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Despite increasing knowledge about pathophysiological pathways and cellular processes 

involved in diseases, the molecular mechanisms and physiological significance are not 

fully understood. Consequently, within this exploratory research we wish to lay the 

foundations for developing bioinformatics tools and systems biology approaches towards 

the analysis and modeling of transcriptional dynamics and the understanding of gene 

transcriptional regulatory program. Two in vivo models, namely corticosteroid 

pharmacogenomics in rat and human endotoxemia in human, have been investigated to 

gain insights into (1) adverse-effects, tissue-specificity, and circadian effects under 

corticosteroid treatment, (2) temporal regulatory programs in acute inflammation, and (3) 

cellular variability and synchronization as well as time-dependent systemic responses 

under acute stress. 

In order to pursue these goals, the hypothesis that informative components of the 

genome-wide transcriptional dynamics are composed of genes which are either co-

expressed and co-functional or co-expressed across multiple conditions has been pursued 
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to identify significant genome-wide transcriptional signatures. Concepts from consensus 

clustering and meta-analysis have been explored to avoid the bias and assumption of each 

single clustering method/metric and handle challenges in the analysis of microarray data 

from heterogeneous sources. Subsequently, the mysteries and complexities of 

transcriptional regulation have been explored by using two main strategies, namely 

phylogenetic foot-printing and context-specific CRM search, to identify relevant 

transcriptional regulators and examine the putative temporal transcriptional regulatory 

program. Additionally, an in silico multi-level agent-based model of human endotoxemia 

has been constructed to gain insights into cellular behaviors and circadian effects under 

acute stress. The model captures stochastic transcriptional dynamics and critical aspects 

of the in vivo physiological human endotoxemia model. By defining novel hypothetical 

quantities such as the variability-based fitness and the synchronization level, we provided 

a step forward to the exploration of cell-to-cell variability and stochastic dynamics of 

cellular behaviors as well as predictive implications inferred from cellular variability.  

In summary, our work aims at (i) identification of critical transcriptional signatures and 

regulatory controls to provide a better understanding of system behaviors and (ii) 

simulation to understand the cellular behaviors and circadian effects within specific 

contexts. 
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Chapter 1 – Background and significance 

 

1.1. Corticosteroid pharmacogenomics 

Glucocorticoids (GC) are a class of steroid hormones present in almost every animal cell, 

playing a central role in a wide range of physiological responses [1]. Because of their 

potent anti-inflammatory and immunosuppressive effects, synthetic glucocorticoids 

referred as corticosteroids (CS) (e.g. methylprednisolone - MPL) have been used widely 

in pharmacology as a therapeutic option for a wide range of autoimmune and 

inflammatory diseases [2, 3]. However, beneficial effects are derived from magnifying 

the physiological actions of endogenous glucocorticoids, causing a variety of side effects 

following long-term treatment with this class of drugs e.g. hyperglycemia, dyslipidemia, 

arteriosclerosis, muscle wasting, and osteoporosis [4-7]. The physiological and 

pharmacological effects of corticosteroids are complex and manifest themselves with 

expression changes of many genes across multiple tissues [8-10]. It has been observed 

that even in a single tissue different dosing regimens of CS administration can induce 

different patterns of expression [11-13]. As such genes with similar expression profiles 

under acute CS administration may not exhibit similar expression patterns during 

continuous infusion, pointing to the possibility of alternative regulatory mechanisms. 

Therefore, a better understanding of corticosteroid pharmacogenomic effects from 

multiple dosing regimens are very valuable not only to reveal the transcriptional 

dynamics under different patterns of input perturbations but also to provide an insight 

into the underlying molecular mechanisms of action, for both beneficial and detrimental 

effects, and thus for the optimization of clinical therapies. 
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However, it has been noted that genes affected by CS include both immunosuppressive 

genes, mostly associated with therapeutic effects, and metabolic genes often associated 

with adverse effects whose regulation is mainly controlled by glucocorticoid receptor 

gene mediated pathways [6]. Unbound CS binds with cytosolic free glucocorticoid 

receptors (GR) releasing it from the heat shock complex allowing dimerization and 

translocation into the nucleus where it binds to glucocorticoid response element (GRE) of 

the target genes, leading to enhancement or inhibition of the target gene expression. As a 

result, long-term treatment with corticosteroids results in sustained up- or down-

regulation of numerous genes, leading to a new steady state which might be the basis for 

occurrence of adverse effects. However, it has also been noted that chronic infusion of 

CS causes a sustained down-regulation of the receptor (mRNA and thus protein) [14, 15]. 

While several alternative mechanisms have been proposed [16-18] it is still not 

understood why drug effects remain strong although GR mRNA is down-regulated to the 

point of almost being eliminated. A plausible explanation is that besides direct regulation 

through GRE binding sites in the 5’ regulatory regions of genes, there are  changes in 

expression that are also the indirect results of effects due to changes in expression of 

transcription factors (TFs) that act as secondary biosignals directly or indirectly 

modulating the transcription of genes [15, 19, 20]. Therefore, identification of putative 

regulatory control structures is also an essential step towards understanding corticosteroid 

effects. Consequently, our studies in this aspect focus on exploring the complexity of 

high-dimensional transcriptional expression profiles to discover critical transcriptional 

modules and regulatory control structures as well as certain sets of genes that are 

responsible for corticosteroid side-effects. 
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1.2. Systemic inflammation 

1.2.1. Clinical relevance 

The systemic inflammatory response syndrome (SIRS) often accompanies critical illness 

but is evoked by many stimuli e.g. infection, trauma, invasive surgery and biological 

stressors in general [21]. While the host inflammatory response is essential in controlling 

the stimulus, it also has a central pathogenic role in the development and severity of 

sepsis syndromes [22-24]. In the United States (US), more than 700,000 patients per year 

develop sepsis with an estimated rising incidence of ~1.5% per year [25, 26]. The 

average costs per case were ~$22,100, resulting in an economic burden of nearly $17 

billion annually in the US alone [25]. Despite more than 20 years of extensive research, 

sepsis and SIRS remain the chief causes of death, killing 30 to 50 percent of severely 

affected patients. It is a leading cause of mortality among patients in non-cardiac 

intensive care units (ICUs) [27] and the 10th leading cause of death overall in the US 

[28]. Although the overall mortality rate among patient with sepsis is declining in recent 

years, the incidence of sepsis and the number of sepsis-related cases are still increasing 

[29-31]. Additionally, sepsis substantially reduces the quality of life of survivals [32, 33]. 

In an attempt to search for an efficacious therapy that reduces mortality, a lot of 

therapeutic strategies for the treatment of sepsis have been developed [34-36]. 

Glucocorticoids (GC), one of the most traditionally and exhaustively studied therapies for 

sepsis, have been shown to have anti-inflammatory properties and improve the vascular 

reactivity. Although the administration on animal models of sepsis provided improved 

outcomes, early clinical trials using short courses of high-dose steroids (up to 600 mg/kg 

of steroids over 24 hours) revealed harmful effects to patients [37]. Furthermore, 
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prolonged glucocorticoid therapy may result in deleterious side effects [6]. However, 

recent clinical trials using low-dose of steroids have demonstrated the beneficial effects 

of glucocorticoids to patients with vasopressor-dependent septic shock [38]. The second 

most widely known therapeutic strategy is the antiserum and antibodies against endotoxin 

from Gram-negative bacteria, lipopolysaccharide (LPS). This therapeutic target received 

greater interest as it was hypothesized that it may not only be responsible for sepsis but 

also be a mediator in all forms of shock [35]. Nonetheless, treatment with 

antiserum/antibodies was shown to be beneficial in animal models but most patients with 

sepsis often fail in responding to LPS-inhibitors [39, 40]. Among possibilities is that 

phagocytes may be subject to an endogenous stimulation in which heparan sulfate 

appears to trigger the same downstream signals as endotoxin [41, 42]. Moreover, 

different infectious pathogens can stimulate different mechanisms of the host response 

[43]. The next therapeutic strategy in sepsis is mediator-specific anti-inflammatory agents 

that can reduce or inhibit strong pro-inflammatory cytokines found in septic patients (e.g. 

TNF-α, IL-1) [44]. In the similar manner with anti-LPS agents, anti-inflammatory 

mediators (e.g. anti-TNF antibodies, IL-1 receptor antagonists) were proved to show 

beneficial effects to the development of pathophysiological changes associated with 

sepsis and survival on animal studies. However, it is still unclear why these agents 

become less beneficial and even harmful in human clinical trials [45, 46]. Besides, the 

coagulation system has also been an important target for clinical therapies of sepsis. Of 

anti-coagulant agents, activated protein C (APC) has demonstrated its benefits on 

survival rates  and was approved in the US as the first drug for clinical use to patients 

with severe sepsis and high risk of death [47, 48]. Additionally, a number of other late-
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acting mediators have also been explored and considered as potential targets for 

developing novel therapeutic strategies in sepsis e.g. macrophage migration inhibitory 

factor (MIF) [49], high-mobility group B1 protein (HMGB1) [50], complement C5a [51, 

52], as reviewed extensively elsewhere [36, 53, 54]. 

All in all, despite increasing knowledge about pathophysiological pathways and 

processes involved in sepsis as well as promising results on animal studies and preclinical 

trials, the vast majority of large, randomized clinical trials to patients showed little 

success in reducing the high mortality rates [25, 34, 55]. The fundamental rationale of 

such trials was that a mediator which is observed to be persistently elevated and 

detectable in septic patients should be blocked [56]. However, clinical trials have failed 

to show a significant improvement in survival, calling into a question whether 

modulating a particular pathway or mediator of the inflammatory response should be 

reduced i.e. shifting the perspective from the component-level to the system-level where 

inter-relationships among components and dynamic patterns of change are noticed as 

important factors [57, 58]. To address such problem as well as the rising cost of 

production and approval of new drug candidates for all diseases, the US Food and Drug 

Administration recently stated that ‘A new product development tool kit-containing 

powerful new scientific and technical methods such as animal or computer-based 

predictive models, biomarkers for safety and effectiveness, and new clinical evaluation 

techniques – is urgently needed to improve predictability and efficiency along the critical 

path from laboratory concept to commercial product’ [59]. 
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1.2.2. Human endotoxemia model 

Inflammation and activation of innate immunity are essential defense responses against 

invading pathogens and endogenous danger signals. The innate immune response 

involves the initial recognition of conserved pathogen-associated molecular patterns by 

members of the Toll-like receptor (TLR) family [60]. The exposure of the host to gram 

negative bacteria, simulated by lipopolysaccharide (LPS) recognized by TLR-4, triggers 

intracellular signalling cascades which eventually release a lot of pro- and anti- 

inflammatory cytokines [61]. While the host inflammatory response is essential to resolve 

the infection or repair the damage and restore the system homeostasis, it also plays a 

central pathogenic role in a wide spectrum of diseases including sepsis [62]. Under 

healthy circumstances, inflammatory responses are activated, clear the pathogen in the 

case of infection, initialize a repair process and then abate [23]. However when anti-

inflammatory processes fail, an amplified inflammation can turn what is normally a 

beneficial reparative process into a detrimental physiological state with severe, 

uncontrolled systemic inflammation [24]. 

In vivo model of human inflammation: To learn more about the mechanisms associated 

with the host inflammatory response, human endotoxemia models have been proposed in 

which a single intravenous bolus of E. coli endotoxin (LPS) is given to healthy human 

subjects. The model results in many similar physiological host responses that characterize 

Gram-negative bacteria infection [63], providing an invaluable source for the systemic 

identification of biological features representing the complex dynamics of a host 

undergoing inflammatory responses [64, 65]. Studies involving experimental human 

endotoxemia have reported rapid intravenous infusion in doses of 2-4ng/kg body weight, 
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which effectively induces an acute systemic inflammatory condition that mimics the early 

flow phase of injury and infection [63, 66-69]. In human peripheral blood leukocytes, 

intravenous administration of endotoxin elicits dynamic and reproducible changes in the 

circulating leukocyte population as well as significant changes in blood leukocyte gene 

expression patterns [64]. This perturbation of leukocyte gene expression involves several 

thousands of transcripts and accompanies the systemic physiological responses during 

inflammation, which peaks ~4-6 hours after endotoxin exposure and resolves within 24 

hours, compatible with a large and dynamic regulatory network.  

In silico model of human endotoxemia: In parallel with in vivo model, in silico models 

of inflammation have also been developed to study the complex interplay between 

beneficial and harmful arms relevant to inflammatory responses [70-73]. With the 

primary goal of optimizing clinical practice, mechanistic simulations have been 

advocated to understand and predict the systemic behaviors seen in clinical settings [74-

76]. As such, computational models offer a promising possibility for improving the 

interpretation of quantitative experimental data as well as generating and exploring 

simultaneously multiple hypotheses [75-78]. It is a means of knowledge representation 

that can help to (i) better understand the underlying molecular mechanism of the host 

inflammatory response, (ii) examine systemic effects under different initial experimental 

conditions, (iii) perform successively different and/or simultaneously multiple 

experiments coupled with different testable hypotheses, and eventually (iv) discover 

common features leading to distinct outcomes if applicable. Multiple modeling methods 

have been developed in the state-of-the-art but generally they can be classified into two 

main categories – equation-based [79, 80] and agent-based modeling [70, 71, 77], each of 
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which has its own strengths and limitations but the two disciplines ignored each other’s 

literature almost entirely although the study area is significantly overlapped [81]. The 

most popular approach of the equation-based category in characterizing inflammation is 

using ordinary differential equations (ODEs) [82-87]. However, ODEs is fully 

deterministic with respect to the systemic behavior given a certain set of initial conditions 

and assumes the homogeneity and perfect mixing within compartments as well as ignores 

the spatial aspect [73, 88], requiring the employment of alternative approaches e.g. partial 

differential equations [89], stochastic differential equations [90, 91], and eventually the 

other category – agent-based modeling [70, 75, 92-94]. 

1.3. Significance 

Life science is being at the age of transition from descriptive to mechanistic approaches 

that explore underlying principles from molecules to cells, organs and their interactions 

across multiple scales of biological organization. Among key concepts to these analyses 

is the concept of ‘network’ [95].  In the context of biological systems, the implication is 

that macroscopic responses of a system are the results of propagating information, in the 

form of disturbances, across an intricate web of interactions at multiple biological scales. 

These interactions define elementary building motifs that are organized into intracellular 

pathways and regulatory structures, which in turn are integrated into interacting modules 

that eventually give rise to an organism’s response. 

As modulating gene expression levels is among the key regulatory responses of an 

organism to changes in its environment and/or external stimuli, identifying biologically 

relevant transcriptional regulators and their putative regulatory interactions with target 

genes is an essential step towards the study of the complex dynamics of gene regulatory 
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network. It has been hypothesized that one of the primary mechanisms for gene 

regulation is via transcription factor binding in which a protein (transcription factor) 

binds to certain sites in the genome [96-98]. The discovery of gene regulatory elements 

requires the synergism between computational and experimental techniques in order to 

reveal the underlying regulatory mechanisms that drive gene expression in response to 

external cues and signals. Consequently, in this research the overall theme has been set 

for the development of bioinformatics tools and systems biology approaches towards the 

analysis and modeling of transcriptional dynamics and the understanding of gene 

regulatory network. Two in vivo models, namely corticosteroid pharmacogenomics in rat 

and human endotoxemia in human, have been investigated to gain insights into (1) 

adverse-effects, tissue-specificity, and circadian effects under corticosteroid treatment, 

(2) temporal regulatory programs in acute inflammation, and (3) cellular variability and 

synchronization as well as time-dependent systemic responses under acute stress. 

In order to pursue these goals, we first identify characteristic genome-wide transcriptional 

signatures by exploring the hypothesis that informative components of the genome-wide 

transcriptional dynamics are composed of genes which are either co-expressed and co-

functional or co-expressed across multi-conditions. Subsequently, relevant transcriptional 

regulators and putative regulatory structures relevant to the regulation of corresponding 

transcription dynamics are explored using two main strategies, namely phylogenetic foot-

printing and context-specific CRM search. Finally, we embedded those transcriptional 

dynamics to an integrated dynamics model to gain insights into cellular behaviors.  

A couple of novel statistical methods and improvements on existing algorithms have been 

developed to better extract critical transcriptional modules given a high-dimensional 
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transcriptional profiling dataset. First, we proposed a statistical model which can 

integrate the error information from repeated measurements to expression profiles, 

generating the so-called ‘true’ expression profiles. The output can be utilized for a variety 

of computational models that take expression profiles as the required input without any 

modification while still taking into account the advantage of using replicated data. We 

next explored concepts in consensus clustering and the hypothesis that the more 

clusterable the data is the more biologically relevant it is to identify, within a set of 

differentially expressed genes, a subset of genes that are either highly co-expressed or 

highly non-coexpressed with the hope of extracting a more biologically relevant subset of 

genes. Additionally, following the orientation of meta-analysis an extended 

computational approach was also proposed to identify gene clusters that share common 

expression patterns across multiple gene expression datasets as well as handling 

challenges in the analysis of microarray data from heterogeneous sources. 

In order to predict relevant transcriptional regulators and putative regulatory structures 

relevant to the regulation of corresponding transcription dynamics, we explored two main 

strategies, namely phylogenetic foot-printing and context-specific CRM search, to 

identify relevant transcriptional regulators and examine the putative transcriptional 

regulatory program. Our analysis also allows for the reconstruction of a dynamic 

temporal regulatory network, making it a critical enabler for improving our understanding 

of how the transcriptional machinery ‘program’ effectively regulates key cellular 

processes. To examine cellular behaviors and detailed regulatory mechanisms, more 

specifically the interplay between circadian control and endotoxin challenge, we 

construct an in silico multi-level agent-based model of human endotoxemia model. The 
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model captures the stochasticity of transcriptional dynamics and critical aspects of the in 

vivo physiological human endotoxemia model. By defining novel hypothetical quantities 

such as the variability-based fitness and the synchronization level, we provided a step 

forward to the exploration of cell-to-cell variability and stochastic dynamics of cellular 

behaviors as well as predictive implications inferred from cellular variability. Ultimately, 

our work aims at (1) identification of transcriptional signatures and regulatory controls to 

provide a better understanding of the system behaviors and (2) simulation to gain insights 

into cellular behaviors and circadian effects within specific contexts. 

 

Developing tools 

1. ExPatt: explore the concepts of ‘clusterable’ data and consensus clustering to identify 

critical transcriptional responses given a high-dimensional gene expression dataset. 

2. MP-Clustering: a multi-plus clustering framework that extends from ‘ExPatt’ to 

identify co-expressed gene clusters across multiple conditions/tissues as well as 

handling challenges in the analysis of microarray data from heterogeneous sources, 

e.g. different platforms, different time-grids, different lab-protocols. 

3. ‘True’ expression profiles: integrate the error information from repeated 

measurements to provide a better type of gene expression profiles compared to simple 

average expression profiles, supporting the usage of previous computational methods 

without changing anything but still taking the advantage of replicate data. 

4. TF-Explorer: predict transcriptional factors relevant to the regulation of 

transcriptional responses using context-specific CRM search and a novel heuristic to 

handle the computational complexities.  

5. Agent-based human endotoxemia model: construct an in silico human endotoxemia 

that can mimic important characteristics of the in vivo human endotoxemia. 
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Chapter 2 – Materials and data 

 

2.1. Expression data 

2.1.1. Corticosteroid pharmacogenomics 

Acute corticosteroid administration 

Forty-seven male ADX Wistar rats weighting from 225 to 250g underwent right jugular 

vein cannulation under light ether anesthesia 1 day before the study [99]. Forty-three rats 

were injected with a single intravenous bolus dose of methylprednisolone (MPL) of 

50mg/kg. Animals were sacrificed by exsanguinations under anesthesia and liver samples 

were harvested at 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 6, 7, 8, 12, 18, 30, 48, and 72 after 

dosing. The sampling time points were selected based on preliminary studies describing 

GR dynamics and enzyme induction in liver. Four untreated rats were sacrificed at 

random times and nominally considered as 0h controls. The gene expression was 

obtained via the Affymetrix RG-U34A array which consists of 8,799 probesets. The data 

are publicly available through the GEO Omnibus Database under the accession number 

GDS253. After filtering by ANOVA (p-value = 0.05) [100, 101], 2,920 probesets 

considered as differential expression are used for further analysis. 

Chronic corticosteroid administration 

In a similar experiment model, forty rats were administered a low level of 0.3 mg/kg/hr 

infusions of MPL over 168h via an Azlet pump [11]. The pump drug solutions were 

prepared for each rat based on its predose body weight. Animals were sacrificed at 

various times up to 7 days; specifically the time-points included are 6, 10, 13, 18, 24, 36, 
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48, 72, 96, and 168h. A control group of four animals was implanted with a saline-filled 

pump and killed at various times throughout the 7-day study period. Unlike the previous 

experiment, the microarray platform for this dataset is the RAE230A which consists of 

15,923 probesets. The data are publicly available through the GEO Omnibus Database 

under the accession number GDS972. After filtering by ANOVA (p-value = 0.05), 4,361 

probesets are selected as significantly differentially expressed probesets for further 

analysis. 

Circadian data 

To examine the fluctuations of gene expression patterns in liver within the 24 hour 

circadian cycle in normal animals, fifty four normal male Wistar rats (body weights ~ 

225-275g) were housed and allowed to acclimatize in a constant-temperature 

environments (220C) equipped with 12h light/dark cycle [102]. Twenty-seven rats (Group 

I) were acclimatized for 2 weeks prior to study to a normal light/dark cycle where lights 

went on at 8AM and off at 8PM whereas the other 27 rats (Group II) were acclimatized a 

reserved light/dark cycle where lights went on at 8PM and off at 8AM. Rats in Group I 

were killed in three successive days at 0.25, 1, 2, 4, 6, 8, 10, 11, 11.75hr after lights on to 

capture the light period. Rats in Group II were killed on three successive days at 12.25, 

13, 14, 16, 18, 20, 22, 23, 23.75h after lights on to capture the dark period. Animals 

sacrificed at the same time on successive days were treated as triplicate measurements. 

The gene expression was obtained via the Affymetrix RAE230A array which consists of 

15,923 probesets. The data are publicly available through the GEO Omnibus Database 

under the accession number GSE8988. After filtering by ANOVA (p-value = 0.05), 2,468 

probesets considered as differential expression are used for further analysis. 
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All protocols followed the Principles of Laboratory Animal Care (Institute of Laboratory 

Animal Resources, 1996) and were approved by the University at Buffalo Institutional 

Animal Care and Use Committee. 

2.1.2. Human endotoxemia model 

In vivo data 

The data used in this study were generated as part of the Inflammation and Host 

Response to Injury Large Scale Collaborative Project funded by the USPHS, U54 

GM621119 [64, 103]. Human subjects were injected intravenously with endotoxin (CC-

RE, lot 2) at a dose of 2-ng/kg body weight (endotoxin treated subjects) or 0.9% sodium 

chloride (placebo treated subjects). Following lysis of erythrocytes and isolation of total 

RNA from leukocyte pellets [64], biotin-labelled cRNA was hybridized to the Hu133A 

and Hu133B arrays containing a total of 44,924 probesets for measuring the expression 

level of genes that can be either activated or repressed in response to endotoxin at 0 

(before treatment), 2, 4, 6, 9, and 24hr. Data are publicly available through the GEO 

Database (#GSE3284). ANOVA technique (p<10-4) was then applied to filter 

significantly differentially expressed probesets, resulting in 3,269 selected probesets 

[104]. Average expression profiles of probesets over replicates for each time-point were 

used as the final input data for further analyses [105]. The data have been appropriately 

de-identified, and appropriate IRB approval and informed, written consent were obtained 

by the glue grant investigators [64]. 

In vitro data 

Isolated from peripheral blood mononuclear cells collected from three healthy humans, 

adherent monocytes were cultured for 10 days in RPMI medium 1640 (20% FBS/L-
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glutamine/20mM Hepes/penicillin/streptomycin/50 ng/ml macrophage colony-

stimulating factor) to generate peripheral-blood-derived mononuclear cells [106]. These 

mononuclear cells were stimulated by 100 ng/ml LPS (Salmonella minnesota R595 ultra 

pure LPS; List Biological Laboratories, Campbell, CA) and sampled at 0 (before 

stimulation), 2, 4, 8, and 24hr. Total RNA was isolated with TRIzol (Invitrogen, 

Carlsbad, CA) and two samples for each time-point were analyzed using HG-U133 Plus2 

Affymetrix GeneChips producing mRNA expression profiles of 54,675 probesets 

(#GSE5504). Fold change (fold = 2.5) was then applied to filter significantly 

differentially expressed probesets, resulting in 2,892 selected probesets. Average 

expression profiles of probesets over replicates for each time-point were used as the final 

input data for further analyses [105]. 

2.1.3. Synthetic data  

2-dimensional datasets 

To provide a visual view of how the strategy works and the effect of the agreement 

threshold (or confidence level) on the result of selection and clustering, we utilized five 

two-dimension testing sets from the work of Pei and Zaiane [107]. Each set (2,000 

points) was created with a density- and a noise-level corresponding to a difficulty-level, 

in which the data in each cluster can be uniformly or normally distributed; then some 

mathematical techniques such as linear transformation, linear equation and circle 

equation were applied to generate the final datasets. The difficulty levels spread from one 

to five corresponding to five testing sets (one with standard cluster shapes and well 

separated, two with transformed shapes and well separated, three with arbitrary shapes 

and clearly separated, four with arbitrary shapes with obvious or vague space inside 
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clusters but still clearly distinguishable, five with clusters within clusters, irregular 

shapes, and some clusters are bridged). 

 

High dimensional datasets 

Downloaded synthetic data 

A number of synthetic datasets from the open literature are utilized to assess our 

approach for finding common sets of genes that are highly coexpressed across multiple 

conditions. Specifically, we used a series of four high-noise 20-timepoint sine-format 

synthetic datasets with different number of replicates at each time-point (1, 3, 4, and 20 

respectively) from [105, 108]. Each dataset contain five separate sets with 400 genes 

allocated equally in 6 classes, each of which contains the same list of genes but has 

different patterns across five conditions. For each set, in the first step the data are 

generated according to an artificial pattern Φ(i, t, l) which shows the values for gene i at 

time-point t in cluster l; four of six clusters follow the sine function i.e. Φ (i, t, l) = 

sin(2πt/10 – wl) (wl is some random phase shift between 0 and 2π), and the other two 

follow the non-periodic linear function (Φ (i, t, 5) = t/20 and Φ(i, t, 6) = –t/20), i = 1, …, 

400, t = 1, …, 20, l = 1, …, 4. In the second step, let x(i, t, r) be the error-added value for 

gene i, time-point t and repeat; x(i, t, r) is randomly drawn from a normal distribution 

N(μ, σ) where μ is the value of the synthetic pattern Φ(i, t, l) and σ is equal to λσit (σit is 

randomly extracted from measurement errors observed in the yeast galactose data [109] 

and λ is the multiplicative factor that controls the noise level). High-noise synthetic data 

are generated with λ = 6 [105]. 
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Generated synthetic data 

Following the convention of previous studies [105, 110], we generate synthetic data 

which contain 6 clusters of genes, each of which consists of 66 genes across T = 20 time-

points. Four of six clusters are generated using the sine function plus some noise 

( ) itritimmitr xTtg σασϕω ++= sin  

and the other two are generated following a non-periodic linear function plus some noise 

itritiitr xTtg σασ+±=  

Here the subscript m denotes the cluster number and i, t, r indicate the gene id, the time, 

and the replicate numbers respectively. Therefore, {gitr} is a synthetic expression profile 

of a simulated gene with r replicates for each of T time-points. The parameters ωm and φm 

represent the random wavelength and random shift for cluster m (

]2,0[],5,5.0[ πϕππω ∈∈ mm ). α is the level of noise which is 1.0 for low noise and 2.5 for 

high noise in this study. The parameters σi and σit represent the error levels for gene i and 

for experiment at time-point t which are randomly drawn from a uniform distribution in 

the interval [0.2, 1.2]. Finally, xitr is a random variable drawn from a standard normal 

distribution to create the variability for replicates. 

2.2. Promoter data 

2.2.1. Promoter sequences 

Promoters of genes are extracted from a rich database of promoter information using 

Gene2Promoter – Genomatix [111]. Given a gene, a set of transcript-relevant promoters 

are extracted coupled with multiple alternative promoters and experimental information 

about the promoter length including those with either an experimentally defined length or 
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a default if there is no associated prior length information (500bp upstream plus 100bp 

downstream the transcription start site – TSSs).  

Orthologous promoters are also extracted using Gene2Promoter tool. Each promoter is 

characterized by a set of promoters from orthologous genes of other vertebrate species, if 

available (e.g. Homo sapiens, Mus musculus, Macaca mulatta, Pan troglodytes, Equus 

caballus, Bos Taurus, Gallus gallus, etc.). To be consistent in the search for conserved 

regions on promoter sequences in order to identify putative transcription factor binding 

sites (TFBSs) we eliminate those that do not consist of more than two orthologous 

promoters.  

2.2.2. TF profiles 

In order to identify putative transcriptional regulators, we utilize position weight matrices 

(PWMs) saved in MatBase [111] which contains about 867 matrices of vertebrate 

transcription factor profiles classified into 182 families (version 8.4). MatInspector [112] 

is then applied to scan for position weight matrix (PWM) matches on the promoter 

sequences with a specific optimal threshold of the matrix similarity for each PWM and a 

common core similarity 0.75. The core similarity is the similarity of four continuous 

bases at the most conserved region in the TF profiles and the optimal threshold of the 

matrix similarity is the one which is optimized so that only a maximum of three matches 

are allowed in 10,000bp of non-regulatory test sequences (supported from MatBase 

[111]). 
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Chapter 3 – Identification of critical transcriptional modules 

 

3.1. The ‘true’ expression profiles 

Microarray technology is a powerful and widely accepted experimental technique in 

molecular biology that allows studying genome wide transcriptional responses. However, 

experimental data usually contain potential sources of uncertainty and thus many 

experiments are now designed with repeated measurements to better assess such inherent 

variability.  Many computational methods have been proposed to account for the 

variability in replicates. As yet, there is no model to output expression profiles 

accounting for replicate information so that a variety of computational models that take 

the expression profiles as the input data can explore this information without any 

modification. Thus we here propose a methodology which integrates replicate variability 

into expression profiles, to generate so–called ‘true’ expression profiles. The model 

utilizes a previously proposed error model and the concept of ‘relative difference’. The 

clustering effectiveness when using this ‘true’ profile coupled with clustering techniques 

is demonstrated through synthetic data where several methods are compared.  

3.1.1. Background 

Global gene expression analysis using microarrays has become an essential tool to study 

genome-wide transcriptional responses. Although this high-throughput technology 

produces a huge volume of useful data, enabling researchers to study the response of 

thousands of genes simultaneously, it faces many potential sources of uncertainties (e.g. 

technical noise, experimental treatments, biological sampling) [113, 114]. As such, a 
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number of statistical methods have demonstrated that the information contained in 

replicates is a valuable asset in order to assign proper confidence levels [115-118]. Rocke 

et al. [119] proposed a model accounting for measurement error to model gene expression 

profiles which has been used often in conjunction with variance-stabilizing 

transformation [120-123] and model-based clustering [124, 125]. Consequently, 

researchers are designing more experiments with repeated measurements per gene per 

chip even though it is significantly more costly and time consuming. However, properly 

incorporating the replicate information remains a challenge. 

A typical step in analyzing gene microarray data involves filtering for differential 

expression [126]. A number of methods have been proposed in this direction 

demonstrating the extensive insight gained in utilizing the information from replicates for 

determining the change of gene expression values e.g. t-test [127-129], ANOVA [100, 

130], SAM [131], EDGE [132]. An equally important part of the analysis is clustering 

which has been proven to be a powerful tool to rationalize transcriptional responses, 

identify possible functional relationships among them, and further elucidate important 

transcription factors as well as relevant biological pathways [125]. However, most 

clustering methods do not take into account the variability of gene expression profiles in 

the form of replicates. Variability is usually lumped into a mean effect and expression 

profiles are clustered based on average values of independently repeated measurements 

for each gene, thus missing, potentially, useful information [124]. 

Given that replicates can provide important insights into the nature of inherent variability 

among gene expression profiles [115], recent approaches have attempted to incorporate 

repeated measurements. There are two primary ways to handle replicated data: (i) 



21 

 

indirectly integrate the error information among replicates into a pairwise similarity 

metric between two expression profiles to produce a more robust distance metric, and (ii) 

directly integrate the replicate information into clustering models. The former offers a  

relative advantage since clustering methods that take the distance metric as input can be 

utilized without any modification e.g. standard deviation-weighted correlation coefficient 

[133], shrinkage correlation coefficient [110]. Meanwhile, various models have been 

proposed for (ii) including those whose design centers around a specific statistical model 

(e.g. Bayesian mixture model [108, 134], linear mixed model [124], random-effects 

model [125]) and those that are more general (e.g. CORE [135], trajectory clustering 

[136], mass distributed clustering [137]). Although such approaches produce more 

promising results, they are limited in that only a small number of computational methods 

can explore this information while many others requiring expression profiles as the input 

cannot.  

Here we address a somewhat different question, namely whether we can integrate the 

error information into the time-series expression profiles so that we can utilize a variety 

of computational models [14, 99, 138] that take the expression profiles as the required 

input  without any modification while taking into account the advantage of using 

replicated data (especially for clustering methods e.g. mclust [139], som [140], micro-

clustering [141], consensus clustering [101], etc.). In this aspect, the most 

straightforward approach to estimate time-series gene expression profiles is by computing 

the average expression levels over all replicates for each gene at each time-point (or 

condition in general). Of course, this approach does not properly take into account the 

variability in repeated measurements [105, 110]. Therefore, in an attempt to estimate 



22 

 

more robust expression profiles that integrate the error information from replicates, so-

called ‘true’ expression profiles, we explore the error model [133] to estimate the ‘true’ 

mean expression value of a gene across all time-points and the concept of ‘relative 

difference’ driven by the theory of t-statistic [128, 131] to compute the difference 

between the ‘true’ mean expression value across all time-points and the mean expression 

value at each time-point. Those relative differences are then used to infer the ‘true’ 

expression profile of the gene.  

3.1.2. The statistical model 

In order to utilize a variety of computational models that take the expression profiles as 

the required input without any modification while taking into account the information of 

repeated measurements, we will estimate a more robust expression profile that integrate 

the error information from replicates. Let us assume that the ‘average’ time-series 

expression profile of gene i across T time-points with Rt replicates at each time-point can 

be generally represented as  

{ } ∑== = r itr
t

it

T

titi g
R

ggg 1,1
 

The subscripts i, t, r indicate the gene id, time, and replicate respectively. The procedure 

to estimate the ‘true’ expression profile consists of two main steps: 

i. Estimate the ‘true’ mean expression value of a gene across all time-points 

Utilizing the variance (error) of repeated measurements at each time-point σit, the error 

model weights the average expression values at each time-point when computing the 

mean expression value of the gene across all time-points [133] 
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The variance of iĝ  can be calculated in two ways: one is to propagate the errors σit and 

the other is from the scatter of itg  around iĝ  
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The propagation of variance σp is based on the error estimation of each individual time-

point, leading to bias and/or systematic uncertainties whereas the other σs has large 

fluctuation when the number of measurements is small although it is an unbiased 

measure. Statistically one can combine these two variances in estimation of the variance 

for iĝ  [133]  
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ii. Estimate the relative difference between the ‘true’ mean expression value across all 

time-points and that at each time-point (one is replaced for the ‘true’ mean 

expression value) 

In order to infer the expression value at each time-point of a gene, we utilized the concept 

of ‘relative difference’ [128, 131] from the t-statistic to estimate its difference from the 

‘true’ mean expression value of the gene. Let dit represent the relative difference between 

the ‘true’ mean expression value across all time-points and the mean value at a specific 

time-point: 
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where st is the standard deviation of these two quantities 

( ) ( )
)5(

2
11 2

ˆ
2

−+

−+−
=

TR
TR

s
t

gitt
t

i
σσ

 

And thus, we propose a more accurate estimation of the average expression value at a 

specific time-point as follows 

)6(ˆ' itiit dgg +=  

As we rationalized the importance of microarray replicates in the background section, we 

hypothesize that the expression profiles would be more robust if there is some statistical 

approach that integrates the error information from replicates into the estimation. For 

average expression profiles, the expression value at a specific time-point is 

( ) ∑=−+=
t itiiitiit g

T
gwheregggg 1 . In a similar manner we obtain formula (6) in a 

way that integrates the error information into two parts of the formula; the ig)  part is the 

‘true’ mean expression value across all time-points and the latter part dit is the relative 

difference between the ‘true’ mean expression across all time-points and the one at that 

specific time-point. Figure 3.1 compares the ‘true’ expression profile to the average one. 

Its effectiveness will be further demonstrated with the clustering performance on 

synthetic and real data. 

Figure 3.1: The ‘true’ expression profiles are more robust than the average ones. ‘real’ is 

the actual profile from simulated data without noise. ‘replicates’ are obtained when noise 

is added to the actual value. The average profile is showed to be more deviated from the 

actual profile than the ‘true’ profile. 
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3.1.3. The clustering effectiveness of the ‘true’ expression profiles 

To evaluate the effectiveness of the ‘true’ expression profile compared to using the 

‘average’ profile, we use the synthetic data with known class structure as described 

earlier. As in previous studies [110], we also assess the effect of the number of replicates 

on cluster quality. Each synthetic data contains 20 time-points with r replicates (r = 2, 3, 

4, 5, 6, 7, 8, 9, 10) at each time-point and two different levels of noise (low and high). In 

addition to comparing the clustering performance using the ‘true’ profiles with the 

average profile, we also compare with several other methods that take into account error 

information from replicated data. Specifically, we measure cluster quality when using 

two typical similarity distance metrics which include the error information, namely the 

standard deviation (SD)-weighted correlation coefficient [133] and the shrinkage 

correlation coefficient [110]. Since our model generates expression profiles which are 

applicable to any clustering method, we also tested an alternative method that uses a 

cubic spline to infer expression profiles which account for repeated measurements, so-

called ‘smoothing’ profiles. For each gene, we establish two vectors – one consists of all 
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replicates and another contains corresponding time-points. They are then input into 

function ‘smooth.spline’ in stats R package [142]; other parameters (e.g. the degree of 

freedom, smoothing parameters) are optimized from an internal ‘generalized’ cross-

validation process provided by the tool. After that, the expression value at each time-

point is inferred to create the ‘smoothing’ profile for the gene (using function ‘predict’ in 

R). Subsequently, the Pearson correlation coefficient is applied to estimate the similarity 

distance between two genes with the average profiles, the ‘true’ ones, and the 

‘smoothing’ ones. After obtaining the pairwise distance matrix, we apply three popular 

clustering methods: hierarchical clustering (with average linkage option, available in 

MATLAB), partitional clustering (k-means [143], pam [144]), and model-based 

clustering (mclust [139]) to cluster the data into six clusters. In order to assess the 

clustering performance, we use the adjusted Rand index [105, 145] which is a statistic 

that measures the extent of concurrence between the clustering results and the underlying 

known class structure. The larger the Rand index is, the higher the agreement between 

clustering results and prior knowledge of class structure i.e. better performance. 

Figure 3.2: The performance of typical clustering methods on different error-

measurement integrated approaches. ‘stddev’ represents for the clustering performance 

on synthetic data using the approach with the SD-weighted correlation coefficient metric; 

similarly, ‘shrinkage’ is for the approach with the shrinkage correlation coefficient 

metric; ‘average’ is for the clustering performance on average profiles; ‘true’ is for that 

on ‘true’ profiles; and ‘smoothing’ is for that when using method ‘spline’ to infer the 

expression profiles and then clustering. The horizontal axis shows the corresponding 

number of replicates in the dataset while the vertical axis demonstrates the clustering 



27 

 

performance of the corresponding approach (the higher the better). Results are the 

average of clustering accuracies over 1000 randomly generated synthetic datasets. 
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Figure 3.2 depicts the clustering performance when using our proposed model compared 

to other approaches. We evaluate the average of 1000 randomly generated synthetic data 

sets. Figure 3.2a and 3.2b show the comparisons using hierarchical clustering. For the 

low-noise level (Figure 3.2a), the clustering performance using the ‘true’ profiles is 

slightly worse than that when using the SD-weighted correlation coefficient metric or 

‘smoothing’ profiles. However, it is still much better than that when using the average 

profiles. For the high-noise level, it is comparable to the best achievable by any other 

method (Figure 3.2b). When other clustering methods are used (e.g. kmeans – Figure 3.2c 

& 3.2d, pam – Figures 3.2e & 3.2f, mclust – Figures 3.2g & 3.2h), the clustering 

performance on the ‘true’ expression profiles is always superior, or comparable, to any 

other approach on both low and high noise data, and far better than that of the average 

profiles in high noise data. Additionally, when datasets are sampled with few time-points 

and/or few replicates, the alternative method that uses spline to infer expression profiles 

may be less advantageous than the proposed approach since it may be failed in detecting 

proper parameters for ‘spline’ profiles to recover the actual expression profiles.  

3.2. Consensus clustering 

Instead of clustering the entire dataset, we explore the hypothesis that the more 

clusterable the data is the more biologically relevant it is and utilize the concepts of 

consensus clustering to identify, within a set of differentially expressed genes, a subset of 

genes that are either highly co-expressed or highly non-coexpressed with the hope of 

extracting a more biologically relevant subset of genes. The main problem to be 

addressed can be defined as follows. Given a set of n objects { }n
iigG 1== , with each 
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described by a list of d numerical attributes { } djniRggggg ijidiii ..1,..1,,,...,, 21 ==∈= , 

we wish to pick out a ‘clusterable’ subset of objects GG ⊂'  with a confidence level δ% . 

The term ‘clusterable’ subset is used in the sense that   

( ) ( ){ }'
i j q i j q q i j qg , g G C : P g g C C , P g g C 1⎡ ⎤ ⎡ ⎤∀ ∈ ⇒ ∃ ∋ ∧ ∈ ≥ δ ∨ ∀ ∧ ∈ ≤ − δ⎣ ⎦ ⎣ ⎦  

where Cq denotes a, yet to be determined, cluster and P is the probability that the two 

objects belong to the same cluster. 

3.2.1. Background 

The traditional way for performing clustering analyses is using one clustering method to 

group all genes in a dataset into a number of clusters given a pre-defined metric of 

similarity. Those genes that belong to one cluster can be considered as co-expressed and 

those that belong to different clusters are non-coexpressed. However, it is widely 

accepted that a number of critical problems associated with clustering remain open: (i) it 

is not immediately obvious what the optimal number of clusters is [146] and it has been 

recognized that it is difficult to  develop a systematic and generic method for addressing 

such a question [147-154]. Approaches such as DBSCAN [155] showed great promise 

but the issue associated with high-dimensional data still remains [156]; (ii) every 

clustering method relies on the definition of an appropriate distance metric such as 

Euclidean, Pearson correlation, Manhattan etc. [157-159], however an algorithm’s 

performance is highly sensitive to the selection of the metric, particularly for objects 

lying at the boundaries between clusters; (iii) all clustering methods express their own 

bias and assumptions, and their performance depends highly on the properties of the input 

dataset [156]. Therefore, alternative methods have been proposed to attempt to reduce the 
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bias by combining two or more clustering algorithms [160, 161] or by incorporating with 

prior domain-specific knowledge to guide the clustering process. In the context of 

microarray analysis it may include  gene ontology [162, 163], gene annotation [157], 

gene function [164] etc.; finally (iv) the significance of a cluster and/or the probability 

that two genes may belong to one cluster or two different clusters is also an issue [161, 

165, 166]. 

In order to overcome some of the aforementioned complications simultaneously, the 

concept ‘ensemble’ or ‘consensus’ was introduced into the clustering literature [167]. By 

averaging, in some way, the results of multiple runs, one can estimate an ‘agreement 

matrix’ (AM) and infer a better proxy of what a more ‘correct’ result ought to look like. 

A number of approaches have been proposed; for example Monti et al. [149] applied one 

clustering algorithm on multiple sub-sampled datasets without replacement based on the 

original data set whereas Grotkjaer et al. [168] used different random initializations of a 

single clustering method to generate multiple results from which the agreement matrix 

was built to yield the final clustering assignment. Although such approaches offer 

definite advantages, they still express a strong bias for a given method and/or metric. 

Consequently, an alternative strategy with a meta-clustering step is applied on the 

agreement matrix as the distance matrix to reach the final result. Different studies chose 

different clustering methods based on those frequently used in the literature for the first 

level. In the meta-level, although it is based on a single method, it is still not evident 

which clustering method should be used and different studies selected different methods, 

e.g. simulated annealing [169, 170], mapping by Jaccard index [171], expectation 

maximization algorithm [172]. 
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However, we here do not mainly focus on solving the problems of clustering. Instead we 

will explore the concept of consensus clustering to identify, within a set of differentially 

expressed genes, a subset of genes that are either highly co-expressed or highly non-

coexpressed with the hypothesis that this subset would serve as a better starting point for 

further analysis, such as coregulation. A number of core clustering methods, supported by 

R packages e.g. hierarchical clustering (hclust), divisive analysis clustering (diana), fuzzy 

analysis clustering (fanny), partitioning around medoid (pam), k-means (kmeans), fuzzy 

c-means (cmeans), self-organizing map (som), and model-based clustering (mclust) will 

be employed in the first-level [139, 140, 144, 173-175]. Additionally, in order to 

overcome the limitations of using a single distance metric, we explore different metrics 

(Euclidean, Pearson correlation, and Manhattan)  that have already been established 

[176]. The sensitivity of the AM was also examined as a function of the input number of 

clusters to find a suggestive number of clusters that best describes a particular dataset. 

The result of the first-level analysis is a systematic framework for eliminating all genes 

that cannot be clearly characterized as either coexpressed or non-coexpressed with others 

in the ongoing selected subset. Subsequently, an agglomerative hierarchical clustering 

approach is applied to cluster the selected subset using the agreement metric information 

as the similarity measure (Figure 3.3).  

The problem is quite general and applicable to a large family of problems. However, to 

be consistent with the specific problem at hand (microarray data), objects will refer to 

genes, or better yet probesets, with expression levels measured in different experimental 

conditions or time-points, and clusters are groups of genes sharing similar expression 

profiles. Thus, genes that belong to one cluster are considered to be coexpressed and 
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genes that belong to different clusters are considered as non-coexpressed with a 

confidence level. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Schematic overview of microarray data analysis using multiple clustering 

runs to select a ‘clusterable’ subset – the subset which contains genes that are either 

highly coexpressed or non-coexpressed with a confidence level δ%. The preprocessing 

step (filtered by fold-change, ANOVA [100, 177], SAM [131], EDGE[132]) removes as 

many as possible genes that are not significantly differentially expressed across 

conditions or time-points. Data with repeated measurements can be averaged before 

clustering [105]. Each clustering method needs an input number of clusters k as the 

required input parameter; therefore we examine the agreement matrix (AM) for a number 

of different k and try to select one as a suggestive number of clusters for the dataset. 

Then, the final AM is built and pass through the process of gene selection which 

eliminates all genes that have at least one ‘inconsistent’ value with some other gene. δ is 

the threshold to say whether the agreement level of two genes belong to one cluster (≥δ) 

Consensus clustering
(hierarchical clustering)
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data 
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(e.g. filter, average) 
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Multiple clustering runs 
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correlation, and Manhattan. 
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or two clusters (≤ 1-δ) is consistent or not. The last step is dividing the selected subset 

into a number of patterns with the agreement threshold δ based on the remainder of the 

AM as the input distance matrix. 

3.2.2. The agreement matrix 

The agreement matrix M  quantifies the frequency with which two genes belong to the 

same cluster (Figure 3.4). If N clustering runs are performed on the data, each entry Mij 

(termed ‘agreement level’) shows the fraction of clustering times two genes are assigned 

to the same cluster. The AM entries are defined as: 

( )

( ) ( )

N
h

ij i j
h 1

(h)
h i j

i j

1M M (g ,g )
N

1 if g and g are clustered together when running method M
where M g ,g (1)

0 othewise

=
=

⎧⎪= ⎨
⎪⎩

∑

 

and N is the number of clustering runs performed with either different methods or 

distance metrics. In our work, we are using hclust, diana, fanny, and pam with Pearson 

correlation and Manhattan metric, kmeans, cmeans, som, and mclust with Euclidean 

metric as the core clustering methods [139, 140, 144, 173-175]. 

 

 

 

 

 

 

 M1 M2 M3 M4

g1 1 2 1 3 
g2 2 1 3 2 
g3 1 2 1 3 
g4 3 1 3 1 
g5 2 1 2 2 
g6 1 2 1 3 
g7 1 3 1 2 

 g1 g2 g3 g4 g5 g6 g7 

g1 1.0 0.0 1.0 0.0 0.0 1.0 0.5
g2  1.0 0.0 0.5 0.75 0.0        0.25
g3   1.0 0.0 0.0 1.0 0.5
g4    1.0 0.25 0.0 0.0
g5     1.0 0.0        0.25
g6      1.0 0.5
g7       1.0
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Figure 3.4: An example of the agreement matrix (right). The left is the results from N 

clustering runs (N = 4 in this example, represented by M1…M4) with k = 3 as the input 

number of clusters on n genes (n = 7, represented by g1…g7). The right shows the 

corresponding agreement matrix that each entry Mij is the frequency of gene i and gene j 

grouped into the same cluster by M1...M4. 

3.2.3. The optimal suggestive number of clusters 

The evaluation of the AM entries requires the identification of a ‘suggestive’ number of 

clusters since, as mentioned earlier, clustering results are highly dependent upon this 

input value. Motivated by the work of Monti et al. [149], in order to identify a robust 

estimate for the suggestive number of clusters of a given dataset, we examined the 

distribution of the agreement matrix entries as a function of the number of clusters (k). 

By definition the AM entries vary from zero to one whereas the number of entries falling 

into the zero-end region always increases as the input number of clusters k increases. 

Ideally, and assuming that the data in question do possess a definite underlying structure 

there should exist an ‘optimal’ number of clusters (k*). Thus, one would expect that as k 

varies from 2 to k*, the rate at which the AM entries shift to the zero-end is faster than 

that when k>k*. The rationale behind this hypothesis is that when the optimal number of 

clusters is reached, each clustering method individually makes a more appropriate cluster 

assignment to objects in the dataset and thus the cluster assignments from various 

clustering methods are more common. After that, the reassignment rate is reduced, 

making the agreement levels between objects change lesser and lesser. As a result, we 

would expect the distribution of the AM entries to change rapidly early on and eventually 

the rate of change would drop as k>k*. 
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We tested the hypothesis by observing the histogram of the AM entries [146] as the 

number of putative clusters k changes i.e. k is varied from 2 to some number K and 

successive AM matrices are built. The corresponding distribution of the AM entries is 

represented by an empirical cumulative distribution function [149] (Figure 3.5) 

)2(..1,,
)1(

1
)(
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1

nji
nn

xMif
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k ∈
−

<
=

∑ <  

 The histogram-based area under the CDF curve (AUC) corresponding to each value of k 

is evaluated by  

( ) ( ) )3(..1,/,1 BlBlxxCDFxxAUC ll lkllk ∈=−= ∑ −  

where B is the number of buckets used to construct the histogram or numerically define 

the CDF. As a result, the change of the distribution of AM entries is reflected by the 

changes of the AUCk. The hypothesis earlier stated effectively is to look at the rate at 

which the successive distributions change when k increases in order to identify a putative 

number of clusters. Therefore, and in order to evaluate a more unbiased metric for 

determining the rate of change of the successive CDFs, we made use of the gap statistic 

metric [152, 153] and redefined it as: 

{ } )4(, 13 −=
−=ΔΔ−Δ= kkkk

K

kkk AUCAUCmeanGap
ii

 

Due to the high computational requirement, we used the mean of all Δk (excluding Δ2) 

instead of calculating the expected value for each Δk in the first part of (4) from uniform 

data as originally suggested. Because of the faster shift to the zero-end region of AM 

entries early on, the rate of change of Δk based on the AUCs is larger at the beginning and 

decreases gradually. As a result, the gap quantity ‘Gapk’ varies from negative to positive. 

We select the k value at which Gapk+1 becomes positive to be the suggestive number of 
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clusters for the dataset since the distribution of the AM entries seems to be stabilized 

from that value. Besides, with the above definition the mean value of all Δk will be highly 

dependent on the selection of value K. However, when k is over some value, the change 

of the AM distribution is trivial just because of the nature of the clustering methods. 

Consequently, value K must be selected to be appropriate with the changing amount Δk of 

the AUCs. The key point here is to select the right ‘elbow’ of the curve of AUCk. 

Therefore, we suggest an empirical default value 4 2ndK =  which can be considered as 

a balance between the number of objects, object attributes and the significant change in 

the distribution of AM entries as well as the expected number of clusters in the dataset. 

 

 

 

 

 

 

 

Figure 3.5: Histogram of AM entries (left) and the corresponding CDF curve (right) from 

the AM in Figure 3.4. Assume that five buckets (B=5) are used to build the histogram; 

each represents the proportion of AM entries that fall into segment ( )[ ) 5..1,/,/1 =− lBlBl ; 

the last segment also includes all entries with value one. The CDF curve is constructed 

based on the histogram and thus the horizontal axis is the axis of the agreement level as 

well as the histogram buckets. 
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3.2.4. Clusterable data 

The analysis of the agreement matrix results reflects the expected relationship between 

two genes, i.e., the probability of belonging or not to the same cluster. As such entries 

associated with genes at the ‘hypothetical core of a cluster structure will be consistently 

grouped together over multiple runs. This should be manifested by high corresponding 

values in the AM, whereas genes belonging to the ‘hypothetical’ core of clearly distinct 

clusters should be associated with consistently low AM entries. On the contrary, genes 

around the ‘hypothetical’ boundary between two clusters would be very sensitive to 

changes in the clustering method. As a result, a gene at the cluster boundary should be 

characterized by relatively moderate agreement levels in relation to other genes (Figure 

3.6a). Thus, our hypothesis is that eliminating genes associated with moderate AM 

entries would create a more ‘clusterable’ subset. It also should be emphasized that this 

approach is not aimed at identifying and eliminating ‘outliers’ and thus this is not an 

outlier detection procedure. We simply hypothesize on the potential properties of a more 

clusterable subset of objects. 

In order to quantify the aforementioned observation, we define an AM entry   as an 

‘inconsistent’ entry if its value is within the interval 1 – δ < Mij < δ, where δ expresses a 

user-defined confidence level (Figure 3.6b). The AM is now transformed into an 

adjacency matrix where consistent pairs of genes i.e. genes that are frequently assigned to 

the same or different cluster(s) receive a value of ‘0’ and inconsistent entries are assigned 

value ‘1’. The adjacency matrix is then converted to an ‘inconsistent’ graph with nodes 

indicating genes and edges connecting two nodes (genes) representing the cluster 

assignments between those two genes over multiple clustering runs are unclear. The 
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problem now is removing a number of vertices so that the resulting graph is completely 

disconnected [178]. We called an inconsistent rank of a vertex is the order of that vertex, 

i.e. the number of edges at that vertex 

 

Therefore, vertices with many edges or genes with many inconsistent AM entries will get 

high inconsistent ranks; the ones with highest inconsistent rank and all of its edges will 

be removed first. The inconsistent rank for each vertex is then recalculated and the step is 

repeated (Figure 3.6c). If there are some equivalent inconsistent ranks, the removed 

vertex can be chosen to be the one with the highest original inconsistent rank or randomly 

(e.g. vertex with the smallest index in our implementation, creating the consistency of 

removed genes over different running times). The routine is repeated until the 

‘inconsistent’ graph becomes completely disconnected i.e. the selected subset contains no 

gene with an ambiguous cluster assignment with other exiting genes with a given 

confidence level. 

 

 

 

 

 

 

Figure 3.6: The gene selection process. (a) Genes at boundaries or outliers between 

clusters will have many moderate agreement levels; g2 and g3 in cluster I will have a high 

agreement level whereas g2 and g4 have a low agreement level; g1 can belong to either 
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cluster I or cluster II among different clustering running times, causing agreement levels 

between g1 and other genes e.g. g2, g3, g4 are moderate. (b) The inconsistent region of 

agreement levels. (c) The process of disconnecting the inconsistent graph; g1 is selected 

to remove since it has the highest inconsistent rank; g2 has the same inconsistent rank 

with g4 but it is still removed next since it has a higher original inconsistent rank than g4; 

then g3, g4, and g5 are eliminated respectively (genes with green color will be remained; 

red ones are removed; blue ones are being examined). 

3.2.5. Consensus clustering 

Without dependence on any other parameter besides an agreement threshold to form 

clusters, hierarchical clustering was selected to perform the final clustering task. The 

algorithm starts with every gene as a cluster and tries to group two clusters into a new 

one at each iteration. Any pair of genes belonging to that new cluster needs to have an 

agreement level more than or equal to δ (δ–rule). A new cluster is formed by joining two 

clusters Cp and Cq whose total agreement of all pairs of genes in these two clusters  

( ) { }
{ }

)6(_ ∑
=
==∧

q

p
Cingenesl
Cingenesk klqp MCCagreementtotal  

is maximal. This selection assures that large clusters are given priority  to join together 

since the total agreement between cluster C and a large one will be greater than that 

between C and a smaller one (Figure 3.7). Besides, although new clusters can be formed 

with the δ–rule, we still favor those which contain genes more likely to be clustered 

together. Therefore, we introduce a cooling rate to replace the role for δ. As a result, 

instead of satisfying the δ-rule, any pair of two genes in a new cluster now needs to 

satisfy the θ-rule (i.e. their agreement level will be greater than or equal to θ) and θ 

decreases slowly from 1.0 to δ. 
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Figure 3.7: Illustration of the consensus clustering on the agreement matrix in Figure 3.4. 

(a) List of clusters corresponding to different agreement thresholds. (b) A hierarchical 

dendrogram to visually show the way of forming clusters corresponding to δ. This 

example also demonstrates the effects of the total agreement and/or the cooling rate θ: the 

algorithm always guarantees that large clusters are taken priority and/or that clusters with 

more pairs of high agreement genes are joined together first, e.g. in the case of δ = 0.50, 

g2 and g5 (0.75) are joined first and g4 cannot join the group although the agreement level 

between g2 and g4 (0.5) satisfies the δ-rule; this reduces the effect of breaking down the 

pattern or non-optimal patterns are formed e.g. (g2 ∧ g5) compared to (g2 ∧ g4). 

The algorithm produces a list of clusters in which any two genes belonging to one cluster 

always have an agreement level greater than or equal to δ. Although δ is a measure of the 

frequency with which two genes can be found in the same cluster over a variety of 

clustering runs, it can be also be considered as the confidence that the two genes are 

coexpressed since δ, by construction, aims at eliminating method-specific biases and 

assumptions. Furthermore, the gene selection step assures that the inconsistencies in the 

AM are minimized since the relationship between any two genes is evaluated with a 

   Agreement       Clusters 
      level δ 
 
 1.00: {g1, g3, g6}, {g2}, {g4}, {g5}, {g7} 
 
 0.75: {g1, g3, g6}, {g2, g5}, {g4}, {g7} 
 
 0.50: {g1, g3, g6, g7}, {g2, g5}, {g4} 
 
 0.25: {g1, g3, g6, g7}, {g2, g5, g4} g1 g3 g6 g7 g2 g5 g4 

1.00 

0.75 

0.50 

0.25 

0.00 
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confidence level. Therefore, genes that belong to different clusters can also be considered 

as highly non-coexpressed with a confidence level δ. 

Additionally, we also provide an optional procedure to exclude trivial clusters formed 

due to the nature of clustering methods. Each cluster C is assigned with a simple 

hypothetical quantity called ‘cluster significance’ which represents how large the cluster 

is and how coexpressed the genes in the cluster are. To select significant clusters, we then 

estimate the distribution of cluster significance on random data and compute the p-value 

for each cluster C above. The dataset is randomly resampled (permutation plus convex-

hull [165]) a number of times (nr), for each of which the entire process starting from 

building the AM with k* selected above to the consensus clustering step is done and 

random–resulting clusters are returned. Subsequently, the procedure estimates the cluster 

significance for these random clusters and builds up a distribution of cluster significance. 

The cluster significance of a cluster is defined as its size times its homogeneity as 

mentioned above; random clusters can be in large-size depending on the input number of 

clusters but these clusters contain arbitrarily objects (genes) and thus their homogeneity 

will not be large, and thus the cluster significance remains trivial. As a result, the number 

of random clusters with greater values of cluster significance than that of a selected 

cluster C over the total number of random-resulting clusters in nr times resampling will 

be considered as the p-value of cluster C for selection. 

3.2.6. Method evaluation 

To assess our approach for finding highly coexpressed and non-coexpressed genes, we 

analyzed a number of data sets from the open literature. Specifically, we used the 

synthetic data to evaluate fundamental concepts of the algorithm since the structure is 
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precisely known. We therefore utilized five low-noise and five high-noise 20-attrribute 

sine-format synthetic datasets from [105]. To demonstrate the effectiveness of the 

approach, we illustrated the accuracy and the clusterability on the selected subset as well 

as the  properties on the removed domain from the synthetic datasets using Rand index 

[179, 180] and Friedman-Rafsky test [181, 182]. Besides that, in order to visualize the 

effect of different cut-off agreement levels on the selection results, we used five two-

dimension (2D) testing sets from [107]. The capability to find out a suggestive number of 

clusters for a dataset is also demonstrated using these synthetic datasets.  

Distribution of the AM entries 

In order to examine the properties of the AM, we made use of the available synthetic 

datasets where we could obtain random, and structured, high- and low-noise data. 

Random data are generated through resampling (permutation plus convex-hull [165]) 

synthetic datasets, each with 10 times. The AM histogram, CDF, AUC and gap curves 

were built independently for each dataset and then the average ones are made for each 

data type to have a consensus view (Figure 3.8). 

Figure 3.8: Examining the agreement matrix. (a) Average histograms of the AM on 100 

random datasets (random resampling 10 times from 10 synthetic datasets) for several 

input numbers of clusters. For each given input number of clusters k, we have a 

corresponding histogram of the AM entries for a specific dataset with agreement level 

index { }||(||..1 datasetsqrtBl ==  (B = 20 buckets in this case); the height of each bucket l 

is proportional to the number of Mij falling into the segment ( )[ ]BlBl /,/1− ; repeat on 100 

random datasets and take the average histogram for each corresponding k. (b) Histogram 

of the AM (top) and the CDF lines, AUC curve, as well as Gap curve on high-noise 
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synthetic sets; repeat on five synthetic high-noise sets and take the corresponding 

average. (c) Histogram of the AM (top) and the CDF lines, AUC curve, as well as Gap 

curve on low-noise synthetic sets; repeat on five synthetic low-noise sets and take the 

corresponding average. k = 6 is the right number of clusters for these datasets. On the 

AUC graphs, the blue one is the AUC curve on random datasets obtained from (a). 
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The expected change of the histograms as k increases is manifested by the shift of the 

distribution of AM entries observed with both high- and low noise data (Figure 3.8b & 

3.8c panels – top row). In both cases, AM entries shift faster to the zero-end when k is 

less than k* (k* = 6 in this case). Therefore, compared to the random data, we observed 

that the synthetic data (i) produce distributions that are not normal, and (ii) beyond the 

hypothetical optimal k* the distributions changes at a slower rate. Besides, the random 

AUC curve is also drawn to be compared to the non-random AUC curves. 

 

Accuracy in predicting a suggestive number of clusters 

A most critical parameter characterizing the performance of this, and any clustering, 

approach is related to the selection of an appropriate suggestive number of clusters k. The 

results on the synthetic data here provide strong evidence for the method, suggesting that 

this could be used as a reasonable starting point (Table 3.1). However, one could attempt 

to interpret the AUC curve to suggest alternatives but for consistency purposes, in all our 

studies here, we made use of the Gap-based heuristic for estimating the putative value for 

k* as showed below. 

 

Table 3.1: Prediction the number of clusters by the process automatically 

 
Datasets 

2D synthetic synthetic data Real data 

true suggestive low-noise high-noise Sporulation LPS 
true sugg. true sugg. suggestive suggestive 

Set 1 4 4 6 6 6 6 

7 6 
Set 2 4 5 6 6 6 7* 
Set 3 5 5 6 6 6 6 
Set 4 5 5 6 6 6 6 
Set 5 5 5 6 6 6 6 

* implies that the suggestive numbers of clusters are suitable even though the true ones are different. 
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Figure 3.9: Illustration the selection and clustering as well as the effect of different 

confidence levels δ. The objects at the boundaries and the outliers between clusters are 

eliminated under different viewpoints of clustering methods and differently used metrics. 

As the agreement threshold δ decreases, selected clusters become bigger, some more 

‘noise’ is added, and thus the confidence of coexpressed and non-coexpressed also 

reduces in the case of gene expression data. 

Consistency and accuracy of clustering and selection results 

To assess the accuracy of the selection and the quality of clustering, we applied the 

approach on synthetic datasets with a known class-structure distribution of each object. 

Ten downloaded, high-dimensional, synthetic datasets, 5 low- and 5 high-noise with log-

transformation [121] were used for this purpose. Since the question we originally posed 

was whether selected objects are either highly similar or non-similar to each other (or 

highly coexpressed and non-coexpressed in the context of gene expression data), we do 

not need to classify all objects into their correct class structure. However, we need to 

identify a smaller set of objects for which we would be confident that the correct 

assignment can be made. A brief look on how the data look like and what our approach 

picked out is presented in Figure 3.10. To evaluate the accuracy we used the original 

Rand index  [179, 180] to estimate the correctness of the selection and clustering on the 

selected subset (Table 3.2).  

Figure 3.10: A brief look on the synthetic data and selected genes from low-noise set 1 

(top) and high-noise set 1 (bottom). Left is the original data; middle is the projection of 

the original data on its two first eigenvectors; right is the selected genes and 

corresponding patterns (δ=70%). The class structure or patterns of the datasets can be 



47 

 

viewed visually from the low-noise set. The red and the blue pattern (or the green and the 

cyan pattern) are close together, resulting that one of them is removed if the confidence 

level is high. In high-noise datasets, the closeness is more difficult to distinguish, leading 

to the removal since genes belong to these patterns are unclear about their status i.e. 

highly coexpressed or non-coexpressed (the horizontal axis is 20 time-points and the 

vertical is expression values). 

 

 

Table 3.2: Accuracy of the selection and clustering on the synthetic class structure* 

Confidence 
δ 

Datasets 
low-noise high-noise 

set 1 set 2 set 3 set 4 set 5 set 1 set 2 set 3 set 4 set 5 
0.9 262|4|100 317|5|99.69 234|4|99.79 333|5|100 331|5|100 76|2|100 76|2|92.63 98|2|78.29 98|2|100 90|2|95.63
0.8 266|4|100 324|5|99.37 247|4|98.53 400|6|100 332|5|100 108|4|98.65 106|3|90.3 188|4|83.5 159|3|100 101|3|90.73
0.7 399|6|100 329|5|99.36 261|4|98.18 400|6|100 399|6|100 228|4|89.32 134|4|92.04 264|4|85.27 196|4|100 161|4|87.28
0.6 399|6|100 336|5|98.83 316|5|98.34 400|6|100 400|6|100 316|4|86.98 185|5|93.03 316|4|86.73 229|4|99.53 232|4|89.88

*: the format of each cell is ‘number of selected genes | corresponding number of patterns | accuracy’ 
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We further evaluate the accuracy when a single method, a single metric and the entire 

dataset is used (Table 3.3). Even though some clustering methods/metrics can be highly 

accurate, the average accuracies still fluctuate around 80% on high-noise datasets 

whereas the accuracies our selection and clustering are around 90% (even with the 

moderate agreement value of δ=70%). Overall the accuracy is very high in all cases, 

further confirming the efficacy of the selection. 

Table 3.3: Accuracy of running one clustering element on the entire dataset 

clustering 
methods 

Datasets 
low-noise high-noise 

set 1 set 2 set 3 set 4 set 5 set 1 set 2 set 3 set 4 set 5 
hclust – Pear 88.43 94.21 88.00 94.38 94.29 74.16 86.04 75.44 83.69 81.88 
diana – Pear 88.43 88.51 87.84 94.38 94.14 80.52 83.17 79.80 89.06 82.92 
fanny – Pear 99.83 96.64 96.42 100.0 99.83 83.05 63.95 82.32 74.60 64.47 
pam – Pear 100.0 96.75 96.42 100.0 100.0 88.36 87.41 84.40 92.37 88.97 
hclust–Manh 100.0 94.29 88.67 100.0 100.0 67.37 21.41 66.58 22.76 19.78 
diana–Manh 100.0 94.21 93.57 100.0 94.21 87.71 90.70 87.31 87.39 83.84 
fanny–Manh 100.0 96.09 98.71 100.0 100.0 66.19 64.28 65.49 64.83 63.68 
pam–Manh 100.0 98.45 99.02 100.0 100.0 98.68 92.77 89.02 98.70 96.98 
kmeans–Euc 99.83 94.14 95.91 100.0 100.0 95.62 90.75 87.11 96.79 94.65 
cmean –Euc 99.83 97.26 92.23 100.0 100.0 86.08 60.79 86.77 75.00 62.80 
som–Euc 88.75 93.72 88.75 94.46 88.75 86.13 84.66 85.88 85.73 86.55 
mclust –Euc 100.0 94.37 91.42 100.0 100.0 83.82 84.69 82.33 84.25 84.51 

average 97.09 94.89 93.08 98.60 97.60 83.14 75.88 81.04 79.60 75.92 

(Pear: Pearson correlation metric; Manh: Manhattan metric; Euc: Euclidean metric) 
 

Evaluating the ‘clusterability’ of the selected subset 

‘Noisy’ data tend to lack class structure and as a result different clustering methods with 

different metrics produce very inconsistent class assignment results. Consequently, the 

process of gene selection tries to remove the noise’ from the data and pick out a more 

clusterable subset which contains distinguishable patterns. To evaluate this property of 

the selected subset we applied the uniformity testing suggested in [182] by using 

Friedman-Rafsky’s minimum spanning tree test [181, 182] to estimate the clusterability 

of a dataset. Table 3.4 quantifies the ‘clusterability’ of the original, the selected and 
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removed data for each of the synthetic datasets. The selected subsets have consistently 

superior clusterability characteristics compared to both the entire set and removed subset. 

Furthermore, the removed subset is consistently the less clusterable, compared even to 

the entire dataset 

Table 3.4: Friedman-Rafsky test* for clusterability on high-noise synthetic sets (δ=70%) 

 set 1 set 2 set 3 set 4 set 5 
Original data 0.54 0.49 0.56 0.56 0.58 
Selected domain 0.49 0.35 0.41 0.45 0.56 
Removed domain 0.74 0.58 0.86 0.65 0.65 
*: the smaller the better 
 

In conclusion, the purpose of this approach is to enable a systematic identification of 

smaller, clusterable, subsets of gene expression data exploring the concept of consensus 

clustering. The fundamental assumption of our approach is that an appropriate weighting 

of multiple alternative methods would eliminate the biases associated with specific 

clustering methods. Also, it must be emphasized that the proposed framework is not 

designed, or proposed, in order to replace more refined clustering analysis, but is 

advocated as a critical preliminary steps in order to identify putatively informative 

subsets of genes given a high-dimensional expression dataset. 

3.3. Multi-plus clustering  

Hypothetically, transcriptional modules that are significantly coexpressed under different 

conditions/tissues will be more important gene clusters for further analysis. For example, 

genes with similar temporal expression profiles in response to different conditions are 

hypothesized to be more likely to share some common regulatory mechanisms. 
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3.3.1. Background 

Rich in vivo datasets of pharmacological time-series across multiple dosing regimens are 

often obtained from different microarray platforms and time-sets [11, 99], leading to a 

problematical issue for computational analysis [183-185]. As an example, in a study 

comparing normal and chronic lymphocytic leukemia B-cells, Wang et al. [186] 

identified only 9 differentially expressed genes across all three studies, when combining 

results from three different platforms, while there are at least 1,172 differentially 

expressed genes in each individual platform. In general, there are two important issues 

relevant to the analysis of data derived from different platforms: (i) genes may be present 

in one platform but not in the other, and (ii) genes present on both platforms may not be 

represented by the same probes. Since different microarray platforms do not contain the 

same probesets, and even do not have a similar hardware design and sample processing 

protocols, standard analyses may not yield comparable expression level quantifications 

across platforms, leading to many challenges for computational models aiming at the 

analysis of microarray data from heterogeneous sources [184, 187, 188].  

A number of approaches have been proposed and are generally classified into two main 

categories: (1) integrate raw expression profiles from different studies into one dataset so 

that available computational models can be directly applied, and (2) develop and/or 

utilize a unitless statistic as a primary analysis and then combine the result through a 

meta-level analysis. The former category can be further divided into two sub-classes, 

namely combining raw data through a normalization and/or transformation procedure 

[189-192] and pooling raw information from common probes that can be mapped to the 

same Unigene clusters or full-length mRNA transcripts [193-196]. However, these 
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approaches are not general enough to make data from different platforms fully 

compatible [184, 197]. Since combining data across different platforms remains a serious 

challenge, meta-analysis – the second category - has been identified as a more popular 

technique in order to combine results, and thus data, from a number of independent 

studies [198, 199]. The assumption here is that while the raw expression levels from 

different platforms may not be comparable, the results of the primary analysis should be. 

However, almost all prior studies has focused on the discovery of genes that are 

differentially expressed in conjunction with standard models such as effect size models 

[200-202], Bayesian models [203, 204]. 

Consequently, in order to identify significant clusters of genes that share common 

expression patterns across multiple dosing regimens, we extend our previous proposed 

method [104] in the aspect of (i) producing an agreement matrix (AM) that describes the 

agreement levels of co-expression of genes across multiple conditions and (ii) 

successively searching clusterable subsets to infer all such gene clusters. The approach 

follows the concept of meta-analysis to avoid the limitation of incompatible data across 

multiple datasets from different platforms (also different tissues, time-grids, as well as 

lab-protocols when applicable). The unitless statistic, expressing the confidence level of 

co-expression is the agreement level of cluster assignments drawn from multiple 

clustering runs. There remain a number of open critical issues associated with a single 

clustering run (e.g. the input number of clusters [149, 153], the biases and assumptions of 

distance metrics and/or clustering methods [156], cluster significance [165]), and thus 

consensus clustering coupled with the examination of AM distribution has been designed 

with the aims of reducing aforementioned limitations [104, 167]. Once the AM is 
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obtained for each condition independently (e.g. each dosing regimen in this case), an 

average agreement matrix is calculated to estimate the confidence levels of coexpression 

between genes across multiple conditions, thus combining data from different datasets 

into a single input for the next analysis. For the analysis at the meta-level, we extend the 

selection and clustering processes (also proposed in [104]) to identify all possible clusters 

of genes that are highly coexpressed with the average AM above as the input. As such 

these clusters of genes will share common patterns of expression across multiple dosing 

regimens. Additionally, due to the selection of all possible patterns of expression several 

clusters may have similar expression patterns and thus we also provide a heuristic as an 

optional procedure to merge such similar clusters based on a criterion of maximizing the 

total homogeneity and separation of selected clusters.  

3.3.2. Problem definition 

The general computational problem can be briefly defined as follows. We are given a set 

of N genes { }N
iigG 1==  and K conditions. For each condition k, every gene is 

characterized by one or more time-series expression profiles with Rki corresponding 

probesets over Tk time-points 

{ } { } { } KkggRrgggG kT
t

r
kit

r
kiki

r
kiki

N
ikik ...,,1,,,, 11 ==∈== == . The question then becomes 

to search for clusters of genes that are highly coexpressed across all K conditions with a 

confidence level δ. The term ‘highly coexpressed’ is used in the sense that 

( ) δ≥∧∈∀ ∑ =

K

k jikji ggP
K

Cgg
1

1,,  where C denotes a, yet to be determined, cluster 

and ( )jik ggP ∧  is the confidence level that two gene profiles i and j are clustered 

together in condition k; a gene profile includes sets of corresponding probesets Rki of 
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gene i in condition k, Kk ...,,1= . The subscripts {i, j}, t, k, r indicate the {gene id}, 

time, condition, and probesets respectively. It should be also noted that in this work, we 

used three different terms to refer to the same object (e.g. a set of genes that are 

coexpressed across multiple conditions): ‘cluster’ when designing the algorithm, ‘pattern’ 

when exhibiting the expression changes, and ‘module’ when charactering the biological 

function. The framework contains several step displayed in Figure 3.11. 
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Figure 3.11: The flowchart of the approach. The pre-processing section refers to filtering 

for differentially expressed probesets in each dataset, mapping to gene symbols to extract 

a set of common genes that are present across all datasets, and then re-mapping to 

corresponding probesets in each particular dataset. The main steps include establishing 

the AM to characterize how much confidence two probesets (and two genes) are co-

expressed in each condition (and then across all conditions) and searching for all possible 

clusters of co-expressed genes based on the common AM. The post-processing step will 

select those clusters that are significant and optionally merge those with similar 

expression patterns if indicated. 

3.3.3. The pre-processing step 

Each dataset is pre-filtered to identify differentially expressed probesets. Since we would 

like to identify gene clusters with common expression patterns across multiple 

conditions, input datasets must contain the same set of genes. Thus using the respective 

platform information, probesets in each dataset are mapped to a list of genes and then the 

intersection across those gene lists is evaluated to extract a common set of genes which 

are differentially expressed across multiple conditions (i.e. datasets). However, genes are 

sometimes characterized by multiple probesets whose expression profiles may be similar 

or sometimes different, but not identical. These probesets can be considered as replicates 

of expression profiles for a gene and thus taking an average expression profiles across all 

these probesets to characterize for the expression profile of the gene may lose useful 

potential information. Therefore, from the common set of genes we re-map genes to 

corresponding probesets in each dataset with the respective platform before starting the 

analysis. 
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3.3.4. Construction of the meta-agreement matrix 

The agreement matrix (AM) quantifies the likelihood that two objects (x, y) are assigned 

to the same cluster. If m clustering runs are performed on the data, each entry (termed 

‘agreement level’) will show the frequency with which two objects are assigned to the 

same cluster over ‘m’ clustering runs. The AM entries are defined as follows: 

 

In addition to the various clustering methods that were utilized, different distance metrics 

(Euclidean, Pearson correlation, and Manhattan [176]) are also explored in order to 

attenuate the biases associated with individual distance metrics. In our implementation, 

we are using hierarchical clustering (hclust), divisive analysis clustering (diana), fuzzy 

analysis clustering (fanny), partitioning around medoid (pam) with Pearson correlation 

and Manhattan metric, k-means (kmeans), fuzzy c-means (cmeans), self-organizing map 

(som), and model-based clustering (mclust) with Euclidean metric as the core clustering 

methods (supported by R packages) [139, 140, 144, 173-175]. Since clustering results are 

highly dependent on the input number of clusters (nc), the sensitivity of the AM as a 

function of nc was examined to find a ‘suggestive’ number of clusters (nc*) for each 

particular dataset. After identifying nc* based on the procedure in our prior work [104], 

all clustering runs are repeated with nc* to produce the final AM for further analysis (see 

more details in [104]). 

If two probesets (x, y) are clustered together, it is implied that their expression profiles 

are similar under a specific condition k. Therefore, the fraction of times (Mxy) they are 
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clustered together over  multiple clustering runs can be considered as the confidence level 

that they are coexpressed since Mxy, by construction, aims at eliminating method-specific 

biases and assumptions. Subsequently, we calculate the average agreement levels 

between sets of corresponding probesets of any two genes to estimate the confidence 

level that those two genes are coexpressed in a specific condition. The AM entries in 

condition k is re-estimated as follows 

)2(...,,1,,1)( NjiM
RR

AM
ki kjRx Ry

xy
kjki

k
ij == ∑ ∑

∈ ∈  

With the assumption that the unitless statistics, i.e. the confidence level of co-expression, 

is comparable across multiple conditions and  different platforms [196], we estimate the 

confidence level of co-expression between two genes across multiple conditions by 

taking the average. While combining raw data remain challenges, the estimation of a 

unitless statistics provides a simple but efficient combination of heterogeneous data for 

further analyses. 

)3(...,,1,,1
1

)( NjiAM
K

AM
K

k

k
ijij == ∑

=  

As a result, we obtain an agreement matrix whose entries exhibit a quantity that shows 

how confident genes are coexpressed. This will be the input for the selection and 

clustering process. 

3.3.5. Selection and clustering 

With the hypothesis that the more clusterable the data is the more biologically relevant it 

is, we applied our previously proposed procedure to select a more ‘hypothetically  

clusterable’ subset from the entire set of genes [104]. The main hypothesis underlying the 

selection is that AM entries associated with genes at the ‘hypothetical’ core of an 
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expression pattern (or a cluster) will be consistently grouped together over multiple 

clustering runs. This should be manifested by high corresponding values in the AM, 

whereas genes belonging to the ‘hypothetical’ core of two clearly distinct clusters are 

associated with consistently low AM entries. On the contrary, cluster assignments 

associated with genes at cluster boundaries or between clusters would be very sensitive to 

the method used and thus they would have relatively moderate agreement levels with 

other genes. As a result, with a user-defined confidence level δ genes associated with 

moderate AM entries ( δδ <<− )(1 k
ijAM ) are eliminated to produce a more ‘clusterable’ 

subset of genes (δ = 70% in this study). The process starts removing genes associated 

with the highest number of moderate AM entries and then updates the AM for the next 

loop until no moderate AM entry exists. The corresponding subset of genes is now 

considered as a ‘hypothetically clusterable’ subset since any two genes are highly 

coexpressed or non-coexpressed with the confidence level at least δ. Subsequently, we 

used the concept of consensus clustering [167, 169, 171] to divide the subset of genes 

into a number of clusters by applying the hierarchical clustering with the selected AM as 

input data. The algorithm starts with every gene filling a cluster and then grouping two 

clusters into a new one for each loop so that any pair of genes belonging to a new cluster 

always has an agreement level greater than or equal to δ. The iteration is stopped when no 

more new cluster is formed (see more details in [104]). 

However, since there should be existed clusters of genes located closely to other clusters 

in the data and the input number of clusters for the core analysis is only a suggestive one, 

those clusters may not be completely separated. As a result, although genes that belong to 

those clusters are identified as highly coexpressed, their relationship to genes in other 
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clusters cannot be uniquely determined. Therefore, some significant clusters may be not 

included in the selected subset due to the constraint of ‘clusterable’ selection. Since we 

would like to obtain all significant patterns of expression, the procedure of selection and 

clustering is repeated on the removed domain. The removed domain consists of a set of 

unselected genes whose co-expression levels are still high as quantified agreement levels 

in the original AM. After extracting the sub-agreement matrix corresponding to the set of 

unselected genes, the entire process of selection and clustering is applied again with the 

same confidence level δ as before. The procedure is reiterated until no more clusters of 

genes are recognized. Figure 3.12 presents the pseudo-code of the procedure and an 

example to illustrate the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Input: The agreement matrix AM, the confidence level δ 

2. Output: The list of clusters of highly coexpressed genes L 

3. { };;)( ←← LAMAM r  

4. size ← the number of rows of )(rAM ; 

5. While (size > 1) do 

6.  – select a ‘clusterable’ subset of genes S based on )(rAM  
                   // see reference [46] 

7. – )(sAM ← { corresponding sub-AM with S } 

8. – perform consensus clustering on )(sAM   // see reference [46] 

9. – L ← L + { resulting clusters from 8. } 

10. – { };)()( SAMAM rr −←  

                   // eliminate corresponding rows and columns with S in )(rAM  

11.  – size ← the number of rows of )(rAM ; 

12. End While 

Note:  )(sAM : the selected sub-agreement matrix 

 )(rAM : the remained agreement matrix to be processed 
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Figure 3.12: The procedure of selection and clustering. The left is the pseudo-code 

algorithm of the procedure. The right is an example to illustrate the process with a 

specific AM. At iteration 1, the process selects a ‘clusterable’ subset of genes including 

(x, z, t, v) that results in two clusters (x, z, v) and (t). The remained AM consists of 

corresponding rows and columns of genes (y, u, w) from the original AM. At iteration 2, 

the procedure selects (y, u) and the remained AM now contains only one gene (w); at that 

point, the process terminates. 

Furthermore, due to the nature of clustering, trivial clusters may be identified in the final 

results. In order to exclude such trivial clusters, each cluster C is assigned with a simple 

hypothetical quantity called ‘cluster significance’ which represents how large the cluster 

is in this study. We then create the distribution of cluster significance on random data to 

estimate the cluster significance threshold corresponding to a user-defined threshold p-

value for cluster selection. Without loss of generality we select K = 1 for the random data 

and assume that each probeset in the mapped dataset D correspond to a gene; thus D is 

cut-off to have the number of probesets equal to the number of genes N. The suggestive 

number of clusters nc* for D is searched with the process in [104]. Subsequently, D is 

randomly resampled (permutation plus convex-hull [165]) a number of times (nr), for 

each of which the entire process starting from building the AM with the same nc* to 

extracting clusters of highly coexpressed genes is repeated and  the resulting random 

clusters are returned. After that, the procedure estimates the cluster significance, which is 

simply the cluster-size in this study, for these random clusters and constructs a 

distribution of cluster significance. The corresponding p-value of cluster significance cs0 

is defined as the number of random clusters whose significance is greater than cs0 over 
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the total number of random-resulting clusters in nr times resampling and repeating the 

process. As a result, given a threshold p-value (p-value = 0.05 in this study), the 

corresponding cluster significance threshold is inferred (Figure 3.13) and only clusters 

with significance greater than this threshold are selected. 

 

Figure 3.13: Estimating the cluster significance threshold given a user-defined p-value. 

An illustrating example is shown in which nr = 5 random data are generated, the data are 

subsequently clustered according the proposed clustering/selection procedure and cluster 

significance distribution are depicted in (a) and (b) following sorting. The corresponding 

p-value for each cluster significance cs is estimated and depicted in (c). Thus, given a p-

value, we can infer the corresponding cluster significance threshold. For example, for a p-

value = 0.05, all clusters with cluster significance ≥ 10 are selected and if p-value = 0.1, 

all clusters with cluster significance ≥ 8 are considered as significant clusters. 

Let assume that after nr = 5 times of repeating the procedure of selection and clustering 

from Figure 3.12 on random data, we obtain 50 random clusters whose cluster 

significances (cluster size in this study)  are distributed as in (a) and (b) after sorted. The 

maximum level of cluster significance in this example is ten where only random clusters 

whose cluster significance is at least two are selected for the process. The corresponding 

p-value for each cluster significance cs0 is defined as 



61 

 

( )
∑

∑ ≥
=

clustersrandom
cscesignificanclusterwithclusters

cspvalue 0
0 . Therefore, given a p-value, we 

can infer the corresponding cluster significance threshold. For example, if p-value = 0.05, 

all clusters with cluster significance ≥ 10 are selected and if p-value = 0.1, all clusters 

with cluster significance ≥ 8 are considered as significant clusters. 

3.3.6. Merging similar patterns 

Because of the nature of the approach, it is quite reasonable to expect that the clustering 

process can break out patterns of expression into several sub-patterns. Thus, we repeat 

the process on the eliminated domains to extract all possible significant clusters, resulting 

in that several clusters may have a similar expression pattern but are separated into two or 

more clusters. Because cluster homogeneity reflects the similarity of expression profiles 

within a given cluster and cluster separation quantifies how effectively expression 

profiles are discriminated, we provide an optional heuristic in order to merge similar 

patterns together according to the criterion of maximizing sum of homogeneity and 

separation of all final output clusters. Starting with all significantly selected clusters, the 

procedure searches for a combination of two similar patterns so that their combination 

will generate a maximal increase of the sum of homogeneity and separation of all current 

clusters after merging those two patterns. The process is repeated until no more 

combinations are found i.e. any new combination always reduces the sum of 

homogeneity and separation. Eventually, a list of significant expression patterns that 

characterize the underlying transcriptional responses is generated. The metric used during 

the evaluation of the heuristic is quantified as follows: 
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where C is the current set of selected clusters { }n
ppCC

1=
=  and n is the current number of 

clusters; )( pk CH  is the homogeneity of cluster Cp in condition k and ),( qpk CCS  is the 

separation between cluster Cp and Cq in condition k; ),( kjki ggsim  and ( )kjki ggdis ,  are 

the average similarity and dissimilarity (or distance) respectively between all probesets of 

gene i and gene j in condition k. Similarity is measured by the Pearson correlation 

coefficient and dissimilarity is estimated by the Pearson correlation distance. 

3.3.7. Method evaluation on synthetic data 

In order to evaluate the effectiveness of the proposed approach, we use synthetic data 

with known class structure as described earlier. The process of evaluation is repeated four 

times with four different datasets that are created with different number of replicates for 

each time-point (1, 3, 4, and 20 respectively). In each time, we use five high-noise sets as 

the data for five conditions (K=5), each of which has 400 genes distributed across 6 

clusters; each cluster has different patterns across five conditions but has the same set of 

gene ids. We set the same parameters for all evaluation in this study and also for the 

analysis on real time-series datasets, specifically the confidence level of co-expression δ 

= 70% and p-value = 0.05 for the selection of significant clusters. Furthermore, the 
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testing process on synthetic data is done without the merging option. Without loss of 

generality, we assume that each gene has only one probeset in this evaluation. The 

performance of the approach is assessed through its ability to recover the number of 

cluster structures and the list of gene ids identified in each cluster. We use the adjusted 

Rand index [105, 145] which is a statistic that measures the extent of concurrence 

between the clustering results and the underlying known class structure to evaluate the 

approach’s performance in identifying gene clusters that are coexpressed across multiple 

conditions. The larger the Rand index is, the higher the agreement between the results 

and prior knowledge of cluster structure. The number of selected genes, recovered cluster 

structures and the accuracy on the selected domain are listed in Table 3.5. 

Table 3.5: The clustering effectiveness of the approach 

Synthetic data Number of selected genes Number of clusters 
Accuracy* 

(Adjusted Rand-index) 

Dataset 1 174/400 4 100.0% 

Dataset 2 368/400 6 100.0% 

Dataset 3 395/400 6 100.0% 

Dataset 4 378/400 6 100.0% 
*: The accuracy is only estimated on the selected domain 

Due to the fact that these datasets are high-noise synthetic data, some cluster structures 

may be missed when there is only one measurement at each time-point. However, when 

the number of replicates is increased, the number of cluster structures is recovered. As 

discussed in our previous study [205], this is a reasonable observation due to the effect of 

gene expression replicates on clustering performance. Additionally, we also examine an 

alternative approach which is more intuitive in identifying gene clusters that are 

coexpressed across multiple conditions. Instead of performing a meta-analysis to avoid 

the limitation of incompatible data across different platforms, we can separately identify 
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significant clusters of genes that are coexpressed in each condition (set of data) and then 

obtain the intersection among these gene clusters across all conditions. In this 

experiment, we used pam [144], mclust [139], and consensus clustering [104] as standard 

single clustering methods to identify clusters in each set of data, for which nc* = 6 is the 

input number of clusters. We then simply took the intersection between clusters from set 

to set and only keep those clusters that contain more than 5 genes as significant clusters 

for the final estimation of accuracy. The number of selected genes, number of clusters, 

and accuracy on the selected domain are listed in Table 3.6.  

Table 3.6: Effectiveness of the approach on synthetic data 

 
 

pam mclust consclust 

 
# of sel. 
genes 

# of 
clusters+ 

Accuracy
(%) 

# of sel. 
genes 

# of 
clusters 

Accuracy
(%) 

# of sel. 
genes 

# of 
clusters 

Accuracy
(%) 

Dataset 1 122 7|6 74.8|82.8 155 9|7 87.8|84.1 68 4|4 100|100

Dataset 2 337 6|6 100|100 343 6|6 100|100 330 6|6 100|100

Dataset 3 374 6|6 100|100 380 6|6 100|100 374 6|6 100|100

Dataset 4 376 15|7 68.8|94.6 375 13|7 80.1|94.2 302 11|7 80.9|92.4
+: only clusters with more than 5 genes;*: the accuracy is estimated on the selected domain; the number of 
clusters and the accuracy are formatted as ‘before merging’ | ‘after merging’ 

In general, this approach selects a smaller number of genes with an equal or greater 

number of cluster structures, resulting in a less accuracy. As an example, in each set of 

dataset 4 there are two cluster structures that are not clearly distinct. As a result, single 

clustering methods (even consensus clustering) may fail to properly separate them in each 

set, leading to the case that the intersection between clusters from set to set divides those 

cluster structures into many sub-clusters with small number of genes. On the contrast, by 

taking the average of the co-expression levels across multiple sets, the relationship of 

whether two genes are coexpressed across multiple conditions can be recovered. 
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Consequently, our proposed approach is more advantage, resulting in a final highly 

correct classification as illustrated in Table 3.5. Furthermore, since this simpler 

alternative approach produces many resulting clusters, we also attempted to apply the 

proposed merging process to reduce the number of clusters as well as improve the 

accuracy if applicable. However, its testing performance is still not as high as that of our 

proposed approach although we do not apply the merging process for the proposed 

approach in this test. Additionally, the alternative approach is highly sensitive with the 

initial number of clusters. For instance, when we constantly set nc* = 7 and test on dataset 

3, without the merging option our approach still recovers the correct number of cluster 

structures with high accuracy: (number of selected genes, number of clusters, accuracy) = 

(386, 6, 100%) whereas ‘pam’ approach yields (366, 13, 87.8%), ‘mclust’ provides (360, 

11, 82.3%), and ‘consclust’ does (351, 7, 98.3%). Since this information is almost not 

existed for all real datasets, the more sensitive with it the less robust the approach is. 

Therefore, by taking the average of the co-expression levels between two genes across 

multiple datasets, our proposed approach provides more robust results. 

3.4. Results from corticosteroids pharmacogenomics model 

It has been noticed that long-term treatment with this kind of drugs causes a lot of side-

effects and thus we ask that whether we can explore the complexity of gene expression 

changes to understand how the drug alter systemic physiology and contribute to adverse-

effects. In this study we explore the hypothesis that genes that are coexpressed across 

multiple dosing regimens of corticosteroids may provide important implications for 

further analyses. Consequently, we applied proposed model to estimate ‘true’ expression 

profiles of genes in acute and chronic CS administration and then used the multi-plus 
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clustering to find such transcriptional modules i.e. set of genes that are coexpressed 

across multiple conditions. 

We first pre-processed datasets following the pre-processing step in Figure 3.11. The 

datasets are first filtered for differentially expressed probesets using ANOVA technique 

(p-value < 0.05) implemented in R [100] and also customized by our previous work for 

easy uses [104]. 2,920 probesets in the acute and 4,361 probesets in the chronic are 

selected for further analysis. To obtain the common set of genes across two conditions, 

these probesets are mapped into sets of genes based on the corresponding platform 

information. 2,920 differentially expressed probesets in the acute are mapped into a set of 

2,340 genes and 4,361 probesets in the chronic are mapped into another set of 4,076 

genes. The intersection of these two gene-sets yields 967 genes in common for both 

dosing regimens. From this common gene set, the re-mapping process subsequently 

returns a corresponding set of 1,314 probesets for the acute and a set of 1,112 probesets 

for the chronic data. All datasets (including synthetic data) are pre-processed with the 

model in our previous study to estimate the ‘true’ expression profiles that are integrated 

with potential information in replicates instead of simply taking the average expression 

profiles [205]. The suggestive number of clusters nc* for both datasets is 7.  

Subsequently, we apply the proposed approach with the merging option to the 

intersection set of 967 genes that are affected by corticosteroid administration across the 

two dosing regimens. We obtain 6 significant clusters with 315 genes in total. These 

clusters are hypothesized to be transcriptional modules which share common regulatory 

mechanisms since they consist of genes that exhibit similar expression patterns in both 

acute and chronic dosing regimen. Table 3.7 shows the distribution of these 315 genes 
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over six modules and also briefly describes how the pattern of expression changes. 

Although genes may exhibit simple or complex patterns of expression during 

corticosteroid administration, we crudely classify those patterns into up- or down- with 

one or two phases of regulation. 

Table 3.7: Characterization of significant transcriptional modules 

Transcriptional modules 1 2 3 4 5 6 

Number of genes 97 45 34 71 14 54 

Expression pattern in acute*
          

Expression pattern in chronic*         
*: Patterns consist of one-phase regulation (up-down/down-up), two-phase regulation (up-down-up/down-
up-down) or simply up- (red) or down-regulation (green).  

3.4.1. Critical transcriptional modules 

A detailed description for patterns of these transcriptional modules is shown in Figure 

3.14 with the average expression patterns of all probesets clustered in each module 

following acute and chronic dosing. In brief, transcriptional module 1 (97 genes) is 

characterized by one-phase regulation in acute but two phases in chronic dosing. Genes in 

this module exhibited a fast and robust decline in mRNA, which reached its peak 

between 4h and 8h, and returned to the baseline after about 18h. However, when MPL is 

infused (chronic dosing) this set of genes shows a more complex pattern involving both 

enhanced and suppressed regulation. Although a strong down regulation is observed at 

the beginning, it is subsequently followed by a sharp induction with the maximum around 

36h and then gradually returned to the baseline indicating some kind of possible 

tolerance. The second transcriptional module (45 genes) shows a similar pattern of 

expression in both acute and chronic regimen with two phases of regulation. Genes in this 

module exhibit an early up-regulation and reached their corresponding peaks at around 4h 
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in the acute and 10h in the chronic. Subsequently, both profiles denote a clear down-

regulation (around 18h in acute and 24h in chronic) and possible slight fluctuation before 

returning to base line. An interesting dynamics is observed in the 34 genes of 

transcriptional module 3. In the acute dosing, the genes in this module clearly exhibit an 

expression pattern with two phases of regulation (down-up-down). Yet, in chronic 

administration they exhibited an early transient decline in mRNA followed by robust, 

sustained, up-regulation. 

Similar to module 2 is the transcriptional dynamics exhibited by transcriptional module 4 

(71 genes) characterized by an early induction with a maximum at 5.5h in the acute and 

18h in the chronic. A typical pattern with down regulation for both acute and chronic 

administration is illustrated by transcriptional module 5 (14 genes). However, genes in 

the acute regimen exhibited a fluctuated repression with a maximum at around 8h and 

then followed by an induction to return to the baseline as late as 72h.  

Meanwhile, genes in the chronic regimen characterized a pattern with a slightly transient 

up-regulation followed by a sustained down-regulation and eventual convergence to a 

new steady state in the presence of the drug. The last transcriptional module (54 genes) 

has a similar acute pattern of expression with two phases of regulation as that of module 

2. However, in the chronic regimen after falling to a value below the baseline (~24h) this 

set of genes was further sustained a slight suppression. 

Figure 3.14: Critical transcriptional modules of CS pharmacogenomic effects. Each 

module is characterized by the average gene expression profile of the corresponding 

cluster in the acute and the chronic data. The error bar shows the standard deviation of all 

probeset transcript levels at each time-point in each corresponding pattern. 
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While comparing these expression patterns, we observe that modules 2, 4, and 6 have 

similar expression patterns in acute (2 & 6) or chronic (2 & 4) with a slight difference in 

the other dosing regimen (e.g. 2 & 6 in chronic, 2 & 4 in acute). Although the difference 

is not large enough to be intuitively recognized, the merging process could not merge 

them together, implying that the difference is significant. Furthermore, the separation of 

these expression patterns is also reinforced with different functional characteristics which 

will be illustrated below. In summary, selected transcriptional modules exhibit a number 

of typical expression patterns under corticosteroid administration. The pattern can be 

simply expressed as an up- or down- regulation or as a more complex one with two 

phases of regulation plus some fluctuation. 

3.4.2. Functional characterization of critical transcriptional modules 

Since selected transcriptional modules consist of sets of genes that are coexpressed across 

all dosing regimens, we hypothesize that these genes are more likely involved in critical 

functions following the drug treatment. Consequently, we search for enriched functions 

in these modules to explore the functional effects of corticosteroids on target genes as 

well as evaluate the importance of the selected modules. Using ArrayTrack [206], we 

first identify the gene ontology terms (GO) that are significant in each transcriptional 

module (p-value<0.0001, at least 5 genes). We then classify them into super-categories 

(so-called main functions) based on the branch of molecular function and biological 

process in the GO tree. Table 3.8 lists the distribution of main functions across selected 

transcriptional modules.  
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Table 3.8: Connecting CS transcriptional modules to enriched gene ontology terms (p-

value<0.0001) 

No. Gene Ontology Terms* 

M
od

ul
e 

1 

M
od

ul
e 

2 

M
od

ul
e 

3 

M
od

ul
e 

4 

M
od

ul
e 

5 

M
od

ul
e 

6 

1 Metabolic process  

Amino acid, compound, organic acid       

mRNA       

Nucleotide, nucleoside       

Protein, macromolecule       

2 Binding  

Cofactor, coenzyme, vitamin, heme, ion       

Nucleotide, nucleic acid binding       

RNA binding       

Protein binding       

3 Cellular catabolic process       

4 Catalytic, oxidoreductase activity       

5 Oxidative phosphorylation       

6 Transmembrane transporter activity       

7 Protein-RNA complex assembly       

8 RNA splicing,  processing       

9 Gene expression       

10 Translation activity       

11 Biosynthetic process       

12 Structural molecule activity       

 

In general, all modules are involved in metabolic processes and binding category (except 

module 5 since it is too small to include significant GO terms). Some modules seem to 

share almost all main functions e.g. module 2, 4 and 6 whereas others seem to share less 

e.g. module 2 and 3, 3 and 4, or 3 and 6. However, they are shown to have different roles 

with specific functions in those main categories. For example although module 2 and 4 

are involved in metabolic processes and binding, module 2 is associated with RNAs and 

nucleotides whereas module 4 is specialized in proteins and macro-molecules. These 

functional differences (coupled with pathway analysis in Table 3.9) can be linked to the 
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similarities/differences in their corresponding expression patterns, strengthening the 

phenomenon that they are classified as distinct transcriptional modules although their 

expression patterns are not intuitively separated. However, the most important conclusion 

drawn from this analysis is that all these transcriptional modules consist of components 

that participate in metabolic processes, implying that they include genes that experience 

metabolic effects under corticosteroid administration. 

Using ArrayTrack, we also searched for enriched pathways in these transcriptional 

modules (p-value<0.01). A large proportion of significant pathways selected in each 

module are metabolic pathways of amino acid metabolism or biosynthesis, providing 

another support that selected transcriptional modules are critical and able to capture 

metabolic side effects for further analysis. Table 3.9 shows significant pathways in each 

transcription module. 

It is generally accepted that expression levels of many CS-affected genes are mediated 

through the binding motifs, called GREs – glucocorticoid response elements, on their 

control regions. We thus examine the presence of this binding site on the promoter of 

genes in each of the enriched pathways in order to assess the possible effect of GRE of 

metabolic functions. However, such GREs are short (5–9 bp) and fairly degenerate, 

leading to matches occurring by chance alone thus not implying any kind of functionality. 

In order to address this issue, after extracting gene promoters from the Genomatix 

database we identified conserved regions across sets of orthologous promoters. As a 

result, those matches located on these conserved regions would be more reliable 

estimates of functional binding sites.  
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Table 3.9: Connecting CS transcriptional modules to enriched biological pathways 

Transcriptional 
modules 

Enriched biological pathways p-value (<0.01) GRE+ 

1 

Nitrogen metabolism(rno00910) 0.0000313 
Glycine, serine and threonine metabolism(rno00260) 0.0006195 
Bisphenol A degradation(rno00363) 0.0009858 
Tryptophan metabolism(rno00380) 0.0013596 
Histidine metabolism(rno00340) 0.0017470 
beta-Alanine metabolism(rno00410) 0.0020365 
Bile acid biosynthesis(rno00120) 0.0027013 
Arachidonic acid metabolism(rno00590) 0.0053445 
Pantothenate and CoA biosynthesis(rno00770) 0.0056735 
Butanoate metabolism(rno00650) 0.0072639 
Tyrosine metabolism(rno00350) 0.0079428 
Valine, leucine and isoleucine degradation(rno00280) 0.0094101 

X 
x 
√ 
x 
√ 
√ 
√ 
 
√ 
√ 
√ 
√ 

2 

Tyrosine metabolism(rno00350) 0.0000590 
Aminophosphonate metabolism(rno00440) 0.0001267 
Selenoamino acid metabolism(rno00450) 0.0004668 
Histidine metabolism(rno00340) 0.0010152 
Alanine and aspartate metabolism(rno00252) 0.0013658 
Arginine and proline metabolism(rno00330) 0.0019112 
Tryptophan metabolism(rno00380) 0.0040672 
Androgen and estrogen metabolism(rno00150) 0.0042813 

√ 
x 
x 
x 
√ 
√ 
x 
X 

3 

Oxidative phosphorylation(rno00190) 9.000E-08 
Androgen and estrogen metabolism(rno00150) 0.0000888 
Starch and sucrose metabolism(rno00500)  0.0020632 
Urea cycle and metabolism of amino groups(rno00220) 0.0069082 
Pentose and glucuronate interconversions(rno00040) 0.0076060 

x 
 
 
 
 

4 
Ribosome(rno03010) 0.000E+00 
Proteasome(rno03050) 0.0000037 

 
X 

5 None  

6 

Proteasome(rno03050) 2.570E-04 
Tight junction(rno04530) 3.410E-04 
Long-term depression(rno04730) 4.090E-04 
TGF-beta signaling pathway(rno04350) 5.040E-04 
Wnt signaling pathway(rno04310) 0.0032164 

x 
x 
x 
x 
X 

+: Glucocorticoid Receptor Element - GRE binding sites; √: GRE binding sites are present on the promoters 
of almost all genes in the corresponding function group; x:  possibly because of not enough promoter 
information to be considered. 

Although it is currently believed that GREs are composed of two hexamers with a three-

nucleotide random-hinge region in between, the general consensus is that  towards one 

hexamer, namely TGTTCT [10]. We therefore search for this motif on conserved 
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promoter regions across orthologous promoters of the selected genes. The results are 

shown in Table 3.9 and detailed information is provided in additional files – 

‘functional_characterization.xls’. In general, almost all metabolic pathways contain genes 

with the GRE binding sites, implying that these genes are more likely to be directly 

regulated by the complex between corticosteroids and glucocorticoid receptors. 

Additionally, we also examine how frequently the GRE binding sites are present on the 

control regions of all selected genes (315 genes).Furthermore, we determined that given a 

background set of 2,000 randomly selected genes, the frequency of GREs in a set of 

genes is similar to that in the random set (~20%), implying that not all genes in those 

modules are directly regulated by the drug and that the presence of GRE binding sites on 

the control regions of genes in enriched pathways is very significant and not random. 

3.5. Results from human endotoxemia model 

The analysis identifies a reduced subset of genes which form, initially, five distinct 

responses whereas four are significant clusters (Figure 3.15). These include two clusters 

that exhibit an early and middle up-regulation event 182 and 199 genes respectively), one 

cluster that is characterized by later up-regulation (284 genes) and two clusters that 

exhibit a down-regulation response (1118 and 27 genes respectively). The smallest of the 

down-regulated clusters can be eliminated using our cluster elimination procedure as a 

non-significant statistic cluster (p-value = 0.05). It must be emphasized that the design of 

the study was to evaluate a self-limited inflammatory response in humans injected with 

endotoxin. As such, once the infection is cleared the system is expected to return to 

homeostasis. It is important therefore to realize that all clusters to show deviations from 

homeostasis and eventual return to base line.  In order to further evaluate the significance 
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of our selection we characterized functionally the populations making up the identified 

clusters using ArrayTrack [206] (Table 3.10). 

 

Figure 3.15: Selected genes and patterns from LPS dataset. The initial number of clusters 

is six and we picked out five distinguished patterns (3 up- and 2 down- regulation) in 

which cyan pattern can be omitted since it is not significant; early up – 182 genes (red), 

middle up – 119 genes (green), late up – 284 genes (blue), cyan – 27 genes, down – 1118 

genes (magenta), and totally 1730 selected genes over 3269. Top-left is the average 

expression profiles of those six patterns and the rest are expression profiles of selected 

genes in five patterns (the horizontal axis is six time-points (0, 2, 4, 6, 9, 24) and the 

vertical is the intensity of mRNA levels). 

We will discuss a brief of biological implications from significant pathways of those 

selected patterns (Table 3.10) to show how the strategy captures the biological event. 

First, the ‘early-up’ pattern contains genes whose expression levels increase during the 

first 2hrs after the administration of endotoxin and then return to the baseline within the 

first 24hrs. Such an ‘early-peak’ response consists of genes that are involved in critical 

pro-inflammatory signaling pathways (e.g. Toll-like receptor signaling (TNF, CCL4, 



76 

 

IL1B, NFkBIA) and Cytokine-cytokine receptor interaction (C-X-C motifs, CXCL1, 

CXCL2, CCL20, IL1A) which play an integral role in the progression of systemic 

inflammation. For example, endotoxin when binds to its signaling receptor triggers a 

signal transduction cascade that converges to the activation of transcription factors (NF-

kB) essential for the transcriptional synthesis of various pro-inflammatory genes (IL1, 

TNF, IL8) [207]. Therefore, the expression level of NFkBIA which encodes for the 

primary inhibitor of NF-kB [208] goes up, coupling with the co-expression of the pro-

inflammatory cytokines (TNF, IL1A, IL1B).  

Table 3.10: Pathway enrichment in four selected patterns (p-value < 0.05) 

Patterns Map Title P-value Patterns Map Title P-value

Early-up 

Toll-like receptor signaling pathway* 0.00039 

Late-up 

Apoptosis* 0.00042 

Type I diabetes mellitus 0.00126 
Toll-like receptor signaling pathway 0.00650 
Cytokine-cytokine receptor interaction* 0.00968 

Cytokine-cytokine receptor interaction* 0.00155 Limonene and pinene degradation 0.01177 

Coumarine and phenylpropanoid 
biosynthesis 0.00241 

Jak-STAT signaling pathway* 0.01277 

Hematopoietic cell lineage 0.01478 

Apoptosis 0.01309 Epithelial cell signal. in Heli. pylori 
infection 

0.02561 

Alzheimer's disease 0.03749 Alkaloid biosynthesis II 0.04661 

Epithelial cell signal. in Heli. Pylori 
infection 0.03816 

Magenta 

Oxidative phosphorylation* 0.00000 
Ribosome* 0.00000 

Glycan structures – degradation 0.03999 Caprolactam degradation 0.00130 
Adipocytokine signaling pathway 0.04406 Lysine degradation 0.00147 
Fc epsilon RI signaling pathway 0.04877 Fatty acid elongation in mitochondria 0.00191 

Middle-up 

Apoptosis* 0.00000 Reductive carboxylate cycle (CO2 fixation) 0.00287 
Adipocytokine signaling pathway 0.00334 Citrate cycle (TCA cycle) * 0.00514 
Toll-like receptor signaling pathway* 0.00743 Folate biosynthesis 0.00716 
B cell receptor signaling pathway 0.01715 N-Glycan biosynthesis 0.00825 

Epithelial cell signal. in Heli. pylori 
infection 0.02101 

Butanoate metabolism 0.01386 
Type I diabetes mellitus 0.01386 

Pancreatic cancer 0.02531 T cell receptor signaling pathway 0.02075 
Chronic myeloid leukemia 0.02810 Antigen processing and presentation 0.02215 
Prostate cancer 0.03856 Aminoacyl-tRNA biosynthesis 0.02295 
Small cell lung cancer 0.03856 Amyotrophic lateral sclerosis (ALS) 0.02321 

Sphingolipid metabolism 0.03910 
Pyrimidine metabolism* 0.03201 
Pyruvate metabolism* 0.03584 

Folate biosynthesis 0.04525 
Valine, leucine and isoleucine degradation 0.03966 
Galactose metabolism 0.04307 

T cell receptor signaling pathway 0.04691 Purine metabolism 0.04504 
*: selected pathways for discussing biological functions 
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Next, the ‘middle-up’ pattern is characterized by an increased expression of genes that 

peak at 4hrs post-endotoxin administration and participate in inflammatory relevant 

signaling pathways such as Apoptosis (CASP10, CFLAR, FAS) and Toll-like receptor 

signaling (NFkB1, NFkB2, RELA). The Toll-like receptor signaling is repeatedly 

appeared as an enriched pathway in this pattern compared with the ‘early-up’ one since 

some inflammatory genes (e.g. members of NF-kB/RELA family) show increased 

expression levels during the first 2-4hrs which were already reported in  [64]. In the other 

hand, recent insight [209] indicated that there was an excessive death of immune effector 

cells (apoptotic cells) during the progression of an aberrant inflammatory response. This 

fact shows how the apoptosis is important and thus how efficient the approach captured 

the biology function with the fact that the most enriched pathway in this class of genes is 

Apoptosis (p-value ~ 10-7). 

Subsequently, the ‘late-up’ pattern composes of genes with late expression level during 

the 4-6hrs post-endotoxin administration and subsequent resolution at 24hrs. Such a 

temporal pattern is enriched with genes involved in inflammatory relevant biological 

pathways as it previously stated e.g. Apoptosis (CASP8, IRAK4, PIK3G) and Cytokine-

cytokine receptor interaction (IL10RB, IL13RA1, IL8RB). However, herein, JAK-STAT 

cascade (IL10RB, STAT5B, JAK3, and IL13RA) is an additional inflammatory relevant 

pathway that discriminates this pattern from the aforementioned. From a biological point 

of view, JAK-STAT cascade is essential to regulate the expression of target genes that 

counteract the inflammatory response. In addition to this, research evidence [210] suggest 

that a STAT pathway from a receptor signaling system is a major determinant of key 

regulatory systems including feedback loops such as SOCS induction which subsequently 
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suppresses the early induced cytokine signaling. Therefore, genes that are co-expressed in 

this pattern participate in anti-inflammatory processes that aim to restore homeostasis.  

Finally, the ‘down’ pattern is the most populated expression motif characterized by a 

decreased gene expression level during the time course of the experiment. These genes 

are involved in cellular bio-energetic processes with a large array of genes to participate 

in pathways (p-value ~ 10-7) such as Oxidative phosphorylation (ATP5A, COX and 

NDUF members) and Ribosome biogenesis and assembly (RPL/RPS family). Other 

suppressed genes that involve Purine (PDE4A, PDE8A, PRPS1) and Pyruvate 

metabolism (GLO1, PDHB, LDHB) participate in TCA cycle (MDH1, MDH2, ACLY) 

as well as in metabolic pathways. Endotoxin–induced inflammation causes the 

dysregulation of leukocyte bioenergetics and persistent decrease in mitochondrial activity 

can lead to reduced cellular metabolism [211]. That is to say, co-expressed genes in this 

down-regulated pattern indicate the shut-down in cellular energetic of human blood 

leukocytes when exposed to an inflammatory stress.  

Altogether, the computational analysis of the genome-wide transcriptional profiling of 

peripheral human blood leukocytes identifies the emergence of four distinct expression 

patterns that play an integral role in the progression of an endotoxin-induced 

inflammatory response. 

3.6. Summary  

We have proposed a statistical model that accounts for the variability in repeated 

measurements to estimate more robust expression profiles, so-called ‘true’ expression 

profiles. The effectiveness of the model has been demonstrated on synthetic data as the 

method that achieves superior and/or comparable clustering performance to that of other 
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related approaches, especially much better to that when using the average expression 

profiles. Our results on synthetic data demonstrate that the clustering performance using 

‘true’ expression profiles is superior to that when using average expression profiles and 

also to other methods with integrated error information. The output of this representation 

can be used as a powerful input to a variety of computational models that require gene 

expression profiles as the input without any modification while still taking into account 

the information content in replicated data.  

We next explore the hypothesis that the more clusterable the data is the more biologically 

relevant it is and utilize the concepts of consensus clustering to identify, within a set of 

differentially expressed genes, a subset of genes that are either highly co-expressed or 

highly non-coexpressed with the hope of extracting a more biologically relevant subset of 

genes. The purpose of this approach is to enable a systematic identification of smaller, 

clusterable, subsets of gene expression data exploring the concept of consensus 

clustering. The fundamental assumption of our approach is that an appropriate weighting 

of multiple alternative methods would eliminate the biases associated with specific 

clustering methods. Also, it must be emphasized that the proposed framework is not 

designed, or proposed, in order to replace more refined clustering analysis, but is 

advocated as a critical preliminary steps in order to identify putatively informative 

subsets of genes given a high-dimensional expression dataset. 

Eventually, we have proposed a framework to identify significant coexpressed clusters of 

genes across multiple datasets. Following the orientation of meta-analysis, an extended 

computational approach that explores the concept of agreement matrix from consensus 

clustering has been proposed with the aims of identifying gene clusters that share 
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common expression patterns across multiple dosing regimens as well as handling 

challenges in the analysis of microarray data from heterogeneous sources, e.g. different 

platforms and time-grids in this study. Analysis on rich in vivo datasets of corticosteroid 

time-series yielded significant insights into the pharmacogenomic effects of 

corticosteroids, especially the relevance to metabolic side-effects. This has been 

illustrated through enriched metabolic functions in those transcriptional modules and the 

presence of GRE binding motifs in those enriched pathways, providing significant 

modules for further analysis on pharmacogenomic corticosteroid effects. 
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Chapter 4 – Reconstruction of the transcriptional regulatory 

program 

 

4.1. Introduction to transcriptional regulation 

The gene is the fundamental unit on the genomic DNA which contains the required 

information to carry out the biological functions of cells. The expression of genes i.e. 

mRNA synthesis can be measured efficiently in a high-throughput fashion and  such 

expression patterns are characteristic of cellular responses to external stimuli [212]. It is 

widely accepted that these responses are mainly driven by the interactions between 

transcription factors (TFs) and their corresponding transcription factor binding sites 

(TFBSs) on the proximal promoters of their target genes [96, 97]. However, with a large 

number of genes in eukaryotic genomes, deciphering how these interactions evolve to 

control the expression of tens of thousands of genes (~ 35,000 genes in human) remains 

an open question. Recent studies [213] have shown that the underlying regulatory 

mechanisms are complex, dynamic (especially in higher organisms) and can be arranged 

in multiple hierarchical levels such as the sequence, the chromatin, and the nuclear level. 

The sequence level, also the best-studied level of gene regulation, is characterized by the 

linear organization of transcription units and cis-regulatory elements considered as the 

regulatory code which governs gene expression. These cis-regulatory elements i.e. 

binding sites which are more important when found on the proximal promoters form a 

highly flexible and context-dependent structure [214] for each gene [98, 215, 216]. 

Furthermore, in eukaryotic cells genomic DNA is ‘packed’ into an efficient structure, 
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called chromatin, composed of nucleosomes that consist of approximately 147bp of DNA 

wrapped around a protein octamer [217, 218]. This structure not only packs DNA but 

also creates an added layer of gene regulation which ensures correct gene expression and 

accessibility to DNA-dependent processes e.g. gene transcription, DNA repair, and DNA 

replication. The overall process of the transcription process encompassing the nuclear 

architecture and/or the complex spatial arrangement of genes, gene clusters, chromatin, 

and regulatory DNA elements [219, 220] is beyond the scope of this research and hence 

we only focus on the sequence level aiming at discovering cis-regulatory elements on the 

proximal promoters. 

Two of the most important functional elements in gene regulation are transcription 

factors and their binding sites on the promoters of their target genes. A TF is a protein 

which binds to specific DNA binding motifs that can be present multiple times on the 

same promoter of a gene or on different promoters of different genes. The transcription 

factor binding sites where a TF binds are usually short (5-15bp) and degenerate but 

highly selective through evolution [221]. A gene can have multiple alternative promoters 

[222, 223] and each promoter frequently contains a large number of binding sites (10 – 

50 binding sites) for 5 – 15 different TFs [224]. Therefore, a more comprehensive 

understanding of these elements and their interactions will provide a deeper 

understanding of the regulatory pathways within cells and potential functions of 

individual genes and/or gene clusters [225]. 
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4.2. Gene promoter structure 

4.2.1. Gene structure 

Promoters are DNA sequences located upstream the coding region of each gene towards 

the 5’ endpoint. Combined with other regulatory elements in the upstream region of a 

gene, these elements in the promoter region interact with transcription factors, recruit 

RNA polymerases, and then initiate the transcription of a gene.  There are three classes of 

promoters that are recognized by three corresponding RNA polymerases (Figure 4.1): 

• Class I promoters are made up of two regions, an upstream control element and a core 

promoter.  They serve for the regulation of ribosomal RNAs synthesis (5.8S, 18S, and 

28S rRNAs). 

• Class II promoters are mainly involved in transcribing protein-coding genes which 

generate pre-mRNAs and almost all small nuclear RNAs (snRNAs). Each member of 

this class consists of a core promoter, proximal promoter elements, and distal 

regulatory elements. 

• Class III promoters have three types: type I and II are internal promoters that regulate 

the synthesis of 5S rRNAs and tRNAs and interact with sites in the RNA polymerase. 

Type III promoters are upstream promoters similar to class II promoters and regulates 

the synthesis of some snRNAs or viral-associated RNAs [226].  

 

Figure 4.1: Basic structure of promoter classes [226]. (a) A general structure of an 

eukaryote gene; the promoter region contains crucial regulatory elements to control the 

transcription of the gene; the gene is copied to a pre-mRNA from which the RNA Pol-II 

transcripts into an mRNA; the coding region contains alternatively exons and introns 

where introns are removed in the transcription process; a gene is marked by an integer 

1D-coordinate system without zero point, i.e. TSS is +1 and before is negative; the un-
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translated regions (UTRs) are particular sections of mRNA; the 5’ UTR starts from the 

TSS and ends just before the start codon (usually AUG), the 3’ UTR follows the coding 

region and ends before the poly-A tail – the sign to stop the transcription. (b)(c) Typical 

structures of class I promoters and class II promoters, respectively. (d) The typical 

structure of class III promoters; box A, B, C as well as TATA, PSE, Oct are conserved 

sequences which are bound by TFs to initialize the transcription process; internal 

promoters (Type I, II) have short conserved sequences located within the coding region; 

upstream promoters (Type III) contain short conserved sequences upstream of the start 

point. 

 

 

 

 

 

 

 

 

4.2.2. Promoter elements 

Although the process of gene expression is regulated at many levels e.g. genomic level, 

transcriptional level, RNA processing level, translational level, or post-translation level, 

promoter regions and regulatory elements are still considered as one of the most 

important factors [227]. Since proteins in eukaryotes are mostly transcribed by RNA 

polymerase II, computational promoter studies are mainly focused on protein-coding 
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genes, in this review we will concentrate on the structure of class II promoters (Figure 

4.2a) which are characterized by the core promoter, proximal- and distal- promoter 

elements [228]. 

Core promoter is a small stretch sequence about 100bp flanking the transcription start 

site (TSS) which incorporate a combination of four common components consisting of 

the TATA box, initiator  (Inr), TFIIB recognition element  (BRE), and the downstream 

promoter element (DPE) [229, 230]. This serves for the initiation of the transcription 

process (Figure 4.2b). The TATA box, the binding site for TATA-binding protein (TBP), 

is a TA-rich site at 26-31bp upstream in higher eukaryotes and 40-120bp upstream in 

yeast [231]. Inr, also called the Transcription Start Site (TSS), is the start position located 

in the core promoter and functions similarly to the TATA box [230]. A comprehensive 

statistical analysis on a dataset with more than 10,000 human promoter from EPD [232, 

233] and DBTSS [234, 235] demonstrated that it is not necessary for all these 

components to be simultaneously present in the core promoter [236]. Specifically, Inr 

elements are present in nearly half of the promoters whereas TATA boxes are present in 

only around 10% of the promoters in the dataset and seem to simultaneously present with 

the Inr elements. BRE and DPE elements are present about 25% of the time. 

Furthermore, the presence of DPE is independent of the presence of TATA-box and Inr 

elements whereas BRE-containing promoters are present in TATA-less promoters. 

Besides these elements, a number of other motifs in this region e.g. YY1, CAAT, CREB, 

etc. were also discovered in an analysis on a set of high-quality human core promoters 

[237]. 
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Proximal promoter elements are located on the proximal promoter which is defined as 

the region up to 1Kbp upstream of the core promoter. The presence and importance of 

these cis-regulatory elements were characterized via a technique called linker-scanning 

mutagenesis [238] which showed that any mutation at one site in a regulatory element in 

this region can cause a significant change in transcription levels. Elements in the region 

between -350 and -40 have positive effects on the promoter activity whereas those in the 

region from -350 up to -1000 appear to have a negative regulation on the expression of 

genes [227].  

 

 

 

 

  

 

 

 

 

 

 

Figure 4.2: Class II promoter structure and relevant regulatory elements; these are 

directly redrawn from ([228, 230]). (a) Typical regulatory elements of a gene including a 

core promoter, proximal promoter elements and distal regulatory elements; the promoter 

region which contains a core promoter and proximal promoter elements is usually no 
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longer than 1kb. (b) A detailed structure of a core promoter; the top is the positions of the 

conserved elements in the core promoter within the gene coordinate system; the bottom is 

the corresponding consensus sequences (c) Four typical types of distal regulatory 

elements and their corresponding effects; enhancers activate whereas silencers repress the 

transcription; insulators block the gene from being affected by other regulatory elements; 

a locus control region can affect the transcription of a number of genes. 

Distal regulatory elements are characterized by four regulatory groups (Figure 4.2c). 

Enhancers work as cis-regulatory elements near the TSS with the positive effects on 

promoter activity and in many cases, they both share the same activators [239]. Silencers 

are bound by repressors to negatively regulate the expression. The third group is 

insulators which are similar to a wall, preventing the mutual transcriptional effects of 

regulatory elements between neighbor genes. The last is a combination of different 

regulatory elements (known as locus control regions (LCRs) which regulate an entire 

locus or a number of genes [240]. These trans-regulatory elements function in the same 

way as cis-regulatory elements although they are located far from the TSS and work 

under the control of trans-acting factors[228]. 

4.2.3. Promoters identification 

The first step towards discovering TFBSs is identifying the set of promoters. In principle, 

they are defined as the upstream regions proximal to the transcription start sites (TSSs) of 

genes; however, their length is still not clearly defined among different studies although it 

is one of the most important factors affecting to the computational predictions. Numerous 

activities have been proposed such as the recent experiment known as genome-wide open 

chromatin map that integrates high-throughput sequencing and genome-wide titled array 
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technologies has been performed to identify DNase I hypersensitive sites within human 

primary CD4+ T cells [241]. Such activities aim at better defining proximal promoter 

lengths which are subsequently incorporated in commercial tools, such as [242]. 

Besides experimentally identified promoters, a number of computational methods have 

been proposed to predict promoter regions. Available tools include PromoterInspector 

[243], DragonGSF [244], EnSemPro [245], and have all been thoroughly reviewed [246, 

247]. Prediction tools can be classified into two main categories, signal-based approaches 

which rely on conserved signals relevant to promoters, e.g. TATA box, CAAT box, CpG 

islands, and content-based approaches that utilize conserved motifs to distinguish 

between promoters and non-promoter regions [248]. Several models have been shown to 

be promising but due to the complexities of the genome structure, large-scale predictions 

are still difficult [249]. 

The structure of promoters, especially in mammals, is a complex which can be 

considered as a mini-structure of a gene where regulatory elements are interspersed 

within a large number of regions non-conserved and unknown function [249]. 

Traditionally, it has been assumed that the combinatorial interaction of multiple 

transcription factors with the gene promoter is sufficient to explain the process of 

transcription. However, recent studies provided results to show that a large proportion of 

mammalian genes possess multiple transcription start sites (TSSs) and thus multiple 

promoters driving gene expression in a context-specific manner [250-252]. Specifically, 

in a recent study Singer at el. [223] developed and employed a custom microarray 

platform to  show that nearly 35,000 alternative putative promoters are present on around 

7,000 human genes. Furthermore, each set of unique combination of TFBSs in the 
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promoter will determine its temporal and spatial expression in a specific context [249] 

(Figure 4.3). These observations significantly increase the complexity of understanding 

gene regulation and the transcription process in general, and create a huge challenge for 

computational TFBS identification. 

 

 

 

 

 

 

 

Figure 4.3: Data complexities in TFBS prediction. (a) Alternative promoters usually 

occur for genes in higher eukaryotes e.g. nearly 35,000 alternative putative promoters are 

present on around 7,000 human genes [223]. For a specific gene, different promoters are 

activated to drive the gene expression in different corresponding contexts. (b) Alternative 

sets of combinatorial TFs regulate the transcription process even though only one 

promoter is activated in these contexts. M1, M2, M3 are three example transcriptional 

modules (a set of TFs or corresponding TFBSs) activated to regulate the transcription 

process; module M1 is present on two cases whereas only a part of M2 is functional in the 

other case e.g. human RANTES/CCL5 gene consists of different set of functional TFBSs 

in different cell types [249]. These complexities create a huge challenge for both 

computational and experimental in detecting functional binding sites for a specific 

context. 
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4.3. Binding site representation 

Assuming a list of DNA binding sites for some TF is available, one of the very first 

questions is how to best represent and characterize the information contained in these 

sites for further analysis. The goal is to find a representation that matches as closely as 

possible all the binding sites in the collection and is clearly distinguished from the 

background. From the point of view of string processing, a simple and widely-used 

concept is the of consensus sequence in which the most frequent character at each 

position is chosen to represent the binding motif at that position. However, some 

positions might consist of characters of equivalent frequency and thus a more complex 

pattern, based on the IUPAC sequence [253, 254] was used to characterize the diversity 

of those binding sites (Figure 4.4a). Although this representation works well for highly 

conserved and short binding motifs, it is defined somewhat arbitrarily and removes much 

of the information in the original set of binding sites. In a case for yeast TF ABF1, for 

instance, two IUPAC sequences (RTCRYYNNNNACG or RTCRYNNNNNACG) have 

been published and used as a relatively precise description of ABF1 binding sites [255]. 

However, these representations failed to recognize the binding site SCPK01 on PYK1 

promoter from position -610 to -598 which was showed to be bound by TF ABF1 

experimentally [256]. Consequently, a more precise representation was proposed to 

utilize almost all binding site information, known as the nucleotide distribution matrix or 

position weight matrix (PWM) [255, 257, 258], which has been proven very successful in 

various problems in DNA and protein sequence analysis [255, 259]. The PWM is a 

matrix of scores (e.g. occurrences, frequencies) with four rows corresponding to four 

DNA bases and m columns, each of which is a position in the binding motif. The basic 
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assumption of the PWM is that the base-pairs at different positions are statistically 

independent and thus the fitness score of a matched oligonucleotide ‘p’ with this profile 

is the sum of the fitness at each position. This representation reflects the extent to which a 

position is conserved within the binding motifs and thus the higher the similarity the 

higher the fitness.  

The main weakness of the PWM approach stems from the assumption that the positions 

contribute independently and additively to the total activity of the binding site. However, 

position dependence may exist on the binding sites and has been experimentally and/or 

statistically verified in some cases [260]. For example, using a new quantitative multiple 

fluorescence relative affinity assay Man et al. [261] showed that position 16 and 17 on 

the operator DNA were not independent in the interactions with its TF, Salmonella 

bacteriophage repressor Mnt; or in another case, when Ellrott et al. [262] applied χ2 test 

on the 71 binding sites of TF hepatocyte nuclear factor 4α HNF4α, a significant 

dependence was found between several pairs of positions e.g. position 4 and 8, 4 and 11. 

Therefore, more comprehensive representations were introduced to capture the potential 

dependence between positions in binding sites, such as maximal dependence 

decomposition [263], hidden Markov model [264, 265], Markov chain optimization 

[262], as well as a more flexible approach based on variable-order Bayesian network 

which combines PWM, Markov models and Bayesian model to fit with each particular 

subset of binding sites of a TF [266]. 

However, despite the limitations of the basic PWM approach, it is still the leading model 

in the search for discovering potential TFBSs. In fact, besides its intuitive representation 

and fast computation, it has been shown to be comparable at least, and in some case 
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outperforms, other more complicated models e.g. fixed-order Markov models that are 

usually over-fitted due to a limited training data [266]. Therefore, emphasis has been 

given to strategies that optimize the PWM instead of building more powerful models. For 

example, the scores in the cells of the matrix can be transformed to improve the 

specificity of the binding motif model (e.g. convert frequencies to probabilities, adding 

pseudo-count, taking logarithms, etc. [257, 267]) and the binding sites can be aligned 

before creating the PWM [255]. In some cases, the information content (IC) of the PWM, 

or some similar form, is be made use to select a suitable number of binding sites for 

creating the binding motif model [112, 267, 268]; 
{ }

∑ ∑
∈

=
i TGCAb b

ib
ib p

f
fIC

,,,

,
2, log  where ibf ,  

is the observed frequency of base b  at position i  and bp  is the background frequency of 

base b (usually 25% as neutral distribution across the genome is assumed). 

In Figure 4.4, the top-left window is the collection of binding sites, each of which is 

called an oligo or conserved sequence; oligos can be aligned with gaps to maximize the 

motif content but in this case, it is a gap-free alignment. Several models have been 

displayed and lastly an advance model of PWM [112] is presented; the normalized 

formula is inferred from the original equation to ensure the rule that the fitness score of a 

matched oligo can be estimated by taking the sum of the fitness at each position. Thus, 

there are different formulae to normalize the raw PWM up to different studies. The ‘bold’ 

part is the core region of the binding sites i.e. the most conserved region in the binding 

motif model. Bottom-right is the sequence logo that can quickly visualize the specificity 

of the conserved information in each column. 
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Figure 4.4: Binding site representation. (a) Illustration of several motif models for human 

factor ETS1. (b) A brief look on the history of binding motif models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4b shows a brief look on the history of binding motif models. Starting from the 

first simple representation, consensus sequences, one has developed more advance 

models to characterize the binding motifs of TFs. However, due to the nature of the 

binding sites e.g. short, degenerate, etc., the problem has become a challenge and the 

developing strategies have been changed when applying to higher eukaryotes e.g. search 
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for composite motifs (a set of TFBSs) instead of single motifs, combine additional lines 

of biological evidence in detecting TFBSs (phylogeny, co-expression, and/or co-

function). Additionally, other significant efforts have been devoted towards enhancing 

the power of the PWM in order to better discriminate between real binding sites and the 

background e.g. random data or non-regulatory regions. In this direction, Gershenzon et 

al. [269] proposed 16-row matrices to replace the 4-row PWMs; Sandelin et al. [270] 

tried to classify TFBSs into TF families based on the constrained binding sequence 

diversity for groups of structurally related TFs to create familial binding profiles; 

Hannenhalli et al. [271] computationally divided the binding site collection of a TF into 

two subsets corresponding to two-child PWMs to increase the binding specificity of TF 

profiles. As earlier noted, however, the short length of the binding sites makes them 

appear fairly redundant and predictive methods are often replete with false positives. 

Therefore, given that the main question concerns the actual identification of TFBSs and 

effective the location of the promoter, searching becomes a more critical issue than 

simply optimizing the representation. 

4.4. Discovery of ‘physical’ transcription factor binding sites 

One of the first questions related to TFBS identification would be how to detect a 

conserved motif in a given set of sequences. The problem can be simply stated as 

follows: given a set of N sequences { } { } { }TGCAssssS il
s

lili
N
ii

i ,,,,,, 11 =ΑΑ∈== == , 

identify conserved motifs { } Α∈= = k
K
kk ppp ,1 that are overrepresented, i.e. motifs present 

in S at a statistical significant rate. The fundamental assumption is that if the sequences 
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are promoters of genes, then conserved motifs can be assumed to be potential binding 

sites for TFs.  

There have been a wide range of possible applications for such in silico motif discovery 

methods. First, they greatly assist experimental studies aiming towards detection of the 

collection of binding sites for  a given TF [272]. ChIP-chip assays, for example, identify 

genomic regions to which a TF of interest binds. However, locating exact sites where the 

TF binds might be very difficult due to the limitations of the assays. As a result, once the 

DNA sequences to which the TF binds have been collected motif discovery algorithms, 

e.g. consensus [273], Gibbs sampling [274], MEME [275], are then applied to locate the 

exact binding sites. Secondly, if one identifies a set of genes that can be considered as 

regulated by some common TF(s), then one can begin to search computationally for 

conserved motifs in the corresponding promoter to infer regulating TFs. The underlying 

assumption of such a computation is that the common patterns are the likely functional 

ones. Furthermore, motif discovery algorithms can also assist in cross-species 

extrapolation to improve the specificity of finding TFBSs on a gene promoter. Once a set 

of corresponding promoters of a gene across multiple species have been extracted,  motif 

discovery algorithms are used to detect conserved sub-sequences in this promoter across 

species in an attempt to identify all potential cis-regulatory elements (discussed more 

details in the next section). 

Because of the importance of this problem, a variety of algorithms as well as 

computational tools have been developed for those problems above for the past twenty 

years (Table 4.1). However, generally speaking the core algorithms can be classified into 

two categories: combinatorial and probabilistic [267, 276, 277]. Exhaustive search with 
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pattern-based scoring (combinatorial category) is the starting point of discovering 

conserved motifs in a set of promoter sequences [277]. Due to magnitude of the search 

space, methods were further improved by exploring sequence-based exhaustive search 

[278] and also consensus search [279]. The probabilistic-based methods employ two 

main algorithms e.g. Gibbs sampling [274] and MEME [275] and have also been used 

extensively for motif discovery tools. The basic idea is to continuously reduce the search 

space and the false positive matches by more accurately representing the motif models. 

 

Table 4.1: Selected resources and relevant tools for in silico TFBS identification. 

Genome Browsers 

UCSC genome.ucsc.edu  VISTA http://genome.lbl.gov/vista  

Promoter resources 

Databases Prediction Tools 

Genomatix genomatix.de/products/Gene2Promoter  PromoterInspector genomatix.de/promoterinspector.html  

CSHL rulai.cshl.edu/CSHLmpd2  DragonGSF 
research.i2r.a-
star.edu.sg/promoter/dragonGSF1_0/genestart
.htm

DBTSS dbtss.hgc.jp  Eponine www.sanger.ac.uk/Users/td2/eponine  
EPD www.epd.isb-sib.ch  FirstEF rulai.cshl.org/tools/FirstEF  

Transcription factor resources 

PWM databases Phylogenetic footprinting tools 

Genomatix genomatix.de/products/MatBase  FootPrinter bio.cs.washington.edu/software.html#foo
tprinter  

TRANSFAC www.gene-regulation.com/pub/databases.html PhyloME bio.cs.washington.edu/software.html#ph
yme  

JASPAR jaspar.cgb.ki.se  PhyloGibbs www.phylogibbs.unibas.ch/cgi-
bin/phylogibbs.pl  

  PhyloGibbs-MP www.imsc.res.in/~rsidd/phylogibbs-mp 
  MONKEY rana.lbl.gov/monkey  

Single-motif discovery tools Cis-regulatory module discovery tools 
MatInspector genomatix.de/products/MatInspector  FrameWorker genomatix.de/frameworker.html  

P-Match www.gene-regulation.com/pub/programs.html CMA www.gene-
regulation.com/pub/programs.html  

AlignACE atlas.med.harvard.edu  CisModule www.stat.ucla.edu/~zhou/CisModule  

Consensus bifrost.wustl.edu/consensus  CisPlusFinder jakob.genetik.uni-
koeln.de/bioinformatik/people/nora/nora.html 

MEME meme.sdsc.edu  DiRE dire.dcode.org  
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However, it is important to realize that although a large number of TFs has already been 

identified, and more are being identified, through numerous high-throughput activities 

emanating from the decoding of the human, in silico analysis is further hindered by the 

fact that only a fraction of those can currently be mapped to known and well 

characterized profiles [242, 280, 281] (around 600 human TFs in www.genomatix.de vs. 

approximately 1,850 found TFs in human [282]). When conserved motifs are predicted 

computationally that are not present in available collections, these are then considered as 

novel binding sites and/or regulatory regions but they are set aside for further 

investigation.  Therefore, besides such motif discovery methods, another approach to 

detect potential TFBSs is directly scanning known TF profiles and scoring to determine 

whether or not the matches are potential binding sites. 

Given that the scoring metric would assign relative importance to alternative binding sites 

in motif discovery methods [283-285], it is of equal importance to score directly the 

subsequences of interest in terms of their potential of being binding sites compared to 

known TF profiles. Despite the large number of alternative representation models and 

their associated scoring function, the most widely-used approach is still the one based on 

the PWM model and the sum fitness function, as discussed above. Given, therefore, that 

the sum fitness is used, which based on the relative abundance of bases in a specific 

position based on scanning the TF profiles, the strategy to predict whether or not a site is 

a binding site is among the most critical factors. Therefore, major emphasis is placed on 

developing strategies that score a candidate oligo and identify the thresholds for the 

prediction. A typical approach is based on  core similarity matches (Figure 4.4a) to 

reduce the number of false positive matches [112]. Furthermore, the threshold for each 
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PWM is optimized so that a maximum of three matches are allowed in 10,000bp of non-

regulatory test sequences (coding sequences excluding first exons and genomic repeats). 

This is the approach used in tool MatInspector in Genomatix [112]. As an alternative 

strategy, [268] implemented P-Match in TRANSFAC to select the optimized thresholds 

so that the false positive rate is minimum and/or the false negative rate reaches some 

user-defined threshold. The threshold for minimum false positive rate is the one at which 

no match is found on the background set of exon sequences; and the threshold for false 

negative rate α is the rate at which α% of binding sites in the collection used to build the 

TF profile are not detected by that threshold using leave-one-out cross validation. Besides 

determining is the magnitude of a score threshold, both approaches also make use of the 

concept of TF family profiles [270, 271] with some variations to reduce the redundant 

matches in scanning TF profiles on a promoter sequence. Generally speaking, the key 

idea here is using prior knowledge such as known TF profiles to predict the most 

probable TFBSs on promoter sequences with a minimum false positive matches; for 

example, those PWMs that represent similar DNA patterns will be assigned into the same 

TF family [112]. 

4.5. Phylogenetic footprinting 

The basic underlying assumption of comparative genomics, or phylogenetic footprinting, 

is that functional regions evolve under constraints and thus at a lower rate than non-

functional regions. Therefore, it is hypothesized that well conserved regions in a set of 

orthologous sequences survived due to their special functional implications, making them 

become promising candidates for functional cis-regulatory elements [286]. Preliminary 

evidence seems to support the hypothesis that conservation does imply so kind of, yet to 
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be determined, significance. For instance, Cliften et al. [287] sequenced six 

Saccharomyces species and verified that many TFBSs are conserved across species and 

also located in conserved blocks although the blocks are often times much longer than the 

binding sites. Similarly, Gibbs et al. [288]  demonstrated that regions with high-scoring 

PWM matches that are conserved across human-mouse-rat genomic alignment provided a 

44-fold increase in the specificity of the predictions compared to those that are not 

conserved. Therefore, utilizing the information from orthologous genes across multiple 

species is becoming a useful paradigm in predicting putatively functional binding sites as 

well as reducing the false positive matches in motif discovering methods.  

Given a set of genes, in order to identify conserved regions for each promoter DIALIGN 

[289] was used to perform multiple sequence alignments with the input sequences 

including each sequence as well as its orthologous promoters. DIALIGN was selected 

because it has many applications in comparative genomics [290]. Also, a recent 

benchmark study for the alignment of non-coding DNA sequences has concluded that it 

can produce alignments with high sensitivity as well as specificity to detect constrained 

sites [291]. Following the alignment among orthologous promoter sequences, we relied 

on the conserved scores returning from DIALIGN (with the similarity threshold of 

diagonals or corresponding segments involved at least 5 bases) to locate conserved 

regions which are defined as sub-sequences that are longer than 10bp and continuously 

scored greater than the average score of all the alignment’s conserved scores (Figure 

4.5a).  
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Figure 4.5: Identification of promoter conserved regions and common physical TFBSs. 

(a) Estimation of conserved regions on a single promoter (the red one) based on Dialign’s 

alignment scores from a set of orthologous promoters. (b) Finding common physical 

TFBSs accounting for the case that genes may have multiple alternative promoters. 

TFBSs present on the conserved regions of any alternative promoter of a gene are also 

considered as putative TFBSs for that gene. 

We next apply MatInspector [112] to scan for all physical TFBSs and only those that 

overlap with the conserved regions selected above are kept for further analysis. We used 

a common core similarity 0.75 and utilized the optimal matrix similarity threshold for 

each position weight matrix (a corresponding profile of TFBSs) suggested from MatBase, 

Genomatix [111] which ensure that a minimum number of matches are found in non-

regulatory sequences i.e. the false positive matches is minimized. However, a gene may 

have multiple alternative promoters [223] and virtually in all cases, it is not known which 

promoter of the gene is activated. Therefore, all putative TFBSs detected from all 
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alternative promoters of a gene are considered as candidates to infer putative 

transcriptional regulators for the gene. Subsequently, we estimate the common level of 

each candidate above in each corresponding module and select those TFBSs present more 

than a common threshold (70% in this study) (Figure 4.5b). Associated TF families with 

those selected TFBSs are inferred and considered as transcriptional regulators. 

4.6. Context-specific transcriptional regulators 

While it is recognized that not all binding sites found on a promoter will be functional 

elements, it is also recognized that functional sites are not activated simultaneously or 

independently of condition, or environment, since the cooperation of TFs is highly 

dependent on context [292-296]. Human RANTES/CCL5, a member of the CC- or β-

subfamily chemotactic cytokines for instance, appears to have six functionally 

characterized short regulatory elements on its promoter that mediate its transcription 

initiation. However, not all six elements are activated simultaneously in any specific 

tissue in five cell types analyzed and the elements are also highly selective under 

different stimulating signals regulating gene expression [297]. Consequently, a critical 

question is to establish a relationship between binding sites and the context in which 

these sites become functional. The term ‘context’ here is used in a way that implicitly 

refers to a set of potentially co-regulated genes e.g. genes that appear either to exhibit 

correlation in their expression patterns and/or to be involved in similar functions in a 

specific condition and/or tissue [293, 298, 299].  

The main idea in this direction is to use prior knowledge to identify the set of potentially 

co-regulated genes and then search the corresponding promoter set for common and/or 

significant cis-regulatory modules. Earlier studies assumed that a cluster of coexpressed 
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genes could be set under the same regulatory mechanism, e.g. co-regulation [300, 301] or 

co-function [302]. However, more recent evidence suggests that co-expression alone is 

not enough to infer the existence of common regulatory mechanisms and instead 

additional information is required [298, 303], especially in higher organisms. 

Specifically, recent studies have shown that genes sharing similar expression patterns can 

participate in a number of different biological functions and/or genes in the same 

pathway can exhibit different patterns of expression [304, 305]. Moreover, the underlying 

gene regulation is shown to be tissue and/or condition specific and the TFs that drive the 

gene expression are very flexible in function and activity under different conditions [293-

296]. Therefore, defining the context in which a set of genes are more likely to be co-

regulated poses a formidable challenge to researchers.  

As such it is more appropriate to explore the concept of ‘gene battery’ originally 

proposed by Britten and Davidson [306] and has been further explored in the literature 

[307-310]. A gene battery refers to a group of genes that are coordinately expressed 

and/or functionally coupled since their regulatory regions respond to the same 

transcriptional signals [311, 312]. With the assumption that genes in a gene battery are 

involved in key biological processes, recognized CRMs will consist of putative functional 

binding sites that are associated with essential transcriptional regulators. Yet, in higher 

eukaryotes especially in humans the problem turns to be much more difficult. One of the 

most critical issues is to determine which genes belong to the same gene battery. Prior 

studies assume that either coexpressed genes [300, 301, 313] or genes that belong to the 

same biological process [299, 314] could be governed by some common regulatory 

mechanism. However, recent evidence suggests that co-expression or co-function alone is 
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not sufficient to infer the existence of common regulatory mechanisms [298, 315]. 

Oftentimes co-expressed genes can participate in a diverse array of biological functions 

while functionally-relevant genes can be characterized by different expression patterns 

[304, 305]. Predicated upon these, in this study we explore the possibility that genes that 

are both co-expressed and functionally-relevant may be more likely to be co-regulated. 

Since genes within the same pathway encode for a set of interacting proteins, they are 

more likely to be governed by some common regulatory mechanism [316]. Therefore, the 

unifying hypothesis of this study is that genes that participate in the same pathway are 

functional relevant. 

4.6.1. cis-regulatory modules (CRMs) 

Due to the fact that TFs in higher organisms regulate gene expression in a combinatorial 

manner rather than in isolation [292, 297] and that TFBSs tend to form clusters of 

binding sites, known as cis-regulatory modules (CRMs) [317, 318], computational 

methods have shifted towards discovering CRMs instead of a single TFBS. A cis-

regulatory module is generally considered as the smallest functional regulatory unit 

[111]. From a computational standpoint, such module is mainly characterized by two 

factors: (i) composition which consists of a set of non-overlapping binding sites of TFs 

on the control regions of a gene and (ii) structural constraints that take into account the 

strand orientation to which TFs bind, the order and the distance between successive 

binding sites [319, 320].  

The problem of CRM searching can be formalized as follows: given a set of N putatively 

coregulated genes { }N
iigG 1== , each of which contains Ki alternative promoters 

{ } iK
kiki prog 1==  whereas each promoter is represented by a list of Lik binding sites 
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(‘promoter profiles’) { } ikL
liklik bspro 1==  and each binding site is a 3-tuple of corresponding 

transcription factor name f, position p and binding orientation o: >=< o
ikl

p
ikl

f
iklikl bsbsbsbs ,, , 

find a set of M cis-regulatory modules (CRMs) { } { } jM
ljlj

M
jj bscrmcrmcCRM

11
,

==
==  that are 

present as common over a threshold δ (70% in this study) on the set of gene promoters 

(Mj is the number of binding sites, yet to be determined, in CRM crmj). The statistical 

significance of each commonly recognized CRM vs. a background set of genes is then 

estimated selecting only significant CRMs. The subscripts i, k, l, j indicate the gene 

number, the promoter number, the binding site number, and the CRM number 

respectively. An illustration of the computational framework is presented in Figure 4.6 

while more details are discussed in the following section.  
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Figure 4.6: Flowchart of the CRM searching process. Each binding site is characterized 

by the TF name, position and binding strand orientation (+: forward and -: backward). 

Promoter sequences are converted into promoter profiles to speed up the calculation. A 

gene profile contains a set of promoter profiles that are corresponding to a set of 

alternative promoters of that gene. The background set contains 5,000 randomly selected 

human genes. 

4.6.2. Discovery of TFBSs and promoter profiles 

Based on a comprehensive database of promoters – Genomatix [111], a set of transcript-

relevant promoters are extracted coupled with multiple alternative promoters and 

experimental information about the promoter length including those with either an 

experimentally defined length or a default if there is no associated prior length 

information (500bp upstream plus 100bp downstream the TSSs). MatInspector [112] is 

then applied to scan for PWM matches on those promoter sequences using optimal 

parameters from MatBase [111]. In order to speed up the process of discovering CRMs as 

outlined in [321], each promoter is re-modelled with a list of Lik TFBSs ordered by their 

local positions on the promoter sequences and represented by the corresponding TF name 

(e.g. NFKB, ETSF) along with the binding orientation { } ikL
liklik bspro 1== . The conversion 

aims to answer two basic questions: (i) given a promoter sequence, identify whether a 

TFBS or a CRM is present on this promoter or not, and (ii) given a gene with Ki 

alternative promoters, determine if a TFBS or a CRM is present on any promoter 

sequence of this gene. From a computational standpoint each promoter profile is loaded 

into a hash table whose field ‘key’ includes the TFBS name plus the binding orientation 

(e.g. +ETSF, –PAX6, ‘+’ as forward and ‘–’ as backward binding orientation) and field 
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‘value’ is the position list of the corresponding TFBS with the same binding orientation. 

For example, if the key is ‘+ETSF’ and the corresponding value is ‘373__386’, we know 

that transcription factor ETSF is forward binding to the promoter at the local position -

373 or -386 upstream. As a result, to decide the existence of a TFBS including the 

binding orientation on a promoter the process only makes a quick search in the hash keys. 

In a similar way, to determine the present of a CRM on a promoter the process will take 

into account the binding orientation from the keys and the positions from the values of 

corresponding keys to evaluate the structural constraints. 

4.6.3. Common cis-regulatory modules 

Computationally, a cis-regulatory module crmj is a list of Mj non-overlapping TFBSs 

ordered by their positions on the promoter sequence and characterized with their 

corresponding binding strand orientation. For example, CRM ‘+NFKB__–CREB__–

SP1F’ consists of three successive TFBSs of transcription factors NFKB, CREB, SP1F 

with the binding strand orientation forward, backward, and backward respectively. 

Besides the binding orientation and the position order of TFBSs, CRMs are also 

characterized by their length. If CRM A appears to be common in a gene battery of N 

genes, the average length of all instances of A on N genes is considered to be the length 

of this CRM. In the case that A presents more than one time on promoters of gene i, the 

length of instance A for this gene will be the minimum one. Subsequently, to estimate the 

common level of this CRM we only take into account those instances with the length 

approximate to the average one (e.g. from the half to the double). If the number of such 

instances over N is higher than a frequency threshold (δ = 70% in this study), CRM A is 

considered as a common CRM of the gene battery. 
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However, a gene can have multiple alternative promoters and virtually in all cases, it is 

not known which promoter of the gene is activated. To identify activation of putative 

promoters, one solution would be to search for all possible combinations of promoters in 

the gene set. Yet given a set of N genes, each gene with K alternative promoters in 

average, the total combinatorial number of promoter sets is KN which is computationally 

intense and sometimes impossible to search for all promoter combinations. Consequently, 

we propose a novel heuristic where if a TFBS or a CRM is present on any promoter 

sequence of a gene, it is considered as present on the control regions of that gene. The 

heuristic results in one-time searching instead of KN but still produces the same results as 

the brute-force search in all combinations of promoters (see Appendix S1 and Algorithms 

S1, procedure ‘IsPresent’). Using this heuristic, the main algorithm to search for common 

CRMs in a gene battery, similar to FrameWorker [320], can be simply described with two 

primary steps as follows: (1) identify all potential TFBSs that are common in a gene 

battery and (2) employ the breadth first search technique to search for all possible 

combination of all commonly found TFBSs in step 1, each of which is a potentially 

common CRM yet to be determined quickly by the heuristic above. 

4.6.4. Statistical significance of CRMs 

Within a gene battery, CRMs that are present on the control regions of corresponding 

genes above a frequency threshold (e.g. δ = 70% of the number of genes) are considered 

as common CRMs. However, such CRMs can also be overrepresented in random gene 

sets. Therefore, in order to restrict the false positive matches and increase the statistical 

power of our method, we estimate the hyper-geometric p-values of common CRMs vs. a 

background set and only select those CRMs whose p-values exceed a pre-defined 
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statistically significance threshold (e.g. 10-4). However, this threshold is very sensitive to 

the size of the gene battery and thus a uniform significance threshold cannot be applied 

for all gene batteries. As a result, we developed a heuristic procedure for estimating the 

significance threshold of common CRMs with respect to the size of gene batteries. The 

procedure is repeated 100 times for each N-size gene-set (N = 4, 5..., 20). At each 

iteration, the algorithm randomly selects N genes from the background set, searches for 

common CRMs that are present on the promoters of these genes (δ = 0.7), estimates the 

statistical significance (p-values) for each CRM (see materials and methods), and records 

the minimum one. In this study, we choose the approximate values of the mean of these 

minimum p-values to set the criterion for the statistical significance of CRMs in a gene 

battery with size N (Figure 4.7). Consequently, for each gene battery only those CRMs 

that are identified with p-values less than the corresponding p-value thresholds are used 

to infer relevant transcription factors. 

The hyper-geometric p-value defined as follows: 
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where B and b is the number of genes and the number of hits respectively in the 

background set which is made up of 5,000 randomly selected genes in genome of 

corresponding species; N and n is the number of genes and hits in the gene battery, 

respectively. 

 



109 

 

 

Figure 4.7: Statistical significance thresholds of CRMs. The procedure randomly picks a 

gene-set with N genes from the background and search for common CRMs (δ = 0.7) in 

that gene-set. The statistical significant p-value for each CRM is estimated and the 

minimum one is reported. Each point in the blue curve is a transformed value of the mean 

of minimum p-values of CRMs in 100 times repeat the procedure. Approximately, the red 

curve shows which thresholds should be used for the non-random cases. After N = 14 

genes, only one threshold is used to ensure the significance (p-value = 0.01).  

4.6.5. Other relevant issues 

The most critical issue is that a large proportion of mammalian genes possess multiple 

transcription start sites (TSSs) and therefore multiple alternative promoters regulate gene 

expression in a context-specific manner [250-252]. For instance, in a recent study Singer 

et al. [223] developed and employed a custom microarray platform to show that there are 

nearly 35,000 alternative putative promoters present on around 7,000 human genes. As a 

result, the computational identification of CRMs becomes a combinatorial problem and 

oftentimes a daunting task due to the large number of alternative promoters of genes in 

the gene battery. For example, 7 genes that belong to Apoptosis pathway and late-up 
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expression pattern can produce totally 5,600 combinatorial promoter sets; or 10 genes 

that are in Cytokine-cytokine pathway and late-up expression pattern can create 13,440 

combinatorial promoter sets; while complexity further increases in the oxidative 

phosphorylation group (down expression pattern) characterized by 40 genes and 

1,274,019,840 combinatorial promoter sets. Consequently, searching for common CRMs 

in all promoter combinations is computationally intense. Yet, our novelty heuristic can 

reduce these complexities into only one running time but still preserve the same result 

(see appendix, lemma 1). In a similar manner, the strategy of converting promoter 

sequences into promoter profiles also makes the estimation of the significance of 

common CRMs vs. a large background set more computationally tractable [321]. 

Additionally, since it is not clear how long the promoter length should be, our 

computational analysis extracts highly qualitatively defined promoters from Genomatix 

databases [111] including those with either an experimentally defined length or a default 

if there is no associated prior length information. This default length (500bp upstream 

plus 100bp downstream the TSSs) is also supported from a recent experiment known as 

genome-wide open chromatin map [241]. Additionally, we also examined how the 

promoter length affects the in silico inference of CRMs. Specifically, we count the 

number of relevant TFs that can be considered as transcriptional regulators for the group 

of 8 genes that belong to the middle-up expression pattern and the apoptosis pathway. For 

each specific length of extracted promoters (27 promoters that are relevant transcripts; 

100*x upstream and 20*x downstream bases, x from 4 to 10), we applied the same 

procedure to search for statistically significant CRMs and then infer the list of relevant 

TFs. The results show that the number of relevant TFs increases linearly with respect to 
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increasing promoter lengths (see Data S1, sheet ‘Promoter length’). Thus, including prior 

information of the promoter lengths is very important to provide reliable computational 

predictions.  

Another important challenge in computationally identifying TFs is associated with the 

fact that transcription factors can bind to regions far from the TSSs. For example, the P53 

factor is a well established regulator for the programmed cell death (apoptosis) [322, 

323]; however such regulator is not identified as putative TF in the gene batteries relevant 

to apoptosis pathway. However, if we increase the promoter length up to approximately 

1,000bp P53 is identified within the statistically significant CRMs. This leads to the 

hypothesis that P53 might work in a cooperative manner with other TFs that bind to the 

distant promoter regions. Alternatively, it has been recognized that P53 can affect 

apoptosis via novel transcription-independent pathways although its role as a mediator of 

transcription is well established [324-326]. For instance, apoptosis can still occur when 

P53 mutants incapable of acting as transcription regulator are introduced [327, 328]. This 

indicates the possibility that P53 might not directly regulate the apoptotic gene batteries 

as identified from our analysis. Thus, computational missing P53 as a relevant TF may be 

a reasonable result rather than a limitation from our computational analysis; yet, it is still 

a question to us in this study. However, since our analysis only searches for CRMs on the 

proximal promoters of genes, it should be acknowledged that we may miss some relevant 

transcription factors that bind to the regions far from the TSSs as well as enhancers that 

regulate the transcriptional process. 

 

 



112 

 

4.7. Putative transcriptional regulatory program  

4.7.1. Results from corticosteroids pharmacogenomics model 

It has been widely accepted that after corticosteroids bind to cytosolic glucocorticoid 

receptors (GR), the activated steroid-receptor complex is rapidly translocated into the 

nucleus where it can alter the expression of target genes. However, the drug seems to be 

cleared within about 6h following a bolus injection, suggesting that the mRNA levels of 

CS-target genes will return to the base line after that [11]. In the contrast, the drug will 

reach and remain to a stable steady state after 6h in the chronic administration. Yet, the 

GR is greatly diminished in response to corticosteroids [14, 15, 19, 20], suggesting that 

the mRNA levels of CS-target genes in the chronic regimen should also return to the base 

line. This mechanism is corresponding to the first-phase regulation of target genes. 

However, almost all chronic patterns involve two phases of regulation and some (module 

3 & 5) are only half-phase patterns i.e. persistent up or down without returning to the 

baseline. These complexities in expression patterns of CS-target genes can be explained 

by a number of possibilities previous studies have shown [11, 12], including multiple GR 

isoforms, multiple GREs with different affinities to the drug receptor complex, or some 

other receptors that can mediate the effect of corticosteroids and thus affected genes in 

this case can reach a new steady state in the presence of the drug.  

However, another possibility is a mechanism that results in the regulation of secondary 

biosignals which transcription factors are the most potential factors. After affected by 

corticosteroids, they in turn further modulate the expression of glucocorticoid-regulated 

genes as a continuing cascade of events that were initiated by the drug. As a result, this 

possibility suggests a possible interpretation of the complexities in expression changes of 
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multiple CS-target genes with the second phase of regulation (e.g. module 1, 2, 4, and 6). 

In order to reveal some underlying regulatory mechanism of these selected transcriptional 

modules, we start analyzing the promoter regions of genes to search for significant 

putative transcriptional regulators as well as possible relationships of regulation. The 

hypothesis we explore here is that if two or more genes have similar temporal profiles in 

response to multiple dosing regimens, they are more likely to share some common 

regulatory mechanisms. 

For the 315 genes in six transcriptional modules, we extract 817 Rattus norvegicus’s 

promoter sequences, of which we only keep 194 genes with 502 promoters that include 

sufficient information of orthologous promoters for further analysis. Figure 7 shows the 

identified putative regulation between TF families and transcriptional modules. This 

finding highlights the possibility that secondary biosignals are involved in the regulatory 

complexities of expression changes for CS-affected genes. Almost all suggested TF 

families do consist of transcription factor members that are recognized as differentially 

expressed genes in one or both dosing regimens (see supplementary files – 

‘functional_characterization.xls’). Since transcription factors are characterized by 

pleiotropic effects, it is reasonable to observe a significant overlap across various 

transcriptional modules [329]. While comparing these regulatory combinations, we 

observe that some TF families seem to be common regulators for all modules (on the top 

of the figure) whereas some are very specific to particular modules (in the bottom of the 

figure). This could possibly explain the difference among the expression patterns of these 

modules. It is likely that the more similar the expression pattern of clusters the more 

likely they share a larger fraction of common regulators, e.g. TF families in this case. For 
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example, there are a large number of transcriptional regulators that are common between 

modules 2, 4 and 6 but it seems little overlap exists between the transcriptional regulators 

of modules 1 and 4, 1 and 6, 2 and 3, except common regulators on the top of the figure. 

 

Figure 4.8: Putative regulation of CS transcriptional modules by enriched TFBSs. Those 

TF families with ‘blue’ border lines consist of transcription factors that are affected 

under corticosteroid administration in this study. The results show a putatively dynamic 

perspective of regulation between transcriptional regulators and involved sets of genes. 

It has been also noticed that genes affected by CS include both immunosuppressive genes 

and metabolic genes. Upon the identification of putative transcriptional regulators, their 

relevance to immune response is demonstrated based on current literature evidence. 

Specifically, nine among the 29 recognized ETS transcription factors are known to 

regulate genes involved in immunity [330]; forkhead transcription factors (FKHD) play a 

major role in the control of apoptosis [331]; and especially CREB has been showed as an 

essential factor for interactions of glucocorticoid receptors to mediate gene expression 

[332, 333]. A number of others are overlapped with  earlier in silico studies e.g. E2FF, 
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EGRF, HOXF, NKXH, SP1F [334]. However, given that the experiment of corticosteroid 

administration has been studied on normal rats, the relevance to adverse effects may be 

more important than the relevance to immune response. In fact, almost all enriched 

functions (gene ontologies, pathways) in these transcriptional modules are relevant to 

metabolic side-effects (see discussion below). Also, due to this reason NFkB and Ap-1 

families widely considered as factors involved in inflammation are not present as direct 

transcriptional regulators for these sets of genes. Furthermore, we identify a number of 

transcriptional regulators known to be critical factors in metabolic syndrome including 

obesity, dyslipidemia, hypertension, insulin resistance, etc. e.g. RXRF [335], FKHD 

[336], SP1F [337]. For instance, the deletion of RXR in mouse liver results in 

abnormalities of all metabolic pathways regulated by retinoid X receptors heterodimers 

[338]; FoxOs, members of FKHD family, are able to increase hepatic glucose production, 

decrease insulin secretion, and affect glucose or lipid metabolism [336]. 

4.7.2. Results from human endotoxemia model 

Identification of sets of ‘hypothetically’ co-regulated genes 

Upon identification of four significant patterns of gene expression, a number of 

inflammation-specific pathways are selected by evaluating the enrichment of 

corresponding subsets in inflammation-specific pathways, including Toll-like receptor 

signaling, Cytokine-Cytokine receptor interaction, Apoptosis and JAK-STAT signaling 

cascade, etc. (Table 4.2). It is now well established that Toll like receptor signaling 

pathway is the first arm of the host defence system that is activated when endotoxin is 

recognized by pathogen recognition receptors [339]. During the recognition process, LPS 

binds and interacts with its signaling receptor (TLR4) which triggers a signal transduction 
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cascade essential for the up-regulation of several pro-inflammatory mediators [340]. Such 

mediators including cytokines and chemokines interact with their appropriate receptors, 

giving rise to the Cytokine-Cytokine receptor signaling pathway that amplifies and 

propagates the inflammatory reaction throughout the cell until the system restores 

homeostasis [341]. Therefore, both Toll like receptor signaling and Cytokine-Cytokine 

receptor interaction pathways play a pivotal role in the pro-inflammatory response. 

Complementary to this, considerable attention has been given to the role of an excessive 

death of immune effector cells (apoptotic cells) during the progression of an aberrant 

inflammatory response [209]. The nature of apoptosis as a rectifying process has led 

researchers to the realization that identifying mediators that are critical in regulating the 

apoptotic-inflammatory imbalance might prove beneficial in treating human sepsis [342]. 

It is therefore reasonable to assume that apoptosis also plays a critical role in the 

endotoxin-induced inflammatory process. Along similar lines, JAK-STAT cascade is 

another highly enriched inflammation-specific pathway that exerts anti-inflammatory 

properties. Accordingly, recent data provide evidence that a STAT pathway from a 

receptor signaling system is a major determinant of key regulatory systems including 

feedback loops such as SOCS induction which subsequently suppresses the early induced 

Toll like receptor and cytokine signaling [210, 343]. Endotoxin–induced inflammation 

also causes a widespread suppression at the transcriptional response level of genes 

involved in mitochondrial energy production (Oxidative phosphorylation) and protein 

synthesis machinery (Ribosome). Such dysregulation in leukocyte bioenergetics together 

with persistent decrease in mitochondrial activity can lead to reduced cellular metabolism 
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[344], resulting in the participation of a number of critical metabolic pathways, e.g. 

Citrate cycle, Pyrimidine and Pyruvate metabolism. 

 

Table 4.2: Data information and inflammation-relevant significant functions 

Expression data (3,269 
probesets+) 

Relevant significant functions 
(p-value<0.05) 

Pattern
s 

# of 
probesets 

(Total: 1703) 

# of genes* 
(Total: 
1213) 

Pathways (KEGG) Corresponding selected genes 

Early-
up 182 141 

Apoptosis1 il1a, il1b, nfkbia, tnf 

Cytokine-cytokine receptor 
interaction1 

ccl20,ccl4, cxcl1, cxcl2, il1a, il1b, il8, 
inhbb, tnf 

Toll-like receptor signaling 
pathway1 ccl4, il1b,il8, map2k6, nfkbia, tnf 

Middle-
up 119 88 

Apoptosis1 casp10, cflar, fas, irak3, myd88, nfkb1, 
nfkb2, rela 

Toll-like receptor signaling 
pathway1 myd88, nfkb1, nfkb2, rela 

Late-up 284 185 

Apoptosis1 casp8, il1r1, il1rap, irak4, pik3cg, 
tnfrsf10c, tnfsf10 

Cytokine-cytokine receptor 
interaction1 

ccr1, csf3r, il10rb, il13ra1, il1r1, il1rap, 
il8ra, il8rb, tnfrsf10c, tnfsf10 

Toll-like receptor signaling 
pathway1 casp8, irak4, pik3cg, tlr1, tlr5, tlr8 

Jak-STAT signaling pathway1 csf3r, il10rb, il13ra1, pik3cg, stat2, 
stat5b 

Down 1118 799 

Citrate cycle (TCA cycle)2 acly, idh2, idh3a, mdh1, mdh2, suclg2 

Pyrimidine metabolism2 dck, dctd, dut, entpd6, pole3, polr2b, 
polr2e, polr2k, rpa1, uckl1 

Pyruvate metabolism2 akr1b1, glo1, ldhb, mdh1, mdh2, pdhb 

Ribosome1 
fau, rpl10a, rpl12, rpl13a, rpl14, rpl18, 
rpl24, rpl27, rpl27a, rpl29, rpl3, rpl36a, 
rpl36al, rpl37a, rpl38, rpl8, rps2, rps24, 
rps7, rps9 

Oxidative phosphorylation2 

atp5a1, atp5b, atp5f1, atp5g1, atp5g2, 
atp5g3, atp5h, atp5i, atp5j2, atp5l, 
atp5o, atp61f, cox4i1, cox5a, cox6c, 
cox7c, cyc1, nduf1, ndufa13, ndufa3, 
ndufa4, ndufa5, ndufa6, ndufab1, 
ndufb2, ndufb4, ndufb5, ndufb8, 
ndufc2, ndufs4, ndufs5, ndufs6, ndufs7, 
ndufs8, ppa2, ucrc, uqcrb, uqcrc2, 
uqcrh, uqcrq 

*: 3,269 significantly differentially expressed probesets were selected by ANOVA (p-value < 10-4) from the 
total 44,924 probesets; +: the number of corresponding genes with promoter annotation in Genomatix; 
1: regulatory pathways; 2: metabolic pathways. 
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Biological characterization of identified transcription factors 

Predicated upon the hypothesis that subsets of co-expressed genes involved in the same 

biological pathway are more likely to be co-regulated, their transcriptional regulators are 

computationally predicted (Table 4.3). There is considerable evidence indicating the 

inflammatory relevance of the aforementioned inferred transcription factors including 

MEF2 [345], GATA [346], OCT1 [347], FKHD [331], ETSF [330], IRFF [348], NFKB 

[349] and CREB [332]. Specifically, the myocyte enhancer factor 2 (MEF2) transcription 

factor plays a central role in the transmission of extracellular signals to the genome and in 

the activation of genetic programs that control cell differentiation, proliferation, survival 

and apoptosis [350]. In addition to this, MEF2 proteins serve as the endpoints for 

multiple inflammatory signaling pathways including mitogen-activated protein kinase 

signaling pathway (MAPK) and thereby confer signal-responsiveness to downstream 

target genes [351]. Furthermore, the octamer transcription factor -1 (OCT-1) has also 

been shown to function as a stress sensor modulating the activity of genes important for 

the cellular response to stress [352]. Although OCT-1 is a ubiquitous transcription factor, 

it has recently been demonstrated that it promotes cell survival signifying its involvement 

in the apoptosis signaling [353]. Additional studies [354] document the involvement of 

octamer binding transcription factors (OCT-1) in regulating the expression of TLR4 in 

humans; thus making it a critical regulator of Toll like receptor signaling. Furthermore, 

Forkhead Transcription Factors (FKHD) also play a major role in the control of apoptosis 

perhaps by affecting the transcription of the gene encoding FASL [355]. Since these 

regulators can be the substrate of the protein kinase B (Akt) preventing their nuclear 

translocation, it is expected that FKHD regulators promote cellular survival and thereby 
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control the apoptotic machinery [356]. Moreover, IFN regulatory factors (IRFF) are a 

family of transcription factors that regulate expression of various pro-inflammatory and 

anti-inflammatory genes. Research findings reveal a critical role for these interferon 

regulatory proteins in the control of apoptosis [357, 358] while it has become evident 

[359, 360] that such regulators are also essential for TLR gene expression including the 

trans-acting factors, IRF-1 and IRF-2. This implies that in addition to up-regulation of 

pro-inflammatory gene expression, TLR stimulation also results in modulation of TLR 

gene expression itself via interferon transcription factors. 

One of the most important cellular factors involved in the regulation of the host innate 

immune response is the nuclear factor (NF)-kB which can be activated by a variety of 

stimuli including bacterial products, inflammatory cytokines and growth factors [349, 

361]. NF-kB is a pleiotropic transcription factor involved in the inducible expression of a 

diverse array of genes. As such, activation of the NF-kB signalling module involves not 

only the early up-regulation of pro-inflammatory cytokines but also the transcriptional 

control of apoptosis [362]. Oftentimes, transcriptional regulation requires the 

participation of several transcriptional factors through protein-protein interactions, known 

as transcriptional co-activators or co-repressors. For example, NF-kB encompasses an 

important family of inducible transcriptional activators critical in the regulation of the 

gene expression in response to injury and inflammatory stimuli. As such, the CREB-

binding protein has been identified as co-activator of the NF-kB component p65 and 

might play an important role in the cytokine-induced expression of various immune and 

inflammatory genes [363]. Such observations emphasize the role of the CREB regulator 

in pro-inflammatory signaling pathways including TLR signaling pathway. Further 
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evidence [364] confers the involvement of over-expressed CREB in inducing apoptosis 

while the control of FASL induction which mediates programmed cell death in human T 

lymphocytes [365] appears to be accomplished through a series of regulatory interactions 

that implicate the role of NF-kB&CREB/ATF pathways [366]. 

Table 4.3: Critical transcription factors in human endotoxemia model 

No. Patterns Functions Transcription factors 

1 Early-up Apoptosis BRNF, CLOX, E2FF, EKLF, ETSF, HEAT, HOXF, IRFF, 
MAZF, MYT1, NFKB, RXRF, SORY, SP1F 

2 Middle-up Apoptosis AP4R, CREB, E2FF, ETSF, GATA, HEAT, MAZF, MZF1, 
NFKB, NKXH, PAX6, SP1F, ZBPF 

3 Late-up Apoptosis 
ATBF, BRNF, CLOX, EBOX, ETSF, FKHD, GATA, 
HOMF, HOXF, IRFF, NKXH, OCT1, PARF, SORY, STAT, 
TBPF 

4 Early-up Toll-like receptor signaling 
pathway EKLF, HEAT, MAZF, MYT1, SP1F 

5 Middle-up Toll-like receptor signaling 
pathway 

CREB, E2FF, EGRF, EKLF, ETSF, EVI1, HEAT, MAZF, 
MYBL, MZF1, NFKB, NR2F, PAX6, SORY, SP1F, STAT, 
ZBPF 

6 Late-up Toll-like receptor signaling 
pathway 

AP4R, ATBF, BRNF, CLOX, ETSF, EVI1, FKHD, GATA, 
HOMF, HOXF, IRFF, MEF2, NKXH, OCT1, PARF, 
SORY, STAT, TBPF 

7 Early-up Cytokine-cytokine receptor 
interaction SORY, TBPF 

8 Late-up Cytokine-cytokine receptor 
interaction 

AP4R, CLOX, EBOX, ETSF, EVI1, FKHD, GATA, HEAT, 
HOMF, HOXF, IRFF, MAZF, MEF2, NFKB, NR2F, OCT1, 
PARF, PAX6, RXRF, SORY, SP1F, TBPF 

9 Late-up Jak-STAT signaling pathway AP4R, BRNF, CLOX, E2FF, EGRF, ETSF, HEAT, HOMF, 
HOXF, MAZF, MZF1, RXRF, SP1F, ZBPF 

10 Down Citrate cycle (TCA cycle) 
ATBF, BRNF, EGRF, ETSF, FKHD, HEAT, HOMF, 
HOXF, MAZF, MEF2, MYBL, MYT1, MZF1, NR2F, 
RXRF, SP1F, STAT, TBPF, ZBPF 

11 Down Pyrimidine metabolism CREB, E2FF, EBOX, ETSF, IRFF, MYBL, SP1F, ZBPF 

12 Down Pyruvate metabolism HEAT* 

13 Down Ribosome E2FF, ETSF, RXRF 

14 Down Oxidative phosphorylation None 
*: present in TF-module ‘+HEAT__+NRF1__+NRSF’ 
 
Additionally, there is considerable evidence indicating the role of the early growth 

response-1 (member of EGR family) in regulating endotoxin induced SOCS-1 

transcription [367]. SOCS-1 has been identified as a critical regulator of both adaptive 

cytokine signaling and innate immune responses and therefore understanding its 

transcriptional regulation under inflammatory conditions will no doubt be critical in 



121 

 

understanding its role in limiting inflammatory responses [368]. Interestingly, these 

results demonstrate an important role of regulatory members of EGR family in regulating 

the endotoxin induced activity of the SOCS-1 promoter; thereby validating its presence in 

our computational predictions. On the other hand, we also observe a significant overlap 

across various biological processes while comparing these sets of TFs but it is reasonable 

since transcription factors are characterized by pleiotropic effects [329]. TLR signaling 

appears to be the principal pathway that initiates the host response to endotoxin and via 

the cross-talk among other pathways (e.g. Apoptosis, JAK-STAT) amplifies and 

propagates the inflammatory reaction providing for complex non-linear responses [369]. 

Here, we also analyzed the reasons why no statistically significant CRM is found in the 

down-regulated gene batteries of the oxidative phosphorylation pathway (so-called 

OXPHOS group). OXPHOS itself is composed of genes that are coexpressed across 

numerous datasets under different conditions [370, 371] and it was proposed as a group 

of genes that might share a common regulatory mechanism [372]. However, we did not 

detect any complex-specific arrangement of TFBSs although it is highly enriched by a 

number of common TFBSs even when the promoter lengths are increased up to 1,000bp 

upstream. Although this conclusion is similar to the result of a previous study [372], we 

notice that subunits of each complex in OXPHOS group tend to have tighter coexpression 

with subunits of the same complex than subunits of other complex which is also proposed 

and discussed extensively in [372]. Based on the assumption that genes characterized by 

tightly coordinated expression levels are more likely to share common regulatory 

elements (proposed and demonstrated in [304]), we assume that genes belonging to the 

same complex might share some common set of regulatory signals. Therefore, we applied 
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the same procedure of finding statistically significant CRMs on the control regions of 

those subgroups of genes including complex I – 17 genes, complex III – 6 genes, 

complex IV – 4 genes, and complex V – 13 genes. Eventually, we identified statistically 

significant CRMs for each complex from which relevant transcriptional regulators can be 

inferred. As a result, from a promoter analysis standpoint we are highly confident that 

subunits of each complex in OXPHOS group are more likely to be under a common 

regulatory mechanism rather than all the genes in the entire group. However, from a 

computational standpoint this result raised another possibility related to whether a subset 

of genes within a gene battery can provide more statistically significant CRMs than the 

entire gene battery. Assuming that the possibility is correct, this raises two questions 

including: (i) what is an appropriate size of the subset as well as (ii) how genes in the 

subset are selected. In order to address this issue, we make a case-study by randomly 

selecting a subset of N genes within the OXPHOS group (N=17, 6, 4, and 13 

respectively) and search for significant CRMs. The process is repeated 100 times and the 

average of minimum significance p-values is calculated. Results show that for N=4, the 

average of minimum p-values is comparable to the one with N genes randomly selected 

from the background set (Figure 4.7). Yet, for the other cases the average of minimum p-

values is less significant than the ones from the background set, suggesting that random 

subsets of genes within a gene battery behave more or less similarly to the case from the 

background set. Certainly, some subsets can provide more significant CRMs than the 

entire gene battery but how to interpret those selected subsets and the corresponding 

results remains a challenge. Therefore, it should be emphasized that using prior biological 

knowledge might overcome some of these limitations. 
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Putative temporal program of transcriptional regulation 

The administration of a low dose of endotoxin to human subjects elicits dynamic and 

reproducible changes in the circulating leukocyte population by altering the expression 

level of numerous genes. Since the host response to endotoxin evolves dynamically, it is 

possible to observe a dynamic representation in the transcriptional regulatory program 

(Figure 4.9).  

 

Figure 4.9: Putative temporal regulatory program in human endotoxemia plus schematic 

illustration of the integrated computational framework. The clustering and selection step 

extracts a ‘clusterable’ subset of differentially expressed probesets and cluster it into a 

number of expression patterns. Subsequently, pathway enrichment is performed in each 
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pattern and relevant significant pathways are selected based on literature information. 

The process of CRM searching is then applied to each gene battery which is a group of 

genes that belong to an expression pattern and a particular pathway. Eventually, 34 TFs 

are identified as human inflammation-relevant transcriptional regulators. The results 

show a highly dynamic perspective of regulation and interactions between genes, 

functions, and TF across the time. 

Due to the fact that transcription factors are characterized by pleiotropic effects [329], it 

is also reasonable to anticipate a significant overlap among sets of transcriptional 

regulators across various biological processes. On the other hand, our results also 

illustrate the phenomenon in which genes involved in the same function (pathway) may 

exhibit different expression patterns and genes within an expression pattern can 

participate in different functions, implying that there are different regulatory mechanisms 

regulating genes in the same function or in the same expression pattern. Along with this 

dynamic response, the regulatory mechanisms can also be dynamic over the time, leading 

to the flexibility of the transcriptional network topology. Additionally, the results also 

reflect the phenomenon that a gene can participate in various functions and thus be 

regulated by different sets of transcriptional regulators based on the context (e.g. TNF, 

MYD88). 

In order to assess whether coexpressed genes are more likely to be coregulated, we 

estimate p-values of CRMs in individual gene batteries vs. the corresponding entire 

pattern of expression (Table 4.4). The results show that the estimated p-values values are 

similar to those calculated for the background set, implying that the entire pattern of 

coexpressed genes behaves more likely the same as a random background rather than as a 



125 

 

set of genes that share a common regulatory mechanism (see Data S1, sheet ‘CRMs’ and 

‘Middle-up TLR’). This supports our assumption related to the definition of a gene 

battery. Such preliminary results indicate that genes that are both coexpressed and 

functionally relevant are very likely to be governed by an underlying transcriptional 

regulatory program. 

Table 4.4: Statistical significance of selected cis-regulatory modules* 

No. TF-modules avglen-minlen-
maxlen Common levels

vs. the 
background1 

(p-value2) 

vs. the entire 
pattern2 

(p-value) 
1 +AP4R__-GATA__-HEAT 288__169__485 0.75 1.88E-06 1.78E-05 

2 +E2FF__+MOKF__-E2FF 333.8__170__514 0.75 1.06E-05 9.32E-08 

3 +MOKF__-MZF1 168.7__95__236 0.75 3.36E-05 6.37E-07 

4 +SP1F__-ETSF__-NFKB 189__110__268 0.75 3.58E-05 1.78E-05 

5 +PAX6__+SNAP 154.2__66__260 0.75 4.29E-05 3.82E-05 

6 +MOKF__-NKXH 101.3__37__194 0.875 4.51E-05 2.57E-05 

7 +PAX6__-ETSF__-ZBPF 271.7__191__326 0.75 4.52E-05 3.82E-05 

8 +NKXH__-CREB__-E2FF 518.3__403__788 0.75 6.85E-05 1.35E-04 

9 +MAZF__-E2FF 72.1__32__98 0.875 9.82E-05 6.96E-05 

10 +NFKB__-CREB__-SP1F 246.2__117__529 0.75 9.91E-05 1.35E-04 
*: common significant cis-regulatory modules that are considered as transcriptional regulators for 8 genes in 
the middle-up expression pattern that belong to the apoptosis pathway; ‘+’ | ‘–’ TFBSs present on the 
forward | backward strand orientation; $: this CRM contains 3 TFBSs, binding sites of AP4R on the forward 
and of GATA, HEAT on the backward strand. Its average length is 288 bases while the minimum one has 
169 bases and the maximum one has 485 bases. There are 8*0.75 = 6 instances of this CRM over 8 control 
regions of 8 genes; 1: the background consists of 5,000 randomly selected genes; 2: the entire corresponding 
pattern of gene expression (88 genes in this case); 3: hyper-geometric p-value of this group vs. the 
background set or vs. the entire pattern. 
 

Comparison with in vitro human endotoxemia model 

In order to assess the stability of our prediction, we applied the analysis to an in vitro 

human endotoxin model. Data are extracted from a culture of peripheral-blood-derived 

mononuclear cells stimulated by a high dose of LPS (100ng/ml) [106]. Clustering 

approach reveals that there exist five critical transcriptional responses. Three of them 

characterize inflammatory phases similar to those identified in the analysis of in vivo data 
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including an early-up response (284 probesets), a late-up response (700 probesets), and a 

down regulation (226 probesets). Due to a high dose of LPS administration, it would have 

expected an up- (367 probesets) and a down-regulation (319 probesets) without returning 

to the base line after 24hr of LPS administration. Subsequently, a similar analysis of 

pathway enrichment (using KEGG database) was applied for each set of genes 

characterizing a transcriptional response. In an overlap with the analysis of in vivo data, 

we select statistically inflammatory relevant significant pathways (p-value < 0.05) that 

were selected from the analysis on the in vivo human endotoxemia model. Accordingly, 

nine sets of genes that belong to a specific pathway and a pattern of gene expression were 

extracted, corresponding to nine genes batteries used to determine critical transcriptional 

regulators relevant to the inflammatory response in this study (Table 4.5). 

Table 4.5: Critical transcription factors identified from the in vitro endotoxin study 

No. Patterns Functions Transcription factors 

1 Early-up Apoptosis 
CLOX, E2FF, EGRF, EKLF, ETSF, FKHD, HOXC, HOXF, 
IRFF, MAZF, NKXH, NOLF, OCT1, RXRF, SORY, SP1F, 
STAT, XBBF 

2 Late-up Apoptosis CREB, EKLF, MAZF, NFKB, SORY, ZBPF 

3 Early-up Toll-like receptor signaling 
pathway 

AP1R, CLOX, E2FF, EGRF, EKLF, ETSF, HOXC, IRFF, NFKB, 
NOLF, NR2F, OCT1, RXRF, SORY, SP1F, STAT, XBBF, ZBPF 

4 Late-up Toll-like receptor signaling 
pathway 

ABDB, CLOX, ETSF, HOMF, HOXF, IRFF, NFKB, NKXH, 
RXRF, SORY, STAT, TBPF 

5 Early-up Cytokine-cytokine receptor 
interaction CREB, ETSF, FKHD, HOXF, RXRF, STAT, TBPF 

6 Late-up Cytokine-cytokine receptor 
interaction ABDB, HOXF, NR2F, OCT1, RXRF, SORY, STAT 

7 Early-up Jak-STAT signaling pathway 
ABDB, AP1R, AP4R, E2FF, EGRF, EKLF, ETSF, FKHD, 
HOMF, HOXF, IRFF, MAZF, NKXH, RXRF, SORY, SP1F, 
STAT, TBPF, XBBF, ZBPF 

8 Late-up Jak-STAT signaling pathway 
ABDB, AP1R, AP4R, CLOX, CREB, E2FF, ETSF, FKHD, 
HOMF, HOXC, HOXF, NKXH, NR2F, OCT1, RXRF, SORY, 
TBPF 

9 Up-remained Pyrimidine metabolism AP4R, E2FF, EGRF, EKLF, ETSF, FKHD, HOXF, MAZF, 
NFKB, NKXH, NOLF, NR2F, RXRF, SP1F, XBBF, ZBPF 

 

Subsequently, the proposed method has been applied to search for statistical significant 

CRMs which are decomposed into a list of TFBSs to infer associated TFs that may be 
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functional transcription factors in the regulation of inflammatory transcriptional 

responses. In a similar manner with the in vivo analysis, TFs that are present with the 

high frequency among gene batteries (at least three times) are reported (Table 4.5). We 

identify 27 critical TFs of which more than 80% are present in the list of relevant 

transcriptional regulators found in the analysis of the in vivo data including AP4R, 

CLOX, CREB, E2FF, EGRF, EKLF, ETSF, FKHD, HOMF, HOXF, IRFF, MAZF, 

NFKB, NKXH, NR2F, OCT1, RXRF, SORY, SP1F, STAT, TBPF, ZBPF. Given that 

different dosing amounts of LPS have been applied in two experiments, there may be 

different genes involved in the response of the same function between the in vivo- and in 

vitro- model, resulting in different TFs involved in the transcriptional regulation of the 

same gene battery between two cases. However, the significant overlap between two final 

lists of predicted TFs relevant to inflammatory transcriptional responses provides 

promising implications of the predictive performance of the method. Therefore, the 

proposed framework appears to be a robust and valuable methodology to identify critical 

transcriptional regulators relevant to biological responses under external stimuli. 

4.8. Limitations and advantages 

One of the key features in our analysis is the identification of significantly 

overrepresented CRMs in each gene battery. Based on the size of a gene battery, a 

corresponding significance threshold is applied to select statistically significant CRMs. 

Since these recognized CRMs are located on the control regions of many ‘hypothetically’ 

co-regulated genes, they are likely to be composed of functional binding sites that are 

activated upon the initiation of the transcriptional machinery. We therefore decompose 

these CRMs into a list of TFBSs to infer associated TFs which can be considered as 
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relevant transcriptional regulators of the corresponding gene battery. In particular, TFs 

that are present with the high frequency among gene batteries (at least three times across 

fourteen gene batteries) are assumed to play a key role in the biological process. We 

identify 34 TFs relevant to the human inflammatory responses, of which around 25% has 

been experimentally shown to be involved in the inflammatory and/or immune response 

based on literature evidence and more than half of the remaining have been 

computationally shown to play a critical role in the regulation of immune system [334]. 

Our analysis has attempted to reverse engineer the underlying regulatory network of the 

human blood leukocyte response to a prototypical inflammatory stimulus (LPS). Given 

the transcriptional profiling data of human blood leukocytes, an elementary set of 

temporal responses with putative transcriptional regulators have been identified. A key 

feature of the analysis is the exploration of the concept ‘gene battery’ which represents 

for a group of genes that are both co-expressed and functional relevant to identify 

inflammatory transcriptional regulators using a context-specific searching approach 

[373]. Novel heuristics regarding to computational issues e.g. eukaryotic genes consist of 

multiple alternative promoters leading to a huge complexity are also proposed. In order to 

provide a systematically unbiased in silico approach, CRM structural constraints are also 

adjusted so that no parameter is required except for the statistical significance thresholds. 

Furthermore, our analysis also allows for the reconstruction of a dynamic temporal 

regulatory network, making it a critical enabler for improving our understanding of how 

the transcriptional machinery ‘program’ effectively regulates key cellular processes.  

Although no single analysis can identify all transcriptional regulators involved in a 

response, it has been demonstrated that the proposed framework can identify critical TFs 
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that are relevant to acute inflammatory responses. Despite the fact that many methods 

have been proposed in the literature to search for relevant transcriptional regulators, 

different approaches explore different biological assumptions resulting to different sets of 

putative TFs which may or may not significantly overlap each other. Since the true extent 

of all TFs involved in the regulation of a complex response under some external stimuli is 

unknown, these differences could not be interpreted as the high- or low- accuracy of the 

methods. Instead, all of found TFs may be involved in different processes of the response 

but because of the limitation of hypotheses used by the methods, they may not be 

recognized by a certain approach.  

Novel methods are still proposed using different analytical approaches but generally they 

can be categorized into two main directions including mRNA expression-based [374-376] 

and TF binding pattern-based methods [320, 377-380]. The first direction somehow 

utilizes the fundamental hypothesis that the mRNA expression level of TFs is 

proportional to their protein concentration but this may not be appropriate especially in 

higher eukaryotes since TF activation is often regulated post-translationally and acts 

somewhat in an independent manner of expression level. Some methods also require 

multiple-condition data as the input which may not be applicable when practical data are 

only sampled under one condition/treatment [374-376]. In the meanwhile, a lot of 

methods following to the latter direction have been developed e.g. FrameWorker [320], 

CMA [379], CRÈME [377], ModuleMiner [378], CisModule [380], BioMoby [381] etc. 

of which ours is among them. These are not limited by the mRNA expression proportion 

hypothesis but they are limited by promoter identification, TF binding profiles, and the 

underlying assumption to select the input set of ‘co-regulated’ genes.  
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Therefore, we opt to extend an available computational tool, FrameWorker, to take into 

account the fact that genes of higher eukaryotes contain multiple alternative promoters 

exploring the rich information of the Genomatix database on promoters and TF binding 

profiles. The underlying assumption that coexpressed genes are more likely to share some 

common regulatory mechanism when they are functional-relevant has been explored to 

predict putative functional activation of TFs in a specific context. These factors make our 

method become incomparable or unnecessary to compare with available methods. 

However, given the future availability of more complete TF binding data and other 

resources, the method could be enhanced by integrating protein-protein interaction to 

refine selected CRMs or using other tools to support the selection of relevant functions 

e.g. Pathway-Express [382]. Since each single method or even each direction always 

contains its own limitations and advantages, one possibility in future improvements could 

be the development of a framework to obtain a consensus result under diverse underlying 

hypotheses from various outputs of different methods. 
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Chapter 5 – Cellular variability and circadian control in 

human endotoxemia 

 

5.1. Introduction 

Systemic inflammation is evoked by many stimuli including infection, trauma, invasive 

surgery and biological stressors in general; furthermore, it is typically observed in many 

critical illnesses [383]. While the host inflammatory response is essential to resolve the 

infection or repair the damage to restore homeostasis, it also plays a central pathogenic 

role in a wide spectrum of diseases [62]. Under normal circumstances, the inflammatory 

response is activated, initializes a repair process and then abates [23]. However when 

anti-inflammatory processes fail, an amplified pro-inflammatory signal can turn what is 

normally a beneficial reparative process into a detrimental physiological state of severe, 

uncontrolled systemic inflammation [24]. In order to gain a better understanding of the 

molecular mechanisms and physiological significance associated with inflammatory 

responses, alternative clinically relevant models have been proposed including the human 

endotoxemia model in which an intravenous administration of E.coli endotoxin 

(lipopolysaccharide – LPS) is given to healthy human subjects [67, 384]. Bacterial 

endotoxin, a component of the outer cell membrane of gram-negative bacteria, is an 

important mediator in the pathophysiology of gram-negative bacterial sepsis [385]. This 

complex macromolecule induces its injurious effects by a non-cytotoxic interaction with 

CD14-bearing inflammatory cells, such as macrophage-monocytes, circulating 

neutrophils and lung epithelial cells. These effector cells are activated through a family of 
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Toll-like receptors (TLR) and subsequently release a network of inflammatory products. 

While we do not argue that the human endotoxin challenge model precisely replicates an 

acute infectious or sepsis condition, we believe that human endotoxin challenge does 

serve as a useful model of TLR4 agonist-induced systemic inflammation while at the 

same time providing a reproducible experimental platform. 

The inflammatory response is a complex non-linear process involving a cascade of events 

mediated by a large array of immune cells and inflammatory cytokines [386]. At the 

cellular level, innate immune cells are activated leading to the production and release of 

pro-inflammatory and anti-inflammatory cytokines into the systemic circulation for 

communication between cells [61, 387]. Anti-inflammatory cytokines counteract the 

effects of pro-inflammatory cytokines and the relative concentration or balance between 

them strongly affects to the degree and extent of the response [388, 389]. At a higher 

level, the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system 

(SNS) produces stress hormones [390] whose pattern of release follow broad circadian 

rhythms which play critical roles in immune responses [391-394]. The rhythmicity is 

regulated by the 24 hour light/dark cycle exerting diurnal effects on numerous 

inflammatory cytokines [395, 396].  The complexity of the overall response has 

encouraged the development of mathematical and computational models as a means of 

exploring the connections between multiple components. 

Various modeling approaches have been proposed in the literature, but generally they can 

be classified into two main categories: equation- and agent-based modeling [73, 397, 

398], including our prior approaches using deterministic ordinary differential equations 

(ODE) for developing models of human endotoxemia [83, 84, 399]. However, 
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deterministic ODE models assume homogeneity and perfect mixing within 

compartments, while ignoring spatial effects [73]. Given that stochasticity and 

heterogeneity can have profound effects on the function of  biological systems [400-402], 

an alternative, more natural, approach – agent-based modeling (ABM) is explored. ABM 

is an object-oriented, rule-based, discrete, and stochastic modeling method [77, 403]. 

Interactions between agents (cells, molecules) in a model are nonlinear, stochastic, 

spatial, and are described by asynchronous movements through multiple compartments. 

Furthermore, every agent in the model is encapsulated with its own properties and 

behaviors making the system able to exhibit emergent behaviors arising from simple 

interactions between agents. The usefulness and applicability of ABMs vary but some 

have been applied to immunological problems and findings derived from these models 

generated a lot of insights into the interactions and dynamics at the cellular level in 

immune responses. For example, Jenkins and colleagues [404] investigated B-T cell 

interactions in the absence of directed cell chemotaxis during the first 50hr of a primary 

immune response to an antigen; Gary An and coworkers have pioneered many ABMs 

representations to evaluate the dynamics of the innate immune response and the efficacy 

of proposed interventions for SIRS/multiple organ failure (MOF)  [70, 92] or examine the 

dynamics of the TLR4 signal transduction cascade with LPS preconditioning and dose-

dependent pro-inflammatory response effects [405, 406]. They also developed a basic 

immune simulator (BIS) to qualitatively examine the interactions between innate and 

adaptive interactions of the immune responses to a viral infection [407]. Furthermore, 

there is a variety of successful agent-based simulators that have been constructed as 



134 

 

frameworks for immunology/disease understanding and exploration e.g. IMMSIM [408, 

409], SIMMUNE [410], CyCells [411]. 

In order to investigate the cellular variability through the interactions and dynamics of 

inflammatory cytokines in acute inflammatory responses following endotoxin 

administration, we first construct a homeostatic model of human endotoxemia using the 

agent-based approach which naturally incorporates key biological features (e.g. 

stochasticity, heterogeneity, and discreteness) and physicochemical properties of 

biological molecules. While in our prior work [83, 84, 399], we focused on the possibility 

of modeling the transcriptional dynamics of cellular responses, we here attempt to 

capture stochastic variation in the transcriptional process, one of the key factors leading 

to phenotypic variation besides the genetic and environmental variability [412-415]. The 

main aim of this study is establishing a multi-scale modeling framework capable of 

simulating main characteristics of critical components in human endotoxemia to examine 

(i) the balance and distribution of inflammatory cytokines in a population of 

heterogeneous leukocytes and (ii) the interplay between circadian controls and endotoxin 

treatments through a novel quantity based on the cell-to-cell variability. 

5.2. The in silico model of human endotoxemia 

5.2.1. The system dynamics model 

Based on our prior studies [83, 84, 399] high-dimensional transcriptional profiling data 

from human blood leukocytes following LPS administration are decomposed into four 

significant expression patterns, capturing the essence of three inflammatory phases 

including a pro-inflammatory response (‘early-up’ & ‘middle-up’ expression pattern, P), 

a counter-regulatory/anti-inflammatory response (‘late-up’ expression pattern, A), and a 
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dysregulation in leukocyte bioenergetics (‘down’ pattern, E) [104]. These define the basic 

elements (state variables) characterizing the leukocyte response to endotoxemia. 

A number of assumptions have been made to construct the model, namely: (1) Peripheral 

blood leukocytes can be approximated as a community of leukocytes whose main 

behavior is characterized by asynchronous and stochastic activities without an intra-

cellular spatial localization; (2) The dynamics  of the pro-inflammatory response, the 

counter-regulatory response, and the dysregulation in leukocyte bioenergetics can be 

characterized by patterns of corresponding pro-inflammatory cytokines, anti-

inflammatory cytokines, and bio-energetic proteins; (3) Different types of pro-

inflammatory cytokines, anti-inflammatory cytokines, and bio-energetic proteins can be 

approximated with corresponding average delegators as P, A, and E respectively whose 

main behavior is associated with asynchronous and stochastic activities. Lastly, it has 

been observed that after LPS challenge many pro-inflammatory cytokines exhibit similar 

dynamics as is observed in their corresponding mRNA temporal profiles e.g. TNFα, IL6, 

IL8, etc [416]. IL10 – a member of anti-inflammatory cytokines shows a slight difference 

between its mRNA and its protein temporal profile. While mRNA levels of IL10 dropped 

during the first hour and its protein levels rose very modestly, both profiles still exhibit 

up-regulation. Consequently in this context, we hypothesize that the common dynamics 

of pro- and anti-inflammatory cytokines can be characterized by their average mRNA 

expression profiles. 

Such expression dynamics of inflammatory cytokines is assumed to be mainly regulated 

by the activation of relevant transcription factors (TFs). The nuclear factor-kappa B 

(NFκB) was selected as the representative signaling controller underpinning the 
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manifestation of transcriptional responses due to its essential role in the immune system 

[417, 418] and extensive prior computational analyses [419]. Furthermore, NFκB 

activities are primarily modulated by the kinase (IKK) activity and the inhibitor IκB 

through the Toll-like receptor (TLR) signaling pathway – a pivotal pathway subjected to 

crosstalk from other signals and pathways (e.g. JAK-STAT [369, 420]) [421, 422]. Such 

regulation can be characterized by the ubiquitous paradigm of a two-feedback 

mechanism: a positive- and a negative-feedback [422-425]. Therefore, we hypothesize 

that the dynamics of inflammatory cytokines are mainly regulated by intra-cellular 

signaling cascades and transcription factors whose activities can be characterized with a 

paradigm of two-feedback regulatory mechanism.  

At the systemic level, pro-inflammatory cytokines released from the innate immune 

system induce signals activating the hypothalamic-pituitary adrenal (HPA) axis, thus 

controlling the secretion of glucocorticoids (cortisol in primates or corticosterone in 

rodents) [1, 426].  Of particular interest is the hormone melatonin given its potential role 

as a mediator in the crosstalk between the suprachiasmatic nucleus (SCN) and the 

immune system [427, 428]. The corresponding hormone levels exhibit a circadian pattern 

with strong effects on the production of inflammatory cytokines [395, 396]. While 

cortisol reaches its peak in the early morning [429], melatonin’s peak production occurs 

late at night and remains at a low level for the rest of the day [428, 430]. Therefore, in the 

model developed here cortisol (F) is set under the control of hypothalamus (HPT) while 

melatonin (M) is regulated by the SCN. The system dynamics of the proposed human 

endotoxemia model including all components and associated interactions and a snapshot 

of the model representation are succinctly presented in Figure 5.1. Simulated molecular 
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types and their corresponding characteristics are shown in Table 5.1. Details of model 

components, rules, and parameters are discussed as follows. 

 

 Figure 5.1: In silico human endotoxemia model accounting for circadian variability. (a) 

The system dynamic model. At the cellular level, molecular interactions involve the 

propagation of LPS signaling on the transcriptional response level (P, A, E) through the 
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activation of NF-kB signaling module. At the systemic level, circulating stress hormones 

are released from the neuro-endocrine system coupled with their circadian rhythms. The 

dynamics of cortisol (F) and melatonin (M) signaling from the systemic level involve 

molecular behaviors at the cellular level. The activities of each agent are characterized by 

its corresponding color. (b) A snapshot of the implemented model. Molecules are 

displayed with solid circles (P: red-; A: magenta-; F: blue-; M: cyan-; NFkB: yellow-; E: 

green-; TLR & GR: white-; IkB, IKK, NFkB.IkB: black- circles). Cells are displayed 

with solid squares where green squares represent for cells with an approximate number of 

P and A, red squares for those with the number of P greater than 1.5 fold of the number 

of A and magenta squares for those with A more than 1.5 fold of  P. 

 

Table 5.1: Model components 

No. Components Description Approximate 
half-life (hr) 

Initial 
population 

size* 

1 LPS Lipopolysaccharide (endotoxin) 1.0 n/a 
2 TLR4 Toll-like receptor 4 2.0 40 
3 LPSR LPS-TLR4 complex – active form 2.0 n/a 
4 IKK I kappa-B kinase complex – actived by LPSR 2.5 50 
5 NFκB.IκB NFκB complex – inactive form 2.5 50 
6 NFκB NFκB – active form 2.0 n/a 
7 IκB I kappa-B – NFκB inhibitors 0.5 10 

8 P Pro-inflammatory proteins – active when 
imported 1.5 30 

9 A Anti-inflammatory proteins– active when 
imported  1.5 30 

10 E Bio-energetic proteins 2.0 40 
11 F Cortisol– active when imported$  1.0 n/a 
12 GR Glucocorticoid receptors 2.0 40 
13 FR Cortisol-receptor complex – active form 2.0 n/a 
14 M Melatonin– active when imported 1.0 n/a 

*: the initial corresponding number of molecules within a cell; $: the status of P, A, F, and M change to 
active when they are imported to the cytoplasm (cells) or brain compartment 
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5.2.2. Agent rules 

Agents are simulated objects (cells, molecules) that follow specific instructions on how 

they behave and interact with other agents within or between compartments. The rule 

system is listed in Table 5.2. Briefly, when LPS is recognized by its receptors TLR-4 a 

signal transduction cascade triggers downstream intracellular signalling modules to 

ultimately activate the transcription of inflammatory genes. Such transcriptional 

processes are assumed to be mainly regulated by transcription factors for which NFκB 

serves as a proxy whose activities, including activities of IKK and IκB in the NFκB-

signaling module, have critical role in the inflammatory response [431, 432]. Following 

the activation of NFκB through the phosphorylation of the inhibitor protein IκB by IKK, 

NFκB is translocated to the nucleus to activate the transcriptional processes resulting in 

the production of pro-inflammatory cytokines (e.g. TNFα) and IκB [349, 433, 434]. After 

released to the systemic circulation, these pro-inflammatory cytokines may bind to their 

corresponding receptors on the membrane of leukocytes and either further activate the 

NKκB-signaling module [433, 435] or lead to production of additional TLR-4  molecules 

[436, 437]. On the other hand, they also act as hormone-like signals that converge to 

activate the HPA axis to produce glucocorticoids [1, 426] or suppress the nocturnal 

melatonin production [438-440]. While glucocorticoids have critical roles in the anti-

inflammatory arm of the host defense system by inducing the expression of anti-

inflammatory proteins such as IκB and anti-inflammatory cytokines (e.g. IL10) [1, 441], 

they also act as potential modulators that enhance the production of melatonin [439, 442, 

443]. Melatonin in turn which can be also a regulator modulates the production of pro-

inflammatory cytokines [395, 428]. To establish the link between the inflammatory 
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response and the cellular energetic state, we assumed that there are a number of bio-

energetic molecules in each cell which control the production of new molecules in the 

cell and represent the overall cellular energetic status. If the number of bio-energetic 

molecules in a cell is positive, the cell will be able to produce new molecules and in the 

meantime the default production of E will be inhibited. Since anti-inflammatory 

cytokines are responsible for the counter-regulation of the pro-inflammatory responses, it 

is hypothesized that they have the role in increasing the amount of energy. 

Table 5.2: Model rules 

No. Rule definition 

1 LPSR and P imported to cells from plasma can activate IKK; activated IKK can activate 
NFκB.IκB to NFκB 

2 An individual NFκB in the nucleus has a probability of κp/κi to produce a new unit of P/IκB 
respectively 

3 IκB inhibits NFκB activity by forming NFκB.IκB complex 

4 P, A in the inactive form can be released to plasma if they lie on the membrane (boundary) of 
cells 

5 P, A, F, M can be imported to cells from plasma if they hit a cell when moving in plasma 
6 P, A, F, M after imported to cells from plasma will not be released to plasma again 
7 An individual P in the nucleus has a probability of pt to produce a new unit of TLR4 
8 An individual A in the nucleus has a probability of ae to produce a new unit of E 
9 A inhibits P activity; both are degraded when they hit each other 

10 An individual FR in the nucleus has a probability of fa/fi to produce a new unit of A/IκB 
respectively 

11 NFκB activity in the nucleus is inhibited if the number of NFκB is less than the number of FR in 
the nucleus 

12 FR inhibits the default system production of GR when in the nucleus  
13 An individual F in the brain has a probability of fm to produce a new unit of M 
14 An individual M in the nucleus has a probability of mp to produce a new unit of P 
15 An individual P in the brain has a probability of pf to produce a new unit of F  

16 P in the brain prevents F from producing M if the number of P is two folds more than that of F in 
the brain 

17 NFκB, active P, FR, active M, and IκB can be translocated to the nucleus; they inhibit the default 
system production of E if they stimulate the nucleus activity to produce a new unit  

18 0.5% of individuals F in the homeostatic system are added with the probability of sin(0  π/2) 
for the time from 3:00AM to 9:00AM 

19 2% of  individuals M in the homeostatic system are added with the probability of sin(0  π/2) 
for the time from 10:00PM to 2:00AM 

20 Molecules are degraded after ~t hr if there is no action except movements where t/2 is defined by 
the approximate half-life of molecular types 
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5.2.3. Agent movements and interactions 

There are four types of compartments: the plasma, the brain, the cytoplasm, and the 

nucleus. The plasma contains the brain and all simulated cells (50 in this study); each cell 

contains a cytoplasm and a nucleus. All agents move in a random fashion following the 

‘random walk’ model on a 2-dimensional grid (see Materials and methods). The Plasma 

and each cell have their own simulating grid while brain and nucleus directly occupy a 

region in the plasma and corresponding cell simulating grid respectively. There is no 

special spatial arrangement for agents. However, there are a number of restrictions on 

which compartment a molecule can be in. Specifically, LPS can only moves in the 

plasma compartment; LPSR, IKK, NFκB.IκB, E, and GR are only present in cytoplasm; 

NFκB, IκB, and FR can be in both cytoplasm and nucleus; M and A cannot be in brain 

and F cannot be present in nucleus while P can move between any compartment. TLR4 

molecules after produced are transferred to the cell membrane i.e. when they reach the 

boundary of the corresponding cell simulating grid they are fixed there until they are 

degraded. 

Molecules are translocated between compartments based on an import- and export 

procedure. In plasma, if a molecule has the same position with a cell or reach the region 

of the brain, the system will check to determine whether it is imported or not. Except 

LPS, other molecule types are imported to the brain and cells with the approximate 

probability of LPS-binding TLR4 to simulate the probability of the binding to receptors. 

This is approximately to the initial number of TLR4 molecules in a cell divided by the 

number of positions on the boundary of the cell simulating grid which is about 30%. For 

LPS molecules, a random position on the boundary of the cell simulating grid is assigned; 
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if it is overlapped with the position of some TLR4 molecule, it will be imported. If 

imported to cells, the molecule status is changed to ‘active’. In the cytoplasm 

compartment, active molecules are simply translocated to the nucleus compartment when 

they reach the nucleus regions in the corresponding simulating grid. On the other hand, 

when a molecule reaches the boundary of a compartment, it is exported to the outer 

compartment if it is not restricted.  

Each agent moves in a random direction for a random number of times with a random 

delay time for each movement. However, two interactive molecules 21, XX  with current 

positions { } { }2211 ,,, X
y

X
x

X
y

X
x PPPP  respectively will move towards the position where an 

interaction may occur if their distance is less than a threshold 

( ) { } 1,,max, 2121
21 =≤−−= ττX

y
X

y
X

x
X

x PPPPXXd . If two molecules have the same 

position on the simulating grid of the corresponding compartment, they will interact 

(activation, inhibition, or degradation) following the rules showed in Figure 5.1a and 

Table 5.2 e.g. A and P with the same status in any compartment, LPSR and IKK, 

activated IKK and NFκB.IκB, F and GR in cytoplasm, and NFκB and IκB in cytoplasm 

or nucleus. The rule is also applied to the movement of molecules and cells in plasma to 

increase the probability of entering a cell for molecules in systemic circulation. 

Finally, circadian controls are introduced in an attempt to simulate the daily patterns of 

stress hormones [428-430]. In our simulation, these rhythms are produced using sine 

waves. At every tick during the time from the onset of the production to the 

corresponding peak in a day (e.g. 3:00AM to 9:00AM for cortisol and 10:00PM to 

2:00AM for melatonin), a constant number of F and M units (cfm) are added to the system 

where the probability for each adding such a unit is 
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Simulated time  is scaled from ‘ticks’, which is the simulation counter, to hours. curT  is 

the current tick of the simulation counter which expresses the current simulated time. 

tphN  is the number of ticks corresponding to one simulated hour. cfm is selected to have 

the peaks of F and M approximately triple their corresponding homeostatic levels (cfm = 3 

in this study). These activities are assumed to be controlled and taken place in the brain 

compartment since they are all associated with behaviors in brain. Definition of the time-

scale and the homeostatic system will be discussed in the following section. 

 

‘Random walk’ model 

Agents (cells, molecules) move on a 2-dimensional grid in a random fashion depending 

on two main factors: the time agents wait before each movement and the number of times 

agents move in a direction. For a specific agent U, at time t, let ( )tγ  be the time (number 

of ticks) U has to wait before moving and )(tλ  be the number of times U will move in 

direction D, we have 
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Each compartment or each cell has its own 2-dimensional simulating grid. When ( )tγ  is 

zero, U will move to the next grid-space in the Moore neighbourhood of the 

corresponding simulating grid which consists of 8 spaces immediately adjacent to and 

surrounding the current position based on the current direction D. D is one of 8 directions 

{ }WNWSWSESENEN ,,,,,,,  (N: north, E: east, S: south, and W: west). Let 

( )tPtP yx ),(  be the current position of U in a 2-dimensional simulating grid, its next 

position is defined as follows 
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5.2.4. Model parameters 

Model parameters are classified into two categories: default- and production- parameters. 

Default parameters are those related to system settings and physicochemical properties of 

cells and molecules, such as compartment extensions, simulation scales, molecular 

lifetimes, or initial populations. For simplicity, in this study all compartments are 

simulated with unitless rectangular grids. The plasma is represented by an 80 x 50 

rectangular unitless grid and the cell with 40 x 30. The cell nucleus is about 10% of the 

total cell volume and thus it occupies a region of about 11 x 11 on the cell simulating 
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grid. Similarly, the brain compartment is also simulated by a region of 11 x 11 on the 

plasma simulating grid. 

Since it is still unclear about the relationship between the system response time and the 

system production rate, we would like to define two scales in this simulation including 

(1) the life-scale ( )L  that characterizes for the lifetime of molecules and the system 

production rate and (2) the time-scale ( )tphN  that characterizes for circadian controls and 

system responses. The time-scale is initially equal to the life-scale but adjusted later to 

match in silico system responses with in vivo transcriptional responses. In order to 

identify the life-scale, the system is set to have no activity except the default system 

production and the protein degradation and thus the number of units of each molecule 

type in a cell should be unchanged. Given the default production rate is %R , after an 

hour a cell will produce LR ×  new units for a molecule type and thus there must be 

LR ×  units of this molecule type degraded to keep the cell at homeostasis (R = 50% in 

this study). Consequently, if a molecule has a certain lifetime, its average lifetime will be 

approximately to its number of units divided by LR × . In other words, the initial number 

of units of a molecule type should be set equally to its average lifetime multiplied by 

LR × . 

In this simulation, the average lifetime of a unit is double its approximate half-life which 

is listed in Table 5.1. Specifically, IκB half-life is about 0.5 hour and the NFκB.IκB 

complex have five-fold more than that of IκB [432, 444]; inflammatory cytokines and 

stress hormones have the average half-life about 1 hour [445, 446]; the largest protein 

IKK is assumed to have its half-life equal to that of the NFκB.IκB complex; and the rest 

are assumed to have the average half-life about 2 hours. Let f be the initial number of 
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units for IκB in a cell, the initial population of NFκB.IκB, IKK, P, A, E, TLR4, and GR 

in a cell will be (5f, 5f, 3f, 3f, 4f, 4f, 4f) respectively. Since the cell protein occupies 15–

35% of cell volume [447], we here assume that there are approximately 300 units in a 

normal cell which is 25% of the cell volume. Therefore, the total initial number of units 

in a cell under the assumption of the homeostatic system will be 29f, resulting in 

10
29

300
≈=f  units. The estimated initial population size of each molecule type in a cell 

is given in Table 5.1. The life-scale L  therefore is 2f which is 20 ticks per hour which is 

equal to the lifetime of IκB. Also, the initial number of units for P/A in plasma is 

initialized by 10% of all P units in all cells in the system. Further, the default production 

of F and M is set to the activities of the brain (see Figure S1 for the programming 

architecture and initial parameter values). 

Production parameters are the probabilities of producing new units of a molecule when 

present in the nucleus or brain compartment as indicated in the system dynamics model. 

It is hypothesized that there is a balance between protein synthesis and degradation in the 

homeostatic system [448]. Thus, without any external stimulation and circadian 

influences production parameters need to be adjusted so that the number of units of each 

molecule type in the system does not change significantly over the time (Table 5.3). 

Techniques from process trending analysis are utilized to obtain the set of adjusted 

parameters whose values remain unchanged for subsequently added mechanisms e.g. 

circadian rhythms, endotoxin treatments [449, 450] (see Materials and methods). The 

current configuration of the homeostatic system including all agents and their properties 

is saved for further experiments. 
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Table 5.3: Model production parameters 

No. Parameters Initial 
probability (%)

Adjusted 
probability (%)

1 κp (NFκB  P)* 70.00 69.44 

2 κi (NFκB  IκB) 70.00 70.08 

3 fi (F  IκB) 70.00 70.08 

4 fa (F  A) 70.00 74.77 
5 fm (F  M) 70.00 27.48 
6 mp (M  P) 70.00 69.44 
7 pf (P  F) 70.00 24.98 
8 pt (P  TLR4) 70.00 70.00 

9 ae (A  E) 70.00 75.72 
*x (Y  Z): x is the probability that a single unit Y can produce an individual unit Z when Y is in the 
nucleus (or brain) compartment. 
 

Parameter tuning 

Based on the trend of the dynamics of each particular molecule type X , we adjust the 

probability of the associated production parameter Xp  (Table 5.3) so that the total 

number of X  in the system does not change significantly over the time. For each 

simulated day ( tphN24  ticks), we sample the level of X at each hour and determine 

whether there is a significant change based on the sample vector using the ordinary least 

square regression and significant mean difference [449].  

Let jx  be the number of molecules X  in the system at hour 24,,1, == JJjj K . The 

regression model used in this approach is jj jx εβα ++=  where α  is the intercept, β  is 

the slope, and jε  are random errors which are assumed to be independent and identically 

distributed. The estimates of the slope and intercept are given by 
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more than 10%, we determine that the change is significant and adjust the corresponding 

production parameter. If the trend of the dynamics is increasing, the parameter value Xp  

will be decreased. Otherwise, if the trend of the dynamics is decreasing, we increase Xp . 

In order to estimate the changing amount of Xp , we assume that the percentage change 

of the parameter would be approximately to the percentage change of the molecule level 

between the first and last half of the sample vector but set under the opposite effect. 

Therefore, the estimate for the adjusted parameter value will be 
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In the case that there are two associated production parameters, the amount each 

parameter is changed will be half of that in the normal case. The process is repeated until 

there is no change of all production parameters in three consecutive simulated days. 

5.3. Qualitative assessment of model behaviors with experimental 

observations 

Circadian rhythms play an important role in many physiological and metabolic processes 

in almost all organisms. In mammals, it is recognized that a bidirectional communication 

between circadian controls and the immune system exists, and that glucocorticoids and 

melatonin are important hormones that show strong circadian expression patterns and 

play critical roles in mediating cytokine production [427-429]. Since melatonin and 

cortisol are associated with the production of pro-inflammatory and anti-inflammatory 

cytokines respectively, their expression rhythms will contribute to the dynamic patterns 

of cytokine expression [394-396, 429], resulting in the rhythms of P and A as observed in 

Figure 5.2.  
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Figure 5.2: Dynamics patterns of selected components under circadian control. Circadian 

control is regulated by the rhythms of cortisol (F) and melatonin (M) which in turn drive 

the patterns of other components in the system. Pro-inflammatory cytokines (P) driven by 

melatonin secretion are up-regulated to reach the peak ~4:00AM whereas anti-

inflammatory cytokines (A) are down regulated due to the increase of pro-inflammatory 

cytokines and then up-regulated under the effects of cortisol rhythms. These behaviors 

result in the circadian variation of bio-energetic proteins (E) and others. 

Pro-inflammatory cytokines (e.g. TNFα, IL6, IFNγ) are regulated in part by melatonin, 

reaching a maximum early in the morning and subsequently subsiding as cortisol levels 

induce the production of anti-inflammatory cytokines (e.g. IL10). As pro- and anti-

inflammatory cytokines have opposing effects on cellular immunity, changes in their 

concentration and thus their balance would be anticipated to influence host fitness. 

Additionally, since transcription in the nucleus requires energy, each time a nucleus 

produces a new unit beyond default system production, the corresponding cell will 

exhaust some unit of energy, representing by the deletion of one bio-energetic protein (E) 

in this simulation. Consequently, energy balance and/or energetic protein abundance 

relevant to metabolic processes also exhibit daily circadian variations [451]. These 

observations provide a validation for our model’s behaviors. 

In silico administration of endotoxin is simulated by ‘injecting’ a number of new LPS 

molecules into the system at tick T which is corresponding to time ( ) tphtpd NNT mod  of 

the day. In order to simulate in vivo endotoxin administration at 9:00am, we introduced 

1000 LPS molecules randomly to the plasma compartment at the corresponding tick and 

track the cellular responses. Due to lack of information to evaluate the corresponding 
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dose and influence of other system factors (e.g. cell density) to the actual effects of those 

LPS molecules, we measure the effective concentration of LPS in our system by a 

definition as follows: 
( )
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the total number of simulated cells (50 in this study) and ( )tLPSi  is the number of LPSR 

molecules in cell i at time t. CV  is the volume of cells which is equal to 30 x 40 =1200 in 

this context. The effective concentration of this experiment is about 0.33%. The current 

default time-scale tphN  is 20 ticks per hour as discussed in the ‘Model parameters’ 

section. Since this time-scale calibration does not provide a corresponding mapping of 

the times between in vivo and in silico inflammatory responses, we vary tphN  to search 

for a timing match between in vivo and in silico patterns by gradually increasing the 

number of ticks per hour to 30, 40, 50, etc. The search ends up with a new time-scale 

tphN  = 50.  

Main inflammatory responses of in vivo and in silico human endotoxemia are presented 

in Figure 5.3. Following endotoxin treatment, the pro-inflammatory response exhibits a 

fast and robust increase, peaking between 2 and 4hr after treatment and eventually 

resuming normal rhythms. The anti-inflammatory response which is normally down-

regulated around mid-day keeps increasing following LPS administration. The systemic 

energy balance also continues to reduce for around 2hr more before returning to its 

normal rhythm. The system resumes normal daily rhythms about 24h post LPS 

administration. 
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Figure 5.3: Correspondence between in vivo- and in silico- system responses to 

endotoxin. The left-panel presents average expression patterns of critical inflammatory 

responses under endotoxin treatment at 9:00AM. Early-up (red) and middle-up (black) 

patterns are characterized for pro-inflammatory responses, late-up pattern (magenta) for 

anti-inflammatory responses, and down pattern (green) for energetic responses. The right-

panel displays corresponding simulated responses. The patterns between in vivo- and in 

silico- responses are matched to define the time-scale for the system. 

5.4. Cellular variability and stochastic behaviors 

5.4.1. Variability-based fitness 

Since stochasticity is an inherent property of our individual-based simulation, stochastic 

transcriptional activities especially those relevant to the NFκB-signaling module have 

large impacts on cellular variability [452-454]. Simulated cells behave differently from 

one to another and no individual cell behaves like the average one. For example, 

dynamics patterns of pro- and anti-inflammatory protein levels oscillate stochastically 

between different cells and even different days although their average patterns exhibit 

some common daily patterns (Figure 5.4a, b). In general, these patterns are similar to 

corresponding system responses. Specifically, the average level of pro-inflammatory 

cytokines is induced early due to the increasing level of melatonin at the onset of the day 
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and then gradually abates while the level of cortisol increases. The average level of anti-

inflammatory cytokines is transiently down regulated and then starts increasing to restore 

the balance between pro- and anti-inflammatory cytokines under the opposing effects and 

acutely altered patterns of melatonin and cortisol. From the system perspective, we 

assume that a cell will be (1) in the pro-inflammatory state (expressed by red squares) if 

the level of pro- is much greater than the level of anti-inflammatory cytokines (P>1.5A), 

(2) in the anti-inflammatory state (expressed by magenta squares) if A>1.5P, and (3) 

otherwise in the homeostatic state (expressed by green squares). Interestingly, the status 

change of the cellular system also follows a common daily pattern although the status of 

a single cell is always dynamic over time, even for the same time the next day (Figure 

5.4c). At the beginning of a day, pro-inflammatory cells predominate and then make 

room for anti-inflammatory cells in the late morning. Since the status of the cellular 

system is in some part associated with the protein abundance level of corresponding 

cytokine types, the balance between pro- and anti-inflammatory cytokines is anticipated 

to be dynamic over time but follow some common daily pattern. 
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Figure 5.4: Stochastic dynamics in cell population. The stochastic behaviors of pro-

inflammatory cytokines (a) and anti-inflammatory cytokines (b) in three different cells 

are shown in the top-panel. Although cellular patterns are different from cell to cell and 

from day to day, the average pattern still exhibits some daily common pattern. The 

dynamics of the homeostatic system in a simulated day are present in (c). Cells are 

displayed with solid squares where green squares represent for cells with an approximate 

number of P and A, red squares for those with the number of P much greater than the 

number of A and magenta squares for those with A >> P. 

Recent studies have implied that there is an association between patient fitness and the 

balance between the levels of pro- and anti-inflammatory cytokines [455, 456]. However, 

the protein abundance level in a population of genetically identical cells is proportional to 

the expression variance of the corresponding protein [457-459]. Consequently, the cell-

to-cell variability potentially conveys information beyond the simple mean level of 

protein abundance in characterizing the dynamic kinetics of the entire system at the 

single cell level. Cellular variability can account for the stochastic transcriptional 

activities and thus not only the consequence but also the mechanisms that lead to the 

fluctuation of a protein between cells. As a result, we hereby define a novel quantity to 

characterize the entire status of the system in homeostasis or under treated conditions, so-

called the variability-based fitness (Fvar), based on the ratio between the expression 

variance of anti-inflammatory cytokines and pro-inflammatory cytokines from the 

population of simulated leukocytes. In order to characterize the cytokine expression 

variance among cells, we utilize Shannon entropy to estimate the cellular variability 

based on the distribution of pro- or anti-inflammatory cytokines through the cell 
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population (see Materials and methods). This measurement somewhat reflects changes in 

host fitness, since the anti-inflammatory arm characterizes for the ‘fitness’ restoration and 

the pro-inflammatory arm serves for the ‘fitness’ dysregulation. In homeostasis, the ratio 

is anticipated to remain at some optimal level while its normal rhythm has some daily 

common fluctuations in the first half of a day due to the circadian secretion of melatonin 

and cortisol (Figure 5.5-top). Following endotoxin treatment (at 9:00AM in this case), 

the variability-based fitness immediately reduces to the minimum point around 3-4hr post 

injection and then gradually returns to the optimal level when the systemic manifestation 

of endotoxin abates, implying that the affect of endotoxin treatment can be quantified 

through this method. 

     

 

Figure 5.5: Cellular variability and synchronization behaviors. The top-panel displays the 

pattern of variability-based fitness of a simulated day in the homeostatic system and of 
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the day where endotoxin is treated at 9:00AM. Two parallel curves present corresponding 

standard errors of N times of simulation (N=100 in this study). The bottom panel shows 

the synchronization level of specific behaviors among all cells of the system in the 

interval [t – 3hr, t], t = 3, 6…24hr. The error bars are corresponding standard errors of N 

times of simulation. 

 

Definition of the variability-based fitness (Fvar) 

Given CN  cells, let ( )txi  be the number of molecules X  in cell CNii ,...,1, =  at a 

specific time t . Since the distribution of ( )txi  values may be sparse, we first contract the 

range of ( )txi  by a whole number division of r  for all ( )txi  ( 5=r  in this study).  
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5.4.2. Synchronization 

Even in the presence of the type of  the large variability observed in some molecules from 

cell kinetics observed in the population of cells, external stimulus signals (e.g. TNFα) can 

cause cell synchronization for a short period of time [452, 453]. The synchronization 

behavior of cellular responses is therefore examined to get an insight into how pro- and 

anti-inflammatory cytokines act under endotoxin treatments. Quantitatively, the 
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synchronization level of a response (e.g. a molecule type) is defined as the average 

correlation coefficient between all individual response patterns of cells and the average 

response pattern of the cell population in a period of time (e.g. 3hr in this study) (see 

Materials and methods). LPS-induced cell synchronization has been examined for pro- 

and anti-inflammatory responses (Figure 5.5-bottom). Although the cellular pro-

inflammatory responses are different from cell to cell, under an external stimulus their 

responses expose an increment of similarity in the first period after the treatment. 

However, anti-inflammatory responses among cells do not propose a significant trend of 

synchronization. This phenomenon results from the fact that all cells follow the only path 

that activates the NFκB-signaling module to produce pro-inflammatory cytokines under 

the primary stimulus signal while the path to produce anti-inflammatory cytokines is 

secondary and set under the effects of pro-inflammatory inhibitors. After the first period, 

stochastic oscillations resume in the population of cells although the systemic 

manifestation of inflammation does not quite abate. 

Definition of the synchronization 

Let )(txi  be the number of molecules X  in cell i  and )(txx  be the average number of 

molecules X  from CN  cells at time t . The synchronization level of molecule X  in the 

population of cells for a period of time from 0:00 to 3:00AM is 
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5.5. Other relevant issues 

5.5.1. Time-dependent effects under endotoxin treatment 

As observed in previous studies, there are clearly significant effects of circadian rhythms 

on the dosing time in therapeutic treatments. For instance, ‘low dose prednisolone has 

more effect on rheumatoid arthritis at 2:00AM than at 7:00AM’ [394, 396] and ‘bedtime 

dosing with nifedipine gastrointestinal therapeutic system for antihypertensive 

medications is more effective than morning dosing’ [460]. We therefore explore the time-

dependent effects of endotoxin administration by executing in silico experiments with 

endotoxin injection at different times of the day (3hr intervals from 0 to 24hr). We 

quantitatively examined the peaks of inflammatory responses following endotoxin 

administration at different times throughout the day. Results are characterized by the 

maximum numbers of pro- and anti-inflammatory cytokines as well as the dysregulation 

peak of the variability-based fitness versus the treated times of endotoxin (Figure 5.6). 

Simulation shows that endotoxin administrated in the morning (around 9:00AM) has the 

least pronounced effect, while the largest response occurs around midnight. Although the 

maximum numbers of anti-inflammatory cytokines in different cases seem to be 

approximately equal, there is a significant trend in the effects of administration times of 
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endotoxin on the production of pro-inflammatory cytokines. Characterizing these 

phenomena is the change of the variability-based fitness versus the administration time, 

implying somehow the loss of the host fitness. Periods of highly vulnerable effects are 

those around the midnight peak of melatonin secretion where the production of pro-

inflammatory cytokines is set under two paths, NFκB-signaling and the melatonin-

induced pathway. On the contrary, high concentration of plasma cortisol in the morning 

provides an inhibition to the activation of the NFκB-signaling module, resulting in the 

reduced effects of endotoxin administration. 

    

 

Figure 5.6: Time-dependence system responses to endotoxin administration. The 

strength of the inflammatory response or the vulnerability of the host fitness is 

characterized by (a) the maximal peak of pro-inflammatory cytokines (Pmax) and (b) the 
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minimum peak of variability-based fitness versus the time of endotoxin treatment. The 

error bars are corresponding standard errors of N times of simulation (N=100). 

5.5.2. Sensitivity analysis 

Sensitivity analysis was performed to explore how the perturbations in production 

parameter values affect the overall system behavior which is characterized by the 

variability-based fitness. Following previous studies [399, 419], we sequentially 

perturbed each production parameter and estimated the sensitivity coefficient which is 

defined as the percentage change of the fitness (DFvar) over the percentage change of the 

parameter ( ppDp δ=  where pδ  is the changing amount of parameter p) (see Materials 

and methods). In this case, 75% is selected as the cutoff to have a clear impact on the 

percentage change of the fitness, which is estimated from 10 simulated days with 

circadian controls and without external stimuli. Results are showed in Table 5.4. Two 

parameters that have great impact are κi and fa respectively where κi is responsible for 

IκB production from the NFκB activities and fa is directly responsible for the production 

of anti-inflammatory cytokines. Since the sensitivity coefficient is mainly relied on the 

change of the variability-based fitness where the dynamics of pro- and anti-inflammatory 

cytokines take place, parameters relevant to the production of these cytokines should 

have large impact. However, since κi affects IκB production from NFκB activities in 

nucleus which in turn directly control back NFκB activities in regulating the production 

of pro-inflammatory cytokines, a small change on the value of κi can have a large impact 

on the regulation of pro-inflammatory cytokine production. Therefore, κp and mp, two 

parameters directly relevant to the production of pro-inflammatory cytokines, have lesser 

impacts on the variability-based fitness than κi does. 
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Table 5.4: Effects of production parameters on system behaviors 

No. Parameters Change* DFvar/Dp Change* DFvar/Dp
1 κp ↓ 0.2085 ↑ 0.2461 
2 κi ↓ 0.4481 ↑ 0.2679 
3 fi ↓ 0.1861 ↑ 0.2520 
4 fa ↓ 0.3260 ↑ 0.3485 
5 fm ↓ 0.1560 ↑ 0.1440 
6 mp ↓ 0.1883 ↑ 0.2452 
7 pf ↓ 0.1607 ↑ 0.1585 
8 pt ↓ 0.1391 ↑ 0.1429 
9 ae ↓ 0.1425 ↑ 0.3303 

*: decrease/increase 75% of the current value; if greater than 1.0, set to 1.0. 

 

Definition of the percentage change of fitness 

In order to evaluate how a change impacts to the system behaviors, we define a so-called 

percentage change of the fitness as a ratio of the total changing amount between the 

variability-based fitness of the original system and that of the new system over the total 

amount in the original system during a period of time ( 10=dayn  in this study) 
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where )(var tF  and )('
var tF  are the variability-based fitness at time t of the original system 

and the new system (e.g. the system with new parameter values). 

5.6. Conclusions 

We have proposed a multi-level homeostatic system of human endotoxemia using the 

individual-based simulation to examine the dynamic kinetics of the inflammatory 

response at the single cell level under circadian control and endotoxin treatment. The 



162 

 

model naturally captures the stochastic and discrete nature of biological processes; 

specifically, it models the transcriptional dynamics at the cellular level and the linking of 

processes at multiple scales. Physicochemical properties of biological molecules and 

cellular properties have been incorporated to construct the model. Novel solutions for 

parameter tuning and time-scale estimation are also proposed to refine the model. The 

model is validated by its ability to reproduce in vivo homeostatic circadian rhythms and 

capture critical inflammatory responses under endotoxin treatment. 

One of the most critical questions raised here is what information cellular variability can 

contribute to clinical implications. By defining novel hypothetical quantities such as the 

variability-based fitness and the synchronization level, we provided a step forward to the 

exploration of cell-to-cell variability and stochastic dynamics of inflammatory proteins. 

Daily common patterns of such measurements in homeostatic and LPS-treated systems 

are examined. Furthermore, the effects of time-dependent endotoxin administration 

characterized by variability-based fitness and the synchronization level of inflammatory 

cytokines are also studied. Although a full understanding of how cell-to-cell variability 

impacts clinical symptoms and pharmacological treatments is beyond the scope of this 

manuscript, proposed concepts in this study may actually be applicable in the near future 

as single-cell studies become increasingly common. Also, the proposed framework 

provides an effective model to generate testable hypotheses for a number of ‘what if’ 

scenarios to understand the connectivity of critical components in the immune system and 

the interplay between circadian controls and endotoxin treatments. 
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Chapter 6 – Summary and Future Perspectives 

 

6.1. Summary 

The advance of high-throughput technologies has enabled a new generation of massive 

amounts of biological data, facilitating a dramatic increase as well as challenges in the 

degree of quantification applied to modern biological research. In this dissertation, we 

explore alternative- and/or propose novel- hypotheses delving into the complexity of 

high-dimensional datasets with the aim of extracting critical components and rules that 

govern their behaviors as well as the mysteries and complexities of the transcriptional 

regulatory gene network. The unifying hypothesis is that what is observed is usually an 

outcome of orchestrated interactions between critical modules in the form of a network. 

Therefore, our overall goal for this study is set for the development of bioinformatics 

tools and systems biology approaches towards the analysis and modeling of 

transcriptional dynamics and the understanding of gene regulatory network. Two in vivo 

models, namely corticosteroid pharmacogenomics in rat and human endotoxemia in 

human, have been investigated. 

First, we examined the complexity of high-dimensional transcriptional responses under 

corticosteroid administration. As we all know that glucocorticoids are a class of steroid 

hormones present in almost every animal cell and play a central role in a wide range of 

physiological responses. Because of their potent anti-inflammatory and 

immunosuppressive effects, synthetic glucocorticoids referred as corticosteroids have 

been used widely in pharmacology as a therapeutic option for a wide range of 

autoimmune and inflammatory diseases. However, beneficial effects are derived from 



164 

 

magnifying the physiological actions of endogenous glucocorticoids, causing a variety of 

side effects following long-term treatment with this kind of drugs. The physiological and 

pharmacological effects of corticosteroids are complex and manifest themselves with 

expression changes of many genes across multiple tissues. As such, we ask that whether 

we can explore the complexity of gene expression changes to provide a better 

understanding of corticosteroid pharmacogenomic effects or understand how the drug 

alter systemic physiology and contribute to adverse-effects within individual tissues and 

across multiple tissues. 

In the meantime, we also put efforts to explore the human endotoxemia model which is a 

well accepted surrogate model for studying acute inflammation and elicits significant 

dynamic inflammatory transcriptional responses.  To gain a better understanding of the 

molecular mechanisms and physiological significance associated with inflammatory 

responses, clinically relevant models have been proposed including the human 

endotoxemia model in which an intravenous administration of E.coli endotoxin is given 

to healthy human subjects. Bacterial endotoxin, a component of the outer cell membrane 

of gram-negative bacteria, is an important mediator in the pathophysiology of gram-

negative bacterial sepsis. This complex macromolecule induces its injurious effects by a 

non-cytotoxic interaction with CD14-bearing inflammatory cells, such as macrophage-

monocytes, circulating neutrophils and lung epithelial cells. These effector cells are 

activated through a family of Toll-like receptors (TLR) and subsequently release a 

network of inflammatory products. While we do not argue that the human endotoxin 

challenge model precisely replicates an acute infectious or sepsis condition, we believe 

that human endotoxin challenge does serve as a useful model of TLR4 agonist-induced 
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systemic inflammation while at the same time providing a reproducible experimental 

platform. 

In order to discover potential rules hidden in high-dimensional transcriptional profiles, 

we start by handling the uncertainty in microarray experimental measurements. It has 

been noticed that experimental data usually contain potential sources of uncertainty and 

thus many experiments are now designed with repeated measurements to better assess 

such inherent variability.  Several computational methods have been proposed to account 

for the variability in replicates. As yet, there is no model to output expression profiles 

accounting for replicate information so that a variety of computational models that take 

the expression profiles as the input data can explore this information without any 

modification. Thus we proposed a methodology which integrates replicate variability into 

expression profiles, to generate so–called ‘true’ expression profiles. The clustering 

effectiveness when using ‘true’ profiles coupled with clustering techniques has been 

demonstrated through synthetic data where several models with the error information 

integrated are compared.  

We next explore the hypothesis that the more clusterable the data is the more biologically 

relevant it is and utilize the concepts of consensus clustering to identify, within a set of 

differentially expressed genes, a subset of genes that are either highly co-expressed or 

highly non-coexpressed with the hope of extracting a more biologically relevant subset of 

genes. The purpose of this approach is to enable a systematic identification of smaller, 

clusterable, subsets of gene expression data exploring the concept of consensus 

clustering. The fundamental assumption of our approach is that an appropriate weighting 

of multiple alternative methods would eliminate the biases associated with specific 
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clustering methods. Also, it must be emphasized that the proposed framework is not 

designed, or proposed, in order to replace more refined clustering analysis, but is 

advocated as a critical preliminary steps in order to identify putatively informative 

subsets of genes given a high-dimensional expression dataset. 

Additionally, we also proposed a framework to identify significant coexpressed clusters 

of genes across multiple datasets. Following the orientation of meta-analysis, an extended 

computational approach that explores the concept of agreement matrix from consensus 

clustering has been proposed with the aims of identifying gene clusters that share 

common expression patterns across multiple dosing regimens as well as handling 

challenges in the analysis of microarray data from heterogeneous sources, e.g. different 

platforms and time-grids in this study. Analysis on rich in vivo datasets of corticosteroid 

time-series yielded significant insights into the pharmacogenomic effects of 

corticosteroids, especially the relevance to metabolic side-effects. This has been 

illustrated through enriched metabolic functions in those transcriptional modules and the 

presence of GRE binding motifs in those enriched pathways, providing significant 

modules for further analysis on pharmacogenomic corticosteroid effects. 

After identification of significant gene sets representing for critical transcriptional 

responses within individual or across multiple conditions/tissues, we ask that whether we 

can go one-level further up to understand more about those relevant to the regulation of 

these transcriptional responses. Consequently, we have developed computational 

strategies with the aim of providing significant insights into the potential regulatory 

interactions among transcriptional factors and their target genes which is a crucial step 

towards quantitative modelling of transcriptional regulatory networks. One of the key 
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features in our analysis is the identification of significantly overrepresented CRMs in 

each gene battery. Since these recognized CRMs are located on the control regions of 

many ‘hypothetically’ co-regulated genes, they are likely to be composed of functional 

binding sites that are activated upon the initiation of the transcriptional machinery. 

Furthermore, our analyses also allow for the reconstruction of a dynamic temporal 

regulatory network, making it a critical enabler for improving our understanding of how 

the transcriptional machinery ‘program’ effectively regulates key cellular processes. 

Finally, we proposed a multi-level homeostatic system of human endotoxemia using the 

individual-based simulation to examine the dynamic kinetics of inflammatory responses 

at the single cell level under circadian controls and endotoxin treatments. The model 

naturally captures the stochastic and discrete nature of biological processes; especially 

the stochasticity of the transcriptional dynamics, one of the main reasons leading to 

phenotypic variations, at the cellular level and the linking of processes at multiple scales. 

Physicochemical properties of biological molecules and cellular properties have been 

incorporated to construct the model. With novel hypothetical quantities such as the 

variability-based fitness and the synchronization level, we provided a step forward to the 

exploration of cell-to-cell variability and predictive implications inferred from cellular 

variability. 

6.2. Future perspectives 

Gene transcription is one of the main biological processes that govern an organism’s 

response to external stimuli. Unraveling the mysteries and complexities of transcriptional 

regulation is of paramount importance in modern biology. What causes a stem cell to 

commit to a particular lineage, what makes a cell response to an external perturbation or 
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an organism to a drug is largely determined by the transcriptional machinery that is the 

control mechanisms that dictate the up- or down-regulation of genes. In that context, the 

part of the non-coding regions of genes located upstream the transcription start site olds 

the keys to this mystery. The main theater of controlling transcriptional regulation is 

hypothesized by the interplay between TFs and their associated TFBSs located on the 

proximal promoters of target genes. 

Our analysis has attempted to reverse engineer the underlying regulatory network under 

external stimuli e.g. the human blood leukocyte response to endotoxin. Given the 

transcriptional profiling data, an elementary set of temporal responses with putative 

transcriptional regulators have been identified. A key feature of the analysis is the 

exploration of the concept ‘gene battery’ which represents for a group of genes that are 

both co-expressed and functional relevant to identify inflammation-relevant TFs using a 

context-specific searching approach [373]. Although no single analysis can identify all 

regulators involved in a response, it has been demonstrated that the proposed framework 

can identify critical TFs that are relevant to acute inflammatory responses. Despite the 

fact that many methods have been proposed in the literature to search for relevant 

transcriptional regulators, different approaches explore different biological assumptions 

resulting to different sets of putative TFs which may or may not significantly overlap 

each other. Since the true extent of all TFs involved in the regulation of a complex 

response under some external stimuli is unknown, these differences could not be 

interpreted as the high- or low- accuracy of the methods. Instead, all of found TFs may be 

involved in different processes of the response but because of the limitation of 

hypotheses used by the methods, they may not be recognized by a certain approach.  
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Novel methods are still proposed using different analytical approaches but generally they 

can be categorized into two main directions including mRNA expression-based and TF 

binding pattern-based methods. The first direction somehow utilizes the fundamental 

hypothesis that the mRNA expression level of TFs is proportional to their protein 

concentration but this may not be appropriate especially in higher eukaryotes since TF 

activation is often regulated post-translationally and acts somewhat in an independent 

manner of expression level. Some methods also require multiple-condition data as the 

input which may not be applicable when practical data are only sampled under one 

condition/treatment. In the meanwhile, a lot of methods following to the latter direction 

have been developed of which ours is among them. These are not limited by the mRNA 

expression proportion hypothesis but they are limited by promoter identification, TF 

binding profiles, and the underlying assumption to select the input set of ‘co-regulated’ 

genes. Consequently, given the future availability of more complete TF binding data and 

other resources, the method could be enhanced by integrating protein-protein interaction 

to refine selected CRMs. Since each single method or even each direction always 

contains its own limitations and advantages, one possibility in future improvements could 

be the development of a framework to obtain a consensus result under diverse underlying 

hypotheses from various outputs of different methods.  

Previous analyses bring back an overview as well as a better understanding of how the 

system responses under external stimuli. To examine cellular behaviors and regulatory 

mechanisms, more specifically the interplay between circadian control and endotoxin 

challenge, we construct an in silico human endotoxemia that can mimic critical aspects of 

the physiological human endotoxemia model. The model naturally captures the stochastic 
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and discrete nature of biological processes; especially the stochasticity of the 

transcriptional dynamics, one of the main reasons leading to phenotypic variations, at the 

cellular level and the linking of processes at multiple scales. One of the most critical 

questions we ask is what information cellular variability can contribute to clinical 

implications. By defining novel hypothetical quantities e.g. the so-called variability-based 

fitness and the synchronization level, we provided a step forward to the exploration of 

cell-to-cell variability and stochastic dynamics of inflammatory proteins as well as 

predictive implications relevant to clinical outcomes.  

The proposed framework provides an effective approach to generate testable hypotheses 

for a number of ‘what if’ scenarios to understand the connectivity of critical components 

in the immune system and the interplay between circadian controls and endotoxin 

treatments. In future studies, we may examine in detail the impacts of system default 

parameters e.g. cell-population, molecule-interaction blocking on the system behaviors 

concerning homeostatic daily patterns and inflammatory responses under endotoxin 

administration. Eventually, our work aims at establishing the core of an extensive model 

with multiple body-in-systems including activities of different inflammatory cytokines, 

specific mechanisms of critical immune cell types (e.g. macrophages, T-cells, dendritic 

cells), and ultimately specific mechanisms of immune-relevant systems (e.g. the immune 

system, the central nervous system, the stress system, the cardiovascular system) to 

explore systemic responses and clinical implications of inflammatory diseases. 
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