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ABSTRACT OF THE DISSERTATION

A Face Tracking System for Dynamic Event Recognition:
Application to Continuous Recognition of Non-Manual
Markers of American Sign Language and to Deception

Detection by Kinesic Analysis

by Nicholas Michael

Dissertation Director: Professor Dimitris N. Metaxas

Face tracking has numerous applications in the field of Human Computer Interaction
and behavior understanding in general. Yet, face tracking is a difficult problem because
the tracker must generalize to new faces, adapt to changing illumination, keep up
with fast motions and pose changes, and tolerate target occlusion. We first present
our efforts to develop a system for probabilistic face tracking, using anthropometric
and appearance constraints. We then move onto the focus of our work, which is the
application of the face tracker to two interesting recognition problems.

Firstly, given that sign language is used as a primary means of communication by
deaf individuals and as augmentative communication by hearing individuals with a
variety of disabilities, the development of robust, real-time sign language recognition
technologies would be a major step forward in making computers equally accessible to
everyone. However, most research in the field of sign language recognition has focused
on the manual component of signs, despite the fact that there is critical grammatical
information expressed through facial expressions and head gestures. Therefore, we

present our novel framework for robust tracking and analysis of facial expressions and

i



head gestures, by means of a dynamic feature descriptor, a 3D face model and temporal
models, with an application to sign language recognition. We apply it to successful
continuous recognition of six different classes of non-manual grammatical expressions.

Secondly, deception is present in our everyday social and professional lives and its
detection can be beneficial, not only to us individually but to our society as a whole.
For example, accurate deception detection can aid law enforcement officers in solving a
crime. It can also help border control agents to detect potentially dangerous individuals
during routine screening interviews. Therefore, we also present two novel methods for
deception detection, using only visual cues extracted from our face tracker and a skin
blob tracker, both with promising results. One is based on a novel kernel density
descriptor of human behavior, which can differentiate normal behavior profiles from
over-controlled and agitated ones, using nearest neighbor search. The other is based on

the notion of subject-interviewer synchrony.
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Chapter 1

Introduction

1.1 Motivation

The human face is a crucial channel of non-verbal communication. Through static
facial signs [32], such as bone structure, eye shape and color, etc., which constitute a
person’s appearance, we are able to identify and distinguish people from each other.
Through dynamic facial signs [32], such as their facial expressions, humans can convey
information about their emotional state (e.g., happiness, sadness, surprise, fear), general
nervousness, their interest or disinterest in something and so on [33, 34, 35, 36, 37|. If
human computer interaction is to be successful, computers need to be able to understand
non-verbal dynamic behaviors. Therefore, what is needed is a system which can tap
into this important communication channel and through accurate face tracking (despite
variations in facial shapes, illumination, head pose and facial expressions) and dynamic
event modelling, recognize this plethora of information that people convey non-verbally.

In this thesis, we present our work on a face tracking system, which can track and
recognize such dynamic facial signals, as well as other non-verbal dynamic behaviors.
Our system is built on the work of Kanaujia et al. [57] who model the facial shape
manifold by a piecewise linear approximation. We present a particle filter extension
[51] to their face tracker with hierarchical observation likelihoods, which enforce implicit
anthropometric and multi-level appearance constraints for more accurate tracking. The
improvement in tracking accuracy is shown quantitatively on a very challenging video
sequence with facial occlusion. We then proceed to describe the successful application
of our system and methods to two novel recognition problems: (1) recognition of the
non-manual component of American Sign Language (ASL), (2) detection of deception

in interview scenarios using only visual cues through kinesic and synchrony analysis.
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Figure 1.1: Tllustration of our system’s framework.

The overall framework we use in both applications is shown in Fig. 1.1. The input
video is tracked by the face tracking system. Based on the tracked result, the system
localizes a Region of Interest (ROI), which can be application-specific. For example, for
recognizing non-manual markers in ASL we focus on the eyes, eyebrows and nose, while
for deception detection we also look at the mouth region. It then extracts discriminative
features characterizing the dynamic nature of the events we want to recognize and
using a trained model the system outputs a prediction. In the following sections of this
chapter we provide additional details motivating our face tracking system and each of

its applications.

1.1.1 Face Tracking

Face tracking is an important component of any computerized human interaction sys-
tem. It is also the building block of many applications in biometrics, facial expression
analysis and synthesis. For these applications, it is not enough to track a bounding
box around the face. Instead, the face tracker should also localize the different facial
components, e.g., eyes, nose, mouth, eyebrows, and it must do so across multiple views.
This is a challenging problem because although human faces share a common structure
(i.e., the facial components mentioned above), there is still significant variability across
different individuals. Yet, what is required it a face tracker, which once trained, can
generalize well to unseen faces and handle illumination changes. It should also cope
with partial occlusions and pose changes, such as head rotations, which cause drastic
changes in the shape of the face, causing it to lie on a non-linear manifold [57, 80]. As
the head rotates by a certain amount, the shape of the different parts of the face, as
viewed from a two dimensional perspective, does not change uniformly and by an equal

amount in all places. This effect is more severe during head rotations which approach



profile poses.

Some methods rely on parametrized 3D deformable models [22, 23, 24, 44, 62, 116].
The accuracy of these methods depends on the correct estimation of the image features,
which are used to estimate the parameters of the 3D model. Some feature extraction
methods use deterministic tracking [100], while others track feature distributions (e.g.,
[51]). The accuracy of these methods can be affected by changes in illumination or
other image noise, since they are not learning-based, which in turn causes drifting in
the 3D model.

Other methods are based on statistical Point Distribution Models (PDM). Given
that human faces have a distinct structure and shape, researchers have developed models
and algorithms that exploit this prior information. A popular example is the Active
Shape Model (ASM) [19, 20, 30] and its “cousin”, the Active Appearance Model (AAM)
[31]. Since their introduction, there have been numerous extensions to them (e.g., [78]).
ASM is a linear generative model based on learning a statistical model of shape variation
and it is also discriminative in the sense that is utilizes local texture information together
with a trained texture prior. They work generally well for faces and expressions that
match their training data, but can fail badly, if they encounter an expression not in the
training set or if they get stuck to a local minimum due to bad initialization.

The major limitation of ASM is that it is a linear model, hence it cannot model
the non-linearity of the facial shape manifold across different poses [80]. For example,
during a head rotation to a profile pose, some of the facial features can become oc-
cluded causing a drastic change in the facial shape, which means the 2D image and 3D
face correspondences change as well as the local texture information [57]. A number
of extensions have been proposed to overcome this problem, which essentially model
this non-linearity with multiple linear ASM models, such as the View-Based ASM [21]
and the more successful piecewise linear approximation of Kanaujia et al. [57], which
extends ideas in [8, 49]. The latter can handle large out-of-plane head rotations and it
can run in real-time by incorporating the KLT feature tracker [100], but it can still fail,
especially when some facial component (e.g., eyebrows) gets occluded. This is because

the tracker is deterministic and on failure it may remain stuck in a local minimum.



This ASM face tracker would therefore not perform well on certain realistic video, such
as sign language video where there are frequent facial occlusions. On the other hand,
probabilistic trackers [51] can handle multiple hypothesis to escape local minima.
Therefore we present and validate the hypothesis that tight integration of a face
tracker with an adaptive dynamical model (see Sec. 3) improves face tracking accuracy

significantly for challenging situations, e.g., in the case of facial component occlusion.

1.1.2 Non-Manual Markers in American Sign Language

Speech recognition technologies have become standard components of modern operating
systems, allowing average users to interact with computers verbally. Modern computer
systems can interpret voice commands in real time and they can also translate speech
to text and vice versa. Recently, we have seen the introduction of smart-phones and
tablets and with them came more advanced speech recognition capabilities. These range
from the ability to execute internet queries using one’s voice, to almost hands-free inter-
action with your new personal assistant (who now resides inside your phone’s software)
to schedule meetings, read email, fetch the news, make phone calls, play music, find
directions to the nearest gas station, etc. Through such advanced technologies, users
can accomplish many computer tasks with minimal typing, making Human Computer
Interaction (HCI) an easier and more efficient experience.

On the other hand, technology for the recognition of sign language, which is widely
used by the Deaf, is not nearly as well-developed, despite its many potential benefits
[75, 76, 77, 84, 115]. First of all, technology that automatically translates between
signed and written or spoken language would facilitate communication between signers
and non-signers by bridging the language gap. Secondly, such technology could be
used to translate sign language into computer commands, hence opening the road for
the development of additional assistive technologies (in a manner analogous to existing
speech recognition technologies described above) [115]. Moreover, computerized sign
language recognition could facilitate the efficient archiving and retrieval of video-based
sign language communication [115]. It could assist with the tedious and time-consuming

task of annotating sign language video data for purposes of linguistic and computer



Figure 1.2: Illustration of the simultaneous nature of the manual (hand signs) and
non-manual (facial expressions and gestures) component of American Sign Language.

science research. Ultimately, such research — and resulting advances in sign language
recognition and generation — will have applications that could profoundly change the
lives of deaf people and improve communication between deaf and hearing individuals.
Non-speaking, non-deaf users of sign language, including some people with autism,
aphasia, cerebral palsy, Down Syndrome, and tracheotomies, will benefit from these
technologies in the same ways.

However, sign language recognition poses many challenges. First, many of the lin-
guistic components of a sign that must be recognized occur simultaneously rather than
sequentially (see Fig. 1.2). For example, one or both hands may be involved in the sign-
ing, and these may assume various hand shapes, orientations, and types of movement in
different locations. At the same time, facial expression may also be involved in distin-
guishing signs, further complicating the recognition task. Secondly, there is variation
in production of a given sign, even by a single signer. In fact, facial expressions, which
constitute the non-manual component of ASL, convey the grammatical information
which is crucial to correctly parse ASL sentences (see Sec. 4.1). Additional variation
is introduced by the effect of co-articulation, meaning that the articulation of a sign
is influenced by preceding and following signs, and by movement transitions between
signs (sometimes referred to as “movement epenthesis”). In spite of these challenges,
many methods [3, 10, 18, 117, 118, 124] have shown promising results in recognizing
manual components of signs.

In sign language, and in ASL in particular, critical grammatical information is ex-
pressed through head gestures, such as periodic nods and shakes, and facial expressions

such as raised or lowered eyebrows, eye aperture, nose wrinkles, tensing of the cheeks,



and mouth expressions [67, 83]. These linguistically significant non-manual expressions
include grammatical markings that extend over phrases to mark syntactic scope (e.g.,
of negation and questions). Sign language recognition cannot be successful unless these
signals are also correctly detected and identified. For example, the sequence of signs
“JOHN BUY HOUSE” could be interpreted, depending on the non-manual markings
that accompany the signs, to mean any of the following: (i) “John bought the house.”
(ii) “John did not buy the house.” (iii) “Did John buy the house?” (iv) “Did John not
buy the house?” (v) “If John buys the house...”. In addition, recognition of such gram-
matical signals can assist with the task of recognizing the manual components of signs.
This is because there may be some correlations between information that is expressed
manually and non-manually (e.g., [60]).

Motivated by the grammatical importance of head gestures and facial expressions,
we present novel methods [75, 76, 77, 84], based on our extended face tracker, for ro-
bustly tracking and recognizing such non-manual markings associated with negative
sentences, wh-questions, conditional/when clauses, yes/no questions, rhetorical ques-
tions and topics. We hypothesize that our extended face tracker allows the extraction of
features, which, when coupled with the proposed models, can accurately discriminative

the different non-manual markers (see Sec. 4).

1.1.3 Deception Detection

Whether we want to believe it or not, deception has found its way into our everyday
social and professional lives [34]. In today’s fast-paced, modern world of complex human
interactions it is becoming ever more critical to accurately distinguish lies from truth,
and friendly from hostile intent. Accurate deception detection can be beneficial not
only at an individual level but also on a more global social scale. For example, besides
allowing employers to promote the right employee and spouses to catch a cheating
partner early in the act, accurate deception detection can aid law enforcement agencies
in solving crimes quickly and in saving lives. In addition, it can assist border control and
security checkpoint agents to detect potentially dangerous individuals during routine

screening interviews [131].



Observer I o Group | Female | Age Age | Exp. | Exp.
group (%) size (%) 1 o 1 o
Secret

Service 64.12 | 14.80 34 3 34.79 | 5.96 | 9.12 | 6.69
Federal

Polygraphers | 55.67 | 13.32 60 8 39.42 | 6.76 | 6.54 | 6.19
Robbery

Investigators | 55.79 | 14.93 126 2 39.21 | 8.26 | 14.77 | 7.15
Judges 56.73 | 14.72 110 11 52.64 | 9.37 | 11.50 | 7.77
Psychiatrists | 57.61 14.57 67 3 54.24 | 10.28 | 23.63 | 10.28
Special

Interest 55.34 | 15.82 73 53 43.33 | 13.44 | 10.76 | 9.89
College

Students 52.82 | 17.31 39 64 19.90 | 1.74 | N/A | N/A

Table 1.1: Deception detection accuracy and composition of the various groups used
in the study of Ekman and O’Sullivan [37]. “Exp.” stands for number of years of job
experience. Note that even trained and experienced professionals such as secret service
agents do not exceed an accuracy rate of 65%.

In response to these potential social and professional benefits of accurate deception
detection, many researchers have focused on studying behavior in human interactions,
in an attempt to understand the dynamics of deceit and to discover deceptive patterns
and cues, if any. This knowledge would then form the basis in designing automatic
deception detection systems and for training others to become experts in deception
detection [43]. Unfortunately, unaided humans are poor “lie detectors”. In fact, in a
recent study by Bond and DePaulo [6], it was found that unaided humans can accurately
detect deception only 54% of the time and that they are better at detecting audible lies
than visible ones. In another study by Ekman and O’Sullivan [37], it was found that
various groups of unaided professionals (e.g., judges, federal polygraphers, psychiatrists,
etc.) were only 56% accurate (on average) at detecting deception, while even a group
of trained and experienced secret service agents achieved an accuracy of 64% (see Table
1.1). The results of these studies should come as no surprise, given the many different
verbal and audible cues available during complex human interactions and which an
unaided human would need to process simultaneously and in detail, in order to correctly

detect deception [16].



It was the poor deception detection abilities of humans, coupled with the demand
for fast and accurate deception detection, which led scientists to research development
of automated methods and tools to tackle this problem. Currently, the polygraph is
the widespread tool of choice, which monitors in real-time changes in heart rate and
electro-dermal response from deceit arousal. However, the polygraph has numerous
drawbacks [74]. First of all, in order for it to take the necessary measurements it needs
to be continuously (and often uncomfortably) connected to the subject being monitored,
thus it requires a fully cooperating subject and in close range. The polygraph functions
on the premise that under deceit arousal a subject’s heart rate and skin conductance
may increase. This means that it requires accurate calibration at the beginning of the
session by means of a few control questions, in order to establish baseline measurements
which will be used later in the interview to detect deception. Nevertheless, sometimes it
may fail to give a conclusive reading in spite of a good calibration, as the subject’s heart
rate may increase for medical reasons for example, which are unrelated to deception.

Furthermore, the polygraph is an overt system. This means that the subject knows
they are being monitored and also knows exactly what measurements are being made.
As a result, they may devise techniques to trick the machine. For example, they may
try to remain calm by taking some drug prior to the exam, in an attempt to relax
and maintain a low heart rate. Additionally, they may secretly inflict pain on them-
selves, both during the calibration phase and later during their truthful responses, so
that any excitement that the polygraph registers during their deceptive responses, the
polygraph’s operator will mistakenly regard as a truthful response.

Lastly, the polygraph requires a trained operator, whose skills and abilities control
both the likelihood of human error in the interview and the length of the interview itself.
Unlike computers, humans will get tired and will eventually need a break. Therefore,
what is needed is an automatic and covert system, which can continuously and unob-
trusively detect deception, without requiring the subject’s cooperation or any expensive
and impractical equipment.

In this thesis, we present methods [16, 74] that can be used to detect deception in

an interview scenario using only visual cues, as can be obtained from an un-calibrated



standard camera, in order to distinguish deceptive behavioral patterns. In other words,
we hypothesize that an accurate face tracking system, such as the one we present
in Chap. 3, can be successfully applied (and extended) to extract, learn and detect,

deceptive cues via kinesic analysis of interview video data (see Chap. 5).

1.2 Contributions

Our objective in this work was to build an automatic face tracking system which can
be trained to learn the statistical distribution of the shape and texture of human faces
across different head poses. In this way, it would be able to track any target face, not
necessarily restricted to only those used for training, and adapt to out-of-plane head
rotations dynamically, while also gracefully handling occlusion of facial components
(e.g., eyebrows). The face tracker should output not just an approximate bounding
box for the tracked face, but rather an accurate 2D image localization of specific facial
landmarks, corresponding to well-defined facial structures (i.e., nose, eyes, eyebrows,
mouth and face outline contour), in addition to a prediction of the 3D orientation of the
tracked face. The tracker’s output can then be used (directly or indirectly) to recognize
dynamic events of facial expressions and head gestures, thus forming the foundation
block of useful recognition applications. In particular, we focused on the application of

our face tracking system to two very important recognition problems:

e Isolated and continuous recognition of the non-manual markers (involving combi-
nations of head gestures and facial expressions) in video sequences of American
Sign Language (ASL). Non-manual markers are important because they convey

grammatical information necessary to disambiguate a parsed signed sentence.

e Automatic deception detection using kinesic analysis of visual cues extracted dur-
ing interview scenarios. Here we first focused on features extracted from the sub-
ject’s behavioral patterns and then extended it to synchrony analysis of both the

subject and their interviewer.

More specifically, the main contributions of this thesis are the following:
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e We extend the face tracker of Kanaujia et al. [57] to a probabilistic tracker using a
modification of the popular Condensation algorithm [51]. Our novel particle filter
uses a hierarchical observation likelihood model that combines anthropometric
constraints with hierarchical appearance constraints at both the landmark level
and at the facial component level, while also modelling shape cluster transitions
during head rotations (inspired from work in [49]). We empirically demonstrate
the superiority of our enhanced tracker, relative to the original version [57], on one
of the many challenging video sequences present in our ASL video dataset, where
the signer’s eyebrows get occluded for a relatively long period. Accurate tracking
of facial components, especially eyebrows, is crucial for correct recognition of

non-manual markers in ASL (see Chap. 4).

e We present a framework for isolated recognition of non-manual markers in seg-
mented ASL video sequences using a “bag-of-words” model built from appearance
and head descriptors which are extracted with the help of our face tracker. We
empirically show that our method can successfully recognize non-manual markers
associated with wh-questions and negation [75, 84]. Our method can be extended
to use any set or sets of appearance features, instead of or in addition to the
ones we present, as well as extended to recognition of facial expressions and head

gestures in other domains.

e We extend our framework for isolated recognition in segmented video sequences
to recognize additional classes of non-manual markers, some of which appear sim-
ilar when viewed in a static context, namely yes-no questions, conditional/when
clauses and topics, in addition to wh-questions and negative sentences. We achieve
this by introducing a rich feature descriptor, which we refer to as “oracle features”
and encodes feature dynamics, and the idea of Multiple Instance Feature (MIF)
[68] for handling feature misalignment. Additionally, we use the discriminative
Hidden Markov Support Vector Machine (HMSVM) [1] for modelling temporal
relationships between neighboring frames, instead of the static Support Vector

Machine (SVM) [13], which we had previously used. We validate the positive
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effect that each proposed extension (oracle features, MIF, HMSVM) has on the

overall accuracy of the framework with experimental results [77].

The isolated recognition of non-manual markers in segmented ASL videos is not
tremendously useful in practice, simply because it assumes that we have already
acquired in some way the start and end of each non-manual marker that we
want to recognize, e.g., using a spotting algorithm. Continuous recognition is
more practical because it bypasses this requirement, thus saving computational
resources. Therefore, our next contribution is the extension of our framework
to continuous recognition using an extended feature set (encoding both texture
and appearance of the region of interest) and spectral clustering [4, 85] to learn
the appearance manifold of the facial expressions associated with the non-manual

markers of wh-questions, negative sentences and topics [76].

Head pose variation changes the appearance of the region of interest, adding
additional complexity to the task of recognizing non-manual markers in ASL,
especially for classes that are only subtly different. For example, topics and yes-
no questions both involve raised eyebrows, but with the latter the head is jutted
forward, while with topics it may be tilted back. Small training datasets may
not exhibit all possible variations in the production of these non-manual markers,
therefore resulting in inaccurate recognition models. Our next contribution is the
introduction of a method for 2D image warping of non-frontal poses to frontal,
using a trained 3D model [5, 128]. We empirically show that application of this
warping transformation to the region of interest, prior to feature extraction, filters
out the effects of head orientation on the appearance of the face region. It also
removes the effects of foreshortening on the estimation of eyebrow height, which

is critical for detecting non-manual markers involving raised or lowered eyebrows.

In the area of automatic deception detection, our contribution is a non-parametric
log-feature space feature representation of features, which are extracted using the
face tracker and a skin blob tracker (e.g., [70]), and subject-specific modelling

of behavioral profiles, for automatically discriminating over-control, agitated and
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relaxed states. We show that our method [74, 16] for kinesic analysis of a subject’s
behavioral patterns in an interview scenario outperforms state of the art accuracy

of similar approaches (e.g., [73]).

e Lastly, there have been a number of studies that point to a correlation of the
degree of synchrony between a subject and their interviewer and the deceptive
state of the subject (e.g., [81]), yet there has not been much work in developing
a computerized method for it. We extend our methods for deception detection
through kinesic analysis of a subject’s behavior, to deception detection through
synchrony analysis of the subject and their interviewer. We present a feature
representation which quantifies the level of synchrony and show proof-of-concept

experimental results, which validate our approach.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a review of
relevant work in face tracking (Sec. 2.1), in computerized recognition of manual and
non-manual markers in American Sign Language (Sec. 2.2) and in automatic deception
detection (Sec. 2.3). In the review we point out the limitations of the existing methods,
thus clarifying our contributions.

Chapter 3 describes our proposed method for probabilistic face tracking, which uses
a modified particle filter with anthropometric and appearance constraints, both at the
landmark level and at the facial component level. We begin with an overview of Active
Shape Models (Sec. 3.1) and then introduce our hierarchical particle filter extension
(Secs. 3.2-3.5). We conclude the chapter with experimental results (Sec. 3.6), where we
illustrate that our extended face tracker can handle temporary occlusions of entire facial
components, which is crucial, for example, for the accurate tracking of facial features
(e.g., eyebrows) that have a linguistic significance in Sign Language.

Chapter 4 describes the application of our extended face tracker (Chap. 3) to the
recognition of non-manual grammatical markers in video sequences of American Sign

Language (ASL). We begin the chapter with the relevant linguistic background on
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non-manual grammatical markers of ASL (Sec. 4.1). Next, we present our framework
for recognition of segmented sequences (Secs. 4.2-4.3), meaning sequences where we
have isolated the segments containing some non-manual marker. This is followed by
a description of our framework for continuous recognition of unsegmented sequences
(Secs. 4.4), meaning sequences in which we do not assume we know when some non-
manual marker occurs, and of our technique for 2D image warping based on a 3D face
model to achieve normalization of our input features (Sec. 4.5). We include various
experimental results for both isolated and continuous recognition (Secs. 4.2.4 and 4.4.4),
which demonstrate the effectiveness of our methods.

Chapter 5 describes the application of our extended face tracker (Chap. 3) to au-
tomatic deception detection from visual cues only. We begin the chapter with some
relevant theoretical background (Sec. 5.1) to justify our approach and present our hy-
pothesis. Next, we present our methods for target tracking (Sec. 5.2), followed by a
description of our feature extraction stage (Sec. 5.3). Moreover, we introduce our novel
non-parametric descriptor (Sec. 5.3.3) for representing behavioral patterns in a way that
helps distinguish over-controlled and agitated behavioral profiles from subjects’ normal
baseline patterns, as well as the model used for recognition (Sec. 5.4). We conclude the
chapter with an extension to the system that relies on interviewer-subject synchrony
(Sec. 5.5) and with experimental results (Sec. 5.5.3) to validate our methods.

Finally, in Chapter 6 we summarize our methods and findings. We conclude with
a discussion of possible directions for future work that could be used to extend our

system.
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Chapter 2

Overview of Related Work

In this chapter we present an overview of work related to the proposed face tracking
system and to each of the presented applications of it. Namely we review work related
to recognition of the non-manual component of ASL and to deception detection from
kinesic analysis using only visual cues. Given the popularity of both the topic of face
tracking and the presented applications, we focus on work most relevant to what is

presented herein.

2.1 Face Tracking

Deformable 3D models have been widely used for face tracking as well as for facial
animation [5, 22, 23, 62]. A few extensions to these parametrized 3D deformable models
include outlier rejection [116], use of Kalman Filters [44], as well as incorporation of
optical flow constraints as an additional cue to the feature pool [24]. However, update
of the model parameters still depends on the accuracy of the extracted image features.
Given that the methods for extracting this features are in some cases deterministic
or not learning-based, they can drift if their assumptions are violated, e.g. due to
illumination changes, causing the 3D model to also drift. Moreover, Kalman filters
behave well for linear systems but for non-linear systems, particle filter implementations,
e.g., Condensation algorithm, [49, 51] achieve better performance and additionally,
observation likelihood models can be custom tailored and even combined, in a more
natural way, to suit the given application.

Other methods are based on statistical Point Distribution Models (PDM). Given
that human faces have a distinct structure and shape, researchers have developed models

and algorithms that exploit this prior information. A popular example is the Active
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Shape Model (ASM) [19, 20, 30] and the closely related Active Appearance Model
(AAM) [31]. ASM-based methods build statistical models of the shape of the object
they want to detect and track (e.g., faces) from a set of training images, which have
been labelled with the 2D or 3D coordinates of predefined landmarks, characteristic of
the object’s shape and structure. In the case of face tracking, these landmarks can be
on the face’s contour, around the eyes, eyebrows, nose and mouth. The shapes from
the labelled training images are aligned using Procrustes analysis [46] and through the
application of Principal Component Analysis (PCA) the model learns the permissible
modes of shape variation and the texture profiles that the model should expect to find
around each landmark in a test image. The AAM on the other hand can model texture
variations on the entire face region, so it gives a better match to the texture of the test
face but its running time is slower than that of the ASM. Both models, however, are
sensitive to their initialization and can get stuck in local minima.

In its original formulation, the ASM assumed that the errors between the model fit
and the test image are distributed normally [20]. There have been numerous extensions
to the classical ASM since. In the work of Cootes et al. [19] they use a mixture of
Gaussians to model shapes, while Romdhani et al. [96] introduced Kernel PCA in an
attempt to overcome the linearity limitation of the original formulation. Kernel PCA
allowed them to model non-linear shape variation resulting from changes in the yaw
head angle. Other extensions include the work by Milborrow et al. [78], Li and Ito’s
Adaboost-based ASM [66], the work by Rogers and Graham [95] and the work of Jiao
et al. [52], who incorporated wavelets into the face alignment algorithm.

The major limitation of ASM is that it is a linear model, hence it cannot model the
non-linearity of the facial shape manifold across different head poses [80]. A number of
extensions have been proposed to overcome this problem, such as the View-Based ASM
[21], which requires explicit modelling of head pose angles, and the more successful
piecewise linear approximation of Kanaujia et al. [57], which extends ideas in [8, 49].
The latter can handle large out-of-plane head rotations but it can still fail, especially
when some facial component (e.g., eyebrows) gets occluded. This is because the tracker

is deterministic and on failure it can get stuck in a local minimum. Gong et al. propose
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Figure 2.1: Comparison of face tracking methods under occlusion: (Left) Tracking
result from our proposed extended face tracker. Eyebrow occlusion by signer’s hair is
properly handled; (Right) Result on the same frame using Yang et al.’s [127] sparse
shape registration method, which fails to estimate the correct position of the occluded
eyebrows, mainly because it does not utilize dynamic information.

using non-linear projections onto the eigen-space [45], while Zhou et al. [134] propose
a Bayesian multi-view model but their reliance on the EM algorithm to estimate shape
parameters renders their implementation impractical for real-time applications.
Another shortcoming of ASM models is their inability to handle occlusions. If
a part of the object is occluded the landmarks corresponding to the occluded parts
cannot find a good match. Even worse, in their effort to reach a local optimum, they
may even cause a drift in the landmarks that did manage to find an accurate match,
resulting in a poor overall registration of the target. In order to address this issue,
Felzenszwalb et al. [39] and Tian et al. [105] propose pictorial structures to model
the spatial relationships between the different components of the target object, e.g.,
in the case of human tracking these components would be the head, torso, arms and
legs and the modelled relationships would be their connectivity as well as joint angle
limits. In [48] the EM algorithm is used with a generative model, while Zhou et al.
[133] propose a tangent shape approximation. Saragih et al. [97] introduce regularized
landmark mean-shift but their optimization is only at the landmark level, while our
proposed extension fuses multi-level appearance information as well as anthropometric
constraints. Recently, Yang et al. [127] used sparsity to model the error term in

model fitting under occlusion. Although promising, this method does not incorporate
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dynamic information and only looks at a given frame in a static context. Therefore,
it fails to correctly track faces in our challenging sign language videos, where motion
information is critical in order to estimate the position of the occluded landmarks, while

the extended face tracking method we propose succeeds (see comparison in Fig. 2.1).

2.2 Sign Language Recognition

Most research on computer-based sign language recognition has focused on the manual
components of signs. A thorough review of early such efforts is presented in the survey
by Pavlovic et al. [92]. More specifically, Starner and Pentland [102] use color tracking
and HMMs to recognize a 40 word lexicon of manual signs. In the work of Vogler and
Metaxas [118], the manual signs are split into independent movement and hand shape
channels, and an HMM framework is used to model signs as a sequence of phonemes.
These independent channels allow them to handle simultaneous manual events. Bauer
and Kraiss break down signs into smaller units using unsupervised clustering, achieving
high recognition accuracy in isolated sign recognition experiments [3]. In [120], the
authors apply techniques from speech recognition to develop a method that quickly
adapts to unknown signers, in an attempt to handle interpersonal variance. Similarly,
the authors of [136] present a method for sign recognition, which uses a background
model to achieve accurate feature extraction and then performs feature normalization
to achieve person independence. To tackle the problem of self occlusions of the hands,
Martinez and Ding [27] first perform 3D hand reconstruction and then represent hand
motions as 3D trajectories. Lately, we have even seen the emergence of some weakly
supervised methods that successfully attempt to learn manual signs from TV subtitles
[10, 18].

Recently researchers have begun to address the importance of facial expressions for
sign recognition systems [91]. Von Agris et. al. [121] provide an extensive review of
recent developments in visual sign recognition, together with a system that uses both the
manual and the non-manual components of signs (see Fig. 2.2). However, their system
poses the restriction that the signer must be wearing a glove with colored markers, in

order to enable robust hand tracking and hand posture reconstruction. Additionally,
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Figure 2.2: Schematic representation of the procedure proposed in [121] for identifying
line of sight of a subject. The procedure is a component of the overall system described
therein for visual recognition of sign language.

in their system, the tracked facial features are not used to recognize facial expressions
which have grammatical meaning. Vogler and Goldenstein present a 3D deformable
model for face tracking, which emphasizes outlier rejection and occlusion handling [114,
115] at the expense of slower run time. They use their system to demonstrate the
potential of face tracking for the analysis of facial expressions encountered in sign
language, but they do not use it for any actual recognition of facial expressions (see
Fig. 2.3). Similarly, in [87] optical flow tracking with probabilistic subspaces is utilized
to handle occlusions. Both models have many parameters, thus are difficult to train
without over-fitting. In our work, we use an Active Shape Model (ASM) face tracker
[20, 57], which can better handle out of plane rotations by modelling the facial shape
manifold as multiple overlapping clusters, while being able to run in real-time in a single-
threaded environment and no GPU optimizations. Additionally, we use a particle filter
extension with a hierarchical observation function for probabilistic tracking with better

handling of partial occlusions (see Sec. 3).
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Figure 2.3: Sample tracked frames produced by the framework of Vogler and Golden-
stein [114].
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Following the initial interest in the non-manual component of signed languages, re-
searchers have begun designing multi-modal recognition frameworks fusing manual and
non-manual features [2, 59, 60, 98, 119]. However, they limit themselves to recognizing
head gestures of negation (because their focus is still the manual component and how
to improve recognition performance by utilizing non-manual information e.g., [59]) and
eyebrow movements (up or down) [98], instead of differentiating the overlapping classes
of non-manual markers (e.g., topics and yes-no questions). Additionally, they do not
explicitly handle occlusions of facial components, and their tracking is deterministic
and unable to handle large and fast 3D head rotations.

More specifically, Aran et al. [2] present a system for sequentially fusing manual
signs and non-manual gestures, in the form of head motions, by first identifying the
level of uncertainty of a classification decision, identifying sign clusters, and identifying
the correct sign based on the manual sign and head motion. Similarly, Kelly et al.
[60] present a multi-modal system for continuous recognition of Irish Sign Language
but also focus on fusing head motions with hand gestures for the purpose of improving
recognition of the manual signs and facial expressions are not recognized. Recognition
is done using multichannel HMM threshold models using continuous multidimensional
observations. Von Agris et al. [119] recognize manual signs by integrating manual
features extracted using multiple hypothesis color tracking, and facial features, which
serve to encode facial expressions, extracted using an Active Appearance Model (AAM)
[31] to identify facial components (e.g., eyes, mouth) from which geometric features are
computed. Recognition of manual signs is done by Hidden Markov Models and feature-
level fusion of manual and non-manual features. Similarly, in [129] the neutral and the
six universal facial expressions, (i.e., anger, disgust, fear, happiness, sadness, surprise)
plus a facial expression of question are recognized and used as additional information to
help with recognition of the manual component in a Conditional Random Field [103].
An AAM is used for face tracking and classification is via Support Vector Machines
(SVM) [13].

As far as head gestures are concerned, Erdem and Sclaroff [38] present a 3D head

tracker to detect head gestures relevant to ASL, e.g., head shakes and head nods. The
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method relies on the peaks and valleys of the head motion signal, therefore it does
not need training but it assumes that there are no head occlusions and no appearance
changes after its initialization. The system developed by Kelly et al. [61] achieves a
similar task using a feature extraction scheme based on a cascade of boosted classifiers
for face and eye detection. Head gestures are recognized by an HMM network. Similarly,
Xu et al. [126] deal with recognition of various kinds of head motion in Japanese Sign
Language, which often occurs at the break between words or at the boundaries of
a sentence, thus can provide grammatical constraints for JSL segmentation. Their
feature extraction is based on color tracking and image moments to detect the face
and its orientation respectively. Lastly, Ding and Martinez [26] introduce a method for
detailed detection of faces and facial features which is based on learning to discriminate
between features and their surroundings, and on a voting strategy over different scales.
They then localize facial features using image gradient and color information.

Finally, we review work focused only on recognition of non-manual markers in sign
language. Ming et al. [79] utilize Gabor wavelet networks and Independent Component
Analysis [17] to recognize upper face non-manual signals like yes-no questions, nega-
tive yes-no questions and wh-questions, as well as lower face non-manual signals, such
as pursed lips, but neither of their method uses the 3D head pose and head motion
information. These are also computationally intensive and fail to distinguish certain
non-manual signs that appear similar. Nguyen and Ranganath [86] began their efforts
toward recognition of non-manual markers in sign language with a face tracking system
based on the Kanade Lucas Tomasi (KLT) feature tracker [100]. However, KLT is prone
to drifting, so in order to cope with large head motions and occlusions and to adapt
to face shapes of different people, they also use a Bayesian feedback mechanism which
incorporates Probabilistic Principal Component Analysis (PPCA) [107] and an on-line
update mechanism. In [87] they extract facial features using this tracker and train
Hidden Markov Models to recognize facial expressions and gestures, e.g. head shake,
eyebrow raise. The probabilities output by HMM are then fed to a Neural Network to
recognize yes-no questions, wh-questions, topics and negation. In their latest work [88]

they use a similar tracking and feature extraction framework, but for recognition they
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Figure 2.4: Tllustration of the tracked feature points (left image) and the geometric
features extracted from them (right image) and used by Nguyen and Ranganath [88].

use a hierarchical CRF model [103], which recognizes facial expressions and gestures at
the bottom level and at the top level fuses the likelihoods to recognize the non-manual
markers. Still, their system relies heavily on the tracking result given it only uses geo-
metric features (see Fig. 2.4), while in our methods we incorporate appearance features
as well [75, 76, 77, 84]. Moreover, we present a method for feature normalization in
terms of head pose, by warping input images to a frontal pose before extracting our
features. In this way, we filter out the effects of foreshortening of geometric features
such as the eyebrow heigh when the head is pitched up or down. This also filters out the
effects of head pose on the appearance features, while we extract head pose information

explicitly (see Sec. 4.5).

2.3 Deception Detection

Related work in automatic deception detection can be categorized into two groups. In
the first group, researchers look for physiological indicators, which they can correlate
to deception, in a similar fashion to how the polygraph works, which correlates elevated
heart rate and skin conductance to deceit arousal [122]. For example, the authors of
[9] and [110] build a thermodynamical model to monitor increases in blood flow in
the region between the eyes (periorbital region) of a subject, using thermal cameras
(see Fig. 2.5 for an illustration). However, this method needs a controlled environment
and expensive imagery equipment, thus hindering its broad deployment. Moreover, the

method in [9] cannot track head movements and its accuracy suffers, if the subject’s
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Figure 2.5: Illustration of the periorbital region analyzed by methods that rely on
physiological indicators to detect deceit [110] by correlating it to increased temperatures
in this region; (a) Thermal input image with the periorbital region of interest marked
by the red rectangle (b) Blown-up periorbital region of interest where the hottest 10%
pixels are shown in pink (c) The periorbital region of interest in (b) superimposed on
tan image of the facial and ophthalmic arteriovenous complex.

head is moving or is at an angle to the camera. While in [110] the authors introduced
a tandem Condensation tracker for better head tracking, whereby they track a more
trackable region and use its estimated position to predict the location of the perior-
bital region, the method’s accuracy can still be affected by fluctuations in background
temperature which can distract the tracker. Similarly, some researchers, such as the
authors of [41, 54, 63], use functional Magnetic Resonance Imaging (fMRI) to monitor
brain activity during interviews and to detect deception based on which areas of the
brain are activated (see Fig. 2.6 for an illustration of fMRI brain images and consistent
areas of activation during deceit arousal). However, methods based on fMRI cannot be
used in a covert scenario, they require specialized, expensive and sensitive equipment
in a shielded environment, and a cooperative subject.

In the second group, researchers move away from physiology and attempt to analyze
behavioral indicators of deception, instead. Zhang et al. [131] examine which facial
Action Units (AU) are activated in a particular facial expression, in order to determine
whether it is faked or real. The method is based on the fact that for specific facial
expressions (e.g., smiling) there is a predefined set of involuntary Action Units which
are activated [34, 36] and which the vast majority of the population cannot voluntarily
control (e.g., in the case of smiling it is the muscles around the eyes). If these are not
detected then the expression is deemed to be fake. Their method, however, is currently

based on static images and cannot readily be used to detect, for example, deceptive
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Figure 2.6: Illustration of fMRI brain images analyzed by methods such as [63], which
attempt to discover correlations between deception and the human neural system. Re-
gions of consistent activation during deception are marked in red.

responses to interview questions in video streams; only faked facial expressions. Lu et
al. [70] use color analysis to track hand and head skin blobs of subjects (see Fig. 2.7), to
classify their movement signatures as over-controlled, relaxed or agitated. However, it
is not convincing that the equation they used for state estimation generalizes to unseen
data, given they only tested it on a small dataset (five subjects). Given also that
there is vast physical and cultural variation in the human population, we believe state
thresholds may be subject or culture dependent, so subject-specific modelling may be
more appropriate. Tsechpenakis et al. [109] extend the work of [70], translating blob
features into illustrator and adaptor behaviors. They combine these via a hierarchical
Hidden Markov Model [94] to decide if the subject is agitated, relaxed or over-controlled
but also report results on relatively small datasets, so it is still not convincing that there
exists a global definition of agitated, relaxed and over-controlled states. In the work of
Meservy et al. [72, 73], the step of classifying behaviors [70, 109] is bypassed and the
authors attempt to directly derive deceptive cues, using blob analysis as in [70]. They
segment the video data of interviews into responses and use summary data of each
segment, collapsing it to a mean and variance for each feature (e.g., mean and variance
of head blob velocity), to make predictions but they do not achieve high accuracy.

We believe that relying on the parametric representation (mean and variance) of
the summary blob data used in [70, 73, 109], causes a lot of useful information about
each feature’s distribution to be lost, smoothing out any abrupt gesturing motions and
expressions that briefly occur, when a subject is being deceitful. Eckman and Friesen

name this “leakage” [35], while Buller et al. refer to it as “non-strategic behavior”
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Figure 2.7: Illustration of tracked skin blob regions of the head and hands (shown
as ellipses) analyzed by methods that compute behavioral indicators through kinesic
analysis for the purpose of deception detection [109].

[12]. We propose to extract “motion profiles” (see Sec. 5.3), which differ from the
movement signatures of [70, 73, 109], in that ours are non-parametric representations
of the distributions of both blob and facial features (see Sec. 5.3.3). In this way, this
richer representation captures any such leakage that occurs during an interview response
and our method can benefit by incorporating features extracted from the facial region
as well. Our results verify a claim made by Burgoon [15], who argued that gross
body gestures and animations, facial and hand adaptors, and head gestures may be
more reliable than facial expressions, but we also show that inclusion of facial features
(e.g., mouth asymmetries, which have been previously used to successfully detect facial
expressions associated with stress [28], and eyebrow movements) in the more reliable

feature pool causes a small improvement in detection accuracy (see Sec. 5.4).
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Chapter 3

A Bayesian Filtered Face Tracker

In this chapter we describe the core of our system, namely the face tracker. It is based
on the ASM model proposed by Kanaujia et al. [57], which can handle out-of-plane
head rotations and can estimate the head’s 3D orientation angle. We extended it to
better handle dynamic discontinuous shape changes, e.g., when the head changes pose,
and occlusion of facial components. The extension we present is a modification of
the Condensation algorithm [51], using particles with a mixed-state (to include shape
cluster information) and observation likelihood models that model anthropometric and
hierarchical appearance constraints. We qualitatively and quantitatively illustrate the

benefits of our extended face tracker.

3.1 Overview of Active Shape Model

The classical ASM model [20] is a statistical model of the permissible modes of variation
in the shape of a class of objects. In reality, the ASM model consists of two sub-models:
(1) a global shape model, which models shape variation and (2) a model of local profiles
for each landmark, which model the texture (in the form of grey-level image gradients)
around each landmark.

Suppose we start with m labelled training images and that each image is an-
notated with n landmarks. The training shapes are aligned using Procrustes anal-
ysis [46]. Let the ' shape be represented with the 2n-dimensional vector x; =
(1,2, T1ys - Tng, :Izmy]T, where z;, and z;, are the (x, y) coordinates of the 4t land-
mark respectively, so that the training set is given by the set X = {x1,X2,...,Xn}.
Suppose that the covariance of the training set is given by matrix S and that its eigen-

vectors, P = [p1, P2, ..., P2nl, span a linear subspace in which valid face shapes reside.
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Figure 3.1: Illustration of the approach used by Kanaujia et al. [57] to model the
non-linearities of the facial shape manifold. The idea is to collect training facial shapes
depicting a variety of head poses. These are clustered by head pose, so that shapes of
similar pose end up in the same cluster, learning a separate ASM model for each pose.

Define the corresponding matrix of eigenvalues as A. P and the corresponding A are
calculated by Principal Component Analysis on the shape covariance matrix X. The
eigenvectors corresponding to the largest eigenvalues represent major modes of shape
variation, so that any new test shape x can be approximated by the mean shape in the
training set, X, and a linear combination of the eigenvectors representing the largest

shape variance (e.g., 95% of total variance) of the subspace, can be approximated as:

q
x~X+Pb=%+) pib, (3.1)

k=1
where b = [by, b, ..., by|T is the encoding of the test shape, assuming that the ¢ eigen-

vectors with the largest eigenvalues have been kept after the application of PCA.

Face trackers built on the classical ASM suffer from the fact that changes in view-
point, resulting from out-of-plane rotations, cause the facial shape to lie on a non-
linear manifold, therefore linear methods cannot accurately model it. Inspired by work
in [8, 49], Kanaujia et al. [57] presented a generic framework for learning such non-
linearities in shape space using a set of overlapping linear subspaces, essentially a col-
lection of ASM models for the different head poses one expects to find in real data (see
Fig. 3.1). Their method differs from [21], where multiple independent ASM models are
trained and switched during tracking, depending on the head pose, which results in
abrupt shape changes and inaccurate fitting. Instead, the shape clusters are allowed

to overlap so that during the image search algorithm, the model is allowed to switch
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models as needed. The training and image search algorithms follow Alg. 1 and 2 respec-
tively. However, the lack of a stochastic dynamic model to model cluster transitions
and shape changes means that this method still suffers from local minima and occlu-
sions. The particle filter extension, which we present next, addresses these issues by

modelling:
1. Anthropometric constraints (to prevent abrupt shape changes)
2. Hierarchical appearance constraints (to keep the tracker locked on the target)
3. Cluster transitions (to allow escape from local minima)

The nature of the particle filter (i.e., weighted sample/particle set) also allows the
tracker to maintain multiple hypotheses about the target’s position, as well as automatic
detection of loss of track, reflected in a low sample likelihood, in which case, the system

re-samples the state space, until the target is re-acquired.

Algorithm 1 ASM Training Algorithm [57]

wil

1. Align the set of training shapes X = {xj,x2,...,X,,} to the mean shape
using Procrustes analysis [46] to get a set of aligned training shapes X =

{Xl,aa X2.ay--- axm,a}-

2. Project each aligned shape x;, to the tangent space of the mean shape using
t

X; 0 = Xia/ (Xija - X).
3. Cluster the resulting shapes to N clusters using the EM algorithm, enforcing a
minimum covariance Vg, ..., which ensures that the clusters are overlapping.

4. After the assignment to clusters, align the shapes to the local mean shape of their

cluster ¢, projecting to the tangent space of the cluster mean to get Xﬁ,aﬁ‘

5. Train local linear PCA models for each cluster, so that shapes within each cluster

3 t ~ % .
c are approximated as Xiqc ™ Xe + P.b.;.

6. Learn Gaussian mixture models per cluster for the intensity profiles around each
landmark.
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Algorithm 2 ASM Image Search Algorithm [57]

1. Assign initial cluster, ¢, based on Mahalanobis distance to local cluster mean
shapes.

2. Search along the normal of each landmark to maximize mixture probability of the
intensity profile models for current cluster, ¢, to get shape x.

3. Get the eigen-encoding, b., by projecting on the current cluster’s shape subspace,
P., using: x = X, + P.b., and truncating the resulting eigen-parameters, b..

4. Assign new current cluster, ¢, based on Mahalanobis distance to local cluster
mean shapes (i.e., cluster switching occurs in this step). If cluster switching
occurs, re-estimate new b,.

5. If shape x has converged then return, else go to step 2.

3.2 Particle Filters: Condensation Algorithm

The Condensation (Conditional Density propagation) algorithm [51] is a flavor of par-
ticle filter, which, in turn, is a Bayesian sequential importance sampling technique,
whereby the posterior distribution of the state of the system being modelled (in our
case, the state of the tracked object, i.e., the face), is modelled by a finite set of weighted
samples at time, t: S; = {(w},s}), (w?,s?),..., (wl,s?)}. A sample (also known as
particle, hence the name particle filter) represents a state configuration, x, and the
associated weight, w, is a measure of its likelihood, i.e., its importance. For purposes
of clarity, in this section we will use the symbol for samples and states interchangeably,
since a weighted sample is essentially a weighted state.

Bayesian sequential importance sampling involves two main steps: (1) prediction
and (2) update. Let z; be the observation about the tracked system and let x; be the
true system state, both at time ¢. In the prediction step, given all available observations
up to time t — 1, z14—1 = {21,292, ...,%:_1}, this technique uses the stochastic dynamic
model of the system (also called the probabilistic transition model), p(x¢|x;—1), to

predict the posterior probability of the state at time ¢, using:

p(xe|z1e_1) = / p(e|xe—1)p(e[e_1 )Xo - (3.2)
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Once the new observation, z;, arrives at time ¢, the system state is updated using Bayes

rule:
p(Zt ’Xt)P(Xt\let—ﬂ
p(zt ‘let—l)

p(xt|z1:t) = ; (3.3)

where p(z;|x;) is governed by the observation model.
As already mentioned, in the particle filter framework, the posterior is approximated
by a finite weighted sample set, S. Candidate samples, s! = x! are drawn from an

importance distribution, q(x¢|X1.4—1,%1.t), and the sample weight is given by:

¢ t—1p(zt\xi)p(xi|21:t—1)
(3 1 4
Q(Xt|X1:t71, Z1:t)

(3.4)

For the Condensation algorithm, q(x!|X1.s—1,21.¢) = p(X¢|X¢_1), so the weights in Eq. 3.4
become proportional to the observation likelihood, p(z:|x;). At a particular moment in
time, we have a weighted particle set of n samples. To move the sample set one step in
time, we repeat the following n times. We select a sample from this set, with sampling
probability according to its weight. In this way, samples with heavier weights are more
likely to be selected and propagated. The selected sample is propagated in time, as per
the transition model of the system, p(x;|x;—1) and then some random noise is added to
the sample to diffuse the resulting sample set and prevent degeneracy. At this point we
have propagated all samples in time and we assign to all the same weight, w! = 1/n.
When the new observation comes in, z; we use it to evaluate the likelihood (weight) of
each sample, s, according to our observation model, w! = p(z|si = x;). The weights
are normalized to unit sum and the result is a propagated weighted sample set. Now
we can use the sample mean, or the sample median or even mode, depending on the
application, to predict the system’s state. The process is then repeated. See Fig. 3.2

for an illustration.

3.3 Stochastic Modelling of Cluster Transitions

Often times the ASM face tracker can get stuck in a local minimum from which it

cannot recover. In order to help prevent this, we present our model for probabilistic
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Figure 3.2: Illustration of one iteration of the Condensation algorithm [51]. Blob size

represents the weight of a given sample (here it is denoted as w](fn)), while blob position

represents the modelled state.

cluster transitions [50], which allows samples from the sample set to probabilistically
switch shape clusters in every frame, based on a transition probability distribution,
which we learn off-line for the purpose of modelling typical shape transitions (e.g., from
left pose to frontal pose), in addition to the deterministic cluster switching that may
happen during the image search algorithm (Alg. 2). This allows the samples to better
explore the shape space, resulting in more accurate predictions.

In order to do this, we build a Markov transition matrix, T, which we train on
a sample video sequence containing many pose changes. This sequence is tracked by
the face tracker and the shape cluster is recorded in every frame. For every pair of
frames, we look at the shape cluster transitions and use them to populate the matrix,
T, so that the matrix element T(i,7) is incremented by 1, every time we encounter a

transition from shape cluster i to shape cluster j. Each row of the transition matrix is
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Figure 3.3: Illustration of the cluster transition probabilities used in our mixed state
particle filter extension. Note that our method can be extended to include additional
clusters for finer approximation of the non-linear shape manifold.

then normalized to sum to 1, using:
T'(i,5) = T(i,j)/ Y _ T(i,k) , (3.5)
k

so that the matrix element T'(i, j) gives the probability with which a shape from cluster
1 will transition to a shape in cluster j at the next time frame. For more efficient
probability sampling, we also compute the cumulative transition probability matrix,
using:

C(i,j) =) T'(i.j) - (3.6)

M~

k=1
The learned transition probabilities for the 7 clusters of our face tracking model are

illustrated in Fig. 3.3.
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3.4 Extended Tracking Algorithm

In this section we describe our novel tracking algorithm, which is based on the ASM
face tracker [57] and extended with a mixed-state condensation filter for probabilistic

tracking [50, 51].

Algorithm 3 Extended tracking algorithm

1. Initialize by running the regular ASM search (Alg. 2) to get initial state.

2. Use initial state to generate initial sample set, S;, for ¢ = 1 based on the
initial probability distribution, setting samples to uniform weight to get St =

{(/n,st), (1/n,s7),..., (1/n,s})}.

3. Get next frame. For each sample, run the ASM search (Alg. 2) for a few iterations
(e.g., n = 4) to improve the fitting and then compute its observation likelihood
using p(z¢|x;), updating sample weights accordingly.

4. Predict system state by first finding the mode cluster, and then calculating the
weighted average of the samples in the mode cluster.

5. Re-sample from the sample set using the samples’ weights, so that samples with
high weight are more likely to be re-sampled. Set weights of re-sampled set to
1/n.

6. Propagate re-sampled sample set in time by sampling from the transition prob-
ability matrix, T. If sample transitions to the same cluster, use the dynamical
model p(x¢|x¢—1). Otherwise, cluster switching occurs and sample’s state is set
to mean shape of destination cluster.

7. If there are no more frames in the video stream, exit. Else, check if cumulative
density is above threshold then go to step 3, otherwise go to step 1.

In landmark-based face tracking the state of the target can be represented by the
coordinates of each tracked landmark. However, for complex PDMs having many land-
marks, this can lead to a high-dimensional state very quickly. For face tracking we use
79 landmarks, so this would mean a 158-dimensional state vector. By exploiting the fact
that for ASM face tracking the tracked landmarks lie on a shape manifold of reduced
dimensionality, we can represent the system state using the shape cluster id (c¢), the
global transformation parameters, i.e., translation (77,7} ), scaling (s), and orientation
(0), and the local shape deformation parameters, i.e., the eigen-encoding of the shape

given the current cluster (b = [b1,ba,...,b,]7). This leads to a mixed-state for our
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system, xg, at time ¢, given by x¢ = [¢, Ty, Ty, 8,0, b1,ba, . .., by]T; obviously the length
of this state will depend on the number of local deformation parameters used by each
local cluster, which in our trained ASM model ranges from 35 to 57 eigen-parameters.
We use a first order auto-regressive model as the dynamical model that will drive the
global deformation parameters, while for the local deformation parameters we use a
Gaussian noise model with zero mean and variance o. Note that depending on the
application and on the prior knowledge that we may have as to the dynamics of the
modelled target, this can be changed in order to get better accuracy. However, we
found that this choice of hybrid-dynamical model works well in practice for a range of
videos we have tested it on.

The tracking algorithm extended with the modified condensation filter proceeds as
follows. In the first frame we run Alg. 2 to get the starting state of the system. We
use this initial state (i.e., global transformation parameters, local deformation para-
meters and cluster id) to generate an initial sample set with uniform weights, by sam-
pling around the initial mixed-state based on a specified initial probability distribution,
which may be application dependent. For the work presented here we used a uniform
distribution centered around the initial state.

When we get the next frame, we run ASM search (Alg. 2) for n = 4 steps to improve
the fit of each sample. Then we evaluate the observation likelihoods of each sample,
p(z¢|x¢), updating their weights (the observation model is explained in the next section).
In order to avoid interpolating between peaks, we use the weights of each sample to
find the cluster which has the highest total weight and then take the weighted average
state of all samples within that cluster as the tracker’s predicted state for this frame.

Next, the particles are re-sampled based on their weights, so that particles with
higher weight are more likely to be selected in the re-sampling. The re-sampled particles
are propagated forward in time one step, as follows. For each particle, sample from
the cluster transition matrix to determine which cluster it should transition to. For
example, generate a random number, p, uniformly over the range [0, 1], choosing the
smallest j, such that C(i,7) > p. This number j is the cluster to which the sample

should transition to. If the current cluster of the sample is ¢, and if i # j, then cluster
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switching occurs, in which case the sample’s local deformation parameters are set to the
average shape of the destination cluster, i.e. set b = 07, while its global transformation
parameters are set to the average value found in the training set plus a translation to
center the sample around the last frame’s prediction. If the current cluster of the
sample is ¢, and if ¢ = j, then no cluster switching occurs, and the sample’s state
is propagated one step in time using the dynamical model, p(x;|x;—1), which in our
case is auto-regressive for the global parameters and AV (0, ) for the local deformation
parameters.

When all samples are propagated, the cycle repeats for the next frame, until we get
to the end of the video stream. In each step, we also check if the cumulative density of
the sample set drops below a threshold, which could indicate a tracking failure. When
this happens, we simply re-initialize the tracker and continue. The complete algorithm

is summarized in Alg. 3.

3.5 Observation Model

Here we present our hierarchical observation model which is used to estimate the ob-
servation likelihood given the state of each particle in our sample set, p(z¢|x;). This
likelihood will determine the weight, w!, at time ¢ that will be associated with the ith
sample, s’.

The observation likelihood function has the following three terms: (1) a term that
rewards with a high/low weight those samples whose state represents landmarks with
surrounding texture that matches well/poorly the local texture profiles learned during
training of the ASM and are also computed for each iteration of the ASM search al-
gorithm (see Alg. 2), (2) a term that rewards with a high/low weight those samples
whose state represents facial component configurations (i.e., nose-tip, mouth, eyes, in-
ner eyebrows) with surrounding texture that matches well/poorly the texture templates
learned at the initialization of the tracker, and (3) a term that rewards with high/low
weight those samples whose state represents a shape that is close to/far from the mean

shape of the current local cluster, i.e., implausible shapes are penalized. This leads to
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the following observation likelihood function:

p(z¢|x:) (a x e~ fGx0)/207) (3.7)
+ (B x e~ (i1 gilxe)/207)) (3.8)
+  (yxe PRy (3.9)

where Eq. 3.7 represents the local landmark likelihood, Eq. 3.7 represents the likelihood
based on the six facial component templates and Eq. 3.9 represents the shape deforma-
tion likelihood. The scalars «, 8 and  control how the components of the likelihood
function are combined. For our experiments we used equal weights for o and ~ and
double weight for the template likelihood factor, i.e., « = =1 and § = 2. Similarly,
the scalars o; and oy control the spread of the sub-likelihood functions. We used o; = 1
and oy = 0.05. The diagonal matrix, A, contains the eigenvalues for the current shape
cluster learned during ASM training.

At initialization of the face tracker, we use the initial points to form a region of
interest (ROI) around each of the following six facial components: nose-tip, mouth,
left eye, right eye, left inner eyebrow, right inner eyebrow (see Fig. 3.4). These ROIs
are used to extract a template, in the form of Edge Orientation Histograms (EOH),
from each of these locations. EOH are simple to calculate and have been shown to be
discriminative descriptors of region appearance for a variety of recognition tasks, such
as hand gesture recognition [40]. EOH are calculated as follows. Fist we extract edges
from the ROI using horizontal and vertical Sobel filters, K, and K, which we convolve

with the input image, I, to yield the gradient images, G and G:

Gy(z,y) = Ky I(z,y) ,Gylz,y) = Ky *I(z,y) . (3.10)

The gradient images are then used to compute the magnitude, M (x,y), and orientation,

0, of the edges using:

M(z,y) = /Ga(.y) + G (.y) . (3.11)

0 = arctan(Gy(z,y)/Gz(x,y)) . (3.12)



37

Confidence: 1

Figure 3.4: Illustration of the facial regions, which are used to calculate templates in
the form of Edge Orientation Histograms.

We threshold the result so that edges with magnitude less than 5 are suppressed to 0.
The histogram descriptor is formed by counting the edges into £ = 12 bins with a vote
equal to their magnitude. In order to encode the spatial distribution of edges within
each template, instead of this simple histogram, we build a spatial pyramid [64] with
L = 2 levels. The template descriptors can be updated dynamically so as to better
represent the current target appearance, in case the target’s appearance is changing
quickly because of illumination changes or changes in facial expression. Template like-
lihoods, i.e., functions g;, are computed using the spatial pyramid match kernel with

histogram intersection (see Sec. 4.2.2 for more details).

3.6 Experimental Results

We have implemented the presented particle filter extension to the face tracking system
of Kanaujia et al. [57]. Our goal was to create an improved tracking system, which can
handle out-of-plane rotations, run reasonably quick, and have better handling of occlu-
sions, especially those found in our ASL dataset, so that we can apply it to recognize
dynamic events in ASL as well as dynamic events relevant to deception detection and
in other domains.

Here we present experimental results, which validate our methods superiority over
the original method, both qualitatively and quantitatively. For the reported experi-

ments, we used 40 samples in the particle set, and we used « = v =1 and g = 2
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for the component weights of the observation model. We used 2 levels (i.e., L = 1)
and 12 bins in the spatial pyramids of the edge orientation histogram (EOH) features
and evaluated the template match likelihood using histogram intersection. The tracker
of [57] achieved a running time of about 30 fps, while our extended face tracker run
at about 5 fps (Intel Quad-Core 2.4GHz, 8GB RAM). Note, however, that in its im-
plementation we have made no attempt to optimize it, except for optimization of the
EOH feature calculation by means of integral images [93], since for the applications
presented in this work all tracking and processing was done off-line and after all the
video data has been collected. If desirable, the implementation can be sped up with
GPU programming or multi-threading to parallelize the computations, since samples
can be processed independent of each other and then merged again to get the weighted
sample set.

Given that the most challenging video sequences occurred in our ASL dataset, we
have selected from this dataset a relatively long sequence of 142 frames of resolution
640 x 480, where there is a long period of severe occlusion of the signer’s eyebrows. In
particular, in this sequence, the signer is performing a non-manual marker for a yes-no
question, which involves raised eyebrows and the head jutted forward. The non-manual
marker begins at frame 37 and ends at frame 105. Because of the signer’s hairstyle, as
soon as she begins performing the non-manual marker, her raised eyebrows get occluded
behind her hair for more than 2 seconds until almost the very end of the video sequence.

In Fig. 3.5 we show a qualitative comparison of the two methods; our extended
face tracker corresponds to the result of the top two rows. Initially both tracking
methods perform well and track the facial landmarks and the facial expression of raised
eyebrows. This is shown by an increasing curve in the graphs on the right (rows 1
and 3). The blue colors of the graph marks the time period during which there is no
non-manual marker, while the red color of the graph marks the time period during
which the non-manual marker of the yes-no question occurs. The superiority of our
method is evident once the occlusion occurs at around frame 35. Rows 2 and 4 show
that while our method (row 2) continues to track and correctly measure the eyebrow

height of the raised eyebrows throughout the video sequence, thereby extracting correct
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Figure 3.5: Comparison of our presented particle filter extension (top two rows) to
Kanaujia et al.’s [57] face tracker (bottom two rows) under eyebrow occlusion. Note
that our method stays locked on target, while Kanaujia et al.’s tracker drifts downwards
shortly after the eyebrow occlusion occurs, and registers a sharp decrease in the graph
of eyebrow height. Correct estimation of eyebrow is crucial for correct recognition of
the non-manual component of ASL (see Sec. 4), which validates our choice of methods
for the proposed extension.
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features which can be used for accurate recognition the ASL non-manual markers, while
Kanaujia et al.’s method [57] (row 4) fails to maintain track past the first few frames.
In fact, once the eyebrows get completely occluded that face tracker drifts downwards
resulting in inaccurate track of both the eyebrows and the eyes. What’s worse, this drift
is registered as a decrease in eyebrow height (instead of the expected increase which
characterizes this type of non-manual marker), which means that use of this method
without our extension for recognition of ASL non-manual markers would fail, since it
would not be able to correctly capture the discriminative features of this recognition
problem.

In addition to the qualitative comparison, we did a quantitative comparison where
we manually annotated the positions of 9 key-points in each frame of the given video
sequence. More specifically, these 9 key-points are: inner and outer corner points of
each eye, inner and outer corner points of each eyebrow, and the nose-tip. We then
calculated the root mean squared error (RMSE) for each method. The RMSE for both
methods averaged over all 9 key-points is shown in Fig. 3.6. The red line is for the
ASM tracker [57] and the blue dotted line is for our ASM tracker extended with the
particle filter we described earlier. Note the jump in RMSE values for the tracker of [57]
at around frame 35, which is where the occlusion begins. These high values of RMSE
continue until about frame 135 when the eyebrows begin to become visible again. On
the other hand, the RMSE of our method is much lower throughout the occlusion.

Similarly, we show additional plots with RMSE averaged over both eyes (Fig. 3.7),
both eyebrows (Fig. 3.8) and the nose-tip (Fig. 3.9), where the same trend holds, except
for the case of the nose-tip which both trackers track relatively well. Note that although
the occlusion concerns the eyebrows, the RMSE plot for the eyes obtained from the
result of [57] shows a similar pattern, because when the drifting happens during the
occlusion, the prediction of the eyebrows drops to above the eyes, which in turn pushes
the prediction of the eye below the actual eye position. These results are summarized

in Table 3.1, where we clearly see the benefit of using our extended face tracker.
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Comparison of RMS tracking error (eyes, eyebrows, nose-tip)
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Figure 3.6: Plots of Root Mean Squared tracking error using the ASM face tracker with
and without our particle filter extension. RMS error is averaged over 9 key-points (the
two corners of each eye, the inner and outer left and right eyebrows and the nose-tip).

Comparison of RMS tracking error (eyes only)
20
= ASM Tracker ‘ ‘

‘‘‘‘‘ Extened ASM Tracker
18- 7

14 -

RMS error (pixels)
= N

S R

T T

L |

®

0 50 100 150
Frame number

Figure 3.7: Plots of Root Mean Squared tracking error using the ASM face tracker with
and without our particle filter extension. RMS error is averaged over 4 key-points (i.e.,
left and right corners of each eye).
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Comparison of RMS tracking error (eyebrows only)
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Figure 3.8: Plots of Root Mean Squared tracking error using the ASM face tracker with
and without our particle filter extension. RMS error is averaged over 4 key-points (i.e.,
left and right corners of each eyebrow).

Comparison of RMS tracking error (nose-tip only)
20 T T
= ASM Tracker
‘‘‘‘‘ Extened ASM Tracker
18— =

16— —

RMS error (pixels)
= e
S R
T T
L L

@
T
1

0 50 100 150
Frame number

Figure 3.9: Plots of Root Mean Squared tracking error of the nose-tip using the ASM
face tracker with and without our particle filter extension.
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’ H Neutral \ Onset \ Eyebrows Raised \ Offset \ Overall ‘

All Key-points (no PF) 6.5 7.2 16.6 14.2 13.8
All Key-points (with PF) 5.4 5.7 5.8 5.8 5.7
Eyes (1o PF) 3.0 3.9 8.0 5.1 6.5
Eyes (with PF) 2.6 3.2 3.5 24 3.3
Eyebrows (no PF) 4.8 6.0 14.1 12.7 11.7
Eyebrows (with PF) 3.2 3.7 3.5 3.9 3.5
Nose-tip (no PF) 41 i1 3.4 3.6 3.6
Nose-tip (with PF) 3.3 2.8 2.8 35 2.9

Table 3.1: Comparison of RMS tracking error (in pixels) with and without our particle
filter extension during the four stages of an ASL grammatical facial expression (yes-
no question) involving raised eyebrows, followed by the overall error in the sequence.
The raised eyebrows get severely occluded by the signer’s hair, causing the face tracker
to lose track and drift downwards, while the tracker with our Particle Filter extension
maintains accurate track of all important key-points. The video resolution was 640 x 480
and the sequence contained 142 frames.

3.7 Summary

Face tracking has numerous applications in the field of Human Computer Interaction
and behavior understanding in general. However, face tracking is a difficult problem
because the tracker must generalize to new faces, adapt to changing illumination, keep
up with fast motions and pose changes, and tolerate target occlusion. In this chapter,
we have presented our face tracking system, which extends the work of Kanaujia et al.
[57], with a particle filter for probabilistic tracking via a dynamical system, probabilistic
cluster transitions, and an observation model of hierarchical appearance and anthropo-
metric constraints. Empirical evidence on a challenging video sequence shows that our
system can handle out-of-plane head rotations and other shape local deformation in
a probabilistic manner. It additionally handles occlusion of facial components, which
is an essential requirement for the applications we present in the next chapters, with
much lower root mean squared tracking error (RMSE) than the method we extended,

both during the occlusion period and for the entire sequence overall.
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Chapter 4

Recognition of Non-Manual Markers in ASL Video

In this chapter, we describe the application of our face tracking system to the problem
of recognition of non-manual markers in video sequences of American Sign Language.
We begin with some theoretical background about the nature of non-manual markers
in ASL. We then first present a framework we have used for isolated recognition of non-
manual markers in segmented ASL video, whereby we assume that we know the start
and end times of a non-manual marker within a video sequence, and then an extension
to it where we address feature misalignment and model the temporal patterns between
neighboring video frames. Next we present a framework for continuous recognition,
where we assume no knowledge about start and end times of non-manual markers in
the video sequences, and then extend this with an image warping method that achieves

head pose normalization of the computed features using a 3D face model.

4.1 Background

In Sec. 1.1.2 we have mentioned that facial expressions and head gestures convey criti-
cal grammatical information in ASL sentences, which help disambiguate sentences that
differ only in their non-manual component. This section aims at providing additional
information about the different classes of non-manual markers that we attempt to rec-
ognize in this work and the facial expressions and head gestures associated with them.

More specifically, in wh-questions (which involve phrases such as who, what, when,
where, why, and how), the grammatical marking consists of lowered eyebrows and
squinted eyes that occur either over the entire wh-question or solely over a wh-phrase
that has moved to a sentence-final position. The possibilities are illustrated in the

example ASL sentences of Figure 4.1. In this figure, labelled lines indicate the signs
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wh-g
| WHO LOVE JOHN

—uwh-g

2 LOVE JOHN WHO
wh-g
3. LOVE JOHN WHO
neg

4. JOHN NOT BUY HOUSE

neg
5. JOHN NOT BUY HOUSE

ned
6. JOHN BUY HOUSE

Figure 4.1: Several sample ASL sentences for negative and wh-question constructions,
with English glosses representing the ASL signs.

with which the non-manual marking co-occurs. The first three examples would be
translated in English as “Who loves John?”. The intensity of this wh-question marking
is greatest at the end of the sentence when it spreads over the entire question, as in
Figure 4.1(3). In addition, there may be a slight, rapid side-to-side head shake over at
least part of the domain of the wh-question marking.

With negation, there is a relatively slow side-to-side head shake that co-occurs with
a manual sign of negation (such as NOT, NEVER), if there is one, and may extend
over the scope of the negation, e.g., over the following verb phrase that is negated.
These possibilities for translating an English sentence meaning “John did not buy a
house” are illustrated in the bottom three examples of Figure 4.1(4-6). The intensity
of this marking is greatest at the source of the syntactic feature being marked, as in
wh-questions, but in a sentence like (5) or (6) of the same figure, this means that
the intensity of the negative marking (including the amplitude of the head turns) is
greatest at the left edge and diminishes as the marking continues. For further detail

about distribution and intensity of non-manual grammatical markings, see [83].
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Figure 4.2: Still samples of the ASL non-manual markers that we recognize with
our methods: (first row) rhetorical questions; (second row) topics; (third row) con-
ditional/when clauses; (fourth row) yes-no questions; (fifth row) negative statements;
(sixth row) wh-questions.
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Moreover, conditional/when sentences are two part constructions with the relevant
non manual marking only over the first part (i.e., over the “conditional” or “when”
clause). This is characterized by raised eyebrows, wide eyes, head forward (or back)
and tilted to the side, followed by a pause, after which the eyebrows and head return to
neutral position. Lastly, topics are characterized by raised eyebrows, wide eyes, head
tilted back, and an optional nod, while rhetorical questions involve raised eyebrows,
head tilted to side and usually tilted back but sometimes forward; followed by a pause
and then an answer. Figure 4.2 shows sample still images of the classes of non-manual
markers just discussed. In some cases the non-manual marker is easily recognizable
from the still snapshot, e.g., wh-questions, while for most others (e.g., those involving
raised eyebrows or a head shake) a sequence of images is required to recognize the

marker.

4.2 Framework for Isolated Recognition

Using our extended face tracker (see Chap. 3), we accurately track the faces of American
Sign Language (ASL) signers, localizing their facial components (e.g., eyes, eyebrows)
and predicting their 3D head pose. Inspired by the work of Lazebnik on scene catego-
rization [64], together with the popularity of “bag-of-words” models [65], we use spatial
pyramids of features to detect lowered eyebrows and squinted eyes. We augment this
information with the 3D head pose using Stacked Generalization and Majority Vot-
ing [108, 125], to recognize the presence of wh-question facial expressions in a video
sequence. Additionally, we extend the idea of spatial pyramids to the temporal dimen-
sion, constructing pyramids of head pose derivatives (i.e., the change of head pose),
for the recognition of head shakes that are characteristic of negative expressions. The
detailed algorithm is described in Alg. 4. Next we describe the components used in this

framework, followed by our experimental results [75, 84].
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Algorithm 4 Algorithm for Isolated Recognition 75, 84]

1. Face tracking and pose estimation of video segment containing non-manual
marker.

(a) Feed video sequence into face tracker to localize and track signer’s face.

(b) Face tracker outputs (x,y) positions of 79 facial landmarks and the 3D head
pose for each frame.

2. Feature Extraction for each tracked frame utilizing ASM tracker’s output.

(a) Compute bounding box of eyes and eyebrows and extract dense SIFT feature
descriptors from it [69].

(b) Soft quantize the SIF'T descriptors and the head pose using separate feature
codebooks [42].

(¢) Build pyramid representation of frames and video sequences.

i. Build spatial pyramids of computed SIFT descriptors for each frame.
ii. Build temporal pyramid of head pose derivatives for the entire sequence.

3. Recognize video sequences containing negative expressions using the temporal
pyramid representation of pose derivatives and a Support Vector Machine (SVM)
[13] with pyramid matching kernel [64].

4. Recognize video sequences containing wh-question expressions.

(a) Use a stacked Support Vector Machine [108, 125], which combines the score
obtained from classifying the spatial pyramid representation of SIFT descrip-
tors and the score obtained from classifying the pose angle, to classify each
frame in the video sequence.

(b) Apply majority voting [108] on the results of the previous step, to classify
the entire sequence based on the classification of each frame within the se-
quence (if the majority of the frames are classified as depicting a wh-question
expression, the entire sequence is also classified as such).
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Figure 4.3: Hard quantization works well Figure 4.4: Soft quantization reduces the
for points like the yellow triangle. How- problem of codeword ambiguity by allow-
ever, the encoding of the green square is ing prototypes to have a cloud of influ-
ambiguous, while that of the cyan dia- ence, instead of encoding features by a sin-
mond is implausible. gle prototype.

4.2.1 Codebook Construction

The codebook approach, inspired by the word-document representation used in text
retrieval, was first applied to images in the work of Leung and Malik [65]. This approach
allows classification of images by representing them as a bag of features, for example
SIFT features [69], which are in turn represented as discrete prototypes [42]. Typically
researchers use unsupervised clustering to obtain a codebook, V, of prototypes, v,
from a random subset of the training data and label each feature by the index, w, of
its best representing prototype, which minimizes some distance function e.g. Euclidean
distance. Then they count how many times each prototype, v, occurs in an image
and stack these frequencies in a vector, which becomes the new compact representation
of the image. This codebook encoding is essentially a histogram of the distribution
of codebook prototypes within a given image and can later be used for classification
purposes.

However, quantizing features in this manner creates problems. For example, if some
feature is too distant from all available prototypes, either because the feature in ques-
tion is an outlier or because there are not enough prototypes to adequately cover the
feature space, forcing such a hard assignment could mean that the resulting encoding
is implausible. Moreover, if a feature is very close to more than one prototype, it be-

comes ambiguous as to which one would represent it the best. Figure 4.3 illustrates
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these issues. The obvious solution of simply increasing the codebook size bears with it
an undesirable increase in both dimensionality and computational complexity. Instead,
the authors of [42] overcome these problems of codeword plausibility and codeword am-
biguity by employing ideas from kernel density estimation and allowing the prototypes
to have a cloud of influence over the feature space. The shape of the influence cloud
is controlled by the choice of kernel function and its scale parameter (see Figure 4.4
for an illustration). In particular, they propose a soft assignment of image features
to prototypes, resulting in the following Kernel Codebook (KCB) encoding for each

prototype, vy,:
1 N
KCB(w = E_ D(vy,x;)) , 1<w<W, (4.1)

where K CB(w) is the value of the w'® bin of the histogram encoding, W is the codebook
size, N is the number of features in the image, x; is the it" feature, D(v,,,x;)) is the
distance of the w'" prototype from the i*" feature, and o is the smoothing parameter
of kernel K. In this way, multiple prototypes can contribute to the encoding of each
feature, with their contribution weighed in inverse proportion to their kernel distance
from it. In our work, we adopt this method of soft quantization, setting K to be
a Gaussian kernel with standard deviation o, and using Euclidean distance as our

distance metric, D(vy,, X;).

4.2.2 Pyramid Representation

After we extract and softly quantize [42] the discriminative SIFT features of each frame,
we utilize the work on pyramid representation of Lazebnik et al. [64], which enables
us to model the spatial relationships among features and also provides the means for
measuring feature similarity between frames, using a pyramid match kernel.

Denote the set of quantized features extracted from two frames as X and Y. To
build a pyramid with L levels, for each level [ = 0,1,..., L, we divide the frame into
an imaginary grid of 22%! cells, along both the 2 and y dimensions, so that the cells

in level [ are bigger than the cells in level [ + 1 above it. We histogram the quantized
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Figure 4.5: Toy illustration of spatial pyramid construction [64], where, for simplicity,
we assume there are only 3 codewords (circle, diamond, cross). The top part shows the
successive subdivisions of the image into different resolution levels. For each level and
for each spatial bin in that level, we count the frequency of each codeword, forming
histograms weighed according to equation (4.3). These weights are shown in the bottom
of the figure.

features that fall in each cell (for each SIFT feature descriptor we know its position
within the frame it came from), yielding separate histograms for each cell in each
of the L levels. These histograms represent the feature distribution of a particular
cell, in terms of the relative frequency of occurrence of each feature prototype within
that cell. Because cells at different levels have different sizes, their histograms are
computed over image subregions of different sizes, yielding an image representation of
different levels of resolution. The topmost layer, having the smallest sized cells, forms
the most detailed representation of the feature distribution within an eye region, while
the bottommost layer the least detailed. Collectively, the histograms at each level
form the pyramid representation of the feature distribution within an image, which is
effectively a concatenated vector of the bin values of all the histograms in the pyramid
(see Fig. 4.5 for an illustration).

Figure 4.6 shows two spatial pyramid representations extracted from video sequences
containing different facial expressions. The pyramid on the left corresponds to a frame

in which the signer was producing a wh-question expression, while the pyramid on
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Figure 4.6: Spatial pyramids of SIFT descriptors (50-word codebook, o = 0.2). Pyra-
mid levels are decreasing with increasing bin index. Left plot is for a wh-question.
Right plot is for a negative expression.

the right comes from a video of a negative expression. Examining the two plots, the
difference in the pyramids is evident, especially in the levels of finer resolution (finer
resolution bins are on the left). The input frames, together with the tracked faces and
the extracted eye regions, that generated these spatial pyramids are shown in Figure
4.7.

In order to measure the distance between the feature sets X and Y, and eventu-
ally measure the dissimilarity in appearance between any pair of frames,we just need
to compare their pyramid representations, essentially meaning comparing the bins of
these histograms to see how much they match. Similar to [64], we measure histogram
similarity at each level [, using the histogram intersection function presented in the

work of Swain and Ballard [104] and defined as:

I(HY, HL) me H (5), HL () (4.2)

where H é( and H{, are the histogram representations of the two frames at level [, C' is
the number of cells at level I, while HY (5) and H.(j) are the respective histograms of
frames X and Y in the j** cell of level I.

Since higher levels are of a finer resolution, it is intuitive to weigh the similarity

match of cells in these levels with a higher weight than that used for the lower levels
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Figure 4.7: First column shows the input frame, second column shows the tracked face
with the estimated 3D pose, and third column shows the extracted eye and eyebrow
region. The top signer is producing a wh-question, while the bottom signer is producing
a negative expression.

of coarser resolution. Moreover, if a match is found at a level [, it will also be found
in the coarser level [ — 1, so when comparing feature sets, we should only consider the
new matches found at each level. This leads to the following match kernel for spatial

pyramids having L levels:
0
KYX,)Y)= —I + E 2L l+1 , (4.3)

where I is the intersection score at level 0 and I' is the intersection score at level [
[64].

Furthermore, we propose a natural extension of this pyramid representation to the
temporal domain. The ASM face tracker predicts the head pose in each frame. We
compute the change in yaw angle between successive frames and softly quantize the yaw
derivatives using a codebook that we compute from a random subset of the training
set. Then we construct a temporal pyramid for each video, by dividing a sequence of
frames into cells, in a similar fashion as done for spatial pyramids and using the same

match kernel. In this way, we form a representation which allows us to detect the head
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Figure 4.8: Sample plots of yaw angles, yaw derivatives and smoothed derivatives for
two video sequences of different class. Top row plots are from a wh-question. Bottom
plots are from a negative construction.

shake of a signer. This is because we expect to see a distinct uniform pattern of yaw
angle derivatives resulting from a head shake during a negative expression, which is
distinct from the pattern of yaw derivatives resulting from other ASL expressions. This

difference in yaw angle derivative patterns is illustrated in Figure 4.8.

4.2.3 Overview of Support Vector Machines

A Support Vector Machine (SVM) is a popular classifier with excellent generalization
properties [13, 113]. The key idea is to learn a decision boundary or margin, in the
form of a hyperplane that passes through the training data, so that the data is cor-
rectly classified, and that the distance of every training point to this hyperplane is
maximized. Hence, SVMs are often called margin maximizing classifiers. In the case
of non-separable classes, the SVM learns an optimal hyperplane which is again at a
maximum distance from as many training data points as possible, while at the same
minimizing the misclassification rate. SVMs can also learn non-linear hyperplanes by
utilizing a kernel function to map the data points to a higher dimension; this is known

as the “kernel trick” [13, 113].
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Let X = {x1,X2,...,Xn} be the training data, such that x; € R, and let Y =
{y1,Y2, ..., yn} be the corresponding training class labels, such that y; € {—1,+1}. Also
assume that we are first dealing with separable classes, so that there exists an optimal
hyperplane which correctly separates the data points into the two classes and at the
same time maximizes the margin, i.e. the distance of any data point to the decision
boundary. Let w be the vector normal to this hyperplane and threshold b be its hyper-
intercept. Then the training data is correctly satisfied if the following constraints are
satisfied:

wlx;+b>+1 fory; =+1 (4.4)
wixi+b< -1 fory; =—1, (4.5)

which can be combined into one set of inequalities [13]:
yi(wixi +b0)—1>0, i=1,...,N . (4.6)

Since the data is assumed to be separable, there exist an infinite number of hyperplanes
that satisfy equation (4.6), so in order to find the margin maximizing hyperplane we
must also add the constraint that ||w||? is minimized [13]. The combined constraints

can be formulated as the following constrained minimization problem:
1
min{§\|wH2} , subject to yi(wrx;+b) —1>0, i=1,...N . (4.7)

Skipping the details, the solution to this non-linear (quadratic) optimization problem,
subject to a set of linear inequalities, can be found by finding the solution to the
Karush-Kuhn—Tucker (KKT) conditions of its Lagrangian, using the primal-dual path
following method [13].

In the case that we are dealing with non-separable classes, the formulation is similar,
except for the introduction of positive slack variables £; into the constraints of equations
(4.4) and (4.5):

wix;+b>+1—-¢ fory, =+1 (4.8)
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wlx;+b<—-1+4¢& fory, =—1, (4.9)
& >0, Vi , (4.10)

which lead to the following updated constrained optimization problem (where C' is a

complexity parameter) [13], solved in a similar way:

min{%HwH2 + CZ&} , subject to yi(wrx;j+b)—1>&and & >0, i=1,...,N .
l (4.11)
Once the optimization problem is solved, we can compute the signed distance (margin)
of any test point x to the decision boundary. The sign of this margin tells us on which
side of the margin the test point lies, hence we can assign it a class label f(x) = {—1,+1}
using:
1 wix+b>0
fx) = : (4.12)
-1 wix+b<0
while points that lie on the decision boundary (i.e. w'x + b = 0) can be classified
as either positive or negative instances, depending on the bias chosen for a particular

application. In the case that a kernel function is used to train a non-linear SVM then

the classification rules for a test point x become:

1 fvsoéi iK(xi,%x)) +0>0
Flx) = o) : (4.13)
1 (2N K (xi,x)) +b <0

where Ny is the number of support vectors x; (see [13] for a more detailed derivation
and examples). In this work, we adopt the non-linear formulation of SVMs for non-
separable classes, where the non-linear kernel is the pyramid match kernel described in

Section 4.2.2.

4.2.4 Experimental Results

The Boston University American Sign Language Linguistic Research Project (ASLLRP)

dataset used for the research reported here consists of 15 spontaneous short narratives
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Training | Testing ‘ Total ‘

Wh-question 25 11 36
Non-Wh-question 25 11 36
Total 50 22 72
Negative Expression 22 10 32
Non-Negative Expression 22 10 32
Total 44 20 64

Table 4.1: Dataset Composition.

plus over 400 additional elicited utterances collected from several native signers of ASL
[84]. Synchronized video cameras captured the signing from multiple viewpoints (two
stereoscopic front views plus a side view and a close-up of the face). The data were
annotated using SignStream(®), software (http://www.bu.edu/asllrp/SignStream/), de-
veloped specifically for linguistic annotation of visual language data [82]. The annota-
tions include identification of start and end frames of individual signs as well as labelling
of facial expressions and head movements that have grammatical significance.

In our experiments we used the close up view of the face only from isolated utter-
ances. We selected a total of 36 video sequences showing wh-questions and 32 sequences
showing negative expressions. These formed our set of positive examples for each of the
two classes. An equal number of negative examples were collected by randomly select-
ing video sequences from different classes (e.g. conditional-when, topic—focus, yes—no
questions, etc.). We then randomly split our two datasets of wh-questions and negative
expressions into a training and validation set, and into a test set, ensuring that both
sets contained data from different signers. The duration of the video sequences ranged
from about 3 seconds to 12 seconds. The shortest duration of a wh-expression was
about 0.8 seconds (23 frames) and the longest was about 5.1 seconds (153 frames). The
shortest duration of a negative expression was about 0.6 seconds (19 frames) and the
longest was about 4.4 seconds (131 frames). The training sets contained about 70% of
the total data, while the remaining data formed the testing set. Table 4.1 shows the
dataset composition in more detail.

We used our extended face tracker (see Chap. 3) to track the signer’s face in each

sequence and extract their eye region, as well as predict their 3D head pose. Figure
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’ ‘ Precision \ Recall \ Accuracy ‘
Stacked Wh-question | 91.7% 100% 95.5%
SIFT Wh-question 90.9% 90.9% 90.9%
Pose Wh-question 63.6% 63.6% 63.6%
| Negative Expression | 90.9% [ 100.0% | 95.0% |

Table 4.2: Performance metrics for isolated recognition.

Predicted Predicted
as Negative | as Non-Negative
True Negative 10 0
True Non-Negative 1 9

Table 4.3: Confusion matrix for isolated recognition of negative expressions.

4.7 shows sample results of tracking, pose prediction and localization of the eye region.
The pose angle predictions were smoothed with a one-sided Gaussian filter with o = 2
and a length of 7 frames, so that the pose in a given frame was a weighted combination
of the pose predictions in that frame and of those in the 6 frames before it, in order
to filter out noise. Pose angle derivatives were computed, as the difference in pose
angle between two successive frames, and then a random subset was used to construct
a codebook of 75 codewords using soft assignment [42] with a Gaussian kernel and
o = 0.1 (larger size codebooks did not achieve better recognition). Temporal pyramids
with three levels (i.e. L = 2) were then constructed for each video sequence and a
Support Vector Machine (SVM) with the pyramid match kernel discussed in Sec. 4.2.2
was trained and used to classify the test set sequences into negative and non-negative
expressions. The complexity parameter of the SVM model, C', was chosen with 5-fold
cross validation to avoid over—fitting the training set.

The SVM classifier achieved a precision accuracy of 90.9% and a recall rate of
100%, with an overall recognition accuracy of 95%. Using more levels in the temporal
pyramid hurt the performance. Here, by recognition accuracy we refer to the percentage

of instances in the training set that were correctly classified (i.e. tp f\} tn). Precision is

the ratio P and recall is the ratio tip’ where N stands for the total number
tp + fp tp + fn

of test set instances, tp stands for true positive, fp for false positive and fn stands for

false negative. The detailed classification results are shown in Table 4.2, while Table
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[0=0][0=01]0=02][0=05]0=1]0=2]
25 keywords [| 0.830 | 0.798 [ 0.845 | 0.858 [ 0.892 [ 0.751
50 keywords || 0.840 | 0.837 [ 0.855 | 0.882 [ 0.874 [ 0.701
100 keywords || 0.850 | 0.854 | 0.889 | 0.861 | 0.841 [ 0.703
200 keywords || 0.867 | 0.864 [ 0.890 | 0.879 [ 0.803 [ 0.696

Table 4.4: Area under the ROC curve (AUC) of the SVM models used to recognize
frames containing wh-expressions, trained only on the spatial pyramid features, ob-
tained using different combinations of dictionary sizes and kernel scale, o.

4.3 shows the confusion matrix.

Similarly, from the localized eye regions we have extracted dense SIFT features [69],
which we also quantized using soft assignment [42] with a Gaussian kernel. Sample
spatial pyramids with three levels (i.e. L = 2) extracted from frames in which different
signers are producing different grammatical constructs, are shown in Figure 4.6. As
done for negative expression recognition, we trained an SVM model with a pyramid
match kernel and used cross validation to choose the value of parameter C. In this
case, however, we first used the SVM to classify each frame within a sequence and then
used Majority Voting [108] to decide the label of each sequence based on the majority
label assigned to its constituent frames. We experimented with different codebook sizes
and different kernel scales, o, in order to obtain the best combination and we found
that a codebook of 100 words and ¢ = 0.2 performed the best.

Figure 4.9 shows the corresponding ROC curves for the classifier corresponding to
each combination of codebook size and kernel scale, while Table 4.4 shows the area
under the corresponding ROC curve. As expected we observe that as the codebook
size increases, so does the recognition accuracy, because we have an increasing number
of prototypes providing an improved cover of the feature space. Increasing the kernel
scale compensates for the inadequate cover of the feature space by a small number of
prototypes but once the scale gets too large for a particular codebook size, the influence
clouds become increasingly larger, allowing features to accept representation influence
by distant prototypes resulting in an incorrect encoding. Table 4.5 summarizes the
classification accuracy on the test sequences using majority voting on the class labels

of their constituent frames as predicted by the SVM models.
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Figure 4.9: ROC curves of wh-expression recognition (statically on a frame level) us-
ing an SVM trained on spatial pyramid features only, under various combinations of
dictionary size and kernel scale, o.

| |0=0]0=01]0=02[0=05]0=1][0=2]
25 keywords | 90.9% | 90.9% | 955% | 81.8% | 81.8% | 77.3%
50 keywords | 95.5% | 90.9% | 955% | 81.8% | 81.8% | 81.8%
100 keywords | 95.5% | 90.9% | 100% | 81.8% [ 81.8% | 81.8%
200 keywords | 90.9% | 90.9% | 100% | 81.8% | 77.3% | 81.8%

Table 4.5: Majority Voting recognition accuracy of wh-expressions in isolated sequences,
using an SVM trained only on spatial pyramid features, obtained by different combi-
nations of dictionary sizes and kernel scale, o.
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|0=0]0=01]0=02]0=05|0=1]0=2]
25 keywords | 90.9% | 95.5% | 90.9% [ 86.4% | 86.4% | 81.8%
50 keywords | 90.9% | 86.4% | 100% | 90.9% | 90.9% | 81.8%
100 keywords | 90.9% | 86.4% | 95.5% | 90.9% | 86.4% | 81.8%
200 keywords | 90.9% | 81.8% | 955% | 86.4% | 81.8% | 81.8%

Table 4.6: Majority Voting recognition accuracy of wh-expressions for isolated se-
quences, using a stacked SVM combining spatial pyramid features, obtained using
different combinations of dictionary sizes and kernel scale, o, and head pose features.

In our previous work, [75, 84], we found that the head pose of the signer might
be correlated with the grammatical facial expression being made. In particular, we
observed that the signer tilted their head backwards when signing a wh-question. Using
this finding, we implemented two separate base SVM classifiers to classify individual test
frames into wh-questions and non-wh-questions; one used only eye appearance features
(i.e. SIFT pyramids), which we called SIFT-SVM model, and one used only head pose
features, namely zero, first, second and third order pitch angle differences, which we
called Pose-SVM model. The un-thresholded predictions of the two SVMs for each
frame were then combined in a Stacked SVM framework, [108, 125], by a trained meta—
classifier which output the final label for each frame. Stacking [108, 125] allows us to
learn to smartly combine the individual predictions of multiple base classifiers in order
to improve classification accuracy, by utilizing the specific expert knowledge learned
during training by each of the base classifiers. The meta—classifier was also an SVM
which used a radial basis function (RBF) kernel; we refer to this model as the Stacked—
SVM. The complexity parameter, C', and the kernel scale, o, of the Pose-SVM and of
the Stacked—-SVM were determined by cross validation. For isolated recognition, the
predictions of the individual frames within each segmented sequence were aggregated
using majority voting, in order to obtain the final prediction for the sequence. Table 4.6
summarizes the recognition accuracy of the Stacked—SVM models on the test sequences.
We notice that there is a general improvement in recognition accuracy when combining
eye region appearance and head pose features of the signer, which in turn allows us to
learn smaller size dictionaries (compare Tables 4.5 and 4.6). Table 4.2 summarizes the

performance metrics for isolated recognition of wh-questions.
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4.3 Modelling Temporal Dependencies and Misalignment

Although the method of the previous section achieved good recognition performance
on two classes of non-manual markers, for differentiation of non-manual markings that
differ very subtly from one another, it is going to be crucial to combine multiple evi-
dence (e.g., use head positions and movements, appearance features around the nose,
etc.). Therefore, in this section we present an extension to our framework for isolated
recognition, which allows us to recognize non-manual markings associated with wh-
questions and negative sentences, as well as conditional /when clauses, yes/no questions
and topics. The last three classes all involve raised eyebrows, so to be able to distin-
guish them, it will be necessary to employ additional features and model the temporal
feature transitions between neighboring frames.

More specifically, the proposed extension differs from the method in the previous
section in the following ways. First, once we track the facial landmarks, we focus on an
extended rectangular region of interest (ROI), which includes the eyes, eyebrows and
nose, so as to capture a wider range of upper face expressions, e.g., nose wrinkling and
cheek tensing. Second, we divide this ROI into a set of smaller patches (henceforth
referred to as parts), which correspond roughly to areas of the face relevant for these
specific grammatical expressions, e.g., inner and outer eyebrows. We extract from each
part a histogram of Local Binary Patterns (LBP) [89]. These are effective for texture
classification [99, 132], faster to compute and more robust to illumination variations
than SIFT, which is used in [75]. Third, we handle feature misalignment, arising from
tracking inaccuracies and partial facial occlusions, by computing a Multiple Instance
Feature (MIF) [68] for each part. Fourth, in addition to the head pose and texture
features per frame, we explicitly calculate eyebrow height. The final feature descriptor
is augmented with a “summary” of the features of future and past frames sampled
at regular intervals in the neighbourhood of the current frame, which we call “Oracle
Features” (see Figure 4.10). This representation aims to encode the dynamic nature
of facial expressions and head gestures encountered in non-manual grammatical mark-

ers. Lastly, by utilizing a discriminative, margin-maximizing, Hidden Markov Support
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Vector Machine (HMSVM) [1, 53] our method outperforms generative Hidden Markov
Models (HMMs) [94], which can over-fit the training data in the absence of sufficient
training examples. Each new component of the proposed extension is discussed in the

following subsections, followed by experimental results that validate our methodology.

4.3.1 Tracking eyebrow height and head pose

From the tracked landmarks we can compute the 2D position of a signer’s left, (1, yr),
and right inner eyebrows, (zg,yr), and their nose-tip, (zn,yn), in each frame. For
inner eyebrow calculation we use the 4 innermost eyebrow landmarks, while for the
nose-tip we use the lower 8 nose landmarks. The eyebrow height at time ¢, denoted as
ht, is derived as the average Euclidean distance between the nose-tip and each inner

eyebrow:

n=1x (Jm e e (e RN/ e <yR—yN>2) @)

N | =

For robustness to tracking noise, we filter the computed (x,y) positions of the key
points (eyebrows and nose-tip) using a Kalman filter [56], assuming linear state dy-
namics with Gaussian noise, w. The system state, x;, includes the position, p; =
(1,91, TR, YR, TN, YN|’, and the velocity, v; = [ZL, 9L, TR, YR, TN, Un]T, of these key

points at time . The dynamic process is governed by:

Xpp1 = ApXe + Wy, (4.15)
with
1 4t
At+1 = and W ~ N(O, Q) . (416)
0 1

The observation process is modelled as:

Zy — HXt + ug 5 (417)

where H = [1,0], z; is the observation as obtained by the face tracker and u; ~ N (0, R)



64

is the observation noise at time t. A similar model is also used to filter the predicted
head pose. In this case the state vector includes the 3D head pose, a; = [ap, ay, ar|’,
and the head pose velocity &; = [ap,ay,ar]|’, where P, Y and T stand for pitch, yaw

and tilt angles respectively.

4.3.2 Texture Features

Once we track the signer’s head, we compute a bounding box of the tracked landmarks
around the eyes, eyebrows and nose, forming an extended ROI from which we compute
Local Binary Patterns (LBP) [89]. Put simply, LBPs are binary codes that characterize
the texture in the neighbourhood of a pixel by thresholding the value of each neighbour
by the gray-scale value of the central pixel (set to 1 if larger, set to 0 otherwise) and
interpreting the pattern as a binary number, which is converted to a decimal code.
Typically, LBP codes are first computed for each pixel in an image patch and then the
normalized histogram of LBP codes is generated and used as a texture descriptor of

the patch.

4.3.3 Oracle Features

Facial expressions and gestures are dynamic processes, especially those that have a
grammatical meaning in ASL. It is often difficult even for ASL signers to detect non-
manual markers using static frames alone. For example, one key component of the
non-manual marking of negation is a head shake, whose presence in a sequence cannot
be detected solely by looking at the head pose in any single frame. Instead, one needs
to have available a “snapshot” of the variation of head yaw angle over time, in order to
detect the turning of the head in one way and then in the opposite way.

Therefore, in order to strengthen the representational power of all features (texture
MIF, head pose, eyebrow height), we encode information from neighbouring frames.
For each frame we sample the feature values at regular offsets (sample points) from the
current frame (anchor point). Before sampling, we compute a weighted average (by
means of a Gaussian curve) of the feature value in a small window around the anchor

and each sample point. This is illustrated in Figure 4.10 where an example anchor
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Figure 4.10: Plot of head yaw angle over time for a sequence containing negation (red
segment marks when the non-manual marker occurs), also illustrating computation of
yaw oracle features for frame 60 (see Section 4.3.3).

point is shown in black and example sample points are shown in blue. The ellipses
indicate the size of the averaging neighbourhoods. Thus, the final feature descriptor of
each frame is formed by combining features in that frame with the features obtained
from the neighbourhood of the respective sample points. We refer to these augmented
feature vectors as “Oracle features” because for every frame they encode the dynamic
evolution of feature values. We show that this richer feature representation allows our

method to achieve higher classification accuracy (see Section 4.3.6).

4.3.4 Overview of Multiple Instance Features

Feature misalignment sometimes occurs; i.e., the same features do not always fire up
in all positive detection windows, often because of object pose variation. Lin et al. [68]
introduced Multiple Instance Features (MIF) for boosted learning of part-based human
detectors, where an initial boosting seeds the location of an object part from translated
candidates, and then multiple instance boosting pursues an aggregated feature for each

part. So an MIF is an aggregation function of instances. More specifically, given a
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classifier, C, it is the aggregated output, y, of a function, f, of classification scores,

{yj}}']=17 on multiple instances, {a:j}jzlz
y=fy1, 92, ys) = f(C(a1), C(x2), ..., Clz)). (4.18)

Each bag, z;, consists of a set of instances, {z;; }é\le For each classifier C, the score
y;j of an instance x;; can be computed as: y;; = C (xzj) The probability of an instance
x;j to be positive is given by the logistic function: p;; = m%y” In [71], the multiple
instance learning problem is formulated as the maximization of diverse density, which
measures the intersection of the positive bags minus the union of the negative bags.

The diverse density is probabilistically modelled using a Noisy-OR model to harness
the multiple instance learning problem. The probability that a bag x; is positive is

N;
j=1

formulated as p; = 1 — [[;74(1 — pi;). The Noisy-OR model means the probability
of the bag to be positive is high when this bag includes at least one instance with
high probability to be positive, otherwise the bag is negative when all the instances
inside have low probability of being positive. Following [68], the geometric mean is
applied to avoid the numerical issues when N, is large, so the formula is modified to
pi=1— Héy:il(l — pij)l/ Ni . The multiple instance aggregated score y; is computed from

the instance scores y; as:

N;
yi = log ([ (1 + ev) /Ny 1), (4.19)
j=1
which comes from the logistic relation between p; and y;: p; = l—l—e%yz In this paper

each y; is an MIF of texture, obtained by learning weak classifiers (decision tree stumps)
on the LBP histogram bins of a part (a part is a patch within the face ROI). See [68]

for further details.

4.3.5 Overview of Hidden Markov Support Vector Machine

In the traditional supervised classification setting, we have a set of labelled training data

D = {(xi,y:)})¥,, where x; € R is the d-dimensional feature vector of training sample
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i and y; € R is its corresponding class label. The goal is to learn a mapping function
from inputs to outputs F: R¢ — R that minimizes some loss function, typically a 0/1
loss. In the sequence tagging problem we have sequences of feature vectors and for
each one we have a sequence of corresponding outputs: D = {(xf ) yi Wi=1,..., Y,
where J is the length of the i*" sequence. Note that sequences need not have the same
length. The goal in this setting is to predict the class labels of all instance within each
sequence.

A popular model used in sequence tagging problems (most notably for speech recog-
nition) is the Hidden Markov Model (HMM) [94]. Despite its success, the HMM has
certain limitations. First of all, it assumes conditional independence between observa-
tions when given the current state; an assumption that can be too restrictive for certain
problems where there are complex feature interactions. Secondly, HMMs are generative
models. During their non-discriminative training, the goal is to learn model parameters
that maximize the likelihood of fitting the given training data, instead of optimizing for
accurate classification (although recently there has been interest in alternative methods
for training [124]).

Altun et al. [1] proposed the Hidden Markov Support Vector Machine (HMSVM),
which, like the HMM, models the interactions between features and class labels, as
well as interaction between neighbouring labels within a sequence. Unlike HMMSs, the
HMSVM model is trained in a discriminative margin-maximizing learning procedure.
This means that it can achieve better generalization performance on test data, hence
higher accuracy. Similar to the standard Support Vector Machine (SVM) [13], the

HMSVM can also learn non-linear discriminant functions via the kernel trick.

J

Given a feature sequence x = {x’}7_;, where x’ are instances within the sequence

the model predicts the corresponding tag sequence y = {y’ 3-7:1 using [1]:
K
y = arg r}{léj‘)}f(z (Z <Xy Wy ey > H < ¢trans(yjfk= YK, Wirans >)) >
j=1 k=1
(4.20)

where wy._, is an emission weight vector modelling interactions between features

YK
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and k'"order observations, and Wy, is the transition weight vector modelling transi-
tions between neighbouring tags. Discriminative training aims to minimize the number
of misclassified tags, while maximizing the separation margin, hence the training ob-

jective is [1]:

min{iw!w+ <37 &} (4.21)

st Zi(y)(<w,0(x5,y) > +0;) >1 - >0 ,Vi=1,...,J ,Vye) ,(4.22)

where c is a parameter that controls the penalty of misclassification trading off training
error and margin size. Joachims et al. [53] proposed the cutting-plane algorithm which
offers a significant speed-up in the training time of HMSVMs over the original working
set algorithm of [1]. In our framework, from each frame in each segmented sequence,
we use the oracle feature representation of the eyebrow height, the head pose and the
multiple instance texture features, with their corresponding class label, and train a
one-vs-all HMSVM model. Sequences in our training set contained no overlapping non-
manual markers, so we only needed one model to tag each frame in the segmented
sequence. Despite this, our method can easily generalize to sequences with overlapping
non-manual markers by training n one-vs-all models (one for each class) and running

them in parallel on each sequence.

4.3.6 Experimental Results

From the corpus of the Boston University American Sign Language Linguistic Re-
search Project (ASLLRP) dataset, we selected training and testing sets of 32 and 13
video clips, respectively, of isolated utterances, extracting the segments containing non-
manual markers of the classes of interest. Certain sequences contained multiple non-
manual markers but there was no overlap between them. The exact composition of
these sets per class is shown in Table 4.7. Both sets contained three different native
signers.

Using the methods described in previous sections [77], we tracked the signer’s head,
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Class | Training | Testing
Set Set
C/W | 4(292) | 2(158)
Neg | 8 (532) | 4 (258)
Top | 9 (249) | 4 (86)
Wh | 8(492) | 5 (351)
Y/N | 4(262) | 2 (172)

Table 4.7: Number of segmented sequences per class in our dataset (total number of
frames in parenthesis)

extracting their head pose and computing their eyebrow height. These were post-
processed with a Kalman filter for more accurate tracking. From the filtered head pose,
we compute the head pose derivative per frame, to avoid learning a dependence on the
initial head position of a signer. Eyebrow height is also normalized by the height in
the first frame of each sequence and then we compute the height derivative, in order to
normalize for subjects of different face proportions and distance from the camera. For
each frame we compute oracle features as explained in Section 4.3.3. We use 5 sample
points, offset at 0, +5, +10, +15 and 420 pixels from the current frame respectively,
averaged over a 5 frame window, resulting in a 20-dimensional descriptor of head pose
(pitch, yaw, tilt) and height variation per frame.

Before extracting texture features from the face ROI, we align all images, rotating
frames by the average of the tilt angle and the angle between the centroids of the two
eyes, as computed from the ASM landmarks. Faces were normalized by cropping frames
to 64 x 64 pixels [106]. The face ROI is divided into a 4x4 cell grid with each cell being
16 x 16 pixels. From each cell we compute normalized histograms of uniform LBP
features [89] using 8 samples and a radius of 1 pixel. For purposes of computing MIF
[68], we consider each cell being one facial part (so we have 16 parts per frame) and
translate each cell in a regular grid around its original position, computing additional
LBP features. The collection of features for a given part form a bag of instances which
we convert to a 5-dimensional MIF score, one for each class of non-manual markers.
The idea is that if a positive part, with respect to a class label, is misaligned (as a result
of tracking error or partial occlusion), as we translate it around its neighbourhood and

compute instances of LBP features, at least one of these instances will capture features
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True Predicted Class

Class C/W ‘ Neg ‘ Top ‘ Wh-Q ‘ Y/N
C/W 100% 0 0 0 0
Neg 0 5% 0 25% 0
Top 0 0 100% 0 0
Wh-Q 0 0 0 80% 20%
Y/N 0 0 0 0 100%

Table 4.8: Confusion matrix of HMSVM segmented recognition using oracle features of
LBP-MIF, head pose and eyebrow height.

’ H % Correct classification

HMM 70.6%
HMSVM 88.2%
HMSVM + non-MIF LBP 82.4%
HMSVM + MIF LBP + non-oracle 76.5%

Table 4.9: Evaluation of models showing the benefit of discriminative HMSVM with
the proposed feature representation that handles feature dynamics and feature mis-
alignment.

from a correct part placement, and the bag will still be positive for that class. Asin the
case of head pose and eyebrow height, we compute oracle features for the LBP MIF.
Here, to avoid increasing feature dimensionality too much, we only use 3 sample points,
offset at 0, +5 and +10 pixels from the current frame respectively, also averaged over
a 5 frame window, resulting in a 240-dimensional texture descriptor.

The three sets of features (pose, height and texture) are concatenated into one
feature vector and we train an HMSVM. Because of our small training set, we first
optimize the parameter ¢ using 3-fold cross validation on the training set, ensuring
that each fold contains at least one sequence from each class, before evaluating on the
test set. The recognition accuracy of the HMSVM model is summarized in Table 4.8.
Analysis of the results revealed that for the wh-question sequence that is misclassified as
a yes/no question the signer’s head is rotated to the side, causing an incorrect estimation
of the eyebrow height. Most importantly, this rotation causes a significant change in
the appearance of the face ROI since most of the training images are frontal views. We
expect to be able to overcome this problem by using training data that includes such

cases of non-frontal faces. Additionally, our method mistakes a negative sequence for
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a wh-question. In this sequence there is a clear head shake that our framework can
capture and which is characteristic of negation. However, there is a head-shake — albeit
somewhat different in character — that frequently occurs with wh-questions, as well as
some degree of furrowing of the brows that occurs with both constructions. The model
failed on this case, possibly because of insufficient training examples exhibiting this
combination of eyebrow appearance and head shaking.

In order to compare the HMSVM with the HMM, we also trained 5 HMMs, one
for each class, classifying test sequences as belonging to the class whose HMM yields
the highest probability. The number of states of each HMM was decided using 3-fold
cross validation. Results are shown in Table 4.9. Note that with our small dataset, the
generative HMM fails to outperform the discriminative HMSVM model. In the same
table we also show the result of an experiment where we used oracle pose and height
features with non-MIF oracle LBP features and an HMSVM recognizer (HMSVM +
non-MIF LBP). Note that this model performs worse, showing that the MIF indeed
help improve accuracy. Using non-oracle features (HMSVM + MIF LBP + non-oracle)
also hurts performance, as expected, given the dynamic dependence of features rele-
vant to recognition of facial expressions and non-manual ASL grammatical markers in
particular.

Therefore, the presented framework is successful in isolated recognition of a wider
range of classes of non-manual markers. As the our results show, the key to the success
of our method lies both in the discriminative recognition model (HMSVM) as well as
in the rich feature representation that encodes feature dynamics and is able to handle
feature misalignment. In the following, sections we describe an analogous framework

for continuous recognition.

4.4 Framework for Continuous Recognition

In this section we present our framework [76] for continuous recognition, where we
assume no knowledge about start and end times of non-manual markers in the video

sequence. This method extends prior work [75, 84], in which the signer’s head is tracked
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and appearance features, in the form of spatial pyramids [64] of SIF'T descriptors [69],
are extracted from the region of interest, in the following ways. First, we extract
additional shape features in the form of spatial pyramids of histograms of oriented
gradients (PHOG) [7]. Second, we use spectral clustering [85], measuring the affinity
using the Spatial Pyramid Match Kernel (SPMK) in Equ. 4.3, introduced by [64]. This
reduces the dimensions of the augmented appearance and shape feature vectors. Lastly,
we use Hidden Markov Models (HMMs) [94] to learn the dynamic feature transitions
that occur during production of each class of non-manual markers. A summary of
the algorithm is given in Alg. 5. Next we describe the components of our framework

followed by our experimental results.

Algorithm 5 General algorithm for Continuous Recognition [76]

1. Face tracking on continuous video stream
2. Feature Extraction

(a) Compute appearance features from ROI (PHOG and PSIFT) [7, 64, 69].
(b) Compute head pose features.

(c) Estimate eyebrow height (distance between eyebrow and eyes).
3. Get embedding of each set of appearance features using Spectral Clustering [4, 85].

4. Use trained HMM models [94] with sliding window for continuous recognition of
video stream.

4.4.1 Overview of Feature Extraction

Once a frame is tracked and we have obtained the 2D position of the facial landmarks,
we extract dense SIFT descriptors over a regular grid from the eye region. We cluster
the SIFT descriptors of a random subset of the training frames, to obtain a codebook of
prototypes and then encode all other descriptors by the index of their nearest prototype.
As in the method for isolated recognition, we encode the spatial distribution of these
features within the region of interest using spatial pyramids (see Sec. 4.2.2), to yield
the spatial pyramid SIFT representation or PSIFT for short. The dissimilarity in

appearance between any pair of frames, is measured by comparing the bins of these
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histograms to see how much they match, using the weighted Spatial Pyramid Match
Kernel (SPMK) given by Equ. 4.3 [104, 47, 64].

In order to get a more discriminative representation of the region of interest, we
choose to combine the above mentioned appearance descriptor with a shape descriptor.
In particular, we choose to use the pyramidal Histogram of Oriented Gradients (PHOG)
used by the authors of [7]. PHOG descriptors are obtained by first applying a Canny
edge filter to suppress weak edges. Then we quantize the gradient orientations of pixels
into uniform bins, with each pixel’s vote being proportional to the magnitude of its
gradient, followed by construction of a spatial pyramid of HOG descriptors to get the
final descriptor for the region. We compute PHOG features in the same way, but for

measuring PHOG similarity we use the weighted SPMK in Equ. 4.3.

4.4.2 Overview of Hidden Markov Models

Hidden Markov Models (HMM) are statistical tools for modelling time series data [94].
Having been successfully used in speech recognition applications, researchers have also
utilized them for recognizing handwriting, gestures, facial expressions, and of course
sign language [102, 112, 117], among other things. In the following section we provide a

brief overview of the theory behind HMMs ([94] provides a more thorough treatment).

HMM Definition

An HMM consists of a set of N distinct states, @ = {S1,952,..., SN}. At any given
time the system is in one of these N states and each state .S; has an associated initial
probability ;, which represents the probability that the system starts in state 5;.

At regular time intervals, it makes a transition from its current state at time ¢,
denoted as @, to its next state, denoted as @Q.+1, both of which can take any value
from the above set of states ). These transitions are governed by the HMM'’s transition
probabilities, which, in the case of homogeneous HMMs, are invariant over time. For
example, the probability of transitioning from S; at time ¢ to S; at time ¢ + 1, is
denoted by ajj, i.e. P(Qi+1 = Sj|Q¢ = Si) = ayj, therefore ), P(Qi11 = S;|Qr = S;) =

>; aij = 1. It should be emphasized that for first order HMMs, state transitions obey
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Figure 4.11: An example of a Left to right HMM with 4 states. Links represent the
permissible state transitions, while link labels correspond to the transition probabilities.
The plot under each state represents its emission distribution.

the Markov property, which means that the probability of the transition from @ to
Qt+1 only depends on the value of Q¢, i.e. P(Q¢y1 = 5j|Q¢ = Si) = P(Qi41 = Sj|Q¢ =
Si, Qit—1,Qt—2...,Q1) = aj;. These transition probabilities are collectively represented
by an N x N matrix, A, where the entry in the i** row and j*"* column is ai;. HMMs in
which a transition to an already visited state is not allowed, i.e. a;; > 0, implies j > 7,
are called left-to-right, while HMMs in which all possible transitions are allowed are
called ergodic. Left to right HMMSs are typically used in speech recognition to model
phonemes. In this paper we also utilize this topology for our HMM models.

Additionally, at time ¢ the current state QQ; = S; generates an observation O; =
k € €, which follows an observation probability distribution (also called emission prob-
ability distribution), denoted as b;(k), i.e. P(O; = k|Q: = S;) = bi(k), therefore
> POy =k|Qy = S;) = > ;. bi(k) = 1. From this, another HMM model assumption
should become clear: observations are only dependent on the current state that gener-
ated them.

Thus, an HMM model )\ is parameterized as A = (7w, A, B). Figure 4.11 shows a left-
to-right HMM model with 4 states. The links between states illustrate the permissible
state transitions, while the plots underneath each state depict the respective emission
probability distributions. Such multi-modal distributions are typically modelled by a

Gaussian mixture model [94].
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The Basic HMM Problems

Having defined HMM models we now look at the three basic problems that HMM theory
deals with [94]:

1. Given a sequence of observations O = 01,09, ...,Or, compute the probability

that it was generated by a given HMM model A, i.e. compute P(O|\).

2. Given a sequence of observations O = 01,0s,...,Opr and an HMM model A,
compute the most probable state sequence Q = Q1,Qo, ..., Q7 that produced O,
i.e. find @) that maximizes P(Q,O|\).

3. Given a sequence of observations O = O1, Os, ..., Op and an HMM model A, adjust

its model parameters, A, so as to maximize P(O|\).

The first problem is the evaluation problem and is useful for the recognition of an
unknown input sequence with a set of trained HMMSs, where, in our case, each HMM
corresponds to a particular class of grammatical facial expressions e.g. Wh-expressions.
For each HMM, \, we compute the likelihood of the given observation sequence, P(O|\).
Then the input sequence is labelled with the class corresponding to the HMM that
yielded the highest likelihood. Rabiner [94] proposed the recursive forward-backward
algorithm which computes this observation likelihood, P(O|A), in O(N?T) time. The
algorithm makes use of the two model assumptions mentioned in Section 4.4.2, namely
the observation independence assumption and the Markov property of the state transi-
tions. More specifically, let Q = Q1, Qo, ..., QT be a state sequence of the HMM model
A, and define the forward variable oy (i) = P(O1,02,...,Op,Q; = S;|\), for 1 <i < N,

where N is the number of model states as before. Then:
Oél(i) = mbi(Ol) s (4.23)

N
Ozt+1 = b Ot+1 Z CL]Z 1<t<T -1, (4.24)

P(O|\) = Z ap(i) . (4.25)
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Equation 4.23 is the initialization of the recursive procedure, Equ. 4.24 is the induction
step and Equ. 4.25 is the termination step which computes the desired observation
likelihood.

The solution to the second problem for a given observation sequence O and a model
A, can be thought of as “un-hiding” the hidden state sequence @) that generated O. It
corresponds to finding the most probable state sequence @ which could have emitted O,
i.e. finding @ which maximizes P(O, Q|\). Rabiner [94] suggests solving this problem
using a dynamic programming technique, namely the Viterbi algorithm. Define the
variable ,(i) to correspond to the maximum probability of all state paths that end up

in state S; at time ¢ (i.e. Q¢ = 5;):

(St(Z) max P(Ql, QQ, ceey Qt = Si, O|)\) . (426)

B Q1,Q2,...Qt—1

The Viterbi algorithm is then summarized by the following equations:

51 (Z) = ﬂ'Zbl(Ol) y (427)
Ot41(i) = bi(Oy1) - 1%1}%{&@%} : (4.28)
mSXP(Q,OM) = lrgnizgv{(sT(i)} . (4.29)

Similar to the forward-backward algorithm, Equ. 4.27 initializes the procedure, the
induction step is represented by Equ. 4.28 and Equ. 4.29 is the termination step. On
termination, this will give us the probability of the most probable state path in O(N2T)
time. In order to retrieve the actual path one needs to maintain a table which will be
used to record which value of j maximized Equ. 4.28. The path can then be retrieved
by backtracking in the table [94].

Finally, the third and most difficult problem is essentially the problem of training
HMMs with training data. No analytic algorithm exists for finding a solution to this
problem and in [94] iterative techniques are suggested such as the Baum-Welch and
the Expectation—-Maximization (EM) algorithms which can give a local solution. What

follows is an outline of the Baum—Welch procedure as presented in [94].
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Assume that the observation distributions can be modelled by a Gaussian mix-
ture model, i.e. b;(0) = Z%zl cimN (O, ftjm, Xjm), where j is the state index, M
is the number of Gaussian components in the mixture model, ¢;,, is the weight of
mixture component m for state j, and N is a Gaussian density distribution with
mean fij, and covariance Y¥j,. Let us now introduce a backward variable (i) =

P(O¢41, 0142, ...,O7|Qr = S;, A) together with the following recursive equations:

Br(i) =1, (4.30)
N

Bi(i) = aijb(Or11) B (4) (4.31)
=1

where Equ. 4.30 is the initialization of the recursion and Equ. 4.31 is the induction step.
Additionally, define two more variables & and ~ as:

_ o(#)aijbj (Op1) Be1 (j)

gt(Zaj) = P(Qt - S’iaQt-‘rl == S]|O7)‘) P(O‘)\) )

(4.32)

N
w(i) =Y &(ig) - (4.33)
=1

With £ and v defined as above, ), §(i, j) represents the expected number of transitions
from state S; to S;, while ), v,(7) represents the number of transitions leaving state
S; [94]. Finally, the following equations define the update rules of the iterative Baum—
Welch procedure for the re-estimation of the HMM model parameters (which happen

to coincide with the update rules of the EM algorithm for this problem) [94]:

T, = V1 (Z) , (4.34)

Yy

QAij = - — 4.35
> (i) (4:3)

G — Zthl Ve (4, m) 4.36
" Zthl Z;c\/lzl Y (4, k) ’ (439
_jm _ Zle ’Yt(jvm)ot ’ (437)

Yoy ve(d,m)
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S _ Yoty Ye(ds m)(Or = jm) (Or = prjm)”
Jm .
S (G m)

where 7;(j, k) is the probability of being in state S; at time ¢ and the k' mixture

, (4.38)

component accounting for the observation O;. In particular:

citN (O, Wi Xjk)
2%21 ijN(Ot, Him, ij)

(4.39)

W) = [ () B (4) ]

SN aa(5)Be()

Repeated use of this iterative procedure converges to a local optimum. Note that

training requires a large number of data in order to achieve a good solution.

4.4.3 Overview of Spectral Clustering

On one hand, by combining appearance (PSIFT) and shape features (PHOG) improves
the discriminative power of our representation, it increases the dimensionality of our
input. As such, it increases the amount of training data that we need in order to learn
accurate HMM models, and this also causes an increase in complexity, thus slowing
down computations.

Spectral clustering [85] is a popular method of dimensionality reduction. The feature
vector of each training example is represented as a node in a graph that is connected
with a weighted edge to its nearest neighbors in the training set (weights reflect degree
of similarity between training examples). The algorithm then applies an eigenvalue
decomposition on the matrix representing this graph, reducing the feature vector di-
mensionality in a way that preserves the neighborhood structure. We use SPMK as the
affinity measure and reduce the dimension of PSIFT and PHOG features separately.
Figure 4.12 shows the resulting embedding of the training set, where we see that the
classes are well separated. We then apply the embedding to the test set [4].

The final feature descriptors per frame are the combined SIFT and HOG features of
reduced dimensionality, together with the 3D head pose and its first order derivatives.
These are then used to train a separate HMM for each class, using sequences segmented
by class. In order to do continuous recognition, we slide a window over each test

sequence, classifying the frames within it as negative, topic, wh or none, based on
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Figure 4.12: Spectral feature embedding of each frame (red: negative, green: topics,
blue: wh-questions).

which HMM yields the highest probability of having generated that subsequence.

4.4.4 Experimental Results

From the dataset of the Boston University American Sign Language Linguistic Research
Project (ASLLRP), we selected a training set of 77 video clips of isolated utterances
(negative: 17, topic: 40, wh: 20). Our testing set contained 70 such clips (negative: 15,
topic: 38, wh: 17). The exact composition of these sets, in terms of numbers of frames
per class, is shown in Table 4.10. Both sets contained three different signers. Using the
methods described in previous sections [76], we tracked the signer’s head, extracting
pose, PHOG and PSIFT features, the dimensionality of which was then reduced using
spectral clustering. We then trained class-specific HMMs, optimized to recognize frame
sequences of their class. To evaluate their performance at continuous recognition, we
used a sliding window approach. We fed sub-sequences of all unsegmented test se-

quences to each HMM, classifying each frame as negative, topic, wh, or none, based on



80

H None \ Negative \ Topic \ Wh-Q ‘
Training || 10144 997 1604 | 1208
Testing 9359 1053 1248 1182

Table 4.10: Dataset composition (number of frames per class).

Predicted Class
None ‘ Negative ‘ Topic ‘ Wh-Q

True None 92.8% 2.9% 22% | 21%
True Negative || 7.7% 80.3% 58% | 6.2%
True Topic 9.2% 4.5% 81.2% | 5.1%
True Wh-Q 8.3% 5.3% 4.5% | 81.9%

Table 4.11: Confusion matrix of HMM continuous recognition.

which HMM output had the highest probability of having generated each subsequence.

Recognition accuracy is summarized in the confusion matrix of Table 4.11.

4.5 Head Pose Normalization

When the head rotates, there is a variation in facial appearance when viewed from a
fixed point, e.g., a static camera. For a difficult task, such as that of continuous recogni-
tion of non-manual markers in ASL, where many classes differ only in subtle ways from
each other, this variation in appearance further complicates the recognition problem.
As a result, more training data is needed to correctly learn the facial appearance man-
ifold and more complex algorithms to model the sequential appearance transitions for
the purpose of non-manual marker recognition. In this section we present an extension
to our framework, which aims to address this problem.

More specifically, our extended method involves combining the 2D deformable face
model, used by our extended face tracker, with a 3D deformable face model. The
combined model enables correction for the warped appearance of faces due to variations
in the 3D head pose, thereby leading to pose invariant facial features that in turn lead
to improved recognition rates. We do this by registering landmarks on the 2D image,

as predicted by our novel face tracker, with 3D landmarks on a trained statistical 3D
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face model [5] to estimate the 3D projection matrix, R, (see Eq. 4.40). This matrix is
then used to rotate the aligned 3D model to a frontal pose and re-project it to the 2D
image plane, obtaining warped 2D landmarks. By estimating the difference between
the tracked 2D landmarks and the warped 2D landmarks, we determine the image flow
necessary to warp the input facial region to a frontal pose. The warped region is used
to extract LBP features which we represent in a spatial pyramid. Together with an
estimation of the eyebrow height (using the warped landmarks) and the signer’s head
pose, we use an HMSVM model for continuous recognition of wh-questions, negative
sentences, conditional/when clauses, yes-no questions, topics and rhetorical questions.
In the next sections we explain the 3D model in more detail and then present our

results.

4.5.1 3D Face Model

Let the shape vector s = (21, 91,21, Tn, Yn, 2n) "’ , which contains X, Y, Z coordinates
of its n vertices, represent the 3D geometry of a face, and define a morphable face model
using Principal Component Analysis (PCA) on the training dataset. Following Yang
et al.’s work [128], we fit the 3D model to a face image by solving for the projection
matrix R, using a two-step Least Squares minimization: (1) estimate the deformation
parameters of the statistical 3D face model that best match the 2D landmarks when
projected on the image, and (2) estimate the projective transformation (which includes
scaling, rotation and translation) that maps the aligned 3D landmarks to the 2D image.
Steps (1) and (2) are repeated until convergence. In other words, we minimize the
projections of 3D landmarks Xy, and the corresponding 2D landmarks Y} tracked by

the ASM face tracker using:

min » ||V — R Xi|]* . (4.40)
k
The projection matrix R defines the scale, rotation and translation of the 3D shape.
If we change the rotation angles to zero, we will get a new projection matrix which

projects the 3D shape to a frontal pose, but with same scale and translation. By
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H Cond/When \ Negative \ Topic \ Wh-Q \ Yes-No | Rhetorical

Training 31 33 22 35 28 26
Testing 20 23 15 27 19 18
Total 51 56 37 62 47 44

Table 4.12: Dataset composition (number of utterances per class).

comparing the difference between the two projections, we can compute the movement

of each vertex 7 on the image plane using;:

F,=Ry-X;—R-X; , (4.41)

thereby warping the face region to a frontal pose.

4.5.2 Experimental Results

From the dataset of the Boston University American Sign Language Linguistic Re-
search Project (ASLLRP), we selected utterances containing conditional/when clauses,
negative sentences, wh-questions, yes-no questions, topics and rhetorical questions. We
used about 60% of the utterances for training and the rest were used for testing. The
detailed composition of the dataset used is shown in Table 4.12. In total, there were
24717 frames of video.

Using the methods described in previous sections, we tracked the signer’s head and
then applied the 3D face model on each input video frame. The 3D model was trained by
PCA using range data from 6 different subjects performing 5 different facial expressions
in 5 sessions [5]. In each frame, we used the tracked 2D landmarks to estimate R, which
we used to estimate the image flow needed to warp the face region to frontal pose. The
warping procedure was implemented in MATLAB and it took about 1 second per frame,
while face tracking was at a rate of about 6 fps as in other experiments (Intel Quad
Code 2.4GHz, 8GB RAM). Figure 4.13 illustrates the image warping process.

From the face ROI of the warped input image, we extracted LBP features which we

encoded to spatial pyramids of L = 2 levels and then reduced the dimensionality using
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Figure 4.13: Tllustration of process for warping facial region to a frontal pose. (Top left)
Input frame; (Top right) Tracked result; (Bottom right) Registration of 2D landmarks
to 3D face model; (Bottom left) Resulting warped facial region.

PCA to preserve 95% variance. We used the warped 2D landmarks to estimate eyebrow
height and eye distance, which together with the head pose were augmented with the
LBP features to get the final feature descriptor. We then trained a multi-class HMSVM
model with a linear kernel. Parameter C' was determined by 5-fold cross validation and
the mean confusion matrix is summarized in Table 4.13. We repeated the experiment
but this time the warping stage was skipped, so as to evaluate the effect of warping on
the classific