the elimination procedure 

described in Section 2d.   Since we have new generating capacity values in Example #2, 

we need to again consider the subsequent elimination procedure, which eliminates trivial 

inequalities based on upper bounds.    

 

In order to do so, we first identify upper bounds on the demand values d(i) = ξi - xi for 

each node i.  In this particular example, based on the assumptions described in Section 5a 

above, we have the following summarized demand and generating capacity data: 60 

 

Demand ξi Generating Capacity xi

Min Max Average Min Max Average

1 849 2,006 1,353 188 1,665 1,462

2 1,827 5,024 3,249 1,939 8,050 6,922

3 1,503 4,043 2,562 652 3,280 2,989

4 319 964 590 0 895 795

5 1,028 3,298 1,868 0 1,085 733

Node

 

 

We observe that the demand values ξi did not change from those presented in Example #1 

because we are using the same hourly data.  The minimum generating capacity values xi 

did increase, though, due to our assumption in Example #2 of higher average generating 

capacity factors.  As noted in Section 4b, the feasibility of the network is dependent on its 

ability to satisfy customer demand when the net demand values d(i) = ξi - xi are the 

highest.  This occurs when available generating capacity is at its minimum at a particular 

demand node i and the corresponding local gross demand value is at its respective 

                                                 
60 All demand and generating  capacity values presented in terms of MW. 
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maximum. 61   Accordingly, for purposes of finding an upper bound on the LHS on the 

remaining inequalities, we consider the following maximum demand values d(i).  

 

Node Max ξi Min xi Max d(i)

1 2,006 188 1,818

2 5,024 1,939 3,085

3 4,043 652 3,390

4 964 0 964

5 3,298 0 3,298  

 

We return now to the remaining 21 inequalities and plug in the corresponding LHS and 

RHS values based on the information above to determine which ones are trivial and can 

be removed. 

1,818 3,085 3,390 964 3,298 LHS 2,060 7,075 2,430 1,870 180 RHS

(1) ξ1 - x1 = 1,818 < y12 = 2,060

(2) ξ2 - x2 = 3,085 < y12 + y23 + y24 = 11,565

(3) ξ3 - x3 = 3,390 < y23 + y35 = 8,945

(4) ξ4 - x4 = 964 < y24 + y45 = 2,610

(5) ξ5 - x5 = 3,298 y35 + y45 = 2,050

(6) ξ1 - x1 + ξ2 - x2 = 4,904 < y23 + y24 = 9,505

(7) ξ2 - x2 + ξ3 - x3 = 6,476 y12 + y24 + y35 = 6,360

(8) ξ2 - x2 + ξ4 - x4 = 4,049 < y12 + y23 + y45 = 9,315

(9) ξ3 - x3 + ξ5 - x5 = 6,689 < y23 + y45 = 7,255

(10) ξ4 - x4 + ξ5 - x5 = 4,262 < y24 + y35 = 4,300

(11) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 = 8,294 y24 + y35 = 4,300

(12) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 = 5,867 < y23 + y45 = 7,255

(13) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 = 7,439 y12 + y35 + y45 = 4,110

(14) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 = 9,774 y12 + y24 + y45 = 4,670

(15) ξ2 - x2 + ξ4 - x4 + ξ5 - x5 = 7,347 < y12 + y23 + y35 = 11,005

(16) ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 7,652 < y23 + y24 = 9,505

(17) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 = 9,258 y35 + y45 = 2,050

(18) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 + ξ5 - x5 = 9,165 y23 + y35 = 8,945

(19) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 = 11,592 y24 + y45 = 2,610

(20) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 10,738 y12 = 2,060

(21) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 12,556 0 = 0  

                                                 
61 Available generating capacity may be zero in instances of power plant outages.  These outages can be 
planned, (e.g., nuclear refueling), or forced (e.g., unexpected breakdown or malfunction of equipment).  
Either way, the feasibility of the network needs to take these extreme events into consideration.  
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The table above shows that 11 inequalities can be removed from the formulation because 

they are trivial, as compared to the 9 that were eliminated in Section 4b for Example #1.  

These eliminated inequalities are:  (1), (2), (3), (4), (6), (8), (9), (10), (12), (15), and (16).  

These inequalities are trivial because in the extreme case where generating capacity is at 

its minimum and the local demand is at its gross maximum, there is still sufficient 

transmission capacity available for a feasible flow in the network.   

 

The remaining 10 inequalities are summarized in the next table below, renumbered in 

numerical order: 

 

(1) ξ5 - x5 ≤ y35 + y45

(2) ξ2 - x2 + ξ3 - x3 ≤ y12 + y24 + y35

(3) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 ≤ y24 + y35

(4) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y12 + y35 + y45

(5) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y12 + y24 + y45

(6) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y35 + y45

(7) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 + ξ5 - x5 ≤ y23 + y35

(8) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y24 + y45

(9) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y12

(10) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ 0
 

 

We now proceed to solve the problem through the three different methods discussed 

above in Section 3. 
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5c.  Solve By Method 1 – Multivariate Normal Probability 

Recall that our objective for solving the problem via this method is to find the 

multivariate normal probability distribution of the remaining inequalities, P(η’≤ b’), 

where η’ and b’ represent the normalized LHS and RHS values of the remaining 10 

inequalities, respectively, as described in Section 3a.  Similar to Example #1, we will 

utilize the solver package NORTEST to compute this probability. NORTEST requires the 

following information as input values: 

 

(1) Coefficients of Correlation, denoted ρij, for each pair of random variables ηi and ηj 

(2) Normalized RHS values '

jb of each remaining inequality j 

 

First, we consider the Coefficient of Correlation matrix.  Based on the hourly demand and 

generating capacity data described in Section 5a, we can compute the following averages, 

standard deviations and variances for the random variables ηj associated with the LHS of 

each remaining inequality. 

 

1 1,136 439 192,682

2 -4,099 1,525 2,324,292

3 -4,209 1,712 2,930,189

4 -4,304 1,643 2,700,040

5 -2,964 1,837 3,372,762

6 -4,413 1,832 3,357,341

7 -2,852 1,660 2,756,949

8 -3,073 2,033 4,132,067

9 -3,169 1,959 3,839,067

10 -3,278 2,156 4,649,776

Inequality E(ηj) σ(ηj) σ
2
(ηj)
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Next we need to find the Covariance Matrix representing the covariance values between 

each pair of remaining inequalities.62  

 

Covariance Matrix

1 2 3 4 5 6 7 8 9 10

1 192,682 427,894 504,598 473,173 620,576 549,877 556,027 697,280 665,855 742,559

2 427,894 2,324,292 2,576,942 2,479,256 2,752,186 2,731,907 2,346,569 3,004,837 2,907,150 3,159,801

3 504,598 2,576,942 2,930,189 2,757,609 3,081,541 3,110,855 2,690,396 3,434,787 3,262,207 3,615,453

4 473,173 2,479,256 2,757,609 2,700,040 2,952,429 2,978,392 2,572,456 3,230,781 3,173,213 3,451,565

5 620,576 2,752,186 3,081,541 2,952,429 3,372,762 3,281,783 2,902,596 3,702,117 3,573,005 3,902,359

6 549,877 2,731,907 3,110,855 2,978,392 3,281,783 3,357,341 2,916,283 3,660,731 3,528,269 3,907,217

7 556,027 2,346,569 2,690,396 2,572,456 2,902,596 2,916,283 2,756,949 3,246,422 3,128,483 3,472,310

8 697,280 3,004,837 3,434,787 3,230,781 3,702,117 3,660,731 3,246,422 4,132,067 3,928,061 4,358,011

9 665,855 2,907,150 3,262,207 3,173,213 3,573,005 3,528,269 3,128,483 3,928,061 3,839,067 4,194,124

10 742,559 3,159,801 3,615,453 3,451,565 3,902,359 3,907,217 3,472,310 4,358,011 4,194,124 4,649,776  

 

Using the covariance values for each pair of random variables, along with the individual 

standard deviations, we can compute the Coefficient of Correlation Matrix.  

 

Correlation Coefficient Matrix

ρij 1 2 3 4 5 6 7 8 9 10

1 1.000000 0.639397 0.671548 0.656015 0.769806 0.683671 0.762888 0.781453 0.774187 0.784502

2 0.639397 1.000000 0.987442 0.989671 0.982968 0.977964 0.926987 0.969598 0.973216 0.961166

3 0.671548 0.987442 1.000000 0.980392 0.980228 0.991823 0.946573 0.987116 0.972637 0.979487

4 0.656015 0.989671 0.980392 1.000000 0.978366 0.989234 0.942863 0.967250 0.985601 0.974126

5 0.769806 0.982968 0.980228 0.978366 1.000000 0.975258 0.951874 0.991685 0.992951 0.985413

6 0.683671 0.977964 0.991823 0.989234 0.975258 1.000000 0.958556 0.982848 0.982768 0.988903

7 0.762888 0.926987 0.946573 0.942863 0.951874 0.958556 1.000000 0.961849 0.961627 0.969813

8 0.781453 0.969598 0.987116 0.967250 0.991685 0.982848 0.961849 1.000000 0.986238 0.994234

9 0.774187 0.973216 0.972637 0.985601 0.992951 0.982768 0.961627 0.986238 1.000000 0.992687

10 0.784502 0.961166 0.979487 0.974126 0.985413 0.988903 0.969813 0.994234 0.992687 1.000000  

 

Next, we need to calculate the normalized RHS values '

jb .  Recall from Section 3a that 

'

jb  = 
j

jj

σ

µ - b
, 

                                                 
62 Covariance Matrix solved using Microsoft Excel.  In order to ensure that the covariance matrix is 
positive definite, the variance values down the diagonal of the covariance matrix were rounded up slightly. 
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where bj is the initial (non-normalized) RHS value of inequality j, and µj and σj represent 

the average and standard deviation of the initial (non-normalized) LHS value of 

inequality j, respectively.   

 

Using the hourly data described in Section 5a, we can compute the average µj and 

standard deviation σj of the random variable ηj associated with each remaining inequality.  

The initial RHS values bj are also known based on the assumed Transmission capacities 

provided in Section 4b.  Thus, we have the following values: 

 

1 2,050 1,136 439 2.083324

2 6,360 -4,099 1,525 6.860423

3 4,300 -4,209 1,712 4.970596

4 4,110 -4,304 1,643 5.120582

5 4,670 -2,964 1,837 4.156602

6 2,050 -4,413 1,832 3.527500

7 8,945 -2,852 1,660 7.104643

8 2,610 -3,073 2,033 2.795747

9 2,060 -3,169 1,959 2.668494

10 0 -3,278 2,156 1.520145

b'jInequality RHS E(ηj) σ(ηj)
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The Coefficients of Correlation and normalized RHS values are entered into the 

NORTEST solver, which proceeds to solve the multivariate normal probability.  The 

output from NORTEST is provided in the next table. 

 

  Results for the distribution function

  -------------------------------------

  Error code = 0

  Estimated value (crude) = 0.927600

  Std. deviation (crude) = 0.002591

  Time = 0.023438

  SADMVN value = 0.930576

  SADER value = 0.000000

  Time = 0.000000

  Lower bound (0,9) = 0.930589

  Time = 0.000000

  Error code = 0

  Estimated value = 0.930589

  Std. deviation = 0.000000

  Time = 0.000000

  Efficiency = ***********

  Upper bound (1,8) = 0.930589

  Time = 0.046875

  -------------------------------------  

 

The above result indicates that the probability of a feasible flow in our network in this 

example is 0.930576.  This is a significant improvement over the probability calculated in 

Example #1, primarily attributable to the assumption of higher average generating 

capacity. 

 

We now move on to Hunter’s Upper Bound method to solve Example #2. 
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5d.  Solve By Method 2 – Hunter’s Bound 

Similar to our approach in Section 4d, we will first derive a lower bound on the 

probability of the intersection of the remaining 10 inequalities using inequality (4) from 

Section 3b above.  The individual probabilities for each of the remaining 10 inequalities 

are shown in the table below, as calculated by NORTEST. 

 

Inequality pi

1 0.981389

2 1.000000

3 1.000000

4 1.000000

5 0.999984

6 0.999790

7 1.000000

8 0.997411

9 0.996190

10 0.935763

9.910527  

 

Thus, we have the following lower bound: 

P(A1 I  A2 I …  I  A10) ≥ ∑
=

10

1i

i )P(A  – (k – 1) 

� P(A1 I  A2 I …  I  A10) ≥ 9.910527  – (10 – 1) 

� P(A1 I  A2 I …  I  A10) ≥ 0.910527 

 

We conclude the probability of a feasible flow in the transportation network in our 

example is at least 0.910527.  We note that the result of the multivariate normal 

distribution from Section 5c was 0.930576, which exceeds this lower bound. 



 115 

   

 

 

We now turn our attention to Hunter’s Upper Bound on the union of k events A1, A2,…, 

Ak.  As explained in Section 3b,  

 

P(A1 U  A2 U  … U  Ak) ≤ ∑
=

k

1i

i)P(A  - ∑
∈Tj)(i,

ji )AP(A I . 

 

The first term on the RHS of the inequality is simply the sum of the individual stationary 

probabilities, which is equal to 9.910527, as provided above.  In order to calculate the 

second term on the RHS of the inequality above, we need to first identify a maximum 

spanning tree T of the complete graph.  The pairwise joint probabilities pij, which are 

used as the edge weights in the complete graph, are provided below as calculated by 

NORTEST. 

 

Pairwise Joint Probabilities

pij 1 2 3 4 5 6 7 8 9 10

1 0.981389 0.981389 0.981389 0.981389 0.981336 0.981389 0.980591 0.979967 0.930590

2 0.981389 1.000000 1.000000 0.999984 0.999790 1.000000 0.997411 0.996190 0.935763

3 0.981389 1.000000 1.000000 0.999984 0.999790 1.000000 0.997411 0.996190 0.935763

4 0.981389 1.000000 1.000000 0.999984 0.999790 1.000000 0.997411 0.996190 0.935763

5 0.981389 0.999984 0.999984 0.999984 0.999790 0.999984 0.997411 0.996190 0.935763

6 0.981336 0.999790 0.999790 0.999790 0.999790 0.999790 0.997411 0.996190 0.935763

7 0.981389 1.000000 1.000000 1.000000 0.999984 0.999790 0.997411 0.996190 0.935763

8 0.980591 0.997411 0.997411 0.997411 0.997411 0.997411 0.997411 0.995991 0.935763

9 0.979967 0.996190 0.996190 0.996190 0.996190 0.996190 0.996190 0.995991 0.935763

10 0.930590 0.935763 0.935763 0.935763 0.935763 0.935763 0.935763 0.935763 0.935763  

 

We note that we have 
2

1)k(k −
 = 45 total edges in the complete graph.  We proceed by 

Kruskal’s algorithm to find a maximum spanning tree.  The tables below show the 

ranking of the weights of the edges in descending order and the corresponding decision as 

to whether to add the edge to the tree (denoted “Tree”) or not to add it because it creates a 
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cycle (denoted “Cycle”).  Once we have k-1 = 9 edges in the tree, then the algorithm 

terminates. 

 

No. Edge Weight Decision No. Edge Weight Decision

1 (2,4) 1.000000 Tree 24 (4,9) 0.996190 Cycle

2 (2,7) 1.000000 Tree 25 (5,9) 0.996190 Cycle

3 (3,4) 1.000000 Tree 26 (6,9) 0.996190 Cycle

4 (3,7) 1.000000 Cycle 27 (7,9) 0.996190 Cycle

5 (4,7) 1.000000 Cycle 28 (8,9) 0.995991 Cycle

6 (2,3) 1.000000 Cycle 29 (1,2) 0.981389 Tree

7 (5,7) 0.999984 Tree 30 (1,3) 0.981389 Cycle

8 (2,5) 0.999984 Cycle 31 (1,4) 0.981389 Cycle

9 (3,5) 0.999984 Cycle 32 (1,5) 0.981389 Cycle

10 (4,5) 0.999984 Cycle 33 (1,7) 0.981389 Cycle

11 (2,6) 0.999790 Tree 34 (1,6) 0.981336 Cycle

12 (3,6) 0.999790 Cycle 35 (1,8) 0.980591 Cycle

13 (4,6) 0.999790 Cycle 36 (1,9) 0.979967 Cycle

14 (5,6) 0.999790 Cycle 37 (2,10) 0.935763 Tree

15 (6,7) 0.999790 Cycle 38 (3,10) 0.935763 N/A

16 (6,8) 0.997411 Tree 39 (4,10) 0.935763 N/A

17 (2,8) 0.997411 Cycle 40 (5,10) 0.935763 N/A

18 (3,8) 0.997411 Cycle 41 (6,10) 0.935763 N/A

19 (4,8) 0.997411 Cycle 42 (7,10) 0.935763 N/A

20 (5,8) 0.997411 Cycle 43 (8,10) 0.935763 N/A

21 (7,8) 0.997411 Cycle 44 (9,10) 0.935763 N/A

22 (3,9) 0.996190 Tree 45 (1,10) 0.930590 N/A

23 (2,9) 0.996190 Cycle  

 

The results of Kruskal’s algorithm, including the associated maximum spanning tree, are 

provided below. 
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No. Edge Weight

1 (2,4) 1.000000

2 (2,7) 1.000000

3 (3,4) 1.000000

4 (5,7) 0.999984

5 (2,6) 0.999790

6 (6,8) 0.997411

7 (3,9) 0.996190

8 (1,2) 0.981389

9 (2,10) 0.935763

8.910527  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

We note from the picture that there are k – 1 = 9 edges and no cycles, which confirms 

that we have a spanning tree.   

 

1

2
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It follows that Hunter’s Upper Bound on the probability of the union of the 10 events is 

 

P(A1 U  A2 U  … U  A10)  ≤  9.910527 – 8.910527 = 1.000000. 

 

This is the same trivial result as achieved in Example #1.  This result also serves as an 

upper bound on the probability of the intersection of all events,   and when combined 

with the lower bound results presented earlier in this section, we have the following: 

 

0.910527  ≤ P(A1 I  A2 I …  I  A10) ≤  1.000000. 

 

We conclude that the probability of a feasible flow in our example is between these 

bounds.  While the upper bound is the same as Example #1, the lower bound has 

increased which suggests more precise results.  This range is validated by the results of 

the multivariate normal distribution from Section 5c, which indicated that the probability 

of a feasible flow is 0.930576. 
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5e.  Solve By Method 3 – Boolean Probability Bounding 

Finally, we proceed using the Boolean Probability Bounding method to find upper and 

lower bounds on the probability of the union of events.  Similar to Example #1, we will 

utilize the individual stationary probabilities pi and the joint pairwise probabilities pij for 

purposes of this example.  These values have already been provided in Section 5d. 

 

We have k=10 so the dimensions of the m×n matrix A used in the LP formulation are m 

= 55 (10 individual probabilities and 45 joint probabilities) and  n = 210 – 1 = 1,023.63 

 

Next, we set up a 55× 1 vector b representing the known probabilities of each individual 

event and pair of events.  A brief excerpt of vector b is provided below. 

 

p1 0.981389

p2 1.000000

p3 1.000000

… …

p8 0.997411

p9 0.996190

p10 0.935763

p1,2 0.981389

p1,3 0.981389

p1,4 0.981389

… …

p8,9 0.995991

p8,10 0.935763

p9,10 0.935763

=b =

 

 

                                                 
63 Details behind the formulation of the matrix A are provided in Section 3c. 
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We now construct the following LP with decision variable x, represented as an n×1 

vector.   

 

 max (min)  ∑
=

1,023

1i

ix  

 s.t.  Ax = b 

      x ≥ 0    

 

We will utilize the same MOSEL code that we used in Example #1 to solve this LP, 

updated to reflect the new dimensions of matrix A. 64   

 

 

                                                 
64 The associated data file is too large to present in this paper.  However, the format is consistent with the 
AMPL data file shown in the example in Section 3c. 
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When the objective function is solved as a maximization problem, the upper bound on the 

probability of the union of the 10 events is 1, as shown in the output from MOSEL 

below. 

 

 

 

When we instead solve the LP as a minimization problem, we obtain the same optimal 

solution and optimum value of 1. Thus, we have the following bounds, 

 

1 ≤ P( 1A U 2A U …U 10A ) ≤ 1 

� P( 1A U 2A U …U 10A ) = 1. 

 

Similar to Example #1, this result is not unexpected as there are several individual 

probabilities pi equal to 1.   
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As discussed in Section 3b, we know that an upper bound on the probability of the union 

of events is also an upper bound on the probability of the intersection of all 10 events, 

which implies the following trivial upper bound:  

 

P( 1A I 2A I …I 10A ) ≤ 1. 

 

As we saw in Example #1, this trivial bound is consistent with Hunter’s Upper Bound.  

We also note that the result from the multivariate normal distribution method, which was 

0.930576, fits within this upper bound.   
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5f.  Summary of Results 

The results for this second example across the three methods are consistent, i.e., the upper 

bounds obtained via Hunter’s Upper Bound and the Boolean Probability Bounding 

methods are both equal to 1, and the multivariate normal distribution method is within the 

range resulting from this trivial upper bound and the lower bound derived in Section 5d.  

We conclude that the probability of a feasible flow in the network formulation in 

Example #2 is approximately 93%.  This is higher than the 82% probability calculated in 

Example #1 -- the increased probability is primary attributable to the increased assumed 

average generating capacity.  In Example #3, we will consider our most aggressive 

assumption for average available generating capacity, which we expect to yield even 

higher results. 
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6  NUMERICAL EXAMPLE #3  
    Summer Demand & Peak Annual Generating Capacity 
 

6a.  Assumptions 

Consistent with the first two examples and for the same reasons noted previously, 

Example #3 will consider customer demand in the summer months, i.e., hourly demand 

data from June 1, 2010 – August 31, 2010, which is comprised of 2,208 hourly data 

points.   

 

With the demand values assumed to be the same as in the prior examples, we turn our 

attention to the assumed generating capacity values.  Recall in Example #1 that this 

assumption was based on average annual capacity factors across FirstEnergy’s entire fleet 

from 2006-2010, which was approximately 78%.  Example #2 more aggressively 

assumed that the capacity factor for each fuel type of generation was equal to its 

respective maximum capacity factor achieved from 2006-2010, which was approximately 

86% on a weighted average basis.  In this final example, we will take this one step further 

and assume that the average capacity across all fuel types of generation in our model is 

equal to the maximum capacity factor achieved by any individual fuel type from 2006-

2010.  In other words, we assume that the average generating capacity for Example #3 is 

equal to the peak generating capacity factor achieved by any fuel type in FirstEnergy’s 

generating fleet from 2006-2010, which was approximately 93%.65 The rationale behind 

this assumption is to model the case of peak historical performance.   

                                                 
65 As noted previously, the overall available generating capacity did not change from the previous examples 
– only the weighted average capacity factors are impacted by this modified assumption   Also, see the 
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Similar to the previous 2 examples, the hourly capacity values for each generating unit 

were randomly generated via a normal distribution based on maximum available 

capacities and assumed arithmetic means and standard deviations.  These hourly 

generating capacity values were then aligned with the actual customer demand data to 

represent hourly net demand (supply) values at each node in the network.  The resulting 

average generating capacity values are summarized in the table below. 

 

Example #3 Assumptions

Nuclear 4,200 3,932 93.6%

Coal 8,110 7,575 93.4%

Other 2,665 2,487 93.3%

14,975 13,994 93.4%

Fuel Type
Total 

(MW)

Average 

(MW)

Average 

Factor

 

 

Finally, we reiterate our previous assumption that transmission capacities remain 

constant.  

                                                                                                                                                 
tables provided in Sections 4a and 5a for historical capacity factors, by fuel type, achieved by FirstEnergy’s 
entire generating fleet. 
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6b.  Elimination of Trivial Inequalities by Upper Bounds 

We first need to analyze the hourly data resulting from the assumptions above to 

determine which of the initially remaining 21 inequalities from Section 2d can be 

removed due to triviality.   

 

The following table summarizes the maximum demand values d(i) = ξi - xi for each node 

i that are produced by the assumptions described above.66 

 

Demand ξi Generating Capacity xi

Min Max Average Min Max Average

1 849 2,006 1,353 365 1,665 1,561

2 1,827 5,024 3,249 3,475 8,050 7,516

3 1,503 4,043 2,562 650 3,280 3,074

4 319 964 590 0 895 830

5 1,028 3,298 1,868 304 1,085 1,013

Node

 

 

We observe that the demand values ξi are consistent with those presented in the previous 

two examples because we are using the same hourly data.  The minimum generating 

capacity values xi increased again due to our assumed increase in average generating 

capacity.  As noted in Section 4b, the feasibility of the network is dependent on its ability 

to satisfy customer demand when the net demand values d(i) = ξi - xi are the highest.  

This occurs when available generating capacity is at its minimum at a particular demand 

node i and the corresponding local demand value is at its respective maximum.   

Accordingly, for purposes of finding an upper bound on the LHS on the remaining 

inequalities, we consider the following maximum demand values d(i): 

                                                 
66 All demand and generating capacity values presented in terms of MW. 
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Node Max ξi Min xi Max d(i)

1 2,006 365 1,641

2 5,024 3,475 1,549

3 4,043 650 3,392

4 964 0 964

5 3,298 304 2,994  

 

We now plug these maximum d(i) values into the LHS of the remaining 21 inequalities, 

along with the assumed constant transmission capacities on the RHS, in order to 

determine which ones are trivial and can be removed. 

 

1,641 1,549 3,392 964 2,994 LHS 2,060 7,075 2,430 1,870 180 RHS

(1) ξ1 - x1 = 1,641 < y12 = 2,060

(2) ξ2 - x2 = 1,549 < y12 + y23 + y24 = 11,565

(3) ξ3 - x3 = 3,392 < y23 + y35 = 8,945

(4) ξ4 - x4 = 964 < y24 + y45 = 2,610

(5) ξ5 - x5 = 2,994 y35 + y45 = 2,050

(6) ξ1 - x1 + ξ2 - x2 = 3,191 < y23 + y24 = 9,505

(7) ξ2 - x2 + ξ3 - x3 = 4,942 < y12 + y24 + y35 = 6,360

(8) ξ2 - x2 + ξ4 - x4 = 2,513 < y12 + y23 + y45 = 9,315

(9) ξ3 - x3 + ξ5 - x5 = 6,386 < y23 + y45 = 7,255

(10) ξ4 - x4 + ξ5 - x5 = 3,958 < y24 + y35 = 4,300

(11) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 = 6,583 y24 + y35 = 4,300

(12) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 = 4,154 < y23 + y45 = 7,255

(13) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 = 5,905 y12 + y35 + y45 = 4,110

(14) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 = 7,936 y12 + y24 + y45 = 4,670

(15) ξ2 - x2 + ξ4 - x4 + ξ5 - x5 = 5,507 < y12 + y23 + y35 = 11,005

(16) ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 7,350 < y23 + y24 = 9,505

(17) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 = 7,546 y35 + y45 = 2,050

(18) ξ1 - x1 + ξ2 - x2 + ξ4 - x4 + ξ5 - x5 = 7,148 < y23 + y35 = 8,945

(19) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 = 9,577 y24 + y45 = 2,610

(20) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 8,899 y12 = 2,060

(21) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 = 10,541 0 = 0  

 

The table above shows that 13 inequalities can be removed from the formulation because 

they are trivial, as compared to the 13 and 11 that were eliminated in Example #1 and 
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Example #2, respectively.  These eliminated inequalities are:  (1), (2), (3), (4), (6), (7), 

(8), (9), (10), (12), (15), (16), and (18).    

 

The remaining 8 inequalities are summarized in the next table below, renumbered in 

numerical order: 

 

(1) ξ5 - x5 ≤ y35 + y45

(2) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 ≤ y24 + y35

(3) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y12 + y35 + y45

(4) ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y12 + y24 + y45

(5) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 ≤ y35 + y45

(6) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ5 - x5 ≤ y24 + y45

(7) ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ y12

(8) ξ1 - x1 + ξ2 - x2 + ξ3 - x3 + ξ4 - x4 + ξ5 - x5 ≤ 0
 

 

We now proceed to solve the problem through the three different methods discussed 

above in Section 3. 
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6c.  Solve By Method 1 – Multivariate Normal Probability 

We again use NORTEST to compute the multivariate normal probability distribution  

P(η’≤ b’), where η’ and b’ represent the normalized LHS and RHS values of the 

remaining 8 inequalities, respectively, as described in Section 3a.  Recall the input data 

required by NORTEST: 

 

(1) Coefficients of Correlation, denoted ρij, for each pair of random variables ηi and ηj 

(2) Normalized RHS values '

jb of each remaining inequality j 

 

Based on the hourly demand and generating capacity data described in Section 6a, we 

have the following  averages, standard deviations and variances for the random variables 

associated with the LHS ηj of each remaining inequality. 

 

1 855 410 167,868

2 -4,987 1,599 2,555,589

3 -5,018 1,509 2,276,936

4 -3,923 1,721 2,960,483

5 -5,226 1,715 2,940,665

6 -4,132 1,930 3,726,573

7 -4,163 1,838 3,380,062

8 -4,371 2,049 4,199,358

Inequality E(ηj) σ(ηj) σ
2
(ηj)

 

 

Next we need to find the Covariance Matrix representing the covariance values between 

each pair of remaining inequalities.67  

 

                                                 
67 Covariance Matrix solved using Microsoft Excel.  In order to ensure that the covariance matrix is 
positive definite, the variance values down the diagonal of the covariance matrix were rounded up slightly. 
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Covariance Matrix

1 2 3 4 5 6 7 8

1 167,868 501,558 467,629 591,642 545,413 669,426 635,497 713,281

2 501,558 2,555,589 2,375,637 2,706,363 2,726,421 3,057,147 2,877,195 3,227,979

3 467,629 2,375,637 2,276,936 2,556,924 2,563,278 2,843,266 2,744,565 3,030,907

4 591,642 2,706,363 2,556,924 2,960,483 2,894,447 3,298,005 3,148,566 3,486,089

5 545,413 2,726,421 2,563,278 2,894,447 2,940,665 3,271,833 3,108,691 3,486,077

6 669,426 3,057,147 2,843,266 3,298,005 3,271,833 3,726,573 3,512,692 3,941,259

7 635,497 2,877,195 2,744,565 3,148,566 3,108,691 3,512,692 3,380,062 3,744,188

8 713,281 3,227,979 3,030,907 3,486,089 3,486,077 3,941,259 3,744,188 4,199,358  

 

Using the covariance values for each pair of random variables, along with the individual 

standard deviations, we have the following Coefficient of Correlation Matrix.  

 

Correlation Coefficient Matrix

ρij 1 2 3 4 5 6 7 8

1 1.000000 0.765758 0.756383 0.839255 0.776280 0.846376 0.843659 0.849542

2 0.765758 1.000000 0.984825 0.983919 0.994545 0.990640 0.978952 0.985357

3 0.756383 0.984825 1.000000 0.984830 0.990598 0.976084 0.989318 0.980180

4 0.839255 0.983919 0.984830 1.000000 0.980983 0.992922 0.995335 0.988703

5 0.776280 0.994545 0.990598 0.980983 1.000000 0.988356 0.986035 0.992025

6 0.846376 0.990640 0.976084 0.992922 0.988356 1.000000 0.989744 0.996297

7 0.843659 0.978952 0.989318 0.995335 0.986035 0.989744 1.000000 0.993811

8 0.849542 0.985357 0.980180 0.988703 0.992025 0.996297 0.993811 1.000000  

 

Next, we need to calculate the normalized RHS values '

jb .  Recall from Section 3a that 

'

jb  = 
j

jj

σ

µ - b
, 

where bj is the initial (non-normalized) RHS value of inequality j, and µj and σj represent 

the average and standard deviation of the initial (non-normalized) LHS ηj of inequality j, 

respectively.   
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Using the hourly data described in Section 6a, we can compute the average µj and 

standard deviation σj of the random variable associated with the LHS ηj of each 

remaining inequality.  The initial RHS values bj are also known based on the assumed 

Transmission capacities provided in Section 4b.  Thus, we have the following values: 

 

1 2,050 855 410 2.915627

2 4,300 -4,987 1,599 5.809409

3 4,110 -5,018 1,509 6.049363

4 4,670 -3,923 1,721 4.994377

5 2,050 -5,226 1,715 4.243246

6 2,610 -4,132 1,930 3.492287

7 2,060 -4,163 1,838 3.384716

8 0 -4,371 2,049 2.133021

b'jInequality RHS E(ηj) σ(ηj)

 

 

The Coefficients of Correlation and normalized RHS values are entered into the 

NORTEST solver, which proceeds to solve the multivariate normal probability.  The 

output from NORTEST is provided in the next table. 
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  Results for the distribution function

  -------------------------------------

  Error code = 0

  Estimated value (crude) = 0.981900

  Std. deviation (crude) = 0.001330

  Time = 0.015625

  SADMVN value = 0.983261

  SADER value = 0.000039

  Time = 0.000000

  Lower bound (0,9) = 0.000977

  Time = 0.000000

  Error code = 0

  Estimated value = 0.000977

  Std. deviation = 0.000000

  Time = 0.000000

  Efficiency = ***********

  Upper bound (1,8) = 0.000977

  Time = 0.000000

  -------------------------------------  

 

The above result indicates that the probability of a feasible flow in our network in this 

example is 0.983261.  This is another improvement over the probability calculated in the 

prior examples, primarily attributable to the assumption of higher average generating 

capacity. 

 

We now move on to Hunter’s Upper Bound method to solve Example #3. 
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6d.  Solve By Method 2 – Hunter’s Bound 

To derive a lower bound on the probability of the intersection of the remaining 8 

inequalities, we first note the individual probabilities, which are shown in the table 

below, as calculated by NORTEST. 

 

Inequality pi

1 0.998225

2 1.000000

3 1.000000

4 1.000000

5 0.999989

6 0.999761

7 0.999644

8 0.983538

7.981157  

 

Thus, we have the following lower bound: 

P(A1 I  A2 I …  I  A8) ≥ ∑
=

8

1i

i )P(A  – (k – 1) 

� P(A1 I  A2 I …  I  A8) ≥ 7.981157 – (8 – 1) 

� P(A1 I  A2 I …  I  A8) ≥ 0.981157 

 

We conclude the probability of a feasible flow in the transportation network in Example 

#3 is at least 0.981157.  We note that the result of the multivariate normal distribution 

from Section 6c was 0.983261, which slightly exceeds this lower bound. 

 



 134 

   

 

 

We turn our attention to Hunter’s Upper Bound on the union of k events A1, A2,…, Ak.  

As explained in Section 3b,  

 

P(A1 U  A2 U  … U  Ak) ≤ ∑
=

k

1i

i)P(A  - ∑
∈Tj)(i,

ji )AP(A I . 

 

The first term on the RHS of the inequality is simply the sum of the individual stationary 

probabilities, which is equal to 7.981157, as provided above.  In order to calculate the 

second term on the RHS of the inequality above, we need to first identify a maximum 

spanning tree T of the complete graph.  The pairwise joint probabilities pij, which are 

used as the edge weights in the complete graph, are provided below as calculated by 

NORTEST. 

 

Pairwise Joint Probabilities

pij 1 2 3 4 5 6 7 8

1 0.998225 0.998225 0.998225 0.998223 0.998146 0.998084 0.983270

2 0.998225 1.000000 1.000000 0.999989 0.999761 0.999644 0.983538

3 0.998225 1.000000 1.000000 0.999989 0.999761 0.999644 0.983538

4 0.998225 1.000000 1.000000 0.999989 0.999761 0.999644 0.983538

5 0.998223 0.999989 0.999989 0.999989 0.999761 0.999644 0.983538

6 0.998146 0.999761 0.999761 0.999761 0.999761 0.999624 0.983538

7 0.998084 0.999644 0.999644 0.999644 0.999644 0.999624 0.983538

8 0.983270 0.983538 0.983538 0.983538 0.983538 0.983538 0.983538  

 

We note that we have 
2

1)k(k −
 = 28 total edges in the complete graph.  We proceed by 

Kruskal’s algorithm to find a maximum spanning tree.  The tables below show the 

ranking of the weights of the edges in descending order and the corresponding decision as 

to whether to add the edge to the tree (denoted “Tree”) or not to add it because it creates a 
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cycle (denoted “Cycle”).  The algorithm terminates once we have k – 1 = 7 edges in the 

tree. 

 

No. Edge Weight Decision No. Edge Weight Decision

1 (2,4) 1.000000 Tree 15 (6,7) 0.999624 Cycle

2 (3,4) 1.000000 Tree 16 (1,4) 0.998225 Tree

3 (2,3) 1.000000 Cycle 17 (1,2) 0.998225 Cycle

4 (2,5) 0.999989 Tree 18 (1,3) 0.998225 Cycle

5 (3,5) 0.999989 Cycle 19 (1,5) 0.998223 Cycle

6 (4,5) 0.999989 Cycle 20 (1,6) 0.998146 Cycle

7 (2,6) 0.999761 Tree 21 (1,7) 0.998084 Cycle

8 (3,6) 0.999761 Cycle 22 (2,8) 0.983538 Tree

9 (4,6) 0.999761 Cycle 23 (3,8) 0.983538 N/A

10 (5,6) 0.999761 Cycle 24 (4,8) 0.983538 N/A

11 (3,7) 0.999644 Tree 25 (5,8) 0.983538 N/A

12 (2,7) 0.999644 Cycle 26 (6,8) 0.983538 N/A

13 (4,7) 0.999644 Cycle 27 (7,8) 0.983538 N/A

14 (5,7) 0.999644 Cycle 28 (1,8) 0.983270 N/A  

 

 

The results of Kruskal’s algorithm, including the associated spanning tree, are provided 

below. 

 

No. Edge Weight

1 (2,4) 1.000000

2 (3,4) 1.000000

3 (2,5) 0.999989

4 (2,6) 0.999761

5 (3,7) 0.999644

6 (1,4) 0.998225

7 (2,8) 0.983538

6.981157  
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We observe from the picture above that we in fact have a spanning tree because there are 

no cycles and there are k – 1 = 7 edges.  

 

It follows that Hunter’s Upper Bound on the probability of the union of the 8 events is 

 

P(A1 U  A2 U  … U  A8)  ≤  7.981157 – 6.981157 = 1.000000. 

 

This is the same trivial result as the previous 2 examples.  Since this also serves as an 

upper bound on the probability of the intersection of all events, we can combine it with 

0.999761 0.9999890.983538

1.000000

0.998225 0.999644

1

2

36 4

7

8 5

1.0000000.999761 0.9999890.983538

1.000000

0.998225 0.999644

1

2

36 4

7

8 5

1.000000
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the lower bound results presented earlier in this section and we have the following range 

of probabilities: 

 

0.981157  ≤ P(A1 I  A2 I …  I  A8) ≤  1.000000. 

 

We conclude that the probability of a feasible flow in our example is between these 

bounds.  Recall that the multivariate normal probability from Section 6c was 0.983261, 

which is satisfied by these bounds.  Finally, we note that while the trivial upper bound is 

consistent with the prior examples, the range between the lower and upper bounds has 

tightened significantly, which suggests more precise results.   
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6e.  Solve By Method 3 – Boolean Probability Bounding 

We again utilize the individual stationary probabilities pi and the joint pairwise 

probabilities pij in order to set up the LP according to the Boolean Probability Bounding 

method.  These values have already been provided in Section 6d. 

 

We have k=8 so the dimensions of the m×n matrix A used in the LP formulation are m = 

36 (8 individual probabilities and 28 joint probabilities) and  n = 28 – 1 = 255.68 

 

Next, we set up a 36× 1 vector b representing the known probabilities of each individual 

event and pair of events.  A brief excerpt of vector b is provided below. 

 

p1 0.998225

p2 1.000000

p3 1.000000

… …

p6 0.999761

p7 0.999644

p8 0.983538

p1,2 0.998225

p1,3 0.998225

p1,4 0.998225

… …

p6,7 0.999624

p6,8 0.983538

p7,8 0.983538

=b =

 

 

We now construct the following LP with decision variable x, represented as an n×1 

vector.   

                                                 
68 Details behind the formulation of the matrix A are provided in Section 3c. 
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max (min)  ∑
=

255

1i

ix  

 s.t.  Ax = b 

      x ≥ 0    

 

This time, we will return to the AMPL code developed in Section 3c, which is shown as a 

maximization problem in the picture below.69 

 

 

 

When the objective function is solved as a maximization problem, we see that the upper 

bound on the probability of the union of the 8 events is 1.   The AMPL output and 

corresponding optimal solution are provided below. 70 

 

 

                                                 
69 In Examples #1 and #2, matrix A was too large to process in the student version of AMPL. 
70 Output from CPLEX solver in AMPL. 
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The optimal solution is summarized in the following table, where all decision variables xj 

not shown have an optimal value of zero: 

 

i xi

58 0.000009

93 0.000002

128 0.000131

163 0.000077

198 0.000075

199 0.000020

219 0.000062

240 0.001272

247 0.014814

254 0.000268

255 0.983270

1.000000  

 

When the LP is solved instead as a minimization problem, the resulting optimal value is 

still 1 and the optimal solution is the same as the preceding maximization problem. These 

results imply that the probability of the union of the remaining 8 events is 1,  

 

1 ≤ P( 1A U 2A U …U 8A ) ≤ 1 

���� P( 1A U 2A U …U 8A  = 1. 

Again, we note that this result is reasonable based on the fact that several of the 

individual stationary probabilities pi are equal to 1.  Consequently, as noted in the 

previous two examples, we know that the probability of the intersection of the remaining 

8 events is trivially bounded above by 1, which is the same as Hunter’s Upper Bound, 

 

P( 1A I 2A I …I 8A ) ≤ 1. 
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6f.  Summary of Results 

We again see consistency in the trivial upper bounds derived from the bounding 

techniques offered by Hunter and Boolean Probability.  The result of the multivariate 

normal probability distribution in Section 6c (0.983261) is obviously less than this trivial 

upper bound, but also slightly greater than the lower bound derived in Section 6d, thereby 

providing credence to the probability range derived in this section.   Thus, we conclude 

that the probability of a feasible flow in the network formulation in Example #3 is 

approximately 98%.  This is the best performance we have seen in the three examples, 

primarily due to the more aggressive assumption of peak generating capacity.  
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7  CONCLUSION 

The probabilities of a feasible flow in each of three network examples are summarized in 

the table below.  The second column provides the average generating capacity based on 

the assumptions discussed in Sections 4a, 5a, and 6a.  The third column contains the 

results of the multivariate normal probability distribution, while the corresponding lower 

and upper bounds obtained from Hunter’s Upper Bound and the Boolean Probability 

Bounding methods are shown in the last two columns, respectively.  

 

Example
Avg. Gen. 

Capacity

Estimated 

Probability
Lower Bound Upper Bound

1 78.0% 0.818375 0.755406 1.000000

2 86.2% 0.930576 0.910527 1.000000

3 93.4% 0.983261 0.981157 1.000000  

 

It is not a coincidence that the estimated probabilities of a feasible flow in the three 

examples, as calculated by the multivariate normal distribution, increased with the 

assumed increase in average generating capacity.  Since the same hourly demand values 

were used in each example and the transmission capacities were assumed to be constant, 

the only variable impacting the feasibility of the network across the examples was the 

assumed hourly output of the applicable generating units.  When more generating 

capacity is present in the network, it makes sense that the probability of a feasible flow 

increases. 

 

In each example, the upper bounds on the network feasibility were consistent between 

Hunter’s Upper Bound and the Boolean Probability Bounding methods; all upper bounds 
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were 1.  This implied that the probability of the intersection of the remaining events was 

also bounded above by 1, which is a trivial result.  The lower bounds on the probability 

of the intersection, though, increased with the assumed increase in average generating 

capacity, so the range between the lower and upper bounds tightened each time, which 

suggests a greater level of accuracy.  Finally, we note the result from the multivariate 

normal probability distribution was within the applicable range obtained by the 

probability bounding in each example, which supports the reasonableness of our 

assumption in Section 3a that the relevant date are normally distributed. 

 

While these examples were only based on a subset of the assets of one major electric 

utility company, they should provide the reader with a better understanding of one of the 

fundamental issues facing the utility industry: satisfying customer demand with available 

generating and transmission capacity.  While there are changes to the electric utility 

industry on the horizon, this fundamental problem will remain at the core of its day-to-

day operations.  Therefore, analyses such as those presented in this paper will continue to 

be vital to ensuring the ongoing viability of electric utilities to sufficiently satisfy 

customer demand for electricity. 
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