Description: Wondering about how to	Transcriber(s): Aboelnaga, Eman
combine terms	Verifier(s): Yedman, Madeline
Parent Tape: Early Algebra Ideas About	Date Transcribed: Fall 2010
Binomial Expansion, Stephanie's Interview	Page: 1 of 4
One of Seven	
Date: 1995-11-08	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

1	R1	Let's see if we can make this simple. So we
		said so far that possibly x plus y times x plus
		y, right?
2	Stephanie	Um hm.
3	R1	Could be thought of as x x plus y's right?
		Plus y x plus y's.
4	Stephanie	Yeah.
5	R1	You like that?
6	Stephanie	Yes.
7	R1	Now let's – um – could you make this simple
		with your Distributive Law?
8	Stephanie	Yes.
9	R1	Do you think you can – do you know enough
		– what does it mean to write x times x plus y?
10	Stephanie	Oh. Can I ?
11	R1	What does that mean: x times the quantity x
		plus y?
12	Stephanie	Well, x times $-$ no. Wait. That's $-$ It $-$ See if
		it was just x times x I could do an x-squared.
13	R1	Well, it is. You have x times x.
14	Stephanie	Yeah, but I can't do it with y, 'cause y-
		squared is different than x-squared.
15	R1	Okay. But this piece you think is x-
		squared?
16	Stephanie	I can do it.
17	R1	x times x.
18	Stephanie	Yeah.
19	R1	Well, do that.
20	Stephanie	It would just be – do you want me to write
		x times x or x-squared?
21	R1	x-squared.
22	Stephanie	x-squared, okay.
23	R1	Okay.
24	Stephanie	But here it would be x to the y power.
25	R1	Let's think about that. What are you
		saying here? You're trying to guess what x

Description: Wondering about how to	Transcriber(s): Aboelnaga, Eman
combine terms	Verifier(s): Yedman, Madeline
Parent Tape: Early Algebra Ideas About	Date Transcribed: Fall 2010
Binomial Expansion, Stephanie's Interview	Page: 2 of 4
One of Seven	
Date: 1995-11-08	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

times y is, right?	
26 Stephanie Yeah.	
27 R1 So let's get a paper to conjectu	re. You
can conjecture here.	
28 Stephanie Okay.	
29 R1 How do you think you would y	write – what
do you think it means 'x times y'?	
30 Stephanie Well, it's an um x amount y nu	umber of
times or y amount x number of tim	nes. It can
go either way.	
31 R1 So. Well. Look at what you ju	ust wrote.
32 Stephanie Um hm.	
33 R1 Do you think that's a way to w	rite it?
34 Stephanie Well, yeah. You can write it li	ke that.
I'm just saying –	
35 R1 Yeah. That's fine. I like it tha	t way.
Okay.	5
[Stephanie writes: $x^2 + x \cdot y + y$	$v \cdot x + v^2$]
36 R1 Okay So you see why your of	her ouess
didn't work before? If what you'r	e doing is
right – there's your x-squared the	re's vour v-
squared but there's something else	e
37 Stephanie Yeah Lunderstand	
38 R1 See that What is that something	ng else?
39 Stephanie It's the x times the y	
40 R1 Or – what's next?	
41 Stephanie Or the v times the x Or –	
42 R1 Okay So you have this xy and	l vou have
this vx. right?	a you nuve
43 Stephanie Um hm	
44 R1 Can you simplify that?	
45 Stephanie Yeah L can get – Could I – No	ow if I
added another x there, it could be	x to the
third right? Could I do –	
46 R1 Now I'm confused Let's think	k what
vou're doing here. So –	
47 Stephanie Alright Because then – alrigh	t – it would

Description: Wondering about how to combine terms Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview One of Seven Date: 1995-11-08 Location: Harding Elementary School	Transcriber(s): Aboelnaga, Eman Verifier(s): Yedman, Madeline Date Transcribed: Fall 2010 Page: 3 of 4
Location: Harding Elementary School Researcher: Professor Carolyn Maher	

		be x plus x plus x plus – just so that it's easier
		for me y plus y plus y-squared.
		[Stephanie writes:
		$(x^{2} + x + x) + (y + y + y^{2})]$
48	R1	So you're conjecturing that this is the same as this?
49	Stephanie	Yeah. Because you're just putting all the
50	R1	Let's try it with numbers and see if that makes sense – what you're conjecturing.
51	Stephanie	Alright.
52	R1	What does that mean?
53	Stephanie	That means like –
54	R1	Try some numbers. Try easy numbers. [Stephanie writes:
		$(2^2 + 2 + 2) + (3 + 3 + 3^2)]$
55	Stephanie	And that's two squared, that's four, plus two six eight plus three plus three that's
		six, plus nine is fifteen. That works!
		[she writes: $8 + 15$]
		No. It doesn't. That's twenty-three.
56	R1	That gives you twenty-three
57	Stephanie	Yeah.
58	R1	So something isn't working here, huh?
59	Stephanie	No.
60	R1	So that might not be a valid step.
61	Stephanie	No.
62	R1	Okay. So. I'm kind of curious. What did
		you want to do with this thing here?
63	Stephanie	Well, because – well – when we add the um-
64	R1	You have x-squared plus xy plus yx plus
		y-squared.
65	Stephanie	It was just putting the terms together.
66	R1	What terms were you putting together?

Description: Wondering about how to	Transcriber(s): Aboelnaga, Eman
combine terms	Verifier(s): Yedman, Madeline
Parent Tape: Early Algebra Ideas About	Date Transcribed: Fall 2010
Binomial Expansion, Stephanie's Interview	Page: 4 of 4
One of Seven	
Date: 1995-11-08	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

67	Stephanie	Well, the x and the –oh. Is it that maybe I can't put the x's with the x-squared, 'cause they're two different terms? Would that make a difference?
68	R1	Okay. Where's the x?
69	Stephanie	Right here and here. [points to the xy and yx]
70	R1	But is this an x?
71	Stephanie	No. It's x times y, actually. (inaudible)
72	R1	(inaudible) Sure.
73	Stephanie	So this is (inaudible).
74	R1	(inaudible) change your mind in that one, huh? Okay. So this is x-squared plus, this is an x.