
c© 2012

Lei Wang

ALL RIGHTS RESERVED

SOME PROBLEMS ON DISCRETE GEOMETRY AND

COMBINATORICS

BY LEI WANG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

William Steiger and Mario Szegedy

and approved by

New Brunswick, New Jersey

JANUARY, 2012

ABSTRACT OF THE DISSERTATION

Some Problems On Discrete Geometry and Combinatorics

by Lei Wang

Dissertation Directors: William Steiger and Mario Szegedy

Let K be a convex body in the plane. It is known that K can never be partitioned into

seven regions of equal area by three non-concurrent lines. We will be concerned with a

partition of K by three non-concurrent lines such that the ratio of the area of smallest

region to the area of biggest region is maximum. We call this an optimal balanced

partition at K. We show that the best possible ratio is achieved when K is a triangle

and we characterize the optimal balanced partition in this case. We conjecture that the

condition holds for optimal balanced partitions of all convex bodies but can only prove

a weaker result.

In the second part of the thesis, we switch to the zigzag problem. We are given a

set of n points in R
2 and seek the minimum number of line segments required for a

polygonal chain (or a simple polygonal chain) to traverse all the points. We show an

n/2 + O(n/ log n) upper bound if self-intersection is allowed and an n − ⌊n−2
8 ⌋ upper

bound if self-intersection is not allowed.

The third part of this thesis is about finding the optimally balanced forward degree

sequence of a graph. The final part studies the optimal solutions for some variants of

the Towers of Hanoi problem.

ii

Acknowledgements

First and foremost I want to thanks my advisors Dr. Mario Szegedy and Dr. William

Steiger. It has been an honor to be their student. I appreciate all their contributions

of time, ideas and funding to make my Ph.D. experience productive and stimulating.

The joy and enthusiasm they have for their research was contagious and motivational

for me, even during tough times in the Ph.D. pursuit. Without their encouragement

and effort, this thesis would not have been completed or written.

In my daily work I have been blessed with a friendly and cheerful group of fellow

students. I am especially grateful for Xiaomin Chen and Bin Tian, who have contributed

immensely to my personal and professional time at Rutgers. We worked together on

the Hanoi Tower problem, and I very much appreciated their enthusiasm, intensity,

willingness to solve hard theoretic problems.

For this dissertation I would like to thanks my reading committee members: Dr.

Mario Szegedy, Dr. William Steiger, Dr. Bahman Kalantari and Dr. Boris Aronov

for their time, interest, and helpful comments. I would also like to thank our gradu-

ate secretary Carol DiFrancesco who was so patient and helped me through all those

complicated paper works.

My time at Rutgers was made enjoyable in large part due to the many friends that

became a part of my life. I am grateful for time spent with roomates and friends, for

Xiaomin and Jun, Bin and Liming, Fengming and Ye, Ming and Xiaotao, Ruoming

and Zhiyan and their lovely son Amao. The time we have together became my most

precious memories that will never fade away.

Lastly, I would like to thank my family for all their love and encouragement: for

my sister Ying Wang and brother-in-law Shuai Jing who encouraged me during the

toughest times; for my new born nephew, cute and smiley Momo; and most of all for

iii

my parents who raised me with a love of science and supported me in all my pursuits.

Thank you.

iv

Dedication

For my family, who offered me unconditional love and support throughout the course

of this thesis.

v

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . v

1. Introduction . 1

2. Optimal Partitioning by Three Lines in the Plane 6

2.1. Introduction . 6

2.2. Most balanced partition . 7

2.3. Uniqueness proof . 13

2.4. Optimal partition on triangles . 18

3. Zigzag - Traversing Points in the Plane 25

3.1. Definition of the zigzag problem . 25

3.2. Zigzag with self-intersection . 25

3.3. Zigzag without self-intersection . 26

4. Optimally Balanced Forward Degree Sequence 33

4.1. Introduction . 33

4.1.1. Outline of the chapter . 35

4.1.2. Notations . 35

4.2. Forward degree sequences . 36

4.3. Balanced and strongly balanced sequences 38

4.3.1. Balanced sequences . 38

4.3.2. Strongly balanced sequences . 38

4.3.3. Finding the minimal sequences 40

vi

4.4. Graphs inside B or BS . 42

4.4.1. Closure properties . 42

4.4.2. Graphs with low degrees . 44

Biconnectivity and block structures 44

Biconnected graph in D3 . 45

B contains D3 . 47

5. Santa Claus’ Towers of Hanoi . 51

5.1. The towers of hanoi and two new variations 51

5.2. The hanoi towers . 53

5.3. The sinner’s towers . 54

5.4. Santa’s towers . 59

5.4.1. A procedure for HC([n], Pa, Pb, d) 59

5.4.2. The formula for C(n, d) and G(n, d) 61

5.5. Other towers of hanoi . 67

6. Conclusions and Further Research . 69

References . 71

Vita . 74

vii

1

Chapter 1

Introduction

Discrete and computational geometry is a vigorous subject that has grown out of Eu-

clidean geometry and then was greatly stimulated by questions and methods from

computer science and combinatorics. It is also driven by practical, real-world problems

of a geometric nature and algorithmic and computational questions that have then

originated in a natural way. This thesis touches a variety of different problems, but all

relate to ideas from discrete and computational geometry in a natural way.

In 1949 Buck and Buck [2] showed that for any convex body K ⊂ R
2 whose area is

1, there always exists three concurrent lines l0, l1, l2 that equipartition K, i.e., divides

K into six regions of area 1/6 each. They also showed that no convex body K can be

partitioned by three lines lines l0, l1, l2 into seven regions of area 1/7 each.

Since a convex body K can never be equipartitioned into seven regions, Buck and

Buck raised the following question: can K be partitioned into seven regions such that

there is one of area t ∈ (0, 1/7) ∪ (1/7, 1), and six of area (1− t)/6 each? They showed

that if such a partition exists, it must be the central region that has area t. Hence, such a

partition received its name as six-way equipartition. Finally, Buck and Buck conjectured

that if a six-way equipartition exists, then t ≤ 1/49, which may be achieved when K is

a triangle.

This conjecture was proved a year later by Sholander [4]. He showed that the trian-

gle is the extreme convex body which maximize the area of central region in a six-way

equipartition, if such a partition exists. Later, there has followed a succession of inter-

esting results [8], [9], [10], [11], [13], [14], [15], [16] about the possibilities/impossibilities

of partitioning measures in various ways.

Surprisingly, the main existence question for six-way equipartitions of planar convex

2

bodies remained open for sixty years! In 2010, Steiger, Szegedy and Zhao [6] showed

that, given a convex body K ⊂ R
2 and a unit vector v ∈ R

2, there exists a unique trio

of lines that form a six-way equipartition of K, with one of them having normal vector

v.

Recently, Steiger, Szegedy, Wang and Kalantari [7] addressed the following question

which had been posed by Kalantari: instead of looking for six equal areas and one

different area, what if we seek a partition of the convex body K by three lines such

that the ratio of the smallest area to the biggest area is maximized. We name such a

partition as the most balanced partition, using the ratio as the measure of balance. If

three lines are concurrent, K is partitioned into six regions and the balance ratio is 0

(the point of concurrency is a triangle of area 0). If three lines are not concurrent, K is

partitioned into seven regions and we know from Buck and Buck [2] that optimal ratio

1 can never be achieved. In the latter case, seeking the most balanced partition for a

convex body K and seeking the extreme convex body that achieves the best ratio are

interesting problems and we study them in Chapter 2.

Another interesting, though hard, partitioning problem is to simultaneously equipar-

tition multiple point sets in the plane. The Ham-Sandwich Theorem tells us that two

point sets in the plane can always be simultaneously equipartitioned by a straight line.

Futhermore, Bárány and Matousek [10] showed that, there always exists a wedge that

simultaneously equipartitions three point sets in the plane. Their proof is purely topo-

logical. Later, Bereg [11] gave a combinatoric proof which led to an efficient algorithm

that constructs the desired wedge.

A natural extension of a line or a wedge with number of turns 1, is a polygonal path

with number of turns k. Clearly, polygonal paths with more turns may simultaneously

equipartition point sets with more different types of points. It turns out to be very hard

to determine the minimun number of turns k required to simultaneously equipartition

any n sets of points in the plane.

A huge simplification of the above problem is to make each point set a simple point.

Thus, we are looking for the minimum number of segments that traverses n points in

the plane, which we call the zigzag problem. Though a simplified version of the zigzag

3

problem has been studied in [17], [18], where only axis-aligned segments are allowed,

nothing better than trivial bounds is known for the general case. In chapter 3, we

discuss zigzag problem and improve its upper bound.

Here is the classical secretary problem, which is well studied: There are n applicants

arriving (online) one by one. Each has value vi and the goal is to hire the best. After

interviewing applicant i, we learned his value vi. At this point we either reject him and

continue interviewing more candidates, or hire him, and interviewing stops.

Here, we study a problem with the same flavor, which is called the offer rejection

problem:

• There are n almost equally good candidates on the waiting list.

• Some pairs of the candidates can work together, some pairs cannot. These pairs

are known in advance.

• After giving an offer to candidtate i, there is a probability pi candidate i will take

the offer. Again, all pi’s are known in advance.

We will hire exactly two candidates. The goal is to select the best order to give the

offers to maximize the likelihood of hiring two candidates that can work together.

The offer rejection problem leads naturally to a subject that is interesting in its own

right, namely, the forward degree sequences of graphs. A forward degree sequence arises

from an ordering σ of the vertices of a graph. We eliminate the vertices according to

this ordering, and the forward degree dσv of a vertex v is its degree in the remaining

graph when we eliminate it.

The idea of forward degree sequences is related to two classical topics in graph

theory, namely, the degree sequence and vertex elimination order. The degree sequences

of graphs are well characterized in [20], [21], and [22]. The vertex elimination order

gives a nice characterization of chordal graphs (see [25]). The forward degree sequences

we define and study here arise from very different questions and are of different nature.

Several nice connections between the offer rejection problem and the forward de-

gree sequences are known. Here we focus on the pure graph-theoretical aspects. One

4

connection arises when we associate to each forward degree sequence a polynomial

Pσ(z) =
∑

v∈V z
dσv . We find that the offer rejection problem with rejection probability

q is equivalent to the problem of finding the σ which minimizes Pσ(1/q) in the graph

where edges represent pairs that can not work together. We will define an ordering σ to

be more balanced than τ if Pσ(1/q) ≤ Pτ (1/q) for every probability q. A related notion

is strongly balanced. It is an interesting combinatorial question whether a graph has a

most balanced (strongly balanced) forward degree sequence. We prove that this is true

in some nice classes of graphs, for example, chordal graphs and 3-regular graphs, where

we also give a polynomial time algorithm to find the most balanced sequence.

The forward degree sequences carry a lot of information about their graphs. One

may easily express some usual graph parameters in terms of properties of the forward

degree sequences (see Section 4.2). Here we define some new graph parameters (Section

4.3.3) based on the forward degree sequences. These parameters, besides their close

relation to the offer rejection problem, are of purely graph-theoretic interest as well.

One of the interesting problems that remains open is how to compute some of the

parameters in polynomial time.

We study forward degree sequence in chapter 4 and we show that every 3-regular

graph has a most balanced forward degree sequence. This gives some new insight into

the graph isomorphism problem discussed in [23] and [24].

In chapter 5, we discuss two new variations of the famous Towers of Hanoi problem.

The Towers of Hanoi was invented by the French mathematician Edouard Lucas in 1883.

In the legend, 64 sacred disks were initially stacked in increasing size on one of three

pegs, with the largest at the bottom. A monk has to move the entire tower to another

peg. The disks are fragile; only one can be carried at a time. And most importantly,

the monk must obey the following rule:

The Divine Rule: A disk may not be placed on top of a smaller disk.

The disks are of size 1, 2, . . . , n, usually we denote the disk of size i by 〈i〉; and we

denote the set of disks by [n] = {〈i〉 : 1 ≤ i ≤ n}. The three pegs are P1, P2, and P3.

The Towers of Hanoi and its many variations are well studied. Here we just mention

5

a few of them: The cyclic towers of Hanoi was first studied by Atkinson [26]. In [32],

Klein and Minsker solved the variation where there can be bigger disks above smaller

disks in the initial configuration, but the moves still obey the divine rule. The multi-peg

Towers of Hanoi problem was proposed by Stewart [34], and remains a big open problem

(see related works by Stewart [35], Frame [30], Szegedy [37], Klavžar, Milutinović, and

Petr [31], and Chen and Shen [27]). For a good bibliography with more than 200 entries

on this subject, see Paul Stockmeyer’s manuscript ([36]).

In chapter 5 we study two new variations of the game. Both are on three pegs, and

the monk may violate the divine rule slightly in some way. We give procedures to solve

these two versions, and prove the optimality of our procedures.

6

Chapter 2

Optimal Partitioning by Three Lines in the Plane

2.1 Introduction

It is well known that a line can be drawn through any interior point of a convex body

K in the plane, partitioning it into two pieces of equal area. If we consider two lines

which intersect in K, they partition it into four regions. It is an easy consequence of the

Ham-Sandwich Theorem that there always exist two lines partitioning a convex body

into four regions of equal area. Furthermore, Courant and Robbins [3] showed that

those two lines can be chosen to be perpendicular.

When it comes to three lines that have all pairwise intersections in K, there are

two cases: if the three lines are concurrent, they partition K into six regions; otherwise,

they partition K into seven regions. Let us assume |K| = 1, where we write |S| for the

area of set S ⊂ R
2. Buck and Buck [2] showed that for any convex body K in the plane,

there always exists three concurrent lines that equipartition K into six regions, i.e.,

each region has area 1/6. They also showed that no convex body K can be partitioned

by three non-concurrent lines into seven regions, each of area 1/7.

Buck and Buck further proved that if there is a partition where six of the seven

regions have equal area (this is called a six-way equiparition), these six regions are

necessarily the six outer regions. They conjectured that, in this case, the area of the

inner region is at most one eighth the area of the outer regions, i.e., at most 1/49. This

value is achieved when K is a triangle and K is six-way equipartitioned by three lines

parallel to its own sides, a partition easily seen to exist. Buck and Buck’s conjecture

was later proved by Sholander [4], who showed that the triangle is the extreme convex

body admitting a six-way equipartitioning: for any convex body K that has a six-way

equipartition, if K is not a triangle, then the area of the central triangle is less than

7

1/49.

The general existence question for six-way equipartitions of convex bodies in the

plane has remained open for a long time, until Steiger, Szegedy and Zhao [6] settled it

by showing for any convex body, six-way equipartitions always exist and, if we fix the

direction of one line, are unique.

2.2 Most balanced partition

Consider a convex body K with |K| = 1 and lines ℓ0, ℓ1, ℓ2, each pair of which in-

tersects in K. They form seven regions A1, A2, · · · , A7, as in Figure 2.1. Let m =

min1≤i≤7{|Ai|} and M = max1≤i≤7{|Ai|}. By Buck and Buck’s result [2], we know

that m < M . Our goal is to maximize m/M , i.e., to find the most balanced partition.

l0

l1

l2

A5

A6

A4

A7 A2

A1

A3

Figure 2.1: lines ℓ0, ℓ1, ℓ2 partition K into seven regions A1, A2, · · · , A7

There is a nice class of partitions of our special interest, which we call balanced

partitions.

Definition 1: ℓ0, ℓ1, ℓ2 form a balanced partition of K if

1. |A1| = |A3| = |A5| = |A7| = a, and

2. |A2| = |A4| = |A6| = b.

The main fact is

8

Theorem 2.2.1. Maximum m/M is achieved when K is a triangle and l0, l1, l2 form

a balanced partition on K.

P
¯
roof.

Before we start, let us introduce several notions. As always, l0, l1, l2 partition K

into seven regions A1, A2, · · · , A7, m is the mininum area, M is the maximum area. We

say that Ai is relaxed if m < |Ai| < M .

During the proof, we may either perturb partition lines l0, l1, l2 to l
′
0, l

′
1, l

′
2 or perturb

convex body K to K ′. After the perturbation, l′0, l
′
1, l

′
2 partition K (or l0, l1, l2 partition

K ′) into seven regions A′
1, A

′
2, · · · , A′

7, m
′ is the mininum area, M ′ is the maximum

area. A′
i is relaxed if m′ < |A′

i| < M ′. Also, let us denote ∆|Ai| = |A′
i| − |Ai|.

There are special kinds of perturbations applying to K and one of its region Ai:

1. only the boundary of K inside region Ai is changed,

2. K ′ is still a convex body,

3. |A′
i| < |Ai| (or |A′

i| > |Ai|),

4. Aj = A′
j for j 6= i.

If |A′
i| < |Ai|, we call it a squeeze. If |A′

i| > |Ai|, we call it an inflate. If Ai can not be

squeezed, it is minimized. Similarly, if Ai can not be inflated, it is maximized.

l0

A

BC

E

FG

H

DI

A7

A1

A2

A3
A4

A5

A6

l1

l2

Figure 2.2: If |A7| < min1≤i≤6{|Ai|}, we can perturb l0, l1, l2 to improve the ratio.

9

|Ai| = M

Figure 2.3: If |Ai| =M and Ai is not minimized, squeeze Ai.

|A6| = M

A5

A

C

I

H

Figure 2.4: The case |A6| =M and |A5| > m.

We will prove the theorem by establishing a sequence of numbered statements. To-

gether they will prove the fact that unless K is a triangle and the three lines form a

balanced partition, either K may be changed (making it closer to a triangle and in-

creasing m/M) or one or more of the lines may be moved (making the partition more

balanced and increasing m/M).

1. If m/M is maximum, then min1≤i≤6{|Ai|} ≤ |A7| ≤ max1≤i≤6{|Ai|}.

Suppose |A7| < min1≤i≤6{|Ai|}. Translate l0 (resp. l1, l2) towards D (resp. H,

F) by a small distance ǫ (as shown in Figure 2.2). It is clear that |A7| increases

by (AB+BC+CA)ǫ+ o(ǫ) and |A1|, |A3|, |A5| decrease by a small amount. Our

10

|A6| = M

|A5| = m

|A4| < M

Figure 2.5: The case |A6| =M , |A5| = m, |A4| < M and A4 is not minimized.

|A6| = M

|A5| = m

|A4| = M |A3| = m

|A2| = m

Figure 2.6: One of A1, A3 is maximized and minimized, |A2| = m.

only concern is that |A2|, |A4|, |A6| may increase. Let us consider A2. Because

∆|A2| = (AD +BE −AB)ǫ+ o(ǫ),

and

AD

AC
<
M

m
,
BE

BC
<
M

m
,

we have

m′

M ′ <
m

M
,

contradicting the assumption that m/M was maximal.

2. If m/M is maximum, then |A1| = |A3| = |A5|, |A2| = |A4| = |A6| and K is a

triangle.

11

(a) Pick some Ai, 1 ≤ i ≤ 6, such that |Ai| =M .

(b) If Ai is not minimized, squeeze Ai (see Figure 2.3) and go to (a).

(c) Without loss of generality, assume i = 6, we have A6 is minimized and |A6| =

M . Assume line HI is parallel with line AC or they intersect at the “upper”

side, then |A5| = m, or we could decrease |A6| and |A5| simultaneously (see

Figure 2.4) and go to (a). Also, A5 must be maximized, or we could first

increase |A5| to m+ ǫ1, then use the previous argument.

(d) With the similar argument as (c), we can conclude that one of the following

two cases must happen.

i. Either |A1| = m and A1 is maximized, or

ii. |A1| > m, A1 is maximized and minimized, |A2| = m .

Otherwise, we can decrease |A6| without increasing m and then go to (a).

(e) A4 must be minimized, otherwise

i. |A4| =M , we can decrease |A4| and increase |A5|, then go to (c),

ii. |A4| < M , we can keep or increase |A4| and increase |A5| at the same

time (see Figure 2.5), then go to (c).

(f) With the similar argument as (e), we can conclude that one of the following

two cases must happen

i. |A4| =M and A4 is minimized.

ii. |A4| < M , A4 is maximized and minimized, |A3| = M and A3 is mini-

mized, |A2| = m and A2 is maximized.

Furthermore, the second case is impossible, because if we consider it together

with two cases in (d), we can only reach two impossible configurations. There-

fore, |A4| =M .

(g) Finally, we consider A3. Similar to (d), either |A3| = m and A3 is maximized,

or |A3| > m, A3 is maximized and minimized, |A2| = m. Combining with

(d), we have three cases:

12

i. |A1| = |A3| = m and both are maximized. In this case, it is clear that

A2 must be minimized and |A2| =M , which is exactly what we want to

prove.

ii. Exactly one of A1, A3 has area m and is maximized. The other is maxi-

mized and minimized, |A2| = m. As shown in Figure 2.6, we can increase

two minimum areas and then go to (d).

iii. Both A1, A3 are maximized and minimized, |A2| = m. We can increase

A2 in this case and then go to (d).

3. If m/M is maximum, then |A1| = |A3| = |A5| = |A7| = m, |A2| = |A4| = |A6| =

M and K is a triangle.

(a) It is easy to check that |A1| = |A3| = |A5| =M and |A2| = |A4| = |A6| = m

is an impossible configuration.

(b) If |A1| = |A3| = |A5| = m, |A2| = |A4| = |A6| = M and |A7| > m, we can

improve the ratio by perturbing l0, l1, l2.

l0

A

B

C

E

F
G

H

DI

A7

m

M

m
M

m

M

l1

l2

Figure 2.7: |A1| = |A3| = |A5| = m, |A2| = |A4| = |A6| =M and |A7| > m.

As shown in Figure 2.7, let us translate l0 (resp. l1, l2) towards C (resp.

B, A) by a small distance ǫM
AB

(resp. ǫM
AC

, ǫM
BC

). We have |A′
7| < |A7| and

|A′
i| < |Ai|(1 + ǫ) for i = 2, 4, 6. Therefore, to prove that m′/M ′ > m/M ,

all we need to show is |A′
i| ≥ |Ai|(1 + ǫ) for i = 1, 3, 5. We prove that by

contradiction.

13

Suppose |A′
1| < |A1|(1 + ǫ). Then we have

|A′
1| − |A1|
|A1|

=
Mǫ(AD

AC
+ AI

AB
)

m
< ǫ,

i.e.,

AD

AC
+
AI

AB
<
m

M
.

It is easy to see that AD
AC

< m
M implies H is closer to l1 than I, so CH

CB
<

AI
AB

< m
M . This implies that G is closer to l2 than F . Similarly, we have

BE
BC

< AD
AC

< m
M , which implies F is closer to l2 than G. Thus we have a

contradiction.

2.3 Uniqueness proof

Theorem 2.3.1. Given a convex body K ⊂ R
2 with |K| = 1 and a unit vector v ∈ R

2,

there are exactly two triples of lines that form a balanced partition of K, where one of

the three lines has normal vector v.

P
¯
roof.

Without loss of generality we may take the given normal vector to be v = (1, 0), so

one of the three lines will be a vertical line which we denote by l0. It will have equation

x = t and we write l0(t) to describe its position. Futhermore, we coordinatize R
2 so

that l0(0) bisects K, i.e., K has area 1/2 on both sides of l0(0).

Our proof goes in two steps:

1. First, we construct a unique “candidate” for a balanced partition at t, which is

a triple of lines l0(t), l1, l2, such that any other triple of lines l0(t), l
′
1, l

′
2, where

(l′1, l
′
2) 6= (l1, l2), can not be a balanced partition of K.

2. Second, we prove that exactly two “candidates” are balanced partitions for all

possible t.

14

Step 1. Construct a unique candidate at t.

We will focus on the case t ≥ 0. For t < 0, a similar construction and argument will

apply.

Given some t ≥ 0, we write K−
0 for the smaller (right) part of K cut off by l0(t),

K+
0 to be the bigger(left) part of K cut off by l0(t) and λ = |K−

0 | ≤ 1/2. It is clear

that l0(t), l1, l2 can form a balanced partition of K only if there exists non-negative

numbers a and b, which satisfy

2a + b = λ,

2a + 2b = 1− λ,

where a = |A1| = |A3| = |A5| = |A7| and b = |A2| = |A4| = |A6| (see Figure 2.1).

Clearly,

a = 3λ−1
2 ,

b = 1− 2λ.
(2.1)

By Equation 2.1, both a and b are non-negative if and only if λ ∈ [1/3, 1/2]. Notice

that λ decreases from 1/2 to 0 as t goes from 0 to +∞, so a and b are determined

uniquely by t and they are both non-negative if and only if t ∈ [0, t1/3], t1/3 denotes

the t value where corresponding λ is 1/3.

Now, for every t ∈ [0, t1/3], we define l1 and l2. By the separated ham-sandwich

theorem (see [1], [5]), the following equations uniquely define l1 and l2 (as shown in

Figure 2.8).

|l+1 ∩K−
0 | = a, |l+1 ∩K+

0 | = a+ b,

|l−2 ∩K−
0 | = a, |l−2 ∩K+

0 | = a+ b,
(2.2)

where l+i (l
−
i) is the halfsapce above(below) li, i = 1, 2, a and b are non-negative numbers

determined by t and the convex body K.

On the other hand, it is clear that Equation 2.2 is a necessary (but not sufficient)

condition for l0(t), l1, l2 to be a balanced partition of K. Therefore, for every t ∈ [0, t1/3],

a unique “candidate” for a balanced partition at t, which is a triple of lines l0(t), l1, l2,

can be constructed (as in Figure 2.8). Similar results apply for t ∈ [t−1/3, 0], where

t−1/3 denotes the t for which l0(t) cuts 1/3 off K on its left and 2/3 off K on its right.

15

l0

l1

l2

|A5| = x |A7| = x

|A4| = a+ b− x
|A3| = a

|A2| = b

|A1| = a

|A6| = a+ b− x

Figure 2.8: l0(t), l1, l2 is the “candidate” balanced partition at t.

Step 2. Among all t ∈ [t−1/3, t1/3], exactly two “candidates” are balanced partitions.

Suppose the unique “candidate” at t will partitionK into seven regions A1, A2, . . . , A7

(as in Figure 2.8), let us define the function

f(t) = a− |A5|, t ∈ [t−1/3, t1/3].

Clearly, f(t) = 0 is both necessary and suffiicent for the “candidate” at t to be a

balanced partition. Therefore, to prove there are exactly two “candidates” which are

balanced paritions of K, we only need to prove that there are exactly two roots of f(t)

among t ∈ [t−1/3, t1/3].

The following properties of f(t) are enough to show that f(t) has exactly two roots

(as illustrated in Figure 2.9):

1. f(t) is continuous on [t−1/3, t1/3],

2. f(0) > 0, f(t−1/3) < 0, f(t1/3) < 0,

3. f(t) is strictly increasing on [t−1/3, 0] and strictly decreasing on [0, t1/3].

Suppose t and t′ are very close. l0(t), l1, l2 form the candiate at t and l0(t
′), l′1, l

′
2

form the candiate at t′. Clearly, l0(t) will be very close (in distance) to l0(t
′), λ will

16

f(t)

t−1/3 t1/3

1/4balanced partition balanced partition

to

Figure 2.9: Two roots of f(t) corresponding to two “candidates” which form balanced

partitions of K.

be very close to λ′ and a (b) will be very close to a′ (b′). As l1 and l2 (l′1 and l′2) are

seperated ham-sandwich cuts determined by l0, a and b (l′0, a
′ and b′), l1 will be very

close (in distance) to l′1 and l2 will be very close (in distance) to l′2. Furthermore, x

will be very close to x′ because x is determined by K, l1 and l2 and x′ is determined

by K, l′1 and l′2. Therefore, f = a − x will be very close to f ′ = a′ − x′, which implies

Property 1.

To prove property 2, we consider two boundary cases, t = 0 and t = t1/3. The case

that t = t−1/3 is similar to t = t1/3.

When t = 0, a = 1/4 and b = 0, f(0) = 1/4− 0 = 1/4, as illustrated in Figure 2.10.

When t = 1/3, a = 0 and b = 1/3, f(t1/3) = 0 − |A5| < 0, as illustrated in Figure

2.11. One thing worth notice is why |A5| > 0. Is it possible that l1 and l2 do not

intersect inside K so that A5 vanishes and |A5| = 0? The answer is no. Assume l1 and

l2 do not intersect inside K, we have |K−
0 | > |A4| + |A6| = 1/3 + 1/3 = 2/3, which

contradicts the fact that |K−
0 | = 2/3 when t = 1/3.

We will prove property 3 for t ∈ [0, t1/3]; the proof for t ∈ [t−1/3, 0] is analogous.

17

|A2| = 0

|A1| = 1/4

|A3| = 1/4

|A6| = 1/4

l1(l2)

|A4| = 1/4

l0

|A5| = |A7| = 0

Figure 2.10: the “candidate” balanced partition when t = 0, l1 and l2 overlap.

l0

|A5| = x > 0 |A2| = 1/3|A7| = x

|A1| = 0

|A3| = 0

l2

l1

|A6| = 1/3− x

|A4| = 1/3 − x

Figure 2.11: the “candidate” balanced partition when t = 1/3.

Given 0 ≤ t < t′ ≤ t1/3, let l0(t), l1, l2 be the “candidate” at t, with the correspond-

ing parameters λ, a and b; let l0(t
′), l′1, l

′
2 be the “candidate” at t′, with the correspond-

ing parameters λ′, a′ and b′. Let us say that l0(t), l1, l2 partition K into seven regions

A1, A2, · · · , A7 and l0(t
′), l′1, l

′
2 partition K into seven regions A′

1, A
′
2, · · · , A′

7.

It is clear that λ′ < λ. So Let us assume that λ′ = λ − ǫ with some ǫ > 0. By

equation 2.1, we have

a′ = a− 3ǫ
2 ,

b′ = b+ 2ǫ.

Notice that |A1| − |A′
1| = a− a′ = 3ǫ/2, which is the result of moving l0(t) to l0(t

′)

and moving l1 to l′1, as shown in Figure 2.12. Because moving l0(t) to l0(t
′) decreases

18

A7

l1

l2

A5

A6

A4

A3

A2

A1

l0(t)

l′
2

l′
1

l0(t′)

decrease A5 by at most ǫ/2

decrease A1 by at least ǫ/2

decrease A1 by at most ǫ

Figure 2.12: Moving l1 to l′1 can not decrease the area of A5 by more than ǫ/2.

the area of A1 by at most ǫ, we have that moving l1 to l′1 decreases the area of A1 by

at least ǫ/2. On the other hand, moving l1 to l′1 decreases the area of A1 ∪A5 ∪A6 by

ǫ (from λ to λ′). So we can conclude that moving l1 to l′1 can not decrease the area of

A5 by more than ǫ/2.

Similarly, we can show that moving l2 to l′2 can not decreases the area of A5 by

more than ǫ/2, too. Therefore, |A5| ≤ |A′
5|+ ǫ+ o(ǫ).

Combine the previous observations together, we have

a− |A5| ≥ a′ +
3ǫ

2
− |A′

5| − ǫ− o(ǫ) > a′ − |A′
5|,

i.e., f(t) > f(t′), as claimed.

2.4 Optimal partition on triangles

By Lemma 2.2.1, we know that when m/M is maximum, K must be a triangle, say

∆PQR. Since ∆PQRmay be made equilateral by an affine transformation and an affine

transformation preserves the ratio of areas, we may assume ∆PQR is an equilateral

triangle centered at point O. Let T = {l0, l1, l2} partition ∆PQR into seven regions

and let ∆ABC be the center region (see Figure 2.13).

The following lemma shows that ∆ABC is an equilateral triangle centered at point

O, if T is a balanced partition of ∆PQR.

19

B

O

A

C

l1

Q

PR

l2

l0

Figure 2.13: l0, l1, l2 partition ∆PQR into seven regions.

Lemma 2.4.1. If T = {l0, l1, l2} forms a balanced partition of ∆PQR, then ∆ABC is

an equilateral triangle centered at point O.

P
¯
roof.

Given any unit vector v = (sin θ, cos θ), let v1 = (sin(θ − π
3), cos(θ − π

3)) and v2 =

(sin(θ− 2π
3), cos(θ− 2π

3)). l0 (resp., l1, l2) is initialized to be with normal vector v (resp.,

v1, v2) and passing through the point O, the center of ∆PQR (see Figure 2.14).

Q

PR

l2

l0
l1

O

A1

A2

A3

A4
A5

A6

Figure 2.14: l0 (resp., l1, l2) is initialized to have normal vector v (resp., v1, v2) and

pass through the point O.

20

It is clear that |A1| = |A3| = |A5|, |A2| = |A4| = |A6| and |A7| = 0.

Now let us translate l0 towards Q, l1 towards R and l2 towards P at the same linear

speed until the area of the center region equals one of the six outer regions. We denote

this triple of lines by T+(v).

We claim that T+(v) has the following properties:

1. the center region is an equilateral triangle centered at O.

2. one line of T+(v) has normal vector v.

3. T+(v) forms a balanced partition of ∆PQR.

The first two properties are trivially true. We will prove the third property here.

l1

Q

P

l2

l0

m

m

m

m

M

M

M

R R

l1

Q

P

l2

l0

M

M

m

M

m

m

m

Figure 2.15: Two cases for T+(v).

It is clear that for T+(v), either |A1| = |A3| = |A5| = |A7| = m, |A2| = |A4| =

|A6| = M or |A1| = |A3| = |A5| = M , |A2| = |A4| = |A6| = |A7| = m, as shown in

Figure 2.15. T+(v) is a balanced partition of ∆PQR in the first case. All we need to

show is that the second case is impossible.

Suppose that QP is parallel to or converges towards CB as in Figure 2.16. Let

E′DP ′ be parallel to CB, we have

areaABGF

areaBDPG
>

areaABG

areaBDP ′G
=

areaACB

areaBCE′D
≥ areaACB

areaBCED
,

i.e., |A4|
|A3| >

|A7|
|A2| .

If |A1| = |A3| = |A5| = M , |A2| = |A4| = |A6| = |A7| = m, we have m
M > m

m , which

is a contradiction.

21

B

A

C

Q

PR

E

GF

O
D

l0 l1

l2

P ′

E′

Figure 2.16: The second case is an impssible configuration.

Similarly, we may define T−(v), by sliding l0, l1 and l2 towards the other direction.

By the same argument, we can show that T−(v) has the same properties as T+(v).

By Theorem 2.3.1, T+(v) and T−(v) are the only two balanced partitions of ∆PQR,

containing one line with normal vector v. Thus, we may conclude that every balanced

partition of ∆PQR has the property that the center region is an equilateral triangle

centered at O.

By Lemma 2.2.1 and Lemma 2.4.1, we have the following lemma.

Lemma 2.4.2. If T = {l0, l1, l2} achieves maximum m/M on ∆PQR, then ∆ABC is

an equilateral triangle centered at point O.

Lemma 2.4.3. If T = {l0, l1, l2} achieves maximum m/M on ∆PQR, then AB (resp.,

BC, CA) is parallel to RP (resp., PQ, QR).

P
¯
roof.

First of all, P , Q and R must belong to regions of area m. Otherwise, there is

some region of area M , whose area may be reduced without violating the convexity

(see Figure 2.17). In this way, we get some convex body K in which m/M is the same

as (or better than) maximum m/M and K is not a triangle. This contradicts the result

of Lemma 2.2.1.

22

Q

PR

l0l1

l2 m

m

m

m

M

M
M

Figure 2.17: If P, Q and R do not belong to regions of area m, some regions of area M

may be reduced without violating the convexity.

Now let us assume AB (resp., BC, CA) is not parallel to RP (resp., PQ, QR). By

Lemma 4, ∆ABC is an equilateral triangle centered at point O. As shown in Figure

2.18, let the perpendicular bisector of AB (resp., BC, CA) meet RP (resp., PQ, QR) at

C ′ (resp., A′, B′). Let ∆P ′Q′R′ satisfy the following:

1. ∆P ′Q′R′ is an equilateral triangle centered at O.

2. P ′Q′ (resp. Q′R′, R′P ′) passing through A′ (resp., B′, C ′).

3. ∠Q′A′Q = ∠R′B′R = ∠P ′C ′P = ǫ, where ǫ is a very small angle.

l0, l1, l2 partitions ∆PQR into seven regions A1 (CEQH), A2 (CBDE), · · · , A7

(ABC). Correspondingly, l0, l1, l2 partitions ∆P
′Q′R′ into A′

1 (CE
′QH ′), A′

2 (CBD
′E′),

· · · , A′
7 (ABC). Clearly, we have

1. |A1| = |A3| = |A5| = |A7| = m, |A2| = |A4| = |A6| =M ,

2. |A′
1| = |A′

3| = |A′
5|, |A′

2| = |A′
4| = |A′

6|,

3. |A′
7| = |A7|.

Furthermore, if P ′Q′ is closer to being parallel to BC, we have

4. |A′
2| = |A′

4| = |A′
6| < M,

23

B

A

C

Q

PR

E

GF

O

P ′

Q′

R′

E′

D

I

H

l0 l1

l2

I′

H′

G′

F ′

D′

C′

B′

A′

Figure 2.18: AB (resp., BC, CA) is not parallel to RP (resp., PQ, QR)

5. |A′
1| = |A′

3| = |A′
5| > m.,

Property 4 is obviously true, because |∆A′E′E| > |∆A′D′D| by elementary geome-

try. Now we prove property 5 by showing |A′
1| > |A1|. Since

|A′
1| − |A1| = (|∆B′Q′A′| − |∆B′QA′|) + (|∆A′E′E| − |∆B′H ′H|),

it is enought to show that |∆B′Q′A′| > |∆B′QA′| and |∆A′E′E| > |∆B′H ′H|. Notice

that ∠B′Q′A′ = ∠∆B′QA′ = π/3, so Q and Q′ lie on a circle which has A′B′ as a

chord. It is easy to see that the distance from Q′ to A′B′ is greater than the distance

from Q to A′B′, thereofore, |∆B′Q′A′| > |∆B′QA′|. Finally, |∆A′E′E| > |∆B′H ′H| is

true because |∆B′H ′H| = |∆A′D′D| and |∆A′E′E| > |∆A′D′D|.

Thus, with l0, l1, l2, ∆P
′Q′R′ may achieve a ratio greater than m/M , which contra-

dicts the assumption that m/M is maximized.

By Lemmas 2.4.2 and 2.4.3, we have the following theorem.

Theorem 2.4.1. Given a convex body K ⊂ R
2 and a triple of lines T = l0, l1, l2 which

partition K into seven regions A1, A2, · · · , A7, we have

m

M
≤ 2

1 + 2
√
2
≈ 0.522,

where m = min{|Ai|} and M = max{|Ai|}. Equality holds only when K is a triangle,

24

l0, l1, l2 are parallel to three sides of K and form a balanced partition of K as in Figure

2.19. (Again, the ratio is preserved under affine transformation.)

l2

l1l0

m

m m

M

M

Mx

y

m

E

A

C

Figure 2.19: The configuration of K and l0, l1, l2 when optimal ratio is achieved.

P
¯
roof.

We have shown that if m/M is maximum, then K is a triangle, l0, l1, l2 are parallel

to three sides of K and form a balanced partition of K.

Now let us compute the maximum m/M . Let x = |AC| and y = |CE|, it is clear

that x2 = 2y2. Thus we have

m

M
=

x2

(y + x)2 − x2
=

2

1 + 2
√
2
≈ 0.522.

25

Chapter 3

Zigzag - Traversing Points in the Plane

3.1 Definition of the zigzag problem

Definition Let P be a set of points in general position such that no three points of

P are colinear. A (simple) zigzag z of P is a (simple) polygonal chain which passes

through every point v ∈ P .

Notice that A (simple) zigzag z of P may “turn” at points in P or at points not

in P . We denote the length of a (simple) zigzag z as |z|, which is the number of line

segments in z.

Definition Let ZP denote the length of the shortest zigzag of P , i.e., ZP = min{|z| :

z is a zigzag of P}. Similarly, ZP
s = min{|z| : z is a simple zigzag of P}.

Furthermore, Z(n) = max{ZP : P is a set of n points in general position}. Simi-

larly, Zs(n) = max{ZP
s : P is a set of n points in general position}.

It is easy to show that ⌈n2 ⌉ ≤ Z(n) ≤ Zs(n) ≤ n− 1. We will improve these trivial

bounds in the following sections.

3.2 Zigzag with self-intersection

Theorem 3.2.1.

Z(n) = ⌈n
2
⌉+O

(

n

log n

)

.

Proof. Let us start with a simple observation that k points in convex position can be

traversed by a zigzag of size ⌈(k + 1)/2⌉. Besides, if P1 and P2 forms a partition of

point set P , by connecting an endpoint of the shortest zigzag of P1 to an endpoint of

26

the shortest zigzag of P2 with one more extra line segments, we have a zigzag of P with

length ZP1
+ ZP2

+ 1. So

ZP ≤ ZP1
+ ZP2

+ 1.

Therefore, if any set of n points in the plane in general position has a subset of k(n)

points in convex position, then we have

Z(n) ≤ k(n)/2 + Z(n− k(n)) + 2. (3.1)

Let ES(k) denote the least integer such that among any ES(k) points in general

position in the plane there are always k in convex position. By Erdös-Szekeres Theorem,

ES(k) exists and

ES(k) ≤
(

2k − 4

k − 2

)

+ 1.

Thus, we have

k(n) = Ω(log n). (3.2)

Combining 3.1 and 3.2, we may conclude that

Z(n) = ⌈n
2
⌉+O

(

n

log n

)

.

3.3 Zigzag without self-intersection

Theorem 3.3.1.

Zs(n) ≤ n− ⌊n− 2

8
⌋.

P
¯
roof.

Consider P , a set of n points in general position in the plane. For simplicity, we

assume n = 8k+2. First of all, we pick a direction d which is not parallel or perpendic-

ular to any line passing through a pair of points in P . Now points in P can be sorted

by direction d, that is, P = {v0, v1, · · · , v8k+1}, such that vi is “above” vj in direction d

for every 0 ≤ i < j < n. Let l(vi) denote the line passing through vi and perpendicular

to d for 0 ≤ i ≤ 8k. Let T (vi) = R if line segments vi−1vi and vivi+1 turn right and

T (vi) = L otherwise, for 0 < i < 8k + 1.

27

v0

v1

v2
l(v2)

d

v3

v4

...

vn

vn−1

Figure 3.1: Sort points by direction d.

Obviously, there is a trivial zigzag v0v1 · · · v8k with n− 2 = 8k turns. Our goal is to

improve the trivial zigzag by removing k turns. The idea is to “slice” the plane into k

consecutive horizontal slabs and revise the trivial zigzag in each slab so that at least one

turn is saved. Formally, the ith slab contains the area between l(v8i+1) and l(v8i+9), 9

points {v8i+1, v8i+2, · · · , v8i+9} and a part of the trivial “zigzag” with 8 turns (the turn

at v8i+9 belongs to the (i + 1)th slab), where 0 ≤ i < k. For each slab, we construct

a new zigzag which still starts from v8i+1, ends in v8i+9 and has at least one less turn

than the trivial zigzag. Furthermore, this zigzag should be inside the area of the ith

slab to promise that zigzags of different slabs will not intersect.

Proposition 3.3.2. Let d be a direction and u0, u1, · · · , u9 be 10 points in general

poisition, so that ui is “above” uj in direction d for every 0 ≤ i < j ≤ 9. There always

exists a zigzag z that starts from u1, ends in u9 and totally falls inside the area between

l(u1) and l(u9), so that the zigzag z′ = u0u1+ z contains at most 7 turns. We call such

z a nice zigzag.

Here, u1, u2, · · · , u9 correspond to {v8i+1, v8i+2, · · · , v8i+9} in the ith slab, u0 refers

to the second to last (the one before v8i+1) point in P visited by the zigzag constructed

28

l(u1)

d

...

u0

u9

u8

u2

u1

u3

u4

l(u9)

Figure 3.2: Trivial zigzag in one slab.

in the previous slab(if i = 0, then u0 = v0). If we simply use the trivial zigzag, it will

cost 8 turns.

We will prove the previous lemma by a sequence of lemmas, here is the first one.

Lemma 3.3.1. If T (ui) = T (ui+1) for some i, 1 ≤ i < 9, then a nice zigzag exists.

d

ui

ui+2

l(ui+1)

l(ui)

ui+1

x

ui−1

Figure 3.3: Two consecutive right turns.

Proof. Suppose T (ui) = T (ui+1) = R for some i, 1 ≤ i < 9. As shown in Figure 3.3,

line ui−1ui must intersect line ui+1ui+2 at some point x between l(ui) and l(ui+1). Take

the trivial zigzag, replace line segment uiui+1 by uixui+1 and we have a nice zigzag.

29

Without loss of generality, from now on, we may assume T (ui) = R when i is odd

and T (ui) = L when i is even for 1 ≤ i < 9.

Lemma 3.3.2. For any i such that 2 ≤ i ≤ 6, let ai denote the intersection of line

ui−1ui with l(u9) and bi denote the intersection of line uiui+1 with l(u9). If ui+2 does

not lie inside △uiaibi, then a nice zigzag exists.

u0

u1

u2

u3

u4

l(u9)

l(u1)

u5

a2 b2

x

Figure 3.4: u4 lies outside △u2a2b2.

Proof. We check the case of i = 2. For other i’s, the proof is similar. As shown in

Figure 3.4, if u4 is outside △u2a2b2, it must be on the left side of line u1u2 because

T (u3) = R. Thus, line u0u1 intersects u4u2 at some point x between l(u1) and l(u2). It

is easy to check that u1xu4u3u5u6u7u8u9 is a nice zigzag (u3u5 may not intersect other

line segments as T (u4) = L).

Now we may assume each ui+2 lies inside △uiaibi for 2 ≤ i ≤ 6, otherwise a nice

zigzag already exists. As a matter of fact, by the same argument, we may assume each

ui+4 lies inside △uiaibi as well, for 2 ≤ i ≤ 4. Combining these two assumptions, we

may conclude that, for 2 ≤ i ≤ 4, ray ui+4ui+2 intersects either line segment uiai or

line segment uiui+1 at some point x. Besides, x is not in line segment ui+4ui+2.

Lemma 3.3.3. For 2 ≤ i ≤ 4, if line ui+4ui+2 intersects line segment uiai at some

point x, then a nice zigzag exists.

30

l(u1)

u0
u1

u2

u3

x

u4

u7

u5

u6

l(u9)

Figure 3.5: u6u4 intersects u2a2.

Proof. Again, a nice zigzag is constructed for i = 2, similar construction could be

done for other i’s. As shown in Figure 3.5, a nice zigzag can be constructed by

passing through u1u2xu4u6. If u5 and u7 are on the same side of line u3u6, then

u1xu6u3u5u7u8u9 is a nice zigzag. Otherwise, u1xu6u5u3u7u8u9 is a nice zigzag.

Let us assume line ui+4ui+2 intersects line segment uiui+1 at some point x, for

2 ≤ i ≤ 4. Consider y, the intersection of line uiui+2 with line ui+4ui+3. If y is not on

line segment ui+4ui+3, then y must be “above” ui+3 (as for direction d). The following

lemma asserts that a nice zigzag could be found in this situation.

Lemma 3.3.4. For 2 ≤ i ≤ 4, if line ui+4ui+2 intersects line segment uiui+1 at some

point x and line uiui+2 intersects line ui+4ui+3 at some point y which is “above” ui+3

(as for direction d), then a nice zigzag exists.

Proof. For i = 2, as shown in Figure 3.6, u1u3u2yu6u7u8u9 is a nice zigzag. The case

i = 3 or i = 4 are similar.

Now we deal with the last case.

Lemma 3.3.5. If for every i, 2 ≤ i ≤ 4, both line ui+4ui+2 intersects line segment

uiui+1 and line uiui+2 intersects line segment ui+4ui+3, then a nice zigzag exists.

Proof. Line u2u4 must intersect line u8u6 at some point z inside △u4u5u6. If u7 and

u9 lie at the same side of line u8u5, then u1u3u2zu8u5u7u9 is a nice zigzag. Otherwise,

31

l(u1)
u1

u3

u7

l(u9)

u2

u0

u5

u4

u6

x

d

y

Figure 3.6: u2u4 intersects u6u5 at some y “above” u5 .

l(u1)
u1

u3

u0

d

u4
u5

u6

l(u9)

z

u2

u9

u7

u8

Figure 3.7: the last case.

32

u1u3u2zu8u7u5u9 is a nice zigzag. In the latter case, line segment u5u9 may not intersect

other parts of the zigzag because T (u8) = L.

We believe that the n − ⌊n−2
8 ⌋ upper bound for the non-intersection case can be

improved. One possible approach is to apply the technique in our proof recursively

such that more nice zigzags can be constructed.

33

Chapter 4

Optimally Balanced Forward Degree Sequence

4.1 Introduction

Forward degree seqences, arising from orderings of the vertices in a graph, carry a lot

of vital information about the graph. In this chapter, we focus our work on two special

classes of forward degree sequences, which we named balanced and strongly balanced.

Our main result is to prove that any chordal graph has a strongly balanced forward

degree sequence and any graph with all degrees at most 3 has a balanced forward degree

sequence. Moreover, we show that the (strongly) balanced forward degree sequence can

be computed in polynomial time in the above cases.

The starting point for this topic was motivated by the following hypothetic situation:

A company has two open positions. On the waiting list there are n almost
equally good candidates. Some pairs of the candidates can work together, some
pairs can not. These pairs are known to the company. Most likely a person will
accept the offer as soon as he gets it. It is also possible that he gets some better
job and turns our offer down. We want to offer these candidates one at a time
and get an immediate response. The goal is to maximize the likelihood of hiring
two candidates that can work together. In what order the company should give the
offers to the candidates?

In some variants, the acceptance probabilities are close to 0 instead of close to 1,

or the number of open positions is greater than two. (In this case, the company wants

to hire candidates that can mutually work with each other.) We refer to all of these

situations as offer rejection problems. Our goal was to find the best strategy dealing

with the possible rejections.

The offer rejection problem lead to a subject that is interesting in its own right,

namely, the forward degree sequences of graphs. A forward degree sequence arises from

an ordering σ of the vertices of a graph. We eliminate the vertices according to this

34

ordering, and the forward degree dσv of a vertex v is its degree in the remaining graph

when we eliminate it.

The idea of forward degree sequences is related to two classical topics in graph

theory, namely, the degree sequence and vertex elimination order. The degree sequences

of graphs are well characterized in [20], [21], and [22]. The vertex elimination order gives

a nice characterization of chordal graphs. (See [25].) The forward degree sequences we

define and study here arise from very different questions and are of different nature.

There are several nice connections between the offer rejection problem and the

forward degree sequences. Here we focus on the pure graph-theoretical aspects. One

connection arises when we associate to each forward degree sequence a polynomial

Pσ(z) =
∑

v∈V z
dσv . We find that the offer rejection problem with rejection probability

q is equivalent to the problem of finding the σ which minimizes Pσ(1/q) in the graph

where edges represent pairs that can not work together. We will define an ordering σ to

be more balanced than τ if Pσ(1/q) ≤ Pτ (1/q) for every probability q. A related notion

is strongly balanced. It is an interesting combinatorial question whether a graph has a

most balanced (strongly balanced) forward degree sequence. We prove that this is true

in some nice classes of graphs, for example, chordal graphs and 3-regular graphs, where

we also give a polynomial time algorithm to find the most balanced sequence.

The forward degree sequences carry a lot of information of their graphs. One may

easily express some usual graph parameters in terms of properties about the forward de-

gree sequences. (See Section 4.2.) Here we define some new graph parameters (Section

4.3.3) based on the forward degree sequences. These parameters, besides their close re-

lation to the offer rejection problem, are of pure graph-theoretic interest as well. One of

the interesting problems that remains open is how to compute some of the parameters

in polynomial time.

Our main result, that every 3-regular graph has a most balanced forward degree

sequence, gives some new insight to the graph isomorphism problem ([23] and [24]).

35

4.1.1 Outline of the chapter

In Section 4.2 we define the forward degree sequences and their associated polynomials;

we also give some simple properties of the sequences and polynomials, and their relation

to some classical graph parameters. In Section 4.3 we define and study the balanced

(strongly balanced) sequences. We define some graph parameters based on the forward

degree sequences in Section 4.3.3. In Section 4.4 we consider the class of graphs that

has a most balanced (strongly balanced) sequence. In Section 4.4.1 we use the closure

property of these classes to deduce that some families of graphs, including all the forests

and the chordal graphs, have most strongly balanced sequences. In Section 4.4.2, we

prove our main theorem that every graph with degree at most 3 has a most balanced

forward degree sequence.

4.1.2 Notations

In most situations, G orH represents graphs; S represents sequences; P and Q represent

polynomials (in one variable); u, v, w, x, and y represent vertices in graphs; z will be

used as the variable in polynomials; σ, φ, or π represents permutations (orderings).

All the graphs we consider will be undirected, unweighted, simple graphs. Let

G = (V,E) be a graph. We use the conventional notations in graph theory. Denote

by ∆(G) the maximum degree in G, by δ(G) the minimum degree in G, by α(G) the

size of a largest independent set in G, and by ω(G) the size of largest clique in G. The

girth of G is the length of shortest cycle in G; it is defined to be ∞ if G is cycle free.

For any graph G, E(G) is the set of edges in G, V (G) is the set of vertices in G.

The complement of G is denoted by G. For any S ⊆ V , G[S] is the subgraph of G

induced by S. For any v ∈ V , the degree of v in G is denoted by dGv and the neighbors

of v denoted by NG(v). The induced subgraph of G by deleting v is denoted by G− v.

If x, y ∈ V , and xy is an edge in G, G− xy is the graph G with edge xy deleted. If xy

is not an edge in G, G+ xy is the graph gotten by adding the edge xy to G.

Let S = (s1, · · · , sn) be a sequence. We denote by S(i) the i-th element of S. The

concateneation of S and a new element v, (s1, · · · , sn, v), is denoted by (S, v); and the

36

concateneation of a new element v and S, (v, s1, · · · , sn), is denoted by (v, S); S[i↔ j]

is the sequence we get from S by exchanging the elements on the i-th position and the

j-th position. We view a permutation on an n element set as a sequence of length n.

If S is a sequence of integers, we denote by NS(k) the number of occurrences of k

in S, and denote by Ŝ the sorted list of S in non-increasing order.

We define the lexicographical order. If S1 and S2 are two sequences of integers,

S1 ≤lex S2 if S1 = S2 or there is an i such that S1(i) < S2(i) and S1(j) = S2(j) for all

j < i.

4.2 Forward degree sequences

Definition Given a graph G and a permutation σ on the vertex set {v1, v2, · · · , vn}

of G, the forward degree of vertex v = σ(i), denoted dσv , is its degree in the induced

subgraph G′ = G[{σ(i), σ(i + 1), · · · , σ(n)}]. The forward degree sequence induced by

σ, denoted Sσ, is the sequence (dσσ(1), . . . , d
σ
σ(n)).

Notice that in our notation the graph G is implicitly indicated in σ. We eliminate

the vertices of G according to the order σ, the forward degree of v is its degree in the

remaining graph when we eliminate v. Another way to view this is that we direct all the

edges of G according to σ. We direct edge uv from u to v if u comes before v in σ. Then

the forward degree of a vertex is its out-degree in the directed graph. Related to our

offer rejection problem, we associate to each permutation its forward degree sequence

polynomial.

Definition For any sequence S of n non-negative integers, define PS to be the poly-

nomial PS(z) =
∑n

i=1 z
S(i) =

∑∞
k=0NS(k)z

k. Given a graph G = (V,E) and a per-

mutation σ of its vertices, the forward degree sequence polynomial induced by σ is

Pσ(z) := PSσ(z) =
∑

v∈V z
dσv =

∑∞
k=0NSσ(k)z

k.

Every two forward degree sequences π and σ of G have the same length (the number

of vertices in G) and the same sum (the number of edges in G). The first fact implies

37

that Pπ(1) = Pσ(1). The second fact implies that the derivatives satisfy P ′
π(1) = P ′

σ(1).

So we have

Proposition 4.2.1. For any two forward degree sequences π and σ of G, the polynomial

Pπ − Pσ is a multiple of (z − 1)2.

The forward degree sequences of G carry a lot of graph theoretic information about

G. As a warm up, we start by presenting a lemma where the forward degree sequences

are related to the structure of the graph. Similar results will be shown later when we

study 3-regular graphs.

Suppose a graph G has k connected components and σ is any permutation on

vertices, then NSσ(0) ≥ k since the last vertex from each component in the order

always has forward degree 0. Actually we can construct an ordering where the forward

degree sequence contains exactly k zeros. The following lemma, which is a slightly

stronger statement, is easy and we omit the proof.

Lemma 4.2.2. If G is a connected graph and v is any vertex in G, then there is a

permutation σ on the vertices of G such that NSσ(0) = 1 and the last vertex in the

permutation is v.

Definition Let G = (V,E) be a graph. We define SG to be the set of all the forward

degree sequences, i.e., SG = {Sσ : σ is a permutation of vertices in G}. Define ŜG to

be the set {Ŝ : S ∈ SG}. Define PG to be the set of all the forward degree sequence

polynomials.

The following list of obvious facts relate the forward degree sequences to several

graph parameters. We omit the proofs.

Proposition 4.2.3. For any graph G, the family SG has the following properties. (a)

∆(G) = max{S(1) : S ∈ SG}. (b) δ(G) = min{S(1) : S ∈ SG}. (c) The number of

connected components in G is the minimum occurrence of 0 in a single forward degree

sequence, i.e., min{NS(0) : S ∈ SG}. (d) α(G) is the maximum number of 0’s in

a single forward degree sequence. (e) ω(G) is the maximum consecutively decreasing

suffix of a single forward degree sequence, i.e., ω(G) = max{k : ∃S ∈ SG, S(n − i) =

38

i for all 0 ≤ i < k.} (f) The girth of G is the smallest length of a suffix in the form

(2, 1, 1, · · · , 1, 0) of a single forward degree sequence, i.e., min{k : ∃S ∈ SG, S(n − i) =

1 for all 0 < i < k − 1, S(n − k + 1) = 2}, or the girth is ∞ if such a suffix does not

exist.

4.3 Balanced and strongly balanced sequences

4.3.1 Balanced sequences

For any integers n,m ≥ 0, let Ŝn,m be the set of all non-increasing, non-negative integer

sequences of length n where the sum of elements is m. We define a relation on Ŝn,m:

S1-S2 if PS1
(z) ≤ PS2

(z) for all z ≥ 1. It is easy to check - is a partial order on

the ordered sequences. If S1-S2, we also write PS1
-PS2

. Thus we view - as a partial

order on corresponding polynomials.

If G is a graph with n vertices and m edges, we have the induced partial orders

(ŜG,-) and (PG,-). Moreover, for any two orderings σ and π of vertices, we write

σ-π and Sσ-Sπ if Ŝσ-Ŝπ. - is no longer a partial order on all the permutations or

on all the forward degree sequences of G, but it is still transitive and reflexive. We

have an equivalence relation σ ∼ π if σ-π and π-σ. (Similarly for the forward degree

sequences.) Clearly σ and π are equivalent if and only if Ŝσ = Ŝπ.

Definition A graph G is called balanced if there exist a minimum element in (ŜG,-).

The class of all balanced graphs is denoted by B.

As a partial order on a finite set, (ŜG,-) and (PG,-), always have minimal elements.

For any permutation σ, we call σ and Sσ - minimal if Ŝσ is minimal. If there exists a

permutation σ of vertices such that σ-π for any permutation π of vertices, we call σ a

- minimum ordering of G, and Sσ a - minimum forward degree sequence.

4.3.2 Strongly balanced sequences

We introduce another relation which is a sufficient condition for checking -. Let S

be a sequence in Ŝn,m. If a and b both appear in S and a ≥ b + 2, the concentration

39

operation (a, b) → (a− 1, b+ 1) is performed by changing one a and one b to an a− 1

and a b + 1, then sort the sequence in non-increasing order. We define S1-SS2 if we

can get S1 from S2 by 0 or more steps of concentration. In this case we also write

PS1
-SPS2

. If σ and π are two permutations on the vertices of a graph G, we write

σ-Sπ and Sσ-SSπ if Ŝσ-SŜπ (and Pσ-SPπ). It is easy to see S1-S2 if S1-SS2; -

are partial orders on Ŝn,m, ŜG, and PG.

Definition A graph G is called strongly balanced if there exist a minimum element in

(ŜG,-S). The class of all the strongly balanced graphs is denoted by BS.

If G is strongly balanced, any permutation σ when Ŝσ is minimum is called a -S

minimum ordering, Sσ is called a -S minimum forward degree sequence, or a most

strongly balanced forward degree sequence. If Ŝσ is -S minimal, we also call σ or Sσ -S

minimal.

As an example, we note that every tree has a most strongly balanced forward degree

sequence (1, 1, · · · , 1, 0), which is -S minimum even in the whole Ŝn,n−1. Similarly,

every forest is in BS . (See Corollary 4.4.3 for a generalization of this fact.)

Next, we give several characterizations of the relation -S .

Proposition 4.3.1. Let S1 and S2 be two sequences in Ŝn,m. S1-SS2 if and only if

PS2
− PS1

= (z − 1)2Q where Q is a polynomial in z with positive integer coefficients.

S
¯
ketch of Proof. The only if part is trivial. The if part may be proved by induction on

the sum of coefficients in Q. The key observation is that for any “segment” (a, b) in Q

(b ≤ a and the coefficient of zi in Q is positive for each b ≤ i ≤ a, while the coefficient

of za+1 and zb−1 are both 0), we could change S2 to S′ by (a + 2, b) → (a + 1, b + 1)

and PS′ − PS1
= (z − 1)2Q′, where Q′ = Q(z)− (zb + . . .+ za) is positive.

Suppose S1 and S2 are two ordered sequences of length n. Define ai := S2(i)−S1(i).

Define s0 = 0 and si = si−1 + ai for 1 ≤ i ≤ n. Clearly si is the difference between the

sum of i-prefix in S1 and S2. We may draw the points (i, si) in the plane, connect each

(i, si) to (i + 1, si+1) by a straight line to make a ploynomial path. We call this the

walk of S1 − S2. Clearly the walk always starts from the x-axis and returns to x-axis

40

at the end. Notice that, in any concentration step, the sum of the first i elements will

not increase. On the other hand, if the walk of S1 − S2 does not go below the x-axis,

we can concentrate from S1 to S2, each step takes (S1(i), S1(j)) → (S1(i)−1, S1(j)+1)

where i and j are the end points of a segament strictly above x-axis in the walk. Thus

we get

S1: 7 5 5 4 3 3 2 1 0

 a: 2 0 0 −1 −2 0 1 0 0

 s: 2 2 2 1 −1 −1 0 0 0

S2: 5 5 5 5 5 3 1 1 0

Figure 4.1: Two sequences and the polygonal walk.

Proposition 4.3.2. Let S1, S2 ∈ Ŝn,m for some n and m. The following are equivalent.

(a). S2-SS1. (b). For any i, the sum of the first i elements in S1 is no less than the

sum of the first i elements in S2. (c). The walk of S1 − S2 does not go below x-axis.

4.3.3 Finding the minimal sequences

Given a graph G, let S∗ be the lexicographically smallest sequence in ŜG. When z is

big enough, PS∗(z) < PS(z) for any other S ∈ ŜG. Therefore, S
∗ is one of the minimal

elements in both the orders - and -S. If G ∈ B or G ∈ BS , we must have S∗ as the

minimum sequence. From S∗ we define some interesting graph parameters.

Definition Let G be a graph and S∗ be the smallest lexicographical sequence in ŜG.

Definem(G) := S∗(1), i.e., the largest forward degree in S∗. Define Nk(G) := NS∗(k) to

be the number of occurrences of k in S∗. And define N(G) := Nm(G)(G) = NS∗(m(G)).

Clearly m(G), N(G), and Nk(G) are invariant under graph isomorphism, for all k.

Given a graph G,m(G) is computable in polynomial time by the following algorithm:

We start from the empty sequence; find a vertex v in G with the smallest degree; put v

41

as the next element in our sequence and delete v from G. Iterate this until G is empty.

Thus we get an ordering of the vertices and a forward degree sequence. We claim m(G)

is the largest number in the sequence. Indeed, the correctness of the algorithm follows

easily from the following observations:

Fact 4.3.3. Let G′ be a subgraph of G, then m(G′) ≤ m(G).

Fact 4.3.4. Let G be a graph, v a vertex in G with the minimum degree, and G′ = G−v.

Then m(G) = max{dv ,m(G′)}.

We do not know if N(G) is computable in polynomial time. It seems to be a very

hard problem.

If G ∈ BS, the most strongly balanced forward degree sequence must be S∗. In

finding S∗, we are trying to minimize the number of occurrences of m(G) in a for-

ward degree sequence. On the other hand, by Proposition 4.2.3(c) and Proposition

4.3.2, the most strongly balanced sequence must contain as few 0’s as possible, so

the number of 0’s in the sequence is exactly the number of connected components

in G. With these observations, we can show there are graphs not in BS and not

even in B. The graph in Figure 4.2 is not in BS. For the graph in Figure 4.3, S∗

is the sequence (3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0). It is not the - minimum

sequence. Indeed, let σ be (u1, · · · , u5, v1, v2, v3, u6, · · · , u15). Ŝσ is the sequence

(4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0). Pσ(z) < PS∗(z) when 1 < z < (
√
5 + 1)/2.

So the graph is not in B.

v

Figure 4.2: A graph that is not in BS .

42

3v

u

u

u u

u

6

7

8

9

10
2

u

u

u

u

1

2
3

45

G

v

v

u

u

u

uu

u

11

12

13

14

15

1

1G

1

G3

v
v

v3

G2

1

Figure 4.3: A graph G that is not in B. Its subgraphs G1 ∈ BS, G2 ∈ B, and G3 ∈ BS.

4.4 Graphs inside B or BS

4.4.1 Closure properties

Given a graph G ∈ BS , we may construct a new graph G′ from G by adding a new

vertex v and connecting it to some vertices in G. We prove that the new graph is still

in BS if we do any of the following on G and v: (1) connect v to every vertex in G; (2)

connect v to a clique in G; (3) connect v to two vertices x and y in G, where x and y

are connected in G. (1) and (2) are also true if we replace BS by B. We prove these in

the following propositions.

Proposition 4.4.1. If G = (V,E) ∈ B and G′ = (V ∪ {v}, E ∪ {vw|w ∈ V }), then

G′ ∈ B. Moreover, if G ∈ BS, then G′ ∈ BS. If σ is a - (-S) minimum ordering of

the vertices of G, then σ′ = (σ, v) is - (-S) minimum for G′.

Proposition 4.4.2. If G = (V,E) ∈ B, K is a clique in G, and G′ = (V ∪ {v}, E ∪

{vw|w ∈ K}), then G′ ∈ B. Moreover, if G ∈ BS, then G′ ∈ BS. If σ is a - (-S)

minimum ordering of the vertices of G, then σ′ = (v, σ) is - (-S) minimum for G′.

The proofs of the two propositions above are consequences of an easy shifting argu-

ment.

43

Proposition 4.4.2 immediately gives the fact that there is a most strongly balanced

sequence for any chordal graph. First we recall some definitions and facts from graph

theory([25], p. 198 to p. 200). A chord of a cycle C is an edge not in C that has

endpoints in C. A graph G is chordal if every cycle of length at least 4 has a chord.

A vertex of G is simplicial if its neighborhood in G induces a clique. A simplicial

elimination ordering is an order vn, . . . , v1 in which vertices can be deleted so that each

vertex vi is a simplicial vertex of the remaining graph induced by {v1, . . . , vi}. It is well

known that a graph G is chordal if and only if it has a simplicial elimination ordering.

Corollary 4.4.3. (of Proposition 4.4.2) The family of chordal graphs is contained in

BS.

Corollary 4.4.4. (of Proposition 4.4.2) Let G be a chordal graph. All simplicial elim-

ination orderings of G give the same multiset of the forward degree sequences.

Proposition 4.4.5. If G = (V,E) ∈ BS, x and y are two connected vertices in G, and

G′ = (V ∪ {v}, E ∪ {vx, vy}), then G′ ∈ BS. If σ is a -S minimum ordering of the

vertices of G, then σ′ = (v, σ) is -S minimum for G′.

Proof. Without loss of generality, we may assumeG is connected. (If G is not connected,

we may simply consider every connected component of G.) Therefore, the number 0

appears exactly once in the forward degree sequence induced by σ. Clearly Pσ′(z) =

P (z) + z2.

Consider any ordering π′ of G′. Without loss of generality, x comes before y in π′.

By deleting v in π′ we get π, an ordering of G. Pπ(z)− P (z) = (z − 1)2Q(z), where Q

is a polynomial in z with positive integer coefficients. Let a = dπx and b = dπy .

Based on the position of v, x, and y in π′, we have 3 cases.

(a) If v comes before x and y, then dσv = 2 and dσw = dσ
′

w for any w in G. So Pπ′(z) =

Pπ(z) + z2. Pπ′(z)− Pσ′(z) = Pπ(z)− P (z) = (z − 1)2Q(z).

(b) If v comes between x and y, Pπ′(z) = Pπ(z)+z+z
a+1−za. Pπ′(z)−Pσ′ (z) = Pπ(z)−

P (z)+z−z2+za+1−za = (z−1)2Q(z)+(z−1)(za−z). If a 6= 0, (Pπ′(z)−Pσ′(z))/(z−1)2

is a polynomial with positive integer coefficients. Otherwise, x has forward degree 0 in

44

π, yet x is not the last vertex. So π contains at least 2 vertices of forward degree 0.

Therefore, the constant term of Q is positive, and Pπ′(z)−Pσ′(z) = (z− 1)2(Q(z)− 1),

where all the coefficients of Q(z)− 1 are positive integers.

(c) If v comes after x and y, Pπ′(z) = Pπ(z)+1+za+1−za+zb+1−zb. Pπ′(z)−Pσ′(z) =

(z−1)2Q(z)+(z−1)(za−z+zb−1). The analysis is exactly the same as in the previous

case.

In each case, (Pπ′ − Pσ′)/(z − 1)2 has positive coefficients. Using proposition 4.3.1,

σ′ is -S minimum for G′.

4.4.2 Graphs with low degrees

We denote by Dk the class of graphs with all degrees at most k: Dk = {G : ∆(G) ≤ k}.

Any graph in D2 is a disjoint union of paths and cycles. By the propositions in Section

4.4.1, D2 ⊂ BS. By the examples in Figure 4.2 and Figure 4.3, we have D3 6⊆ BS

and D4 6⊆ B. In the rest of this section we prove that D3 ⊂ B, especially the class of

3-regular graphs is contained in B.

Biconnectivity and block structures

For the graphs in D3, it turns out that the biconnectivity and the blocks of a graph

play a crucial role in finding the most balanced sequence. We recall some definitions

and facts about biconnected graphs and blocks.

Definition A graph is called biconnected if it is connected, has at least 3 vertices and

contains no cut point. A maximal connected subgraph that has no cut point is called

a block

In the standard approach the blocks define a partition of the edges of a graph.

Blocks form a cactus-like structure and the so called block-cutpoint graph is a tree. In

our approach we use a slightly different decomposition.

Definition Given a graph G. A maximal biconnected subgraph of G is called a cluster.

A vertex which does not belong to any biconnected subgraph is called a router. A room

45

Figure 4.4: Rooms, clusters, routers, and a building map.

is either a cluster or a router.

Clearly, a router is a vertex that does not belong to any cycle. Either it is an isolated

point, or every block containing it is a bridge. The following facts are easy consequences

of standard properties of the block decomposition of a graph. (See [19] and [25].)

Fact 4.4.6. Let G be a graph in D3; let R1 and R2 be any two distinct rooms in G.

Then,

(a) R1 and R2 do not share any common vertex.

(b) There is at most one edge in G between the vertex set of R1 and the vertex set of

R2.

Thus, for graphs in D3, the rooms form a partition of vertices.

Definition Let G ∈ D3 with rooms R1, · · · , Rk. The building map GR is the graph

with vertex set {R1, · · · , Rk} and RiRj is an edge in GS if and only if there is an edge

between Ri and Rj in G.

Fact 4.4.7. For any G ∈ D3, the graph GS is a forest. The number of connected

components in GS is the number of connected components in G.

Biconnected graph in D3

If G is a connected graph in Dd, and there is at least one vertex with degree smaller

than d, then we can always find a forward degree sequence without any forward degree

d. Indeed, we can pick any vertex of degree less than d, and notice that in the new graph

46

there is at least one vertex of degree less than d in each of its connected component.

Thus we have,

Proposition 4.4.8. For any connected graph G with maximum degree d and minimum

degree less than d, we have m(G) < d.

Corollary 4.4.9. For any d-regular graph G, m(G) = d and N(G) equals the number

of connected components in G.

We investigate the biconnected graphs in D3. For these graphs, we have a similar

yet stronger statement.

In the proof of the next Lemma and in the rest of this section, we call a forward

degree sequence x-y-good if it starts with x, ends with y, avoids any 3, and contains

only one 0.

Lemma 4.4.10. Suppose G = (V,E) is a biconnected graph in D3. For any vs ∈ V

such that dGvs = 2 and any vf ∈ V − vs, there exists an ordering σ of vertices such that

it starts with vs, ends with vf , and the forward degree sequence obtained by σ on G

satisfies NSσ(3) = 0 and NSσ(0) = 1, i.e., it avoids 3 and contains only one 0.

Proof. The proof is by induction on n, the number of vertices in G. The base case,

when n = 3, is trivial. For n greater than 3, G′ = G − vs is a connected graph in

D3 with n − 1 vertices. Suppose x and y are the two neighbors of vs, in G′ we have

1 ≤ dG
′

x , d
G′

y ≤ 2. We discuss two possible cases.

1. G′ is biconnected.

In this case, dG
′

x = dG
′

y = 2 and at least one of them, say x, is not vf . σ = (vs, σ
′) is

vs-vf -good in G , where σ′ is x-vf -good in G′.

2. G′ is not biconnected.

In this case, there should exist vc which is a cut point of G′. Since the degree of

vs in G is 2 and G is biconnected, G′ − vc has exactly two connected components, say,

H1 = (V1, E1) and H2 = (V2, E2), and vs has neighbor in both components. We assume

x ∈ V1 and y ∈ V2.

47

Based on H1 and H2, we define two new graphs. G1 = G[V1 ∪ {vc, vs}] + vsvc,

G2 = G[V2 ∪ {vc, vs}] + vsvc. It is easy to show that they are biconnected graphs in D3

with at least three and less than n vertices, and vs is a degree 2 vertex in both G1 and

G2.

Now we construct a vs-vf -good ordering in G. Without loss of generality, vf is in

G1. By induction, there is a vs-vf -good ordering (vs, σ1, vf) in G1, and a vs-vc-good

ordering (vs, σ2, vc) in G2. Let σ = (vs, σ2, σ1, vf). It is routine to check that σ is

vs-vf -good in G.

Now we prove that a vs-vf -good forward degree sequence, for any vs and vf with

the degree of vs being 2, is a most strongly balanced sequence for the graph.

Corollary 4.4.11. Any biconnected graph with maximum degree 3 and minimum degree

less than 3 belongs to the class BS.

Proof. Let σ be a vs-vf -good ordering for any vs and vf with the degree of vs being 2.

Consider any other ordering π and the maximum number d appearing in Sπ.

Since the graph is biconnected, d > 1. If d = 2, then Pπ(z) − Pσ(z) = (z − 1)2c

for some integer c. Since Sσ contains only one 0, the constant term of Pπ(z)−Pσ(z) is

non-negative. If d = 3, then Pπ(z) − Pσ(z) = (z − 1)2(az + b) for some integer a > 0

and b. Again, since Sσ contains only one 0, the constant term of Pπ(z) − Pσ(z) is

non-negative. In either case, σ-Sπ by Proposition 4.3.1.

In the proof of Lemma 4.4.10, we actually outlined an algorithm to find a good

sequence. The complexity of the algorithm is easily analyzed. We have

Proposition 4.4.12. Given any biconnected graph with n vertices, and with maximum

degree 3 and minimum degree less than 3, the most strongly balanced (ordered) forward

degree sequence is computable in O(n3) time.

B contains D3

Lemma 4.4.13. Any connected graph G with maximum degree 3 and minimum degree

less than 3 belongs to the class B. Moreover, the - minimum forward degree sequence

is computable in polynomial time.

48

Proof. We call a vertex loose if its degree is less than 3. We analyze the clusters in G

and the building map GS . We call a cluster R bad if it is a leaf in GS and all its vertices

have degree 3 in G. Let b be the number of bad clusters.

If we want to avoid the forward degree 3, each of the bad clusters contributes at

least one 0. We have

Fact 4.4.14. In any forward degree sequence of G that avoids 3, the number of 0’s is

at least max{1, b}.

On the other hand, we can always achieve the minimum possible number of 0’s.

Here we sketch the procedure: Pick any loose vertex x and find its room Rx. We view

GS as a rooted tree with root Rx. For any leaf L which is not a bad cluster, by Lemma

4.4.10, we can eliminate it without producing any 3 or 0, or changing the number of

bad clusters. We repeat this until all the leaves are bad. Now, we find an order from

the root down to the leaves. We start from x. For any non-leaf room R, we start from

a loose vertex, and eliminate its vertices according to the ordering provided by Lemma

4.4.10 which ends in any of its ports to R’s children of R. Thus we do not have any

forward degree 3 or 0, and created a loose vertex for each of R’s children. Finally we

have d leaves in GS , accordingly d connected components in G each has a loose vertex.

By Lemma 4.4.10, we finish by d orderings containing one 0 each.

clusters without loose vertices

���
���
���
��� bad clusters

����
����
����

����
����
����

���
���
���
���

����
����
����

����
����
����

����
����
����
���� ���

���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

clusters with loose vertices

routers

Figure 4.5: The good leaves are treated bottom up, then the non-leaf nodes are treated

top down.

49

Fact 4.4.15. There is a forward degree sequence of G that avoids 3 and contains

max{1, b} 0’s.

Now we finish the proof of Lemma 4.4.13 by showing that any sequence σ provided

by the above claim is - minimum for G. We prove this by induction on the size of G.

The base case is trivial. Assume for any graph with less vertices there is a - minimum

ordering that has as few 0’s as possible under the condition that 3 does not appear.

Consider any other ordering π. We consider two cases.

1. π avoids the forward degree 3. Then, Pπ(z) − Pσ(z) = (z − 1)2c for some integer c.

Because σ has the fewest number of 0’s among all forward degree sequence without 3,

c ≥ 0 and hence σ-π.

2. 3 appears in π as the forward degree for some v. We may assume it appears as the

beginning and, by the inductive hypothesis, π = (v, π′), where π′ is the - minimum

sequence of G − v. So, 3 appears exactly once in Sπ. Pπ(z) − Pσ(z) = (z − 1)2(z − c)

for some integer c.

Our goal is to show that c ≤ 1, or equivalently, that NSπ′
(0) ≥ NSσ(0)− 1. If there

is no bad clusters in G, then NSσ(0) = 1 and NSπ′
(0) ≥ NSσ(0) − 1. Otherwise, there

are b ≥ 1 bad clusters. G − v contains at least b − 1 bad clusters, so by fact 4.4.14,

NSπ′
(0) ≥ b− 1 = NSσ(0)− 1.

The procedure we outlined in this proof gives a best forward degree sequence in

polynomial time, provided the algorithm in Proposition 4.4.12 as a sub-routine.

Now we are ready to prove the main result of this section.

Theorem 4.4.16. Any graph with all degrees at most 3 has a - minimum forward

degree sequence. There is a polynomial time algorithm to compute the - minimum

forward degree sequence. Finally, the class of 3-regular graphs is contained in B.

Proof. We may assume the graph G is connected. If there is a vertex with degree less

than 3, the statement is true by Lemma 4.4.13. Otherwise, G is 3-regular, with vertices

v1, v2, · · · , vn. Let Gi = G − vi, each connected component of Gi has a vertex of

degree less than 3. Therefore, by Lemma 4.4.13, there is a - minimum forward degree

50

sequence σ′i for Gi. Let σi = (vi, σ
′
i), then Pσi

(z) = z3 + Pσ′

i
(z).

For any ordering (vi, σ
′), (vi, σ′i)-(vi, σ

′). So we only need to show that there is a

- minimum polynomial among Pσ1
, · · · , Pσn .

Actually - is a linear order on the set of {Pσi
: 1 ≤ i ≤ n}. For any i and j, Sσ′

i

and Sσ′

j
do not contain any forward degree larger than 2, since they are - minimum

sequences. So,

Pσ′

i
(z)− Pσ′

j
(z) = Pσi

(z)− Pσj
(z) = (z − 1)2c

for some integer c. That is, they are - (-S) comparable.

51

Chapter 5

Santa Claus’ Towers of Hanoi

5.1 The towers of hanoi and two new variations

The well known Towers of Hanoi, treasured by most mathematicians and many others as

their childhood toy for mental gymnastics, was invented by the French mathematician

Edouard Lucas in 1883. In the legend, 64 sacred disks were initially stacked in increasing

size on one of three pegs, with the largest at the bottom. A monk has to move the

entire tower to another peg. The disks are fragile; only one can be carried at a time.

And most importantly, the monk must obey the following rule:

The Divine Rule: A disk may not be placed on top of a smaller disk.

The disks are of size 1, 2, . . . , n, usually we denote the disk of size i by 〈i〉; and we

denote the set of disks by [n] = {〈i〉 : 1 ≤ i ≤ n}. The three pegs are P1, P2, and P3.

The Towers of Hanoi and its many variations are well studied. Here we just mention

a few of them: The cyclic towers of Hanoi was first studied by Atkinson [26]. In [32],

Klein and Minsker solved the variation where there can be bigger disks above smaller

disks in the initial configuration, but the moves still obey the divine rule. The multi-peg

Towers of Hanoi problem was proposed by Stewart [34], and remains a big open problem.

(See related works by Stewart [35], Frame [30], Szegedy [37], Klavžar, Milutinović, and

Petr [31], and Chen and Shen [27].) For a good bibliography with more than 200 entries

on this subject, see Paul Stockmeyer’s manuscript ([36]), which can be found on the

Internet.

Here we study two new variations of the game. Both are on three pegs, and the

monk may violate the divine rule slightly in some way.

52

In the sinner’s mode, the divine rule may be violated a certain number of times.

There is a prescribed number k. And the rule becomes

Sinner’s Rule with k cheats: For at most k moves in the whole process, some disk
may be placed directly on the top of a smaller disk.

In the Santa Claus’ mode we have, maybe for a better aesthetic reason, another

slightly imperfect rule. There is a number d. And the rule is

Santa’s Rule with discrepancy d: When a disk 〈x〉 is put on a pile of other disks,
before the move, disks smaller than 〈x〉 can only occur at the top up to d − 1
positions in that pile, but none of them can be of size less than or equal to x− d.

(a) (b) (c)

Figure 5.1: (a) a peg in the classical Hanoi Towers (b) a peg in the Sinner’s mode (c)

a peg in Santa Claus’ mode.

We justify the two new versions based on two reasons. In our age, not so many

people care about pure divine rules. Besides, Santa Claus likes Christmas trees. It is

interesting to point out that when E. Lucas wrote about the towers of Hanoi, he used

the name N. Claus.

After we searched through the literature, we believe the sinner’s tower has not been

studied before. In Section 5.3 we give a procedure for this problem and prove the

optimality of our procedure. In the literature we found a variant that is very similar to

Santa’s tower in [38]. We reword it here as the generous Santa Claus’ mode.

Generous Santa’s Rule with discrepancy d: When a disk 〈x〉 is put on a pile of
other disks, smaller disks may occur at any positions in that pile, but none of
them can be of size less than or equal to x− d.

The solution to the Santa Claus’ mode and the generous Santa Claus’ mode are

almost identical. We give the complete solution to them in Section 5.4, thus resolve

53

the open question raised by D. Wood in [38]. We use the last section of this chapter

to present the story of our work. Especially, D. Poole published a solution to Wood’s

problem in 1992 [33]. We note the error in Poole’s proof.

In the next section, we give notations, and prove some basic facts about Hanoi

towers in the canonical version and our versions.

5.2 The hanoi towers

The classical game of moving a set X of disks from peg P to peg Q, where the disks

are sorted in increasing order in both initial and final configurations, is denoted by

H(X,P,Q). The games under the sinner’s rule, Santa’s rule, and generous Santa’s rule

are denoted by HS(X,P,Q, k), HC(X,P,Q, d), and HG(X,P,Q, d), respectively. Often,

we denote a move of disk 〈x〉 from P to Q as 〈x〉(P → Q).

A state is a specification of the sets of disks on three pegs, as well as their order on

each peg. A procedure is a sequence of disk moves. Note that in our games there might

be disks on the top of smaller disks in a state, and the moves in a procedure do not

necessarily obey the divine rule.

Below we provide the canonical recursive procedure hanoi to solve the gameH([n], Pi, Pj),

where {i, j} ⊂ {1, 2, 3}, i 6= j and list some easy facts.

Procedure 5.2.1. hanoi([n], a, b)

c := 6-a-b;

hanoi([n-1], a, c);

move disk n from peg a to peg b;

hanoi([n-1], c, b);

Fact 5.2.2. The procedure hanoi([n], a, b) obeys the divine rule, takes 2n−1 moves,

and the i-th biggest disk, i.e., 〈n− i+ 1〉, is moved 2i−1 times.

Fact 5.2.3. Any procedure obeying the divine rule needs to take at least 2n − 1 moves,

if the n disks are in the same peg at the end and the biggest disk is moved at least once.

54

Definition Let A be a procedure with a sequence of m moves,

(〈xi〉(Pi → Qi) : i = 1 · · ·m).

The reverse of A is defined to be the sequence

(〈xm+1−i〉(Qm+1−i → Pm+1−i) : i = 1 · · ·m).

Lemma 5.2.4. Let A be any procedure that takes a state S1 to state S2; let A′ be the

reverse of A. Then A′ takes S2 to S1. Moreover, if the moves of A obey the divine rule,

yet there are k disks in S1 such that each one is bigger than the one below it, then A′

violates the divine rule at most k times.

Proof. It is obvious that A′ takes the state S2 back to S1. Suppose there are m moves

in A. If 〈xm+1−i〉(Qm+1−i → Pm+1−i) is a move in A′ which violates the divine rule,

then the move 〈xi〉(Pi → Qi) in A takes 〈x〉 away from a smaller disk below it. Since

there are at most k such disks in the initial state of A, and A never violates the divine

rule, the lemma follows.

Definition Let A be a procedure playing any game of towers of Hanoi with disk set

X; let D be any subset of X; the cost of D in A, c(A,D), is defined to be the number

of steps A moves disks in D.

5.3 The sinner’s towers

Define S(n, k) to be the minimum number of moves one needs to move n disks obeying

the sinner’s rule. It is clear that S(n, k) = 2n− 1 when k ≥ n− 2.

Definition We define a function g(n, k) on integers to be

g(n, k) =

2n− 1 if n ≤ k + 2,

4n− 2k − 5 if k + 2 ≤ n ≤ 2k + 2,

2n−2k + 6k − 1 if 2k + 2 ≤ n.

Note that in the definition the values are consistent where the ranges overlap.

55

Proposition 5.3.1. For all n and k, S(n, k) ≤ g(n, k).

Proof. For n > 2k + 2, we do the game G = HS([n], P1, P2, k) in five stages.

(a). We simulate the game H([n− 2k− 1], P1, P3) to move the top n− 2k− 1 disks to

the third peg.

(b). Now we have 2k + 1 disks left on P1. We divide the top 2k disks into k pairs of

adjacent disks. Starting from the top, for each pair {〈i〉, 〈i + 1〉}, we move 〈i〉 to

P2, then move 〈i + 1〉 to P3 (thus violate the divine rule once), then move 〈i〉 to

P3.

(c). Move 〈n〉 to P2.

(d). For each pair {〈i〉, 〈i+1〉} in (2), we move 〈i〉 to P1, then move 〈i+1〉 to P2, and

move 〈i〉 to P2.

(e). Simulate the game H([n − 2k − 1], P3, P2).

The total number of steps is

(2n−2k−1 − 1) + 3k + 1 + 3k + (2n−2k−1 − 1) = 2n−2k + 6k − 1.

And the divine rule is violated k times in stage (2).

For 2k + 2 ≥ n > k + 2, we do the game G in five stages. Let s = n− k − 2.

(a). Move 〈1〉, 〈2〉, . . ., 〈n − 1 − 2s〉 one by one to P3. The divine rule is violated

n− 2− 2s times.

(b). Now we have 2s + 1 disks left on P1. Group the top 2s into s pairs, then do the

same thing as in the stage (2) in the first case. The divine rule is violated s times

here.

(c). Move 〈n〉 to P2.

(d). For the top s pairs on P3, do the same thing as in stage (4) in the first case.

56

(e). The n− 1− 2s disks are now in the reversed order on P3. We move them one by

one to P2.

The divine rule is violated n−2−2s+ s = k times, and the total number of steps is

(n− 1− 2s) + 3s + 1 + 3s+ (n− 1− 2s) = 2n+ 2s− 1 = 4n − 2k − 5.

Finally, if n ≤ k + 2, we simply move the top n − 1 disks one by one to P3, and

move 〈n〉 to P2, then move all the other disks to P2.

The rest of this section is devoted to the proof that S(n, k) = g(n, k).

Proposition 5.3.2. Let n ≥ 1; let S1 be the state such that [n] is stacked on one peg

in increasing order, and the other two pegs are empty; let S2 be a state where [n] is on

one peg (maybe the same as the original one) in any order, and the other two pegs are

empty; let A be any procedure that takes S1 to S2 with at most k violations of the divine

rule, and assume 〈n〉 is moved at least once in A. Then there are at least 2n−2k − 1

steps in A.

Proof. We prove the proposition by induction on n. The base cases n = 1 and n ≤ 2k

are trivial. Now assume n > 1, n > 2k, and the theorem is true for all n′ < n. We color

the disk 〈x〉 black if 〈x〉 is ever moved onto a smaller disk in A. Otherwise we color 〈x〉

as white.

Case 1. 〈n〉 is black. Suppose there are s (1 ≤ s ≤ k) consecutive black disks at the

bottom of the stack in state S1. They are 〈n〉, . . ., 〈n − s + 1〉. Disk 〈n − s〉 is white.

There are n − s − 1 > 0 disks above 〈n − s〉, we call this set of disks T . Notice that,

since 〈n − s〉 is white, right before the first move of 〈n− s〉, the whole set T is carried

to another peg with at most k − s violations of the divine rule. By induction, the

procedure already has at least 2n−s−1−2(k−s) − 1 = 2n−2k+s−1 − 1 ≥ 2n−2k − 1 steps at

this moment.

Case 2. 〈n〉 is white. Focus on the moment right before the first move of 〈n〉, the whole

set [n− 1] is moved from one peg to another peg.

Case 2.1. A violates the divine rule less than k times before this moment, then it has

already taken at least 2n−1−2(k−1) − 1 > 2n−2k − 1 steps.

57

Case 2.2. Otherwise, all the k violations occur before this moment. It has taken at

least 2n−1−2k − 1 steps. Consider the state of [n − 1] at this moment, call it S′
1. Call

the final state of [n − 1] S′
2, which is [n − 1] in increasing order on a peg, because

all the k violations occurred before the state S′
1. Since 〈n〉 is white, it serves only as

ground to [n − 1]. The procedure A from this moment, with moves on 〈n〉 excluded,

is a procedure taking S′
1 to S′

2 without any violation of the divine rule. Notice that,

in S′
1 there can be at most k disks such that it is bigger than the disk below it. By

Lemma 5.2.4 and the inductive hypothesis applied to A, there are at least 2n−1−2k − 1

steps after this moment in A. Counting the moves of 〈n〉, the total number of steps is

at least 2n−2k − 1.

Proposition 5.3.3. For any n ≤ 2k + 2, S(n, k) = g(n, k).

Proof. This is trivial when n ≤ k+ 2. We show S(n, k) ≥ 4n− 2k− 5 for all n ≥ k+2.

We color the disk 〈x〉 black if 〈x〉 is ever moved onto a smaller disk in A. Otherwise we

color 〈x〉 as white. We assume there are s black disks, s ≤ k. Each black disk is moved

at least twice: one violates the divine rule, and the last one does not. So the cost of

all the black disks is at least 2s. Let T be the set [n − 1]. Consider the state S right

before the first move of 〈n〉.

Case 1. 〈n〉 is white. All the disks in T are stacked on another peg P . Let 〈x〉 be any

white disk in T . If 〈x〉 is at the bottom, the cost of 〈x〉 in the entire procedure is at

least 2. Otherwise, 〈x〉 is on the top of a bigger disk 〈y〉. 〈x〉 is moved at least twice

before, otherwise 〈y〉 can not go below 〈x〉 on P . 〈x〉 will be moved at least twice later,

otherwise 〈y〉 can not go below 〈x〉 on the destination peg. So, the cost on the white

pegs is at least 4(n − s− 2) + 2 + 1.

Case 2. 〈n〉 is black. The other disks are stacked on the other two pegs. There are

n − s white disks. Similar to the previous case, at most two of them has cost 2, each

of the other white disks costs at least 4. So, the cost on the white disks is at least

4(n− s− 2) + 4.

In either case, the total cost is at least 4(n − s− 2) + 3 + 2s ≥ 4n − 2k − 5.

We remark that once we fixed the k black disks, the lower bound holds even in the

58

case where each black disk can violate the divine rule many times. If we want to achieve

the lower bound, the bottom disk must be white. However, by choosing different black

disks, as long as 〈1〉 and 〈n〉 are white, and there are no adjacent white disks, we can

achieve the lower bound in different ways.

While it is possible to provide a more careful induction like the proof of Proposition

5.3.2, we found the following way of proving the main theorem in this section more

pleasing.

Theorem 5.3.4. For any n and k, S(n, k) = g(n, k).

Proof. The case where n ≤ 2k + 2 is done in Proposition 5.3.3. We prove the theorem

for n ≥ 2k + 2 by an induction on n for any fixed k.

The basis is n = 2k + 2, this is done in Proposition 5.3.3. Now assume n > 2k + 2.

Consider the smallest disk 〈1〉. For any procedure, if we ignore all the moves of 〈1〉, it

is a procedure for HS([n] \{〈1〉}, P1 , P2, k). By the inductive hypothesis, the procedure

needs at least g(n−1, k) = 2n−1−2k+6k−1 steps on [n]\{〈1〉}. So, if 〈1〉 is ever moved

more than 2n−1−2k − 1 steps, the induction is finished.

We prove that the other case, where 〈1〉 is moved at most 2n−1−2k − 1 steps, is

impossible.

Assuming the contrary, there is a procedure P for the game HS([n], P1, P2, k) with

c(P, 〈1〉) ≤ 2n−1−2k − 1. Suppose the cost of the procedure P is N . We pick a large

m so that 2m+1 > N . Now, suppose D is a set of m disks smaller than 〈1〉. We define

a procedure P ′ which simulates P. Whenever we have a move 〈1〉(P → Q), we move

the whole tower {〈1〉} ∪ D from P to Q in the canonical way with 2m+1 − 1 moves.

It is clear that the procedure P ′ successfully plays the game HS([n] ∪ D,P1, P2, k),

which is the same as HS([n + m], P1, P2, k). Since c(P, 〈1〉) ≤ 2n−1−2k − 1, we have

c(P, {〈1〉} ∪D) ≤ (2n−1−2k − 1)(2m+1 − 1). So, the total cost of P ′ is at most

(2n−1−2k − 1)(2m+1 − 1) +N < 2m+n−2k − 2m+1 +N ≤ 2m+n−2k − 1.

Thus contradicts Proposition 5.3.2.

59

5.4 Santa’s towers

Define C(n, d) to be the minimum number of moves one needs to move n disks obeying

the Santa’s rule; and define G(n, d) to be the minimum number of moves one needs to

move n disks obeying the generous Santa’s rule. In this section, we derive the exact

formula for C(n, d) and G(n, d). Hence, we resolve the open question asked by D. Wood

in 1981 ([38]), which asks for a general formula for G(n, d). 1

It is clear that the Santa’s rule with discrepancy d is more restricted than the

generous Santa’s rule with discrepancy d, hence we have

Fact 5.4.1. G(n, d) ≤ C(n, d).

It is also easy to see that the generous Santa’s rule is not too generous. There is an

implicit restriction on the positions where the smaller disks can occur. We mention the

following fact, although we will not need it.

Fact 5.4.2. For any d > t > 0, if 〈x〉 is placed onto a pile which contains the disk

〈x − t〉 under the generous Santa’s rule with discrepancy d, then 〈x − t〉 must occur

among the top 2d− t− 2 positions in that pile before the move.

Proof. Observe that any disk 〈y〉 above 〈x− t〉 in that pile must satisfy y < x− t+ d,

y > x− d, and y 6= x.

Our main result in this section is to prove C(n, d) = G(n, d) = 1+d(2q+1−2)+r2q+1.

The solution is based on two ways of grouping the disks. To get an upper bound, we

group every d consecutive disks, and simulate the canonical hanoi, viewing each group

as a disk. To prove the lower bound, we view each arithmetic progression with difference

d as a class, and analyze the lower bound on each class.

5.4.1 A procedure for HC([n], Pa, Pb, d)

We study the following procedure.

1As we reword the problem here, our G(n, d) is equivalent to f(n, d − 1) in [38]. We found some
mistakes in the table on page 23 of [38]. As we will show, f(4, 1) = 9 and f(5, 2) = 11, which are
miscalculated as 11 and 13, respectively, in [38].

60

Procedure 5.4.3. santa([n], a, b, d)

Let n − 1 = dq + r, where 1 ≤ r ≤ d. We group the set [n − 1] into q blocks

of size d and one block of size r. To be precise, let B1 = {〈i〉 : 1 ≤ i ≤ r}, and

Bj = {〈i〉 : r+ (j − 2)d+1 ≤ i ≤ r+ (j − 1)d}, 2 ≤ j ≤ q+1. We view each block as a

disk and simulate the canonical hanoi procedure on the set of blocks. An instruction to

move B from Pi to Pj means we move all the disks in block B one by one from Pi to

Pj ; we call this a block move. Notice that each block move corresponds to up to d actual

moves, and the order inside the block is reversed. We denote the set {Bi : 1 ≤ i ≤ q+1}

by [[q + 1]].

c := 6-a-b;

hanoi([[q+1]], a, c);

move disk n from peg a to peg b;

hanoi([[q+1]], c, b);

Proposition 5.4.4. The procedure santa([n], a, b, d) successfully plays the game

under Santa’s rule, HC([n], Pa, Pb, d).

Proof. Notice that, when i < j, all the disks in block Bi are smaller than the disks in

block Bj. We simulate the original Hanoi game on the blocks, never put Bj onto Bi

when i < j, so the Santa’s rule with discrepancy d is obeyed. Finally, the blocks are

in the correct order on the peg Pb. We just need to check if the disks are in the right

order within each block. This is so because each block move reversed the order within

the block, and since we simulated the canonical Hanoi twice, each block is involved in

an even number of block moves.

The following proposition follows easily from Fact 5.2.2.

Proposition 5.4.5. Let n − 1 = dq + r, where 1 ≤ r ≤ d. The number of moves that

occur in Procedure 5.4.3 is 1 + d(2q+1 − 2) + r2q+1.

61

5.4.2 The formula for C(n, d) and G(n, d)

Theorem 5.4.6. Let n− 1 = dq + r, where 1 ≤ r ≤ d;

C(n, d) = G(n, d) = 1 + d(2q+1 − 2) + r2q+1.

Proof. By Propositions 5.4.4, 5.4.5, and Fact 5.4.1, we have G(n, d) ≤ C(n, d) ≤

1 + d(2q+1 − 2) + r2q+1. It is enough to prove the lower bound for G(n, d), i.e., Proce-

dure 5.4.3 is the best one can achieve to play the game HG([n], Pa, Pb, d). We denote

Procedure 5.4.3 by A. We partition the disks into d classes. Ck = {〈i〉 : i ≡ k (

mod d)}, 0 ≤ k < d. Let Ck0 be the class to which 〈n〉 belongs, i.e., n ≡ k0 (mod d),

0 ≤ k0 < d. We give new names to the disks. For any class Ck with s disks, we label

the disks in that class, from the biggest to the smallest, 〈k〉1, . . ., 〈k〉s.

Under the generous Santa’s rule, the disks in each class can not reverse their order

on any peg. So, if we disregard all the other disks, only observe the movement of

disks in Ck, it is a canonical game H(Ck, Pa, Pb). So, the cost involving that class

is at least 2|Ck| − 1 in any successful play of the game HG([n], Pa, Pb, d). However, it

is easy to see, c(A, 〈k〉i) = 2i if k 6= k0. c(A, 〈k0〉i) = 2i−1. So, whenever k 6= k0,

c(A, Ck) = 2(2|Ck | − 1). Here is a little remark about these values. If our rule does not

require that all pegs are in order in the final state, one can easily see that there is a

procedure that requires just 2|Ck |−1 steps for each Ck. The main difficulty in the proof

is to show, in order to make the final order correct, that we really need to double the

number of moves for almost all the classes. The parity condition in Lemma 5.4.9(b) is

crucial.

From now on, we fix B to be any procedure that moves [n] from P1 to P2 under the

generous Santa’s rule with discrepancy d.

Definition Two consecutive moves in a procedure are called redundant if they are in

the form 〈x〉(P → Q) and 〈x〉(Q → P). A procedure is called reduced if there are no

redundant moves. From any procedure P, we keep deleting redundant moves in any

order, it is easy to see we get a unique reduced procedure, we call this the reduced

procedure of P, denoted ρP.

62

Definition Let P be a procedure with a sequence of disk moves. Let X be a subset

of the disks. The induced procedure of P with respect to X, denoted P |X , is the

subsequence of P that involves the moves of disks from X. We call ρ(P |X) the reduced

procedure of P with respect to X.

We will use the following easy fact frequently.

Fact 5.4.7. Let P be any procedure that obeys the generous Santa’s rule and moves a

disk set D from P1 to P2. Let X and Y be subsets of D such that X ⊆ Y . Then (a)

P |X is a procedure that obeys Santa’s rule and moves the disk set X from P1 to P2.

The order of disks in the initial and final states are the same as those in the procedure

P. The same is true for the procedure ρ(P |X). (b) ρ(P |X) appears as a sub-sequence

in ρ(P |Y). Consequently, c(ρ(P |X), 〈x〉) ≤ c(ρ(P |Y), 〈x〉) for any disk 〈x〉. (c) For

any X and any disk 〈x〉, c(ρ(P |X), 〈x〉) is of the same parity as c(P, 〈x〉).

Definition Let P be a procedure with a sequence of m moves, (〈xi〉(Pi → Qi) : i =

1 · · ·m). The “log” of P is the sequence (〈xi〉 : i = 1 · · ·m).

Lemma 5.4.8. Let P be any procedure that obeys the generous Santa’s rule with dis-

crepancy d. Let X be any subset of disks such that each disk in X is of size at least

x+ d. (a) If y−x ≥ d and z− y ≥ d, then 〈y〉 and 〈z〉 can not both appear between any

pair of consecutive 〈x〉’s in the log of P. (b) Between any two consecutive 〈x〉-moves

in ρ(P |X∪{〈x〉}), all the moves of disks in X are from the same source peg and to the

same destination peg. These are the two pegs used,other than the peg containing 〈x〉,

during this period. (c) For any 〈y〉 ∈ X. There is at most one 〈y〉 between any pair of

consecutive 〈x〉’s in the log of ρ(P |X∪{〈x〉}).

Proof. Let S1 be the state after an 〈x〉-move, and let S2 be the state before the next

time we move 〈x〉. From the state S1 to S2, 〈x〉 stays on the same peg, say, P1.

(a). If 〈y〉 is ever moved during the period from S1 to S2, then y is never on the peg

P1 during this period. A move for 〈z〉 is impossible: It would either move above 〈y〉, or

already be above 〈y〉 before the move.

63

(b) and (c). During the period between S1 and S2, no disk in X can be moved

to peg P1. Because the procedure ρ(P |X∪{〈x〉}) is reduced, all the moves during this

period have the same source and destination, say, from P2 to P3. So, any disk in X will

be moved at most once.

Lemma 5.4.9. Let 〈x〉 and 〈x′〉 be two disks such that x < x′. Let X be a set of disks

such any disk in X is of size at least x′ + d. Let T ⊆ X such that the difference of

sizes between each pair of disks in T is at least d. Suppose c(ρ(B |X), T) ≥ s. Then

(a) c(ρ(B |X∪{〈x〉}), 〈x〉) ≥ s + 1, c(ρ(B |X∪{〈x′〉}), 〈x′〉) ≥ s + 1. (b) If c(ρ(B |X∪{〈x′〉}

), 〈x′〉) = s+1 and c(ρ(B |X∪{〈x〉,〈x′〉}), 〈x〉) = s+1, then either s+1 is an even number,

or c(ρ(B |X∪{〈x〉,〈x′〉}), 〈x′〉) ≥ s+ 3.

Proof. (a). Look at the procedure ρ(B |X∪{〈x〉}). Clearly 〈x〉 is moved before we ever

move any disk from T , and is also moved after we finish all the disks from T . Between

any two consecutive appearances of symbols from T in the log, we must have at least one

appearance of x, otherwise it contradicts Lemma 5.4.8. Since X is a subset of X∪{〈x〉},

there are at least s symbols from T in the log, so c(ρ(B |X∪{〈x〉}), 〈x〉) ≥ s + 1. The

same proof applies to 〈x′〉 instead of 〈x〉.

(b). Let P = ρ(B |X∪{〈x′〉}). c(P, 〈x′〉) ≥ s + 1, and the equality holds only

if c(P, T) = s, and the s + 1 〈x′〉’s and the s symbols from T appear alternatively

in the log of P. Let the i-th move from T be 〈yi〉(Ri → Qi), and let the i-th

move of 〈x′〉 be 〈x′〉(R′
i → Q′

i). It is easy to see that {Ri, Qi} = {P1, P2, P3} \

{R′
i+1}, and {Ri+1, Qi+1} = {P1, P2, P3} \ {Q′

i+1}. Since R′
i+1 6= Q′

i+1, we conclude

{Ri, Qi, Ri+1, Qi+1} = {P1, P2, P3}.

The procedure P is a sub-sequence of ρ(B |X∪{〈x〉,〈x′〉}). Focus on the s moves

〈yi〉(Ri → Qi) in the procedure ρ(B |X∪{〈x〉,〈x′〉}). We call them the T -moves. The

s + 1 x’s must appear once before all the T -moves, once after all the T -moves, and

once between each consecutive T -moves. The last statement is true, otherwise there

are two consecutive T -moves 〈yi〉(Ri → Qi) and 〈yi+1〉(Ri+1 → Qi+1) while 〈x〉 stays

on a certain peg, which is impossible since {Ri, Qi, Ri+1, Qi+1} = {P1, P2, P3}.

In particular, we proved that no two 〈x〉-moves in ρ(B |X∪{〈x〉,〈x′〉}) are adjacent.

64

This implies that if we delete all the 〈x〉-moves from ρ(B |X∪{〈x〉,〈x′〉}), it is either

already reduced, i.e., it is ρ(B |X∪{〈x′〉}), or at least two 〈x′〉-moves are redundant. To

see this, observe that the only way to start a reduction is that there is a move, say

〈x〉(P1 → P2), where the previous move, which is from X ∪ {〈x′〉}, and the next move

reverse each other. However, if these are not 〈x′〉-moves, the previous move is between

P2 and P3, and the next move is between P1 and P3, since each disk in X is of size at

least x+ d.

As a consequence, if c(ρ(B |X∪{〈x〉,〈x′〉}), 〈x′〉) < s+ 3, then, because

c(ρ(B |X∪{〈x〉,〈x′〉}), 〈x′〉) ≥ c(ρ(B |X∪{〈x′〉}), 〈x′〉) = s+ 1

and they have the same parity, there are exactly s+1 〈x′〉-moves and exactly s T -moves

in the procedure ρ(B |X∪{〈x〉,〈x′〉}). The 〈x〉-moves appear once before all the moves from

T , once after all of them, and once between each consecutive moves from T . The same

is true for x′. We further claim that the source and destination of each move is fully

determined by the moves of elements in T . We prove this claim inductively from the

first move to the last one. Let 〈x〉(P → Q) be the i-th move of 〈x〉. If it is the first

one, then P = P1, otherwise it is the destination of the last move. If it is the last move,

Q = P2. Otherwise, the next move from T is 〈yi〉(Ri → Qi), Q must be the peg other

than Ri and Qi.

Thus, we have s + 1 positions in the log of ρ(B |X∪{〈x〉,〈x′〉}), one before all the

symbols from T , one after them, and one between each pair of consecutive symbols

from T . In each position, there is one 〈x〉 and one 〈x′〉, with the moves from the same

source to the same destination. Assume x < x′, in the odd numbered positions x moves

first, and in the even numbered positions x′ moves first. If s + 1 is odd, x would be

stacked under x′ in the final state, a contradiction.

Lemma 5.4.10. Let X be a set of disks such that each disk in X is of size at least

x + d. Let T ⊆ X be a subset of size at least 2 such that the difference of sizes

between each pair of disks in T is at least d, except for one pair 〈y〉 and 〈y′〉. Suppose

c(ρ(B |X), T \ {〈y〉, 〈y′〉}) ≥ s, c(ρ(B |X), 〈y〉) ≥ p, and c(ρ(B |X), 〈y′〉) ≥ p− 1 and has

a different parity than p. Then c(ρ(B |X∪{〈x〉}), x) ≥ s+ p+ 2.

65

Proof. By Lemma 5.4.9 with the set T \ {〈y′〉}, x appears at least s + p + 1 times in

ρ(B |X∪{x}). Assuming the contrary, x appears exactly s + p + 1 times. Then there

are exactly s+ p symbols from T \ {〈y′〉} in the log of ρ(B |X∪{x}). Consider the s+ p

spots, one between each consecutive pair of x’s in the log. By Lemma 5.4.8, the s + p

symbols from T \ {〈y′〉} appears once in each spot, and 〈y′〉 can not be put in a spot

twice or in the same spot with any disk other than 〈y〉. Since there are at most p such

spots, and c(ρ(B |X∪{〈x〉}), x) is not the same parity as p, we must have exactly p − 1

〈y′〉-moves. We call a spot even if it contains both 〈y〉 and 〈y′〉, otherwise call it odd.

Since neither 〈y〉 nor 〈y′〉 can be moved onto the peg containing 〈x〉, we must have the

same source and destination for 〈y〉 and 〈y′〉 in each even spot. Consider the only odd

spot. If it is the last move of 〈y〉, 〈y〉 and 〈y′〉 would be on different pegs in the final

state. Otherwise 〈y〉 and 〈y′〉 can not move from the same source in the next even spot.

We have a contradiction in either case.

Definition For any disk 〈x〉, define U(〈x〉) to be the set of disks that are not smaller

than x, i.e., U(〈x〉) = {〈x〉, 〈x + 1〉, . . . , 〈n〉}. Define the downwards cost of 〈x〉 to be

d(〈x〉) = c(ρ(B |U(〈x〉)), 〈x〉), i.e., the number of moves of 〈x〉 in the reduced procedure

of B if we disregard all the smaller disks.

Let Ck be any class where k 6= k0. It is easy to see that c(A, Ck) = 2(2|Ck | − 1). If

c(B, Ck) < 2(2|Ck | − 1), there must be a disk 〈k〉i such that c(B, 〈k〉i) < 2i; so, the disk

〈k〉i satisfies d(〈k〉i) < 2i. Thus, we have the following definition.

Definition We call a class Ck bad if k 6= k0 and c(B, Ck) < 2(2|Ck | − 1). Let Ck be a

bad class, there must be a disk 〈k〉i such that d(〈k〉i) < 2i. We call a disk 〈k〉i precious

if d(〈k〉i) < 2i. We call the biggest precious disk in Ck the prince of Ck.

Lemma 5.4.11. (a) Let Ck be a bad class with prince 〈k〉x. Then 〈k〉x is the only

precious disk in Ck, and c(B, 〈k〉x) = 2x − 1. (b) Suppose Ck1 and Ck2 are two bad

classes with princes 〈k1〉y and 〈k2〉z, respectively. Then y 6= z.

Proof. (a). By the definition of a prince, d(〈k〉i) ≥ 2i for each i < x. Set T = {〈k〉i : i <

x} and X = U(〈k〉x−1). We have c(ρ(B |X), 〈k〉i) ≥ d(〈k〉i) ≥ 2i. By Lemma 5.4.9(a)

66

(a) (b)

1

2

4

8

16

2

4

8

16

32

2

4

8

2

4

7

16

32

Figure 5.2: The gray disks are the class Ck0 , the white disks are the class Ck. (a) The

cost of each disk in Procedure 5.4.3. (b) The least possible costs if Ck is a bad class

with its third disk as its prince.

we get d(〈k〉x) ≥ c(ρ(B |X∪{〈k〉x}), 〈k〉x) ≥ 2x − 1 . In order to make 〈k〉x a prince, we

must have d(〈k〉x) = 2x − 1 and d(〈k〉i) = 2i for each i < x.

We claim that one of two things must happen:

d(〈k0〉i) ≥ 2i,∀i ≤ x; or (5.1)

d(〈k0〉i) ≥ 2i,∀i < x, and c(ρ(B |U(〈k〉x)), 〈k0〉x) ≥ 2x + 1. (5.2)

To prove the claim, assume there is i ≤ x such that d(〈k0〉i) < 2i and d(〈k0〉j) ≥ 2j

for all j < i. Setting T = {〈k0〉j : j < i} and X = U(〈k0〉i−1) in Lemma 5.4.9, we

have d(〈k0〉i) = 2i − 1 and d(〈k0〉j) = 2j for all j < i. (The case i = 1 is trivial.) We

discuss two other cases. In the first case, i = x. Consider the set T = {〈k0〉j : j < x}

and X = U(〈k0〉x−1). c(ρ(B |X), T) ≥ 2x − 2. By Lemma 5.4.9(a), c(ρ(B |X∪{〈k0〉x}

), 〈k0〉x) ≥ 2x − 1. On the other hand, we have

c(ρ(B |X∪{〈k0〉x}), 〈k0〉x) ≤ c(ρ(B |U(〈k0〉x), 〈k0〉x) = d(〈k0〉x) = 2x − 1.

So, c(ρ(B |X∪{〈k0〉x}), 〈k0〉x) = 2x − 1. Similarly, we have c(ρ(B |X∪{〈k0〉x,〈k〉x}), 〈k〉x) =

2x − 1. By Lemma 5.4.9 (b) we establish (5.2). In the second case where i < x, using

Lemma 5.4.10 with T = {〈k0〉j : j ≤ i} ∪ {〈k〉j : i ≤ j < x}, X = U(〈k〉x−1), 〈y〉 = 〈k〉i,

and 〈y′〉 = 〈k0〉i, we get the cost d(〈k〉x) ≥ 2x. It is not a prince.

Having proved the claim, we now show that d(〈k〉i) ≥ 2i for any i > x. We do

this inductively on i. If there is an t ≤ x such that c(ρ(B |U(〈k〉x)), 〈k0〉t) ≥ 2t + 1,

67

we may set Ti = {〈k0〉j : j ≤ x} ∪ {〈k〉j : x < j < i} for each i and use Lemma

5.4.9(a). Otherwise, by (5.1) and (5.2), c(ρ(B |U(〈k〉x)), 〈k0〉t) = 2t for each t ≤ x. Set

Ti = {〈k0〉j : j ≤ x} ∪ {〈k〉j : x ≤ j < i}, Xi = U(〈k〉i−1) and use Lemma 5.4.10. In

both cases, the cost for 〈k〉j is at least 2j for all j > x. By the inductive hypothesis, we

get c(B, 〈k〉i) ≥ 2i.

Finally, we must have c(B, 〈k〉x) = 2x − 1, otherwise Ck is not a bad class.

(b). We may assume the biggest disk in Ck1 is bigger than the biggest disk in Ck2 ,

so 〈k1〉i is bigger than 〈k2〉i for any i. Assuming the contrary y = z, consider the

set T = {〈k1〉i : i < y} and X = U(〈k1〉y−1). By Lemma 5.4.9 with 〈k1〉y and 〈k2〉y,

c(B, 〈k1〉y) ≥ 2y + 1, a contradiction.

Lemma 5.4.12. If there is any bad class, then c(B, Ck0) ≥ c(A, Ck0) + 2|Ck0
|−1.

Proof. By the discussion in the proof of Lemma 5.4.11(a), if there is any bad class,

c(B, 〈k0〉1) ≥ 2. In the procedure B, before the first move of 〈k0〉1, after the last of its

moves, and between each consecutive pair of its moves, the set Ck0 \ {〈k0〉1} is moved

completely from a peg to another under the divine rule at least three times. Notice

that the same set is moved twice under the divine rule in A. So, the extra cost on this

set is at least 2|Ck0
|−1 − 1. Adding the extra cost on 〈k0〉1, the lemma follows.

Now we finish our proof of the main theorem. We compare the cost of the procedures

A and B on each individual disk. By Lemma 5.4.11 (a), B can only save one step against

A for each prince. However, if there is any bad class, A saves at least 2|Ck0
|−1 ≥ |Ck0 |

steps against B for the disks in the class Ck0 by Lemma 5.4.12. By Lemma 5.4.11 (b),

the number of princes is no more than |Ck0 |. In fact, B can not save as many as |Ck0 |

steps on the princes, since a prince in the range [n− d, n] still needs to moved at least

twice.

5.5 Other towers of hanoi

There could be many reasonable variations of the Hanoi tower problem. We mention

one here.

68

As the remark after the proof of Proposition 5.3.3 shows, when n ≤ 2k + 2, one

needs g(n, k) steps even when we fix k disks and each of them can violate the divine

rule many times. We propose the following variation of our Sinner’s mode.

Hanoi Tower with k Evildoers: Among the n disks, one may pick any k of them
as evildoers then perform a procedure of disk moves. An ordinary disk can not
be placed directly on the top of a smaller disk, but an evildoer can do this an
unlimited number of times.

Let E(n, k) be the minimum number of steps one need to move the entire stack from

one peg to another in the evildoer’s mode, where the disks are in increasing order in

both initial and final configuration. Clearly E(n, k) ≤ S(n, k). A computer verification

shows that E(n, k) = S(n, k) for all n < 8 and any k. However, the program shows

that E(8, 1) = 57 while S(8, 1) = 69. It could be an interesting problem to find the

formula for E(n, k).

We describe the procedure in 57 moves that transforms the 8 disks from P1 to P3,

with the evildoer 〈6〉.

• Steps 1 to 15: Move the 4 smallest disks from P1 to P3.

• Step 16: 〈5〉(P1 → P2).

• Step 17: 〈6〉(P1 → P3) — notice that 〈6〉 is an evildoer.

• Steps 18 to 21: 〈5〉(P2 → P3), 〈7〉(P1 → P2), 〈5〉(P3 → P2), then 〈6〉(P3 → P1).

• Steps 22 to 24: Move 〈1〉 and 〈2〉 to P2.

• Step 25: 〈6〉(P1 → P2) — does the evil again.

• Steps 26 to 28: Move 〈3〉 and 〈4〉 to P2.

• Step 29: 〈8〉(P1 → P3).

• Steps 30 to 57 are symmetric to the first 28 steps.

A computer exhaustive search shows that this is an optimal solution for 8 disks.

69

Chapter 6

Conclusions and Further Research

In chapter 2, we discussed the most balanced partition of convex bodies in the plane

by three non-concurrent lines. We showed that triangle is the extreme convex body

that achieves greatest (min area)/(MAX area) ratio at 2
1+2

√
2
≈ 0.522. Any convex

body which is not a triangle has an optimal ratio smaller than that. Also, we defined

balanced partitions, a special class of partitions, which are deeply related with this

problem. We showed that for any convex body K and a vector v, there are exactly

two balanced partitions of K with one of the three lines having normal vector v. We

conjectured that any most balanced partition of convex body K must be a balanced

partition of K, while we can not prove that.

Our research on balanced partition raised the following open question: Let K be

a convex body in the plane and li, · · · , lj be j lines in general positions and meet-

ing only inside K. li, · · · , lj partition K into (j2 + j)/2 + 1 regions. If we define

fK(li, · · · , lj) to be the number of distinct areas of (j2 + j)/2 + 1 regions, what is

ψK(j) = min{li,··· ,lj}fK(li, · · · , lj) ? By our existence proof of balanced partitions, we

have ψK(3) = 2 for all K.

The zigzag problem is studied in chapter 3. We improved the upper bound to

n
2 + O

(

n
logn

)

if self-intersection is allowed and to n − ⌊n−2
8 ⌋ if self-intersection is not

allowed. The lower bound seems to be extremely hard to tackle. We conjectured that

for big n, there always exists a point set P of size n, which requires at least n/2 +∞

turns. Though we are even unable to construct point sets which forces n/2 + 2 turns

for big n.

In chapter 4, We have defined and studied forward degree sequences and their asso-

ciated polynomials. In particular, the properties of (strongly) balanced forward degree

70

sequences were investigated. Our proof shows that any chordal graph has a strongly bal-

anced forward degree sequence and any graph with all degrees at most 3 has a balanced

forward degree sequence. Moreover, these (strongly) balanced forward degree sequences

can be computed in polynomial time. Our results might bring a new clue for graph

problems related to vertex ordering, such as graph isomorphism, because a (strongly)

balanced forward degree sequence is an optimal vertex ordering. Our work could be

extended by finding more classes of graphs which are (strongly) balanced. Also, it is

still open that whether some of the graph invariants derived naturally from forward

degree sequence, such as N(G), are polynomial time computable.

In the last chapter, we studied two new variants of the Towers of Hanoi problem. In

both variations, one is allowed to put a bigger disk directly on the top of a smaller one

under some restrictions. We give procedures to solve these two versions, and prove the

optimality of our procedures. Our solution also resolves a problem, which is similar to

one of our versions, proposed by D. Wood tweenty-four years ago.

71

References

[1] I. Bárány, A. Hubard and J. Jerónimo “Slicing Convex Sets and Measures by a
Hyperplane.” Discrete and Computational Geometry 39 (1-3), 67-75, (2008).

[2] R. Buck and E. Buck. “Equipartitioning of Convex Sets.” Math. Mag. 22 (4),
195-198, (1949).

[3] R. Courant and H. Robbins. “What is Mathematics?” Oxford University Press,
(1941).

[4] M. Sholander. “Proof of a Conjecture of R.C. Buck and E.F. Buck.” Math. Mag.
24 (1), 7-19, (1950).

[5] N. Megiddo. “Partitioning with two lines in the plane.” J. Algorithms, 430-433,
(1985).

[6] William Steiger, Mario Szegedy and Jihui Zhao “Six-way equipartitioning by three
lines in the plane.” Proceedings of Canadian Conference on Computational Geom-
etry, 277–280, (2010).

[7] William Steiger, Mario Szegedy, Lei Wang and Bahman Kalantari “Equitable Par-
titioning with Three Lines.” 21st Fall Workshop on Computational Geometry 2011,
November 4-5, (2011).

[8] D. Avis. “On the Partitionability of Point Sets in Space.” Proc. First ACM Sym-
posium on Computational Geometry, 116-120, (1985).

[9] Imre Bárány and Jiŕı Matousek. “Equipartition of Two Measures by a 4-Fan.”
Discrete and Computational Geometry 27, 293-301, (2002).

[10] Imre Bárány and Jiŕı Matousek. “Simultaneous Partitions of Measures by k-fans.”
Discrete and Computational Geometry 25 (3), 317-334, (2001).

[11] S. Bereg. “Equipartitions of Measures by 2-Fans.” Discrete and Computational
Geometry 34 (1), 87-96, (2005).

[12] S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink. “Generalizing Ham-Sandwich
Cuts to Equitable Subdivisions.” Discrete and Computational Geometry 24, 605-
622, (2000).

[13] T. Sakai. “Balanced Convex Partitions of Measures in R
2.” Graphs and Combina-

torics 18, 169-192, (2002).

[14] L. Schulman. “An Equipartition of Planar Sets.” Discrete and Computational
Geometry 9, 257-266, (1992).

72

[15] W. Steiger and J. Zhao. “Generalized Ham-Sandwich Cuts for Well-Separated
point Sets.” Proceedings of the 20th Canadian Conference on Computational Geom-
etry, Montreal, August 2008.

[16] W. Steiger and J. Zhao. “Generalized Ham-Sandwich Cuts.” Discrete and Com-
putational Geometry 44, 535-545, (2010).

[17] Kranakis, Krizanc and Meertens. “Link length of rectilinear Hamiltonian tours in
grids.” Ars Combinatoria 38, 177-192, (1994).

[18] Bereg, Sergey and Bose, Prosenjit and Dumitrescu, Adrian and Hurtado, Ferran
and Valtr, Pavel. “Traversing a set of points with a minimum number of turns.”
Proceedings of the twenty-third annual symposium on Computational geometry, SCG
’07, 46-55, (2007).

[19] B. Bollobás. “Modern graph theory.” Springer-Verlag, New York, (1998).

[20] P. Erdos and T. Gallai. “Graphs with Prescribed Degrees of Vertices.” Mat. Lapok.
11, 264-274, (1960).

[21] S. Hakimi. “On the Realizability of a Set of Integers as Degrees of the Vertices of
a Graph.” SIAM J. Appl. Math. 10, 496-506, (1962).

[22] V. Havel. “A Remark on the Existence of Finite Graphs.” Casopis Pest. Mat. 80,
477-480, (1955).

[23] C. M. Hoffmann. “Group-theoretic algorithms and graph isomorphism.” volume
136 of Lecture Notes in Computer Science, Springer-Verlag Inc., New York, (1982).

[24] E. M. Luks. “Isomorphism of bounded valence can be tested in polynomial time.”
Proc. of the 21st Annual Symposium on Foundations of Computing, 42-49. IEEE,
(1980).

[25] D. B. West. “Introduction to Graph Theory.” Prentice Hall, New Jersey (1996).

[26] M. D. Atkinson. “The cyclic towers of Hanoi.” Inform. Process. Lett. 13 (3),
118-119, (1981).

[27] X. Chen and J. Shen. “On the Frame-Stewart conjecture about the Towers of
Hanoi.” SIAM J. Comput. 33 (3), 584-589, (2004).

[28] N. Claus (= E. Lucas). “La Tour d Hanoi.” Jeu de calcul, Science et Nature 1 (8),
127-128, (1884).

[29] Y. Dinitz and S. Solomon. “Optimality of an Algorithm Solving the Bottleneck
Tower of Hanoi Problem.” a manucript.

[30] J. S. Frame. “Solution to advanced problem 3918.” Amer. Math. Monthly 48,
216-217, (1941).

[31] S. Klavžar, U. Milutinović, and C. Petr. “On the Frame-Stewart algorithm for
the multi-peg Tower of Hanoi problem.” Discrete Appl. Math. 120 (1-3), 141-157,
(2002).

73

[32] C. S. Klein and S. Minsker. “The super Towers of Hanoi problem: large rings on
small rings.” Discrete Math. 114 (1-3), 283-295, (1993).

[33] D. Poole. “The Bottleneck Towers of Hanoi problem.” J. Recreational Math. 24
(3), 203-207, (1992).

[34] B. M. Stewart. “Advanced problem 3918.” Amer. Math. Monthly 46, 363, (1939).

[35] B. M. Stewart. “Solution to advanced problem 3918.” Amer. Math. Monthly 48,
217-219, (1941).

[36] P. K. Stockmeyer. “The Tower of Hanoi: A Historical Survey and Bibliography.”
manuscript available at http://www.cs.wm.edu/~pkstoc/biblio.ps.

[37] M. Szegedy. “In how many steps the k peg version of the Towers of Hanoi game
can be solved?” STACS 99 (Trier), Lecture Notes in Comput. Sci., 1563, Springer,
Berlin, 356-361, (1999).

[38] D. Wood, “Towers of Brahma and Hanoi Revisited.” J. Recr. Math. 14, 17-24,
(1981).

74

Vita

Lei Wang

2012 Ph. D. in Computer Science, Rutgers University

1998-2001 M. Sc. in Computer Science from Shanghai Jiaotong University

1995-1998 B. Sc. in Computer Science from Shanghai Jiaotong University

