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Alternative Inversion Strategies to Resistivity Data for Targets with Sharp Boundaries 

By Mehrez H Elwaseif 

 

Dissertation director: 

Professor Lee Slater 

 

Estimating the geometry and resistivity of archeological structures using resistivity 

models produced as a result of applying smoothness constraints in most inversion 

algorithms is difficult, especially when structures are closely spaced.  However, such 

quantification is important to facilitate conservation and to minimize the potential of 

damage when excavations are undertaken. Alternative inversion approaches more 

appropriate for imaging such targets require either a priori information about the 

subsurface (e.g. disconnected inversion) or require two or more geophysical datasets to 

be collected at the same site (e.g. joint inversion). The research outlined in this 

dissertation presents three novel approaches to improve resistivity imaging of discrete 

targets without the need to incorporate a priori information in the inversion. The first 

approach combines an initial 2D smoothness constraint inversion coupled with a digital 

image processing technique known as a watershed algorithms and a second inversion step 

incorporating a disconnect in the regularization based on the output of the watershed 

algorithm. This approach has improved estimate of the geometries of individual targets, 

but it was not very effective at predicting the resistivity of the targets or resolving closely 

spaced targets. The second approach combines an initial 2D smoothness constraint 



 

 

iii 

 

inversion coupled with the watershed algorithm and a trained Artificial Neural Network 

(ANN). Although this approach has been proven effective for resolving widely and 

closely spaced archeological targets, the results depend largely on the quality of ANN 

training and on the accuracy of the watershed algorithm geometry prediction. Finally, the 

third strategy is an iterative approach that combines an initial 3D smoothness constraint 

inversion that is used only at the first iteration to recover a resistivity model that is fairly 

consistent with the measured data, from which an initial target location is estimated using 

an edge detector method and from which a disconnect in the inversion is identified. The 

disconnect defining the target outline is then progressively improved following each 

iteration of the inverse procedure. This approach has been proven more effective for 

resolving widely and closely spaced archeological targets over other approaches, but it is 

partially sensitive to artifacts in the initial smoothness constraint model. 
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Chapter 1: Introduction 

 

1.1. Overview 

Resistivity imaging is a popular geophysical method frequently used to predict the 

location of subsurface structures and objects having a detectable electrical resistivity 

contrast relative to the host medium. The method is routinely used to probe the shallow 

subsurface, common applications including mapping of near surface geology (Gokturkler 

et al., 2008; Chambers et al., 2006; Gibert et al., 2006), characterization of contaminated 

sites (Frohlich et al., 2008; Casas et al., 2007; Soupios et al., 2007), delineation of 

engineered structures (Marescot et al., 2008; Kemna et al., 2004),  location of cavities 

(Leucci, 2006; El-Qady et al., 2005; Weinstein-Evron et al., 2003) and mapping of 

archeological features (Leucci et al., 2007; Urbini et al., 2007). The ability of the 

resistivity method to locate isolated features largely depends on the employed array 

configuration, unit electrode spacing, and the used inversion approach.  The array 

configurations have different spatial resolutions and noise sensitivities (function of the 

position and the spacing between electrical and potential dipoles). The unit electrode 

spacing controls the depth of investigation and subsurface data coverage. The smoothness 

constrained regularization is widely used in inverting resistivity data, since the method 

does not require priori  subsurface information and produces models that are highly 

consistent with the measured data (e.g. Loke and Dahlin, 2003). Smoothness 

regularization is typically applied using either smooth inversion (L2 norm) or robust 

inversion (L1 norm) (Loke, 2004). Regularization using a smoothness constraint results 

in models that contain minimal structure relative to some starting model (usually a 
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homogeneous medium) subject to fitting the measured data to a predefined level of 

accuracy (Loke and Barker, 1996b).  This regularization constraint is inappropriate for 

imaging targets characterized by sharp change in resistivity relative to host medium (e.g., 

sinkholes, cavities, bedrock, etc.).  Other inversion strategies more appropriate for 

defining sharp resistive targets such as disconnect or joint inversion can be utilized. 

However, time constraints in the field and lack of available subsurface priori information 

make these approaches difficult to apply for many field sites. More research is thus 

needed to develope a new resistivity inversion strategy that does not require a priori 

information, and is more appropriate for imaging targets with high resistivity contrasts.  

Such an inversion strategy would be appropriate for a wide range of applications 

particularly studies related to archaeological geophysics and engineering geophysics (e.g. 

locating sinkholes). 

  

This dissertation presents three different inversion strategies to modify the smoothness 

constraint inversion in order to improve the geometry and resistivity recovery of 

archaeological targets without the need of incorporating a priori information in the 

inverse procedure. The first approach combines (1) an initial 2D inversion using the 

standard smoothness constraint and a homogeneous starting model, (2) an image 

processing technique known as the watershed algorithm to subsequently predict target 

dimensions (width and height) and depth from the smooth image, and (3) a second 

inversion step incorporating a disconnect in the regularization based on the output of the 

watershed algorithm. Although this approach resulted in an improved estimate of the 

geometries of individual targets, it was not very effective at predicting the resistivity of 
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the targets or resolving closely spaced targets. The second approach enhanced the 

previous approach by replacing the second disconnect inversion step with a trained 

Artificial Neural Network (ANN). This approach has been proven effective for resolving 

widely and closely spaced targets, but the processing steps are time consuming and the 

results depend largely on the ANN training. The third approach is a 3D resistivity 

inversion that combines smoothness constraint and disconnect inversion coupled with a 

digital edge detector technique called Roberts’ cross-gradient operator to improve the 

inverted resistivity model through iterative updates of both the resistivity model 

parameters and the disconnect boundary. Although the approach is sensitive to the 

artifacts obtained from the initial smoothness constraint inversion step, it has been proven 

more effective for resolving widely and closely spaced targets than the other two 

approaches. The developed approaches as well as digital image processing, ANN, 

smoothness constraint and disconnect inversions are described in details in the next three 

chapters.  

 

1.2. Objectives 

The main objective of this research is to explore and develop alternative resistivity 

inversion strategies that are specifically designed to recover isolated and closely spaced 

targets representative of expected features at archaeological sites in Egypt. That objective 

was achieved by: [1] applying digital edge detector techniques such as watershed 

algorithm on smooth resistivity images coupled with disconnect inversion approach, [2] 

using artificial neural networks technique coupled with digital image processing and 

smoothness constraint inversion, and [3] developing an iterative 3D resistivity inversion 
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strategy that combines smoothness constraint inversion, digital image processing and 

disconnect inversion. 

 

1.3. General findings 

Digital image processing can be used explicitly or implicitly during the resistivity inverse 

procedures to improve imaging of high resistivity targets. The boundaries of targets 

predicted from the smooth resistivity images using edge detector techniques are 

consistent with the actual edges. In addition, those boundaries can subsequently be used 

to define disconnects in the inversion in order to estimate an updated model of the 

resistivity structure that better predicts the geometry and resistivity structure of the 

targets. Furthermore, a properly trained ANN appears to be a viable approach for 

determining the resistivity and location of discrete targets in resistivity datasets. Detailed 

interpretations and discussions of these findings can be found within the following related 

dissertation chapters. 

 

Information is provided in the appendices that present further details on how to apply the 

described approaches, in addition to a related published research in archaeological 

geophysics. It contains a geophysical and hydrological study to characterize the near-

surface setting and groundwater conditions at an archaeological site in Egypt.  
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Chapter 2: Quantifying Tomb Geometries in Resistivity Images Using Watershed 

Algorithms1 

Abstract 

Quantifying the geometries of archeological structures within resistivity models produced 

as a result of the regularization constraints used in most inversion algorithms is difficult, 

especially when structures are closely spaced.  Here we apply the watershed by simulated 

immersion method of boundary detection to smooth 2D resistivity images generated for 

synthetic and field data over 3D targets. The synthetic studies include a single cavity 

model, a model for two widely spaced cavities (spacing >> unit electrode spacing) and a 

model for two closely spaced cavities (spacing < unit electrode spacing). We also 

examine a single-cavity model where a relatively resistive overburden, common at 

archaeological sites in Egypt, is included. In the case of the single cavity models, the 

maximum error for any geometries are 18% for the model without the resistive 

overburden and 10% for the model where the overburden is included, whereas it 

increases to 24% for the widely spaced model and 40% for the closely spaced model. 

Despite, the higher errors in the closely spaced cavity model, application of the algorithm 

confirms the presence of two features, which is not ascertainable from the smooth 

resistivity images. Boundaries detected with the watershed algorithm are subsequently 

used to define a disconnect in the regularization, resulting in a markedly improved 

estimate of the resistivity structure (particularly for the closely-spaced cavity model) in a  

 

1This chapter is published as: Elwaseif, M., Slater, L., 2010, Quantifying Tomb Geometries in 
Resistivity Images Using Watershed Algorithms: Journal of Archaeological Science, Vol. 37, 
Issue 7, pp 1424-1436. 
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second inversion step using the model obtained from the smoothness constraint inversion 

as the starting model. This revised resistivity model also results in a lower root-mean-

square (rms) misfit between measured and theoretical data, and between synthetic and 

inverted models. We demonstrate how the method can be applied on images from the 

archaeological site at Qurnet Murai, Luxor City Egypt. 

 

2.1. Introduction 

Resistivity imaging is a well established technology for predicting the location of 

subsurface structures and objects having a detectable electrical resistivity contrast relative 

to the host medium. The method is routinely employed to obtain an image of subsurface 

structures (i.e. the targets) in the absence of a priori information on the geometry and 

distribution of the targets. Under such conditions, the widely adopted smoothness 

regularization constraint is usually utilized to choose an inverted resistivity model that is, 

(1) consistent with the measured data (subject to some desired fitting criteria), and (2) 

geologically reasonable, from the large number of models that could fit the data equally 

well as a result of the underdetermined nature of the inverse problem (Gunther et al., 

2006; Christiansen, and Auken, 2004). Smoothness regularization typically employs one 

of two minimization schemes, described here as smooth inversion and robust inversion 

(Loke, 2004). Smooth inversion emphasizes models with smoother variations of 

resistivity, whereas the robust inversion emphasizes models with sharper boundaries 

between regions of different resistivity. 
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Two dimensional resistivity inversion codes are based on the assumption that the 

subsurface is two dimensional. This assumption is not accurate in the case of imaging 3D 

bodies such as cavities. The 2D inversion assumes that there are no changes in the 

subsurface resistivity in the direction perpendicular to the survey line, which may leads to 

significant artifacts in the resultant model for 3D targets. Despite this limitation, 2D 

surveys and 2D inversion are still often used to image inherently 3D targets such as 

cavities (e.g., El-Qady et al., 2005), since fully 3D surveys are often cost-prohibitive and 

a  substantial computational burden.     

 

Regularization using the smoothness constraint results in models that contain minimal 

structure relative to some starting model (e.g., a homogeneous medium) subject to fitting 

the measured data to a predefined level of accuracy. However, resistivity imaging is 

increasingly used to predict the distribution of buried targets that are characterized by 

sharp, rather than gradational, resistivity contrasts. Archaeological features, e.g. tombs 

and walls (Negri et al., 2008; Negri and Leucci, 2006), are typically characterized by 

sharp resistivity contrasts. In this case, the smoothness constraint is conceptually 

inappropriate as our a priori expectation is that such targets represent a sharp change in 

resistivity across some unknown boundary location. Yet, the smoothness constraint is still 

often applied due to its ‘off the shelf’ availability and the fact that it at least provides a 

blurred representation of the distribution of such structures, usually predicting the center 

of such targets relatively well (for a single target or multiple targets separated by spaces 

considerably greater than the unit electrode spacing). However, the adoption of the 
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smoothness constraint makes it very difficult to reliably determine quantitative 

information on a discrete target, such as its dimensions or depth of burial. 

 

Slater and Binley (2006) describe a modification of the smoothness constraint to 

accommodate sharp boundaries whereby a ‘disconnect’ in the smoothing is defined along 

the boundary of an object. This method requires that the boundary of the target be known 

a priori, and the inversion then solves for a smoothly varying model structure across the 

host medium and within the disconnected target. This constraint is conceptually 

consistent with many archaeological targets where resistivity may vary both within a 

structure with well defined boundaries and external to it, e.g., a foundation wall and the 

earth away from it. However, the need to know the location of the boundary a priori 

clearly limits the application of this technique. Recently, Blaschek et al. (2008) describe a 

complex resistivity inversion that incorporates a focused regularization scheme based on 

minimum gradient support that attempts to incorporate sharp boundaries without a priori 

information while still allowing for smooth model structure within the target and away 

from it. However, the main drawback of this approach is that a suitable smoothness 

parameter depending on priori information has to be determined by the user. 

     

Here we describe an approach to imaging the location of tombs and cavities that 

combines (1) an initial 2D inversion using the standard smoothness constraint and a 

homogeneous starting model (as typically most often done in practice), (2) an image 

processing technique known as the watershed algorithm to subsequently predict target 

dimensions (width and height) and depth from the smooth image, and (3) a second 
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inversion step incorporating a disconnect in the regularization based on the output of the 

watershed algorithm to obtain an improved estimate of the variation in resistivity within 

and outside of the targets based on the incorporation of a priori data (the location of the 

disconnect and the resistivity model obtained from the standard smoothness constraint 

inversion). The approach assumes that the edges in the image predicted from the 

watershed algorithm are consistent with the edges of some unknown resistivity model 

characterized by sharp boundaries for which we have a smooth image.  

 

Although we cannot expect such an algorithm to provide the perfect filter to remove the 

smoothing resulting from smooth regularization constraints in resistivity inversion, 

synthetic studies demonstrate the effectiveness of the watershed algorithm in estimating 

depths and dimensions for single and multiple cavity/tomb features representative of 

expected features at archaeological sites in Egypt. We also compare the results of 

implementing the watershed algorithm with the results obtained when implementing 

other edge detection methods (image gradient, curve evolution and snake method). 

Finally, we apply the approach on field data from sites in Egypt where the problem is the 

detection of unknown tombs. We recognize that the approach attempts to undo an initial 

regularization effect that is conceptually inconsistent with the resistivity model structure. 

However, given the current popularity of the smoothness constraint in commercially 

available (and academic freeware) resistivity imaging software, the method could be 

readily implemented by the archaeologist interested in imaging discrete targets. 
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2.2. Watershed algorithm by simulated immersion 

Image processing techniques based on edge detection can be used to predict the location 

of sharp edges based on mathematical properties of the image parameter space. There are 

four basic edge detection techniques used in image processing; image gradient methods 

(e.g. Sobel, Prewitt, Roberts, or Canny operators), curve evolution, method of active 

contour (snake), and watershed algorithms. The success of the image gradient methods in 

detecting edges is based on the difference in grey level between the object and the 

background (Gonzalez and Woods, 1992). The method works well in locating single 

features, but typically fails in separating multiple objects due to the low grey level 

contrast within anomalies. The curve evolution technique is a powerful tool for extracting 

features with definite boundaries, but in the case of features with smooth boundaries, the 

method segments the boundary area into different contours based on the pixel intensity. 

The ‘method of active contour’ (snake) approach requires an initial user-defined selection 

within the image. However, the final solution differs for different initial selection, and 

moreover, its success is based on a high grey level contrast between the object and the 

surrounding region.   

 

The watershed by simulated immersion is a powerful technique for segmenting a given 

image into regions with distinctive boundaries (Roueff et al., 2004; Barraud, 2006). In 

this study, we apply the method to predict the edges of features manifest in resistivity 

inversion results as smooth boundaries. Direct application of the method to smooth 

resistivity images produces problems such as over segmentation (i.e. the output 

segmented image has an excessively large number of regions), which can result from 
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noise (outliers) and/or significant resistivity variability (often smooth) in the host 

formation (e.g., moisture, lithological or pore water variation) at the scale of the 

resistivity survey. We therefore apply a sequence of pre-processing steps to increase the 

contrast between different pixels, reduce noise, and enhance the boundary between 

different features within the images. The order of these processing steps is described in 

Figure (2.1). The first step converts the 32-bit RGB (red, green, blue) input image into a 

32-bit grayscale image more amenable to further processing (required only when not 

starting with a grayscale image). Gaussian blur and mean filters are then applied to 

preserve feature boundaries whilst reducing noise (extreme values) in the image by 

replacing each pixel with its neighborhood mean (Nixon and Aguado, 2002). 

 

The first post-processing step is critical to determining an estimate of a target dimensions 

from the watershed algorithm. The watershed method predicts many boundaries 

depending on the complexity of the resistivity image, and so judgment must be applied to 

isolate the boundary that is associated with the anomalies in the resistivity images 

assumed to represent the cavities. Although a somewhat speculative exercise when 

multiple boundaries are present, the resistivity image can usually be used to make an 

informed choice on the boundaries associated with the cavity target. This boundary is 

then enhanced relative to all other detected boundaries associated with other changes in 

resistivity within the image e.g., due to change in moisture and/or pore chemistry across 

the site. This process is facilitated by selecting the cavity region (the region of interest 

(ROI)) and increasing the gray value intensity of this region. Finally, a threshold is 

applied to the resistivity image based on the maximum intensity value to enhance the 
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anomaly region and weaken all other boundaries. The final post-processing step is done 

simply to provide a rendition of the outline of the body. The Java-based image processing 

program, Image J, developed at the National Institutes of Health, was utilized to 

conducting all image processing steps, including the watershed algorithm (Burger and 

Burger, 2008). 

Gaussian Blur Filter

Mean Filter

Watershed Algorithm

Enhance Feature Boundaries/
           Threshold Image
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3D Representation
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Figure 2.1: Flow chart showing the processing steps, centered on the use of the watershed 
algorithm, used in this study. 

 

Beucher (1992) defines the watershed transformation by an immersion operation as 

follows; Let a grayscale image ‘I’ be considered a topographic surface (S) and the 

watershed lines and the catchment basins of ‘I’ be defined by means of a flooding process 
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(Roerdink and Meijster, 2001). If each minimum of the topographic surface has been 

pierced and the surface plunged at a constant vertical speed into a lake, then during the 

flooding two or more floods from different minima may merge. In order to avoid this 

merging, a dam is built on the points S where the floods would merge. At the end of the 

process, these dams separate various catchment basins, where each basin contains one 

minimum, this defining the watershed of the image (Roerdink and Meijster, 2001). The 

set of the catchment basins of 'I'  is equal to the set Xhmax obtained after the following 

recursion (Roerdink and Meijster, 2001), 

{ }
minmin min)( hh ThIDX ==Ρ∈Ρ=

                                           (2.1) 

[ ]maxmin1 ,),(
maxmaxmaxmax

hhhXZIMINX hThh h
∈∪= −

                (2.2) 

where D is a set of pixels within a grayscale image, P is a vertex ,  I: D→N is a function 

assigning an integer value to each P∈D (grayscale image takes integers from 0 to 255), h 

is a grey value (from 0 to 255), hmax is the maximum grey value in a grayscale image, Xh 

denotes the union of the computed set of basins at a grey value h, IZTh+1(Xh) defines the 

skeleton by influence zones (SKIS), which consists of  all equidistant points (in the sense 

of the geodesic distance) to at least two nearest connected components in Xh. Further, Th 

is the threshold of the image at level h where; 

hPIDPTh ≤∈= )(         (2.3) 

According to the previous recursion, the iteration process starts at grey level hmin, with all 

pixels potential candidates for getting assigned to a catchment basin “Equation 1”. At 

grey level maxh (i.e. equal 255), all non-basin pixels are potential candidates to become 
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new basins (first part of equation 2), and pixels which are equidistance to at least two 

nearest basins (geodesic distance) will be merged with a basin (second part of equation 

2). A detailed description of the method and the pseudo code are given in Roerdink and 

Meijster (2001). 

 

2.3. Synthetic models 

The watershed method could be applied on the output model parameters from any 

resistivity code that employs the smoothness constraint in the regularization. We chose to 

use the Res2dInv program (Loke and Barker, 1996) for performing all inversions simply 

due to its popularity. We calculated the synthetic apparent resistivity pseudosections for a 

single cavity and two widely (separation >> unit electrode spacing) and closely spaced 

(separation < unit electrode spacing) cavities. We also consider a single cavity model that 

includes a resistive overburden to simulate fieldsites in Egypt. The 2D (i.e. measurements 

made along a line of electrodes) synthetic datasets were generated using a 3D forward 

modeling code, Res3dMod (Loke and Barker, 1996), to simulate real data collected in the 

field over cavity features by accounting for the 3D current flow and the 3D nature of the 

cavities. The cavities are assigned a resistivity (500-1000 Ohm m) consistent with infill 

of sediments/debris (the typical state prior to excavation), whereas the host medium is 

assigned a resistivity of 100 Ohm m, based on the results of previous studies (e.g., 

Elwaseif, 2006; El-Qady et al., 2005). In each case, thirty two electrodes were used to 

create the synthetic data and a dipole-dipole array was chosen due to its relatively high 

sensitivity to horizontal changes in resistivity (e.g., Dahlin and Zhou, 2004). An analysis 

of the resolution of electrical targets as a function of array type is beyond the scope of 
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this paper and can be found elsewhere (e.g., Furman et al., 2003; Dahlin and Zhou, 2004; 

Stummer et al., 2004). The electrode spacing used here was 1 m and six depth levels 

(integer dipole spacings) were utilized. To improve subsurface resolution additional 

measuring points were added in-between these depth levels, providing 390 measurements 

and a maximum investigation depth of about 4.5 m based on theoretical relations between 

electrode spacing/geometry and investigation depth for a homogeneous earth medium 

(e.g., Loke, 2004).  

 

Four model scenarios were created, known to be generally representative of target 

depths/dimensions of cavities of interest at archaeological sites in Egypt (as we show 

later).  In the first scenario, a single cavity was buried at 1.2 m depth, having a width and 

a length of 4 m and resistivity of 1000 Ohm m (Figure 2.2a). The second scenario 

involved two cavities having resistivity values of 500 and 1000 Ohm m. Two cases of 

this two cavity model were considered (a) a widely-spaced cavities model involving 

cavities with widths/lengths of 4 m and outside edges spaced 4 m apart (Figure 2.4a); (b) 

a closely-spaced cavities model involving cavities with widths/lengths of 2.8 and 2.7 m 

and outside edges spaced 0.6 m apart (i.e. less than the unit electrode spacing) (Figure 

2.5a). In the last scenario, a single cavity was buried at 1.9 m depth, having a width of 4 

m and resistivity of 1000 Ohm m, overlain by a high resistivity (3000 Ohm m), 1.4 m 

thick layer (Figure 2.6a). All synthetic datasets were contaminated with 2% Gaussian 

noise, representative of noise levels (based on repeatability tests) at the archaeological 

sites of interest in Egypt.  
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2.3.1. Resistivity Inversion: Smooth vs. robust model norms 

As previously explained, we elected to perform a 2D inversion of the datasets generated 

using 3D forward modeling as this best represents the typical situation for real datasets: 

i.e., cavity features are inherently three dimensional but 2D datasets and 2D inversion of 

these 3D features (and 3D current flow) is, more often than not, the norm. The objective 

of regularized resistivity inversion is to find a model that contains a resistivity structure 

consistent with expectations regarding the likely distribution of resistivity within the 

subsurface, whilst providing a set of theoretical measurements (forward response) that fit 

the measured data to some pre-described acceptable level (here quantified by the root-

mean-square (rms) error between the predicted dataset for model solution and the 

measured dataset) (e.g., Loke et al., 2003; Gunther et al., 2006). 

 

As very little is commonly known a priori about the subsurface, by far the most common 

regularization method employed is to find the model with the minimum required structure 

(or minimum deviation from a homogeneous earth model) that fits the measured data to 

the pre-described level. An objective function is typically defined that contains a term 

related to minimizing the differences between the theoretical data and the measured 

resistances (data misfit), and a term related to minimizing model structure (model misfit).   
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Figure 2.2: Results of applying the watershed by immersion technique on the single 
cavity model (a) subsurface model (b) smooth section (c) detected boundary based on b 
(d) robust inversion (e) detected boundary based on d (white boxes denote true cavity 
outline) 
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It is most common to minimize the squares of the differences between the measured and 

modeled (theoretical) transfer resistances and/or differences between the estimated model 

and expected model structure (L2 norm). This method typically produces a smooth 

distribution of resistivities over a broad range of values and is defined here as the smooth 

inversion. Minimization of the absolute differences between measured and modeled 

resistivity values (and/or differences between the estimated model and expected model 

structure) (L1 norm) typically results in sharper boundaries between regions with 

different resistivity values, although resistivity values vary less within each region (Loke 

et al., 2003). 

 

The L1 norm (hereby referred to as the robust inversion) is intuitively more appropriate 

for imaging cavities/tombs than the L2 norm as we expect such cavities to represent sharp 

contrasts with the host medium at distinct boundaries. However, as real cavities are filled 

with a heterogeneous mixture of sediments prior to excavation some variability of 

resistivity within the cavity boundary is possible (although not considered in our 

synthetic trials).  For completeness we show the results obtained with both the robust and 

smooth inversion. In all cases a homogeneous medium was used as the starting model, 

the data misfit weights were assigned based on a 2% error in the measured data and five 

iterations were performed. The results of applying the inversion on the single, widely 

spaced, closely space cavity, and the synthetic model of the field site are presented in 

Figures 2.2, 2.4, 2.5 and 2.6, respectively. In each case the smooth inversion is shown in 

part ‘b’ of the figure and the robust inversion is shown in part ‘d’ of the figure. 
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Figure 2.3: Results of applying the image gradient, curve evolution, and the snake 
methods on the single cavity model (a) boundaries based on image gradient (b) 
boundaries based on curve evolution method (c) snake model (after 500 iterations) (d) 
boundaries based on watershed algorithms (boxes denote true cavity outline) 

 

White outlines show the true cavity dimensions. The rms errors for each inversion are 

included in the figures. As expected, the inversion produces smooth models of the true 

resistivity structure associated with the cavities. The models from the robust inversion are 

less smooth, with sharper boundaries and less resistivity variation within the model space 

represented by the cavities. The widely spaced cavities are clearly associated with 

individual anomalies in the resistivity images (Fig. 2.4b). However, the two closely 

spaced cavities in both smooth and robust images appear as a single anomaly, instead of 
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two separate features, due to the small spacing between cavities (here less than the unit 

electrode spacing).  

 

To assess performance of the robust and smooth inversions in a more quantitative way, 

the data misfit (relative to the noisy synthetic data) and model misfit (relative to the 

known synthetic model) curves are plotted at all five iteration steps for the different 

model scenarios in Figure 2.7.  Although data misfits are very low for all models, the 

model misfits are significantly lower in the case of robust inversion.  

 

2.3.2. Predicted locations from the watershed algorithm 

The watershed by simulated immersion method was applied on the inverted resistivity 

images to locate the boundaries of the cavities and to compare the estimated boundaries 

with the true boundaries of the resistive targets in the synthetic models. The results from 

application of the watershed algorithm are summarized in Table 2.1, showing the mean 

depth, width and length of each boundary associated with a cavity estimated by the 

watershed algorithm. Figure (2.2c & 2.2e) shows the results of applying the watershed 

method on the smooth and robust images for the single cavity. The detected cavity 

boundary of the smooth image has an average error of 14%, while the average error for 

the robust image is ~ 18%. Although the average error is less for the smooth image, the 

shape of the detected cavity boundary of the robust image better reflects the actual shape 

of the subsurface model (i.e. rectangular).  
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Figure 2.4: Results of applying the watershed by immersion technique on the widely 
spaced cavities (a) subsurface model (b) smooth section (c) detected boundary based on b 
(d) robust inversion (e) detected boundary based on d (white boxes denote true cavity 
outline) 
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Figure 2.5: Results of applying the watershed by immersion technique on the double 
cavity model (a) subsurface model (b) smooth section (c) detected boundary based on b 
(d) robust inversion (e) detected boundary based on d (white boxes denote true cavity 
outline) 
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To compare the effectiveness of the watershed method relative to other edge detection 

techniques, the image gradient, curve evolution, snake method and watershed algorithm 

were also applied on the inverted image of the single cavity model. Note that identical 

pre-processing steps were used for each method (Figure 2.1). The results of applying 

these techniques are shown in Figure 2.3 and summarized in Table 2.2.  The watershed 

algorithm predicts the cavity dimensions with significantly less error than all other edge 

detection methods tested here, since the success of other methods depends mainly on the 

presence of high grey level contrast between the object and the background (not the case 

in the single cavity model). The average error of the watershed method is 16% (based on 

the three dimensions), while the errors of the Snake and image gradient methods are 43% 

and 34%, respectively. Note that the curve evolution method located multiple edges (i.e. 

multiple widths, heights, and depths) making it impractical to assign a single edge as 

representative of the cavity boundary.  

 

Figure 2.4c & 2.4e shows the results of applying the watershed algorithm on the widely 

spaced cavity for smooth and robust models respectively. Table 2.1 summarizes the 

effectiveness of the algorithm in predicting the boundaries of the two cavities. The 

average error of the method for locating the cavities in the smooth model is 4%. In 

contrast, for the robust model it is 6.5%.  

 

The results of applying the watershed algorithm on the closely spaced cavities for smooth 

and robust models are shown in Figures 2.5c & 2.5e respectively. The method predicts a 

boundary in the resistivity anomaly associated with the closely spaced cavities, despite 
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that evidence for this boundary cannot be visually ascertained from the inverted image of 

resistivity variation. In this case, the cavity boundaries estimated from the robust image 

are more accurate than those obtained from the smooth image. The average error of the 

method in estimating cavity dimensions in the smooth image is 6 % relative to 10 % in 

the robust image. Figure (2.6c & 2.6e) shows the results of applying the watershed 

method on the smooth and robust images for the synthetic model of the field site 

incorporating the resistive upper layer. The detected cavity boundary of the smooth 

image has an average error of 12%, while the average error for the robust image is 16%. 

We note that the technique also successfully predicted the thickness of the top resistive 

layer in both robust and smooth images, where the average error for both robust and 

smooth images is 11%. 
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Figure 2.6: Results of applying the watershed by immersion technique on the synthetic 
field data model (a) subsurface model (b) smooth section (c) detected boundary based on 
b (d) robust inversion (e) detected boundary based on d (white boxes denote true cavity 
outline) 
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Figure 2.7: Model misfit and data misfit curves for the synthetic studies conducted here. 
The progress of the misfits for five iterations are shown, along with the misfit following 
the use of the disconnect (final iteration) where applied 
 

 

2.3.3. Re-inverting datasets using a disconnect boundary in the regularization 

Once boundaries are estimated, it is possible to incorporate this as a priori information 

and subsequently re-invert the dataset using the disconnect approach (Slater and Binley, 

2006), where the inversion solves for smooth model structure within the cavities and 

within the background, but prevents any smoothing of model structure across the 

boundaries. However, it is important to verify that the predicted edges applied to the 

regularization result in a model that fits the data at least as well as the model obtained 
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without this constraint as, in the case of field data (where the model structure is 

unknown), it is possible that unrealistic edges could be inferred from the processing. Re-

inverting the data with this additional constraint on the inferred location of cavity 

boundaries could lead to an improved estimate of resistivity structure within the host 

medium or even within the target.  

 
Table 2.1, quantitative analysis of the accuracy of the watershed algorithm by simulated 
immersion method, where ‘D’ – depth, ‘W’– width, ‘H’ – height, and ‘Th’ – upper layer 
thickness.    
Resistivity 

Models 
Inversion 
approach 

True dimensions  
(m) 

Estimated 
dimensions (m) 

Error 
(%) 

D 
 

 W 
 

H 
 

Th 
 

D 
 

W 
 

H 
 

Th 
 

D 
 

W 
 

H 
 

Th 
 

One cavity 
Smooth 

1.2 4 2.45 - 
0.9 4.3 2.2 - 25 7 11 - 

Robust 0.8 4.3 2.1 - 33 7 14 - 

Two 
cavities-
widely 
spaced 

Smooth 1.0 4.0 1.7 - 
1.0 3.8 1.8 - 0 5 6 - 

1.0 4.0 1.9 - 0 0 12 - 

Robust 1.0 4.0 1.7 - 
1.2 4 1.5 - 20 0 12 - 

1.0 4.3 1.7 - 0 7 0 - 

Two 
cavities-
closely 
spaced 

Smooth 1.7 2.8 1.5 - 
1.7 2.6 1.5 - 0 7 0 - 

1.6 2.4 1.4 - 6 14 7 - 

Robust 1.7 2.7 1.5 - 
1.6 3.1 1.4 - 6 15 7 - 

1.4 2.9 1.6 - 18 7 7 - 

Synthetic 
field site 
model 

Smooth 
1.9 4 2.4 1.4 

1.7 3.7 2.2 1.7 11 8 8 21 

Robust 1.7 4.4 1.9 1.7 11 10 21 21 

 
 

Figure 2.8 shows the final inverted images of the single cavity, widely spaced double 

cavity, closely spaced double cavity and single cavity with resistive overburden models 

after robust inversion using the disconnect constraint based on the predicted boundaries 

from application of the watershed algorithm to the robust inversion (i.e. watershed 
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predicted boundaries shown in Figures 2.2e, 2.4e, 2.5e and 2.6e respectively). The 

Res2dInv program was used for 

 
 
Table 2.2, Comparison between the results of different edge detection methods for the 
single cavity model 

 
Edge detection method Estimated dimensions 

 (m) 
Error 
 (%) 

Depth Width Height Depth Width Height 
Snake 0.7 6 3.3 42 50 35 

Watershed 0.9 4.3 2.2  25 7 11 
Curve evolution - - -  - - - 
Image gradient 0.7 5 3.3  42 25 35 

 

the disconnect robust inversion (Loke and Barker, 1996). In each case, we use the model 

result obtained from the smooth inversion as the starting model for this second inversion 

step employing the disconnect (i.e. images shown in Figures 2.2d, 2.4d, 2.5d and 2.6d 

respectively). The disconnect inversion results in an improved recovery of resistivity 

structure of the single cavity and widely spaced cavity models relative to that obtained 

without the use of the disconnect constraint (Figure 2.4). The improvement in both model 

misfit and data misfit is most obvious from the data and model misfit curves shown in 

Figure 2.7. Most obviously, the inversion of the closely spaced model now clearly depicts 

the presence of two resistive features coincident with the cavities. Consistent with the 

true model, the cavity on the right is predicted as the more resistive. The inversion of the 

synthetic field model also results in improved recovery of resistivity structure relative to 

that obtained without using the disconnect in the inversion (Figure 2.6).   
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Figure 2.8: Disconnect inversion results for the single cavity, widely and closely spaced 
cavities, and for the synthetic field site model (a) single cavity model (b) widely spaced 
cavities (c) closely spaced cavities (d) synthetic fieldsite model (white boxes denote true 
cavity outline) 
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2.4. Application to real data: Mapping cavities in Qurnet Murai 

In order to illustrate this image processing approach on field datasets we applied the 

watershed by simulated immersion processing on datasets acquired from Qurnet Murai, 

Egypt (Figure 2.9). The site is located about 30 m to the west of Merenptah temple and  
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Figure 2.9: location map of a- Egypt, and b- the western bank of Luxor 

 

near the western limestone plateau of Luxor. The western bank of Luxor contains more 

than thirty known temples, such as Hatshepsut, mostly built by the rulers of the new 

Kingdom (1549-1069 BC) (Baines and Malek, 1980). Geophysical surveys have been 

conducted at this site in an effort to locate undiscovered artifacts, primarily tombs such as 

that shown in figure 2.9. Note that the photos in Figure 2.10 show the features after 

excavation of soil, debris and antiquities that typically fill these features in situ. These 

geophysical surveys include eight parallel 2D resistivity lines, 32 m long and spaced 5 m 
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apart, that were acquired during a field effort in May 2006. A 2D dipole-dipole array with 

1 m electrode spacing and 6 depth levels was acquired with a Syscal R1 (Iris Instruments, 

France) automatic resistivity system, providing 111 measurements on each parallel line, 

with a modeled maximum investigation depth of about 4 m. Due to time constraints in the 

field, the additional quadripoles used in the synthetic modeling described previously were 

not collected during this experiment. 

 

Figure 2.10: Examples of expected artifacts at the archaeological sites in Saqqara, Egypt, 
(a) buried tomb, and (b) tunnel leading to a tomb (~ 5 m x 2 m). Such artifacts represent 
resistive targets likely to be detected with electrical methods. Note that, in both cases, the 
photos show the cavities post excavation, following removal infilling soil, debris and 
artifacts. Arrow denotes direction towards surface 

 

(b) 

(a) 
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The inversion followed the same processing steps as described in Figure 2.1 and as 

performed on the synthetic datasets. Figure (2.11a) shows an inverted resistivity profile 

along one of the eight parallel lines obtained using the robust inversion and a 

homogeneous starting model. The section displays a wide range of resistivity values.  
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Figure 2.11: Results of the watershed application on the western bank of Luxor resistivity 
profile (a) Res2dinv section (b) detected boundaries based from ‘a’  (c) disconnect 
inversion model (d) Collected GPR profile using 200 MHz shielded antenna, trace 
increment of 0.05 m, and an average velocity of 0.136 m/ns estimated from the 
hyperbolic shapes in the figure. 
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The top resistive layer (~ 3000 Ohm m) is often encountered in this environment due to 

very dry sediments on the earth’s surface (high temperatures, regularly reaching 46°C at 

this site, result in very low moisture contents due to evaporative loss). Beneath this 

surface layer, resistivities are much lower, ranging from 20-300 Ohm m, primarily due to 

increasing moisture content with depth. An anomalous relatively high resistivity zone 

(between 1-3.5 m depth) occupies the area between 16 to 20 m along the line and is 

believed to relate to a cavity filled with friable soils.   

 

The results of applying the watershed by simulated immersion technique on Figure 2.11a 

is shown in Figure 2.11b. A number of boundaries are predicted in the near surface and 

reflect the upper resistive layer. One boundary is detected at depth and associated with 

the cavity. Based on this model, the cavity is located at 1.6 m depth and is 4 m wide (Fig. 

2.11b), which is consistent with the excavations shown in Figure 2.10.  The dataset was 

then re-inverted using all boundaries determined in Figure 2.11b with the model shown in 

Figure 2.11a as the starting model.  This disconnect inversion result is presented in Figure 

(2.11c). The root mean square (RMS) error between the theoretical and measured data 

was 9.3% without using the disconnect boundary in the inversion, compared with 6.6% 

after employing it.  

 

In addition to predicting the cavity boundaries, we note that the watershed method also 

detected the boundary between the resistive upper layer and the underlying half space. 

The estimated depth of this boundary, varying from ~ 1m to 1.5 m, is consistent with a 

horizontally continuous reflection recorded in a radar profile collected very close to the 
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resistivity line (Figure 2.11d). This GPR profile was collected using the common-offset 

method. The GSSI Subsurface Interface Radar (SIR) System-2000 equipped with 200 

MHz shielded antenna was employed for the data collection. The number of traces, 

number of samples per trace, trace increment, and time increment were 899,512, 0.05 m, 

0.195 ns, respectively. A strong GPR reflection at 20-30 ns (1-1.5 m depth based on a 

velocity of 0.136 m/ns calculated from diffraction hyperbolae in the data), at a depth 

consistent with the boundary identified in the resistivity image, suggests that it results 

from an increase in soil moisture at depth. 

 

2.5. Discussion and conclusion 

We have shown that the boundaries of cavities predicted using the watershed algorithm 

are consistent with the edges of resistivity models characterized by sharp boundaries for 

which we only have a smooth resistivity model. However, the success of the watershed 

algorithm to predict accurate target boundaries depends on the success of the inversion in 

reconstructing the investigated targets. The performance of the watershed algorithm will 

vary depending on the minimization procedure used (e.g. smooth vs robust) as shown 

here. The effect of the watershed algorithm will also likely depend on the inversion code 

used, although this is beyond the scope of our paper. Clearly, the final image produced 

following the disconnect inversion is very sensitive to the definition of the boundary 

extracted from the watershed algorithm. One advantage of this approach is that it can be 

applied to images, without needing raw data, to extract quantitative information on target 

dimensions not available from the inversion. Furthermore, the boundaries can 

subsequently be used to define disconnects in the inversion in order to estimate an 
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updated model of the resistivity structure that better predicts the resistivity structure of 

the cavities.  

 

Synthetic studies show that our approach facilitates the estimation of boundaries from 

smooth resistivity images and improves the reconstruction of the geometry of buried 

archaeological targets, with high accuracy (< 15% error) in most synthetic cases 

examined. However, the method will generate boundaries within images wherever the 

resistivity changes significantly, making it somewhat subjective to pick a boundary 

assumed to relate to an anomaly in the image associated with a cavity. The selection of 

the boundary associated with an anomaly of a buried tomb is based upon the main 

criterion that the selected boundary exists in the same location as the anomaly. Most 

often, as in the scenarios presented here (including the field site), the boundary is 

obvious. 

 

Even when the watershed method cannot accurately reproduce the target dimensions, we 

find that it may still improve the interpretation of the subsurface model structure from a 

smooth inversion. For example, based on the synthetic studies, the single cavity and the 

two closely spaced cavity inversion results look similar and both would likely be 

interpreted as a single buried cavity model (compare inversion results presented in Figure 

2.2b and 2.5b). However, the watershed identifies boundaries in the closely spaced cavity 

image that are not present when it is applied to the single cavity model (compare Figure 

2.2c and e with Figure 2.5c and e). Although the dimensions of the two cavities are not 

well predicted, the presence of two features (rather than just one, as might be inferred 



36 

 

 

 

from the resistivity image) is predicted. Moreover, by using the located boundaries as a 

constraint in a second inversion step (using the smooth model as the starting model), the 

reconstruction of the geometries of these closely spaced cavities significantly improved. 

The disconnect inversion, based on these boundaries, also improves the estimation of the 

true resistivity of the targets, although the true resistivity remains poorly resolved. This is 

an inherent limitation of using 2D imaging over 3D targets with small dimensions. 

 

We have demonstrated the application of our methodology to field datasets collected over 

archaeological sites where cavities/tombs are suspected. Results from these field studies 

suggest that the cavity outline can be predicted even with the additional model 

complexity caused by a highly resistive, thin overburden as often found at these sites. In 

fact, the watershed algorithm also appears to predict the overburden thickness based on 

comparison with a strong reflector (assumed to represent a sharp transition in moisture 

content) from GPR data collected at the site. 

 

Electrical imaging of buried archaeological targets can potentially be improved when 

acquiring and inverting three dimensional (3D) datasets using a 3D inversion code, since 

cavities are 3D structures and the 2D inversion approach is based on the assumption that 

the buried features are two dimensional (e.g., Negri et al., 2008). Our approach could 

equally be applied to 3D datasets as well, whereby the watershed method could be used 

to extract boundaries of different anomalies from 3D resistivity vertical or horizontal 

slices of the model domain. Such boundaries could also be used as a priori information in 

a final inversion step to better reconstruct the 3D resistivities of those targets.  
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Chapter 3: Improving Reconstruction of Discrete Resistivity Targets Using Coupled 

Artificial Neural Networks and Watershed algorithms1 

 

Abstract 

Estimating the dimensions of discrete targets within resistivity models produced as a 

result of applying smoothness constraints in most inversion algorithms is difficult, 

especially when targets are closely spaced.  Here we couple an image processing 

technique with a trained Artificial Neural Network (ANN) model to arrive at predictions 

of the geometry and resistivity of discrete targets from an initial smoothness constraint 

resistivity model. These predictions are compared with those obtained from applying the 

watershed algorithm alone, the L1 norm and when a smoothing disconnect is defined 

using the image processing and data subsequently re-inverted to arrive at a revised model 

estimate. Synthetic studies were first conducted on a single cavity model, a model for two 

widely spaced cavities (spacing >> unit electrode spacing), a model for two closely 

spaced cavities (spacing < unit electrode spacing) and a model for three closely spaced 

cavities (spacing < unit electrode spacing). In all model scenarios, the average Root Mean 

Square (RMS) model error for any dimension is below 1 whilst the average combined 

rms model error when including target resistivity is 35 for the single cavity, 30 for widely 

spaced targets, and 75 for the closely spaced targets. Despite the higher errors in the 

closely spaced cavity models, application of the algorithm confirms the presence of  

 

1This chapter has been submitted as: Elwaseif, M., and Slater, L., Improving Reconstruction of 
Discrete Resistivity Targets Using Coupled Artificial Neural Networks and Watershed 
Algorithms. Submitted to Near Surface Geophysics Journal (submitted on March 09, 2011 and 
revisions were requested on Jan 23, 2012) 
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multiple features, which is not ascertainable from the smooth inversion, or even when 

using the disconnect constraint. The ANN derived model significantly reduces the root-

mean-square (RMS) misfit between synthetic and inverted models. We demonstrate the 

approach using field measurements collected over a precisely known void and also apply 

the method to smooth resistivity images obtained from measurements collect over the 

archaeological site at Qurnet Murai, Luxor City, Egypt. 

 

3.1. Introduction 

The smoothness regularization is conceptually appropriate when the objective is to 

predict changes in resistivity due to variations in moisture and/or salinity across space 

and time. However, when the objective is to predict targets that are characterized by 

sharp resistivity contrasts (e.g., sinkholes, tunnels, voids),  the smoothness constraint is 

often conceptually inappropriate as our prior expectation is that such targets represent a 

sharp change in resistivity across some unknown boundary location. In addition, it is 

difficult to assess the true resistivity and quantify the dimensions (defined here as width, 

height and depth of burial) of these targets from smooth resistivity models (Nguyen et al., 

2005). Two-dimensional (2D) surveys and 2D inversion are still most often used to image 

inherently three-dimensional (3D) targets such as cavities (e.g., El-Qady et al., 2005), 

since fully 3D surveys are often time consuming and cost-prohibitive. Although 3D 

current flow is usually modeled, the 2D inversion assumes that there are no changes in 

the subsurface resistivity in the direction perpendicular to the survey line, which may lead 

to significant artifacts in the resulting model for 3D targets.  
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Several studies have been conducted to improve the reconstruction of targets 

characterized by sharp boundaries (Kaipio et al., 1999; Slater and Binley (2006); Hordt et 

al., (2007); Blaschek et al. (2008)). Slater and Binley (2006) describe a disconnect 

inversion whereby a ‘disconnect’ in the model domain is defined along the boundary of 

an object. However, the approach requires that the boundary of the object to be known a 

priori.  Hordt et al. (2007) and Blaschek et al. (2008)) describe a complex resistivity 

inversion that incorporates a regularization parameter that attempts to estimate sharp 

boundaries based on minimum gradient support (Portniaguine and Zhdanov, 1999) 

without a priori information while still allowing for smooth model structure within the 

target and away from it. However, since different values of that regularization parameter 

will lead to different models, these studies still require additional constraints on expected 

subsurface geology to achieve a reliable model. 

 

Elwaseif and Slater (2010) describe processing procedures for the reconstruction of 

geometries and resistivities of buried targets characterized by sharp boundaries without 

the need for incorporation of subsurface priori  information. Their approach combines (1) 

an initial 2D inversion using the standard smoothness constraint and a homogeneous 

starting model (as typically most often done in practice), (2) an image processing 

technique known as the watershed algorithm to subsequently predict target dimensions 

(width and height) and depth from the smooth image, and (3) a second inversion step 

incorporating a disconnect in the regularization based on the output of the watershed 

algorithm. Although this approach resulted in an improved estimate of the geometries of 
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individual targets, it was not very effective at predicting the resistivity of the targets and 

resolving closely spaced targets.  

 

Here, we describe three processing procedures for improving the reconstruction of 

discrete targets characterized by sharp resistivity contrasts. We focus on synthetic studies 

of discrete targets with dimensions typical of cavities found at archaeological sites in 

Egypt. We emphasize that, in such archaeological studies, recovering the geometry and 

resistivity of those targets is needed to fulfill the objectives of a non-invasive 

archaeological survey. The resistivity of these targets provides information on the 

material filling the cavities, whereas the geometry of these targets is important for 

performing a successful excavation operation.   

 

We explore an approach whereby the secondary disconnect inversion step used by 

Elwaseif and Slater (2010) is replaced by a trained Artificial Neural Network (ANN) 

method and compare the results of the two approaches (Figure 3.1). We apply the 

approach to the synthetic models described in Elwaseif and Slater (2010) for consistency 

and to facilitate comparison with results reported in their study involving a final model 

improvement step based on a disconnect inversion. Synthetic studies demonstrate that the 

ANN approach is more effective than either the smoothness constraint inversion (using 

L1 norm) or the disconnect inversion for resolving the geometry and resistivity of both 

widely and closely spaced targets. We also demonstrate the approach on field data 

collected over a bridge in New Jersey (NJ) where the problem is the detection of a void 
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of known dimensions underneath the bridge. Finally, we apply the approach on datasets 

collected at an archaeological site in Egypt where a cavity is suspected.  

 

3.2. Methodology 

 

3.2.1. Inversion with Smoothness Constraints 

The objective of regularized resistivity inversion is to find a model that contains a 

resistivity structure consistent with expectations regarding the likely distribution of 

resistivity within the subsurface, whilst providing a set of theoretical measurements that 

fit the measured data to some pre-described acceptable level (e.g., Loke et al., 2003; 

Gunther et al., 2006). The smoothness constraint inversion is utilized to produce smooth 

resistivity images in the absence of a priori information about the subsurface structures. 

This regularization constraint is conceptually inappropriate, when the objective is to 

predict targets that are characterized by sharp resistivity contrasts (e.g., sinkholes, 

tunnels, voids), as our priori expectation is that such targets represent a sharp change in 

resistivity across some unknown boundary location. In addition to that, it is difficult to 

assess the true resistivity and quantify the geometries of the targets from smooth 

resistivity models. 

 

Smoothness regularization is typically employed with one of two minimization schemes 

commonly referred to as the L2 norm and the L1 norm (Ellis and Oldenburg, 1994). The 

L2 norm minimize the squares of the differences between the measured and modeled 

transfer resistances and/or differences between the estimated model and expected model 
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structure, and it tends to emphasize models with smoother variations of resistivity. The 

L1 norm minimizes the absolute differences between measured and modeled resistivity 

values (and/or differences between the estimated model and expected model structure), 

and it tends to emphasize models with sharper boundaries between regions of different 

resistivity, although resistivity values vary less within each region (Loke et al., 2003). 

The L1 norm is therefore conceptually more appropriate for imaging cavities/tunnels than 

the L2 norm, since cavities typically present sharp resistivity contrasts within the host 

medium at distinct boundaries. However, the data noise is more likely to be propagated 

into the model space using the L1 norm (Hordt et al., 2007).  
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Figure 3.1: Flow chart showing the processing steps used in this study. 

 

3.2.2. Watershed by Simulated Immersion 

The watershed by simulated immersion is a technique for segmenting a given image into 

regions with distinctive boundaries based on mathematical properties of the image 

parameter space (Roueff et al., 2004; Barraud, 2006). The watershed method could be 

applied on the output model parameters from any resistivity code that employs the 
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smoothness constraint in the regularization (Elwaseif and Slater, 2010). Following 

Elwaseif and Slater (2010), we apply the method to predict the edges of the resistivity 

anomaly manifest in conventional resistivity inversion models as smooth boundaries. The 

predicted boundaries are assumed to be consistent with the edges of some unknown 

resistivity model characterized by sharp boundaries for which we have a smooth image. 

We apply a sequence of pre-processing steps to increase the contrast between different 

pixels, reduce noise, and enhance the boundary between different features within the 

images. The order of these processing steps is described in Figure 3.1. The result of the 

initial smoothness constraint inversion is plotted as a grayscale image to facilitate image 

processing. Gaussian blur and mean filters are then applied to preserve feature boundaries 

whilst reducing noise in the image by replacing each pixel with its neighborhood means 

(Nixon and Aguado, 2002). The watershed algorithm is then applied to the filtered image. 

We refer to Elwaseif and Slater (2010) for further details of this approach. 

 

3.2.3. Disconnect Inversion Approach 

The smoothness constraint inversion is appropriate for predicting targets that are 

characterized by gradational, rather than sharp, resistivity contrasts. Several studies have 

been conducted to improve the reconstruction of targets characterized by sharp 

boundaries (e.g., Slater and Binley, 2006; Hordt et al., 2007; Blaschek et al., 2008). For 

example, Slater and Binley (2006) describe a modification of the smoothness constraint 

to accommodate sharp boundaries whereby a ‘disconnect’ in the model space is defined 

along the boundary of an object. They applied the technique to a highly conductive target, 

a permeable reactive barrier made of zero valent iron, being buried in a relatively less 
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conductive host medium. The disconnect inversion is implemented by giving small 

weights within the weighting matrix at the position of the known boundary and the 

regularization matrix is then updated, which results in inverted models with sharp 

gradients at the locations of the known boundary (e.g., Loke and Lane, 2002; Bouchedda 

et al., 2012). However, this method requires that the boundary of the target be known a 

priori , and the inversion then solves for a smoothly varying model structure across the 

host medium and within the disconnected target.  Elwaseif and Slater (2010) suggested an 

approach based on applying  the watershed algorithm to a smooth resistivity image in 

order to define the likely boundary of a target, which subsequently was used  as a priori 

information to define a disconnect in the regularization. 

 

3.2.4. Artificial Neural Networks (ANN) 

An Artificial Neural Network (ANN) is based on a parallel computational system that 

attempts to simulate the interconnected system of neurons in the human brain (Smith, 

1993). The method has been previously used to process geophysical data (e.g., Raiche, 

1991; Zhang and Poulton, 2001; Winkler and Seiberl, 2003; Park et al., 2010). An ANN 

consists of an interconnected group of artificial ‘neurons’ that learn through trial and 

error. Figure 3.2 shows the learning steps of the ANN used in this study. The ANN 

consists of an input layer, which has a number of neurons equal to the number of input 

parameters, and an output layer  
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Figure 3.2: Artificial Neural Networks training steps. The input layer is compared with 
the output layer and connection weights are updated via the hidden layer until a good fit 
between both is achieved. 
 

which consists of neurons forming the output parameters. In our case, the input 

parameters are the target dimensions predicted from applying the watershed on the initial 

smoothness constraint inversion, the average host medium resistivity surrounding each 

resistivity anomaly and the central resistivity of the target.  Note that these two input 

resistivities are determined from the initial smoothness constraint inversion step (Figure 

3.1). Furthermore, the ANN only takes the parameters of individual target anomalies as 

an input.  That said, in case of multiple targets, the watershed algorithm predicts the 

geometry of those targets and we feed each target geometry as input to the ANN. The 

output parameters are the revised dimensions and resistivity of buried targets based on 
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the trained ANN. Due to the highly non-uniform host resistivity at our field sites, an 

estimate of the host resistivity is not output for the field datasets. The number of layers 

forming the ANN (i.e. complexity) can be increased by including more hidden layers 

between the input and output layers. All the layers are connected via connection weights 

that are established during a training phase, and the value of each output parameter 

depends on the combined values of all the input parameters.  

 

During the learning (or training) stage, a large number of known models are input into the 

neural network. In this research, we created data for approximately 250 model scenarios 

for single and multiple closely and widely spaced cavity targets having resistivity and 

geometry values cover our expected possible range of targets typically found at 

archaeological sites in Egypt. The modeled cavities have different dimensions (length and 

width) that range from 1 m2 up to 20 m2, and were buried at different depths up to 3 m. In 

addition, the cavities were assigned resistivity values ranges from 400 Ohm m up to 100k 

Ohm m. Furthermore, we assumed a homogeneous host medium resistivity values that 

ranges from 50 Ohm m up to 500 Ohm m. Finally, the resultant synthetic data were 

contaminated with different Gaussian noise levels of 2, 3, 5, 6 and 10%.  

 

The resulting output from the hidden layers is compared with the desired output (i.e. the 

known model parameters) and the hidden layers are used to adjust the connection weights 

until a good approximation between the input and the desired output is achieved (Figure 

3.2). There are different approaches to minimize the error between the input and the 

desired output (e.g., Simpson, 1990; Stanley and Miikkulainen, 2002). In the back-
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propagation method used in this study, the error at the output layer is quantified and 

propagated backwards to the hidden layers and the connection weights attached to the 

hidden layers are updated to minimize that error (Rumelhart, 1986). After the network is 

correctly trained (i.e., the lowest RMS error between known input and desired output is 

achieved), the ANN can predict the output for new inputs quickly and accurately, 

assuming it is within the range of different parameters included in the trained models 

(Smith 1993). Here, we use the ANN to predict the dimensions and resistivity of buried 

targets characterized by sharp boundaries relative to the host medium. 

 

Conventional smoothness regularization constraints in resistivity inversion result in a 

highly underdetermined problem, where the number of model parameters much exceeds 

the number of measurements. In contrast, the input of the ANN consists of five model 

parameters (one model parameter for the host mediumand four model parameters for each 

resistive target within the model space (depth, width, length and resistivity value)), 

whereas the output consists of four parameters (depth, width, length and resistivity value 

for each resistive target) (Fig. 3.3). Our ANN recovery approach is thus an 

overdetermined problem. A disadvantage of an over-determined problem is that it can be 

difficult to minimize the data misfit due to the limited number of model parameters, 

which cannot fully describe the whole model space. We show here that the ANN 

approach results in a much reduced model misfit for the case of such discrete targets.   

 

3.3. Synthetic models 

Here we calculate synthetic apparent resistivity pseudosections for the same synthetic 
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models as described in Elwaseif and Slater (2010), and subsequently invert these data 

using Res2dInv (Loke and Barker, 1996) to allow for direct comparison between the 

ANN approach and the L1 norm and disconnect inversion reported previously. The  
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Figure 3.3: sketch showing the input parameters for two cavities with different shapes 
buried in non-uniform host medium. 
 

synthetic models considered are , [i] a single cavity, [ii] two widely spaced cavities 

(separation > unit electrode spacing),  [iii] two closely spaced cavities (separation < unit 

electrode spacing), and [iv] three closely spaced cavities (separation < unit electrode 

spacing). The 2D forward modeling datasets were generated using a 3D forward 

modeling code, Res3dMod (Loke and Barker, 1996), to simulate real data collected in the 

field over cavity features, by accounting for both 3D current flow and a 3D resistivity 

structure (Elwaseif and Slater, 2010). The cavities were assigned a resistivity of either 

500, 1000 or 100k Ohm m, whereas the host medium was assigned a resistivity of 100 

Ohm m in all scenarios. These were considered reasonable representative values based on 

known results from cavities at archaeological sites in Egpyt (e.g., El-Qady et al., 2005) 

(Figure 2.10). Following Elwaseif and Slater (2010), thirty two electrodes were used to 
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create the synthetic data and a dipole-dipole array was chosen due to its relatively high 

sensitivity to horizontal changes in resistivity (e.g., Dahlin and Zhou, 2004). The 

electrode spacing was 1 m and ten depth levels (inter dipole spacings) were utilized, 

providing 390 measurements and a maximum investigation depth of about 4.5 m based 

on theoretical relations between electrode spacing/geometry and investigation depth for a 

homogeneous earth medium (e.g., Loke, 2004). All synthetic datasets were contaminated 

with 2% uniformly distruted noise, representative of noise levels expected in typical field 

data such that 

datanoise = datanoise-free + 0.02*R      (3.1) 

where R is a random variable with mean = 0 and variance = 1. 

 

We created the same three model scenarios as described in Elwaseif and Slater (2010), in 

addition to a fourth model that consists of three closely spaced cavities filled with 

sediments and air. In the first scenario, a single cavity was buried at 1.2 m depth, having 

a width, a breadth and a length of 4 m and resistivity of 1000 Ohm m (Figure 3.4a). The 

second scenario involved two cavities having resistivity values of 500 and 1000 Ohm m. 

Two cases of this two cavity model were considered (a) a widely-spaced cavities model 

involving cavities with widths, breadths and lengths of 4 m and spaced 4 m apart (edge to 

edge) i.e. greater than unit electrode spacing (Figure 3.4b); (b) a closely-spaced cavities 

model involving cavities with widths, breadths and lengths of 2.8, 2.8 and 2.7 m and 

spaced 0.6 m apart (edge to edge) i.e. less than the unit electrode spacing (Figure 3.4c). In 

addition, we created a three closely- spaced cavities model having resistivity values of 

500, 1000 and 100k Ohm m (air filled), and having widths, breadths and lengths of 2.8, 
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2.8, and 2.7 m and spaced 0.6 m apart (Figure 3.4d). 

 

 

Figure 3.4: Synthetic 3D model scenarios. (a) single cavity (b) widely spaced cavities (c) 
two closely spaced cavities (d) three closely spaced cavities. The breadth of the single 
cavity and widely spaced cavities is 4 m, whereas the breadth of the closely spaced 
cavities is 2.8 m. 
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3.4. L1 norm Inversion  

As outlined earlier, we chose to perform a 2D inversion of the datasets generated using 

3D forward modeling as this best represents the situation for datasets typically obtained 

from the field i.e. 2D resistivity profiles over cavities will record measurements resulting 

from 3D current flow through 3D structures but will be interpreted with codes that 

assume the structures are two dimensional.  

 

We chose to invert all the data using the L1 norm approach, since it is more appropriate 

for imaging cavities/tunnels than the L2 norm, since cavities exhibit sharp contrasts 

within the host medium at distinct boundaries. In all cases, a homogeneous medium was 

used as the starting model, and five iterations were performed. The results of applying the 

inversion on the single, widely spaced, and closely spaced cavity models are shown in 

Figures 3.5a, 3.6a, 3.7a and 3.8a, respectively. White outlines show the true cavity 

dimensions. The RMS model errors for each inversion are estimated using the following 

formula and included in the figures: 

))(( 2
estreal mmmeanRMS −=    (3.2) 

where  mreal is the actual model parameters and mest is the estimated model parameters.  

 

The widely spaced cavities are clearly associated with individual anomalies in the 

resistivity images (Fig. 3.6a). However, the closely spaced cavities appear as a single 

anomaly (Fig. 3.7a and 3.8a), instead of separate features, due to the small spacing 

between cavities (here less than the unit electrode spacing) (Elwaseif and Slater, 2010).  
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Figure 3.5: Results of the single cavity model (a) L1 norm section (b) detected 
boundaries based on a  (c) disconnect inversion model (d) ANN model (model misfit are 
shown in sections and boxes denote true cavity outline). 
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The watershed algorithm was subsequently applied on these inverted resistivity images to 

predict likely boundaries of the target anomalies. The results of applying the watershed 

algorithm on the single, widely spaced, and closely spaced cavity models are shown in 

Figures 3.5b, 3.6b, 3.7b and 3.8b, respectively. The method predicts a boundary in the 

resistivity anomaly associated with the closely spaced cavities, despite that evidence for 

this boundary cannot be visually inferred from the inverted resistivity model. To better 

understand the influence of data noise on the watershed algorithm results, the data of the 

closely spaced cavity model was contaminated with either 2% or 10% noise and each 

data was inverted assuming 2%, 5% and 10% data noise. Figure 3.9 shows that the 

performance of the watershed algorithms is dependent on the accuracy of the inversion 

process. 

 

The optimum result was obtained when assuming an accurate noise levels. However, in 

all cases, the watershed algorithm predicted a boundary between the two cavity anomaly. 

As the assumed data noise overestimates the actual noise level (Figure 3.9a), the accuracy 

of watershed prediction gets less accurate. Similarly, as the assumed data noise 

underestimates the actual noise, the accuracy of watershed prediction gets worse (Figure 

3.9b). However, the accuracy of watershed prediction in case of overestimating the noise 

level is better than when underestimating it probably because the data itself is 

contaminated with less data noise. The watershed predicted target boundaries are used to 

define disconnects in the initial smoothness constraint inversion in order to estimate a 

model that better predicts the resistivity structure of the cavities as described in Elwaseif 

and Slater (2010). The watershed predicted target boundaries and the central resistivity 
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value of the resistivity anomalies were used as inputs to the ANN (Figure 3.1). 

 

Figure 3.6: Results of the widely spaced cavities model (a) L1 norm section (b) detected 
boundaries based on a  (c) disconnect inversion model (d) ANN model (model misfits are 
shown in sections and boxes denote true cavity outline). 
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3.5. Re-inverting datasets using the ANN 

The ANN model was trained using 251 known synthetic cavity models, each having 

different geometries, resistivity values and host medium resistivity. All cavity targets 

were modeled as quadrilaterial objects in the training, being representative of target 

cavities often found at archaeological sites in Egypt (e.g., El-Qady et al., 2005; Miller et 

al., 2005) (Figure 3.3). The objective of the training was to establish a relationship 

between the inputs and outputs of the ANN, by minimizing the back-propagation 

objective function (Figure 3.2).    

 

Figures 3.5c and 3.5d shows the disconnect inversion and ANN section for the single 

cavity model. The disconnect inversion results in an improved recovery of target 

geometry  relative to that obtained from initial smoothness constraint inversion. The 

detected cavity boundary from the ANN model has an average model error of 0.1, while 

the average model error for the watershed predicted geometry is 0.3 In addition, the ANN 

shows improved recovery for the single cavity resistivity relative to that obtained from 

the initial smoothness constraint and disconnect inversions. The average model error 

when including the resistivity of the single cavity for the ANN is 35 relative to 375 in the 

L1 norm image and 400 in the disconnect inversion image.  

 

Figures 3.6c and 3.6d shows the disconnect inversion and ANN section for the widely 

spaced cavities model. The disconnect inversion again results in an improved recovery of 

both geometries and resistivity of both cavities relative to that obtained from the initial 

smoothness constraint inversion. The ANN, however, has more success in predicting the 
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Figure 3.7: Results of the two closely spaced cavities model (a) L1 norm section (b) 
detected boundaries based on a  (c) disconnect inversion model (d) ANN model (model 
misfits are shown in sections and boxes denote true cavity outline). 
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Figure 3.8: Results of the three closely spaced cavities model (a) L1 norm section (b) 
detected boundaries based on a (c) disconnect inversion model (d) ANN model (model 
misfits are shown in sections and boxes denote true cavity outline). 
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Figure 3.9: Influence of data noise on Watershed algorithm results (A) overestimating the 
actual data noise (2%) during inversion (assumed noise levels from top are 2%, 5% and 
10%)  (B) underestimating the real data noise (10%)  during inversion (assumed noise 
levels from top are 10%, 2% and 5%)  (boxes denote true cavity outline). 
 

geometry and resistivity of each cavity than the watershed predicted geometry and 

disconnect image. The average model error when estimating cavities dimensions in case 

of ANN is 015relative to 0.2 in the weatershed image. The average model error when 

including the resistivity of each cavity for the ANN is 32.5 relative to 262.5 in the L1 

norm image and 257 in the disconnect inversion image. Figures 3.7c and 3.7d shows the 

disconnect inversion and ANN section for the closely spaced cavities model. Unlike in 

the L1 norm and disconnect inversion approach (Elwaseif and Slater, 2010), the ANN 
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section clearly depicts the presence of two resistive features basically due to the initial 

success of the watershed algorithm in identifying them , with the cavity on the right 

predicted as the more resistive. The reconstruction of geometries and resistivity values of 

both cavities are improved compared with the results obtained from the L1 norm or 

disconnect inversion. The detected cavity boundaries from the ANN model has an 

average model error of 0.15 relative to 0.3 in case of watershed predicted geometry, 

whilst the model error when including the resistivity of each cavity for ANN is 75  

relative to 302 in the L1 norm image and 212.5 in the disconnect inversion. Figures 3.8c 

and 3.8d shows the disconnect inversion and ANN section for the three closely spaced 

cavities model. As expected, the ANN section clearly depicts the presence of three 

resistive features, with the cavity on the right predicted as air filled. The reconstruction of 

geometries and resistivity values of the cavities are improved compared with the results 

obtained from watershed algorithm, L1 norm or disconnect inversion. The detected cavity 

boundaries from the ANN model has an average model error of 0.3 relative to 0.6 in case 

of watershed image, whilst the model error when including the resistivity of each cavity 

for ANN is 23k  relative to 28k in the L1 norm image and 29k in the disconnect image. 

 

Table 3.1 summarizes the performance of the disconnect inversion and the ANN for the 

four model scenarios. In general, the RMS error of the ANN model misfit is much less 

than the model misfit of the watershed algorithm or L1 norm for all model scenarios. In 

addition the RMS model misfit based on  when the target resistivity is included in the 

model misfit calculation is significantly reduced compared to when it is included. 
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To test the performance of our ANN model on more noisy data, we applied our approach 

on the two closely spaced cavity model obtained from inverting data contaminated with 

5% and 10% noise. We assumed an accurate data noise levels during the inversion 

process and we followed the same processing steps as described in other synthetic 

models.  As shown in Figure 3.10, the ANN better recovers the geometry and resistivity 

values of the two cavities compared with the watershed algorithm, L1 norm model and 

the disconnect inversion model. In addition, the estimated geometry and resistivity of the 

two cavities are consistent with the previous results described in Figure 3.7d.     

 

Table 3.1, Comparison between the model misfit results of disconnect inversion and ANN 
for the known field and synthetic models, where ‘D’ – depth, ‘W’– width, ‘H’ – height, 
‘R’ – resistivity (Ohm m), and ‘L1’ – L1 norm. 
Resistivity 

Models 
True dimensions (m) 

Watershed 

Algorithm (WA) 

L1 ANN RMS model error 

D 

 

W 

 

H 

 

R 

 

D 

 

W H R D W H R Without ‘R’ With ‘R’ 

WA ANN 
L1 ANN 

One cavity 1.2 4.0 2.45 1000 0.8 4.3 2.1 200 1 3.9 2.5 930 0.3 0.1 375 35 

Two 

cavities-

widely 

spaced 

1.0 4.0 1.7 500 1.2 4.0 1.5 200 1.1 4 1.9 444 0.2 0.1 150 28 

1.0 4.0 1.7 1000 1 4.3 1.7 250 1 4.1 2 926 0.2 0.2 375 37 

Two 

cavities-

closely 

spaced 

1.7 2.8 1.5 500 1.6 3.1 1.4 200 1.8 2.9 1.7 562 0.2 0.1 125 31 

1.7 2.7 1.5 1000 1.4 2.9 1.6 200 1.6 2.8 1.8 759 0.2 0.2 300 120 

Three 

cavities- 
1.7 2.7 1.5 500 1.1 2.8 2 200 1.4 2.6 1.3 501 0.5 0.2 150 0.5 

closely 

spaced 
1.7 2.7 1.5 1000 1.1 3 2.1 200 1.4 2.5 1.4 630 0.5 0.2 400 185 

 1.7 2.7 1.5 100k 1.1 3.5 2.4 250 1.4 2.9 2.1 17K 0.8 0.4 49k 41k 

Field 

example 
0.8 2.9 1.4 - 0.9 1.6 1.2 18k 1.02 2.9 0.98 176k 0.8 0.3 - - 
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Figure 3.10: Results of the more noisy two closely spaced cavities model (a) L1 norm 
section obtained from inverting data contaminated with 5% noise (b) detected boundaries 
based on a (c) ANN model (d) L1 norm section obtained from inverting data 
contaminated with 10% noise (e) detected boundaries based on d (c) ANN model (model 
misfits are shown in sections and boxes denote true cavity outline). 
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3.6. Field studies 

 

3.6a. Application to field data: Locating a known tunnel  

In order to illustrate this approach on real datasets, the ANN was first applied on datasets 

acquired over a known void underneath a bridge. The depth and dimensions of the void 

underneath the bridge were recorded in the field. The void is filled with air and buried at 

a depth of 0.8 m, having a width and a length of 2.9 m and 1.4 m (Fig. 3.11a). The survey 

line was laid out about 1 m from the edge of the tunnel and the tunnel extended 

sufficiently far in the direction perpendicular to the survey line, that it can essentially be 

considered a 2D structure appropriate for 2D acquisition and inversion.  

 

A 2D dipole-dipole array with 1 m electrode spacing and 6 depth levels was acquired 

using a Supersting automatic resistivity system (AGI Instruments, USA), providing 864 

measurements, with a modeled maximum investigation depth of about 6 m. The inversion 

followed the same processing steps as performed on the synthetic datasets. Figure 3.8b 

shows the inverted resistivity profile using the initial smoothness constraint inversion and 

a homogeneous starting model. The section displays a wide range of resistivity values. 

The anomalous zone of high resistivity located between 11 to 13 m on the profile and at a 

depth of about 1 m coincides with the bridge and is assumed to be the response of the 

void underneath the bridge. This anomaly is elongated, and is not a good representation 

of the known geometry of the void. In addition, the void is not represented by a feature 

with a homogeneous resistivity. The results of applying the watershed by simulated 

immersion technique on Figure 3.11b is shown in Figure 3.11c. Based on this result, the 
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void is predicted at 1.1 m depth, with a width and a length of 1.5 m and 1.7 m 

respectively.  The disconnect inversion results is shown in Figure 3.11d. The anomalous 

zone belonging to the void has sharper boundaries, but is still elongated and its resistivity 

is significantly less than that expected from an air-filled void. The results from the initial 

smoothness constraint inversion and the watershed algorithms were input in the ANN and 

the result is shown in Figure 3.11c. The ANN predicts a void with a very high resistivity 

176300 Ohm m) and with a geometry that has an RMS model error of 0.3 relative to 0.8 

in the watershed image based on the known field geometry (Table 3.1). 

 

3.6b. Application to field data: mapping cavities in Qurnet Murai 

We next applied both the disconnect inversion and ANN on datasets acquired from 

Qurnet Murai, Egypt (Figure 3.12). The site is located on the western bank of Luxor city. 

Resistivity surveys have been conducted at this site in an effort to locate undiscovered 

artifacts, primarily tombs. As previously discussed, the geometries of those tombs are 

expected to have similar dimensions to the synthetic cavities explored in this study 

(Elwaseif and Slater, 2010). Eight parallel 2D resistivity lines, 32 m long and spaced 5 m 

apart, were collected at the survey site in May 2006. A dipole-dipole array with 1 m 

electrode spacing and 6 depth levels was utilized, providing 111 measurements and a 

maximum investigation depth of about 4 m. Due to time constraints in the field, 

additional quadripoles used in the synthetic studies were not collected during this 

experiment. Figure 3.12a shows the inverted resistivity profile from the initial 

smoothness constraint inversion. The section displays a wide range of resistivity values. 

The top resistive layer (~ 3000 ohm m) is common in this environment due to very dry 
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sediments at the surface as a result of extensive evaporation driven by high temperatures 

(regularly reaching 46° C at this site). Below this surface layer, resistivities are much 

lower, ranging from 20-300 ohm m, primarily due to increasing moisture content with 

depth. An anomalous, relatively high resistivity zone (between 1-3.5 m depth) occupies 

the area between 16 to 20 m along the line and is suspected to relate to a cavity filled 

with friable soils.  

 

The results of applying the watershed by simulated immersion technique predict that this 

suspected cavity is located at 1.6 m depth and is 4 m wide (fig 3.12b).  The disconnect 

inversion result is presented in figure 3.12c. The root mean square error between the 

theoretical and measured data was 9.3 % without using the disconnect boundary in the 

inversion, compared with 7 % after employing it. Applying the ANN (Fig. 3.12d), the 

suspected cavity is located at 1.2 m depth, is 5 m wide and is 4 m long. The estimated 

depth of this cavity, is consistent with the presence of diffraction hyperbolae at a 

horizontal distance of around 14 m on the profile and at a depth of 1.25 m recorded in a 

radar profile collected very close to the resistivity line (Elwaseif and Slater, 2010). The 

predicted cavity dimension is also consistent with previous excavations at field sites in 

Egypt (e.g., Metwaly et al., 2005). 
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Figure 3.11: Results of the known cavity model (a) Photo of the cavity (b) L1 norm 
section (c) detected boundaries based on a  (d) disconnect inversion model (e) ANN 
model (model misfits are shown in sections and boxes denote true cavity outline). 
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Figure 3.12: Results of the unknown field model (a) L1 norm section (b) detected 
boundaries based on a (c) disconnect inversion model (d) ANN model.  

 

3.7. Discussion  

The commonly applied smoothness constraint inversion is not ideal for imaging buried 

targets with sharp resistivity edges, since it generates models characterized by a smooth 

distribution of resistivities over a wide range of values.  Using a disconnect boundary in 

the inversion estimated from the watershed algorithm can improve imaging the geometry 

of such targets, although target resistivity values are underestimated and closely spaced 
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targets are not individually resolved (Elwaseif and Slater, 2010). We have shown here 

that using a trained ANN in place of this disconnect step can improve the reconstruction 

of dimensions and resistivities of such targets. For example, based on the synthetic 

studies, the single cavity and the closely spaced cavities models show very similar 

smooth inversion results and both images would likely be interpreted as evidence of a 

single buried cavity. Although the watershed identifies boundaries in the closely spaced 

cavity image, the resistivity and dimensions of the two cavities are not well predicted in 

the disconnect inversion model. In contrast, as shown in Figure 7d, the ANN significantly 

improved the reconstruction of the resistivity and geometries of these closely spaced 

cavities. 

 

We have described a two step approach whereby image processing of an initial 

smoothness constraint inversion is used to determine a first estimate of likely target 

location and geometry, from which the ANN is able to optimize. The performance of the 

ANN depends significantly on the given model scenarios during the training stage. Better 

performance will be achieved when a large number of model scenarios with different 

dimensions and resistivity values are input.  Here, the ANN was trained on quadrilateral 

targets due to our a priori  knowledge that the targets of interest fit this geometry. Thus, 

unlike the disconnect inversion approach described by Elwaseif and Slater (2010) that 

does not require any priori  information, the expected shape of the targets used in the 

training is the required a priori  information in this approach. Since the shape of the target 

is known priori, it might be not surprising that the ANN gives better results than the 

disconnect inversion approach. However, further training on a wider array of target 
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shapes would reduce the amount of a priori information effectively incorporated within 

the ANN.  That said, the strength of the ANN is that it provides a very effective way to 

incorporate appropriate  a prior information through training when targets have specific 

shapes as often the case for archaeological features.   

 

Synthetic studies demonstrate that the ANN largely reduces the model misfit relative to 

that obtained with the initial smoothness constraint and disconnect inversions and 

generates more realistic representations of discrete targets considered here. Data misfit is 

compromised, but this is to be expected given that the ANN is trained to predict few 

model parameters that are only related to target anomalies. The highly over-

parameterized smoothness-constrained inversion will always find numerous models from 

the large number of possible parameter combinations that result in a low data misfit. 

However, these models usually do not provide a good estimate of target dimensions in the 

case of discrete targets.  

 

The ANN used here is effective at predicting target location and geometry. In addition, 

our approach shows more success in reconstructing the geometry and resistivity of targets 

than the L1 norm, disconnect inversion approach or watershed algorithm. This is clearly 

shown from the model misfit results presented in table 1. The model misfit for excluding 

resistivity (i.e. only using target geometries) is less than the model misfit when the target 

resistivity is included.  The estimation of target resistivity and geometry could be 

improved by increasing the number of models used in training the ANN. However, the 

limited accuracy in the target resistivity will often not be a major concern in many 
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archaeological and engineering studies where we are most often interested in target 

location and geometry.  

 

We have demonstrated the application of our approach to field datasets collected at a site 

in NJ over a known void and a site in Egypt where cavities are suspected. The approach, 

particularly the application of the watershed, is somewhat subjective, especially in the 

case of dealing with noisy data when smooth resistivity images will likely contain image 

artifacts or additional local resistivity structure beyond that caused by the targets of 

interest. Without additional information (as was available in the survey over a known 

tunnel), it would be difficult to identify appropriate boundaries from the watershed 

algorithm. Such ambiguity could be reduced from the results of other geophysical 

methods as we describe in our field study at Qurnet Murai. In this field study, the 

suspected anomaly in the resistivity model that results from the cavity was confirmed 

using the GPR data. 

 

Our synthetic studies were overly simple in that they assumed a single uniform 

background resistivity that the ANN was trained to predict. However, as a result of the 

highly variable resistivity away from targets at real field sites, the ANN approach was 

adjusted to search only for target resistivity and dimensions. In this case, the ANN was 

given the average resistivity outside of the predicted watershed target boundaries as input. 

Based on observations during the training of the ANN the ratio of target to background 

resistivity has a significant effect on both the dimensions and the centre resistivity of 

predicted targets. For example, as the ratio of target to background resistivity increases, 
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the predicted target anomaly will have sharper boundaries but the centre resistivity value 

of the anomaly will be smaller than the actual value.   

 

Results from the field and the synthetic studies suggest that the ANN approach has 

potential for reconstructing the geometry and resistivity of discrete targets in field 

datasets. One interesting advantage of our approach is that it can be applied to images, 

without needing raw data, to provide estimates of target geometry. The average host 

medium resistivity and the target central resistivity value can be estimated from the 

resistivity scale, whereas the target boundaries can be estimated using the watershed 

algorithms. These estimations can be used as an input to the ANN in order to estimate an 

updated model of the target resistivity and geometry.  

 

Our approach is subject to some distinct limitations. Firstly, the performance of an ANN 

will depend on the adequacy of the training effort. In this study, the training of the ANN 

is based only on synthetic datasets. Ideally, the ANN should be trained on field data 

where target are known (Park et al., 2010). Unfortunately, such datasets are most often 

unavailable. Furthermore, the ANN output is ultimately in part conditioned on the 

original smoothness constraint step on which the watershed algorithm was applied.  

 

3.8. Conclusions 

Application of an ANN conditioned on the results of an initial smoothness constraint 

inversion and subsequent image processing, appears to be a viable approach for 

determining the location of discrete targets in resistivity datasets. We have shown that the 
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predicted boundaries and resistivity of the targets using an ANN are significantly 

improved when compared with results from the initial smoothness constraint, disconnect 

inversions and watershed algorithm. However, the ANN approach shows more success in 

predicting the geometries of targets than their resistivity values, which make it an 

appropriate approach for studies that focus more on recovering the geometry of 

subsurface targets such as archaeological studies.   Using this approach the geometry of 

multiple targets, even when separated by a distance less than the unit electrode spacing, 

are fairly well recovered. Our approach was demonstrated on targets that have rectangular 

shapes, but it can be adjusted to fit any target shape by retraining the ANN on those 

shapes.   The approach appears promising for predicting archaeological artifacts in Egypt 

where previous excavation confirmed the same shapes described here. In addition to 

archaeological artifacts, the approach might also be appropriate for predicting the 

location of engineering structures and voids in karst environments. 
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Chapter 4: Improved Resistivity Imaging of Targets with Sharp Boundaries Using 

an Iterative Disconnect Procedure1 

 

Abstract 

The smoothness constraint inversion is not appropriate for imaging sharp targets such as 

archaeological structures. Alternative approaches requires either a priori information 

about the subsurface (e.g. disconnect inversion) or requires two or more geophysical 

datasets to be collected at the same site (e.g. joint inversion). Here we propose a 3D 

inversion strategy that does not require a priori information and is theoretically more 

appropriate for imaging targets with sharp resistivity contrasts. Our approach combines 

an initial smoothness constraint inversion that is used only at the first iteration to recover 

a resistivity model that is fairly consistent with the measured data, from which an initial 

target location is estimated using an edge detector method and from which a disconnect 

in the inversion is identified.  This disconnect defining the target outline is then 

progressively improved following each iteration of the inverse procedure. We applied our 

approach on 3D synthetic studies that include a single cavity, widely and closely spaced 

cavity models. In addition, we tested our approach on a challenging synthetic field model 

scenario that simulates archaeological field sites in Egypt. Synthetic studies demonstrate 

the effectiveness of our approach in recovering both resistivity and geometry of buried 

targets over the smoothness constraint inversion approach.  

 

 

 
1This chapter has been accepted as: Elwaseif, M., and Slater, L., 2012, Improved Resistivity 
Imaging of Targets with Sharp Boundaries Using an Iterative Disconnect Procedure, Journal of 
Environmental and Engineering Geophysics, Accepted. 
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4.1. Introduction 

The resistivity method is used to predict buried targets that have a detectable electrical 

resistivity contrast relative to the host medium. The success of the method in imaging 

targets is based on employing both an appropriate data collection setup and an 

appropriate inversion strategy honoring the characteristics of the subsurface environment. 

The data collection setup should take into account a number of parameters such as 

subsurface geology, depth and dimensions of investigated targets (e.g., Loke, 2004). Such 

parameters would determine the amount of injected current to the ground, array 

configuration, and electrode spacing. Recent advances in multi-channel resistivity meters, 

in addition to advances in computing power make three-dimensional (3D) resistivity 

surveys more common, less time consuming and less cost-prohibitive. Such 3D surveys 

and accompanying 3D inversion are inherently more appropriate to image targets such as 

isolated cavities at archaeological sites than 2D surveys and 2D inversion, since such 

cavities are inherently 3D targets. 

 

The choice of an appropriate inversion strategy is based upon the availability of a priori 

subsurface information from geological logs or information from other geophysical 

methods, along with the characteristics of the edge of suspected targets [i.e., diffuse vs. 

sharp]. In the absence of a priori subsurface information on the geometry and distribution 

of buried targets, the smoothness constraint inversion is utilized to produce smooth 

resistivity images that represent the minimal structure required to satisfy the data. Such a 

regularization constraint is often very appropriate when the objective is to predict 

changes in resistivity due to variations in moisture and/or salinity across space and time. 
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However, when the objective is to predict targets that have sharp resistivity edges (e.g., 

cavities, tunnels, voids), the smoothness constraint is conceptually inappropriate as such 

targets represent a sharp change in resistivity across some unknown boundary location. 

Therefore, it is difficult to assess the true resistivity and edges of these targets from the 

obtained resistivity models.  

 

When a priori information is available, other inversion strategies more appropriate for 

defining sharp resistive targets such as disconnect or joint inversion can be utilized. For 

example, Slater and Binley (2006) describe a modification of the smoothness constraint 

to accommodate sharp boundaries whereby a ‘disconnect’ in the smoothing is defined 

along the boundary of an object. The inversion then solves for a smoothly varying model 

structure across the host medium and within the disconnected target but does not permit 

smoothing across the boundary defined by the disconnect. Bouchedda et al. (2012) 

describe a joint structural inversion algorithm for cross-hole electrical resistance 

tomography (ERT) and cross-hole radar travel time tomography (RTT) that better 

reconstruct zones characterized by sharp boundaries. 

 

A few studies have been conducted to improve the reconstruction of targets characterized 

by sharp boundaries without the need for a priori information. For example, Hordt et al. 

(2007) and Blaschek et al. (2008)) describe a 2D complex resistivity inversion that 

incorporates a regularization parameter that attempts to estimate sharp boundaries based 

on minimum gradient support. However, since different values of that regularization 

parameter will lead to different models, these studies still require additional constraints 
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on expected subsurface geology to achieve a reliable model. Elwaseif and Slater (2010) 

describe processing procedures for the reconstruction of geometries and resistivities of 

buried targets. Their approach combines an initial 2D smoothness constraint inversion 

coupled with a digital image processing technique known as the watershed algorithm to 

predict the target boundary and a second  inversion step incorporating a disconnect in the 

regularization based on the boundary output by the watershed algorithm. Although this 

approach resulted in an improved estimate of the geometries of individual targets, it was 

not very effective at predicting the resistivity of the targets or resolving closely spaced 

targets. Elwaseif and Slater (under review) enhanced their previous approach by 

replacing the second disconnect inversion step with a trained Artificial Neural Network 

(ANN). Although this approach has been proven effective for resolving widely and 

closely spaced archeological targets, it is time consuming and the results depend largely 

on the quality of ANN training.  

 

Here we propose a 3D resistivity inversion approach that does not require a priori 

information, and is more appropriate for imaging targets with high resistivity contrasts. 

Our approach combines smoothness constraint and disconnect inversion coupled with a 

digital edge detector technique called Roberts’ cross-gradient operator to improve the 

model through iterative updates of both the resistivity model parameters and the 

disconnect boundary. We tested our combined inversion approach on 3D synthetic studies 

that of a single cavity, widely and closely spaced cavity models, and a field model 

scenario.  
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We focus on synthetic studies of discrete targets representative of expected features at 

archaeological sites in Egypt.  We emphasize that, in such archaeological studies, 

recovering the geometry and resistivity of those targets is needed to fulfill the objectives 

of a non-invasive archaeological survey. The resistivity of these targets provides 

information on the material filling the cavities, whereas the geometry of these targets is 

important for performing a successful excavation operation. Synthetic studies 

demonstrate the effectiveness of our approach in recovering the resistivity and geometry 

for single and multiple cavity features.  

 

4.2. Methodology  

 

4.2.1. Smoothness constraint and disconnect inversion 

The objective of resistivity inversion is to find a model that contains a resistivity structure 

consistent with expectations regarding the likely distribution of resistivity within the 

subsurface, whilst providing a set of theoretical measurements that fit the measured data 

to some pre-described acceptable level (e.g., Loke et al., 2003; Gunther et al., 2006). The 

smoothness constraint inversion is utilized to produce smooth resistivity images that 

represent the minimal structure required to satisfy the data (respecting the noise level) 

when subsurface a priori information is absent. Smoothness regularization is commonly 

based on two minimization schemes commonly referred to as the L2 norm and the L1 

norm (Ellis and Oldenburg, 1994). The L2 norm emphasizes models with smoother 

variations of resistivity as it minimizes the squares of the differences between the 

measured and modeled transfer resistances and/or differences between the estimated 



78 

 

 

 

model and expected model structure. The L1 norm emphasizes models with sharper 

boundaries between regions of different resistivity, since it minimizes the absolute 

differences between measured and modeled resistivity values (and/or differences between 

the estimated model and expected model structure) (Loke et al., 2003). The L1 norm is 

therefore conceptually more appropriate for imaging sharp resistive targets than the L2 

norm, although it suffers from being more sensitive to data noise (Hordt et al., 2007).  

 

The resistivity inversion is an underdetermined problem since the number of model 

parameters is much larger than the number of measurements. In addition, since many 

models can fit the measured data to the same accuracy level, regularization is a critical 

component in the inversion process to ensure finding a reasonable resistivity model. The 

smoothness constraint inversion is carried out by solving the following objective function 

(Claerbout and Muir, 1973): 

…(4.1) 

where Wd is the data weighting matrix, dmeas represents forward response for a specified 

model, dobs is the measured field data, β is the regularization parameter, W is the 

regularization matrix, m is a model at a given iteration, and mref is the reference model. 

The objective function in equation (4.1) has both data and model terms to ensure 

obtaining a reliable final model. The first term, data misfit, ensures that the forward 

response of the predicted model is consistent with the measured data. The data weighing 

matrix permits incorporation of the data noise in the inversion process. The second term 

forces the model to fit our expectations based on the a priori information contained in the 
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regularization matrix. The regularization matrix has the following form (Loke and Lane, 

2002): 

…(4.2), 

where α is the smoothing parameter, C is the roughness matrix, and Rm is the model 

weighting matrix. Starting from a homogeneous earth model, the Gauss-Newton 

approach is used to invert for the ‘best’ model that is close to our priori expectations and 

well fits the observed data.  The approach minimizes the objective function by estimating 

the model perturbation using the following equation (Pidlisecky et al., 2007): 

 

 
 
where J is the Jacobian matrix and �m is the model perturbation.     

 

The disconnect inversion is a modification of the traditional smoothness constraint to 

accommodate sharp boundaries whereby a ‘disconnect’ in the model space is defined 

along the boundary of an object (Slater and Binley, 2006). However, the method requires 

that the boundary of the target be known a priori. In the case of a known subsurface 

boundary, the disconnect inversion is be implemented by giving small weights within the 

weighting matrix at the position of the boundary and specifying a different regularization 

weight inside the boundary region (e.g., Loke and Lane, 2002; Bouchedda et al., 2012).  

The regularization matrix (equation 4.2) is then updated based on the information 
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contained in the weighing matrix, which results in models containing sharp gradients at 

the locations of a known boundary.  

 

4.2.2. Edge detection using Roberts’ Cross-gradient Operator 

Edge detector methods can be applied on resistivity images to locate the edges of 

different target anomalies. Locating an edge involves applying filter masks to compute 

the magnitude of the gradient at every pixel location within an image (Gonzalez and 

Woods, 1992). The masks employed in the Roberts’ cross-gradient operator (Robert, 

1963) and sample image are shown in Figure 4.1. Consider a 3 x 3 resistivity image 

having gray values with intensity “Zi” where i = 1 to 9. The first-order partial derivative 

at Z5 in the x and y directions can be estimated using equations (4.4 and 4.5), 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: An example image and masks used to compute the edges using Roberts’ 
operator (after Gonzalez and Woods, 1992). 
 

 

Sample grayscale image with intensity ‘Z’ 

Z1 Z2 Z3 

Z4 Z5 Z6 
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Y-direction 

0 -1 
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where K  is the Roberts’ filter masks shown in Figure 4.1. 

 

The magnitude of the gradient,  as well as the direction of an edge perpendicular to the 

direction of a gradient vector, are computed using equations (6 and 7) (Gonzalez and 

Woods, 1992).  

 

 

The Roberts’ cross-gradient Operator was selected among other popular edge detector 

methods such as Canny (Canny, 1986) and Sobel (Engel et al., 2006), since it provided 

more accurate edges when tested on different 3D resistivity images. Figure 4.2 shows a 

comparison between the performances of the three edge detector methods when applied 

on a resistivity image to locate the edges of two anomalies. The Canny method 

overestimated the edge locations and created additional unrealistic edges, whereas the 

Sobel method underestimated the edge locations. The Roberts’ method gives the closest 

approximation to the actual edges. 
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Figure 4.2: Results of applying the Canny, Sobel, and Roberts’ edge detectors on the (A) 
widely spaced cavity model, and (B) closely spaced cavity model. 

4.2.3. Description of the approach 

We propose a combined inversion strategy that does not require a priori information and 

involves both smoothness constraint and disconnect inversion coupled with digital image 

processing. The disconnect inversion is carried out using a priori information on the 

target locations obtained from the Roberts’ cross-gradient operator. The major element 

and advantage of our approach is that it iteratively improves the location of the 

disconnect boundary after each iteration, allowing for a better prediction of both 

resistivity and geometry of buried targets.  
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Figure 4.3: Flow chart showing (A) digital image processing steps and (B) the processing 
steps used in this study. 
 
 
The sequence of processing steps involved in our approach is described in Figure 4.3. 

During the inversion process, starting from a homogenous earth model, the smoothness 

constraint inversion is performed only on the first iteration of the non-linear iterative 

optimization algorithm, since it usually produces an initial resistivity model that is fairly 

consistent with the measured data The Roberts’ cross gradient operator is then applied on 

that model to predict the edges of any targets. A second image processing step is then 

applied on the resultant edge detector image to ensure that the predicted edge is fully 
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closed and to fill the boundary region. The result of the second step is a binary image 

with 1’s located at the anomaly region and 0’s everywhere else. The latter two steps help 

to identify the location of the edges and the entire anomaly regions as shown in Figure 

4.2a. Those locations are then used to update the model weighting and regularization 

matrices as described above. The inversion process then progresses using the disconnect 

inversion and the above steps are repeated until the solution converges. Figure 4.4 shows 

the iterative inversion results for the single cavity model using our approach. The 

resistivity and geometry of the cavity anomaly progressively improve after each iteration.  

 

4.3. Synthetic models 

We calculated the synthetic apparent resistivity datasets for a sediment filled single 

cavity, two widely spaced cavities (separation >> unit electrode spacing), two closely 

spaced cavities (separation < unit electrode spacing), and a field model scenario consists 

of a single cavity buried underneath a top resistive layer considered to be representative 

of site conditions in Egypt. The 3D forward modeling datasets were generated using the 

forward modeling and inversion code, RESINVM3D (Pidlisecky et al., 2007). The 

cavities were assigned a resistivity of either 500 or 1000 Ohm m, whereas the host 

medium was assigned a resistivity of 100 Ohm m in all scenarios. These were considered 

reasonable representative values based on known results from cavities at archaeological 

sites in Egpyt (e.g., Metwaly et al., 2005). We followed the simulation setup as described 

in Pidlisecky et al. (2007). In each case, ninety six electrodes were used to create the 

synthetic data; thirty eight of these electrodes act only as potential electrodes, whereas the 

remaining fifty eight electrodes act as both current and potential electrodes. The electrode  
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Figure 4.4: Example of the combined inversion results per iteration (A) first iteration 
using smoothness constraint inversion, (B) to (E) are the second to fifth iterations using 
disconnect inversion. 



86 

 

 

 

spacing is 1m and the simulations involve forty one independent current pairs. For each 

of these pairs, data are recoded using dipoles at the remaining ninety four electrodes, 

providing 3813 measurements for each model scenario. All synthetic datasets were 

contaminated with 3% Gaussian noise, representative of noise levels expected in typical 

field data. 

 

The first single cavity model involved a cavity buried at 1.3 m depth, having a width and 

breadth of 2.5 m and a length of 1.5 m and resistivity of 1000 Ohm m (Figure 4.5a). The 

second scenario involved two cavities having the same geometry (depth, breadth and 

length) as the single cavity and resistivity values of 500 and 1000 Ohm m. Two cases of 

this two cavity model were considered (a) a widely-spaced cavities spaced 4 m apart 

(edge to edge) i.e. greater than unit electrode spacing (Figure 4.6a); (b) a closely-spaced 

cavities model spaced 0.5 m apart (edge to edge) i.e. less than the unit electrode spacing 

(Figure 4.7a). In the last scenario (Fig. 4.8a), a single cavity was buried at 1.7 m depth, 

having a width and breadth of 4 m, length of 1.7 m and resistivity of 1000 Ohm m, 

overlain by a high resistivity (2000 Ohm m), 1.7 m thick layer. This model is more 

representative of expected field scenarios at archaeological sites in southern Egypt, where 

the hot weather conditions makes the near surface soil resistive (Elwaseif and Slater, 

2010). 
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Figure 4.5: Inversion results of the single cavity model (A) subsurface model (B) 
smoothness constraint inversion (C) combined smoothness and disconnect inversion 
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4.3.1. Smoothness constraint inversion  

The synthetic data were inverted using RESINVM3D (Pidlisecky et al., 2007). The 

regularization part of the code was modified to perform our iteratively updated 

disconnect inversion approach. We chose to invert all the data using the L1 norm 

approach, since cavities exhibit sharp contrasts within the host medium at distinct 

boundaries. In all cases a homogeneous medium based on the average apparent resistivity 

of the synthetic dataset was used as the starting model, and five iterations were 

performed. The results of applying the inversion on the single, widely spaced, closely 

spaced cavity, and field model are shown in Figures 4.5b, 4.6b, 4.7b and 4.8b, 

respectively. In all cases, the resistivity value of the recovered targets is underestimated. 

In addition, it is difficult to identify a clear outline of each target anomaly. The widely 

spaced cavities are clearly associated with individual anomalies in the resistivity images 

(Fig. 4.6b). However, the two closely spaced cavities appear as a single anomaly (Fig. 

4.7b), instead of two separate features, due to the small spacing between cavities (here 

less than the unit electrode spacing). Finally, the single cavity in the field model scenario 

(Fig. 4.8b) is not clearly recovered, due to the highly resistive overburden. 
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Figure 4.6: Inversion results of the widely spaced cavity model (A) subsurface model (B) 
smoothness constraint inversion (C) combined smoothness and disconnect inversion 
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4.3.2. Re-inverting datasets using our combined inversion approach 

The geometry and resistivity of different synthetic targets are difficult to predict from the 

smoothness constraint inversion results, since the method produces models characterized 

by a smooth distribution of resistivity over a wide range of values. Re-inverting the data 

with an additional constraint on the inferred location of cavity boundaries could lead to 

an improved estimate of resistivity structure within the host medium or within the target 

(Elwaseif and Slater, 2010). Figures 4.5c, 4.6c, 4.7c and 4.8c show the final inverted 

images of the single cavity, widely spaced double cavity, closely spaced double cavity, 

and the synthetic field model using the combined inversion approach described in Figure 

4.3. Our approach results in an improved recovery of both resistivity structure of the 

single cavity and widely spaced cavity models relative to that obtained from the 

smoothness constraint inversion. The edge detector method was unsuccessful in resolving 

two separate closely spaced anomalies (Figure 4.2) presumably because there was not 

sufficient grey level contrast within the single feature resolved by the inversion. 

However, the result for the closely spaced model clearly depicts the presence of two 

resistive features coincident with the cavities. Consistent with the true model, the cavity 

on the left is predicted as the more resistive. Finally, the resistivity of the single cavity 

and the top resistive layer of the field model scenario are better recovered using our 

approach (Fig. 4.8c). In addition, the combined inversion clearly shows the outline of the 

single cavity especially at higher depth. However, it shows the same inversion artifacts as 

in the smoothness constraint inversion results.   
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Figure 4.7: Inversion results of the closely spaced cavity model (A) subsurface model (B) 
smoothness constraint inversion (C) combined smoothness and disconnect inversion 
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Figure 8: Inversion results of the synthetic field data model (A) subsurface model (B) 
smoothness constraint inversion (C) combined smoothness and disconnect inversion. 
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Figure 4.9: RMS values of the normalized residuals for different models (A) single cavity 
(B) widely spaced cavity (C) closely spaced cavity (D) field model. 
 

To assess the performance of the smoothness constraint and our combined inversions in a 

more quantitative way, the values of data misfit curves are plotted at all five iteration 

steps for different model scenarios in Figure 4.9.  The misfits are low for all models. 

However, the RMS curve of the combined inversion in Figure 4.9b shows an oscillatory 

pattern, suggesting that the solution is trapped in a local minimum at iteration 3. Despite 

this disturbance, the average data misfits for all iterations are about 6% lower in the case 

of the combined inversion. 

 

4.4. Discussion  

The commonly applied smoothness constraint inversion is not ideal for imaging buried 

targets with sharp resistivity edges, since it generates models characterized by a smooth 
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distribution of resistivities over a wide range of values.  For example, based on the 

synthetic studies, the single cavity and the closely spaced cavities models show similar 

smooth inversion results and both images would likely be interpreted as evidence of a 

single buried cavity. Using a disconnect boundary in the inversion can improve imaging 

the geometry and resistivity of such targets. As shown in Figure 6b, although the closely 

spaced targets are not individually resolved, the resistivity of these targets is close to the 

actual resistivity values (i.e., 500 and 100 Ohm m).  

 

We have shown here that such disconnect boundary can be estimated without a priori 

information using the Roberts’ cross-gradient operator. In addition, unlike traditional 

disconnect inversion that has a fixed location of the known boundary, our approach 

optimizes the location of the boundary after each iteration. Such updates will refine the 

estimate of the anomaly edges and results in improved target location.  

 

 We have described a 3D inversion approach whereby the smoothness constraint 

inversion is used only at the first iteration to recover a resistivity model that is fairly 

consistent with the measured data, from which an initial target location is determined 

using an edge detector method and from which the disconnect inversion is able to 

optimize.   

 

The performance of our approach depends significantly on the accuracy of the edge 

detector step. We assume that the boundaries of cavities predicted using the Robert’s 

cross-gradient operator are consistent with the edges of resistivity models characterized 
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by sharp boundaries for which we only have a smooth resistivity model. However, the 

success of the edge detector method to predict accurate target boundaries depends on the 

success of the initial smoothness constraint inversion step in defining the general location 

of investigated targets. That said, the final model obtained from our inversion strategy is 

sensitive to the definition of the boundary extracted from the Roberts’ cross-gradient 

operator. However, even when the Roberts’ cross-gradient operator method cannot 

accurately reproduce the target dimensions, we find that our approach can still improve 

the interpretation of the subsurface model structure. For example, although the Roberts’ 

cross-gradient operator was not able to identify a boundary between the closely spaced 

cavity model because of the low gray level contrast between the two anomalies (see 

Figure 2b), the recovered resistivity values of the two cavities are close to the actual 

resistivity values. 

 

Results from the synthetic studies suggest that our approach has potential for 

reconstructing the geometry and resistivity of discrete targets in field datasets. One 

advantage of our approach is that it does not require a priori information and the entire 

processing steps are done automatically within the inversion routine without any 

interference from the user. However, the approach might suffer from distinct limitations 

when applied to field data as the effect of inversion artifacts on the final model result is 

currently unclear. Given that the field studies are far more complex than the synthetic 

studies presented here, the inversion might contain unrealistic anomalies and both the 

edge detector and disconnect inversion would deal with those artifacts as real anomalies. 

For example, given the inversion results of the synthetic field model scenario (Fig. 8), it 
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is clear that our combined inversion approach recovers the resistivity and geometry of the 

single cavity better than the smoothness constraint inversion. However, the approach 

magnifies the artifacts in the smoothness constraint model. Therefore, it will be necessary 

to avoid inversion artifacts by correctly  quantifying noise levels in the data and starting 

with a homogenous model that represents the best guess of the in situ resistivity. In the 

case of no priori information about the background resistivity, it is appropriate to use the 

average value of the measured apparent resistivities as a starting model.  

 

4.5. Conclusions 

Application of the smoothness constraint inversion coupled with an interatively updated 

inversion disconnect and digital image processing, appears to be a viable approach for 

determining the resistivity and location of discrete targets in resistivity datasets. We have 

shown that the predicted boundaries and resistivity of the targets using our combined 

inversion approach are significantly improved when compared with results from the 

smoothness constraint inversion. Using this approach the geometry and resistivity of 

multiple targets, even when separated by a distance less than the unit electrode spacing, 

are fairly well recovered. The approach appears promising for predicting archaeological 

artifacts in Egypt where the field model scenario presented here confirmed the 

effectiveness of our approach. In addition to archaeological artifacts, the approach will 

also be appropriate for predicting the location of engineering structures and voids in karst 

environments. 

 

 



97 

 

 

 

Chapter 5: Conclusions 

 

5.1. Summary and conclusions 

The main objective of this research was to develop a resistivity inversion strategy that: 

[1] does not require priori information, and [ii] is more appropriate for recovering the 

geometry and resistivity of isolated and closely spaced targets particularly those expected 

at archaeological sites in Egypt. I have developed three resistivity inversion approaches 

that were applied on field data collected at an archaeological site in Egypt and/or 

synthetic data representative of expected features at archaeological sites in Egypt. The 

common idea of the three approaches is centered on applying edge detector techniques on 

smooth resistivity models explicitly or implicitly during the resistivity inverse 

procedures. The first approach involves applying a watershed algorithm on 2D smooth 

resistivity images to predict target boundaries that can subsequently be used to define 

disconnects in the inversion, whereas the second approach uses the predicted boundaries 

from the watershed algorithm along with the L1 norm recovered host medium resistivity 

and target’s central resistivity as an input to a trained ANN.  The final approach is a 3D 

iterative inversion strategy that combines smoothness constraint inversion that is used 

only at the first iteration to recover a resistivity model that is fairly consistent with the 

measured data, from which an initial target location is estimated using Roberts cross-

gradient operator and from which a disconnect in the inversion is identified and updated 

until the solution converges. Generally, the three approaches improve the resistivity 

imaging of investigated targets better than the smoothness constraint inversion. The first 

approach is effective only at predicting the geometry of isolated resistive targets. 
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Although the second approach is effective in estimating the geometry and resistivity of 

isolated and closely spaced resistive targets, the output of the ANN depends largely on 

the initial L1 inversion step and the accuracy of the watershed predicted geometry. The 

third approach, in contrast, gives the optimum results over other approaches in terms of 

speed, and confidence levels of retrieval. 

 

5.2. Technical contributions 

The dissertation presents three novel strategies for offsetting the pitfalls that result from 

applying the smoothness-based regularization approach for reconstruction of the 

geometries and resistivities of subsurface resistivity targets at archaeological sites in 

Egypt. The first two approaches can be applied to inverted resistivity images directly, 

without needing raw data, to extract quantitative information on target dimensions not 

ascertainable from the inverted images. Furthermore, the boundaries can subsequently be 

used as input to a trained ANN in order to estimate an updated model of the resistivity 

structure of the targets. The third iterative disconnect procedure approach can be applied 

as well to determine the resistivity and location of conductive discrete targets in 

resistivity datasets. In addition, the three approaches will also be appropriate for 

predicting the location of engineering structures and voids in karst environments. 

 

5.3. Recommendations for future work 

The watershed algorithm appears to be an effective approach at predicting targets 

geometries from the smooth resistivity images examined in this research. However, 

further work is needed to examine the performance of the watershed algorithm under 
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more complex model scenarios (e.g., models that contain targets having different 

geometries, varied resistivity values and buried in heterogeneous host medium). 

Furthermore, more work is needed to better understand the effects of using different 

inversion algorithms on the watershed results and also to find ways to enhance the 

geometry prediction of the watershed algorithm when applied to noisy data sets. 

 

The application of the ANN approach on more field data collected at different 

archaeological sites in Egypt is needed to refine the approach, for example, by increasing 

the learning capacity of the ANN by training it using real field data. 

 

Although the iterative disconnect approach has been proven effective in synthetic studies, 

application of the method on field data is essential to examine the performance of the 

approach. Furthermore, finding alternative edge detector methods more appropriate in 

predicting edges in 3D smooth images and more efficient in predicting closely spaced 

targets might significantly improve the performance of the approach. In addition to 

examine it on field archaeological data, the approach can be adapted to invert 

hydrogephysical resistivity data, particularly when there is a sharp change in resistivity 

between subsurface layers.    
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Appendix I: Applying the watershed algorithm and disconnect inversion on 

resistivity images 

 

 

[1] Required codes:  

 

[a] A 2D resistivity forward modeling and inversion code such as Resd2inv and R2 (free 

for academic use). 

 

[b] A digital image processing code with the watershed algorithm included such as 

ImageJ or Matlab with image processing toolbox included. 

 

[2] Step by step instructions on applying the watershed algorithm on resistivity 

images: 

 

[a] Plotting the inverted resistivity model without scaling the model resistivity values. 

 

 

Inverted resistivity image 
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[b] Converting the resistivity image to a grey scale image. 

 

 

Grey scale resistivity image 

 

[c] Applying the Gaussian blur and mean filters to the Grey scale image. 

 

 

Filtered resistivity image using Gaussian blur filter 

 

 

Filtered resistivity image using mean filter 
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[d] Applying the watershed algorithm on the filtered image. 

 

 

Results of applying the watershed algorithm on the filtered image 

 

 

Note: the Gaussian blur and mean filters are necessary to prevent over segmentation as 

shown in the figure below. 

 

Results of applying the watershed algorithm on the unfiltered image 

 

 

[3] Inverting the data using the disconnect inversion approach 

 

Most commercially (or academically) available resistivity inversion codes such as 

Res2dinv allows for the direct incorporation of known boundaries in the inversion 

process.  Following the application of watershed algorithm, the x and z locations of the 

predicted boundaries are used as priori information in the disconnect inversion approach.  
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Appendix II: Applying the watershed algorithm coupled with the L1 norm and 

Artificial Neural Networks (ANN). 

 

[1] Required codes:  

 

[a] 2D resistivity forward modeling and inversion code.  

 

[b] A digital image processing code with the watershed algorithm included. 

 

[c] ANN software such as Neurosolutions and Matlab (with Neural Networks toolbox 

included). 

 

[2] Instructions for training the ANN: 

 

[a] Creating resistivity synthetic data that represent a wide range of possible expected 

targets at field sites, and contaminating that data with noise levels similar to those 

expected when collecting the real data.  

 

[b] Inverting the data using the L1 norm approach by assuming correct, underestimate 

and overestimate noise levels. 

 

[c] Applying the watershed algorithm on the inverted models and extracting the input 

parameters for the ANN as shown in the figure below (i.e., host medium resistivity and 

central resistivity value of each target anomaly, and depth, width, and height of each 

target anomaly). 

 

[d] Training the ANN by using as an input the extracted parameters from the L1 norm 

and watershed algorithm, and using as an output the actual parameters of the synthetic 

targets.  
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[3] Notes: 

 

[a] The performance of the ANN will significantly improved if the ANN is trained using 

field data in addition to synthetic data. 

 

[b] The ANN could be trained to recover targets that have irregular geometries by 

increasing the number of inputs for each parameter. For example, the depth of a target 

could be defined using three values instead of one; one value at each end of the target 

surface and one value at the center.   

 

 

Extracting the input parameters for the ANN. Note that the host medium resistivity value 

should be defined using the resistivity value of the same color contour for all models, and 

the target’s width (w), depth (d), and height (h) are extracted at the middle of the 

watershed boundary. 
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Apendix III: Iterative disconnect inversion 

 

[1] Required codes: 

 

Open source 3D resistivity inversion code such as RESINVM3D. 

  

[2] Instructions for the approach: 

 

The resistivity code should be modified such that the edge detector method is applied on 

the smoothness constraint resistivity model that obtained from the first iteration. The 

model weighting matrix is then updated by defining small weighting values at the 

locations of the predicted boundaries. The later step will initiate the disconnect inversion 

procedure, which will continue until the solution converges. 
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Appendix IV: Geophysical and Hydrological Investigations at the West Bank of Nile 

River (Luxor, Egypt) 1 

 

Abstract 

Luxor, the modern Egyptian city that occupies the site of ancient Thebes, is famed for its 

magnificent ancient monuments. Since 1967 the Aswan high dam has prevented the 

annual flooding of the Nile River, resulting in excessive salt accumulation on the Nile 

floodplains and on exposed monument surfaces. In addition, the expansion of agricultural 

land within the Luxor study area has resulted in increased salinity and groundwater level. 

These conditions accelerate the degradation of buried and exposed monuments that were 

fairly well preserved in the past. To mitigate this problem, it is necessary to first 

understand the near-surface setting and the groundwater conditions of the Luxor area. A 

geophysical investigation was carried out using resistivity and electromagnetic surveys. 

Additionally, a chemical analysis was conducted of some surface water samples collected 

from canals and the sacred lake of Memnon Temple.  Based on the results of the 

geophysical surveys and the chemical analysis of the water samples, the shallow 

subsurface was characterized into  four geoelecterical units. Groundwater flow directions 

were determined to be from the central area to the west, causing a rise in the groundwater 

levels and groundwater salinity in the area of monuments.  

 

 
 
 
1This paper has published as: Elwaseif, M., Abdalla, M., Abdel-Rahman, M., and Ismail, A., 
2012, Geophysical and Hydrological Investigations at the West Bank of Nile River (Luxor, 
Egypt), Environmental Earth Sciences Journal, doi: 10.1007/s12665-012-1525-2 
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Introduction 

Luxor, Egypt, occupies the site ancient Thebes, which was known for its buildings and 

many large gates. The west bank of Luxor (Figure 1) contains more than thirty known 

limestone temples, most of them built by the rulers of the New Kingdom (1549-1069 

BC). Both buried and exposed archaeological features are affected by the high level of 

saline groundwater at the west bank of Luxor area since the construction of Aswan high 

dam and the resultant expansion of agricultural lands around the temples’ area. Saline 

groundwater is transported into the monuments’ foundations through underlying soil by 

means of capillary rise. When those saline waters evaporate, residual salts accumulate on 

the surface and within the pore spaces of the foundations. The pressure developed during 

crystallization and hydration of the residual salts exfoliates the outer layers of the 

foundations’ stone, increasing their susceptibility to erosion by wind and other physical 

processes (Rodriguez-Navarro and Doehne 1999). Figure 2 shows an example of the 

monuments’ degradation at Habu Temple in the west bank of Luxor. 
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Figure 1: Location map of a- Egypt, and b- Luxor study area including the locations of 
collected water samples, VES and TEM data. 
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Geophysical methods have been widely applied to groundwater exploration (e.g., 

Asfahani 2007; Ismail 2003; Albouy et al. 2001). Asfahani (2007) employed vertical 

electrical sounding (VES) at the Khanasser Valley (Syria) and successfully identified the 

nature and geometry of a deep aquifer. Ismail (2003) conducted a study to mitigate the 

degradation of monuments on the east bank of Luxor, employingVES and seismic 

surveys to characterize the hydrostratigraphy of the shallow subsurface. Albouy et al. 

(2001) examined the merits of using VES and transient electromagnetic (TEM) methods 

for coastal groundwater exploration north of Biarritz and at two selected sites at the 

flanks of le Piton de la Fournaise, France. Those scientists showed that joint inversion of 

VES and TEM data is an efficient tool to resolve the ambiguity of each measurement 

method alone, especially in the absence of supportive geological information such as well 

log data.  

 

 

 

 

 

 

 

 

Figure 2: Effects of shallow saline groundwater on the Habu temple (note the severe 
cracks and salt accumulations) 
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The TEM method is an electromagnetic induction technique by which the response of the 

earth to an electromagnetic impulse is measured in the time domain. The VES method 

uses direct current to measure the resistance of the subsurface using grounded steel 

electrodes. Although electrical resistivity and electromagnetic techniques measure the 

same physical property, soil resistivity, the techniques are sensitive to different 

characteristics (Gomez-Trevino and Edwards 1983; Raiche et al. 1985). Well-resolved 

electrical resistivity data obtained using the VES method are the product of layer 

resistivity and layer thickness (Fitterman et al. 1988). Such data do not provide good 

independent estimates of layer resistivity and layer thickness. In contrast, electromagnetic 

methods are good for establishing the thicknesses of layers but not their resistivity values 

(Fitterman et al. 1988). The combined inversion of TEM and VES data constrains the 

resistivity-depth geophysical model and reduces ambiguities in the interpretation of the 

measurements (Sasaki 1989; Sandberg 1993; Albouy et al. 2001). 

 

In this study, a large-scale geophysical survey was conducted and chemical analysis 

performed of surface water samples at the west bank of the Nile River (west Luxor area) 

to characterize the near subsurface hydrogeologic setting and to identify the sources 

responsible for increasing the salinity of groundwater. The geophysical survey is in the 

form of integrated TEM and VES measurements. The groundwater analysis included 

chemical analysis of six surface samples collected from areas adjacent to the degraded 

monuments. The results of this study will be critical to developing conservation plans for 

the existing archaeological structures. 
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2. Study area 

The study area, located on the alluvial plains of the Nile Valley and surrounded by 

elevated structural plateaus capped by Eocene limestone, is underlain by Paleocene shale 

(Figure 3). The alluvial plains generally exhibit flat surfaces that gently slope northward. 

The average ground surface elevation is about 75.5 m above mean sea level, but rises to 

about 79 m at the fringes of the Nile Valley. These alluvial plains can be differentiated 

into (1) a densely cultivated younger plain occupying the central part of the Nile Valley 

and covered by Holocene silt and clay, and (2) an older reclaimed plain covered by 

Pleistocene sand and gravel (El Hossary 1994; Research Institute of Groundwater 1997). 

 

Figure 3: Geologic map of Luxor area (El Hosary, 1994) 
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The near-surface Pliocene-Holocene sediments in the central part of the Nile Valley rest 

uncomformably on a succession of Late Cretaceous-Early Eocene marine sediments. The 

Pliocene-Holocene sediments have been subdivided into different lithological units, each 

of which was deposited by an identified ancestral-modern river system (Ismail 2003), 

including the Eonile, Paleonile, Protonile, Prenile, and Neonile.  

 

Two main aquifer systems are distinguished within the Pliocene-Pleistocene in the Luxor 

study area: the shallow Quaternary aquifer and the underlying Pliocene-Pleistocene 

aquifer. The Quaternary aquifer is composed mainly of graded sand and gravel and 

locally thickness ranges from 5 to 95 m and salinity is about 2.6 mg/L. The underlying 

Pliocene-Pleistocene aquifer, composed of sand and clay, is the secondary aquifer in the 

study area and has an average salinity value of 700 mg/L (Ismail 2003). 

 

4. Geophysical Data Acquisition and Processing 

Eighteen VESs were acquired using the Syscal R2 instrument (Figure 1). The 

Schlumberger electrode configuration was employed, and the maximum current electrode 

spacing (AB/2) varied from 300 to 400 m. The VESs were spaced at 0.5-km to 1-km 

intervals. The measurements were taken in the east-westdirection, perpendicular to the 

Nile Valley. The measured apparent resistivities from each VES were plotted 

simultaneously against AB/2 values on log-log paper in the field for quality control of the 

data. 
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A suite of 23 TEM soundings were measured using the SEROTEM system close to the 

locations of the resistivity measurements. A simple coincident loop configuration was 

employed; in this configuration, the same loop transmits and receives signals. The loop 

side length was 50 m. During data aquisition, measurements were repeated several times 

to ensure a high signal-to-noise ratio.  

 

Due to the lack of boreholes at the study site and in order to roughly control the VES 

interpretation, the present study used the lithoresistivity model of Ismail (2003), based on 

two boreholes located about 200 m away from the acquired VESs at the east bank of 

Luxor. In that model, four litho-resistivity units were characterized: (1) an upper unit of 

dry silty clay with relatively high resistivity (~20 ohm-m), (2) a lower unit with 

significantly low resistivity (~4 ohm-m) assigned to the moist silty clay, (3) a thick unit 

(> 20 ohm-m) with high resistivity assigned to the main Quaternary aquifer layer, and  (4) 

a low resistivity layer (< 4 ohm-m) assigned to a secondary aquifer layer (Figure  4a and 

b).      

 

The resistivity data were first inverted in terms of one-dimensional (1-D) resistivity-depth 

models using software described by Zohdy (1989) and Meju (1991). The output models 

were used as initial models for inverting the nearby TEM data using TEMIXXL (1996) 

software. The resultant TEMIXXL models were used again as initial models for inverting 

the resistivity data in RESIST (1988) software. The misfit errors between the measured 

and calculated models for the whole data set range from 2.8 and 7.3% (Figure 4c and d). 

This iterative method was continued until reliable resistivity-depth models were obtained 
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that seemed to be consistent with the subsurface geologic setting. The final models were 

interpolated to generate 2-D resistivity cross sections parallel and perpendicular to the 

Nile River.  

 

Figure 4: Calibration of the measured apparent resistivity with the corresponding 
lithologic units at two boreholes (a and b), c and d are the processing results of two VESs 
(after Ismail, 2003) 
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5. VES and TEM results 

Based on the joint inversion of resistivity and electromagnetic data, two geoelectrical 

resistivity cross sections were generated, one parallel to the Nile River, and the other 

perpendicular to the Nile (Figures 5 and 6). The geoelectrical resistivity cross sections 

exhibit four geoelectrical units.  No significant lateral resistivity variation was found 

within individual units: 

1- The first (upper) geoelectrical unit consists of (1) a relatively dry silty clay 

agricultural soil less than 4 m thick with resistivity values ranging from 5 

to 28 ohm-m, and (2) dry silty clay and gravel soil, having a resistivity 

value of 50 ohm-m and a thickness of 2 m.  

 

 

 

 

 

 

 

 

 

Figure 5: Geoelectrical cross-section extending parallel to the River Nile 
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2- The second geoelectrical unit consists of sand, silt, and gravel of the main 

Quaternary aquifer. The average resistivity value is 20 ohm-m, 

andthickness  is about 48 m. The thickness of the aquifer layer decreases 

significantly toward the west plateau. 

3- The third geoelectrical unit is characterized by low resistivity value (< 5 

ohm-m) and thickness ranging from about 4 m near the Nile River to about 

48 m near the western plateau. This unit represents the secondary aquifer 

in the study area (Pliocene-Pleistocene aquifer). The significant resistivity 

contrast between the Quaternary aquifer and the underlying Pliocene-

Pleistocene aquifer is attributed to the higher salinity (700 mg/L vs. 2.6 

mg/L) and clay content of the sediments within the Plio-Pleistocene 

aquifer (Ismail 2003). 

4- The fourth geoelectrical unit is characterized by a resistivity value of 

about 10 ohm-m. This unit appears only at the base of the plateau area at a 

depth of 2 m to 5 m. This unit represents the Paleocene shale layer. Its low 

resistivity is due to lateral seepage of groundwater from the adjacent 

Pliocene-Pleistocene aquifer. A normal fault separates the third and fourth 

units, and this fault was traced on the resistivity section of Figure 11. The 

location and orientation of this fault seem to be consistent with the major 

fault forming the Nile Valley in this area (El Hosary 1994).  
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Figure 6: Geoelectrical cross-section extending perpendicular to the River 
Nile 

 

The inverted resistivity, or “true” resistivity, of each of the specified geoelectric 

units was mapped to better demonstrate the lateral resistivity variation with depth 

and its possible impact on the degradation of the area’s monuments.  
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Figure 7: Spatial resistivity distributions at 1 m depth 

 

Resistivity distribution at 1 m depth: The first unit represents the dry silty clay topsoil. 

The resistivity values of this unit vary from 5 to 75 ohm-m (Figure 7). Although surface 

conditions, such as farming and urbanization, affect resistivity distribution, the values 

still provide a good indication of the moisture and/or salinity distribution within the 

topsoil, which is in direct contact with the archaeological features. The high-resistivity 

values of 25 to 75 ohm-m are observed near the urban areas (parallel to the Nile River) 

and near the limestone plateau. The low resistivity values of less than 24 ohm-m are 

found for the central cultivated areas in the study site. These low values are a direct result 



126 

 

 

 

of increased moisture content due to irrigation and increased salinity caused by excessive 

evaporation and use of fertilizers. 
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Figure 8: Spatial resistivity distributions at 4 m depth 

 

Resistivity distribution at a depth of 4 m: This unit has resistivity values range from 3 

and 29 ohm-m and is characterized by three main resistivity zones (A, B and C), which 

correspond to the second, third, and fourth geoelectrical units, respectively (Figure 8). 

Resistivity values range from 10 to 29 ohm-m for Zone A, which represents the saturated 

sand and silt sediments of the Quaternary aquifer. The water within this aquifer seems to 

be fresh and originating from the Nile and irrigation canals (e.g., Asfon canal) in the 
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study area .  The resistivity value is low  (5 ohm-m) for Zone B, which representsthe 

Pliocene-Pleistocene aquifer in the study area. Zone C, representing the Paleocene shale, 

has resistivity values ranging from 8 to 16 ohm-m, probably because of its high moisture 

content and/or salt. 
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Figure 9: Spatial resistivity distributions at 48 m depth 

Resistivity distribution at 48 m depth: This unit has low resistivity values ranging from 

1 to 7.5 ohm-m. Although the range is narrow, Zones B and C are obvious, as shown in 

Figure 9. Zone B resistivity values range between 2.5 and 7.5 ohm-m. This zone is 

probably an extension of the Pliocene-Pleistocene aquifer that consists of sand with 
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clayey sediments. Zone C, which corresponds to the moist Paleocene shale layer, exhibits 

a very low resistivity value of 2 ohm-m.      

To better visualize the surface and subsurface at the study site, we constructed a 

composite model that shows the spatial resistivity distribution of subsurface geoelectrical 

units, the surface location of temples, cultivated areas, and the Nile River. As shown in 

Figure 10, the Nile River does not contribute  to the groundwater recharge in the study 

area, since the resistivity values of different strata increase toward the east (i.e., toward 

the Nile), which is consistent with the conclusion of Ismail (2003). The groundwater flow 

seems to flow from west to east, and, in the surface layer, from the cultivated areas 

outward.  

 

 

 

 

 

 

 

 

Figure 10: Composite model of Luxor study area 
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6. Chemical analysis of the water samples 

Results of the chemical analysis of water samples can be integrated with the geophysical 

interpretation to yield valuable information on the causes of increasing salinity and 

groundwater level at Luxor study area. Six surface water samples were collected from the 

study area from the Nile River, the canals, and the sacred lake of Memnon Temple. The 

results of the chemical analyses are presented in Table 1.  The sources of different ions in 

the examined water could be grouped as follow: 

 

Table 1: Results of geochemical analysis of water samples (Figure 5 shows the location 
of these samples) 
 

 

 

 

 

 

 

 

 

6.1. Cultivated lands  

Sodium (Na+1), an essential constituent used in fertilizers (e.g., Phillips et al. 2001), was 

195 ppm in water sampled at Memnon Temple compared with  36 ppm  from the River 

Nile. The high sodium concentration observed at the temple is evidence that the water 

inside the monument migrated from the nearby cultivated lands.  

Sample 

No. 
pH T.D.S 

Anions (ppm) Cations (ppm) 

EC 
CO3

-2 
HCO3

-1
 Cl

-1
 SO4

-2
 Na

+1
 K

+1
 Ca

+2
 Mg

+2
 

1 8.3 217.6  122 28 28 36 1.17 16.5 12 340 

2 8.2 211.2  134 22 23 41 1.17 14 9.5 330 

3 8.2 211.2  122 25 28 38 1.17 12 12 330 

4 8.2 217.6  134 24.5 24 38 1.6 14 12 340 

5 8.3 204.8  134 21 19 41 1.17 10 11 320 

Temple 8.3 716.8 30 354 190 96 195 3.5 22 18       1120 
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Potassium (K+1) is an essential plant nutrient (e.g., Mengel and Kirby 1980). Potassium is 

highest (3.5 ppm) in the water sample taken from Memnon Temple, again supporting the 

interpretation that this water migrated from the surrounding cultivated areas. 

Sulfate (SO4
-2) is derived from gypsum, acid rains, and fertilizers (Garg 1978). The 

highest concentration (96 ppm) of sulfate is observed at Menmon Temple, indicating that 

its water probably comes from nearby cultivated areas. 

 

Chloride (Cl-1) is mostly presented either as salt crystals or in solution (Na+1 and Cl-1 

ions) (Hem 1970). The concentration of chloride ranges from 21 ppm at the eastern side 

of the study area to 190 ppm at Memnon Temple. The high concentration of chloride at 

the temple is related to the successive accumulations of water inside the temple that 

probably migrated from cultivated areas.   

 

6.2. Weathering of monuments/temples  

Calcium (Ca2+) and magnesium (Mg+2) are the principal minerals forming carbonate 

rocks such as limestone (CaCO3) and dolomite (CaMg [CO3]2). The highest calcium (22 

ppm) and magnesium concentrations (18 ppm) were observed at Memnon Temple, 

probably due to the dissolution of carbonate rocks forming its stone foundations.  
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Bicarbonates (HCO3
-1) are formed when carbon dioxide is dissolved or derived from 

limestone (e.g., Rogers et al. 1985). The bicarbonate concentration of water sampled 

from  the Nile River is 122 ppm;  from the irrigation channels,  134 ppm; and at Memnon 

Temple, 354 ppm. The high concentration of bicarbonate at Menmon Temple is because 

of the dissolution of the limestone of its stone foundations. 

 

6.3. Natural sources 

The pH value of water is a measure of the concentration of hydrogen ions (H+). The pH 

values of the water samples from the study area vary between 8.2 and 8.3, indicating 

alkalinity and the dissolution of calcium and magnesium ions in the water samples (e.g., 

Psenner 1988). Electrical conductivity of surface waters increases from east (320 micro 

S/cm) to west at Menmon Temple (1120 micro S/cm). Water with high electrical 

conductivity contains sodium and magnesium cations as well as calcium, chloride, and 

bicarbonate anions (e.g., Freund et al. 1993). As expected, total dissolved solids (TDS) 

was highest (716.8 mg/l) in the water sample collected from the sacred lake of Memnon 

Temple and lowest (204.8 mg/l) in the water samples from canals in the eastern side of 

the study area. The high TDS value from the Memnon Temple is due to the evaporation 

of the water in the temple’s sacred lake.  

 

7. Discussion and conclusions 

The joint inversion of VES and TEM data and the results of chemical analyses of water 

samples were successfully integrated to generate a suite of geoelectric resistivity cross 

sections and subsurface maps. The main disadvantage of the employed techniques is the 
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limited spatial subsurface coverage and the uncertainty when generating the 2-D cross 

sections. Obviously, 2-D/3-D techniques (e.g., resistivity and ground-penetrating radar) 

would produce more subsurface coverage and more accurate models.  Those techniques, 

however, are probably not the best choice at this site given the large survey area, time 

constraints, and, most importantly, because the goal of this present study is not the 

detailed  hydrogeology of the field site. Furthermore, the methods employed in the 

present study are  inexpensive, data acquisition is quick, and achievable penetration depth 

can be very deep (depending on AB/2 spacing and the loop size of the TEM survey).   

 

Study results indicate that the shallow subsurface in the Luxor study area is divided into 

four distinct geologic/hydrologic units. Such characterization represents the foundation of 

any plan to lower the groundwater level and decrease the salinity of capillary soil 

moisture in the area of the Luxor monuments. Shallow groundwater flow paths were 

expected to have originated from the recently cultivated areas west of Luxor and to flow 

toward the River Nile. The elevated groundwater in the area of the temples appears 

attributable to flood irrigation of recently reclaimed lands lying on the alluvial/floodplain 

transition. The progressive increase in salinity along the groundwater flow path is 

reflected in the recent deposition of precipitated salts observed at Habu Temple (Figure 

2). Based on our interpretation of the acquired data and the field observations, the salt 

accumulation on the foundations of the monuments appears to be ascribable to salt 

transport by capillary water from the relatively high salinity groundwater or from connate 

water in the silty clay unit. 
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As a final comment on the study area, recommendations are to  avoid cultivation of crops 

that require much water and to regulate the use of agricultural chemicals in areas of thin 

silty clay soil. Further recommendations are to conduct high-resolution geophysical 

surveys (e.g. 3-D electrical resistivity) and detailed chemical analysis of the water 

proximal to the Luxor monuments. These suggestions might reduce the groundwater 

discharge at the temple areas and reduce its effects on the stone foundations. 
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