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ABSTRACT OF THE DISSERTATION

A Face Tracking System for Dynamic Event Recognition:

Application to Continuous Recognition of Non-Manual

Markers of American Sign Language and to Deception

Detection by Kinesic Analysis

by Nicholas Michael

Dissertation Director: Professor Dimitris N. Metaxas

Face tracking has numerous applications in the field of Human Computer Interaction

and behavior understanding in general. Yet, face tracking is a difficult problem because

the tracker must generalize to new faces, adapt to changing illumination, keep up

with fast motions and pose changes, and tolerate target occlusion. We first present

our efforts to develop a system for probabilistic face tracking, using anthropometric

and appearance constraints. We then move onto the focus of our work, which is the

application of the face tracker to two interesting recognition problems.

Firstly, given that sign language is used as a primary means of communication by

deaf individuals and as augmentative communication by hearing individuals with a

variety of disabilities, the development of robust, real-time sign language recognition

technologies would be a major step forward in making computers equally accessible to

everyone. However, most research in the field of sign language recognition has focused

on the manual component of signs, despite the fact that there is critical grammatical

information expressed through facial expressions and head gestures. Therefore, we

present our novel framework for robust tracking and analysis of facial expressions and
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head gestures, by means of a dynamic feature descriptor, a 3D face model and temporal

models, with an application to sign language recognition. We apply it to successful

continuous recognition of six different classes of non-manual grammatical expressions.

Secondly, deception is present in our everyday social and professional lives and its

detection can be beneficial, not only to us individually but to our society as a whole.

For example, accurate deception detection can aid law enforcement officers in solving a

crime. It can also help border control agents to detect potentially dangerous individuals

during routine screening interviews. Therefore, we also present two novel methods for

deception detection, using only visual cues extracted from our face tracker and a skin

blob tracker, both with promising results. One is based on a novel kernel density

descriptor of human behavior, which can differentiate normal behavior profiles from

over-controlled and agitated ones, using nearest neighbor search. The other is based on

the notion of subject-interviewer synchrony.
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Chapter 1

Introduction

1.1 Motivation

The human face is a crucial channel of non-verbal communication. Through static

facial signs [32], such as bone structure, eye shape and color, etc., which constitute a

person’s appearance, we are able to identify and distinguish people from each other.

Through dynamic facial signs [32], such as their facial expressions, humans can convey

information about their emotional state (e.g., happiness, sadness, surprise, fear), general

nervousness, their interest or disinterest in something and so on [33, 34, 35, 36, 37]. If

human computer interaction is to be successful, computers need to be able to understand

non-verbal dynamic behaviors. Therefore, what is needed is a system which can tap

into this important communication channel and through accurate face tracking (despite

variations in facial shapes, illumination, head pose and facial expressions) and dynamic

event modelling, recognize this plethora of information that people convey non-verbally.

In this thesis, we present our work on a face tracking system, which can track and

recognize such dynamic facial signals, as well as other non-verbal dynamic behaviors.

Our system is built on the work of Kanaujia et al. [57] who model the facial shape

manifold by a piecewise linear approximation. We present a particle filter extension

[51] to their face tracker with hierarchical observation likelihoods, which enforce implicit

anthropometric and multi-level appearance constraints for more accurate tracking. The

improvement in tracking accuracy is shown quantitatively on a very challenging video

sequence with facial occlusion. We then proceed to describe the successful application

of our system and methods to two novel recognition problems: (1) recognition of the

non-manual component of American Sign Language (ASL), (2) detection of deception

in interview scenarios using only visual cues through kinesic and synchrony analysis.



2

Figure 1.1: Illustration of our system’s framework.

The overall framework we use in both applications is shown in Fig. 1.1. The input

video is tracked by the face tracking system. Based on the tracked result, the system

localizes a Region of Interest (ROI), which can be application-specific. For example, for

recognizing non-manual markers in ASL we focus on the eyes, eyebrows and nose, while

for deception detection we also look at the mouth region. It then extracts discriminative

features characterizing the dynamic nature of the events we want to recognize and

using a trained model the system outputs a prediction. In the following sections of this

chapter we provide additional details motivating our face tracking system and each of

its applications.

1.1.1 Face Tracking

Face tracking is an important component of any computerized human interaction sys-

tem. It is also the building block of many applications in biometrics, facial expression

analysis and synthesis. For these applications, it is not enough to track a bounding

box around the face. Instead, the face tracker should also localize the different facial

components, e.g., eyes, nose, mouth, eyebrows, and it must do so across multiple views.

This is a challenging problem because although human faces share a common structure

(i.e., the facial components mentioned above), there is still significant variability across

different individuals. Yet, what is required it a face tracker, which once trained, can

generalize well to unseen faces and handle illumination changes. It should also cope

with partial occlusions and pose changes, such as head rotations, which cause drastic

changes in the shape of the face, causing it to lie on a non-linear manifold [57, 80]. As

the head rotates by a certain amount, the shape of the different parts of the face, as

viewed from a two dimensional perspective, does not change uniformly and by an equal

amount in all places. This effect is more severe during head rotations which approach
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profile poses.

Some methods rely on parametrized 3D deformable models [22, 23, 24, 44, 62, 116].

The accuracy of these methods depends on the correct estimation of the image features,

which are used to estimate the parameters of the 3D model. Some feature extraction

methods use deterministic tracking [100], while others track feature distributions (e.g.,

[51]). The accuracy of these methods can be affected by changes in illumination or

other image noise, since they are not learning-based, which in turn causes drifting in

the 3D model.

Other methods are based on statistical Point Distribution Models (PDM). Given

that human faces have a distinct structure and shape, researchers have developed models

and algorithms that exploit this prior information. A popular example is the Active

Shape Model (ASM) [19, 20, 30] and its “cousin”, the Active Appearance Model (AAM)

[31]. Since their introduction, there have been numerous extensions to them (e.g., [78]).

ASM is a linear generative model based on learning a statistical model of shape variation

and it is also discriminative in the sense that is utilizes local texture information together

with a trained texture prior. They work generally well for faces and expressions that

match their training data, but can fail badly, if they encounter an expression not in the

training set or if they get stuck to a local minimum due to bad initialization.

The major limitation of ASM is that it is a linear model, hence it cannot model

the non-linearity of the facial shape manifold across different poses [80]. For example,

during a head rotation to a profile pose, some of the facial features can become oc-

cluded causing a drastic change in the facial shape, which means the 2D image and 3D

face correspondences change as well as the local texture information [57]. A number

of extensions have been proposed to overcome this problem, which essentially model

this non-linearity with multiple linear ASM models, such as the View-Based ASM [21]

and the more successful piecewise linear approximation of Kanaujia et al. [57], which

extends ideas in [8, 49]. The latter can handle large out-of-plane head rotations and it

can run in real-time by incorporating the KLT feature tracker [100], but it can still fail,

especially when some facial component (e.g., eyebrows) gets occluded. This is because

the tracker is deterministic and on failure it may remain stuck in a local minimum.
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This ASM face tracker would therefore not perform well on certain realistic video, such

as sign language video where there are frequent facial occlusions. On the other hand,

probabilistic trackers [51] can handle multiple hypothesis to escape local minima.

Therefore we present and validate the hypothesis that tight integration of a face

tracker with an adaptive dynamical model (see Sec. 3) improves face tracking accuracy

significantly for challenging situations, e.g., in the case of facial component occlusion.

1.1.2 Non-Manual Markers in American Sign Language

Speech recognition technologies have become standard components of modern operating

systems, allowing average users to interact with computers verbally. Modern computer

systems can interpret voice commands in real time and they can also translate speech

to text and vice versa. Recently, we have seen the introduction of smart-phones and

tablets and with them came more advanced speech recognition capabilities. These range

from the ability to execute internet queries using one’s voice, to almost hands-free inter-

action with your new personal assistant (who now resides inside your phone’s software)

to schedule meetings, read email, fetch the news, make phone calls, play music, find

directions to the nearest gas station, etc. Through such advanced technologies, users

can accomplish many computer tasks with minimal typing, making Human Computer

Interaction (HCI) an easier and more efficient experience.

On the other hand, technology for the recognition of sign language, which is widely

used by the Deaf, is not nearly as well-developed, despite its many potential benefits

[75, 76, 77, 84, 115]. First of all, technology that automatically translates between

signed and written or spoken language would facilitate communication between signers

and non-signers by bridging the language gap. Secondly, such technology could be

used to translate sign language into computer commands, hence opening the road for

the development of additional assistive technologies (in a manner analogous to existing

speech recognition technologies described above) [115]. Moreover, computerized sign

language recognition could facilitate the efficient archiving and retrieval of video-based

sign language communication [115]. It could assist with the tedious and time-consuming

task of annotating sign language video data for purposes of linguistic and computer
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Figure 1.2: Illustration of the simultaneous nature of the manual (hand signs) and
non-manual (facial expressions and gestures) component of American Sign Language.

science research. Ultimately, such research – and resulting advances in sign language

recognition and generation – will have applications that could profoundly change the

lives of deaf people and improve communication between deaf and hearing individuals.

Non-speaking, non-deaf users of sign language, including some people with autism,

aphasia, cerebral palsy, Down Syndrome, and tracheotomies, will benefit from these

technologies in the same ways.

However, sign language recognition poses many challenges. First, many of the lin-

guistic components of a sign that must be recognized occur simultaneously rather than

sequentially (see Fig. 1.2). For example, one or both hands may be involved in the sign-

ing, and these may assume various hand shapes, orientations, and types of movement in

different locations. At the same time, facial expression may also be involved in distin-

guishing signs, further complicating the recognition task. Secondly, there is variation

in production of a given sign, even by a single signer. In fact, facial expressions, which

constitute the non-manual component of ASL, convey the grammatical information

which is crucial to correctly parse ASL sentences (see Sec. 4.1). Additional variation

is introduced by the effect of co-articulation, meaning that the articulation of a sign

is influenced by preceding and following signs, and by movement transitions between

signs (sometimes referred to as “movement epenthesis”). In spite of these challenges,

many methods [3, 10, 18, 117, 118, 124] have shown promising results in recognizing

manual components of signs.

In sign language, and in ASL in particular, critical grammatical information is ex-

pressed through head gestures, such as periodic nods and shakes, and facial expressions

such as raised or lowered eyebrows, eye aperture, nose wrinkles, tensing of the cheeks,
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and mouth expressions [67, 83]. These linguistically significant non-manual expressions

include grammatical markings that extend over phrases to mark syntactic scope (e.g.,

of negation and questions). Sign language recognition cannot be successful unless these

signals are also correctly detected and identified. For example, the sequence of signs

“JOHN BUY HOUSE” could be interpreted, depending on the non-manual markings

that accompany the signs, to mean any of the following: (i) “John bought the house.”

(ii) “John did not buy the house.” (iii) “Did John buy the house?” (iv) “Did John not

buy the house?” (v) “If John buys the house...”. In addition, recognition of such gram-

matical signals can assist with the task of recognizing the manual components of signs.

This is because there may be some correlations between information that is expressed

manually and non-manually (e.g., [60]).

Motivated by the grammatical importance of head gestures and facial expressions,

we present novel methods [75, 76, 77, 84], based on our extended face tracker, for ro-

bustly tracking and recognizing such non-manual markings associated with negative

sentences, wh-questions, conditional/when clauses, yes/no questions, rhetorical ques-

tions and topics. We hypothesize that our extended face tracker allows the extraction of

features, which, when coupled with the proposed models, can accurately discriminative

the different non-manual markers (see Sec. 4).

1.1.3 Deception Detection

Whether we want to believe it or not, deception has found its way into our everyday

social and professional lives [34]. In today’s fast-paced, modern world of complex human

interactions it is becoming ever more critical to accurately distinguish lies from truth,

and friendly from hostile intent. Accurate deception detection can be beneficial not

only at an individual level but also on a more global social scale. For example, besides

allowing employers to promote the right employee and spouses to catch a cheating

partner early in the act, accurate deception detection can aid law enforcement agencies

in solving crimes quickly and in saving lives. In addition, it can assist border control and

security checkpoint agents to detect potentially dangerous individuals during routine

screening interviews [131].
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Observer µ σ Group Female Age Age Exp. Exp.
group (%) size (%) µ σ µ σ

Secret
Service 64.12 14.80 34 3 34.79 5.96 9.12 6.69

Federal
Polygraphers 55.67 13.32 60 8 39.42 6.76 6.54 6.19

Robbery
Investigators 55.79 14.93 126 2 39.21 8.26 14.77 7.15

Judges 56.73 14.72 110 11 52.64 9.37 11.50 7.77

Psychiatrists 57.61 14.57 67 3 54.24 10.28 23.63 10.28

Special
Interest 55.34 15.82 73 53 43.33 13.44 10.76 9.89

College
Students 52.82 17.31 39 64 19.90 1.74 N/A N/A

Table 1.1: Deception detection accuracy and composition of the various groups used
in the study of Ekman and O’Sullivan [37]. “Exp.” stands for number of years of job
experience. Note that even trained and experienced professionals such as secret service
agents do not exceed an accuracy rate of 65%.

In response to these potential social and professional benefits of accurate deception

detection, many researchers have focused on studying behavior in human interactions,

in an attempt to understand the dynamics of deceit and to discover deceptive patterns

and cues, if any. This knowledge would then form the basis in designing automatic

deception detection systems and for training others to become experts in deception

detection [43]. Unfortunately, unaided humans are poor “lie detectors”. In fact, in a

recent study by Bond and DePaulo [6], it was found that unaided humans can accurately

detect deception only 54% of the time and that they are better at detecting audible lies

than visible ones. In another study by Ekman and O’Sullivan [37], it was found that

various groups of unaided professionals (e.g., judges, federal polygraphers, psychiatrists,

etc.) were only 56% accurate (on average) at detecting deception, while even a group

of trained and experienced secret service agents achieved an accuracy of 64% (see Table

1.1). The results of these studies should come as no surprise, given the many different

verbal and audible cues available during complex human interactions and which an

unaided human would need to process simultaneously and in detail, in order to correctly

detect deception [16].
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It was the poor deception detection abilities of humans, coupled with the demand

for fast and accurate deception detection, which led scientists to research development

of automated methods and tools to tackle this problem. Currently, the polygraph is

the widespread tool of choice, which monitors in real-time changes in heart rate and

electro-dermal response from deceit arousal. However, the polygraph has numerous

drawbacks [74]. First of all, in order for it to take the necessary measurements it needs

to be continuously (and often uncomfortably) connected to the subject being monitored,

thus it requires a fully cooperating subject and in close range. The polygraph functions

on the premise that under deceit arousal a subject’s heart rate and skin conductance

may increase. This means that it requires accurate calibration at the beginning of the

session by means of a few control questions, in order to establish baseline measurements

which will be used later in the interview to detect deception. Nevertheless, sometimes it

may fail to give a conclusive reading in spite of a good calibration, as the subject’s heart

rate may increase for medical reasons for example, which are unrelated to deception.

Furthermore, the polygraph is an overt system. This means that the subject knows

they are being monitored and also knows exactly what measurements are being made.

As a result, they may devise techniques to trick the machine. For example, they may

try to remain calm by taking some drug prior to the exam, in an attempt to relax

and maintain a low heart rate. Additionally, they may secretly inflict pain on them-

selves, both during the calibration phase and later during their truthful responses, so

that any excitement that the polygraph registers during their deceptive responses, the

polygraph’s operator will mistakenly regard as a truthful response.

Lastly, the polygraph requires a trained operator, whose skills and abilities control

both the likelihood of human error in the interview and the length of the interview itself.

Unlike computers, humans will get tired and will eventually need a break. Therefore,

what is needed is an automatic and covert system, which can continuously and unob-

trusively detect deception, without requiring the subject’s cooperation or any expensive

and impractical equipment.

In this thesis, we present methods [16, 74] that can be used to detect deception in

an interview scenario using only visual cues, as can be obtained from an un-calibrated
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standard camera, in order to distinguish deceptive behavioral patterns. In other words,

we hypothesize that an accurate face tracking system, such as the one we present

in Chap. 3, can be successfully applied (and extended) to extract, learn and detect,

deceptive cues via kinesic analysis of interview video data (see Chap. 5).

1.2 Contributions

Our objective in this work was to build an automatic face tracking system which can

be trained to learn the statistical distribution of the shape and texture of human faces

across different head poses. In this way, it would be able to track any target face, not

necessarily restricted to only those used for training, and adapt to out-of-plane head

rotations dynamically, while also gracefully handling occlusion of facial components

(e.g., eyebrows). The face tracker should output not just an approximate bounding

box for the tracked face, but rather an accurate 2D image localization of specific facial

landmarks, corresponding to well-defined facial structures (i.e., nose, eyes, eyebrows,

mouth and face outline contour), in addition to a prediction of the 3D orientation of the

tracked face. The tracker’s output can then be used (directly or indirectly) to recognize

dynamic events of facial expressions and head gestures, thus forming the foundation

block of useful recognition applications. In particular, we focused on the application of

our face tracking system to two very important recognition problems:

• Isolated and continuous recognition of the non-manual markers (involving combi-

nations of head gestures and facial expressions) in video sequences of American

Sign Language (ASL). Non-manual markers are important because they convey

grammatical information necessary to disambiguate a parsed signed sentence.

• Automatic deception detection using kinesic analysis of visual cues extracted dur-

ing interview scenarios. Here we first focused on features extracted from the sub-

ject’s behavioral patterns and then extended it to synchrony analysis of both the

subject and their interviewer.

More specifically, the main contributions of this thesis are the following:



10

• We extend the face tracker of Kanaujia et al. [57] to a probabilistic tracker using a

modification of the popular Condensation algorithm [51]. Our novel particle filter

uses a hierarchical observation likelihood model that combines anthropometric

constraints with hierarchical appearance constraints at both the landmark level

and at the facial component level, while also modelling shape cluster transitions

during head rotations (inspired from work in [49]). We empirically demonstrate

the superiority of our enhanced tracker, relative to the original version [57], on one

of the many challenging video sequences present in our ASL video dataset, where

the signer’s eyebrows get occluded for a relatively long period. Accurate tracking

of facial components, especially eyebrows, is crucial for correct recognition of

non-manual markers in ASL (see Chap. 4).

• We present a framework for isolated recognition of non-manual markers in seg-

mented ASL video sequences using a “bag-of-words” model built from appearance

and head descriptors which are extracted with the help of our face tracker. We

empirically show that our method can successfully recognize non-manual markers

associated with wh-questions and negation [75, 84]. Our method can be extended

to use any set or sets of appearance features, instead of or in addition to the

ones we present, as well as extended to recognition of facial expressions and head

gestures in other domains.

• We extend our framework for isolated recognition in segmented video sequences

to recognize additional classes of non-manual markers, some of which appear sim-

ilar when viewed in a static context, namely yes-no questions, conditional/when

clauses and topics, in addition to wh-questions and negative sentences. We achieve

this by introducing a rich feature descriptor, which we refer to as “oracle features”

and encodes feature dynamics, and the idea of Multiple Instance Feature (MIF)

[68] for handling feature misalignment. Additionally, we use the discriminative

Hidden Markov Support Vector Machine (HMSVM) [1] for modelling temporal

relationships between neighboring frames, instead of the static Support Vector

Machine (SVM) [13], which we had previously used. We validate the positive
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effect that each proposed extension (oracle features, MIF, HMSVM) has on the

overall accuracy of the framework with experimental results [77].

• The isolated recognition of non-manual markers in segmented ASL videos is not

tremendously useful in practice, simply because it assumes that we have already

acquired in some way the start and end of each non-manual marker that we

want to recognize, e.g., using a spotting algorithm. Continuous recognition is

more practical because it bypasses this requirement, thus saving computational

resources. Therefore, our next contribution is the extension of our framework

to continuous recognition using an extended feature set (encoding both texture

and appearance of the region of interest) and spectral clustering [4, 85] to learn

the appearance manifold of the facial expressions associated with the non-manual

markers of wh-questions, negative sentences and topics [76].

• Head pose variation changes the appearance of the region of interest, adding

additional complexity to the task of recognizing non-manual markers in ASL,

especially for classes that are only subtly different. For example, topics and yes-

no questions both involve raised eyebrows, but with the latter the head is jutted

forward, while with topics it may be tilted back. Small training datasets may

not exhibit all possible variations in the production of these non-manual markers,

therefore resulting in inaccurate recognition models. Our next contribution is the

introduction of a method for 2D image warping of non-frontal poses to frontal,

using a trained 3D model [5, 128]. We empirically show that application of this

warping transformation to the region of interest, prior to feature extraction, filters

out the effects of head orientation on the appearance of the face region. It also

removes the effects of foreshortening on the estimation of eyebrow height, which

is critical for detecting non-manual markers involving raised or lowered eyebrows.

• In the area of automatic deception detection, our contribution is a non-parametric

log-feature space feature representation of features, which are extracted using the

face tracker and a skin blob tracker (e.g., [70]), and subject-specific modelling

of behavioral profiles, for automatically discriminating over-control, agitated and
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relaxed states. We show that our method [74, 16] for kinesic analysis of a subject’s

behavioral patterns in an interview scenario outperforms state of the art accuracy

of similar approaches (e.g., [73]).

• Lastly, there have been a number of studies that point to a correlation of the

degree of synchrony between a subject and their interviewer and the deceptive

state of the subject (e.g., [81]), yet there has not been much work in developing

a computerized method for it. We extend our methods for deception detection

through kinesic analysis of a subject’s behavior, to deception detection through

synchrony analysis of the subject and their interviewer. We present a feature

representation which quantifies the level of synchrony and show proof-of-concept

experimental results, which validate our approach.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a review of

relevant work in face tracking (Sec. 2.1), in computerized recognition of manual and

non-manual markers in American Sign Language (Sec. 2.2) and in automatic deception

detection (Sec. 2.3). In the review we point out the limitations of the existing methods,

thus clarifying our contributions.

Chapter 3 describes our proposed method for probabilistic face tracking, which uses

a modified particle filter with anthropometric and appearance constraints, both at the

landmark level and at the facial component level. We begin with an overview of Active

Shape Models (Sec. 3.1) and then introduce our hierarchical particle filter extension

(Secs. 3.2–3.5). We conclude the chapter with experimental results (Sec. 3.6), where we

illustrate that our extended face tracker can handle temporary occlusions of entire facial

components, which is crucial, for example, for the accurate tracking of facial features

(e.g., eyebrows) that have a linguistic significance in Sign Language.

Chapter 4 describes the application of our extended face tracker (Chap. 3) to the

recognition of non-manual grammatical markers in video sequences of American Sign

Language (ASL). We begin the chapter with the relevant linguistic background on
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non-manual grammatical markers of ASL (Sec. 4.1). Next, we present our framework

for recognition of segmented sequences (Secs. 4.2–4.3), meaning sequences where we

have isolated the segments containing some non-manual marker. This is followed by

a description of our framework for continuous recognition of unsegmented sequences

(Secs. 4.4), meaning sequences in which we do not assume we know when some non-

manual marker occurs, and of our technique for 2D image warping based on a 3D face

model to achieve normalization of our input features (Sec. 4.5). We include various

experimental results for both isolated and continuous recognition (Secs. 4.2.4 and 4.4.4),

which demonstrate the effectiveness of our methods.

Chapter 5 describes the application of our extended face tracker (Chap. 3) to au-

tomatic deception detection from visual cues only. We begin the chapter with some

relevant theoretical background (Sec. 5.1) to justify our approach and present our hy-

pothesis. Next, we present our methods for target tracking (Sec. 5.2), followed by a

description of our feature extraction stage (Sec. 5.3). Moreover, we introduce our novel

non-parametric descriptor (Sec. 5.3.3) for representing behavioral patterns in a way that

helps distinguish over-controlled and agitated behavioral profiles from subjects’ normal

baseline patterns, as well as the model used for recognition (Sec. 5.4). We conclude the

chapter with an extension to the system that relies on interviewer-subject synchrony

(Sec. 5.5) and with experimental results (Sec. 5.5.3) to validate our methods.

Finally, in Chapter 6 we summarize our methods and findings. We conclude with

a discussion of possible directions for future work that could be used to extend our

system.



14

Chapter 2

Overview of Related Work

In this chapter we present an overview of work related to the proposed face tracking

system and to each of the presented applications of it. Namely we review work related

to recognition of the non-manual component of ASL and to deception detection from

kinesic analysis using only visual cues. Given the popularity of both the topic of face

tracking and the presented applications, we focus on work most relevant to what is

presented herein.

2.1 Face Tracking

Deformable 3D models have been widely used for face tracking as well as for facial

animation [5, 22, 23, 62]. A few extensions to these parametrized 3D deformable models

include outlier rejection [116], use of Kalman Filters [44], as well as incorporation of

optical flow constraints as an additional cue to the feature pool [24]. However, update

of the model parameters still depends on the accuracy of the extracted image features.

Given that the methods for extracting this features are in some cases deterministic

or not learning-based, they can drift if their assumptions are violated, e.g. due to

illumination changes, causing the 3D model to also drift. Moreover, Kalman filters

behave well for linear systems but for non-linear systems, particle filter implementations,

e.g., Condensation algorithm, [49, 51] achieve better performance and additionally,

observation likelihood models can be custom tailored and even combined, in a more

natural way, to suit the given application.

Other methods are based on statistical Point Distribution Models (PDM). Given

that human faces have a distinct structure and shape, researchers have developed models

and algorithms that exploit this prior information. A popular example is the Active
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Shape Model (ASM) [19, 20, 30] and the closely related Active Appearance Model

(AAM) [31]. ASM-based methods build statistical models of the shape of the object

they want to detect and track (e.g., faces) from a set of training images, which have

been labelled with the 2D or 3D coordinates of predefined landmarks, characteristic of

the object’s shape and structure. In the case of face tracking, these landmarks can be

on the face’s contour, around the eyes, eyebrows, nose and mouth. The shapes from

the labelled training images are aligned using Procrustes analysis [46] and through the

application of Principal Component Analysis (PCA) the model learns the permissible

modes of shape variation and the texture profiles that the model should expect to find

around each landmark in a test image. The AAM on the other hand can model texture

variations on the entire face region, so it gives a better match to the texture of the test

face but its running time is slower than that of the ASM. Both models, however, are

sensitive to their initialization and can get stuck in local minima.

In its original formulation, the ASM assumed that the errors between the model fit

and the test image are distributed normally [20]. There have been numerous extensions

to the classical ASM since. In the work of Cootes et al. [19] they use a mixture of

Gaussians to model shapes, while Romdhani et al. [96] introduced Kernel PCA in an

attempt to overcome the linearity limitation of the original formulation. Kernel PCA

allowed them to model non-linear shape variation resulting from changes in the yaw

head angle. Other extensions include the work by Milborrow et al. [78], Li and Ito’s

Adaboost-based ASM [66], the work by Rogers and Graham [95] and the work of Jiao

et al. [52], who incorporated wavelets into the face alignment algorithm.

The major limitation of ASM is that it is a linear model, hence it cannot model the

non-linearity of the facial shape manifold across different head poses [80]. A number of

extensions have been proposed to overcome this problem, such as the View-Based ASM

[21], which requires explicit modelling of head pose angles, and the more successful

piecewise linear approximation of Kanaujia et al. [57], which extends ideas in [8, 49].

The latter can handle large out-of-plane head rotations but it can still fail, especially

when some facial component (e.g., eyebrows) gets occluded. This is because the tracker

is deterministic and on failure it can get stuck in a local minimum. Gong et al. propose
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Figure 2.1: Comparison of face tracking methods under occlusion: (Left) Tracking
result from our proposed extended face tracker. Eyebrow occlusion by signer’s hair is
properly handled; (Right) Result on the same frame using Yang et al.’s [127] sparse
shape registration method, which fails to estimate the correct position of the occluded
eyebrows, mainly because it does not utilize dynamic information.

using non-linear projections onto the eigen-space [45], while Zhou et al. [134] propose

a Bayesian multi-view model but their reliance on the EM algorithm to estimate shape

parameters renders their implementation impractical for real-time applications.

Another shortcoming of ASM models is their inability to handle occlusions. If

a part of the object is occluded the landmarks corresponding to the occluded parts

cannot find a good match. Even worse, in their effort to reach a local optimum, they

may even cause a drift in the landmarks that did manage to find an accurate match,

resulting in a poor overall registration of the target. In order to address this issue,

Felzenszwalb et al. [39] and Tian et al. [105] propose pictorial structures to model

the spatial relationships between the different components of the target object, e.g.,

in the case of human tracking these components would be the head, torso, arms and

legs and the modelled relationships would be their connectivity as well as joint angle

limits. In [48] the EM algorithm is used with a generative model, while Zhou et al.

[133] propose a tangent shape approximation. Saragih et al. [97] introduce regularized

landmark mean-shift but their optimization is only at the landmark level, while our

proposed extension fuses multi-level appearance information as well as anthropometric

constraints. Recently, Yang et al. [127] used sparsity to model the error term in

model fitting under occlusion. Although promising, this method does not incorporate
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dynamic information and only looks at a given frame in a static context. Therefore,

it fails to correctly track faces in our challenging sign language videos, where motion

information is critical in order to estimate the position of the occluded landmarks, while

the extended face tracking method we propose succeeds (see comparison in Fig. 2.1).

2.2 Sign Language Recognition

Most research on computer-based sign language recognition has focused on the manual

components of signs. A thorough review of early such efforts is presented in the survey

by Pavlovic et al. [92]. More specifically, Starner and Pentland [102] use color tracking

and HMMs to recognize a 40 word lexicon of manual signs. In the work of Vogler and

Metaxas [118], the manual signs are split into independent movement and hand shape

channels, and an HMM framework is used to model signs as a sequence of phonemes.

These independent channels allow them to handle simultaneous manual events. Bauer

and Kraiss break down signs into smaller units using unsupervised clustering, achieving

high recognition accuracy in isolated sign recognition experiments [3]. In [120], the

authors apply techniques from speech recognition to develop a method that quickly

adapts to unknown signers, in an attempt to handle interpersonal variance. Similarly,

the authors of [136] present a method for sign recognition, which uses a background

model to achieve accurate feature extraction and then performs feature normalization

to achieve person independence. To tackle the problem of self occlusions of the hands,

Martinez and Ding [27] first perform 3D hand reconstruction and then represent hand

motions as 3D trajectories. Lately, we have even seen the emergence of some weakly

supervised methods that successfully attempt to learn manual signs from TV subtitles

[10, 18].

Recently researchers have begun to address the importance of facial expressions for

sign recognition systems [91]. Von Agris et. al. [121] provide an extensive review of

recent developments in visual sign recognition, together with a system that uses both the

manual and the non-manual components of signs (see Fig. 2.2). However, their system

poses the restriction that the signer must be wearing a glove with colored markers, in

order to enable robust hand tracking and hand posture reconstruction. Additionally,
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Figure 2.2: Schematic representation of the procedure proposed in [121] for identifying
line of sight of a subject. The procedure is a component of the overall system described
therein for visual recognition of sign language.

in their system, the tracked facial features are not used to recognize facial expressions

which have grammatical meaning. Vogler and Goldenstein present a 3D deformable

model for face tracking, which emphasizes outlier rejection and occlusion handling [114,

115] at the expense of slower run time. They use their system to demonstrate the

potential of face tracking for the analysis of facial expressions encountered in sign

language, but they do not use it for any actual recognition of facial expressions (see

Fig. 2.3). Similarly, in [87] optical flow tracking with probabilistic subspaces is utilized

to handle occlusions. Both models have many parameters, thus are difficult to train

without over-fitting. In our work, we use an Active Shape Model (ASM) face tracker

[20, 57], which can better handle out of plane rotations by modelling the facial shape

manifold as multiple overlapping clusters, while being able to run in real-time in a single-

threaded environment and no GPU optimizations. Additionally, we use a particle filter

extension with a hierarchical observation function for probabilistic tracking with better

handling of partial occlusions (see Sec. 3).
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Figure 2.3: Sample tracked frames produced by the framework of Vogler and Golden-
stein [114].
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Following the initial interest in the non-manual component of signed languages, re-

searchers have begun designing multi-modal recognition frameworks fusing manual and

non-manual features [2, 59, 60, 98, 119]. However, they limit themselves to recognizing

head gestures of negation (because their focus is still the manual component and how

to improve recognition performance by utilizing non-manual information e.g., [59]) and

eyebrow movements (up or down) [98], instead of differentiating the overlapping classes

of non-manual markers (e.g., topics and yes-no questions). Additionally, they do not

explicitly handle occlusions of facial components, and their tracking is deterministic

and unable to handle large and fast 3D head rotations.

More specifically, Aran et al. [2] present a system for sequentially fusing manual

signs and non-manual gestures, in the form of head motions, by first identifying the

level of uncertainty of a classification decision, identifying sign clusters, and identifying

the correct sign based on the manual sign and head motion. Similarly, Kelly et al.

[60] present a multi-modal system for continuous recognition of Irish Sign Language

but also focus on fusing head motions with hand gestures for the purpose of improving

recognition of the manual signs and facial expressions are not recognized. Recognition

is done using multichannel HMM threshold models using continuous multidimensional

observations. Von Agris et al. [119] recognize manual signs by integrating manual

features extracted using multiple hypothesis color tracking, and facial features, which

serve to encode facial expressions, extracted using an Active Appearance Model (AAM)

[31] to identify facial components (e.g., eyes, mouth) from which geometric features are

computed. Recognition of manual signs is done by Hidden Markov Models and feature-

level fusion of manual and non-manual features. Similarly, in [129] the neutral and the

six universal facial expressions, (i.e., anger, disgust, fear, happiness, sadness, surprise)

plus a facial expression of question are recognized and used as additional information to

help with recognition of the manual component in a Conditional Random Field [103].

An AAM is used for face tracking and classification is via Support Vector Machines

(SVM) [13].

As far as head gestures are concerned, Erdem and Sclaroff [38] present a 3D head

tracker to detect head gestures relevant to ASL, e.g., head shakes and head nods. The
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method relies on the peaks and valleys of the head motion signal, therefore it does

not need training but it assumes that there are no head occlusions and no appearance

changes after its initialization. The system developed by Kelly et al. [61] achieves a

similar task using a feature extraction scheme based on a cascade of boosted classifiers

for face and eye detection. Head gestures are recognized by an HMM network. Similarly,

Xu et al. [126] deal with recognition of various kinds of head motion in Japanese Sign

Language, which often occurs at the break between words or at the boundaries of

a sentence, thus can provide grammatical constraints for JSL segmentation. Their

feature extraction is based on color tracking and image moments to detect the face

and its orientation respectively. Lastly, Ding and Martinez [26] introduce a method for

detailed detection of faces and facial features which is based on learning to discriminate

between features and their surroundings, and on a voting strategy over different scales.

They then localize facial features using image gradient and color information.

Finally, we review work focused only on recognition of non-manual markers in sign

language. Ming et al. [79] utilize Gabor wavelet networks and Independent Component

Analysis [17] to recognize upper face non-manual signals like yes-no questions, nega-

tive yes-no questions and wh-questions, as well as lower face non-manual signals, such

as pursed lips, but neither of their method uses the 3D head pose and head motion

information. These are also computationally intensive and fail to distinguish certain

non-manual signs that appear similar. Nguyen and Ranganath [86] began their efforts

toward recognition of non-manual markers in sign language with a face tracking system

based on the Kanade Lucas Tomasi (KLT) feature tracker [100]. However, KLT is prone

to drifting, so in order to cope with large head motions and occlusions and to adapt

to face shapes of different people, they also use a Bayesian feedback mechanism which

incorporates Probabilistic Principal Component Analysis (PPCA) [107] and an on-line

update mechanism. In [87] they extract facial features using this tracker and train

Hidden Markov Models to recognize facial expressions and gestures, e.g. head shake,

eyebrow raise. The probabilities output by HMM are then fed to a Neural Network to

recognize yes-no questions, wh-questions, topics and negation. In their latest work [88]

they use a similar tracking and feature extraction framework, but for recognition they



22

Figure 2.4: Illustration of the tracked feature points (left image) and the geometric
features extracted from them (right image) and used by Nguyen and Ranganath [88].

use a hierarchical CRF model [103], which recognizes facial expressions and gestures at

the bottom level and at the top level fuses the likelihoods to recognize the non-manual

markers. Still, their system relies heavily on the tracking result given it only uses geo-

metric features (see Fig. 2.4), while in our methods we incorporate appearance features

as well [75, 76, 77, 84]. Moreover, we present a method for feature normalization in

terms of head pose, by warping input images to a frontal pose before extracting our

features. In this way, we filter out the effects of foreshortening of geometric features

such as the eyebrow heigh when the head is pitched up or down. This also filters out the

effects of head pose on the appearance features, while we extract head pose information

explicitly (see Sec. 4.5).

2.3 Deception Detection

Related work in automatic deception detection can be categorized into two groups. In

the first group, researchers look for physiological indicators, which they can correlate

to deception, in a similar fashion to how the polygraph works, which correlates elevated

heart rate and skin conductance to deceit arousal [122]. For example, the authors of

[9] and [110] build a thermodynamical model to monitor increases in blood flow in

the region between the eyes (periorbital region) of a subject, using thermal cameras

(see Fig. 2.5 for an illustration). However, this method needs a controlled environment

and expensive imagery equipment, thus hindering its broad deployment. Moreover, the

method in [9] cannot track head movements and its accuracy suffers, if the subject’s
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Figure 2.5: Illustration of the periorbital region analyzed by methods that rely on
physiological indicators to detect deceit [110] by correlating it to increased temperatures
in this region; (a) Thermal input image with the periorbital region of interest marked
by the red rectangle (b) Blown-up periorbital region of interest where the hottest 10%
pixels are shown in pink (c) The periorbital region of interest in (b) superimposed on
tan image of the facial and ophthalmic arteriovenous complex.

head is moving or is at an angle to the camera. While in [110] the authors introduced

a tandem Condensation tracker for better head tracking, whereby they track a more

trackable region and use its estimated position to predict the location of the perior-

bital region, the method’s accuracy can still be affected by fluctuations in background

temperature which can distract the tracker. Similarly, some researchers, such as the

authors of [41, 54, 63], use functional Magnetic Resonance Imaging (fMRI) to monitor

brain activity during interviews and to detect deception based on which areas of the

brain are activated (see Fig. 2.6 for an illustration of fMRI brain images and consistent

areas of activation during deceit arousal). However, methods based on fMRI cannot be

used in a covert scenario, they require specialized, expensive and sensitive equipment

in a shielded environment, and a cooperative subject.

In the second group, researchers move away from physiology and attempt to analyze

behavioral indicators of deception, instead. Zhang et al. [131] examine which facial

Action Units (AU) are activated in a particular facial expression, in order to determine

whether it is faked or real. The method is based on the fact that for specific facial

expressions (e.g., smiling) there is a predefined set of involuntary Action Units which

are activated [34, 36] and which the vast majority of the population cannot voluntarily

control (e.g., in the case of smiling it is the muscles around the eyes). If these are not

detected then the expression is deemed to be fake. Their method, however, is currently

based on static images and cannot readily be used to detect, for example, deceptive
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Figure 2.6: Illustration of fMRI brain images analyzed by methods such as [63], which
attempt to discover correlations between deception and the human neural system. Re-
gions of consistent activation during deception are marked in red.

responses to interview questions in video streams; only faked facial expressions. Lu et

al. [70] use color analysis to track hand and head skin blobs of subjects (see Fig. 2.7), to

classify their movement signatures as over-controlled, relaxed or agitated. However, it

is not convincing that the equation they used for state estimation generalizes to unseen

data, given they only tested it on a small dataset (five subjects). Given also that

there is vast physical and cultural variation in the human population, we believe state

thresholds may be subject or culture dependent, so subject-specific modelling may be

more appropriate. Tsechpenakis et al. [109] extend the work of [70], translating blob

features into illustrator and adaptor behaviors. They combine these via a hierarchical

Hidden Markov Model [94] to decide if the subject is agitated, relaxed or over-controlled

but also report results on relatively small datasets, so it is still not convincing that there

exists a global definition of agitated, relaxed and over-controlled states. In the work of

Meservy et al. [72, 73], the step of classifying behaviors [70, 109] is bypassed and the

authors attempt to directly derive deceptive cues, using blob analysis as in [70]. They

segment the video data of interviews into responses and use summary data of each

segment, collapsing it to a mean and variance for each feature (e.g., mean and variance

of head blob velocity), to make predictions but they do not achieve high accuracy.

We believe that relying on the parametric representation (mean and variance) of

the summary blob data used in [70, 73, 109], causes a lot of useful information about

each feature’s distribution to be lost, smoothing out any abrupt gesturing motions and

expressions that briefly occur, when a subject is being deceitful. Eckman and Friesen

name this “leakage” [35], while Buller et al. refer to it as “non-strategic behavior”
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Figure 2.7: Illustration of tracked skin blob regions of the head and hands (shown
as ellipses) analyzed by methods that compute behavioral indicators through kinesic
analysis for the purpose of deception detection [109].

[12]. We propose to extract “motion profiles” (see Sec. 5.3), which differ from the

movement signatures of [70, 73, 109], in that ours are non-parametric representations

of the distributions of both blob and facial features (see Sec. 5.3.3). In this way, this

richer representation captures any such leakage that occurs during an interview response

and our method can benefit by incorporating features extracted from the facial region

as well. Our results verify a claim made by Burgoon [15], who argued that gross

body gestures and animations, facial and hand adaptors, and head gestures may be

more reliable than facial expressions, but we also show that inclusion of facial features

(e.g., mouth asymmetries, which have been previously used to successfully detect facial

expressions associated with stress [28], and eyebrow movements) in the more reliable

feature pool causes a small improvement in detection accuracy (see Sec. 5.4).
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Chapter 3

A Bayesian Filtered Face Tracker

In this chapter we describe the core of our system, namely the face tracker. It is based

on the ASM model proposed by Kanaujia et al. [57], which can handle out-of-plane

head rotations and can estimate the head’s 3D orientation angle. We extended it to

better handle dynamic discontinuous shape changes, e.g., when the head changes pose,

and occlusion of facial components. The extension we present is a modification of

the Condensation algorithm [51], using particles with a mixed-state (to include shape

cluster information) and observation likelihood models that model anthropometric and

hierarchical appearance constraints. We qualitatively and quantitatively illustrate the

benefits of our extended face tracker.

3.1 Overview of Active Shape Model

The classical ASM model [20] is a statistical model of the permissible modes of variation

in the shape of a class of objects. In reality, the ASM model consists of two sub-models:

(1) a global shape model, which models shape variation and (2) a model of local profiles

for each landmark, which model the texture (in the form of grey-level image gradients)

around each landmark.

Suppose we start with m labelled training images and that each image is an-

notated with n landmarks. The training shapes are aligned using Procrustes anal-

ysis [46]. Let the ith shape be represented with the 2n-dimensional vector xi =

[x1,x, x1,y, . . . , xn,x, xn,y]
T , where xj,x and xj,y are the (x, y) coordinates of the jth land-

mark respectively, so that the training set is given by the set X = {x1,x2, . . . ,xm}.

Suppose that the covariance of the training set is given by matrix S and that its eigen-

vectors, P = [p1,p2, . . . ,p2n], span a linear subspace in which valid face shapes reside.
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Figure 3.1: Illustration of the approach used by Kanaujia et al. [57] to model the
non-linearities of the facial shape manifold. The idea is to collect training facial shapes
depicting a variety of head poses. These are clustered by head pose, so that shapes of
similar pose end up in the same cluster, learning a separate ASM model for each pose.

Define the corresponding matrix of eigenvalues as Λ. P and the corresponding Λ are

calculated by Principal Component Analysis on the shape covariance matrix X. The

eigenvectors corresponding to the largest eigenvalues represent major modes of shape

variation, so that any new test shape x can be approximated by the mean shape in the

training set, x̄, and a linear combination of the eigenvectors representing the largest

shape variance (e.g., 95% of total variance) of the subspace, can be approximated as:

x ≈ x̄ + Pb = x̄ +

q∑
k=1

pkb , (3.1)

where b = [b1, b2, . . . , bq]
T is the encoding of the test shape, assuming that the q eigen-

vectors with the largest eigenvalues have been kept after the application of PCA.

Face trackers built on the classical ASM suffer from the fact that changes in view-

point, resulting from out-of-plane rotations, cause the facial shape to lie on a non-

linear manifold, therefore linear methods cannot accurately model it. Inspired by work

in [8, 49], Kanaujia et al. [57] presented a generic framework for learning such non-

linearities in shape space using a set of overlapping linear subspaces, essentially a col-

lection of ASM models for the different head poses one expects to find in real data (see

Fig. 3.1). Their method differs from [21], where multiple independent ASM models are

trained and switched during tracking, depending on the head pose, which results in

abrupt shape changes and inaccurate fitting. Instead, the shape clusters are allowed

to overlap so that during the image search algorithm, the model is allowed to switch
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models as needed. The training and image search algorithms follow Alg. 1 and 2 respec-

tively. However, the lack of a stochastic dynamic model to model cluster transitions

and shape changes means that this method still suffers from local minima and occlu-

sions. The particle filter extension, which we present next, addresses these issues by

modelling:

1. Anthropometric constraints (to prevent abrupt shape changes)

2. Hierarchical appearance constraints (to keep the tracker locked on the target)

3. Cluster transitions (to allow escape from local minima)

The nature of the particle filter (i.e., weighted sample/particle set) also allows the

tracker to maintain multiple hypotheses about the target’s position, as well as automatic

detection of loss of track, reflected in a low sample likelihood, in which case, the system

re-samples the state space, until the target is re-acquired.

Algorithm 1 ASM Training Algorithm [57]

1. Align the set of training shapes X = {x1,x2, . . . ,xm} to the mean shape x̄
using Procrustes analysis [46] to get a set of aligned training shapes X =
{x1,a,x2,a, . . . ,xm,a}.

2. Project each aligned shape xi,a to the tangent space of the mean shape using
xti,a = xi,a/(xi,a · x̄).

3. Cluster the resulting shapes to N clusters using the EM algorithm, enforcing a
minimum covariance Vfloor, which ensures that the clusters are overlapping.

4. After the assignment to clusters, align the shapes to the local mean shape of their
cluster c, projecting to the tangent space of the cluster mean to get xti,a,c.

5. Train local linear PCA models for each cluster, so that shapes within each cluster
c are approximated as xti,a,c ≈ x̄c + Pcbc,i.

6. Learn Gaussian mixture models per cluster for the intensity profiles around each
landmark.
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Algorithm 2 ASM Image Search Algorithm [57]

1. Assign initial cluster, c, based on Mahalanobis distance to local cluster mean
shapes.

2. Search along the normal of each landmark to maximize mixture probability of the
intensity profile models for current cluster, c, to get shape x.

3. Get the eigen-encoding, bc, by projecting on the current cluster’s shape subspace,
Pc, using: x = x̄c + Pcbc, and truncating the resulting eigen-parameters, bc.

4. Assign new current cluster, c, based on Mahalanobis distance to local cluster
mean shapes (i.e., cluster switching occurs in this step). If cluster switching
occurs, re-estimate new bc.

5. If shape x has converged then return, else go to step 2.

3.2 Particle Filters: Condensation Algorithm

The Condensation (Conditional Density propagation) algorithm [51] is a flavor of par-

ticle filter, which, in turn, is a Bayesian sequential importance sampling technique,

whereby the posterior distribution of the state of the system being modelled (in our

case, the state of the tracked object, i.e., the face), is modelled by a finite set of weighted

samples at time, t: St = {(w1
t , s

1
t ), (w

2
t , s

2
t ), . . . , (w

n
t , s

n
t )}. A sample (also known as

particle, hence the name particle filter) represents a state configuration, x, and the

associated weight, w, is a measure of its likelihood, i.e., its importance. For purposes

of clarity, in this section we will use the symbol for samples and states interchangeably,

since a weighted sample is essentially a weighted state.

Bayesian sequential importance sampling involves two main steps: (1) prediction

and (2) update. Let zt be the observation about the tracked system and let xt be the

true system state, both at time t. In the prediction step, given all available observations

up to time t− 1, z1:t−1 = {z1, z2, . . . , zt−1}, this technique uses the stochastic dynamic

model of the system (also called the probabilistic transition model), p(xt|xt−1), to

predict the posterior probability of the state at time t, using:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt|xt−1)dxt−1 . (3.2)
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Once the new observation, zt, arrives at time t, the system state is updated using Bayes

rule:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
, (3.3)

where p(zt|xt) is governed by the observation model.

As already mentioned, in the particle filter framework, the posterior is approximated

by a finite weighted sample set, S. Candidate samples, sit = xit are drawn from an

importance distribution, q(xt|x1:t−1, z1:t), and the sample weight is given by:

wti = wt−1
i

p(zt|xit)p(xit|z1:t−1)

q(xit|x1:t−1, z1:t)
. (3.4)

For the Condensation algorithm, q(xit|x1:t−1, z1:t) = p(xt|xt−1), so the weights in Eq. 3.4

become proportional to the observation likelihood, p(zt|xt). At a particular moment in

time, we have a weighted particle set of n samples. To move the sample set one step in

time, we repeat the following n times. We select a sample from this set, with sampling

probability according to its weight. In this way, samples with heavier weights are more

likely to be selected and propagated. The selected sample is propagated in time, as per

the transition model of the system, p(xt|xt−1) and then some random noise is added to

the sample to diffuse the resulting sample set and prevent degeneracy. At this point we

have propagated all samples in time and we assign to all the same weight, wit = 1/n.

When the new observation comes in, zt we use it to evaluate the likelihood (weight) of

each sample, sit, according to our observation model, wit = p(zt|sit = xt). The weights

are normalized to unit sum and the result is a propagated weighted sample set. Now

we can use the sample mean, or the sample median or even mode, depending on the

application, to predict the system’s state. The process is then repeated. See Fig. 3.2

for an illustration.

3.3 Stochastic Modelling of Cluster Transitions

Often times the ASM face tracker can get stuck in a local minimum from which it

cannot recover. In order to help prevent this, we present our model for probabilistic
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Figure 3.2: Illustration of one iteration of the Condensation algorithm [51]. Blob size

represents the weight of a given sample (here it is denoted as π
(n)
k ), while blob position

represents the modelled state.

cluster transitions [50], which allows samples from the sample set to probabilistically

switch shape clusters in every frame, based on a transition probability distribution,

which we learn off-line for the purpose of modelling typical shape transitions (e.g., from

left pose to frontal pose), in addition to the deterministic cluster switching that may

happen during the image search algorithm (Alg. 2). This allows the samples to better

explore the shape space, resulting in more accurate predictions.

In order to do this, we build a Markov transition matrix, T, which we train on

a sample video sequence containing many pose changes. This sequence is tracked by

the face tracker and the shape cluster is recorded in every frame. For every pair of

frames, we look at the shape cluster transitions and use them to populate the matrix,

T, so that the matrix element T(i, j) is incremented by 1, every time we encounter a

transition from shape cluster i to shape cluster j. Each row of the transition matrix is
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Figure 3.3: Illustration of the cluster transition probabilities used in our mixed state
particle filter extension. Note that our method can be extended to include additional
clusters for finer approximation of the non-linear shape manifold.

then normalized to sum to 1, using:

T′(i, j) = T(i, j)/
∑
k

T(i, k) , (3.5)

so that the matrix element T′(i, j) gives the probability with which a shape from cluster

i will transition to a shape in cluster j at the next time frame. For more efficient

probability sampling, we also compute the cumulative transition probability matrix,

using:

C(i, j) =

j∑
k=1

T′(i, j) . (3.6)

The learned transition probabilities for the 7 clusters of our face tracking model are

illustrated in Fig. 3.3.
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3.4 Extended Tracking Algorithm

In this section we describe our novel tracking algorithm, which is based on the ASM

face tracker [57] and extended with a mixed-state condensation filter for probabilistic

tracking [50, 51].

Algorithm 3 Extended tracking algorithm

1. Initialize by running the regular ASM search (Alg. 2) to get initial state.

2. Use initial state to generate initial sample set, St, for t = 1 based on the
initial probability distribution, setting samples to uniform weight to get St =
{(1/n, s1

t ), (1/n, s
2
t ), . . . , (1/n, s

n
t )}.

3. Get next frame. For each sample, run the ASM search (Alg. 2) for a few iterations
(e.g., n = 4) to improve the fitting and then compute its observation likelihood
using p(zt|xt), updating sample weights accordingly.

4. Predict system state by first finding the mode cluster, and then calculating the
weighted average of the samples in the mode cluster.

5. Re-sample from the sample set using the samples’ weights, so that samples with
high weight are more likely to be re-sampled. Set weights of re-sampled set to
1/n.

6. Propagate re-sampled sample set in time by sampling from the transition prob-
ability matrix, T. If sample transitions to the same cluster, use the dynamical
model p(xt|xt−1). Otherwise, cluster switching occurs and sample’s state is set
to mean shape of destination cluster.

7. If there are no more frames in the video stream, exit. Else, check if cumulative
density is above threshold then go to step 3, otherwise go to step 1.

In landmark-based face tracking the state of the target can be represented by the

coordinates of each tracked landmark. However, for complex PDMs having many land-

marks, this can lead to a high-dimensional state very quickly. For face tracking we use

79 landmarks, so this would mean a 158-dimensional state vector. By exploiting the fact

that for ASM face tracking the tracked landmarks lie on a shape manifold of reduced

dimensionality, we can represent the system state using the shape cluster id (c), the

global transformation parameters, i.e., translation (Tx, Ty), scaling (s), and orientation

(θ), and the local shape deformation parameters, i.e., the eigen-encoding of the shape

given the current cluster (b = [b1, b2, . . . , bq]
T ). This leads to a mixed-state for our
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system, xt, at time t, given by xt = [c, Tx, Ty, s, θ, b1, b2, . . . , bq]
T ; obviously the length

of this state will depend on the number of local deformation parameters used by each

local cluster, which in our trained ASM model ranges from 35 to 57 eigen-parameters.

We use a first order auto-regressive model as the dynamical model that will drive the

global deformation parameters, while for the local deformation parameters we use a

Gaussian noise model with zero mean and variance σ. Note that depending on the

application and on the prior knowledge that we may have as to the dynamics of the

modelled target, this can be changed in order to get better accuracy. However, we

found that this choice of hybrid-dynamical model works well in practice for a range of

videos we have tested it on.

The tracking algorithm extended with the modified condensation filter proceeds as

follows. In the first frame we run Alg. 2 to get the starting state of the system. We

use this initial state (i.e., global transformation parameters, local deformation para-

meters and cluster id) to generate an initial sample set with uniform weights, by sam-

pling around the initial mixed-state based on a specified initial probability distribution,

which may be application dependent. For the work presented here we used a uniform

distribution centered around the initial state.

When we get the next frame, we run ASM search (Alg. 2) for n = 4 steps to improve

the fit of each sample. Then we evaluate the observation likelihoods of each sample,

p(zt|xt), updating their weights (the observation model is explained in the next section).

In order to avoid interpolating between peaks, we use the weights of each sample to

find the cluster which has the highest total weight and then take the weighted average

state of all samples within that cluster as the tracker’s predicted state for this frame.

Next, the particles are re-sampled based on their weights, so that particles with

higher weight are more likely to be selected in the re-sampling. The re-sampled particles

are propagated forward in time one step, as follows. For each particle, sample from

the cluster transition matrix to determine which cluster it should transition to. For

example, generate a random number, p, uniformly over the range [0, 1], choosing the

smallest j, such that C(i, j) > p. This number j is the cluster to which the sample

should transition to. If the current cluster of the sample is i, and if i 6= j, then cluster
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switching occurs, in which case the sample’s local deformation parameters are set to the

average shape of the destination cluster, i.e. set b = 0T , while its global transformation

parameters are set to the average value found in the training set plus a translation to

center the sample around the last frame’s prediction. If the current cluster of the

sample is i, and if i = j, then no cluster switching occurs, and the sample’s state

is propagated one step in time using the dynamical model, p(xt|xt−1), which in our

case is auto-regressive for the global parameters and N (0, σ) for the local deformation

parameters.

When all samples are propagated, the cycle repeats for the next frame, until we get

to the end of the video stream. In each step, we also check if the cumulative density of

the sample set drops below a threshold, which could indicate a tracking failure. When

this happens, we simply re-initialize the tracker and continue. The complete algorithm

is summarized in Alg. 3.

3.5 Observation Model

Here we present our hierarchical observation model which is used to estimate the ob-

servation likelihood given the state of each particle in our sample set, p(zt|xt). This

likelihood will determine the weight, wit, at time t that will be associated with the ith

sample, sti.

The observation likelihood function has the following three terms: (1) a term that

rewards with a high/low weight those samples whose state represents landmarks with

surrounding texture that matches well/poorly the local texture profiles learned during

training of the ASM and are also computed for each iteration of the ASM search al-

gorithm (see Alg. 2), (2) a term that rewards with a high/low weight those samples

whose state represents facial component configurations (i.e., nose-tip, mouth, eyes, in-

ner eyebrows) with surrounding texture that matches well/poorly the texture templates

learned at the initialization of the tracker, and (3) a term that rewards with high/low

weight those samples whose state represents a shape that is close to/far from the mean

shape of the current local cluster, i.e., implausible shapes are penalized. This leads to
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the following observation likelihood function:

p(zt|xt) ∝ (α× e−f(xt)/2σ2
l ) (3.7)

+ (β × e−(
∑6

i=1 gi(xt)/2σ2
t )) (3.8)

+ (γ × e−bT Λ−1b) , (3.9)

where Eq. 3.7 represents the local landmark likelihood, Eq. 3.7 represents the likelihood

based on the six facial component templates and Eq. 3.9 represents the shape deforma-

tion likelihood. The scalars α, β and γ control how the components of the likelihood

function are combined. For our experiments we used equal weights for α and γ and

double weight for the template likelihood factor, i.e., α = γ = 1 and β = 2. Similarly,

the scalars σl and σt control the spread of the sub-likelihood functions. We used σl = 1

and σt = 0.05. The diagonal matrix, Λ, contains the eigenvalues for the current shape

cluster learned during ASM training.

At initialization of the face tracker, we use the initial points to form a region of

interest (ROI) around each of the following six facial components: nose-tip, mouth,

left eye, right eye, left inner eyebrow, right inner eyebrow (see Fig. 3.4). These ROIs

are used to extract a template, in the form of Edge Orientation Histograms (EOH),

from each of these locations. EOH are simple to calculate and have been shown to be

discriminative descriptors of region appearance for a variety of recognition tasks, such

as hand gesture recognition [40]. EOH are calculated as follows. Fist we extract edges

from the ROI using horizontal and vertical Sobel filters, Kx and Ky, which we convolve

with the input image, I, to yield the gradient images, Gx and Gy:

Gx(x, y) = Kx ∗ I(x, y) , Gy(x, y) = Ky ∗ I(x, y) . (3.10)

The gradient images are then used to compute the magnitude, M(x, y), and orientation,

θ, of the edges using:

M(x, y) =
√
G2
x(x, y) +G2

y(x, y) , (3.11)

θ = arctan(Gy(x, y)/Gx(x, y)) . (3.12)
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Figure 3.4: Illustration of the facial regions, which are used to calculate templates in
the form of Edge Orientation Histograms.

We threshold the result so that edges with magnitude less than 5 are suppressed to 0.

The histogram descriptor is formed by counting the edges into k = 12 bins with a vote

equal to their magnitude. In order to encode the spatial distribution of edges within

each template, instead of this simple histogram, we build a spatial pyramid [64] with

L = 2 levels. The template descriptors can be updated dynamically so as to better

represent the current target appearance, in case the target’s appearance is changing

quickly because of illumination changes or changes in facial expression. Template like-

lihoods, i.e., functions gi, are computed using the spatial pyramid match kernel with

histogram intersection (see Sec. 4.2.2 for more details).

3.6 Experimental Results

We have implemented the presented particle filter extension to the face tracking system

of Kanaujia et al. [57]. Our goal was to create an improved tracking system, which can

handle out-of-plane rotations, run reasonably quick, and have better handling of occlu-

sions, especially those found in our ASL dataset, so that we can apply it to recognize

dynamic events in ASL as well as dynamic events relevant to deception detection and

in other domains.

Here we present experimental results, which validate our methods superiority over

the original method, both qualitatively and quantitatively. For the reported experi-

ments, we used 40 samples in the particle set, and we used α = γ = 1 and β = 2
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for the component weights of the observation model. We used 2 levels (i.e., L = 1)

and 12 bins in the spatial pyramids of the edge orientation histogram (EOH) features

and evaluated the template match likelihood using histogram intersection. The tracker

of [57] achieved a running time of about 30 fps, while our extended face tracker run

at about 5 fps (Intel Quad-Core 2.4GHz, 8GB RAM). Note, however, that in its im-

plementation we have made no attempt to optimize it, except for optimization of the

EOH feature calculation by means of integral images [93], since for the applications

presented in this work all tracking and processing was done off-line and after all the

video data has been collected. If desirable, the implementation can be sped up with

GPU programming or multi-threading to parallelize the computations, since samples

can be processed independent of each other and then merged again to get the weighted

sample set.

Given that the most challenging video sequences occurred in our ASL dataset, we

have selected from this dataset a relatively long sequence of 142 frames of resolution

640× 480, where there is a long period of severe occlusion of the signer’s eyebrows. In

particular, in this sequence, the signer is performing a non-manual marker for a yes-no

question, which involves raised eyebrows and the head jutted forward. The non-manual

marker begins at frame 37 and ends at frame 105. Because of the signer’s hairstyle, as

soon as she begins performing the non-manual marker, her raised eyebrows get occluded

behind her hair for more than 2 seconds until almost the very end of the video sequence.

In Fig. 3.5 we show a qualitative comparison of the two methods; our extended

face tracker corresponds to the result of the top two rows. Initially both tracking

methods perform well and track the facial landmarks and the facial expression of raised

eyebrows. This is shown by an increasing curve in the graphs on the right (rows 1

and 3). The blue colors of the graph marks the time period during which there is no

non-manual marker, while the red color of the graph marks the time period during

which the non-manual marker of the yes-no question occurs. The superiority of our

method is evident once the occlusion occurs at around frame 35. Rows 2 and 4 show

that while our method (row 2) continues to track and correctly measure the eyebrow

height of the raised eyebrows throughout the video sequence, thereby extracting correct
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Figure 3.5: Comparison of our presented particle filter extension (top two rows) to
Kanaujia et al.’s [57] face tracker (bottom two rows) under eyebrow occlusion. Note
that our method stays locked on target, while Kanaujia et al.’s tracker drifts downwards
shortly after the eyebrow occlusion occurs, and registers a sharp decrease in the graph
of eyebrow height. Correct estimation of eyebrow is crucial for correct recognition of
the non-manual component of ASL (see Sec. 4), which validates our choice of methods
for the proposed extension.
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features which can be used for accurate recognition the ASL non-manual markers, while

Kanaujia et al.’s method [57] (row 4) fails to maintain track past the first few frames.

In fact, once the eyebrows get completely occluded that face tracker drifts downwards

resulting in inaccurate track of both the eyebrows and the eyes. What’s worse, this drift

is registered as a decrease in eyebrow height (instead of the expected increase which

characterizes this type of non-manual marker), which means that use of this method

without our extension for recognition of ASL non-manual markers would fail, since it

would not be able to correctly capture the discriminative features of this recognition

problem.

In addition to the qualitative comparison, we did a quantitative comparison where

we manually annotated the positions of 9 key-points in each frame of the given video

sequence. More specifically, these 9 key-points are: inner and outer corner points of

each eye, inner and outer corner points of each eyebrow, and the nose-tip. We then

calculated the root mean squared error (RMSE) for each method. The RMSE for both

methods averaged over all 9 key-points is shown in Fig. 3.6. The red line is for the

ASM tracker [57] and the blue dotted line is for our ASM tracker extended with the

particle filter we described earlier. Note the jump in RMSE values for the tracker of [57]

at around frame 35, which is where the occlusion begins. These high values of RMSE

continue until about frame 135 when the eyebrows begin to become visible again. On

the other hand, the RMSE of our method is much lower throughout the occlusion.

Similarly, we show additional plots with RMSE averaged over both eyes (Fig. 3.7),

both eyebrows (Fig. 3.8) and the nose-tip (Fig. 3.9), where the same trend holds, except

for the case of the nose-tip which both trackers track relatively well. Note that although

the occlusion concerns the eyebrows, the RMSE plot for the eyes obtained from the

result of [57] shows a similar pattern, because when the drifting happens during the

occlusion, the prediction of the eyebrows drops to above the eyes, which in turn pushes

the prediction of the eye below the actual eye position. These results are summarized

in Table 3.1, where we clearly see the benefit of using our extended face tracker.
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Figure 3.6: Plots of Root Mean Squared tracking error using the ASM face tracker with
and without our particle filter extension. RMS error is averaged over 9 key-points (the
two corners of each eye, the inner and outer left and right eyebrows and the nose-tip).
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Figure 3.7: Plots of Root Mean Squared tracking error using the ASM face tracker with
and without our particle filter extension. RMS error is averaged over 4 key-points (i.e.,
left and right corners of each eye).
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Figure 3.8: Plots of Root Mean Squared tracking error using the ASM face tracker with
and without our particle filter extension. RMS error is averaged over 4 key-points (i.e.,
left and right corners of each eyebrow).
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Figure 3.9: Plots of Root Mean Squared tracking error of the nose-tip using the ASM
face tracker with and without our particle filter extension.
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Neutral Onset Eyebrows Raised Offset Overall

All Key-points (no PF) 6.5 7.2 16.6 14.2 13.8

All Key-points (with PF) 5.4 5.7 5.8 5.8 5.7

Eyes (no PF) 3.0 3.9 8.0 5.1 6.5

Eyes (with PF) 2.6 3.2 3.5 2.4 3.3

Eyebrows (no PF) 4.8 6.0 14.1 12.7 11.7

Eyebrows (with PF) 3.2 3.7 3.5 3.9 3.5

Nose-tip (no PF) 4.1 4.1 3.4 3.6 3.6

Nose-tip (with PF) 3.3 2.8 2.8 3.5 2.9

Table 3.1: Comparison of RMS tracking error (in pixels) with and without our particle
filter extension during the four stages of an ASL grammatical facial expression (yes-
no question) involving raised eyebrows, followed by the overall error in the sequence.
The raised eyebrows get severely occluded by the signer’s hair, causing the face tracker
to lose track and drift downwards, while the tracker with our Particle Filter extension
maintains accurate track of all important key-points. The video resolution was 640×480
and the sequence contained 142 frames.

3.7 Summary

Face tracking has numerous applications in the field of Human Computer Interaction

and behavior understanding in general. However, face tracking is a difficult problem

because the tracker must generalize to new faces, adapt to changing illumination, keep

up with fast motions and pose changes, and tolerate target occlusion. In this chapter,

we have presented our face tracking system, which extends the work of Kanaujia et al.

[57], with a particle filter for probabilistic tracking via a dynamical system, probabilistic

cluster transitions, and an observation model of hierarchical appearance and anthropo-

metric constraints. Empirical evidence on a challenging video sequence shows that our

system can handle out-of-plane head rotations and other shape local deformation in

a probabilistic manner. It additionally handles occlusion of facial components, which

is an essential requirement for the applications we present in the next chapters, with

much lower root mean squared tracking error (RMSE) than the method we extended,

both during the occlusion period and for the entire sequence overall.
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Chapter 4

Recognition of Non-Manual Markers in ASL Video

In this chapter, we describe the application of our face tracking system to the problem

of recognition of non-manual markers in video sequences of American Sign Language.

We begin with some theoretical background about the nature of non-manual markers

in ASL. We then first present a framework we have used for isolated recognition of non-

manual markers in segmented ASL video, whereby we assume that we know the start

and end times of a non-manual marker within a video sequence, and then an extension

to it where we address feature misalignment and model the temporal patterns between

neighboring video frames. Next we present a framework for continuous recognition,

where we assume no knowledge about start and end times of non-manual markers in

the video sequences, and then extend this with an image warping method that achieves

head pose normalization of the computed features using a 3D face model.

4.1 Background

In Sec. 1.1.2 we have mentioned that facial expressions and head gestures convey criti-

cal grammatical information in ASL sentences, which help disambiguate sentences that

differ only in their non-manual component. This section aims at providing additional

information about the different classes of non-manual markers that we attempt to rec-

ognize in this work and the facial expressions and head gestures associated with them.

More specifically, in wh-questions (which involve phrases such as who, what, when,

where, why, and how), the grammatical marking consists of lowered eyebrows and

squinted eyes that occur either over the entire wh-question or solely over a wh-phrase

that has moved to a sentence-final position. The possibilities are illustrated in the

example ASL sentences of Figure 4.1. In this figure, labelled lines indicate the signs
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Figure 4.1: Several sample ASL sentences for negative and wh-question constructions,
with English glosses representing the ASL signs.

with which the non-manual marking co-occurs. The first three examples would be

translated in English as “Who loves John?”. The intensity of this wh-question marking

is greatest at the end of the sentence when it spreads over the entire question, as in

Figure 4.1(3). In addition, there may be a slight, rapid side-to-side head shake over at

least part of the domain of the wh-question marking.

With negation, there is a relatively slow side-to-side head shake that co-occurs with

a manual sign of negation (such as NOT, NEVER), if there is one, and may extend

over the scope of the negation, e.g., over the following verb phrase that is negated.

These possibilities for translating an English sentence meaning “John did not buy a

house” are illustrated in the bottom three examples of Figure 4.1(4-6). The intensity

of this marking is greatest at the source of the syntactic feature being marked, as in

wh-questions, but in a sentence like (5) or (6) of the same figure, this means that

the intensity of the negative marking (including the amplitude of the head turns) is

greatest at the left edge and diminishes as the marking continues. For further detail

about distribution and intensity of non-manual grammatical markings, see [83].
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Figure 4.2: Still samples of the ASL non-manual markers that we recognize with
our methods: (first row) rhetorical questions; (second row) topics; (third row) con-
ditional/when clauses; (fourth row) yes-no questions; (fifth row) negative statements;
(sixth row) wh-questions.
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Moreover, conditional/when sentences are two part constructions with the relevant

non manual marking only over the first part (i.e., over the “conditional” or “when”

clause). This is characterized by raised eyebrows, wide eyes, head forward (or back)

and tilted to the side, followed by a pause, after which the eyebrows and head return to

neutral position. Lastly, topics are characterized by raised eyebrows, wide eyes, head

tilted back, and an optional nod, while rhetorical questions involve raised eyebrows,

head tilted to side and usually tilted back but sometimes forward; followed by a pause

and then an answer. Figure 4.2 shows sample still images of the classes of non-manual

markers just discussed. In some cases the non-manual marker is easily recognizable

from the still snapshot, e.g., wh-questions, while for most others (e.g., those involving

raised eyebrows or a head shake) a sequence of images is required to recognize the

marker.

4.2 Framework for Isolated Recognition

Using our extended face tracker (see Chap. 3), we accurately track the faces of American

Sign Language (ASL) signers, localizing their facial components (e.g., eyes, eyebrows)

and predicting their 3D head pose. Inspired by the work of Lazebnik on scene catego-

rization [64], together with the popularity of “bag-of-words” models [65], we use spatial

pyramids of features to detect lowered eyebrows and squinted eyes. We augment this

information with the 3D head pose using Stacked Generalization and Majority Vot-

ing [108, 125], to recognize the presence of wh-question facial expressions in a video

sequence. Additionally, we extend the idea of spatial pyramids to the temporal dimen-

sion, constructing pyramids of head pose derivatives (i.e., the change of head pose),

for the recognition of head shakes that are characteristic of negative expressions. The

detailed algorithm is described in Alg. 4. Next we describe the components used in this

framework, followed by our experimental results [75, 84].
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Algorithm 4 Algorithm for Isolated Recognition [75, 84]

1. Face tracking and pose estimation of video segment containing non-manual
marker.

(a) Feed video sequence into face tracker to localize and track signer’s face.

(b) Face tracker outputs (x,y) positions of 79 facial landmarks and the 3D head
pose for each frame.

2. Feature Extraction for each tracked frame utilizing ASM tracker’s output.

(a) Compute bounding box of eyes and eyebrows and extract dense SIFT feature
descriptors from it [69].

(b) Soft quantize the SIFT descriptors and the head pose using separate feature
codebooks [42].

(c) Build pyramid representation of frames and video sequences.

i. Build spatial pyramids of computed SIFT descriptors for each frame.

ii. Build temporal pyramid of head pose derivatives for the entire sequence.

3. Recognize video sequences containing negative expressions using the temporal
pyramid representation of pose derivatives and a Support Vector Machine (SVM)
[13] with pyramid matching kernel [64].

4. Recognize video sequences containing wh-question expressions.

(a) Use a stacked Support Vector Machine [108, 125], which combines the score
obtained from classifying the spatial pyramid representation of SIFT descrip-
tors and the score obtained from classifying the pose angle, to classify each
frame in the video sequence.

(b) Apply majority voting [108] on the results of the previous step, to classify
the entire sequence based on the classification of each frame within the se-
quence (if the majority of the frames are classified as depicting a wh-question
expression, the entire sequence is also classified as such).



49

Figure 4.3: Hard quantization works well
for points like the yellow triangle. How-
ever, the encoding of the green square is
ambiguous, while that of the cyan dia-
mond is implausible.

Figure 4.4: Soft quantization reduces the
problem of codeword ambiguity by allow-
ing prototypes to have a cloud of influ-
ence, instead of encoding features by a sin-
gle prototype.

4.2.1 Codebook Construction

The codebook approach, inspired by the word-document representation used in text

retrieval, was first applied to images in the work of Leung and Malik [65]. This approach

allows classification of images by representing them as a bag of features, for example

SIFT features [69], which are in turn represented as discrete prototypes [42]. Typically

researchers use unsupervised clustering to obtain a codebook, V, of prototypes, vw,

from a random subset of the training data and label each feature by the index, w, of

its best representing prototype, which minimizes some distance function e.g. Euclidean

distance. Then they count how many times each prototype, vw occurs in an image

and stack these frequencies in a vector, which becomes the new compact representation

of the image. This codebook encoding is essentially a histogram of the distribution

of codebook prototypes within a given image and can later be used for classification

purposes.

However, quantizing features in this manner creates problems. For example, if some

feature is too distant from all available prototypes, either because the feature in ques-

tion is an outlier or because there are not enough prototypes to adequately cover the

feature space, forcing such a hard assignment could mean that the resulting encoding

is implausible. Moreover, if a feature is very close to more than one prototype, it be-

comes ambiguous as to which one would represent it the best. Figure 4.3 illustrates
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these issues. The obvious solution of simply increasing the codebook size bears with it

an undesirable increase in both dimensionality and computational complexity. Instead,

the authors of [42] overcome these problems of codeword plausibility and codeword am-

biguity by employing ideas from kernel density estimation and allowing the prototypes

to have a cloud of influence over the feature space. The shape of the influence cloud

is controlled by the choice of kernel function and its scale parameter (see Figure 4.4

for an illustration). In particular, they propose a soft assignment of image features

to prototypes, resulting in the following Kernel Codebook (KCB) encoding for each

prototype, vw:

KCB(w) =
1

N

N∑
i=1

Kσ(D(vw,xi)) , 1 ≤ w ≤W, (4.1)

where KCB(w) is the value of the wth bin of the histogram encoding, W is the codebook

size, N is the number of features in the image, xi is the ith feature, D(vw,xi)) is the

distance of the wth prototype from the ith feature, and σ is the smoothing parameter

of kernel K. In this way, multiple prototypes can contribute to the encoding of each

feature, with their contribution weighed in inverse proportion to their kernel distance

from it. In our work, we adopt this method of soft quantization, setting K to be

a Gaussian kernel with standard deviation σ, and using Euclidean distance as our

distance metric, D(vw,xi).

4.2.2 Pyramid Representation

After we extract and softly quantize [42] the discriminative SIFT features of each frame,

we utilize the work on pyramid representation of Lazebnik et al. [64], which enables

us to model the spatial relationships among features and also provides the means for

measuring feature similarity between frames, using a pyramid match kernel.

Denote the set of quantized features extracted from two frames as X and Y . To

build a pyramid with L levels, for each level l = 0, 1, ..., L, we divide the frame into

an imaginary grid of 22×l cells, along both the x and y dimensions, so that the cells

in level l are bigger than the cells in level l + 1 above it. We histogram the quantized
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Figure 4.5: Toy illustration of spatial pyramid construction [64], where, for simplicity,
we assume there are only 3 codewords (circle, diamond, cross). The top part shows the
successive subdivisions of the image into different resolution levels. For each level and
for each spatial bin in that level, we count the frequency of each codeword, forming
histograms weighed according to equation (4.3). These weights are shown in the bottom
of the figure.

features that fall in each cell (for each SIFT feature descriptor we know its position

within the frame it came from), yielding separate histograms for each cell in each

of the L levels. These histograms represent the feature distribution of a particular

cell, in terms of the relative frequency of occurrence of each feature prototype within

that cell. Because cells at different levels have different sizes, their histograms are

computed over image subregions of different sizes, yielding an image representation of

different levels of resolution. The topmost layer, having the smallest sized cells, forms

the most detailed representation of the feature distribution within an eye region, while

the bottommost layer the least detailed. Collectively, the histograms at each level

form the pyramid representation of the feature distribution within an image, which is

effectively a concatenated vector of the bin values of all the histograms in the pyramid

(see Fig. 4.5 for an illustration).

Figure 4.6 shows two spatial pyramid representations extracted from video sequences

containing different facial expressions. The pyramid on the left corresponds to a frame

in which the signer was producing a wh-question expression, while the pyramid on
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Figure 4.6: Spatial pyramids of SIFT descriptors (50-word codebook, σ = 0.2). Pyra-
mid levels are decreasing with increasing bin index. Left plot is for a wh-question.
Right plot is for a negative expression.

the right comes from a video of a negative expression. Examining the two plots, the

difference in the pyramids is evident, especially in the levels of finer resolution (finer

resolution bins are on the left). The input frames, together with the tracked faces and

the extracted eye regions, that generated these spatial pyramids are shown in Figure

4.7.

In order to measure the distance between the feature sets X and Y , and eventu-

ally measure the dissimilarity in appearance between any pair of frames,we just need

to compare their pyramid representations, essentially meaning comparing the bins of

these histograms to see how much they match. Similar to [64], we measure histogram

similarity at each level l, using the histogram intersection function presented in the

work of Swain and Ballard [104] and defined as:

I(H l
X , H

l
Y ) =

C∑
j=1

min (H l
X(j), H l

Y (j)) , (4.2)

where H l
X and H l

Y are the histogram representations of the two frames at level l, C is

the number of cells at level l, while H l
X(j) and H l

Y (j) are the respective histograms of

frames X and Y in the jth cell of level l.

Since higher levels are of a finer resolution, it is intuitive to weigh the similarity

match of cells in these levels with a higher weight than that used for the lower levels
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Figure 4.7: First column shows the input frame, second column shows the tracked face
with the estimated 3D pose, and third column shows the extracted eye and eyebrow
region. The top signer is producing a wh-question, while the bottom signer is producing
a negative expression.

of coarser resolution. Moreover, if a match is found at a level l, it will also be found

in the coarser level l − 1, so when comparing feature sets, we should only consider the

new matches found at each level. This leads to the following match kernel for spatial

pyramids having L levels:

KL(X,Y ) =
1

2L
I0 +

L∑
l=1

1

2L−l+1
I l , (4.3)

where I0 is the intersection score at level 0 and I l is the intersection score at level l

[64].

Furthermore, we propose a natural extension of this pyramid representation to the

temporal domain. The ASM face tracker predicts the head pose in each frame. We

compute the change in yaw angle between successive frames and softly quantize the yaw

derivatives using a codebook that we compute from a random subset of the training

set. Then we construct a temporal pyramid for each video, by dividing a sequence of

frames into cells, in a similar fashion as done for spatial pyramids and using the same

match kernel. In this way, we form a representation which allows us to detect the head
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Figure 4.8: Sample plots of yaw angles, yaw derivatives and smoothed derivatives for
two video sequences of different class. Top row plots are from a wh-question. Bottom
plots are from a negative construction.

shake of a signer. This is because we expect to see a distinct uniform pattern of yaw

angle derivatives resulting from a head shake during a negative expression, which is

distinct from the pattern of yaw derivatives resulting from other ASL expressions. This

difference in yaw angle derivative patterns is illustrated in Figure 4.8.

4.2.3 Overview of Support Vector Machines

A Support Vector Machine (SVM) is a popular classifier with excellent generalization

properties [13, 113]. The key idea is to learn a decision boundary or margin, in the

form of a hyperplane that passes through the training data, so that the data is cor-

rectly classified, and that the distance of every training point to this hyperplane is

maximized. Hence, SVMs are often called margin maximizing classifiers. In the case

of non-separable classes, the SVM learns an optimal hyperplane which is again at a

maximum distance from as many training data points as possible, while at the same

minimizing the misclassification rate. SVMs can also learn non-linear hyperplanes by

utilizing a kernel function to map the data points to a higher dimension; this is known

as the “kernel trick” [13, 113].
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Let X = {x1,x2, ...,xn} be the training data, such that xi ∈ <m, and let Y =

{y1, y2, ..., yn} be the corresponding training class labels, such that yi ∈ {−1,+1}. Also

assume that we are first dealing with separable classes, so that there exists an optimal

hyperplane which correctly separates the data points into the two classes and at the

same time maximizes the margin, i.e. the distance of any data point to the decision

boundary. Let w be the vector normal to this hyperplane and threshold b be its hyper-

intercept. Then the training data is correctly satisfied if the following constraints are

satisfied:

wTxi + b ≥ +1 for yi = +1 (4.4)

wTxi + b ≤ −1 for yi = −1 , (4.5)

which can be combined into one set of inequalities [13]:

yi(w
Txi + b)− 1 ≥ 0 , i = 1, ..., N . (4.6)

Since the data is assumed to be separable, there exist an infinite number of hyperplanes

that satisfy equation (4.6), so in order to find the margin maximizing hyperplane we

must also add the constraint that ||w||2 is minimized [13]. The combined constraints

can be formulated as the following constrained minimization problem:

min {1

2
||w||2} , subject to yi(w

Txi + b)− 1 ≥ 0 , i = 1, ..., N . (4.7)

Skipping the details, the solution to this non-linear (quadratic) optimization problem,

subject to a set of linear inequalities, can be found by finding the solution to the

Karush–Kuhn–Tucker (KKT) conditions of its Lagrangian, using the primal–dual path

following method [13].

In the case that we are dealing with non-separable classes, the formulation is similar,

except for the introduction of positive slack variables ξi into the constraints of equations

(4.4) and (4.5):

wTxi + b ≥ +1− ξi for yi = +1 (4.8)
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wTxi + b ≤ −1 + ξi for yi = −1 , (4.9)

ξi ≥ 0, ∀i , (4.10)

which lead to the following updated constrained optimization problem (where C is a

complexity parameter) [13], solved in a similar way:

min {1

2
||w||2 + C

∑
i

ξi} , subject to yi(w
Txi + b)− 1 ≥ ξi and ξi ≥ 0 , i = 1, ..., N .

(4.11)

Once the optimization problem is solved, we can compute the signed distance (margin)

of any test point x to the decision boundary. The sign of this margin tells us on which

side of the margin the test point lies, hence we can assign it a class label f(x) = {−1,+1}

using:

f(x) =


1 wTx + b > 0

−1 wTx + b < 0

, (4.12)

while points that lie on the decision boundary (i.e. wTx + b = 0) can be classified

as either positive or negative instances, depending on the bias chosen for a particular

application. In the case that a kernel function is used to train a non-linear SVM then

the classification rules for a test point x become:

f(x) =


1 (

∑Ns
i αiyiK(xi,x)) + b > 0

−1 (
∑Ns

i αiyiK(xi,x)) + b < 0

, (4.13)

where Ns is the number of support vectors xi (see [13] for a more detailed derivation

and examples). In this work, we adopt the non-linear formulation of SVMs for non-

separable classes, where the non-linear kernel is the pyramid match kernel described in

Section 4.2.2.

4.2.4 Experimental Results

The Boston University American Sign Language Linguistic Research Project (ASLLRP)

dataset used for the research reported here consists of 15 spontaneous short narratives
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Training Testing Total

Wh-question 25 11 36

Non-Wh-question 25 11 36

Total 50 22 72

Negative Expression 22 10 32

Non-Negative Expression 22 10 32

Total 44 20 64

Table 4.1: Dataset Composition.

plus over 400 additional elicited utterances collected from several native signers of ASL

[84]. Synchronized video cameras captured the signing from multiple viewpoints (two

stereoscopic front views plus a side view and a close-up of the face). The data were

annotated using SignStream R©, software (http://www.bu.edu/asllrp/SignStream/), de-

veloped specifically for linguistic annotation of visual language data [82]. The annota-

tions include identification of start and end frames of individual signs as well as labelling

of facial expressions and head movements that have grammatical significance.

In our experiments we used the close up view of the face only from isolated utter-

ances. We selected a total of 36 video sequences showing wh-questions and 32 sequences

showing negative expressions. These formed our set of positive examples for each of the

two classes. An equal number of negative examples were collected by randomly select-

ing video sequences from different classes (e.g. conditional–when, topic–focus, yes–no

questions, etc.). We then randomly split our two datasets of wh-questions and negative

expressions into a training and validation set, and into a test set, ensuring that both

sets contained data from different signers. The duration of the video sequences ranged

from about 3 seconds to 12 seconds. The shortest duration of a wh-expression was

about 0.8 seconds (23 frames) and the longest was about 5.1 seconds (153 frames). The

shortest duration of a negative expression was about 0.6 seconds (19 frames) and the

longest was about 4.4 seconds (131 frames). The training sets contained about 70% of

the total data, while the remaining data formed the testing set. Table 4.1 shows the

dataset composition in more detail.

We used our extended face tracker (see Chap. 3) to track the signer’s face in each

sequence and extract their eye region, as well as predict their 3D head pose. Figure
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Precision Recall Accuracy

Stacked Wh-question 91.7% 100% 95.5%

SIFT Wh-question 90.9% 90.9% 90.9%

Pose Wh-question 63.6% 63.6% 63.6%

Negative Expression 90.9% 100.0% 95.0%

Table 4.2: Performance metrics for isolated recognition.

Predicted Predicted
as Negative as Non-Negative

True Negative 10 0

True Non-Negative 1 9

Table 4.3: Confusion matrix for isolated recognition of negative expressions.

4.7 shows sample results of tracking, pose prediction and localization of the eye region.

The pose angle predictions were smoothed with a one-sided Gaussian filter with σ = 2

and a length of 7 frames, so that the pose in a given frame was a weighted combination

of the pose predictions in that frame and of those in the 6 frames before it, in order

to filter out noise. Pose angle derivatives were computed, as the difference in pose

angle between two successive frames, and then a random subset was used to construct

a codebook of 75 codewords using soft assignment [42] with a Gaussian kernel and

σ = 0.1 (larger size codebooks did not achieve better recognition). Temporal pyramids

with three levels (i.e. L = 2) were then constructed for each video sequence and a

Support Vector Machine (SVM) with the pyramid match kernel discussed in Sec. 4.2.2

was trained and used to classify the test set sequences into negative and non-negative

expressions. The complexity parameter of the SVM model, C, was chosen with 5-fold

cross validation to avoid over–fitting the training set.

The SVM classifier achieved a precision accuracy of 90.9% and a recall rate of

100%, with an overall recognition accuracy of 95%. Using more levels in the temporal

pyramid hurt the performance. Here, by recognition accuracy we refer to the percentage

of instances in the training set that were correctly classified (i.e.
tp + tn

N ). Precision is

the ratio
tp

tp + fp
and recall is the ratio

tp
tp + fn

, where N stands for the total number

of test set instances, tp stands for true positive, fp for false positive and fn stands for

false negative. The detailed classification results are shown in Table 4.2, while Table
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σ = 0 σ = 0.1 σ = 0.2 σ = 0.5 σ = 1 σ = 2

25 keywords 0.830 0.798 0.845 0.858 0.892 0.751

50 keywords 0.840 0.837 0.855 0.882 0.874 0.701

100 keywords 0.850 0.854 0.889 0.861 0.841 0.703

200 keywords 0.867 0.864 0.890 0.879 0.803 0.696

Table 4.4: Area under the ROC curve (AUC) of the SVM models used to recognize
frames containing wh-expressions, trained only on the spatial pyramid features, ob-
tained using different combinations of dictionary sizes and kernel scale, σ.

4.3 shows the confusion matrix.

Similarly, from the localized eye regions we have extracted dense SIFT features [69],

which we also quantized using soft assignment [42] with a Gaussian kernel. Sample

spatial pyramids with three levels (i.e. L = 2) extracted from frames in which different

signers are producing different grammatical constructs, are shown in Figure 4.6. As

done for negative expression recognition, we trained an SVM model with a pyramid

match kernel and used cross validation to choose the value of parameter C. In this

case, however, we first used the SVM to classify each frame within a sequence and then

used Majority Voting [108] to decide the label of each sequence based on the majority

label assigned to its constituent frames. We experimented with different codebook sizes

and different kernel scales, σ, in order to obtain the best combination and we found

that a codebook of 100 words and σ = 0.2 performed the best.

Figure 4.9 shows the corresponding ROC curves for the classifier corresponding to

each combination of codebook size and kernel scale, while Table 4.4 shows the area

under the corresponding ROC curve. As expected we observe that as the codebook

size increases, so does the recognition accuracy, because we have an increasing number

of prototypes providing an improved cover of the feature space. Increasing the kernel

scale compensates for the inadequate cover of the feature space by a small number of

prototypes but once the scale gets too large for a particular codebook size, the influence

clouds become increasingly larger, allowing features to accept representation influence

by distant prototypes resulting in an incorrect encoding. Table 4.5 summarizes the

classification accuracy on the test sequences using majority voting on the class labels

of their constituent frames as predicted by the SVM models.
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Figure 4.9: ROC curves of wh-expression recognition (statically on a frame level) us-
ing an SVM trained on spatial pyramid features only, under various combinations of
dictionary size and kernel scale, σ.

σ = 0 σ = 0.1 σ = 0.2 σ = 0.5 σ = 1 σ = 2

25 keywords 90.9% 90.9% 95.5% 81.8% 81.8% 77.3%

50 keywords 95.5% 90.9% 95.5% 81.8% 81.8% 81.8%

100 keywords 95.5% 90.9% 100% 81.8% 81.8% 81.8%

200 keywords 90.9% 90.9% 100% 81.8% 77.3% 81.8%

Table 4.5: Majority Voting recognition accuracy of wh-expressions in isolated sequences,
using an SVM trained only on spatial pyramid features, obtained by different combi-
nations of dictionary sizes and kernel scale, σ.
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σ = 0 σ = 0.1 σ = 0.2 σ = 0.5 σ = 1 σ = 2

25 keywords 90.9% 95.5% 90.9% 86.4% 86.4% 81.8%

50 keywords 90.9% 86.4% 100% 90.9% 90.9% 81.8%

100 keywords 90.9% 86.4% 95.5% 90.9% 86.4% 81.8%

200 keywords 90.9% 81.8% 95.5% 86.4% 81.8% 81.8%

Table 4.6: Majority Voting recognition accuracy of wh-expressions for isolated se-
quences, using a stacked SVM combining spatial pyramid features, obtained using
different combinations of dictionary sizes and kernel scale, σ, and head pose features.

In our previous work, [75, 84], we found that the head pose of the signer might

be correlated with the grammatical facial expression being made. In particular, we

observed that the signer tilted their head backwards when signing a wh-question. Using

this finding, we implemented two separate base SVM classifiers to classify individual test

frames into wh-questions and non-wh-questions; one used only eye appearance features

(i.e. SIFT pyramids), which we called SIFT–SVM model, and one used only head pose

features, namely zero, first, second and third order pitch angle differences, which we

called Pose–SVM model. The un-thresholded predictions of the two SVMs for each

frame were then combined in a Stacked SVM framework, [108, 125], by a trained meta–

classifier which output the final label for each frame. Stacking [108, 125] allows us to

learn to smartly combine the individual predictions of multiple base classifiers in order

to improve classification accuracy, by utilizing the specific expert knowledge learned

during training by each of the base classifiers. The meta–classifier was also an SVM

which used a radial basis function (RBF) kernel; we refer to this model as the Stacked–

SVM. The complexity parameter, C, and the kernel scale, σ, of the Pose–SVM and of

the Stacked–SVM were determined by cross validation. For isolated recognition, the

predictions of the individual frames within each segmented sequence were aggregated

using majority voting, in order to obtain the final prediction for the sequence. Table 4.6

summarizes the recognition accuracy of the Stacked–SVM models on the test sequences.

We notice that there is a general improvement in recognition accuracy when combining

eye region appearance and head pose features of the signer, which in turn allows us to

learn smaller size dictionaries (compare Tables 4.5 and 4.6). Table 4.2 summarizes the

performance metrics for isolated recognition of wh-questions.
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4.3 Modelling Temporal Dependencies and Misalignment

Although the method of the previous section achieved good recognition performance

on two classes of non-manual markers, for differentiation of non-manual markings that

differ very subtly from one another, it is going to be crucial to combine multiple evi-

dence (e.g., use head positions and movements, appearance features around the nose,

etc.). Therefore, in this section we present an extension to our framework for isolated

recognition, which allows us to recognize non-manual markings associated with wh-

questions and negative sentences, as well as conditional/when clauses, yes/no questions

and topics. The last three classes all involve raised eyebrows, so to be able to distin-

guish them, it will be necessary to employ additional features and model the temporal

feature transitions between neighboring frames.

More specifically, the proposed extension differs from the method in the previous

section in the following ways. First, once we track the facial landmarks, we focus on an

extended rectangular region of interest (ROI), which includes the eyes, eyebrows and

nose, so as to capture a wider range of upper face expressions, e.g., nose wrinkling and

cheek tensing. Second, we divide this ROI into a set of smaller patches (henceforth

referred to as parts), which correspond roughly to areas of the face relevant for these

specific grammatical expressions, e.g., inner and outer eyebrows. We extract from each

part a histogram of Local Binary Patterns (LBP) [89]. These are effective for texture

classification [99, 132], faster to compute and more robust to illumination variations

than SIFT, which is used in [75]. Third, we handle feature misalignment, arising from

tracking inaccuracies and partial facial occlusions, by computing a Multiple Instance

Feature (MIF) [68] for each part. Fourth, in addition to the head pose and texture

features per frame, we explicitly calculate eyebrow height. The final feature descriptor

is augmented with a “summary” of the features of future and past frames sampled

at regular intervals in the neighbourhood of the current frame, which we call “Oracle

Features” (see Figure 4.10). This representation aims to encode the dynamic nature

of facial expressions and head gestures encountered in non-manual grammatical mark-

ers. Lastly, by utilizing a discriminative, margin-maximizing, Hidden Markov Support
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Vector Machine (HMSVM) [1, 53] our method outperforms generative Hidden Markov

Models (HMMs) [94], which can over-fit the training data in the absence of sufficient

training examples. Each new component of the proposed extension is discussed in the

following subsections, followed by experimental results that validate our methodology.

4.3.1 Tracking eyebrow height and head pose

From the tracked landmarks we can compute the 2D position of a signer’s left, (xL, yL),

and right inner eyebrows, (xR, yR), and their nose-tip, (xN , yN ), in each frame. For

inner eyebrow calculation we use the 4 innermost eyebrow landmarks, while for the

nose-tip we use the lower 8 nose landmarks. The eyebrow height at time t, denoted as

ht, is derived as the average Euclidean distance between the nose-tip and each inner

eyebrow:

ht =
1

2
×
(√

(xL − xN )2 + (yL − yN )2 +
√

(xR − xN )2 + (yR − yN )2

)
. (4.14)

For robustness to tracking noise, we filter the computed (x, y) positions of the key

points (eyebrows and nose-tip) using a Kalman filter [56], assuming linear state dy-

namics with Gaussian noise, w. The system state, xt, includes the position, pt =

[xL, yL, xR, yR, xN , yN ]T , and the velocity, vt = [ẋL, ẏL, ẋR, ẏR, ẋN , ẏN ]T , of these key

points at time t. The dynamic process is governed by:

xt+1 = Akxt + wt , (4.15)

with

At+1 =

1 δt

0 1

 and wt ∼ N (0, Q) . (4.16)

The observation process is modelled as:

zt = Hxt + ut , (4.17)

where H = [1, 0], zt is the observation as obtained by the face tracker and ut ∼ N (0, R)
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is the observation noise at time t. A similar model is also used to filter the predicted

head pose. In this case the state vector includes the 3D head pose, at = [aP , aY , aT ]T ,

and the head pose velocity ȧt = [ȧP , ȧY , ȧT ]T , where P, Y and T stand for pitch, yaw

and tilt angles respectively.

4.3.2 Texture Features

Once we track the signer’s head, we compute a bounding box of the tracked landmarks

around the eyes, eyebrows and nose, forming an extended ROI from which we compute

Local Binary Patterns (LBP) [89]. Put simply, LBPs are binary codes that characterize

the texture in the neighbourhood of a pixel by thresholding the value of each neighbour

by the gray-scale value of the central pixel (set to 1 if larger, set to 0 otherwise) and

interpreting the pattern as a binary number, which is converted to a decimal code.

Typically, LBP codes are first computed for each pixel in an image patch and then the

normalized histogram of LBP codes is generated and used as a texture descriptor of

the patch.

4.3.3 Oracle Features

Facial expressions and gestures are dynamic processes, especially those that have a

grammatical meaning in ASL. It is often difficult even for ASL signers to detect non-

manual markers using static frames alone. For example, one key component of the

non-manual marking of negation is a head shake, whose presence in a sequence cannot

be detected solely by looking at the head pose in any single frame. Instead, one needs

to have available a “snapshot” of the variation of head yaw angle over time, in order to

detect the turning of the head in one way and then in the opposite way.

Therefore, in order to strengthen the representational power of all features (texture

MIF, head pose, eyebrow height), we encode information from neighbouring frames.

For each frame we sample the feature values at regular offsets (sample points) from the

current frame (anchor point). Before sampling, we compute a weighted average (by

means of a Gaussian curve) of the feature value in a small window around the anchor

and each sample point. This is illustrated in Figure 4.10 where an example anchor
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Figure 4.10: Plot of head yaw angle over time for a sequence containing negation (red
segment marks when the non-manual marker occurs), also illustrating computation of
yaw oracle features for frame 60 (see Section 4.3.3).

point is shown in black and example sample points are shown in blue. The ellipses

indicate the size of the averaging neighbourhoods. Thus, the final feature descriptor of

each frame is formed by combining features in that frame with the features obtained

from the neighbourhood of the respective sample points. We refer to these augmented

feature vectors as “Oracle features” because for every frame they encode the dynamic

evolution of feature values. We show that this richer feature representation allows our

method to achieve higher classification accuracy (see Section 4.3.6).

4.3.4 Overview of Multiple Instance Features

Feature misalignment sometimes occurs; i.e., the same features do not always fire up

in all positive detection windows, often because of object pose variation. Lin et al. [68]

introduced Multiple Instance Features (MIF) for boosted learning of part-based human

detectors, where an initial boosting seeds the location of an object part from translated

candidates, and then multiple instance boosting pursues an aggregated feature for each

part. So an MIF is an aggregation function of instances. More specifically, given a
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classifier, C, it is the aggregated output, y, of a function, f , of classification scores,

{yj}Jj=1, on multiple instances, {xj}Jj=1:

y = f(y1, y2, ..., yJ) = f(C(x1), C(x2), ..., C(xJ)). (4.18)

Each bag, xi, consists of a set of instances, {xij}Nj=1. For each classifier C, the score

yij of an instance xij can be computed as: yij = C(xij). The probability of an instance

xij to be positive is given by the logistic function: pij = 1
1+e−yij

. In [71], the multiple

instance learning problem is formulated as the maximization of diverse density, which

measures the intersection of the positive bags minus the union of the negative bags.

The diverse density is probabilistically modelled using a Noisy-OR model to harness

the multiple instance learning problem. The probability that a bag xi is positive is

formulated as pi = 1 −
∏Ni
j=1(1 − pij). The Noisy-OR model means the probability

of the bag to be positive is high when this bag includes at least one instance with

high probability to be positive, otherwise the bag is negative when all the instances

inside have low probability of being positive. Following [68], the geometric mean is

applied to avoid the numerical issues when Ni is large, so the formula is modified to

pi = 1−
∏Ni
j=1(1−pij)1/Ni . The multiple instance aggregated score yi is computed from

the instance scores yi as:

yi = log((

Ni∏
j=1

(1 + eyij )1/Ni)− 1), (4.19)

which comes from the logistic relation between pi and yi: pi = 1
1+e−yi

. In this paper

each yi is an MIF of texture, obtained by learning weak classifiers (decision tree stumps)

on the LBP histogram bins of a part (a part is a patch within the face ROI). See [68]

for further details.

4.3.5 Overview of Hidden Markov Support Vector Machine

In the traditional supervised classification setting, we have a set of labelled training data

D = {(xi, yi)}Ni=1, where xi ∈ <d is the d-dimensional feature vector of training sample
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i and yi ∈ < is its corresponding class label. The goal is to learn a mapping function

from inputs to outputs F : <d → < that minimizes some loss function, typically a 0/1

loss. In the sequence tagging problem we have sequences of feature vectors and for

each one we have a sequence of corresponding outputs: D = {(xji , y
j
i )|j = 1, . . . , J}Ni=1,

where J is the length of the ith sequence. Note that sequences need not have the same

length. The goal in this setting is to predict the class labels of all instance within each

sequence.

A popular model used in sequence tagging problems (most notably for speech recog-

nition) is the Hidden Markov Model (HMM) [94]. Despite its success, the HMM has

certain limitations. First of all, it assumes conditional independence between observa-

tions when given the current state; an assumption that can be too restrictive for certain

problems where there are complex feature interactions. Secondly, HMMs are generative

models. During their non-discriminative training, the goal is to learn model parameters

that maximize the likelihood of fitting the given training data, instead of optimizing for

accurate classification (although recently there has been interest in alternative methods

for training [124]).

Altun et al. [1] proposed the Hidden Markov Support Vector Machine (HMSVM),

which, like the HMM, models the interactions between features and class labels, as

well as interaction between neighbouring labels within a sequence. Unlike HMMs, the

HMSVM model is trained in a discriminative margin-maximizing learning procedure.

This means that it can achieve better generalization performance on test data, hence

higher accuracy. Similar to the standard Support Vector Machine (SVM) [13], the

HMSVM can also learn non-linear discriminant functions via the kernel trick.

Given a feature sequence x = {xj}Jj=1, where xj are instances within the sequence

the model predicts the corresponding tag sequence y = {yj}Jj=1 using [1]:

y = arg max
y∈Y

(
J∑
j=1

(

K∑
k=1

< xj ,wyj−k,...,yK >+ < φtrans(yj−k, . . . , yK),wtrans >)) ,

(4.20)

where wyj−k,...,yK is an emission weight vector modelling interactions between features
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and kthorder observations, and wtrans is the transition weight vector modelling transi-

tions between neighbouring tags. Discriminative training aims to minimize the number

of misclassified tags, while maximizing the separation margin, hence the training ob-

jective is [1]:

min{1
2wTw + c

J

∑J
j=1 ξj} (4.21)

s.t.: zj(y)(< w,Φ(xj ,y) > +θj) ≥ 1− ξjξj ≥ 0 , ∀j = 1, . . . , J , ∀y ∈ Y , (4.22)

where c is a parameter that controls the penalty of misclassification trading off training

error and margin size. Joachims et al. [53] proposed the cutting-plane algorithm which

offers a significant speed-up in the training time of HMSVMs over the original working

set algorithm of [1]. In our framework, from each frame in each segmented sequence,

we use the oracle feature representation of the eyebrow height, the head pose and the

multiple instance texture features, with their corresponding class label, and train a

one-vs-all HMSVM model. Sequences in our training set contained no overlapping non-

manual markers, so we only needed one model to tag each frame in the segmented

sequence. Despite this, our method can easily generalize to sequences with overlapping

non-manual markers by training n one-vs-all models (one for each class) and running

them in parallel on each sequence.

4.3.6 Experimental Results

From the corpus of the Boston University American Sign Language Linguistic Re-

search Project (ASLLRP) dataset, we selected training and testing sets of 32 and 13

video clips, respectively, of isolated utterances, extracting the segments containing non-

manual markers of the classes of interest. Certain sequences contained multiple non-

manual markers but there was no overlap between them. The exact composition of

these sets per class is shown in Table 4.7. Both sets contained three different native

signers.

Using the methods described in previous sections [77], we tracked the signer’s head,
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Class Training Testing
Set Set

C/W 4 (292) 2 (158)

Neg 8 (532) 4 (258)

Top 9 (249) 4 (86)

Wh 8 (492) 5 (351)

Y/N 4 (262) 2 (172)

Table 4.7: Number of segmented sequences per class in our dataset (total number of
frames in parenthesis)

extracting their head pose and computing their eyebrow height. These were post-

processed with a Kalman filter for more accurate tracking. From the filtered head pose,

we compute the head pose derivative per frame, to avoid learning a dependence on the

initial head position of a signer. Eyebrow height is also normalized by the height in

the first frame of each sequence and then we compute the height derivative, in order to

normalize for subjects of different face proportions and distance from the camera. For

each frame we compute oracle features as explained in Section 4.3.3. We use 5 sample

points, offset at 0, +5, +10, +15 and +20 pixels from the current frame respectively,

averaged over a 5 frame window, resulting in a 20-dimensional descriptor of head pose

(pitch, yaw, tilt) and height variation per frame.

Before extracting texture features from the face ROI, we align all images, rotating

frames by the average of the tilt angle and the angle between the centroids of the two

eyes, as computed from the ASM landmarks. Faces were normalized by cropping frames

to 64× 64 pixels [106]. The face ROI is divided into a 4x4 cell grid with each cell being

16 × 16 pixels. From each cell we compute normalized histograms of uniform LBP

features [89] using 8 samples and a radius of 1 pixel. For purposes of computing MIF

[68], we consider each cell being one facial part (so we have 16 parts per frame) and

translate each cell in a regular grid around its original position, computing additional

LBP features. The collection of features for a given part form a bag of instances which

we convert to a 5-dimensional MIF score, one for each class of non-manual markers.

The idea is that if a positive part, with respect to a class label, is misaligned (as a result

of tracking error or partial occlusion), as we translate it around its neighbourhood and

compute instances of LBP features, at least one of these instances will capture features
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True Predicted Class
Class C/W Neg Top Wh-Q Y/N

C/W 100% 0 0 0 0

Neg 0 75% 0 25% 0

Top 0 0 100% 0 0

Wh-Q 0 0 0 80% 20%

Y/N 0 0 0 0 100%

Table 4.8: Confusion matrix of HMSVM segmented recognition using oracle features of
LBP-MIF, head pose and eyebrow height.

% Correct classification

HMM 70.6%

HMSVM 88.2%

HMSVM + non-MIF LBP 82.4%

HMSVM + MIF LBP + non-oracle 76.5%

Table 4.9: Evaluation of models showing the benefit of discriminative HMSVM with
the proposed feature representation that handles feature dynamics and feature mis-
alignment.

from a correct part placement, and the bag will still be positive for that class. As in the

case of head pose and eyebrow height, we compute oracle features for the LBP MIF.

Here, to avoid increasing feature dimensionality too much, we only use 3 sample points,

offset at 0, +5 and +10 pixels from the current frame respectively, also averaged over

a 5 frame window, resulting in a 240-dimensional texture descriptor.

The three sets of features (pose, height and texture) are concatenated into one

feature vector and we train an HMSVM. Because of our small training set, we first

optimize the parameter c using 3-fold cross validation on the training set, ensuring

that each fold contains at least one sequence from each class, before evaluating on the

test set. The recognition accuracy of the HMSVM model is summarized in Table 4.8.

Analysis of the results revealed that for the wh-question sequence that is misclassified as

a yes/no question the signer’s head is rotated to the side, causing an incorrect estimation

of the eyebrow height. Most importantly, this rotation causes a significant change in

the appearance of the face ROI since most of the training images are frontal views. We

expect to be able to overcome this problem by using training data that includes such

cases of non-frontal faces. Additionally, our method mistakes a negative sequence for
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a wh-question. In this sequence there is a clear head shake that our framework can

capture and which is characteristic of negation. However, there is a head-shake – albeit

somewhat different in character – that frequently occurs with wh-questions, as well as

some degree of furrowing of the brows that occurs with both constructions. The model

failed on this case, possibly because of insufficient training examples exhibiting this

combination of eyebrow appearance and head shaking.

In order to compare the HMSVM with the HMM, we also trained 5 HMMs, one

for each class, classifying test sequences as belonging to the class whose HMM yields

the highest probability. The number of states of each HMM was decided using 3-fold

cross validation. Results are shown in Table 4.9. Note that with our small dataset, the

generative HMM fails to outperform the discriminative HMSVM model. In the same

table we also show the result of an experiment where we used oracle pose and height

features with non-MIF oracle LBP features and an HMSVM recognizer (HMSVM +

non-MIF LBP). Note that this model performs worse, showing that the MIF indeed

help improve accuracy. Using non-oracle features (HMSVM + MIF LBP + non-oracle)

also hurts performance, as expected, given the dynamic dependence of features rele-

vant to recognition of facial expressions and non-manual ASL grammatical markers in

particular.

Therefore, the presented framework is successful in isolated recognition of a wider

range of classes of non-manual markers. As the our results show, the key to the success

of our method lies both in the discriminative recognition model (HMSVM) as well as

in the rich feature representation that encodes feature dynamics and is able to handle

feature misalignment. In the following, sections we describe an analogous framework

for continuous recognition.

4.4 Framework for Continuous Recognition

In this section we present our framework [76] for continuous recognition, where we

assume no knowledge about start and end times of non-manual markers in the video

sequence. This method extends prior work [75, 84], in which the signer’s head is tracked
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and appearance features, in the form of spatial pyramids [64] of SIFT descriptors [69],

are extracted from the region of interest, in the following ways. First, we extract

additional shape features in the form of spatial pyramids of histograms of oriented

gradients (PHOG) [7]. Second, we use spectral clustering [85], measuring the affinity

using the Spatial Pyramid Match Kernel (SPMK) in Equ. 4.3, introduced by [64]. This

reduces the dimensions of the augmented appearance and shape feature vectors. Lastly,

we use Hidden Markov Models (HMMs) [94] to learn the dynamic feature transitions

that occur during production of each class of non-manual markers. A summary of

the algorithm is given in Alg. 5. Next we describe the components of our framework

followed by our experimental results.

Algorithm 5 General algorithm for Continuous Recognition [76]

1. Face tracking on continuous video stream

2. Feature Extraction

(a) Compute appearance features from ROI (PHOG and PSIFT) [7, 64, 69].

(b) Compute head pose features.

(c) Estimate eyebrow height (distance between eyebrow and eyes).

3. Get embedding of each set of appearance features using Spectral Clustering [4, 85].

4. Use trained HMM models [94] with sliding window for continuous recognition of
video stream.

4.4.1 Overview of Feature Extraction

Once a frame is tracked and we have obtained the 2D position of the facial landmarks,

we extract dense SIFT descriptors over a regular grid from the eye region. We cluster

the SIFT descriptors of a random subset of the training frames, to obtain a codebook of

prototypes and then encode all other descriptors by the index of their nearest prototype.

As in the method for isolated recognition, we encode the spatial distribution of these

features within the region of interest using spatial pyramids (see Sec. 4.2.2), to yield

the spatial pyramid SIFT representation or PSIFT for short. The dissimilarity in

appearance between any pair of frames, is measured by comparing the bins of these
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histograms to see how much they match, using the weighted Spatial Pyramid Match

Kernel (SPMK) given by Equ. 4.3 [104, 47, 64].

In order to get a more discriminative representation of the region of interest, we

choose to combine the above mentioned appearance descriptor with a shape descriptor.

In particular, we choose to use the pyramidal Histogram of Oriented Gradients (PHOG)

used by the authors of [7]. PHOG descriptors are obtained by first applying a Canny

edge filter to suppress weak edges. Then we quantize the gradient orientations of pixels

into uniform bins, with each pixel’s vote being proportional to the magnitude of its

gradient, followed by construction of a spatial pyramid of HOG descriptors to get the

final descriptor for the region. We compute PHOG features in the same way, but for

measuring PHOG similarity we use the weighted SPMK in Equ. 4.3.

4.4.2 Overview of Hidden Markov Models

Hidden Markov Models (HMM) are statistical tools for modelling time series data [94].

Having been successfully used in speech recognition applications, researchers have also

utilized them for recognizing handwriting, gestures, facial expressions, and of course

sign language [102, 112, 117], among other things. In the following section we provide a

brief overview of the theory behind HMMs ([94] provides a more thorough treatment).

HMM Definition

An HMM consists of a set of N distinct states, Q = {S1, S2, ..., SN}. At any given

time the system is in one of these N states and each state Si has an associated initial

probability πi, which represents the probability that the system starts in state Si.

At regular time intervals, it makes a transition from its current state at time t,

denoted as Qt, to its next state, denoted as Qt+1, both of which can take any value

from the above set of states Q. These transitions are governed by the HMM’s transition

probabilities, which, in the case of homogeneous HMMs, are invariant over time. For

example, the probability of transitioning from Si at time t to Sj at time t + 1, is

denoted by aij , i.e. P (Qt+1 = Sj |Qt = Si) = aij , therefore
∑

i P (Qt+1 = Sj |Qt = Si) =∑
i aij = 1. It should be emphasized that for first order HMMs, state transitions obey
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Figure 4.11: An example of a Left to right HMM with 4 states. Links represent the
permissible state transitions, while link labels correspond to the transition probabilities.
The plot under each state represents its emission distribution.

the Markov property, which means that the probability of the transition from Qt to

Qt+1 only depends on the value of Qt, i.e. P (Qt+1 = Sj |Qt = Si) = P (Qt+1 = Sj |Qt =

Si, Qt−1, Qt−2..., Q1) = aij . These transition probabilities are collectively represented

by an N ×N matrix, A, where the entry in the ith row and jth column is aij . HMMs in

which a transition to an already visited state is not allowed, i.e. aij > 0, implies j ≥ i,

are called left-to-right, while HMMs in which all possible transitions are allowed are

called ergodic. Left to right HMMs are typically used in speech recognition to model

phonemes. In this paper we also utilize this topology for our HMM models.

Additionally, at time t the current state Qt = Si generates an observation Ot =

k ∈ Ω, which follows an observation probability distribution (also called emission prob-

ability distribution), denoted as bi(k), i.e. P (Ot = k|Qt = Si) = bi(k), therefore∑
k P (Ot = k|Qt = Si) =

∑
k bi(k) = 1. From this, another HMM model assumption

should become clear: observations are only dependent on the current state that gener-

ated them.

Thus, an HMM model λ is parameterized as λ = (π,A,B). Figure 4.11 shows a left-

to-right HMM model with 4 states. The links between states illustrate the permissible

state transitions, while the plots underneath each state depict the respective emission

probability distributions. Such multi-modal distributions are typically modelled by a

Gaussian mixture model [94].
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The Basic HMM Problems

Having defined HMM models we now look at the three basic problems that HMM theory

deals with [94]:

1. Given a sequence of observations O = O1, O2, ..., OT , compute the probability

that it was generated by a given HMM model λ, i.e. compute P (O|λ).

2. Given a sequence of observations O = O1, O2, ..., OT and an HMM model λ,

compute the most probable state sequence Q = Q1, Q2, ..., QT that produced O,

i.e. find Q that maximizes P (Q,O|λ).

3. Given a sequence of observations O = O1, O2, ..., OT and an HMM model λ, adjust

its model parameters, λ, so as to maximize P (O|λ).

The first problem is the evaluation problem and is useful for the recognition of an

unknown input sequence with a set of trained HMMs, where, in our case, each HMM

corresponds to a particular class of grammatical facial expressions e.g. Wh-expressions.

For each HMM, λ, we compute the likelihood of the given observation sequence, P (O|λ).

Then the input sequence is labelled with the class corresponding to the HMM that

yielded the highest likelihood. Rabiner [94] proposed the recursive forward-backward

algorithm which computes this observation likelihood, P (O|λ), in O(N2T ) time. The

algorithm makes use of the two model assumptions mentioned in Section 4.4.2, namely

the observation independence assumption and the Markov property of the state transi-

tions. More specifically, let Q = Q1, Q2, ..., QT be a state sequence of the HMM model

λ, and define the forward variable αt(i) = P (O1, O2, ..., OT , Qt = Si|λ), for 1 ≤ i ≤ N ,

where N is the number of model states as before. Then:

α1(i) = πibi(O1) , (4.23)

αt+1(i) = bi(Ot+1)

N∑
j=1

αt(j)aji 1 ≤ t ≤ T − 1, (4.24)

P (O|λ) =
N∑
i=1

αT (i) . (4.25)
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Equation 4.23 is the initialization of the recursive procedure, Equ. 4.24 is the induction

step and Equ. 4.25 is the termination step which computes the desired observation

likelihood.

The solution to the second problem for a given observation sequence O and a model

λ, can be thought of as “un-hiding” the hidden state sequence Q that generated O. It

corresponds to finding the most probable state sequence Q which could have emitted O,

i.e. finding Q which maximizes P (O,Q|λ). Rabiner [94] suggests solving this problem

using a dynamic programming technique, namely the Viterbi algorithm. Define the

variable δt(i) to correspond to the maximum probability of all state paths that end up

in state Si at time t (i.e. Qt = Si):

δt(i) = max
Q1,Q2,...Qt−1

P (Q1, Q2, ..., Qt = Si, O|λ) . (4.26)

The Viterbi algorithm is then summarized by the following equations:

δ1(i) = πibi(O1) , (4.27)

δt+1(i) = bi(Ot+1) · max
1≤j≤N

{δt(j)aji} , (4.28)

max
Q

P (Q,O|λ) = max
1≤i≤N

{δT (i)} . (4.29)

Similar to the forward-backward algorithm, Equ. 4.27 initializes the procedure, the

induction step is represented by Equ. 4.28 and Equ. 4.29 is the termination step. On

termination, this will give us the probability of the most probable state path in O(N2T )

time. In order to retrieve the actual path one needs to maintain a table which will be

used to record which value of j maximized Equ. 4.28. The path can then be retrieved

by backtracking in the table [94].

Finally, the third and most difficult problem is essentially the problem of training

HMMs with training data. No analytic algorithm exists for finding a solution to this

problem and in [94] iterative techniques are suggested such as the Baum–Welch and

the Expectation–Maximization (EM) algorithms which can give a local solution. What

follows is an outline of the Baum–Welch procedure as presented in [94].
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Assume that the observation distributions can be modelled by a Gaussian mix-

ture model, i.e. bj(O) =
∑M

m=1 cjmN (O,µjm,Σjm), where j is the state index, M

is the number of Gaussian components in the mixture model, cjm is the weight of

mixture component m for state j, and N is a Gaussian density distribution with

mean µjm and covariance Σjm. Let us now introduce a backward variable βt(i) =

P (Ot+1, Ot+2, ..., OT |Qt = Si, λ) together with the following recursive equations:

βT (i) = 1 , (4.30)

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j) , (4.31)

where Equ. 4.30 is the initialization of the recursion and Equ. 4.31 is the induction step.

Additionally, define two more variables ξ and γ as:

ξt(i, j) = P (Qt = Si, Qt+1 = Sj |O, λ) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
, (4.32)

γt(i) =

N∑
i=1

ξt(i, j) . (4.33)

With ξ and γ defined as above,
∑

t ξt(i, j) represents the expected number of transitions

from state Si to Sj , while
∑

t γt(i) represents the number of transitions leaving state

Si [94]. Finally, the following equations define the update rules of the iterative Baum–

Welch procedure for the re-estimation of the HMM model parameters (which happen

to coincide with the update rules of the EM algorithm for this problem) [94]:

π̄i = γ1(i) , (4.34)

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (4.35)

c̄jm =

∑T
t=1 γt(j,m)∑T

t=1

∑M
k=1 γt(j, k)

, (4.36)

µ̄jm =

∑T
t=1 γt(j,m)Ot∑T
t=1 γt(j,m)

, (4.37)



78

Σ̄jm =

∑T
t=1 γt(j,m)(Ot − µjm)(Ot − µjm)T∑T

t=1 γt(j,m)
, (4.38)

where γt(j, k) is the probability of being in state Sj at time t and the kth mixture

component accounting for the observation Ot. In particular:

γt(j, k) =

[
αt(j)βt(j)∑N
j=1 αt(j)βt(j)

][
cjkN (Ot, µjk,Σjk)∑M

m=1 cjmN (Ot, µjm,Σjm)

]
(4.39)

Repeated use of this iterative procedure converges to a local optimum. Note that

training requires a large number of data in order to achieve a good solution.

4.4.3 Overview of Spectral Clustering

On one hand, by combining appearance (PSIFT) and shape features (PHOG) improves

the discriminative power of our representation, it increases the dimensionality of our

input. As such, it increases the amount of training data that we need in order to learn

accurate HMM models, and this also causes an increase in complexity, thus slowing

down computations.

Spectral clustering [85] is a popular method of dimensionality reduction. The feature

vector of each training example is represented as a node in a graph that is connected

with a weighted edge to its nearest neighbors in the training set (weights reflect degree

of similarity between training examples). The algorithm then applies an eigenvalue

decomposition on the matrix representing this graph, reducing the feature vector di-

mensionality in a way that preserves the neighborhood structure. We use SPMK as the

affinity measure and reduce the dimension of PSIFT and PHOG features separately.

Figure 4.12 shows the resulting embedding of the training set, where we see that the

classes are well separated. We then apply the embedding to the test set [4].

The final feature descriptors per frame are the combined SIFT and HOG features of

reduced dimensionality, together with the 3D head pose and its first order derivatives.

These are then used to train a separate HMM for each class, using sequences segmented

by class. In order to do continuous recognition, we slide a window over each test

sequence, classifying the frames within it as negative, topic, wh or none, based on
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Figure 4.12: Spectral feature embedding of each frame (red: negative, green: topics,
blue: wh-questions).

which HMM yields the highest probability of having generated that subsequence.

4.4.4 Experimental Results

From the dataset of the Boston University American Sign Language Linguistic Research

Project (ASLLRP), we selected a training set of 77 video clips of isolated utterances

(negative: 17, topic: 40, wh: 20). Our testing set contained 70 such clips (negative: 15,

topic: 38, wh: 17). The exact composition of these sets, in terms of numbers of frames

per class, is shown in Table 4.10. Both sets contained three different signers. Using the

methods described in previous sections [76], we tracked the signer’s head, extracting

pose, PHOG and PSIFT features, the dimensionality of which was then reduced using

spectral clustering. We then trained class-specific HMMs, optimized to recognize frame

sequences of their class. To evaluate their performance at continuous recognition, we

used a sliding window approach. We fed sub-sequences of all unsegmented test se-

quences to each HMM, classifying each frame as negative, topic, wh, or none, based on
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None Negative Topic Wh-Q

Training 10144 997 1604 1208

Testing 9359 1053 1248 1182

Table 4.10: Dataset composition (number of frames per class).

Predicted Class
None Negative Topic Wh-Q

True None 92.8% 2.9% 2.2% 2.1%

True Negative 7.7% 80.3% 5.8% 6.2%

True Topic 9.2% 4.5% 81.2% 5.1%

True Wh-Q 8.3% 5.3% 4.5% 81.9%

Table 4.11: Confusion matrix of HMM continuous recognition.

which HMM output had the highest probability of having generated each subsequence.

Recognition accuracy is summarized in the confusion matrix of Table 4.11.

4.5 Head Pose Normalization

When the head rotates, there is a variation in facial appearance when viewed from a

fixed point, e.g., a static camera. For a difficult task, such as that of continuous recogni-

tion of non-manual markers in ASL, where many classes differ only in subtle ways from

each other, this variation in appearance further complicates the recognition problem.

As a result, more training data is needed to correctly learn the facial appearance man-

ifold and more complex algorithms to model the sequential appearance transitions for

the purpose of non-manual marker recognition. In this section we present an extension

to our framework, which aims to address this problem.

More specifically, our extended method involves combining the 2D deformable face

model, used by our extended face tracker, with a 3D deformable face model. The

combined model enables correction for the warped appearance of faces due to variations

in the 3D head pose, thereby leading to pose invariant facial features that in turn lead

to improved recognition rates. We do this by registering landmarks on the 2D image,

as predicted by our novel face tracker, with 3D landmarks on a trained statistical 3D
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face model [5] to estimate the 3D projection matrix, R, (see Eq. 4.40). This matrix is

then used to rotate the aligned 3D model to a frontal pose and re-project it to the 2D

image plane, obtaining warped 2D landmarks. By estimating the difference between

the tracked 2D landmarks and the warped 2D landmarks, we determine the image flow

necessary to warp the input facial region to a frontal pose. The warped region is used

to extract LBP features which we represent in a spatial pyramid. Together with an

estimation of the eyebrow height (using the warped landmarks) and the signer’s head

pose, we use an HMSVM model for continuous recognition of wh-questions, negative

sentences, conditional/when clauses, yes-no questions, topics and rhetorical questions.

In the next sections we explain the 3D model in more detail and then present our

results.

4.5.1 3D Face Model

Let the shape vector s = (x1, y1, z1, · · · , xn, yn, zn)T , which contains X,Y, Z coordinates

of its n vertices, represent the 3D geometry of a face, and define a morphable face model

using Principal Component Analysis (PCA) on the training dataset. Following Yang

et al.’s work [128], we fit the 3D model to a face image by solving for the projection

matrix R, using a two-step Least Squares minimization: (1) estimate the deformation

parameters of the statistical 3D face model that best match the 2D landmarks when

projected on the image, and (2) estimate the projective transformation (which includes

scaling, rotation and translation) that maps the aligned 3D landmarks to the 2D image.

Steps (1) and (2) are repeated until convergence. In other words, we minimize the

projections of 3D landmarks Xk, and the corresponding 2D landmarks Yk tracked by

the ASM face tracker using:

min
∑
k

||Yk −R ·Xk||2 . (4.40)

The projection matrix R defines the scale, rotation and translation of the 3D shape.

If we change the rotation angles to zero, we will get a new projection matrix which

projects the 3D shape to a frontal pose, but with same scale and translation. By



82

Cond/When Negative Topic Wh-Q Yes-No Rhetorical

Training 31 33 22 35 28 26

Testing 20 23 15 27 19 18

Total 51 56 37 62 47 44

Table 4.12: Dataset composition (number of utterances per class).

comparing the difference between the two projections, we can compute the movement

of each vertex i on the image plane using:

Fi = R0 ·Xi −R ·Xi , (4.41)

thereby warping the face region to a frontal pose.

4.5.2 Experimental Results

From the dataset of the Boston University American Sign Language Linguistic Re-

search Project (ASLLRP), we selected utterances containing conditional/when clauses,

negative sentences, wh-questions, yes-no questions, topics and rhetorical questions. We

used about 60% of the utterances for training and the rest were used for testing. The

detailed composition of the dataset used is shown in Table 4.12. In total, there were

24717 frames of video.

Using the methods described in previous sections, we tracked the signer’s head and

then applied the 3D face model on each input video frame. The 3D model was trained by

PCA using range data from 6 different subjects performing 5 different facial expressions

in 5 sessions [5]. In each frame, we used the tracked 2D landmarks to estimate R, which

we used to estimate the image flow needed to warp the face region to frontal pose. The

warping procedure was implemented in MATLAB and it took about 1 second per frame,

while face tracking was at a rate of about 6 fps as in other experiments (Intel Quad

Code 2.4GHz, 8GB RAM). Figure 4.13 illustrates the image warping process.

From the face ROI of the warped input image, we extracted LBP features which we

encoded to spatial pyramids of L = 2 levels and then reduced the dimensionality using
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Figure 4.13: Illustration of process for warping facial region to a frontal pose. (Top left)
Input frame; (Top right) Tracked result; (Bottom right) Registration of 2D landmarks
to 3D face model; (Bottom left) Resulting warped facial region.

PCA to preserve 95% variance. We used the warped 2D landmarks to estimate eyebrow

height and eye distance, which together with the head pose were augmented with the

LBP features to get the final feature descriptor. We then trained a multi-class HMSVM

model with a linear kernel. Parameter C was determined by 5-fold cross validation and

the mean confusion matrix is summarized in Table 4.13. We repeated the experiment

but this time the warping stage was skipped, so as to evaluate the effect of warping on

the classification rate. The box plot in Fig. 4.14 illustrates that on average (N = 5 runs)

the accuracy with the warping improves by about 2.5 units, i.e., from 81% to 83.5%.

The classification performance is very good for the none, the conditional/when clauses,

the wh-questions and the yes-no questions, and the confusions are reasonable in most

cases, e.g., rhetorical and yes-no questions both involve raised eyebrows. Examination

of the predictions per sequence revealed that most confusions happened at the beginning

or the end of a marker. This suggests that more discriminative features must be needed.

Nevertheless, use of the 3D model did improve the overall performance. The benefit
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Predicted Class
None C/W Neg Top Wh-Q Y/N Rhet

True None 90.0% 1.6% 3.1% 1.1% 2.6% 1.2% 0.4%

True C/W 1.8% 85.3% 0.3% 1.7% 0% 10.9% 0%

True Neg 41.7% 0% 53.6% 0% 4.6% 0% 0.1%

True Top 20.2% 13.0% 0% 55.1% 0.3% 0.7% 10.6%

True Wh-Q 2.9% 0% 0% 0% 97.1% 0% 0%

True Y/N 2.2% 9.7% 0.3% 2.5% 0% 84.5% 0.8%

True Rhet 21.8% 5.2% 10.3% 1.6% 0.5% 7.8% 52.9%

Table 4.13: Confusion matrix of HSVM continuous recognition with head pose normal-
ization.

Figure 4.14: Box plot of average accuracy per frame with and without 2D/3D warping
for N=5 runs. Warping consistently improves the classification accuracy.
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of this transformation of the face region to a frontal pose is that it filters out the

effects of head orientation from the appearance features (histograms of Local Binary

Patterns) that we compute from the given region. This means that training of the

facial appearance models does not rely on the head pose of the subjects (although we

still use head pose information as a separate feature channel), but only on the actual

facial expression, e.g., eyebrow configuration. Therefore, we can learn pose-independent

recognition models and with less training data because there is less variation in facial

appearance (i.e., we only observe variation due to changes in facial expressions) than

when the head is allowed to rotate freely in 3D. In addition, this method filters out

the effects of foreshortening on the estimation of the eyebrow height, e.g., when the

eyebrow-eye distance appears to be shorter when the head is looking high up. Future

work will be geared towards augmenting the 3D face model with a texture model for

more accurate warping from larger rotations to frontal pose. We also plan to work

towards a hierarchical learning model, where we explicitly model and recognize head

shakes, eyebrow raises, eye widening, etc., and then fusing these features at a meta-

level, together with features from the manual component of the ASL signal, for better

detection of marker boundaries and better classification.

4.6 Summary

In this chapter we have applied our extended face tracker to the problem of non-manual

marker recognition in ASL video. We first presented our framework for the relatively

easier task of isolated recognition and presented an extension which handles feature

misalignment and models temporal feature dynamics, allowing us to improve our clas-

sification performance and also expand the number of different classes of non-manual

markers that we can recognize. Then we described our method for the harder task of

continuous recognition, which we later extended with a 3D face model for head pose

normalization. Our methods were validated with experimental results.
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Chapter 5

Deception Detection from Kinesic Analysis

In this chapter, we describe the application of our face tracking system to the prob-

lem of deception detection from kinesic analysis [16, 74]. In particular, we focus on

deception detection in a subject’s responses to a set of interview questions, using an

un-calibrated camera to record the subject’s body movements and facial expressions

throughout the interview. The first method we present builds subject-specific mod-

els to detect deceptive over-control and agitation, while our second method is a proof

of concept for deception detection via synchrony analysis of the kinesic behavior of a

subject and their interviewer.

5.1 Theoretical Background

We begin with a brief theoretical background on the psychology of deception in order

to justify our approach and lead to our hypothesis relevant to this chapter. In situa-

tion where the stakes are high liars exhibit higher cognitive load, stress, arousal and

negative emotions than truth-tellers [16, 29, 35, 90, 137], since they are trying harder

to make themselves believable and conceal their deception. The higher cognitive load

may cause a decrease in overall movement if the liar’s brain gets preoccupied with

story fabrication and deception concealment, thereby leaving fewer cognitive resources

for performing other body movements. The arousal and nervousness may cause an in-

crease in fidgeting and self-adaptor gestures (e.g., touching one’s face). Since their goal

is to conceal their deception and appear believable, liars attempt to suppress their in-

creased negative emotions by exercising over-control or try to mask them by smiling, for

example. Moreover, general expressive gestures (i.e. illustrators) may decrease during

deception, as the liars attempt to exercise over-control, except for adaptor movements
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Figure 5.1: Diagram illustrating a summary of kinesic cues and how they are affected
by deception [15, 25]

mentioned above, which may increase as a result of their nervousness. A summary of

kinesic cues and how they are affected by deception is shown in Fig. 5.1.

Furthermore, some deceptive behaviors fall into one of two groups. The first one

is that of “over-control” and the other one is that of “agitation” [34]. Over-controlled

liars, as they attempt to conceal their deceit, particularly those who may be aware of

possible behavioral cues that signal deception, they may try harder to hide all potential

behavioral indicators. For example, they may reduce the movements of their hands,

legs and head [11, 25, 122, 123]. Agitated liars are at the other extreme. The fear and

nervousness brought on by their deception causes their speech to become faster and

louder and they may show an increase in fidgeting [25, 74]. This categorization agrees

with the literature that suggests an increase in adaptors and a decrease in illustrators

during deception.

Nevertheless, there is no single behavioral or psychological cue that is a perfect

indicator of deception [16]. The various cues must be judged in their context. For

example, a subject may make more arm movements if they are standing as opposed to
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when they are comfortably resting their arms on an armchair. In addition, a subject’s

“normal” behavior as well as the tone and context of the conversation are equally very

important. For example, a subject may incorrectly behave as being over-controlled

because they may tend to get nervous when interrogated, regardless of whether they

are lying or not. Similarly, a subject may show agitated behavior if they are questioned

soon after they had exercised. Therefore, it is important to establish, or otherwise

model, a baseline behavior, in order to improve the accuracy of deception detection.

This need is reiterated in the Expectations Violation Theory (EVT) of Burgoon [14],

which states that if in a communication there is significant deviation of the expected

behavior from what is actually observed then this should cause suspicion. In other

words, if a subject is calm until they are asked about the theft, at which time they

deny it and start fidgeting excessively, then clearly the subject may not be telling the

whole truth. Additionally, the Interpersonal Deception Theory (IDT) of Buller and

Burgoon [11] states that deception is a dynamic process, whereby the deceiver adjusts

their behavior according to how much they thing they are believed, which means that

their behavior is also dependent on the person asking the questions, and this is another

reason why session calibration even for the same subject may be necessary. Regardless,

deceivers will at some point involuntarily reveal some behavioral cue as a result of their

deception and suspicion [73] making deception detection via kinesic analysis possible.

Therefore, we hypothesize the following. We expect that deceivers may reduce their

overall gestural movements (illustrators) and may increase their adaptor movements

for the reasons already mentioned. Thus, to distinguish truth from deception it will

suffice to implicitly classify a subject’s behavior into normal, over-controlled or agitated.

Because of the dynamic nature of deception and the variation in the population, we will

train subject-specific models, which will establish a different baseline behavioral profile

for different subjects.
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Figure 5.2: Overview of our kinesic analysis. In the model building phase the input
video is tracked with the face tracker and the skin blob tracker, extracting features which
are then grouped by interview response and aggregated into motion profiles. During
Leave One Out Cross Validation (LOOCV) classification, the nearest neighbor’s class
label is used to classify interview responses as deceptive or truthful.

5.2 Methodology

Kinesic analysis requires accurate tracking of the target’s body movements (e.g., hand

gestures, head movements, shoulder shrugs) and facial expressions (e.g., eyebrow move-

ments). Once the target is tracked, various features, which can serve as behavioral

indicators of deception, are computed from the output of the tracking module. There-

fore, we use the face tracker we described in Chap. 3 to track facial features and we

adopt a modified version of the skin blob tracker used by Lu et al. [70] to track gross

movements of the hands and head for every frame of an interview video. Note, however,

that more sophisticated methods for adaptive skin blob tracking can be used, such as

the Markov model of Sigal et al. [101] or the Gaussian Mixture Model presented in

[135]. For our dataset we found that the simpler and computationally more efficient

method of Lu et al. [70] sufficed. For each video frame, the face tracker outputs the

(x,y) image coordinates for each tracked facial landmark and the 3D head pose, while

the skin blob tracker outputs the (x,y) image coordinates, orientation and size of each
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detected skin blob (short and long axis of ellipse and ellipse area). These raw features

are used to compute derived features (see Sec. 5.3) to characterize postural changes,

frequency of adaptor movements, frequency of illustrator movements, head gestures,

etc. Features are then grouped, so that all features extracted from frames when the

subject was responding to a particular interview question are aggregated together, to

form motion profiles, one for each response to an interview question. Classification of

an interview response as truthful or deceptive is done by comparing the motion profile

of that response to those from the other responses of the same subject, assigning to it

the label of its nearest neighbor in the L2-norm sense. The overall procedure is sum-

marized in Fig. 5.2. Next we give an overview of the skin blob tracker, which we use to

track regions of skin color (head and hands).

5.2.1 Skin Blob Tracking

Following the method in [70], we use color segmentation to track the position, size

and orientation of the head and hand blobs. Instead of a 3D Look-Up-Table (LUT)

[55], we build a 2D LUT with Hue and Saturation color components, based on the

Hue-Saturation-Value (HSV) skin color distribution of the face and hands. We use 32

bins for each of the Hue and Saturation components [55]. The Value component of

the HSV representation is not used, so as to make the representation more robust to

illumination than the normalized Red-Green-Blue (RGB) color representation used in

[70]. The LUT is built off-line from skin color samples (see Fig. 5.3). Similarly, we

build off-line a non-skin color model to model the color distribution of non-skin color

pixels, using non-skin and background images. A pixel with color c is then classified as

skin, if the ratio of the probability of it being skin, P (c|skin), to the probability of it

being non-skin, P (c|¬skin), is greater than a threshold, Θ:

P (c|skin)

P (c|¬skin)
≥ Θ . (5.1)

Using the LUT and Eqn. 5.1, the system produces a binary image of candidate face

and hand regions in each frame, which are processed with morphological operators
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Figure 5.3: Illustration of skin samples used to build the skin 2D LUT [55, 70] for skin
regions in Hue-Saturation color space. In a similar fashion we collect non-skin samples
and build a 2D LUT for non-skin regions.

(open and close) to yield candidate elliptical head and hand blobs. Candidate blobs

are pruned by taking into account the previous position and shape of each of the blobs

[70]. Note that we may not get three distinct blobs in every frame. This may happen,

if for example, the hands are touching each other or the head or if any of the hands

are not visible. The system can detect blob merging, which indicates that the subject

is performing an adaptor gesture, by checking the size of the blob area. For blobs that

are not visible, we reuse their last known position, while it duplicates merged blobs to

end up with three blobs. A sample frame illustrating the detected blobs and the skin

color samples used in building the color model is depicted in Fig. 5.4.

For robustness to tracking noise, we filter each of the three computed skin blobs

using a Kalman filter [56], assuming linear state dynamics with Gaussian noise, w.

The system state for each skin blob, xit, where i is one of {left-hand, right-hand,

head}, includes its (x, y) position, its area, A, its orientation angle, θ, the length

of its short, Ls, and long axis, Ll, and their first order derivatives, so that xit =

[x, y,A, θ, Ls, Ll, ẋ, ẏ, Ȧ, θ̇, L̇s, L̇l]
T , at time t. The dynamic process is governed by:

xt+1 = Akxt + wt , (5.2)
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Figure 5.4: Sample frame showing the tracked head (blob 0) and hands (blobs 1 and
2) of an interviewee. The tracker records the (x,y) coordinates, area and axis lengths
of each detected blob. The skin color samples are shown in the upper right corner.

with

At+1 =

1 δt

0 1

 and wt ∼ N (0, Q) . (5.3)

The observation process is modelled as:

zt = Hxt + ut , (5.4)

where H = [1, 0], zt is the observation as obtained by the skin blob tracker and ut ∼

N (0, R) is the observation noise at time t.

5.3 Feature Extraction

In every frame we track the movements of a subject’s hands and head relative to their

body (via the skin blob tracker), as well as some of their facial expressions and their 3D

head pose (via the face tracker). In addition to these raw features, which we use in our

feature descriptor, from the tracked positions of the blobs we compute derived features,

as in [73], which are designed to capture behavioral agitation and over-control, by
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Figure 5.5: Illustration of quadrant features. They are used to capture the positions of
a subject’s hands relative to their body.

characterizing relative positioning of the hands, postural shifts and postural openness

of a subject.

5.3.1 Skin Blob Features

We divide frames into quadrant regions and these are shown in Fig. 5.5. For each frame,

we record in which quadrant each of the hand blobs is found, based on its (x,y) position.

The trend of quadrant locations for each hand blob over a period of time can give us

an idea of how frequently the subject is performing illustrative gestures or maintaining

an open posture (e.g., quadrants 1, 2 and 4). On the other hand, when the hand

blobs are consistently in quadrant 3 we can deduce that the subject is maintaining a

closed posture, possibly a sign of over-control, or is making adaptor gestures (i.e., hands

touching each other).

Furthermore, imagining that the hand and head blobs form the vertices of a virtual

triangle, we can use the area and centroid of this triangle to quantify the openness of

a subject’s posture and any postural shifts [73]. The triangle area feature is shown in

Fig. 5.6. Triangle area is expected to increase for open postures and while gesturing
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Figure 5.6: Illustration of triangle area feature. It is used to quantify the degree of
posture openness of a subject.

and decrease for closed postures and over-controlled behaviors. Similarly, the triangle

distance features (see Fig. 5.7) will increase for open postures and decrease for closed

postures. These features can also indicate if a posture is symmetric or if the subject’s

body is leaning on either side (e.g., if the left hand distance to the triangle’s center is

shorter than that of the right hand, then the subject is leaning to the left). Lastly, the

triangle angle features (see Fig. 5.8) also indicate relative orientation and positioning of

the blobs and by looking at their change over time we can observe the gestural patterns

of the subject, while similar values over a period of time signal that the subject is not

gesturing much.

In order to account for differences in subject sizes and positioning, we also look at the

change of these feature values over time. For example, we compute blob displacement

(∆xti ,∆yti) at time ti, which is also proportional to velocity, using:

∆xti = xti − xti−1 , (5.5)

∆yti = yti − yti−1 , (5.6)
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Figure 5.7: Illustration of distance features of each of the blobs (left hand, right hand
and head) to the triangle’s center.

Figure 5.8: Illustration of angle features of the blobs relative to the triangle’s center.
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Figure 5.9: Sample tracked facial frame from kinesic analysis, illustrating the features
derived from the face tracker’s output: (a) 3D head angle and nose-tip displacement
(displacement ∝ velocity) for detecting head nodding and shaking, as well as other
head movements, (b) eyebrow height for catching eyebrow expressions (c) mouth area
and orientation of mouth corners with respect to mouth centroid to capture mouth
expressions.

where (xti , yti) is its position at time ti.

5.3.2 Facial Features

Moreover, the 79 tracked landmarks and 3D head orientation angle (pitch, yaw, tilt)

output by the face tracker, were used to compute derived features designed to capture

facial micro expressions and asymmetries. Namely, these are the following: change in

angle between the mouth’s centroid and each of its corner points, change in mouth area,

displacement of inner and outer left and right eyebrows. The left/right mouth corner

points are computed as the means of the three leftmost/rightmost mouth landmarks.

Finally, the displacement of the eyebrow (change in eyebrow height) is computed using

the mean displacement of the four innermost eyebrow landmarks. From this displace-

ment we subtract the mean displacement of the six lower nose landmarks (i.e., the

position of the nose-tip) to account for head displacements, assuming that the nose is

the most stable face component. The nose-tip displacement is used to also detect head
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nods and head shakes (e.g., a decrease, then an increase and then another increase in x

or y nose-tip displacement). The 3D head pose and its change over time provides com-

plementary information for detecting head shakes (yaw angle) and head nods (pitch),

as well as useful information about where the subject’s head is pointing, relative to

the interviewer, and whether the subject is engaged with the interviewer or if they are

frequently turning away from them, possibly because of nervousness. These features

are illustrated in the sample tracked frame of Fig. 5.9. Lastly, to our feature pool we

append the normalized frequency of head nodding, head shaking and adaptors such as

left hand touching the head, right hand touching the head, hands touching each other.

5.3.3 Non-parametric Descriptor: Motion Profiles

In order to summarize the tracked motions and expressions of subjects, while retain-

ing as much information as possible about their distribution, we compute “motion

profiles”. These are similar to the movement signatures of [70], however our motion

profiles include facial expression information as well. More importantly, and different

from previous work [73], instead of using gross summary data in the form of means

and variances of each feature channel, which causes loss of information about the fine

distribution of feature values, we choose to use a richer non-parametric histogram rep-

resentation. Additionally, we apply a log transformation to our motion profiles in order

to capture information important to deception detection, namely, little or no movement

(i.e., over-control), and extreme movement (i.e., agitation). In each subject’s response

the majority of frames involve a small amount of motion. In other words, subjects

rarely make extreme movements for the entire duration of their response and use of

regular binning will cause the bulk of the data to be crowded in the first few bins.

Therefore, we change the scale of our data representation, in order to properly space

out the data to enable discrimination of behavioral states.

More specifically, features are histogrammed into k uniform bins in log-feature space,

meaning that each bin has an exponentially increasing size. Therefore, the first bin cov-

ers a very small range (corresponding to little or no motion) and the fifth bin covers
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Figure 5.10: Average hand motion shown for two different subjects. Graphs show 5
velocity bins from “little motion” (leftmost) to “high motion” (rightmost). The subject
on the left exhibits agitation when deceptive shown by an increase in the rightmost
bin and a decrease in the leftmost bin of the red (deceptive) graph, relative to the blue
(truthful) graph. On the other hand, the subject on the right exhibits over-control when
deceptive shown by a decrease in the rightmost bin and an increase in the leftmost bin
of the red (deceptive) graph, relative to the blue (truthful) graph.

the largest range (corresponding to all extreme motions). The bin range is subject-

dependent as we set the bin log-range based on the feature range over the entire in-

terview of a given subject, thus achieving subject normalization, which makes sense

given that we are trying to distinguish deviations from a subject’s baseline or normal

behavioral patterns. Histograms for each channel are also normalized to have unit

sum. This new representation of the data is successful at isolating the over-controlled

and agitation responses that Ekman et al. [34] point to as being important indicators

of deception. This is illustrated in Fig. 5.10, where we show the size of each bin for

hand motion averaged over all responses for two different subjects. The graph on the

left (using k = 5 bins) demonstrates a subject exhibiting agitated deceptive behavior:

when responses are deceptive, the little motion bin shows a dip and the high motion bin

shows a spike, relative to their truthful responses. The graph on the right demonstrates

over-controlled deceptive behavior: when responses are deceptive, the little motion bin

shows a spike and the high motion bin shows a drop, again, relative to their truthful
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responses.

Let {xi,j}Fi=1 be the set of F features we extract from frame j as described in

Secs. 5.3–5.3.3. By grouping together features extracted from m consecutive frames,

we form a feature set of the form {{xi,j}Fi=1, . . . , {xi,j+m−1}Fi=1}, which forms the basis

of the motion profile over a response rq of m frames. For each of the F feature channels,

we compute a k–bin normalized log-scale histogram of the feature values xi,j for j =

1, . . . ,m, resulting in F histograms having a total of kF bins. We call ~xrq a motion

profile because the histograms capture the distribution of feature values within the

response. For classification we use a Nearest Neighbor classifier, whereby for a given

test response, we assign it the label of its nearest training neighbor. The distance

measure used is the L2-norm.

5.4 Experimental Setup and Results

A laboratory experiment was conducted at the University of Arizona during which

interviewees, who represented diverse cultural backgrounds, responded to 13 one-word

answer questions and 12 longer questions posed by experienced interviewers from the

Defense Academy for Credibility Assessment. The short answer questions were mainly

for the subjects to get comfortable with the environment. The longer questions followed

the style of a polygraph examination and included the following kind of questions:

1. Autobiographical e.g., describe the worst job you ever had and explain why you

disliked it.

2. Moral dilemma e.g., would you take credit for someone else’s work and why.

3. Episodic memory e.g., describe a time you thought of stealing something.

4. Future oriented e.g., how will you spend your next vacation.

Interviewees answered some questions truthfully and some deceptively according to a

predetermined sequence. Half were randomly assigned to follow a truth-first sequence

and half were randomly assigned to begin with a deception-first sequence. Interviewers

were blind to the truthful or deceptive sequence that each subject was instructed to
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Deceptive Truthful Total

Number of Responses 882 882 1764

Table 5.1: Data set composition showing number of deceptive and truthful responses
(six of each kind per subject) used for Leave One Out Cross Validation. Numbers based
on 147 subjects.

follow. During the interview, three digital cameras recorded kinesic behavior: one

recorded full body profile view, one recorded full body frontal view and one recorded

frontal facial view only. We run the skin blob tracker on the video from the full body

frontal view and the face tracker on the video from the frontal facial view, while we did

not use the profile view. After each block of three questions, interviewees rated their

truthfulness in answering each question on a 0 (not at all) to 10 (completely truthful)

scale. Interviews were typically 20–30 minutes long.

The recruitment efforts netted a multi-culturally diverse sample of 220 participants.

Demographically, the mean age for the total sample was 28.9 years (while σ = 13.34),

with 36% aged 21 and under, 48% aged 22 to 40, and 16% over 40 years of age. By

gender, 55% were male and 45% were female. Subjects were given $10 to participate

and another $10 if found credible, plus they were offered job interviewing tip. This

scheme served as an incentive for them to make an effort to be perceived as credible

by their interviewer for both their truthful and their deceptive responses, thus allowing

leakage of deceptive behaviors that our method could capture. We selected the 147

subjects with an average self-rating over 7. We focused on the responses to the 12

longer questions in each interview, meaning that in total we had 1764 responses (half

deceptive and half truthful). The data set composition in terms of number of frames

involving deceptive and truthful responses is shown in Table 5.1.

Each video interview was analyzed and features were extracted from each frame.

The full body frontal view was analyzed by the blob tracker and the facial frontal view

was analyzed by the ASM face tracker, while the profile view was not used in our

current analysis. We used 5 histogram bins (number determined by cross validation)

per feature channel with uniform log space width (specific to the current subject). In
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Method Precision Recall Accuracy

Mock Theft Experiment [73] 59.2% 63.6% 60.0%

SVM 68.0% 70.1% 68.5%

Nearest Neighbor 81.7% 81.5% 81.6%

Nearest Neighbor with blob features only 78.2% 77.8% 78.2%

Nearest Neighbor with facial features only 69.2% 69.4% 69.3%

Table 5.2: Comparison of LOOCV classification accuracy rates for N = 147 subjects.
Accuracy refers to the percentage of correctly classified responses. Precision and recall
rates are for deception detection.

this way, the first two bins were wide enough to capture the very small feature values

corresponding to over-controlled behavior, while the width of each of the remaining

bins was successively increased to capture increasingly larger movements corresponding

to relaxed and agitated behaviors, respectively. We built 147 separate Nearest Neigh-

bor models (one for each of the 147 subjects), using Leave One Out Cross Validation

(LOOCV), where for each of the interview responses, we hold one out to be used for

testing and train the model on the rest, reporting the average LOOCV performance

over all 147 NN models. We also tried an SVM classifier [113] for each of these 147

subject-specific models with an RBF kernel (scale and complexity parameters deter-

mined by cross validation for each subject). All results are shown in Table 5.2, while

Table 5.3 shows the mean confusion matrix from all NN models. Our motion profile NN

models achieve an accuracy of 81.6%, which is significantly better than the accuracy

of the method in [73] for a similar interview scenario, and ours is over a larger dataset,

too. However, note that, unlike our work, the authors of [73] attempt to build models

that generalize over all subjects, and are, thus, doing LOOCV per subject. Instead,

we build 147 subject-specific models, doing LOOCV per response per subject. It is,

therefore, clear that our subject-specific models perform better than a general model

over all subjects. We attribute this to the fact that different subjects may have different

deceptive behaviors and different baseline truthful behaviors, as opposed to there being

a universal deception cue or “threshold”, which holds for everyone and discriminates

truth from deception, as has been hypothesized, for example, by Meservy et al. [72, 73].
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NN Conf. Matrix Pred. Deceptive Pred. Truthful

True Deceptive 81.5% 18.5%

True Truthful 18.3% 81.7%

Table 5.3: Mean confusion matrix of Nearest Neighbor classifiers averaged over N = 147
subjects.

Our proposed system as presented has the limitation that training data must first be

collected for a test subject so that the model can be trained. Acquiring such training

data might not be trivial in the situations where such a system can be useful, e.g.,

at rapid screening checkpoints. Nevertheless, the proposed work does achieve state of

the art performance using only visual cues in an automatic, covert system, and can

serve as the foundation for understanding exactly what constitutes the peculiarities

that characterize the deceptive tactics of different individuals.

5.4.1 Running-time analysis

Our experiments were conducted on an Intel Quad Core processor clocked at 2.4GHz

with 8GB of RAM. Both trackers were implemented in C++ with OpenCV libraries.

Video resolution was 720 x 480. The face tracker processed the videos off-line at about

6 fps (∼ 170ms per frame) using 40 particles for the sample set. The skin blob tracker

processed videos at a rate of 5 fps (∼ 200ms per frame). The tracking implementations

can be optimized with GPU programming to run in real-time, if desirable by the ap-

plication. For our purposes, it was not necessary, given that all processing was done

off-line and the evaluation method was LOOCV. Derived features were extracted from

the trackers’ raw output using MATLAB code which run significantly faster with a lin-

ear complexity O(n): linear time for the first pass through the data of a given subject

to derive the features marking the min and max value of each feature (which serves

to find the histogram bin ranges for the motion profile) and linear time for the second

pass which builds the motion profile. In fact, the bottleneck here was just the I/O

for reading text files and parsing the raw features. LOOCV classification by Nearest

Neighbor takes about 40 seconds for the whole dataset (147 subjects), which is about
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0.27 seconds per subject and 0.02 seconds per response on average, while LOOCV clas-

sification using SVM models (RBF kernel) takes about 80 seconds, which is about 0.54

seconds per subject and 0.05 seconds per response on average.

5.5 Method Extension: Subject-Interviewer Synchrony Analysis

Here we present an extension to our deception detection method presented in preced-

ing sections of this chapter. However, instead of focusing our kinesic analysis on only

the subject in the interview scenario, we make first steps in analyzing the behavioral

patterns of both the subject and their interviewer, as they are interacting together. Be-

sides, the Interpersonal Deception Theory (IDT) of Buller and Burgoon [11] states that

deception is a dynamic process, whereby the deceiver’s behavior and overall “strategy”

is influenced by the actions of the agent they are interacting with. Therefore, we hy-

pothesize that it is possible to detect deception in interview scenarios by joint tracking

and analysis of the behaviors of both the subject and their interviewer. We validate

our hypothesis with experimental results.

5.5.1 Theoretical Background

Human interactions are complex and multidimensional, they have verbal and non-verbal

components. We are just scraping the tip of the iceberg by looking at the verbal be-

haviors of the subject through our kinesic analysis method, described earlier in this

chapter. Besides, any human interaction involves at least two parties: a subject and

an interviewer (or any otherwise interacting agent). Are we neglecting important in-

formation by focusing on just the subject of an interview? Practitioners in the field of

deception detection and psychologists are suggesting that this is indeed the case, and

that rapport-building techniques as well as analysis of the synchrony between a subject

and their interviewer may serve as an effective method for detecting deception with

terrorists [111], in FBI interviews [81] and in police investigations [58].

Two people interacting are said to be in synchrony when one person is mirroring

or complementing the behaviors and gestures of the other, when there is a visible
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coordination and matching in their actions. For example, person A smiles as person B

is talking and then soon later person B also smiles to match that facial expression. The

hypothesis maintained by these practitioners is that deceivers are less in synchrony with

their interviewer, who overwhelmed with the stress and cognitive load of their deception

fail to recognize and keep up with synchrony cues, unlike truth-tellers who find it easier

to stay in synchrony.

In general, synchrony can be manifested in a number of verbal and non-verbal ways:

• Postural and gestural behaviors (e.g., head nodding)

• Movement

• Gaze

• Facial affect (e.g., smiling)

• Accents

• Speech rate

• Vocal intensity

• Self-disclosure

Non-verbal manifestations of synchrony can be detected by our face tracker, provided we

have synchronized video feed for both the interviewer and the subject. Given the tracked

landmarks, our system can observe, for example, variations in nose-tip displacement to

detect head nodding and head shaking. In order to be able to detect facial expressions,

we have implemented the method of Yang et al. [130] which is based on AdaBoost

models of encoded Haar features extracted from a cropped facial region. The region

is cropped based on the position of the eyes and nose-tip, which is provided by our

extended face tracker. For purposes of proof-of-concept, we were only interested in

detecting smiling events, so we only trained a model for smiling and one for no-smiling,

augmenting it into our face tracker system. This new module takes as input the current

frame and the tracked position of the landmarks. It uses the landmarks to crop and
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Figure 5.11: Illustration of the definitions of hit and miss events by subject and inter-
viewer, which are used in our synchrony analysis for the detection of deception.

align the face region in terms of the eyes and nose-tip and then computes Haar features

which it uses with the trained model to output a smiling and a no-smiling score. If the

smiling score is greater than the no-smiling score and also above the threshold score of

0.5, it outputs the detection of a smiling event.

5.5.2 Quantifying Degree of Synchrony

Our system can detect timestamped dynamic events (as is or with the mentioned ex-

tensions, i.e., [130] for expression recognition), yet these raw events are not informative

about the synchrony between a subject and an interviewer. Synchrony is at least a

dyadic interaction, so we must look at the event detections for both parties together.

Therefore, once the system has processed the videos of both subject and interviewer,

recording any detected events (in this case we focused on head nodding, head shak-

ing and smiling events), another module parses the detections for both streams, us-

ing a sliding window of size w, to output synchrony meta-events. If event A, where

A ∈ {nodding, shaking, smiling}, is detected for subject X at time t and for interviewer

Y at time t±w, where w is the size of the sliding window, we say we have a synchrony

hit for that event, otherwise we say we have a synchrony miss for that event. In the

case of a hit, we say it is a “subject hit”, if the subject first performed the event and the

interviewer followed and mirrored it. We say it is an “interviewer hit”, if the interviewer

first performed the event and the subject then followed and mirrored it. The definitions

of hit and miss smiling events are illustrated in Fig. 5.11. Hit and miss events for head

nodding and head shaking gestures follow a similar definition. The complexity of the

sliding window algorithm for parsing synchrony events, which depends on the length of
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the streams and on the window size, is O(nw).

5.5.3 Experimental Setup and Results

In order to validate our hypothesis we have analyzed stimulus videos collected from

an experiment at Oklahoma University (OU), in which Federal Polygraph Examiners

interviewed subjects (N = 243) who cheated in a task. Each video file contained syn-

chronized twin-view, showing both the subject and the interviewer. The subjects were

OU students, while there were four professional polygraph examiners, provided by the

Department of Defense, each having 4–30 years of experience.

More specifically, the participants were asked to play a trivia game with a con-

federate who gets them to cheat. These cheaters, who henceforth we refer to as the

deceivers, are immediately afterwards interviewed by a professional examiner, while

both being videotaped. The interviews were structured to have three segments and in

each segment a different type of questions were asked. In the first segment the examiner

is asking “background” questions, such as “what do you think is the purpose of this

interview?” or “how well do you think you did at your task?” In the second segment

they are asked “suspicion” questions, such as “are you aware of the prohibition against

cheating in OU’s honor code?” In the third and last segment, the subjects are asked

direct accusation questions, such as “did you cheat?” or “why should I believe you?”

In every segment the examiners were allowed to ask follow-up questions. The inter-

view was structured in this way so as to initially establish trust between the subject

and the interviewer. If towards the end of the interview, the synchrony between them

broke down it would be a sign of deception, given the hypothesis that deceivers are less

in-synch than truth-tellers. In fact, some of the subjects confessed to cheating, before

the end of the interview, while others did not. For our analysis, we selected N = 31

subjects who did not confess.

We run our extended ASM face tracker on the selected videos to track the faces of

subjects and their interviewer, while detecting and time-stamping gestures and facial

expressions. In particular, we were interested in recording smiles, head nods and head

shakes. The running-time was dominated by the facial expression recognition module
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Figure 5.12: Simultaneous tracking of subject (left) and interviewer (right) illustrating
detection of “head shaking” events (interviewer’s face deliberately masked to protect
identity). Only subject’s head pose is shown. Subject did a head shake first, then
the interviewer followed after about 1 second (37 frames of 30 fps video), so this is a
subject-hit-shaking event.
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Figure 5.13: Simultaneous tracking of subject (left) and interviewer (right) illustrat-
ing detection of “head nod” events (interviewer’s face deliberately masked to protect
identity).

which made the face tracking and event detection algorithm run at 5 fps on average

(Intel Quad Core 2.4GHz, 8GB RAM) for a video resolution of 640× 480. Figure 5.12

illustrates simultaneous tracking of subject and interviewer and detection of head shak-

ing events, while Fig. 5.13 illustrates detection of head nodding events. In both cases,

the face of the examiners is masked in order to protect their identity, given they are still

active field agents. We then quantified the degree of synchrony in each video for each

of the three interview segments, computing the “hit” and “miss” features discussed in

Sec. 5.5.2, by running a sliding window classifier of size w = 60 frames, which is 2

seconds for a 30 fps video. The size of the window was determined by 10-fold cross

validation. Figure 5.14 illustrates detection of synchrony features for head nodding

events extracted from a sample video.

However, exactly because dyadic interactions are dynamic processes and individual

behaviors also vary by person and by the context of the interaction it is imperative

to normalize the synchrony features. This normalization should account for both the
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Figure 5.14: Illustration of hit and miss events for nod detection, which are used in our
synchrony analysis for deception detection.

Classifier Accuracy TP Truthful FP Truthful TP Decept. FP Decept.

Naive Bayes 58.1% 53.3% 37.5% 62.5% 46.7%

SVM 80.6% 86.7% 25.0% 75.0% 13.3%

Logistic 74.2% 73.3% 25.0% 75.0% 26.7%

Table 5.4: Deception detection rates using synchrony analysis and a 2-second synchrony
window (N = 31 subjects). Accuracy is measured as the percent of correctly classified
instances.

length of the interview segments and the amount of overall facial expressions and ges-

tures that were produced by the interacting agents, so that it will allow implicit detec-

tion of out-of-synch interactions, which in turn indicate deceptive subjects. Therefore,

the features for a particular event (e.g., smiling) in each segment were first normal-

ized by the total event count in that segment and the normalized by the duration (in

seconds) for that segment, yielding normalized synchrony features, which you used to

train classifiers to detect deceptive and truth-telling subjects.

Results of the automatic analysis and SVM classification are supportive of the initial

hypothesis of the experiment. Table 5.4 shows classification accuracy (10-fold cross

validation) using different classifiers trained on the selected N = 31 subjects. This

means that monitoring synchrony events, while establishing implicit models of trust,

can be useful for automatic deception detection.

Our analysis continues, as we are looking to see if the trend discovered thus far
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by our computerized methods, generalizes to the greater sample population. However,

we can safely conclude that normalization of synchrony event counts in each segment

by the total event count in that segment is crucial to accurate deception recognition.

Moreover, our synchrony attributes (i.e., event hits and event misses by each party)

proved to be adequate quantitative measures of synchrony. What is even better is that

deception detection through synchrony analysis achieves an accuracy close to the one

achieved by our subject-specific modelling in the previous sections, with the difference

that the method in this section does not require collection of training data to establish

the baseline behavioral profiles of a new subject. Therefore, it has the potential to be

a more practical method.

5.6 Summary

We presented two novel and fully automatic methods for deception detection from

kinesic analysis on video input of interviews. One approach focused only on the sub-

ject and successfully attempted to distinguish over-controlled and agitated behaviors

profiles from their respective baseline relaxed ones, using subject-specific modelling,

outperforming state of the art methods. However, data from additional psychological

studies of deception would help to further confirm that the behaviors discriminated by

our learning algorithms are the deceptive behaviors we are attempting to isolate. The

other approach looks at both the subject and their interviewer detecting accuracy via

synchrony analysis and achieving similar accuracy. Both approaches have great poten-

tial and contributes to understanding deception detection from visual input in general,

while the method relying on synchrony analysis has the added benefit that once trained

it can be used without also requiring training data from the current test subject. Nev-

ertheless, our results show a convincing proof of concept and suggest a promising future

for the identification of deceptive behavior from video sequences.
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Chapter 6

Conclusions and Future Research

Face tracking has numerous applications in the field of Human Computer Interaction

and behavior understanding in general. Yet, face tracking is a difficult problem because

the tracker must generalize to new faces, adapt to changing illumination, keep up with

fast motions and pose changes, and tolerate target occlusion. Our objective in this work

was to build an automatic face tracking system whose output can be used (directly or

indirectly) to recognize dynamic events of facial expressions and head gestures, thus

forming the foundation block of useful recognition applications. In fact, we focused on

the application of our face tracking system to two very important recognition problems:

(1) the recognition of non-manual markers (involving combinations of head gestures and

facial expressions) in video sequences of American Sign Language, and (2) the automatic

detection of deception in interview scenarios using kinesic analysis.

More specifically, we developed an extended a face tracker with stochastic shape

transitions and a hierarchical observation likelihood models, resulting in better han-

dling of head rotations and facial occlusions. We pioneered a framework for isolated

recognition of non-manual markers in segmented ASL video sequences, using a “bag-of-

words” model and later extended it to enable continuous recognition using sequential

models and incorporating domain knowledge. We introduced a method for 2D image

warping of non-frontal poses to frontal, using a trained 3D model to remove the effects

of viewpoint changes on the appearance of an object and make the simplify the com-

plexity of the recognition problem. Furthermore, we proved that deception detection

is possible from kinesic analysis and from its more practical extension to synchrony

analysis.

The methods presented in this thesis have applications to other domains as well. The
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probabilistically extended face tracker can be applied to track any other deformable or

rigid object, provided an appropriate training model. Similarly, the recognition meth-

ods we proposed for recognition of ASL markers can be used elsewhere to recognize

combinations of head gestures and head movements by adjusting the feature set ac-

cordingly (since our framework is easily extensible), e.g, emotion recognition through

analysis of facial expressions. This application can especially benefit from our face

tracker, because it requires accurate facial tracking, and from our technique for image

warping, which can help simplify the learning phase. More specifically, one may only

need to train the various emotion recognition models using only labelled frontal image

data, which is more widely available, and then apply our warping technique to every

image in which the pose is non-frontal, before applying the trained recognition models.

This will cut down the training time, because fewer models need to be trained and also

less training data will be needed.

Moreover, there are a few improvements that can be made to our existing methods.

Firstly, the face tracker can be made more specific by training additional models for

the in-between poses (e.g., up right, up left, down right, down left, etc.) to better ap-

proximate the non-linear shape manifold. The combination factors for the observation

likelihood model can be allowed to be dynamic, so as to weigh differently each of its

components, based on the tracking context. A similar extension can be applied to the

adaptive rate of the EOH spatial pyramid templates, as well as to the number of samples

used by the particle filter. The sample set can be expanded as the cumulative density

of the samples drops below a threshold to allow better sampling of the state space, and

contracted while the cumulative density is high and the tracker is locked on target, so as

to conserve computational resources. A further refinement would be to incorporate the

mean-shift algorithm inside the particle filter for more efficient exploration of the state

space by the sample set. This will improve accuracy but will also increase the running

time per frame, which, however, can be decreased by efficient parallel code or even

GPU programming, given that the samples can be forked, processed independently of

each other and then merged again. Lastly, the 3D face model can be augmented with a

texture model for more accurate image warping. The current technique begins to break
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down, thankfully in a graceful manner, as the head rotation angle begins to increase

past the 45o limit. This is because at that point, certain areas of the face start getting

occluded leading to discontinuities, so when the image is warped to frontal pose, there is

not enough information in the visible area to interpolate how the occluded areas should

be warped. However, if the 3D model is also trained with texture, then by matching

the texture in the visible areas, the model can interpolate the texture of the occluded

areas, too, for more fluid warping. This improvement is reminiscent of the 2D Active

Appearance Models (AAM) but extended to 3D.
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[89] T. Ojala and M. Pietikäinen. Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. PAMI, 2002.



120

[90] M. A. Oleshansky and J. L. Meyerhoff. Acute catecholaminergic responses to
mental and physical stressors in man. Stress Medicine, 8:175–179, 1992.

[91] S. C. W. Ong and S. Ranganath. Automatic sign language analysis: a survey and
the future beyond lexical meaning. IEEE TPAMI, 27(6):873–891, June 2005.

[92] V. I. Pavlovic, R. Sharma, and T. S. Huang. Visual interpretation of hand gestures
for human-computer interaction: A review. IEEE TPAMI, 19:677–695, 1997.

[93] F. Porikli. Integral histogram: a fast way to extract histograms in cartesian
spaces. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 829–836, June 2005.

[94] L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[95] M. Rogers and J. Graham. Robust active shape model search. In Proceedings
of the 7th European Conference on Computer Vision-Part IV, ECCV ’02, pages
517–530, London, UK, UK, 2002. Springer-Verlag.

[96] S. Romdhani, S. Gong, and A. Psarrou. A multi-view nonlinear Active Shape
Model using kernel PCA. British machine vision conference, pages 483–492, 1999.

[97] J. M. Saragih, S. Lucey, and J. F. Cohn. Deformable model fitting by regularized
landmark mean-shift. Int. J. Comput. Vision, 91:200–215, January 2011.

[98] S. Sarkar, B. Loeding, and A. Parashar. Fusion of manual and non-manual infor-
mation in american sign language recognition. In C. H. Chen, editor, Handbook
of Pattern Recognition and Computer Vision (4th Edition). CRC Press, 2010.

[99] C. Shan, S. Gong, and P. W.McOwan. Robust facial expression recognition using
local binary patterns. IEEE Int. Conf. on Image Processing, 2005.

[100] J. Shi and C. Tomasi. Good features to track. In Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society
Conference on, pages 593–600, June 1994.

[101] L. Sigal, S. Sclaroff, and V. Athitsos. Skin color-based video segmentation un-
der time-varying illumination. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(7):862–877, July 2004.

[102] T. Starner and A. Pentland. Visual recognition of American Sign Language us-
ing Hidden Markov Models. In International Workshop on Automatic Face and
Gesture Recognition, pages 189–194, 1995.

[103] C. Sutton and A. McCallum. Introduction to statistical relational learning. chap-
ter An introduction to conditional random fields for relational learning. MIT
Press, 2006.

[104] M. J. Swain and D. H. Ballard. Color indexing. IJCV, 7:11–32, 1991.

[105] X. Tan, F. Song, Z.-H. Zhou, and S. Chen. Enhanced pictorial structures for
precise eye localization under incontrolled conditions. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1621–1628,
June 2009.

[106] Y. Tian. Evaluation of face resolution for expression analysis. Computer Vision
and Pattern Recognition Workshop on Face Processing in Video, 2004.



121

[107] M. E. Tipping and C. M. Bishop. Probabilistic principal component analy-
sis. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
61(3):611–622, 1999.

[108] C.-F. Tsai and C. Hung. Automatically annotating images with keywords: A
review of image annotation systems. Recent Patents on Computer Science, 1:55–
68, 2008.

[109] G. Tsechpenakis, D. Metaxas, M. Adkins, J. Kruse, J. Burgoon, M. Jensen,
T. Meservy, D. Twitchell, A. Deokar, and J. Nunamaker. HMM-based deception
recognition from visual cues. In IEEE ICME, pages 824–827, Los Alamitos, CA,
USA, 2005. IEEE.

[110] P. Tsiamyrtzis, J. Dowdall, D. Shastri, I. T. Pavlidis, M. G. Frank, and P. Ekman.
Imaging facial physiology for the detection of deceit. International Journal of
Computer Vision, 71:197–214, February 2007.

[111] B. Turvey. United States v. Gordon E. Thomas, III - a case study in the reliability
of criminal investigative analysis. Journal of Behavioral Profiling, 7(1), 2007.

[112] M. Valstar and M. Pantic. Combined Support Vector Machines and Hidden
Markov Models for modeling facial action temporal dynamics. In HCI’07: Pro-
ceedings of the IEEE Workshop on Human Computer Interaction, pages 118–127,
2007.

[113] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September 1998.

[114] C. Vogler and S. Goldenstein. Facial movement analysis in ASL. Univers. Access
Inf. Soc., 6(4):363–374, 2008.

[115] C. Vogler and S. Goldenstein. Toward computational understanding of sign lan-
guage. Technology and Disability, 20(2):109–119, 2008.

[116] C. Vogler, S. Goldenstein, J. Stolfi, V. Pavlovic, and D. Metaxas. Outlier rejec-
tion in high-dimensional deformable models. Image Vision Comput., 25:274–284,
March 2007.

[117] C. Vogler and D. Metaxas. ASL recognition based on a coupling between HMMs
and 3D motion analysis. In ICCV, pages 363–369, 1998.

[118] C. Vogler and D. Metaxas. Handshapes and movements: Multiple-channel ASL
recognition, pages 247–258. LNAI. Springer, Berlin, 2004.

[119] U. von Agris, M. Knorr, and K.-F. Kraiss. The significance of facial features
for automatic sign language recognition. In Automatic Face Gesture Recognition,
2008. FG ’08. 8th IEEE International Conference on, pages 1–6, September 2008.

[120] U. von Agris, D. Schneider, J. Zieren, and K.-F. Kraiss. Rapid signer adaptation
for isolated sign language recognition. In V4HCI, 2006.

[121] U. von Agris, J. Zieren, U. Canzler, B. Bauer, and K.-F. Kraiss. Recent develop-
ments in visual sign language recognition. Univers. Access Inf. Soc., 6(4):323–362,
2008.

[122] A. Vrij. Detecting lies and deceit: The psychology of lying and its implications
for professional practice. Wiley, Chichester, UK, 2000.

[123] A. Vrij, K. Edward, K. Roberts, and R. Bull. Detecting deceit via analysis of
verbal and nonverbal behavior. Journal of Nonverbal Behavior, 24:239–263, 2000.



122

[124] Y. Wang, X. Ni, and F. Jian. Discriminative training methods of HMM for sign
language recognition. CAAI Transactions on Intelligent Systems, 1:80–84, 2007.

[125] D. H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[126] M. Xu, B. Raytchev, K. Sakaue, O. Hasegawa, A. Koizumi, M. Takeuchi, and
H. Sagawa. A vision-based method for recognizing non-manual information in
japanese sign language. In Proceedings of the Third International Conference on
Advances in Multimodal Interfaces, ICMI ’00, pages 572–581, London, UK, 2000.
Springer-Verlag.

[127] F. Yang, J. Huang, and D. Metaxas. Sparse shape registration for occluded facial
feature localization. In Automatic Face Gesture Recognition and Workshops (FG
2011), 2011 IEEE International Conference on, pages 272–277, March 2011.

[128] F. Yang, J. Wang, E. Shechtman, L. Bourdev, and D. Metaxas. Expression flow
for 3d-aware face component transfer. 2011.

[129] H.-D. Yang and S.-W. Lee. Combination of manual and non-manual features for
sign language recognition based on conditional random field and active appear-
ance model. In Machine Learning and Cybernetics (ICMLC), 2011 International
Conference on, volume 4, july 2011.

[130] P. Yang, Q. Liu, and D. N. Metaxas. Boosting encoded dynamic features for
facial expression recognition. Pattern Recognition Letters, 30(2):132–139, 2009.

[131] Z. Zhang, V. Singh, T. E. Slowe, S. Tulyakov, and V. Govindaraju. Real-time
automatic deceit detection from involuntary facial expressions. In IEEE CVPR,
2007.
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