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ABSTRACT OF THE DISSERTATION

Exploiting Phase-Change Technology in Server Memory

Systems

by Luiz Eduardo da Silva Ramos

Dissertation Director: Ricardo Bianchini

Main memory capacity is becoming a critical issue for modern server systems.

Unfortunately, current trends suggest that meeting these capacity requirements using

DRAM will not be ideal. DRAM consumes significant amounts of energy (idle, refresh,

and precharge energies) and will soon reach its density limit.

Many researchers in industry and academia point to Phase-Change Memory (PCM)

technology as a promising replacement for DRAM. PCM is byte-addressable as DRAM,

but presents higher density and lower idle power consumption than DRAM. However,

PCM is also slower than DRAM and has limited endurance. For these reasons, hybrid

memory systems that combine a small amount of DRAM and a large amount of PCM

have become attractive.

In this dissertation, we propose two hybrid memory systems for servers. The

first system (called Rank-aware Page Placement or RaPP) is a hardware-driven page

placement policy. The policy relies on the memory controller (MC) to monitor access

patterns, migrate pages between DRAM and PCM, and translate the memory addresses

coming from the cores. The second system (called Rank-aware Cooperative Cache or

RaCC) is a software-driven policy for object placement in server clusters that implement

cooperative memory caches. RaCC monitors object popularity and leverages that
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information in placing the objects. Our extensive results show that our hybrid memory

systems provide robust and consistent memory performance without sacrificing energy.

Based on our experience and results, we conclude that PCM is a promising main

memory technology for future servers, especially when combined with a small amount of

DRAM. However, such hybrid designs will require careful data placement and migration

for best performance and robustness.
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Chapter 1

Introduction

Memory capacity is becoming a scarce resource in modern server systems, as the number

of CPU cores increases, application and thread concurrency escalate, virtual machines

require simultaneous co-location of large working sets in main memory, and data objects

grow in size and quantity [28, 82]. Future projections suggest that at current rates,

server systems will meet a “memory capacity wall”, where memory capacity will limit

the performance of servers [50, 63].

Unfortunately, current trends suggest that meeting the future capacity requirements

using DRAM will not be ideal. DRAM exhibits low access times, but consumes

significant amounts of energy (idle, refresh, and precharge energies). As a result, the

amount of energy consumed by the memory is approaching (and sometimes surpassing)

that consumed by the processors in many servers [4, 48]. Moreover, DRAM’s storage

elements are reaching their scalability limit. According to the latest ITRS report,

DRAM will not scale below the 21nm technology node [37]. The alternative of adding

memory modules is not cost-effective [10,72], increases power consumption significantly

[27, 55], and may be impossible due to design constraints (e.g., DDR3 supports at

most two memory modules per channel) [51]. Thus, since DRAM is the dominant main

memory technology, limiting DRAM chip densities ultimately jeopardizes the scalability

of server memories.

For these reasons, architects have started to consider emerging memory technologies

as potential replacements for DRAM [20, 24, 31, 47, 49, 85]. One of the most mature

candidate technologies is Phase-Change Memory (PCM) [47, 67, 89, 90]. PCM is byte-

addressable, consumes little idle energy, does not require refreshing or precharging

(its contents are persistent), and exhibits access times in the nanosecond range.
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Furthermore, PCM cells have feature size comparable to DRAM cells, but can store

more information in the same physical area. However, PCM’s read/write times,

read/write energies, and write endurance are worse than those of DRAM.

1.1 Problem Statement

To overcome the limitations of DRAM and PCM, researchers have proposed hybrid

memory systems that combine small amounts of DRAM and large amounts of PCM

[59, 67, 89, 90]. Those systems can exploit the high performance of DRAM and the

high capacity and scalability of PCM. However, for best performance and robustness,

hybrid memory systems require careful management, as we demonstrate. In addition,

existing approaches fail to leverage higher-level information available the workloads

and services executed on servers. We demonstrate that high-level information can also

benefit performance and robustness, while requiring lower complexity than existing

hybrid memory systems.

1.2 In This Dissertation

In this dissertation, we propose two novel hybrid memory systems that combine

DRAM and PCM. Both our systems seek to improve memory performance and

robustness, without increasing energy consumption significantly. Our first design

manages individual servers that run memory-intensive workloads. Our second design

leverages service-level information in server clusters to attain better performance and

robustness for I/O-intensive workloads. In fact, it entails the first study of the

implications of PCM and hybrid main memory systems for server clusters.

1.2.1 Rank-aware Page Placement

Our first design comprises a sophisticated memory controller (MC) that implements

a page placement policy called “Rank-based Page Placement” (RaPP). The policy

efficiently ranks pages according to popularity (access frequency) and write intensity,

migrating top-ranked pages into DRAM. For robustness, our MC may disable RaPP
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when it is unlikely to produce benefits.

We evaluate our memory system design and RaPP with regard to energy,

performance, and endurance, using detailed simulations. For comparison with our

system, we simulate two state-of-the-art hybrid memory designs [67, 89].

1.2.2 Rank-aware Cooperative Cache

Our second design targets server clusters that implement cooperative memory caches.

These caches are extensively used in modern Internet services, and are a great target

for hybrid memory systems, since they require low latency and high memory capacity

at the same time.

Our design, called “Rank-aware Cooperative Cache” (RaCC), is a software-driven

object placement policy for hybrid memory systems in server clusters. RaCC monitors

object popularity and leverages that information in placing the objects across servers

and memory technologies. Specifically, RaCC concentrates popular cached objects in

the collective DRAM of the server cluster, while taking advantage of PCM’s large

capacity to increase the hit ratio of the cooperative cache. We apply RaCC to two

state-of-the-art cooperative caches [12, 26].

We evaluate these RaCC-based systems with regard to energy, performance, and

endurance, using simulation of real and synthetic traces of Internet services.

1.3 Contributions

In summary, our contributions in this dissertation are:

• We propose RaPP, a robust page placement policy for hybrid main memory

systems;

• We evaluate RaPP and compare it to two state-of-the-art approaches;

• We study the implications of PCM and hybrid main memory systems for server

clusters for the first time;



4

• We propose RaCC, a policy for managing object location in cooperative caches

made from hybrid main memories; and

• We evaluate Memcached and PRESS, with and without RaCC, for PCM-based

main memories.

We conclude that PCM is a promising main memory technology for future servers,

especially when combined with a small amount of DRAM. However, such hybrid designs

will require careful data placement and migration for best performance and robustness.

1.4 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 provides

background on server memory systems and main memory technologies. Chapters 3

and 4 present the details and evaluation of our hybrid memory systems. Chapter 5

discusses the related work and Chapter 6, contains our conclusions and future work.
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Chapter 2

Background

In this chapter, we describe how architects typically organize main memory in server

systems. We also provide deeper background on DRAM, discuss candidate technologies

to replace DRAM (including PCM), and describe our assumptions for PCM.

2.1 Server Main Memory System

A server’s memory system typically comprises a few key elements, namely a memory

controller (MC), a few memory channels, and a number of dual-inline memory module

(DIMMs). Each DIMM includes memory devices (chips) that contain a memory cell

array and peripheral circuitry.

The MC is responsible for handling memory access requests from the CPU, resulting

from last-level cache (LLC) misses or write-backs. The MC operates the memory chips

to fetch and store data, as well as refresh their memory arrays (in the case of DRAM).

Operating the memory chips entails forwarding physical addresses to the peripheral

circuitry, and issuing commands to drive the chips while respecting certain timing

constraints. Due to its central role, an MC can be designed with varying complexity

to optimize the memory system for different purposes. For example, to improve access

throughput, the MC may choose to buffer particular requests (e.g., LLC write-backs)

and/or reorder requests according to the system’s current state [5, 39, 71].

At a high level, a memory chip can be logically viewed as an array of bit cells with

some interface circuitry. Memory chips are read and written in groups called ranks.

A rank can transfer a number of bits equal to the memory channel’s width (e.g., 64

bits) in one memory cycle, so it takes several memory cycles to transfer an entire LLC
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line. At a low level, the memory chips are subdivided into banks that can be accessed

concurrently, and further into bitcell arrays. On a read to a bank, part of the target

address (provided by the MC) is used to activate a row of bitcells, and amplify and

latch their contents into a row buffer. Then, a column (subset of a row) can be selected,

causing its data to be transferred from the row buffer to the MC. The MC then delivers

the data to the CPU. An access to a column of another row causes the activation of

the new row. On a LLC write-back, the data flows in the opposite direction, is stored

in the row buffer, and eventually written to the memory array.

2.1.1 Synchronous Dynamic RAM (SDRAM)

A DRAM cell is a transistor-capacitor pair (1T/1C) where each transistor allows reading

and writing, and the capacitor stores a bit as an electrical charge (Figure 2.1). Since

DRAM’s capacitors discharge over time, they need to be refreshed at regular intervals

to prevent data loss. In addition, reading a DRAM cell destroys its original content;

the “precharge” operation restores the data from the row buffer into the array. Under

a close-page management scheme, the MC precharges (closes) a row after every column

access, unless there is another pending access for the same row. If there is a pending

access, the row buffer remains open and the access can be serviced from there. Under

open-page management, the row buffer remains open until another row needs to be

loaded into it; only at that point is the precharge operation performed. Close-page

management typically works better than open-page management for multi-core systems

[77].

Double Data Rate 3 (DDR3) is the current standard for Synchronous DRAM

interfaces. DDR3 channels are 64-bit wide (72-bit wide with ECC), so it takes four

memory cycles (8 transfers) to access a 64-byte LLC line. In server systems, typically

one, two, or four ranks of 8 (x8) or 16 (x4) chips (plus additional chips when using ECC)

are laid out on each DIMM. When designed to operate at high frequencies, only one or

two DDR3 DIMMs can lie on a single memory channel due to electrical limitations.

DRAM energy can be broken down into background, activation/precharge,

read/write, and termination energies. Background energy is independent of activity and
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Figure 2.1: Memory system using DRAM and PCM DIMMs. DRAM and PCM arrays
are slightly different (cells and sense amplifiers).

is due to the peripheral circuitry (e.g., row decoder, column muxes, sense amplifiers,

and bus drivers), transistor leakage, and refresh operations. The activation/precharge

energy is due to these two operations on the memory arrays. The read/write energy is

due to column accesses to row buffers. The termination energy is due to terminating

data and strobe signals at each chip, as well as signals of other ranks on the same

channel. The three latter classes are often referred to as “dynamic DRAM energy”.

Most of the energy consumed by DRAM is background and activation/precharge energy.

2.2 Candidate Replacements for DRAM

For over a decade, DRAM has been the dominant main memory technology. Its

adoption was fueled by its high scalability, energy-efficiency, and low cost per bit

compared to Static RAM, and high performance compared to Flash memory [36].

Unfortunately, the DRAM storage element will soon reach its scalability limit [37, 38].

Physical space constrains the memory design mainly because cell capacitance becomes

too low (and leakage power too high), requiring impractical refresh rates [37]. The

latest ITRS report (2009 with an update in 2010) mentions stack capacitor cells as

a workaround that enables the non-scaling DRAM capacitors to be used in smaller
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DRAM cells. That solution entails non-planar structures with high aspect ratio and

smaller size (4F2 instead of 6F2). However, that solution has its own problems and

should enable DRAM to scale further down to somewhere between 21 and 18nm

feature sizes [38], beyond which this technique cannot scale further. Without the

scalability advantage and with increasing contribution of main memory to capital

costs and power consumption in servers, architects have been searching for alternative

memory technologies to replace DRAM. Table 2.1 compares DRAM to other memory

technologies.

Table 2.1: Comparing DRAM [36, 37, 55], FeRAM [20, 24, 43], STT-RAM [30, 58, 85],
PCM [47,67], and Flash [14, 56, 80].

Features DRAM FeRAM STT-RAM PCM NOR Flash NAND Flash
Cells size (F2) 6 – 8 15–32 36 4 – 12 10 4

Erase block / latency N.A. N.A. N.A. N.A. 64–256KB / 900ms 8–64KB / 2ms
R / W page size 64b 64b 64b 64b 64b 512b–4KB
Read latency 10’s ns 10’s ns 10’s ns 10’s ns 100’s ns 10’s µs
Write latency 10’s ns 10’s ns 10’s ns 100’s ns 10’s µs 100’s µs
Non-volatility no yes yes yes yes yes
Endurance 1016 1014 1015 108–109 105 105

Despite the advanced maturity level of NOR and NAND Flash, they are unsuitable

for main memory. NOR Flash is byte-addressable for reads and writes, but does not

support in-place overwrite of a modified bit without first erasing the block (typically

64–256KB) that contains that bit. The erase procedure must occur for the entire block

simultaneously and takes milliseconds to seconds to complete [14]. NAND Flash is

slower than NOR for reads and writes, but erases faster. NAND also has higher density

than NOR and is page-oriented (512b–4KB reads, writes, and erases), which makes

it more suitable for storage and less suitable for main memory. In addition to these

features, both NOR and NAND Flash have very poor endurance (105 erases, or less for

feature sizes below 25nm).

Due to the limitations of DRAM and Flash, Storage Class Memories (SCM) have

emerged as possible future replacements, and have been gaining increasing attention.

Three of the most mature SCMs are: Ferroelectric RAM (FeRAM), Spin-Torque

Transfer RAM (STT-RAM), and Phase-Change Memory (PCM). These technologies
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are currently under development and first-generation devices have already been used in

embedded systems [20,25,61,79]. However, they have not been developed commercially

for main memory at this point.

In particular, FeRAM and STT-RAM are promising replacements for SRAM (e.g.,

in caches, CPUs and embedded systems) [30, 58, 78, 85]. However, they have shown

somewhat limited scalability, high cost and integration issues [37, 38], which hinder

their use in main memory. In contrast, PCM devices of higher density have already

been produced [73] (512Mbit vs 4Mbit of FeRAM and STT-RAM), and the current

roadmap depicts PCM scaling more aggressively than the other two [37]. In fact,

one recent research work [1] has developed a prototype of PCM DDR2 DIMM 250MHz

(using Micron’s 128Mbit chips [57]) and a memory controller that implements the wear-

leveling algorithm in [69]. The DIMMs are, however, used in a storage device attached

to the PCIe interface. For all these reasons, multiple works, including this dissertation,

have focused on the PCM SCM. In the next section, we describe the PCM cell and

interface in more detail.

2.2.1 Phase-Change Memory

A PCM cell comprises an NMOS access transistor and a storage resistor (1T/1R) made

of a chalcogenide alloy. With the application of heat, the alloy can be transitioned

between physical states with particular resistances, used to represent binary values.

When the alloy is heated to a very high temperature (> 600oC) and quickly cooled

down, it turns into an amorphous glass with high electrical resistance, representing 0.

When the alloy is heated to a temperature between the crystallization (300oC) and

melting (600oC) points and cools down slowly, it crystallizes to a state with lower

resistance, representing 1. This programming process can be carried out by peripheral

write drivers.

A cell’s content can be read using current sense amplifiers to measure its electrical

resistance, as opposed to DRAM’s slower but smaller voltage sense amplifiers. PCM

can thus interface with most CMOS peripheral circuitry used in DRAM [89]. Unlike

in DRAM, PCM’s reads are non-destructive and cells can retain data for several years.
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On the downside, PCM cells exhibit worse access performance than DRAM.

Regarding density, PCM has similar cell size (4F 2 to 12F 2) compared to DRAM

(6F 2 to 8F 2). However, PCM enables manufacturing of multi-level cells (MLC),

which produce intermediate resistances (the alloy is partially crystalline and partially

amorphous) and therefore can store multiple bits. Current MLC prototypes have two-

or four-bit cells, capable of storing four and sixteen binary values, respectively [62].

Assuming the same cell size for both technologies, these MLCs hold twice and eight

times more data than DRAM cells in the same area.

Our assumptions for PCM. In this dissertation, we assume that PCM is four times

more storage-dense than DRAM, as in [67]. For easier adoption, we expect that the

peripheral circuitry for PCM (e.g., row buffers, row and column decoders, DIMM

interface) will be equivalent to that for DRAM, except for sense amplifiers. Thus,

we assume this circuitry to have the same performance and power characteristics for

both PCM and DRAM. Previous studies have made the same assumption [47,89]. Only

the written cache lines in a row buffer are written back to the PCM cell array (DRAM

needs the entire buffer to be written back to precharge its cells). Similar optimizations

have been used before as well [47, 90]. To expose the entire overhead of PCM accesses

to the cores, we study a CPU with in-order cores and a single outstanding miss per

core.

PCM does not require cell refreshing or precharging, thereby lowering background

energy relative to DRAM and eliminating precharge energy. However, PCM increases

activation and termination energies, since its activations (actual accesses to memory

cells) are slower than with DRAM. Our assumptions for peripheral circuitry imply that

row buffer read/write energy is the same for DRAM and PCM.
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Chapter 3

Rank-aware Page Placement

3.1 Overview

In this chapter, we present a new DRAM+PCM memory system design that is robust

across a wide range of workloads. The design comprises a sophisticated MC that

implements a page placement policy called RaPP. The policy efficiently ranks pages

according to popularity (access frequency) and write intensity, migrating top-ranked

pages to DRAM. While monitoring popularity, RaPP penalizes pages that are unlikely

to produce benefits if migrated. To improve PCM’s endurance, each migration involves

two PCM memory frames and one DRAM frame. The MC monitors access patterns

and, when necessary, migrates pages. The migrations are not immediately visible by

the OS, as the MC uses its own address translation table. Periodically (or when the

table fills up), the OS updates its mapping of virtual pages to physical frames based on

the translation table and clears it.

We evaluate our memory system design and RaPP using a detailed simulator that

computes the energy, performance, and endurance of workloads running on an 8-core

CPU. For comparison with our system, we simulate two state-of-the-art hybrid memory

designs [67, 89], as well as a baseline hybrid system without page management (called

“unmanaged”) and a PCM-only system.

Our results for 27 workloads show that our system consumes roughly the same

amount of power on average as its competitors and the baselines, but with significantly

better performance. In terms of energy-delay2, for the workloads we study, our system is

on average 36% better than the PCM-only baseline and 24% better than the unmanaged

hybrid system. Compared to the state-of-the-art hybrid systems, our system exhibits at
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least 13% better energy-delay2 on average, especially for workloads with large memory

footprints. Our system also improves lifetime, as compared to the baselines, but not

enough to enable system operation for 5 years assuming current PCM endurance.

Nevertheless, PCM endurance is expected to increase by orders of magnitude in the

next few years [17, 36]. Until then, our system can be easily combined with previously

proposed endurance-improvement techniques [16, 40, 47, 90].

3.2 Hybrid Main Memory Design

As we mentioned in Section 1, given the speed of DRAM and the high density of PCM,

there is a clear incentive for combining these two technologies into a single, hybrid

memory system. However, PCM has undesirable characteristics (poor performance,

dynamic energy, and endurance) that must be properly managed. Similarly, DRAM

has a relatively high idle energy consumption compared to that of PCM.

A few previous works have realized the benefits of combining DRAM and PCM [67,

89] and the associated tradeoffs. Unfortunately, the previous approaches have serious

limitations. Qureshi et al. [67] proposed to use DRAM as a buffer in front of PCM. Since

the buffer is managed as an inclusive hardware cache, the DRAM space does not add to

the overall memory capacity. More importantly, for workloads with poor locality, the

cache actually lowers performance and increases energy consumption. Zhang et al. [89]

combine the DRAM and PCM areas in a large flat memory and migrate pages between

the areas. However, the migrations are performed by the OS and target the frequently

written pages, leaving read-intensive pages in the slower PCM area.

Next, we describe our hardware-software page placement policy, called RaPP, which

manages pages without the limitations of previous works. After that, we detail our

implementation of the two prior hybrid systems. Throughout our descriptions, we

differentiate between virtual memory pages (or simply pages) and physical memory

frames (or simply frames).
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3.2.1 Rank-based Page Placement

Given the characteristics of DRAM and PCM, RaPP seeks to (1) place performance-

critical pages and frequently written pages in DRAM, (2) place non-critical pages and

rarely written pages in PCM, and (3) spread writes to PCM across many physical

frames.

The justification for these goals is that previous works have shown that typically

only a relatively small subset of pages is performance-critical during the execution

of a workload [33]. This observation suggests that (a) this subset may fit entirely

in the DRAM part of the hybrid memory, and (b) the majority of lightly accessed

pages should consume little energy, if stored in the PCM part. Moreover, previous

work has found that the subset of critical pages may change over time, along with the

criticality of individual pages [33]. This second observation suggests that the system

must dynamically identify the critical pages and adjust their placements accordingly.

Since the OS is not on the path of most memory accesses, RaPP must be

collaboratively executed by the OS and the MC. An interesting challenge is that neither

the MC nor the OS has complete information about the performance criticality of the

pages in a workload. For example, the latency of the cache misses associated with a

page may be hidden behind out-of-order execution or multithreading by the processor

cores. Interestingly, previous work [6] has shown that the frequency of cache misses

is a very good proxy for a thread’s performance criticality, regardless of the details of

the microarchitecture (in-order vs out-of-order execution). Thus, pages that experience

more misses also tend to be more performance critical.

RaPP relies on the MC to monitor the misses in the LLC to each physical memory

frame. In addition, the MC monitors the LLC write-backs directed to each frame. Using

this information, RaPP dynamically ranks frames based on frequency and recency of

accesses, as detailed below. Frames that rank high are called “popular”, and frames

that rank low are called “unpopular”. Whenever the most popular PCM frame reaches

a threshold number of accesses (called the “migration threshold”), the MC considers

migrating its content into DRAM transparently to the OS. If the DRAM area is full,
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the MC selects the page stored in an unpopular DRAM frame to migrate to PCM.

Ranking frames. RaPP simultaneously considers frame access frequency and recency

in its dynamic ranking of pages (i.e., the pages stored in the frames), using a

modified version of the Multi-Queue (MQ) [91] algorithm for second-level buffer cache

replacements. As originally designed, MQ defines M LRU queues of block descriptors,

numbered from 0 to M − 1. Each descriptor includes the block number, a reference

counter, and a logical expiration time. The descriptors in queue M − 1 represent the

blocks that are most frequently used. On the first access to a block, its descriptor is

placed in the tail of queue 0. In addition, the block’s expiration time ExpirationT ime

is set to CurrentT ime + LifeT ime, where both times are measured in number of

accesses and LifeT ime specifies the number of consecutive accesses that must directed

to other blocks before we expire the block. Every time the block is accessed, its reference

counter is incremented, its expiration time is reset to CurrentT ime+ LifeT ime, and

its descriptor is moved to the tail of its current queue. The descriptor of a frequently

used block is promoted to a higher queue (saturating at queue M − 1, of course) after

a certain number of accesses to the block. Specifically, if the descriptor is currently

in queue i, it will be upgraded to queue i + 1 when its reference counter reaches 2i+1.

Conversely, MQ demotes blocks that have not been accessed recently. On each access,

the descriptors at the heads of all M queues (representing the LRU block of each queue)

are checked for expiration (CurrentT ime > ExpirationT ime). If a block descriptor

expires, it is placed at the tail of the immediately inferior queue, and has its expiration

time again set to CurrentT ime+LifeT ime. Figure 3.1 shows an example of promotion

and demotion in MQ.

We use the modified MQ to rank memory frames (it was originally designed to rank

disk blocks). We do so for two main reasons: (1) as page migrations are expensive

operations, it is important to select the pages to migrate as intelligently and accurately

as possible. MQ has been proven superior to other algorithms in selecting the blocks to

replace [91]; (2) modern memory controllers are becoming increasingly complex and

sophisticated (as discussed below), as a result of the increasing importance of the
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Figure 3.1: MQ example with M=4 and LifeT ime=4. At CurrentT ime 6, the rank
contains three frames, represented by a tag (fr0-2), a reference counter (rf) and an
ExpirationT ime (ex). When fr1 receives a reference at CurrentT ime 7, it is promoted
into queue 2, whereas fr0 gets demoted to queue 0.

memory system (in terms of performance and energy) and relentless technology scaling.

To avoid performance degradation, the updates to the MQ queues are performed by the

MC off the critical path of memory accesses, using a separate queue of updates and

a small on-chip SRAM cache. To find the MQ entry of a frame, the MC hashes the

corresponding frame number.

We create 15 queues (numbered 0–14) plus a 16th victim list (described below).

Pages stored in PCM frames that become popular (i.e., get to higher queues) are

scheduled for migration to DRAM. However, we modified MQ in two important ways.

First, instead of counting all accesses, we only count an access if it occurs more than

a threshold time (measured in memory cycles) after the last access to the same frame.

This latter threshold is called the “filter threshold”. The MC stores the time of the

last access in the descriptor for the frame. The reason for filtering rapid-fire accesses

out is that there is no point in trying to migrate a page that is accessed in such a

way; before we get to migrate the page, the needed data has already been loaded to

the LLC (or evicted from it). In fact, it is possible that the page will not even be

accessed again in memory. Using a 2-competitive approach, we set the filter threshold

to be MigrationCost/MigrationThreshold, where MigrationCost is the uncontended

number of memory cycles needed to migrate a page. (MigrationCost is roughly 1.6µs

in our experiments.)

Second, we modified the demotion policy in the following ways: (a) we use time, not
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number of accesses, as the metric for demotion to reduce space requirements (in our

experiments, we set LifeT ime to 100µs, which works well for our workloads); (b) we

only demote from one queue at a time (in round-robin fashion) to reduce runtime

overhead; and (c) a DRAM frame that is demoted twice without any intervening

accesses leaves the MQ queues and becomes a candidate to receive a popular PCM

page. The reason for the latter modification is that frames that undergo multiple

demotions tend to have already been cached in the LLC and will not be accessed in a

while. We store the MQ queues and the victim list in the lowest DRAM addresses.

Migrating pages. As mentioned above, RaPP schedules the page stored in a

PCM frame for migration to DRAM after its reference counter reaches the migration

threshold. In particular, the page stored at any PCM frame that reaches queue 5 (i.e.,

the reference counter for the frame has reached 25 = 32) is scheduled for migration to

DRAM. (Thus, the maximum number of frames that can be in queues 5–14 is the size

of DRAM. For symmetry, the maximum size of queues 0–4 is also set to the size of

DRAM.)

We find these values forM and the migration threshold to work well for our extensive

set of workloads. The rationale is that in many workloads, a large number of pages

would end up in queue M −1 if M is small, compromising the accuracy of the hot page

identification. On the other hand, if M is high, RaPP can correctly identify hot pages,

but the MQ overhead increases. As for the migration threshold, we must select a value

that enables early migrations but without migrating pages unnecessarily.

To select a destination DRAM frame for a page, the MC maintains an LRU list

of victim DRAM frames. The victim frames are not in any of the LRU queues (the

list is initialized with all DRAM frames). Whenever a frame on the victim list is

accessed, it is removed from the list and added to queue 0. A frame demoted from

queue 0 or demoted twice without intervening accesses is moved to the tail of the list.

The destination DRAM frame is the first frame on the list. If the list is empty, no

destination is selected and the migration is delayed until a frame is added to the list.

To effect a page migration to DRAM, the MC (1) migrates the page stored in the
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selected DRAM frame to one of the unranked PCM frames, (2) migrates the content of

this latter frame to the most popular PCM frame, and finally (3) migrates the content

of the most popular PCM frame to the selected DRAM frame. Figure 3.2 shows an

example, where shaded frames are PCM frames and non-shaded frames are DRAM

frames. In the example, the MC migrates the content of frame 13 to frame 2, the

content of frame 2 to frame 19, and the content of frame 19 to frame 13.

To allow the three migrations to proceed concurrently, the MC uses three

intermediate frame-size buffers located in the MC itself. The contents of the frames are

first copied to the buffers, and only later copied to the destination frames. In addition,

to avoid excessively delaying LLC misses due to row conflicts while migrating, the

PCM DIMMs are equipped with an extra pair of row-buffers per rank, used exclusively

for migrations. Operated by the MC, these buffers communicate with the internal

prefetching circuitry of the PCM DIMM [21, 22], bypassing the original bank’s row

buffer. Since our migrations occur in sequence, two of these buffers are necessary only

when the migration involves two banks of the same rank, and one buffer would suffice

otherwise. This modification is not applied to DRAM DIMMs to avoid their redesign.

(The energy and delay costs of these extra PCM DIMM buffers are taken into account

in our simulations.)

RaPP uses a different destination unranked (and thus unpopular) PCM frame every

time it needs to migrate a page out of DRAM. The reason is that migrations involve

writes to the PCM cells. Using different unpopular pages guarantees that these writes

are evenly spread across the PCM area for wear leveling. We start picking unranked

frames from the bottom of the physical address space (which maps to the end of the

PCM area), and move upward from there whenever a new PCM frame is needed.

The set of scheduled migrations is maintained in a list. We deschedule migrations

whenever the corresponding PCM pages cross back down to queue 4 before the

migrations start. The MC performs migrations from the list whenever there are no

LLC misses or write-backs to perform. Any misses that arrive for a page undergoing

a migration are directed to the original address or to one of the intermediate buffers.

Write-backs are buffered until the migration is concluded.
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Figure 3.2: RaPP example. Before and after we migrate a PCM page (stored in frame
13) that crossed over to the DRAM side of the ranking to a frame from the victim list
(frame 2). Dark shading represents PCM frames and no shading represents DRAM
frames.

For best performance, our goal is to execute the migrations completely in the

background and without OS involvement. Thus, the MC maintains the RemapTable,

a hash table for translating frame addresses coming from the LLC to actual remapped

frame addresses. Figure 3.2 shows an example RemapTable. The RemapTable is

accessible by the OS as well. Periodically or when the RemapTable fills up (at which

point the MC interrupts the CPU), the OS commits the new translations to its page

table and invalidates the corresponding TLB entries. (When non-virtually addressed

hardware caches are used, some lines may have to be invalidated as well.) We assume

that the OS uses a hashed inverted page table, as in the UltraSparc and PowerPC

architectures, which considerably simplifies the commit operation. Since a commit

clears the RemapTable, the OS sets a flag in a memory-mapped register in the MC to

make sure that the MC refrains from migrating pages during the commit process.

The RemapTable also includes two bits for communication between the MC and the

OS. One bit is called MigratingNow, which when set means that the corresponding

frame is currently scheduled for a migration. The other bit is called ReplacingNow,

which when set means that the OS is replacing the page currently stored in that

frame. The MC is responsible for MigratingNow, whereas the OS is responsible for
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ReplacingNow. Before the OS tries to replace a page, it must check the RemapTable

first. There are three possible scenarios here. Scenario 1: If there is no entry for the

physical frame in which the page lies, the OS creates one, sets ReplacingNow, and

programs the DMA engine to use the frame. The MC does not migrate any page to

that same frame while ReplacingNow is set. When the replacement is done, the OS

resets ReplacingNow. Scenario 2: If there is an entry for the corresponding frame and

MigratingNow is set, the OS should select another page for replacement. Scenario

3: If the frame has already changed addresses (i.e., the entry for the frame exists and

MigratingNow is not set), the OS can set ReplacingNow and proceed using the new

frame address.

Finally, for robustness, RaPP uses a self-disabling mechanism that disables access

monitoring, queue maintenance, and migrations whenever too many “bad migrations”

occur. A bad migration occurs in one of two cases: (1) when a page originally in PCM

is migrated to DRAM and then back to PCM without being referenced enough times

while in DRAM; or (2) when a page originally in DRAM is evicted to PCM and then

back to DRAM with too many accesses while in PCM. To implement this mechanism,

we use a single counter of bad migrations (CBM) and a 2-bit saturating counter per

MQ entry. Whenever a ranked page is touched, the saturating counter is incremented.

Whenever a migration is completed, using the RemapTable, RaPP can identify where

the page was since the last commit to the OS page table. If the migration falls into

case (1) and the counter is not saturated, or it falls into case (2) and the counter is

saturated, CBM is incremented. The saturating counter for a page is reset whenever

the page migrates. At the end of each 1ms epoch, if the number of bad migrations

reached 5% (the “disable threshold”) or more of the maximum number of migrations

possible within the epoch, RaPP is disabled.

Controller structure. Our MC adds a few components to a vanilla MC. Our MC

(Figure 3.3) extends a programmable MC from [86] by adding RaPP’s own modules

(shaded in the figure). The MC receives read/write requests from the LLC controller

via the CMD queue. The Arbiter iteratively dequeues requests, which the Controller
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Figure 3.3: Memory controller with RaPP’s new modules highlighted.

converts into commands to be sent to the memory devices. The Controller routes those

commands by frame address to the appropriate Physical Interface (DRAM or PCM),

which converts commands into timing relationships and signals for operating memory

devices and coordinating data transfers. The Interfaces also control the power states of

their respective memory ranks. The Datapath handles the data flow from the memory

devices to the LLC controller and vice-versa. The module places data read from memory

into the Output queue, where the LLC controller can read it. On write-back requests,

the Datapath reads data (provided by the LLC controller) from the Input queue. For

consistency, the CMD queue logic checks if the target address of a read or write-back

collides with older write-backs in the Input queue. A colliding read is serviced from the

queue without actually reaching the memory devices, thus finishing faster. A colliding

write-back invalidates the older write-back command and data.

RaPP’s Ranking module (RKMOD) contains the small on-chip cache of MQ and

victim entries (entry cache) and the queue for updates to the MQ queues and the victim

list (update queue). Misses in the entry cache produce requests to DRAM. RKMOD’s

logic snoops the CMD queue, creating one update per new request. To reduce the

lag between an access and its corresponding MQ entry update, the update queue is

implemented as a small circular buffer (32 entries), where an entering update precludes

any currently queued update to the same entry.
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The Migration Control module (MIGMOD) contains the queue of scheduled

migrations (migration queue) and three page-sized buffers for the migrations (transfer

buffers). MIGMOD processes migrations sequentially, each one occurring in two stages:

(1) read and buffer frames; and (2) write frames to their new locations. Stage (2) does

not start until stage (1) is completed. MIGMOD latches the base addresses of the

frames undergoing a migration, as well as an offset address within each frame. The

Controller module detects memory accesses that target one of the frames undergoing

migrations by checking the base addresses. The Controller serves an access that targets

a migrating frame by accessing the appropriate structure (main memory or a transfer

buffer).

The Remap module (REMOD) contains the RemapTable and the logic to remap

target addresses. At the end of a migration, MIGMOD submits the three latched frame

numbers to REMOD, which creates new mappings in the RemapTable. REMOD snoops

the CMD queue to check if it is necessary to remap its entries. Each RemapTable

lookup and each remapping take 1 memory cycle. However, these operations only delay

a request if it finds the CMQ queue empty.

Note that many previous works have proposed MCs with similar levels of

sophistication and complexity, e.g. [19,23,39,40,65,88,89]. For example, [39] implements

a learning algorithm in the memory controller itself.

Storage overhead. The bulk of our MC design is in the storage structures that it

contains. The total on-chip storage in our design is 126 KBytes. By design, the page

buffers require 24 KBytes (3 pages). The other structures have empirically selected

sizes: 28 KBytes for the RemapTable (4K entries), 64 KBytes for the cache of MQ and

victim entries (4K entries), and 10 KBytes for the update and migration queues. This

amount of on-chip storage is small compared to the multi-MByte shared LLC.

Our design also has limited DRAM space requirements. Taking a system with 1GB

of DRAM + 32GB of PCM as a base for calculation, the total DRAM space consumed

by descriptors is 6 MBytes (0.59% of the DRAM space). Each frame descriptor in

the MQ queues or in the victim list takes 124 bits, which we round to 128 bits. Each
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descriptor contains the corresponding frame number (22 bits), the reference counter (14

bits), the queue number, including victim list (4 bits), the last-access time (27 bits),

three pointers to other descriptors (54 bits), a flag indicating that the frame has been

demoted (1 bit) and the counter for bad migrations (2 bits). For the configurations

with which we experiment, the space taken by the descriptors is 0.63 MBytes.

3.2.2 Comparable Hybrid Memory Systems

We compare our design to the two most closely related hybrid memory systems: DBUFF

[67] and WP [89].

DRAM Buffer (DBUFF) relies on a DRAM buffer logically placed between

the CPU and a main memory composed solely of PCM [67]. The DRAM buffer is

implemented as a set-associative cache managed entirely by the MC and invisible to

the OS. Cache blocks (corresponding to virtual memory pages) coming from secondary

storage are initially installed in the DRAM buffer, but also take space in PCM. From

then on, the memory accesses are directed to the DRAM buffer. On a buffer miss, the

page containing the desired cache line is brought into the buffer from PCM. When a

block is replaced from the buffer (using the clock algorithm), it is written to its PCM

frame if this is the first eviction of the block or the block was written in the buffer.

Block writes to PCM are enqueued in an write buffer and done lazily in background.

Like in our design, only the cache lines that were actually written are written to PCM.

When workloads exhibit good locality, most accesses hit the DRAM buffer, which

leads to good performance and dynamic energy. Endurance is also good since the

lazy block writes and cache-line-level writes substantially reduce the write traffic to

the PCM array. (In fact, our implementation of DBUFF does not include the Fine-

Grained Wear Leveling and Page-Level Bypass techniques proposed in [67]. The reason

is that the endurance produced by the other techniques is sufficient in our experiments;

adding extra complexity does not seem justified for our workloads and endurance

assumptions.) However, workloads with poor locality may lead to poor performance

and energy consumption. In addition, the inclusive DRAM caching in DBUFF reduces

the amount of available memory space, potentially leading to a larger number of page
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faults than our design.

Our simulations of DBUFF are optimistic in many ways. First, we consider a

DRAM buffer of size approximately 8% of the total memory size (rather than the

original 3%). Second, we assume no DRAM buffer lookup overhead in performance or

energy. Third, we implement the DRAM buffer as a fully associative structure (rather

than set associative) with LRU replacement (rather than clock). Fourth, on a DRAM

buffer miss requiring a page write-back, the dirty blocks (only) are written back at the

same time as the missing page’s content is fetched from PCM or disk.

Despite these optimistic assumptions, RaPP improves on DBUFF in two

fundamental ways: (1) it uses the entire memory as a flat space, relying on page

migration rather than replication; and (2) it detects when most migrations are useless

and turns itself off.

Hot-modified Pages in Write Partition (WP) places DRAM and PCM in a

flat address space and treats DRAM as an OS-managed write partition [89]. All pages

are initially stored in PCM. The idea is to keep the cold-modified (infrequently written)

pages in PCM, trying to take advantage of its low idle power consumption, and the hot-

modified (frequently written) pages in DRAM to avoid PCM’s high write latency and

poor endurance. The MC implements a variation of the MQ algorithm with 16 LRU

queues, but only counts write accesses to the physical frames. Frames that reach queue

8 (receive 28 writes) are considered to store hot-modified pages. On a page fault, the

OS brings the page from secondary storage to the PCM area. Over time, the pages

that become hot-modified are migrated to DRAM by the OS. At the same time, a page

currently in DRAM but with fewer writes may have to be migrated back to PCM.

Our simulations of WP are also optimistic, as we do not charge any performance

or energy overheads for the data structures and hardware modifications necessary to

implement WP.

Despite these optimistic assumptions, there are three main problems with WP.

First, it can hurt the performance of read-dominated workloads under less optimistic

assumptions about PCM read performance. Second, migrating pages using a core at
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the OS quantum boundary wastes opportunities to improve performance and energy-

delay within that timespan. Third, endurance also suffers because it takes a large

number of writes until the OS will consider migrating a heavily written page to DRAM.

Our evaluation studies mainly how WP compares to other approaches. However, in

Section 3.3.3, we also isolate the impact of migrating frequently-read pages and enabling

migrations within the OS quantum via hardware.

RaPP improves on WP by: (1) migrating pages that are read-intensive as well; (2)

migrating pages in the background, without OS involvement; (3) including mechanisms

for identifying pages worthy of migration and self-disabling for when migrations are

mostly useless; and (4) spreading migrations across many physical frames. Moreover,

our study improves on [89] by: (5) assuming more realistic PCM characteristics; (6)

presenting a comparison of RaPP and WP to DBUFF, across a large set of workloads

and parameters; and (7) evaluating other WP designs.

3.3 Evaluation

In this section, we evaluate hybrid memory systems using energy and performance as

first-order metrics. Although we also report endurance results, we give them lower

emphasis because our system can be easily combined with many previously proposed

techniques to mitigate the PCM endurance problem (Section 5.2). Our evaluation is

based on simulation, since PCM hardware is not yet available.

3.3.1 Methodology

Workloads. We simulate combinations of benchmarks from the SPEC 2000, SPEC

2006, and Stream suites forming a total of 27 workloads (Table 3.1). Because our

workloads have widely different memory footprints, we group them with respect to

footprint size into Large (LG), Medium (MD), and Small (SM) classes.

Simulation infrastructure. To reduce simulation times, our simulations are done in

two steps. In the first step, we use M5 [9] to collect memory access (LLC misses and

write-backs) traces from our workloads running on an 8-core server. Each benchmark in



25

Table 3.1: Workload described by tag, memory footprint in MB, LLC misses per 1000
instructions (MPKI), and percentage of LLC write-backs as a fraction of all memory
accesses (WB%). Applications marked with ∗ belong to Spec 2006.

Tag Footprint (MB) MPKI WB% Applications (x2 each)

LG1 993 12 33 milc∗, gobmk∗, sjeng∗, libquantum∗

LG2 992 29 32 S.add, S.copy, apsi, milc∗

LG3 746 24 27 mcf∗, S.triad, sjeng∗, facerec
LG4 743 4 25 vortex, milc∗, sixtrack, mesa
LG5 702 24 26 sjeng∗, S.triad, S.add, swim
LG6 683 4 28 perlbmk, crafty, gzip, milc∗

LG7 645 25 32 lucas, gcc, mcf∗, sphinx3∗

LG8 594 18 32 wupwise, vpr, mcf∗, parser
LG9 557 17 32 swim, eon, art, lucas

MD1 486 13 49 applu, lucas, gap, apsi
MD2 467 23 32 S.scale, S.triad, swim, eon
MD3 414 20 30 mcf∗, parser, twolf, facerec
MD4 407 8 24 namd∗, S.triad, sjeng∗, wupwise
MD5 394 13 32 art, lucas, mgrid, fma3d
MD6 385 24 28 art, mcf∗, gzip, vpr
MD7 381 14 23 S.add, h264ref∗, equake, hmmer∗

MD8 367 46 33 S.triad, S.add, S.copy, S.scale
MD9 356 30 27 equake, S.scale, S.triad, mgrid

SM1 295 2 21 wupwise, gobmk∗, vortex, h264ref∗

SM2 285 5 33 swim, perlbmk, namd∗, eon
SM3 283 6 33 swim, crafty, twolf, gcc
SM4 276 16 33 lucas, h264ref∗, libquantum∗, sphinx3∗

SM5 271 15 27 wupwise, equake, ammp, libquantum∗

SM6 260 11 24 fma3d, mgrid, galgel, equake
SM7 247 12 32 fma3d, sphinx3∗, galgel, lucas
SM8 243 15 21 S.triad, h264ref∗, fma3d, equake
SM9 243 2 29 ammp, gap, wupwise, vpr
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Table 3.2: System settings.

Feature Value

CPU cores (2.668GHz, Alpha ISA) 8 in-order, one thread/core
L1 I/D cache (per core) 64KB, 2-way, 1 CPU cycle hit

L2 cache (shared) 8MB, 8-way, 10 CPU cycle hit
Cache block size / OS page size 64 bytes / 8KB
Memory (667MHz/DDR3-1333) 8KB rows, close-page

Memory devices (x8 width, 1.5V) DRAM PCM

Delay

tRCD 15ns 56ns
tRP 15ns 150ns

tRRDact 6ns 5ns
tRRDpre 6ns 27ns

Refresh time 64ms n/a
tRFC / tREFI 110ns / 7.8µs n/a

Current

Row Buffer Read 200mA 200mA
Row Buffer Write 220mA 220mA
Avg Array R/W 110mA 242mA
Active Standby 62mA 62mA

Precharge Powerdown 40mA 40mA
Refresh 240mA n/a

Normalized Density 1 4
Data Retention 64 ms > 10 years

Cell endurance (writes) > 1016 108 − 109

a workload is represented by its best 100M-instruction simulation point (selected using

Simpoints 3.0 [66]). A workload terminates when the slowest application has executed

100M instructions.

In the second step, we replay the traces using our own detailed memory system

simulator. This simulator models all the relevant aspects of the OS, memory controller,

and memory devices, including inverted page tables, contention, memory device power

and timing, and row buffer management. Our decision to develop our simulator

stemmed from our need, at the time, for a tool that simulated DDR3 in detail, in

reasonable time, and that was simple to expand.

The main architectural characteristics of the simulated server are listed in Table 3.2.

We simulate in-order cores to expose the overheads associated with PCM accesses to

workloads. The cores have private 64-Kbyte 2-way instruction and data L1 caches, as

well as an 8-MByte 8-way combined shared cache. For this cache architecture, Table 3.1
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reports the LLC misses per kilo instruction (MPKI) and the percentage of LLC write-

backs (WB%) for each workload. The memory system has 4 DDR3 channels, each one

occupied by a single-rank DIMM with 8 devices (x8 width) and 8 banks per device.

In all simulations, we assume an initially warm memory (no cold page faults). The

MC implements cache-block-level bank interleaving and page-level channel interleaving.

Memory accesses are served on a FCFS basis. The MC uses close-page row buffer

management. (More sophisticated access scheduling is not necessary for our simulated

system and workloads, as opportunities to increase their bank hit rate via scheduling

are rare, and such improvements are orthogonal to our study.)

A memory rank can be in (1) Active Standby state, when at least one of its banks

is serving requests; or (2) Precharge Power Down, when all banks are idle and the clock

enable line is turned off to save energy. Additionally, PCM is enhanced to avoid writing

unmodified cache lines back to the cell array. The table shows power parameters [47]

of DRAM and PCM chips, and the timing parameters that change across memory

technologies [47, 67, 89]. The timing parameters are: the time between the issue of a

row activation command and the data being accessible at the row buffer of a given

bank (tRCD); the time between two row activation commands issued to the same rank

after the evicted row was read (tRRDact) or written (tRRDpre); the time between

a precharge and an activation to a same rank (tRP); the time between two refresh

commands or a refresh and an activation (tRFC); the maximum time between two

refresh commands for a same row (Refresh time); and the average delay between refresh

commands across all rows (tREFI). In addition to these parameters, we simulate 12

other timing constraints that are relevant for our study [55,83].

Besides RaPP, we simulate the two hybrid approaches mentioned in Section 3.2

(DBUFF and WP) and an additional “Unmanaged” system, in which pages remain in

the frames originally assigned to them by the OS. We use Unmanaged as the baseline

for comparison. Only RaPP is assumed to have energy and performance overheads

stemming from its data structures. Our assumptions for RaPP are consistent with

those of other authors [30]. For example, the RaPP SRAM consumes 0.13W of

background power and 0.017nJ per 16-byte operation; the transfer buffers consume
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0.06W of background power and 0.06nJ per 64-byte operation; and each DIMM-level

row buffer increases the rank background power by 12.5% when active (and as much

dynamic power as a regular row buffer). The four hybrid systems have 1 channel

equipped with 1 DRAM DIMM (128MB) and the remaining 3 channels with 1 PCM

DIMM each (3x128x4MB=1536MB), totaling 1.664 GBytes of memory. We picked

these small memory sizes to match the footprint of the workloads’ simulation points.

As another basis for comparison, we use a PCM-only system with 2 GBytes

of memory (4x128x4MB). Previous works have shown that the DRAM-only system

exhibits much worse performance than PCM-only and hybrid systems [67], due to its

lower storage capacity, so we do not consider it in this chapter.

3.3.2 Results

3.3.2.1 Performance and energy

We now compare the behavior of RaPP, DBUFF, WP, and the two baseline systems.

Due to space limitations, we do not present separate performance and energy results

for all workloads; instead, we plot these results for the MD workloads and discuss the

results for other workloads in the absence of figures. Later, we plot energy-delay2 (ED2)

results for all workloads.

Figure 3.4 presents the running time (top graph, including the geometric mean of the

MD results), average memory power consumption (middle graph, including the power

consumed by the SRAM cache used in RaPP), and number of page migrations in RaPP

and WP and page fetches from PCM in DBUFF (bottom graph, again including the

geometric mean). We refer to page migrations and fetches collectively as page transfers.

The performance and power results are normalized to Unmanaged. Note that we plot

average power, rather than energy, to remove the impact of different running times

(which are plotted in the top graph).

Running time. The top graph shows that RaPP exhibits the lowest average running

times, followed by WP, Unmanaged, PCM-only, and then DBUFF. In fact, RaPP

performs better than PCM-only and Unmanaged for all workloads (including the LG
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and SM workloads). RaPP achieves these results by migrating popular pages to

the DRAM area, which has substantially better performance in the presence of row

buffer misses than PCM. WP and DBUFF do not always outperform PCM-only and

Unmanaged. RaPP is more robust than WP and DBUFF, achieving good performance

in most cases and preventing degradation in others by disabling itself.

WP attempts to migrate pages to DRAM as well, but focuses solely on those pages

that experience a large number of write-backs (or writes of disk data read into memory).

In addition, the fact that WP migrates pages at the end of the OS quantum has two

sides. On the negative side, WP misses opportunities to migrate popular pages as

their popularity shifts within the OS quantum. MD2 and MD8, for example, suffer

from this problem. On the positive side, migrating infrequently reduces the number of

migrations in workloads where most migrations will turn out useless. However, RaPP is

more effective thanWP at preventing unnecessary migrations, as it includes mechanisms

designed explicitly for this purpose. For example, in SM2, a large fraction of pages is

hot-modified, but performance-irrelevant. In that case, RaPP disables itself at about

a quarter of the execution. A similar phenomenon occurs in 6 other workloads in our

experiments. In essence, RaPP is more effective at migrating the actual performance-

critical pages to DRAM, improving performance by 6% for MD workloads and 7%

overall with respect to WP.

The most extreme results happen for DBUFF. It achieves the lowest running time

for MD1, but dismal running times for MD3 and MD6. The reason for DBUFF’s

poor performance is that MD3 and MD6 exhibit poor locality (their working sets are

substantially larger than the size of the DRAM buffer). The same effect occurs for

several LG workloads. Poor locality forces frequent page fetching from PCM into

DRAM, with the eviction of dirty blocks (if any) within victim pages done in the

background. Without the problematic workloads, RaPP still performs 14% and 8%

better than DBUFF for the LG and MD workloads, respectively. On the other hand,

the SM workloads have working sets that easily fit in the DRAM buffer, so DBUFF

performs best for 6 of them. However, RaPP’s overall average performance is still

slightly better than DBUFF’s for the SM workloads.
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Figure 3.4: Comparing performance, average power, and page transfers for the MD
workloads. In the middle figure, p = PCM-only, d = DBUFF, w = WP, r = RaPP and
u = Unmanaged.
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Finally, note that Unmanaged consistently outperforms PCM-only. The reason

is that Unmanaged benefits from accessing data in its DRAM section, which is

substantially faster than accessing data in PCM when row buffer misses occur.

(Excluding the effect of page transfers, the row buffer miss ratio we observe is always

higher than 80%. This effect has been observed in previous studies of multi-core servers

as well, e.g. [77].)

Average memory power. Considering the middle graph of Figure 3.4, we see that

all systems exhibit similar average power consumption for the MD workloads (the

same happens for the LG and SM workloads). The average power correlates well

with the total number of accesses in each approach. As expected, page transfers

increase read/write and activation/precharge (activation/write to array for PCM)

power somewhat. We also see that DBUFF produces lower background power. The

reason is that the PCM area can be in precharge powerdown state more often in DBUFF.

Interestingly, although RaPP uses an SRAM cache for its ranking of pages, the

power consumed by this cache is negligible. Most rank accesses become cache hits (at

least 90% in our experiments). The SRAM results in the figure account for the static

and hit energies. The energy consumed by the misses is reported in the other categories.

Page transfers. The bottom graph shows that RaPP migrates more pages than WP

for most (all but 3) MD workloads. The same happens for most SM (all but 1) and LG

(all but 2) workloads. The reason is that each migration operation in RaPP actually

transfers 3 pages, instead of 1 or 2 pages in WP. Interestingly, DBUFF fetches many

more pages from PCM than RaPP and WP migrate in the MD workloads. Again, the

reason is that these (and the LG) workloads have working sets that do not fit in the

DRAM buffer. For the SM workloads, DBUFF fetches pages much less frequently than

for the MD and LG workloads. In fact, DBUFF transfers fewer pages than WP in 4

SM workloads and fewer than RaPP in 6 of them.

Putting performance and energy together: ED2. Figure 3.5 plots the ED2 of

each workload and system normalized to Unmanaged. The rightmost set of bars in each

graph shows the geometric mean of the results presented in the same graph. The graphs
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Figure 3.5: Comparing energy-delay2 for all workloads.
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show that RaPP is the only system to achieve ED2 no higher than Unmanaged and

PCM-only for all workloads. (In the few instances where RaPP achieves roughly the

same ED2 as Unmanaged, it disabled itself due to a large percentage of bad migrations.)

Considering the workload classes independently, we find that RaPP achieves the lowest

average ED2 for the LG and MD workloads. For the SM workloads, the combination

of low run time, very few migrations, and idle PCM ranks (as discussed before) leads

DBUFF to the lowest average ED2 (14% lower than RaPP). Overall, for the workloads

we study, RaPP achieves 13%, 24%, 36%, and 49% lower ED2 than WP, Unmanaged,

PCM-only, and DBUFF, respectively.

As mentioned above, RaPP improves ED2 over PCM-only and Unmanaged by

migrating popular pages from PCM to DRAM. The comparison to WP is more

interesting. RaPP and WP achieve comparable ED2 for some workloads. However, WP

achieves worse ED2 than Unmanaged for 2 LG, 1 MD, and 4 SM workloads. In many

of these cases, RaPP did very well but in others it simply disabled itself. Compared

to DBUFF, RaPP wins for workloads with working sets larger than the DRAM buffer

(i.e., 9 of our workloads).

3.3.2.2 Endurance

To evaluate the system lifetimes (limited by PCM’s endurance), we resort to the

Required Endurance metric [11]: Tlife ×
B

α C
, where B is the memory bandwidth in

bytes per second, Tlife is the desired system lifetime in seconds, α is the wear-leveling

efficiency of the system, and C is the memory capacity in bytes. For each workload,

we consider Tlife the typical 3- to 5-year server lifespan. α is A/M , where A is the

average number of writes per PCM cache block and M is the number of writes to the

most written cache block in the PCM area of the system. A low value of α suggests

poor wear-leveling. Required Endurance determines the number of writes that a PCM

cache block must be able to withstand during the server’s lifespan.

Figure 3.6 compares the base-10 logarithm of the Required Endurance of the systems

and workloads we consider, using the 3- and the 5-year projections. For comparison,

PCM’s endurance today is 108−109. The figure shows that RaPP requires roughly 10%
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Figure 3.6: Required Endurance projected over 3 and 5 years.

more endurance than DBUFF, but only 1% more than WP on average. In contrast,

it requires 5% and 4% less endurance than PCM-only and Unmanaged, respectively.

DBUFF provides the best Required Endurance.

In RaPP’s 5-year projection, most MD and SM workloads require endurance

only slightly higher than 109, whereas a few LG workloads require closer to 1010

endurance. The reason for these results is that in RaPP the frequently read and

frequently written pages compete for space in the DRAM area, trying to strike a balance

between performance and endurance. In addition, in some cases, RaPP’s self-disabling

mechanism is triggered, making it behave as Unmanaged from that point on.

However, we argue that RaPP’s endurance results are not a cause of concern for

two reasons. First, as we mention in Section 5.2, many proposals already extend the

lifetime of PCM greatly. Several of them are orthogonal to RaPP [16, 40, 47, 90] and

can enhance PCM independently from our approach. Second, the predictions for future

PCM cells suggest significant endurance improvement compared to DRAM (1012 writes

by 2012 [17] and 1015 writes by 2022 [36]), but performance and energy will still lag.

Better PCM endurance justifies a shift towards reducing energy and delay, as we do in

this dissertation.

3.3.3 Sensitivity analysis

RaPP parameters. We now study the impact of the migration threshold (MT), which

defines the number of accesses to a PCM page before deciding to migrate it to DRAM;

the filter threshold (FT), which defines the window of time for filtering consecutive
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Figure 3.7: RaPP’s sensitivity to migration threshold (MT), filter threshold (FT),
disable threshold (DT).

page references; and the disable threshold (DT), which defines the percentage of bad

migrations before RaPP disables itself.

Figure 3.7 depicts the ED2 results for the three workload classes and the overall

geometric mean. Each bar is normalized to the ED2 resulting from the default

value of the corresponding parameter. Specifically, the default value for MT is 25

and we compare it to 23 (labeled MT3) and 27 (MT7); the default value for FT is

MigrationT ime/32 and we compare it to 0.5x default FT (FT0.5x), 2x default FT

(FT2x), and 4x default FT (FT4x); and the default value for DT is 5% and we compare

it to 10% (DT10%), 15% (DT15%), and 25% (DT25%). We always vary one parameter

at a time, keeping others at their default values.

The figure shows that RaPP is most sensitive to MT, especially for the LG

workloads. In particular, MT7 degrades ED2 by 20% on average for the LG workloads,

compared to the default. It also degrades ED2 for the MD and SM workloads. In

contrast, MT3 degrades ED2 for the LG and SM workloads, but not by as much and

not for the MD workloads. RaPP exhibits relatively low sensitivity to FT, except for

FT4x for LG workloads. Finally, RaPP consistently showed more ED2 degradation as

DT increases.

These results suggest that (1) overshooting the ideal MT is more harmful on average

than undershooting it; and (2) lower values for FT and DT provide better behavior.

In contrast, varying these settings has a negligible impact on Required Endurance; it

varies only within 1% compared to our default RaPP results.
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PCM’s characteristics. We now evaluate the impact of the performance and

energy characteristics of PCM devices. We consider three additional settings for PCM

performance: optimistic, intermediate, and pessimistic; the PCM energy varies along

with its performance settings. Specifically, the optimistic setting assumes that row

activations are 40% faster than our default value, bringing them close to DRAM’s

activations; the array writes stay with their default values. [89] assumed similarly high-

performing PCM activations. The pessimistic setting assumes that activations and

array writes are 25% and 2.5x slower than our defaults, respectively. [21] assumed

similarly pessimistic parameters. Finally, the intermediate setting assumes that

activations are 25% faster and array writes are 50% slower than our defaults.

Figure 3.8 shows the average ED2 results (across all workloads) normalized to

Unmanaged. We can see that RaPP achieves the best average ED2 for the pessimistic

and intermediate cases. The advantage of RaPP is particularly significant in the

pessimistic scenario. For the optimistic setting, PCM-only and WP achieve roughly

the same ED2 as Unmanaged. This is not surprising since the optimistic performance

and energy of PCM become comparable to those of DRAM. Because RaPP attempts

to migrate pages to DRAM despite the optimistic assumptions for PCM, it achieves

slightly higher ED2. In contrast, DBUFF achieves worse ED2 because of the workloads

with poor locality.

These results suggest that RaPP behaves better than the other systems for different

sets of expected PCM characteristics (default and intermediate). RaPP’s benefits will

be even more pronounced, if commercial PCM devices turn out to be worse than our
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expectations. Again, the Required Endurance varies negligibly (less than 2%) across

these parameter settings.

WP variants and RaPP. Here, we isolate the effect of two important differences

between RaPP and WP: (1) the ability to migrate hot pages in general (vs. only

hot-modified ones) and (2) the ability to migrate pages in hardware within the OS

quantum.

In addition to the original WP (WP-OS), we study three variants. The first variant

(RWP-OS) migrates frequently read pages, as well as hot-modified ones at the end of the

OS quantum. The second variant (WP-HW) is hardware-driven, enabling migrations

within the OS quantum without any overhead (e.g., a processor interrupt). The last

variant (RWP-HW) is hardware-driven and migrates frequently read and written pages.

In all versions of WP, we migrate a PCM page that reaches the best migration threshold

in our experiments. (We determined the best threshold by running simulations with

every possible threshold and computing their corresponding average ED2 results.)

Specifically, we migrate the PCM pages that reach queue 3 for WP-OS and WP-

HW, and queue 5 for RWP-OS and RWP-HW. We also disconsider all MQ-related

overheads, which would be present in all four WP versions. These assumptions are far

more optimistic than our assumptions for RaPP.

Figure 3.9 shows the average ED2 and delay results (across all workloads) normalized

to Unmanaged. The figure shows that migrating frequently read pages at the end of the
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OS quantum (RWP-OS) only improves average performance by 1% and average ED2 by

2% over WP-OS. However, we observe that for most workloads, page popularity shifts

fast within the OS quantum, causing RWP-OS (and WP-OS) to overlook opportunities

for migration, as we discuss next. Interestingly, RWP-OS hurts endurance in most

workloads as compared to WP-OS, because read-critical pages compete with hot-

modified ones, delaying or detracting the system from migrating endurance-critical

pages in many workloads and/or from retrying to migrate them until the next

OS quantum. Lowering the migration threshold to force causes DRAM thrashing,

worsening the average performance and ED2.

With sub-quantum migrations, WP-HW moves more endurance-critical pages into

DRAM than WP-OS, improving endurance by 1% on average. However, it worsens

performance by 1% and ED2 by 2%, due to an increased fraction of bad migrations.

Increasing WP-HW’s migration threshold to reduce the number of migrations worsens

performance and ED2 even further.

RWP-HW achieves the best average improvement over WP-OS (5% in performance

and 10% in ED2). This result is mainly due to the fact that migrations occur while a

page is gaining popularity. It is also possible to retire accesses in the transfer buffers

within the MC itself and avoid accesses to RAM altogether, which is not possible in

the OS approach. However, without self-disabling, RWP-HW exhibits ED2 up to 33%

worse than Unmanaged.

3.4 Summary

In this chapter, we introduced a novel hybrid memory system design combining DRAM

and Phase-Change Memory. Our design features a sophisticated memory controller,

and a page ranking and migration policy called RaPP. The memory controller monitors

the memory accesses and implements RaPP. RaPP seeks to benefit from the best

characteristics of DRAM and PCM, while avoiding their limitations. The policy takes

into account the recency and frequency of page accesses, as well as the write traffic to

each page, to rank pages and lay them out in physical memory. Our results demonstrate
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that for the workloads we study, our design behaves significantly better than two state-

of-the-art hybrid designs, despite our optimistic assumptions for the latter systems.
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Chapter 4

Rank-aware Cooperative Cache

4.1 Overview

So far, hybrid memory approaches combining DRAM and PCM are either not robust

to some workloads and/or require hardware modifications. Moreover, hybrid memory

systems have not yet been considered for server clusters, such as those of modern

Internet services.

Interestingly, Internet services are a great target for hybrid memory systems, since

these services require low latency and high memory capacity at the same time. In fact,

these services organize the entire set of server main memories into a single, cluster-wide

cooperative cache. By doing so, they can avoid accessing slow disks or re-generating

content. For example, Facebook, Twitter, Youtube, and Wikipedia are known to use the

Memcached cooperative caching middleware [26]. Other proposals, such as the PRESS

middleware [12], also implement cooperative caches, but in a more flexible fashion than

Memcached.

In this chapter, we propose RaCC, a software-driven object placement policy for

hybrid memory systems in server clusters that implement cooperative caches. RaCC

monitors object popularity and leverages that information in placing the objects across

servers and memory technologies. Specifically, RaCC concentrates popular cached

objects in the collective DRAM of the server cluster, while taking advantage of PCM’s

large capacity to increase the hit ratio of the cooperative cache. We apply RaCC to

both Memcached and PRESS, using either solid-state drives (SSDs) or hard disk drives

(HDD) for persistent storage.

We evaluate these RaCC-based systems using simulation of real and synthetic
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traces of Internet services. For comparison, we also simulate Memcached and PRESS

with DRAM only, PCM only, and a hybrid memory system without RaCC (called

“unmanaged hybrid” or simply “unmanaged”). The unmanaged system does not

distinguish between DRAM and PCM. Our results show that RaCC adds performance

robustness to the hybrid cooperative caches. Considering the workloads we study, for

PRESS, RaCC improves the average performance per request by 43%, 30%, and 25%

respectively, compared to the DRAM-only, PCM-only, and unmanaged systems. For

Memcached, RaCC’s performance improvements are respectively 42%, 32%, and 20%.

We observe that RaCC’s gains depend on the workload locality and the performance

of the persistent storage device. To achieve robustness, RaCC systems do not consume

more energy than the other clusters. PCM endurance is not a problem for any of the

systems we consider.

4.2 Cooperative caching in Internet services

To meet their performance requirements, modern Internet services aggressively cache

Web objects. In fact, they often use a middleware layer that creates a large cluster-

wide cooperative cache to which each server contributes some amount of main memory

[12,18,26,64]. The middleware then directs each Web object request to the server likely

to be caching the object. In this chapter, we study two such middlewares: Memcached

and PRESS.

4.2.1 Memcached

Memcached [26] relies on object id/key hashing for object placement and load balancing.

In more detail, Memcached hashes each object request to one server and sends the

request to it. If the server caches the object, it simply replies with the object. Otherwise,

it fetches the object from secondary storage, caches it locally, and replies to the request

with the object. In this case, Memcached replaces objects locally to create space

for the new object using LRU replacement. For maximum scalability, servers do not

communicate in processing requests. However, Memcached does not replicate objects,
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which may cause load imbalance. To avoiding thrashing the cache with large but

unpopular objects, Memcached limits the size of the largest cacheable object.

4.2.2 PRESS

In contrast, PRESS [12] does explicit locality-aware load distribution, and distributed

load balancing via request forwarding and object replication. PRESS is based on the

observation that accessing a remote memory is faster than accessing local storage.

This observation holds even when servers use SSDs but are interconnected with high-

performance switches (e.g., InfiniBand).

PRESS implements request forwarding and load balancing with the help of a Global

Directory (GD) structure, replicated in every server. Each server updates the GD in

two situations: (1) whenever it starts or stops caching an object; and (2) periodically,

to inform the other servers about its load level (implied from the number of open

connections). In PRESS, any server can receive requests directly from clients (e.g.,

via round-robin DNS). Upon receiving a request, a server consults the GD and decides

whether to (1) forward the request to a non-overloaded server that currently caches the

object; (2) cache the object locally if there is no other (non-overloaded) server caching

the object; or (3) request the least loaded server in the cluster to cache the object, if

the servers that currently cache it and the receiving server are overloaded. Each server

manages its local memory using LRU replacement. As in Memcached, PRESS limits

the size of the largest cacheable object. We show the pseudo-code for PRESS’ request

distribution in Algorithm 1.

4.3 The RaCC Policy

In this section, we present the RaCC policy. RaCC is an object placement policy for

cooperative caches where the memory of each server comprises both DRAM and PCM.

Given the characteristics of DRAM and PCM, RaCC seeks to improve response time

by caching popular objects in DRAM and ultimately serving as many requests from

that memory region as possible. Previous research motivated our work by showing that
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1 function coopCacheServe (Request r)
2 begin
3 Object obj = r.target
4 if obj.size > MAX SIZE then
5 replyToClient (r.client, serveFromDisk (r))
6 end

7 else if obj is not cached on any server † then
8 startCaching (obj)
9 replyToClient (r.client, serveFromCache (obj))

10 end
11 else if obj is cached on the initial server then
12 replyToClient (r.client, serveFromCache (obj))
13 end
14 else
15 balanceLoad (r, obj)
16 end

17 end
18 function balanceLoad (Request r, Object obj)
19 begin
20 PeerServer w = least loaded server caching obj†

21 if GD.notOverloaded (w) then
22 forwardToPeer (r, w)
23 replyToClient (r.client, receiveReplyFromPeer (w))
24 return

25 end
26 if GD.notOverloaded (localhost) then
27 startCaching (obj)
28 replyToClient (r.client, serveFromCache(obj))
29 return

30 end

31 PeerServer v = least loaded server in the cluster†

32 if GD.notOverloaded (v) then
33 forwardToPeer (r, v)
34 replyToClient (r.client, receiveReplyFromPeer(v))

35 else
36 forwardToPeer (r, w)
37 replyToClient (r.client, receiveReplyFromPeer(w))

38 end

39 end
40 function receiveForwardedRequest (Request r, PeerServer p)
41 begin
42 if r.target is not cached then startCaching (r.target)
43 replyToPeer (p, serveFromCache (r.target))

44 end

Algorithm 1: Request service in PRESS (†via GD)
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typically only a relatively small subset of Web objects are very frequently accessed in

Web caches [29, 76]. Moreover, that subset may change over time. These observations

suggests that (1) the most popular objects may fit entirely in the collective DRAM

area of the cooperative cache; (2) the majority of lightly accessed objects will consume

lower energy if accessed in PCM rather than HDD or SSD; and (3) the system must

dynamically identify the popular objects and adjust their placements accordingly.

We first describe RaCC’s basic mechanisms, then we explain how the approach can

be used on PRESS and Memcached.

4.3.1 Basic mechanisms

Object ranking. To make object placement decisions, RaCC tracks the popularity

of objects stored in the cooperative cache and leverages that information in placing

them. Specifically, RaCC tracks the frequency and recency of references to the cached

objects. To dynamically rank objects, each server individually builds two private MQ

structures [91], updated as requests for content arrive at the servers. The first MQ

structure (PMQ) ranks objects that are stored solely in PCM, whereas the second

structure (DMQ) ranks objects that are stored solely in DRAM. RaCC does not allow

objects to span the two memory regions. Each MQ structure is similar to the original

structure described in Section 3.2.1, with the difference that here we rank objects rather

than frames.

When an object cached in PCM reaches queue PopThres of PMQ, it is considered

popular. In our simulations, we adopt 16 queues per MQ structure, and we set LifeTime

to 32 and PopThres to 8, because they showed good empirical performance and energy

results.

Server-level object placement. RaCC manages memory as shown in Algorithm 2.

RaCC tries to allocate objects first in DRAM, then in PCM, if they have free frames

available. The function cacheObject maps the newly cached object to free virtual pages

and copies the object’s content from the storage device into a corresponding set of

physical memory pages. When neither memory region has free space, the replacement
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1 function startCaching (Object obj)
2 begin
3 if DRAM.hasEnoughFreeFrames(obj.size) then
4 cacheObject (obj, DRAM)
5 DMQ.add (obj)

6 end
7 else if PCM.hasEnoughFreeFrames(obj.size) then
8 cacheObject (obj, PCM)
9 PMQ.add (obj)

10 end
11 else
12 DMQpivot = DMQ.getLeastPopularInSet(obj.size)
13 PMQpivot = PMQ.getLeastPopularInSet(obj.size)
14 if DMQpivot is less popular than PMQpivot then
15 ensureRoom (obj.size, DRAM, DMQ)
16 cacheObject (obj, DRAM)
17 DMQ.add (obj)

18 end
19 else
20 ensureRoom (obj.size, PCM, PMQ)
21 cacheObject (obj, PCM)
22 PMQ.add (obj)

23 end

24 end

25 end

Algorithm 2: RaCC’s local placement algorithm

algorithm coordinates DMQ and PMQ, seeking to replace the least popular content

in the entire memory. Because RaCC manages DRAM and PCM disjointedly, the

replacement algorithm must select one of these memory regions, then make room in it

for the new object. To select the region, RaCC finds the set of least popular objects

in DMQ and PMQ (lines 8–9), then compares the popularity of a “pivot object” (the

most popular object) in each set (line 10). If the pivots occupy different MQ queues

in their respective structures, RaCC selects the region with the lowest ranked pivot.

Otherwise, RaCC selects the region with the LRU pivot. The function ensureRoom

frees as many bottom-ranked objects of the selected region as necessary to fit the new

object, and updates the corresponding structure. Finally, RaCC caches the new object

as explained before.
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1 function coopCacheServe (Request r)
2 begin
3 Object obj = r.target
4 if obj.size > MAX SIZE then
5 replyToClient (r.client, serveFromDisk (r))
6 end

7 else if obj is not cached on any server † then
8 startCaching (obj)
9 replyToClient (r.client, serveFromCache (obj))

10 end
11 else if obj is cached on the initial server then
12 replyToClient (r.client, serveFromCache (obj))
13 tryMigrate (obj)

14 end
15 else
16 balanceLoad (r, obj)
17 end

18 end
19 function balanceLoad (Request r, Object obj)
20 begin
21 PeerServer w = least loaded server caching obj in DRAM†

22 if GD.notOverloaded (w) then
23 forwardToPeer (r, w)
24 replyToClient (r.client, receiveReplyFromPeer (w))
25 return

26 end

27 PeerServer z = least loaded server caching obj in PCM†

28 if GD.notOverloaded (z) then
29 forwardToPeer (r, z)
30 replyToClient (r.client, receiveReplyFromPeer(z))
31 return

32 end
33 if GD.notOverloaded (localhost) then
34 startCaching (obj)
35 replyToClient (r.client, serveFromCache(obj))
36 return

37 end

38 PeerServer v = least loaded server in the cluster†

39 if GD.notOverloaded (v) then
40 forwardToPeer (r, v)
41 replyToClient (r.client, receiveReplyFromPeer(v))

42 else
43 forwardToPeer (r, w)
44 replyToClient (r.client, receiveReplyFromPeer(w))

45 end

46 end
47 function receiveForwardedRequest (Request r, PeerServer p)
48 begin
49 if r.target is not cached then startCaching (r.target)
50 replyToPeer (p, serveFromCache (r.target))
51 tryMigrate (obj)

52 end

Algorithm 3: RaCC request service for PRESS (†via GD)
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4.3.2 RaCC for PRESS

RaCC leverages the request distribution and object replication algorithms of PRESS

to place objects and replicas in the cooperative cache, as we explain below.

Request service. Algorithm 3 depicts the PRESS behavior upon receiving a request,

when augmented with RaCC. Compared to the original PRESS design, the main

modifications introduced by RaCC are (1) the search for opportunities to migrate

popular objects in DRAM (lines 11 and 41); and (2) the forwarding of requests

preferably to servers already caching the requested object in DRAM (lines 16–25).

As we mention in Section 4.2, HTTP requests arrive via standard round-robin DNS

to any server. The server that initially receives the request (called “initial server”)

parses it, inspects its content, and decides where it should be served. The initial server

itself serves requests for objects that are (1) larger than the maximum cacheable size,

which is 1MByte in our simulations (lines 4–5); (2) seen for the first time (lines 6–8); or

(3) already cached locally in DRAM or PCM (lines 9–10). Otherwise, the initial server

tries to forward the request to another server while balancing load (lines 12–13). Using

the GD, PRESS finds the least loaded server that already has the object in memory.

If that server is not overloaded, PRESS forwards the request to it. RaCC breaks this

step into two. First, it looks for a server that has the object in DRAM (lines 16–19).

If that server is not found, RaCC looks for a server caching the object in PCM (lines

21–24). If none of those are found, the initial server tries to cache the object in its

own memory, as long as it is not overloaded (lines 26–29). Otherwise, again using the

GD, the initial server looks for the least loaded server in the cluster. If that server is

not overloaded, the initial server forwards the request to it (lines 30–33). If none of

the previous cases is satisfied, RaCC forwards the request to the server that has the

object in DRAM (lines 35–36). Upon receiving a forwarded request, a server may need

to update its cache, and then send the cached object to the initial server (lines 37–41).

Whenever a server starts caching the requested object, it broadcasts that fact to all

servers, updating the GD, as in the original PRESS design. In that case, the server

also adds a corresponding entry to DMQ or PMQ, depending on which memory region
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the object is placed.

Object migration. On an object reference, a RaCC server updates the local ranking

data structure that corresponds to the memory region where the object lies (DMQ for

DRAM or PMQ for PCM). If the object reaches queue PopThres in PMQ, the server

considers the object popular and tries to migrate it into its own DRAM. The migration

occurs if the server has enough free DRAM space or unpopular objects in DRAM to

replace. Lines 11 and 41 of Algorithm 3 are the two cases in which RaCC attempts

to migrate a popular object from its PCM into its DRAM (tryMigrate). RaCC may

reach line 11 when the initial node serves the request, and may reach line 41 when a

remote node serves the request from its PCM. The migration occurs at the server that

is caching the object. If the migration takes place, the server updates its PMQ and

DMQ structures to reflect the migration and then broadcasts the fact that the object is

now in DRAM. This broadcast is the only new communication introduced into PRESS.

Object replication and popularity hinting. The basic object replication

mechanism of PRESS is not concerned about which type of memory will host a

replica. RaCC introduces a hinting mechanism that helps concentrate popular objects

in DRAM, avoids unnecessary technology migrations upon replication, and requires

low-overhead maintenance. The basic idea is to allow RaCC to determine whether

it should place a new replica in DRAM or PCM based on the object’s popularity.

Note that a server that is requested to host an object replica does not have any local

information about the object’s popularity in the other servers. To approximately infer

the popularity of an object upon replication, RaCC looks up the GD to find if an object

is in the DRAM of any server. If so, it caches the object in its own DRAM. Otherwise,

it follows Algorithm 2 to place the replica. Over time, RaCC tends to concentrate

popular objects in DRAM.

Modifications to the GD. In addition to the server-level policy modifications

described before, RaCC requires GD extensions. The original GD maintains a hash

table that maps each object ID to an entry representing the object. The object entry

contains a pointer to a list of object-server entries, which represent the servers caching
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the object locally. When a server starts caching an object or replica, it creates a new

object-server entry in the GD’s object map. An object-server entry contains a pointer

to an array (indexed by server ID) that maintains information about the server’s load.

We extend each object-server entry with an In-DRAM single-bit flag, which indicates

whether an object is cached in DRAM at that server. Additionally, when RaCC

migrates an object into the DRAM of a server, the server broadcasts that fact, and

all servers set the corresponding bit in their copy of the GD.

4.3.3 RaCC for Memcached

We study a simple server organization of Memcached, where Web servers (Memcached

clients) receive requests and distribute them to Memcached servers. To distribute

requests, the Web-tier servers hash the URLs of the requested objects and apply a MOD

operation to find a target server in the Memcached tier. Due to this simple request

distribution and the absence of replicas in Memcached, the opportunities for RaCC are

limited. Specifically, for this service organization, we focus only on migrating popular

objects within individual nodes. Interestingly, we observe that RaCC still improves

service latency and robustness. Our results (Section 4.4) focus on the Memcached tier,

where our approach applies.

1 function coopCacheServe (Request r, Peer peer)
2 begin
3 Object obj = r.target
4 if obj.size > MAX SIZE then
5 replyToPeer (peer, serveFromDisk (r))
6 else
7 if obj is not cached then
8 startCaching (obj)
9 replyToPeer (peer, serveFromCache (obj))

10 else
11 replyToPeer (peer, serveFromCache (obj))
12 tryMigrate(obj)

13 end

14 end

15 end

Algorithm 4: RaCC request service for Memcached
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Request service. Algorithm 4 depicts the Memcached behavior upon receiving a

request, when augmented with RaCC. Like in PRESS, we only cache objects smaller

than 1MByte (lines 3–5). The caching algorithm is straightforward. On a cache miss, a

Memcached server brings the object to its local memory and creates the corresponding

data structure in its DMQ or PMQ, depending on which memory region caches the

object (lines 7–8). The server then replies to the same Web server that forwarded the

request originally (lines 9, 11). The Web server forwards the reply to the service’s

client. The Memcached server updates the MQ structure corresponding to the memory

region where the object is cached (line 10), then tries to migrate the object (line 12),

as described below.

Object migration. Similarly to the local migration described for PRESS, when an

object in PCM becomes popular at a Memcached server, the server considers migrating

it into DRAM. The migration occurs if the server has enough free space or unpopular

DRAM objects to accommodate the popular object. Unlike in PRESS, the server does

not need to broadcast any messages.

4.4 Evaluation

In this section, we study PRESS and Memcached on clusters where server memories

comprise only DRAM, only PCM, or a hybrid system with and without RaCC. We also

evaluate each cluster with either SSDs or HDDs as storage devices.

4.4.1 Methodology

Workloads. We use real and synthetic HTTP traces from different sources. The wiki

trace is a sample of actual Wikipedia traces [81]. The sample contains 2% of all user

requests issued to Wikipedia (in all languages) in November of 2007. The ircache [41]

trace contains actual requests collected in January of 2007 from 2 medium/large Web

cache proxies located in California. The govcomm trace is a combination of several

actual traces from the 1990’s (ClarkNet, EPA, NASA, and World Cup ’98) which we

merged to create a larger data set and higher offered load. The twitter and flickr
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traces were synthetically generated using scripts and object popularity distributions

provided by researchers at the University of Michigan [52]. The traces follow empirically

measured and fitted distributions, respectively, from Twitter.com and Flickr.com. The

popularity of a Twitter object (tweet) is inferred from their number of followers, and

the popularity of Flickr pictures is proportional to their number of views.

Table 4.1 summarizes the main characteristics of our workloads. For each workload,

the table shows: (1) the average and peak offered loads (in requests per second), (2)

the average size of requests in KB, (3) the data sizes in GBytes and in number of

objects, and (4) the average hit ratio when the system comprises solely either DRAM

or PCM. Workload locality and cache sizes determine the hit ratio of the cooperative

cache. Figure 4.1 depicts the cumulative distribution of requests to objects. The X-

axis contains fractions of the total number of objects sorted from most to least popular.

The Y-axis shows the corresponding percentage of requests directed to each fraction of

the objects. For example, in wiki, a significant fraction of the requests concentrate on

a relatively small number of objects, whereas in ircache, the distribution of requests

increases almost linearly from 10% of the objects on. Because the workloads have

different working set sizes (which are small in some cases) we use different memory

sizes for each workload. Our baseline DRAM DIMM size is 32MBytes for govcomm

and ircache, 192MBytes for twitter and flickr, and 1GBytes for wiki. Assuming 2

DIMMs per server and a 4-times-denser PCM, we obtain different cache sizes for each

memory organization we study. In our simulations, a server for govcomm and ircache

uses 64MBytes (DRAM-only), 160MBytes (hybrid memory systems), or 256MBytes

(PCM-only); a server for twitter and flickr uses 384MBytes (DRAM-only), 960MBytes

(hybrid memory systems), or 1536 MBytes (PCM-only); and a server for wiki uses

2GBytes (DRAM-only), 5GBytes (hybrid memory systems), or 8GBytes (PCM-only).

Simulation infrastructure. Because PCM hardware and DRAM + PCM hybrid

systems are not yet widely available, we use simulation in our evaluation. We simulate a

server cluster that receives requests directly from clients (e.g., via round-robin DNS) and

may communicate with each other to serve those requests. The servers are connected to

the clients via an external (public) network, and to each other via an internal (private)
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Table 4.1: Workload details

Name
Reqs/s Avg. Dataset DRAM- / PCM-

(avg / peak) KB/req (GB / objects) only hit ratio

govcomm 876 / 3343 21.08 6.35 / 111907 99.2% / 99.9%
wiki 572 / 885 40.50 202.32 / 4856760 77.6% / 85.5%

twitter 1999 / 2344 1.03 7.46 / 977964 88.8% / 99.7%
flickr 1999 / 2344 24.93 3.55 / 128728 96.2% / 100%
ircache 20 / 233 77.94 51.29 / 644862 44.5% / 52.6%
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Figure 4.1: CDF of object popularity in our workloads.

network.

Our simulator reads the HTTP requests from a trace and replays them in open-loop.

The simulator is event-driven and models each node of the cluster as a collection of

inter-connected components. We characterize each component (i.e., CPU, SSD/HDD,

NICs, and memory) by a service rate, a counter of idle processing elements, and a wait

queue. Processing requests takes visiting different sequences of components depending

on the actions necessary to serve the request. For example, a cache replacement causes

a visit to the persistent storage component, which does not occur on a cache hit. The

service rate specifies how fast a component can process units of work assigned to it. If
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all processing elements of a component are busy, it will store new incoming work units

in its queue until a processing element becomes available. A state machine drives the

progress of each request, retiring it after all necessary components have been visited. We

keep track of object location in memory and count writes to PCM frames for endurance

calculations. Finally, we evaluate the load of a server by looking at its amount of

pending requests. For example, in PRESS, we determine overload by comparing that

number to the overload threshold. We empirically chose a threshold of 250 requests,

a single value that improves load balancing in most cases without being excessively

conservative.

Our simulated environment is an 8-node server cluster. Each server comprises (1)

one 8-core CPU running at 2.13GHz; (2) an SSD or a 15Krpm HDD; (3) a 1Gb/sec

Ethernet network interface card (NIC) with a full-duplex link for communication with

the public network; (4) a 4X EDR Infiniband NIC (with support for remote DMA) for

the private network; (5) two single-rank memory DIMMs (DDR3-1866), each one lying

on a its own 64-bit DDR3 933MHz channel. Each memory rank has 8 chips (x8 width),

each of which has 8 banks. Table 4.2 summarizes the power and timing characteristics

of our servers.

We validated our performance simulation for DRAM-only servers by running

a Memcached server (libmemcached5) and a multi-threaded client (memslap from

libmemcached-tools) on a single HP Proliant DL320G6 E5620 server (4-core 2.4GHz

CPU, 6 GB of channel-interleaved DDR3 DRAM 1066MHz). We measured the average

inter-arrival rate and the average response time per request for 8 different request

arrival rates. We repeated each measurement 10 times on a quiet server, and verified

that the CPU utilization remained under 60% (to avoid a CPU-overload bias) and that

no request timed out. We used the real arrival rates to generate input traces for the

simulator. We found the real response times to be within 14% of our simulations for

6% RBHR on average, as shown in Figure 4.2, suggesting that our simulations are

accurate for the DRAM-only system. Unfortunately, we cannot perform a similar set of

validation experiments for the other systems, as they utilize yet-to-be-commercialized

PCM chips.
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Table 4.2: Cluster node features

Component Values and units

CPU request forward / migration (empirically) 500ns / 1µs
CPU idle / max power [35] 30W / 105W
SSD 4KB read [45] 25µs
SSD Idle / max power [45] 0.75W / 6W
HDD 4KB read [75] 2.4ms
HDD idle / max power [75] 4W / 7W
Infiniband latency [54] / 1KB transfer [34] 100ns / 80ns
Infiniband idle / max power [53] 11W / 13W

DDR3-1866 [47, 55, 68] Values and units

Row buffer read / write latency 22.47 / 36.38 ns/64B
Row buffer read / write energy 0.93 / 1.02 pJ/bit
Active standby / precharge standby power 0.72 / 0.58 W/rank
DRAM array read / array write latency 13.91 / 13.91 ns
DRAM array read / array write energy 1.17 / 0.39 pJ/bit
PCM array read / array write latency 110 / 300 ns
PCM array read / array write energy 4.94 / 33.64 pJ/bit

Memory model. Our DDR3 and DRAM power and timing parameters are from

[55,83], and PCM parameters from [47,68]. In our simulations, a memory rank can be

in (1) the Active Standby state, when at least one of its banks is serving requests; or (2)

the Precharge Power Down state, when all banks are idle and the clock enable line is

turned off to save energy. Additionally, PCM is enhanced to avoid writing unmodified

cache lines back to the cell array. The MC implements bank-level interleaving and

serves memory requests in first-come first-served (FCFS) order. In the absence of row

conflicts, the MC keeps banks open during a DMA operation. The CPU schedules

DMA operations in FCFS order.

To be able to easily study a range of object-to-memory mappings, we parametrize

the simulator with the expected row buffer hit ratio (RBHR). A low RBHR brings

out the performance of the memory devices in each access, whereas a high RBHR

brings the performance of DRAM and PCM closer to each other. Table 4.3 shows

the performance and energy consumption of DRAM and PCM for different average

RBHRs. Because bank interleaving reduces the row buffer locality (in exchange for

better throughput) and the physical frames of the requested objects are unlikely to
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Figure 4.2: Response times for a real server, simulated servers (assuming 1%, 6%, and
12% RBHRs), and the average across the simulated response times.

be contiguous, we conservatively assume a low average row buffer hit ratio (12.5%) by

default. For example, for every 8-KByte frame accessed in main memory, by default

we read only 1KByte from each row buffer due to bank interleaving. For a commonly

used 8-KByte row buffer and 8 banks, it is necessary to read 8×8KB from the memory

devices to be able to read or write our 8-KByte memory frames (8KB÷64KB = 12.5%

RBHR). Finally, multiple DMA streams may compete for memory (i.e., disk-to-memory,

network-to-memory, memory-to-network), thus it is reasonable to expect even lower

RBHR. In Section 4.4.2, we show a sensitivity study covering the expected range of

average RBHR ratios.

Baselines for comparison. Because RaCC has been designed for server clusters with

hybrid memory, we compare it to an “Unmanaged” hybrid memory cluster that does

not explicitly differentiate between DRAM and PCM. We also compare the hybrid-

memory systems to two baselines: DRAM-only and PCM-only clusters. These two

baselines implement the original versions of PRESS and Memcached. We study the

systems under different RBHRs.

We also consider the impact of the persistent storage devices on the service
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Table 4.3: Influence of average RBHR on memory accesses [47, 68]

ns/8KB 1% RBHR 6% RBHR 12% RBHR

DRAM R 3219 1216 882
DRAM W 4109 1439 993
PCM R 8479 2531 1540
PCM W 28569 7553 4051

nJ/8KB 1% RBHR 6% RBHR 12% RBHR

DRAM R 35447 4421 1867
DRAM W 43427 4926 1997
PCM R 96753 10911 4376
PCM W 278970 24371 9399

performance. Recent studies have shown that complete replacement of HDDs with

SSDs in datacenters is not cost-effective [44,60]. However, the same studies suggest that

SSDs can be exploited as an intermediate tier between HDDs and DRAM, depending on

the workloads’ characteristics. In such an organization, we should expect performance

to lie somewhere in between the SSD and HDD performance results we present.

4.4.2 Performance

Performance of PRESS. Figure 4.3(a) shows the latency per request served from a

PRESS cooperative cache, where each server uses a fast SSD as the persistent storage

device. The bars in the figure represent the average latency per request across different

RBHRs (1%, 6% and 12%). The upper and lower ends of the error bars represent the

highest and the lowest latencies across RBHRs, respectively. In general, as we expected,

the relative performance advantage of DRAM over PCM is higher in the presence of low

RBHRs, because they expose more of the raw performance of the memory devices to

the service. Analogously, high RBHRs hide the performance disadvantage of PCM. In

fact, all maximum latencies in the figure consistently correspond to the lowest RBHRs,

whereas the minimum latencies correspond to the highest RBHRs.

The SSD-based cluster is ideal for DRAM-only because (1) DRAM serves the

cooperative cache hits with better performance than PCM; (2) cooperative cache misses

have relatively low penalty, due to the high performance of the SSDs; and (3) most of our
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workloads have relatively high cooperative cache hit ratios (Table 4.1), which reduces

the frequency of accesses to the storage devices. In fact, DRAM-only performs well

with SSDs when its hit ratio is within 5% of the other techniques (govcomm, flickr, and

ircache). The DRAM-only advantage diminishes beyond that hit ratio, or when the

SSDs are slower than those we consider in this study. Regardless of the hit ratio, we

note that RaCC comes within 1% on average of DRAM’s ideal results, while performing

better than the other systems.

Although PCM-only exhibits the highest cooperative cache hit ratios across all

workloads due to its large storage capacity, it performs worse than the other systems.

The reasons are (1) the low miss penalty of the cooperative cache; (2) the inferior

performance of PCM compared to DRAM (present in the other systems); and (3) the

fact that the hybrid systems serve a significant fraction of their accesses from DRAM.

For those reasons, compared to PCM-only, RaCC improves performance by 37% on

average, for our workloads.

Finally, in this setup, RaCC performs better than Unmanaged by 28%, on average,

for the workloads we study. The reason is that RaCC concentrates popular objects

in DRAM, creating more opportunities to serve them from that memory region. We

show that result in Figure 4.3(c), which quantifies the percentage of requests that the

cluster serves from its SSDs (on cache misses), DRAM, and PCM (on cache hits). The

figure illustrates that the RaCC serves substantially more requests from DRAM than

Unmanaged, especially in the case of govcomm. The number of objects that RaCC

migrates is below 1% of the total number of objects requested for all of our workloads.

Figure 4.3(b) shows the latency per request served from PRESS with HDD-based

servers. In this setup, RaCC performs better than DRAM-only, PCM-only, and

Unmanaged, respectively by 87%, 23%, and 21% on average, for the workloads we study.

Because random HDD reads are two orders of magnitude slower than SSD reads, the

severe penalty of cooperative cache misses makes the hybrid and PCM-only systems

much more attractive than DRAM-only. In fact, DRAM-only presents significantly

lower performance compared to the others for twitter and flickr, despite being within

5% of the cache hit ratio of the other systems. RaCC performs better than PCM-only
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(c) Request service in PRESS

Figure 4.3: Average latency per request served by PRESS, using either SSD or HDD
storage devices, and percentage of requests served from each memory and storage device.
Each bar represents the average latency per served request across the multiple RBHR
scenarios (1%, 6% and 12%) normalized to Unmanaged. The error bars show the worst
and the best average latency per request across all RBHRs. Do, po, um, and rc represent
respectively DRAM-only, PCM-only, Unmanaged, and RaCC.
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(c) Request service in Memcached

Figure 4.4: Average latency per request served by Memcached, using either SSD or
HDD storage devices, and percentage of requests served from each memory and storage
device. Each bar represents the average latency per served request across the multiple
RBHR scenarios (1%, 6% and 12%) normalized to Unmanaged. The error bars show
the worst and the best average latency per request across all RBHRs. Do, po, um, and
rc represent respectively DRAM-only, PCM-only, Unmanaged, and RaCC.
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in all variations, except in wiki and ircache. However, the gain of PCM-only is small

(10% and 2% respectively) in those cases.

As shown in Figure 4.3(c), RaCC is able to serve more requests from DRAM

than Unmanaged, thus presenting better average performance. In this setup, the

number of objects that RaCC migrates is also less than 1% of the objects requested

in each workload, thereby not impacting the service latency noticeably. Additionally,

we observe that, without the hinting feature in PRESS (Section 4.3.2), RaCC would

perform poorly. The reason is that sets of popular objects are often responsible for a

high load and, as a result, they tend to be replicated across many servers. Without

hints, the replicated objects often replace cached content in PCM, then become popular

and require migration into DRAM.

Performance in Memcached. Figures 4.4(a) and 4.4(b) show the performance per

request served from an SSD- and an HDD-based Memcached cluster, respectively.

At first glance, the Memcached clusters exhibits similar average performance as the

PRESS clusters. However, a closer look reveals that Memcached exhibits higher

standard deviation than PRESS in both request distribution and average latency per

request across different servers. Specifically, Memcached’s standard deviation in request

distribution is 70% and 80% higher than PRESS using SSDs and HDDs, respectively. In

terms of average latency per request, Memcached’s standard deviation is 60% and 82%

higher than PRESS using SSDs and HDDs, respectively. The limited load balancing of

Memcached (only via hashing) makes server performance less deterministic and more

prone to performance bottlenecks. However, the lack of replicas entails extra space in

the individual memories for caching more objects. We observe that the cooperative

cache hit ratio does not change significantly between PRESS and Memcached, despite

their functional disparities. For that reason, load balancing is the main factor behind

the absolute performance difference of DRAM-only and PCM-only in PRESS and

Memcached. Compared to the other memory organizations, Unmanaged Memcached

performs better than its PRESS counterpart. The reason is that Unmanaged PRESS

often replicates objects in PCM, and because most replicated objects are popular, PCM

ends up serving more requests, as we observe in Figure 4.4(c). In contrast, RaCC is able
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to concentrate most accesses in DRAM by migrating popular objects to that memory

region.

In the SSD-based clusters, across all workloads, RaCC’s average latency lies within

2% of that of DRAM-only. RaCC also improves the average latency per request by

37% and 22%, respectively, compared to PCM-only and Unmanaged. In the HDD-

based clusters, the performance advantage of RaCC over its competitors is 86%, 26%,

and 18%, respectively, for the workloads we study.

In summary, we observe that the performance of the studied cooperative caches

is highly influenced by the storage device, memory performance, RBHR, and the

cooperative cache hit ratio. Across all these variants, RaCC presents the most robust

performance. The total number of migrations is small compared to the total number

of objects requested, staying below 1% in all cases.

4.4.3 Energy

In this section, we compare the energy consumption of the studied memory

organizations for both PRESS and Memcached. Specifically, we consider the static

(background) and dynamic (non-background) energies of the memories and storage

devices, plus the dynamic energy of CPU and NICs in the entire cluster. We omit the

static energy consumption of CPU, NICs, power supplies, and network switches because

although non-negligible, they are irrelevant to our study. For the same reason, we do

not include the dynamic CPU and NIC energy involved in receiving and parsing client

requests. The energy results we report assume 1% RBHRs because that scenario brings

out the memory energy more than the others. Because migrations involve both cores

and memory, the migration energy is included in the CPU and memory components.

However, the migration energy is negligible in all cases.

Figures 4.5(a) and 4.5(b) show the breakdown of energy consumption for SSD-based

clusters managed with PRESS and Memcached, respectively. We observe that the static

energy of the servers in periods of low and high utilization adds up and dominates

the total energy consumption. Overall, the total energy per request is similar across

memory organizations, all within 2% of each other. In fact, the dynamic energy of
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(d) Energy/request (Memcached+HDD)

Figure 4.5: Energy consumption per request served by PRESS and Memcached, using
either SSD or HDD storage devices. We calculate energy per request as total enegy
divided by the number of requests served. Do, po, um, and rc represent respectively
DRAM-only, PCM-only, Unmanaged, and RaCC.
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RaCC is always close to that of DRAM-only (within 3%), which exhibits the best energy

consumption per request served. The reason is the low energy penalty of cooperative

cache misses and the lower energy consumption of DRAM compared to PCM. Although

PCM consumes lower idle power than DRAM, its higher access latency leads to higher

energy consumption. Because RaCC concentrates most accesses in DRAM, it exhibits

better dynamic energy than Unmanaged and PCM-only by 9% and 13% in PRESS

clusters, and by 8% and 14% in Memcached clusters on average. As we noted above,

the number of migrations in RaCC is very small, and thus their energy overhead is low.

Figures 4.5(c) and 4.5(d) show the breakdown of the energy consumption for HDD-

based clusters managed with PRESS and Memcached, respectively. Like in the SSD-

based clusters, we notice that the static energy is much more significant than the

dynamic energy. However, in this scenario, the energy penalty of cooperative cache

misses is high and the static and dynamic energy of the storage devices dominates

the total energy per request served. In fact, RaCC exhibits total energy consumption

within 1% of Unmanaged and PCM-only. Because of the high penalty of cache misses,

DRAM-only is slightly worse than RaCC by 6% for PRESS and 5% for Memcached.

Comparing only the dynamic energy, on average, we find that RaCC is only slightly

better than Unmanaged (within 4%) and PCM-only (within 5%), but significantly

better than DRAM-only (49% for PRESS and 47% for Memcached).

4.4.4 Endurance

In this section, we compare the endurance of PCM in the systems we study. As in

Section 3.3.2.2, we use the Required Endurance metric [11] over a period of 5 years.

Figures 4.6(a) and 4.6(b) compare the base-10 logarithm of the Required Endurance

of the systems we consider, using the 5-year projection. For comparison, PCM’s

endurance today is 108−109. As shown in the figures, all systems exhibit relatively low

PCM endurance requirements, due to their limited memory write throughput and large

PCM capacity. In both PRESS and Memcached, RaCC requires roughly the same

endurance as Unmanaged (within 1% of each other). Because PCM-only has larger

capacity on average, it requires 7% and 5% less PCM endurance than both hybrid
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systems, respectively in PRESS and Memcached. The larger capacity of PCM-only

entails a higher value of C, but also improves the hit ratio of the cooperative cache,

which increases the write traffic to the PCM of the hybrid systems.

As these results clearly show, PCM endurance is not a problem for the clusters and

workloads we consider. In addition, like RaPP, RaCC can be combined with existing

wear-leveling solutions for PCM to improve the endurance results presented in this

section.

po um rc po um rc po um rc po um rc po um rc

0

2

4

6

R
eq

. e
nd

ur
an

ce

govcomm wiki twitter flickr ircache

(a) Required endurance for PRESS
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(b) Required endurance for Memcached

Figure 4.6: Required endurance of PCM for PRESS and Memcached over a period of 5
years in logarithmic scale. The solid bars represent the average across results for SSD
and HDD storage devices. The error bars represent the maximum and the minimum
values of required endurance. Do, po, um, and rc represent respectively DRAM-only,
PCM-only, Unmanaged, and RaCC.
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4.5 Summary

In this chapter, we introduced RaCC, an object placement policy for server clusters

that use hybrid DRAM+PCM main memory systems. In particular, we integrated

RaCC tightly into two existing cooperative caching systems. RaCC seeks to benefit

from the best characteristics of DRAM and PCM, while avoiding their limitations.

RaCC ranks, migrates, and replaces cached objects to improve the cache’s performance.

Our results for five workloads, four memory systems, and two types of persistent

storage devices demonstrate that RaCC provides robust performance to hybrid-memory

clusters, without increasing energy consumption. We conclude that the combination

of hybrid memories and intelligent object placement can produce efficient and robust

server clusters.
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Chapter 5

Related Work

5.1 Using technologies other than DRAM for main memory

Despite the problems with Flash (page-level interface of NAND Flash, very high write

and block-erase times, low cell endurance), two studies have considered combining Flash

and DRAM in main memory. ENVy [84] focused on sidestepping the write-related

problems of Flash using battery-backed SRAM and virtual memory techniques. A

more recent position paper [59] considered a flat DRAM+Flash (or PCM) address space

with the OS responsible for predicting page access patterns and migrating read-only

pages from DRAM to (write-protected) Flash. Although the paper did not include an

evaluation of their system, we expect that an OS-only approach to page management

would cause unacceptable overhead for most types of pages.

With better characteristics than Flash, PCM is a more promising technology for

use in main memory. In fact, several recent works [13, 16, 47, 67, 69, 70, 87, 89, 90] have

proposed systems that use PCM as a partial or complete replacement for DRAM. In

this dissertation, we compared RaPP to two of these works.

Qureshi et al. [67] used a hardware-managed DRAM buffer between the LLC and

a PCM-only main memory. The buffer allows direct application of fine-grained wear-

leveling, lazy writes, write coalescing, and fine-grain write-backs to PCM. Zhang et

al. [89] placed DRAM and PCM in a flat address space and treated DRAM as an OS-

managed write partition. In their system, all pages are initially stored in PCM. The

idea is to keep the cold-modified (infrequently written) pages in PCM, trying to take

advantage of its low idle power consumption, and the hot-modified (frequently written)

pages in DRAM to avoid PCM’s high write latency and poor endurance. The solution
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entails a hardware implementation of MQ for page ranking only. In contrast, RaPP may

migrate pages during the OS quantum and disable itself if most migrations are useless.

Wu et al. [85] proposed different implementations of hybrid cache hierarchies, combining

different memory technologies (including DRAM and PCM) in CPU cache hierarchies.

One of their policies considers access frequency for cache block placement. Bheda et

al. [7] replace row buffers in PCM devices with small fully-associative caches made of

eDRAM and managed by the MC. Their design consumes lower power and performs

better than large DRAM and PCM arrays. Qureshi et al. [68] adopted a PCM-only

memory comprising 2 PCM areas with different densities. Their system dynamically

reconfigures PCM to resize those areas on demand and attain higher performance (low-

density PCM) or larger storage (high-density PCM).

Although RaCC also manages data placement in a flat hybrid memory organization,

it differs from previous approaches for at least three reasons. First, RaCC’s management

spans multiple servers. Second, RaCC manages objects that span one or multiple

frames, which potentially reduces the bookkeeping overheads compared to hardware-

based approaches. Third, RaCC is completely implemented in software, with few OS

modifications, for hybrid-memory servers.

5.2 Tackling PCM’s Endurance Problem

Many previous works focused extensively on the workarounds needed to mitigate this

problem. Lee et al. [47] proposed tracking data modifications at the cache block and

data word levels to avoid unnecessary traffic to the MC and writes to the PCM array.

The technique was combined with narrow row buffer sets organized to exploit locality.

Yang et al. [87] proposed the Data-Comparison Write (DCW) approach, which only

allows a write to a PCM cell if the new value differs from the previously stored one.

Flip-and-Write [16] improves DCW by storing extra “flip bits” that denote the encoding

of each PCM word and performing hamming distance calculations to verify if reversing

the encoding (by inverting flip bits) will reduce the number of writes. Alternatively,

Zhou et al. [90] improved DCW using periodic byte rotation at the cache block level
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and segment swaps across memory areas.

A complementary technique named Fine-Grained Wear-Leveling (FGWL) seeks to

balance the wear-out across cache blocks within a physical PCM frame by rotating

blocks within the frame [67]. FGWL inspired Start-Gap [69], a technique that applies a

simple algebraic function to transform a logical memory address into a physical one. [69]

also combined Start-Gap with simple address-space randomization techniques.

Another approach [40] improves endurance by reusing a pair of physical frames

with complementary faulty cells as a single logical frame. The system creates the pairs

periodically, as new faults may alter previous pairings. A related approach detects and

corrects faulty PCM cells by encoding the location of the faulty cell into a pointer and

allocating extra cells to store the correct content [74]. Writes to PCM occur once per

fault, improving endurance over error correction codes.

Differently than these previous systems, RaPP takes a higher level, page-based

approach to wear leveling. First, we migrate write-intensive pages to DRAM. Second,

we migrate pages coming from DRAM to unpopular PCM frames. Importantly, their

low-level techniques are orthogonal and can be nicely combined with our page-based

techniques to extend endurance further.

RaCC is also orthogonal to many of these wear-leveling solutions and can be

combined with one or more of them to improve PCM’s lifetime, which justifies our

shift towards improving the performance of PCM.

5.3 Page Migration in Main Memory

A few works have considered page migration for memory energy conservation. Lebeck

et al. [46] conducted a preliminary investigation of popularity-based page allocations to

enable sending (unpopular) memory devices to low-power state. In [32], the OS migrates

pages periodically based on their reference bits, without any support from the MC. In

contrast, Pandey et al. [65] proposed to implement popularity-based page ranking and

migration using the MC to reduce the energy consumed by DMA transfers. Dong et

al. [23] migrate hot pages from the off-chip memory to a chip-integrated memory. In a
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position paper [5], Bellosa proposed “memory management controllers” (MMCs) that

would take away the responsibility for memory management (e.g., page migration) from

the OS.

An OS-only approach to page migration can improve performance for I/O-intensive

workloads, as we observe in RaCC, and even work for energy conservation, as in [32].

However, for memory-intensive workloads, an OS-based approach does not react quickly

and efficiently enough to mitigate the problems with PCM. Thus, in this case, it

is critical to involve the MC (or an MMC) as well. In this context, the closest

prior work to RaPP is [65]. However, as our environment (a DRAM+PCM hybrid

in a multiprocessing system) and goal (improve performance at the same energy

consumption) are quite different than theirs (DRAM-only memory and DMA-related

energy conservation in a uniprocessor system), there are many differences between the

two approaches. First, we had to adapt a sophisticated ranking algorithm to address

the poor performance and endurance of PCM. Pandey et al. used a much simpler

histogram-based ranking. Second, our migration approach is also more complex, as it

needs to consider the limitations of PCM and involve an additional, properly selected

PCM frame. Third, we considered many multiprocessing workloads and the increased

pressure they put on the memory system. Because of this pressure, migrations need to

be done very selectively, so we had to devise heuristics to avoid certain migrations.

5.4 Cooperative Caching

Several locality-aware cooperative caches have been proposed in the literature [2, 3, 8,

12, 15, 26, 64]. However, this dissertation is the first to consider PCM in the context

of server clusters. In fact, our approach is directly applicable to all of these systems,

although they may entail specific implementation challenges.

Pai et al. proposed the first locality-aware server cluster [64]. The cluster features

a central front-end load balancer that receives and hands off client requests (based on

their content) to back-end servers. Carrera and Bianchini made the hand-off mechanism

distributed by leveraging user-level communication and fast networks [8, 12]. Chiu et
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al. proposed a cooperative cache for cloud environments where large caches entail

high costs for the hosted service [15]. Barely-alive cooperative caches [2] reduce idle

energy consumption by turning off most components of idle servers, while keeping their

memories active and accessible via a special NIC CPU and a distributed middleware.

Another approach [3] manages servers built with low-power components to improve

performance per Joule. Memcached is currently used to implement cooperative caches

in mainstream Internet services, such as Facebook, Youtube, and Wikipedia [26].
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Chapter 6

Conclusion

In this dissertation, we sought to improve the performance of server hybrid memory

systems that combine DRAM and PCM, without increasing the memory energy

consumption significantly. Hybrid systems typically exploit the high performance of

DRAM, and the high scalability and large capacity of PCM, while mitigating the

disadvantages of both technologies. We proposed and evaluated two novel hybrid

memory systems that concentrate popular data in DRAM, while still allowing direct

access to data stored in PCM. Our first hybrid system is meant for individual servers

running memory-intensive workloads, whereas our second system is meant for server

clusters running I/O-intensive workloads.

For individual servers, we proposed a hardware-driven design that features a

sophisticated memory controller, and a page ranking and migration policy called RaPP.

The memory controller monitors the memory accesses and implements RaPP. The

policy takes into account the recency and frequency of page accesses, as well as the

write traffic to each page, to rank pages and lay them out in physical memory. Our

results demonstrate that our design behaves significantly better than two state-of-the-

art hybrid designs, despite our optimistic assumptions for the latter systems.

For server clusters that use hybrid DRAM+PCM main memory systems, we

proposed a software-driven approach, called RaCC. In particular, we integrated

RaCC tightly into two existing cooperative caching systems. RaCC ranks, migrates,

and replaces cached objects to improve the cache’s performance. Our results for

five workloads, four memory systems, and two types of persistent storage devices

demonstrate that RaCC provides robust performance to hybrid-memory clusters,

without increasing energy consumption. This is the first study of the implications
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of PCM and hybrid main memory systems for server clusters.

We conclude that PCM is a promising main memory technology for meeting the

fast increasing need for memory capacity. As the technology matures, its cost-per-

bit, power consumption, and heat dissipation (important design constraints for modern

systems and datacenters) should be lower than that of DRAM. For easier adoption in

main memory, PCM can be combined with small amounts of DRAM. However, for best

performance and robustness, those hybrid systems require careful data placement and

migration.

We expect that the advent of hybrid memory systems will create many new

avenues for research, including how the hybrid nature of the system can be exposed

to programmers, how operating systems can best take advantage of the two types of

memory, and memory controller designs that are tailored for PCM. In addition, PCM’s

non-volatility creates opportunities for new uses of main memory.

6.1 Future Research

In this section, we list some examples of interesting future work.

• Some of our assumptions about the memory controller could be different from

those presented in Chapter 3. For example, the memory access scheduling, address

mapping (from physical address into channel, bank, rank, row, and column), row

buffer management, row buffer size, and data interleaving, can play a role in

memory performance, energy, and endurance. For memory-intensive workloads,

one could investigate the impact of these factors in hybrid systems.

• One could also study the impact of higher memory request arrival rates, which

could be expected from the use of manycore CPUs, out-of-order execution, and

multi-threaded workloads.

• In this dissertation, we focused on incorporating PCM into an existing memory

interface (DDR3). However, one could also rethink the architecture of the memory

interface to make better use of PCM. Along these lines, [7] proposed hybrid PCM
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chips, where a small eDRAM cache replaced the row buffers; [47] modified the

CPU, the memory controller and the row buffers to leverage PCM; and [22]

and [21] propose data prefetching structures at the PCM peripheral circuitry.

Rearchitecting memory may also lead to better synergy between PCM and the

high-throughput, low-power interfaces of the future, such as DDR4 [42].

• In the context of cooperative caches, one could, for example, (1) exploit the non-

volatility of PCM to reduce idle energy (e.g., by turning off nodes or memory

ranks, without losing the cached content); (2) study our object-placement policy

in a reconfiguring Memcached cluster (when nodes leave and enter the cluster) or

when cached objects can be segmented into (cacheable blocks) that are mapped

to different servers.

• Another interesting research is to prototype hybrid memory systems, and

implement our approaches in real environments. A step towards this goal has been

taken in [1], where PCM-based DIMMs and a PCM-enabled memory controller

have been demonstrated. However, those components were not used in main

memory, but in an SSD. Prototyping those systems is made difficult by the trend

of embedding memory controllers in the CPUs. In addition, as PCM chips mature,

its operation frequency may still lag, which could waste resources or require

adaptation when used with cutting-edge memory interfaces. However a study

with hybrid systems using an external controller should still provide insights and

evidence to motivate embedded controllers with support to hybrid systems.

• Finally, as new materials, such as graphene, are discovered and advance in

development, new challenges and benefits are expected also in future memories.

In fact, future ITRS projections already describe the future replacements of all

memory technologies targeted in this dissertation, including PCM. Independently

from the search for new materials and manufacturable solutions, memory research

should continue to look for scalable, low-power, and high throughput solutions.
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