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ABSTRACT OF THE THESIS 

Application of Dynamic Global Sensitivity Analysis in Complex Systems 

By VASILIOS NIOTIS 

Thesis Directors: 

Dr. Marianthi G. Ierapetritou and Dr. Ioannis P. Androulakis 

 

One of the major problems of complex mathematical models that are used to 

approximate systems and processes is the lack of precise parameter values. This 

often leads to a high degree of uncertainty in the simulated processes, which in 

most cases is an undesirable constraint. The uncertainty in parameter values can 

be addressed using sensitivity analysis, which is the study of how output 

variations can be apportioned to different sources of variation in the input 

parameters. 

The first part of this work consists of the application of time-varying global 

sensitivity analysis techniques in a mathematical model of human endotoxemia. 

In general, biological systems contain a large number of components that interact 

with each other, making the application of sensitivity analysis a valuable tool to 

decipher the most critical dynamics of the system. Through sensitivity analysis 

the parameters or components that have little effect on the model but are 

experimentally observed to be significant for the system, are identified. The 
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results imply the need for better parameter estimation, after further 

experimentation, or model modifications that will capture the experimentally 

observed system dynamics. 

In the second part of this work, the complexity of how interactions between 

the different unit operations of a continuous tablet manufacturing flowsheet 

simulation affect the overall product quality is studied. Both quantitative and 

qualitative results reveal how different uncertain variables of a process 

dynamically affect an output through the use of time-varying global sensitivity 

indices. Thus the most important and critical parameters for a certain output are 

identified at different time points. Such an approach of global sensitivity analysis 

is not only used to draw significant conclusions about the interactions between 

specific uncertain inputs to outputs, but also points out necessary correlations that 

the model fails to capture. 

Through this work it is shown that sensitivity analysis should have an 

important part during the development and validation of a computational model in 

any scientific field. It allows the quantitative and qualitative investigation of 

variation and perturbation effects on the system behavior and correlation with 

experimental data. 
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1. INTRODUCTION 

Due to the complexity of real-life processes, physical experimentation is time-consuming, 

expensive or impossible, and for this reason scientists more and more turn to 

mathematical and computational models that simulate and approximate those processes. 

Complex mathematical models are defined by a series of equations, a large number of 

input factors, parameters and variables are developed to approximate systems and 

processes of varying complexity from different scientific fields. 

The inputs of a process, however, are often subject to various sources of uncertainty like 

errors in measurement, lack of data, and poor understanding of the underlying 

mechanisms. Further, some models may have natural intrinsic variability in the system 

such as stochastic events. Those uncertainties produce uncertainty in the response of the 

model and an evaluation of the confidence in the model is good modeling practice. 

Sensitivity analysis as a whole provides an understanding of how changes and variations 

in the inputs affect the model responses, increasing the confidence in the model and its 

predictions.  

In this work, the broad applicability of sensitivity analysis is demonstrated through two 

case studies in two different scientific fields. In chapter 2 the concept of sensitivity 

analysis is introduced and different sensitivity analysis approaches found in literature are 

presented. In chapter 3, the application of a dynamic approach for sensitivity analysis is 

described in a mathematical model of human endotoxemia and in chapter 4 the dynamic 

sensitivity analysis is applied to a case study of a continuous tablet manufacturing 

flowsheet model.  Finally, in chapter 5 the conclusions of this research are discussed. 



2 
 

2. SENSITIVITY ANALYSIS 
 

2.1. Introduction 

Sensitivity analysis is defined by Saltelli (1) as “the study of how the variation in 

the output of a model can be apportioned, qualitatively or quantitatively, to different 

sources of variation, and of how the given model depends upon the information fed into 

it”. Another definition for sensitivity analysis is (2) the systematic investigation of the 

model responses to perturbations in the model quantitative factors (i.e. inputs/parameters) 

or variations in the model qualitative factors (i.e. structure, connectivity, etc). 

There are two types of sensitivity analysis methods. In local methods the inputs 

are varied one parameter at a time within a small interval around a nominal value, and the 

effect of this variation in the output is calculated with partial derivatives. In global 

methods, more than one input factors are varied simultaneously over a larger parameter 

space, around a nominal value based on our knowledge base of the parameters. Using 

sampling based approaches an input parameter vector is created and the effects of 

individual inputs and interactions between inputs are calculated on the model output.  

 

2.1.1. Uses of sensitivity analysis 

Before, during and after model development, sensitivity analysis can be used for a 

number of applications (1). The first and most fundamental reason is to determine 

whether the model resembles the system or processes we are trying to build. The 
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quantitative capabilities of sensitivity analysis identify which factors mostly contribute to 

the output variability of the model and therefore require additional research or 

experimentation to strengthen their knowledge base or which factors or model 

components are insignificant and can be eliminated from the final model. Additionally, 

sensitivity analysis can identify if there exists a region in the space of input factors for 

which the model variation is maximum, what are the optimal regions within the space of 

the factors that can be used in a model calibration and finally certain sensitivity analysis 

methods can identify the existence of factor interactions with each other or within 

interacting groups and if the model has a strong dependence on a non-influential factor. 

 

2.1.2. Goals of sensitivity analysis 

Sensitivity analysis can be used prior to the model calibration, to determine and 

identify a set of parameters that will be important during the calibration procedure, since 

the difficulty of the model calibration against various types of data increases as the 

number of processes to be modeled becomes larger (1). Sensitivity analysis can also 

ensure that the model response to its input factors is accounted for, that the model does 

not have any discrepancies by exhibiting strong dependence on non-influential factors 

and that the model predictions yield a realistic and sensible range of results.  

Model identification can be aided with the use of sensitivity analysis, since in 

order to describe available evidence the most appropriate model structures and 

specifications can be identified. Mechanism reduction, which is closely related, can be 

used in determining a subset of input factors accounting for most of the output variance. 
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This way the most insignificant factors in a complex model can be identified and 

eliminated from the final model for a simpler model. 

Another capability for sensitivity analysis is that it can determine if there is some 

region in the space of input parameters for which the model variation is maximum or 

divergent. In general sensitivity analysis can assist the modeler in deciding whether the 

model performs as expected from the process and when that is not provided the case, it 

provides guidance on where to concentrate to solve the problem. 

 

2.2. Local sensitivity analysis 

In local sensitivity analysis the inputs are varied one parameter at the time around the 

nominal value (1).  

A time-dependent system might have the following initial-value problem form: 

( )y y,kd f
dt

= , ( ) 00y y=      (Equation 1)  

Where y is the vector of variables, k is the vector of system parameters and y0 is the 

array of initial values. A Taylor series expansion can express the effect parameter 

changes will have on the solution: 

( ) ( )
2

1 1 1

1, , ...
2

k k k
m m m

i i
i i j

j l jj l j

y yy t y t k k k
k k k= = =

∂ ∂
+ Δ = + Δ + Δ +

∂ ∂ ∂∑ ∑∑ l j        (Equation 2) 
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The partial derivatives  are called first-order local sensitivity coefficients and 

form the sensitivity matrix 

/iy k∂ ∂ j

( ) { } { }/ij i jt s y kS = = ∂ ∂  partial derivatives  are 

called second-order sensitivity coefficients and so on. 

2 /i ly k k∂ ∂ ∂ j

In general, the first-order local sensitivity coefficient sij(t) describes the effect a 

perturbation of the jth input parameter around its nominal value has on the ith output 

parameter at time t.  

 

2.2.1. Indirect method 

Slightly changing one parameter at a time by a small value j jk + Δk  and rerunning 

the model is the simplest method to calculate local sensitivities (1). Using this finite-

difference approximation the sensitivities can be approximated by: 

( ) ( ) ( ), ,
, 1,...,i j j i j

ij
j

y k k t y k t
s t j m

k
+ Δ −

≈ =
Δ

     (Equation 3) 

Using this method, calculation of local sensitivities requires at least m+1 simulation 

runs of the model. The accuracy of the calculated sensitivities depends on the parameter 

change Δkj. Large parameter changes (>5%) would cancel the assumption of local 

linearity in non linear models, a small parameter change on the other hand would produce 

high round-off errors. Therefore a trial-and-error approach is employed to find the 

appropriate percentage of parameter change.    
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2.2.2. Direct method 

If we differentiate Equation 1 with respect to kj we get the following system of 

sensitivity differential equations: 

y y fJ
j j

d
dt k k k j

∂ ∂ ∂
= +

∂ ∂ ∂
      (Equation 4)

 

Or in matrix form:  

.
S = JS + F      (Equation 5) 

Where { }/J i lf y= ∂ ∂  is the Jacobian matrix and { }/F i jf k= ∂ ∂  is the parametric 

Jacobian and the initial condition is a zero vector.   

For the numerical calculation of local sensitivities, the decoupled direct method 

(DDM) developed by Dunker (3) has been proven to be the best general method. 

 

2.2.3. Limitations of local sensitivity analysis 

The DDM and other local sensitivity analysis techniques have been applied in various 

instances in systems biology for the analysis of signal transduction pathways and the 

identification of influential parameters (4, 5). However, the uncertainty and large range of 

biological inputs, the possible interactions between parameters and the inability of local 

sensitivity analysis methods to study multiple parameters at a time pose as limitations in 

the use of local sensitivity analysis methods in systems biology. With the use of global 
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sensitivity analysis methods it is possible to investigate the effect of simultaneous 

parameter variations.  

 

2.3. Global sensitivity analysis  

2.3.1. Sampling based methods 

In sampling based methods, Monte-Carlo techniques are used to create samples and 

analysis is performed to explore the mapping between the uncertain inputs and the 

outputs of the model. 

The model under analysis can be represented by the following vector: 

[ ]1 2, ,...,y my y y=  

and the corresponding input can be represented by the following vector:
 

[ ]1 2, ,...,x kx x x=   

where m is the number of outputs and k is the number of inputs. 

Sampling-based sensitivity analysis approach involves five steps: 

1) The most important step is the definition of the distributions D1, D2,..., Dk that 

characterize the assessed uncertainties of the inputs of x. If the analysis is 

exploratory then the distributions can be developed by selecting a distribution 

type (normal, uniform, lognormal, etc.) and minimum, maximum, median values 
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until the representation of the uncertainty in the parameter under consideration is 

adequate. In biological modeling there is often lack of information and uniform 

distributions can be used. 

 

2) Use a sampling method (random sampling, Latin hypercube Sampling, etc.) to 

generate N samples of input vectors x1, x2,…, xN from the distributions from step 

1. Random sampling is the simplest way to generate a sample but a large number 

of samples might be required to sample the entire range appropriately, however 

Latin hypercube sampling (LHS) has been shown to be more efficient than 

random sampling (6).     

 

3) The model is evaluated N times for each of the input vectors, a set of model 

outputs are obtained ( ) , 1,2,...,y x i i = N   and the results are stored. 

 

4) The uncertainty of the model outputs is quantified and displayed either as a scalar 

(mean, variance, etc.) or as a function by plotting the probability density function 

(PDF) and the cumulative density function (CDF). 

 

5) The effects of the individual parameters on the model outputs are determined by 

the mapping between uncertain inputs and the uncertainty in the outputs. 

Quantification is provided when regression and correlation analysis is used, 

however when non-monotonicities are present in the model then regression and 

correlation based indices are not accurate. These measures can also be used to 
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study the sensitivity to dynamic model outputs by calculating at multiple time-

points. 

 

2.3.2. Screening methods 

When a model contains a very large number of input factors or needs a long time 

to be evaluated then an initial screening has to be performed (1). This screening method 

is economical and identifies the few significant factors among a large number of input 

factors. However the economy of the screening methods has the drawback that the 

extracted sensitivity measures rank the parameters by their order of importance only 

qualitatively. For this reason the few identified significant factors can later be studied 

with another global sensitivity analysis method in greater detail to quantify their effect in 

the model outputs. 

 

The Morris method (7-9) is the most robust, widely used and popular out of all the 

screening methods. The two measures of importance used in the Morris screening method 

are μ which estimates the overall effect of the factor on the output and, and σ that 

estimates the interaction effects in which the factor is involved. σ is used to detect factors 

involved in interaction with other factors or whose effect is non-linear while μ detects 

input factors with an important overall influence on the output. A graphical 

representation of the two sensitivity measures plotted against each other, σ plotted versus 

μ, can help interpret the results by comparing where the plotted values are located and 

provide a relative measure of importance. 
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Morris screening method 

The input factor vector x of dimension k with the components xi takes p values from 

the set {0,1/(p-1),2/(p-1),…,1}. If Δ is a predetermined multiple of 1/(p-1) then the 

elementary effect of the ith factor at point x is defined as: 

 

( ) ( )1 1 1,..., , , ,..., xi i i k
i

y x x x x x y
d − ++ Δ −⎡ ⎤⎣ ⎦=

Δ
     (Equation 6) 

  

with x+Δ having such a value that it is still in the allowed region of experimentation 

for each of the factors. A distribution of elementary effects for input i, Fi, can be 

generated by sampling x from the possible input values. If random sampling is performed 

for r elementary effects from each of the distributions Fi, then n=2rk runs are needed.  

 

To assess the importance of a factor, the mean μ and standard deviation σ of the 

sample are used. A factor with a high overall importance on the output will have a high 

mean μ while a factor with a nonlinear effect or interacting with other factors will have a 

high standard deviation σ. 

In the simplest application of the Morris method, the model will be evaluated twice 

(for x and for x+Δ), for each elementary effect. Thus for the generation of a sample with 

size r, n=2rk runs are required. The factor r is typically in the order of 10.   

 

Generally, the four steps involving the application of the Morris method are the 

following: 
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1. The base value x* is randomly chosen for x with each component being sampled 

from the set {0,1/(p-1),…,1-Δ}. 

2. One or more of the components of x* are increased by Δ so that that the new 

vector x(1) still has values belonging to the set of possible input values. 

3. The elementary effect of the ith component of x(1) is calculated when the ith 

component has been changed by Δ: 

 

If x(1) has been increased by Δ: 

( )( )
( ) ( ) ( ) ( )( ) ( )( )1 1 1 1
1 1 11

,..., , , ,..., x
x i i i k

i

y x x x x x y
d − ++ Δ −

=
Δ

1

     (Equation 7) 

 

If x(1) has been decreased by Δ: 

( )( )
( )( ) ( ) ( ) ( ) ( )( )1 1 1 1

1 1 11
,..., , , ,...,x

x i i i k
i

y y x x x x x
d − +− − Δ

=
Δ

1

     (Equation 8) 

 

4. A new defined vector ( ) ( ) ( ) ( ) ( )( )2 1 1 1
1 1 1,..., , , ,...,x i i i k

1x x x x x− += ± Δ  is the vector that is 

produced from the previous step. Another new vector x(3) that differs from x(3) for 

only one component j is created: ( ) ( )3 2
j jx x= ± Δ .  

For this factor j, in the case of Δ > 0, the estimated elementary effect is:  

( )( )
( )( ) ( )( )3 2

2
x x

xj

y y
d

−
=

Δ
     (Equation 9) 

 

In the case of Δ < 0, the elementary effect is: 
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( )( )
( )( ) ( )( )2 3

2
x x

xj

y y
d

−
=

Δ
     (Equation 10) 

 

This step is repeated for k+1 input vectors x(1), x(2),…, x(k+1) so that two consecutive 

vectors differ by only one component. Any component i of the base vector x* has been 

increased by Δ at least once and the k+1 consecutive vectors define a trajectory in the 

parameter space. 

 

A matrix B*, called the orientation matrix is then formed with size ( , having 

the vectors x(1), x(2),…, x(k+1) as rows.  

)1k + × k

 

The orientation matrix can be constructed by: 

 

( ) ( )( )1,1 1, 1,/ 2 2* * *B J x B J D Jk k k+ +
*Pk k+⎡ ⎤= + Δ − +⎣ ⎦      (Equation 11) 

Where B is usually a  lower triangular matrix of 1s,  is a ( )( )1k + × k 1,Jk k+ 1k k+ ×

matrix of 1s, D* is a k-dimensional diagonal matrix with either +1 or -1 as elements with 

equal probability and P* is a k k×  random permutation matrix in which each column 

contains one element equal to 1 and all other elements equal to 0 with no two columns 

having a 1 in the same position. 
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2.3.3. Variance based methods 

Variance based methods quantify the amount of the total output variation 

explained by the uncertainty in the input factors (1). They are considered to be the best 

sensitivity analysis techniques because they are model independent and do not depend on 

relationship assumptions between the model input and outputs. Variance based methods 

not only quantify the main effects of individual inputs but can also be used to investigate 

the total effects of all possible interactions between one parameter and all the other 

parameters. The total effect is a more appropriate measure for the effect of a factor on the 

output because it takes into account all the possible interactions that factor is involved in. 

There are three types of variance based methods used to calculate the effects: 

correlation ratios, Sobol and Fourier amplitude sensitivity test (FAST). The correlation 

ratios have been shown to produce similar results to the Sobol and FAST first-order 

sensitivity indices (10) however Sobol and FAST are more efficient. The FAST method 

was initially developed by Cukier et al. (11) and it was extended by Saltelli et al. (12) 

producing the extended FAST (eFAST) which also has the capability to calculate total 

effects. In the method of Sobol (13) the output variance is decomposed to terms of 

increasing dimensionality and a Monte Carlo method is used to calculate the effects. The 

method of Sobol has a simpler implementation than eFAST but was further optimized by 

Saltelli (14) to be more efficient than before and comparable to the computational cost of 

eFAST.  

However, when the model has a large number of input parameters then the use of 

these methods can be computationally expensive and another method should be used 

beforehand to reduce the number of parameters under investigation. 
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Variance based method of Sobol 

The Sobol (1, 13) approach begins by defining the input factor space of the 

integrable function f(x) by an n-dimensional unit hypercube In. The function is 

decomposed into summands of increasing dimensionality by equation 12: 

( ) (1 1

1

0 ...
1 ...

,...,
s

s

n n

i i i i
s i i

)s
f x f f x x

= < <

= +∑ ∑      (Equation 12) 

Equation 12 upon expansion becomes: 

( ) ( ) ( ) ( )0 12... 1 2, ... , ,...,i i ij i j n n
i i j

f x f f x f x x f x x x
<

= + + + +∑ ∑      (Equation 13) 

In order for equation 13 to hold, f0 is required to be a constant and the integrals of every 

summand between unit limits, over any of its variables must be equal to zero: 

( )1 1

1

...0
,..., d 0=∫ s si i i i kf x x x  for 1,...,= sk i i      (Equation 14) 

From equation 14 it follows that the members of equation 12 are mutually orthogonal and 

therefore they can be expressed as integrals of f(x): 

( ) 0df x x f=∫   (Equation 15) 

( ) ( )0d k k i i if x x f f x≠ = +∫  (Equation 16) 

( ) ( ) ( ) ( ), 0d ,k k i j i i j j ij i jf x x f f x f x f x x≠ = + + +∫   (Equation 17) 

The expansion can continue for higher order terms. 

 

If it is assumed that f(x) is square integrable then all 
1... si if  in [a] are also square 

integrable. Squaring both sides of equation 12 and integrating over In generates: 
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( )
1 1

1

2 2 2
0 ...

1 ...

d d ...
s s

s

n n

i i i i
s i i

f x x f f x dx
= < <

− = ∑ ∑∫ ∫    (Equation 18) 

In equation 18 the left hand side and right hand side can be rewritten as equations 19 

and 20: 

 

( )2
0d= ∫D f x x f 2−   (Equation 19) 

1 1 1

2
... ... d ...= ∫s si i i i i iD f x d

s
x   (Equation 20) 

1

1

...
1 ...= < <

= ∑ ∑ s

s

n n

i i
s i i

D D   (Equation 21) 

 

D is called total variance and 
1... si iD  are called partial variances. As shown from 

equation 21 the total variance is equal to the sum of partial variances.  

Taking the ratio between the partial variances 
1... si iD  and the total variance D the total 

variance generates the Sobol indices which are defined as: 

1

1

...
... = s

s

i i
i i

D
S

D
  (Equation 22) 

 

The term 
1... si iS  provides the fraction of the total variance on the output which is 

due to one factor or a combination of factors. Si=Di/D which is called the first order 

sensitivity index is the contribution of xi to the output variation, while Sij for i≠j is the 

variation due to xi and xj which cannot be explained by the sum of the first order 

sensitivity indices Si and Sj and is the variance which is due to the interaction between 

those factors. 
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The total sensitivity index (1, 15) of a factor is the sum of all sensitivity indices 

involving that factor. A set of k factors x can be partitioned into two factor subsets w and 

v, where v contains only factor xi and w the remaining x~i factors. If we decompose f(x): 

( ) ( ) ( ) ( )0 1 2 12 ,= + + +x v wf f f f f v w

=

w

w

  (Equation 23) 

with 

1 2 12 12 0v w v wf d f d f d f d= = =∫ ∫ ∫ ∫   (Equation 24) 

and 

2
1v vD f d= ∫      (Equation 25) 2

2w wD f d= ∫ 2
12vw v wD f d d= ∫

 

The total variance can be written as:  

v w vD D D D= + +   (Equation 26) 

The total effect of v in the output is defined as: 

v v vw
totD D D D D= + = −   (Equation 27) 

Therefore the total sensitivity index for v = xi is defined as:  

~ 1
i

tot
i i

T
~iD D D DS

D D D
−

= = = −  (Equation 28) 

Which is equivalent to: 

( ) ~~ 1
iT i i iS S S S= + = − i   (Equation 29) 

Therefore the total sensitivity index is the sum of all sensitivity indices involving 

the parameter under investigated. This equation describes the total variance in the output 

of a factor i both individually and in all interactions with other factors.  
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It should be noted that the use of , in order to investigate the overall effect that 

a factor has on the output variable, is much more reliable than using the first-order 

sensitivity indices. The influence a parameter has not only depends on the first order 

sensitivity indices but also depends on the interactions of all the parameters and that is 

why methods such as Sobol, which can also compute the total order sensitivity indices, 

are being used regularly. 

iTS

 

If the STi is high then pi is an influential parameter, if Si and STi are both small then 

pi is not an influential parameter neither alone nor by its interaction with another 

parameter. If both the first-order Si and total-order STi sensitivity indices are similar then 

there are no interaction between pi and another parameter. Finally, very different first-

order Si and total-order STi imply high interactions of pi with other parameters. 

The Sobol method is able to calculate the first-order, all higher-order sensitivity 

indices and the total sensitivity indices to quantitatively determine the interaction 

between parameters. However, as the number of indices to be calculated is increased so 

does the computational cost and calculation time. The use of total order sensitivity 

indices , for the investigation of the overall effect of a factor gives better results than 

simply using the first-order sensitivity indices. 

iTS

 

2.4. Conclusions 

In computationally expensive models with a very large number of parameters, 

screening methods can be first used to identify the subset of parameters that mostly 
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control the output variability (1, 9). The advantage of screening methods is their low 

computational cost with the trade-off of only providing a qualitative sensitivity measure 

and ranking the parameters by the order of importance i.e. they do not quantify how 

much more important is one parameter from another. The Morris method, which uses the 

mean and the standard deviation of local sensitivity measures to quantify the global 

importance of input parameters (16-20), is the most effective of the screening methods 

which is in good agreement with results from the Sobol method.  

After the initial screening with the Morris method, identifying whether a 

parameter is influential or not, not only depends on the first order sensitivity indices but 

also depends on the interactions of all the parameters and that is why methods such as 

Sobol, which can also compute the total order sensitivity indices, have gained popularity.  

In the next parts of this work the sensitivity analysis technique is applied 

dynamically to two complex mathematical models from different scientific fields. It 

allows the quantitative and qualitative investigation of variation and perturbation effects 

on the system behavior and correlation with experimental data and is shown that 

sensitivity analysis should have an important part during the development and validation 

of a complex mathematical model in any scientific field.  
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3.  SENSITIVITY ANALYSIS OF A HUMAN 

ENDOTOXEMIA MODEL 
 

3.1. Introduction to Systems Biology 

Systems biology is the study of biology at the system level and the understanding 

of the structure and dynamics of various cellular functions (21). Understanding the 

system properties may have a significant impact on the future of medicine.  

The first step to get an understanding of the gene regulatory networks and 

biochemical interactions in any biological system is to determine the interconnections of 

genes and proteins. Further steps include the identification of all the genes and proteins 

involved in a process in an organism however this is not sufficient for an understanding 

of biological system structure and dynamics.  

Systems biology is about designing a biological system using an engineering 

system design approach. Robustness is achieved through negative feedback and feed-

forward control, multiple system components with equivalent functions for backup and 

redundancy, structural stability through intrinsic mechanisms, and subsystems that are 

physically or functionally insulated so that in the event of failure in one component 

system-wide failure does not spread to other subsystems  

A thorough system-level understanding of a dynamically interacting biological 

system can be performed through metabolic analysis, sensitivity analysis, dynamic 
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analysis methods such as phase portrait and bifurcation analysis, and by identifying 

essential mechanisms underlying specific behaviors.  

3.2. Human endotoxemia model 

In this section, global sensitivity analysis techniques are applied to an indirect 

response model of human endotoxemia taken from the literature and developed by 

Foteinou et al. (22). A brief description is presented below. 

Upon the administration of an endotoxin stimulus (Lipopolysaccharides – LPS) to 

a human subject, LPS binds and activates the receptors (R). The activated ligand–receptor 

complex stimulates the production rate of gene transcripts of receptor proteins and 

triggers the activation of an intracellular signal (DR*), which in turn directly stimulates a 

pro-inflammatory response (P). It is hypothesized that the pro-inflammatory response (P) 

stimulates the energetic response (E) and the anti-inflammatory response (A). The anti-

inflammatory response (A) is the immunoregulatory signal that aims to restore 

homeostasis in the system, and is stimulated by the activation of the pro-inflammatory (P) 

and the energetic response (E). Furthermore it inhibits the production rate of the pro-

inflammatory (P) and energetic responses (E). The described elements of the network of 

interactions of the indirect response model are shown in Figure 1. 

 

The indirect response model of human endotoxemia is illustrated in Figure 1 and 

the model equations are presented (Equations 30-37): 
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Figure 1. Overall structure of the indirect response model developed by Foteinou et al. (22). 

 

• The inflammatory stimulus (LPS) right after administration, is eliminated with a 

first order elimination rate klps,2 and a logistic-type function with growth rate klps,1. 

The parameters klps,1 and klps,2 are estimated accordingly so that if there are no 

complications the LPS decays within two hours of administration. 

 

( ),1 ,21lps lps
dLPS k LPS LPS k LPS

dt
= ⋅ ⋅ − − ⋅     (Equation 30) 
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• The LPS binds to the TLR4 receptor (R) and the dynamics depend on the 

association (k1) / dissociation (k2) parameters as well as the rate of synthesis of 

new receptors ksyn through translation of receptor mRNAs.  

( )2 1,syn syn
dR k mRNA R k LPSR k LPS R k R
dt

= ⋅ + ⋅ − ⋅ ⋅ − ⋅     (Equation 31) 

• The mRNA gene transcripts of the receptor have a production rate (Kin,mRNA,R) 

and a degradation rate (Kout,mRNA,R) but are indirectly stimulated by the activated 

signaling complex DR*.  

 

( )*
*

, , , ,,

, 1 ,in mRNA R out mRNA RmRNA DR

dmRNA R K K DR K mRN
dt

= ⋅ + ⋅ − ⋅ A R  (Equation 32) 

• The dynamics of the receptor-ligand complex (LPSR) depend on the association 

(k1) and dissociation (k2) rates of the complex as well as the rate of formation of 

the activated signaling complex, DR*. 

( ) ( ) (1 3 2
d LPSR

k LPS R k LPSR k LPSR
dt

= ⋅ ⋅ − ⋅ − ⋅ )    (Equation 33) 

• The activated signaling complex (DR*) decays with rate k4 and is proportional to 

the receptor-ligand complex with a rate constant k3. In addition, the bistability in 

the healthy resolution of the system, which is present for a large inflammatory 

stimulus, is provided through the use of a non-linear Hill type function with 

parameter kc.  
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5**
*

3 4 5*1
c

DRdDR LPSRk k DR k
dt A DR

⎛ ⎞⎡ ⎤⎣ ⎦⎜= ⋅ − ⋅ + ⋅
⎜ ⎟

⎟
⎡ ⎤+ ⎣ ⎦⎝ ⎠

    (Equation 34) 

• The pro-inflammatory response (P) is indirectly stimulated by the activated 

signaling complex (DR*) and the energetic response variable (E) and is inhibited 

by the anti-inflammatory signaling component (A).  

( ) ( )*
, *

,,
1 1in P

P E out PP DR

KdP
,K DR K E K P

dt A
= ⋅ + ⋅ ⋅ + ⋅ − ⋅    (Equation 35) 

• The anti-inflammatory signal (A) is stimulated by the activated pro-inflammatory 

response (P) and the energetic response variable (E) and decays with rate Kout,A 

( ) ( ), , , ,1 1in A A P A E out A
dA K K P K E K
dt

= ⋅ + ⋅ ⋅ + ⋅ − ⋅ A
  

 (Equation 36) 

• The energetic response (E) is stimulated indirectly by the pro-inflammatory 

response (P) and indirectly counter-regulated by the anti-inflammatory component 

(A) 

( ),
,1in A

E P out E

KdE
,K P K E

dt A
= ⋅ + ⋅ − ⋅      (Equation 37) 

  

Using parameter estimation techniques the parameter values are estimated from the 

experimental data and are listed in Table 1:  

 

 

 

 
 



24 
 

Parameter value Parameter value Parameter value 
1 ,1lpsk  4.5 9 , ,in mRNA RK  13.467 17 ,in EK  0.05 

2 ,2lpsk  6.79 10 , ,out mRNA RK  0.211 18 ,out EK  0.234 

3 synk  0.02 11 ,P EK  25.191 19 ,in AK  0.256 

4 1k  3 12 4k  0.33 20 ,out AK  0.86 

5 *,P DR
K  15.717 13 ck  3 21 ,A EK  2.291 

6 ,E PK  3.644 14 ,in PK  0.093 22 *,mRNA DR
K  13.467

7 2k  0.04 15 ,out PK  2.428   

8 3k  2 16 ,A PK  0.022   
Table 1. Estimated values of the parameters based on self-limited response data (Taken from Foteinou et al 

(22)) 

More details on the model development can be found in the publication by 

Foteinou et al (22). For the implementation of the sensitivity analysis, the free software 

SimLab, (Simulation Laboratory for Uncertainty and Sensitivity Analysis, JRC, Italy, 

2006) was used.  

 

3.3. Application of global sensitivity analysis  

The model consists of 22 uncertain parameters and 8 output variables. The 

application of a variance based method typically requires about 15 hours on a typical 

personal computer. This is a small time compared to the time needed to perform 

sensitivity analysis on more complex models. For this reason it was decided not to 

implement an initial screening with the Morris screening method. 

All input variables for this model include empirical parameters calculated through 

parameter estimation methods. Such parameter estimation methods produce parameter 

sets with high uncertainty, which is addressed with the application of sensitivity analysis. 
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The uncertainty in the input parameters is represented by the assigned distributions. The 

input parameter probability distribution functions that were chosen for the Sobol variance 

based method were intuitive.  

• Typically the distribution function for each of the 22 inputs was selected as a 

normal distribution with a mean value equal to the nominal value from the 

parameter set. The standard deviation of the normal distributions was equal to 

10% of the mean value.  

 

Following the selection of the 22 input factor distributions, 1440 input vectors 

were generated using quasi-random numbers and the Sobol LPT sampling schemes which 

have been shown to perform better than other sampling methods. Two 60 by 22 random 

input matrices are generated and 60(22+2)=1440 input vectors are created. Each one of 

the 1440 input parameter vectors contains 22 uncertain input parameters and is used as an 

input vector for model evaluation. The model is simulated for the 24 hours required for 

the endotoxin stimulus to be resolved in the system.  

The Sobol first and total order sensitivity indices are calculated for each time 

point (1 hour), capturing a dynamic profile and the effect of each input parameter on a 

certain output can be quantified through the progression of the simulation.   

Performing a variance based sensitivity analysis to this model sheds light to any 

interactions between input parameters that might affect the model outputs. From the 

obtained results, qualitatively, the first order sensitivity indices are high for the first 4 

hours of the simulation and become small after hour 5, when the system has resolved the 

inflammatory stimulus. On the contrary the total order sensitivity indices are small for the 
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first 4 hours of the simulation and become larger when the system has resolved the 

inflammatory stimulus. This observation can lead to the conclusion that in this case 

study, input parameters directly affect the resolution of the inflammation during the first 

4 hours, later however interactions between the input parameters are what drive the 

system to its homeostasis.  

Figures 2-7 show the time-dependent profile of first (Si) and total order (STi) 

sensitivity indices for the LPS-receptor activated complex (LPSR), receptor (R) and anti-

inflammation (A) responses. The cumulative area plots only include the parameters that 

are found significant for the specific outputs. The other parameters have very small 

sensitivities, which are negligible compared to the ones that are plotted. The sensitivity 

indices for the rest of the outputs have similar profiles and they are not shown.  
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Figure 2. Cumulative area plots of the dynamic first (Si) order sensitivity indices for the LPS-receptor 
activated complex (LPSR) output 
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Figure 3. Cumulative area plots of the dynamic total (STi) order sensitivity indices for the LPS-receptor 
activated complex (LPSR) output 
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Figure 4. Cumulative area plots of the dynamic first (Si) order sensitivity indices for the receptor (R) 
output 
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Figure 5. Cumulative area plots of the dynamic total (STi) order sensitivity indices for the receptor (R) 
output 
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Figure 6. Cumulative area plots of the dynamic first (Si) order sensitivity indices for the anti-
inflammation (A) output 
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Figure 7. Cumulative area plots of the dynamic total (STi) order sensitivity indices for the anti-
inflammation (A) output 

 

Through the implementation of the Sobol sensitivity analysis method, the first and 

total order effect that the input parameters have on any of the model outputs are 

quantified. Some of the parameters are found to be more significant than others. However 

a few parameters have no effect during the dynamics of the model. These parameters are 

the dissociation of the ligand-receptor interaction (k2), the kinetic parameter of the pro-

inflammatory response (kAP) and the Hill function parameter (kc). 

This observation raises a question of possible redundancy of these parameters in 

the model. In order to either confirm or refute this assumption, there is a need to 

investigate if the performance and accuracy of the model is affected in the scenario that 

any of these inputs are removed from the model.  
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To test this hypothesis the three parameters are set to 0 and the modified model 

responses are qualitatively compared to the original ones. The original model is capable 

of capturing different biologically relevant scenarios regarding the clearance if the 

inflammatory stimulus: a self-limited response, a persistent infectious response, and a 

persistent non-inflammatory response.     

Modifications of the original model were tested with a smaller number of input 

parameters than the original model. The different parameter deletion scenarios were 

implemented and suggest that kc is an important parameter for the model since it models 

the bistable response of the system in different biological scenarios, something which 

was not captured with the sensitivity analysis.  

 

3.4. Sensitivity analysis of initial conditions 

The parameter kc models the bistable behavior of the system when the initial 

endotoxin stimulus is near a critical value and the inflammatory response cannot be 

resolved. For this reason another application of sensitivity analysis is performed, this time 

including the initial value of the LPS as an uncertain parameter.  

The initial value of the LPS was selected to be sampled from a uniform 

distribution between the values of 1 and 4 and all other distributions used for the 

uncertain parameters (Table 1) were the same as the previous study i.e. normal 

distribution with a mean value equal to the nominal value from the parameter set. The 

standard deviation of the normal distributions was equal to 10% of the mean value.  
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Following the selection of the 22+1 input factor distributions, 1500 input vectors 

were generated using quasi-random numbers and the Sobol LPT sampling schemes. Two 

60 by 23 random input matrices are generated and 60(23+2)=1500 input vectors are 

created. Each one of the 1500 input parameter vectors contains 23 uncertain input 

parameters is used an input vector for model evaluation. The model is simulated for the 

24 hours to compare with the results of the previous case study.  

In order to visualize the results in the simplest possible way, the area-under-the 

curve of the dynamic profiles of first and total order Sobol sensitivity indices was 

calculated. In the following Figure 8, the heat map contains the area under the curve 

values of the dynamic first order Sobol sensitivity indices. The following heat map is an 

accurate representation that provides a quick correlation between outputs and inputs. 

With a quick look one can determine which parameters have no effect on the output.   

From studying the heat map, it can be seen that the parameter kc is now found to 

have a significant effect  on some of the outputs. This proves that in order to have a more 

accurate sensitivity analysis application, it is required to include a sampling range in 

which the simulations would be bistable.   

In almost all the responses, the decay rate of the activated complex DR* 

(parameter k4) controls the dynamics of the model outputs of the pro-inflammatory (P), 

anti-inflammatory (A) and energetic responses. This would be expected and is 

mechnistically correct since the activated complex is what activates the pro-inflammatory 

response and in turn activates the anti-inflammatory response.  
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Figure 8. Heat map containing area under the curve values of the dynamic first order Sobol sensitivity 
indices. 
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Parameter k2 is still found to have no effect on the model responses. Despite its 

important mechanistic role in the model, this is probably the issue of an incorrectly 

defined parameter set. The model can be recalibrated, a new parameter set that captures 

the same dynamics can be found but the parameters will have to have sensitivity indices 

in agreement with the experimental observations. 

 

3.5. Conclusions 

In many dynamic systems, the sensitivity of the transient behavior of the system is 

of particular interest and the most straightforward approach is to calculate the sensitivity 

indices along the output trajectory (23). Time-varying Sobol sensitivity indices were used 

in this work in order to extend the global sensitivity analysis for a dynamic process. The 

sensitivity indices are calculated for the time points of interest and provide an 

understanding to which parameters are the most important at those time points and need 

particular attention during parameter estimation.  

By using this approach, changes in the effect of one parameter over an entire time 

interval were assessed and the input parameters that mostly control an output variable 

were identified.  

Some input parameters were found to a larger effect in the output than others. 

However a few parameters had no effect during the dynamics of the model. A few case 

studies of biologically relevant scenarios, eliminating the insignificant parameters, were 

tested to validate model accuracy. Two of the three parameters were found to have higher 
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sensitivities in the other biologically relevant case studies. To verify this observation 

additional sensitivity analysis was performed. The initial value of LPS was used as an 

uncertain parameter, and scenarios that capture the observed bistability when large 

inflammatory stimulus is administered were investigated.   

Despite this investigation, parameter k2 was still found to be redundant. This 

however is mechanistically incorrect since the parameter k2 is essential for the model 

because it describes the dissociation rate of the ligand-receptor complex. The original 

model however is able to capture the expected dynamics of the process because the other 

elements of the specific differential equation, i.e. the new receptors produced from 

mRNA transcripts, are able to account for all the required unbound receptors during the 

inflammatory stimulus resolution. 

The low sensitivity of some parameters, despite their essential mechanistic role in 

the model, raises the concern of incorrectly defined parameter sets. A new set of 

parameters would have to be estimated, such that the new sensitivities indices would be 

in agreement with the experimental observations. 
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4.  SENSITIVITY ANALYSIS OF CONTINUOUS TABLET 

MANUFACTURING 
 

4.1. Introduction 

 

Currently, tablet manufacturing in the pharmaceutical industry is performed in 

batch mode where the process control is based on the human operator’s knowledge and 

experience. This leads to added variability in the properties of the resulting tablets, which 

would be minimized if there was more knowledge on how the product attributes are 

affected by some of the material properties and the process parameters. The transition to 

a continuous manufacturing process can be successful when the effects of material 

properties, operating parameters and environmental conditions on the product quality are 

well understood for each sub-process.  

In sensitivity analysis the uncertainty in a complex model is quantified and the 

inputs and initial conditions that are critical to the outputs are identified. Applying global 

techniques like the Morris screening method and the Sobol variance based method in a 

dynamic fashion for the developed flowsheet simulation does not only identify the most 

significant variables and parameters, but can also assess the model form. In the case of an 

integrated process in which unit operations interacts with each other, a variation of a 

parameter in one operation most likely will affect the quality of the output stream in 

another process. In addition, the model parameters which are developed from noisy 

experimental data, uncertain input streams and control or design variables will cause a 
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high uncertainty in the whole process and the application of sensitivity analysis will 

benefit the final design in being more robust and realistic. Global sensitivity analysis 

techniques in flowsheet simulation models have been applied in the past for  flowsheet 

simulation of solid processes (24) and bio-manufacturing processes in individual unit 

operations as well as an extension to the entire flowsheet process (25).  

In the present work, the complexity of how interactions between the different unit 

operations of the tablet manufacturing flowsheet simulation affect the output resembles 

multi-compartment models in systems biology, in which complex interactions of 

variables in different compartments affect the overall output. This challenge has been 

tackled in systems biology (26, 27) and both quantitative and qualitative results show 

how different variables of a process dynamically affect an output. Time-varying 

sensitivity indices are used in order to extend the global sensitivity analysis for a dynamic 

process. The time-varying sensitivity indices are calculated for time points that are of 

interest to the modeler and provide insight to which parameters are the most important at 

those time points, how long after the perturbation is completed the outcome is still 

influenced by the perturbation and which parameters are the most critical for a certain 

output. By using this approach, changes in the effect of one parameter over an entire time 

interval can be assessed and the output variables and compartments that are most 

sensitive to a perturbation can be identified. By accomplishing this analysis for the 

flowsheet simulation, the unit operation that requires particular attention and control 

during the process can be identified.  

The first step for the application of sensitivity analysis to a model is the use of the 

available data and knowledge on each one of the input parameters to assign probability 
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density functions that represents our knowledge. If the nominal value for a parameter is 

known then normal distributions are assigned, setting the nominal value as the mean and 

selecting a standard deviation according to how uncertain that parameter is. Monte Carlo 

techniques with the use of random or pseudo-random numbers are used to sample from 

the input parameter distributions, an input matrix is generated and multiple model output 

evaluations are performed. The results of these evaluations are used to assess the 

influence or relative importance of each input parameter on the output variable (1, 28). 

The model is evaluated at different time points and sensitivity indices are calculated at 

every time point of interest giving a dynamic character to the sensitivity analysis. 

Different scenarios, such as process startup and process steady state can be investigated 

as well as parameter perturbations during each scenario and the quantification of the 

effect the perturbation has on the product quality. 

 

4.2. Continuous tablet manufacturing model 

Direct compaction (Figure 9) is the simplest method to produce pharmaceutical 

tables with the least number of steps and unit operations. In this case study (29), 

Acetaminophen tablet production is simulated, with the following formulation: 3% 

Acetaminophen (API), 96% Avicel (Excipient) and 1% MgSt (lubricant). The system has 

three feeders, one for each ingredient of the tablet, which feed the ingredients to the 

mixer where they are blended. The mixed powder exits the mixer and is sent to a hopper 

which feeds the tablet press through the feed frame forming the acetaminophen tablets. 

The dynamic flowsheet model is built in gPROMS, setting the appropriate material 
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properties and parameter values. For the implementation of the sensitivity analysis, the 

free software SimLab developed at the Joint Research Centre (Simulation Laboratory for 

Uncertainty and Sensitivity Analysis, JRC, Italy, 2006) was used.  

 

Figure 9. Model of direct compaction (29) 

 

Following is a description of the equations of the unit operations used. 

4.2.1. Feeders 

The purpose of a feeder in a continuous manufacturing processing line is to 

supply raw materials in consistent and desired flowrates to the next processing unit 

operation. The typical gravimetric feeder comprises of a hopper that can hold up to a 

certain amount of powder material, which is fed to the next unit operation through a 
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rotating screw. The loss in the weight of the material contained in the feeder over a 

period of time calculates the output feedrate. The desired output feedrate can be achieved 

by controlling the rotating screw rotation rate or by using different screw designs or sizes 

for materials with different powder properties, however only the rotation rate can be 

modified during a continuous operation and a potential change in the feeder screw type or 

size would require the unit operation to be offline. The change in total weight can capture 

any material accumulation in the feeder because the exact amount of material provided to 

the next unit operation is monitored.  

A first order delay differential equation (Equation 38) can be used to describe the 

model and capture the feeder dynamics. The parameters of this model consist of the 

process gain parameter (K), the time constant (τ), and the time delay factor (θ). 

Throughout the process of feeding, the material is assumed to retain its original particle 

size distribution and bulk density.  

Fout (s) = Ke−θs

τ s+1
   (Equation 38) 

 

4.2.2. Mixers 

Currently there are several modeling approaches for powder mixing processes and 

different models are used for a specific use. In this case a multi-dimensional population 

balance model (30-32) is used to model blending processes that accounts for n=2 solid 

components (active pharmaceutical ingredient and excipients), two external coordinates 
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(axial and transverse directions in the blender) and one internal coordinate (size 

distribution due to segregation).  

The equation (Equation 39) is shown below:  

1 2 1 2
1 2 1 2 1 2

1 2 1 2

( , , , , ) ( , , , , ) ( , , , , ) ( , , , , )

( , , , , ) ( , , , , )formation depletion

F n z z r t dz dz drF n z z r t F n z z r t F n z z r t
t z dt z dt r dt

n z z r t n z z r t

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡+ + +⎢ ⎥ ⎢ ⎥ ⎢∂ ∂ ∂ ∂ ⎣ ⎦⎣ ⎦ ⎣ ⎦
= ℜ −ℜ

⎤
⎥  

          (Equation 39) 

where is the spatial coordinate in the axial direction, is the spatial coordinate in 

the radial direction, r is the internal coordinate that depicts particle size and 

1z 2z

2n =  to 

indicate presence of two components (Active Pharmaceutical Ingredient and excipient). 

1dz
dt  

and 2dz
dt  

represent the axial and radial velocity respectively.  

 

4.2.3. Hoppers 

Hoppers, an essential and supplementary component of tablet presses, are unit 

operations that collect powder from an upper opening and feed the material through a 

bottom orifice to the next unit operation of the process. Hopper model development has 

been performed since the 1920s and through stress, velocity and density analysis of the 

flowing material (33-35), it has been shown that in steep-walled hoppers, the outflow is 

independent of the contained material height but depends on the outlet diameter and 

mean particle diameter (36).   
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A carefully designed hopper (height, angle and outlet diameter) will take into 

account the properties of the processed raw material and will operate in a regime where 

all the material within the hopper will move towards the exit orifice with a constant 

flowrate and material stagnation is avoided. A feeding screw or a tablet press feedframe 

regulate and control the flow rate with which tablets or capsules are produced. 

The mass balance on the hopper system is the following (Equation 40): 

in out
dm F F
dt

= −    (Equation 40) 

Where m  is the mass holdup inside the hopper.  

The height of the material inside the hopper can be correlated to the mass holdup through 

the following relations (Equation 41): 

( )m H A H ρ= ⋅ ⋅    (Equation 41) 

Where H is the height of the material inside the hopper, A is the area of the hopper and ρ 

is the bulk density of the material, which we can consider to be constant.  

 

4.2.4. Tablet Press  

The rotary tablet press which is most commonly used in the pharmaceutical 

industry and has been studied extensively in the past (37-40), is the next and final unit 

operation in the tablet manufacturing production line. Small amounts of blended material, 

after passing through a hopper, enter a small chamber of rotating blades called the “feed 
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frame” that fill the dies of the tablet press and are compressed to tablets of predefined 

size and shape.  

Because the purpose of this flowsheet model is to optimize and capture the 

dynamics of the process without being too computationally intensive, in this work the 

tablet press is a simple empirical model based on the Heckel equation (38, 41) where the 

compression force of the powder is related to the porosity of the produced tablets with the 

following equation (Equation 42): 

1ln kP A
ε
= +    (Equation 42) 

Where ε is the tablet porosity, P is the compression force, and k and A are 

empirical material parameters, calculated through experimentation. Dissolution and 

bioavailability, two properties directly affecting the quality of a produced tablet, are 

highly correlated to the tablet porosity.   

The average residence time of the material in the feed frame is correlated to the die disc 

speed (x1) and the feed frame speed (x2) from the following equation (Equation 43):  

211222110 timeresidence Average xxbxbxbb +++=  (Equation 43) 

 

4.3. Sensitivity analysis application 

To successfully apply the methodology of dynamic sensitivity analysis, the model 

will have to be evaluated multiple times at multiple time points. The computational time 
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and expense to evaluate the model multiple times at multiple time points and calculate the 

sensitivity indices for these time points for every single input parameter with regards to 

the output parameters is enormous in the scope of this study. Additionally the 

mathematical complexity of the integrated process of direct compaction sets a very 

important limitation. Therefore it is important to come up with a shortlist of important 

factors for this case study. A screening method is a computationally cheap experiment 

requiring a small number of model evaluations helping to identify which parameters are 

important. It can be efficiently applied to methods containing up to hundreds of inputs 

factors.  

 

4.3.1. Screening based sensitivity analysis 

As a first step, the first two levels of the direct compaction model were isolated 

from the rest of the direct tablet compaction model. The sub-model contains three feeders 

and the mixer; a feeder for the active pharmaceutical ingredient, a feeder for the excipient 

and a feeder for the lubricant as well as the multi-dimensional population balance model 

of the mixer. The feeders only have the particle size distributions and bulk densities as 

input parameters, however the mixer has a large number of parameters since for each of 

the bins that the mixer is discretized in, there are axial, radial and backward fluxes as 

input parameters. In this case study the mixer is discretized in 36 compartments giving a 

total of 108 input parameters. In total the 3-feeder/1-mixer sub-model contains 114 input 

parameters, which are the bulk densities and the mean particle sizes of the active 

pharmaceutical ingredient, excipients and lubricant and axial/backward/radial flux 

coefficients for each of the 36 compartments in which the mixer is divided. The bulk 
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densities and the mean particle size distributions can be found in the references and the 

flux coefficients are calculated through DEM simulation.  

The Morris screening sensitivity analysis technique was used because the 3 

feeder-1 mixer model contains a large number of input factors. Due to its economy in 

comparison with other sensitivity analysis methods, it requires fewer runs than alternative 

methods and provides us with a qualitative measure of importance. Through this method 

the average and standard deviation of the elementary effects evaluated at various time 

points, in this case from time 0 until the system reaches a steady state at 1200 seconds. 

This approach has been shown to identify the same inputs as influential as the Sobol 

method, which will be used extensively in this work to quantify the importance of input 

parameters (20). 

Initially the sampling scheme had to be chosen and the parameter distributions 

selected in order to avoid negative values that were to be sampled. The 114 input 

parameters included bulk densities of the active pharmaceutical ingredient, the excipient 

and the lubricant, mean particle sizes of the active pharmaceutical ingredient, the 

excipients and the lubricant and 108 mixer fluxes (36 forward, backward and radial 

fluxes). The fluxes values were initially selected as the mean fluxes of particles that were 

simulated in a 6x6 finite element mixer. 
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 output 
1 mixer output RSD 

2 mixer output API concentration 

3 mixer output average bulk 
density 

4 API feeder output feed flow 

5 excipient feeder output feed 
flow 

6 lubricant feeder output feed 
flow 

Table 2. Outputs for Morris screening sensitivity analysis 

 input mean value distribution SD/ bounds units 
1 API bulk density 600 normal 60 kg/m3 
2 excipient bulk density 325 normal 32.5 kg/m3 
3 lubricant bulk density 160 normal 16 kg/m3 
4 API mean particle size 3.00E-05 normal 3.00E-06 m 
5 excipient mean 

particle size 
2.00E-04 normal 2.00E-05 m 

6 lubricant mean particle 
size 

2.00E-05 normal 2.00E-06 m 

 
7-114 

 
mixer flux coefficients 

 
varies 

 
uniform 

[0.95fc,1.05fc] 
or 

[0,10.00E-05] 

 
- 

Table 3. Inputs for Morris screening sensitivity analysis 

 

The input parameter distribution functions that were chosen for the initial Morris 

screening method included crude pdf’s that were intuitively selected (Table 3).  

 

• For the bulk densities and the mean particle sizes, normal distributions with a 

mean equal to the nominal bibliographic values and a standard deviation equal to 

10% of the nominal value were selected.  
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• For the 108 mixer fluxes, uniform distributions were selected in order to avoid 

possible negative values in the sampling, which would affect the simulation 

results.  

o The uniform distributions that were selected for non-zero flux values had a 

range from 95% of the experimental flux value to 105% of the 

experimental flux value.  

o Many of the 108 mixer fluxes included fluxes with zero values. For these 

fluxes, uniform distributions with a range from 0 to 10-5 were assigned. 

 

A sample of 1150 input vectors was generated from the 114-dimensional input space and 

the model was then evaluated for each of the input samples producing 1150 model 

outputs. The model was evaluated using gPROMS from t = 0 until t = 1200 seconds, the 

time the system reaches a steady state, reporting the output values every 20 seconds. The 

following figure (Figure 10) shows the 1150 model output ensembles. The outputs of the 

relative standard deviation, API concentration and average bulk density show 

considerable variation in the output due to the uncertainty introduced in the input 

parameters. It can also be seen from the output ensembles that the feed flows for API 

feeder, excipient feeder and lubricant feeder do not change despite the perturbations in 

the corresponding bulk densities and mean particle sizes. An explanation for this could be 

that the perturbations are too small to see an effect on the feeder output feed flows.    
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Figure 10. : Ensemble of 1150 model evaluations sampled for the Morris screening method 

 
 

Following the model evaluations, the Morris method was applied to the simplified 

3-feeder, 1-mixer model using the input parameter distributions described above. A 

design matrix was constructed and the model was evaluated for each of the 

( ) ( )1 10 114 1 1150r k + = + =  input vectors where k is the number of parameters, p is the 

number of levels of each parameter, and r, the number of repetitions. Previous studies 

(20) have suggested that good results can be obtained using r = 10 and p = 4 and for this 

reason these values were used. 
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The following figure (Figure 11) shows the results of applying the Morris method 

to our model. Since the perturbations have no effect in the feed flows of API feeder, 

excipient feeder and lubricant feeder, then it was not needed to further apply the Morris 

method to these outputs. Only the mixer output RSD, mixer output API concentration and 

mixer output average bulk density were further investigated since from the model 

ensembles we can see the variation of every model run caused from the perturbations in 

the input factors. The scatter plot is showing the mean of the elementary effect against the 

standard deviation for each parameter for each of the inputs. Therefore it can clearly be 

identified that there are some parameters with a significant relative effect compared to 

other uncertain parameters. 

The Morris screening method was applied to a wide range of time points (40, 200, 

400, 600, 800, 1000 sec) to try and investigate the dynamic nature of the process. In all 

time points, for all of the outputs there same parameters were qualitatively identified as 

significant. However for the time point selected to be displayed is 400 seconds because at 

that time the model is very close to steady state and the sensitivity analysis results that we 

extract can represent the overall behavior.  
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Figure 11. The mean μ, in the x-axis, vs the standard deviation σ, in the y-axis, of the elementary 

effects for each input in regards to the outputs of mixer output relative standard deviation, mixer output 
average bulk density at 400 seconds. 

 

The parameters found to be important are the bulk density of API (parameter 1), 

bulk density of excipient (parameter 2), mean particle size of API (parameter 4) and the 

mean particle size of the excipient (parameter 5). From the results it is shown that the 

Morris method identifies the 108 mixer flux parameters as insignificant. In this case, this 

does not mean that these parameters are redundant but it denotes that for the outputs we 

chose to consider in this analysis, which are in their majority bulk output stream 
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properties, these parameters are not significant compared to the rest of the uncertain input 

parameters.  The absence of the lubricant related input parameters (bulk density of 

lubricant -parameter 3 and mean particle size of lubricant-parameter 6) denotes a 

parameter unimportance in the relative standard deviation (output 1), API concentration 

(output 2) and average bulk density (output 3) output which can be explained from the 

small amount (1%) of lubricant used in the formulation, compared to the larger amounts 

of the API (3%) and the excipient (96%). 

By utilizing the Morris screening method the mixer input flux parameters were 

found to be insignificant to the model output streams, therefore before proceeding to the 

next step of the analysis their values can be fixed to the previously calculated values.   

 

4.3.2. Variance based sensitivity analysis  

Through the initial screening with the Morris screening method, 4 input 

parameters were identified as important relative to the mixer model parameters, whose 

effects were deemed insignificant in this case study. Additionally, parameters directly 

related to the lubricant i.e. the bulk density of lubricant and the mean particle size of 

lubricant, were found to have no effect on the model outputs mainly because of the small 

percentage of lubricant used in the powder formulation. However if we continue using 

the lubricant related parameters as uncertain inputs in the rest of the sensitivity analysis 

study, it will not affect the computational time and expense significantly.  

The next step is the application of the methodology for dynamic sensitivity 

analysis to the whole integrated process of direct compaction. The outputs for which the 
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global sensitivity analysis is performed are listed in Table 4 and include final properties 

of the produced tablets as well as intermediate product properties. 

All possible inputs for this case study include parameters, design variables and 

process conditions. Material properties for the three ingredients (particle size 

distributions, bulk densities), model parameters (axial, radial and backward fluxes for 

each of the 36 mixer compartments, Heckel model parameters, empirical parameters of 

feeder model), design variables (height, aperture diameter of the hopper) and operating 

process variables (mixer rpm, feed frame rotation rate, tablet press compaction force). 

After the initial Morris screening method it is decided that the 108 mixer flux parameters 

are fixed to their calculated values and the global sensitivity analysis is conducted for the 

11 input parameters listed in Table 5. Material properties, design variables and operating 

process variables are included in the analysis to investigate how uncertainty in the 

material properties and perturbations in the control of the process will affect the overall 

product quality.  
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 output 
1 mixer total output flowrate 

2 mixer output bulk density 

3 mixer output RSD 

4 mixer output API concentration 

5 hopper output density 

6 hopper output RSD 

7 hopper output API concentration 

8 hopper mean residence time 

9 hopper mass holdup 

10 hopper height 

11 feed frame mean residence time 

12 tablet porosity 

13 tablet API concentration 

Table 4. Outputs for Sobol global sensitivity analysis 

input mean value distribution SD/ bounds units 
1 API bulk density 600 normal 50 kg/m3 
2 excipient bulk density 325 normal 35 kg/m3 
3 lubricant bulk density 160 normal 10 kg/m3 
4 API mean particle size 3.00E-05 normal 5.00E-06 m 
5 excipient mean particle 

size 
2.00E-04 normal 2.00E-05 m 

6 lubricant mean particle size 2.00E-05 normal 5.00E-06 m 
7 mixer rpm - uniform [5-15] rpm 
8 Die disc speed - uniform [0.509-1] - 
9 Feed frame rotation rate - uniform [0.33-1] - 
10 Tablet press compression 

force set point 
- uniform [8-12] KPa 

11 Hopper aperture diameter - uniform [0.05-0.06] m 
Table 5. Inputs for Sobol global sensitivity analysis 
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The uncertainty in the input parameters is represented by the assigned 

distributions (Table 5).  The input parameter probability distribution functions that were 

chosen for the Sobol variance based method were found in the literature. Unlike the 

Morris method where the assigned distributions were intuitive, in this scenario the 

distributions have to be based on the typical operating and design condition ranges of the 

processes, to test the model capabilities in a realistic scenario.  

 

• For the bulk densities and the mean particle sizes, normal distributions were 

assigned with a mean equal to the nominal values with a standard deviation equal 

to values found in literature.  

• For the design and operating process variables, uniform distributions were 

assigned with values based on the typical industrial operating ranges.  

 

Following the selection of the 11 input factor distributions, 1040 input vectors 

were generated using quasi-random numbers and the Sobol LPT sampling schemes. Two 

80 by 11 random input matrices are generated and 80(11+2)=1040 input vectors are 

created. Each one of the 1040 input parameter vectors contains 11 uncertain input 

parameters and is sent to gPROMS for model output evaluation. The flowsheet is 

simulated for a total of 1500 seconds with data recorded every 10 seconds.  

Calculations for the Sobol first and total order sensitivity indices are performed 

for each time point, capturing a dynamic profile for the sensitivity indices. From the 

calculations, first and total order sensitivity profiles are obtained, from which the effect 
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of each input parameter on a certain output through the progression of the simulation can 

be quantified.   

Most outputs have dynamics that are affected from one or two parameters 

throughout the simulation. However, performing a variance based sensitivity analysis to 

this model would provide insight to any possible interactions between input parameters 

that might affect the model outputs. In particular, total sensitivity indices are found to be 

very similar, both qualitatively and quantitatively, to the first order indices. This 

observation can lead to the conclusion that in this case study there are no significant 

interactions between input parameters affecting the model outputs. 

An easy way to visualize the results is through an intensity plot of the effects of 

inputs to each output. In the following figure (Figure 12), the total order Sobol sensitivity 

indices are displayed at 1000 seconds, when the system has reached steady state. The first 

order sensitivity indices (Si) are very similar to the total order sensitivity indices (STi), 

showing that there are no interactions between input parameters, therefore the following 

intensity plot is considered to be an accurate overall representation of the input parameter 

effects on the outputs as calculated using the global sensitivity analysis procedure.  
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Figure 12. Intensity plot of total sensitivity indices of inputs (Table 5) to outputs (Table 4) at steady 
state 

 

From this heat map it can be seen that certain outputs depend on a single input 

while some inputs have no effect on any of the studied outputs. For example, tablet 

porosity only depends on the compaction pressure something that can be expected since 

the current flowsheet model uses a tablet press equation, which only takes the compaction 

pressure into account. In this occasion such an application of sensitivity analysis can 

assist in the identification of missing or unwanted correlations. 

Sensitivity analysis is also performed to validate if the developed model is 

accurate and agrees with experimental evidence. In the total order sensitivity profile 
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(Figure 13) of the relative standard deviation of the mixer output stream, the effect of the 

mixer rotation rate is found to be insignificant, contrary to experimental evidence. The 

mean particle size and bulk densities of the API and the excipient are found to be 

significant, overshadowing the effect of the mixer rotation rate.  This could be an 

example of either an improperly selected input parameter distribution for the mixer 

rotation rate, or a model that does not properly capture the significance of the mixer 

rotation rate.  

The fluctuations in the sensitivity indices that are evident in the initial stages of 

the simulation are a result of the transition time needed until the system within the mixer 

reaches steady state conditions. As the system reaches steady state the fluctuations 

disappear.  
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Figure 13. Dynamic sensitivity analysis profile of mixer output Relative Standard Deviation 
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The attribute that is perhaps the most representative of the produced tablet quality 

is the final API concentration. The dynamic sensitivity analysis profile of the final API 

concentration (Figure 14) reveals that the most significant parameter for this output is the 

mean particle size of the excipient. This can be explained from the high concentration of 

the excipient in the tablet powder formulation (96%). Between 1200-1500 seconds the 

system has reached steady state and the variations in the sensitivity indices are likely due 

to numerical noise that is often encountered in flowsheet simulations.  
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Figure 14. Dynamic Sensitivity Analysis for tablet API concentration 
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The dynamical effect of the API feeder refill at time t=1000 sec is studied as the 

second scenario in the case study, and comparison is performed with the results obtained 

from the first scenario. The simulation is performed for 2200 seconds, time needed for 

the system to resume steady-state operation after the feeder refill perturbation. 

For most output parameters the dynamic sensitivity profiles are similar to the first 

scenario, however some other profiles are very different (Figure 15), identifying new 

critical parameters for the tablet API concentration. Comparing the dynamic sensitivity 

profiles for the tablet API concentration obtained from the two scenarios, one can see that 

process control parameters such as the mixer rotation rate and feed frame speed 

overshadow the effect of material properties in the tablet API concentration. These two 
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inputs control the mean residence time of the material inside the mixer and the feed 

frame, therefore affecting the time necessary for the tablet API concentration to reach a 

new steady state. These results also point out possible points of particular attention for 

process control during a feeder refill in the process. 
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 Figure 15. (a) First order Si indices, (b) total order ST indices for tablet API 
concentration after an API feeder refill at t=1000sec  

 

Finally, when the first order and the total order indices are compared, there is an 

obvious large difference in the sensitivities for the mixer rotation rate and feed frame 
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speed, verifying that the interactions with other parameters are the cause for the variation 

in the tablet API concentration. The difference between the values of first order Si and 

total order sensitivities STi is a measurement of how much the variation caused by a 

parameter is through interactions with other parameters. The total order sensitivity 

indices STi can be greater than 1 because the various interactions are counted multiple 

times (1). 
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5.  CONCLUSIONS 
 

 

Biological systems usually contain a large number of components that interact 

with each other and systems biology with the integration of most of these components 

into a single model uses mathematical modeling to define and analyze the structure of 

such a system. Sensitivity analysis should be an important part during the development 

and validation of a computational systems biology model. It allows the quantitative and 

qualitative investigation of variation and perturbation effects on the system behavior. 

In the first part of this work, the application of time-varying global sensitivity 

analysis techniques is performed in a mathematical model of human endotoxemia. 

Through sensitivity analysis the parameters or components that have little effect on the 

model but are experimentally observed to be significant for the system, are identified. 

The obtained results imply the need for better parameter estimation, after further 

experimentation, or model modifications that will better capture the experimentally 

observed system dynamics. 

The results of sensitivity analysis of biological systems can enhance our 

understanding of the system by confirming hypotheses which have been observed 

experimentally or even suggest new mechanisms that can be verified through a new set of 

experiments. Additionally in the future, sensitivity analysis can be used in computational 

models to suggest potential critical points of control in the system, identifying 

components that can potentially be targeted by drugs for therapeutic intervention.  
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In the second part of this work, the complexity of how interactions between the 

different unit operations of a continuous tablet manufacturing flowsheet simulation affect 

the overall product quality is studied. Both quantitative and qualitative results reveal how 

different uncertain variables of a process dynamically affect an output through the use of 

time-varying global sensitivity indices. Thus the most important and critical parameters 

for a certain output are identified at different time points. Such an approach of global 

sensitivity analysis is not only used to draw significant conclusions about the interactions 

between specific uncertain inputs to outputs, but also points out necessary correlations 

that the model fails to capture and identify points of process control during unavoidable 

perturbations in the process.  
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