Description: Clip 6 of 10: Connecting the Combinatorics Notation for Tower Choices when Selecting from Two Colors to the First 5 Rows of Pascal's Triangle Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Five of Seven Date: 1996-03-13	Transcriber(s): Aboelnaga, Eman Verifier(s): Yedman, Madeline Date Transcribed: Fall 2010 Page: 1 of 5
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

Time	Line	Speaker	Transcript
0:00	1	R1	Let's do this. If I picked none, exactly none, out of one.
	2	Stephanie	Out of one?
	3	R1	Does that make any sense? Okay, I have one high. I have this
			one high, if I have no red. I still have my yellow-
	4	Stephanie	But- oh- but you have the yellow though.
	5	R1	See notice that it didn't make any sense, but once you started thinking about-
	6	Stephanie	Oh, well then there's one.
	7	R1	Oh, isn't that right? And if I said to you, "Exactly one out of
			one." See this is no reds. You said there's one, right?
	8	Stephanie	Yeah.
	9	R1	Exactly one red.
	10	Stephanie	That would be one.
	11	R1	That would be one. See, now it has meaning.
	12	Stephanie	Yeah.
	13	R1	But you look at this notation and say, "What does this mean?"
			But see, this will help you think of selections. Ok, so if we were
			to think about this, um, if we're thinking of for towers for $n = 1$,
			that's one high towers, right?
	14	Stephanie	Mm-hmm.
	15	R1	So, we can think about this as [<i>writing</i>] this and this, right? Or we can think about this as one and one. Isn't that cool?
	16	Stephanie	Mm-hmm.
	17	R1	So I thought we'd do something else that might now two.
			Right? So if we're doing two now, again, what do you want to
			think of red or yellow? Does it matter? You told me it doesn't
			matter.
	18	Stephanie	Yeah, it would be one.
	19	R1	There's one way. You saw that right away. What made you see
			that right away?
	20	Stephanie	Well, because there's always going to- if there's- you can't do

Description: Clip 6 of 10: Connecting the	Transcriber(s): Aboelnaga, Eman
Combinatorics Notation for Tower	Verifier(s): Yedman, Madeline
Choices when Selecting from Two	Date Transcribed: Fall 2010
Colors to the First 5 Rows of Pascal's	Page: 2 of 5
Triangle	
Parent Tape: Early Algebra Ideas About	
Binomial Expansion, Stephanie's	
Interview Five of Seven	
Date: 1996-03-13	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

Time	Line	Speaker	Transcript
			none of one, and there's another color, it's obviously going to
			be all the other color.
	21	R1	Good, that's great. Ok, so now, if we're gonna do – I'm going
			to pick one out of two.
	22	Stephanie	Um, two ways, I guess. One on top or one on bottom.
	23	R1	Mm-hmm. Can you see that?
	24	Stephanie	Yes.
	25	R1	And if it's two out of two?
	26	Stephanie	It would be one.
	27	R1	Okay. So, when I have $n = 2$, here I had one, right, that's no
			reds or one, that was one red, which was one high. Now, if I'm
			talking two high, I could have one red, I could have two reds, or
			I could have one red. No reds. One red or two reds. So this one
			is this piece, this one is this piece, this one is let me just put
			the numbers in now.
	28	Stephanie	Okay.
	29	R1	See if you notice what's happening here. $n = 3$.
	30	Stephanie	Ok, so, for, like, there's one.
	31	R1	Okay.
	32	Stephanie	Um, I don't know, maybe there's two?
	33	R1	Want to think about that? (inaudible) yeah-
	34	Stephanie	Yeah, I think there's more than I don't know.
	35	R1	Think about it.
	36	Stephanie	Um, I need a few
	37	R1	Yeah, that's fair enough. It's always good to take your time to
			think about it.
	38	Stephanie	There's one choice, I'm gonna do them, like, as towers this
			time. When there's three it could be, um, you have red and
			yellow, it could be red-yellow-yellow and there's gonna be
			three. It could be red and it could be like that. There's three.
	39	R1	You absolutely sure of that? What was-um, what was-
			combinations were you selecting one from?

Description: Clip 6 of 10: Connecting the	Transcriber(s): Aboelnaga, Eman
Combinatorics Notation for Tower	Verifier(s): Yedman, Madeline
Choices when Selecting from Two	Date Transcribed: Fall 2010
Colors to the First 5 Rows of Pascal's	Page: 3 of 5
Triangle	
Parent Tape: Early Algebra Ideas About	
Binomial Expansion, Stephanie's	
Interview Five of Seven	
Date: 1996-03-13	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

Time	Line	Speaker	Transcript
	40	Stephanie	Two.
	41	R1	Ok. Um, what do you think it would be when selecting one from four? Exactly one from four?
	42	Stephanie	Four?
	43	R1	What would you think it would be if I could select one from <i>n</i> ?
	44	Stephanie	<i>n</i> ?
	45	R1	See that? Can you imagine that?
	46	Stephanie	Yes.
	47	R1	If it's five, can you see them all up there? If it's six, can you see them? You can make it as tall as you want, you can just see them exactly-
	48	Stephanie	Yes.
	49	R1	Isn't that helpful?
	50	Stephanie	Yeah.
	51	R1	To have that visual kind of thing?
	52	Stephanie	Yes.
	53	R1	You didn't even have any unifix cubes, that's great. Okay, so-
	54	Stephanie	So, there would be three-
	55	R1	You know that, do you know exactly two? Do you know that? Do you have to think a lot?
	56	Stephanie	I don't know. There's- oh- wouldn't it be the same thing?
	57	R1	Why?
	58	Stephanie	Because it's just the opposite, right?
	59	R1	Isn't that right?
	60	Stephanie	So that would be three. And then, three, three, is one.
	61	R1	Right?
	62	Stephanie	Yeah.
	63	R1	See how fast you got those?
	64	Stephanie	Yeah.
	65	R1	Now, I'm going to write for <i>n</i> equals three here, look, put a one, three, three, one. Now do you notice something happening here. I have a one-one, for these two. I have a one-two-one, a one-

Description: Clip 6 of 10: Connecting the Combinatorics Notation for Tower Choices when Selecting from Two Colors to the First 5 Rows of Pascal's Triangle Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Five of Seven Date: 1996-03-13 Location: Harding Elementary School	Transcriber(s): Aboelnaga, Eman Verifier(s): Yedman, Madeline Date Transcribed: Fall 2010 Page: 4 of 5
Researcher: Professor Carolyn Maher	l

Time	Line	Speaker	Transcript
			two-one for none, one and two. I have a one-three-three-one,
			one-three-three-one for the case of three. Do you want to
			predict what it's going to be like for four?
	66	Stephanie	It's going to be, like, one-four and then there's another number.
			And then, four-one.
	67	R1	Okay, now that's the interesting
	68	Stephanie	Well, I know that that one's six though.
	69	R1	Oh, but notice something, no?
	70	Stephanie	Oh, is it, cause like, the 1 and 2- 1 and 1 are 2, 1 and 2 are 3, 1 and 2 are 3, 1 and 3 are 4, 1 and 3 are 4, 3 and 3 is 6?
	71	R1	Isn't that exciting? Now, I'd like to have this case in here [<i>writes</i>].
	72	Stephanie	Okay.
	73	R1	It looks pretty, doesn't it? So, what would that be? Gosh. This was $n = 1$.
	74	Stephanie	Mm-hmm.
	75	R1	This would have to be $n = 0$. Right? Right?
	76	Stephanie	Mm-hmm.
	77	R1	So, what would you have to make selecting none from none, by definition, to make this all look pretty?
	78	Stephanie	Selecting none from none?
	79	R1	See it makes almost no sense to think about.
	80	Stephanie	Yeah, cause like
	81	R1	But remember you told me, like, if I took a number to the zero
			power, that doesn't make any sense?
	82	Stephanie	Yeah.
	83	R1	Remember we had that conversation in the car?
	84	Stephanie	Yes.
	85	R1	Well, this is almost like that. It doesn't make any sense, but if
			you want this picture to be so nice and symmetry and all, and if
			you want it to turn out to be that way, what would you want it
			to be?

Description: Clip 6 of 10: Connecting the Combinatorics Notation for Tower Choices when Selecting from Two Colors to the First 5 Rows of Pascal's Triangle Parent Tape: Early Algebra Ideas About Binomial Expansion, Stephanie's Interview Five of Seven	Transcriber(s): Aboelnaga, Eman Verifier(s): Yedman, Madeline Date Transcribed: Fall 2010 Page: 5 of 5
Interview Five of Seven	
Date: 1996-03-13 Location: Harding Elementary School Researcher: Professor Carolyn Maher	

Time	Line	Speaker	Transcript
	86	Stephanie	I guess it would have to equal one.
	87	R1	Yeah. So people find it convenient to make that one. That's how definitions sometimes arise. There's- motivated by some symmetry or beauty. Is there another reason to make that one? I don't know of any. Do you? Taking no things from nothing? One way? [to researchers]
	88	R2	Well, (inaudible)
	89	R1	See, it just works out nicely. Can you guess five high, what these numbers would be?
	90	Stephanie	All right. It would be 1. Um, and then it would be $1 + 3$, oh, 5. And then it would be 10, 10, 5, 1.
6:44	91	R1	I put the one there.