```
Description: Wondering about how to
combine terms
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
One of Seven
Date: 1995-11-08
Location: Harding Elementary School
Researcher: Professor Carolyn Maher
```

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 1 of 4

1	R1	Let's see if we can make this simple. So we said so far that possibly x plus y times x plus y , right?
2	Stephanie	Um hm.
3	R1	Could be thought of as $\mathrm{x} x$ plus y 's right? Plus y x plus y's.
4	Stephanie	Yeah.
5	R1	You like that?
6	Stephanie	Yes.
7	R1	Now let's - um - could you make this simple with your Distributive Law?
8	Stephanie	Yes.
9	R1	Do you think you can - do you know enough - what does it mean to write x times x plus y ?
10	Stephanie	Oh. Can I- -
11	R1	What does that mean: x times the quantity x plus y?
12	Stephanie	Well, x times - no. Wait. That's - It - See if it was just x times x I could do an x -squared.
13	R1	Well, it is. You have x times x .
14	Stephanie	Yeah, but I can't do it with y, 'cause y squared is different than x -squared.
15	R1	Okay. But this piece you think is x squared?
16	Stephanie	I can do it.
17	R1	x times x .
18	Stephanie	Yeah.
19	R1	Well, do that.
20	Stephanie	It would just be - do you want me to write x times x or x -squared?
21	R1	x -squared.
22	Stephanie	x-squared, okay.
23	R1	Okay.
24	Stephanie	But here it would be x to the y power.
25	R1	Let's think about that. What are you saying here? You're trying to guess what x

```
Description: Wondering about how to
combine terms
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
One of Seven
Date: 1995-11-08
Location: Harding Elementary School
Researcher: Professor Carolyn Maher
```

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 2 of 4

		times y is, right?
26	Stephanie	Yeah.
27	R1	So let's get a paper to conjecture. You can conjecture here.
28	Stephanie	Okay.
29	R1	How do you think you would write - what do you think it means ' x times y '?
30	Stephanie	Well, it's an um x amount y number of times or y amount x number of times. It can go either way.
31	R1	So. Well. Look at what you just wrote.
32	Stephanie	Um hm.
33	R1	Do you think that's a way to write it?
34	Stephanie	Well, yeah. You can write it like that. I'm just saying -
35	R1	Yeah. That's fine. I like it that way. Okay. [Stephanie writes: $x^{2}+x \cdot y+y \cdot x+y^{2}$]
36	R1	Okay. So you see why your other guess didn't work before? If what you're doing is right - there's your x -squared, there's your y squared, but there's something else.
37	Stephanie	Yeah. I understand.
38	R1	See that. What is that something else?
39	Stephanie	It's the x times the y .
40	R1	Or - what's next?
41	Stephanie	Or the y times the x . Or -
42	R1	Okay. So you have this xy and you have this yx, right?
43	Stephanie	Um hm.
44	R1	Can you simplify that?
45	Stephanie	Yeah. I can get - Could I - Now if I added another x there, it could be x to the third, right? Could I do -
46	R1	Now I'm confused. Let's think what you're doing here. So -
47	Stephanie	Alright. Because then - alright - it would

Description: Wondering about how to	Transcriber(s): Aboelnaga, Eman
combine terms	Verifier(s): Yedman, Madeline
Parent Tape: Early Algebra Ideas About	Date Transcribed: Fall 2010
Binomial Expansion, Stephanie's Interview	Page: 3 of 4
One of Seven	
Date: 1995-11-08 Location: Harding Elementary School Researcher: Professor Carolyn Maher	

		be x plus x plus x plus - just so that it's easier for me - - y plus y plus y-squared. [Stephanie writes: $\left.\left(x^{2}+x+x\right)+\left(y+y+y^{2}\right)\right]$
48	R1	So you're conjecturing that this is the same as this?
49	Stephanie	Yeah. Because you're just putting all the
50	R1	Let's try it with numbers and see if that makes sense - what you're conjecturing.
51	Stephanie	Alright.
52	R1	What does that mean?
53	Stephanie	That means like -
54	R1	Try some numbers. Try easy numbers. [Stephanie writes: $\left.\left(2^{2}+2+2\right)+\left(3+3+3^{2}\right)\right]$
55	Stephanie	And that's two squared, that's four, plus two, six, eight, plus three, plus three, that's six, plus nine is fifteen. That works! [she writes: $8+15$] No. It doesn't. That's twenty-three.
56	R1	That gives you twenty-three
57	Stephanie	Yeah.
58	R1	So something isn't working here, huh?
59	Stephanie	No.
60	R1	So that might not be a valid step.
61	Stephanie	No.
62	R1	Okay. So. I'm kind of curious. What did you want to do with this thing here?
63	Stephanie	Well, because - well - when we add the um-
64	R1	You have x-squared plus xy plus yx plus y-squared.
65	Stephanie	It was just putting the terms together.
66	R1	What terms were you putting together?

Description: Wondering about how to	Transcriber(s): Aboelnaga, Eman
combine terms	Verifier(s): Yedman, Madeline
Parent Tape: Early Algebra Ideas About	Date Transcribed: Fall 2010
Binomial Expansion, Stephanie's Interview	Page: 4 of 4
One of Seven	
Date: 1995-11-08 Location: Harding Elementary School Researcher: Professor Carolyn Maher	

67		Stephanie	Well, the x and the -oh. Is it that maybe I can't put the x's with the x-squared, 'cause they're two different terms? Would that make a difference?
68		R1	Okay. Where's the x?
69		Stephanie	Right here and here. [points to the xy and yx]
70		R1	But is this an x?
71		Stephanie	No. It's x times y, actually. (inaudible) 72
73		Stephanie	(inaudible) Sure.
74		R1 this is (inaudible).	
		(inaudible) change your mind in that one, huh? Okay. So this is x-squared plus, this is an x.	

