
 

 

MARKOWITZ’S PORTFOLIO SELECTION MODEL AND RELATED 

PROBLEMS 

 

by 

ABHIJIT RAVIPATI 

A thesis submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Master of Science 

Graduate Program in Operations Research 

written under the direction of 

Prof. Dr. ANDRAS PREKOPA 

and approved by 

________________________ 

________________________ 

________________________ 

New Brunswick, New Jersey  

January 2012



 

 ii 

 

ABSTRACT OF THE THESIS 

MARKOWITZ‟S PORTFOLIO SELECTION MODEL AND RELATED PROBLEMS 

 

By ABHIJIT RAVIPATI 

 

Thesis Director:  Prof Dr. ANDRAS PREKOPA 

 

 

Markowitz's portfolio selection theory is one of the pillars of theoretical finance. This 

formulation has an inherent instability once the mean and variance are replaced by their 

sample counterparts. The problem is amplified when the number of assets is large and the 

sample covariance is singular or nearly singular. This poses a fundamental problem, 

because solutions that are not stable under sample fluctuations may look optimal for a 

given sample, but are, in effect, very far from optimal with respect to the average risk. 

The paper starts with a general introduction to Markowitz‟s portfolio theory and then 

discusses further developments and a few notable works in the area and later moves on to 

discuss the need for regularization and points out a few existing methods for 

regularization. After which a formulation of the optimal portfolio selection is presented 

and ends with a few numerical examples. 
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Markowitz’s Portfolio Theory 

1.1 Introduction 

A little over forty years ago, a University of Chicago graduate student in economics, 

while in search of a dissertation topic, ran into a stockbroker who suggested that he study 

the stock market.  Harry Markowitz took that advice and developed a theory that became 

a foundation of financial economics and revolutionized investment practice. His work 

earned him a share of 1990 Nobel Prize in Economics. A basic premise of economics is 

that, due to the scarcity of resources, all economic decisions are made in the face of trade-

offs.  Markowitz identified the trade-off facing the investor: risk versus expected return. 

The investment decision is not merely which securities to own, but how to divide the 

investor's wealth amongst securities.  This is the problem of “Portfolio Selection;” hence 

the title of Markowitz‟s seminal article published in the March 1952 issue of the Journal 

of Finance.  In that article and subsequent works, Markowitz extends the techniques of 

linear programming to develop the critical line algorithm. 

 

 The critical line algorithm identifies all feasible portfolios that minimize risk (as 

measured by variance or standard deviation) for a given level of expected return and 

maximize expected return for a given level of risk. When graphed in standard deviation 

versus expected return space, these portfolios form the efficient frontier. The efficient 

frontier represents the trade-off between risk and expected return faced by an investor 

when forming his portfolio.  Most of the efficient frontier represents well diversified 

portfolios. This is because diversification is a powerful means of achieving risk 

reduction.   
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Markowitz developed mean-variance analysis in the context of selecting a portfolio of 

common stocks. Over the last two decades, mean-variance analysis has been increasingly 

applied to asset allocation. Asset allocation is the selection of a portfolio of investments 

where each component is an asset class rather than an individual security.  In many 

respects, asset allocation is a more suitable application of mean-variance analysis than is 

stock portfolio selection.  Mean-variance analysis requires not only knowledge of the 

expected return and standard deviation on each asset, but also the correlation of returns 

for each and every pair of assets.  Whereas a stock portfolio selection problem might 

involve hundred of stocks (and hence thousands of correlations), an asset allocation 

problem typically involves a handful of asset classes (for example stocks, bonds, cash, 

real estate, and gold).  Furthermore, the opportunity to reduce total portfolio risk comes 

from the lack of correlation across assets.  Since stocks generally move together, the 

benefits of diversification within a stock portfolio are limited.  In contrast, the correlation 

across asset classes is usually low and in some cases negative.  Hence, mean-variance is a 

powerful tool in asset allocation for uncovering large risk reduction opportunities through 

diversification.  

 

1.2 Assumptions 

As with any model, it is important to understand the assumptions of mean-variance 

analysis in order to use it effectively.  First of all, mean-variance analysis is based on a 

single period model of investment.  At the beginning of the period, the investor allocates 

his wealth among various asset classes, assigning a nonnegative weight to each asset.  
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During the period, each asset generates a random rate of return so that at the end of the 

period, his wealth has been changed by the weighted average of the returns.  In selecting 

asset weights, the investor faces a set of linear constraints, one of which is that the 

weights must sum to one. Based on the game theory work of Von Neumann and 

Morgenstern, economic theory postulates that individuals make decisions under 

uncertainty by maximizing the expected value of an increasing concave utility function of 

consumption.  In a one period model, consumption is end of period wealth.  In general, 

maximizing expected utility of ending period wealth by choosing portfolio weights is a 

complicated stochastic nonlinear programming problem.   

 

To summarize the assumptions: 

1. Investors seek to maximize the expected return of total wealth. 

2. All investors have the same expected single period investment horizon. 

3. All investors are risk-adverse, that is they will only accept greater risk if they 

are compensated with a higher expected return. 

4. Investors base their investment decisions on the expected return and risk. 

5. All markets are perfectly efficient (e.g. no taxes and no transaction costs). 

 

The utility function is assumed to be increasing and concave. In terms of the 

approximating utility function, this translates into expected utility being increasing in 

expected return (more is better than less) and decreasing in variance (the less risk the 
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better).  Hence, of all feasible portfolios, the investor should only consider those that 

maximize expected return for a given level of variance, or minimize variance for a given 

level of expected return.  These portfolios form the mean-variance efficient set. 

 

1.3 Optimal Portfolio Selection Model 

 

Assuming the portfolio has N assets with returns Ri, i= 1.. N.  

Let, 

Rp = Return on the portfolio 

Ri  = Return on asset i 

wi   = Weight of component asset i (that is, the share of asset i in the portfolio). 

σi   = Standard deviation of asset i 

Portfolio return: 

Rp  =  wiE(Ri) 

Portfolio return variance: 

 

 

where ρij is the correlation coefficient between the returns on assets i and j.  
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                                                                           Fig 1. 

Markowitz showed that the risk of the portfolio of assets depends on the asset weights 

and the standard deviations of the asset‟s returns, and crucially on the correlation 

(covariance) of the asset returns. 

 

The efficient frontier describes the relationship between the return that can be expected 

from a portfolio and the riskiness (volatility) of the portfolio. It can be drawn as a curve 

on a graph of risk against expected return of a portfolio. The efficient frontier gives the 

best return that can be expected for a given level of risk or the lowest level of risk needed 

to achieve a given expected rate of return. The efficient frontier is extremely important to 

the theory of portfolio construction and valuation. The concept of an efficient frontier can 

be used to illustrate the benefits of diversification. An undiversified portfolio can be 

moved closer to the efficient frontier by diversifying it. Diversification can, therefore, 

increase returns without increasing risk, or reduce risk without reducing expected returns. 
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 If the investor has access to risk free investment, the risk of the portfolio can further be 

reduced, which is shown in Fig.1 by the CAL. The risk-free asset is the (hypothetical) 

asset which pays a risk-free rate. In practice, short-term government securities (such as 

US treasury bills) are used as a risk-free asset, because they pay a fixed rate of interest 

and have exceptionally low default risk. The risk-free asset has zero variance in returns 

(hence is risk-free); it is also uncorrelated with any other asset (by definition, since its 

variance is zero). 

Within the application of portfolio theory the following two quantities will need to use 

the corresponding units of measurement throughout the computation: 

1. Historical Values: This is the source data which is given in absolute or relative 

terms. 

2. Expected Returns: The expected return of the investment over the period 

considered which should be given and will be returned in the units used (i.e. 

absolute or relative) by the historical values. 

The values of the expected return which are either evaluated or given will be or will need 

to be in accordance with the units used within the historical values. 

“ To use the E-V rule in the selection securities we must have procedures for finding 

reasonable µi and ρij. These procedures I believe, should combine statistical techniques 

and the judgment of practical knowledge…………. One suggestion as to tentative µi, ρij 

is to use observed   for some period of the past. I believe, better methods, which take into 

account more information can be found. I believe that what is needed is essentially a 
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“probabilistic” reformulation of security analysis.”                                                                                                              

- Markowitz, H.M. (March 1952). "Portfolio Selection". The Journal of Finance 

 

1.4 Later Developments 

Markowitz‟s selection model is fundamental to the foundation of the current theory of 

asset allocation. Since Markowitz proposed his model, numerous portfolio selection 

models have been developed to advance the former and portfolio theory has been 

improved and completed in several directions. Some models have been developed to 

minimize semivariance in different cases such as Huang [15] and Markowitz [16], while 

other researchers like Konno and Suzuki [17], Liu, Wang and Qiu [18] and Pornchai, 

Krushnan, Shatid and Arun [19] added the skewness in consideration for portfolio 

selection. 

The common assumptions are that the investor has enough historical data and that the 

situation of asset markets in future can be correctly predicted by the historical data. Since 

sometimes this is not, practical problems arise. For example, when new stocks are listed 

in the stock market, there is no historical information for these securities. Random, fuzzy 

and random fuzzy optimization models proved some useful methods for investors to 

tackle the uncertainty. A number of researchers have shown that mean-variance efficient 

portfolios, based on estimates, are highly sensitive to perturbations of these estimates. 

Jobson, Korkie and Ratti (20) and Jobson and Korkie (21) detail these problems and 

suggest the use of shrinkage estimators.  

http://jstor.org/stable/2975974
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 Some authors like Carlsson, Fuller and Majlender [22], Leon, Liern and Vercher [23] 

and Vercher, Bermudez and Segura [24] use fuzzy numbers to replace uncertain returns 

of the securities. Tanaka and Guo [25] and Tanaka, Guo and TÄurksen [26] used 

possibilistic distributions to model uncertainty in returns. Arenas-Parra, Bilbao-Terol and 

Rodrguez-Ura [27] introduced vague goals for return rate, risk and liquidity based on 

expected intervals. A measure of downside risk is incorporated by Feiring, Wong, Poon, 

and Chan (28), and Konno, Shirakawa, and Yamazaki (29) who use an approximation to 

the lower semi-third moment in their Mean-Absolute Deviation-Skewness portfolio 

model. Konno and Yamazaki proposed the mean absolute deviation (MAD) model as an 

alternative to the mean variance (MV) model claiming that it retains  all the positive 

features of the mean variance model , not only saves computing time but also does not 

require the covariance matrix. 

Addressing the issue of estimation risk, Frost and Savarino (30) show that constraining 

portfolio weights, by restricting the action space during the optimization, reduces 

estimation error. Jorion (31) proposes a resampling method aimed at estimation error. In 

an attempt to maintain the decision simplicity associated with the efficient frontier and 

still accommodate parameter uncertainty, Michaud (32) proposes a sampling based 

method for estimating a resampled efficient frontier. Polson and Tew (33) argue for the 

use of posterior predictive moments instead of point estimates for mean and variance of 

an assumed sampling model. 

 

Using a Bayesian approach, Britten-Jones (34) proposes placing informative prior 

densities directly on the portfolio weights. Chopra and Ziemba (35) showed that errors in 
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means are about ten times as important as errors in variances, and errors in variances are 

about twice as important as errors in covariances. Best and Grauer (36) showed that 

optimal portfolios are very sensitive to the level of expected returns. Jorion (37) use a 

shrinkage approach while Treynor and Black (38) advocate the use of investors‟ views in 

combination with historical data. Kandel and Stambaugh (39) examine predictability of 

stock returns when allocating between stocks and cash by a risk-averse Bayesian 

investor. Zellner and Chetty (40), Klein and Bawa (41) and Brown (42) emphasize using 

a predictive probability model. P´astor and Stambaugh (43) study the implications of 

different pricing models on optimal portfolios, updating prior beliefs based on sample 

evidence. P´astor (44) and Black and Litterman (45) propose using asset pricing models 

to provide informative prior distributions for future returns. 

 

A number of researchers are targeting their efforts in modeling time variations in the 

conditional dependence of asset returns in terms of conditional covariances and 

correlations (Bollerslev et al. (46) or Engle (47) to cite a few).  Based on data from the 

last 150 years, Goetzmann, Li and Rouwenhorst (48) found that correlations between 

equity returns vary substantially over time and achieve their highest levels during periods 

characterized by highly integrated financial markets. Longin and Solnik (49) studied 

shifts in global equity markets correlation structure and rejected the hypothesis of 

constant correlations among international stock markets. Further, Ang and Chen (50) 

confirmed this for the US market for correlations between stock returns and an aggregate 

market index. Others connect the variability of stock return correlations to the phase of 

the business cycle. Ledoit, Santa-Clara and Wolf (51) and Erb, Harvey and Viskanta (52) 
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show that correlations are time-varying and depend on the state of the economy, tending 

to be higher during periods of recession. Similar evidence is brought forward by 

Moskowitz (53) who links time variation of volatilities and covariances to NBER 

recessions. 

 

1.4.1 Konno – Yamazaki, 1991 

1.4.1.1 Introduction 

Konno and Yamazaki (1991) proposed a new model using mean absolute deviation 

(MAD) as risk measure to overcome the weaknesses of the mean-variance model 

proposed by Markowitz. One of the most significant reasons problems being the 

computational difficulty associated with solving a large scale quadratic problem 

associated with a dense covariance matrix. They stated that equilibrium models have to 

impose several unrealistic assumptions to derive a relation between rate of return and on 

assets and market portfolio but, data from Tokyo stock exchange showed that this relation 

is very unstable and that the information provided by CAPM can best serve as a first 

order approximation. 

 

 Konno and Yamazaki employed L1 –mean absolute deviation as a risk measure instead 

of variance, so they could overcome most of the problems of Markowitz‟s model while 

maintaining its advantages over equilibrium models. Some of the problems that are rarely 

practically solved are as follows: 

 

Computational burden: Solving large scale dense quadratic problems can prove difficult.  
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Investor‟s perception: A large number of investors were not fully convinced of the 

validity of the standard deviation as a measure of risk. 

 

Transaction costs and cut-off effect: This means that the investor who invests in many 

different stocks in small costs will be inconvenienced as he will have to bear the burden 

of transaction costs. Also, since the investor cannot buy stocks in fractions and he/she 

will have to round it off to integers. 

 

1.4.1.2 Model 

They introduced the L1 risk function 

  

          w(x) = E[      

       

 

Where,  

 

   = Random variable representing the rate of return on asset Sj 

 

   = Amount invested in Sj 

 

  =  Total fund amount 

 

E [.] =  Expected value of random variable in bracket 

 

They then go on to state and prove the following theorem: 

 

If (R1,……..Rn) are multivariate normally distributed , then 

 

                             w(x) =     

 

Where     =  Standard deviation 
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They proved that these two measures (w(x) and Ri) are the same if (R1…Rn) are 

multivariate normally distributed. 

 

So the Model becomes the following; 

 

            

 

       Min                 w(x) E[      

 

                        

 

             ST     =  ,                                           …………………        12.1 

                 

                                    0   ,     j= 1,…….,n .    

 

                    

Konno and Yamazaki assumed that the expected value of the random variable can be 

approximated by the average from the data. 

 

Therefore, 

 

       =  

 

     

Now, 

 

E[   =  

 

Let 

 

    j= 1,…….,n;    t=1,…..,T .  

 

 

Model in 12.1 can be stated as, 
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  Min             / T  

 

                                      

 

               ST     =  ,  

                  

                                    0   ,     j= 1,…….,n 

 

 

 

Which is equivalent to the following linear program: 

 

    Min       

 

               t= 1,…..,T, 

 

                                        t= 1,…..,T,  

 

         ST                      

 

             =  ,  

                  

                                  0   ,     j= 1,…….,n 

 

 

Konno-Yamazaki state the following advantages over Markowitz‟s model: 

 

1. No need to calculate the covariance matrix. 

2. Solving their linear program is much easier compared to solving a quadratic 

program. 

3. The optimal solution size is smaller 

4. T can be uses as a control variable to restrict the number of assets in the portfolio 
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1.4.2 Young, 1998 

1.4.2.1 Introduction 

Young (1998) proposed a principle for choosing portfolios based on historical returns. He 

was the first to apply the minimax model to the portfolio selection problem. If each of the 

two players behaves rationally, then game theory asserts that a solution for every 

situation can be determined by assuming that the players seek to minimize their 

maximum expected losses – Minimax criterion.  

 

Young used minimum return rather than variance as a measure of risk. He defined the 

optimal portfolio as that one that would minimize the maximum loss over all past 

historical periods, subject to a restriction on the minimum acceptable average return 

across all observed time periods. He stated that if an investor‟s utility function is more 

risk averse than is implied by mean-variance analysis, or if returns data are skewed, or if 

the portfolio optimization problem involves a large number of decision variables, his 

model would be advantageous to use. 

 

1.4.2.2 Model 

 

                            t= 1,…..,T,  

   ST                   
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                              j=1,….,N.  

                    

Where, 

  =   Return on one dollar invested in security j in time period t 

   = Portfolio allocation to security j 

    = Average return on security j                                                                                                               

       =  

ypt  = Return on portfolio in time period t 

      =  

Ep = Average return on portfolio 

     =  

Mp = Minimum return on portfolio 

      =  

The optimum portfolio maximizes Mp under imposed restrictions, 

1. Ep (average return) exceeds a minimum level G 

2. Net asset allocations does not exceed total budget allocation W 
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Thus, Mp represents the portfolio‟s minimum return at the end of each time period and 

since Mp is being maximized, the portfolio will take on the maximum value of the 

minimum returns. According to Young, this model presents logical advantages over other 

portfolio optimization models if asset prices are not normally distributed and similar 

results when they are. 

He states an equivalent model that seeks to maximize expected return, subject to a 

restriction that the portfolio return exceeds some threshold H in each observation period:   

 

  

                           t =  1,…..,T,  

    ST                

                             j=1,….,N. 

This model has considerable advantage as it is a linear program and it allows the model to 

treat additional complexities such as: 

1. Transaction costs 

2. Logical side constraints like 

 Inclusion/exclusion of both assets a and b 

 Holding more than $d worth of  asset a 

Thus the minimax model is capable of incorporating a large number of modeling 

complexities and variations. 
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1.4.3   Black and Litterman, 1992 

1.4.3.1 Introduction 

The Black-Litterman asset allocation model, created by Fischer Black and Robert 

Litterman, is a portfolio construction method that overcomes the problem of highly 

concentrated portfolios, input-sensitivity, and estimation error maximization.  Their 

model uses a Bayesian approach to combine the subjective views of an investor regarding 

the expected returns of one or more assets with the market equilibrium vector of expected 

returns (the prior distribution) to form a new, mixed estimate of expected returns.  

The Black-Litterman asset allocation model was introduced in Black and Litterman 

(1990) and expanded in Black and Litterman (1991, 1992). The Black Litterman model 

combines the CAPM (Sharpe (1964)), reverse optimization (Sharpe (1974)), mixed 

estimation (Theil (1971, 1978)), the universal hedge ratio / Black‟s global CAPM (see 

Black (1989a, 1989b)), and mean-variance optimization (Markowitz (1952)). The 

approach works by combing historical information with additional data and forms the 

updated distribution of expected returns. If the investor has no subjective opinions the 

weights are based on market equilibrium data, but if he does hold any subjective views 

then the weights on individual assets are shifted from the market equilibrium weights. 

The key inputs to the Black and Litterman model are market equilibrium returns and 

investor views. This framework incorporates the investor views that helps investors 

control the magnitude of the tilts caused by views. 
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1.4.3.2 Market equilibrium returns 

The Black and Litterman model uses the market equilibrium weights or capital asset 

pricing model (CAPM) as the basis. CAPM is developed by forming the efficient frontier 

of the market portfolios and tracing the capital market line (CML). The CML is tangent 

to the efficient frontier at the market portfolio therefore, there is no other combination of 

risky and riskless assets that can provide better returns for a given level of risk. 

CAPM: 

E (   =   +   (  -  

            =   +  (  -  

Where,  

E (   = Expected return on asset i 

         = Risk free asset return  

        = Return on market portfolio 

         = Standard deviation of returns on asset i 

       = Standard deviation of returns on market portfolio 

         =    
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The model uses CAPM in reverse. It assumes market portfolio is held by mean-variance 

investors and it uses optimization to back out the optimal expected returns. They define 

market equilibrium returns as: 

                                                                   ……..19.1 

Where, 

N = Number of assets 

  = Vector of implied excess returns (N,1) 

   = Covariance matrix of returns (N,N) 

  = Vector of market capitalization weights of the assets (N,1) 

   = Risk aversion coefficient 

     =  

 

1.4.3.3 Investor views 

The views of the investors are incorporated into the model in the following form: 
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Where, 

K= Number of investor views 

Q = Vector of investor views 

  =  Error term 

 

If  = 0 that means the investor has 100% confidence in his views.  denotes the 

variance of each error term. Assuming that each error term is independent of each other 

the covariance matrix   is a diagonal matrix with the following form: 

 

 

 

Using the above formulation the model incorporates both absolute as well as relative 

views of the investors. 
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1.4.3.4 Black- Litterman equation 

The Black-Litterman equation combines the equilibrium returns and investor views into 

one equation to determine expected returns which is used to determine the optimal 

portfolio weights. 

 

E[R] = [                            ………….21.1 

Where, 

E [R] = Vector of combined results (N,1) 

        = Scalar indicating uncertainty of CAPM prior  

       = Covariance matrix of equilibrium excess returns (N,N) 

P       = Matrix of investor views (N,1) 

      = Diagonal covariance matrix of view error terms (K,N) 

      = Vector of equilibrium excess returns (N,1) 

Q      = Vector of investor views (K,1) 

In case the investor is unconstrained we use 19.1 to determine optimal portfolio weights 

by, 

                                                                                          

…….………21.2 
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Where     is the vector derived from 21.1.  

21.2 is the solution to the unconstrained optimization problem 

 

 

Overall, the Black-Litterman model overcomes the most-often cited weaknesses of mean-

variance optimization such as highly concentrated portfolios, input-sensitivity, and 

estimation error-maximization, helping users to realize the benefits of the Markowitz 

paradigm. 

Regularization 

2.1 Introduction 

In the original formulation of the Markowitz portfolio theory, the underlying process was 

assumed to be multivariate normal. Accordingly, reward was measured in terms of the 

expected return, risk in terms of the variance of the portfolio. Unfortunately, the nature of 

portfolio selection is not compatible with this limit. 

Institutional portfolios are large, with N's in the range of hundreds or thousands, while 

considerations of transaction costs and non-stationarity limit the number of available data 

points to a couple of hundreds at most. Therefore, portfolio selection works in a region, 

where size of the portfolio and sample size (i.e. size of the time series available for each 

asset) are, at best, of the same order of magnitude. This, however, is not the realm of 

classical statistical methods. It is evident that portfolio theory struggles with the same 

fundamental difficulty that is underlying basically every complex modeling and 
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optimization task: the high number of dimensions and the insufficient amount of 

information available about the system.  

In order to solve the mean variance problem, the expected return and the covariance 

matrix of the vector of security return, which are unknown, need to be estimated from 

available data set. In particular, an estimate of the inverse of the covariance matrix is 

needed. The sample covariance often used in practice may be the worst choice because it 

is typically nearly singular, and sometimes not even invertible.  

Markowitz mean-variance rule can be viewed as a trade-off between the expected return 

and the variance of the returns. The mean variance problem consists of choosing the 

vector x , to minimize the variance of the resulting portfolio rp,t+1=x‟rt+1, where rt+1 is the 

excess return Rt+1 – Rt
f
 , for a pre- determined target expected return of the portfolio µp : 

Minx     Var[rp] = w‟Cw 

S.T.      E[rp] =w‟µ = µp 

The optimal portfolio is given by, 

w* =  C
-1

 µ Where   µ = Conditional 

means, 

   C = Covariance matrix. 

The issue of ill-conditioned covariance matrices is important because inverting such a 

matrix increases dramatically the estimation error and then makes the mean variance 

solution unreliable.  
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Many regularization techniques can stabilize the inverse. They can be divided into two 

classes: Regularization directly applied to the covariance matrix and regularization 

expressed as a penalized least–squares. 

 

2.2 Regularization applied to the covariance matrix 

We will consider here the three most popular regularization techniques: ridge, spectral 

cut-off, and Landweber Fridman. Each method will give a different estimate of β. 

2.2.1 Ridge Regularization 

It consists in adding a diagonal matrix to Ω. 

βт = (R‟R + т I )
- 1

 R‟ 1т ,   
 

βт =    (1т‟ vj) Φj . 

 

2.2.2  Spectral cut-off regularization 

This method discards the eigen vectors associated with the smallest eigen values. 

 

βт =    (1т‟ vj) Φj . 
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Interestingly, νj are the principal components of Ω, so that if rt follows a factor model, ν1, 

ν2,....... estimate the factors. 

 

2.2.3 Landweber – Fridman regularization  

The solution to (4) can be computed iteratively as  

 

Ψk = ( I – cR‟R) ψk-1 + cR‟1т 

With 0 < c < 1/ R
2 

. Alternatively, we can write  

βт =    {1 –(1-cλj
2
)
1/т

}(1т‟ vj) Φj 

Here, the regularization parameter т is such that 1/ т represents the number of iterations.  

The three methods involve a regularization parameter т which needs to converge to zero 

with T at a certain rate for the solution to converge. 

2.3 Regularization scheme as penalized least-square 

The traditional optimal Markowitz portfolio x* is the solution to (1) that can be 

reformulated by exploiting the relation C = E(rtrt‟) - µµ‟ as  

 

 

  x* = argminx  E [(µp – x‟rt)
2
] 

       S.T. x‟µ = µp 
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If one replaces the expectation by sample average µ, the problem becomes :  

  x* = argminx   2
2
 

       S.T. x‟µ = µp 

As mentioned before, the solution of this problem may be very unreliable if RR‟ is nearly 

singular. To avoid having explosive solutions, we can penalize the large values by 

introducing a penalty term applied to a norm of x. Depending on the norm we choose, we 

end up with different regularization techniques. Xi 

 

2.3.1 Bridge method  

For Υ > 0 the Bridge estimate is given by  

  xт* = argminx   2
2
 + т  xi 

Υ
 

 Where т is the penalty term. 

 

The Bridge method includes two special cases. For Υ = 1 we have Lasso regularization, 

while Υ = 2 leads to the Ridge method. The term  xi  Υ can be interpreted as a 

transaction cost. It is linear for Lasso, but quadratic for the ridge. 
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2.3.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

The Lasso regularized solution is obtained by solving : 

  xт* = argminx   2
2
 + т  1 

S.T.   x‟ µ = µp 

 

For two differently penalty constants т1 and т2 the optimal regularized portfolio satisfies : 

(т1 - т2) (  x
[т

2
] 

1 - x
[т

1
] 

1) >=0 then the higher the l1 – penalty constant (т), the sparser the 

optimal weights. So that a portfolio with non-negative entries corresponds to the largest 

values of т and thus to the sparsest solution. In particular the same solution can be 

obtained for all т greater than some value т0. 

 

Brodie et al. consider models without a risk free asset. Using the fact that all the wealth 

as invested (x‟1N  = 1), they use the equivalent formulation for the objective function as :  

    µp1T – Rx 2
2
  + 2т   xi  + т 

 

which is equivalently to a penalty on the short positions. The Lasso regression then 

regulates the amount of shortening in the portfolio designed by the optimization process, 

so that the problem stabilizes. 

 

The general from of the l1- penalized regression with linear constraints is: 

   xт
*
 = argminx∊H  b – Ax 2

2
 + т  x 1 
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H is an affine subspace defined by linear constraints. The regularized optimal can be 

found using an adaptaion of the homotopy / LARS algorithm as described in Brodie et al. 

. 
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Mathematical Formulation 

 

The basic formulation which can solve the optimal portfolio selection problem is 

 

Min   { c
T
x + x

T
Cx}                                                                              ------- (1) 

S.T.          Ax = b 

 
       x >=0 

 

Consider the Karush – Kuhn – Tucker conditions.                                                                                     

KKT conditions provide the necessary conditions for optimality.  

 

For, 

Min         f(x)                                                                                           

S.T.          gi(x) >= 0 , i=1…. m 

 
       x >=0 

 

The necessary conditions for optimality of x
*
 : 

                  f(x
*
) +  λ

*
i gi(x

*
)) <= 0 
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[ f(x
*
) +  λ

*
i gi(x

*
))]  x

*
 = 0 

           λ
*
i gi(x

*
) = 0 

              λ
 *  >

= 0 

The above stated conditions are sufficient too, if f(x) is convex  

and g1,….,gm are concave. 

 

Using the KKT conditions, we get the following conditions  for x to be  

optimal in the set of equations in (1). 

 

c – 2Cx  + A
T
λ  + v = 0 

                                v
T
x = 0 

       v >= 0 

 

For the sake of conversion into a standard form  λ can be expressed  

as a sum of  two non –negative integers: 

λ = λ
+
 - λ

- 

λ
+
, λ

-
 >= 0 
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Substituting the above equations in the KKT necessary conditions, 

c – 2Cx  + A
T
λ

+
  - A

T
λ

-
  + v = 0 

Now, the problem is to find λ, x, V which satisfy the following  

formulation, 

 

Min     ui                                                                             

                  Ax = b 

S.T.         – 2Cx + A
T
λ

+
 - A

T
λ

-
 + v + Fu = -c 

 
       x, λ

+
, λ

-
,v, u >= 0  

Where F is a diagonal (n x n) matrix F(i,i)=      1 , if c(i)>=0                                                                                

             -1 , if c(i) < 0 

 

Example  

The above stated formulation has been tested using the following data: 

A= [-1 1 1 -1 1] 

b=   [1] 



 

 

32 

 C=  

   

c=       

 

Running the code in appendix 1 the following solution is arrived upon as optimal: 

X=   

λ
+
=  

λ
-
=  

V=   
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u=   

Appendix 

 

Matlab Code 

[n1, n1] = size(C1); 

I=eye(n1); 

Z1=zeros(1,2*n1+2); 

for i=1:n1 

for j=1:n1 

if ((i==j) & ( c1(i) >= 0)) 

F(i,j)=1; 

elseif ((i==j) & ( c1(i)< 0)) 

F(i,j)=-1; 

else F(i,j)=0; 

end 

end 
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end 

A = [-2*C1, a' , -a' , I , F; a , Z1]; 

b = [-c1; b1]; 

c=-[zeros(2*n1+2,1);ones(n1,1)]; 

B=[1 2 3 15 16 17]; 

eps= 1e-3; 

% Solves: Maximize c^Tx subject to Ax = b, x >= 0 

% We will assume that the LP is nondegenerate 

% We are given an initial feasible basis B 

% [obj,x,y] = revised_simplex(c,A,b,eps,B) 

% eps is a suitable optimality tolerance, say 1e-3 

% Output parameters:- obj is the optimal objective value 

% x is the primal optimal solution 

% y is the dual optimal solution 

[m,n] = size(A); 

%%%%%%%%%%%%%%%%%%% 

% Step 1:- We are given an initial basis B 



 

 

35 

N = setdiff([1:n],B); 

% B = find(x0); 

% N = find(ones(n,1) - abs(sign(x0))); 

xB = A(:,B)\b; 

% xB = x0(B); 

iter = 0; 

while 1==1, 

iter = iter + 1; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Step 2 :- Solve A_B^Ty = c_B and compute s_N = c_N - A_N^Ty 

% Declare optimality if s_N <= 0 

% Else find the entering non-basic variable x_{N(k)} 

y = A(:,B)'\c(B); 

sN = c(N) - A(:,N)'*y; 

[sNmax,k] = max(sN); 

if sNmax <= eps, 

fprintf('We are done\n'); 
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fprintf('Number of iterations is %d\n',iter); 

x = zeros(n,1); 

x(B) = xB; 

fprintf('Optimal objective value is %f\n',c'*x); 

obj = c'*x; 

return; 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Step 3 :- Solve A_Bd = a_{N(k)} 

% Find theta = Min_{i=1,...,m|d_i > 0} xB(i)/d(i) 

% Let theta = xB(l)/d(l) 

% x_{B(l)} is the leaving basic variable 

% Also check for unboundedness if d <= 0 

d = A(:,B)\A(:,N(k)); 

zz = find(d > eps)'; 

if (isempty(zz)) 

error('System is unbounded\n'); 
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end 

[qw,er]= ismember(N(k),1:n1); 

[qw1,as]= ismember(N(k) + n1+2,B); 

[qw2,ty]= ismember(N(k),n1+3:2*n1+2); 

[qw1,df]= ismember(N(k) - n1-2,B); 

if er~=0 & as~=0 

l= find(B== (N(k) +n1+2)); 

theta = xB(l)/d(l); 

elseif ty~= 0 & df~=0; 

l= find(B== (N(k) -n1-2)); 

theta = xB(l)/d(l); 

else [theta,ii] = min(xB(zz)./d(zz)); 

l= zz(ii(1)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Step 4:- Update B and N 

% Also x(B(i)) = x(B(i)) - theta*d(i), i=1,...,m and i not equal to l 



 

 

38 

% x(B(l)) = theta 

temp = B(l); 

B(l) = N(k); 

N(k) = temp; 

xB = A(:,B)\b; 

end; % while 
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