| Description: Making general sense of x |
| :--- |
| times x |
| Parent Tape: Early Algebra Ideas |
| About Binomial Expansion, Stephanie's |
| Interview One of Seven |
| Date: 1995-11-08 |
| Location: Harding Elementary School |
| Researcher: Professor Carolyn Maher |

Description: Making general sense of $x$ times $x$
Parent Tape: Early Algebra Ideas
About Binomial Expansion, Stephanie's
Interview One of Seven
Date: 1995-11-08
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 1 of 2

| 1 | R1 | Did you ever have anything like this? <br> [Dr. Maher writes $x \cdot x$.] |
| :---: | :---: | :---: |
| 2 | Stephanie | $x$ times $x$ ? |
| 3 | R1 | We had $x$ plus $x$. You told me that was two $x$ 's. What about $x$ times $x$ ? |
| 4 | Stephanie | I think I might've. I don't think I've done anything like this this year. |
| 5 | R1 | Okay. What do - what do you think that means? |
| 6 | Stephanie | It means $x$, the variable $x, x$ amount of times. |
| 7 | R1 | Okay. That's that's interesting. The variable $x x$ amount of times. Really neat. I'll buy that. |
| 8 | Stephanie | Um hm. |
| 9 | R1 | Okay. Suppose you had numbers. |
| 10 | Stephanie | Okay. |
| 11 | R1 | Um 'cause you said it could be anything. Suppose we had $x$ and we had $x$ dot $x$. Right? And if $x$ were two... |
| 12 | Stephanie | It would be two times two. |
| 13 | R1 | Two times two. Right? |
| 14 | Stephanie | Um hm. |
| 15 | R1 | And if $x$ were three - |
| 16 | Stephanie | Three times three. |
| 17 | R1 | Is there another way two times two? |
| 18 | Stephanie | Um, you could write it two plus two? |
| 19 | R1 | Okay. And three times three? Does that work the same way? |
| 20 | Stephanie | No. |
| 21 | R1 | Is there a way of writing, you know - |
| 22 | Stephanie | everything the same? |
| 23 | R1 | Write everything the same? Right. All the way up to ...if you had four. This is four times four. |
| 24 | Stephanie | Oh! Well, you could use um you could use exponents. |
| 25 | R1 | How would you do that? |
| 26 | Stephanie | Well. Two to the second and three to the second. |
| 27 | R1 | Okay. So you could - why don't you write that? |
| 28 | Stephanie | Okay. Like do you want me to make another chart? |
| 29 | R1 | Well - well -sure. |
| 30 | Stephanie | Okay. |


| Description: Making general sense of $x$ |
| :--- |
| times x |
| Parent Tape: Early Algebra Ideas |
| About Binomial Expansion, Stephanie's |
| Interview One of Seven |
| Date: 1995-11-08 |
| Location: Harding Elementary School |
| Researcher: Professor Carolyn Maher |

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 2 of 2

| 31 | R1 | And then tell me how you would write $x$ times $x$ then. <br> [Stephanie writes.] |  |
| :--- | :--- | :--- | :--- |
| 32 |  | Stephanie | How far do you want me to go? |
| 33 |  | R1 | Um until you can give me a writing $x$ times $x$ in general. |
| 34 |  | Stephanie | Um. $x$ to the $x$ power? |
| 35 |  | R1 | Okay. |
| 36 |  | Stephanie | Can you do it like that? |
| 37 |  | R1 | Well. Check it out. |
| 38 |  | Stephanie | Or $-x$ to the second! Oh no! $x$ to the second power? |
| 39 |  | R1 | What do you think? Which do you think it is? $x$ to the $x$ <br> or $x$ to the second? |
| 40 |  | Stephanie | $x$ to the second. |
| 41 |  | R1 | Why? |
| 42 |  | Stephanie | 'cause $x$ to the $x$ power would mean - say $x$ is $-x$ is one <br> thousand one hundred and fifteen. That would mean one <br> thousand one hundred and fifteen one thousand one <br> hundred and fifteen times and that's - <br> 43 |
| 44 | R1 | Stephanie | Retty big. |
| 45 |  | R1 | Okally long. |
| 46 |  | Stephanie | So two $x-$ uh $-x$ to the second. |
| 47 |  | R1 | Okay. Do you know how you read that? |
| 48 |  | Stephanie | What? |
| 49 |  | R1 | Another way people read the $x$ to the second power? <br> Sometimes that's called $x$-squared. |
| 50 |  | Stephanie | Oh. Yeah |
| 51 |  | R1 | You knew that. Okay. So is that familiar to you? |
| 52 | Stephanie | Yes. |  |

