```
Description: Distributing a variable over other variables. Does it check out with numbers?
Parent Tape: Early Algebra Ideas
About Binomial Expansion, Stephanie's
Interview One of Seven
Date: 1995-11-08
Location: Harding Elementary School Researcher: Professor Carolyn Maher
```

Transcriber(s): Aboelnaga, Eman Verifier(s): Yedman, Madeline Date Transcribed: Fall 2010 Page: 1 of 4

1	R1	Okay. Have you done anything like this yet? Okay - as we do these examples. Did you do anything like this? $[a(x+y)]$
2	Stephanie	Um hm. Not that I can recall. No.
3	R1	No, what do you think that could possibly mean?
4	Stephanie	It's any number times two other variables that could also stand for any number - so - can you get a number that's like $a x+a y$?
5	R1	Let's think about that? Why don't you write -
6	Stephanie	'Cause that's what it's telling you to do. It's telling you.
7	R1	So you think that's going to be [Stephanie writes $a x+a y]$.
8	Stephanie	That's what it's telling you.
9	R1	That's an a, right? [corrects Stephanie's handwriting]
10	Stephanie	Yeah.
11	R1	Okay - So your conjecture is that - why don't you test it? Why don't you try some numbers for a, x, and y ? And see if it works?
12	Stephanie	Alright [$2(3+4)]$ is six plus eight is fourteen.
13	R1	Does that work?
14	Stephanie	Well, actually I have to try one number at it well...
15	R1	Well.
16	Stephanie	I have to just plug in one number and then - what I really have is go like equals fourteen and then plug in - if I just plugged in like the two.
17	R1	Okay. So what you're saying here - two - is...
18	Stephanie	It comes out to be the same - I mean, I guess you could put a variable with another variable and multiply it.
19	R1	Right.
20	Stephanie	We just never did it before.

```
Description: Distributing a variable over other variables. Does it check out with numbers?
Parent Tape: Early Algebra Ideas
About Binomial Expansion, Stephanie's
Interview One of Seven
Date: 1995-11-08
Location: Harding Elementary School
Researcher: Professor Carolyn Maher
```

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 2 of 4

21		R1	So, Let's think about this. What did you use for a ? What did you use for x ? And what did you use for $y ?$
22		Stephanie	Um two for a.
23		R1	And...
24		Stephanie	Three for x.
25		R1	For x.

Description: Distributing a variable over other variables. Does it check out with numbers?
Parent Tape: Early Algebra Ideas
About Binomial Expansion, Stephanie's
Interview One of Seven
Date: 1995-11-08
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman Verifier(s): Yedman, Madeline Date Transcribed: Fall 2010 Page: 3 of 4

$\left.$| 45 | | R1 | Okay. What's your intuition on it? |
| :--- | :--- | :--- | :--- |
| 46 | | Stephanie | Um, I don't know. If it works every time, I don't
 understand why they make us um distribute in the
 first place - if it works every time. So I don't
 think - I think there's going to be a problem
 (inaudible) I mean 'cause - it's pretty dumb then if
 we always have to distribute - you know. |
| 47 | | R1 | Um hm. Do you think you always have to
 distribute? |
| 48 | | Stephanie | Well, obviously not in this problem. |
| 49 | | R1 | Um hm. |
| 50 | | Stephanie | So I mean... |
| 51 | | R1 | You know you could've gotten the answer without
 distributing, if that were true. |
| 52 | | R1 | If that were true. If they were equivalent, you
 didn't have to, did you? |
| 53 | | R1 | Stephanie | | Well actually I shouldn't have - I should've just |
| :--- |
| distributed after I added those two. | \right\rvert\, | Well no. I don't know that you should've... |
| :--- |
| 54 |
| 55 |
| 56 |

Description: Distributing a variable	Transcriber(s): Aboelnaga, Eman
over other variables. Does it check out	Verifier(s): Yedman, Madeline
with numbers?	Date Transcribed: Fall 2010
Parent Tape: Early Algebra Ideas	Page: 4 of 4
About Binomial Expansion, Stephanie's	
Interview One of Seven	
Date: 1995-11-08	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

67		R1	Interesting.
68		Stephanie	This problem's working out.
69		R1	What's the it that worked? What were you thinking when you did it?
70		Stephanie	Well, um I was just try - 'cause like here I didn't have to distribute, but if I had a problem where I had a variable in the inside of the parentheses I would have to distribute.
71		R1	Um hm.
72		Stephanie	Because I can't combine like terms if they're not the same -- so
73		R1	Um hm.
74		Stephanie	I was just saying that you know if you have a variable, you have to distribute first.

