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ABSTRACT OF THE THESIS

Content-Based Image Retrieval of Digitized Histopathology

via Boosted Spectral Embedding (BoSE)

by Akshay Sridhar

Thesis Director: Dr. Anant Madabhushi

Content-based image retrieval (CBIR) systems allow for retrieval of images from a database

that are similar in visual content to a query image. This is particularly useful in scenar-

ios such as digital pathology, where text-based descriptors alone might be inadequate to

accurately describe image content. By representing images via a set of quantitative im-

age descriptors, the similarity between a query image with respect to archived, annotated

images in a database can be computed and the most similar images retrieved. Recently,

non-linear dimensionality reduction (NLDR) methods have become popular for embedding

high dimensional data into a reduced dimensional space while preserving local object ad-

jacencies, thereby allowing for object similarity to be determined more accurately in the

reduced dimensional space. However, most dimensionality reduction (DR) methods im-

plicitly assume, in computing the reduced dimensional representation, that all features are

equally important. Erroneous or noisy features could potentially result in dissimilar images

being mapped close to each other in the reduced embedding space. In this work we present

Boosted Spectral Embedding (BoSE), a variant of the traditional Spectral Embedding (SE)

NLDR method, which unlike SE utilizes a boosted distance metric (BDM) to selectively

weight individual features to subsequently map the data into a reduced dimensional space.

In this work BoSE is evaluated against SE (which employs equal feature weighting) in the
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context of CBIR of digitized prostate and breast cancer histopathology images. Across 154

hematoxylin and eosin (H&E) stained histopathology images corresponding to benign and

malignant prostate cancer biopsy images, low and high grade ER+ breast cancer studies,

and HER2+ breast cancer H&E images, BoSE outperformed SE both in terms of CBIR-

based (area under the precision recall curve) and classifier-based (classification accuracy)

performance measures. Consistent trends were observed when embedding the data into

spaces with different dimensions. Our results suggest that BoSE could serve as an impor-

tant tool for CBIR and classification of high dimensional biomedical data.
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Chapter 1

Introduction

1.1 Background and Motivation

Content-based image retrieval (CBIR) systems allow a user to retrieve images from a

database based on visual similarity to the query image. This is particularly useful for

digital pathology and medical imaging databases, where text-based descriptors alone might

be inadequate to accurately describe image content [2, 3, 4, 5, 6, 7, 8]. In CBIR systems, a

query image is used as the input and based on image attribute matching, the most similar

images from within a database are retrieved. All images are represented by a unique set

of numbers termed features that describe various aspects of the images. Two main com-

ponents of a CBIR system are (a) the image (or feature) representation, and (b) choice of

similarity metric for performing retrieval. An ideal similarity metric would yield a large

value when comparing visually dissimilar images and a small value when similar images are

compared. For any given query image, the most similar images in the database as deter-

mined by the similarity metric are retrieved in decreasing order of relevance. However, in

cases where images are represented by a large number of image attributes, the similarity

measure might be affected by the so called “curse of dimensionality” problem, wherein the

number of attributes may be greater than the total number of instances in the database.

Dimensionality reduction (DR) is a technique that is used to project high dimensional

data into a reduced dimensional embedding space. The low dimensional data representation

allows for more consistent and accurate similarity computations, compared to the high di-

mensional space, to help determine image similarity [9][10]. DR techniques can be broadly

categorized as linear or nonlinear. Linear DR techniques such as principal component analy-

sis (PCA) [11] fail to accurately capture object (image) relationships where the data resides

on some non-linear manifold [12]. Objects residing on different ends of the manifold could
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potentially be mapped closer to each other in the lower dimensional space, since linear DR

methods use the Euclidean norm as opposed to the geodesic distance (appropriate for adja-

cency determination for objects residing on nonlinear manifolds). Nonlinear dimensionality

reduction (NLDR) methods [13, 14, 15, 16] attempt to capture object adjacency on non-

linear manifolds by preservation of the local linear neighborhood structure [17]. However,

NLDR methods such as Isomaps [13] and Locally Linear Embedding (LLE) [14] are sensitive

to the choice of the size of the local neighborhood (κ) within which linearity is assumed.

Diffusion Maps [15], another NLDR method, is sensitive to the number of time steps spec-

ified for the random walk. Spectral Embedding (SE) [16] is a NLDR method that, unlike

neighborhood preserving NLDR schemes (such as LLE, Isomaps), defines object adjacency

by using a Gaussian kernel in conjunction with the Euclidean distance metric (EDM) to

yield a similarity matrix for all objects. The eigenvalue decomposition of this similarity

matrix is then determined to yield the low dimensional representation (eigenvectors) of the

data. While SE is still sensitive to the parameters of the kernel, it has been shown to be

more robust compared to LLE and Isomaps [18]. CBIR could be performed in conjunction

with SE by mapping the query and database images into a reduced dimensional space and

then retrieving relevant images as those in the neighborhood of the query instance. A key

shortcoming of the EDM, however, is that it implicitly assumes all features (dimensions) are

equally relevant. In the context of CBIR, features that are poor in discriminating between

two image classes could potentially map dissimilar images close to each other in the low

dimensional space. Hence, in order to determine the optimal low dimensional representation

of the data, it is desirable to weight the discriminatory attributes higher compared to the

erroneous or noisy features prior to computing the similarity matrix.

1.2 Previous Work

1.2.1 Spectral Embedding Variants

There has been some previous work in the development of SE variants. Tiwari, et al.

proposed a weighted multi-kernel learning scheme to yield an improved weight matrix for

use in conjunction with SE [19]. ElGhawalby, et al. [20] formulated a variant of SE that used
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an edge-based wave kernel that embedded the nodes of a graph as points on the surface of a

manifold, and used the resulting point-set to compute graph characteristics. Robles-Kelly,

et al. [21] used the Kruskal coordinates to compute the edge-weights for a weight matrix

and used it to embed the nodes of the graph onto a Riemannian manifold.

1.2.2 Nonlinear Dimensionality Reduction with Content-Based Image

Retrieval

NLDR schemes have previously been coupled with CBIR. Doyle, et al. [2] found that the

choice of feature space greatly affected the ability of the CBIR system to output images

of the same class as the query image. He, et al. [9] developed a dimensionality reduction

scheme called Maximum Margin Subspace (MMP) that maximizes the margin between

positive and negative samples at each local neighborhood. They projected the images into

a lower dimensional space and retrieval was performed. Huang, et al. [10] proposed a

method of representing images by treating them as frequency histograms of salient features

and performed image retrieval in a lower dimensional space created by LDA.

CBIR has also been applied to various domains including medical images [3] [4]. In

particular, it has been used to retrieve lung images [5], dermatological images [6], and

histopathology [7] [8]. However, the retrieval of medical images has not been done in a

learned reduced dimensional space.

1.3 Brief Overview of CBIR System

In this work we employ a novel variant of SE called Boosted Spectral Embedding (BoSE),

a supervised NLDR technique that utilizes a boosted distance metric (BDM) in place of

the EDM. The BDM, which was first introduced in [22], employs AdaBoost [23]. The

AdaBoost [23] algorithm, a classifier ensemble, introduced by Freund and Schapire, allows

for implicit feature weighting based on class discriminability. The difference between SE and

BoSE is that BDM actively places importance on discriminatory features while mitigating

the role of weaker features, yielding an embedding which encourages same class objects to

be embedded closer to each other and dissimilar class objects to be mapped farther apart.
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Figure 1.1: A flowchart illustrating the different components of the CBIR-BoSE system.
Initially a query image Q is inputted and is followed by quantitative feature extraction to
yield a set of K image descriptors F1, . . . , FK . The database contains N annotated images
(with corresponding class labels) with their corresponding feature-based representations.
For the particular problem of interest, the image features are assigned weights (α̂1, . . . , α̂T )
corresponding to their class separability. A weighted similarity matrix is then created via
the BDM, which is then used with BoSE to project the data into a lower dimensional
space. In the reduced space, the distance between the query Q and the database images is
calculated and the database images most similar to the query are retrieved (R1, . . . , R5).

The primary contributions of this work are twofold. First we present a new NLDR

scheme (BoSE) that employs AdaBoost with SE to generate lower dimensional data repre-

sentations with greater class separability. Second, BoSE is employed in conjunction with a

CBIR scheme (CBIR-BoSE) to perform accurate retrieval of database images with respect

to a query instance. An overview of the CBIR-BoSE system is illustrated in Figure 1.1. For

a database of N annotated images, feature extraction is performed to yield N corresponding

high-dimensional feature vectors. A low dimensional embedding of this data (MBoSE) is

then created via BoSE. The Euclidean distance between the query image and the database
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images is then computed in MBoSE and the most similar (lowest distance) images are first

retrieved. Images retrieved from the same class as the query instance are considered as

“relevant”. Evaluation is done by constructing precision-recall (PR) curves, where a large

area under the PR curve (AUPRC) reflects that CBIR-BoSE is retrieving the most relevant

images first. A list of notation used in the thesis can be found in Table 1.1.

In this work we evaluated our CBIR-BoSE system on three different two class problems,

illustrated in Figure 1.2. The three datasets comprised (1) 58 hematoxylin and eosin (H&E)

stained prostate cancer tissue biopsy samples classified as benign (Figure 1.2 (a)) or malig-

nant (Figure 1.2 (d)); (2) 55 H&E stained ER+ breast cancer histology specimens classified

as low (Figure 1.2 (b)) or high (Figure 1.2 (e)) grade; and (3) 41 H&E stained HER2+

breast cancer tissue specimens classified as having low (Figure 1.2 (c)) or high (Figure 1.2

(f)) levels of lymphocytic infiltration (LI). The choice of these datasets was dictated by the

fact that manual inspection of both prostate and breast cancer histology suffers from high

inter- and intra-pathologist variability [24, 25, 26]. Typically the pathologist first deter-

mines if the histology sample is benign or malignant. If it is found to be malignant, the

cancer is assigned a grade based on the morphologic and architectural attributes; cancer

grade being highly correlated to patient outcome [24][27]. In the progression of solid tumors,

local and systemic inflammation tends to play an important role [28]. Tumor infiltrating

lymphocytes represent a local immune response and the degree of LI in a tumor is consid-

ered as being prognostic of patient outcome in several different disease states [29, 30, 31].

Symbol Description

X = {x1,x2, . . . ,xN} Quantitative representation of images in R
N×D

Y = {y1,y2, . . . ,yN} Low dimensional projection of X

W Weight matrix

Φd Feature operator that extracts quantitative feature d from image

L(xi) ∈ {+1,−1} Ground truth label for object xi

hd Weak classifier built using a Bayesian framework

αt Weights associated with the t most optimal features

α̂t Normalized weights associated with the t most optimal features

DBDM Boosted distance metric

MBoSE Low dimensional representation produced by BoSE

MSE Low dimensional representation produced by SE

Table 1.1: List of mathematical symbols and notations used throughout the thesis.
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Example images of (a) benign and (d) malignant prostate tissue, (b) low and
(e) high grade ER+ breast cancer tissue, and HER2+ breast cancer tissue with (c) low and
(f) high levels of lymphocytic infiltration. The histology images were obtained by digitizing
biopsy samples previously stained with hematoxylin and eosin (H&E). In (a) the nucleoli
are less prominent and the glands are more open, whereas in (d) the nucleoli are more
apparent and the glands are shriveled due to increased cell proliferation. There is a greater
amount of nuclear proliferation in (e) high grade ER+ breast cancer when compared to
(b). A similar phenomenon can be observed when looking at HER2+ breast cancer tissue
with low vs. high levels of LI. In (f) there are more lymphocytes that have infiltrated the
cancerous tissue compared to (c).

The development of CBIR tools with applications in digital pathology [32] could assist

pathologists by providing a quantitative, reproducible and accurate image based risk score,

indicative of disease aggressiveness and patient outcome [24]. Additionally, a CBIR system

for digitized histopathology could serve as a teaching, training, and instructional tool for

pathology residents and fellows.
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1.4 Organization of Thesis

The rest of the thesis is organized as follows. The BDM is presented in Chapter 2. The

methodological description of the BoSE scheme is presented in Chapter 3. The experimental

design and evaluation of BoSE are presented in Chapter 4. Results and discussion are

presented in Chapter 5. Lastly, concluding remarks are presented in Chapter 6.



8

Chapter 2

The Boosted Distance Metric

2.1 A Brief Overview of the Boosted Distance Metric (BDM)

We define a set of objects as X = {x1,x2, . . . ,xN} where N is the number of objects. Each

image xi, i ∈ {1, . . . , N} belongs to one of two classes +1 or −1. The ground truth label of

xi is denoted L(xi) ∈ {+1,−1} where L(xi) = −1 indicates membership in class −1 and

L(xi) = 1 indicates membership in class +1. Let Φd(xi) for d ∈ {1, 2, . . . ,D} represent the

value of feature d from xi. The BDM construction is comprised of three main steps:

Step 1: Constructing Weak Classifiers: Weak classifier hd(xi) ∈ {−1, 1} predicts the

class label of xi based on feature operator Φd. In this work, a weak classifier is one

that outputs a class label for the object under consideration. The weak learner may

be one that outputs a probabalistic likelihood that an object (in this case, an image)

belongs to a specific class based solely on a single attribute. These probabilities can

be thresholded to obtain the class label. Multiple different weak learners derived

from various image features can be constructed and evaluated in terms of classifier

accuracy (assuming that a training set with class labels is available). Weak classifiers

were constructed by using only a subset (training set) of the entire dataset.

Step 2: Implicit Feature Weighting: The T most accurate weak classifiers, ht, t ∈
{1, 2, . . . , T} are identified and weights α̂t associated with each ht are learned via

the AdaBoost [23] algorithm, thereby enabling implicit feature weighting.

Step 3: BDM Construction: The BDM is then defined using the features Φt(xi) and

associated weights α̂t obtained in Step 2.
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2.2 The Construction of Weak Classifiers

Each individual feature (weak classifier) is used to classify an image and its classification

accuracy is leveraged in determining its class separability. The construction of the weak

classifiers employed in this work is outlined below:

Step 1: Calculate Φd(xi) for all d ∈ {1, 2, . . . ,D}, i ∈ {1, 2, . . . , N}, in order to obtain

corresponding feature values for each of the images.

Step 2: Create training set Xtr ⊂ X containing N objects by randomly sampling half of

the entire dataset X.

Step 3: Let X+ indicate all objects in Xtr belonging to class +1. Similarly, X− is the set of

all samples in Xtr that belong to class −1. We can obtain an appropriate probability

distribution function (PDF) which predicts the likelihood of observing a feature value

given a class label as:

p(Φd(Xa)|ωb) = Φd(Xa)
τ−1

exp(−Φd(Xa)
η )

ητΓ(τ)
, (2.1)

for a ∈ {+,−}, ωb ∈ {+1,−1}, Γ is the gamma function, and τ, η > 0 are scale and

shape parameters. Equation 2.1 is a gamma function estimation of the PDF [33], and

is preferred to a Gaussian distribution because the feature histograms are asymmetric

about the mean and the gamma function models the distribution more accurately.

Step 4: Obtain the a posteriori probability P (+1|Φd(xi)) which computes the likelihood

that an object with feature value Φd(xi) belongs to the positive class +1 by solving,

P (+1|Φd(xi)) =
P (+1)p(Φd(xi)|+ 1)

P (+1)p(Φd(xi)|+ 1) + P (−1)p(Φd(xi)| − 1)
. (2.2)

Step 5: Once the a posteriori probabilities have been computed for each image based on

a single feature, the weak classifiers are defined based off the individual features. The

weak classifiers may now be defined as follows

hd(xi) =

⎧⎨
⎩ 1 if P (+1|Φd(xi)) > P (−1|Φd(xi))

−1 otherwise
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Algorithm: BoostFeatWeights
Input: Training samples Xtr, ground truth labels L(Xtr), iterations T ,
weak classifiers hd for d ∈ {1, 2, . . . ,D}
Output: Optimal classifiers ht and their corresponding weights α̂t

begin
0. Initialize distribution for samples Π1(i) =

1
N

1. for t = 1 to T

2. Find ht = argmin
hd

[εd], where εd =
∑N

i=1 Πt(i)[L(xi) �= hd(xi)] for xi ∈ Xtr;

3. if εt ≥ 0.5 then stop;
4. αt =

1
2 ln

1−εt
εt

;

5. Update, Πt+1(i) =
1
Zt
Πt(i) exp(−αtL(xi)ht(xi)) for all xi ∈ Xtr, where

Zt =
∑

iΠt(i) exp(−αtL(xi)ht(xi)) is a normalization term;
6. endfor
7. Normalize αt to obtain α̂t such that 0 < α̂t ≤ 1, α̂t =

αt
max

t
[αt]

for t ∈ {1, . . . , T}.
8. return α̂t and ht;

end

Figure 2.1: The BoostFeatWeights algorithm for implicitly weighting the top performing
image features for a specific task. All samples were initialized with equal weights. The
weights for the weak classifiers are computed based on the classification error εd. At each
iteration, weights (Πt(i)) increase for samples that are difficult to classify. This forces the
weak classifiers to concentrate on the images that are frequently misclassified. Once all
the weights (αt) for the weak classifiers are found, the weights are normalized so that they
would range from 0 to 1. The T best performing classifiers and their weights are outputted.

If the probability, which based on a single feature, of the image xi belonging to class +1

is greater than its probability of belonging to class −1, it will be given a class label of 1.

Otherwise, it will be given a classification label of −1.

2.3 Implicit Feature Weighting

We use the AdaBoost [23] algorithm to perform implicit weighting of the weak classifiers

(in turn reflecting the importance of the individual image attributes) in order to distinguish

between the positive and negative classes. Our feature weighting algorithm is illustrated in

Figure 2.1. AdaBoost works in an iterative fashion by first identifying the best-performing

weak classifiers and then assigning weights based on the discriminability of that feature [23].

The weights of the training images are initialized by taking the reciprocal of the number

of images there are in the training set (Line 0). For each weak classifier (feature), its

classification error is computed (Line 2). At each iteration, the weak classifier with the
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lowest classification error is chosen and its weight is determined (Line 4). The weights of

the training images are updated such that the images that were frequently classified properly

recieved lower weights, while the images that were frequently misclassified recieved higher

weights (Line 5). This ensures that subsequent weak classifiers are picked based on their

ability to classify these hard to classify instances. The process repeats for T iterations.

The output of the algorithm is a set of weak classifiers ht and their associated normalized

weights α̂t, t ∈ {1, 2, . . . , T} where 1 ≤ T ≤ D and 0 < α̂t ≤ 1. Φ̂t is the operator for the

feature selected at iteration t of AdaBoost. The algorithm stops when εt > 0.5.

2.4 Constructing the BDM

The BDM is constructed after the weights and features have been chosen. To find the

distance between two points in the high dimensional space, we calculate,

DBDM(xi,xj) =

[
T∑
t=1

α̂t(Φt(xi)− Φt(xj))
2

] 1
2

. (2.3)

This is essentially a weighted Euclidean distance, where the weights influence the contribu-

tion of each feature. If α̂t ≈ 0, then Φt will not affect the value of the similarity measure.

2.4.1 Propositions for the BDM

Proposition 2.4.1 Given that DEu =
[∑T

t=1(Φt(xi)− Φt(xj))
2
] 1

2
is the Euclidean distance

metric, DBDM is also a distance metric.

Proof Since DEu is a metric, it is (1) positive, (2) symmetric, (3) definite, and (4) the

triangle inequality holds. DBDM must also be a metric since α̂t ∈ R
+ is positive and real

valued. Therefore properties (1)-(4) are satisfied for DBDM.

Proposition 2.4.2 below provides some insight into DBDM for the simple case where T = 2,

and where a, b ∈ R
2.

Proposition 2.4.2 If L(a) = L(b) then DEu(a, b) > DBDM(a, b).
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Proof Ideally, if L(a) = L(b), then D(a, b) ≈ 0. We denote the distance between a and

b in the first dimension as Δ1 and the second dimension as Δ2. Assume that feature

dimension Δ1 is more discriminating than Δ2; more specifically that ||δ1(a) − δ1(b)|| <
||δ2(a) − δ2(b)|| where δ1 and δ2 represent the positions of the objects in feature spaces

Δ1 and Δ2, respectively. Thus, α̂1 > α̂2 via the learned feature weights. Recall that

DBDM(a, b) =
√
α̂1(Δ1)2 + α̂2(Δ2)2 and DEu(a, b) =

√
(Δ1)2 + (Δ2)2. If the proposition is

true, the following holds:

√
(Δ1)2 + (Δ2)2 >

√
α̂1(Δ1)2 + α̂2(Δ2)2 (2.4)

(Δ1)
2 + (Δ2)

2 > α̂1(Δ1)
2 + α̂2(Δ2)

2 (2.5)

(Δ1)
2 − α̂1(Δ1)

2 > α̂2(Δ2)
2 − (Δ2)

2 (2.6)

(Δ1)
2(1− α̂1) > (Δ2)

2(α̂2 − 1) (2.7)

Recall that α̂1, α̂2 ≥ 0 and α̂1, α̂2 ∈ [0, 1]. Therefore, the left hand side of the inequality

would yield a positive number and the right hand side would yield a negative number,

indicating that Proposition 2.4.2 holds. Note that it is similarly possible to show that

under the same assumptions made for Proposition 2.4.1 if L(a) �= L(b), then DEu(a, b) <

DBDM(a, b).
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Chapter 3

Boosted Spectral Embedding (BoSE) for Content-Based

Image Retrieval

3.1 Boosted Spectral Embedding

The goal of SE is to project the feature vectors from a D dimensional space to a k di-

mensional space, where k << D. The low-dimensional representation of X is denoted

Y = {y1,y2, . . . ,yN}. The first step in SE is to create a weight matrix W, where each

element (i, j) in W is denoted by wij and represents the distance between xi and xj defined

by some metric D.

The low dimensional representation of X is then found by solving the eigenvalue decom-

position problem

(L−W)Y = λLY, (3.1)

where L is the diagonal matrix, Lii =
∑

iwij [16].

The typical formulation ofW involves the use of the EDM, wherewij = exp(−DEu(xi,xj)/σ),

and σ is the standard deviation of X. However, in BoSE, we replace the EDM with the

BDM to obtain,

wij = exp
(
−DBDM(xi,xj)

σ

)
. (3.2)

Since SE seeks to preserve object adjacencies as defined by W, by improving the description

of adjacency via the BDM, we should improve the resulting low dimensional embedding

(achieve greater class separability in the reduced embedding space). Since DBDM is a metric,

W is positive, semi-definite, and symmetric.
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Algorithm: BoSE
Input: Training samples Xtr, Testing samples Xte, L(Xtr), L(Xte), iterations T
Output: Lower dimensional embedding Y
begin
1. Build weak classifiers hd : d ∈ {1, 2, . . . ,D} via a Bayesian Classifier;
2. Select optimal weak classifiers ht and weights α̂t for t ∈ {1, 2, . . . , T} via AdaBoost;
3. Obtain BDM by applying Equation 2.3;
4. Obtain W by Equation 3.2;
5. Find Y ∈ R

N×k;
6. return Y

end

Figure 3.1: The BoSE algorithm. The weak classifiers are built using the training samples
(Xtr) and the weights are calculated via AdaBoost. The BDM is then employed with the
weights to calculate the distances between all the objects in X. The distances are used in
conjunction with the Gaussian kernel to obtain the weight matrixW. The lower dimensional
embedding Y is then obtained by solving the eigenvalue decomposition in Equation 3.1.

Algorithm: CBIR-BoSE
Input: Query image Q, database images Xdb ∈ R

N×D

Output: Top N Retrieved Images
begin
1. Calculate xquery = Φd(Q) for all d ∈ {1, 2, . . . ,D}, where xquery ∈ R

1×D;

2. Concatenate xquery with Xdb to form Xall ∈ R
(N+1)×D;

3. Input Xall into BoSE to yield Yall ∈ R
(N+1)×k where k << D;

4. Extract reduced query vector from Yall to yield yquery ∈ R
1×k and Ydb ∈ R

N×k;
5. Calculate p = DEu(y

query,Ydb
i ), i ∈ {1, 2, . . . , N},p ∈ R

1×N ;
6. Rearrange p in ascending order from the smallest to the largest value.
7. Extract the N smallest values and find the corresponding images.
8. return N most similar images.

end

Figure 3.2: The CBIR-BoSE algorithm.
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3.2 Performing CBIR with BoSE

The high-dimensional feature data extracted from each of the datasets is reduced to a fewer

number of dimensions via BoSE, the intent being to perform retrieval in the BoSE reduced

space. Briefly, the retrieval is performed as follows. The query sample and all existing

annotated database samples are aggregated and the BoSE representation for all images

(following feature extraction and weighting) is determined. Using the EDM, the distance

between the query image and all of the database images is calculated in the BoSE space.

The resulting distance vector is sorted in ascending order and the most similar database

images in terms of distance are outputted. The CBIR-BoSE algorithm is illustrated in

Figure 3.2.
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Chapter 4

Experimental Design and Evaluation

4.1 Dataset Description

We considered three datasets (Table 4.1). Slides from all three datasets were stained with

hematoxylin and eosin (H&E) and scanned into a computer via a whole-slide digital scanner

at the University of Pennsylvania (prostate cancer) and the Cancer Institute of New Jersey

(breast cancer). The prostate and breast cancer images were taken at magnifications of

40x and 20x, respectively, and were saved in the SVS format. Pathologists were instructed

to manually place a contour around homogeneous regions of tissue corresponding to either

“cancer” or “non-cancer” regions. Annotation was performed on the scanned SVS biopsy

image files using the ImageScope software platform (Aperio, Inc.). No confounding tissue

types (e.g. atrophy, prostatic intraepithelial neoplasia) were included. The entire tissue

biopsy images were then divided into 30-by-30 square pixel regions; within these 900 pixels,

if over 50% of the pixels (450) contained the expert’s annotation, those regions were included

in the dataset. All of the images were converted from the RGB color space to the HSV (Hue,

Saturation, Value) space to mitigate the effect of varying stain intensities. By converting

images to the HSV space, we ensure that any potential stain intensity variation across

images is confined to a single channel (the “Value” channel). The objective of Experiment

1 (D1) was to distinguish between malignant and benign prostate tissue patches (Table 4.1,

Figure 4.1) from biopsy samples obtained from 58 patients. In Experiment 2 (D2), we aimed

to distinguish betwen high and low grade breast cancer tissue patches from biposy samples

obtained from 55 patients. Lastly, the objective of Experiment 3 (D3) was to distinguish

between high and low levels of LI in breast cancer tissue patches from biopsy samples

obtained from 12 patients. For each of the experiments we compared the CBIR-BoSE and

CBIR-SE systems in terms of CBIR-based and classifier-based performance measures.
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Data Classes (+1/− 1) Class Distribution (+1/− 1) No. of Samples

Prostate (D1) Cancer/Benign 29/29 58

Breast (D2) High Grade/Low Grade 36/19 55

Breast (D3) High LI/Low LI 20/21 41

Table 4.1: List of the breast cancer and prostate cancer datasets used in this study.

4.2 Experiment 1: Distinguishing Malignant from Benign Prostate Histopathol-

ogy

Hematoxylin stains the nuclei and gives it shade of purple, while eosin stains the cytoplasm

and stroma and gives them a shade of pink. Benign prostate histology exhibits amorphous

glands with epithelial cells lining the glands. They display a lighter color when stained

with H&E because they have a lower amount of nuclear proliferation. Malignant prostate

histology displays more ordered glands that are lined with epithelial cells containing more

nucleoli within the nuclei. The greater number of nucleoli cause the cells to display a darker

stain when compared to a benign prostate tissue sample. Doyle, et al. [33] showed that

Gabor, Haralick, and first-order statistics can discriminate well between benign and malig-

nant regions of prostate tissue. The Gabor filter is a Gaussian function that is modulated

by a sinusoid. Gabor features quantify the response of image regions with intensity pat-

terns that are similar to the Gabor filter’s orientation and frequency parameters [34][35].

Haralick features are able to capture the underlying patterns in the image texture through

the construction of a co-occurrence matrix [36]. Co-occurrence image features are based

on the adjacency of pixel values in an image. An adjacency matrix is created where the

value of the i-th row and the j-th column equals the number of times pixel values i and

j appear within a fixed distance of one another. First-order statistical features quantify

the intensity variations in the image. These texture features are related to the degree of

nuclear proliferation, where there are more gradients as a result of the transitions between

high intensity values (the stroma/lumen) and the low intensity values (nuclei and nucleoli).

In [33], 14 highly discriminating pixel-wise features were learned via AdaBoost [23] out of a

feature set that comprised over 900 features. AdaBoost assigned a weight to all of the fea-

tures and these weights were thresholded in that features with α > 0.05 were retained while

the other features were discarded. In the current study these 14 features were extracted for
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Examples of (a) benign and (e) gleason grade 3 prostate cancer images and their
corresponding feature images: (b) (f) first-order statistics (Range using a 5 × 5 window,
Hue color channel) , (c) (g) Haralick (Correlation using a 5×5 window, Hue color channel),
and (d) (h) Gabor features (5× 5 window, θ = π

6 , Hue color channel).

each image, generating 14 corresponding feature images. The pixel values for each feature

image were averaged, generating a 14 element feature vector to characterize each prostate

image (Table 4.2). Figure 4.1 displays the texture feature images.

Texture Feature Parameters

First-order Statistics
(Standard Deviation, Range)

Window size: w = 5

Haralick Features
(Information Measure, Correlation,
Energy, Contrast Variance, Entropy)

Window size: w = 5
Distance: δ = 1

Gabor Features Window size: w ∈ {5, 9}
Orientation: θ ∈ {0, π6 , . . . , 5π6 }

Table 4.2: Texture features extracted from the prostate tissue sample images.
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4.3 Experiment 2: Distinguishing High from Low Grade Breast Histopathol-

ogy

Two of the defining histological features of breast cancer are the disorganization of the

tissue and the structure of the cells. The severity of the cancer is given a Bloom Richard-

son (BR) grade level [27]. Breast cancer tissue samples with greater disorganization and

increasingly irregular structure are given higher grades. High grade samples exhibit more

nuclear proliferation than low grade samples. As with the prostate cancer samples, the

breast cancer biopsy samples were stained with H&E. Haralick features were extracted and

used to describe the degree of nuclear proliferation by quantifying the variations in the

intensity values in the images. The objective of this experiment was to retrieve images

corresponding to the grade of the query image. To define a two-class problem, all images

are first separated into either low (BR 4, 5) and high (BR 7, 8) grade classes (Table 4.1).

From each image, 12 Haralick feature images were generated and the following statistics

were computed from the pixel values from each feature image: mean, standard deviation,

and entropy. This was done for all three color channels in the HSV space.

4.4 Experiment 3: Distinguishing High LI from Low LI Breast Histopathol-

ogy

The class problem is defined as follows: images were separated into either low LI or high LI

classes (Table 4.1). To quantify the arrangement of lymphocytic nuclei in the histology im-

ages, architectural features were computed for each image. The centroids of the lymphocytic

nuclei are used to construct the Delaunay Triangulation GD (Figures 4.2 (b) and 4.2 (f)),

the Minimum Spanning Tree GM (Figures 4.2 (c) and 4.2 (g)), and the Voronoi Diagram GV

(Figures 4.2 (d) and 4.2 (h)). Automated nuclear detection was performed to identify the

nuclear centers as centroids of the different graphs. However, the cancer and lymphocytic

nuclei are similar in appearance. In general, lymphocytic nuclei differ in appearance from

cancer cell nuclei by their smaller size, more circular shape, and a darker homogeneous

staining [37]. We took these differences into account and performed automated nuclear

detection in the following manner.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Example breast histopathology images that contain (a) low and (e) high levels
of lymphocytic infiltration with their corresponding feature images: (b) (f) delaunay trian-
gulation, (c) (g) minimum spanning tree, and (d) (h) voronoi graphs. Quantitative graph
features were calculated using the graphs constructed on the image.

Step 1: On each image, M candidate nuclear centers M = {m1,m2, . . . ,mM} were found

by convolving the image xi with a Gaussian (smoothing) kernel at multiple scales.

This was done to account for the variation in lymphocyte size. The darkest pixels

were found on the smoothed image based on local differences in luminance and these

were the candidate lymphocytic nuclear centers.

Step 2: Using the region-growing scheme [38], each of the M candidate lymphocytic nu-

clear centers was grown into a corresponding region R. The optimal regions were

identified when the boundary strength, which is defined as the difference in the mean

intensity of the pixels in the internal boundary and the current boundary of the region,

was at a maximum. See [37] for a more detailed description.

Step 3: Each of r ∈ R contained two random variables: Ar ∈ {ωc, ωl} which is the classi-

fication of the candidate nuclear centers as either a cancer (ωc) or lymphocytic (ωl)

nucleus and Br ≡ [Cr, φr]
T ∈ R

+2 where Cr is the square root of the nuclear area

and φr is the standard deviation of the luminace in the nuclear region. The labels,
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Graph Features

Voronoi Diagram Total area of all polygons
(13 features) Polygon Area

(mean, standard deviation, min/max ratio, entropy)
Polygon Perimeter

(mean, standard deviation, min/max ratio, entropy)
Polygon Chord Length

(mean, standard deviation, min/max ratio, entropy)

Delaunay Triangulation Triangle Area
(8 features) (mean, standard deviation, min/max ratio, entropy)

Triangle Side Length
(mean, standard deviation, min/max ratio, entropy)

Minimum Spanning Tree Branch Length
(4 features) (mean, standard deviation, min/max ratio, entropy)

Nuclear Features Density of nuclei
(25 features) Distance to {3, 5, 7} nearest nuclei

(mean, standard deviation, disorder)
Number of nuclei in a {10, 20, . . . , 50} pixel radius

(mean, standard deviation, disorder)

Table 4.3: List of the features extracted to quantify the degree of LI. A detailed description
of the feature extraction and graph construction can be found in [1].

Ar, given the feature vectors Br are estimated via a maximum a posteriori (MAP)

estimation by finding the Ar that maximizes the posterior probability

p(Ar|Br) =
p(Br|Ar)p(Ar)

p(Br)
(4.1)

where p(Br|Ar) is the liklihood term and p(Ar) and p(Br) are prior distributions.

p(Br) is ignored because maximization was done with respect to p(Ar).

Step 4: p(Br|Ar) is computed from PDFs, where Ar is provided by manual delineation of

lymphocytes in a training set.

Step 5: The prior distribution p(Ar) is defined by a Markov Random Field (MRF) and

computed. The iterated conditional modes (ICMs) algorithm [39], a derterministic

relaxation procedure, was used to compute the MAP estimation and classify each

r ∈ R. The regions classified as cancer nuclei were discarded and the centriods of

the lymphocytic nuclei were calculated, yielding O = {o1, o2, . . . , oL} where O ⊆ M .

Details of the automated nuclear detection can be found in [37].
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Using the O centroids, we constructed a graph G = (V,E,J), where V represent the

vertices of the graph which correspond to the number of centroids, E are the set of edges,

and J are the weights of the edges, proportional to edge length. The set of vertices, edges,

and weights make up a unique graph on the image. From each graph, we extracted a set

of features listed in Table 4.3. A detailed description of the graph construction and feature

extraction can be found in [1].

4.5 Evaluation Measures

4.5.1 CBIR-BoSE

The performance of a CBIR system is determined by how many retrieved images for a

given query image are relevant to the query, defined as images which belong to the same

class as the query image, and also the order in which they appear. Precision is defined as

ρ(β) = ξ(β)
β , where ξ(β) denotes the number of relevant objects in the β closest objects.

Recall is defined as r(β) = ξ(β)
ξ(N−1) . Precision-recall curves were generated by plotting ρ(β)

versus r(β) for β ∈ {1, 2, . . . , N − 1}. Area under the precision-recall curve (AUPRC) was

measured and used to evaluate the CBIR system. The AUPRC values ∈ [0, 1] where an

AUPRC of 1 indicates that the CBIR system only retrieved relevant images and an AUPRC

of 0 indicates that the CBIR system only retrieved irrelevant images. Therefore, the higher

the AUPRC, the better the CBIR system. We denote θAU
BoSE and θAU

SE as the AUPRC values

for CBIR-BoSE and CBIR-SE, respectively.

4.5.2 Classifier Evaluation of BoSE and SE

A second performance measure for evaluating BoSE is classifier accuracy. Of the classifiers

available (Support Vector Machines, Neural Nets, etc.), the Random Forest (RF) classifier

was chosen due to its ability to accurately and efficiently run on large databases with

minimal training time and lower overall computational time. The RF classifier (obtained by

bagging decision trees) [40] is trained on both MBoSE and MSE (Figure 5.3). The accuracy

of the RF classifier should reflect the class discriminability of MBoSE. A RF classifier

is an ensemble of decision trees (i.e. weak learners) combined via bootstrap aggregation.
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Averaging decisions across weak learners creates a strong learner that reduces overall bias

and variance [40]. We define θAcc
BoSE amd θAcc

SE as the classification accuracy when performing

classification in the lower dimensional spaces created by BoSE and SE, respectively. The

classification accuracy is defined as TP+TN
TP+TN+FP+FN where TP are the true positives, TN

are the true negatives, FP are the false positives, and FN are the false negatives.

Let S+1 ⊂ X and S−1 ⊂ X where for any a ∈ S+1, L(a) = +1 and for any b ∈ S−1,

L(b) = −1. S+1 and S−1 are subsets of the total number of the specific class objects we

have in X. S+1 and S−1 are randomly sampled with replacement from X, ensuring that

each of S+1 and S−1 only comprise of instances from either of +1 and −1. Each random

sampling of S+1 and S−1is used to train a decision tree classifier Ωv, where v ∈ {1, 2, . . . , V }
and so that Ωv(x) ∈ {+1,−1}.

Randomized, 3-fold cross-validation was used to determine training and testing inputs for

the RF classifier. First, the entire dataset X was randomly divided into three equally-sized

subsets X1,X2,X3 ⊂ X. Two of the subsets were used for training the RF classifier, which

was then evaluated on the remaining subset. The subsets were subsequently rotated until

each subset was used for evaluation exactly once. The entire cross-validation scheme was

repeated over 50 iterations, over which the mean and standard deviation of the classification

accuracy were reported.

4.5.3 Evaluating Intrinsic Dimensionality for CBIR-BoSE

When performing retrieval and classification in the lower-dimensional space, identifying the

optimal number of dimensions within which to embed the data is a non-trivial task. Each

dataset possesses an intrinsic dimensionality in which the classification accuracy and the

retrieval performance will be optimal. In order to evaluate the effect of the total number

of embedding dimensions to be considered, for the purpose of maximizing classification

accuracy and the AUPRC, each dataset was reduced to various lower dimensional embed-

dings. The corresponding number of dimensions associated with these reduced dimensional

embeddings was varied and BoSE was evaluated in these different spaces (Table 4.4). We

define θAcc
BoSE,k and θAU

BoSE,k as the accuracy and AUPRC using BoSE in k dimensions,

where k ∈ {1, 2, . . . ,K} and similarly θAcc
SE,k and θAU

SE,k for SE. The maximum, minimum,
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and average AUPRC and classification accuracy is reported and calculated in the following

manner: θμ,max
ν = max

k
[θμν,k], θ

μ,min
ν = min

k
[θμν,k], ψ

μ
ν = 1

K

∑K
k=1 θ

μ
ν,k where μ ∈ {Acc,AU}

and ν ∈ {BoSE,SE}.

Dataset Original Dimensionality Reduced Dimensionality

Prostate Cancer 14 2, 3, 4, 5, 6, 7

Breast Cancer Grading 108 2, 3, 5, 10, 15, 20, 25, 30, 35,
40, 45, 50

Lymphocytic Infiltration 50 2, 3, 5, 10, 15, 20, 25

Table 4.4: The original dimensionality of the data and its reduced dimensionality employed
for evaluating CBIR-BoSE and CBIR-SE. Both CBIR systems were evaluated after pro-
jecting the original high dimensional data into spaces of progressively different reduced
dimensions.
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Chapter 5

Results and Discussion

5.1 Experiment 1: Distinguishing Malignant from Benign Prostate Histopathol-

ogy

5.1.1 Quantitative Evaluation

Figure 5.1 and Table 5.2 reveal that over a range of dimensions, CBIR-BoSE consistently

outperforms CBIR-SE in terms of (a) AUPRC, and (b) accuracy. It appears that retrieval

with BoSE seems to improve with lower embedding dimensionality. For D1, θ
AU,max
BoSE and

θAU,min
BoSE were greater than θAU,max

SE and θAU,min
SE (Table 5.1). The average AUPRC for CBIR-

BoSE (ψAU
BoSE) across the all the dimensionalities evaluated was greater than the average

AUPRC for CBIR-SE (ψAU
SE ) (Table 5.1). θAcc,max

BoSE and θAcc,min
BoSE were greater than θAcc,max

SE

and θAcc,min
SE (Table 5.2). ψAcc

BoSE was greater than ψAcc
SE and is statistically significant using

a p < 0.05. Unlike the AUPRC values, the accuracy values remain relatively invariant to

the number of dimensions that D1 is embedded into via BoSE and SE.

Dataset θAU,max
BoSE θAU,max

SE θAU,min
BoSE θAU,min

SE ψAU
BoSE ψAU

SE

D1 0.87 0.66 0.70 0.60 0.77 0.63

D2 0.90 0.90 0.74 0.57 0.80 0.68

D3 0.59 0.43 0.45 0.36 0.51 0.39

Table 5.1: Quantitative results showing the maximum, minimum, and mean AUPRC values
for Experiment 1 (D1), Experiment 2 (D2), and Experiment 3 (D3). ψ

AU
BoSE is greater than

ψAU
SE for D1, D2, and D3 and is statistically significant using a p < 0.05.
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Dataset θAcc,max
BoSE θAcc,max

SE θAcc,min
BoSE θAcc,min

SE ψAcc
BoSE ψAcc

SE

D1 0.93 0.81 0.92 0.80 0.93 0.80

D2 0.99 0.99 0.94 0.93 0.98 0.98

D3 0.96 0.92 0.90 0.90 0.94 0.91

Table 5.2: Quantitative results showing the maximum, minimum, and mean classification
accuracies for Experiment 1 (D1), Experiment 2 (D2), and Experiment 3 (D3).
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Figure 5.1: Quantitative results displaying (a)θAU
BoSE,k, θ

AU
SE,k and (b) θAcc

BoSE,k, θ
Acc
SE,k over

the dimensions k ∈ {2, . . . , 7} for Experiment 1. A second order polynomial was fitted to
the data to illustrate the trends in θAU and θAcc.

(a) Query Image

(b) Images retrieved on MBoSE

(c) Images retrieved on MSE

Figure 5.2: The illustration shows the retrieved images using (b) BoSE and (c) SE for (a)
the query image (prostate cancer tissue sample). The images that are outlined in green and
blue are from the cancer and benign classes, respectively. For the top five retrieved images,
CBIR-BoSE returned more relevant images compared to CBIR-SE.
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5.1.2 Qualitative Evaluation

For each of the top five images retrieved, CBIR-BoSE yielded more relevant images com-

pared to CBIR-SE (Figure 5.2) reflecting that objects from the same class are mapped closer

to each other in MBoSE. Figures 5.3(a) and 5.3(d) display MBoSE and MSE, respectively,

showing a much greater separation between the malignant and benign classes in MBoSE

compared to MSE.
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Figure 5.3: MBoSE and MSE shown for (a), (d) D1, (b), (e) D2, and (c), (f) D3 using (a),
(b), (c) BoSE and (d), (e), (f) SE. Although the low-dimensional data does not appear as a
set of ‘clusters’, we can see a clear class separation on the manifold when using BoSE (top
row) compared to SE (bottom row).

5.2 Experiment 2: Distinguishing High from Low Grade Breast Histopathol-

ogy

5.2.1 Quantitative Evaluation

For D2, θ
AU
BoSE and θAU

SE decreased as the dimensionality of the data increased (Figure 5.4).

While θAU,max
BoSE and θAU,max

SE occured when D2 was reduced to two dimensions and were

similar, θAU
SE decreased more drastically compared to θAU

BoSE. This resulted in θAU,min
BoSE being

greater than θAU,min
SE (Table 5.1). Another consequence of the difference in the rate of
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decrease of θAU between CBIR-BoSE and CBIR-SE was that ψAU
BoSE was greater compared

to ψAU
SE (Table 5.1). θAcc,max, θAcc,min, and ψAcc yielded similar values for both BoSE and

SE and no appreciable difference was observed (Table 5.2).
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Figure 5.4: Quantitative results displaying (a) θAU
BoSE,k, θ

AU
SE,k and (b) θAcc

BoSE,k, θ
Acc
SE,k over

all the dimensions k ∈ {2, 3, 5, 10, . . . , 50} for the breast cancer images. θAU
BoSE is greater

than θAU
SE . A second order polynomial was fitted to the data to illustrate the trends in θAU

and θAcc.



29

(a) Query Image

(b) Images retrieved on MBoSE

(c) Images retrieved on MSE

Figure 5.5: The illustration shows the retrieved images using (b) BoSE and (c) SE for (a) the
query image (high grade breast cancer tissue sample). The images that are outlined in green
and blue are from the high and low grade breast cancer classes, respectively. For the top
five retrieved images, CBIR-BoSE returned more relevant images compared to CBIR-SE.
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5.2.2 Qualitative Evaluation

Figure 5.5 displays the top five images for both the CBIR-BoSE and CBIR-SE systems.

CBIR-BoSE retrieved more relevant images and thus illustrated that images from similar

classes are mapped closer to each other in MBoSE compared to MSE. MBoSE (Figure 5.3

(b)) appears to suggest better class separability compared to SE (Figure 5.3 (e)).
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Figure 5.6: Quantitative results displaying (a) θAU
BoSE,k, θ

AU
SE,k and (b) θAcc

BoSE,k, θ
Acc
SE,k over

all the dimensions k ∈ {2, 3, 5, 10, . . . , 25} for the lymphocytic infiltration images. θAU and
θAcc for BoSE were greater compared to SE. A second order polynomial was fitted to the
data to illustrate the trends in θAU and θAcc.

5.3 Experiment 3: Distinguishing High LI from Low LI Breast Histopathol-

ogy

5.3.1 Quantitative Evaluation

For D3, θ
AU,max
BoSE , θAU,min

BoSE , and ψAU
BoSE were greater compared to θAU,max

SE , θAU,min
SE , and ψAU

SE

(Figure 5.6, Table 5.1). θAcc,max
BoSE and ψAcc

BoSE were higher compared to θAcc,max
SE and ψAcc

SE

(statistically significant with p < 0.05), but θAcc,min
BoSE was similar to θAcc,min

SE (Table 5.2).

The dimensionality of the data had little effect on the θAcc
BoSE and θAcc

SE .

5.3.2 Qualitative Evaluation

Figure 5.7 displays the top five images for both the CBIR-BoSE and CBIR-SE systems.

MBoSE (Figure 5.3 (c)) appears to show better separation between the images that have
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low LI and images that have high LI than MSE (Figure 5.3 (f)).

(a) Query Image

(b) Images retrieved on MBoSE

(c) Images retrieved on MSE

Figure 5.7: The illustration shows the retrieved images using (b) BoSE and (c) SE for (a)
the query image (low LI breast cancer tissue sample). The images that are outlined in green
and blue are from the high LI and low LI classes, respectively. In the top five retrieved
images, CBIR-BoSE returned more relevant images compared to CBIR-SE.
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Figure 5.8: The LI data embedded into MBoSE in (a) R
1, (b) R

2, and (c) R
3. The filled

in blue triangle denotes the query image and the arrows denote its eight nearest images.
When the dimensionality of MBoSE is low, most of the eight nearest images are from the
same class as the query image. However, as the dimensions are increased more irrelevant
images are part of the query image’s eight nearest neighbors. Hence, the AUPRC decreases
as the number of dimensions is increased.

5.4 AUPRC as a Function of Increasing Dimensionality of MBoSE

θAU
BoSE decreased as the dimensionality of MBoSE increased for all three experiments. We

offer some intuition as to why this happens. Let the blue triangle in Figure 5.8 denote the

query image. When the dataset is embedded into a one dimensional space, seven of the

eight nearest samples are from the same class. Thus, when performing image retrieval, the

majority of the top eight retrieved images will be relevant. When the data is embedded into

a two dimensional space, only four of the eight nearest images are from the same class. If

image retrieval is performed in this space, only half of the top eight images retrieved will be

relevant, reducing precision for that query image; however, classification accuracy for the

whole dataset is unchanged. Lastly, when the data is embedded into a three dimensional

space, a similar situation is encountered. It should be noted that because classification and

training is performed each time a dataset is reduced in dimensionality, it is very possible

that all of these spaces will yield either similar classification accuracies or improvements

in classification accuracy. Consequently, the apparent discrepancy between the trends in

AUPRC and accuracy for BoSE and SE across a different number of dimensions exists be-

cause in CBIR the order of the retrieved data points affects the AUPRC while the accuracy

is unaffected.
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Chapter 6

Concluding Remarks and Future Work

In this work, we presented a CBIR system that utilized Boosted Spectral Embedding

(BoSE), which employed the boosted distance metric (BDM) in conjunction with Spec-

tral Embedding (SE). The BDM preferentially weights features that discriminate between

objects of different classes allowing for a similarity matrix which better describes object

similarity. We have created a task-specific embedding technique that improves class separa-

bility, yielding better classification and retrieval. In this work we applied the CBIR-BoSE

framework in the context of problems in digital pathology. SE has been shown to be less

sensitive to the choice of system parameters compared to other popular manifold learning

schemes (e.g. Isomaps [13], LLE [14]). The CBIR system presented here could be em-

ployed as a teaching tool for pathology residents and fellows. Specifically, we focused on

distinguishing between (1) benign and malignant prostate histology, (2) low and high grade

ER+ breast cancer histology, and (3) low and high levels of lymphocytic infiltration (LI)

in HER2+ breast tissue. We compared CBIR-BoSE to CBIR-SE, which uses the Euclidean

distance metric to define object similarity. For different numbers of dimensions of the low

dimensional space, for different datasets, for different performance measures (CBIR and

classifier based), CBIR-BoSE outperformed CBIR-SE a majority of the time.

One of the current limitations of our CBIR system is that for every new query image,

the manifold for the query along with all existing database images needs to be computed.

This procedure needs to be repeated for each new query instance. In the future work we

are looking to incorporate out of sample extrapolation schemes [41] which allow for the

mapping of a new query instance into an existing lower dimensional space, without having

to recompute the eigenvalue decomposition; thus reducing the overall computational cost of

a new retrieval task. We also intend to extend our current scheme to the multi-class case.
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The CBIR-BoSE system consists of two computational portions: the online and the

offline portions. The offline portion consists of the computation of the PDFs for the weak

classifiers, which is the most computationally expensive step. The amount of time it takes

to compute the PDFs is dependent solely on the number of features used to represent

an image in a particular dataset. For example, the prostate dataset was comprised of 14

features and it took approximately eight minutes to compute the PDFs. However, this

step can be performed offline because the PDFs are not recomputed for each new query

image. The online portion consists of the computation of the weak classifier weights, the

low dimensional manifold using BoSE, and the distance between the query image and the

database images. The run-time for the weight and the query image-database image distance

computations are negligible, but the run-time for the creation of a low dimensional manifold

that incorporates the query image is dependent on the number of samples. For example,

the LI dataset consisted of 41 patients (samples) and it took approximately one minute to

compute the low dimensional manifold via BoSE. For use in a clinical setting, the system

can compute the PDFs when it is not being used by physicians so as to not cause any delay

in image retrieval. A graphical user interface needs to be created for the ease of use for the

physicians. All experiments performed in this thesis were run on a Linux (Ubuntu 2.6.22-

15-generic) server with the following specifications: 2.33 GHz clock speed, 32 gigabytes of

random access memory, a Super Micro X7DBE+ mother board, and a 2x quad-core Xeon

E5345 processor.
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