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ABSTRACT OF THE DISSERTATION

Essays on Coordination and Financial Markets

by Nicholas B. Galunic

Dissertation Director: Barry Sopher

This dissertation is concerned with microeconomic models of equilibrium pricing in fi-

nancial markets of varying organizational scope. The first two chapters are based on

game-theoretic models characterized by a coordination problem. I begin at the indus-

try level in Chapter 2 where I solve the chicken-or-the-egg problem of platform pricing.

I show that the elasticity of demand is greater for the more valued side and hence a

monopolist will charge that side a lower price. These results have implications on how

exchanges admit traders and apply to more general two-sided markets. My findings

are supported by experimental tests. Chapter 3 examines regulatory efficacy in manip-

ulating a currency market with a peg. I solve for equilibrium speculator conduct and

central bank intervention policy where the speculator population is discrete. Sudden

equilibrium price collapses are related explicitly to fundamentals. The main findings

are again supported by experimental tests. In the final chapter, I study a market where

strategic behavior is set aside and market participants are instead assumed to be perfect

delta hedgers who immediately exploit arbitrage opportunities. I numerically estimate

the equilibrium price of an exotic option in such a market.
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Chapter 1

Introduction

This dissertation addresses three questions on financial industry organization, regula-

tion and pricing.

Chapter 2 relates to the industrial organization of market platforms. A platform is

a place where buyers and sellers meet. The New York Stock exchange is a platform. So

is Microsoft Windows operating system, where software producers meet with software

consumers. Each distinct group of participants is termed a side of the market. For ex-

ample, the French Bourse traditionally consisted of sixty brokers who functioned purely

as financial intermediaries connecting many investors. The Bourse was a sixty-sided

platform. Similarly, the software writers and users are the two sides of the computer

operating system market.

There is a certain ambiguity to the term two-sided market because a two-sided

market is in fact comprised of two different markets. I define the outer market as the

market for the platform itself. Microsoft and Mac both compete to produce computer

operating system platforms. I define the inner market is the market which utilizes the

platform. For example, the market for tax filing software is an inner market of the

operating system two sided market. Chapter 2 is concerned with a monopolized outer

market.

A basic analysis of demand is essential to answer this question. However this is

not a trivial problem. The demand from one side of the market depends on that

side’s expectation of the demand from the other side of the market. To return to the

exchange example above, even an exchange with superior quality will fail to attract

many brokerage firms if there are not other brokerage firms on the exchange. But then
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how does such an exchange begin? This dilemma has been termed the chicken-or-the-

egg problem of platform markets.

At the heart of the chicken-or-the-egg-problem of platform industry organization is

a coordination problem with indirect network externality. Agents want to coordinate,

not with their own group members, but with other group members. I study this coordi-

nation problem using a global-game theory and obtain analytical access demand curves.

These yield novel insights regarding elasticities and cross-elasticities of demand with

respect to prices and exogenous parameters as well as monopoly prices. In particular,

demand is more price sensitive with respect the side of the market which is more de-

sirable to the other side. Consequently, a monopolist platform lowers the price on that

side and raises the price on the other. The predictions are borne out in an experimental

test of the model. Laboratory behavior indicate an additional own-price effect whereby

players place a relatively larger weight on own-price effects than the model predicts.

Chapter 3 studies a different type of coordination problem, this time at the regula-

tory level.

Some central bank policy makers believe that currency exchange rate stability is

important for economic stability. One way to achieve currency exchange rate stability

is to fix the exchange between the domestic currency and another major currency such

as the dollar. Besides legal action, the only way to fix an exchange rate is to open a

window which creates liquidity at that rate. To see why this has the intended effect,

suppose a trade occurs at a different rate. One of the parties to that trade would be

better off trading with the central bank instead. If the trade was at a price higher than

the peg, then the buyer of the domestic currency would have been better off buying

from the central bank instead. If the trade was at a price less than the peg, then the

seller of the domestic currency would have been better off selling to the central bank

instead. Therefore, such trades will not exist in equilibrium.

In order to provide such an exchange window, the central bank must have an ade-

quate stock of foreign and domestic currency. In addition to satisfying regular demands,

reserves serve the purpose of protecting against speculation. To understand this, as-

sume that the peg is higher than the market price. If enough traders demand foreign
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currency at once, then the central bank may run out of foreign currency reserves and

be unable to make the market at the pegged rate any longer. In the case where the

peg is less than the market price, then if enough traders demand domestic currency at

once, then the central bank may run out of domestic currency and be similarly unable

to sustain the peg.1

There is a strategic element to trader behavior in a currency market with a pegged

rate. Consider the first case where the peg is higher than the market rate. A similar

argument follows immediately for the other case. Call the strategic traders speculators.

Speculators recognize that if enough of them sell domestic currency in concert then their

demand for foreign currency will overwhelm the central bank’s reserves. If this happens

then the peg will disappear and the market rate will reign. There are two key aspects

to this game. First, the speculators bear an opportunity cost of capital for choosing to

speculate. Second, speculators may experience capital gains if enough of them speculate

together because they will possess foreign currency which will have appreciated in value.

Hence, this is essentially a coordination game between the speculators.

The central bank may want to regulate such speculative behavior. For example, the

central bank could tax capital outflows. This would decrease the value of holding the

foreign currency and thereby raise the opportunity cost of selling domestic currency.

However, since the central bank ostensibly has a better idea of the true value of the

currency than the speculators do, their interventions may actually signal to the specu-

lators information on the true potential payoff for crashing the peg. This information

may affect speculator behavior and the central bank must therefore take care in its

regulatory action.

Angeletos et al. (2006) have analyzed this problem and find that speculators play

threshold strategies – sell domestic currency if and only if they sense the price crash

will be great enough – and the central bank raises the speculator opportunity cost only

for intermediate magnitudes of potential price crashes. I extend those results to a world

where the population of speculators is a discrete set instead of a continuous interval

1As a caveat, the central bank is not as worried about the second scenario if is uses a fiat system
since it may always just print more money to satisfy these demand spikes.
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and test the extended model experimentally using the Heinemann et al. (2004) design.

Preliminary results suggest that equilibrium strategies are played along with others.

Estimated comparative statics of strategies offer mixed agreement with the predictions.

Where Chapter 2 dealt with financial market behavior at the industry level and

Chapter 3 the regulatory level, Chapter 3 deals with equilibrium price formation within

those markets.

I price a security which promises the buyer the right to purchase any one stock out

of a basket of three stocks at any time prior to an expiration date called the expiry

at a certain price called the strike. I name this security cmax. Along the way, I also

price a security which promises the buyer the right to sell any one stock out of a basket

of three stocks at any time prior to an expiration date at a certain price. I name this

security pmin. For example, suppose a cmax security is bought on a basket consisting

of IBM, Netflix, and 3M with a strike of 85 with an expiry one year in the future. If,

after one year, the price of IBM is 70, the price of Netflix is 85, and the price of 3M is

95, then the purchaser of the option is in the money at expiry and will obviously select

to buy the 3M stock for 85. Note that he has the option to exercise at any time prior

to expiry too.

The proper price for this security rests on the insights of Black and Scholes. Assume

a perfect market where all agents know all distributions of stock returns and have

costless and instantaneous access to the markets for all stocks and credit. They may

set up a perfect delta hedge consisting of one part underlying stock and and delta parts

short the option where delta is defined as the derivative of the option price with respect

to the underlying stock price. Such a portfolio is by definition insulated from stock

price risk and therefore must receive a risk free return in equilibrium. Therefore, the

option price is pinned to the stock price and the risk free rate. The precise relationship

is referred to as the Black-Scholes formula.

The Black-Scholes formula is not an explicit equation for the option price. Instead,

it characterizes the option price as a partial differential equation. However, numeral

methods exist for approximating what the option price is for any set of fundamental

parameters. I use finite difference techniques where the option price is estimated on
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a discrete grid representing all possible stock prices and time. The technique involves

defining the option prices on the expiry plane in accordance with promised payoff func-

tion and then using Black Sholes formula to determine all other points iteratively. One

shortcoming of this technique is that since the grid must be finite, artificial boundary

conditions must be defined. These are usually chosen as part art, part science, using

various limit arguments.
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Chapter 2

Equilibrium Selection in Two-Sided Markets

2.1 Background

The definition of a two-sided market is not completely agreed on. The sufficient condi-

tions that I use are:

1. There are two groups of buyers. Each group is termed a side of the market. Call

them Side A and Side B.

2. Sellers produce two goods. Call them Good A and Good B. These sellers are

termed platforms.

3. Buyers belonging to Side A are only willing to pay for a single unit of Good A

and buyers belonging to Side B are only willing to pay for a single unit of Good

B. The act of buying a good is referred to as joining the platform.

4. A Side A buyer’s willingness to pay to join a platform is directly proportional to

Side B’s aggregate demand for that platform.

5. A Side B buyer’s willingness to pay to join a platform is directly proportional to

Side A’s aggregate demand for that platform.

The definition extends straightforwardly to multi-sided markets.

The most instructive example is the market for heterosexual mingling. In this case,

the platforms are nightclubs, a side of buyers is the male population and the other side

of buyers is the female population. The two platform products are male access right

and female access rights. Finally, a man’s willingness to pay for access to a nightclub

is directly related to the number of women present at that nightclub and a woman’s
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willingness to pay for access to a nightclub is directly related to the number of men

present at that nightclub.

Alternatively, consider a financial paper exchange. One side is the population of in-

vestment banks who write derivative contracts and another side is insurance companies

who buy those contracts. Each side is willing to pay a fee to the exchange owner up

to his expected gains from trade on these contracts. Furthermore, gains from trade are

proportional to the number of participants on the other side due due to liquidity and

diversification economies.

Another important example is the market for software operating systems. For ex-

ample, Microsoft’s Windows operating system offers software users and software writers

a platform, Windows, through which to interact. The use of a platform instead of direct

interaction greatly increases the gains from trade because Windows programming tools

reduce costs for application writers and the consistent Windows interface increases the

willingness to pay of consumers. A similar scenario occurs in the video game console

market. Theoretically, a game producers could sell a software-hardware bundle to users.

However, a centralized hardware platform such as Playstation or Nintendo obviates the

need for application providers to sell a hardware component.

Finally, two-sided market theory has recently been applied to Internet regulation

by the FCC. Broadband providers may charge fees for shuttling information between

application providers and users. Net-neutrality advocates are concerned about the abuse

of market power by these broadband providers, especially in cases where those firms are

vertically integrated into the application market. The recent merger between Comcast,

a broadband provider, and NBC, an application provider, led some to believe that the

new conglomerate would harm competition in the upstream television market. Those

against net-neutrality regulation believe that we do not understand efficient pricing in

two-sided markets well enough to warrant explicit regulation. For example, as with

most markets, it is not clear how or when price discrimination is welfare enhancing.

For a more discussion, see Baker et al. (2011).
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2.2 A Utility Model of Two-Sided Markets

I model a side of the market as a unit interval. An individual buyer who is a member of

that side is a point on that unit interval. Each buyer has Lebesgue measure zero while

the entire side has Lebesgue measure one. Denote I the set of sides, i an element of I

and −i an element of I\i. Denote J the set of platforms, j an element of J and −j an

element of J \j. Denote i′ an arbitrary member of side i and j′ an arbitrary member

of side j. I restrict attention to a singleton set of platforms and two sides. That is, I

model a monopolized two-sided market.

A side i buyer who joins the platform will enjoy the following utility:

ui′(pi, D−i, θ) = θ + λiD−i − pi

where D−i, platform demand from side −i, is the measure of side −i agents who join the

platform, pi is the price charged by the platform to side i, θ is platform quality and λi

is a utility rate per measure of side −i agents who join the platform. I define demand

more carefully below. For now, it should be understood as a number in the closed

unit interval. Note that the seller may discriminate across groups because buyers are

exogenously endowed with group membership and groups are assumed to care about

only one of the products. For example, buyers who would like to use eBay for the

purposes of selling have no use for a buyer registration. The opportunity cost of not

joining a platform is normalized to zero.

Once buyers have made their joining decisions, they proceed to interact with one

another. I do not model this process explicitly. Implicit in the preferences defined above

is the notion that surplus is generated through their interaction and allocated according

to some mechanism. The inner market is essentially a pure exchange economy. For my

purposes, the nature of the inner market is fixed and summarized by the parameters

λA, and λB. Consumer preferences with respect to the outer market can be interpreted

as expectations of inner market gains from trade.
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2.3 A Simple Game Theoretic Model

Since platform seekers care about what other platform seekers choose, analysis of two-

sided markets lends itself well to game theory. Consider the following three three-stage

simple platform game. In stage one, the platform chooses an investment level, ρ, and

a set of prices (pA, pB) where pA and pB are the access fee prices payed by side A

and side B buyers, respectively. In stage two, nature draws the quality of the platform

according to Θ|ρ ∼ N (ρ, σ2
Θ) where N is the normal distribution. In stage three, agents

observe the quality of the platform, the prices, and choose whether or not to join the

platform, actions denoted J and NJ , respectively. Denote the strategy of agent i′ as

si′(pi, p−i, θ). Define side i ex-post1 market demand Di(pi, p−i, θ) as the measure of

side i agents who join the platform. The payoff to a consumer who joins the platform

is:

ui′(pi, p−i, θ) = θ + λiD−i(pi, p−i, θ)− pi (2.1)

The payoff to a consumer who does not join the platform is zero. The platform’s stage

1 expected payoff is:

π(pA, pB, ρ) = pA

∫ +∞

−∞
DA(pA, pB, θ)φ(θ|ρ)dθ+ pB

∫ +∞

−∞
DB(pA, pB, θ)φ(θ|ρ)dθ−C(ρ)

(2.2)

where C(·) is a cost of investment function and φ(·|ρ) is the conditional density of θ

given ρ. I assume zero fixed cost and zero marginal cost for the platform for admitting

and facilitating interaction among buyers.

Agent i′ utility is bounded below by θ − pi and above by θ + λi − pi. See the

shaded region(s) in Figure 2.1. The lower bound obtains when an agent joins and no

agents from the opposite side join and the upper bound obtains when all agents of the

opposite side join. It follows then that if θ > pi, all i′ will receive a positive payoff

1I call this market demand ex post because it gives the demand for a given realization of the platform
quality. Ex ante demand is then the demand a platform expects given a choice of investment level,
before quality has been realized.
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independent of the actions of other agents. Similarly, if θ < pi − λi, all i′ will receive

a negative payoff independent of the actions of other agents. In other words, demand

from side i will be 1 and 0 in those cases, respectively. However, for pi − λi < θ < pi,

the optimal action depends on what measure of −i′ also join. Define the i-window, Wi,

as W(pi, λi) ≡ [pi − λi, pi].

Given a Wi, we can say more about an agent i′’s dominant strategies by looking at

W−i. There are two main cases to consider: Wi ∩W−i = ∅ and Wi ∩W−i 6= ∅.

Consider the first case. Without loss of generality, assume that pi − λi > p−i. In

other words, Wi is strictly greater than W−i. This is a world for members of side

i are much less eager to join the platform because either the price they face is high

or their marginal benefit from interacting with side −i is small. Then for θ ∈ Wi,

J−i dominates NJ−i. In other words, for quality ranges where side i may want to join,

quality is sufficiently high for side −i agents that they join for sure, independent of what

side i agents choose. By iterated deletion of dominated actions, then, Ji dominates NJi.

In other words, for quality levels where a naive side i player would be unsure about

joining, the savvy side i player correctly anticipates that all side −i agents will join. A

symmetric argument holds when θ ∈ W−i. NJi dominates Ji and, by iterated deletion

of dominated actions, for NJ−i dominates J−i.

Consider the second case. Now there are platform qualities for which both sides of

the market may or may not like to join depending on what measure of agents from

the opposite side join. If pi > p−i, then for θ ∈ [p−i, pi], J−i dominates NJ−i and by

iterated deletion of dominated actions, Ji dominates NJi. If pi − λi > p−i − λ−i then

for θ ∈ [p−i − λ−i, pi − λi], NJi dominates Ji and by iterated deletion of dominated

actions, NJ−i dominates J−i.

With the above argument in mind, Proposition 1 characterizes all of the Nash equi-

libria of the stage three subgame of the simple platform game.

Proposition 1: All Nash equilibrium strategies of the simple platform game have the
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following form:

si′(pi, p−i, θ) =


Ji if θ > max{min{pi, p−i}, pi − λi} or θ ∈ F

NJi else

(2.3)

where F ⊂ Wi ∩W−i if Wi ∩W−i 6= ∅ and F = ∅ if Wi ∩W−i = ∅

The most important property of the Nash equilibria described in Proposition 1 is

the arbitrariness of F . It implies an infinite multiplicity of equilibria in the stage three

subgame of the simple platform game. See Figure 2.1 for a graphical representation of

Proposition 1.

The microeconomic interpretation of this multiplicity of Nash equilibria is a multi-

plicity of both ex-post and ex-ante demand curves, that is, the demand curves which

the monopolist expects given a choice of investment and the demand curves for given

platform qualities, respectively. The ex post demand curve maps realized qualities lev-

els into either zero or one. That is, participation by some positive fraction less than one

of the agents from a given side can never occur in equilibrium. If agents who are “on”

the platform are receiving a negative utility, then those agents are not best-responding

and would rather be “off” the platform. If the agents who are “on” the platform are

taking a positive utility, then all of the agents who are “off” the platform are not best-

responding and would rather be “on” the platform as well. Consequently, the ex-post

demand curve is discontinuous at at least one price and may actually increase in price

over certain price regions. The ex-ante demand curves are derived by fixing an ex-

post demand curve and integrating over the density distribution of quality given the

investment level. This necessarily yields a smooth demand curve which may be upward

sloping over some price regions. See Figure 2.2 for an illustration of all of possible

ex-ante equilibrium demand curves.

By backward induction, the profit-maximizing monopolist chooses prices and quality

to maximize his expected profit given the ex-ante demand curve implied by the stage

three subgame Nash equilibrium strategies.
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Figure 2.1: Equilibria of the simple platform game stage three subgame. WA and WB

are shown in red and green, respectively, for two different parameterizations of the

subgame. A side i agent will always play dominant strategies for θ /∈ Wi regardless of

the parameterization. Case (a) depicts a game parameterized such that WA ∩WB 6= ∅.

For θ < pB − λB, NJA and NJB are both dominant strategies. For θ > pA, JA and

JB are both dominant strategies. For θ ∈ WA ∩ WB, players either coordination on

joining or not joining. This is the region of multiple equilibria. Case (b) depicts a game

parameterized such that WA ∩ WB = ∅. For θ ∈ WA, side A agents are pessimistic

(believe no side B agents will join) and therefore do not join. For θ ∈ WB, side B agents

are optimistic (believe all side A agents will join) and therefore join.

-�
pB − λBs pBs

pA
s

pA − λA
s θ

(a)

-�
pB − λBs pBs

pA
s

pA − λA
s θ

(b)
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Figure 2.2: A plot of several possible ex ante demand curves for the simple platform

game. The optimistic demand curve refers to side A demand in the simple platform

game if all agents join the platform for all θ ∈ WA ∩ WB. The pessimistic demand

curve refers to side A demand in the simple platform game if all agents do not join

the platform for all θ ∈ WA ∩WB. All functions between the two are feasible demand

functions in the simple platform game. For pA /∈ [pB − λB, pB + λA], all possible side

A demand curves coincide. Note: The figure is sketched for the special case where

λA = λB.
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2.4 Literature Review and Contribution

Proposition 1 brings to light what has come to be known as the chicken-or-the-egg

problem of two-sided markets: given a set of prices, both side’s demands depend on

beliefs about the other side’s demand. This indeterminacy is similar to the sunspot

equilibria problem studied in the bank run and currency crisis literatures.

A number of researchers have devised techniques to circumvent the chicken-or-the-

egg problem. In an early precurser to the formal two-sided market literature, Caillaud

and Jullien (2003) model the platform as a matching service. Each side is interested

in finding a unique match from the other side. The platform provides greater value to

each side when it has more members of the opposite side joined and available for search.

For similar reasons as discussed in this model, there are multiple equilibria for many

price systems. Caillaud and Jullien (2003) resolve this problem by restricting attention

to those equilibrium demand curves which are downward sloping. Miscoordination is

ignored.

In a similar model, Rochet and Tirole (2006) interpret the fixed benefit term as one

component of a buyer’s type which is distributed continuously over the population of

buyers. In other words, the fixed benefit is a horizontal quality. When there are no side

i agents on the platform, a positive measure of side −i agents will find it dominant to

join the platform, independent of the price. Similarly, when all side i agents are on the

platform, a positive measure of side −i agents have negative fixed benefits and find NJ

dominant. Under some regularity conditions, a unique set of demands for any given set

of prices will result.

Armstrong (2006) breaks with Rochet and Tirole (2006) by considering utility with

no fixed benefit. He sidesteps the coordination problem by taking demand curves as

given exogenously. He finds the intuitive result that, given a participation level on the

other side, the socially efficient price is the marginal cost less the marginal indirect

externality.2 To derive monopoly prices, Armstrong (2006), models elasticity with an

exogenous function and derives a Lerner condition.

2Efficient pricing is analyzed in greater detail by Bolt and Tieman (2006)
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Hagiu (2006) avoids the coordination problem by assuming the sides enter the mar-

ket sequentially. Sellers enter first. He analyzes two cases. In one, sellers expect all

other buyers to enter and in the other sellers expect no other buyers to enter. These

correspond to optimistic and pessimistic expectations of opposite side participation.

This is akin to looking at the pareto dominant and pareto inferior equilibria of the

simple platform game defined above.

The approach used in Hagiu (2006) is similar to the “rational expectations” approach

used by Katz and Shapiro (1985). They look at a one-sided oligopoly market with direct

network externalities. Consumers have unit demand and consumer surplus demand on

the number of other consumers who have purchased the product. It is easy to see

that individual demand curves are interdependent and there are therefore multiple

equilibrium demand curves. For example, if no one buys, then no consumer has an

incentive to buy. If everyone buys, then every consumer has an incentive to buy. Katz

and Shapiro (1985) escape the equilibrium multiplicity problem by exogenizing buyers’

expectation. Given expectations, Cournot first-order-conditions implicitly define the

allocation of consumer demand across firms. The key to their approach is to restrict

attention to such expectation-allocation pairs which are consistent. That is, consumers

expectation of the network size of a firm is equal to the actual network size that results

after the Cournot competition.

Weyl (2009) considers a more general demand system that allows for heterogeneity

of both fixed and marginal benefit parameters across the population (I capture hetero-

geneity across groups). Seeing as my model is a special case of his, one would expect

his results to apply to mine specifically. In particular, he makes the case for the co-

ordination problem being unimportant. He suggests that the inverse demand curve is

obtainable through the following argument. Fix the participation on side B and vary

the price on side A. This traces out the side A demand. Then fix participation on side

A and vary the price on side B to obtain side B demand. Together these half-demand

curves can implement any participation levels. Like some of the papers mentioned

above, this argument discretely sidesteps the coordination problem by assuming .

Weyl is essentially suggesting a two-stage game where in stage one, the platform
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sets one side’s participation and in a second stage, he uses price to elicit demand on

the other side. This argument can work for one side, but it is illogical to apply it to

both sides simultaneously. Further, if the simultaneity problem was solved, preferences

may be defined in such a way that some participation levels are not implementable. For

example, in my formulation above, by fixing a participation level on side A, the platform

will only be able to implement a demand of 0 or 1 on the other side. Finally, Weyl

suggests any implementability problems can be overcome with the use of an “insulating

tariff” whereby the platform posts prices which are contingent on the participation of

the opposite. In this way, the platform fixes the utility level by offering a price schedule

which depends on the participation of the other side. This is essentially what Armstrong

is doing with his black-box demand functions above. The key to this argument is the

idea that platforms do not charge at the door but instead charge at the exit after the

actual demands are realized. Indeed, given preferences with unbounded support, if

such a scheme were implementable, any demand could be implemented. However, it is

doubtful that such pricing schemes could be implemented in reality. Even if they were,

the question of what the demand curves are at the door remains unresolved. This is

the case which I focus on here.

Standard coordination games consider a group of identical agents who face multiple

paraeto-ranked equilibria.3 Players actions are strategic complements. The coordina-

tion problem studied here is an interesting variant on classic coordination problems.

Here, agents are placed into two groups. There is no complementarity in actions among

players on the same side. However, actions are complementary across sides.

The central contribution of this paper is a resolution of the chicken-or-the-egg prob-

lem. In the simple platform game, the fixed benefit term, θ, was common knowledge

to consumers. It is more realistic, however, to relax this assumption by assuming that

agents have some noisy perception of the true fixed benefit term. More importantly,

agents are unsure about other agents’ beliefs on platform quality. I show that under

this richer information structure, a unique equilibrium exists which pins down ex-ante

3See Cooper (1999) for an introduction to this voluminous literature.
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and ex-post demand curves.

2.5 The Complete Model

Here I define the three-stage complete platform game. In stage one, the monopolist

platform chooses an investment level ρ > 0 and a set of prices (pA, pB) where pA

and pB are the access fee prices paid by side A and side B buyers, respectively. In

stage two, nature draws the true quality of the platform according to Θ|ρ ∼ N (ρ, σΘ)

and agents’ types according to xi′ |θ ∼ N (θ, σx), where N indicates the normal dis-

tribution and σx is a level of noise which for ease of exposition is fixed for all buyer

agents. In stage three, agents observe their type, xi′ , the investment level, ρ, the

set of prices (pA, pB), and choose whether to join, Ji′ , or not join, NJi′ . Denote the

strategy of agent i′ as si′(pi, p−i, xi′ , ρ). Define side i market demand Di(pi, p−i, θ) ≡∫ 1
0

∫ +∞
−∞ si′(pi, p−i, xi′ , ρ)φ(xi′ |θ)dxi′di. The payoff to a consumer who joins the platform

is

ui(pi, p−i, θ) = θ + λiD−i(pi, p−i, θ)− pi (2.4)

and the payoff to a buyer agent who does not join the platform is zero. Given a set of

demand curves, the platform’s stage one expected payoff is:

π(pA, pB, ρ) = pA

∫ +∞

−∞
DA(pA, pB, θ)φ(θ|ρ)dθ+ pB

∫ +∞

−∞
DB(pA, pB, θ)φ(θ|ρ)dθ−C(ρ)

(2.5)

where C(·) is the cost of investment. Note that I assume zero fixed cost and zero

marginal cost for the platform for admitting and facilitating interaction among buyers.

With respect to the simple platform game, the complete platform game represents

a weakening of the common knowledge assumption on θ. Instead of it being publicly

observed, agents receive private noisy signals which inform their prior belief on the

distribution of the true platform quality. It is immediately clear that Nash equilibria

of the simple platform game will not translate directly into Nash equilibria of the com-

plete platform. In particular, in the former case, agents will coordinate their actions

for θ ∈ F ⊂ WA ∩WB. This type of coordination is no longer possible when θ is not

common knowledge. Strategies, instead, depend on the information set consisting of
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the private signal and the public market information. Agents must form beliefs on the

payoff-relevant θ as well as other agents’ beliefs on θ ad infinitum. This type of coor-

dination problem with payoff uncertainty has been termed a global game by Carlsson

and Van Damme (1993a).4 I now present the main result of the paper.

Proposition 2: The stage three subgame has a Bayes Nash equilibrium consisting of

the following strategies:

si′(pi, p−i, xi′ , ρ) =


Ji′ if xi′ > x∗i (pi, p−i, ρ)

NJi′ if xi′ < x∗i (pi, p−i, ρ)
(2.6)

∀i′. If σ4
x

σ4
Θ

σ2
x+σ2

Θ

σ4
x+2σ2

Θσ
2
x
≤ min{ 2π

λ2
A
, 2π
λ2
B
}, then it is a dominant strategy equilibrium and

(x∗A(pi, p−i, ρ), x∗B(pi, p−i, ρ)) is unique. That is, all other strategies may be eliminated

using iterated deletions of dominated strategies. Stage one ex ante demand functions

are given by:

Di(pi, p−i, ρ) = 1− Φ

x∗i (pi, p−i, ρ)− ρ√
σ2
θ + σ2

x

 (2.7)

where Φ indicates the standard normal CDF. Furthermore, as signal noise vanishes, a

simple algebraic solution for x∗i obtains:

lim
σx→0

x∗i (pi, p−i, ρ) =


pi if pi < p−i − λ−i

λ−i
λi+λ−i

pi + λi
λi+λ−i

p−i − λiλ−i
λi+λ−i

if p−i − λ−i ≤ pi ≤ p−i + λi

pi − λi if pi > p−i + λi

Define a platform total price as p̄ ≡ pi+p−i. The optimal stage one platform access

fees and investment decision are given by:

lim
σx→0

p∗M =
p̄∗ + λM

2

lim
σx→0

p∗−M =
p̄∗ − λM

2

4For a lucid summary of the theory and application of global games, see Morris and Shin (2003)
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where p̄∗ = p∗M + p∗−M , M ≡ argmaxi∈{A,B}{λi}, and (p̄∗, ρ∗) solves:

max(p̄,ρ)p̄

(
1− Φ

(
p̄−λM

2 − ρ
σθ

))
− C(ρ)

Proof 2: Appendix. See Figure 2.3 for a graphical representation of Proposition 2.

Figure 2.3: The unique equilibrium in the stage three subgame of the complete platform

game. Case (a) depicts a game parameterized such that WA ∩WB 6= ∅. Proposition 2

proves that the unique equilibrium in this case is to join for xi′ > x∗. Case (b) depicts

a game parameterized such that WA ∩WB = ∅. Proposition 2 proves that the unique

equilibrium is for all side B agents to join for xB′ > x∗B ≡ pB − λB and for all side

A agents to join for xA′ > x∗A ≡ pA. Case (b) depicts a game parameterized such

that WA ∩ WB = ∅. In such cases, the equilibrium is essentially the same as in the

simple platform game. This illustration applies to a complete platform game with very

small noise. Where signal noise is large, the thresholds may deviate from the positions

specified by the illustration in proportion to the magnitude of the signal noise.
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pB − λBs pBs

pA

s
pA − λA

s
x∗
s x

(a)

-�
pB − λB

x∗B

s pBs
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x∗As
pA − λA

s x

(b)

Some important features of the result should be understood. First, the equillibria

of the complete platform game and the simple platform game coincide where we would

expect them too. Notice that in the complete platform game θ is almost but never

quite common knowledge. As the signal becomes more precise, agents beliefs on θ, on

other agents’ beliefs on θ, etc., become increasingly accurate. In other words, common

knowledge of θ is approached. In the simple platform game, on the other hand, θ is
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common knowledge outright. Hence, we would expect then that the unique equilibrium

of the complete platform game to approach the equilibrium of the simple platform game

as signal noise vanishes in some natural way. Were this not the case, the appeal of the

complete platform game as a solution to chicken-or-the-egg problem illustrated in the

simple platform game would be lost. Indeed, as signal noise vanishes, a measure one

mass of agents will choose the same action in the equilibria of either game for some

fixed θ and for pi /∈ [p−i − λ−i, p−i + λi]. To see this, observe that ex post demand is

given by:

Di(pi, p−i, θ) =
∫ 1

0

∫ +∞

−∞
si′(pi, p−i, xi′ , ρ)φ(xi′ |θ)dxi′di

=
∫ 1

0

∫ +∞

−∞
Ixi>x∗φ(xi′ |θ)dxi′di

=
∫ 1

0

[
1− Φ

(
x∗ − θ
σx

)]
di

= 1− Φ
(
x∗ − θ
σx

)
and that as signal noise goes to zero, ex post demand becomes a step function

lim
σx→0

Di(pi, p−i, θ) = lim
σx→0

{
1− Φ

(
x∗ − θ
σx

)}

=


1 if x∗ < θ

0 if x∗ > θ

=



1 if pi < θ and pi < p−i − λ−i

or λ−i
λi+λ−i

pi + λi
λi+λ−i

p−i − λiλ−i
λi+λ−i

< θ and p−i − λ−i ≤ pi ≤ p−i + λi

or pi − λi < θ and pi > p−i + λi

0 if pi > θ and pi < p−i − λ−i

or λ−i
λi+λ−i

pi + λi
λi+λ−i

p−i − λiλ−i
λi+λ−i

> θ and p−i − λ−i ≤ pi ≤ p−i + λi

or pi − λi > θ and pi > p−i + λi

which corresponds exactly to the equilibrium given by Proposition 1 for this interval.

Second, the complete platform game has a unique equilibrium for platform qualities

where the simple platform game has multiple. When WA ∩ WB 6= ∅, Proposition 2
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Figure 2.4: The refined demand curve obtained for the complete platform game. For

pA ∈ [pB −λB, pB +λA], the refined demand curves for each side are equal because the

thresholds, x∗(·) are equal. For pA < pB − λB, side B refined demand becomes fully

optimistic and therefore independent of pA and side A refined demand becomes fully

pessimistic. For pA > pB + λA side B refined demand becomes fully pessimistic and

therefore independent of pA and side A refined demand becomes fully optimistic. Note:

The figure is sketched for the special case where λA = λB.

implies that x∗(pi, p−i, ρ) ∈ WA ∩WB whereas Proposition 1 is agnostic of equilibrium

strategies. Furthermore, in this region, the equilibrium of the complete platform game is

an intuitive compromise between the optimistic and pessimistic strategies of the simple

platform game – agents will coordinate on joining the platform if and only if quality is

high enough. See Figure 2.4 for an illustration of how the ex ante demand curve implied

by Proposition 2 is a compromise between the optimistic and pessimistic demand curves

from Proposition 1.

Third, notice that lim
σx→0

x∗i (pi, p−i, ρ) = lim
σx→0

x∗−i(pi, p−i, ρ) ≡ x∗(pi, p−i, ρ) when
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WA ∩ WB 6= ∅. This says that for platforms where the chicken-or-the-egg problem

exists, equilibrium strategies are the same for all platform buyers independent of side.

This may sound counterintuitive at first. One could reasonably argue that if side A

agents have a much higher marginal benefit of interaction than side B agents do, then

side A agents should be more likely to join the platform. However, my counterintuitive

result has sound intuition. Suppose x∗i 6= x∗−i. Since signal noise is small, types in

[min{x∗i , x∗−i},max{x∗i , x∗−i}] are either joining when very few agents of the other side

are joining or are not joining when very many of the other side are joining. In either

case, no agents is best-responding. An interesting implication of this fact is that the

platform should expect an even mix of agents when WA ∩WB = ∅. More specifically,

there is ex-post perfect coordination always (miscoordiation for a measure zero mass of

agents).

Fourth, Corollaries 1 and 2, below, give comparative statics for equilibrium behavior

in the complete platform game. These are the real contribution of this refinement notion

as such comparative statics are impossible in the simple platform game when the analyst

is most interested in platforms where WA ∩WB = ∅.

Corollary 1:

lim
σx→0

∂x∗i (pi, p−i, ρ)
∂pi

=


1 if pi < p−i − λ−i

λ−i
λi+λ−i

if p−i − λ−i ≤ pi ≤ p−i + λi

1 if pi > p−i + λi

(2.8)

lim
σx→0

∂x∗i (pi, p−i, ρ)
∂p−i

=


0 if pi < p−i − λ−i

λi
λi+λ−i

if p−i − λ−i ≤ pi ≤ p−i + λi

0 if pi > p−i + λi

(2.9)

Proof: Follows from Proposition 2 by differentiation.
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Corollary 2:

lim
σx→0

∂Di(pi, p−i, ρ)
∂pi

=


− 1
σθ
φ
(
x∗i (pi,p−i,ρ)−ρ

σθ

)
if pi < p−i − λ−i

− 1
σθ
φ
(
x∗i (pi,p−i,ρ)−ρ

σθ

)
λ−i

λi+λ−i
if p−i − λ−i ≤ pi ≤ p−i + λi

− 1
σθ
φ
(
x∗i (pi,p−i,ρ)−ρ

σθ

)
if pi > p−i + λi

(2.10)

lim
σx→0

∂Di(pi, p−i, ρ)
∂p−i

=


0 if pi < p−i − λ−i

− 1
σθ
φ
(
x∗i (pi,p−i,ρ)−ρ

σθ

)
λi

λi+λ−i
if p−i − λ−i ≤ pi ≤ p−i + λi

0 if pi > p−i + λi

(2.11)

Proof: Follows from Corollary 1 and the definition of ex ante demand.

Corollaries 1 and 2 show that the law of demand does in fact follow in this model

of two-sided markets. Furthermore, the demand system is one of complementary goods

with the elasticity of demand being greater with respect to the side which is valued

more. Recall the computer operating system two-sided market example given above.

Assume that the total gains from trade from the application consumer side of the

market is greater than the total gains from trade from the application writer side of

the market for a fully patronized platform. Corollary 2 says that market demand will

be more elastic with respect to the application writer side price than to the application

consumer side price. This suggests that, all else equal, operating system platforms will

tend to charge the application consumer side more and the application writer side less.

A full treatment of the social welfare implications of market structure implied by

this model is beyond the scope of this paper. See the Appendix for several preliminary

results on this topic.

Finally, Proposition 2 offers predictions regarding the relationship between welfare

and outlay allocation between the sides of the market. Because I have normalized the

consumers populations to one per side, λi may be interpreted as the sum of all gains

from trade taken by side i agents when all side i agents interact with all side −i agents.

Also, pi may be interpreted as the revenue to the platform from side i agents. Recall

the computer operating system example discussed above and assume for the moment
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that the market is monopolized and software consumers take a greater fraction of the

total gains from trade on a fully patronized platform than the software producers.

Proposition 2 says that this would be so if and only if the total revenue generated from

the software consumer side is greater than the total revenue generated from the software

writer side.

2.6 Experiment

2.6.1 Setup

It remains to be known how the simple platform game is played in the “real world.”

To probe this issue, I created a computerized simple platform game for human subjects

to play. The game was written, networked, and implemented using the Z-Tree (Fis-

chbacher (2007)) platform and experiments were carried out in the Gregory Wachtler

Experimental Economics Laboratory at Rutgers University in October and November

2010.

This paper focussed on the chicken-or-the-egg problem of two sided market, a de-

mand side phenomenon. Therefore, I focussed on the demand side of the market by

choosing prices randomly across games while allowing players to respond freely to those

prices. In essence, I tested the stage three sub-game of the simple platform game.

In order to operationalize an experimental version of the simple platform game, some

simplifications were necessary. Of course, a continuum of players, or anything close to

it, is impossible. To maximize the amount of data I had to work with, then, I filled

the laboratory to capacity with twenty players. These players were Rutgers University

undergraduate students. Next, the platform quality parameter was restricted to the

set {1, ..., 25}. This set was chosen to simplify the cognitive load on the players. The

price space was then restricted to the set {14, 19, 24} and the valuation parameter space

restricted to the set {1, 1.5} to ensure the existence of the chicken-or-the-egg problem

and enough variation in the predicted threshold.

The valuation parameters are interpreted slightly differently in this game than in the

true simple platform game. In this game, valuation parameters are interpreted as the
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per interaction marginal benefit. Since there are twenty players in total and each can

interact with up to ten other players on the platform, there are two hundred possible

interactions on the platform. Therefore, the total gains from trade available to the

players varied between two hundred and three hundred. In the pure simple platform

game, a valuation parameter is interpreted as the total gains from trade earned by one

side of the market when the platform is fully patronized by both sides. Under the

parameterizations for this experimental version, this gives valuation parameters of one

hundred or one hundred and fifty. The purpose of redefining the valuation parameters

in the experimental version is, again, to reduce the cognitive load on the subjects by

giving them a more intuitive notion of the value of interaction.

Each session consisted of twenty students playing a series of simple platform games

on a single day. This usually took between one and two hours. Each session consisted

of thirty six rounds. In each round, twenty five simple platform games were played

simultaneously. One platform game was played for each platform quality in the platform

quality space. The order of those qualities was randomly chosen each round. The

purpose of choosing platform qualities in this pseudo-random fashion was to increase

variation for statistical purpose. Since strategies are functions from the platform quality

space and parameters into a join decision, another purpose of having players face all

qualities levels at once is to see a player’s entire strategy at that moment for given

prices and valuation parameters.

Students were divided randomly into two groups, each representing a side of the

platform. Since the simple platform game is static in nature, I wanted to minimize the

dynamic effects that necessarily crop up when players play a static game repeatedly.

Therefore, across games within a session, the side a player belonged to switched ran-

domly. Also, within a session, a total of nine different price-valuation parameterizations

were encountered by the players. All parameterizations were encountered once and then

cycled through in the same order three additional times. Again, the purpose here is to

preserve static effects and to minimize dynamic effects.

Players were incentivized by a monetary reward directly proportional to the util-

ity they obtained in the games they played. Utility was summed over all games and
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multiplied by a reward factor which was payed out to students upon completion of the

thirty-sixth game. A minimum payment of $5 was guaranteed.

Each session began with a public reading of the instructions. Paper copies of the

instructions were available to each player. After the instruction were read, players were

given the opportunity to ask questions. Once all questions were answered, the first

round was initiated.

In each round, players were presented first with a decision screen. The decision

screen displays the price and valuation parameterization for that game at the header of

the screen. Running down the center of the screen were twenty-five radio buttons, one

for each of the twenty-five separate games that were being played. Recall that each of

the twenty-five games is associated with a platform and that each of those platforms

has an associated unique integer quality level between one and twenty-five. Each radio

button gives the player two options, one for each action available to him: join and do

not join. See Figure 2.5 for a screenshot of the decision screen.
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There was no time limit for players to make their decisions. Players were free to

revise their decisions as they wished until they clicked the OK button. After that,

players’ screens went blank. Once all players clicked their OK buttons, all players

screens proceeded to the payoff screen. In the payoff screen each player could see, for

each of the twenty-five games played, what his decision was, the number of players from

his side who joined, the number of players from the other side who joined and the utility

payoff taken from that game. See Figure 2.6 for a screenshot of the payoff screen.
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2.6.2 Results

The analysis above assumed that players are utility maximizers and use iterated deletion

of dominated strategies in selecting an ultimate strategy. To test that assumption, I

begin by examining how frequently players chose dominated actions. I did this two ways

depending on the definition of a dominated action. As discussed in detail in the analysis

of the simple platform game above, when the chicken-or-the-egg problem exists, there

are two orders of dominated strategies. First, a player will not join the platform if

θ < pi − λi and will join a platform if θ > pi. I call strategies inconsistent with these

rules to be dominated level one. WhenWA∩WB 6= ∅, however, players will not join for

mini∈I (pi − λi) < θ < maxi∈I (pi − λi) and will join for mini∈Ipi < θ < maxi∈Ipi. I

call strategies inconsistent with these additional rules to be dominated level two. Note

that a strategy which is undominated at level 2 must also be undominated at level 1.

See Figure 2.7 for the prevalence of dominated actions by period. All actions chosen

in all sessions are first pooled. Each action is associated with a game and a corre-

sponding platform quality level. I count the number of actions for which the associated

quality level implies a certain action is dominant. This total is the demoninator of the

ratio. The numerator is then the number of those actions for which the player did in

fact choose the dominated action.

Frequency of dominated actions is low, less than 5% of the time for most rounds. It

appears to be decreasing monotonically with noise as the session progresses. By far the

period with the greatest prevalence of dominated actions is period one with over 20%.

Next, I check the prevalence of threshold strategies. That is, players should join

the platform if and only if the platform quality is greater than a certain level. See

Figures 2.8 and 2.9 for views of the complete decision histories of two players. These

represent opposite extremes of observed player behaviors. I term players whose decision

histories resemble Figure 2.9 confused. I term term players whose decision histories

resemble Figure 2.8 good. Out of the eighty players on which this data is based, two

were confused. Confused players are clearly not using threshold strategies while good

players are (with few exceptions).
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Figure 2.7: Number of dominated decisions relative to the number of dominated actions

by period. Dominated decisions are taken here to indicate an instance when a player

chooses a dominated action. The normalization is used to control for the fact that the

number of dominated decisions should vary with the treatment depending on how many

dominated actions theory predicts for those parameters. Level-1 dominated actions

are dominated without any strategic consideration. Level-2 dominated actions are

dominated when Level-1 dominated actions are eliminated.
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Figure 2.8: Typical decisions for a good player. The vertical axis indicates the discrete

choice variable for whether or not to join. Here, a “1” indicates a join decision while a

“0” indicates a do not join decision. The horizontal axis indicates the platform quality.
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Figure 2.9: Typical decisions for a confused player. The vertical axis indicates the

discrete choice variable for whether or not to join. Here, a “1” indicates a join decision

while a “0” indicates a do not join decision. The horizontal axis indicates the platform

quality.
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The above analysis makes several additional predictions on the demand side behav-

ior of rational agents in a two-sided market. I list them here in order of increasing

novelty. First, the platform’s goods are complementary and obey the law of demand.

Second, Side A’s demand and Side B’s demand should always be equal.5 Third, demand

elasticity is greater with respect to the price of the more desired side of the market and,

consequently, a monopolist platform will decrease the total price burden for that side.

To test these predictions, I use an econometric model. First, I exclude all the

decisions of confused players from the analysis as well as all decisions made during

rounds one through nine, the first cycle through all paramterizations faced within a

session. With the remaining decision data, I assume that players are using some kind

of threshold strategy. Following Heinemann et al. (2004) methodology, I model the join

decision using a logit model with the join decision as the binary dependent variable and

a linear combination of the prices and marginal benefit parameters as the independent

latent variable.

Pr(join|parameters) =
ez

1 + ez

where:

z ≡Intercept+Quality ·XQuality +OwnPrice19 ·XOwnPrice19+ (2.12)

OwnPrice24 ·XOwnPrice24 +OtherPrice19 ·XOtherPrice19+

OtherPrice24 ·XOtherPrice24 +OwnV alueHi ·XOwnV alueHi+

OtherV alueHi ·XOtherV alueHi +OwnPrice19V LE ·XOwnPrice19V LE+

OwnPrice24V LE ·XOwnPrice24V LE +OtherPrice19V LE ·XOtherPrice19V LE+

OtherPrice24V LE ·XOtherPrice24V LE

See Table 2.1 for variable definitions. See Table 2.2 for the results of the econometric

regression where a individual-level random effect is included.

5This level of demand will vary in price and valuation parameters. The exception to this rule is for
price and valuation parameters where the chicken-or-the-egg problem does not exist. See 2.2(b).



35

Table 2.1: Variables Used

Name Nature Description

XQuality continuous Quality of the platform

XOwnPrice19 dummy =1 if own price is 19

XOwnPrice24 dummy =1 if own price is 24

XOtherPrice19 dummy =1 if other price is 19

XOtherPrice24 dummy =1 if other price is 24

XOwnV alueHi dummy =1 if own value is 1.5 instead of 1.0

XOtherV alueHi dummy =1 if other value is 1.5 instead of 1.0

XOwnPrice19V LE dummy =1 if own price is 19 and own value is less than other value

XOwnPrice24V LE dummy =1 if own price is 24 and own value is less than other value

XOtherPrice19V LE dummy =1 if other price is 19 and own value is less than other value

XOtherPrice24V LE dummy =1 if other price is 24 and own value is less than other value

Table 2.2: Econometric results

Coefficient OLS Estimate Z-score

Quality 0.871 83.09

OwnPrice19 -1.652 -24.89

OwnPrice24 -3.257 -44.24

OtherPrice19 -1.092 -16.95

OtherPrice24 -1.511 -23.01

OwnValueHi 0.366 6.06

OtherValueHi 0.168 2.78

OwnPrice19VLE -0.558 -0.46

OwnPrice24VLE 0.520 4.47

OtherPrice19VLE 0.0627 0.54

OtherPrice24VLE -0.504 -4.47

Intercept -1.677 -10.52
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2.6.3 Discussion

I define the “threshold” as the value the latent variable must take for the probability

of joining to equal one-half. This value is obtained by solving:

ez

1 + ez
= 0.5

This equation implies z = 0. The solution is a restriction on the set of parameters

which may be solved for quality to obtain a function for the quality threshold in terms

of the prices and valuation parameters:

Intercept+Quality · x∗ + β ·NonQualityParameters = 0⇔

x∗ =
−Intercept− β ·NonQualityParameters

Quality

where x∗ is the threshold for a given set of parameters and β is a vector of coefficients for

all non-quality parameters. This equation makes it clear that the threshold, and hence

demand, moves in the opposite direction to the sign of the corresponding coefficient.

Since the estimated coefficients directly imply estimates of the thresholds and I am only

interested in the signs and relative magnitudes of the threshold comparative statics, a

full marginal effects analysis is not required.

The first hypothesis stated that the demand system should be one of complementary

goods. The fact that price effects are negative and that greater price changes lead to

greater changes in the threshold are together strong support for the law of demand

hypothesis. Furthermore, the fact the other price as well as own price coefficients are

negative is supportive of the hypothesis of complentarity between the two goods.

The next hypothesis states that the thresholds should be the same between the two

sides whenever the chicken-or-the-egg problem exists. The parameterizations chosen in

these experiments guarantee that the problem does, in fact, exist always. One necessary

condition for this hypothesis to be true is that if an own-price change of x implies an

own-threshold change of y, then an other-price change of x must also imply an own-

threshold change of y. Were this not so, then for some prices, each sides will change

their threshold by different amounts and they must either have been playing different

threshold to start with or be playing different thresholds afterwards. For example, if
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for a given set of prices each side joins the platform for signals greater than 10, Side

A’s threshold increases by 2 with respect to an own-price increase of 1 and Side B’s

threshold increases by 1 with respect to an other-price increases of 1, then after Side A’s

price increases by one, Side A’s threshold will be 12 and Side B’s will be 11. Clearly,

thresholds are not always equal. Table 2.2 gives strong evidence that own price and

other price effects are in fact different and therefore that sides do not choose the same

thresholds. Instead, there is a overreaction with respect to own-price.

The final hypothesis states that the price elasticity is greatest with respect to the

side which is most desired. The strong significance of the coefficients OwnPrice24VLE

and OtherPrice24VLE suggest that this is in fact not the case. The large positive

magnitude on OwnPrice24VLE shows that when the player’s side’s value is smaller,

the effect of a change in his own price is mitigated. In contrast, the large negative

magnitude on OtherPrice24VLE shows that when the player’s side’s value is smaller,

the effect on a change in other price is exacerbated. These observations are in direct

contradiction of my hypothesis.

2.7 Appendix

Proof of Proposition 2:

Step 1: In stage three, an agent observes the access fee prices, (pA, pB), his private

signal, xi′ , and the investment level, ρ. xi and ρ are not directly payoff relevant. They

do, however, provide important information to agents. The payoff relevant factors that

the agent must weight are the realized platform quality, θ, the fraction of agents who

will join, D−i, his price, pi, and his valuation parameter, λi. The agent forms beliefs

on θ according to Baye’s rule using his information set. Let ΦA|b(·) and φA|b(·) denote

the CDF and PDF of random variable A conditional on a realization, b, of random

variable B. Let Xi′ denote the random variable which generates the informative signal

for agent i′. Let Θ denote the random variable which generates the platform quality. At

the beginning of stage 3, an agent knows (xi, ρ), φXi′ |θ(·) and φΘ|ρ(·) by assumption. I
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begin by rewriting these distributions in terms of the standardized normal distribution:

ΦXi′ |θ(z) = Pr(xi′ < z|Θ = θ, xi′ ∼ Xi′)

= Pr

(
xi′ − θ
σX

<
z − θ
σX
|Θ = θ, xi′ ∼ Xi′

)
= ΦN

(
z − θ
σX

)
where ΦN indicates the standard normal CDF. By differentiation:

φXi′ |θ(z) =
dΦN ( z−θσX

)

dz

=
1
σX

φN

(
z − θ
σX

)
Where φN indicates the standard normal PDF and σX indicates the standard deviation

of the random variable Xi′ . We similarly find that:

φΘ|ρ(z) =
1
σΘ

φN

(
z − ρ
σΘ

)
We can use these to derive φΘ|xi′ ,ρ(·) using Baye’s rule:

φΘ|xi′ ,ρ(z) =
φXi′ |θ,ρ(z)φΘ|ρ(z)

φXi′ |ρ(z)

=
φXi′ |θ(z)φΘ|ρ(z)∫∞

−∞ φXi′ |θ(z)φΘ|ρ(z)dθ

=
φN ( z−θσX

)φN ( z−ρσΘ
)∫∞

−∞ φN ( z−θσX
)φN ( z−ρσΘ

)dθ

=
1√
σ2
Xσ

2
Θ

σ2
X+σ2

Θ

φN


z − σ2

Xρ+σ2
Θxi′

σ2
X+σ2

Θ√
σ2
Xσ

2
Θ

σ2
X+σ2

Θ


This distribution determines the agent’s beliefs on the quality of the platform, given

his information. Before I continue, it will be useful to define an agents beliefs on other
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agents signals.

φXi|xi′ ,ρ(z) =
∫ ∞
−∞

φXi|θ(z)φΘ|xi′ ,ρ(z)dθ

=
∫ ∞
−∞

1
σX

φN

(
z − θ
σX

)
1√
σ2
Xσ

2
Θ

σ2
X+σ2

Θ

φN

z −
σ2
Xρ+σ2

Θxi′
σ2
X+σ2

Θ√
σ2
Xσ

2
Θ

σ2
X+σ2

Θ

 dθ

=
1√

2σ2
Xσ

2
Θ+σ4

X

σ2
X+σ2

Θ

φN

z −
σ2
Xρ+σ2

Θxi′
σ2
X+σ2

Θ√
2σ2
Xσ

2
Θ+σ4

X

σ2
X+σ2

Θ


An agent’s payoff depends on the quality of the platform, the number of agents who

join, the valuation he places on opposite side membership and the price his side pays:

ui′(pi, D−i, θ) = θ + λiD−i(pi, p−i, θ)− pi

Give our construction of the agents posterior of θ given his information, we may

now write the expected payoff of joining:

E[ui′(pi, D−i, θ|p−i, xi′ , ρ)] =
σ2
Xρ+ σ2

Θxi′

σ2
X + σ2

Θ

+ λiE[D−i(pi, p−i, θ)]− pi

I consider now a Bayesian Nash Equilibrium solution concept to the simultaneous-

move stage three game. All agents form the expected payoff function given their infor-

mation as described above. Now I proceed to eliminate dominated actions.

Define the optimist function:

ūi′(pi, p−i, xi′ , ρ) =
σ2
Xρ+ σ2

Θxi′

σ2
X + σ2

Θ

+ λi − pi (2.13)

This indicates the expected payoff to an agent i′ who believes D−i = 1.

Define x0
i :

x0
i ≡ argmaxx{ūi(pi, p−i, x, ρ)} (2.14)

s.t. ūi(pi, p−i, x, ρ) ≤ 0

Claim:

argmaxx{ūi(pi, p−i, x, ρ)}

s.t. ūi(pi, p−i, x, ρ) ≤ 0
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is a singleton set.

Proof: ūi(pi, p−i, x, ρ) is strictly increasing in x:

∂{ūi(pi, p−i, x, ρ)}
∂x

=
∂{σ

2
Xρ+σ2

Θx

σ2
X+σ2

Θ
+ λA − pi}

∂x
=

σ2
Θ

σ2
X + σ2

Θ

> 0 ∀x

σ2
Xρ+σ2

Θx

σ2
X+σ2

Θ
+ λA − pA = 0 has a solution. The result follows.

For all side i consumers who observe xi′ ≤ x0
i , NJ is a dominant action by definition

of x0
i . Now I consider side −i consumers. First, define the x-optimist function:

ūi(pi, p−i, x, ρ, x) =
σ2
Xρ+ σ2

Θx

σ2
X + σ2

Θ

+ λi

1− ΦN


x− σ2

Xρ+σ2
Θx

σ2
X+σ2

Θ√
2σ2
Xσ

2
Θ+σ4

X

σ2
X+σ2

Θ


− pi (2.15)

The x-optimist function gives the expected payoff to a consumer who believes that

consumers from the other side will join the platform if and only if their signal is greater

than x.

Define x0
−i:

x0
−i = argmaxx{ū−i(pi, p−i, x, ρ, x0

i )}

s.t. ū−i(pi, p−i, x, ρ, x0
i ) ≤ 0

Claim:

argmaxx{ū−i(pi, p−i, x, ρ, x0
i )}

s.t. ū−i(pi, p−i, x, ρ, x0
i ) ≤ 0

is a singleton set.

Proof:

ū−i(pi, p−i, x, ρ, x0
i ) is strictly increasing in x:

∂{ū−i(pi,p−i,x,ρ,x0
i )}

∂x = σ2
Θ

σ2
X+σ2

Θ
+ λi

σ2
Θ

σ2
X

+σ2
Θs

2σ2
X
σ2

Θ
+σ4

X
σ2
X

+σ2
Θ

φN


z−σ

2
Xρ+σ

2
Θx

σ2
X

+σ2
Θs

2σ2
X
σ2

Θ
+σ4

X
σ2
X

+σ2
Θ

 > 0 ∀x.

ū−i(pi, p−i, x, ρ, x0
i ) < 0 for x <

p−i−
σ2
X

σ2
X

+σ2
Θ

−1

σΘ
σ2
X

+σ2
Θ

ū−i(pi, p−i, x, ρ, x0
i ) > 0 for x >

p−i−
σ2
X

σ2
X

+σ2
Θ

+1

σΘ
σ2
X

+σ2
Θ

The result follows.
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Claim: ūi(pi, p−i, x, ρ, x) is strictly decreasing in x.

Proof: ∂{ūi(pi,p−i,x,x)}
∂x = −λir

2σ2
X
σ2

Θ
+σ4

X
σX+σΘ

φN

 x−σ
2
Xρ+σ

2
Θx

σ2
X

+σ2
Θr

2σ2
X
σ2

Θ
+σ4

X
σX+σΘ

 < 0 ∀x

Define the sequences {xki }∞k=0 and {xk−i}∞k=0 recursively:

xki = argmaxx{ūi(pi, p−i, x, ρ, xk−1
−i )}

s.t. ūi(pi, p−i, x, ρ, xk−1
−i ) ≤ 0

xk−i = argmaxx{ū−i(pi, p−i, x, ρ, xk−1
i )}

s.t. ūi(pi, p−i, x, ρ, xk−1
i ) ≤ 0

Claim: Sequences {xki }∞k=0 and {xk−i}∞k=0 are strictly increasing.

Proof: The result follows immediately from the facts that ū(pi, p−i, x, ρ, x) is strictly

decreasing in x and strictly increasing in x for all i.

We now look for the limit of the sequence. If such a limit exists, it must satisfy the

following conditions:

ūi(pi, p−i, xi, ρ, x−i) =
σ2
Xρ+ σ2

Θxi
σ2
X + σ2

Θ

+ λi

1− ΦN


x−i −

σ2
Xρ+σ2

Θxi
σ2
X+σ2

Θ√
2σ2
Xσ

2
Θ+σ4

X

σ2
X+σ2

Θ


− pi = 0

(2.16)

ū−i(pi, p−i, x−i, ρ, xi) =
σ2
Xρ+ σ2

Θx−i
σ2
X + σ2

Θ

+ λ−i

1− ΦN


xi −

σ2
Xρ+σ2

Θx−i
σ2
X+σ2

Θ√
2σ2
Xσ

2
Θ+σ4

X

σ2
X+σ2

Θ


− p−i = 0

Denote (x∗i , x
∗
−i) a solution to the system.

By the implicit function theorem, we have ∂x−i(xi)

∂xi
> 0 and ∂xi(x−i)

∂x−i
> 0. Also by the

implicit function theorem, we have ∂xi(x−i)

∂x−i
< 1 for σ4

x

σ4
Θ

σ2
x+σ2

Θ

σ4
x+2σ2

Θσ
2
x
≤ 2π

λ2
i

and ∂x−i(xi)

∂xi
< 1

for σ4
x

σ4
Θ

σ2
x+σ2

Θ

σ4
x+2σ2

Θσ
2
x
≤ 2π

λ2
−i

. These two facts imply that if σ4
x

σ4
Θ

σ2
x+σ2

Θ

σ4
x+2σ2

Θσ
2
x
≤ min{2π

λ2
i
, 2π
λ2
−i
}, then

(x∗i , x
∗
−i) is unique.

To summarize, any side i agent strategy that survives iterated deletion of dominated

strategies will choose NJi′ for all xi′ < x∗i .

A symmetric argument concludes that there are unique (x̄∗i , x̄
∗
−i) such that any side

i agent strategy that survive iterated deletion of dominated strategies will choose Ji′ for
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all xi′ > x̄∗i and (x̄∗i , x̄
∗
−i) is determined by Equation ((2.16)) as well. Define (x∗i , x

∗
−i) ≡

(x̄∗i , x̄
∗
−i) = (x∗i , x

∗
−i). I now restrict attention to the threshold values for infinitesimal

private signal noise. After solving the system ((2.16)) for (x∗i , x
∗
−i) explicitly, and taking

the limit as private signal goes to zero, the following is obtained:

lim
σx→0

x∗i (pi, p−i, ρ) =


pi if pi < p−i − λ−i

λ−i
λi+λ−i

pi + λi
λi+λ−i

p−i − λiλ−i
λi+λ−i

if p−i − λ−i ≤ pi ≤ p−i + λi

pi − λi if pi > p−i + λi

Step 2: Now consider Stage one. The monopolist platform chooses prices and

investment to maximize his expected profits:

π(pi, p−i, ρ) = pi

∫ +∞

−∞
Di(pi, p−i, θ)φ(θ|ρ)dθ + p−i

∫ +∞

−∞
D−i(pi, p−i, θ)φ(θ|ρ)dθ − C(ρ)

Given the stage 3 subgame equilibrium, the expected profit function may be rewrit-

ten:

π(pi, p−i, ρ) =
(

1− Φ
(
x∗i (pi, p−i, ρ)− ρ

σθ

))
pi+

(
1− Φ

(
x∗−i(pi, p−i, ρ)− ρ

σθ

))
p−i−C(ρ)

where we focus attention on the limiting case of infinitesimal agent signal noise. Without

loss of generality, assume λi > λ−i.

Case 1: pi < p−i − λ−i

π(pi, p−i, ρ) =
(

1− Φ
(
pi − ρ
σθ

))
pi +

(
1− Φ

(
p−i − λ−i − ρ

σθ

))
p−i − C(ρ)

Case 2: p−i − λ−i ≤ pi ≤ p−i + λi

π(pi, p−i, ρ) =

1− Φ

 λ−i
λi+λ−i

pi + λi
λi+λ−i

p−i − λiλ−i
λi+λ−i

− ρ
σθ

 (pi + p−i)− C(ρ)

Case 3: pi > p−i + λi

π(pi, p−i, ρ) =
(

1− Φ
(
pi − λi − ρ

σθ

))
pi +

(
1− Φ

(
p−i − ρ
σθ

))
p−i − C(ρ)

Claim: The monopoly prices can neither fall into Case 1 nor Case 3.

Proof: To prove this, I require the following Lemma.

Lemma 4: y′(a) < 0 for the following implicit definition of y:

1− Φ(y)− (y + a)φ(y) = 0
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where Φ and φ are the CDF and PDF of the standard normal distribution.

Proof: By the implicit function theorem:

y′(a) =
1

d
dy

[1−Φ(y(a))
φ(y(a))

]
− 1

The result will follow if d
dy

1−Φ(y(a))
φ(y(a)) < 0. To see that this is true:[

lnφ(x)
]′′ = − 1

σ2 ⇒ φ(x) is log-concave ⇒ [1− Φ(x)] is log-concave⇒
[ φ(x)

1−Φ(x)

]′
> 0⇒[1−Φ(x)

φ(x)

]′
< 0.�

Now consider Case 1. Write the Case 1 first order condition using the change of variables

p̃i ≡ pi−ρ
σθ

and p̃−i ≡ p−i−λ−i−ρ
σθ

:

1− Φ (p̃i)−
(
p̃i +

ρ

σθ

)
φ (p̃i) = 0

1− Φ (p̃−i)−
(
p̃−i +

λ−i + ρ

σθ

)
φ (p̃−i) = 0

Denote (p̃∗i , p̃
∗
−i) the solution to the first order condition. By Lemma 4:

λ−i + ρ

σθ
>

ρ

σθ
⇒

p̃∗i > p̃∗−i ⇔

p∗i > p∗−i − λ−i

Therefore, the monopoly prices must satisfy: p∗i ≮ p∗−i−λ−i. By a symmetric argument,

it may be shown that the prices may not fall into Case 3, that is, p∗i ≯ p∗−i + λi

The preceding argument implies that the best response monopoly prices must fall

into Case 2. Given a fixed total price, p̄ ≡ pi + p−i, and an investment level, ρ, the

monopolist will choose (pi, p−i) to maximize demand. This is a constrained linear op-

timization problem whose solution is to set p−i as low as possible and pi as high as

possible. Therefore, monopoly prices must satisfy p∗i ≥ p∗−i + λi. But since we have

eliminated Case 1 and Case 3, we must have p∗i = p∗−i + λi. The total price, p̄, and ρ

are then chosen to maximize the Case 2 profit, given that pi = p̄+λi
2 , p−i = p̄−λi

2 .�

Proposition 3: In the limit as signal noise goes to zero, the socially optimal prices,

(p∗A, p
∗
B), must satisfy:

λAp
∗
B + λBp

∗
A = −

λ2
A + λ2

B

2
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p∗A ∈ [p∗B − λB, p∗B + λA]

In addition, investment should be set to equate the expected marginal increase to the

gains from trade to the marginal cost of investment.

Proof: Since fixed costs and marginal costs are zero, the social planner will set prices

to maximize the total gains from trade on the platform. Gains are maximized when

everyone joins the platform if and only if the quality of the platform is sufficiently high

that when everyone is on, there is a positive surplus. This condition is met if and only

if:

θ + λA + θ + λB > 0⇔

θ > −λA + λB
2

In the limit as signal noise goes to zero, this is equivalent to requiring x∗i = x∗−i =

−λA+λB
2 . Using Proposition 2, the result obtains.

Corollary 3: A social welfare maximizing set of prices must always have at least one

negative price and if one price is positive, it must be for the side with the greater

marginal benefit of interaction.

Proof: Follows immediately from Proposition 2.

Corollary 4: There always exists a set of social optimal prices such that the associated

total price is less than the monopolist’s equilibrium total price.

Proof: Follows immediately from Propositions 1 and 2.
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Chapter 3

Experimental Comparative Statics

of a Large Coordination Game

with Endogenous Sunspot Equilibria

3.1 Background

Coordination games with strategic complementarity result in multiple pareto ranked

equilibria. Carlsson and van Damme (1993b) show that a unique equilibrium exists

in two-player binary coordination games when the common knowledge of payoffs as-

sumption is relaxed is certain way. More specifically, consider the following game and

information structure. Players do not observe x directly and instead receive a noisy

signal xi.

α2 β2

α1 x, x x, 0

β1 0, x 4, 4

x ∼ U [x, x̄], x < 0, x̄ > 4

xi|x ∼ U [x− ε, x+ ε]

Such a game has been termed a “global game.” See Carlsson and van Damme (1993b)

for more detail. In the unique equilibrium, players choose a “threshold strategy” in

which they play the risk dominant equilibrium conditional on their signal. For the

game above this translates into playing α for signals greater than two and β for signals

less than two. While this may appear to be a natural result, it could not be obtained

with common knowledge of x. This result is particularly surprising as equilibrium

refinement is usually associated with the strengthening of structure, not the weakening

of it. Thus, “global games” offer both precise predictions and realism.



46

Since Carlsson and van Damme (1993b), the results have been generalized into richer

settings (Morris and Shin (2001a), Frankel et al. (2003)). In their celebrated model,

Morris and Shin (1998) apply the global games framework to a currency attack on a

fixed exchange rate. Speculators are identified by points on the closed unit interval.

After observing a noisy signal of the economy’s state parameter, the speculator may

attack the peg by short-selling the currency. After observing the measure of attack-

ers, the government chooses between defending and abandoning the peg. The unique

undominated strategy dictates threshold strategies: speculators attack if their signal

suggests a poor enough state and the government abandons if it observes a poor enough

state. Morris and Shin (1998) extract policy implications from their closed form solu-

tion, finding that the government may decrease the prior likelihood of crisis if it can

increase the opportunity cost of attack.

Morris and Shin (1998) allude to the significance of the signaling structure in un-

derstanding currency attack. A series of papers have since extended the theory of

signaling in global games (Angeletos et al. (2006), Angeletos and Werning (2006), An-

geletos et al. (2007), Hellwig (2002), Metz (2003), (Morris and Shin (1999)), (Morris and

Shin (2001b), Morris and Shin (2001a), Morris and Shin (2005)), (Heineman and Illing

2002)). These studies may be placed into two broad categories: those that consider

exogenous signaling and those that consider endogenous signaling. Chief among the

latter, Angeletos et al. (2006) extend the Morris and Shin (1998) currency attack setup

by allowing the opportunity cost of attack faced by speculators to be a government

policy choice. Whereas Morris and Shin (1998) use comparative statics to examine the

cost of attack, Angeletos et al. (2006) recognize that bringing policy into effect may

convey information to speculators which will impact their beliefs and optimal strategy.

They obtain a full characterization of all possible government equilibrium strategies

(Angeletos et al. (2007)). If the economy is sufficiently strong that fundamentals war-

rant the high peg or the economy is sufficiently weak that intervention is not necessary,

then the government authorities will not intervene. However, for intermediate states of

the economy, the authorities will intervene, but only to a single level. By choosing only

a single intervention level (taxing capital outflows x percent), the authorities are able to
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conceal their information on the state. If the intervention level varied in a predictable

way with the economic fundamentals, then agents would be able to back out what the

fundamentals are and equilibrium multiplicity would be restored. Further, the bounds

on this “intervention window” relate to the precision of speculator information and the

degree of intervention in predictable ways. Surprisingly, Angeletos et al. (2006) find

that higher policies are associated with more peg abandonment. This stands in stark

contrast to Morris and Shin (1998). However, both agree that any intervention is more

effective at reducing crisis than none.

The first major experimental work testing global games refinement theory is due

to Heinemann et al. (2004). They use the Morris and Shin (1998) currency attack

model to answer three main questions: do players use threshold strategies, how do

the observed strategies compare to other solution concepts, and what is the role of

information precision. They find that players do play with thresholds strategies which

are more aggressive than the global games predictions. In other words, participants

are more willing to take the risky action and hence coordinate on the payoff dominant

equilibrium for a larger set of signals. Also, the likelihood of devaluation is greater

when payoffs are common knowledge than when not. More importantly, the observed

thresholds change with respect to the cost of attack in accordance with the global

games solution. With private information, there is greater variability in individual

thresholds than with common knowledge. The government may then transmit public

information to increase the predictability of attack while raising the prior likelihood of

one. Cornand (2006) extends the Heinemann et al. (2004) private information treatment

by considering two new sub-treatments: one with an additional public signal and one

with an additional private signal. Their results challenge the policy suggestions of

Heinemann et al. (2004); adding public information to private information restores

predictability and actually out-performs the treatment with two public signals in terms

of predictability and likelihood of success. They recommend a single clear public signal

from the government.

Currently, no experiment examines endogenous signaling in a global coordination

game. Other studies have incorporated “cheap talk” into experimental coordination
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games (Cooper et al. (1992)). In our study, cheap talk may actually exacerbate the

problem of equilibrium selection by providing more sunspots for players to coordinate

on. Instead, we examine endogenous costly signaling in a global coordination game.

Predictions are sharp and offer a boon to normative policy analysis of currency at-

tack. It remains to be determined, however, whether or not these sharp predictions

are theoretical artifacts or rooted in genuine behavioral phenomena. Heinemann et

al. (2004) find that the Morris and Shin (1998) opportunity cost comparative static

could indeed be observed experimentally. Angeletos and Werning (2006) extend the

theoretical framework on which that finding is based. Our central goal, then, is to

test these government signaling predictions offered by Angeletos and Werning (2006).

Does the government respond to “aggressiveness of market expectations” (Angeletos

and Werning (2006))? Will higher intervention levels have a helpful effect as suggested

by Morris and Shin (1998) or a damaging effect as suggested by Morris and Shin (1998)?

We use a modified version of the Heinemann et al. (2004) design and estimate the ef-

fects of signal precision, policy level, and endogeneity of attack cost on government

and speculator behaviors. Angeletos and Werning (2006) note that a central bank may

find itself in a “policy trap” whereby policy intervention initiates a self-defeating and

self-fullfilling attack. We examine how government players deal with this dilemma and

offer policy recommendations. Secondarily, we will offer a check and extension of the

Heinemann et al. (2004) and Cornand (2006) findings on speculator behavior. In ad-

dition to treatments on informativeness of signals and cost of attack, our endeogenity

of policy treatment will address the question - do speculators strategically consider the

government’s strategy in forming belief and choosing action?

3.2 Model

3.2.1 Setup

Our model follows Angeletos and Werning (2006) closely. The set of players is N

speculators and a government. The government enjoys a pegged national currency

value while speculators enjoy a depreciation of the peg if enough attack in concert.
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More formally, their interactions are represented by a three-period game. The state

of the economy is parametrized by θ with commonly known uniform prior. A high

state indicates a strong economy where the market exchange rate is close to the peg.

Conversely, a low state indicates a weak econmy and a disparity between the market

rate and the peg. In period one, the government perfectly observes the state and chooses

a policy level, r ∈ {r, r̄} ⊂ (0, 1), at a cost C(r). We term r the baseline policy and

any higher choice an intervention policy. From the point of view of a speculator, the

government type is the state value. In period two, speculators publicly observe the

policy, privately observe signals, xi = θ + ξi; ξi ∼ N(θ, σ), and simultaneously choose

whether to attack the peg or not. In the final period, the government observes the

fraction of speculators who attack and chooses whether to defend or abandon the peg.

If the peg is abandoned, the attacking speculators are successful. If the peg is defended,

the attacking speculators are unsuccessful.

The government payoff to defending is θ − A − C (r) where A is the fraction of

speculators who attack and C (r) is a cost of intervention, continuous and increasing,

with C (r) = 0. The government payoff to abandoning is zero less any costs sunk

on policy intervention. Speculator payoff is 1 − r for a successful attack, −r for an

unsuccessful attack and zero for stay.

Abandon Defend

Attack 1− r ,−C(r) −r , θ −A− C(r)

Stay 0 ,−C(r) 0 , θ −A− C(r)

3.2.2 Equilibrium

The government strategy defines the period one policy decision conditioned on the state,

and the period three defense decision conditioned on the state and realized fraction of

attackers. A speculator strategy is a map from policy-signal pairs into an attack deci-

sion. Speculator beliefs map policy-signal pairs into posterior probability distributions

on θ. We use a perfect bayesian equilibrium solution concept — the government strat-

egy must be a best response to speculator strategies, the speculators’ strategies must

best responses to one another as well as the government strategy given their beliefs and



50

speculator beliefs must be consistent with the stategies. We assume all agents are risk

neutral expected utility maximizers. Let Ψ and ψ denote the cumulative and probabil-

ity density functions for a speculator’s signal error term. Let X denote the vector of

all signals and A(X, r) the number of attackers. We suppress this dependence for no-

tational simplicity. Let D(θ,A) = 1 denote the government’s decision to abandon and

a(x, r) = 1 denote a speculator’s decision to attack. Nθ denotes the greatest integer

which is less than Nθ. All equilibria belong to one of the two following classes.

Class 1: Angeletos and Werning (2006) call these inactive-policy equilibria. Intuitively,

speculators ignore the policy signal which leads the government to save on intervention

costs by keeping the policy at baseline.

r(θ) = r ∀θ

ai(xi, r) =


1 if xi < x̃

0 if xi > x̃

D(θ,A) =


1 if θ < A

0 if θ > A

A(X, r) =
N∑
i=1

ai(x, r)

where x̃ solves:∫
R

[
1−Bin

(
Nθ − 1, N − 1,Ψ

(
x̃− θ
σ

))]
1
σ

[
ψ
(
θ−x̃
σ

)
Γ

]
dθ = r

Class 2: Angeletos and Werning (2006) call these active-policy equilibria. They are

indexed by a level of policy intervention. The intervention level may be interpreted as

speculator aggressiveness in that their strategies tell them to ignore all (off-equilibrium)
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policy interventions up to that level. For some r∗ ∈
[
r, C−1(1− r)

]
:

r(θ) =


r∗ if θ ∈ [θ, θ̄]

r else

ai(xi, r) =


1 if xi < x̃

0 if xi > x̃

D(θ,A) =


1 if θ < A

0 if θ > A

where x̃ solves:∫
R

[
1−Bin

(
Nθ − 1, N − 1,Ψ

(
x̃− θ
σ

))]
1
σ

 ψ
(
θ−x̃
σ

)
Γ + Ψ

(
θ−x̃
σ

)
−Ψ

(
θ̄−x̃
σ

)
 dθ = r

and θ and θ̄ satisfy:

θ = C(r̄) = E
[
A(X, r)|θ̄

]
Again, Γ is a normalization constant which depends on the state prior. See Figure 2

for a graphical depiction of active-policy equilibria along with the implied comparative

static properties.

3.2.3 Explanation and Justification

A few important properties of these equilibria should be noted. First, the presence of

endogenous government signaling restores equilibria multiplicity as compared to Morris

and Shin (1998) – one for every possible choice of policy intervention. However, the

speculator strategy with respect to a policy is uniquely determined. Second, the implicit

formulation of x̃ says the expected payoff of attack must be at least as great as the cost.

In other words, the marginal agent who is indifferent between attacking and staying

receives the signal x̃. The first part of the left hand side gives the conditional probability

of success for attacking given strategies and knowledge of the state. The second part of

the left hand side is the posterior probability of the state given the informative signal.

Recall that speculators earn one for success less the cost of attacking. Finally, Class 2
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Figure 3.1: Active-policy equilibrium government strategy. (†) indicates the predicted

comparative static with respect to magnitude of policy intervention level (G2). (‡)

indicates the predicted comparative static with respect to precision of private signals

(G4).
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equilibria have government intervention only for intermediate types. We call this range

the intervention window.

Are these equilibria reasonable? Consider Class 1. One can see that the speculator’s

strategy is independent of the cost of attack, r. The government prefers, then, to save on

the cost of intervention by setting r as low as possible. Also, notice that the third period

is a simple decision problem. This reduced the game to an N-person coordination game

which meets the criteria for global games analysis. This in turn guarantees a unique

dominance-solvable symmetric threshold strategy. Off equilibrium speculator beliefs

on θ must be constructed carefully to maintain sequential rationality of speculators.

There are many reasonable beliefs which do not rely on putting non-zero probability

on dominated types.

The intuition behind Class 2 is similar. Given speculator strategies, the government
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can always calculate its expected payoff for a policy intervention. It will not intervene

if it anticipates a successful attack. Speculators then coordinate on staying whenever

a policy intervention takes place. Consequently, the government will never set more

than one intervention level because the higher of the two will incur unnecessary cost.

For low types, the cost of intervention is greater than the payoff. For high types, the

government expects the attack to be unsuccessful and loses more paying the cost of

intervention than he could possibly gain by reducing that attack size. We expect to

see intervention only for intermediate types. As expected, speculator beliefs are now

formed by the policy as well as the signal.

The proof that these are indeed equilibria closely parallels Angeletos and Werning

(2006) Angeletos et al. (2007). We emphasize only the important departures.

Angeletos and Werning (2006) use an improper uniform prior on the state, θ. The in-

formation content is void and agents form posteriors which depend only on their signals.

This fact is crucial to the uniqueness of equilibrium speculator strategy as discussed in

Morris and Shin (2001b). For purposes of experimentation, we are forced to do without

with this convenience. Consequently, uniqueness holds on a “case-by-case” basis. One

sufficient condition is the uniqueness of x̃. This is guaranteed if speculator information

is precise enough Frankel et al. (2003). Numerical simulation strongly suggests that

this condition is satisfied for the calibration selected below. Should uniqueness fail, the

above equilibrium remains intact.

Angeletos and Werning (2006) allow the government policy choice to take any value

in [r, r̄] ⊂ (0, 1). We chose to limit the number of policy choices in a game to two in

order to simplify the subsequent data analysis. This limits the set of possible equilibria

to one in Class 1 and one in Class 2. The sufficiency argument follows identically to

Angeletos and Werning (2006). The only difference is that off-equilibrium speculator

beliefs are simpler to handle here.

Angeletos and Werning (2006) consider a continuum of speculators. With this

feature, the government can infer exactly the measure of agents who will attack in

equilibrium by knowing the true state and the signal distributions. Abandoning or

defending is therefore a forgone conclusion by period one. Consequently, speculators
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can infer the likelihood of success from their posterior beliefs on the state. In the

experimental context considered here, the set of speculators is finite. The government

can no longer infer exactly the number of speculators who will attack. However, the

same proof technique applies if the government player is assumed to be an expected

utility maximizer. The speculator threshold strategy can no longer be computed as

described above. Instead, a speculator must consider his posterior on other speculators’

signals. When he believes that a sufficient number are receiving low enough signals,

then he will attack as well. Note that the period three decision is no longer a forgone

conclusion but must be made after observing the number of speculators who actually

attack.

3.3 Predictions

A number of predictions on government and speculator play can be derived from the

equilibria described above. It is important to recognize that, conditioned on the policy

intervention level, there is exactly on Class 1 equilibrium and exactly one Class 2

equilibrium1. Any other strategy besides those described is dominated.

Speculators

S1. In treatments with baseline or exogenous policy, speculators will play undominated

threshold strategies. Speculators attack for signals suggesting a strong state and

stay for signals suggesting a weak state. The strategy function will switch at one

and only one critical signal in [0, 1]. However, in games with policy intervention,

speculators coordinate on stay.

S2. In treatments with baseline or exogenous policy, the expected fraction of attackers

decreases in the state of the economy. Equilibrium strategies predict speculators

will coordinate on the same threshold. From the government’s interim view, a

greater state value implies few speculators are expected to receive a signal lower

than their threshold. The prediction follows. Recall, the government abandons

1More precisely, these equilibria are unique up to a specification of off-equilibrium speculator beliefs
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if the proportion of attackers is greater than the state of the economy. If the

expected proportion of attackers is decreasing in the state, then the government’s

interim optimal strategy is monotone.2

S3. In treatments with endogenous policy, speculators will not attack in response to

intervention and the fraction of attackers decreases in the state of the economy

for states not in the attack window. In equilibrium, speculators interpret an

intervention as a signal to stay. When no intervention is observed, speculators

update beliefs based on their signal and the fact that the state must not be in the

intervention window. A unique symmetric threshold strategy results and a logic

similar to S2 follows.

S4. The speculator threshold will decrease with respect to exogenous policy hikes. That

is, for higher exogenous policies, the speculators are more cautious. The specula-

tor thresholds should decrease. Consequently, for higher exogenous policies, the

government expects to abandon for a smaller set of states. This is precisely the

comparative static result of Morris and Shin (1998) which was confirmed experi-

mentally by Heinemann et al. (2004).3

Government

G1. The government strategy is inverted U-shaped. When the economy is strong, so

few speculators attack that the cost of intervention is greater than the best case

scenario of reducing the attack size to zero. When the economy is weak, the

cost of intervention is greater than the value of the economy, making any effort to

defend it useless. Only for intermediate states does the government have a chance

to effectively manipulate public sentiment.

2This minor prediction is difficult to measure in an experimental scenario because for any state, it
is possible for all the speculators to receive very low signals and attack. We observe realized fractions
of attackers and have only one observation for each state.

3For endogenous policy hikes, there is no clear prediction on how the speculator threshold will
change. The threshold strategy does not apply when interventions occur. When interventions do not
occur, beliefs are formed identically to Class 1 equilibria, except now their beliefs are formed additionally
by knowing what the state is not.
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G2. More “aggressive” policies yield a smaller set of government types that intervene.

In equilibrium, aggressive government policy is dual to aggressive speculator coor-

dination. This only exacerbates the issues described above (G1). The window for

states at which the government finds it beneficial to intervene becomes narrower

from both sides.

G3. More “aggressive” policies yield a larger set of government types who expect to

abandon the peg. A few properties of the equilibrium should be noted. Speculator

threshold values are inside the policy window. Since the expected fraction of

attackers decreases monotonically in the state, it follows that the government

expects to abandon the peg for state values smaller than the lower window edge.

By G2, this edge is increasing with the policy. The prediction follows. This

prediction stands in total contrast to S4 where higher exogenous policies yield a

smaller set of types at which the government expects to abandon the peg.

G4. More precise information reduces the set of types who intervene. By the argument

for G1, the lower window edge is independent of noise. The upper edge, however,

should collapse to the left edge with respect to precision to information precision.

Intuitively, speculators who are better informed exacerbate the issues described

under G1.

3.4 Experiment Design

Functional forms were chosen in order in maximize the power of the data to answer the

predictions. In keeping with the Heinemann et al. (2004) design, we use fifteen partic-

ipants. We choose the bounds on the state prior to be -0.2 and 1.2.4 The policy space

was chosen as {35, 55} for low policy treatments and {35, 75} for high policy treatments.

Numerical simulation suggests that these offer the best compromise between detection

of intervention and variation in predicted intervention window size across treatments.

The treatment variables are noise of information (σ), level of intervention policy

(r̄), and endogeneity of policy. The noise-policy interaction treatment was dropped.

4The prior support must intersect both dominance regions. See Morris and Shin (2005).
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Within a session, one policy-noise combination is fixed. For rounds one through eight,

policy is exogenous. The cost of attacking is given to the speculators at baseline level

for rounds one through four and at the intervention level for round five through eight.

In rounds nine through sixteen, policy is endogenous. One participant is chosen at

random to play as the government instead of speculator for rounds nine through twelve

and another for rounds thirteen through sixteen. See Tables 1 and 2 for a summary of

the treatments.

Table 3.1: Treatment Design

Low Precision High Precision

Low Policy Session 1 Session 3

High Policy Session 2 n/a

Table 3.2: Sub-treatment within session by period.

1 – 4 5 – 8 9 – 12 13 – 16

Baseline Exogenous Policy Endogenous Policy Endogenous Policy

Participants were recruited through the Rutgers University Department of Eco-

nomics Human Subject Pool System. The database consists almost entirely of under-

graduate students. Sessions were held in the Gregory Wachtler Experimental Economics

Laboratory on July 7th, 16th, and 21st, 2009. Students were guaranteed five dollars for

showing up and were told that they could earn as much as fifty-three USD.

Instructions were read aloud and participants were asked to read along with their

own copies. Participants were asked to solve questions testing their understanding of

the game. The answers were then reviewed as a group.5

The game was played by computer using z-tree software (Fischbacher (2007)).

We used a modified version of the Heinemann et al. (2004) code. One session consists

of sixteen separate rounds. Each round consists of ten independent simultaneously

5Instructions are available in an appendix.
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played games. For rounds one through eight, each round consists of two stages. In

the first stage, each game is viewed as a row that displays the player’s private signal

and cost of attack, and takes the speculator’s choice of action for that game. When

a speculator finishes making these decisions, he enters a blank wait screen. When all

decisions are made, the program proceeds to the second stage where all participants

view a results matrix for those ten games. This includes the true state, signal, policy,

choice of action, number of attackers, success, and payoff. Once all players are ready,

the game proceeds to the next round.

Rounds nine through sixteen insert an additional stage preceding the speculator

decision stage. Here, one participant is chosen at random to assume the role of govern-

ment for rounds nine through twelve and another for rounds thirteen through sixteen.

The government player is similarly faced with ten independent games to which he must

choose a policy level. Recall, the baseline policy is free to him and the intervention

policy is costly. Each of these games corresponds exactly to a game that the specula-

tors will subsequently play. When the government player finishes with these decisions,

play proceeds to a speculator decision stage as described above except that the cost of

attacking will vary by game as determined by the government’s choices.

In all games, the computer chooses “Abandon” automatically if enough speculators

attack to make this the government’s rational choice.

Payoffs to speculators are scaled by a factor of 100 and the government by a factor

of 50. This yields more intuitive payoffs for the players and equalizes average payoffs to

government players and speculator players for any one round. At the end of a session,

total earnings from all games are summed up and multiplied by a factor 0.05 to get

the dollar payout. Students were payed this and their show-up fee after providing some

personal information.
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3.5 Results

3.5.1 Speculator Behavior

Our data strongly supports S1. 91.11% of all elicited speculator strategies are undom-

inated threshold strategies.6 The percentage is 80.00% in period one and ultimately

rises to 100% in period eight.

Figures 3.2, 3.3, 3.4 and 3.5 show fraction of attackers against government type for

all games played. In games where the realized fraction of attackers is greater than the

state, devaluation occurs. Otherwise, the peg stands. These games are represented by

those point lying above and below the 45◦ line, respectively. Figures 3.2 and 3.4 offer

support for S2. 3.3 and 3.5 offer support for S3. Hollow circle markers indicate games

for which the government player chose intervention. By S3, we expect no speculators

to attack for these games. Figure 3.4(b) offers the strongest support of this assertion.

Figure 3.4(c) also appears supportive. On the other hand, Figure 3.6(b) suggests the

contrary. Prediction S4 may be evaluated by reading Figures 3.2 and 3.4 from left to

right. The point of inflection of the fitted curve is precisely the estimated speculator

threshold for that treatment.7 Regarding Figure 3.2, the low policy hike follows the

prediction while the high policy hike does not. Figure 3.5 shows the fraction of attackers

increased for some states and decreased for others.

We use a logit model to explain speculator attack decisions with signal and treatment

variables as independents. The estimated coefficients (Table 3.4) are used to calculate

the signal value for which the odds of attacking are one in any given treatment (Table

6Due to erratic government behavior, periods nine through sixteen were difficult to analyze while
remaining faithful to the equilibrium. For instance, we should combine data across all periods and
omit from the analysis those games for which intervention occurs. Unfortunately, since the government
strategies are not as predicted, these omissions distort elicited speculator strategies beyond recognition.
On the other hand, including all data for those periods explicitly ignores the equilibrium. Hence, we
omit all speculator data from periods nine through sixteen in this section of the analysis.

7A speculator threshold is defined on the signal space, not the state space. However, the state for
which the fitted curve is one half is interpreted as the state where one half of speculators attack and
one half do not. The only state that can have this property is the one equal to the speculator threshold.
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Figure 3.2: Low precision information. Exogenous policy.
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Figure 3.3: Low precision information. Endogenous policy.
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Figure 3.4: High precision information. Exogenous policy.
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Figure 3.5: High precision information. Endogenous policy.
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3.5). The decision to attack is coded as one.

ln

(
Pr(attack)
Pr(stay)

)
= βo + βx · x+ βinfo · info+ βexo55 · exo55

+βexo75 · exo75 + βendo55 · endo55 + βendo75 · endo75

Table 3.3: Variables used in Speculator Attack Model

Name Nature Description

x continuous private state signal

info dummy =1 if private signal precision is high

exo55 dummy =1 if policy is exogenously given as 55

exo75 dummy =1 if policy is exogenously given as 75

endo55 dummy =1 if a policy intervention to 55 is available

endo75 dummy =1 if a policy intervention to 75 is available

Table 3.4: Estimation Results - Speculator Behavior

Coefficient Expected Sign Estimate Standard Error

βo n/a 7.582244 0.2311552

βx – -11.79868 0.32645

βinfo n/a 0.353733 0.1095056

βexo55 – -0.9553508 0.1417205

βexo75 – 0.6200091 0.2094621

βendo55 n/a -1.030981 0.1290608

βendo75 n/a 0.4469457 0.1517623

The signal coefficient is clearly negative as suggested by S1. The low policy treat-

ment is significant in the predicted direction, offering support of S4. However, the high

policy treatment shows more aggressive behavior by the speculators. This is unex-

pected. However, it should be noted that the high policy treatment was only played by
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Table 3.5: Estimated Speculator Thresholds

Treatment Info Precision Policy Level Policy Source Threshold

1 low baseline n/a 0.64263469

2 low low endogenous 0.55525368

3 low high endogenous 0.68051567

4 low low exogenous 0.56166373

5 low high exogenous 0.69518369

6 high baseline n/a 0.6726154

7 high low endogenous 0.58523439

8 high low exogenous 0.59164444

one group. Further examination shows that this group played all games more aggres-

sively than the other groups. When a session two dummy is included in the regression,

the estimated coefficients become negative, as expected.

3.5.2 Government Behavior

The government data offers mixed support of G1 (Figure 3.6). In session one, both

government players intervene for intermediate types with one exception (Figure 3.7(a)).

Session two government players appear to be experimenting through all four periods

of their tenure (Figure 3.7(b)). Session three government players appear to be using

threshold strategies, similar to what we would expect from a speculator. In fact, some

strategies are increasing while others are decreasing. Session three participant twelve

is the only government player to choose a Class 1 equilibrium. The data do not appear

to support G2 or G4.8

In search of some treatment effect on the intervention window placement, we con-

sider the following econometric model. We assume governments play the equilibrium

described above but calculate θ and θ̄ with error. Call these miscalculations θ∗ and θ̄∗.

8Complete government choice data is available in an appendix.
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Figure 3.6: Government Behavior (information precision, policy).
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We assume a θ∗ and a θ̄∗ are drawn for each decision. For identification of all treatment

effects, a reasonable criteria for separating non-intervening governments into a low and

high type is necessary. We classify low non-interveners as those whose type is is less

than the equilibrium θ and high non-interveners as those whose type is greater than

the equilibrium θ̄. Note that θ and θ̄ are known and a function of the treatment. The

log likelihood of one observation is given by:

lnL(θ, θ̄, β
info

, β
policy

, β̄info, β̄policy) = intervention · Pr
(
θ∗ < θ < θ̄∗

)
+lowtypezero · Pr (θ∗ > θ)

+hightypezero · Pr
(
θ > θ̄∗

)
+midtypezero ·

(
1− Pr

(
θ∗ < θ < θ̄∗

))
where:

θ∗ = θ + info · β
info

+ policy · β
policy

+ ε

θ̄∗ = θ̄ + info · β̄info + policy · β̄policy + ε

ε ∼ N(0, σ)

Table 3.6: Variables Used in Government Decision Model

Name Nature Description

θ continuous State of the economy

intervention dummy =1 if the government intervenes

lowtypezero dummy =1 if if the government does not intervene and θ < θ

hightypezero dummy =1 if if the government does not intervene and θ > θ̄

midtypezero dummy =1 if if the government does not intervene and θ < θ < θ̄

The estimated coefficients are insignificant making an assessment of G2 and G4

difficult (Table 3.7).

The game appears to be cognitively difficult for the participants. A stripped down

version may illuminate the intuition. Given that, there may still be a significant learning

curve involved. Four periods of government play was chosen based on the Heinemann
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Table 3.7: Estimation Results - Government Behavior

Coefficient Expected Sign Estimate Standard Error
β
policy

σ + 0.0121 0.24226880
β
info

σ 0 -0.1961 0.2486761
β̄policy
σ – 0.0090 0.23798894

β̄info
σ – -0.1451 0.22799169

et al. (2004) finding that speculators needed four rounds to settle into a strategy. In

future experiments, we plan to increase the government tenure length.

As discussed above, the equilibrium government strategy rests on the result that

speculator do not attack in response to an intervention. Clearly, our experimental

speculators do not play this way. The best government response, then, is to keep the

policy at baseline for those states where speculators are successfully attacking. Given

that, speculators will know that when the government does intervene, he must expect

the speculators to loose. With this argument in mind, it seems plausible that the

observed strategies are in the process of learning to play Class 1 equilibria. The second

session two government player as well as the first session three government player appear

to corroborate this argument. However, such a learning process would take many more

periods than just four.

3.5.3 Conclusion

We successfully replicated the fundamental global games result of threshold strategies.

The cost of attacking comparative static found in Heinemann et al. (2004) (S4) is not

so clear. However, when a session two dummy is included in the speculator behavior

regression, the result is obtained. In other words, that session seemed to have unusually

aggressive players.9

9This group socialized more than other groups while waiting for the experiment to begin.
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We were encouraged to see some government players choosing intervention for in-

termediate types. However, some government players spent their tenure experimenting

with other possible strategies. It is possible that the cost of intervention is too high

given that speculators are attacking in spite of intervention. This makes it difficult for

the government players to find a set of states for which they can profitably intervene.

In the future, the experiment will be redesigned to allow for more data on government

decisions per session.

Our results draw attention to the fact that the existence of Class 2 equilibria rests

critically on the result that players do not attack in response to intervention. In reality,

speculators have inertia with respect to their behavior and do not react immediately to

intervention. This suggests that a government may have trouble redirecting speculators

into new equilibria through policy.



Instructions 
 
Introduction: 
Thank you for participating in this economic experiment.  From now until the end of the experiment, please do not communicate with 
other participants or use the internet.  The data generated today and in other sessions will form the basis of a subsequent research 
paper.  Your decisions will directly determine your cash earnings.  No prior knowledge is required to play.  The experiment should 
last approximately 60 minutes. 
Background: 
This experiment asks you to play a game with one another.  There are two types of players:  speculators and the government.  Players 
earn money depending on their action and the policy that the government sets.  There are sixteen separate rounds.  In rounds one 
through eight, the government role is completely played by the computer.  In rounds nine through sixteen, a player will be randomly 
chosen to make some decisions for the government.  Each round consists of ten separate decision-problems that will be made 
simultaneously.  Each decision-problem results in a payoff.  After a round of decision-making, a screen will display to you your 
payoffs and other information for each decision-problem.  By carefully examining these results, you will better understand how to 
play the game profitably.  When you are satisfied with the results, press the “OK” button.  When all players have pressed “OK,” play 
will proceed to the next round.  If you forget to press “OK,” the experiment will wait for you indefinitely. 
Speculator Information: 
For each decision-problem, a random “state of the economy” is chosen.  This is a number which lies between -0.2 and +1.2.  All 
numbers in between have an equal probability of being chosen.  For example, one decision-problem may have a “state” equal to 0.832 
and another -0.111.  This number represents how “strong” the economy is in the sense that a larger number indicates a stronger 
economy.  The state is different for each decision problem but is the same for all players. 
Speculators do not directly observe the true state of the economy.  Instead, speculators receive a private signal, a random number that 
lies close to the true state, which only he may observe.  In technical terms, the variability of this “noisy” signal is represented by a 
normal distribution centered at the true state with a standard deviation of 0.2.  To illustrate how good your signal is, consider the 
following example (see Fig.1 and Tbl.1): 
Fig. 1:  An example of how the state of the economy and the set of signals may be chosen for one decision problem.  State = 0.5. 
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Tbl. 1:  An example of how the state of the economy and the set of signals may be drawn for one decision problem.  State = 0.5. 

Player# Signal 
1 0.06775 
2 0.760354 
3 0.312006 
4 0.724471 
5 -0.02311 
6 0.520749 
7 0.192932 
8 0.619741 
9 0.575511 

10 0.295362 
11 0.522006 
12 0.503154 
13 0.772818 
14 0.629853 
15 0.747465 

With a signal, you should be able to formulate in your mind an idea of what the true state is.  You should also be able to formulate in 
your mind an idea of what the other speculators’ signals are.  Please answer questions one and two. 
Speculator Actions: 
For each decision-problem, speculators have two choices of action:  “attack” and “stay.”  In choosing “stay,” speculators are 
guaranteed a payoff of zero for that decision-problem.  This may be regarded as the “safe” action.  In choosing “attack,” speculators 
pay a “cost of attack” and receive 100 points only if enough other players also choose “attack” for that decision problem.  This may be 
regarded as the “risky” action.  The “cost of attack” is always the same for all players and for all decision-problems within a round but 
may change across rounds.  For rounds one through four, the “cost of attack” is 35 points and for rounds five through eight, the “cost 

 



of attack” is 55.  For rounds nine through sixteen, the “cost of attack” will be chosen by the government (see below).  You will be 
reminded of the “cost of attack” by the computer during the game.  See Fig.2. 
Fig. 2. A example speculator decision screen.  Ten separate decision problems are shown. 

Your Signal Is: The cost of attacking is: Choose an action: 
0.783 35 Stay * * Attack 
0.124 35 Stay * * Attack 
1.307 35 Stay * * Attack 
0.887 35 Stay * * Attack 
0.547 35 Stay * * Attack 
0.793 35 Stay * * Attack 

-0.114 35 Stay * * Attack 
-0.045 35 Stay * * Attack 
0.521 35 Stay * * Attack 
0.222 35 Stay * * Attack 

 
Government Actions, Rounds 1-8: 
For rounds one through eight, the computer will play the role of the government.  The government observes the number of attackers 
and the true state of the economy and then chooses either to “keep” or “abandon.”  For “keep,” the government receives a payoff equal 
to the difference between the value of the state and the fraction of attackers.  For “abandon,” the government receives a payoff of zero. 
Payoff Examples 
Example 1:  If for one decision-problem the state is 0.2 and 5 out of 15 speculators attack, then the government chooses “abandon” 
because a payoff of zero is greater than the difference between the state and the fraction of attackers (0.2 – 0.33 < 0).  The attack 
would be “successful” and the attacking players would be rewarded with 100 points minus the cost of attacking for that round.  The 
non-attacking players receive a payoff of zero. 
Example 2:  If the state of the economy is 0.7 and one speculator out of 15 attacks, then the government would choose “keep” and 
receive a payoff of 0.7 – 0.07 = 0.63, which is greater than zero.  Consequently, this attack would be “unsuccessful.”  The sole 
attacker will receive a negative payoff due to the “cost of attack” while the non-attacking speculators would receive a payoff of zero. 
For all intents and purposes, the state of the economy tells speculators the fraction of attacking speculators that is required for a 
successful attack in that decision problem.   
Example 3:  If the state of the economy is 0.551, then 55.1% of all speculators must choose “attack” in order to force the government 
to “abandon,” resulting in a successful attack.  Since there are 15 players in the game, this means that at least 9 players in total must 
attack together for success.  If you chose to attack, you would hope that 8 additional players out of the remaining 14 are attacking.  
Recall that no one observes the true state but instead must rely on their noisy signal.  Please solve questions three and four.  You may 
use the Speculator Assistance Sheet. 
Government Actions, Rounds 9-16: 
For rounds nine through sixteen, a new stage will be inserted into the game where the government chooses the “cost of attack” faced 
by the speculators.  We will term this choice the “policy.”  Two players will be chosen at random to play as the government instead of 
speculator – one player for rounds nine through twelve, and the other player for rounds thirteen through sixteen.  For each decision-
problem, the government player will observe the true state of the economy and choose the cost of attacking that the speculators will 
face in that decision problem (see Fig. 3). 
Fig.3.  A example government decision screen.  Ten separate decision problems are shown. 

The State is: Choose a policy: 

0.755542245 35 * * 55 
-0.088121171 35 * * 55 
1.155905322 35 * * 55 
0.601947939 35 * * 55 
0.913960441 35 * * 55 
0.842193807 35 * * 55 

0.2403411 35 * * 55 
-0.066868523 35 * * 55 
0.226040432 35 * * 55 
0.333539034 35 * * 55 

The government’s payoff is determined in the following way.  If the government chooses the smaller of the two policy levels, then his 
payoff will be equal to, as before, the state of the economy minus the fraction of attackers.  If this number is negative, then the 
computer will automatically force the government to “abandon,” resulting in a zero payoff to the government player for that decision-
problem.  If the government chooses the greater of the two policy levels, then his payoff is calculated in the same way as before, 
except that an intervention cost of 0.2 will be subtracted away.  In this way, choosing the higher “policy” is not a trivial matter.  
Rather, the government must weight the costs and benefits of increasing the “policy.”  The actual number of points received by the 
government player will be multiplied by a factor of 50.  This way, the number of points earned by the government will, on average, be 
comparable to the number of points earned by a speculator.  Please answer question 5.  You may use the Speculator Assistance Sheet. 

 



 

The government chooses the policy before the speculators choose their actions.  When he is finished, the experiment proceeds to the 
regular speculator choice screen as before but the cost of attacking will reflect the government’s policy choice for that decision-
problem.  After the speculators make their decisions the results stage appears as normal. 
Completing the Experiment:  
After sixteen rounds have concluded, your payoffs from all decision-problems in all rounds will be summed up and converted into 
dollars at a rate of 50 cents per 100 points.  Keep in mind that you have the opportunity to earn in upwards of 10,000 points in the 
entire session.  After you have entered some personal information into a questionnaire and sign a receipt of payment, you will be given 
your grand payoff and will be free to leave. 
 
Payoff Summary 
 
Speculators: “Successful”  100 – cost of attack. 
  “Unsuccessful” – cost of attack 
 
Government: “Keep”   state – fraction of attackers 
  “Abandon”  0 
 
Questions: 
 

1. Your signal is 1.04. 
a. What do you guess is the true state of the economy?   
b. What do you guess is the average signal received by other players? 
 

2. Your signal is -0.34.  
a. What do you guess is the true state of the economy?   
b. What do you guess is the average signal received by other players? 

 
3. The state of the economy is 0.43.  You and eight other players attack.  The cost of attacking is given as 55.  There are 15 

speculators in total. 
a. Will the government abandon or keep? 
b. Is the attack successful? 
c. What is your payoff? 
d. What is the government payoff? 

 
4. The state of the economy is 0.85.  You stay while three other players attack.  The cost of attacking is given as 35.  There 

are 15 speculators in total. 
a. Will the government abandon or keep? 
b. Is the attack successful? 
c. What is your payoff? 
d. What is the payoff to the attacking players? 
e. What is the government’s payoff? 

 
5. The state of the economy is 0.3.  The government has chosen a policy level of 55.  12 speculators attack.  There are 14 

speculators in total. 
a. Will the government abandon or keep? 
b. What are the attacking speculators’ payoffs? 
c. What are the non-attacking speculators’ payoffs? 
d. What is the government’s payoff? 



73

355575 355575 355575 355575

−
.2

0
.2

.4
.6

.8
1

1
.2

−
.2

0
.2

.4
.6

.8
1

1
.2

−
.2

0
.2

.4
.6

.8
1

1
.2

−
.2

0
.2

.4
.6

.8
1

1
.2

−
.2

0
.2

.4
.6

.8
1

1
.2

−
.2

0
.2

.4
.6

.8
1

1
.2

1
, 
9

1
, 
1
0

1
, 
1
1

1
, 
1
2

1
, 
1
3

1
, 
1
4

1
, 
1
5

1
, 
1
6

2
, 
9

2
, 
1
0

2
, 
1
1

2
, 
1
2

2
, 
1
3

2
, 
1
4

2
, 
1
5

2
, 
1
6

3
, 
9

3
, 
1
0

3
, 
1
1

3
, 
1
2

3
, 
1
3

3
, 
1
4

3
, 
1
5

3
, 
1
6

Policy

S
ta

te
G

ra
p

h
s
 b

y
 S

e
s
s
io

n
 a

n
d

 P
e

ri
o

d



74

Chapter 4

Pricing an American Call (Put) on the Max (Min) of

Three Correlated Stocks

4.1 Introduction

The goal of this paper is to calculate the equilibrium price of an American call (put)

option on the maximum (minimum) stock in a basket of three stocks when the under-

lying stock processes are correlated geometric brownian motion. I refer to them as the

cmax and pmin options, respectively. This problem presents a number of interesting

challenges. I delineate each.

4.1.1 American Style

There is a large literature, initiated by Black and Scholes (1973), which finds closed

form prices of European style call and put options using elegant no-arbitrage argu-

ments. However, there are no known closed form prices for call and put options with

an early exercise option. This is unfortunate, because American options are quite com-

mon. Equality between a non-dividend paying American call and a non-divident paying

European call is not helpful either since most American options are non-zero dividend.

4.1.2 Correlated Motion

As (4.2) shows, the presence of correlation in a rainbow option introduces a cross partial

term. This term is difficult to deal with using finite difference (FD) techniques. Since

my option is American, I am forced to use numerical methods.
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4.1.3 Stability

An explicit FD analysis is conditionally stable, requiring a sufficiently large number of

time steps relative to the spatial steps. This condition is made only more stringent

as dimensionality increases. The answer to this problem is to use an implicit method.

The Crank-Nicolson scheme is not practical as there is currently no method for dealing

with a huge matrix inversion step. Alternating Direction Implicit (ADI) is one common

technique which reduces the problem to a series of simple one dimensional problems.

4.1.4 Benchmarking

Even European version of the cmax and cput options are exotic and “off-the-shelf”

formulae are not widely available. However, the academic literature does give hints on

how such options could be priced. Broadie and Detemple (1997) (§7.1) finds neces-

sary conditions that the closed form prices for cmax pmin must satisfy. Johnson (1987)

offers a closed form price for the simpler European-style version of cmax and pmin. Im-

plementing the Detemple-Brodie method for three-dimensions is unfortunately beyond

the scope of this paper. The Johnson (1987) is opaque and contain errors. Fortunately,

Ouwehand and West (2006) clarifies nicely.

4.1.5 Multidimensionality

With three stock processes to consider simulatenously, the computational requirement

of ADI FD is enormous.

4.1.6 Boundary Conditions

For any FD approach, explicit or implicit, boundary conditions must be given to the

option value grid. With multidimensional FD, there are many different boundaries

to consider. In particular the cmax and cmin options possess subtle nuances which

complicate the boundary definition.
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4.2 Methodology

I begin by constructing a grid:

Gδt,δS1,δS2,δS3 := {(tk, Si, Sj , Sh) : 0 ≤ k ≤ K, 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ h ≤ H} (4.1)

with tk := T−kδt, T := Kδt, Smin1 := 0, Si := Smin+iδS1, Smax1 := IδS1, Smin2 := 0,

Sj := Smin3 + jδS2, Smax3 := JδS2, Smin3 := 0, Sh := Smin3 + hδS3, Smax3 := HδS1,

Smin3 := 0, V k
i := V (T − kδt, iδS1) for some chosen δS1, δS2, δS3 and δt indicating the

step size of the stock processes (the underlying) and time.

I refer to Wilmott (2006) for the Black Scholes PDE for an option price defined on

three underlying securities which follow a jointly correlated geometric brownian motion:

∂V

∂t
+

1
2

3∑
i=1

3∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+

3∑
i=1

(r − di)Si
∂V

∂Si
− rV = 0 (4.2)

The ultimate goal is to obtain an estimate of V (S1, S2, S3, t). This is a second order

partial differential equation in four variables. In particular, it is a convection-diffusion

heat equation in three dimensions. The convection terms are the first order derivatives

and the diffusion terms are the second order derivatives Duffy (2006). Furthermore, it

is parabolic. I will now approximate Equation (4.2) with Set (4.1).

I use standard FD approximations of the derivative terms. For 0 < i < I, 0 < j <
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J, 0 < h < H, 0 < k < K we have:(
∂V

∂t

)k
i,j,h

≈
V k
i,j,h − V

k+1
i,j,h

δt
(4.3)(

∂V

∂S1

)k
i,j,h

≈
V k
i+1,j,h − V k

i−1,j,h

2δS1(
∂2V

∂S2
1

)k
i,j,h

≈
V k
i+1,j,h − 2V k

i,j,h + V k
i−1,j,h

δS2
1(

∂V

∂S2

)k
i,j,h

≈
V k
i,j+1,h − V k

i,j−1,h

2δS2(
∂2V

∂S2
2

)k
i,j,h

≈
V k
i,j+1,h − 2V k

i,j,h + V k
i,j−1,h

δS2
2(

∂V

∂S3

)k
i,j,h

≈
V k
i,j,h+1 − V k

i,j,h−1

2δS3(
∂2V

∂S2
3

)k
i,j,h

≈
V k
i,j,h+1 − 2V k

i,j,h + V k
i,j,h−1

δS2
3(

∂2V

∂S1∂S2

)k
i,j,h

≈
V k
i+1,j+1,h − V k

i+1,j−1,h − V k
i−1,j+1,h + V k

i−1,j−1,h

4δS1δS2(
∂2V

∂S1∂S3

)k
i,j,h

≈
V k
i+1,j,h+1 − V k

i+1,j,h−1 − V k
i−1,j,h+1 + V k

i−1,j,h−1

4δS1δS3(
∂2V

∂S2∂S3

)k
i,j,h

≈
V k
i,j+1,h+1 − V k

i,j+1,h−1 − V k
i,j−1,h+1 + V k

i,j−1,h−1

4δS2δS3

4.2.1 Explicit Method

With the explicit method, we move backward in time. Begin with the future value

of the option price at expiry. This is given by the specification of the option. Then

determine the values the function must have taken one time period before given the

restriction Equation (4.2). The FD approximation to (4.2) under the explicit scheme

is:
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V k
i,j,h − V

k+1
i,j,h

δt
+

1
2
σ2

1S
2
1︸ ︷︷ ︸

a(i,j,h)

V k
i+1,j,h − 2V k

i,j,h + V k
i−1,j,h

δS2
1

+
1
2
σ2

2S
2
2︸ ︷︷ ︸

b(i,j,h)

V k
i,j+1,h − 2V k

i,j,h + V k
i,j−1,h

δS2
2

(4.4)

+
1
2
σ2

3S
2
3︸ ︷︷ ︸

c(i,j,h)

V k
i,j,h+1 − 2V k

i,j,h + V k
i,j,h−1

δS2
3

+ ρ12σ1σ2S1S2︸ ︷︷ ︸
d(i,j,h)

V k
i+1,j+1,h − V k

i+1,j−1,h − V k
i−1,j+1,h + V k

i−1,j−1,h

δS1δS2

+ ρ13σ1σ3S1S3︸ ︷︷ ︸
e(i,j,h)

V k
i+1,j,h+1 − V k

i+1,j,h−1 − V k
i−1,j,h+1 + V k

i−1,j,h−1

δS1δS3

+ ρ23σ2σ3S2S3︸ ︷︷ ︸
f(i,j,h)

V k
i,j+1,h+1 − V k

i,j+1,h−1 − V k
i,j−1,h+1 + V k

i,j−1,h−1

δS2δS3

+ (r − d1)S1︸ ︷︷ ︸
g(i,j,h)

V k
i+1,j,h − V k

i−1,j,h

2δS1
+ (r − d2)S2︸ ︷︷ ︸

h(i,j,h)

V k
i,j+1,h − V k

i,j−1,h

2δS2
+ (r − d3)S3︸ ︷︷ ︸

i(i,j,h)

V k
i,j,h+1 − V k

i,j,h−1

2δS3

−r︸︷︷︸
j(i,j,h)

V k
i,j,h = 0

Rearrange to obtain the explicit scheme:

vk+1
i,j,h =vki−1,j−1,h

(
δtd(i, j, h)
4δS1δS2

)
+ vki−1,j,h

(
δta(i, j, h)

δS2
2

− δtg(i, j, h)
2δS2

)
+ vki−1,j+1,h

(
−δtd(i, j, h)

4δS1δS2

)
(4.5)

+ vki,j−1,h

(
δtb(i, j, h)

δS2
2

− δth(i, j, h)
2δS2

)
+ vki,j,h

(
1− 2δta(i, j, h)

δS2
1

− 2δtb(i, j, h)
δS2

2

− 2δtc(i, j, h)
δS2

3

+ δtj(i, j, h)
)

+ vki+1,j+1,h

(
δtd(i, j, h)
4δS1δS2

)
+ vki+1,j−1,h

(
−δtd(i, j, h)

4δS1δS2

)
+ vki−1,j,h−1

(
δte(i, j, h)
4δS1δS3

)
+ vki−1,j,h+1

(
−δte(i, j, h)

4δS1δS3

)
+ vki,j,h−1

(
−δti(i, j, h)

2δS3
+
δtc(i, j, h)

δS2
3

)
+ vki,j,h+1

(
δti(i, j, h)

2δS3
+
δtc(i, j, h)

δS2
3

)
+ vki+1,j,h−1

(
−δte(i, j, h)

4δS1δS3

)
+ vki+1,j,h+1

(
δte(i, j, h)
4δS1δS3

)
+ vki,j−1,h−1

(
δtf(i, j, h)
4δS2δS3

)
+ vki,j−1,h+1

(
−δtf(i, j, h)

4δS2δS3

)
+ vki,j+1,h−1

(
−δtf(i, j, h)

4δS2δS3

)
+ vki,j+1,h+1

(
δtf(i, j, h)
4δS2δS3

)
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Initial Conditions

The initial condition of cmax is:

V (i, j, h, 0) = max
i∈{1,2,3}

(Si −K)+ (4.6)

The initial condition of pmin is:

V (i, j, h, 0) = min
i∈{1,2,3}

(K − Si)+ (4.7)

These are the function values that V must take on the plane of the grid at option expiry.

Boundary Conditions

The boundary conditions are a delicate issue. In order for the iterative backtracking

process to proceed, V (i, j, h, k) must be defined whenever any stock is at a minimum or

a maximum for all k, 0 < k < K. To determine this condition, I use a typical Dirichlet

condition which fixed the value of the option at the border (as opposed to fixing the

first or second derivatives).

Consider for a moment the Black-Scholes price for a regular european call option.

From Shreve (2004), the closed-form price is:

V (S,E, d, r, T, σ) = e−dTSN (d1)− Ee−rTN (d2) (4.8)

d1 =
log
(
S
E

)
+ T (r − d+ 1

2 · σ
2)

σ
√
T

d2 =
log
(
S
E

)
+ T (r − d− 1

2 · σ
2)

σ
√
T

where S is the spot price, E is the strike price, σ is the volatility, r is the risk-free rate,

T is the expiry, d is the dividend yield, and N(·) is the standard normal CDF.

Since limS→∞ d1 = +∞ and limS→∞ d2 = +∞, we have limS→∞ V (S,E, d, r, T, σ) =

e−dTS − e−rTK.

This argument is traditionally used to set up the Dirichlet conditions for a vanilla

call when estimated numerically. My security is much more exotic. However, I follow a

similar train of argument and make the following conjecture to resolve this issue:
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Conjecture 1: limS1(0)→∞ cmax = e−q1τS1(0)− e−rτK

Argument: When the price of any of the three stocks is much large than the other two,

cmax will look more and more like a call defined on one stock. Therefore, the argument

given above applies equally well to the cmax security. Furthermore, the added value

associated with the American style diminishes.

Conjecture 1 suggests that, when pricing cmax, eq1τSmax(0) − e−rτK is an appro-

priate boundary condition whenever a stock is at the maximum. It should be noted

that there is no confusion as to which stock to use when more than one is at the max

since the max is set to be the same for each stock.

However, the remaining boundary conditions for cmax are much less obvious. When

no stock is at the maximum and at least one stock is at a minimum, then there are two

cases to consider. In case one, one stock is at the minimum and two stock are in their

respective interior regions. The appropriate value here is not trivial. The one low value

stock may no longer be a factor in valuing that call, but two stock remain important.

In fact, it is a complicated problem in it’s own right – the question of this research

paper for the case of two underlyings instead of three!

I use the early exercise price of the American option as my Dirichlet boundary

condition for these cases. Clearly, this condition is a lower bound since the value of an

option is at least as great as the present exercise value. I have tried several alternative

assumptions and the final results are almost completely insensitive. In one case I set

all the boundaries where not one stock is at the maximum to zero and I get exactly

the same estimate. An alternative approach for future research might be to use closed

form solutions available for the two stock case. I would need to create a routine which

analyzes the closed form European values and then approximates the American value

from there. Black (1975) suggests an approach where the American option value is

approximated as the maximum between the value of early exercise today and the price

of the European closed form today.

I use essentially the same arguments for defining the boundaries of the pmin grid.
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Solution

With the initial conditions and the linearized Black-Scholes PDE, a series of linear

equations are solved simultaneously to determine the option price for all possible stock

prices the point in time one step before expiry. This process is repeated until the option

price is determined at the present time for all stock prices. The explicit technique

is conditionally stable. That is, errors may grow unboundedly for some set of grid

parameters. To keep conditional stability, the time step must be sufficiently small. The

results are shown in Table 4.1.

4.2.2 Alternatives to the Explicit Scheme

I do not use the implicit FD scheme but I discuss it briefly here because it motivates

my use of ADI, discussed below. The implicit FD technique follows the exact same

methodology as the explicit technique except Equation (4.4) is altered so that the

derivative terms are backward looking instead of forward looking approximations. The

same boundary conditions would be used. The resulting system of linear equations is

more complicated to solve but offers numeric stability for all possible grids.

The Crank-Nicolson method is a compromise between the explicit and implicit

schemes. It takes a linear combination of the scheme in Equation (4.4) and the mod-

ified version for the implicit scheme. The resulting system is numerically stable and

much more accurate than either the explicit or implicit scheme. However, it is more

computationally demanding than either method.

4.2.3 Example

I use the Baoli-scheme from Ge (2006). To begin, I alter the canonical form to fit with

their notation.
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Consider the following parabolic PDE:

∂V

∂t
=a11

∂2V

∂S2
1

+ a22
∂2V

∂S2
2

+ a33
∂2V

∂S2
3

(4.9)

+2a12
∂2V

∂S1∂S2
+ 2a23

∂2V

∂S2∂S3
+ 2a13

∂2V

∂S1∂S3

+b1
∂V

∂S1
+ b2

∂V

∂S2
+ b3

∂V

∂S3
+ cV

An explicit FD approximation gives:

V n+1
i,j,h − V

n
i,j,h

∆t
=

3∑
x,y=1

axyδxyV
n
i,j,h +

3∑
x=1

bxδxV
n
i,j,h + cV n

i,j,h (4.10)

An implicit FD approximation gives:

V n+1
i,j,h − V

n
i,j,h

∆t
=

3∑
x,y=1

axyδxyV
n+1
i,j,h +

3∑
x=1

bxδxV
n+1
i,j,h + cV n+1

i,j,h (4.11)

Now, consider a more general Crank Nicolson scheme where θ weight is placed on the

implicit scheme and θ̄ ≡ 1− θ is placed on the explicit scheme:

V k+1
i,j,h − V

k
i,j,h

∆t
=

3∑
x,y=1

θaxyδxyV
k+1
i,j,h +

3∑
x=1

θbxδxV
k+1
i,j,h + θV k+1

i,j,h (4.12)

+
3∑

x,y=1

θ̄axyδxyV
k
i,j,h +

3∑
x=1

θ̄bxδxV
k
i,j,h + θ̄cV k

i,j,h (4.13)

4.2.4 ADI

Since the Crank-Nicolson approach is prohibitively complex in the case of the cmax

and pmin securities, I must search for an appropriate ADI scheme. See the Literature

Review section below for a discussion of ADI. There are many ADI schemes available.

Ge (2006) proposes the following ADI scheme where stock i is treated implicitly in the

first step, stock j is treated implicitly in the second step and stock h is treated implicitly
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in the third step:

V
k+ 1

3
i,j,h − V

k
i,j,h

δt
=θa11

V
k+ 1

3
i+1,j,h − 2V

k+ 1
3

i,j,h + V
k+ 1

3
i−1,j,h

δS2
1

+
1
2
θ̄a22

V k
i,j+1,h − 2V k

i,j,h + V k
i,j−1,h

δS2
2

(4.14)

+
1
2
θ̄a33

V k
i,j,h+1 − 2V k

i,j,h + V k
i,j,h−1

δS2
3

+ θa12

V k
i+1,j+1,h − V k

i+1,j−1,h − V k
i−1,j+1,h + V k

i−1,j−1,h

4δS1δS2

+θa13

V k
i+1,j,h+1 − V k

i+1,j,h−1 − V k
i−1,j,h+1 + V k

i−1,j,h−1

4δS1δS3
+ θb1

V
k+ 1

3
i+1,j,h − V

k+ 1
3

i−1,j,h

2δS1

+
1
2
θ̄b2

V k
i,j+1,h − V k

i,j−1,h

2δS2
+

1
3
θ̄b3

V k
i,j,h+1 − V k

i,j,h−1

2δS3
+

1
3
θcV

n+ 1
3

i,j,h +
1
3
θ̄cV k

i,j,h

V
k+ 2

3
i,j,h − V

k+ 1
3

i,j,h

δt
=

1
2
θ̄a11

V
k+ 1

3
i+1,j,h − 2V

k+ 1
3

i,j,h + V
k+ 1

3
i−1,j,h

δS2
1

+ θa22

V
k+ 2

3
i,j+1,h − 2V

k+ 2
3

i,j,h + V
k+ 2

3
i,j−1,h

δS2
2

(4.15)

+
1
2
θ̄a33

V k
i,j,h+1 − 2V k

i,j,h + V k
i,j,h−1

δS2
3

+ θa12

V k
i+1,j+1,h − V k

i+1,j−1,h − V k
i−1,j+1,h + V k

i−1,j−1,h

4δS1δS2

+θa23

V k
i,j+1,h+1 − V k

i,j+1,h−1 − V k
i,j−1,h+1 + V k

i,j−1,h−1

4δS2δS3
+

1
2
θ̄b1

V
k+ 1

3
i+1,j,h − V

k+ 1
3

i−1,j,h

2δS1

+θb2
V
k+ 2

3
i,j+1,h − V

k+ 2
3

i,j−1,h

2δS2
+

1
3
θ̄b3

V k
i,j,h+1 − V k

i,j,h−1

2δS3
+

1
3
θcV

k+ 2
3

i,j,h +
1
3
θ̄cV k

i,j,h

V k+1
i,j,h − V

k+ 2
3

i,j,h

δt
=

1
2
θ̄a11

V
k+ 1

3
i+1,j,h − 2V

k+ 1
3

i,j,h + V
k+ 1

3
i−1,j,h

δS2
1

+
1
2
θ̄a22

V
k+ 2

3
i,j+1,h − 2V

k+ 2
3

i,j,h + V
k+ 2

3
i,j−1,h

δS2
2

(4.16)

+θa33

V k
i,j,h+1 − 2V k

i,j,h + V k
i,j,h−1

δS2
3

+ θa13

V k
i+1,j,h+1 − V k

i+1,j,h−1 − V k
i−1,j,h+1 + V k

i−1,j,h−1

4δS1δS3

+θa23

V k
i,j+1,h+1 − V k

i,j+1,h−1 − V k
i,j−1,h+1 + V k

i,j−1,h−1

4δS2δS3
+

1
2
θ̄b1

V
k+ 2

3
i+1,j,h − V

k+ 2
3

i−1,j,h

2δS1

+
1
2
θ̄b2

V
k+ 2

3
i,j+1,h − V

k+ 2
3

i,j−1,h

2δS2
+ θb3

V k+1
i,j,h+1 − V

k+1
i,j,h−1

2δS3
+

1
3
θcV k+1

i,j,h +
1
3
θ̄cV k

i,j,h

SOR may be used to solve this system. I describe here how to solve for the first leg

(4.14). To satisfy equation (4.23), the system may be written as:

MjhV
k+ 1

3
j,h = qjh (4.17)
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where:

Mjh =



A1(1, j, h) B1(1, j, h) C1(1, j, h) 0 · · ·

0 A1(2, j, h) B1(2, j, h) C1(2, j, h)
. . .

. . . . . . . . . . . .

· · · · · · A1(I − 1, j, h) B1(I − 1, j, h) C1(I − 1, j, h)


(4.18)

A1(i, j, h) = 1 +
2δtθa11(i, j, h))

δS2
1

− δtθc(i, j, h)
3

(4.19)

B1(i, j, h) = −δtθa11(i, j, h)
δS2

1

− δtθb1(i, j, h)
2δS1

C1(i, j, h) = −δtθa11(i, j, h)
δS2

1

+
δtθb1(i, j, h)

2δS1

Vjh
k+ 1

3 =



V
k+ 1

3
0,j,h

V
k+ 1

3
1,j,h

...

V
k+ 1

3
I−1,j,h

V
k+ 1

3
I,j,h


,qjh

k =



qjh,1

qjh,2
...

qjh,I−2

qjh,I−1


(4.20)

qjh,i = V k
i−1,j−1,hD1(i, j, h) + V k

i−1,j+1,hE1(i, j, h) + V k
i−1,j,h−1F1(i, j, h) (4.21)

+ V k
i−1,j,h+1G1(i, j, h) + V k

i,j−1,hH1(i, j, h)

+ V k
i,j,hI1(i, j, h) + V k

i,j+1,hJ1(i, j, h)

+ V k
i,j,h−1K1(i, j, h) + V k

i,j,h+1L1(i, j, h)

+ V k
i+1,j−1,hM1(i, j, h) + V k

i+1,j+1,hN1(i, j, h)

+ V k
i+1,j,h−1O1(i, j, h) + V k

i+1,j,h+1P1(i, j, h)
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D1(i, j, h) =
(
δtθa12

4δS1δS2

)
E1(i, j, h) =

(
−δtθa12

4δS1δS2

)
F1(i, j, h) =

(
δtθa13

4δS1δS3

)
G1(i, j, h) =

(
δtθa13

4δS1δS3

)
H1(i, j, h) =

(
δtθ̄b2
4δS2

+
δtθ̄a22

2δS2
2

)
I1(i, j, h) =

(
1− δtθ̄a22

δS2
2

− δtθ̄a33

δS2
3

+
δtθ̄c

3

)
J1(i, j, h) =

(
δtθ̄a22

2δS2
2

+
δtθ̄b2
4δS2

)
K1(i, j, h) =

(
−δtθ̄b3

4δS3
+
δtθ̄a33

2δS2
3

)
L1(i, j, h) =

(
δtθ̄a33

2δS2
3

+
δtθ̄b3
4δS3

)
M1(i, j, h) =

(
δtθa12

4δS1δS2

)
N1(i, j, h) =

(
δtθa12

4δS1δS2

)
O1(i, j, h) =

(
−δtθa13

4δS1δS3

)
P1(i, j, h) =

(
δtθa13

4δS1δS3

)
This may be rewritten as:



B1(1, j, h) C1(1, j, h) 0 · · ·

A1(2, j, h) B1(2, j, h) C1(2, j, h)
. . .

. . . . . . . . . . . .

· · · · · · A1(I − 1, j, h) B1(I − 1, j, h)


·



V
k+ 1

3
1

V
k+ 1

3
2

...

V
k+ 1

3
I−2

V
k+ 1

3
I−1


(4.22)

=



qjh,1

qjh,2
...

qjh,I−2

qjh,I−1


−



A1(1, j, h) ∗ V k+ 1
3

0

0
...

0

C1(I − 1, j, h) ∗ V k+ 1
3

I
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I apply the SOR procedure discussed in the appendix to this system. For border con-

dition for the imaginary steps, I interpolate between the two known border conditions

using a weight of one-third accordingly.

Recall that the ADI scheme is a method to determine the option prices on the grid

for the next time step. Since I am working in three space dimensions, this amounts

to finding successive cubes. Furthermore, each leg of my ADI is a cube. The SOR

procedure outlined is performed for a given (j,h) pair and will yield one column of

the first cube leg. The procedure must be repeated for each (j,h) pair to ultimately

assemble the entire cube leg.

The initial cube is saved as well as the first cube leg. Then a new procedure is

initiated to determine the second cube leg. This time, the j dimension is treated

implicitly while the cross terms, and i and h dimensions are treated explicitly.

4.3 Results

All of these results were obtained with the following parameterization: ρ12 = ρ13 =

ρ23 = 0.5, σ1 = σ2 = σ3 = 0.3, S1(0) = S2(0) = S3(0) = 100, r = 0.05, q1 = q2 = q3 =

0.02, Smin1 = Smin2 = Smin3 = 0, Smax1 = Smax2 = Smax3 = 200. Closed forms were

obtained with Matlab using the solutions of Johnson (1987). See the Appendix for a

discussion on this implementation. All explicit results are performed with 1000 times

steps and 50 stock price steps. The explicit method did not converge for fewer time

steps. The ADI method was very sensitive to the time steps and stock price steps. For

all ADI results, I use 800 times steps. For the cmax results, I use δS1 = δS2 = δS3 = 5.

For any larger than 30, I have stability problems. For the pmin results, I use δS1 =

δS2 = δS3 = 10.

4.4 Benchmarking

The best benchmark would be a closed form solution for my exact problem. Broadie

and Detemple (1997) has the most promising method for this but the procedure is

complex and beyond the scope of this paper. A closed form solution does exist for the
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Table 4.1: Numerical simulation results.

cmax

European American

Strike Closed Form Explicit Error (%) ADI Explicit ADI

105 21.2882 21.2656 -0.106 20.3031 21.2695 20.669

110 18.2578 18.2578 0 17.0867 18.2611 17.3556

115 15.5759 15.5538 -0.1418859 13.8702 15.5567 14.0542

130 9.2862 9.27096 -0.1641145 8.70601 9.27237 8.72244

150 4.3397 4.31613 -0.5431251 4.8107 4.31658 4.81968

190 0.8174 0.570619 -0.301909714 0.90339 0.570622 0.904761

pmin

European American

95 14.3568 14.317 -0.2772206 12.2913 14.5553 13.1036

90 11.1816 11.163 -0.1663447 9.78016 11.3463 10.3679

85 8.3849 8.37087 -0.1673246 7.26905 8.50684 7.70918

70 2.5798 2.5991 0.74812 2.71734 2.63593 2.7901

50 0.1452 0.157447 8.434573 0.353807 0.15891 0.358076

20 9.5276e-5 1.2514e-6 -98.69 0.000214 1.26331e-6 0.00020
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European-style version of my problem problem, due to Johnson (1987). Since it is very

easy to determine American style option prices once an FD scheme is set up for the

European-style, it would be good to know that my scheme does replicate the closed

form solutions to the European version. If they match, then it would be believable that

the American estimates are accurate as well.

In the appendix below, I describe the method used by Stulz (1982), Johnson (1987),

and Ouwehand and West (2006). The closed form bench marks are presented in the

results section. I implement their solution using Matlab. I benchmark the Matlab code

by successfully replicating the solution in Dang et al. (2010).

The results indicate that my explicit scheme is accurate. Accuracy decreases as the

strike gets closer to the upper boundary. This may be happening because whenever the

option is in the money, the value is being distorted by the boundary condition.

4.5 Literature Review

4.5.1 Alternating Direction Implicit (ADI)

ADI is a method for reducing the computational complexity of the Crank-Nicolson

method. Instead of treating all stock prices explicitly and implicitly at once, ADI keeps

all stocks explicit except for one. This scheme will be used to approximate the grid

one-third of the way to the next grid plane. Then another stock is selected to be solved

implicitly and the next third of the way to the next grid plane is estimated. This is

repeated again for the third stock. At that point the next step on the grid is reached

and each stock has been used implicitly for one-third of the time step. Keeping only

one stock implicit reduces computational time tremendously but does sacrifice accuracy

and stability.

ADI was first introduced by Peaceman and Rachford (1955). He solves two and

three dimensional heat equation (diffusion terms, no convection terms) and finds an

explicit-implicit solution a la Crank Nicolson. To overcome the difficulty of numerical

estimation, he suggests a scheme whereby one dimension is treated implicitly first for

a “half step” and then the other is treated implicitly in the next “half step.” Douglas
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and Rachford (1956) use a similar technique to solve the same problem. Douglas (1962)

solves the heat equation on a three dimensional cube using a scheme which possesses

better discretization error than the previous papers. Douglas and Gunn (1964) develop

a scheme for solving a three dimensional PDE which is unconditionally stable.

ADI is difficult to implement when a cross partial derivative term is present in

the PDE you are estimating. This is because several stock prices are referred to in a

single term and it is not clear whether that term should be treated implicitly or explicit

for any “leg” of the procedure. Therefore, there is great interest in designing ADI

schemes which can handle cross derivative terms. Such a scheme would be helpful in

the mathematical finance literature since the multivariate Black Scholes PDE includes

cross terms whenever correlation is non-zero.

McKee and Mitchell (1970) designs an ADI scheme in two dimensions with a cross

term and without convection terms which is unconditionally stable. Craig and Sneyd

(1988) studies N-dimensional second order PDEs with diffusion and cross derivatives

terms. For certain parameterizations, their scheme is unconditionally stable. With

mixed derivative terms, the scheme is conditionally stable. They use a scheme whereby

the cross partial term is kept completely explicit. This method is followed by many

subsequent authors. Their method is a generalized version of Douglas (1962) and Mc-

Kee and Mitchell (1970). Craig and Sneyd (1988) also suggest that their results are

amenable to inclusion of any number of convection terms. However, a new stability

requirement is introduced in the time step size. McKee et al. (1996) finds an uncon-

ditionally stable ADI scheme for a parabolic PDE in two dimentions which has both

convection terms, diffusions terms, as well as a cross partial term. in’t Hout and Welfert

(2007) derive unconditional stability results for the Craig-Sneyd scheme for general two

spatial-dimensional convection-diffusion equations. His result is a minor improvement

over McKee et al. (1996). in’t Hout and Welfert (2009) derives an unconditionally

stable ADI scheme for multi space dimension diffusion equation with mixed derivative

terms and no convection terms. Ge (2006) apply the Craig and Sneyd (1988) method to

a convection-diffusion parabolic PDE in three dimensions with cross derivative terms.

However, the stability analysis of their scheme is left unresolved. Craig and Sneyd
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(1988) would suggest that it is indeed stable a large enough number of time steps.

4.5.2 SOR

Given a tridiagonal matrix, M, and a vector, q of the same dimension, SOR offers a

routine for estimating the solution to the matrix equation MV=q for V without having

to compute the inverse of M. This is very important in applied option pricing because

M may be very large and demand too much computer processing power.

For:

M =



Bk
1 Ck1 0 · · ·

Ak2 Bk
2 Ck2

. . .
. . . . . . . . . . . .

· · · · · · AkI−1 Bk
I−1


the SOR method provides an iterative procedure for estimating V.

v
(n+1)
i = v

(n)
i +

1
Bi

(qi −Aiv(n+1)
i−1 −Biv(n)

i − Civ(n)
i+1) (4.23)

for 1 <≤ i ≤ I and A1 ≡ 0 and CI−1 ≡ 0

The SOR procedure begins with an initial guess for v, typically q. This guess is v0.

Then (4.23) is used to calculate v(1) and so on. The procedure is arrested when the

following norm condition is satisfied:

||v(n+1) − v(n)|| < ε

4.5.3 Pricing Options Defined on the max or min of a basket

Stulz (1982) is the first to address the simplest cases for basket options. He analyzes

European call and put options on the maximum or minimum of two risky assets. Let

V and H be the prices of the two underlying stocks. S1 and S2 follow a correlated geo-

metric brownian motion with volatilities σ1 and σ2 respectively, correlation coefficients

ρ and time to maturity, τ . Dividend yield is zero. Using an argument similar to Black

and Scholes (1973), they derive the price for a call defined on the minimum of two risky
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assets. I refer to Ouwehand and West (2006) for an extension to the case with non-zero

dividend yields as well as typo corrections. The dividend yield of asset i is denoted qi.

cmin =S1(0)e−q1τN2

(
d

2/1
− , d1

+,−%12

)
(4.24)

S2(0)e−q2τN2

(
d

1/2
− , d2

+,−%21

)
−Ke−rτN2

(
d1
−, d

2
−, ρ

)
d
i/j
± =

(
ln Si(0)

Sj(0) + (qj − qi ± 1
2σ

2
i/j)τ

)
σi/j
√
τ

di± =

(
lnSi(0)

K + (r − qi ± 1
2σ

2
i )τ
)

σi
√
τ

%ij =
σi − ρσj
σi/j

σ2
i/j =σ2

i + σ2
j − 2ρijσiσj

where N2(α, β, θ) is the bivariate cumulative standard normal distribution with limits

of integration given by α and β and correlation coefficient of θ. They then derive the

price of a call defined on the maximum of two risky assets:

cmax(S1(0), S2(0),K, τ) = c(S1(0),K, τ) + c(S2(0),K, τ)− cmin(S1(0), S2(0),K, τ)

(4.25)

where c(X,K, τ) is the price of a European call option on asset X with an exercise

price of K and time to expiration τ . Finally, the price of a put on the minimum of two

risky assets:

pmin(S1(0), S2(0),K, τ) =e−rτK − S1(0)e−q1τ (1−N (d+)) (4.26)

− S2(0)e−q2τN (d−) + cmin(S1(0), S2(0),K, τ)

d± =
lnf1

f2
± 1

2σ
2τ

σ
√
τ

fi =Sie(r−qi)τ

σ2 =σ2
1 + σ2

2 − 2ρσ1σ2

Johnson (1987) generalizes the results from Stulz (1982) to N-dimensions. I refer to

Ouwehand and West (2006) for an extension to a model with non-zero dividend yields.
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I write the solution for the case where N=3:

cmax =S1(0)e−q1τN3

(
−d2/1
− ,−d3/1

− , d1
+, ρ23,1, ρ24,1, ρ34,1

)
(4.27)

+S2(0)e−q2τN3

(
−d1/2
− ,−d3/2

− , d2
+, ρ13,2, ρ14,2, ρ34,2

)
+S3(0)e−q3τN3

(
−d1/3
− ,−d2/3

− , d3
+, ρ12,3, ρ14,3, ρ24,3

)
−Ke−rτ

(
1−N3

(
−d1
−,−d2

−,−d3
−, ρ12, ρ13, ρ23)

)
, ρ12, ρ13

)
where

ρij,k =
ρijσiσj − ρikσiσk − ρkjσkσj + σ2

k√
(σ2
i + σ2

k − 2ρikσiσk)(σ2
j + σ2

k − 2ρjkσjσk)
(4.28)

(4.29)

where ρij is the correlation coefficient between securities i and j.
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