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ABSTRACT OF THE DISSERTATION 

Maximally selected test statistics: Methodology and Application 

By YUHUI MA 

Dissertation Director: 

Dr. Pamela A. Ohman Strickland 

In clinical or public health research studies, an investigator often assumes that some 

continuous predictive variable X allows classifying study population into a risk and a 

normal group with respect to a response variable Y.  The aim of these research efforts is 

to transform a continuous variable into a binary variable by identifying a threshold or 

cutpoint in the predictor to distinguish different groups with high or low probabilities of 

favorable outcomes.  Several methods including maximally selected chi-square statistics, 

maximally selected rank statistics and Koziol’s exact finite sample distribution approach 

to search for the optimal cut point have been reviewed and compared in Chapter 1. Since 

utilizing the maximally selected rank statistic to analyze semi-continuous predictors has 

not been discussed in the literatures, this dissertation provides the comparison of the null 

distribution, power curve, precision of cut point estimation between semi-continuous and 

continuous predictive variables via simulation.  In Chapter 2, we confirmed the critical 

values to reject the null hypotheses are lower in semi-continuous predictors compare to 

continuous predictors.  In Chapter 3, we show the power of maximally selected rank 

statistic from the semi-continuous predictor is stochastically larger than that from the 

continuous predictor. In Chapter 4, we found besides the sample size and effect size, the 

location of the true cut-point also affects the precision of the cut-point estimates.  

Compared to the continuous predictor, the semi-continuous predictor has higher 

percentage of correct cut-point estimates.  The null distributions for semi-continuous 

predictor simulated in Chapter 1 are then applied to the study of “lead exposure, HPA 

dysfunction, blood pressure and hypertension risk” (Fiedler 2010) in Chapter 6 to 

determine the cut point in blood lead level that triggers increased stress.  This application 

focused on the multivariate relationship between predictor variables and response 

variable, which were not discussed in the literature. After adjusted by other confounder 
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variables through the regression residuals, a significant cut-point of 2 μg/dL in blood lead 

level is identified.  Since the use of the regression residual of the response variable 

violates the independence assumption of this maximally selected rank statistics, this 

dissertation also demonstrated the robustness of this assumption in chapter 5. 
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CHAPTER 1:  LITERATURE REVIEW AND METHODOLOGY 
IMPLEMENTATION  

1.1 Abstract 

In clinical and public health research studies, the prognostic factors or predictive 

variables are often measured on a continuous or semi-continuous scale. In certain 

circumstances, cutpoints can be defined for these prognostic factors to delineate the study 

population into normal and at risk groups with high or low probabilities of favourable 

outcomes with respect to a response variable Y.  An optimal cutpoint search method is 

introduced in this chapter. Methods from the statistical and medical literature for 

calculating appropriate p-values of these optimal cutpoints, such as large sample 

approximations and small sample exact methods of maximally selected Chi-square 

statistics and maximally selected rank statistics, are discussed and compared in this 

chapter. 

1.2 Introduction 

In clinical or public health studies, an investigator often assumes that some prognostic 

factor X allows for a classification of population into a risk and a normal group with 

respect to a response variable Y.  The aim of the research effort is to find a threshold or 

cutpoint in the prognostic factor to distinguish different groups with high or low 

probabilities of favourable outcomes. From medical research point of view, a cutpoint 

may be preferred for (1) offering a simple risk classification into “high” verse “low” 

(Schulgen 1994), (2) establishing eligible criteria for prospective studies (Mazumdar 

2000), (3) setting diagnostic criteria for disease and assisting in making treatment 

recommendations (Mazumdar 2000), and (4) imposing an assumed biological threshold.   

For a quantitative prognostic factor, the straightforward and popular method to find a 

cutpoint is to test each observed value in a systematic manner and select the cutoff value 

which maximizes the measure of difference in response between the two groups of 

subjects.  In other words, the cutpoint defining “normal” and “risk” groups is the one 

with minimal p-value relating the prognostic factor to outcome.  The cutpoint so chosen 

is often termed “optimal”, but this description without any p-value correction is 
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inadvisable because of the well-known problem of multiple testing.  Altman has 

demonstrated in a simulation that when this approach is used, the probability of obtaining 

a significant result (at α=0.05 level) from the logrank test, when there is no actual 

relationship between the variables, i.e. the type I error, is inflated to 0.4 (Altman 1994). 

Several methods for calculating appropriate p-values and unbiased effect measures with 

optimal cutpoints have been documented in the statistical and medical literature, and will 

be discussed throughout this chapter.  Theoretical considerations behind these methods 

allow a correction of the minimal p-value for the multiple testing, leading to a true false-

positive rate of 5%. 

In the case when the outcome variable Y is binary and the predictive variable X is 

continuous, a cutpoint might be examined by searching in the range of X and then 

performing an association test for the obtained 2 × 2 contingency table using the chi-

square statistics.  Miller and Siegmund show that the distribution of the maximally 

selected chi-square statistic, i.e. the maximal chi-square statistic over all possible 

cutpoints, converges to a normalized Brownian bridge under the null-hypothesis of no 

association between X and Y, which is different from the known chi-square distribution 

(Miller and Siegmund 1982).  The distribution of this maximally selected Chi-square 

statistic in the small sample case is examined by Halpern in a simulation study (Halpern 

1982), while Koziol derives the exact distribution of maximally selected Chi-squared 

statistic using a combinatorial approach (Koziol 1991).  In the case when the outcome 

variable Y is binary and the predictive variable X is in nominal or ordinal scales, 

Boulesteix has developed the exact distribution to handle the case of optimally selected 

splits (Boulesteix 2006a; Boulesteix 2006b). 

In the case when the outcome is ordered, quantitative or censored variable, Lausen and 

Schumacher developed the asymptotic null distribution of maximally selected rank 

statistic.  This asymptotic null distribution of maximally selected rank statistic is then 

compared with Monte Carlo simulation results by using continuous predictive variable X 

(Lausen 1992; Lausen 2004).   

This chapter is organized as follows.  In section 1.3, we introduce the graphic diagnosis 

for the appropriateness of using a cutpoint model.  In section 1.4, we introduce the 
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maximally selected Chi-square statistics used for binary outcome variable, which 

includes the asymptotic approximation, Koziol’s exact method for small samples with 

continuous predictor as well as Boulesteix’s exact method for ordinal predictor.  In 

section 1.5, we introduce the maximally selected rank statistics used for continuous and 

censored response variables, which includes the asymptotic approximation and 

simulation results for finite samples.  All of these maximally selected statistics are 

discussed under the null hypothesis that predictor and response variables are 

stochastically independent.  To illustrate the use of these maximally selected statistics 

methods, in section 1.6 we describe some studies that have utilized these cut point finding 

techniques as examples.  

1.3 Graphic diagnosis 

In the absence of any a priori clinical information regarding the prognostic relationship 

between a covariate and outcome, the appropriateness of a cutpoint model is often 

determined empirically with graphical and numerical results. 

Boulesteix (2007) and Mazumdar (2000) depicted some extreme examples in figure 

1.1.1, in which X is the predictor variable and could be continuous or ordinal; Y is the 

outcome variable and could be binary or continuous. The mean of Y is plotted against X, 

therefore when Y is binary the mean of Y is the proportion at each value of X. An 

approximately horizontal graph of type (a) indicates poor association between X and Y.  

Types (b) and (c) correspond to ideal situation to use a single cutpoint model, since the 

underlying relationship between the outcome and prognostic variable is a step function. 

Types (d) and (e) correspond to strong monotonic associations in which no apparent 

cutpoint dividing X into high and low outcome risk groups. Type (f) indicates non-

monotonic association, a single cutpoint model can not be used to divide X into two 

distinct (high and low) outcome risk groups. 
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Figure 1.1.1  Plot of mean of outcome variable against predictor variable 
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1.4 Maximally selected chi-square statistics 

1.4.1 Asymptotic Approximation of Maximally Selected Chi-Square Statistics 

Suppose we have a binary outcome Y (Y = 0, 1) and a continuous predictor X.  When 

searching for the point in X that best separates the two groups, this predicator variable X 

will be dichotomized. And the following 2 x 2 table is used to calculate the χ2 statistic.   

Y xX   xX    

1 a b 
1n  

0 c d 
2n  

 a+c b+d N 

 

For a given x, the square root of the chi-square statistic can be written as 

   

  2

1

21

21
2

1
2

)
11

()(ˆ1)(ˆ

)(ˆ)(ˆ
)(
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









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nn
xFxF

xFxF
                                                                (1) 

Where are estimates of the empirical distribution of X for population 1 

(subjects with Y=1), population 2 (subjects with Y=0) and the common population 

under , respectively with forms of  
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FFF  210 :H
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Miller and Siegmund (1982) show that the maximally selected statistic of 2

1
2 )(  

converges to a normalized Brownian bridge of 
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association between X and Y. Where W0(t) is a tie-down Wiener process (Brownian 

bridge) on [0, 1] with t=F(x).  In order to have a considerable number of observations in 

each of the separated groups, the search of x, the cut point, will be over the interval of 

[ , ] in order statistic, where ε) )( 2
1 F( 1

1 F 1, ε2 are the percentiles with range from (0, 

1) and ε1 < ε2. Typically ε1 = 0.1 and ε2 = 0.9.  F(x) is the empirical distribution function 

on total sample size of N.  Use M (ε1, ε2) to indicate the maximally selected 2

1
2 )(  

statistics over the interval of  to , its asymptotic approximation is listed 

as following. 

)( 1
1 F )( 2

1 F

)}({)
(4 1

1

2 ddo
d

d
d

d 

  log()

1
)((

)
d]), 2 d 

1/(j

([ 1Mpr 

j

 for 0< ε1< ε2<1, 

is the standard normal density )
2

1
exp()2( 22

1

d


 .   and )(dWhere )j 

2

1
2 )(Since the  follows standard normal distribution on [0, +∞), table 1.1.1 and figure 

1.1.2 show the comparison between M (ε1, ε2) and standard normal density.  Table 1.1.1 

gives the critical constants of M (ε1, ε2) for α=.10, .05, .01, ε1=.25, .10 and ε2=1- ε1. 

These critical constants should be compared with 1.64, 1.96 and 2.59, respectively. 

According table 1.1.1 and figure 1.1.2, by using the optimal search of the M (ε1, ε2), the 

critical values increased in order to maintain the same significance level as those on the 

ordinary Chi square table.  The most commonly used critical value of 1.96 corresponds to 

a type I error rate around 0.5 in the asymptotic distribution of M (ε1, ε2) when the search 

is within the central 80% of the combined data. 
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Table 1.1.1 Upper α quartile points of the M (ε1, ε2), where the maximum is over 
 to , compare to the standard normal density. )( 1F 1 1 )( 2F

[ε1, ε2] α 

[0.25, 0.75] [0.10, 0.9] 

Standard 

Normal Density 

0.10 2.54 2.78 1.64 

0.05 2.83 3.05 1.96 

0.01 3.40 3.59 2.58 

 

Figure 1.1.2 Asymptotic cumulative probability of M (ε1, ε2) compare to the 
standard normal density under H0. 

 

Note: The maximum is over  to  )( 1
1 F )( 2

1 F
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1.4.2 Null Distributions of Maximally Selected Chi-Square Statistics for Small Sample 

Size 

Halpern (1982) studied the finite-sample distribution of this maximally selected chi-

square statistic via simulation.  Koziol (1991) derived the exact distribution of maximally 

selected χ2 statistics given the sample size in each response group as n and m using 

Durbin’s combinatorial approach (Durbin, 1971 and1973).   

Consider the notation in the following 2×2 table as an example. 

Group X ≤ Xi X > Xi Total 

Y=1 ni  n 

Y=2 i- ni  m 

Total i  n+m 

Let X11, X12, ..., X1n denote the observations from the first group with empirical 

distribution function Fn; X21, X22, ..., X2m the observations from the second group with 

empirical distribution function Gm; and X1 ≤ X2 ≤ ... ≤ Xn+m the ordered observations 

from the combined sample.  For the x in the interval [Xi, Xi+1),  

),()()(
mn

i

n

n

m

mn

m

ni

n

n
xGxF iii

mn 






  

where ni is the number of X’s that are less than or equal to Xi. 

Let andnniF inm /)(  )/()( mniiH nm  , mni  ,,1 .  Then from the equation (1) in 

section 1.4.1, the exact maximally selected 2

1
2 )(  statistic for testing the equality of the 

underlying continuous distributions F and G of the first and second groups, respectively, 

may be written as 

 
2/1

1,,1

11
)](1)[()()(max 














 








mn
iHiHiHiF

m

mn
A nmnmnmnm

mni
nm


 

and  
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 
2/1

1,,1

11
)](1)[()()(max 














 








mn
iHiHiFiH

m

mn
A nmnmnmnm

mni
nm


 

Using   nmnmnm AAA ,max  to indicate the exact maximally selected 2

1
2 )(  statistic, the 

finite-sample null distribution of Anm can be directly determined by using the 

combinatorial approach of Durbin.  Let d > 0 be arbitrary, and consider the graph of 

Fnm(i) as a function of i. if , then all points (i, FdAnm 
nm(i)) must lie below or on the 

curve of 

mn

i

mnmn

i

mn

i

mn

md
y

















 













2/1
11

1  

Similarly, if  then all points (i, FdAnm 
nm(i)) must lie above or on the curve of 

mn

i

mnmn

i

mn

i

mn

md
y

















 














2/1

11
1  

Let ,1,
11

1:max
2/1

nj
mn

i

mnmn

i

mn

i

mn

md

n

j
ib j 





























 











  

,10,
11

1:min
2/1






























 





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





 nj
mn

i
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i

mn

i

mn

md

n

j
ic j  

The graph of Fnm(i) will cross the upper boundary or the lower boundary or both if and 

only if it passes through at least one of the points   )/,(,/, njcnjb jj .  Let these points 

satisfying this criterion be labeled in the order of increasing i, with the 

convention that if there are two such points for the same i they are labeled in increasing 

order of j.  Then A

qBBB ,,, 21 

nm>d if and only if the graph of Fnm(i) passes through one or more of 

.  Based on Durbin’s methods, Koziol (1991) derived recursive formulas for 

computing this probability as given below. 

qBBB ,,, 21 

  













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



 

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r
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Where    

























1

1

,,,2,
s

r
r

rs

rs

s

s
s qsb

jj

ii

j

i
b  










1

1
1 j

i
b

The results from Koziol’s exact finite sample distribution approach agree well with 

Halpern’s simulated values.  Table 1.1.2 gives the comparison on the critical values 

obtained from the simulated finite sample distribution (Halpern 1982), the Koziol’s exact 

finite sample distribution approach and from asymptotic approximation.  Figure 1.1.3 

gives the comparison on the critical values obtained from the exact maximally selected 

Chi-square statistics (Koziol 1991) and those from asymptotic approximation (Miller and 

Siegmund 1982) as well as the standard normal distribution. 

When sample size is 50, the 90th and 95th quartile points of the Anm differ by about 7 – 

8% from the Miller and Siegmund’s asymptotic values. When sample size is 100, the 

90th and 95th quartile points of the Anm differ by about 4 – 5% from the Miller and 

Siegmund’s asymptotic values. The asymptotic approximation (Miller and Siegmund 

1982) is comparable with those from exact sample distribution at sample size of 200. 
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Table 1.1.2 Upper α quartile points of Anm under H0 from Halpern’s finite sample 
simulation results, Koziol’s exact finite sample distribution approach 
and large sample asymptotic approximation. 

α=0.10 α=0.05 α=0.01 

Halpern† Halpern† Halpern† 

N 

ε=0.25 ε=0.1 

Koziol‡

ε=0.25 ε=0.1 

Koziol‡

ε=0.25 ε=0.1 

Koziol‡

20  2.247 2.343 2.345 2.343 2.583 2.684 2.927 2.927 3.147 

50  2.358 2.612 2.612 2.687 2.853 2.850 3.150 3.150 3.312 

100 2.431 2.700 2.701 2.800 3.030 2.949 3.491 3.564 3.430 

200  2.520 2.711  2.807 2.944  3.225 3.557  

∞* 2.54 2.78  2.83 3.05  3.40 3.59  

†: obtained after taking square root on Halpern’s simulation results table 1b; 

*: obtained from Miller and Siegmund (1982)’s asymptotic approximation. 

‡: due to the large sample size, the Anm is not able to be calculated for N = 200 from 
Koziol’s exact finite sample distribution approach. 
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Figure 1.1.3 Koziol’s exact probability of Anm compare with Miller and 
Siegmund’s asymptotic probability of M (ε1, ε2). 

 

Note: M is Anm from Koziol’s exact statistics and M (ε1, ε2) from Miller and 
Siegmund’s asymptotic statistics. 
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1.4.3 Null Distributions of Maximally Selected Chi-Square Statistics for ordinal 

predictor variables 

Boulesteix (2006) presented an exact method to compute the maximally selected Chi-

Square statistics for non-continuous predictor variables of at least ordinal measurement 

scale (which include e.g. classical ordinal or discrete variables).  More specifically, some 

instances of discrete variables, which are essentially continuous variables measured in a 

discrete form in practice, include the height of a newborn baby given in centimeters or 

the blood lead level measured in integer scale.  For such variables, if there are K distinct 

values and N subjects, we generally have K<N if N is large enough, whereas continuous 

variables may be assumed to take N distinct values in the sample.  The exact method 

proposed by Boulesteix is similar to Koziol’s (1991) exact method, which uses Durbin’s 

combinatorial as an approach but takes into account the possibility of multiple samples 

with same value of X.  

Considering the following 2 x 2 contingency table for a given sample (xi, yi)i=1,..., N,  let 

a1<...<aK denote the different values taken by X. 

Group X ≤ ak X > ak Total 

Y=1 
kan ,1  

kan ,1  N1 

Y=2 
kan ,2  

kan ,2  N2 

Total 



 
k

j
ja mn

k
1

, 


 
K

kj
ja mn

k
1

,

N 

Use Ak to indicate the maximally selected 2

1
2 )(  statistic obtained from the above table, 

Ak can be formulated as   kkk AAA ,max ,  

where 
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
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
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
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
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and 



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
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j
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Similar to Koziol’s method, let d > 0 be arbitrary. In order to have Ak ≤ d if and only if 

all the points with coordinates ( ) for k=1, ..., K-1 lie on or above the curve of ,, kan  kan ,2
















 

21

212 11
1)(

NNN

x

N

x

N

dNN

N

xN
xlowerd  

and below or on the curve of 
















 

21

212 11
1)(

NNN

x

N

x

N

dNN

N

xN
xupperd  

A sufficient and necessary condition for Ak ≤ d is that the graph (i, N2(i)) does not pass 

through any point of integer coordinates (i, j) with and 

 or 

kani  ,

),min()( 2 iNjiupperd  )(),0max( 1 ilowerjNi d .  Use  to denote 

these points of (i

qBB ,,1 

1, j1), ..., (iq, jq), where are labeled in the order of increasing i 

and increasing j within each i.  The same as Koziol’s method, by using Durbin’s 

combinatorial approach, the probability of A

qBB ,,1 

k ≤ d can be calculated using the following 

equation. 

  
















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Where    

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








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According to Boulesteix (2006), Koziol’s approach is inappropriate for measuring the 

association between a binary variable Y and a non-continuous variable X where the 

number of distinct values of X is substantially less than the sample size.   
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Figure 1.1.4a and 1.1.4b show the distribution of the exact maximally selected 2

1
2 )(  

statistic for small samples.  When the predictor variable is continuous, the Koziol’s exact 

method is applied.  When the predictor variable is at least ordinal, the Boulesteix’s exact 

method is applied.  In figure 1.1.4a the sample size is 20 and 4 distinct levels are used for 

the at least ordinary predictor.  In figure 1.1.4b the sample size is 50. The numbers of 5 

and 10 distinct levels are used for the at least ordinary predictor.   

According figures 1.1.4a and 1.1.4b, when the predictor variable is discrete the quartile 

points of the exact maximally selected 2

1
2 )(  statistic are stochastically less than those 

from the continuous predictor variable given the same sample size.  When the predictor 

variable is in discrete scale, the quartile points of the Ak statistic increase when the 

number of distinct levels, i.e. number of potential cut points, increases. 
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Figure 1.1.4a  Comparison of the exact probability of maximally 

selected 
2

1
2 )(  statistics between continuous predictor 

variable and at least ordinal predictor variable with sample 
size of 20. 
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Figure 1.1.4b  Comparison of the exact cumulative probability of 

maximally selected 
2

1
2 )(  statistics between continuous 

predictor and at least ordinal predictor variable with different 
number of distinct levels given sample size of 50. 

 

Note: A is Anm used in the Koziol’s exact method and Ak used in the Boulesteix’s exact 
method. 

  
 

 



 18 
 

1.5 Maximally selected rank statistics for Continuous Response 

Variables 

1.5.1 General form of the test statistics 

When the response variable is not binary, Lausen and Schumacher (1992) developed the 

asymptotic approximation for the maximally selected rank statistic, which extended the 

area of application to continuous and censored response variables.  When there exists a 

cutpoint μ in X, it determines two groups of observations; the groups are defined by all 

individuals whose X values are either below (or equal to) or above a certain cutpoint.  

Since the cutpoint is unknown, the estimation of and testing the significance about the 

cutpoint would be of interest.  Analysing the significance of a cutpoint, the null 

hypothesis H is that the event X  has no influence on the distribution of Y for all μ: 

)|Pr()|Pr(:0   XyYXyYH  for all y,   

A simple linear rank statistic  is introduced by Lausen and Schumacher (1992) as nS





}{

),(



iX

innn RaS  

Where  denote the ranks of  and  denote the 

scores, i.e., in the case of tied or censored observations,  denotes the mid-scores 

or the scores given by the log-rank statistic or when set the scores equal to the ranks this 

 , i.e. , defines the Wilcoxon two-sample rank statistic. 

nninn RRR ,,,,1 

ininn RRa )(

ni YYY ,,,,1 

)( inn Ra

)( inn Ra

nS

 Under the null hypothesis the following conditional expectation and the conditional 

variance of  can be written as nS

nnXn anFSE )()(    

and  )),(1)(()var( 2  nXnXnn FnFAS 
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where  


n

i ninn aanA
1

22 ,)()]1/(1[  with  


n

i innnin anaiaa
1

,)/1(),(  and 

 is the empirical distribution function of X, in which I denotes 

an indicator function; i.e., I=1 for 





n

i
XnX i

InF
1

}{)/1()( 

}{ iX  and I=0 otherwise. 

With the above expectation and variance of  Lausen and Schumacher (1982) 

developed a standardized rank test statistic  as in below 

nS

nT




 







n

i
nnXinnX

nXnXn
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aFRaI
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1

2/1

2/1

).)()((
))](1)(([

1

))(var(

)(


 






                                    (2) 

In order to have a reasonable amount of data in both groups, the hypothetical cutpoint μ is 

restricted to an interval and the sample quartiles are used for the interval bounds; i.e., 

 where )],(),([ 2
1

1
1   nXnX FF 10 21    and  txFxtF nxnX  )(:min)(1 .   

The maximally selected rank statistic ),( 21 nM  is of interest and defined by  


 n

xx
n TM

],[
21

21

max),(


 ,  

where . 10),(),( 212
1

21
1

1    andFxFx nxnx

1.5.2 A special case in Wilcoxon two-sample rank statistic 

Use the special case of Wilcoxon rank-sum test as an example the equation (2) of 

standardized rank test statistic in section 1.5.1 can be simplified as  

)var(

)(






n

nn
n

S

SES
T


 , which is the large sample approximation on Wilcoxon rank-sum 

test.  The  is the sum of the ranks on Y for the group with X values below or equal to 

a certain cut point of μ. 

nS

For the Wilcoxon rank-sum test without ties, use  to denote the number of 

observations with X values below (or equal to) or above a certain cut point of μ 

  nn ,
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respectively, and use n to denote the total sample size, the  and  can be 

calculated using the following equations. 

)( nSE )var( nS

12

)1(
)var(

2

)1(
)(


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1.5.3 The use of Log rank statistic 

When the outcome interest is in survival time the equation (2) of standardized rank test 

statistic in section 1.5.1 can be written as log rank statistic.  In which the  is the sum 

of the events at each time point for group with values in predictor variable below the 

hypothetical cutpoint. 

nS

Let X be the risk factor of interest measured as a continuous variable and T be the 

outcome variable of survival time.  The population is divided into two groups based on 

the cutpoint.  Let )()2()1( kttt  

and  and

 be the ordered observed event times of the outcome 

variable T.  Let Oi be the number of events at time t(i), Ni be the number of subjects at 

risk prior to time t(i)  
iO  

iN  be the number of events at time t(i) in group with 

values in predictor variable below the hypothetical cutpoint.  Then the   and 

 can be calculated using the following equations. 
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1.5.4 Asymptotic Approximation 

As mentioned in section 1.5.1, since the cut point is unknown, the estimation of and 

testing the significance about the cut point are of interest. Searching fo hat 

corresponds to the maximally selected rank statistic ),( 21

r the μ t

nM  defined in section 1.5.1 

would be the straightforward approach to estimate the cut point. Lausen and Schumacher 

showed the asymptotic distribution for the maxima tistic lly selected rank sta ),( 21 nM  is 

the same as the asymptotic distribution of the square root of the maximally selected χ2 

statistic derived by Miller and Siegmund (1982) and has the following approximation for 

the distribution 

)
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log()
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)((
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]max[

12

12

],[ 21 b

b
obb

b
bTpr
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 , 
bbn

xx


for 10 21    and ,b where )(b denotes the standard normal density. 

1.5.5 Simulation results for finite samples 

In order to gain some insight into the finite null distribution of the maximally selected 

rank statistics, Lausen and Schumacher also conducted a Monte Carlo simulation study 

with different sample sizes.  The critical values of the 95% quartile in the simulated 

oth table 1.1.3 and table 1.1.4 suggest that the asymptotic distribution has larger critical 

values than finite sample distribution, which indicates the use of asymptotic critical 

values will result in a conservative test, fairly to reject at greater than a 0.05 level. 

 

distributions of maximally selected Wilcoxon rank statistic and maximally selected log-

rank statistic under the null hypothesis that X and Y are independent are listed in table 

1.1.3 and table 1.1.4 respectively. 

B
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Table 1.1.3 Simulated and approximated 95% quartiles of the distributions of the 
maximally selected Wilcoxon rank statistics under the null hypothesis 

(ε1, ε2) n 

(.1, .9) (.25, .75) (.4, .6) (.4, .9) 

10 2.39 2.39 2.19 2.35 

20 2.59 2.50 2.39 2.47 

30 2.70 2.60 2.41 2.58 

50 2.78 2.64 2.43 2.66 

100 2.90 2.73 2.46 2.78 

200 2.93 2.77 2.50 2.82 

∞ 3.05 2.83 2.56 2.88 

 

Table 1.1.4 Simulated and approximated 95% quartiles of the distributions of the 
maximally selected log-rank statistics under the null hypothesis 

(ε1, ε2) n 

(.1, .9) (.25, .75) (.4, .6) (.4, .9) 

10 2.55 2.30 2.04 2.29 

20 2.70 2.45 2.26 2.50 

30 2.76 2.52 2.30 2.62 

50 2.82 2.57 2.36 2.67 

100 2.91 2.65 2.41 2.74 

200 2.94 2.72 2.49 2.81 

∞ 3.05 2.83 2.56 2.88 

 

1.6 Application Studies from the literature 

In the analysis involving data from clinical or epidemiological studies, significant 

attention is given to continuous variables such as blood pressure, certain biomarkers etc., 

but the predictive importance of such variables can not be established easily.  

Transforming a continuous variable into a categorical variable usually binary, makes the 
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model more interpretable.  In this section, two examples of the cut point determination in 

clinical treatment procedures are given which implies the choice of a cutpoint to convert 

a continuous covariate to a binary covariate is often based on biological knowledge about 

the particular risk factor or on the results already published in other studies. 

1.6.1 Treatment for Unresponsive Lymphoma (Mazumdar, 2000) 

For patients with advance-stage or poor-prognosis malignant lymphoma that have not 

responded to conventional-dose chemotherapy, high-dose (HD) chemotherapy is 

recommended (Haas, 1994).  But since high-dose chemotherapy is not only toxic to 

patient’s cancer cells but also toxic to patient’s healthy blood cells, the HD chemotherapy 

alone can lead to poor recovery and great risk of infections.  The use of HD 

chemotherapy followed by re-infusion of the peripheral blood stem cells (PBSC), which 

collected from other donors or the patients themselves before the HD chemotherapy, is 

effective in treating relapsed non-Hodgkin’s lymphoma.  A high complete response rate 

is seen and a significant fraction of patients appear to be cured by this approach.  There 

has shown an inverse correlation between the quantity of the PBSC re-infused and the 

speed of patient recovery. Or in another word, the greater the quantity of the PBSC re-

infused, the faster the patient recovers from the toxicity of the treatment (Moskowitz, 

1998).  The number of PBSC collected from patients or other donors can in most cases be 

increased by the administration of a stem cell growth factor, called Granulocyte Colony-

Stimulating Factor (G-CSF) (Valbonesi 1996).  In clinical practice, the threshold dose of 

PBSC necessary to ensure patients would have a rapid recovery of their HD 

chemotherapy blood counts would be of interest.  In the lymphoma literature, cutpoints 

defining threshold doses PBSC needed range from 1.2 million to 5.0 million. And the 

most frequently reputed cutpoint is 2.5 million cells (Mazumdar, 2000).  But Mazumdar 

point out that all of these cutpoints found were simply by examining scatter plots for 

threshold effects. 

The outcome of interest from the lymphoma literatures is the time for patients to recover 

20,000 platelets in days by using two categories.  One is in less than 14 days and another 

is in greater or equal to 14 days, namely ‘successful’ recovery and ‘slow’ recovery.  This 

14-day threshold is based not only on mortality but also on hospital costs and quality of 
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life consideration.  By using this binary outcome variable, Mazumdar analyzed 55 

patients who were treated with an HD chemotherapy followed by re-infusion of PBSC 

regimen at Memorial Sloan-Kettering Cancer Center between 1994 and 1997.  The data 

shows positive correlation between the quantity of PBSC re-infused and the proportion of 

patients who recovered to 20,000 platelets in less than 14 days.  By using the uncorrected 

Chi-square statistics, Mazumdar observed at 2.0 million PBSCs there exists a maximum 

chi-squared and minimum p-value of 8.73 and 0.003, respectively.   Mazumdar 

reassessed the significance of this cut point using the asymptotic approximation of the 

maximally selected chi-square statics with searching interval at the central 80%, i.e. set 

ε=0.1. The p-value changed to 0.068, which remains of marginal significance (Mazumdar 

2000).  However since this study is with finite sample size of 55 patients, the Koziol’s 

exact statistics would be preferred to adjust the p-value.  Without the detailed data, I 

would use the critical values of 2.852 = 8.12 or 2.9492 = 8.696 for sample size of 50 and 

100 respectively (see table 1.1.2 in section 1.4.2 of this chapter), which assumes the cut 

point is located in the median position of the data, to compare with the maximum chi-

squared statistics.  Then we would conclude the quantity of 2.0 million PBSCs is a 

significant cut point. Based on the combined evidences from other lymphoma literatures, 

this 2.0 million PBSCs  re-infusion appears to be a reasonable cutpoint for this type of 

patient to achieve a successful recovery from HD chemotherapy.  Although there is 

evidence of inverse correlation between the quantity of the PBSC re-infused and the 

speed of patient recovery.  During the practice, clinicians would like to have a 

recommended quantity of the PBSC collected and re-infused to ensure a rapid recovery.  

Rather than using the scatter plots, the maximally selected chi-square statistics method 

can be used as a tool to claim the statistic significance of the identified cutpoint which 

separates the patient population into two groups with high or low probabilities of 

favourable outcomes. 

1.6.2 Treatment for Seminoma (Pub 1996) 

Puc et al published a study in Journal of Clinical Oncology in 1996, identified a cut point 

in the size of residual tumour mass to relate with the poor prognosis for post 
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chemotherapy patients with advanced seminoma and claimed to use this cut point to 

justify the post chemotherapy for these patients. 

The majority of patients with seminoma who are treated initially with chemotherapy are 

found to have a residual tumour mass.  The guidelines for management of these post 

chemotherapy patients are controversial, and may involve surgery, radiotherapy or close 

observation.  Efforts to reduce treatment related morbidity include the avoidance of post 

chemotherapy surgery.  The size of the residual mass on a post-chemotherapy computer 

tomography (CT) scan, measured as the largest diameter, is reported in the literature to 

predict poor prognosis.  Pub et al analyzed the retrospective data from 104 advanced 

seminoma patients treated with various chemotherapy regiments at Memorial Sloan-

Kettering Cancer Center from 1979 to 1992  The outcome studied was whether a patient 

had a site failure or non-site failure during the post chemotherapy follow up period, 

which is a binary variable.  Site failure was defined as either the presence of cancerous 

tumour found at post chemotherapy surgery or clinical relapse at the assessed site.  The 

site non-failure was defined as no cancerous tumour found at post chemotherapy surgery 

or no clinical relapse during the follow up period.  The median follow-up time is 47 

months with range of 5 to 153 months.  Out of these 104 patients studied, 10 had site 

failures and 94 had no site failures.  Various prognostic factors have been studied, 

including primary disease site, chemotherapy regimen, pre-treatment serum tumour 

markers, residual disease site, residual tumour mass size etc. to relate with the outcome of 

site failure.  Out of them the residual tumour mass size is the only significant variable 

predictive of outcome.  The p-value is determined as 0.0316 from log-rank statistic by 

analyzing the failure-free survival time and size of the tumour mass size.   

The unadjusted chi-square statistic is calculated based on the binary outcome of site 

failure and binary predictor of residual tumour mass size dichotomized using every 

available data point in the range.  The results show when the cut point is set at 3 cm, the 

analysis yields the highest chi-square and lowest p-value of 14.1 and 0.006 respectively.  

The author then states by using 3 cm as the cut point the adjusted lowest p-value is 

0.0316, which is significant.  Furthermore the author recommended that for patients with 

a residual tumour mass less than 3 cm, the post chemotherapy can be managed only by 

close observation and additional intervention is not indicated.  Although in this literature 
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published by Pub et al, the author did not specify which method was used to adjust the p-

value, by using the asymptotic approximation of the maximally selected chi square 

statistics, and with the searching interval set at the central 80% (ε=0.1), the square root of 

the highest chi-square value of 14.1 leads to a p-value of 0.032, which matches with the 

0.0316 in this article.   

The data set used in this article has relatively large sample size with 104 patients.  The 

predictive variable of the residual tumour size is measured at semi-continuous level (see 

figure 1.1.5), in which the number of the potential cut points, i.e. the number of distinct 

values in X, is less than the sample size.  The most appropriate method to adjust the p-

value in this case would be the Boulesteix’s (2006) method described in section 1.4.3 of 

this chapter.  But because the large sample asymptotic approximation provides the most 

conservative result, the change of p-value adjusting method won’t alter the final 

conclusion of declaring the 3 cm in the size of residual tumour mass as the significant cut  

point.  Also figure 1.1.5 shows there are multiple data points with adjusted p-values 

below 0.05, but the data point with maximum of the Chi-square statistics is the one that 

best separates the patient population. 

Figure 1.1.5 Comparison of cutpoint for residual mass size according to 
adjusted p value based on relationship between site failure 
and site non-failure.   

 
Note: This figure is cited from Figure 1 in Puc et al. 1996 
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CHAPTER 2:  THE EFFECT OF DISCRETENESS OF VALUES FOR THE 
PREDICTOR ON THE NULL DISTRIBUTION FOR MAXIMALLY SELECTED 
RANK STATISTICS  

2.1 Abstract 

In Lausen’s paper (1992), only the possibility of a continuous predictor is discussed for 

the maximally selected rank statistics. When a predictor is semi-continuous or ordinal, 

the number of cutpoints available, which is the number of distinct values in X, is 

substantially less than those from a continuous predictor. Consequently for a given cut 

point the alpha value is inflated less than when the predictor variable is continuous.  In 

this chapter, the Monte Carlo simulation is used to compare the null distributions of 

maximally selected rank statistics from predictors with continuous and semi-continuous 

measurements. 

2.2 Introduction 

In Lausen’s paper (1992), a rank statistic is given and the asymptotic distribution of the 

maximally selected rank statistics is developed.  This asymptotic result is then compared 

with the Monte Carlo simulation results with different sample sizes.  However all of the 

simulations only considered continuous predictor variables.  When the predictor is semi-

continuous or ordinal, compared to the continuous one, it would require a less stronger 

level of evidence to be observed in order for a cutpoint to be deemed “significant”, as to 

compensate for less number of inferences being made.  In this chapter, the following two 

aims will be achieved via Monte Carlo simulation. 

Aim 1: To identify the level of discreteness in a semi-continuous predictor at which 

investigators need to use alternative null distributions to the approximate distribution for 

large samples (n>=200).   

Aim 2: To identify the level of discreteness in a semi-continuous predictor at which 

investigators need to use alternative null distributions to the approximate or exact 

distributions for small samples (n=20, 30, 50 or 100). 
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2.3 Method 

The null distribution of maximally selected rank statistic from continuous predictor and 

that from the semi-continuous or ordinal predictor will be compared via Monte Carlo 

simulation.  For the semi-continuous or ordinal predictor, two different levels of 

discreetness which are with 10 ordinal levels and 15 ordinal levels are explored.  

The random numbers are generated for both continuous predictor and semi-continuous 

predictor. For continuous quantitative predictor, the uniform distribution on (0, 1) was 

used.  The random numbers were generated by using SAS function of RANUNI.  For 

semi-continuous predictor, the random numbers were also generated from uniform 

distribution on (0, 1). For the case of having 10 ordinal scales in X, the generated random 

numbers are multiplied by 10.  For the case of having 15 ordinal scales in X, the 

generated random numbers are multiplied by 15.  The obtained values will then be 

rounded to the smallest integers that are greater than or equal to the random numbers. 

Since the null distribution of the maximally selected rank statistic is nonparametric, it is 

invariant for arbitrary distribution of X and Y (Lausen, 1992). The response variable will 

be set to standard normal, N (0, 1), using the SAS function of RANNOR under the null 

hypothesis that there is no relationship between X and Y.  The sample size, n, will cover 

20, 30, 50, 100 and 200 the interval of (ε1, ε2) will cover (0.25, 0.75), (0.4, 0.6) and (0.1, 

0.9).  The Lausen’s rank statistic described in section 1.5 of chapter 1 are derived with 

the scores, , set equal to the ranks.  10,000 Monte Carlo repetitions are generated 

on the calculation of maximally selected rank statistics.     

)( inn Ra

The null hypothesis will be rejected if the maximally selected rank statistic is greater than 

a critical value. Hence the upper quartiles of the simulated null distribution are of interest.  

The null distributions of the maximally selected rank statistic that generated by using 

continuous predictor and semi-continuous predictor will be compared through tables and 

plots. 
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2.4 Results and Discussion 

When the predictor variable X and the response variable Y are independent under the null 

hypothesis, table 2.2.1, figure 2.2.1a and figure 2.2.1b show the cumulative distribution 

of maximally selected rank statistics for both continuous predictor and semi-continuous 

predictor with different sample sizes.  The searching interval is set at the central 50% 

with ε of 0.25 for figure 2.2.1a and at the central 80% with ε of 0.10 for figure 2.2.1b. 

The results suggest that the critical values from the distribution on continuous predictor 

are stochastically larger than those on the semi-continuous predictor given the same 

sample size (figure 2.2.1a and 2.2.1b).  Compared to the semi-continuous predictor with 

10 discrete levels, the critical values obtained from the continuous predictor are roughly 

increased by 10% at 0.05 α level.  Also as expected, the figure 2.2.2 shows that the 

critical values increase when the discrete levels increased from 10 to 15.  Corresponds to 

aim 1 in section 2.2, when the sample size is at 200, using the semi-continuous predictor 

can result in a much smaller critical value compared to continuous predictor.  When the 

searching interval is set at the central 80%, the critical values are 2.94, 2.74 and 2.59 for 

predictors measured in continuous, semi-continuous with 15 levels and semi-continuous 

with 10 levels respectively.  Similar results can be seen in small sized samples.  Based on 

these simulated results, when the discrete level is at 15 or below the alternative null 

distribution should be recommended compared to the null distribution obtained from 

continuous predictor..  

Figure 2.2.1a shows that when the sample size is increased from 50 to 100 the critical 

values are increased substantially for both continuous and semi-continuous predictors 

when the searching interval is set at (ε1, ε2) = (.25, .75). For example, when the α is set at 

0.05 level, the critical values are increased from 2.64 to 2.73 for continuous predictor and 

from 2.43 to 2.47 for semi-continuous predictor with 10 discrete levels.   

However the figure 2.2.3 shows that at the searching interval of central 50% the critical 

values are very close to each other when to compare the sample size of 100 to the sample 

size of 200, given the predictor variables are measured in the same scales, i.e. both 

continuous or both semi-continuous with the same discrete levels. 
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Further more when set the searching interval at central 80%, the quartile curves have 

little difference for sample size of 50, 100 and 200 (figure 2.2.4) from semi-continues 

predictor with 10 discrete levels.  However when the discrete level is set at 15 the quartile 

curves do show difference from sample size of 50, 100 and 200 (figure 2.2.5).  This 

indicates there might exist a threshold ratio between the number of potential cut points 

available and the sample size.  When this ratio gets smaller the quartile points may 

converge to constants. 

As expected, figure 2.2.6 to 2.2.9 reveals the critical values are impacted by ε.  Figure 

2.2.6 and 2.2.7 plot the simulated and approximated upper quartiles of the maximally 

selected rank statistics from continuous predictor, where the finite samples are with size 

of 30, 100 and 200.  When the searching intervals are increased from the central 20% to 

50% or from the central 50% to 80% the critical values can be increased by 5 to 10%.  

The same pattern can be been seen in semi-continuous predictor with 10 or 15 discrete 

levels (figure 2.2.8 and 2.2.9).  
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Figure 2.2.1a Simulated and approximated upper α quartile of the 
maximally selected rank statistics, where the maximum is over 
the interval of (ε1, ε2) = (.25, .75), for continuous predictor and 
semi-continuous predictor. 

 

Figure 2.2.1b Simulated and approximated upper α quartile of the 
maximally selected rank statistics, where the maximum is over 
the interval of (ε1, ε2) = (.10, .90), for continuous predictor and 
semi-continuous predictor. 
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Figure 2.2.2 Simulated upper α quartile of the maximally selected rank 
statistics, where the maximum is over the interval of (ε1, ε2) = 
(.25, .75), for semi-continuous predictor with 10 and 15 
discrete scales. 

 

Figure 2.2.3 Simulated and approximated upper α quartile of the maximally 
selected rank statistics, where the maximum is over the 
interval of (ε1, ε2)=(.25, .75), n=100, 200  
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Figure 2.2.4 Simulated upper α quartile of the maximally selected rank 
statistics from finite sample size of 20, 30, 50, 100 and 200 
from semi-continuous predictor with 10 discrete levels, where 
the maximum is over the intervals of central 80% (ε =0.1). 

 

Figure 2.2.5 Simulated upper α quartile of the maximally selected rank 
statistics from finite sample size of 20, 30, 50, 100 and 200 
from semi-continuous predictor with 15 discrete levels, where 
the maximum is over the intervals of central 80% (ε =0.1). 
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Figure 2.2.6 Simulated upper α quartile of the maximally selected rank 
statistics from finite sample size of 30 and 100 with continuous 
predictor, where the maximum is over the intervals of central 
80% (ε =0.1), 50% (ε =0.25) and 20% (ε =0.4). 

 

Figure 2.2.7 Simulated upper α quartile of the maximally selected rank 
statistics from finite sample size of 200 and large sample 
asymptotic approximation of the maximally selected rank 
statistics with continuous predictor, where the maximum is 
over the intervals of central 80% (ε =0.1), 50% (ε =0.25) and 
20% (ε =0.4). 
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Figure 2.2.8 Simulated upper α quartile of the maximally selected rank 
statistics from semi-continuous predictor with 10 discrete 
levels, where the maximum is over the intervals of central 80% 
(ε =0.1), 50% (ε =0.25) and 20% (ε =0.4) and n=50, 200. 
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Figure 2.2.9 Simulated upper α quartile of the maximally selected rank 
statistics from semi-continuous predictor with 15 discrete 
levels, where the maximum is over the intervals of central 80% 
(ε =0.1), 50% (ε =0.25) and 20% (ε =0.4) and n=50, 200. 
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Table 2.2.1 Simulated and approximated upper α quartile of the maximally 
selected rank statistics, where the maximum is over the interval of (ε1, 
ε2) = (.25, .75), for continuous predictor and semi-continuous 
predictor with 10 discrete scales. 

α=0.10 α=0.05 α=0.01 (ε1, ε2) N 

Cont. 
Pred.1 

S15 
Pred3 

S10 
Pred2 

Cont. 
Pred.1

S15 
Pred3 

S10 
Pred2 

Cont. 
Pred.1 

S15 
Pred3 

S10 
Pred2

20 2.39 2.27 2.23 2.59 2.47 2.39 3.01 2.85 2.80 

30 2.49 2.33 2.28 2.71 2.55 2.51 3.16 2.97 2.92 

50 2.54 2.40 2.34 2.78 2.62 2.59 3.21 3.10 3.10 

100 2.63 2.41 2.33 2.89 2.66 2.60 3.33 3.13 3.12 

200 2.68 2.44 2.33 2.94 2.74 2.59 3.44 3.26 3.14 

(.10, .90) 

∞* 2.79 3.05 3.59 

20 2.27 2.23 2.14 2.49 2.42 2.39 2.97 2.89 2.83 

30 2.33 2.20 2.17 2.58 2.47 2.43 3.05 2.95 2.95 

50 2.38 2.24 2.17 2.64 2.48 2.43 3.16 2.96 2.95 

100 2.45 2.27 2.21 2.73 2.56 2.47 3.24 3.05 3.04 

200 2.46 2.26 2.21 2.72 2.55 2.50 3.28 3.09 3.01 

(.25, .75) 

 

∞* 2.54 2.83 3.40 

20 2.01 2.00 1.94 2.32 2.26 2.19 2.80 2.74 2.73 

30 2.07 1.99 1.95 2.37 2.28 2.20 2.84 2.77 2.77 

50 2.12 1.98 1.95 2.39 2.28 2.25 2.99 2.83 2.81 

100 2.15 1.99 1.95 2.44 2.31 2.25 3.07 2.89 2.84 

200 2.19 2.00 1.96 2.49 2.30 2.26 3.07 2.88 2.87 

(.40, .60) 

∞* 2.26 2.56 3.15 

*: From asymptotic estimation.  
1: Continuous predictor. 
2: Semi-continuous predictor with 10 discrete levels 
3: Semi-continuous predictor with 15 discrete levels  

 

  
 

 



 38 
 

CHAPTER 3:  THE EFFECT OF ASSESSING PREDICTORS ON DIFFERENT 
SCALES ON THE POWER OF A STUDY WHEN USING A MAXIMALLY 
SELECTED RANK STATISTIC IN HYPOTHESIS TESTING  

3.1 Abstract 

The power curves of the maximally selected rank statistics from continuous predictor and 

that from semi-continuous predictor with different level of discreteness are compared at 

the same cutpoint and the same sample size via Monte Carlo simulation by using their 

respective critical values obtained from chapter 2.  The results show the power of 

maximally selected rank statistic from the semi-continuous predictor is stochastically 

larger than that from the continuous predictor. The simulation results also show that 

besides the sample size and effect size, the location of the true cut point also affects the 

power of test using the maximally selected rank statistic.  The power reaches its highest 

when the true cut point is at the 50th percentile of the predictor variable and the power 

decreases when the location of the true cut point moves to the lower or upper quartiles. 

3.2 Introduction  

When planning a study, investigators may be able to choose between measuring a subject 

characteristic using continuous scale and using discrete semi-continuous or ordinal scale. 

For example, in pregnancy and birth data, in order to access the relationship between  the 

weight of the baby at birth and the type of delivery (natural or cesarean), the baby weight 

at birth maybe measured at precision of 1 g or 100 g or by 3 categories of <2500 g, 2500 

– 4000 g or >4000 g.  In this case the cut point of birth weight in semi-continuous scale 

may be more clinical meaningful and have larger power to identify an association.  In this 

chapter, the following aim 1 will be examined using Monte Carlo simulation. 

Aim 1: Under the appropriate null distributions, assess whether using a discrete semi-

continuous or ordinal predictor rather than a purely continuous predictor will produce 

more power when using a maximally selected rank statistic to test for significance. 

Often, when investigators study the relationship between some continuous response and 

predictor variables, appropriate diagnostics are not considered.  Instead the linearity is the 

most common assumption used in the data analyses.  The objective of the following aim 
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2 is to compare the power using simple linear regression to that using the maximally 

selected rank statistic when detecting associations when the effect of the predictor on the 

response is a simple step function.  

Aim 2: Determine whether simple linear regression is robust to misspecification of the 

effect of predictor, when the effect of predictor on the response is a step function. 

The following aim 3 is to study if the maximally selected rank statistics can detect 

association given the underlying relationship is linear. 

Aim3: Compare the power between linear regression method and maximally selected 

rand statistics when the true relationship between predictor and response is linear. 

3.3 Methods 

3.3.1 Power comparison of maximally selected rank statistics between continuous 

predictors and discrete semi-continuous predictor  

At the same cutpoint and the same sample size the power curves of the maximally 

selected rank statistics from continuous predictor and that from semi-continuous predictor 

with different level of discreteness will be compared via Monte Carlo simulation.  The 

estimated power of this maximally selected rank statistic will be plotted against different 

effect sizes, θ. The following model is used. 

,ZY X     

where  and Z~N(0,1) 


















XifI

XifI

X

X

0

1

In order to compare the power curve from the continuous predictor and that from semi-

continuous variable with 10 ordinal levels, the predictor variable X will be generated 

from uniform distribution of [0, 1]. For the semi-continuous predictor variable, instead of 

multiplying by 10 and rounded to the smallest integer as described in section 2.3 of 

chapter 2, the random number will be rounded to the smallest tenth decimal point in order 

to have the same cut point as the continuous predictor.  The true cut point is set at 0.2 and 

0.5. At each condition, Z is generated from standard normal distribution and Y is then 

computed for two alternatives. The effect size, θ, is set from 0 to 2.5 by every 0.1 
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increment. The sample size n will cover 20, 50, 100 and 200. The interval (ε1, ε2) of (.10, 

.90) will be used.   

The maximally selected rank statistics will be developed for 10,000 Monte Carlo 

repetitions. The corresponding 95th percentiles obtained under the null distribution in 

section 2.4 of chapter 2 will be used as the critical values.  Out of these 10,000 Monte 

Carlo samples, the simulated power will be calculated based on the proportion of samples 

with the maximally selected rank statistics greater than or equal to their corresponding 

critical values.  These simulated powers will be then compared between continuous and 

semi-continuous predictor variables via tables and plots. 

3.3.2 Robustness of simple linear regression when model is mis-specified. 

When the effect of predictor on the response is a step function, i.e. when there exists a 

cutpoint in the predictor variable, the power curve from the maximally selected rank 

statistics and that from the linear regression method will be compared via Monte Carlo 

simulation.  The obtained simulated powers will then be plotted against different effect 

sizes.  The same data with continuous predictor variable generated in section 3.3.1 of this 

chapter will be used.  The simple linear regression model will be applied to these data.  

Again 10,000 Monte Carlo repetitions will be produced and the simulated power for 

simple linear regression is calculated as the proportion of the regression analyses with p-

values < 0.05. These simulated powers will be compared between the maximally selected 

rank statistic method in section 3.3.1 of this chapter and the linear regression method for 

continuous predictor variable via tables and plots.   

3.3.3 Apply the maximally selected rank statistics to linear association 

The following model is used to simulate data with linear association between the 

predictor and response variable. 

,ZXY    where X~U[0,1] and Z~N(0,1) 

In which X is continuous predictor generated from uniform distribution of [0, 1] and Z is 

the random error from standard normal distribution.  If a step function is mis-specified to 

the above simulated data then β=2 corresponds to the effect size of 1 standard deviation 

between the two groups with the assumed cut point at 0.5 in X.  Corresponds to the effect 
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size θ set from 0 to 2.5 by 0.1 increment in section 3.3.2 above, the regression slop will 

be set from 0 to 5 by 0.2 increment.  The sample size n will cover 20, 50 and 100.  Under 

each condition, 1,000 Monte Carlo repetitions will be produced.  Both linear regression 

and maximally selected rank statistics with searching interval of central 90% will be 

conducted. The simulated power for simple linear regression is calculated as the 

proportion of the regression analyses with p-values < 0.05. The simulated power for 

maximally selected rank statistics will be calculated as the proportion with maximum 

rank statistics greater than the corresponding 95th percentiles obtained under the null 

distribution in section 2.4 of chapter 2. 

3.4 Results and Discussion 

3.4.1 Power comparison of maximally selected rank statistics between continuous 

predictors and discrete semi-continuous predictor  

Table 3.3.1 presents the simulated power of the maximally selected rank statistics for 

continuous predictor and semi-continuous predictor with 10 discrete levels at different 

sample sizes, different effect sizes and different locations of the true cut points.  Since the 

predictor variables are generated from the uniform distribution of [0, 1], the true cut 

points are set at 0.2 and 0.5, which corresponds to the 20th and 50th percentiles of the 

simulated data.   The searching interval in this chapter is set at (0.10, 0.90). When the 

sample size is 50, the critical values over the searching interval of (ε1, ε2) = (.10, .90) and 

at α of 0.05 level are 2.59 and 2.78 for semi-continuous with 10 discrete scales and 

continuous predictors respectively (Table 2.2.1 in chapter 2). 

Figure 3.3.1 presents the power curve of the maximally selected rank statistics for 

continuous predictor and semi-continuous predictor at sample size of 50 and 100.  Both 

table 3.3.1 and figure 3.3.1 demonstrate that at the same effect size and with the same 

sample size the power of maximally selected rank statistic from the semi-continuous 

predictor is stochastically larger than that from the continuous predictor.  One intuitive 

reason for this is that it has been demonstrated in chapter 2 the critical values used to 

reject the null hypotheses are always smaller in semi-continuous predictor than in the 

continuous predictor.  In addition, Figure 3.3.1 and table 3.3.2 also show that the power 

increases along with the total sample size as well as the effect size.   
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When the effect size is 0, at which there is no association between the predictor and 

response variable, the power of detecting the association at the pre-specified 20th or 50th 

percentiles is very close to 0.  Under the same situation if the location of the cut point is 

not pre-specified, instead the searching of the maximum of the rank statistics is 

performed over the central 80% of the data the power should be 5%. 

Besides the sample size and effect size, the location of the true cut point also affects the 

power of this maximally selected rank statistics.  When the effect size and the sample size 

are at the same, figure 3.3.2 presents the power of the maximally selected rank statistics 

when the true location of the cut point is from 10th percentile to the 90th percentile of the 

continuous predictor by every 10% increment.  This figure shows that the power reaches 

to its highest when the true cut point is at the 50th percentile of the predictor variable and 

the power decreases when the location of the true cut point moves to the lower or upper 

quartiles.   
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Table 3.3.1 Simulated power of the maximally selected rank statistics between 
continuous predictor and semi-continuous predictor with 10 discrete 
scales at different cut point locations, where the maximum is over the 
interval of (ε1, ε2) = (.10, .90). 

μ=0.2 μ=0.5 N Effect 
size (θ) Continuous 

Predictor 
S10 Predictor1 Continuous 

Predictor 
S10 Predictor1 

20 0 0.5 0.7 0.5 0.6 

 0.5 1.7 2.7 4.8 8.1 

 1.0 9.3 15.5 22.2 31.6 

 1.5 27.9 38.2 57.9 70.3 

 1.7 34.8 47.3 71.0 80.7 

 2.0 48 57.5 86.6 92.3 

 2.5 62.8 70.0 97.4 98.8 

      

50 0 0.4 0.6 0.3 0.7 

 0.5 6.6 9 12.2 18.5 

 1.0 38.4 47.8 67.5 75.6 

 1.1 46.0 57.0 77.4 83.8 

 1.2 57.1 66.1 87.6 90.1 

 1.4 73.1 81.5 96.9 96.8 

      

100 0 0.5 0.6 0.4 1.1 

 0.5 15.4 24.6 31.2 38.6 

 0.7 40.8 48.6 66.2 75.7 

 0.8 51.6 64.7 82.2 87.3 

 0.9 66.1 78.4 90.4 95.6 

 1.0 78.9 85.8 97.0 98.9 

      

200 0 0.4 1.4 0.4 0.9 

 0.5 42 54.6 66.6 79.1 

 0.6 61.3 76.3 84.9 94.7 

 0.7 80.9 88.6 97.0 99.0 

 0.8 89.4 95.4 99.3 99.6 

 0.9 97.0 98.6 99.8 100.0 

 1.0 99.5 99.7 100.0 100.0 

1: Semi-continuous predictor with 10 discrete levels. 
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Figure 3.3.1 Power comparisons for maximally selected rank statistics 
between continuous and semi-continuous predictor with 10 
discrete scales at α = 0.05 and search interval of (ε1, ε2) = (.10, 
.90) when the location of the true cut point is at 50th percentile. 

 

Figure 3.3.2 Power of the maximally selected rank statistics when the true 
cut-point is at different location. Using continuous X, n=50, (ε1, 
ε2)=(.10, .90), θ = 1.4 at α = 0.05. 
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3.4.2 Robustness of simple linear regression when model is mis-specified. 

Table 3.3.2 presents the simulated power of the maximally selected rank statistics for 

continuous predictor and that of simple regression analysis at different sample sizes, 

different effect sizes and different locations of the true cut points.   

Figure 3.3.3 shows the power curve comparison between the maximally selected rank 

statistics and simple linear regression when the sample size is set at 100 and the true cut 

point is set at the 20th and 50th percentiles.  Both table 3.3.2 and figure 3.3.3 show that 

when the effect size is small, the simple linear regression has larger power to detect the 

association between predictor and response variables.  When the effect size reaches to 

certain level, these two methods have equal power to detect the association.  However 

since these two methods will result in two different interpretations for the underling 

association between predictor and outcome, appropriate diagnosis through scatter plot 

should be done in order to apply the correct analysis method. 

Figure 3.3.3 Comparison of the simulated power curve of the maximally 
selected rank statistics for continuous predictor and that of 
regression analysis with sample size of 100. 
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Table 3.3.2 Simulated power of linear regression and maximally selected rank 
statistics, when the effect of the continuous predictor on the response 
is a step function.  

μ=0.2 μ=0.5 N Effect size  
(θ) Max. Rank 1 Linear Reg. 2 Max. Rank 1 Linear Reg. 2 

20 0 0.5 2.3 0.5 2.1 

 0.5 1.7 4.5 4.8 14.5 

 1.0 9.3 19.4 22.2 43.1 

 1.5 27.9 33.1 57.9 71.8 

 1.7 34.8 40.5 71.0 81.5 

 2.0 48 51.6 86.6 92.0 

 2.5 62.8 62.7 97.4 97.4 
 

50 0 0.4 5.1 0.3 4.1 

 0.5 6.6 15.2 12.2 32 

 1.0 38.4 47.5 67.5 82.8 

 1.1 46.0 50.4 77.4 90.2 

 1.2 57.1 55.3 87.6 94.1 

 1.4 73.1 72.3 96.9 99.0 
 

100 0 0.5 3.1 0.4 1.5 

 0.5 15.4 41.7 31.2 55.8 

 0.7 40.8 65.05 66.2 84.4 

 0.8 51.6 75.25 82.2 93.3 

 0.9 66.1 79.95 90.4 95.8 

 1.0 78.9 87.0 97.0 99.1 
 

200 0 0.4 1.9 0.4 2.8 

 0.5 42 49.6 66.6 85.1 

 0.6 61.3 63.4 84.9 94.7 

 0.7 80.9 76.8 97.0 98.6 

 0.8 89.4 84.7 99.3 99.8 

 0.9 97.0 91.8 99.8 89.9 

 1.0 99.5 96.0 100.0 100 

 
1.   Maximally selected rank statistics, where the maximum is over the interval of (ε1, ε2) 

= (.10, .90). 
2. Simple linear regression model. 
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3.4.3 Apply the maximally selected rank statistics to linear association 

Table 3.3.3 presents the simulated power of the maximally selected rank statistics for 

continuous predictor and that of simple regression analysis at different sample sizes, 

different effect sizes given the underlying relationship between the predictor and 

response is linear.   

Figure 3.3.4 shows the power curve comparison between the maximally selected rank 

statistics and simple linear regression for sample size of 20 and 50 given the underlying 

relationship between the predictor and response is linear.   

Both table 3.3.3 and figure 3.3.4 show that the regression method has larger power to 

detect the association compare to maximally selected rank statistics.  When the effect size 

is large enough, such as the slop equals 4 and 2.8 for sample size of 20 and 50 

respectively, these two methods have equal power to detect the association.  However if 

the underlying association between the predictor and outcome is linear, the cut point 

searching model should not be used because in such monotonic association no cutpoint 

dividing population into high and low outcome risk groups is apparent. 

Based on the results presented in sections 3.4.2 and 3.4.3, given a study data, different 

analysis model would result in different interpretation on the underlying association.  In 

the absence of any a priori information regarding the prognostic relationship between a 

covariate and outcome, exploratory plots are necessary to reveal if there exists an obvious 

thresholds that suggest potential cutpoints, or provide a range of values in which the 

search for a cutpoint should be performed. 
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Figure 3.3.4 Comparison of the simulated power curve of the maximally 
selected rank statistics and that of simple regression analysis 
for linear association between continuous predictor and 
response. 
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Table 3.3.3 Simulated power of linear regression model and maximally selected 
rank statistics, when the underlying relationship between the 
continuous predictor and response variable is linear.  

N Effect size (θ) Regression slop 
(β) 

Max. Rank 1 Linear Reg. 2 

20 0 0 5.2 6.1 

 0.5 1 15 22.6 

 1 2 50.5 66.3 

 1.2 2.4 64 80.2 

 2 4 95.1 99.1 

 2.5 5 99.1 100 

     

50 0 0 5.3 4 

 0.5 1 42.2 53 

 0.8 1.6 79.2 87.5 

 1 2 93.8 97.6 

 1.4 2.8 99.7 100 
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CHAPTER 4:  THE PRECISION OF CUT-POINT ESTIMATE OBTAINED 

USING THE MAXIMALLY SELECTED RANK STATISTIC  

4.1 Abstract 

In this chapter, the use of bootstrap method to create confidence interval for the estimated 

cut-point is explored.  The results show that the location of the true cut-point in addition 

to the sample size and effect size can substantially affect the precision of the cut-point 

estimates.  Compared to the continuous predictor, the semi-continuous predictor has 

higher percentage of correct cut-point estimates. 

4.2 Introduction 

When a significant effect is identified from a particular study using a cutpoint analysis, 

creating a confidence interval for the identified cutpoint would be of interest.  A 

bootstrap simulation would provide a simple approach for creating such a confidence 

interval. 

In order to explore the performance of these intervals, Monte Carlo simulation is used to 

create 95% confidence intervals for the cut-point obtained from a simulated sample using 

the maximally selected rank statistics.  Different sample sizes and effect sizes as well as 

different locations for the true cutpoint are considerred. 

The Monte Carlo simulation is also used to determine the sample size and effect size 

necessary to obtain a precise estimate of the cut-point. The 95% confidence interval of 

the cut-point estimation for continuous predictor and semi-continuous predictor with 15 

ordinal scales are studied.   

4.3 Methods 

For continuous predictor, the uniform distribution of [0, 1] is used to generate the random 

numbers.  For semi-continuous predictor with 15 ordinal scales, the random number 

generated from the uniform distribution of [0, 1] will be multiplied by 15 and then 

rounded to the smallest integers that are greater than or equal to the random numbers.  

The same model presented in section 3.3.1 of chapter 3 will be used to generate the 

response random variable of Y, which follows the standard normal distribution. 
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,ZY X     
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The effect size, θ, is set at 1, 2 and 5. The true cut points, μ, are set at 10th, 25th and 50th 

percentiles of the predictor.  The sample size n will equal either 50 or 100.  The searching 

interval (ε1, ε2) of (.10, .90) is used.  In order to compare the precision of cut point 

estimation, under the same sample size, the data set contains the same random numbers 

of X and Z are used to generate the simulation data sets with different effect sizes and 

with cut points at different locations.  For the simulated sample generated under each 

circumstance, 10,000 bootstrap samples were constructed and the cutpoints 

corresponding to the maximally selected rank statistics will be estimated for each of these 

10,000 bootstrap samples.   

The 95% confidence intervals of these estimated cut points will then be derived from the 

percentiles of the simulated cumulative frequencies. The true cut points will also be used 

to compare with the estimated cut points.  Because there is possibility that the true cut 

point of μ is not selected into the bootstrap samples, in such case the largest X less than μ 

will be identified as the true cut point.  The percentage of correct estimations will be 

calculated and discussed. 

4.4 Results and Discussion 

In this chapter, the confidence interval of the estimated cutpoint is explored using 

bootstrap simulation approach.  We note that the null hypothesis should be test first 

before constructing the confidence interval.  The confidence interval should not be 

constructed unless the null hypothesis is rejected, i.e. we declare there is a cutpoint that 

significantly affects the response. 

Table 4.4.1 presents the results of confidence interval estimation for the cut point for both 

continuous predictor and semi-continuous predictor with different sample sizes, effect 

sizes and locations of the true cut points based on the bootstrap simulation. 
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Figure 4.4.1a and 4.4.1b provide the box plots to cover the 95% confidence intervals of 

the cut point estimates at sample size of 100 for continuous and semi-continuous 

predictors respectively. In these plots the true cut point locations are set at 10th 25th and 

50th percentile and the effect sizes are set at 1, 2 and 5.  Similarly Figure 4.4.2a and 

4.4.2b plots the 95% confidence intervals at sample size of 50 for continuous and semi-

continuous predictors respectively. 

In the box plots, the lower and upper bounds of the boxes represent the lower and upper 

limits of the 95% confidence intervals. The whiskers represent the minimum and 

maximum of the cut point estimates.  The dots represent the true cut points. And the lines 

within the boxes represent the median estimates. 

As expected, for both continuous predictor and semi-continuous predictor, larger effect 

size or larger sample size results in a narrower confidence interval, which indicates the 

larger the effect size or the larger the sample size the more precise the cut point estimate.   

From the simulated data, when using a continuous predictor and sample size of 100 as an 

example, the true cutpoints μ at 10th, 25th and 50th percentile of the continuous predictor, 

are 0.097, 0.217 and 0.451 respectively.  Since when performing the bootstrap 

simulation, these true cutpoints may have chances of not being selected into the bootstrap 

samples. In such cases, the true cut points from those particular bootstrap samples would 

be the largest values below the 10th, 25th or 50th percentile in the original data, i.e. the true 

cut point would be the largest value below 0.097, 0.217 or 0.451 when the true cut point 

location is set at 10th, 25th or 50th percentile.   

The results also show that besides the effect size, the location of the true cut point affects 

the cut point estimation precision substantially.  With the location of the true cut point 

moves towards to the 50% percentile, the range of the 95% confidence interval narrows. 

For example, consider the sample size of 50 and effect size at 5, indicating the difference 

between the two separated groups is 5 standard deviations of underling distribution. The 

95% confidence interval is (0.084, 0.901) when the true cutpoint location is at the 10th 

percentile whereas the confidence interval is (0.524, 0.569) when the true cutpoint 

location is at 50th percentile. This low precision of the cut point estimates is caused not 

only by the imbalance of the sample size between the two groups defining by above and 
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below the cut point but also the searching interval (ε1, ε2) of (.10, .90), which may not 

cover the true cut point for all bootstrap samples.  The result for semi-continues predictor 

with the true cutpoint located at 10th percentile sees these same problems.  These 

simulation results show the precision of the CI estimation for the cut point depends 

strongly on its location.   

We noticed that for continuous predictor when the sample size is at 100 and the true cut 

point is at 50th percentile, all cutpoints estimated from the bootstrap samples are below 

the true cut point of 0.451.  This is due to the distribution of the simulated data plotted in 

figure 4.4.3.  The data points that above and close to the 50th percentile are with relatively 

high values. They will not be selected as the best separation data points in the bootstrap 

samples based on their rank statistics. 

All of the results presented in this chapter are based on the simulation from one random 

sample generated for each of the particular circumstance depicted in section 4.3 of this 

chapter.  Therefore the bootstrap results depend strongly on the studied samples.  In order 

to study the precision of the cutpoint estimates, the ideal approach would be to generate 

10,000 Monte Carlo random samples under each condition proposed in section 4.3, and 

10,000 bootstrap simulations in order to calculate CIs for each one of the 10,000 Monte 

Carlo samples.  Covreage average CI width etc could then be studied under the defined 

conditions.  However to implement this approach is beyond the computation ability. The 

results stated in this chapter are merely an example to show how this approach would 

work.   

A better approach to evaluate the precision of the cutpoint estimates either via simulation 

or via asymptotic methods would be the interest of the future works.  
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Table 4.4.1 95% CI of the estimated cut point from the bootstrap simulation  

N 

 

θ Location of the 
true cut point 
(Percentile) 

μ 95% CI for 

Continuous predictor 

μ 95% CI for 

Semi-continuous 
predictor with 15 levels 

100 1 10% 0.097 0.095, 0.394 2 2, 12 

 2   0.095, 0.394  2, 8 

 5   0.091, 0.378  2, 8 

       

 1 25% 0.217 0.203, 0.394 4 4, 7 

 2   0.200, 0.272  4, 6 

 5   0.194, 0.272  4, 6 

       

 1 50% 0.451 0.272, 0.451 8 7, 9 

 2   0.378, 0.451  7, 8 

 5   0.406, 0.451  8, 8 

       

50 1 10% 0.1325 0.084, 0.901 2 2, 14 

 2   0.084, 0.901  2, 14 

 5   0.084, 0.901  2, 12 

       

 1 25% 0.217 0.133, 0.594 4 2, 13 

 2   0.154, 0.524  3, 7 

 5   0.180, 0.405  4, 5 

       

 1 50% 0.5694 0.405, 0.569 8 2, 14 

 2   0.524, 0.569  7, 9 

 5   0.524, 0.569  8, 8 
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Figure 4.4.1a 95% confidence intervals of the estimated cut points 
when the predictor is continuous and sample size is 100  

 

Note: The true cut point location is set at 10th, 25th and 50th percentile, and effect size is at 
1, 2 and 5.  The lower and upper limits of the 95% confidence intervals are plotted as the 
lower and upper bounds of the boxes. The whiskers represent the minimum and 
maximum of the cut point estimates from the bootstrap samples.  The dots represent the 
true cut points and the lines within the boxes represent median cut point estimates. 
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Figure 4.4.1b 95% confidence intervals of the estimated cut points 
when the predictor is semi-continuous with 15 levels and 
sample size is 100.  

 

Note: The true cut point location is set at 10th, 25th and 50th percentile, and effect size is at 
1, 2 and 5.  The lower and upper limits of the 95% confidence intervals are plotted as the 
lower and upper bounds of the boxes. The whiskers represent the minimum and 
maximum of the cut point estimates from the bootstrap samples.  The dots represent the 
true cut points and the lines within the boxes represent median cut point estimates. 
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Figure 4.4.2a 95% confidence intervals of the estimated cut points 
when the predictor is continuous and sample size is 50  

 

Note: The true cut point location is set at 10th, 25th and 50th percentile, and effect size is at 
1, 2 and 5.  The lower and upper limits of the 95% confidence intervals are plotted as the 
lower and upper bounds of the boxes. The whiskers represent the minimum and 
maximum of the cut point estimates from the bootstrap samples.  The dots represent the 
true cut points and the lines within the boxes represent median cut point estimates. 
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Figure 4.4.2b 95% confidence intervals of the estimated cut points 
when the predictor is semi-continuous with 15 levels and 
sample size is 50.  

 

 

Note: The true cut point location is set at 10th, 25th and 50th percentile, and effect size is at 
1, 2 and 5.  The lower and upper limits of the 95% confidence intervals are plotted as the 
lower and upper bounds of the boxes. The whiskers represent the minimum and 
maximum of the cut point estimates from the bootstrap samples.  The dots represent the 
true cut points and the lines within the boxes represent median cut point estimates. 
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Figure 4.4.3 Simulated data* with continuous predictor for bootstrap 
sampling.  

 

*: This data is simulated based on the model described in section 4.3 with sample size of 
100, effect size of 1 and true cut point at 50th percentile 
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CHAPTER 5: EFFECT OF USING RESIDUALS AFTER COVARIATE 
ADJUSTMENT  

5.1 Abstract 

In clinical or public health studies, multiple predictor variables are often collected.  This 

chapter discusses the application of the maximally selected rank statistics when the 

response variable is not only associated with the predictor of interest which is used to 

find a cut point but also associated with other covariates.  By using the regression 

residuals of the response variable from the other covariates, the violation in the 

independent observations assumption is a major concern.  This chapter demonstrates the 

robustness of this independence assumption through Monte Carlo simulations.  

5.2 Introduction 

The method of maximally selected rank statistic that was discussed in the previous 

chapters is focused on the association between the response variable and only one 

predictor variable.  In clinical or public health studies, the response variable is often not 

dependent on only one predictor variable. Usually multiple predictor variables are 

collected in these studies.  When the response variable is associated with more than one 

predictor variable, instead of using the response variable itself the most intuitive method 

to find the cut point from the predictor of interest would be to use the regression residuals 

obtained from a multivariate regression model.  However since the regression residuals 

are not independent samples in that they are correlated with each other, it violates the 

independent observation assumption of the maximally selected rank statistic. The 

robustness of this independence assumption will be examined through out this chapter.   

5.3 Method 

In order to compare the cut point estimation behaviour between the independent response 

variable and non-independent response variable, the following two types of data are 

simulated. 
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1.  One response variable and three predictor variables follow multivariate normal 

distribution by using the variance-covariance structure obtained from the lead exposure 

study data (chapter 6). 

2.  Use the same data sets generated in 1. Keep only the blood lead level variable as the 

predictor and generate the independent response variable from standard normal 

distribution  

5.3.1 More than one predictor variable 

The lead exposure data that is discussed in chapter 6 is used as the source to generate the 

simulated data.  The covariates of age, solvent exposure index and blood lead level 

identified in chapter 6 are used.  The change from baseline at minute -15 in ACTH level 

are used as the response variable in that at this time the stress test has not started yet, the 

difference between the ACTH measured at this time point and at minute 0 would not be 

very small and should not be associated with blood Pb level, so that the effect size that 

we will add in the steps below are not affected.   The variance-covariance matrix as well 

as the means for each of these four variables are calculated and then used as the 

parameters to generate the multivariate normal distribution. The sample size is set at 100 

for the simulated data.  The blood lead levels are then assigned with the actual values 

from the lead exposure study data based upon their corresponding quartiles.  For 

example, in the lead exposure study, 22.86% of subjects are with blood lead level of 2 so 

in the simulated the data subjects with blood lead levels below 23 percentile are assigned 

as a value of 2, so on and so forth.  Based on this approach, 10,000 Monte Carlo samples 

are constructed.  The true cut points, μ, are again set at 25th and 50th percentiles of the 

blood lead level variable in each simulated sample.  The same model used in section 3.3.1 

chapter 3 will be used to re-derive the response variable, which is to add the effect size θ 

of 1 and 2 standard deviations when the associated blood lead level is above the true cut 

point. 

,ZY X     

where  and Z~N(0,1) 
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For each Monte Carlo sample, the regression residuals are obtained from the regression 

model with the change from baseline in ACTH as response variable, age and solvent 

exposure index as covariates.  The method of maximally selected rank statistic is then 

applied to these regression residuals for the cut point estimate in blood lead levels.  The 

percentage of samples with the estimated cut points matched with true ones is 

determined.  In addition obtained maximum of the rank statistics will be compare with 

the critical value of 2.66 from table 1.1 in chapter 1, in which the discrete level is 15 and 

sample size is 100.  The percentage of samples that reject the null hypothesis at 0.05 

significance level will be reported. 

5.3.2 One predictor variable using lead exposure study data 

The predictor variable of blood lead level in the 10,000 simulated data sets from the 

above section 5.3.1 is used in this section.  The true cut points, μ, are again set at 25th and 

50th percentiles of this blood lead level variable in each Monte Carlo sample.  The 

response variable is first generated from the standard normal distribution and then added 

with the effect size of 1 and 2 standard deviations when the associated blood lead level is 

above the true cut point.  Compare to section 5.3.1, the response variable in the data 

generated in this section depend only on the predictor variable of blood lead level. The 

cutpoints corresponding to the maximally selected rank statistics will be estimated for 

each of the 10,000 Monte Carlo samples.  The percentage of the samples with the 

estimated cut points matched with true ones is determined. In addition obtained 

maximum of the rank statistics will be compare with the critical value of 2.66 from table 

1.1 in chapter 1, in which the discrete level is 15 and sample size is 100.  The percentage 

of samples that reject the null hypothesis at 0.05 significance level will be reported. 

5.4 Results and Discussion 

Table 5.5.1 shows the percentage of the cut points that are correctly estimated in each of 

the two situations described in section 5.3 above.  When the true cut point is set at 25th 

percentile and the effect size is set at 1 standard deviation, by using the regression 

residual as the response variable, 82.5% Monte Carlo samples have their cut point 

estimates matched with the true cut points. The numbers are close by comparing it to 
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89.6% which are obtained by using the simulated blood lead level as the only predictor.  

Table 5.5.1 also presents the percentage for other situations such as the effect size of 2 

standard deviations and the true cut point locations set at 25th and 50th percentile etc.  The 

numbers are all close to each other among the three simulated conditions which indicate 

that although the independent observations assumption is violated by using the regression 

residual as the response, it would not affect the accuracy of the cut point estimates using 

the maximally selected rank statistic method.  

Out of each Monte Carlo sample, the Maximum of the rank statistic that corresponds to 

the estimated cutpoint are also used to compare with the critical value of 2.66 at α=0.05 

level for semi-continuous predictor with 15 levels and (ε1, ε2)=(0.1, 0.9) from table 2.2.1 

in chapter 2.  The percentage of the simulated Monte Carlo samples that reject the null 

hypothesis at α=0.05 for both simulation conditions described in section 5.3 above are 

presented in table 5.5.1 as well.  For theta at 2 standard deviation level almost all samples 

rejected the null hypothesis.  For theta at 1 standard deviation level, the numbers are very 

close to each other and both above 95% among the two simulated conditions.  This result 

is consistent with table 3.3.1 in chapter 3, in which the power is 98.9 with sample size of 

100 and effect size of 1 standard deviation.  These results from table 5.5.1 again indicate 

the robustness of the independence assumption. 

Table 5.5.1 The effect of the independence assumption on the accuracy of cut 
point estimates using maximally selected rank statistics 

Estimate = True cut (%) Percentage of samples reject 
the H0 

 

θ 

 

Quartile 
Multivariate 

[1] 
Indep. Blood_Pb 

Sim [2] 
Multivariate 

[1] 
Indep. Blood_Pb 

Sim [2] 

25th 82.5 89.6 98.9 95.1 1 STD 

50th 98.9 99.8 99.6 99.7 

25th 82.1 84.5 99.9 96.9 2 STD 

50th 92.7 99.5 100 100 

Note: [1] Data obtained from section 3.1. [2] Data obtained from section 3.2. 
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CHAPTER 6:  APPLICATION OF THE MAXIMALLY SELECTED RANK 
STATISTIC TO BLOOD LEAD EXPOSURE STUDY 

6.1 Abstract 

In this chapter the method of maximally selected rank statistics for semi-continuous 

predictor is applied to a lead exposure study conducted by University of Medicine and 

Dentistry of New Jersey - Robert Wood Johnson Medical School.  A significant cut point 

of 2 μg/dL in the blood Pb level has been identified as relate to the marginal association 

with the increase of the ACTH at the time point subjects demonstrated most elevated 

ACTH levels during the reactivity phase (p-value = 0.0310).  The significance level of 

this identified cut point increased after adjustment for confounder variables of age and 

solvent exposure index (p-value = 0.0093). Since this study contains both reactivity and 

recovery phases and the response variable of ACTH is measured at multiple time points, 

based on this nature of the study design the method of baseline adjusted AUC is used to 

represent the overall ACTH during the entire study.  No significant linear association is 

found between the blood level and the baseline adjusted AUC in the multivariate 

regression analysis.  And there is no significant cut point identified from the blood lead 

level in relation to the baseline adjusted AUC.  

6.2 Study Background of lead exposure, HPA dysfunction, blood 

pressure on hypertension risk 

6.2.1 Study Rationale 

Lead (Pb) continues to pose health risks for those sectors of the population in which 

exposure is highest, particularly individuals of lower socioeconomic status and workers 

in the construction trades.  In addition to notorious effects on cognitive function, chronic 

Pb exposure is associated with hypertension and cardiovascular disease.  Lab 

experimental studies reveal that chronic Pb exposure permanently alters corticosterone 

levels and stress reactivity in rats.  If similar alterations in the hypothalamic pituitary 

adrenal axis (HPA) are demonstrated among humans chronically exposed to Pb, then 

such alterations may contribute over time to disease vulnerability (Fiedler 2010). 
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6.2.2 Blood Lead Levels in United States 

National Health and Nutrition Examination Surveys (NHANES) is the only survey 

providing national data on lead exposure. This NHANES is a program of studies 

designed to assess the health and nutritional status of adults and children in the United 

States. It is part of the programs in Centers for Disease Control and Prevention (CDC) 

and has the responsibility for producing vital and health statistics for the Nation. The 

survey examines a nationally representative sample of about 5,000 persons each year. 

These persons are located in counties across the country, 15 of which are visited each 

year. 

The blood lead level (BLL) varies by age, gender, racial/ethnic groups and income status.  

Overall, during the 1999—2002 survey period, the geometric mean of blood lead level in 

the studied population is 1.6 µg/dL (Table 6.2.1) (CDC, 2005). The survey from 1999 — 

2002 indicated continuous decrease in BLLs for all age groups and racial/ethnic 

populations from the 1991 — 1994 survey.  

The elevated BLLs were defined as BLLs >10 µg/dL for all ages. From 1999 — 2002 

survey, the overall prevalence of elevated BLLs for the U.S. population was 0.7%, a 

decrease of 68% from 2.2% in the 1991--1994 survey. Eliminating blood lead levels 

(BLLs) >10 µg/dL in children is one of the national health objectives for 2010 (US 

Department of Health and Human Services, 2010). 
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Table 6.2.1 Geometric means (GMs) of blood lead levels (measured as μg/dL), by 
race/ethnicity, sex and age group – National Health and Nutrition 
Examination Survey (NHANES), United States, 1999—2002. (CDC 
2005) 

 

 

6.2.3 Blood Lead Exposure and Adrenocortical Responses to Acute Stress study in the 

literature. 

Gump et al (2008) conducted a study of low-level prenatal and postnatal blood lead 

exposure and adrenocortical response to acute stress in children, i.e. which is aim to study 

the HPA response to acute stress as a function of Pb exposure.   

In this study, 169 children from an ongoing longitudinal study of the effects of 

environmental toxicants on development (Stewart et al. 2000) were enrolled. The child’s 

response to an acute laboratory stressor was assessed within 2 weeks of attaining 9.5 

years of age. To measure adrenocortical reactivity, the response variable of cortisol level 

was collected from the saliva specimens.  The predictor variables include prenatal blood 

level and postnatal blood lead level measurements.  The prenatal blood levels were 

measured from children’s cord blood specimens at the time of delivery.  And the 

postnatal blood lead data was collected from the children at an average (± SD) age of 

2.62 ± 1.20 years through the children’s pediatricians and county public health agencies.  
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The prenatal blood Pb levels are ranged from <1.0 to 4.4 μg/dL and the postnatal blood 

Pb levels are ranged from 1.5 to 13.10 μg/dL with only six children having blood lead 

concentrations >10 μg/dL. 

This study divided subjects into 4 quartile groups by using their prenatal and postnatal Pb 

exposure data and performed an ANCOVA analysis with other confounder variables. The 

quartile ranges in prenatal blood Pb data are ≤1.0 μg/dL, 1.1 – 1.4 μg/dL, 1.5 – 2.1 μg/dL 

and 2.1 – 4.4 μg/dL and the quartile ranges in postnatal blood Pb data are 1.5 – 2.8 μg/dL, 

2.9 – 4.1 μg/dL, 4.2 – 5.4 μg/dL and 5.5 – 13.1 μg/dL. 

The study results show both prenatal and postnatal lead exposure had significant positive 

effect on cortisol responses to acute stress at 9.5 years of age with increasing Pb level 

associated with an increasing cortisol response. The p-values are <0.001 and <0.005 for 

prenatal and postnatal lead exposure respectively. Especially according to the figure 2 in 

this article, the first quartile groups in both prenatal and postnatal lead exposure groups 

show substantial lower salivary cortisol change from baseline to the end of the stress test. 

The effects that found in the study were significant in a population with low levels of Pb 

exposures in which the blood Pb levels are well below the 10 μg/dL defined by the CDC 

as elevated in young children (CDC, 1991). 

6.2.4 Lead Exposure Study Design and Procedure 

In this chapter the data collected from the lead exposure study will be analyzed to address 

if there exists a threshold in blood lead level in relate to the increment of stress, which is 

measured as ACTH through the stress test.  

This lead exposure study was conducted by University of Medicine and Dentistry of New 

Jersey - Robert Wood Johnson Medical School under the principal investigator of Nancy 

Fiedler with the grant number of 5R21ES15135.  The detailed study design and 

procedures can be found in the grant report (Fiedler 2010). 

This study recruited voluntary subjects including painters, dry wall/tapers and carpenters 

who met the inclusion/exclusion criteria to complete the experimental stress procedure.  

During the stress procedure (See Figure 6.2.1 for time line), all subjects were tested in the 

afternoon to maximize stress responsively and to control for the effects of circadian 
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rhythm.  On the day of test, after signed the informed consent, all subjects received a 

check-in by research nurse in a separate private room to ascertain that the subject met the 

inclusion criteria.  The EKG electrodes were attached by the nurse, and the subject was 

seated in a comfortable chair behind a table that contained a cassette recorder, blood 

pressure machine, and computer.  The nurse placed an indwelling, catheter in the 

antecubital vein of the non-dominant arm from which blood Pb and blood samples for 

glucocorticoid and genetic polymorphisms were drawn.  Immediately after placement of 

the catheter, blood was drawn for the standard chemistry panel and blood lead.  Blood 

pressure was monitored with the BpTRU during the experimental session. Subjects were 

asked to sit quietly for 60 minutes to acclimate to the room and equipment.  During the 

first 45 minute period, the nurse assisted the subject in completing the DS14, Spielberger 

Anxiety Scale, Beck Depression Inventory, and solvent questionnaire.   After 45 minutes, 

blood pressure was taken and blood drawn.  For the next 15 minutes, the subject viewed a 

nature video after which a blood sample was drawn and blood pressure taken.  

Instructions for the speech and math tasks were given and the subject was allowed a 10 

minute preparation period.  Then three person audience entered the room and was seated 

before the table with a video camera aimed directly at the subject for the purpose of 

recording the subject’s responses.  The Trier Social Stress Test (i.e., public speaking task 

and math tests) was administered without an intervening rest period between the speech 

and math tests to maximize the acute stress level.  Blood pressure and a blood samples 

were taken immediately after completion of each stressor and the SSRS and scales 

assessing perception of the task (e.g., competence, difficulty) and effort put forth were 

completed.  Blood pressure and blood samples were then collected at 15, 30, and 60 

minutes post-stressor while the subject sat quietly reading pre-selected magazines 

provided by the research technician.  After the one hour rest period, the catheter was 

removed, the EKG leads and blood pressure cuff detached and the subjects was given a 

light snack and underwent debriefing to clarify the purpose of the stressor and alleviate 

any remaining stress regarding their performance.  

The blood lead was assessed by Quest laboratories at a part of routine chemistries.  

Plasma ACTH concentrations were measured using DSL Active Cortisol EIA kit (DSL-

10-200). 

  
 

 



 69 
 

 

Figure 6.2.1 Protocol Timeline 

PROTOCOL TIME LINEPROTOCOL TIME LINE

 

 
 
 
 
 
 
 
 
 
 

 

 

6.3 Application of the Maximally Selected Rank Statistics  

6.3.1 Analysis objective and endpoints 

The purpose of the lead exposure study is to test in adult workers the effect of chronic Pb 

on HPA axis function, including its ability to alter responsivity to stress changes.  It is 

reasonable to assume there might exist a threshold in the blood Pb level which allows for 

a classification of population into a risk and a normal group with respect to stress 

response.  The analysis objective in this chapter is to test if this assumption is true.  The 

following endpoints will be examined. 

1. To find the cut point in the blood Pb level in the marginal association to the 

change from baseline in ACTH at time point of 15 minutes. 

2. To find the cut point in the blood Pb level in relate to the change from baseline in 

ACTH after adjusted by covariates of age and solvent exposure index or age alone 

at time point of 15 minutes. 

3. To find the cut point in the blood Pb level in relate to the overall ACTH level 

during the entire study period via baseline adjusted AUC with and without 

adjusted by covariates. 
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The conclusion would be drawn based on the marginal association at time point of 15 

minutes in that the stress level would reach to its highest at this time point based on the 

study design.  The reason to choose age and solvent exposure index as the covariates is 

that based on the analyses results from the original grant report these two covariates were 

identified through the model selection.  

6.3.2 Study Data Description on demographics and baseline characteristics 

Seventy two (72) subjects who enrolled into this study have available data.  The predictor 

of interest is blood lead level.  The response variable is adrenocorticotropic hormone 

(ACTH), which is secreted from the pituitary in response to corticotropin-releasing 

hormone from the hypothalamus. Corticotropin-releasing hormone is secreted in response 

to many types of stress.  

Out of these 72 enrolled subjects, 48 are painters and 24 are carpenters or drywall tapers.  

There 70 male subjects and 2 female subjects. The average age is at 46.3 years. The 

subject demographics are presented on table 6.3.1.  

Table 6.3.1 Demographics  

Demographic Characteristics Category/Statistics Total (N=72) 

Occupation Painter 48 
 Carpenters/Dry wall taper 24 

Gender Female 2 
 Male 70 

Race Black 6 
 Hispanic 15 
 Other 6 
 White 44 

Age (Years) N 72 
 Mean 46.3 
 Std 6.99 
 Median 45.5 
 Min 30.0 
 Max 60.0 

 

In addition to demographics, other baseline covariates such as blood lead level, baseline 

ACTH and solvent exposure index etc. are also collected in this study.  Their summary 
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statistics are presented on table 6.3.2.  The mean blood lead level in this study is 6.1 

µg/dL with the standard deviation of 5.12 and range from 2 to 31 µg/dL.  According to 

the study grant report (Fiedler 2010), two confounder variables of age and solvent 

exposure index have been identified when to assess the lead exposure effect on ACTH 

level. The model building techniques used in this study report (Fiedler 2010) to assess 

whether the effects of lead levels were confounded by additional covariates are described 

in the following.  At first the spearman correlation between all of the baseline 

characteristic variables and the predictor of interest, the blood lead level, were imputed. 

Those covariates that were significantly correlated with the blood lead level were 

identified. These were then added to the regression models looking at the effect of blood 

lead levels in order to assess whether the effects of lead changed either in magnitude or 

significance and whether the additional covariates added significantly to the prediction of 

the response.  Table 6.3.2 also lists the spearmen correlation coefficients as well as the 

associated p-values between these baseline covariates and blood lead level.   

Although the Negative Affect and the Social Inhibition correlated with blood lead level, 

these two measures were not included in the model in that these could be a health 

outcome of lead exposure and therefore, result in an over fitting of the model leading to 

increased chances of Type II error.   

Since the predictor variable of blood Pb levels are measured at semi-continuous level, 

there are fourteen (14) discrete levels. Their frequencies are displayed on table 6.3.3. 

6.3.3 Study Data Description on the response variable of ACTH 

There are 3 pre-baseline ACTH measurements at minute -45, -15 and 0 before the Trier 

Social Stress Test was administered. The measurements taken at time 0 were treated as 

baseline.  There are 7 post-baseline ACTH measurements, out of which 4 measurements 

were taken during the reactivity phase at minute 5 after the instruction, at minute 10 after 

the speech task, at minute 15 after the math test and at minute 20 after the perception of 

the task assessment on competence, difficulty etc., and 3 measurements were taken 

during the post-stress recovery phase at minute 40, 60 and 75.   
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Table 6.3.2 Baseline Characteristics  

Baseline 
Characteristics N Mean Std Median Min 

Ma
x 

Corr 
[1]     p-value

Blood Lead 
(ug/dL) 72 6.1 5.12 4.0 2.0 31.0 1.00 - 

Solvent Exposure 
Index 72 3.6 7.48 0.6 0.0 33.4 0.57 <.0001 

Negative Affect 72 5.8 4.90 4.0 0.0 19.0 0.37 0.0015 

Social Inhibition 72 8.6 6.04 7.5 0.0 22.0 0.33 0.0056 

Age 72 46.3 6.99 45.5 30.0 60.0 -0.22 0.0619 

Cortisol at 
Baseline 72 11.9 5.80 10.3 3.3 31.1 -0.22 0.0627 

ACTH at 
Baseline 72 22.2 

12.6
2 19.1 1.5 62.5 0.22 0.0658 

State Depression 72 5.4 5.36 4.0 0.0 32.0 0.19 0.1221 

Lifetime Nicotine 
(pack years) 72 11.7 

15.9
6 2.7 0.0 77.5 0.17 0.1585 

Years Worked 72 20.0 7.15 20.0 9.0 35.0 -0.15 0.2045 

State Anxiety 72 30.8 9.32 28.0 20.0 51.0 -0.02 0.8989 

[1]: Spearman correlation 

Table 6.3.3 Frequency of blood lead levels. 

 
Blood Lead Level 

(μg/dL) 
Frequency Cumulative 

Frequency 
2 16 16 
3 11 27 
4 9 36 
5 5 41 
6 9 50 
7 3 53 
8 1 54 
9 3 57 
12 3 60 
13 2 62 
14 4 66 
15 1 67 
17 2 69 
31 1 70 
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Figure 6.3.2 show the box plots of change from baseline in ACTH measurements at each 

time point over all subjects.  The mean ACTH increased from the baseline at each 

stressor section and reached peak at minute 15 during the reactivity phase.  The mean 

ACTH then started to decrease during the post-stress phase and recovered to the baseline 

level at minute 60 and 75.   

 

Figure 6.3.2 Box plots of ACTH change from baseline by time points 

 

 
 
 

6.3.4 Analyses results from the original grant report 

In the study grant report (Fielder 2010), the final multivariate regression model included 

blood lead level, baseline ACTH, age and solvent exposure index as the covariates and 

used the ACTH at minutes 5, 10, 15, 20, 40, 60 and 75 as response variables. The 

analyses results show ACTH, which is an indicator of stress, was significantly increased 

in response to and recovery from stressor among the groups more highly exposed to lead.  

Specifically, it revealed a significant effect of blood lead on ACTH when comparing 

subjects at the 25th vs. the 75th percentile after adjustment for baseline and covariates of 

age and solvent exposure index.  The p-values are 0.014 and 0.0063 for unadjusted and 

adjusted models respectively.  The detailed analyses results are presented on table 6.3.4. 
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Table 6.3.4 Blood lead effects unadjusted and adjusted for age and solvent 
exposure index. Both unadjusted and adjusted effects are adjusted for 
baseline value of outcome.   

Outcome Time (min) Blood lead effect (95% CI) 
p-value 

   Unadjusted Adjusted 
ACTH 5 0.5 (-9.4, 11.6) 

.92 
0.7 (-10.7, 13.6) 
.91 

 10 12.4 (-0.8, 27.4) 
.067 

14.2 (-1.2, 32.0) 
.072 

 15 21.1 (4.1, 40.8) 
.014 

27.6 (7.4, 51.5) 
.0063 

 20 13.1 (-0.7, 28.9) 
.064 

17.7 (1.2, 36.8) 
.035 

 40 13.2 (1.2, 26.5) 
.030 

16.5 (2.4, 32.6) 
.021 

 60 15.6 (3.3, 29.4) 
.012 

17.7 (3.2, 34.3) 
.016 

 75 -3.7 (-14.5, 8.5) 
.53 

-4.2 (-16.6, 10.1) 
.54 

Note 1: Estimates (95% confidence intervals) represent the % increase/decrease in 
response at the specified time for those at the 75th (7 μg/dL) versus the 25th percentile (3 
μg/dL) of blood lead levels.  P-values are transcribed directly from the regression model 
results. 

Note 2: This table is cited from the Fiedler’s 2010 study grant report 

6.3.5 Methods 

6.3.5.1 Marginal association between blood Pb level and ACTH  

Corresponds to the first research endpoint in section 6.3.1, which is to find the cut point 

in the blood Pb level in the marginal association to the change from baseline in ACTH at 

time point of 15 minutes.  The maximally selected rank statistics for semi-continuous 

predictor described in chapter 1 will be applied to this lead exposure data.   

Since the distribution of blood Pb level is right skewed, there are 16 out 70 subjects are at 

the lowest level of 2 μg/dL.  When the searching interval is set at the central 80%, the 

rank statistic will be calculated in relate to the change from baseline in ACTH score at 

time point of 15 minute for every blood Pb level ranged from 2 to 13 (μg/dL).  The 

maximum of these calculated rank statistics will be identified and compared with the 

critical value obtained from the null distribution with sample size of 72 and semi-

continuous predictor with 14 discrete levels using the method described in chapter 1.  The 
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associated p-value will be reported. The existence of the cut point in blood Pb level in 

relate to the stress response will be claimed based on this p-value. 

6.3.5.2 Adjusted by covariates 

In this study grant report, besides the blood lead level, which is the predictor of interest, 

age, solvent exposure index and baseline level of the ACTH were also included into the 

final multivariate regression model.  The baseline level of the ACTH was included in 

order to account for the effect of regression to the mean.  The age and solvent exposure 

index were included as confounders.  This study grant report revealed a significant effect 

of blood lead when comparing subjects at the 25th vs. the 75th percentile after adjustment 

for baseline and covariates.   Based on these results we understood age and solvent 

exposure index have an effect on the outcome variable of ACTH, and we also know these 

two variables are correlated with the blood Pb exposure (Table 6.3.2), we would like to 

study if the association between the ACTH and the cut point in blood Pb level, which is 

the predictor we are interested in, will change after adjusting for these two covariates of 

age and solvent exposure index or for age alone. 

Again the change from baseline in ACTH at minute 15 will be used as the primary 

response variable.  A multivariate regression model with the predictors of age and solvent 

exposure index or with the predictor of age alone will be conducted.  The resulting 

residual in change from baseline ACTH will then be obtained.  The maximally selected 

rank statistics will be applied to search for the cutpoint in blood lead level using these 

regression residuals at time point of 15 minute as response variables.  Similar to section 

6.3.5.1, the maximum rank statistic will be identified and compared with the critical 

values obtained from the null distribution with sample size of 72 and 14 discrete scales 

using the method described in chapter 1.  The associated p-value will be reported.  Any 

changes in the significance level of the identified cut point compare to the marginal 

association will be discussed. 

6.3.5.3 Analysis on repeated measurements  

Based on the design, this study consists reactivity and recovery phases.  And the response 

variable of ACTH was collected at multiple time points throughout these two different 

phases.  This provides another research interest, which would be if there exists a cut point 
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in the blood Pb level to classify the population into two groups and the ACTH score 

would be significantly increased in response to and recovery from stressor among the 

groups more highly exposed to lead. 

For the analysis on overall ACTH during the entire study duration, the baseline adjusted 

AUC (BAUC) will be calculated and used as the response variable.  The baseline 

adjusted AUC will be calculated as the area above the baseline level under the curve of 

ACTH levels subtracted by the area over the curve of ACTH levels below the baseline 

level. Use figure 6.3.3 as an example, the baseline adjusted AUC is calculated as area a – 

area b.  By using this baseline adjusted AUC, subjects who had higher ACTH score 

during the reactivity phase or had slower recovery would have higher BAUC value. 

Subjects who had low ACTH score in the reactivity phase or had rapid recovery after the 

stress test would have lower BAUC value. 

The multivariate regression model with the predictors of baseline level ACTH, age, 

solvent exposure and blood lead level will be first conducted to explore if there is any 

significant relationship between the overall ACTH level and blood lead level.  Then the 

same maximally selected rank analyses describe in section 6.3.5.1 and 6.3.5.2 above will 

be applied to identify if there is any cutpoint in blood lead level associated with this 

overall stress response as indicated by BAU with and without adjusting by covariates. 

Figure 6.3.3 Baseline adjusted AUC. 
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6.4 Results  

6.4.1 Cutpoint in marginal association 

Figure 6.4.1a and 6.4.1b presents the scatter plots of ACTH and its change from baseline 

at time point of 15 minutes versus blood Pb level, which provide intuitive pictures on the 

marginal association between these two variables. 

Since the blood Pb level is measured in semi-continuous level, the descriptive statistics of 

the change from baseline in ACTH sores at each of the blood Pb levels by every time 

point are presented in table 6.4.1 and figure 6.4.2. 

The maximally selected rank statistics at time point of 15 minute is obtained at the blood 

lead level of 2 μg/dL with the value of 2.80.  The associated p-value is 0.0310 according 

to the simulated null distribution with sample size of 100 and 15 discrete levels in the 

predictor.   

From table 6.4.1, at minute 15 subject with blood Pb level of 2 μg/dL had small change in 

ACTH level from baseline with the mean of 0.73.  However, the change in ACTH from 

baseline for subjects with blood Pb level of 3 μg/dL or higher is much bigger.  The mean 

change values are 21.06 and 10.96 for subjects with blood Pb level of 3 μg/dL and its 

above respectively.  Figure 6.4.2 also suggests that at minute 15 the ACTH increases 

along with the blood lead level.  These descriptive summary results further confirmed the 

significant cut point of 2 μg/dL claimed from the maximally selected rank statistics 

analysis. 

According figure 6.4.2, it seems the change from baseline of ACTH increases along with 

the blood lead level at minute 10, 15 and 20.  The change from baseline of ACTH seems 

the same at all blood lead levels at all other time points especially at minute 5, 60 and 75.  

This can be explained by the study design.  Minute 10 is the time point that subjects 

finished the public speech task and is in the middle of the Trier Social Stress Test 

(TSST).  Minute 15 is the time point that subjects continued to finish the math test and is 

the time point subjects received the maximum stress in this study.  Minute 20 is the time 

point subjects finished the scales assessing perception of the task after subjects finished 
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the TSST.  We observed the trend of the stress response in relate to the blood Pb level at 

these 3 time points.  And the trend reaches to the significant level at its peak time point.    

 

Figure 6.4.1a ACTH at minute 15 vs. blood lead level. 

 

 
 
Figure 6.4.1b Change from baseline in ACTH at minute 15 vs. blood 

lead level. 
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Table 6.4.1 Descriptive Statistics of ACTH change from baseline by time points 
and blood Pb levels.   

 ACTH Change from Baseline at 

Blood Pb 

(ug/dL) Statistics Min. 5 Min. 10 Min. 15 Min. 20 Min. 40 Min. 60 Min. 75 

Overall N       70       70       70       70       69       69       69 

 MEAN     3.86     6.63    10.21     7.00     1.78    -1.18    -2.11 

 STD     9.77    11.65    14.67    11.48     8.64     8.37     8.49 

 MEDIAN     1.60     3.75     8.83     6.32     0.47    -1.49    -2.12 

 MIN   -11.61   -12.66   -12.96   -14.24   -17.67   -17.34   -23.57 

 MAX    47.81    45.74    53.94    36.57    28.44    19.82    25.51 

      2 N       16      16      16      16      16       16      16

 MEAN     4.17     0.26     0.73     1.36    -0.37    -2.91     0.92 

 STD    13.59     8.37     9.04     7.92    11.26     7.74    10.52 

 MEDIAN     0.80    -0.10    -0.62    -0.42    -1.66    -6.17     0.55 

 MIN    -8.00   -12.66   -12.96    -9.87   -14.20   -15.87   -18.24 

 MAX    47.81    16.25    18.01    15.20    28.44     9.13    25.51 

      3 N       11       11       11       11       10       10       10 

 MEAN     6.49    13.25    21.06    14.66     5.09     0.00    -1.29 

 STD    10.86    16.42    19.73    14.64     7.84    11.84     9.72 

 MEDIAN     4.19     5.55    16.35    14.81     3.19     0.50    -1.15 

 MIN    -6.34    -5.52   -10.57   -10.31    -6.43   -17.34   -23.57 

 MAX    29.26    45.74    53.94    33.63    16.39    19.82    11.05 

      4 N        9        9        9        9        9        9        9 

 MEAN     2.30     7.91     8.73     3.81     0.03    -1.79    -2.51 

 STD     6.33    11.22    14.25     9.13     4.88     6.58     8.41 

 MEDIAN     3.04     9.72     4.27     6.18    -0.38    -3.63    -0.90 

 MIN    -5.70    -5.37    -6.80    -7.11    -7.20   -10.08   -18.71 

 MAX    10.71    26.38    31.71    15.41     9.68     9.97     7.78 

      5 N        5        5        5        5        5        5        5 

 MEAN     3.74     2.67     3.77     3.50    -1.12    -6.90    -5.47 

 STD     7.87     6.80     6.18     5.27     4.49     4.66     5.30 

 MEDIAN    -0.37     1.47     3.90     1.39    -0.83    -8.19    -6.23 

 MIN    -3.12    -3.38    -3.07    -1.44    -7.13   -12.19   -11.13 

 MAX    15.29    13.78    10.79    11.26     5.15    -0.08     1.41 
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 ACTH Change from Baseline at 

Blood Pb 

(ug/dL) Statistics Min. 5 Min. 10 Min. 15 Min. 20 Min. 40 Min. 60 Min. 75 

      6 N        9        9        9        9        9        9        9 

 MEAN     7.81    13.08    17.77    13.17     3.33     0.76    -4.63 

 STD    11.28    11.81    14.60    10.31     4.90     8.31     8.20 

 MEDIA     3.05    10.73    20.74    13.70     2.74     0.44    -4.38 

 MIN    -3.39    -0.59     0.65    -4.32    -2.30   -12.74   -17.56 

 MAX    33.60    28.06    38.99    27.89    11.81    17.48    10.95 

      7 N        3        3        3        3        3        3        3 

 MEAN    -1.77    -1.48     5.73     3.12    -1.50    -4.65    -4.99 

 STD     5.06     7.14    16.20    17.93    10.90     7.96     3.47 

 MEDIA    -2.12    -1.08     1.68    -0.32    -0.16    -3.19    -3.99 

 MIN    -6.64    -8.82    -8.06   -12.83   -13.00   -13.24    -8.85 

 MAX     3.46     5.45    23.57    22.52     8.67     2.47    -2.12 

      8 N        1        1        1        1        1        1        1 

 MEAN     5.69    19.20    12.32     9.11    -4.60    -7.38    -9.89 

 STD N/A N/A N/A N/A N/A N/A N/A 

 MEDIA     5.69    19.20    12.32     9.11    -4.60    -7.38    -9.89 

 MIN     5.69    19.20    12.32     9.11    -4.60    -7.38    -9.89 

 MAX     5.69    19.20    12.32     9.11    -4.60    -7.38    -9.89 

      9 N        3        3        3        3        3        3        3 

 MEAN    -0.78     2.93     7.75     3.72     1.75     2.64     1.55 

 STD     2.23     4.87     7.49     9.10     6.26     6.41     2.24 

 MEDIA    -1.19     0.91    10.32     4.26     5.05     6.24     0.73 

 MIN    -2.78    -0.60    -0.68    -5.64    -5.47    -4.76    -0.15 

 MAX     1.62     8.48    13.63    12.54     5.67     6.45     4.09 

     12 N        3        3        3        3        3        3        3 

 MEAN     4.88    11.34    26.37    22.29    14.61     5.67    -0.21 

 STD     4.04     8.74    14.79    13.66    10.66     9.54     4.54 

 MEDIA     6.19    10.63    23.03    20.94    11.37     4.19     2.26 

 MIN     0.35     2.98    13.54     9.36     5.94    -3.05    -5.45 

 MAX     8.11    20.42    42.54    36.57    26.51    15.86     2.56 
 

  
 

 



 81 
 

 

 ACTH Change from Baseline at 

Blood Pb 

(ug/dL) Statistics Min. 5 Min. 10 Min. 15 Min. 20 Min. 40 Min. 60 Min. 75 

     12 N        3        3 3        3        3        3        3 

 MEAN     4.88    11.34    26.37    22.29    14.61     5.67    -0.21 

 STD     4.04     8.74    14.79    13.66    10.66     9.54     4.54 

 MEDIAN     6.19    10.63    23.03    20.94    11.37     4.19     2.26 

 MIN     0.35     2.98    13.54     9.36     5.94    -3.05    -5.45 

 MAX     8.11    20.42    42.54    36.57    26.51    15.86     2.56 

     13 N        2        2        2        2        2        2        2 

 MEAN    -7.89    -2.64     9.61    10.32     9.81    14.39     2.79 

 STD     5.26     5.79     1.21     1.59     4.38     0.33    11.91 

 MEDIAN    -7.89    -2.64     9.61    10.32     9.81    14.39     2.79 

 MIN   -11.61    -6.73     8.75     9.20     6.71    14.16    -5.64 

 MAX    -4.18     1.45    10.46    11.44    12.91    14.63    11.21 

     14 N        4        4        4        4        4        4        4 

 MEAN     0.24     2.84     3.60    -1.84    -5.13    -5.46    -7.34 

 STD     2.55     4.73     9.09     9.91     9.91     5.30     5.83 

 MEDIAN     0.65     1.00     0.43    -1.56    -4.67    -4.83    -5.02 

 MIN    -3.09    -0.41    -3.00   -14.24   -17.67   -12.43   -15.96 

 MAX     2.75     9.76    16.53    10.00     6.51     0.22    -3.38 

     15 N        1        1        1        1        1        1        1 

 MEAN    -0.34    -2.42    -1.44    -0.59    -1.32     1.90    10.13 

 STD N/A N/A N/A N/A N/A N/A N/A 

 MEDIAN    -0.34    -2.42    -1.44    -0.59    -1.32     1.90    10.13 

 MIN    -0.34    -2.42    -1.44    -0.59    -1.32     1.90    10.13 

 MAX    -0.34    -2.42    -1.44    -0.59    -1.32     1.90    10.13 

     17 N        2        2        2        2        2        2        2 

 MEAN    11.32    20.19    19.85    12.00     8.82     1.66    -7.91 

 STD     6.91    12.67     9.25     4.71     3.48     1.09     8.41 

 MEDIAN    11.32    20.19    19.85    12.00     8.82     1.66    -7.91 

 MIN     6.44    11.23    13.31     8.67     6.36     0.89   -13.86 

 MAX    16.21    29.15    26.39    15.33    11.28     2.43    -1.96 

     31 N        1        1        1        1        1        1        1 

 MEAN     2.56    10.16    10.20     3.77    -2.54    -6.92    -5.41 

 STD N/A N/A N/A N/A N/A N/A N/A 

 MEDIAN     2.56    10.16    10.20     3.77    -2.54    -6.92    -5.41 

 MIN     2.56    10.16    10.20     3.77    -2.54    -6.92    -5.41 

 MAX     2.56    10.16    10.20     3.77    -2.54    -6.92    -5.41 
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Figure 6.4.2 Change from baseline in ACTH at each blood Pb level by time 
points. 
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6.4.2 Adjusted by covariates 

After adjusted for the confounder variables of age and solvent exposure index, figure 

6.4.3 plots the regression residuals of change from baseline in ACTH versus blood lead 

level at time point of 15 minute.  

Table 6.4.2 shows the cut points and associated p-values in blood lead level in relation to 

age and solvent exposure index adjusted ACTH change from baseline.  The cut point of 2 

μg/dL in blood lead level is significantly identified at minute 15.  Compared to the 

marginal association, the significance increased after adjusted by the covariates of age 

and solvent exposure with the maximum of rank statistic changed from 2.80 to 3.15 and 

p-value changed from 0.0346 to 0.0102   The detailed results are presented on table 6.4.2.   

Figure 6.4.4 shows the box-plots of regression residuals of change from baseline in 

ACTH at each of the blood lead level by time point. The reference lines are drawn at the 

mean of the residuals at blood lead level of 2 μg/dL.  This figure reveals that the ACTH 

level increased for subjects with blood level above 2 μg/dL at minute 15 and 20.  For the 

rest of the time point, there seems to be no association between ACTH and blood lead 
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level.  Table 6.4.2 also presents the results by adjusting for covariate of age only.  The 

result show little change with the maximum of the rank statistic of 3.14 and p-value of 

0.0106, which means age is the most confounded variable in the relationship between 

blood lead exposure and ACTH increase. 

 

Figure 6.4.3 Plot of regression residual of ACTH change from baseline after 
adjusted by age and solvent exposure index at time point of 15 
min vs. blood lead level. 
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Figure 6.4.4 Box plots of regression residuals of ACTH change from 
baseline after adjusted by age and solvent exposure index at 
each blood Pb level by time points. 
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6.4.3 Baseline adjusted AUC 

Figure 6.4.5 displays the box plot of the baseline adjusted AUC against the blood lead 

level.  No apparent pattern can be seen through this plot.  

The regression results also suggest no association between the baseline adjusted AUC 

and blood lead level. The p-values from the regression models with and without 

adjustment for covariates of age and solvent exposure index are 0.6520 and 0.7242 

respectively.  

Table 6.4.2 confirms the regression results by showing there is no significant cut point 

identified based on the unadjusted and covariates adjusted BAAUC with p-values of 

0.3882 and 0.5066 respectively.  

Although the ACTH scores are measured at different time point on the same subject, it 

can not be analyzed by using the repeated measurement method in that the underlying 

relationship between the ACTH score and time is not linear. The ACTH scores are 

expected to increase during the reactive phase and then decrease during the recovery 

phase. The baseline adjusted AUC would be appropriate to summarize the ACTH score 

over time for this type of study design. 
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Figure 6.4.5 Box plot of baseline adjusted AUC vs. blood lead level 

 

 

Table 6.4.2 Cut point of blood lead level in related to change from baseline ACTH 
scores at minute 15 and overall.  

Change from baseline in ACTH at min. 15 BAAUC 1  

 

Methods 
BLL 
(μg/dL) 

Maximum 
Rank Stat. 

p-value BLL 
(μg/dL) 

Maximum 
Rank Stat. 

p-value 

Unadjusted 2 2.80 0.0346 5 1.75 0.3882 

Adjusted 2 2 3.15 0.0102 2 1.58 0.5066 

Adjusted 3 2 3.14 0.0106 5 1.77 0.3750 

1. Baseline adjusted AUC 
2. Adjusted by age and solvent exposure index. 
3. Adjusted by age only. 
 

6.5 Discussion 

This study enrolled subjects who were identified because of the expectation of high level 

lead exposure and control subjects who were unlikely to be exposed to high level lead.  
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The predictor variable of blood lead level collected from this study therefore has wide 

range from 2 to 17ug/dL with an outlier of 31ug/dL.  This hence provides a large range to 

search for the cut point of the blood lead level.   

In addition, the analyses results from the grant study report show that by using linear 

regression method, no association was detected between ACTH and blood lead level, 

however when comparing the highest quartile group to the lowest quartile group in blood 

lead level the ACTH was significantly increased in response to the stressor, which 

suggests the potential of cut point existence.  The sample size of this study 72 and there 

are 14 discrete levels in the predictor variable of blood lead.  We used the null 

distribution generated from sample size of 72 and 14 discrete levels in the predictor 

variable using the method described in chapter 1, which provides an exact result for the 

conclusion of a cut point.   

With a continuous outcome variable, the cut point search from a continuous predictor has 

been thoroughly discussed in the literatures.  The effect of discreteness of values for the 

predictor on the cut point search has not been studied.  The predictor of blood lead level 

collected in this study is measured in a discrete scale with multiple observations at the 

same value, which triggers this dissertation topic on how cut point search behaves 

differently between the continuous predictor and semi-continuous predictor.   

The ACTH is released from pituitary after stimulated by the corticotrophin releasing 

hormone, which is released from hypothalamic-pituitary-adrenal (HPA) axis after 

triggered by psychological stress.  The details between the HPA axis and stress response 

can be found in the study grant report.  The grant report also mentioned the HPA axis 

dysfunction has been associated with disease states including depression, metabolic 

disease, obesity and hypertension.  This lead exposure study reveals a cut point of 2 

μg/dL in blood lead level of adults in related to a significant increase of ACTH in 

response to stressor.  Followed by a stress challenge, subjects with blood lead level 

greater than 2 μg/dL responded in higher ACTH increase compare to subjects with blood 

lead level of 2 μg/dL.  By using the cut point selection method, we transformed the semi-

continuous variable of blood lead level into a binary variable. The selected cut point 

allows a classification of the population into two distinct groups at which it maximizes 
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the measure of difference between the groups.  Ideally the cutpoint is suggested by 

theories of biological functioning behind the relationship between the blood lead level 

and HPA dysfunction, but this information is not available.  Instead, we explored the 

study sample and to find the empirical cutpoint based on the observed data of outcome 

and prognostic variables to differentiate between high and low risk groups.  This obtained 

cut point of 2 μg/dL is the best separation point in terms of with maximum difference in 

ACTH response between groups based on this study sample.  And the difference between 

the two groups is statistically significant after adjustment of multiple testing. In addition 

to the statistical significance, the choice of a cutpoint to convert a continuous covariate to 

a binary covariate is also rely on biological knowledge about the particular risk factor or 

on the results already published in other studies.  Compare to the population blood lead 

level, this cutpoint identified in this study is relatively low compare to the 10 μg/dL by 

CDC as elevated for public health purposes ((US Department of Health and Human 

Services, 2010).  However this result is consistent to study results from Gump et al 2008, 

in which the same significant positive association is found between the blood Pb level 

and cortisol responses to acute stress for children with low blood lead level at 9.5 years of 

age by comparing the lowest quartile group with range of 1.5 – 2.8 μg/dL to the 

combined three upper quartile groups with range of 2.9 – 13.1 μg/dL. 
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CHAPTER 7:  DISCUSSION AND FUTURE WORKDS 

7.1 Discussion 

In the analysis involving data from clinical or epidemiological studies, significant 

attention is given to continuous or semi-continuous variables such as blood pressure, age 

etc., but the predictive importance of such variables can not be established easily.  It is 

common in practice to transform a continuous prognostic variable into a binary variable 

for clinical use.  Dichotomizing the predictor variable may result in a loss of information, 

but is often necessary for practical decision-making.  For instance, this is done in order to 

set up practical criteria as mentioned in the PBSCT example in section 1.6.1, or to guide 

clinicians and patients in their choice of therapy as mentioned in the advanced seminoma 

example in section 1.6.2.  An optimal cut point searching method in which cutpoints are 

systematically tested and identified as the one with minimum p-value is introduced in this 

dissertation.  The methods for adjustment of the minimum p-value that accounts for 

having taken multiple, but not independent, looks at the data are thoroughly discussed 

and studied. 

Ideally a cutpoint is suggested by theories of biological functioning, but this information 

is rarely available.  Instead, observed data on the outcome and prognostic variable often 

are obtainable from experimental samples and can be explored in order to find 

empirically a cutpoint which appears to differentiate between high and low risk groups.  

Some experimental samples may show multiple data points with adjusted p-values below 

0.05, the conclusion draw based only on the one with minimum p-value may not 

represent the general population.  If these data points are shown close to each other as a 

cluster, in order to apply the obtained cutpoint to the population the more appropriate 

approach would be to group these data and report the range.  If these data points are 

separated, it may be due to an outlier or their might be multiple cutpoints.  In this case a 

though look on the scatter plot is needed.    

The cutpoint model discussed in this dissertation is for the existence of single cut point.  

It can not be used to the variable such as blood pressure, which may have two cutpoints 

that with values too high and too low are both associated with increased risk. 
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7.2 Future works 

In this dissertation, we reviewed several methods including maximally selected chi-

square statistics, maximally selected rank statistics to search for the optimal cut point. 

Since utilizing the maximally selected rank statistic to analyze semi-continuous 

predictors has not been discussed in the literatures.  This dissertation provides the 

comparison of the null distribution, power curve, precision of cut point estimation 

between semi-continuous and continuous predictive variables through simulation.  It is 

not yet clear how to derive the exact methods to compute the maximally selected ranks 

statistics for finite samples and for samples with predictor variables measured in ordinal 

or semi-continuous levels.  Also in chapter 4, we met computational difficulties to 

construct the averaged confidence interval for estimated cutpoints.  Therefore both the 

exact method and a better way to create the confidence interval via simulation would be 

of interest in the future works.  

Although we used the baseline adjusted AUC to summarize the multiple measurements of 

the response variable due to the nature of the lead exposure study design, how to apply 

the maximally selected statistics to analyze the conventional repeated measurement 

studies would be of another interest in the future works. 
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