Description: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Two of Seven: Clip 2 of 6, How could one represent a square geometrically?
Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview
Two of Seven
Date: 1996-01-29
Location: Harding Elementary School
Researcher: Carolyn A. Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 1 of 5

Line	Time	Speaker	Transcript
1		R1	Um hm. So. Um. Well, there are a couple of ways directions to go. One direction we went last time was to think of of this as um an area problem.
2		Stephanie	Um hm.
3		R1	You know, if I asked you to represent a squared.
4		Stephanie	With the you mean with the box that we did last time?

another piece of paper. Can you draw me a picture of what a \\

squared could be?\end{array}\right|\)| R1 |
| :--- |
| 5 |

Description: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Two of Seven: Clip 2 of 6 , How could one represent a square geometrically?
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Two of Seven
Date: 1996-01-29
Location: Harding Elementary School
Researcher: Carolyn A. Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 2 of 5

26	Stephanie	So it would be
27	R1	And the other side is a, so the area is?
28	Stephanie	a squared.
29	R1	a squared, right? Remember that?
30	Stephanie	Um hm.
31	R1	So when you were in lower grades, you'd be finding area where you had, find the area of square of side, when the length of a side maybe is 5 units.
32	Stephanie	Um hm.
33	R1	So what would the area of that square be?
34	Stephanie	Twenty-five.
35	R1	Twenty-five square units.
36	Stephanie	Um hm.
37	R1	All right? Does that make sense?
38	Stephanie	Yeah.
39	R1	Uh. I wonder why that works? What that what that means?
40	Stephanie	Like why a like length times width works? Or?
41	R1	Well, I wonder if um if I didn't have an a. Suppose I made a three, right?
42	Stephanie	Um hm.
43	R1	Okay. One, two, three. [marks off three intervals on the sides of a square] This is - can you imagine these being the same size?
44	Stephanie	Okay, so all
45	R1	So this length of this side is three units.
46	Stephanie	All the little sections are
47	R1	This is three units, right?
48	Stephanie	In each one is one? Like each of the little sections is one?
49	R1	Yeah. Can you tell me what I mean when I talk about the area? What's the area of that square?
50	Stephanie	Um. Isn't that-
51	R1	If this side is three units and this side is three units?
52	Stephanie	Nine?

Description: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Two of Seven: Clip 2 of 6, How could one represent a square geometrically?
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Two of Seven
Date: 1996-01-29
Location: Harding Elementary School
Researcher: Carolyn A. Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 3 of 5

53	R1	Nine what?
54	Stephanie	Nine square.
55	R1	Can you draw me a picture of that? To show that? Nine, you told me, nine square units. So show me those nine square units.
56	Stephanie	Um. Like if each one of these - oh! You want me to [draws two verticals and then the two horizontal lines which divide the square into nine square units]
57	R1	So what's the area?
58	Stephanie	Nine square units.
59	R1	What's a square unit?
60	Stephanie	One of these little squares.
61	R1	Okay. And that little square, right? See that little square there? [colors the top left unit square blue]
62	Stephanie	Um hm.
63	R1	What is the length of one of its sides?
64	Stephanie	One?
65	R1	One. So you see, this is really a square unit. It has one, one. It's a one by one square and look how many of them are in here. There are nine of them.
66	Stephanie	Um hm.
67	R1	Right? So that square has area nine square units. So - if we were thinking about a squared,
68	Stephanie	Um.
69	R1	How does - what does that have to do with this? It looks like a nine. [indicates the a label on the left side of the square] Maybe an x would have been better.
70	Stephanie	You want me to show you a squared? Or?
71	R1	Yeah.
72	Stephanie	But you have it, like here.
73	R1	Yeah. What would it look like in the picture? [pause]
74	Stephanie	[noise] Um. [pause] I
75	R1	It's a big leap, isn't it?

Description: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Two of Seven: Clip 2 of 6, How could one represent a square geometrically?
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Two of Seven
Date: 1996-01-29
Location: Harding Elementary School
Researcher: Carolyn A. Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 4 of 5

76	Stephanie	I don't know, 'cause there's no like number to work.
77	R1	Yeah. Right. So.
78	Stephanie	I can't draw anything 'cause there's no no number to like separate any thing with or to like square it off in like little
79	R1	Hm.
80	Stephanie	sections, you know?
81	R1	So if I gave you a number would you be able to do it? Pick a number. And do it.
82	Stephanie	Well, if it was like four, right?
83	R1	Hm.
84	Stephanie	And I could divide it each into four parts,
85	R1	Um hm. Um hm.
86	Stephanie	then I could show you
87	R1	Um hm.
88	Stephanie	like what four squared looked like.
89	R1	Um hm.
90	Stephanie	But because a has no number
91	R1	Um hm.
92	Stephanie	I can't just like make a, like you, 'cause you're asking me what a is.
93	R1	Um hm.
94	Stephanie	You're not asking me what like four is.
95	R1	Um hm.
96	Stephanie	And I can't just like materialize like a is this
97	R1	Hm.
98	Stephanie	is like this
99	R1	Yeah.
100	Stephanie	extra number or something.
101	R1	That's the same problem here, isn't it?
102	Stephanie	It has parts.
103	R1	It's sort of the same problem. You're dealing with these these letters here. Right? In the sense, when you have an a, it's not a two. Or it's not a three.

Description: Early Algebra Ideas About	Transcriber(s): Aboelnaga, Eman
Binomial Expansion, Stephanie's Interview	Verifier(s): Yedman, Madeline
Two of Seven: Clip 2 of 6, How could one	Date Transcribed: Fall 2010
represent a square geometrically?	Page:5 of 5
Parent Tape: Early Algebra Ideas About	
Binomial Expansion, Stephanie's Interview	
Two of Seven	
Date: 1996-01-29	
Location: Harding Elementary School	
Researcher: Carolyn A. Maher	

104	Stephanie	Um hm.	
105	R1	Or it's not a five or a seven or a half or a third or whatever? Right?	
106		Stephanie	Um hm.
107	R1	It's gotta stand for whatever you want it to be. Isn't that right?	
108		Stephanie	Yeah.

