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ABSTRACT OF THE DISSERTATION

Towards Robust and Effective Shape Prior Modeling:

Sparse Shape Composition

by Shaoting Zhang

Dissertation Director: Professor Dimitris N. Metaxas

Organ shape plays an important role in many clinical practices, including diagnosis,

surgical planning and treatment evaluation. It is usually derived from medical images

using low level appearance cues. However, due to diseases and imaging artifacts, low

level appearance cues are often weak or misleading. In this situation, shape priors

become critical to infer and refine the shape derived from image appearances. Effective

modeling of shape priors is challenging because: 1) shape variations are complex and

cannot always be modeled by parametric probability distributions; 2) a shape instance

derived from image appearance cues (called an input shape) may have significant errors;

and 3) local details of an input shape may be important for clinical purposes but difficult

to preserve if they are not statistically significant in the training data.

In this paper we propose a novel Sparse Shape Composition model (SSC) to address

these three challenges in a unified framework. With our method, a sparse set of shapes

is selected from the shape repository and composed together to infer and refine an

input shape. This way, the prior information is implicitly incorporated on-the-fly. Our

model leverages two sparsity observations of the input shape instance: 1) the input

shape can be approximately represented by a sparse linear combination of shapes in the

shape repository; 2) parts of the input shape may contain large errors but such errors
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are sparse. Our model is formulated as a sparse learning problem. Using L1 norm

relaxation, it can be solved by an efficient expectation-maximization (EM) framework.

Furthermore, this model is extended to effectively handle multi-resolution, local shape

priors and hierarchical priors. We also propose a framework to generate high quality

training data in 3D. Our framework includes geometry processing methods and shape

registration algorithms.

The proposed shape prior model is extensively validated on five different medical

applications: 2D lung localization in chest X-ray images, 3D liver segmentation in low-

dose Computed Tomography (CT) scans, 3D segmentation of multiple rodent brain

structures in Magnetic Resonance (MR) microscope, real time tracking of left ventri-

cles in Magnetic Resonance Imaging (MRI), and high resolution CT reconstruction.

Compared to state-of-the-art methods, our model exhibits better performance in all

these studies.
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Chapter 1

Introduction

1.1 Shape Prior Model for Medical Applications

Figure 1.1: Middle: whole body low-dose CT data. Left: zoom in of the liver and lung.
In the marked region the boundary between the liver and the kidney can hardly ob-
served. The appearance cue is weak because of the low contrast around the boundary.
Right: zoom in of the spleen and lung. In the marked region, there is artifact induced
by breath. It is part of the lung but not the spleen. Since the image information is mis-
leading here, segmentation methods solely relying on appearance cue may accidentally
include this region as spleen.

Shape is a distinctive characteristic of many human organs and plays a critical role

in various medical image analysis tasks, such as segmentation, registration, tracking,

etc. Although image appearance cues provide low-level evidence to derive organ shapes,

the derived shape instances may be incomplete in the presence of weak (missing) ap-

pearance cues, or incorrect when misleading appearance cues are present. Fig. 1.1 shows

a 3D image data from whole body CT with low dose and large slice thickness, which

result in low contrast and fuzzy boundaries between organs. The boundary information
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Figure 1.2: Chest X-ray images with annotated boundaries. The appearance cue is
misleading because of the instruments in the marked regions.

is weak in between the liver and the kidney (Fig. 1.1 left). Furthermore, there is mo-

tion artifact induced by breath around the boundary between the spleen and the lung

(Fig. 1.1 right). When segmenting the liver or spleen, segmentation methods solely rely-

ing on appearance cue may accidentally include parts of kidney or lung since the image

information is misleading here. Such inaccurate segmentation may adversely affect the

clinical analysis or the performance of Computer-aided diagnosis (CAD) programs. If

there is a shape constraint that is independent of the appearance cues, it can prevent

this over-segmentation and improve the segmentation accuracy.

Fig. 1.2 shows some challenging cases of the most widely used imaging modality,

chest X-ray. Many scans are taken from X-ray, especially in developing countries. Thus

such modality is extensively studied and analyzed. In the marked regions of Fig. 1.2,

lung boundaries become broken due to the medical instruments. In these scenarios,

segmentation methods solely relying on appearance cue may fail because of the missing

or “false” boundaries. With shape prior information, the shapes correctly derived from

clear boundaries is used as a complement for the information from unclear parts. Thus

the erroneous segmentation can be partially corrected.

On the other hand, human organs usually contain strong shape priors as many or-

gans have similar shape patterns. It provides opportunities to use shape models to infer

and refine the organ shape in an optimal sense based on high-level shape priors. The

success of these models is highly dependent on the way shape priors are modeled and

on the optimization method used. One of the seminal work in this area, “Snakes” [48],

models the shape prior as a general regularity term in the optimization, which assumes
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Figure 1.3: Left: The result of deformable model based segmentation using a large
smoothness constraint. Most details are smoothed out. Right: The result from the
same model using a small smoothness constraint. Some image noise is also included.

that the shape should deform smoothly like a membrane or a thin plate. Such regu-

larity constraint is referred as internal force. The external force is derived from image

appearance cues. Many variations have been proposed to improve the robustness of

Snakes model. Most of them focus on handling noise and spurious image edges, since

the traditional Snakes solely relying on the image gradient information can easily stuck

at local minima. Region analysis strategies [103] have been incorporated in Snake-like

models to improve their robustness to noise. Metamorphs method [47] was proposed to

integrate shape and appearance in a unified space. The model has not only boundary in-

formation but also interior appearance, making it more robust to ambiguous boundaries

and complex internal textures. Its 3D version, Active Volume Model (AVM) [75, 74], is

proposed to perform volume segmentation. However, these methods still use the same

shape prior as the internal force, the smoothness constraint. This type of constraint

actually introduces a tradeoff between accuracy and robustness, especially when organ

shapes have sharp corners or fine details. Choosing large smoothness constraint may

smooth out details, while small constraint can result in erroneous segmentation as the

model may include image noise or other organs. Thus it is often necessary to carefully

tune parameters for different data, which is laborious. Fig. 1.3 shows the brain segmen-

tation result of deformable models using different smoothness constraint [73]. It shows

the limitation of this type of shape priors.

Subsequently, more object-specific shape priors became prevalent, where the shape
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Figure 1.4: A top-down framework example of 3D cardiac segmentation. The input is
a cardiac image data with a mesh initialization [75, 76]. The output is a derived shape
as the segmentation result. In the processing steps, it derives an intermediate shape
by deforming using appearance cues, and then refines it using shape prior constraint,
such as PDM in ASM in this case. Two steps are alternately employed until accurately
finding the object boundary.

priors are learned from a set of training samples, such as Active Shape Model (ASM) [12]

and Level Set representation with priors [69]. ASM method has described Point Distri-

bution Models (PDMs), which are statistical models of shape constructed from training

dataset. A PDM represents an object as a set of labeled points, giving their mean po-

sitions and small set of modes of variations which describe how the object’s shape can

change. Principal Component Analysis (PCA) is applied to learn the PDM. Given an

input shape derived from image appearance cues, it is projected to PCA space and is

constrained by following PDM’s major variations. Thus the refined shape has to be

consistent with patterns in the training data. This type of shape priors is less sensi-

tive to parameters than Smoothness constraint does, because it is generalized from the

training data and is not specific to any of them. After this shape refinement, we can

further deform this intermediate result using image appearance cues. This procedure is

usually iterated several times to accurately converge to the boundary. Such approach is

often referred as top-down framework (Fig. 1.4) and is widely used in computer vision
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Figure 1.5: Left: A typical shape of the left lung. It is very similar to the mean shape.
Right: This is also a valid shape of the left lung. However, a large part of the bottom
shape is blocked by the cardiac. Thus it cannot be represented by the mean shape with
some major variations.

and medical image applications. Many adaptations of this PDM type of shape priors

have been proposed over the years and some of them are successfully applied in tasks

of medical image analysis, especially 2D and 3D segmentation (see Sec. 2.1 for details).

1.2 Challenges of Shape Prior Modeling

PDM based shape priors are generally robust and improve the accuracy of many image

analysis tasks. However, these shape prior modeling methods often confront the follow-

ing three challenges. First, shape variations are usually complex and therefore difficult

to model using a parametric probability distribution. The traditional ASM assumes

that each shape can be represented by a mean shape plus the variations. In many

real world applications, however, this assumption may not be true. Fig. 1.5 shows an

application of lung segmentation. We are interested in segmenting lung regions without

including the cardiac. Thus the result can be analyzed automatically by our CAD pro-

gram. The left figure shows a typical shape of the left lung, which is similar to the mean

shape computed from a large dataset. The right figure, however, has a special shape

which rarely happens in the database. A large part of its bottom is blocked by the

cardiac. Thus it cannot be represented by the mean shape with some major variations.

More sophisticated approaches are needed to handle these multi-modal distribution

cases.
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Figure 1.6: Left: Detection results with some gross errors. Black dots are anatomical
landmarks automatically found by detectors. Red circle marks erroneous detections.
They should be on the bottom. Right: Procrustes analysis based shape alignment using
landmarks as input. The whole shape is shifted to the top.

Second, image appearance information can be highly misleading and non-Gaussian

errors frequently appear in the input shape. Many shape prior models, such as ASM,

can easily handle Gaussian distributed errors. However, they may fail to deal with

gross errors in the input shape data. Fig. 1.6 shows the effects of detection errors in

the lung segmentation application. Since some of the image information is misleading,

the detector locates wrong landmarks in the middle of the lung. Using traditional

types of shape priors may result in erroneous segmentation, which is shifted to upper

region. Since Non-Gaussian errors severely harm the system performance when using

traditional shape priors, shape models have to be robust to handle these errors.

Third, shape models should be adaptive in order to preserve local detail information

in the input shape, provided such details are present in the training data, even if they are

not statistically significant. For example, traditional ASM relies on PCA to learn shape

statistics. It well captures major shape variations, such as size or volume changing.

However, some shape details can be easily ignored or removed if they are not prevalent

in the training data. Thus when refining an input data using this shape prior model,

shape detail may be removed since the major variations cannot describe it. Fig. 1.7

shows an example of shape detail in the lung application. Since tip on the left bottom

is not statistically significant in the training data, many shape prior methods could not

preserve such information, as shown in the experiment section (Sec. 5.1).
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Figure 1.7: A right lung shape with detail information marked by the red circle. This
shape detail may be removed during shape refinement procedure since it is not statis-
tically significant in the training data.

While several methods have been proposed to address one or two of those challenges

(Sec. 2.1), it remains that, to the best of our knowledge, none of them can tackle all

three challenges simultaneously. The main purpose of this thesis is to propose a unified

framework to handle all three challenges together. These cases in Fig. 1.5, Fig. 1.6 and

Fig. 1.7 are further analyzed in the experiment section (Sec. 5.1).

1.3 Our Solutions – Sparse Shape Composition

In this thesis, we propose a novel Sparse Shape Composition model (SSC) [97, 98] to

address the aforementioned challenges in a unified framework. Given a shape repository

consists of a number of annotated shape instances, instead of explicitly learning shape

priors from these shapes offline, we propose to adaptively approximate the input shape

on-the-fly, by a sparse linear combination of a subset of shapes in the shape repository.

Hence, the shape prior constraint is implicitly applied. Our method is inspired by

recently proposed sparsity theories in the compressive sensing community, i.e., the

problem of computing sparse linear representations with respect to an overcomplete

dictionary of base elements [6, 17]. It has been successfully applied in many computer

vision applications, such as, but not limited to, robust face recognition [84] and image

restoration [59]. Yet, to our knowledge, such techniques have not been used in the

context of shape priors.
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There are two “sparsity” observations behind our method. First, given a large

enough training dataset (repository), an instance can be approximately represented by

a sparse linear combination of instances in the shape repository. Similarly, in our ap-

plication each given shape is approximated by a sparse linear combination of annotated

shapes. Without any assumption of a parametric distribution model (e.g., a unimodal

distribution assumption in ASM), it becomes general to objects whose shape statistics

can be very complex. Moreover, such a setting is able to recover detail information

even if the detail of the input shape is only present in a small proportion of the shape

repository and is not statistically significant. Second, the given shape information may

contain gross errors, but such errors are often very sparse, e.g., there is an object oc-

cluded in the image or a point missing in the input shape. Combining these two, we

formulate the shape prior task as a sparse learning problem, and efficiently solve it

by an expectation-maximization (EM) type of framework. Furthermore, we explicitly

model the nonlinear shape transformation in the optimization framework without as-

suming that the initial misalignment is small, which is different from the sparse learning

method in face recognition [84].

We also introduce two extensions to improve this SSC model. First, multi-resolution

and mesh partitioning are proposed to model local shape priors and improve computa-

tional efficiency [96]. As a 3D mesh may contain thousands of vertices and local shape

properties, it is desirable to use divide-and-conquer approaches to solve each subprob-

lem (i.e., local shape patch) and then integrate them together. Since each shape prior

model is responsible for only one shape patch, it is relatively fast to solve and can

properly deal with local information. Second, dictionary learning is employed to learn

a compact codebook for acceleration purpose. When training data is large, it may not

be feasible or necessary to use all of them in the same time, since it can be very slow

and the information may be highly redundant. Thus, it is desirable to learn a small-size

dictionary without significantly losing information.

Our method is independent of data dimensions, i.e., it works for both 2D contours

and 3D meshes. However, in 3D cases, the quality of training meshes becomes crucial

to the performance of both shape prior methods and segmentation algorithms. Thus
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a framework is proposed to reconstruct 3D shape atlas from image data [94]. Shape

registration is used to obtain one-to-one correspondence for vertices. Detail preserved

smoothing is also incorporated into the shape registration framework to obtain high

quality meshes without significantly losing shape detail information. These registered

shapes are used as training data for the proposed method, which furthermore improve

its performance and robustness.

In the experiments, we validate our method on several very diverse applications of

medical image analysis, and the proposed SSC shows improved accuracy and robustness

compared to some widely used approaches.

1.4 Main Contributions

The main contributions of this thesis are fourfold:

1. SSC is proposed to model shapes and implicitly incorporate the shape prior con-

straint effectively. It is based on sparse representations and our unified framework

is able to handle non-Gaussian errors, multimodal distributions of shapes and de-

tail information recovery, which are three main challenges of traditional shape

prior modeling methods.

2. Since we do not assume that the initial misalignment of the input shape is small,

this problem becomes difficult to solve as it is not convex when the transformation

is rigid or similarity. We have proposed an EM type of optimization framework to

efficiently solve it. We also improve the computational efficiency by introducing

multi-resolution, mesh partitioning, and dictionary learning techniques.

3. The SSC model is independent of data dimensions. However, when the data is

in 3D, the quality of training meshes becomes crucial to the performance of both

SSC and deformable model based segmentation. We have introduced a framework

to effectively compute such meshes. It includes geometry processing algorithms

and shape registration method. High quality meshes are computed and one-to-one

correspondence is also obtained.



10

Figure 1.8: Several image modalities used in the experiments. From left to right: Chest
X-ray, whole body low-dose CT, the structure visualized the cerebellum of the rat brain
in MR microscope.

4. It is successfully applied to several very diverse medical applications, 2D lung

localization from X-ray image, 3D liver segmentation from low-dose CT, 3D seg-

mentation of multiple rodent brain structures from MR microscope, left ventricle

tracking from cardiac MRI, and shape atlas reconstruction from high resolution

CT images. Most of them are very important for clinical analysis and are chal-

lenging. Fig. 1.8 shows several image modalities used in our experiments. These

extensive experiments demonstrate the superior performance of our method.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews the relevant

work both in shape prior modeling (Sec. 2.1) and also briefly introduce sparse learning

methods (Sec. 2.2), as our work is to employ sparse methods to create shape priors. In

the review of shape prior methods, we categorize them as per the improvements upon

three challenges. Thus the advantages and limitations of existing methods can be well

observed.

Chapter 3 introduces the proposed SSC model in detail, including the problem

formulation and optimization framework. Several extensions have also been presented,

such as modeling local shape priors using shape partitioning, and learning a compact

dictionary using sparsity methods. Since the SSC framework and these extensions will
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be employed to solve several medical applications, we will directly use examples from

these applications as motivation or illustration.

Same as ASM, SSC model also needs training data. In 3D, high quality training

data is crucial to the performance of both shape prior modeling and segmentation. Thus

Chapter 4 presents a framework to obtain such 3D training data. It includes geometry

processing and shape registration methods, such as detail preserved smoothing, isotropic

remeshing, and discovering one-to-one correspondence.

Chapter 5 validates the proposed method by applying it to five very diverse medical

applications: 1) 2D lung location from X-ray images, 2) 3D liver segmentation from

low-dose CT, 3) 3D segmentation of multiple rodent brain structures from MR micro-

scope, 4) tracking of left ventricle from cardiac MRI, and 5) cardiac atlas reconstruction

from high resolution CT images. Finally we conclude and discuss the future work in

Chapter 6.
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Chapter 2

Relevant Work

The proposed SSC model employs sparsity constraints to robustly model shape priors.

Thus in this chapter we review both shape prior modeling methods and relevant work

of sparsity algorithms.

2.1 Shape Prior Modeling

As discussed earlier, many approaches have been proposed in different contexts to incor-

porate the shape prior constraint. In the context of medical image analysis, ASM [12]

and its variations [38] are probably the most widely used approaches. Many methods

have been proposed to improve the shape prior module of ASM. They mainly focus on

three aspects:

2.1.1 Modeling Complex Shape Variations

A significant effort has been put on handling multimodal distribution of shapes, which

cannot be represented by their mean shape and variations. A classical solution is to

use a mixture of Gaussians to represent 2D shape variation [13]. Its main advantage

is able to model more complex variations, including those cases where there are two

or more distinct classes of shape variation. However, one problem with the method

is that more examples are required to obtain reliable parameters for a mixture model

than for a single Gaussian. Manifold learning techniques can also be used to learn

a non-linear shape prior to alleviate this problem. For example, Etyngier et.al. [23]

have introduced a new deformable model framework that integrates general non-linear

shape priors using Diffusion maps. A new projection operator is presented to project

it onto a manifold based on the Nystrom extension and a Delaunay partitioning of the
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reduced space. Then a variational solution is provided for manifold denoising. Finally,

a new energy term is designed to attract a shape towards the manifold at given constant

embedding. Zhang et.al. [99] have also employed manifold learning method to overcome

the limitation of ASM on statistical constraint.

However, it is still possible that shape variation is too complex to model with any

parametric probability distribution. Thus shape prior models are desirable to be able to

model any specific shape. Phol et.al. [66] have proposed to couple the PCA based shape

modeling with a maximum a posteriori estimation problem which will be solved through

an Expectation Maximization framework. This allows the system to accommodate

shapes that differ somewhat from those modeled by the PCA. Thus it is not restricted

to the modes of variations presented in the shape model but models patient specific

abnormalities. Some methods were also proposed to decompose the shape space into

multiple sub-spaces. Representative studies include patient-specific shape statistics [77,

86] or subject-specific dynamical model [104, 105, 106, 107] to constrain the deformable

contours. Since shape distributions in these sub-spaces are often more compact, a

particular shape might be better approximated by mean shape and its variations in a

sub-space. These methods are able to simultaneously handle temporal dynamics (intra-

subject variability) and inter-subject variability in order to predict the specific cardiac

dynamics of a new sequence based on the shapes observed in past frames.

It is also worth mentioning that there are some successful work in the face alignment

field that attacks similar problems, such as the subspace constrained mean-shift [70] and

the multi-level generative model [37]. Specifically, Gu et.al. [37] have proposed a shape

regularization approach by using of a multi-level generative model, and demonstrated

its application in face alignment. This alignment system is capable of dealing with

real-world images with a wide range of imaging conditions and appearance variations.

Shape inference is also a potential solution. It constructs a surface from a set of 3D

points. In [32], to infer the shape, a nearest-neighbor approach is used by finding the

closest instance in a database, and the database is based on the expert’s structure

annotations.

These methods can model more complex shape variations than the original ASM
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does. However, usually there are still some assumptions about the shape distribution.

2.1.2 Handling Non-Gaussian Errors

A large number of proposed modifications on the original ASM algorithm try to improve

the robustness against outliers (erroneous landmarks/boundaries). Duta and Sonka [21]

propose detecting and correcting outliers by using the variance information from the

PDM. If a point is considered an outlier, it is corrected based on the position of its

neighbors. Lekadir et al. [53] employ a shape metric based on the ratio of landmark

distances to detect outliers. Its use of an invariant shape metric allows outlier analysis

to be based only on shape information and carried out prior to the least squares min-

imization procedures of the ASM. Furthermore, the identified outliers are not rejected

or replaced by the corresponding mean values, and a correction mechanism suggests a

replacement point for each outlier before the model fitting procedure.

Other methods try to decrease outliers’ influence using the weighting of residu-

als. Rogers and Graham [68] evaluate the use of M-estimators, image match and ran-

dom sample consensus (RANSAC) [25] for this purpose. In a concluding evaluation,

RANSAC was the most effective of these three methods. Nahed et al. [63] proposed to

use a robust point matching algorithm [9] which rejects outliers and finds the best-fitting

model. The strength of this model is that given two datasets, it is able to establish as

many correspondences as possible between them while rejecting outliers. The size of

the two datasets is irrelevant to the performance of the technique. Thus it is able to

match point sets of arbitrary size more robustly than ASM or RPM-TPS [9] alone.

Missing landmarks/boundaries is also a special case of outliers. Yan et.al. [87] tried

to use partial ASM to address this problem of missing boundary in image segmentation.

They have demonstrated that missing boundary information in prostate TRUS image

can be well estimated from the available partial salient contours. By using the estimated

complete shape together with a robust Discrete Deformable Model, the prostate can be

automatically segmented from TRUS images with significantly improved results.
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2.1.3 Preserving Local Detail Information

Another difficulty is to preserve local details of the input shape when such details are

also present in the training data but not statistically significant. PCA performs eigen-

analysis and extracts eigenvectors with the largest eigenvalues. The discarded eigenvec-

tors are statistically insignificant, but they may contain important local details. Some

relevant work can alleviate this problem. Sparse PCA [78] obtains sparser modes and

produces near-orthogonal components. Thus each mode only affects locally clustered

landmarks and captures more detail information, and is able to represent anatomically

meaningful variables from a data set. Some other methods divide the shape model into

several independently modeled parts, such as the hierarchical approach [15]. A hierar-

chical representation of a shape is introduced by using its wavelet transform, followed

by a PCA on the wavelet coefficients. Thus parts information can be represented by

wavelet. Since the smaller parts exhibit less variation, they can be captured with fewer

training samples than the variations for the full shape.

However, most discussed methods focus on solving one or two limitations. It is not

trivial to handle all of them simultaneously. In our work, we address these challenges

in a unified framework as outlined in Chapter 3.

2.2 Sparsity Methods

2.2.1 Sparse Representation

Sparsity methods have been widely investigated recently. It shows that a sparse signal

can be recovered from a small number of its linear measurements with high proba-

bility [5, 18]. To solve these problems of sparsity priors, one can either use greedy

methods such as basis pursuit (BP) [8], matching pursuit [60], orthogonal matching

pursuit (OMP) [7] and stagewise OMP (stOMP) [19], or use L1 norm relaxation and

convex optimization [5, 49, 24].

The sparsity prior has been widely used in computer vision and multimedia commu-

nities, such as, but not limited to, robust face recognition [84], image restoration [59],
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background subtraction [40], MR reconstruction [58, 43], automatic image annota-

tion [91, 30] and matting [20]. Specifically, Wright et.al. [84] have contended both

theoretically and experimentally to show that sparse representation is critical for high-

performance classification of high-dimensional data such as face images. It also demon-

strates that the choice of features is less important than the number of features used,

and occlusion and corruption can be handled uniformly and robustly with this frame-

work. Despite its initial success in the face recognition problem, Huang et.al. [39] have

demonstrated that such image sparse representation is sensitive to image plane trans-

formations such that it cannot reconstruct the sparse representation of a geometrically

transformed image. A transformation-invariant image sparse representation has been

proposed to alleviate this problem in a certain level. By coupling compressive sensing

and random projection manifold, this approach can efficiently recover not only sparse

representation of a target image but also the image plane transformation between the

target and the model images. After the success on the face recognition application,

sparse representation becomes popular in some other image based applications. For

example, Gao et.al. [30] have extended traditional sparse representation by considering

clustering constraint to automatically annotate images. Cong et.al. [10] have extended

this framework to videos, and employed sparse representation and reconstruction cost

to detect abnormal events. Yet, to our knowledge, such techniques have not been used

in the context of shape priors.

In this thesis, we have investigated sparse representation for shapes instead of im-

ages or videos. In this context, the main challenges are twofold: 1) shape data can

have arbitrary dimensions, e.g., 2D contour or 3D mesh; 2) different from the assump-

tion in [84], our input shape data may have large misalignment. Thus transformation

parameter should also be modeled explicitly. Details are discussed in Sec. 3.

2.2.2 Dictionary Learning

When training dataset has thousands or millions of samples, it may not be feasible

to use all of them due to the computational consideration. It is necessary to learn a

compact dictionary to represent the original dataset by minimizing the reconstruction
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errors.

Finding the compact dictionary has been extensively studied. We briefly introduce

some relevant techniques. Dictionary learning typically consists of the sparse coding

and codebook update. Greedy algorithms such as matching pursuit (MP) [60] and

orthogonal matching pursuit (OMP) [7] can be employed for finding sparse coefficients

(coding). Extensive study of these algorithms shows that if the sought solution is sparse

enough, these greedy techniques can obtain the optimal solution [82]. When the sparse

data has group clustering trend [45], AdaDGS [40] can be employed to further improve

the performance. To update codebook, method of optimal direction (MOD) [22] and

K-SVD [1] are two effective approaches. Although both of them result in similar results,

we use K-SVD to learn our dictionary because of its better convergence rate.
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Chapter 3

Sparse Representation Based Shape Prior Modeling

3.1 Sparse Shape Composition

3.1.1 Model Formulation

In this study, we aim to model the shape of an object using a set of existing training

shape instances.

Notations and Basic Framework: Explicit parametric shape representation is

employed to model a shape instance, i.e., a curve (2D) or a triangular mesh (3D)

consisting of a set of vertices. To describe the ith shape in the training data, the

coordinates of all its vertices are concatenated into a vector di ∈ Rn, where n is the

product of the number of vertices in each shape by the dimension. Thus the training

repository can be represented as a matrix D = [d1, d2, ..., dk] ∈ Rn×k, where k is

the number of shapes. In our framework, all di, i = 1, 2, 3, ..., k are pre-aligned using

generalized Procrustes analysis [36]. y ∈ Rn is the vector of a newly-input shape

which needs to be constrained or refined. Our basic framework assumes that after

proper alignment, any input shape y can be approximately represented as a weighted

linear combination of existing data di, i = 1, 2, 3, ..., k, and the parts which cannot be

approximated are noises. We denote x = [x1, x2, ..., xk]T ∈ Rk as the coefficients or

weights. Thus the value of x for the linear combination is found by minimizing the

following loss function:

arg min
x,β

{‖T (y, β)−Dx‖22}, (3.1)

where T (y, β) is a global transformation operator with parameter β. It aligns the input

shape y to the mean shape of existing data D. x and β are computed by solving Eq. 3.1.
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Figure 3.1: Illustration of formulations Dx ≈ T (y, β) using lung shapes as an example.
Note that here D is a matrix of shapes instead of images. Vector x is sparse in this
case, as only two shapes are selected. Black squares mean nonzero elements.

Thus the input shape y is constrained or refined as Dx and transformed back by the

inverse of the transformation matrix using parameter β. Fig. 3.1 shows an illustration

of the formulation.

Sparse Linear Combination: The limitations of Eq. 3.1 are twofold. First the

data matrix D may be overcomplete (k > n) when the number of shapes is larger than

the length of di. Thus the system may not have a unique solution. More constraints

of the coefficient x are needed. Second, the input shape, including the noises, may

be perfectly represented if any linear combination can be used. A more appropriate

assumption is that the input shape can be approximately represented by a sparse linear

combination of existing data. This way, the problem is reformulated as:

arg min
x,β

{‖T (y, β)−Dx‖22}, (3.2)

s.t. ‖x‖0 ≤ k1

where ‖·‖0 is the L0 norm counting the nonzero entries of a vector, k1 is the pre-defined

sparsity number. Such formulation ensures that the number of nonzero elements in x is

smaller than k1. This case is illustrated in Fig. 3.1 as k1 = 2. The value of k1 depends

on specific applications, and is discussed in Chapter 5.

Handling Non-Gaussian Errors: The formulation Eq. 3.2 works well for many

scenarios. However, there is still one limitation in Eq. 3.2. Since the loss function is
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Figure 3.2: The landmark detection results contain outliers, which are marked by red
circles. These outliers are usually sparse compared to the whole set of detected land-
marks.

based on L2 norm, it assumes that the error model follows a Gaussian distribution.

Thus it is sensitive to large noises or gross errors of the input shape, caused by im-

age occlusion, points missing or detection errors (Fig. 3.2). Such problem happens

frequently in many applications. In these cases, some errors can be very large, but

they are relatively sparse compared to the whole data. To alleviate this problem, we

explicitly model the error as a sparse vector e ∈ Rn by reformulating the problem as:

arg min
x,e,β

{‖T (y, β)−Dx− e‖22}, (3.3)

s.t. ‖x‖0 ≤ k1, ‖e‖0 ≤ k2

where k2 is the sparsity number of e. When solving Eq. 3.3, e captures sparse but large

errors which are caused by occlusion or point missing. When there is no such error,

the L2 norm loss function can deal with it well and e will be all zeros. Thus e is a

good supplement which specifically handles non-Gaussian and sparse errors. Note that

unlike the formulation in the robust face recognition [84], we do not assume that the

misalignment is small and thus explicitly model the transformation with parameter β

in Eq. 3.3.

Eq. 3.3 can alleviate the three challenges aforementioned because of the following

reasons:
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• General: There is no assumption of a parametric distribution model (e.g., a uni-

modal distribution assumption in ASM). Thus it can model complex shape statis-

tics.

• Robust: Eq. 3.3 Explicitly modeling e with L0 norm constraint. Thus it can

detect gross (sparse) errors.

• Lossless: It uses all training shapes. Thus it is able to recover detail information

even if the detail is not statistically significant in training data.

Convex Relaxation: The constraints in Eq. 3.3 are not directly tractable because

of the nonconvexity of L0 norm. Greedy algorithms can be applied to this NP-hard L0

norm minimization problem, but there is no guarantee to capture the global minima.

In the general case, no known procedure can correctly find the sparsest solution more

efficiently than exhausting all subsets of the entries for x and e. Furthermore, in

practice the sparsity numbers k1 and k2 may change for different data in the same

application. For example, some data have errors while others do not. Fortunately,

recent developments in sparse representation provide a theorem to efficiently solve this

kind of problems through L1 norm relaxation [79]. Thus Eq. 3.2 is reformulated as:

arg min
x,β

{‖T (y, β)−Dx‖22 + λ1‖x‖1}, (3.4)

which is denoted as SSC(3.4), and is evaluated in the experiments section. Similarly,

Eq. 3.3 is reformulated as:

arg min
x,e,β

{‖T (y, β)−Dx− e‖22 + λ1‖x‖1 + λ2‖e‖1}, (3.5)

where λ1 and λ2 control how sparse x and e are, respectively. After relaxation, λ1‖x‖1+

λ2‖e‖1 is non-smooth but continuous and convex. Eq. 3.5 is our objective function of

our proposed SSC. The deviation from Eq. 3.3 to Eq. 3.5 relaxes the absolute sparseness

constraints of the objective function (L0 norm to L1 norm). From the shape modeling

perspective, we might use more shape instances for shape composition by optimizing

Eq. 3.5. However, since this deviation converts a NP hard problem to a continuous
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and convex optimization problem which can be solved efficiently, it paves the way for

a feasible shape composition procedure as described in Sec. 3.2.

Although our focus is on the shape prior modeling instead of sparse learning meth-

ods, it is still worth mentioning that many other methods can also achieve sparsity,

such as Bayesian variable selection [16, 51, 31]. In our model, we choose L1 norm

based sparse representation because it is a convex optimization problem, which can be

effectively solved by many convex techniques and solvers. Furthermore, [17] provides

theoretical proofs that the L1 relaxation can preserve the sparsity property of L0 norm

constraint.

3.1.2 Model Discussions

Connections to Other Methods: It is interesting to look into Eq. 3.5 by adjusting

λ1 and λ2 into some extreme values.

• If λ2 is extremely large, e will be all zeros. Thus SSC is similar to methods which

do not model non-Gaussian errors.

• If both λ1 and λ2 are large enough, e will be all zeros and x may have only one

nonzero element. Thus SSC becomes the nearest neighbor method.

• If λ2 is extremely large and λ1 is small, a dense linear combination of shapes is

used, which is able to perfectly approximate the transformed input shape. Thus

SSC degenerates to the Procrustes analysis.

The insight of Eq. 3.5 indeed reveals the connections of our SSC with some other

popular methods. Those methods can be regarded as special cases of SSC. In other

words, SSC provides a unified framework to deal with different challenges of shape prior

modeling simultaneously. SSC can also provide flexibility to meet the requirements of

different applications by adjusting the sparsity of x and e.

Parameter Settings: Eq. 3.5 has two user tunable parameters λ1 and λ2, which

are usually crucial to the performance and convergence. From a practical point of view,

it is desirable that the parameters are easy to tune and not sensitive to different data
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in one application. If these parameters have physical meanings, it is straightforward to

adjust them. Fortunately, the parameters of our algorithm also have such a property.

λ1 controls the sparsity of x. The length of vector x is equal to the number of shapes

in the shape repository. It is usually larger than 100. To generate a sparse coefficient

x, a large λ1 is necessary. λ2 controls the sparsity of e. The length of vector e is equal

to the number of vertices (multiplied by the dimension), which ranges from around 20

to 2, 000. e should not be too sparse, otherwise it cannot capture any errors. Thus

λ2 should be relatively small. Both parameters are straightforward to tune given their

meanings. Furthermore, the experiments in Chapter 5 show that the same group of

parameters works well for all data in one application.

Computational Efficiency: The computation efficiency of most shape prior method

includes offline training and runtime testing. For example, ASM needs to apply gen-

eralized Procrustes analysis and PCA as offline learning. When new data is coming,

it just needs to do matrix manipulation such as projection. The running time de-

pends on how many modes preserved during training. The proposed SSC model only

needs generalized procrustes analysis as preprocess. During testing, it needs to solve

an convex optimization problem. The running time depends on the number and size of

training data, and also the optimization method. Both are in realtime for a reasonable

size of dataset (e.g., lung localization in Sec. 5.1). When the number or the size of

training data becomes large, the optimization stage can be slow. We also present some

approaches to accelerate this process, such as using local shape priors (Sec. 3.4) and

learning a compact dictionary (Sec. 3.5).

3.2 Optimization

3.2.1 Optimization Framework

To solve Eq. 3.5, we need to simultaneously recover the alignment parameter β and

error e. It is a typical Chicken-and-Egg problem. Furthermore, to efficiently optimize

Eq. 3.5, we need to deal with the nonlinearity of T (y, β) if the transformation is rigid or a

similarity. A notable approach is to use iterative linearization and optimize all variables
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Algorithm 1 Optimization framework to solve Eq. 3.5.

Input: Data matrix of shape repository D ∈ Rn×k, where k is the number of shapes,
and each column is a training shape di ∈ Rn.
Output: y′refined.
repeat

“E” step: β is estimated using Procrustes analysis, which is a similarity transfor-
mation and aligns the input shape y to the mean shape of D. y′ = T (y, β).
“M” step: Eq. 3.6 is efficiently minimized use FISTA [3]. x and e are computed.

until Stop criterions
Compute yrefined = Dx.
Compute y′refined = T (yrefined, γ), where γ is the parameter corresponding to the
inverse of the transformation matrix using β.

simultaneously, which was proposed and successfully applied in image alignment [64].

However, this algorithm assumes that the initial misalignment is not too large, which

may not be held in our problem. Furthermore, it focuses on rigid transformation in 2D

images, while we deal with nonrigid transformation in arbitrary dimensions for shapes.

The efficiency of the optimization framework is also important.

Our solution is to use EM types of algorithms (or alternating minimization). Eq. 3.5

is divided into two sub-problems: 1) estimating β and computing T (y, β), 2) efficiently

minimizing this simplified linear inverse problem. In the “E” step, β is estimated

using Procrustes analysis, which aligns the shape y to the mean shape. Then vector

y′ = T (y, β) is obtained. In the “M” step, the following simplified problem is minimized:

arg min
x,e

{‖y′ −Dx− e‖22 + λ1‖x‖1 + λ2‖e‖1}, (3.6)

which is now a linear inverse problem. It is then efficiently solved using existing meth-

ods such as the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [3] or the

proposed composite splitting algorithms in the following sections. Two procedures are

iteratively employed to obtain x, e and β. Then Dx is computed as the approximated

shape and is transformed to its original coordinate system. The framework is detailed

in Algorithm 1.
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3.2.2 Linear Inverse Problem

In this section, we introduce an efficient algorithm to solve linear inverse problems such

as Eq. 3.6. Eq. 3.6 is relatively easy to solve since all constraints are based on L1 norm

constraint. Thus FISTA [3] can be directly employed. However, it is possible that

constraints consist of different types of norms, such as L2 and total-variation (TV)

norm when modeling new priors. Thus it is desirable to improve existing algorithms.

We proposed two composite splitting algorithms [42, 44, 43] to efficiently solve this

generalized problem (which can also be used to solve Eq. 3.6):

min{F (x) ≡ f(x) +
m∑

i=1

gi(Bix), x ∈ Rp} (3.7)

where f is the loss function and {gi}i=1,...,m are the prior models; f and {gi}i=1,...,m are

convex functions and {Bi}i=1,...,m are orthogonal matrices.

Here are some notations used in our algorithms:

Matrix inner product: 〈X, Y 〉 = trace(XHY ).

Gradient: ∇f(x) denotes the gradient of the function f at the point x.

The proximal map: given a continuous convex function g(x) and any scalar ρ > 0,

the proximal map associated to function g is defined as follows [2, 3]:

proxρ(g)(x) := arg min
u
{g(u) +

1
2ρ
‖u− x‖2} (3.8)

ε-optimal Solution: Suppose x∗ is an optimal solution to Eq. 3.7. x ∈ Rp is called

an ε-optimal solution to Eq. 3.7 if F (x)− F (x∗) ≤ ε holds.

3.2.3 Composite Splitting Algorithms

As shown in [42], if there is an efficient algorithm to solve the following problem:

xk = arg min
x

1
2
‖x− xg‖2 +

m∑
i=1

gi(Bix) (3.9)
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The original composite regularization can then be efficiently solved by the FISTA, which

obtains an ε-optimal solution in O(1/
√

ε) iterations. Eq. 3.9 can be considered as a

denoising problem. We use composite splitting techniques to solve this problem: 1)

splitting variable x into multiple variables {xi}i=1,...,m; 2) performing operator splitting

over each of {xi}i=1,...,m independently and 3) obtaining the solution x by linear combi-

nation of {xi}i=1,...,m. We call it Composite Splitting Denoising (CSD) method, which

is outlined in Algorithm 2. Its validity is guaranteed by the following theorem:

Theorem 1. Suppose {xj} the sequence generated by the CSD. If x∗ is the true solution

of Eq. 3.9, xj will strongly converges to x∗.

Algorithm 2 CSD
Input: ρ = 1/L, α, β, {z0

i }i=1,...,m = xg

for j = 1 to J do
for i = 1 to m do

xi = arg minx
1

2m‖x− zj−1
i ‖2 + gi(Bix)

end for
xj = 1

m

∑m
i=1 xi

for i = 1 to m do
zj
i = zj−1

i + xj − xi

end for
end for

Combining the CSD with ISTA [3], a new algorithm, CSA, is proposed for composite

regularization, Eq. 3.7. In practice, we found that a small iteration number J in the

CSD is enough for the CSA to obtain good reconstruction results. Especially, it is set

as 1 in our algorithm. Numerous experimental results in the next section will show that

it is good enough for real composite regularization problem.

Algorithm 3 outlines the proposed CSA. In each iteration, Algorithm 3 decomposes

the original problem into m subproblems and solve them independently. For many

problems in practice, these m subproblems are expected to be far easier to solve than

the original joint problem. Another advantage of this algorithm is that the decomposed

subproblems can be solved in parallel. Given xk−1, the m subproblems to compute

{yk
i }i=1,··· ,m are solved simultaneously in Algorithm 3.
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Algorithm 3 CSA

Input: ρ = 1/L, x0

repeat
for k = 1 to K do

for i = 1 to m do
yk

i = proxρ(gi)
(
Bi

(
xk−1 − 1

L∇fi

(
xk−1

)))
end for
xk = 1

m

∑m
i=1 B−1

i yk
i

end for
until Stop criterions

Algorithm 4 FCSA

Input: ρ = 1/L, t1 = 1 x0 = r1

repeat
for k = 1 to K do

for i = 1 to m do
yk

i = proxρ(gi)
(
Bi

(
rk − 1

L∇fi

(
rk

)))
end for
xk = 1

m

∑m
i=1 B−1

i yk
i

tk+1 = 1+
√

1+4(tk)2

2

rk+1 = xk + tk−1
tk+1 (xk − xk−1)

end for
until Stop criterions

3.2.4 Fast Composite Splitting Algorithms

In this section, a fast version of CSA named as FCSA is proposed to solve Eq. 3.7,

which is outlined in Algorithm 4. FCSA decomposes the difficult composite regular-

ization problem into multiple simpler subproblems and solve them in parallel. Each

subproblems can be solved by the FISTA, which requires only O(1/
√

ε) iterations to

obtain an ε-optimal solution.

In this algorithm, if we remove the acceleration step by setting tk+1 ≡ 1 in each

iteration, we will obtain the CSA. A key feature of the FCSA is its fast convergence

performance borrowed from the FISTA. FISTA can obtain an ε-optimal solution in

O(1/
√

ε) iterations.

Another key feature of the FCSA is that the cost of each iteration is O(mp log(p)), as

confirmed by the following observations. The step yk
i = proxρ (gi)

(
Bi

(
rk − 1

L∇fi

(
rk

)))
can be computed with the cost O (p log(p)) for a lot of prior models gi. The step
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xk = 1
m

∑m
i=1 B−1

i yk
i can also be computed with the cost of O(p log(p)). Other steps

only involve adding vectors or scalars, thus cost only O(p) or O(1). Therefore, the total

cost of each iteration in the FCSA is O(mp log(p)).

With these two key features, the FCSA efficiently solves the composite regularization

Eq. 3.7 and obtains better results in terms of both the accuracy and computation

complexity.

3.3 Shape Inference and Refinement

Due to imaging artifacts and diseases, appearance cues in medical images might be

unreliable or misleading. On the other hand, however, strong shape priors of human

anatomy provide opportunities to shape prior-based methods. To evaluate the capabil-

ity of the proposed shape prior modeling, we apply it to two tasks: 1) organ localiza-

tion using shape inference and landmark detection, and 2) segmentation using shape

refinement and deformable model. The first task organ localization can be used as an

initialization step of the segmentation framework.

3.3.1 Organ Localization using Shape Inference

The positions and orientations of the same organ vary significantly in medical image

data. Quickly and accurately locating the organ is crucial to image segmentation. One

approach is to find a similarity transformation matrix, and then use this matrix to align

a mean shape to the organ [100]. Generally it achieves good performance. However,

similarity transform only has nine degrees of freedom. Thus it may not be able to

represent some specific data or shapes by transforming a mean shape (in Sec. 5.1).

To solve this problem, we propose a landmark detection and shape inference based

localization method. A learning-based method is employed for landmark detection [90].

Detected landmarks can be very sparse compared to the whole shape. Furthermore,

there may be gross errors or point missing from the detection results. We use SSC to

infer a shape based on these detected landmarks. Compared to solely using similarity

transformation to transform the mean shape, our approach has more degrees of freedom
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Figure 3.3: 2D lung localization using landmark detection and shape inference. A sparse
set of landmarks is detected automatically. Then matrix D is resampled to represent
landmark set, and the sparse coefficient x is computed. Same x is used to combine
whole shapes as shape approximation.

and is able to better fit to the actual shape in the image.

In this framework, we assume that ground truths for shapes are available from

training data, and the one-to-one correspondence is already obtained. We then auto-

matically or manually choose some specific points (e.g., corner points or high curvature

points) as landmarks on the shape of each data. Such training landmarks and shapes

are fed into data matrices denoted as DL and DS , respectively. Given a testing im-

age, its landmarks yL are detected using a learning based method [90]. Then x and

β is computed by optimizing Eq. 3.5 with DL and yL. Finally DSx is computed as

the refined shape and transformed back to its coordinate system using inverse of the

transformation matrix with parameter β. Such localization can also be used as the

initialization of many segmentation algorithms. Fig. 3.3 shows one example of 2D lung

localization using landmark detection and shape inference.

In Sec. 5.1, this framework is employed to locate 2D lung from X-ray image. In

Sec. 5.2, this framework is used to initialize the 3D deformable model.

3.3.2 Organ Segmentation using Shape Refinement

Curve or surface based deformable models have been widely used for organ segmen-

tation [48, 12, 85, 47, 71, 54, 108]. Many deformable models consist of two iterative
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Figure 3.4: The workflow of our segmentation framework consisting the offline learning
and online testing modules. Using landmark detection and shape inference, we are able
to do model initialization (i.e., organ localization). After the shape model is initialized,
the shape is deformed and refined alternatively to fit the image boundary.

steps, local deformation based on low level image information and global shape refine-

ments based on high-level shape priors. For those applications that have noisy image

information, high level shape information becomes especially critical. Our sparse shape

prior modeling can be used for shape refinement method as a regularization step during

deformation. An initialized shape is deformed following the image gradient informa-

tion. During the deformation procedure, the shape refinement is employed as high level

constrains to avoid getting stuck in local minima of the image information. Denote

the training shape matrix as DS , and the intermediate deformation result as yS . Then

x is computed by solving Eq. 3.5 with DS and yS . DSx is used as the refined shape

and transformed back. In this refinement procedure, e may not have large values since

the model is already roughly aligned after initialization. However, modeling e is still

necessary to capture small errors not following Gaussian distribution.

In Sec. 5.2, this framework is used to segment 3D liver. The whole framework is

shown in Fig. 3.4.

3.4 Extension I: Multi-resolution and Local Shape Priors

It has been widely accepted that multiresolution/hierarchical scheme should be em-

ployed to improve the efficiency and robustness of deformable segmentation [52]. In
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a multiresolution scheme, only a small set of sparsely distributed vertices are used as

driving vertices to estimate a rough segmentation of the initial stages. As the iterations

increase, more and more vertices join the driving set to gradually reach accurate seg-

mentation. Our sparse shape composition method naturally supports this scheme by

estimating a sparse linear combination from an incomplete input. Assume vsub = Sv is

a subset of all vertices in shape v, where S is a binary diagonal matrix which indicates

if the ith vertex is in the subset (Sii = 1). Eq. 3.5 can then be naturally extended as:

arg min
x,e,β

‖T (vsub, β)− SDx− Se‖22, s.t.‖x‖0 < k1, ‖e‖0 < k2, (3.10)

Eq. 3.10 can be solved using the same EM optimization. The only difference is that

the optimized x will be finally applied on the full space of D, such that the entire input

shape is refined.

One extreme situation of Eq. 3.10 is that S becomes very sparse and only includes a

few vertices (usually with the most distinctive appearance/geometry characteristics). In

this situation, Eq. 3.10 indeed becomes the shape inference method (Sec. 3.3.1), which

is the first step of our runtime segmentation system (Sec. 3.3.2). Again, by incorporat-

ing shape priors with the assumption of “sparse gross errors”, our initialization method

becomes robust to erroneous landmark detections due to severe diseases/imaging arti-

facts.

The merit of Eq. 3.10 is actually beyond the support of multiresolution deformation

scheme. In practice, many 3D deformable models include many thousands of points

to give an accurate description of organ shapes. The optimization of Eq. 3.6 thus has

high computational complexity. In addition, since local shape statistics often lie in a

more compact space than global ones, shape priors built on sub-surface are expected

to improve the performance. To achieve this goal, we propose a “mesh partitioning”

method, which can also be seamlessly incorporated in our sparse shape composition

formula. Affinity propagation clustering [28] is employed to divide the model shape into

multiple partitions. Since one-to-one correspondences are already constructed among

all shapes, affinity propagation only needs to perform once for the model shape. The
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Figure 3.5: An example of liver boundaries from CT images. It includes boundaries
between liver and rib, lung, heart, abdomen and colon that show heterogeneous ap-
pearance in local shapes.

similarity used in the affinity propagation is defined as the combination of the image

similarity and geodesic distances between vertices [88]:

s(vi, vj) = 1− 1
K

K∑
k=1

[
αG

(
vk
i , vk

j

)
+ (1− α)C

(
F

(
vk
i

)
, F

(
vk
j

))]
(3.11)

where K is the number of training subjects, vk
i denotes the ith vertex of the kth sub-

ject. G
(
vk
i , vk

j

)
denotes the geodesic distance between vk

i and vk
j . C

(
F

(
vk
i

)
, F

(
vk
j

))
denotes the Euclidean distance between image feature vector calculated at vk

i and vk
j .

The reason we also need to consider image information is that organ boundaries may

have heterogeneous appearance, as shown in Fig. 3.5. Thus such partitioning also ben-

efits the performance of boundary detectors if we train different detectors for each local

shape patch. Fig. 3.6 shows an example of partition result for the liver data.

In our implementation, each divided partition is further “dilated” for several levels to

produce overlaps with neighboring partitions. Finally, partitions are converted to a set

of indication matrices S1,S2, ...,Sp used in Eq. 3.10. The optimization problem defined

on the entire surface is thus decomposed to a set of sub-problems. Each partition

is refined independently but the refined partitions are averaged in these overlapping

regions to guarantee the smoothness of the entire surface.

The computational complexity of an existing solver (e.g., interior point method) is
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Figure 3.6: Mesh partitioning using affinity propagation. This local shape setting can
learn detail information better, and is more efficient for the optimization solver.

O(N3), where N is the number of vertices of the whole surface. After dividing the

whole surface into p partitions with about N
p vertices in each partition. The computa-

tional complexity is decreased to only 1
p2 of the original one, which highly improves the

efficiency.

3.5 Extension II: Dictionary Learning using K-SVD

In many applications of medical image analysis, the number of training data is usually

less or around hundreds. In such cases, we can just put all data into the matrix D,

since Eq. 3.5 can be still efficiently solved. However, if there are thousands or millions

training data, it may not be feasible to select models fast. Thus, dictionary learning

technique is employed to compute a compact codebook (i.e., dictionary), which can well

represent the original database.

We use K-SVD [1] to achieve this. It includes two steps, sparse coding and codebook

update. Sparse coding is a greedy method which can approximate an input data by

finding a sparse set of elements from the codebook. Codebook update is to generate a

better dictionary given sparse coding results. Two steps are alternately employed until

converge. The resulting codebook can have much less number of elements (i.e., less

columns) while is still generative enough to represent input data.

In general, the objective of dictionary learning is to find dictionary D and coefficient
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Algorithm 5 The framework of the OMP algorithm.

Input: Dictionary D ∈ Rn×k, input data yi ∈ Rn.
Output: coefficients xi ∈ Rk.
Γ = ∅.
repeat

Select the atom which most reduces the objective

arg min
j

{
min

x′
|yi −DΓ∪{j}x

′|22
}

(3.14)

Update the active set: Γ← Γ ∪ {j}.
Update the residual using orthogonal projection

r ←
(
I −DΓ(DT

Γ DΓ)−1DT
Γ

)
yi (3.15)

Update the coefficients

xΓ = (DT
Γ DΓ)−1DT

Γ yi (3.16)

until Stop criterions

X by minimizing the following equation:

arg min
D,X

{‖Y −DX‖22} (3.12)

s.t. ∀i, ‖xi‖0 ≤ L (3.13)

Where matrix Y represents signals (all training shapes in our case), D is the unknown

overcomplete dictionary, matrix X is the sparse coefficients. Denote yi as the ith

column of Y , xi as the ith column of X, then yi and xi are the ith shape vector and

coefficient vector respectively, with dimensionality D ∈ Rn×k, yi ∈ Rn and xi ∈ Rk. It

is consistent with Eq. 3.2, except that D is also unknown.

K-SVD algorithm starts from a random D and X obtained from the sparse coding

stage. The sparse coding stage is based on pursuit algorithms to find the sparse coeffi-

cient xi for each signal yi. OMP is employed in this stage. OMP is an iterative greedy

algorithm that selects at each step the dictionary element that best correlates with the

residual part of the signal. Then it produces a new approximation by projecting the

signal onto those elements already selected [82]. The algorithm framework of OMP is
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listed in the Algorithm 5.

In the codebook update stage K-SVD employs a similar approach as K-Means to

update D and X iteratively. In each iteration D and X are fixed except only one

column di and the coefficients corresponding to di (ith row in X), denoted as xi
T . The

Eq. 3.12 can be rewritten as

∥∥∥∥∥∥Y −
k∑

j=1

djx
j
T

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
Y −

∑
j 6=i

djx
j
T

− dix
i
T

∥∥∥∥∥∥
2

F

(3.17)

=
∥∥Ei − dix

i
T

∥∥2

F
(3.18)

We need to minimize the difference between Ei and dix
i
T with fixed Ei, by finding

alternative di and xi
T . Since SVD finds the closest rank-1 matrix that approximates

Ei, it can be used to minimize the Eq. 3.17. Assume Ei = UΣV T , di is updated as the

first column of U , which is the eigenvector corresponding to the largest eigenvalue. xi
T

is updated as the first column of V multiplied by Σ(1, 1).

However, the updated xi
T may not be sparse anymore. The solution is logical and

easy. We just discard the zero entries corresponding to the old xi
T . The detail algorithms

of K-SVD are listed in the Algorithm 6.

Once D is learned from this procedure, we use it directly in the SSC model. Com-

pared to the whole database, this compact dictionary certainly loses some information.

However, K-SVD algorithm minimizes the reconstruction errors, and this compact D

can highly improve the computational efficiency.
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Algorithm 6 The framework of the K-SVD algorithm.

Input: dictionary D ∈ Rn×k, input data yi ∈ Rn and coefficients xi ∈ Rk.
Output: D and X.
repeat

Sparse coding:
use OMP to compute coefficient xi for each signal yi, to minimize

min
xi

{‖yi −Dxi‖22} subject to ‖xi‖0 ≤ L (3.19)

Codebook update:
for i = 1, 2, ..., k, update each column di in D and also xi

T (ith row)
Find the group using di (xi

T 6= 0), denoted as ωi

Compute error matrix Ei as in Eq. 3.17
Restrict Ei by choosing columns corresponding to ωi. The resized error is

denoted as ER
i

Apply SVD and obtain

ER
i = UΣV T (3.20)

Update di as the first column of U . Update nonzero elements in xi
T as the first

column of V multiplied by Σ(1, 1)
until Stop criterions
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Chapter 4

3D Shape Modeling using Mesh Quality Preserved

Deformable Models

4.1 Background

The proposed SSC model is independent of data dimensions. In 3D case, shape data is

usually represented as mesh, which brings more challenges than 2D contours. Since the

quality of 3D training mesh is crucial to these learning based algorithms, sophisticated

geometry processing methods are required to obtain them. In this chapter, we will

introduce a framework to generate high quality 3D training meshes, which is usually

called 3D shape atlas.

3D shape modeling of anatomies has been of particular interest and its importance

has been emphasized in a number of recent studies, such as the neuroanatomical shape

complex atlas and the cardiac atlas [57]. It provides a reference shape and its vari-

ances for a population of shapes. Such shape information can be useful in numerous

applications such as, but not limited to, statistical analysis of the populations [12],

the segmentation of the structures of interest [89], and the detection of the disease

regions [81]. Besides shape modeling, image atlas has also been extensively investi-

gated [33]. However, it is not trivial to adapt these algorithms for shape atlas. Thus

we will not discuss these methods and will focus on the methods for the construction

of shape model.

Shape has different representations. Cootes et al. proposed a diffeomorphic statisti-

cal shape model which analyzes the parameters of the deformation field [14]. Styner et

al. used a characteristic 3D shape model dubbed m-rep to construct the atlas [80, 26].

Probably the most widely used 3D shape representation is feature point sets or land-

marks from the polygon mesh. Using this representation, the mean shape and its
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Figure 4.1: Different types of input data to create 3D shape atlas. First column: cardiac
MR slices with 2D contours as the annotation. The slice thickness is large. Second
column: dense MR data of rodent brain with 3D binary image as the annotation. The
surface of the left striatum can be extracted from the binary image.

variances can be easily computed using generalized Procrustes analysis and Principal

Component Analysis (PCA). Furthermore, such representation has been used in many

segmentation algorithms, e.g., Snakes [48] and Active Shape Model (ASM) [12]. In this

context, the main challenge is to robustly discover geometric correspondences for all

vertices among all sample shapes. One widely used approach is to register a reference

shape to the target ones. Thus the resulting shapes have nearly identical appearances

as target shapes and they all share the same topology and connectivity. Adaptive focus

deformable model (AFDM) [71, 72] is able to do shape registration since its attribute

vectors reflect the geometric structure of the model from a local to global level. How-

ever, this method is sensitive to mesh qualities because degenerated mesh or skinny

triangles can adversely affect the registration performance. Furthermore, high-quality

meshes should be generated since they benefit the performance of many applications,

such as statistical analysis and segmentation [75].

In this paper, we propose a unified framework [94, 29] to compute geometry cor-

respondence for all vertices among sample shapes, and generate smooth mesh results
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without significantly sacrificing shape details. A new type of energy term is incorpo-

rated into AFDM framework to preserve shape qualities during deformation. Combin-

ing this shape energy with the model energy in the original AFDM, our method is able

to robustly discover one-to-one correspondence even for very complex or degenerated

shapes. The whole energy function is optimized using Expectation-maximization types

of algorithm. Two energy terms are minimized alternately until converge. Once the

geometric correspondence and high quality meshes are generated, it is then straight-

forward to compute shape statistics such as mean and variance. If there are multiple

structures [93], we also propose to use hierarchical modeling to effectively model them

simultaneously with a limited number of samples.

Note that the formats of the input data can be diverse, such as stacks of 2D manual

delineations, 3D binary images or meshes extracted from medical image data (Fig. 4.1).

We assume that the inputs are a cloud of points marked on a set of sparse 2D slices

(e.g., cardiac MR images in Fig. 4.1), and the slice thickness is typically several times

larger than the pixel size, so that the resolution is poorer in the direction orthogonal

to the slice. In the preprocess step, a 3D binary image is generated by interpolating

2D labeling. Then a surface is obtained from the 3D binary file, using the Marching

Cubes algorithm. Thus different types of inputs (e.g., 3D binary image or mesh) just

correspond to different starting points in the preprocess procedure.

The major contributions of this chapter are the following:

1. Propose a framework to effectively create shape atlas. It is able to generate

high quality meshes without sacrificing the shape detail information. It can also

robustly discover the one-to-one correspondence for very complex data (e.g., the

shapes from high resolution cardiac CT images). Furthermore, this framework

can handle multiple structures with a limited number of samples.

2. Using this framework, we solve several diverse and challenging tasks. Specifically,

we create a high resolution cardiac shape atlas with many complex shape features

such as papillary muscles and the trabeculae. We also effectively construct the

atlas of multiple rodent brain structures (i.e., the cerebellum, the left and right
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striatum, and the left and right hippocampus) using a small set of samples.

4.2 Algorithm Framework

As we discussed, the performance of AFDM relies on the mesh quality. With prepro-

cess such mesh using smoothing techniques, this problem can be alleviated in a certain

level. However, it is still possible that the mesh is degenerated during shape deforma-

tion. Thus it is desirable to design a unified framework to handle this problem. We

define this shape registration problem as an energy minimization procedure. To do

so, we defined two energy functions, model energy and shape energy. Model energy is

defined to reflect the differences between the original model and the deformed model:

Emodel(Md,Mo), where Md is the deformed mesh and Mo is the original mesh. Md is the

mesh we need to compute. Its initial value is the original mesh. Shape energy ensures

that vertices are evenly distributed and shape details are roughly preserved. It is de-

fined as Eshape(Md, Lo), where Lo denotes the Laplacian representation of the original

shape. Laplacian representation encodes the shape detail information and smoothness

constraint. Thus such energy is able to optimize shape quality without sacrificing de-

tails. We also need an external energy Eext(Md,Mt) to move the deformable model

towards target model boundaries, denoted as Mt. The energy function is defined as:

E = [Emodel (Md,Mo) + Eext (Md,Mt)] + Eshape(Md, Lo) (4.1)

Simply using model energy and external energy ([Emodel (Md,Mo) + Eext (Md,Mt)])

produces similar results as AFDM, which makes it sensitive to mesh quality. However,

shape energy ensures that the mesh quality is improved during runtime. Thus this

proposed energy function is more robust and can handle diverse input. The details of

Emodel and Eshape are introduced in the next two subsections. The external energy Eext

is fairly standard and is briefly introduced in the following. We first obtain a binary

image It by using distance transform for the target mesh Mt. Then use the standard



41

gradient energy computed from this binary image:

Eext(Md,Mt) = Eext(Md, It) = − |∇I|2 , (4.2)

where ∇ is the gradient operator.

To optimize this energy function, we use an expectation-maximization (EM) type of

algorithm. During the “E” step, the model energy and external energy are minimized

using similar approach as AFDM. Thus the reference shape is deformed to fit the target

one, although this deformation may not be accurate due to the mesh quality. In the

“M” step, the mesh quality is improved by minimizing the shape energy. As we show

in Sec. 4.4, this step is formulated as a least square problem and solved efficiently.

Two procedures are alternately employed to robustly register the reference model to

the target model. In the following we introduce the details of two types of energies and

how to solve each one.

4.3 Model Energy

Model energy is defined as the differences of attribute vectors. An attribute vector

is attached to each vertex of the model, which reflects the geometric structure of the

model from a local to global level. In 3D, for a particular vertex Vi, each attribute is

defined as the volume of a tetrahedron on that vertex. The other three vertices form

the tetrahedron are randomly chosen from the lth level neighborhood of Vi. Smaller

tetrahedrons reflect the local structure near a vertex while larger tetrahedrons reflect

more global information around a vertex. The attribute vector, if sufficient enough,

uniquely characterizes different parts of a surface of a boundary. The volume of a

tetrahedron is defined as fl(Vi). The attribute vector on a vertex is defined as:

F (Vi) = [f1(Vi), f2(Vi), ..., fR(Vi)(Vi)], (4.3)

where R(Vi) is the neighborhood layers we want to use around Vi.

The model energy term reflects the differences of attribute vectors between the
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original model and the deformed model:

Emodel(Md,Mo) =
N∑

i=1

R(Vi)∑
l=1

δl(fd,l(Vi)− fo,l(Vi))2, (4.4)

where fd,l(Vi) and fo,l(Vi) are components of attribute vectors of the deformed model

and model at vertex Vi, respectively. δl here denotes the importance of the lth neigh-

borhood layers. R(Vi) is the number of neighborhood layers around vertex Vi.

The proposed algorithm is optimized iteratively. In each iteration, a neighborhood of

a vertex has been examined and the point in the neighborhood with the minimum model

energy would be chosen as the new location of the vertex. The iterations continue until

the energy converges. During the deformation, we suggest moving a surface segment

as a whole, rather than a single vertex. This would avoid this risk of getting trapped

in a local minimum, and also speed up the convergence. Let Vi be the vertex to be

deformed during a particular iteration. The first to R(Vi)th neighborhood layers are

about to move together as a surface segment. Suppose Vi is to move to Vi + ∆ as a

tentative position. Then the new position of each vertex nbrl,m(Vi), the mth vertex on

lth neighborhood layer, is set to move to:

nbrl,m(Vi) + ∆ · exp
(
− l2

2δ2

)
, (4.5)

where δ is a parameter determining the locality of the transformation. We make the de-

formation unchanged on the boundary of the surface segment, such that the continuity

has been maintained.

The parameter R(Vi) that determines the locality if the deformation is chosen to

be large in the initial iteration, and is then gradually reduced to 1. Therefore, initially

there are more vertices involved in the deformation. More global features are used in

deformation. In later states, more local deformations are performed.
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α

β

vj

vi

Figure 4.2: Vertex vi and its 1-ring neighbors. The red arrow (center) is the vector
obtained from the uniform weights, which points to the centroid. The green arrow (to
the right) is the vector obtained from the cotangent weights (1

2(cot α + cot β)), which
approximates the normal.

4.4 Shape Energy

Shape energy is used to smooth the shape without losing the important details. Usually

there is a tradeoff between the smoothness and keeping shape details. We have extended

the Laplacian coordinate to achieve this. Let the mesh M of the shape be described by

a pair (V, E), where V = {v1, ..., vn} describes the geometric positions of the vertices in

R3 and E describes the connectivity. The neighborhood ring of a vertex i is the set of

adjacent vertices Ni = {j|(i, j) ∈ E} and the degree di of this vertex is the number of

elements in Ni. Instead of using absolute coordinates V, the mesh geometry is described

as a set of differentials ∆ = {δi}. Specifically, coordinate i will be represented by the

difference between vi and the weighted average of its neighbors:

δi = vi −
∑
j∈Ni

wijvj (4.6)

where wij is computed from cotangent weights [65] (Fig. 4.2). Assume V is the matrix

representation of V. Using a small subset A ⊂ V of m anchor points, a mesh can be

reconstructed from connectivity information alone. The x, y and z positions of the

reconstructed object (V ′
p = [v′1p, ..., v

′
np]

T , p ∈ {x, y, z}) can be solved for separately by
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minimizing the quadratic energy:

Eshape(Md, Lo) = ‖Md − Lo‖ = ‖LuV ′
p −∆‖2 +

∑
a∈A
‖v′ap − vap‖2, (4.7)

where Lu is the Laplacian matrix from uniform weights, and the vap are anchor (land-

mark) points. ‖LV ′
p − ∆‖2 tries to smooth the mesh when keeping it similar to the

original shape, and
∑

a∈A ‖v′ap − vap‖2 keeps the anchor points unchanged. The cotan-

gent weights approximate the normal direction, and the uniform weights point to the

centroid. By minimizing the difference of these two (i.e., LuV ′ and ∆), the vertex is

actually moved along the tangential direction. Thus the shape is smoothed without

significantly losing the detail. With m anchors, (4.7) can be rewritten as a (n + m)×n

overdetermined linear system AV ′
p = b:

 L

Iap

V ′
p =

 ∆

Vap

 (4.8)

This is solved in the least squares sense using the method of normal equations V ′
p =

(AT A)−1AT b. The conjugate gradient method is used in our system to efficiently solve

it. The first n rows of AV ′
p = b are the Laplacian constraints, corresponding to ‖LV ′

p −

∆‖2, while the last m rows are the positional constraints, corresponding to
∑

a∈A ‖v′ap−

vap‖2. Iap is the index matrix of Vap, which maps each V ′
ap to Vap. The reconstructed

shape is generally smooth, with the possible exception of small areas around anchor

vertices. Different from [95], we use cotangent weights instead of uniform weights. Thus

the movement along the normal direction is prevented, and shape details can be better

preserved.

Although this method is able to improve mesh quality during runtime, it may still

have difficulty to handle very dense and degenerated initial meshes. Furthermore, the

computational efficiency can also be adversely affected by such dense meshes. Thus, we

can also improve the mesh quality in the preprocess step, as shown in Fig. 4.3. Usually

mesh decimation can be employed to decrease the number of vertices, and this shape

energy can be used to smooth the mesh.
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(a) Initial shape (b) Mesh view (c) Decimation

(d) Smoothing (e) Resulting shape

Figure 4.3: Illustration of geometry processing methods, including decimation and de-
tail preserve smoothing. After these operations, the mesh still has similar appearance
with certain level of details, while the mesh quality is highly improved.

4.5 Hierarchical Shape Statistics

The one-to-one correspondence is obtained for each vertex among all shapes after shape

registration. Then the shape statistics can be computed straightforwardly using gener-

alized Procrustes analysis and hierarchical shape prior. Given any two shapes, they can

be fitted to each other using a similarity or rigid transformation. Procrustes analysis is

used to find the translation, rotation and scaling components. Since there is no mean

shape in the beginning, generalized Procrustes analysis arbitrarily chooses a shape to

use as the reference and transforms all the rest to fit it. After that, a mean shape

is computed by averaging all transformed shapes. Then, this mean shape is used as

a reference shape in the next round. We repeat this procedure until the mean shape

converges to a stable state. Note that normalization is necessary, as otherwise the mean

shape will degenerate to a single point. After the alignment, each resulting shape is

filled into a matrix as a column vector. This matrix is ready to use for the proposed

SSC model (i.e., matrix D in Eq. 3.1). However, to be used by ASM, PCA is needed

to get the Point Distribution Model (PDM).
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To effectively model multiple structures simultaneously, we can employ shape prior

hierarchically. Assume ASM type of shape priors is used. First, PCA is applied on

each structure separately. Thus, shape variation of individual structure can be well

discovered even with limited number of samples. Second, their relative locations with

respect to the mass centroid are also modeled using PCA. This global statistics is used

to place structures. Then local statistics of shapes is employed to select the important

“modes” (i.e., eigenvectors corresponding to the largest eigenvalues) to cover more than

90% of the variance. Combining the mean shape and the modes, the PDM is able to

summarize and describe the sample shapes concisely and accurately.

In the next section, this whole framework is employed to generate high quality

training meshes for compared shape prior methods in Sec. 5. We also validate this

framework using a high resolution CT reconstruction task in Sec. 5.5.
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Chapter 5

Medical Applications

In this chapter, we validate our algorithms in five very diverse medical applications:

1) 2D lung localization from X-ray Image using shape inference and landmark detec-

tion; 2) 3D liver segmentation from low-dose CT using shape refinement and boundary

detection; 3) 3D segmentation of rodent brain structures from MR microscope using

hierarchical shape priors; 4) left ventricle tracking from cardiac MR images using 2D

shape refinement; 5) reconstruction of cardiac shape atlas from high resolution CT

using geometry processing and shape registration methods.

5.1 2D Lung Localization from X-ray Image

5.1.1 Clinical Background

Radiography (X-ray) is the most frequently used medical imaging modality due to its

fast imaging speed and low cost. About one third radiograph exams are chest ra-

diographs. It is used to reveal various pathologies including abnormal cardiac sizes,

pneumonia shadow and mass lesions. The automation of pathology detection often

requires robust and accurate lung segmentation. The major challenges of lung seg-

mentation in radiography come from large variations of lung shapes, lung disease and

pseudo-boundary close to diaphragm. In chest X-ray, the position, size and shape of

lungs often provide important clinical information. Therefore, in this experiment we try

to locate the left or right lung using landmark detection and shape inference. Out of 367

X-ray images (all images are from different patients), 200 are used as training data, and

the rest 167 are used for testing purpose. In this study, we select training samples to
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ensure a good coverage of different ages and genders (according to information from DI-

COM header.) The number of training samples is determined empirically. The ground

truths are binary masks of manual segmentation results. A 2D contour is extracted

from each mask. To obtain the landmarks for training purpose, we manually select

six specific points (e.g., corner points) on the contour, and then evenly and automati-

cally interpolate a fixed amount of points between two neighboring landmarks along the

contour. Thus a rough one-to-one correspondence is obtained for both landmarks and

shapes. Since the detected landmarks may not be accurate or complete, shape prior is

necessary to infer a shape from them. When applying this model, we constantly use

the same parameter values for all X-ray images, i.e., λ1 = 50 and λ2 = 0.15.

5.1.2 Compared Methods

In this study, we compare the proposed sparsity-based shape prior modeling with other

state-of-the-art methods. For a fair comparison, we intentionally embed different shape

models to the same organ localization framework. (It is not fair to compare completely

different end-to-end systems, e.g., our system vs. ASM system, since the performance

difference, if any, cannot be solely attributed to shape prior modeling.) More specif-

ically, the same learning-based algorithm [90] is used to detect landmarks for shape

inference (organ localization). Furthermore, the shape is inferred from the detected

landmarks directly without iteratively deforming and fitting to the image boundary.

The reasons of this setting are twofold. First, enough times of iterative deformations

may eventually bring the shape to the image boundary accurately because of the defor-

mation strategy. It is then difficult to evaluate the performance of shape prior models.

Thus we apply the inference method only once without the deformation. Second, such

one-step inference process is very fast and already good enough as the input for some

clinical applications, such as a CAD program. The compared methods are listed as the

following:

1. PA: Procrustes Analysis is used to find a similarity transformation to fit a mean

shape to detected landmarks.
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2. SMS: It is the Shape Model Search module in ASM, which employs the PCA

method to refine the input shape. Note that we are not using the entire ASM

framework including boundary detection and iterative fitting. We focus on the

key module of ASM inducing shape prior information. Since the detected land-

marks are very sparse compared to the whole contour, directly fitting ASM to the

small number of landmarks result in poor performance. To achieve reasonable

performance, a contour is approximated by interpolating points in-between land-

marks. When there is a point missing, the mean position of that point is used

instead.

3. R-SMS: The shape model search step in the robust ASM [68] method uses the

RANSAC framework to remove the influence of erroneous detections. When there

is no outlier, R-SMS achieves similar performance as the traditional ASM.

4. SI-NN: It stands for shape inference using k nearest neighbors. It is similar

to [32], which uses nearest neighbors to find the closest prototypes in the expert’s

structure annotations. The distance metric we used is based on the L2 distance

between corresponding points.

5. TPS: Thin-plate-spline [4] is used to deform the mean shape to fit detected land-

marks. TPS is a non-rigid and local deformation technology and has been used

in robust point matching application (TPS-RPM) [9]. Since the deformation can

be nonrigid and local, it is able to produce any type of shapes to fit the detection

results.

6. SSC(3.4): It is the sparse learning shape method without modeling e. The result

is computed by solving Eq. 3.4. Thus only sparse linear combination assumption

is employed.

5.1.3 Visual Comparisons

Some representative and challenging cases are shown in Fig. 5.1, 5.2 and 5.3. In Fig. 5.1,

there are some mis-detections which are considered as gross errors. The Procrustes
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(a) Detection (b) PA (c) SMS (d) R-SMS (e) SI-NN (f) TPS (g) SSC(3.4) (h) SSC

Figure 5.1: Comparisons of the right lung localization. (a) Detected landmarks are
marked as black dots. There are two detection errors and one point missing (marked
as circles, and the arrows point to the proper positions). (b) Similarity transformation
from Procrustes Analysis. (c) Shape Model Search module in ASM, using PCA based
method. (d) Shape Model Search in Robust ASM, using RANSAC to improve the
robustness. (e) Shape inference method using nearest neighbors. (f) Thin-plate-spline.
(g) Sparse representation without modeling e, by solving Eq. 3.4. (h) The proposed
method by solving Eq. 3.5.

(a) Detection (b) PA (c) R-SMS (d) SI-NN (e) TPS (f) SSC(3.4) (g) SSC

Figure 5.2: Comparisons of the left lung localization. There is one point missing
(marked by a circle), and this lung has a very special shape, which is not captured
by the mean shape or its variations. Compared methods are the same as Fig. 5.1.

(a) Detection (b) PA (c) R-SMS (d) SI-NN (e) TPS (f) SSC(3.4) (g) SSC

Figure 5.3: Comparisons of the right lung localization. All six detections are roughly
accurate. Thus there is no gross error. The regions marked by circles show the difference
of preserved details. Compared methods are the same as Fig. 5.1.
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analysis, SMS method, SI-NN algorithm and TPS cannot handle such cases. R-SMS is

not sensitive to outliers and performs better. SSC(3.4) also fails to handle such non-

Gaussian errors since e is not modeled. SSC can successfully capture such mis-detected

points in e and generate a reasonable shape. In Fig. 5.2, the underlying shape of the

lung is special and different from most other lung shapes (see the mean shape in Fig. 5.2

(b)). Furthermore, there is a missing point. Neither a transformed mean shape nor its

variations can represent such shape. TPS is very flexible and able to generate special

shapes. However, it fails to handle the missing point. SSC roughly captures the correct

shape and generates a better result than the others. In Fig. 5.3, all six detections are

correct. However, the shape’s details are not preserved using the mean shape or its

variations. Fig. 5.4 shows the first five modes (i.e., the five largest shape variations)

of ASM. The thickness of boundaries represents major variations in that mode. Note

that since the variations of the bottom left tip are not the major variation modes,

ASM does not able to preserve these local shape details for this testing case in Fig. 5.3.

Both SSC(3.4) and SSC discover more detail information than other methods. Thus a

sparse linear combination is sufficient to recover such details even the gross error e is

not modeled. Fig. 5.5 shows three SSC-selected shape components with largest weights

which generate the result in Fig. 5.3. Two of them do have certain levels of detail

information in the bottom left region, although they are still different from the input

shape. It demonstrates that our model can discover meaningful shape components, and

the final shape composition result can well approximate the testing data. Please note

that the proposed model cannot “create” local shape details without the support of

local appearance cues. Instead, our method aims to “preserve” shape details derived

by appearance cues given these details exist in our shape repository. In particular,

our method is able to preserve local shape details even when they are not statistically

significant in the shape space.

Fig. 5.6 shows some results from our proposed method on challenging cases with

medical instruments. Shape prior contributes to the stableness of the system. It still

generates reasonable results with such misleading appearance cues. Fig. 5.7 shows a

failure case of our method. Only three landmarks are detected. Using such information
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Figure 5.4: Five largest ASM modes of the right lung. In each mode, we plot shapes
from −3σ to 3σ variance. The thickness of boundaries represented shape variation.
For example, the major variation of the second mode is in the bottom right, which is
the boundary between the right lung and the cardiac. Note that the variance of the
bottom left tip is not the major variation in any mode. Thus ASM does not achieve
very accurate performance for the case in Fig. 5.3.

(a) Output (b) Shape 1 (c) Shape 2 (d) Shape 3

Figure 5.5: Three shape components with largest weights from our model. “Output”
means the result in Fig. 5.3. The three components have weights 0.5760, 0.2156, and
0.09822, respectively.
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Figure 5.6: Some localization results from our proposed method on challenging cases
with medical instruments. Note that the localized shape may not be exactly on the
boundary, since the shape module does not use image information. However, such
results are good enough for the input of CAD program or initialization of segmentation
algorithms.

Figure 5.7: One failure case of lung localization. Only three landmarks are detected.
Such information is not enough to infer a correct shape in this case.

fails to infer a reasonable shape in this case, although our method supports incomplete

input. In general, less input results in a higher probability for inaccurate predictions.

5.1.4 Quantitative Comparisons

To quantitatively compare different methods, we report the mean values and standard

deviations of sensitivity and specificity between binary masks in Table 5.1 and Fig. 5.8.

Note that the specificity is always good in all methods. The reason is that the size of

either left or right lung is relatively small compared to the whole chest X-ray image.

Hence, most “true negative” can be correctly found. Thus we also report Dice Similarity

Coefficient (DSC) [67], which is a good complement to the other two measurements.
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Fig. 5.1 Fig. 5.2 Fig. 5.3

Method P Q DSC P Q DSC P Q DSC

PA 62 99 76 50 99 64 93 99 94
SMS 66 99 78 61 99 72 93 99 95
R-SMS 81 99 88 61 99 72 93 99 95
SI-NN 81 99 87 63 98 73 87 99 90
TPS 59 99 74 75 99 79 97 98 94
SSC(3.4) 63 98 71 73 99 79 97 99 96
SSC 87 99 91 92 99 91 98 99 96

Table 5.1: Quantitative comparisons of seven methods. The sensitivity (P%), specificity
(Q%) and Dice Similarity Coefficient (DSC%) are reported for cases in Fig. 5.1, 5.2 and
5.3.

DSC is defined as: 2 × TP/(2 × TP + FP + FN), where TP , FP and FN stand

for true positive, false positive and false negative, respectively. Generally Procrustes

analysis, TPS and SMS achieve good performances, especially when landmarks are

correctly detected. However, they are sensitive to non-Gaussian errors. R-SMS can

handle this problem because of the RANSAC method, but sometimes it fails to deal

with the multimodal distribution of shapes. SI-NN is a good nonparametric method.

However, it may not be able to represent shapes which do not appear in the training

data. The sparse linear combination by SSC(3.4) can approximate such shape and

it generally performs better than the others. Without modeling error e, this method

still fails to recover a correct shape. In our proposed method, although the parameter

for e is set to a relatively small value, it still contributes to the performance of the

model. It performs the best in terms of sensitivity and DSC, without sacrificing the

specificity. The standard deviations in Fig. 5.8 show that SSC also achieves the best

stability among all compared methods.

We also conducted experiments on dictionary learning. Starting from 200 training

cases, we use K-SVD to learn a 64 column dictionary. Using this dictionary for sparse

shape composition, the accuracy of lung detection drops for around 1.5%, which is

acceptable considering the advantages of using a much smaller data matrix.

The experiments are performed on a PC with 2.4GHz Intel Quad CPU, 8GB mem-

ory, with Python 2.5 and C++ implementations. The whole framework is fully auto-

matic. As it benefits from the FISTA algorithm, our algorithm is very efficient. Given
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Figure 5.8: Mean values (µ) and standard deviations (σ) of P, Q and DSC from the
left lung (1st row) and right lung (2nd row) of all testing data. In each figure, y-axis
is the performance of P, Q or DSC. x-axis means 7 methods (from left to right) in the
same order as Table 5.1. Squares denote µ, segments denote σ.

this scale of data, it takes around 0.5 second to infer a shape from the landmarks.

5.1.5 Evaluation of Parameter Sensitivity

We also conducted experiments of the parameter sensitivity of λ2 (Fig. 5.9), which

controls the sparsity of erroneous detections e. A set of parameter values is evaluated

for data with or without erroneous detections. Our model consistently achieves similar

performance for data without erroneous detections. In these cases, the sparse linear

combination of training shapes can already approximate the input shape very well.

Thus values in e are usually flat zeros in these cases, even with different values of λ2.

For data with erroneous detections, λ2 is critical as it controls the number of nonzero

elements in e. Our model still generates stable results in a reasonably wide range

of parameter values, although the performance eventually goes down when λ2 is far

away from this range. This insight analysis shows that this model is not sensitive to
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Figure 5.9: Parameter sensitivity of λ2. A set of parameter values is tested for data with
or without erroneous detections. Generally data without erroneous detections (green
line) consistently achieves similar performance for different parameter values, and data
with erroneous detections (blue line) also produce stable results in a wide range.
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parameter values in a certain level, which makes it general for different data in the same

application. Another observation is that when there is no outlier, this model usually

generates slightly better results than having erroneous detections, which means that

erroneous detections still adversely affect the model performance even with this sparse

gross errors constraint.

5.1.6 Summaries

In this section, we have applied the proposed SSC model on the 2D lung localization

problem. Three representative cases are visualized to validate the advantages of our

algorithm, i.e., model complex shape variations, handle gross errors and preserve shape

details. Quantitative results are also provided with a large amount of dataset. Both

results show the superior of our method. Furthermore, insight experiments are designed

to analyze the sensitivity of parameters. The results demonstrate that our model works

well with a large range of values. Benefited from this property, SSC usually just needs

to use the same parameter values for the same application.

5.2 3D Liver Segmentation from Low-dose CT

5.2.1 Clinical Background

Whole body PET-CT is an emerging medical imaging modality that combines a Positron

Emission Tomography (PET) and an x-ray Computed Tomography (CT) scan. The co-

registered anatomical (CT) and functional (PET) information benefits various clinical

practices, especially for oncology studies. Due to the high variations of F-fluorodeoxyglucose

(FDG) uptakes across different organs, the preferred way to interpret PET-CT images

is in an organ-specific fashion, which requires organ segmentation. In traditional CT

images, organ segmentation such as liver segmentation [56] has been extensively in-

vestigated. However, to decrease radiations to patients, CT images in PET-CT scans

usually have low dose and large slice thickness, which result in low contrast and fuzzy

boundaries between organs. Hence, organ segmentation in whole body PET-CT be-

comes more challenging than traditional CT. In this experiment we try to segment the
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liver from the low-dose whole body CT, using deformable models and shape refine-

ment [96]. The 3D ground truth of low-dose CT is manually segmented by multiple

clinical experts. 67 scans are annotated. 40 are used as training data to train the land-

mark detector and also used to construct the data matrix DS , the rest 27 are testing.

To obtain the one-to-one correspondence for vertices among all shapes, we choose one

shape as a reference and register it to all the others using adaptive-focus deformable

model (AFDM) [71]. The shape has around 1, 000 vertices, and 20 are selected as land-

marks. The initialization step is based on landmark detection and similar to Sec. 5.1.

A surface model is then fitted into the image, and is hierarchically deformed to the

image gradient information [89]. During the deformation procedure, our sparsity-based

shape prior modeling is used to refine the shape, which is actually a regularization step

to avoid the deformable model getting stuck in local minima of the image information.

This method is fully automatic without any manual interaction.

In this study we use λ1 = 50 and λ2 = 0.3 for all data. For comparisons, we

also employ some other shape prior modeling methods (e.g., SMS, SI-NN) to refine

the intermediate deformation result after several iterations. For a fair comparison, the

results for comparisons are based on the same segmentation framework, i.e., using the

same landmark detection and hierarchical deformation algorithm, with different shape

prior modeling.

5.2.2 Visual Comparisons

Fig. 5.10, 5.11, 5.12 and 5.13 show some visual comparisons in 3D. Fig. 5.10 compares

the shape inference based initialization using the same landmark detection input. Since

the image contrast of low-dose CT is very low, landmark detector may easily fail to

locate correct positions. SSC is less sensitive to such errors. Its initialization result is

already very close to the object boundary, which can benefit the deformation proce-

dure. Fig. 5.11 shows the deformation results using the initialization in Fig. 5.10. The

deformation modules are all the same. Shape refinement is not used in this experiment.

Better initialization not only ensures fewer iterations of deformation but also produces

more accurate results. SSC obtains better results compared to other methods. Fig. 5.12
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Figure 5.10: 3D initialization results for the segmentation framework. First row: using
the global transformation based on Procrustes analysis. Second row: using TPS which
is a local and nonrigid deformation technique. Third row: using SSC to constrain
the shape. Fourth row: ground truth from manual segmentation. Its surface mesh is
obtained by applying iso-surface method on the binary image. The results from global
and local deformation incorrectly include part of the liver or the artifact caused by
breath. The differences are marked by circles. Results from SSC are more similar to
the ground truth.



60

Figure 5.11: Visual comparisons of deformation results using the initialization from
Fig. 5.10. Note that the deformation modules are the same. First row: using initial-
ization from the global transformation. Second row: using initialization from TPS.
Third row: using initialization from SSC. Fourth row: the same ground truth as in
Fig. 5.10. Generally better initialization ensures fewer iterations of deformation and
more accurate results. The differences are highlighted by circles.
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Figure 5.12: Visual comparisons of refinement results after deformation. First row:
using shape model search step in SMS as the refinement. Second row: using SSC.
Third row: ground truth from manual segmentation. The refined shape may not be
exactly on the image boundary since this part is just a regularization step without
considering any image information. The SMS result incorrectly includes a large part of
the liver (marked by circles).
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Figure 5.13: Visual comparisons of final segmentation results from highly noisy data.
First row: deformation without shape constraint. Second row: using SSC as the shape
constraint. Compared to the system not using shape prior, SSC is less sensitive to
image noise and is more robust. The differences are marked by circles.

compares the shape refinement results after deformation. The refined shape may not

be exactly on the image boundary since this part is just a regularization step without

considering any image information. After the refinement, the segmentation framework

still needs to perform some iterations of deformation to reach the image boundary.

Certainly, a better refinement result can benefit the whole segmentation framework.

The refined shape of ASM type method follows the mean shape and variations, but it

incorrectly includes a large part of the kidney. SSC is more specific to this image and is

more accurate. Fig. 5.13 shows the final segmentation results from a highly noisy data.

Without any shape prior information, the method fails to provide an accurate result.

Using proposed method, the system is more robust and less sensitive to image noise.

Thus it provides more accurate results. Fig. 5.14 shows one failure case of our shape

prior model. The landmark detectors generate many inaccurate predictions due to the

misleading image appearance cues. In such cases, our sparse shape model may not be

able to rectify mis-detections.

5.2.3 Quantitative Comparisons

Table 5.2 shows the quantitative comparisons. To evaluate 3D accuracy, we report

the mean value and standard deviation of the distances between shape surfaces. SSC
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Figure 5.14: A failure case of the lung segmentation. Because of the misleading image
appearance cues, the landmark detectors provide many inaccurate predictions, which
adversely affect the performance of our shape prior model.

Method Fig. 5.10 Fig. 5.12 All data

SMS 2.26± 1.72 1.81± 2.10 2.16± 1.68
SI-NN 4.88± 3.61 3.34± 3.78 3.82± 3.12
TPS 2.92± 2.19 5.12± 5.29 3.39± 3.16

SSC(3.4) 1.42± 1.02 2.39± 2.31 2.24± 1.70
SSC 1.31± 0.95 1.10± 0.87 1.13± 0.83

Table 5.2: Quantitative comparisons of the mean values and standard deviations of the
distances (voxel) between surfaces.

achieves the best performance compared to other shape refinement approaches. The

shape refinement step takes several minutes when applied to the whole surface directly.

The whole system takes around 20 seconds (a Python implementation on a PC with

2.4GHz Intel Quad CPU) to segment liver in a 512× 512× 300 CT volume, including

data loading, initialization, deformation and shape refinement. Note that the shape

refinement module not only improves the robustness of the deformable model, but also

decreases the iteration times of deformation since it helps avoid local minima of image

information.

5.2.4 Summaries

To summarize, we have applied SSC to segment 3D liver from low-dose whole body CT.

Our segmentation framework has an initialization module and a deformation module.

Both use SSC as shape constraint. Since SSC is independent of data dimension (e.g.,

2D contour or 3D mesh), we simply use the same setting as in the lung application.

The results show that SSC is more effective and more robust to outliers than other
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compared methods. In terms of the whole segmentation framework, shape prior module

can improve the robustness towards image noise.

5.3 Multiple Rodent Brain Structures from MRM

5.3.1 Clinical Background

Magnetic resonance imaging (MRI) at a spatial resolution of at least 100um in one

dimension is frequently referred to as MR microscopy (MRM) and is currently available

with the use of high magnetic field images. This technical achievement has permitted

the detailed anatomical study of the rodent brain, which is much smaller than the

human brain (2.8cm3 rat brain volume vs. 1, 500cm3 human brain volume), and requires

a small voxel size (0.001mm3 for rodent vs. 1mm3 for human brain), in order to be

imaged. Rodents are often used as models of human disease not only because they

frequently exhibit key features of abnormal neurological conditions but also because

they are a convenient starting point for novel studies. The analysis of rodent brain

image faces similar challenges to human imaging, with individual variation in size,

morphology, and topology of the brain structures complicating the neuroanatomical

studies. Such analysis is frequently performed by segmenting the regions of interest

(ROI) in rodent brain images.

The challenge of this segmentation task is threefold. 1) The image information is

sometimes incomplete or misleading. For example, there is no obvious boundary in

part of the striatum, and the cerebellum contains interleaving texture (Fig. 5.15), 2) It

is important to discover and/or preserve some complex local shape details, such as the

paraflocculi (i.e., two protruding features of the cerebellum), 3) Given limited number

of training samples, it is desirable to segment all interested structures simultaneously

by effectively learning a shape atlas for multiple structures.

In this work, we use an online robust deformable models [47, 75] and hierarchical

shape priors to segment multiple rodent brain structures [93]. A hierarchical modeling

scheme can learn shape statistics from a small number of training data. Note that the

idea of hierarchical shape prior has been investigated much in the literature [15, 27].



65

Figure 5.15: The MR image of a rat brain used in experiments. The image information is
misleading because 1) part of the boundary between striatum (top) and other structures
is blurred; 2) the cerebellum (bottom) has complex textures and large gradient values
inside.

In the experiments, adult male Sprague-Dawley rats were transcardially perfused

with 4% paraformaldehyde. Heads were stored in paraformaldehyde and scanned for

magnetic resonance microscopy. The brains remained in the heads during scanning

in order to avoid tissue and shape distortions during brain extraction. The heads

were scanned on a 21.1T Bruker Biospin Avance scanner (Bruker Biospin Corporation,

Massachusetts, USA). The protocol consisted of a 3D T2-weighted scan with echo-time

(TE) 7.5ms, repetition time (TR) 150ms, 27.7 kHz bandwidth, field of view (FOV)

of 3.4 × 3.2 × 3.0mm, and voxel size 0.08mm, isotropic. 3D annotation is manually

performed on 58 volume data (overall 58×512 = 29, 696 slices with resolution 512×512)

by an expert neurologist. 8 are used as training data since we only need a small number

of samples for hierarchical statistics. The rest 50 are used as testing. The proposed

method was implemented in C++ and Python 2.6 and tested on a 2.40 GHz Intel Core2

Quad computer with 8G RAM. Fig. 5.16 shows the shape modeling results for multiple

structures.

5.3.2 Segmentation Framework

In this multiple structure segmentation task, we do not use landmark and boundary

detection as in Sec. 5.1 and 5.2. An online robust deformable model is employed along
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Figure 5.16: The largest shape variations of rodent brain structures, which represents
the changing of the volume magnitudes. From Top to bottom: left and right striatum,
left and right hippocampus, cerebellum.

with the hierarchical shape priors. Thus we introduce this segmentation framework and

some relevant algorithms in this section.

Given a test 3D image, it is aligned to the reference brain. Then the mean mass cen-

troid of all structures is used as the estimated center. The mean shape of each structure

is placed according to the relative positions learned at the high level statistics. However,

this initialization may not be close to the boundary of the testing data because of the

variance. Thus deformable models are still needed for accurate segmentation. In order

to find the boundary robustly, the initialized models are driven by both gradient and

region information derived from the image. Region information alleviates the problems

caused by unclear boundaries and complex textures. The overall energy function is:

E = Eint + Eext = Eint + (Eg + kR · ER) (5.1)

where Eint is the internal (smoothness) energy, Eext is the external (image) energy, Eg is

the gradient term, ER is the region term, kR is a constant to balance the contributions of

the two external energy terms. The balance between the internal and external energies

is naturally controlled by the smoothness factor in the stiffness matrix by using Finite

Element Method (FEM) as the deformation scheme [75].

The traditional gradient data terms usually include the gradient map, edge distance

map, or a combination of both. Denote a gradient magnitude map or the distance
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transform of an edge map as Fg, the gradient data term in our system is defined as:

Eg =
∫

Λ
Fg(x)dΛ, Fg = D2

edge or Fg = − |∇I|2 (5.2)

where Λ denotes the surface mesh, Dedge refers to the unsigned distance transform of

the edge map, and ∇I represents the image gradient.

The region term encodes constraints for the model-interior appearance statistics.

Considering a module using intensity statistics, the object region is predicted according

to the current model-interior intensity distribution. Having both foreground object

and background probabilities, we obtain a binary map that represents the predicted

object region by applying the Bayesian Decision rule. Connected component analysis is

then applied to the binary map to retrieve the connected component that overlaps the

current model. This connected region is considered as the current ROI. Let us denote

the signed distance transform of the current model’s surface shape as ΦΛ, and the signed

distance transform of the ROI boundary shape as ΦR, the region-based external energy

term is defined using voxels within a narrow band around the model surface as:

ER =
∫

Λ
ΦΛ(v)ΦR(v)dΛ (5.3)

The multiplicative term provides two-way balloon forces that deform the model

toward the predicted ROI boundary. This allows flexible model initializations either

overlapping the object or inside the object. Using these external energy terms as image

forces, the FEM model is driven to find object boundaries.

The above model may still not be able to avoid the local minimum or preserve a

specific shape, especially when the texture of the image is complex. Thus a shape prior

energy is added to our method to constrain and refine the shape and position of all n

structures during deformation:

Eprior =
n∑

i=1

Ei
local + kg · Eglobal (5.4)
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where Ei
local is the shape constraint applied on the ith structure, and Eglobal is a con-

straint on the relative positions among different structures and distances with respect

to the mass centroid.

In terms of the implementation, the energy optimization is achieved by using an

expectation-maximization (EM) type of framework. Given intermediate segmentation

results of all structures, in the “E” step, the locations of structures are adjusted as per

the global statistics to prevent overlap or intersection. In the “M” step, each individual

shape is constrained by aligning to the mean shape, and then mapping into PCA space

to update the pose and shape parameters. Thus it guarantees that the shape deforms

only into patterns consistent with the training data, which can refine the shape and

prevent over-segmentation. This whole hierarchical framework is employed adaptively

by defining kg = 1 − e−|∇Λ|, where |∇Λ| is the magnitude of deformation change in

surface shape. In the beginning, the shape deforms a lot so kg is relatively large. It

means that we trust more on the high level information, and put larger weights on the

global statistics. After several iterations, the local statistics should be more important

since the brain structure is nearby the boundary. At this time the shape deforms less

so kg is smaller. The whole segmentation framework, including training and testing, is

summarized as follows:

1. Manually segment a small number of training data. Use PCA to capture shape

statistics of these 3D shapes and location statistics of relative positions.

2. Given a testing data, it is aligned to the reference image. Then multiple models

are placed using mean relative positions with respect to the mean mass centroid.

Initialize these models, i.e., stiffness matrix and step size for FEM and the gradient

magnitude or edge map.

3. Compute ΦΛ based on the current model; predict object ROI R by applying the

Bayesian Decision rule to binarizing the estimated object probability map, and

compute ΦR. Calculate the external force vector.

4. Deform the model using FEM and external forces derived from gradient and ap-

pearance information. Smoothness constraint is implicitly incorporated by FEM.
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Figure 5.17: Comparison of segmentation results starting from the same initialization.
The first row: traditional shape prior constraint (smoothness). The second row: using
hierarchical shape prior. From left to right: the cerebellum, the left and right striatum,
the left and right hippocampus, and all five structures.

5. Update the value of kg = 1 − e−|∇Λ|. Adjust the structure positions to prevent

intersections using global prior.

6. Refine each intermediate result by local prior constraint (transform it to the mean

shape, then update the pose and shape parameters consistent with the training

data).

7. Repeat steps 3-6 until convergence.

Alternating the deformation module and the shape constraint module is more robust

to noise and can handle more complex textures than purely using a deformation module.

Due to the constraint from the shape prior, our model converges fast and robustly

towards the true boundary given the mean shape of the multiple objects as initialization.

One more benefit of our multiple structure model is that the size of the training data

can be small, because the shape prior is built hierarchically. The prior for each structure

is obtained individually, which can better discover the shape statistics than using one

prior for all structures.
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Structures Prior types Voxel distance Volume error

Smoothness 4.35± 2.17 0.22± 0.12
Cerebellum Independent 1.74± 1.18 0.05± 0.02

Hierarchical 1.70± 1.13 0.04± 0.02

Smoothness 3.79± 2.05 0.51± 0.19
Striatum Independent 2.93± 1.81 0.19± 0.06

Hierarchical 1.37± 1.09 0.07± 0.03

Smoothness 3.82± 2.14 0.53± 0.18
Hippocampus Independent 2.69± 1.83 0.17± 0.05

Hierarchical 1.22± 1.05 0.06± 0.02

Table 5.3: Quantitative comparisons of different prior schemes. We reported the mean
and standard deviation of voxel distances between segmented surfaces and ground truth
surfaces, and relative errors of volume magnitude in proportions.

5.3.3 Visual Comparisons

Fig. 5.17 shows the visual comparisons of segmentation results starting from the same

initialization. In the first row, we use the robust deformable model [47] to segment

each structure individually. The shape prior is the smoothness constraint. In the

second row, the deformable model is combined with the hierarchical shape prior to

segment all structures simultaneously. When segmenting the cerebellum, the shape

prior helps to preserve the shape of paraflocculi and to avoid the local minima caused

by complex textures inside. Without using shape prior, the model is attracted by

large gradient values inside and the paraflocculi are smoothed out. In the striatum

and hippocampus cases, there is no obvious boundary between these structures and the

brain. Thus the model can easily over-segment the ROI. Using shape prior alleviates this

problem. Another benefit of the hierarchical shape prior is that the spatial constraint is

incorporated. The distance between two structures has to follow the location statistics.

Thus structures cannot intersect with each other.

5.3.4 Quantitative Comparisons

Table 5.3 compares different priors. Note that all deformation modules are the same

and based on both gradient and region information. We compared the methods of
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combing the robust deformation model with a traditional smoothness shape prior [75],

an independent shape prior [92] for each structure and hierarchical shape priors. The

same parameters are used in all deformation modules. We reported the mean value and

standard deviation of voxel distances between segmented surfaces and ground truth sur-

faces. Generally, the shape prior constraint improves the segmentation accuracy. In the

cerebellum case, the spatial constraint in hierarchical priors only slightly improves the

result, while it is much more important in the striatum and hippocampus cases. The

reason is that the striatum and hippocampus are adjacent to each other. Spatial con-

straints can prevent the intersection of different structures, which implicitly alleviates

the over-segmentation problem caused by the low contrast and ambiguous boundaries.

The volume magnitude information is very important in rodent brain analysis. Thus we

also reported the relative error of volume magnitude compared to the ground truth. Us-

ing the hierarchical shape prior achieves the best result, especially for the striatum and

the hippocampus. This spatial constraint not only improves the segmentation accuracy

for multiple structures, but also decreases the number of iterations and computation

time to converge.

5.3.5 Summaries

In this section, we have applied our algorithm on rodent brain segmentation from

MR microscope. Shape prior method is independent of image modalities. Thus we

use similar setting as the liver segmentation task, except that hierarchical shape prior

constraint is employed to ensure that brain structures cannot penetrate with each other.

Such constraint is very effective when segmenting multiple objects simultaneously.

5.4 Cardiac Tracking from MRI

5.4.1 Clinical Background

Extraction of the boundary contour of a beating heart from cardiac MRI image se-

quences plays an important role in cardiac disease diagnosis and treatments. One of

the applications is MRI-guided robotic interventions which is potentially important in
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cardiac procedures such as aortic valve repair [83, 55, 62]. The major difficulty in such

procedures is the path planning of the robotic needle, where it requires an accurate

contour of the left myocardium on a beating heart. The algorithm should be robust,

accurate and fast.

Therefore, we consider the problem of tracking the inner boundary contour of the

left myocardium from cardiac MR images. If the motion of the region of interest is

constrained (e.g. rigid or approximately rigid), the contour motion can be efficiently

represented by a small number of parameters, e.g. the affine group. But if the “ob-

ject” is arbitrarily deforming (like in our application), each contour point can move

independently. Contour deformation then forms an infinite dimensional space. Direct

application of motion tracking algorithms (e.g., Kalman filter, particle filters) for large

dimensional problems is impractical, due to the reduction in effective particle size as

dimension increases. The alternative way is to model the shape of the boundary to

constraint the freedom on how the contour deforms.

Two major types of shape models are statistical shape models and deformable mod-

els. Statistical shape models are learned a priori from examples to capture variations

in the shape and appearance of an object of interest in images [12, 11]. These models

efficiently constraint the deformation to a specific manner thus better in image in-

terpretation. However, it usually only takes into account local shape or appearance

information, thus less robust confronting large appearance and motion changes of the

beating heart. Deformable models are curves or surfaces that deform under the in-

fluence of internal smoothness and external image forces to delineate object boundary

[50, 61]. They have the advantage of estimating a boundary or surface with smoothed

curves but the computational cost can be expensive for temporal data. Some recent

works effectively integrate both types [100] and achieve high contour segmentation ac-

curacy, but those methods neglect the temporal connections of the image sequence, and

usually require an additional learning algorithm to produce an initialized contour at

each time step.

We propose a bottom-up approach to solve the contour tracking problem. On the

bottom level, a collaborative trackers network provide a deformed mesh which is able
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to predict an initialized contour at each time step [102]. Each tracker in the network is

a particle filter tracker featuring the appearance of the tracking region as the template.

The coordination of the trackers in the network is modeled by Bayesian network, which

models spatio-temporal dependency relationships of multiple trackers. On the top level,

a shape prior module is employed to refine the initialized contour provided by the

collaborative trackers network, and eventually obtains a smoothed contour of the left

endocardium over time. Our approach has the following advantages:

1. The tracking performance of the collaborative trackers network not only depends

on the local appearance of individual trackers, but also depends on the perfor-

mance of its neighboring trackers, namely its context. Once the shape prior is

applied on the top level, the bottom-up approach integrates shape, appearance

and context information in a unified framework, providing a robust solution to

the contour tracking problem.

2. The collaborative trackers network featuring particle filter and Bayesian network

mechanisms automatically enforce temporal consistency of the contours on sub-

sequent images. It automatically generates an initialized contour input for the

shape refinement at each time step.

3. The approach is computationally light weighted. It takes 0.17 second on average

to process one image on a 2.4GHz desktop.

5.4.2 Collaborative Contour Tracking with Shape Prior

The contour of the left endocardium at time t is represented by a set of points Ct =

{(xt
1, y

t
1), ..., (x

t
N , yt

N )} on the 2D image plane. The goal of the approach is to accurately

estimate the contour C̄t at each time step. For this purpose, we first use a collaborative

tracking network composing of multiple particle filter trackers to track the endocardial

region (Fig. 5.18 left). Then an ASM shape prior model is applied to refine the tracking

results (Fig. 5.18 right). The two parts work iteratively to achieve accurate contour

tracking performance.
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Figure 5.18: Framework of our algorithms, which includes the tracking network and
shape prior module.

Collaborative Tracking: Given an initial contour region C0, the collaborative

tracking approach is able to automatically compute a coarse contour Et at each time

step, providing the base for the shape refinement algorithm. The initial contour C0 is

manually selected on the first frame. For the endocardial region, one could use a circle

instead of the manual selection. We adopted Zhou et al.’s tracking method [102] as the

tracking mechanism.

Tracking Network Computation: The collaborative trackers network is com-

posed of multiple particle filter trackers Γt = {T t
i , ..., T

t
m} (Fig. 5.19 (a)). For each

individual tracker T t
i , we measure its tracking performance by computing its surviv-

ing probability. The adjacent trackers {T t
j , ..., T

t
m} provide evidence to compute its

surviving probability via a Bayesian network:

p(W t
i , Θ̂

t
i|Gt−1

i , Zt
i ) ∝ p(Gt−1

i )
∏
k

N(θ̂t
i |θ̂t

k, σ
2)

∏
k

p(θ̂t
k|zt

k) (5.5)

Θ̂t
i = {θ̂t

i , θ̂
t
j , ..., θ̂

t
m} and Zt

i = {zt
i , z

t
j , ..., z

t
m} are the estimated states and observa-

tions of T t
i and its adjacent trackers. W t

i represents the event that tracker T t
i survives.

Gt−1
i is the Bayesian network at time t−1, whose probability p(Gt−1

i ) is known at time

t. N(θ̂t
i |θ̂t

k, σ
2) is the probability density of θ̂t

i on the Normal distribution centered at

θ̂t
k with variance σ2. Eq. 5.5 features three important terms: 1) p(Gt−1

i ) measures the

surviving probability from the previous time step. A tracker that performed well at the
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(a)                                                (b)

(d)                                      (c)

Figure 5.19: (a) Trackers’ network that composes of 4 particle filter trackers; (b) Defor-
mation mesh computed from the trackers’ network (colored in red), and the deformed
contour (colored in green); (c) Computed edge along the normal direction of the de-
formed contour; (d) Extracted shape after shape refinement.

previous time step is likely to survive in the current time step. 2)
∏

k p(θ̂t
k|zt

k) measures

the tracking performance of Ti,t and its surrounding trackers. Individual trackers with

high performance have high surviving probability. 3)
∏

k N(θ̂t
i |θ̂t

k, σ
2) measures the mo-

tion pattern of the tracker network. Uniform motion patterns increase the chance of

survival. Those terms enforce both spatial and temporal consistency of the trackers

network, ensuring robust performance.

Deformation Mesh and Interpolated Contour (C0 to Dt): The deformation

mesh (Fig. 5.19 (b) in red) Mt is composed of a set of nodes Mt = (ct
1, c

t
2, ..., c

t
n), which

are distributed over the targeted heart region. In the initialization step, the nodes

coincide with the defining points of the individual trackers. Subsequently,each node’s
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location is decided by the linked trackers, as follows:

ct
i =

1∑Lt
i

k=1 βt
k

Lt
i∑

k=1

st
kβ

t
k, (5.6)

where {st
k}

Lt
i

k=1 indicates all the corner coordinates of the linked trackers at a certain

location and βt
k is the impact factor of each linked tracker; we use the surviving prob-

ability computed in Eq. 5.5 as the impact factor here. Lt
i is the total number of linked

trackers in locale i at time t. Given the contour of the previous time step Dt−1, we are

able to linearly interpolate a deformed contour Dt according to the coordinates of this

deformed mesh (Fig. 5.19 (b) in green).

Edge Detection (Dt to Et): The contour Dt is computed by rigid linear interpo-

lation, thus has the same shape as the initial contour C0, and can’t adapt to the edge

of the endiocardial region very well. Therefore, we use an edge detection method to

align Dt to the edge of the tracking region Et. Specifically, Et is computed by finding

the largest first derivative along the normal direction of contour Dt (Fig. 5.19 (d)).

However, the extracted edges always fall into local minimum. Therefore it requires a

shape refinement procedure to smooth the edges and constrain the deformation. That’s

why we pass Et as the input for the following shape priors model.

Refinement using Shape Priors: The above tracking method may not be able

to accurately capture the boundary since it can stuck at the local minimum, especially

when the texture of images is complex. Thus a shape refinement procedure is added in

our method to constrain the deformation by following the patterns of a training database

using proposed shape prior module. This step can prevent over and under-segmentation

and provide a shape constraint. Alternatively employing the collaborative tracking and

the shape prior based refinement is more robust to noises and can handle more complex

textures than purely using the tracking algorithm. Our model converges fast and robust

towards the boundary because of the benefit of the good-quality tracking result and

the constraint of the shape prior. One more benefit of our model is that the size of

the training data can be small, because the tracking algorithm already considers the

temporal information and constraint, and is relatively robust to image noise in single
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           (a)                                  (b)                                  (c) 

Figure 5.20: Comparative results on a CINE testing sequence with 15 frames. (a)
Tracking results by the deformation mesh approach. (b) Tracking by edge detection.
(c) Tracking results using the proposed method. The rows correspond to frame index
3, 9 and 15.

slice. Thus training information is only used for the shape refinement procedure, which

is an auxiliary step in our model.

5.4.3 Visual and Quantitative Comparisons

The performance of the contour tracking approach is critical to MRI-guided robotic

interventions. At each time step, the accurate contour of the left ventricle serves as

the “boundary” to limit the freedom of the robotic needle so that it won’t acciden-

tally touch the cardiac wall. The approach should also be fast enough to minimize the

computational cost during a real-time heart surgery. Therefore, we compare the pro-

posed collaborative contour tracking approach with the state-of-art methods in terms

of accuracy and speed.
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           (a)                                  (b)                                  (c) 

Figure 5.21: Comparative results on a real-time testing sequence with 750 frames. (a)
Tracking results by the deformation mesh approach. (b) Tracking by edge detection.
(c) Tracking results using the proposed method. The rows corresponds to frame index
239, 251, 409.

We performed experiments on 14 MRI sequences with 12-750 slices (frames) for

each sequence and 1,728 slices (frames) in total. Data was acquired from 7 patients and

by two types of MRI acquisition protocols: (a) CINE MRI sequences where patients

hold the breath during MRI scanning; This type of MRI sequences contains relatively

fewer slices (12-25 frames) since the patient is not able to hold the breath for long

time. (b) Real-time MRI sequences where patients have the natural breathing during

MRI scanning. This type of MRI sequences contains more slices (50-750 frames) and

the cardiac motion pattern is more complicated because of the additional respiratory

motion. From all the images, we randomly selected 150 images for training, and all the

images for testing. We compare the proposed collaborative contour tracking approach

with the following approaches:

• Deformation mesh approach: The collaborative tracking network [101] is able to
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Figure 5.22: Boxplots of sensitivity, specificity and DSC of all testing data. In each
subplot, y-axis is the performance of sensitivity, specificity or DSC. x-axis aligns 3
methods from left to right in the same order as in Fig. 5.20 and Fig. 5.21.

provide a deformation mesh based on individual trackers’ states. At each time

step, it is able to produce the current contour by interpolating the initialized

contour according to the current deformation mesh.

• Edge detection approach: This approach simply computes the edge along the

normal direction of the interpolated contour from the deformation mesh.

Some representative and challenging cases are shown in Fig. 5.20 and Fig. 5.21. Fig.

5.20 shows the results from a short CINE sequence. The deformable mesh approach

performs well visually because the sequence includes just 15 frames with little shape

variation over time. The only problem is that the shape of the contour is static no

matter how the left ventricle deforms due to the linear interpolation. The edge detection

approach performs worse visually because the edge detection method is easy to drop

into local minima. Our proposed approach provides a smoothed shape that matches

the deformed left ventricle. Fig. 5.21 shows the results from a long real-time sequence.

The deformable mesh approach performs worse than in the CINE sequence because of

the large cardiac motion. The deformation mesh is only able to compensate the global

motion of each tracker, but not the accurate local motion of the shape. Therefore, the

interpolated shape is not accurate. The edge detection approach still produces fuzzy

results visually. Our proposed approach not only captures the motion variations over

time, but also provides a smoothed accurate contour.

To quantitatively compare different methods, we report the boxplots of sensitivity
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(P), specificity (Q) and Dice Similarity Coefficient (DSC) in Fig. 5.22. The computation

was performed on all the testing data, and the ground-truth contours were annotated

manually by an expert. We prefer the approach with large mean value and small

variance since it shows accuracy and stableness.

In terms of sensitivity, our method is much better than the edge method and slightly

better than the deformation mesh method. For the specificity, the result from edge

method is also good. The reason is that this method always under-segment the ROI.

Thus most of the background is correctly predicted. However, as a trade-off, its sensi-

tivity is not as good as the others. Considering both P and Q, our method outperforms

deformable mesh method and edge detection method. DSC combines both sensitivity

and specificity information. Thus it is a reasonable measurement to compare accuracy.

The results of DSC further validate our proposed method.

5.4.4 Summaries

In this experiment, we have improved a tracking algorithm by incorporating shape prior

constraint. Efficiency and stableness is very important for tracking methods. Adding

this prior module does not significantly increases the computational complexity due to

the fast shape update. Furthermore, it also improves the accuracy because the shape

refinement step helps the model to avoid local minima problems.

5.5 Cardiac Shape Atlas from High Resolution CT

5.5.1 Clinical Background

In this section, we evaluate the geometry processing and shape registration methods in

the framework proposed in Chapter 4 by generating cardiac shape atlas from high reso-

lution CT. As we mentioned, geometry processing and shape registration algorithms are

employed to generate 3D training data for the aforementioned applications (i.e., liver

segmentation and rodent brain segmentation), since mesh quality and one-to-one cor-

respondence are crucial for the performance of shape prior modeling and segmentation.

However, it is important to show that these geometry processing and shape registration
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methods can effectively produce such high quality meshes without sacrificing detail in-

formation. We choose this high resolution CT reconstruction task to validate our shape

atlas framework since such data contains many detail information.

Recent developments on the 320 multi-detector CT technologies have made the vol-

umetric acquisition of 4D high resolution cardiac images in a single heart beat possible.

We applied our framework to 10 cardiac CT volumes, which captures a whole cycle

of cardiac contraction. The CT data were acquired on a 320-MDCT scanner using

a conventional ECG-gated contrast-enhanced CT angiography protocol. The imaging

protocol parameters include: prospectively triggered, single-beat, volumetric acquisi-

tion; detector width 0.5 mm, voltage 120 KV, current 200− 550 mA. Reconstructions

were done at 10 equally distributed time frames in a cardiac cycle. The resolution of

each time frame is 512 × 512 × 320. Our reconstruction method successfully captured

the papillary muscles and the trabeculae of the left ventricle. The challenge of this

task is to handle these complex shape details. Our framework is able to provide high

quality meshes without removing these details. Furthermore, it can robustly discover

the one-to-one correspondence among different time frames.

5.5.2 Visual and Quantitative Comparisons

Figure 5.23: The cardiac shapes extracted from high resolution CT images. The com-
plex shape details are captured, such as the papillary muscles and the trabeculae.

Fig. 5.23 shows the shape atlas reconstruction results from high resolution cardiac

CT images, using geometry processing and shape registration methods. The three-

dimensional structures, their relationship and their movement during the cardiac cycle

are much more readily appreciated from the shape model than from the original volu-

metric image data. Fig. 5.24 visualizes the errors between our processed atlas and the
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(a) (b)

(c) (d)

Figure 5.24: Differences of the cardiac shape to the ground truth. Green colors mean
that the distances are within one voxel. Red colors mean under-segmentation while
blue colors mean over-segmentation. (a)(b)(c) Different frames of the differences of the
left ventricle to the ground truth. (d) Distances distribution of every frame.
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Figure 5.25: Comparison of smoothing methods. The left result is from the cotangent
weights, and the right one is from the uniform weights. Cotangent weights well preserve
shape details, while the uniform weights smooth out some local features.

Figure 5.26: Modes with largest variances, from −3σ to 3σ. The first mode represents
the changing of the volume size. The second mode is the changing of shape details such
as papillary muscles.
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original mesh annotated by clinical experts. The color indicates the distance from each

vertex of our results to the manual segmentation. Fig. 5.24(d) shows the quantitative

evaluation of the results. The mean distance from every vertex to the ground truth

is about one voxel. During the diastolic frames, which are frames 4 to frame 9, there

are smaller distances and less distance variations. On the other hand, during cardiac

systole, because of large deformations between neighboring frames, the results have

larger errors. Fig. 5.25 compares the results from different smoothing methods, i.e., us-

ing cotangent weights or uniform weights. Using cotangent weights can preserve more

details than the uniform weights since the vertices are moved toward the tangential

direction.

Fig. 5.26 visualizes the shape variation along the first and second principal direc-

tions. Due to the benefits of the detail preserved smoothing and one-to-one correspon-

dence shape registration, our framework is able to robustly handle such complex cases.

The first mode represents the changing of the volume magnitude, and the second mode

captures the changing of shape details such as the papillary muscles and the trabec-

ulae. Such information can be used in clinical applications to categorize the cardiac

properties.

5.5.3 Summaries

To summarize, our shape atlas framework is employed as a preprocess step to generate

high quality meshes and obtain one-to-one correspondence for all 3D applications. In

this section we have validated the performance of this framework by applying it on a very

challenge application, cardiac reconstruction from high resolution CT. The experiment

results show that mesh quality can be highly improved while the shape details are also

properly preserved. Thus, this framework is a reliable step for the preprocess of these

shape prior modeling methods such as ASM and SSC.

5.6 Discussion

The experimental results show the following facts.
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1. This implicitly incorporated shape constraint benefits the interpretation of im-

ages. Such shape-based information improves the robustness and accuracy of

low-level algorithms.

2. The sparse linear combination of shape repository is able to well approximate an

input shape if the input does not have gross errors. The L1 norm constraint of

e handles the non-Gaussian residuals caused by occlusion, mis-detection or point

missing.

3. Our method is able to use a subset of vertices on the contour and surface as the

input. Sparse learning is applied on this subset and computes a group of coeffi-

cients. Such coefficients are then used to combine the whole contour or surfaces,

which generate reasonable results. This property can seamlessly incorporate with

multi-resolution scheme. Our method can naturally extend to multi-resolution

without significant overhead of implementation or computational complexity.

4. When the number of training data are huge (e.g., thousands or millions), it is

infeasible to simply stack all shapes into the data matrix. In this case, dictio-

nary learning technique is employed to learn a compact dictionary, whose size

is much smaller than the whole dataset. Such dictionary highly improves the

computational efficiency without significantly sacrificing accuracy.

5. Mesh quality and one-to-one correspondence are two important requirements for

many shape prior modeling methods such as ASM and SSC. Our shape atlas

reconstruction framework generates such training meshes effectively. The mesh

quality is highly improved, while the detail information is still well preserved.

6. We use it to solve several diverse medical image applications with different modal-

ities and different types of shapes (i.e., 2D contour and 3D surface mesh). Thus

SSC is independent of the application or data dimension, and does not substan-

tially increase the computational complexity. Existing shape based segmentation

systems can be easily extended by adding this proposed method as a shape re-

finement module.
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Chapter 6

Conclusions

This thesis proposed a sparse representation based method to implicitly model shape

priors. It alleviates three challenging problems in a unified framework, i.e., modeling

complex shape variations, handling non-Gaussian errors and preserve local detail infor-

mation of the input shape. Some extensions have been proposed to improve its perfor-

mance and computational efficiency. They include multi-resolution support, modeling

of local shape priors using mesh partitioning, and dictionary learning. A segmenta-

tion framework is also proposed by using this method as a shape inference module

and shape refinement module. Furthermore, we have discussed an effective framework

to generate high quality training meshes as the input for these shape prior methods.

This framework is extensively validated on five very diverse and challenging medical

applications: 2D lung localization in X-ray images, 3D liver segmentation in low-dose

CT scans, 3D segmentation of multiple rodent brain structures in MR microscope, left

ventricle tracking in cardiac MRI, and reconstruction of cardiac shape atlas in high

resolution CT. Compared to state-of-the-art methods, our shape prior model exhibits

better performance in these studies.

There are some future directions to pursue toward the goal of robust shape prior

modeling. First, the spatial information is not exploited yet. Only positions of ver-

tices are considered in this proposed model. It is also desirable to further employ the

connectivity among vertices. For example, when one vertex is recognized as outliers,

its neighbors may also have a high probability to be outliers. In this case, traditional

sparse representation cannot properly employ such information. Structured sparsity or

group sparsity [46, 41] is able to incorporate such prior constraint. Spatial information

can be encoded as groups and modeled as a regularization term. Thus all vertices inside
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the same group have similar probability to be outliers or not. The potential challenge

is how to determine group size. Large group size can improve the robustness but also

increase computational overhead. Furthermore, grouping in 3D is also time and storage

consuming. Thus it is necessary to effectively model this information.

Second, the optimization framework can also be improved. Currently an EM type

of method is employed to find the sparse linear combination. Theocratically there is no

guarantee that such method can always find global minimum. Although our algorithm

works well in many real world applications, it is still desirable to develop an optimization

framework which simultaneously solves all unknown variables. A potential solution is

to use iterative linearization as the one used in robust alignment for linearly correlated

Images [64]. However, input for our system can have large misalignment. This may

cause problems for iterative linearization algorithms.

Third, currently linear combination is used to model shape priors. It is possible that

some shapes cannot be represented by this linear combination. Non-linear relations can

be investigated and properly employed to flexibly model shapes.

Last but not the least, we have applied this shape prior method on many medical

applications, including 2D/3D segmentation, tracking, etc. We also plan to apply it

on more medical applications, and also computer vision tasks, such as, but not limited

to, registration and face alignment. Particularly, we plan to work on shape analysis

using statistical information [34, 35]. Such analysis can be widely used in diverse

applications, such as understanding developmental and anatomical aspects of disorders

when comparing patients versus normal controls and studying morphological changes

caused by aging. We believe that SSC model can be potentially used in these algorithms

since shape prior can improve the performance and robustness.
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Indian Journal of Statistics, Series B, pages 65–81, 1998.

[52] G. Langs, N. Paragios, and S. Essafi. Hierarchical 3D diffusion wavelet shape
priors. In IEEE International Conference on Computer Vision, pages 1717–1724,
2010.

[53] K. Lekadir, R. Merrifield, and G. zhong Yang. Outlier detection and handling for
robust 3D active shape models search. IEEE Transactions on Medical Imaging,
26:212–222, 2007.

[54] C. Li, C. Xu, C. Gui, and M. D. Fox. Level set evolution without re-initialization:
A new variational formulation. IEEE Conference on Computer Vision and Pat-
tern Recognition, 1:430–436, 2005.

[55] M. Li, D. Mazilu, and K. Horvath. Robotic system for transapical aortic valve re-
placement with mri guidance. Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2008, pages 476–484, 2008.

[56] H. Ling, S. Zhou, Y. Zheng, B. Georgescu, M. Suehling, and D. Comaniciu.
Hierarchical, learning-based automatic liver segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–8, 2008.

[57] M. Lorenzo-Valdes, G. I. Sanchez-Ortiz, A. G. Elkington, R. H. Mohiaddin, and
D. Rueckert. Segmentation of 4D cardiac MR images using a probabilistic atlas
and the em algorithm. Medical Image Analysis, 8(3):255 – 265, 2004.

[58] M. Lustig, D. Donoho, and J. Pauly. Sparse mri: The application of compressed
sensing for rapid mr imaging. Magnetic Resonance in Medicine, 58(6):1182–1195,
2007.

[59] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse
models for image restoration. In International Conference on Computer Vision,
pages 2272 –2279, 2009.

[60] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. In
IEEE Transaction Signal Processing, pages 3397–3415, 1993.

[61] J. McEachen and J. Duncan. Shape-based tracking of left ventricular wall motion.
IEEE Transactions on Medical Imaging, 16(3):270–283, 1997.

[62] E. McVeigh, M. Guttman, R. Lederman, M. Li, O. Kocaturk, T. Hunt, S. Kozlov,
and K. Horvath. Real-time interactive mri-guided cardiac surgery: Aortic valve
replacement using a direct apical approach. Magnetic resonance in medicine,
56(5):958–964, 2006.

[63] J. A. Nahed, M. pierre Jolly, and G. zhong Yang. Robust active shape mod-
els: A robust, generic and simple automatic segmentation tool. In International
Conference on Medical Image Computing and Computer Assisted Intervention,
2006.



92

[64] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. Rasl: Robust alignment
via sparse and low-rank decomposition for linearly correlated images. In IEEE
Conference on Computer Vision and Pattern Recognition. 2010.

[65] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their con-
jugates. Citeseer, 1993.

[66] K. Pohl, S. Warfield, R. Kikinis, W. Grimson, and W. Wells. Coupling statistical
segmentation and pca shape modeling. Medical Image Computing and Computer-
Assisted Intervention, pages 151–159, 2004.

[67] A. Popovic, M. de la Fuente, M. Engelhardt, and K. Radermacher. Statistical
validation metric for accuracy assessment in medical image segmentation. Int J
Comput Assist Radiol Surg, 2:169–181, 2007.

[68] M. Rogers and J. Graham. Robust active shape model search. In European
Conference on Computer Vision, pages 517–530, 2002.

[69] M. Rousson and N. Paragios. Shape priors for level set representations. In Euro-
pean Conference on Computer Vision, volume 2351, pages 416–418. 2002.

[70] J. Saragih, S. Lucey, and J. Cohn. Face alignment through subspace constrained
mean-shifts. In International Conference on Computer Vision, pages 1034 –1041,
2009.

[71] D. Shen and C. Davatzikos. An adaptive-focus deformable model using statistical
and geometric information. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):906 –913, 2000.

[72] D. Shen, E. Herskovits, and C. Davatzikos. An adaptive-focus statistical shape
model for segmentation and shape modeling of 3-d brain structures. IEEE Trans-
actions on Medical Imaging, 20(4):257–270, 2001.

[73] T. Shen, X. Huang, H. Li, S. Zhang, and J. Huang. A 3d laplacian-driven para-
metric deformable model. In International Conference on Computer Vision, 2011.

[74] T. Shen, H. Li, and X. Huang. Active volume medical models for medical image
segmentation. IEEE Transactions on Medical Imaging, 2011.

[75] T. Shen, H. Li, Z. Qian, and X. Huang. Active volume models for 3D medical
image segmentation. IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 707 –714, 2009.

[76] T. Shen, S. Zhang, J. Huang, X. Huang, and D. Metaxas. Integrating shape
and texture in 3d deformable models: From metamorphs to active volume mod-
els. Multi Modality State-of-the-Art Medical Image Segmentation and Registration
Methodologies, pages 1–31, 2011.

[77] Y. Shi, F. Qi, Z. Xue, L. Chen, K. Ito, H. Matsuo, and D. Shen. Segmenting lung
fields in serial chest radiographs using both population-based and patient-specific
shape statistics. IEEE Transactions on Medical Imaging, 27(4):481 –494, 2008.

[78] K. Sjostrand and et.al. Sparse decomposition and modeling of anatomical shape
variation. IEEE Transactions on Medical Imaging, 26(12):1625 –1635, 2007.

[79] J. Starck, M. Elad, and D. Donoho. Image decomposition via the combination of
sparse representations and a variational approach. IEEE Transactions on Image
Processing, 14:1570–1582, 2004.



93

[80] M. Styner, G. Gerig, J. Lieberman, D. Jones, and D. Weinberger. Statistical
shape analysis of neuroanatomical structures based on medial models. Medical
Image Analysis, 7:207–220, 2003.

[81] P. M. Thompson and A. W. Toga. Detection, visualization and animation of
abnormal anatomic structure with a deformable probabilistic brain atlas based
on random vector field transformations. Medical Image Analysis, 1(4):271–294,
September 1997.

[82] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. In
IEEE Transaction Information Theory, pages 2231–2242, 2004.

[83] N. Tsekos, A. Khanicheh, E. Christoforou, and C. Mavroidis. Magnetic resonance-
compatible robotic and mechatronics systems for image-guided interventions and
rehabilitation: a review study. Annual Review Biomedical Engineering, 9:351–
387, 2007.

[84] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition
via sparse representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(2):210 –227, 2009.

[85] C. Xu and J. Prince. Snakes, shapes and gradient vector flow. IEEE Transactions
on Image Processing, 7:359–369, 1998.

[86] P. Yan and J. Kruecker. Incremental shape statistics learning for prostate tracking
in trus. In International Conference on Medical Image Computing and Computer
Assisted Intervention, pages 42–49, 2010.

[87] P. Yan, S. Xu, B. Turkbey, and J. Kruecker. Discrete deformable model guided
by partial active shape model for trus image segmentation. IEEE Transactions
on Biomedical Engineering, 57(5):1158–1166, 2010.

[88] Y. Zhan, M. Dewan, and X. S. Zhou. Cross modality deformable segmentation
using hierarchical clustering and learning. In International Conference on Medical
Image Computing and Computer Assisted Intervention, pages 1033–1041, 2009.

[89] Y. Zhan and D. Shen. Deformable segmentation of 3D ultrasound prostate im-
ages using statistical texture matching method. IEEE Transactions on Medical
Imaging, 25(3):256 –272, 2006.

[90] Y. Zhan, X. Zhou, Z. Peng, and A. Krishnan. Active scheduling of organ detection
and segmentation in whole-body medical images. In International Conference on
Medical Image Computing and Computer Assisted Intervention, pages 313–321,
2008.

[91] S. Zhang, J. Huang, Y. Huang, Y. Yu, H. Li, and D. Metaxas. Automatic image
annotation using group sparsity. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3312–3319. IEEE, 2010.

[92] S. Zhang, J. Huang, M. Uzunbas, T. Shen, F. Delis, X. Huang, N. Volkow,
P. Thanos, and D. Metaxas. 3D segmentation of rodent brain structures us-
ing active volume model with shape priors. IEEE International Symposium on
Biomedical Imaging, pages 433–436, 2011.

[93] S. Zhang, J. Huang, M. Uzunbas, T. Shen, F. Delis, X. Huang, N. Volkow,
P. Thanos, and D. N. Metaxas. 3d segmentation of rodent brain structures using
hierarchical shape priors and deformable models. In International Conference on



94

Medical Image Computing and Computer Assisted Intervention, volume 6893 of
LNCS, pages 611–618, 2011.

[94] S. Zhang, M. Uzunbas, Z. Yan, M. Gao, J. Huang, D. Metaxas, and L. Axel.
Construction of left ventricle 3D shape atlas from cardiac mri. Functional Imaging
and Modeling of the Heart, 6666:88–94, 2011.

[95] S. Zhang, X. Wang, D. Metaxas, T. Chen, and L. Axel. LV surface reconstruction
from sparse tMRI using laplacian surface deformation and optimization. In IEEE
International Symposium on Biomedical Imaging, pages 698–701, 2009.

[96] S. Zhang, Y. Zhan, M. Dewan, J. Huang, D. Metaxas, and X. Zhou. Deformable
segmentation via sparse shape representation. In International Conference on
Medical Image Computing and Computer Assisted Intervention, volume 6892 of
LNCS, pages 451–458, 2011.

[97] S. Zhang, Y. Zhan, M. Dewan, J. Huang, D. Metaxas, and X. Zhou. Sparse shape
composition: A new framework for shape prior modeling. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1025–1032, 2011.

[98] S. Zhang, Y. Zhan, M. Dewan, J. Huang, D. N. Metaxas, and X. S. Zhou. Towards
robust and effective shape modeling: Sparse shape composition. Medical Image
Analysis, 16(1):265 – 277, 2012.

[99] W. Zhang, P. Yan, and X. Li. Estimating patient-specific shape prior for medical
image segmentation. In International Symposium on Biomedical Imaging, pages
1451–1454. IEEE, 2011.

[100] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Four-
chamber heart modeling and automatic segmentation for 3D cardiac CT volumes
using marginal space learning and steerable features. IEEE Transactions on Med-
ical Imaging, 27:1668–1681, 2008.

[101] Y. Zhou, N. Tsekos, and I. Pavlidis. Cardiac mri intervention and diagnosis
via deformable collaborative tracking. In International Conference on Functional
Imaging and Modeling of the Heart, volume 6666 of LNCS, pages 188–194. 2011.

[102] Y. Zhou, E. Yeniaras, P. Tsiamyrtzis, N. Tsekos, and I. Pavlidis. Collaborative
tracking for MRI-guided robotic intervention on the beating heart. Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2010, pages 351–358,
2010.

[103] S. Zhu and A. Yuille. Region Competition: Unifying snakes, region growing, and
Bayes/MDL for multi-band image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(9):884–900, 1996.

[104] Y. Zhu, X. Papademetris, A. Sinusas, and J. Duncan. Bidirectional segmentation
of three-dimensional cardiac MR images using a subject-specific dynamical model.
International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 450–457, 2008.

[105] Y. Zhu, X. Papademetris, A. Sinusas, and J. Duncan. Segmentation of left ven-
tricle from 3D cardiac MR image sequences using a subject-specific dynamical
model. IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[106] Y. Zhu, X. Papademetris, A. Sinusas, and J. Duncan. A dynamical shape prior for
LV segmentation from RT3D echocardiography. In International Conference on



95

Medical Image Computing and Computer Assisted Intervention, pages 206–213,
2009.

[107] Y. Zhu, X. Papademetris, A. Sinusas, and J. Duncan. Segmentation of the left
ventricle from cardiac MR images using a subject-specific dynamical model. IEEE
Transactions on Medical Imaging, 29(3):669–687, 2010.

[108] X. Zhuang, K. Rhode, R. Razavi, D. Hawkes, and S. Ourselin. A registration-
based propagation framework for automatic whole heart segmentation of cardiac
MRI. IEEE Transactions on Medical Imaging, 29(9):1612 –1625, 2010.



96

Chapter 7

Curriculum Vitae

Education

• Rutgers University, New Brunswick, NJ 2007 - 2012
Ph.D., Computer Science (GPA 4.00/4.00)

• Shanghai Jiao Tong University, Shanghai, China 2005 - 2007
M.S., Computer Software and Theory

• Zhejiang University, Hangzhou, China 2001 - 2005
B.E., Software Engineering

Experience

• Research Assistant, Rutgers University, 2009 - 2011
• Research Intern, NEC Laboratories America, Inc., summer 2011
• Research Intern, Siemens Healthcare USA, Inc., summer 2010
• Teaching Assistant, Rutgers University, 2007 - 2009
• Research Assistant, Shanghai Jiao Tong University, 2005 - 2007

Publications

• Journal Papers and Book Chapters

1. [MedIA’12] Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Junzhou Huang,
Dimitris Metaxas and Xiang Zhou: Towards Robust and Effective Shape
Modeling: Sparse Shape Composition, Medical Image Analysis, Volume 16,
Issue 1, Pages 265-277, January 2012.

2. [MedIA’11] Junzhou Huang, Shaoting Zhang and Dimitris Metaxas: Effi-
cient MR Image Reconstruction for Compressed MR Imaging, Medical Image
Analysis, Volume 15, Issue 5, pp. 670-679, October 2011.

3. [CVIU’11] Junzhou Huang, Shaoting Zhang and Dimitris Metaxas: Com-
posite Splitting Algorithms for Convex Optimization, accepted by Computer
Vision and Image Understanding.

4. [BookChapter’11] Tian Shen, Shaoting Zhang, Junzhou Huang, Xiaolei
Huang and Dimitris Metaxas: Integrating Shape and Texture in 3D De-
formable Models: From Metamorphs to Active Volume Models, Multi Modal-
ity State-of-the-Art Medical Image Segmentation and Registration Method-
ologies, (corresponding author).

5. [GMOD’11] Shaoting Zhang, Junzhou Huang and Dimitris Metaxas: Ro-
bust Mesh Editing Using Laplacian Coordinates, Graphical Models, volume
73, issue 1, pp.10-19, 2011.



97

• Selected Conference Papers

1. [ICCV’11a] Hongsheng Li, Junzhou Huang, Shaoting Zhang, and Xiaolei
Huang: Optimal Object Matching via Convexification and Composition, ac-
cepted by 13th International Conference on Computer Vision, 2011.

2. [ICCV’11b] Tian Shen, Xiaoleo Huang, Hongsheng Li, Shaoting Zhang,
and Junzhou Huang: A 3D Laplacian-Driven Parametric Deformable Model,
accepted by 13th International Conference on Computer Vision, 2011.

3. [MICCAI’11a] Shaoting Zhang, Junzhou Huang, Mustafa Uzunbas, Tian
Shen, Foteini Delis, Xiaolei Huang, Nora Volkow, Panayotis Thanos and
Dimitris N. Metaxas: 3D Segmentation of Rodent Brain Structures Using
Hierarchical Shape Priors and Deformable Models, accepted by 14th Annual
International Conf. on Medical Image Computing and Computer Assisted
Intervention, 2011.

4. [MICCAI’11b] Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Junzhou
Huang, Dimitris Metaxas and Xiang Zhou: Deformable Segmentation via
Sparse Shape Representation, accepted by 14th Annual International Conf.
on Medical Image Computing and Computer Assisted Intervention, 2011.
(MICCAI Young Scientist Award Runner-Up)

5. [MICCAI’11c] Scott Kulp, Mingchen Gao, Shaoting Zhang, Zhen Qian,
Szilard Voros, Leon Axel and Dimitris Metaxas: Using High Resolution Car-
diac CT Data to Model and Visualize Patient-Specific Interactions Between
Trabeculae and Blood Flow, accepted by 14th Annual International Conf.
on Medical Image Computing and Computer Assisted Intervention, 2011.

6. [MICCAI’11d] Ting Chen, Yiqiang Zhan, Shaoting Zhang and Maneesh
Dewan: Automatic Alignment of Brain MR Scout Scans using Data-adaptive
Multi-structural Model, accepted by 14th Annual International Conf. on
Medical Image Computing and Computer Assisted Intervention, 2011.

7. [CVPR’11] Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Junzhou Huang,
Dimitris Metaxas, Xiang Sean Zhou: Sparse Shape Composition: A New
Framework for Shape Prior Modeling, In Proc. of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, 2011.

8. [FIMH’11a] Mingchen Gao, Junzhou Huang, Shaoting Zhang, Zhen Qian,
Szilard Voros, Dimitri Metaxas and Leon Axel: 4D Cardiac Reconstruction
Using High Resolution CT Images , In the Proc. of the International Con-
ference on Functional Imaging and Modeling of the Heart, LNCS 6666, 2011.
(Best Paper Award)

9. [FIMH’11b] Shaoting Zhang, Mustafa Uzunbas, Zhennan Yan, Mingchen
Gao, Junzhou Huang, Dimitri Metaxas and Leon Axel: Construction of
Left Ventricle 3D Shape Atlas from Cardiac MRI , In the Proc. of the
International Conference on Functional Imaging and Modeling of the Heart,
LNCS 6666, 2011.

10. [ISBI’11] Shaoting Zhang, Junzhou Huang, Mustafa Uzunbas, Tian Shen,
Foteini Delis, Xiaolei Huang, Nora Volkow, Panayotis Thanos, Dimitris
Metaxas: 3D Segmentation of Rodent Brain Structures Using Active Volume



98

Model With Shape Priors , In the Proc. of the IEEE Int’l Symposium on
Biomedical Imaging: From Nano to Macro, 2011. (oral presentation)

11. [MICCAI’10] Junzhou Huang, Shaoting Zhang and Dimitris Metaxas: Ef-
ficient MR Image Reconstruction for Compressed MR Imaging, In Proc. of
the 13th Annual International Conference on Medical Image Computing and
Computer Assisted Intervention, LNCS 6361, pp. 135-142, 2010. (MICCAI
Young Scientist Award)

12. [ECCV’10] Junzhou Huang, Shaoting Zhang and Dimitris Metaxas: Fast
Optimization for Mixture Prior Models, In Proc. of the 11th European Con-
ference on Computer Vision, LNCS 6313, pp. 607-620, 2010.

13. [CVPR’10a] Shaoting Zhang, Junzhou Huang, Yuchi Huang, Yang Yu,
Hongsheng Li and Dimitris Metaxas: Automatic Image Annotation Using
Group Sparsity, In Proc. of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 3312-3319, 2010. (oral pre-
sentation, acceptance rate 4.5%)

14. [CVPR’10b] Yuchi Huang, Qingshan Liu, Shaoting Zhang and Dimitris
Metaxas: Image Retrieval via Probabilistic Hypergraph Ranking, In Proc.
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 3376-3383, 2010.

15. [ISBI’10] Shaoting Zhang, Junzhou Huang, Wei Wang, Xiaolei Huang and
Dimitris Metaxas: Discriminative Sparse Representations for Cervigram Im-
age Segmentation, In Proc. of the IEEE Int’l Symposium on Biomedical
Imaging: From Nano to Macro, pp. 133-136, 2010.

16. [EG’10a] Shaoting Zhang, Andrew Nealen and Dimitris Metaxas: Skele-
ton Based As-Rigid-As-Possible Volume Modeling, In Proc. of Eurographics
short papers, 2010.

17. [EG’10b] Peter Borosan, Reid Howard, Shaoting Zhang and Andrew Nealen:
Hybrid Mesh Editing, In Proc. of Eurographics short papers, 2010.

18. [IBSI’09] Shaoting Zhang, Xiaoxu Wang, Dimitris Metaxas, Ting Chen and
Leon Axel: LV Surface Reconstruction From Sparse tMRI Using Laplacian
Surface Deformation And Optimization, In Proc. of the IEEE Int’l Sympo-
sium on Biomedical Imaging: From Nano to Macro, pp. 698-701, 2009.

19. [MICCAI’08] Xiaoxu Wang, Ting Chen, Shaoting Zhang, Dimitris Metaxas,
and Leon Axel: LV Motion and Strain Computation from tMRI Based on
Meshless Deformable Models, In Proc. of the 13th Annual International
Conference on Medical Image Computing and Computer Assisted Interven-
tion, LNCS 5241, pp. 636-644, 2008.

Patents

• [Siemens] Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Ting Chen and Xi-
ang Zhou: System and Methods for Robustly Learning Shape Statistics Using
Sparse Representation, invention disclosure, Docket Number: 2010E20120 US.



99

• [Siemens] Ting Chen, Maneesh Dewan, Yiqiang Zhan, Shaoting Zhang and Xi-
ang Zhou: Adaptive Multi-Structural Atlas Construction for Auto Align System,
invention disclosure, Docket Number: 2010E17098 US.

• [SJTU] Lixu Gu and Shaoting Zhang: Real-time Collision Detection in Surgical
Simulation System, filed in China, application number: 200610147640.0

• [SJTU] Lixu Gu, Jingsi Zhang, Shaoting Zhang and Pengfei Huang: Simula-
tion of Cutting and Stitching for Deformable Models, filed in China, application
number: 200610147641.5

• [SJTU] Lixu Gu, Pengfei Huang and Shaoting Zhang: Deformation Simulation
Using Skeleton Based Mass-Spring Model, filed in China, application number:
200610148207.9


