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Estimating the geometry and resistivity of archgalal structures using resistivity
models produced as a result of applying smoothmesstraints in most inversion
algorithms is difficult, especially when structurase closely spaced. However, such
guantification is important to facilitate consefeat and to minimize the potential of
damage when excavations are undertaken. Alterndtiversion approaches more
appropriate for imaging such targets require eithepriori information about the
subsurface (e.g. disconnected inversion) or reqwoeor more geophysical datasets to
be collected at the same site (e.g. joint invejsiofhe research outlined in this
dissertation presents three novel approaches tooimapresistivity imaging of discrete
targets without the need to incorporate a prioforimation in the inversion. The first
approach combines an initial 2D smoothness constiaversion coupled with a digital
image processing technique known as a watershedtalgs and a second inversion step
incorporating a disconnect in the regularizatiosdoshon the output of the watershed
algorithm. This approach has improved estimaténefgeometries of individual targets,
but it was not very effective at predicting theisgsity of the targets or resolving closely

spaced targets. The second approach combines @al 2D smoothness constraint



inversion coupled with the watershed algorithm anained Artificial Neural Network
(ANN). Although this approach has been proven ¢ffecfor resolving widely and
closely spaced archeological targets, the res@pend largely on the quality of ANN
training and on the accuracy of the watershed dlgorgeometry prediction. Finally, the
third strategy is an iterative approach that corbian initial 3D smoothness constraint
inversion that is used only at the first iterattorrecover a resistivity model that is fairly
consistent with the measured data, from which @raiarget location is estimated using
an edge detector method and from which a disconndbie inversion is identified. The
disconnect defining the target outline is then pesgively improved following each
iteration of the inverse procedure. This approaak heen proven more effective for
resolving widely and closely spaced archeologiaeddts over other approaches, but it is

partially sensitive to artifacts in the initial sotbness constraint model.
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Chapter 1: Introduction

1.1. Overview

Resistivity imaging is a popular geophysical metHoeljuently used to predict the
location of subsurface structures and objects lgp@andetectable electrical resistivity
contrast relative to the host medium. The methaduginely used to probe the shallow
subsurface, common applications including mappingear surface geology (Gokturkler
et al., 2008; Chambers et al., 2006; Gibert et28l06), characterization of contaminated
sites (Frohlich et al.,, 2008; Casas et al., 200ayp®s et al., 2007), delineation of
engineered structures (Marescot et al., 2008; Keatral., 2004), location of cavities
(Leucci, 2006; EI-Qady et al.,, 2005; Weinstein-Evret al., 2003) and mapping of
archeological features (Leucci et al.,, 2007; Urbatial.,, 2007). The ability of the
resistivity method to locate isolated features éargdepends on the employed array
configuration, unit electrode spacing, and the useekrsion approach. The array
configurations have different spatial resolutiomsl anoise sensitivities (function of the
position and the spacing between electrical ane@rntia dipoles). The unit electrode
spacing controls the depth of investigation andsatfiace data coverage. The smoothness
constrained regularization is widely used in invgrtresistivity data, since the method
does not requirgriori subsurface information and produces models thathaghly
consistent with the measured data (e.g. Loke andlilda2003). Smoothness
regularization is typically applied using either ath inversion (L2 norm) or robust
inversion (L1 norm) (Loke, 2004). Regularizatioringsa smoothness constraint results

in models that contain minimal structure relative dSome starting model (usually a



homogeneous medium) subject to fitting the measwu&@d to a predefined level of
accuracy (Loke and Barker, 1996b). This reguléiopaconstraint is inappropriate for
imaging targets characterized by sharp changesistiaty relative to host medium (e.g.,
sinkholes, cavities, bedrock, etc.). Other inv@rsstrategies more appropriate for
defining sharp resistive targets such as disconoegbint inversion can be utilized.
However, time constraints in the field and lackagéilable subsurface priori information
make these approaches difficult to apply for mamdfsites. More research is thus
needed to develope a new resistivity inversiontena that does not require a priori
information, and is more appropriate for imagingyéds with high resistivity contrasts.
Such an inversion strategy would be appropriate gowide range of applications
particularly studies related to archaeological dggsjcs and engineering geophysics (e.g.

locating sinkholes).

This dissertation presents three different inverstrategies to modify the smoothness
constraint inversion in order to improve the geawetnd resistivity recovery of
archaeological targets without the need of incapog a priori information in the
inverse procedure. The first approach combinesafil)nitial 2D inversion using the
standard smoothness constraint and a homogeneausgtmodel, (2) an image
processing technique known as the watershed aigorib subsequently predict target
dimensions (width and height) and depth from theoaim image, and (3) a second
inversion step incorporating a disconnect in trgularization based on the output of the
watershed algorithm. Although this approach resdulte an improved estimate of the

geometries of individual targets, it was not veffgdive at predicting the resistivity of



the targets or resolving closely spaced targete 3&cond approach enhanced the
previous approach by replacing the second discanimeersion step with a trained
Artificial Neural Network (ANN). This approach hagen proven effective for resolving
widely and closely spaced targets, but the proogssieps are time consuming and the
results depend largely on the ANN training. Thedhapproach is a 3D resistivity
inversion that combines smoothness constraint aswbuanect inversion coupled with a
digital edge detector technique called Robertsssigradient operator to improve the
inverted resistivity model through iterative updatef both the resistivity model
parameters and the disconnect boundary. Althoughaproach is sensitive to the
artifacts obtained from the initial smoothness ¢@mst inversion step, it has been proven
more effective for resolving widely and closely spd targets than the other two
approaches. The developed approaches as well @sl digage processing, ANN,
smoothness constraint and disconnect inversiondesmeribed in details in the next three

chapters.

1.2.0bjectives

The main objective of this research is to explonel @evelop alternative resistivity

inversion strategies that are specifically desigteedecover isolated and closely spaced
targets representative of expected features ahaobbgical sites in Egypt. That objective
was achieved by: [1] applying digital edge detedechniques such as watershed
algorithm on smooth resistivity images coupled wdteconnect inversion approach, [2]

using artificial neural networks technique coupledh digital image processing and

smoothness constraint inversion, and [3] developimgterative 3D resistivity inversion



strategy that combines smoothness constraint iiorersligital image processing and

disconnect inversion.

1.3. General findings

Digital image processing can be used explicitlynaplicitly during the resistivity inverse
procedures to improve imaging of high resistivigrgets. The boundaries of targets
predicted from the smooth resistivity images usigdge detector techniques are
consistent with the actual edges. In addition, ¢hogundaries can subsequently be used
to define disconnects in the inversion in orderesiimate an updated model of the
resistivity structure that better predicts the getwn and resistivity structure of the
targets. Furthermore, a properly trained ANN appear be a viable approach for
determining the resistivity and location of diserédrgets in resistivity dataseBetailed
interpretations and discussions of these findirsgshe found within the following related

dissertation chapters.

Information is provided in the appendices that enésurther details on how to apply the
described approaches, in addition to a related ighdd research in archaeological
geophysics. It contains a geophysical and hydrolgstudy to characterize the near-

surface setting and groundwater conditions at ehaaological site in Egypt.



Chapter 2: Quantifying Tomb Geometries in Resistivity Images Wing Watershed
Algorithms*

Abstract
Quantifying the geometries of archeological streesuwithin resistivity models produced
as a result of the regularization constraints usedost inversion algorithms is difficult,
especially when structures are closely spacede Werapply the watershed by simulated
immersion method of boundary detection to smoothr@gistivity images generated for
synthetic and field data over 3D targets. The sstithstudies include a single cavity
model, a model for two widely spaced cavities (§p@ac> unit electrode spacing) and a
model for two closely spaced cavities (spacing <t @tectrode spacing). We also
examine a single-cavity model where a relativelgisteve overburden, common at
archaeological sites in Egypt, is included. In tase of the single cavity models, the
maximum error for any geometries are 18% for thedehowithout the resistive
overburden and 10% for the model where the ovesurid included, whereas it
increases to 24% for the widely spaced model artd #fr the closely spaced model.
Despite, the higher errors in the closely spacettycenodel, application of the algorithm
confirms the presence of two features, which is astertainable from the smooth
resistivity images. Boundaries detected with thdevshed algorithm are subsequently
used to define a disconnect in the regularizatr@sulting in a markedly improved

estimate of the resistivity structure (particuldidy the closely-spaced cavity model) in a

This chapter is published as: Elwaseif, M., Slater,2010, Quantifying Tomb Geometries in
Resistivity Images Using Watershed Algorithms: dalirof Archaeological Science, Vol. 37,
Issue 7, pp 1424-1436.



second inversion step using the model obtained fr@smoothness constraint inversion
as the starting model. This revised resistivity elaalso results in a lower root-mean-
square (rms) misfit between measured and theoketata, and between synthetic and
inverted models. We demonstrate how the methodbeaapplied on images from the

archaeological site at Qurnet Murai, Luxor City Bgy

2.1. Introduction

Resistivity imaging is a well established techneglogr predicting the location of

subsurface structures and objects having a deteatddztrical resistivity contrast relative
to the host medium. The method is routinely empdoteobtain an image of subsurface
structures (i.e. the targets) in the absenca pfiori information on the geometry and
distribution of the targets. Under such conditiotise widely adopted smoothness
regularization constraint is usually utilized taoolse an inverted resistivity model that is,
(1) consistent with the measured data (subjecbtoesdesired fitting criteria), and (2)

geologically reasonable, from the large number oflets that could fit the data equally
well as a result of the underdetermined naturehefitiverse problem (Gunther et al.,
2006; Christiansen, and Auken, 2004). Smoothneggagzation typically employs one

of two minimization schemes, described here as #mmwersion and robust inversion
(Loke, 2004). Smooth inversion emphasizes modelth veimoother variations of

resistivity, whereas the robust inversion emphasigedels with sharper boundaries

between regions of different resistivity.



Two dimensional resistivity inversion codes are doa®n the assumption that the
subsurface is two dimensional. This assumptiorotsancurate in the case of imaging 3D
bodies such as cavities. The 2D inversion assum&sthere are no changes in the
subsurface resistivity in the direction perpendicub the survey line, which may leads to
significant artifacts in the resultant model for 3&rgets. Despite this limitation, 2D
surveys and 2D inversion are still often used tage inherently 3D targets such as
cavities (e.g., EI-Qady et al., 2005), since fldy surveys are often cost-prohibitive and

a substantial computational burden.

Regularization using the smoothness constraintlteegu models that contain minimal
structure relative to some starting model (e.gnomogeneous medium) subject to fitting
the measured data to a predefined level of accurdowever, resistivity imaging is
increasingly used to predict the distribution ofibd targets that are characterized by
sharp, rather than gradational, resistivity congraérchaeological features, e.g. tombs
and walls (Negri et al., 2008; Negri and Leuccip@)) are typically characterized by
sharp resistivity contrasts. In this case, the shmmss constraint is conceptually
inappropriate as ow priori expectation is that such targets represent a sitepge in
resistivity across some unknown boundary locatitet, the smoothness constraint is still
often applied due to its ‘off the shelf’ availabjliand the fact that it at least provides a
blurred representation of the distribution of ssttuctures, usually predicting the center
of such targets relatively well (for a single targe multiple targets separated by spaces

considerably greater than the unit electrode spacinlowever, the adoption of the



smoothness constraint makes it very difficult tdialdy determine quantitative

information on a discrete target, such as its dsigars or depth of burial.

Slater and Binley (2006) describe a modification tbé smoothness constraint to
accommodate sharp boundaries whereby a ‘disconimeitte smoothing is defined along
the boundary of an object. This method requirestti@boundary of the target be known
a priori, and the inversion then solves for a srhlyotarying model structure across the
host medium and within the disconnected target.s Téonstraint is conceptually
consistent with many archaeological targets whessstivity may vary both within a
structure with well defined boundaries and extetoat, e.g., a foundation wall and the
earth away from it. However, the need to know theation of the boundary a priori
clearly limits the application of this techniqueadently, Blaschek et al. (2008) describe a
complex resistivity inversion that incorporatesoaufsed regularization scheme based on
minimum gradient support that attempts to incorfosharp boundaries without a priori
information while still allowing for smooth modetrscture within the target and away
from it. However, the main drawback of this apptoas that a suitable smoothness

parameter depending on priori information has tdéermined by the user.

Here we describe an approach to imaging the latatib tombs and cavities that
combines (1) an initial 2D inversion using the s smoothness constraint and a
homogeneous starting model (as typically most oftene in practice), (2) an image
processing technique known as the watershed aigorib subsequently predict target

dimensions (width and height) and depth from theoaim image, and (3) a second



inversion step incorporating a disconnect in trgularization based on the output of the
watershed algorithm to obtain an improved estinaditidhe variation in resistivity within
and outside of the targets based on the incorporatia priori data (the location of the
disconnect and the resistivity model obtained fribrd standard smoothness constraint
inversion). The approach assumes that the edgekenimage predicted from the
watershed algorithm are consistent with the eddesome unknown resistivity model

characterized by sharp boundaries for which we laasf@ooth image.

Although we cannot expect such an algorithm to pi®vhe perfect filter to remove the
smoothing resulting from smooth regularization d¢waists in resistivity inversion,

synthetic studies demonstrate the effectivenesbeofvatershed algorithm in estimating
depths and dimensions for single and multiple géwinb features representative of
expected features at archaeological sites in Egy#. also compare the results of
implementing the watershed algorithm with the reswbtained when implementing
other edge detection methods (image gradient, cemaution and snake method).
Finally, we apply the approach on field data fratessin Egypt where the problem is the
detection of unknown tombs. We recognize that fh@@ach attempts to undo an initial
regularization effect that is conceptually incotesi$ with the resistivity model structure.
However, given the current popularity of the smoetfs constraint in commercially
available (and academic freeware) resistivity imggsoftware, the method could be

readily implemented by the archaeologist interestechaging discrete targets.
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2.2. Watershed algorithm by simulated immersion

Image processing techniques based on edge deteetivbe used to predict the location
of sharp edges based on mathematical propertiggedmage parameter space. There are
four basic edge detection techniques used in inpageessing; image gradient methods
(e.g. Sobel, Prewitt, Roberts, or Canny operatarsjye evolution, method of active
contour (snake), and watershed algorithms. Theesscof the image gradient methods in
detecting edges is based on the difference in tpegl between the object and the
background (Gonzalez and Woods, 1992). The methadkswvell in locating single
features, but typically fails in separating mukipbbjects due to the low grey level
contrast within anomalies. The curve evolution teghe is a powerful tool for extracting
features with definite boundaries, but in the aaiskeatures with smooth boundaries, the
method segments the boundary area into differemtocos based on the pixel intensity.
The ‘method of active contour’ (snake) approachuieg an initial user-defined selection
within the image. However, the final solution difefor different initial selection, and
moreover, its success is based on a high grey tmmfrast between the object and the

surrounding region.

The watershed by simulated immersion is a powedcdhnique for segmenting a given
image into regions with distinctive boundaries (Bfbiet al., 2004; Barraud, 2006). In
this study, we apply the method to predict the sdgfefeatures manifest in resistivity
inversion results as smooth boundaries. Directiegjgbn of the method to smooth
resistivity images produces problems such as owgmentation (i.e. the output

segmented image has an excessively large numbergains), which can result from
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noise (outliers) and/or significant resistivity iaility (often smooth) in the host
formation (e.g., moisture, lithological or pore wmatvariation) at the scale of the
resistivity survey. We therefore apply a sequericpre-processing steps to increase the
contrast between different pixels, reduce noisel anhance the boundary between
different features within the images. The ordeth&fse processing steps is described in
Figure (2.1). The first step converts the 32-bitBR@ed, green, blue) input image into a
32-bit grayscale image more amenable to furthecgssing (required only when not
starting with a grayscale image). Gaussian blur arehn filters are then applied to
preserve feature boundaries whilst reducing noesérédme values) in the image by

replacing each pixel with its neighborhood mearx@iand Aguado, 2002).

The first post-processing step is critical to dei@ing an estimate of a target dimensions
from the watershed algorithm. The watershed metpoeldicts many boundaries
depending on the complexity of the resistivity iraagnd so judgment must be applied to
isolate the boundary that is associated with themeties in the resistivity images
assumed to represent the cavities. Although a stmewpeculative exercise when
multiple boundaries are present, the resistivitage can usually be used to make an
informed choice on the boundaries associated wighcavity target. This boundary is
then enhanced relative to all other detected baigslassociated with other changes in
resistivity within the image e.g., due to changenioisture and/or pore chemistry across
the site. This process is facilitated by selectimg cavity region (the region of interest
(ROI)) and increasing the gray value intensity loik tregion. Finally, a threshold is

applied to the resistivity image based on the maxmintensity value to enhance the
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anomaly region and weaken all other boundaries. fifta¢ post-processing step is done
simply to provide a rendition of the outline of thedy. The Java-based image processing
program, Image J, developed at the National IrteStuof Health, was utilized to
conducting all image processing steps, includirg watershed algorithm (Burger and

Burger, 2008).

Input Image

v

Convert to Grayscale Image

v

Gaussian Blur Filter

v

Mean Filter

v

Watershed Algorithm

v

Enhance Feature Boundaries/
Threshold Image

v

3D Representation

sdoils Buissaosold ald

sdails Buissasold 1sod

Figure 2.1: Flow chart showing the processing ste@stered on the use of the watershed
algorithm, used in this study.

Beucher (1992) defines the watershed transformdbypran immersion operation as

follows; Let a grayscale image ‘I' be consideredopographic surface (S) and the

watershed lines and the catchment basins of ‘Hdfened by means of a flooding process
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(Roerdink and Meijster, 2001). If each minimum bé ttopographic surface has been
pierced and the surface plunged at a constantcaegpeed into a lake, then during the
flooding two or more floods from different minimaay merge. In order to avoid this
merging, a dam is built on the points S where tbeds would merge. At the end of the
process, these dams separate various catchmensbadiere each basin contains one
minimum, this defining the watershed of the imaBedrdink and Meijster, 2001). The
set of the catchment basins 'bfis equal to the seX,max Obtained after the following

recursion (Roerdink and Meijster, 2001),

Xy, S{POD [ 1(P)=hy =T, 2.1)

X, =MIN, O1Z. (X, ), hoh_ . h_
Nimax Nnax Thmax( hmax—l) [m|n x] 2.2)

whereD is a set of pixels within a grayscale imaBas a vertex |: D—N is a function
assigning an integer value to ed®HD (grayscale image takes integers from 0 to 2B5),
is a grey value (from 0 to 253)naxis the maximum grey value in a grayscale image,
denotes the union of the computed set of basiasgaey valueh, 1Zth+1(X,) defines the
skeleton by influence zones (SKIS), which consiétall equidistant points (in the sense
of the geodesic distance) to at least two neamstaected components K. Further, Ty

is the threshold of the image at lehelhere;
T,=POD|I(P)<sh (3

According to the previous recursion, the iteratwocess starts at grey levgli, with all

pixels potential candidates for getting assignea tcatchment basin “Equation 1”. At

grey level hrnax(i.e. equal 255), all non-basin pixels are potérd@ndidates to become
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new basins (first part of equation 2), and pixelsok are equidistance to at least two
nearest basins (geodesic distance) will be mergddanbasin (second part of equation
2). A detailed description of the method and theup® code are given in Roerdink and

Meijster (2001).

2.3. Synthetic models

The watershed method could be applied on the outpadel parameters from any
resistivity code that employs the smoothness caimétin the regularization. We chose to
use the Res2dInv program (Loke and Barker, 1996péoforming all inversions simply
due to its popularity. We calculated the synthapparent resistivity pseudosections for a
single cavity and two widely (separation >> uniatode spacing) and closely spaced
(separation < unit electrode spacing) cavities.alge consider a single cavity model that
includes a resistive overburden to simulate figddsin Egypt. The 2D (i.e. measurements
made along a line of electrodes) synthetic datasete generated using a 3D forward
modeling code, Res3dMod (Loke and Barker, 19963jrtailate real data collected in the
field over cavity features by accounting for the &Drent flow and the 3D nature of the
cavities. The cavities are assigned a resistia80¢1000 Ohm m) consistent with infill
of sediments/debris (the typical state prior toaseation), whereas the host medium is
assigned a resistivity of 100 Ohm m, based on #sellts of previous studies (e.g.,
Elwaseif, 2006; EI-Qady et al., 2005). In each calsety two electrodes were used to
create the synthetic data and a dipole-dipole anay chosen due to its relatively high
sensitivity to horizontal changes in resistivitygie Dahlin and Zhou, 2004). An analysis

of the resolution of electrical targets as a funttof array type is beyond the scope of
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this paper and can be found elsewhere (e.g., Fughah, 2003; Dahlin and Zhou, 2004;
Stummer et al., 2004). The electrode spacing used Wwas 1 m and six depth levels
(integer dipole spacings) were utilized. To improsgbsurface resolution additional
measuring points were added in-between these dmls, providing 390 measurements
and a maximum investigation depth of about 4.5 setan theoretical relations between
electrode spacing/geometry and investigation déptha homogeneous earth medium

(e.q., Loke, 2004).

Four model scenarios were created, known to bergipneaepresentative of target
depths/dimensions of cavities of interest at arcloggcal sites in Egypt (as we show
later). In the first scenario, a single cavity vimasied at 1.2 m depth, having a width and
a length of 4 m and resistivity of 1000 Ohm m (Fgw®.2a). The second scenario
involved two cavities having resistivity values &0 and 1000 Ohm m. Two cases of
this two cavity model were considered (a) a widghgced cavities model involving
cavities with widths/lengths of 4 m and outsideesigpaced 4 m apart (Figure 2.4a); (b)
a closely-spaced cavities model involving cavitigth widths/lengths of 2.8 and 2.7 m
and outside edges spaced 0.6 m apart (i.e. lesstlieaunit electrode spacing) (Figure
2.5a). In the last scenario, a single cavity wasebuat 1.9 m depth, having a width of 4
m and resistivity of 1000 Ohm m, overlain by a higlsistivity (3000 Ohm m), 1.4 m
thick layer (Figure 2.6a). All synthetic datasetsr&v contaminated with 2% Gaussian
noise, representative of noise levels (based oeatapility tests) at the archaeological

sites of interest in Egypt.
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2.3.1. Resistivity Inversion: Smooth vs. robust glatbrms

As previously explained, we elected to perform ai@iersion of the datasets generated
using 3D forward modeling as this best represdmstypical situation for real datasets:
i.e., cavity features are inherently three dimemasidut 2D datasets and 2D inversion of
these 3D features (and 3D current flow) is, moterothan not, the norm. The objective
of regularized resistivity inversion is to find eodel that contains a resistivity structure
consistent with expectations regarding the likeigtribution of resistivity within the
subsurface, whilst providing a set of theoreticalsurements (forward response) that fit
the measured data to some pre-described accepeakle(here quantified by the root-
mean-square (rms) error between the predicted etafas model solution and the

measured dataset) (e.g., Loke et al., 2003; Guethar, 2006).

As very little is commonly knowa priori about the subsurface, by far the most common
regularization method employed is to find the maaigh the minimum required structure
(or minimum deviation from a homogeneous earth atiat fits the measured data to
the pre-described level. An objective function yipitally defined that contains a term
related to minimizing the differences between theotetical data and the measured

resistances (data misfit), and a term related tormzing model structure (model misfit).
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It is most common to minimize the squares of thedinces between the measured and
modeled (theoretical) transfer resistances andffarences between the estimated model
and expected model structure (L2 norm). This methgucally produces a smooth
distribution of resistivities over a broad rangevafues and is defined here as the smooth
inversion. Minimization of the absolute differencbetween measured and modeled
resistivity values (and/or differences between ¢eBmated model and expected model
structure) (L1 norm) typically results in sharpeouhdaries between regions with
different resistivity values, although resistivitglues vary less within each region (Loke

et al., 2003).

The L1 norm (hereby referred to as the robust gige) is intuitively more appropriate
for imaging cavities/tombs than the L2 norm as wgeet such cavities to represent sharp
contrasts with the host medium at distinct bouregariHowever, as real cavities are filled
with a heterogeneous mixture of sediments priorexgavation some variability of
resistivity within the cavity boundary is possib{although not considered in our
synthetic trials). For completeness we show tkalte obtained with both the robust and
smooth inversion. In all cases a homogeneous mediamused as the starting model,
the data misfit weights were assigned based on @r28t in the measured data and five
iterations were performed. The results of applyiihg inversion on the single, widely
spaced, closely space cavity, and the syntheticeimaidthe field site are presented in
Figures 2.2, 2.4, 2.5 and 2.6, respectively. Imezse the smooth inversion is shown in

part ‘b’ of the figure and the robust inversiorsi®wn in part ‘d’ of the figure.



19

Distance (m)
15

(w) wpdag

Distance (m)
15

(w) wpdeq

Distance (m)
15

(w) ypdeg

Distance (m)
15

(w) ydaa

ol N N
0 o (=} a o a1
o o o o

Grayscale pixel values

Figure 2.3: Results of applying the image gradieatye evolution, and the snake
methods on the single cavity model (a) boundarésgt on image gradient (b)
boundaries based on curve evolution method (c)esnaddel (after 500 iterations) (d)
boundaries based on watershed algorithms (boxegaléme cavity outline)

White outlines show the true cavity dimensions. Tims errors for each inversion are
included in the figures. As expected, the invergiooduces smooth models of the true
resistivity structure associated with the cavitiBlse models from the robust inversion are
less smooth, with sharper boundaries and lesgiviyivariation within the model space
represented by the cavities. The widely spacedtieaviare clearly associated with

individual anomalies in the resistivity images (FR4b). However, the two closely

spaced cavities in both smooth and robust imagpsaapas a single anomaly, instead of
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two separate features, due to the small spacingeleet cavities (here less than the unit

electrode spacing).

To assess performance of the robust and smootihsions in a more quantitative way,
the data misfit (relative to the noisy synthetidajaand model misfit (relative to the
known synthetic model) curves are plotted at alk fiteration steps for the different
model scenarios in Figure 2.7. Although data rsséire very low for all models, the

model misfits are significantly lower in the caseabust inversion.

2.3.2. Predicted locations from the watershed &lgor

The watershed by simulated immersion method was$iemppn the inverted resistivity
images to locate the boundaries of the cavitiestarmbmpare the estimated boundaries
with the true boundaries of the resistive targetthe synthetic models. The results from
application of the watershed algorithm are sumnearim Table 2.1, showing the mean
depth, width and length of each boundary associatildl a cavity estimated by the
watershed algorithm. Figure (2.2c & 2.2e) showsrdwmilts of applying the watershed
method on the smooth and robust images for thelesiogvity. The detected cavity
boundary of the smooth image has an average efrrb4%, while the average error for
the robust image is ~ 18%. Although the averager ésrtess for the smooth image, the
shape of the detected cavity boundary of the roimatie better reflects the actual shape

of the subsurface model (i.e. rectangular).
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To compare the effectiveness of the watershed rdetblative to other edge detection
techniques, the image gradient, curve evolutioakemethod and watershed algorithm
were also applied on the inverted image of thelsiegvity model. Note that identical
pre-processing steps were used for each methodré~2.1). The results of applying
these techniques are shown in Figure 2.3 and suizedain Table 2.2. The watershed
algorithm predicts the cavity dimensions with sfgpaintly less error than all other edge
detection methods tested here, since the succegbarf methods depends mainly on the
presence of high grey level contrast between tlecblnd the background (not the case
in the single cavity model). The average erroref watershed method is 16% (based on
the three dimensions), while the errors of the $reald image gradient methods are 43%
and 34%, respectively. Note that the curve evotutieethod located multiple edges (i.e.
multiple widths, heights, and depths) making it ragtical to assign a single edge as

representative of the cavity boundary.

Figure 2.4c & 2.4e shows the results of applying watershed algorithm on the widely
spaced cavity for smooth and robust models respdygti Table 2.1 summarizes the
effectiveness of the algorithm in predicting theubdaries of the two cavities. The
average error of the method for locating the casitin the smooth model is 4%. In

contrast, for the robust model it is 6.5%.

The results of applying the watershed algorithmhenclosely spaced cavities for smooth
and robust models are shown in Figures 2.5¢c & B&5pectively. The method predicts a

boundary in the resistivity anomaly associated whih closely spaced cavities, despite
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that evidence for this boundary cannot be visuadigertained from the inverted image of
resistivity variation. In this case, the cavity bdaries estimated from the robust image
are more accurate than those obtained from the ttnim@age. The average error of the
method in estimating cavity dimensions in the srhaotage is 6 % relative to 10 % in
the robust image. Figure (2.6c & 2.6e) shows trmilte of applying the watershed
method on the smooth and robust images for thehstiot model of the field site
incorporating the resistive upper layer. The deotavity boundary of the smooth
image has an average error of 12%, while the aeeeagr for the robust image is 16%.
We note that the technique also successfully predlithe thickness of the top resistive
layer in both robust and smooth images, where tlezage error for both robust and

smooth images is 11%.
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2.3.3. Re-inverting datasets using a disconnecatdieny in the regularization

Once boundaries are estimated, it is possibledorporate this aa priori information
and subsequently re-invert the dataset using thednect approach (Slater and Binley,
2006), where the inversion solves for smooth madeicture within the cavities and
within the background, but prevents any smoothifignmdel structure across the
boundaries. However, it is important to verify thhé predicted edges applied to the

regularization result in a model that fits the datdeast as well as the model obtained
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without this constraint as, in the case of fieldadéwhere the model structure is
unknown), it is possible that unrealistic edgesl@dne inferred from the processing. Re-
inverting the data with this additional constramn the inferred location of cavity

boundaries could lead to an improved estimate sitigity structure within the host

medium or even within the target.

Table 2.1, quantitative analysis of the accuracthefwatershed algorithm by simulated

immersion method, where ‘D’ — depth, ‘W’— width, *H height, and ‘Th’ — upper layer
thickness.

Resistivity InversiorIIJ True dimensions Estimated Error
Models  approac (m) dimensions (m) (%)
D W H Th D W H Th D W H Th

) Smooth 09 43 22 - 25 7 11 -
One cavity 12 4 245 -
Robust 08 43 21 - 33 7 14 -
1.0 38 18 - 0O 5 6 -
Two Smooth 1.0 40 1.7 -
cavities- 1.0 40 19 - 0 0 12 -
widely Robust 10 40 17 12 4 15 - 20 0 12 -
u ) . . -
spaced 10 43 17 - 0 7 0 -
1.7 26 15 - O 7 O -
Two Smooth 1.7 28 15 -
Ca\/ities_ 1.6 24 1.4 - 6 1_ 7 -
closely Robust 17 27 18 16 31 14 - 6 15 7 -
obus ) . . -
spaced 14 29 16 - 18 7 7 -
Synthetic  Smooth 1.7 37 22 17 11 8 8 21
field site 19 4 24 14
model Robust 17 44 19 17 11 10 21 21

Figure 2.8 shows the final inverted images of timgle cavity, widely spaced double
cavity, closely spaced double cavity and singleitgawith resistive overburden models
after robust inversion using the disconnect condttzased on the predicted boundaries

from application of the watershed algorithm to tlodust inversion (i.e. watershed



28
predicted boundaries shown in Figures 2.2e, 2.48¢ 2nd 2.6e respectively). The

Res2dInv program was used for

Table 2.2, Comparison between the results of @ffeedge detection methods for the
single cavity model

Edge detection metho Estimated dimensions Error
(m) (%)
Depth  Width Height Depth Width Height
Snake 0.7 6 3.3 42 50 35
Watershed 0.9 4.3 2.2 25 7 11
Curve evolution - - - - - -
Image gradient 0.7 5 3.3 42 25 35

the disconnect robust inversion (Loke and Bark@86). In each case, we use the model
result obtained from the smooth inversion as thdiay model for this second inversion
step employing the disconnect (i.e. images showRigures 2.2d, 2.4d, 2.5d and 2.6d
respectively). The disconnect inversion resultsamimproved recovery of resistivity
structure of the single cavity and widely spacedtgamodels relative to that obtained
without the use of the disconnect constraint (Feg2id). The improvement in both model
misfit and data misfit is most obvious from theadanhd model misfit curves shown in
Figure 2.7. Most obviously, the inversion of thesdly spaced model now clearly depicts
the presence of two resistive features coincideiit he cavities. Consistent with the
true model, the cavity on the right is predictedres more resistive. The inversion of the
synthetic field model also results in improved resny of resistivity structure relative to

that obtained without using the disconnect in thersion (Figure 2.6).
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2.4. Application to real data: Mapping cavities inQurnet Murai
In order to illustrate this image processing apphoan field datasets we applied the
watershed by simulated immersion processing onsdttaacquired from Qurnet Murai,

Egypt (Figure 2.9). The site is located about 3t rthe west of Merenptah temple and

(a)

Alexandria
(b)
Cairo
Asfon Canal f/\/
Plateau
Beni Suef
()
§ Red sea
S
AQ) * Qena
o~
g OO Luxor
Karnak
Asphaltek roads
0 1km

Figure 2.9: location map of a- Egypt, and b- thatemn bank of Luxor

near the western limestone plateau of Luxor. Theteva bank of Luxor contains more
than thirty known temples, such as Hatshepsut, Ipnastilt by the rulers of the new
Kingdom (1549-1069 BC) (Baines and Malek, 1980)o@wsical surveys have been
conducted at this site in an effort to locate ucoh®red artifacts, primarily tombs such as
that shown in figure 2.9. Note that the photos iguFe 2.10 show the features after
excavation of soil, debris and antiquities thati¢gfly fill these featuresn situ. These

geophysical surveys include eight parallel 2D testy lines, 32 m long and spaced 5 m
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apart, that were acquired during a field efforiMay 2006. A 2D dipole-dipole array with

1 m electrode spacing and 6 depth levels was aadjwith a Syscal R1 (Iris Instruments,
France) automatic resistivity system, providing Idéasurements on each parallel line,
with a modeled maximum investigation depth of abbuat. Due to time constraints in the
field, the additional quadripoles used in the sgtithmodeling described previously were

not collected during this experiment.

Figure 2.10: Examples of expected artifacts attichaeological sites in Saggara, Egypt,
(a) buried tomb, and (b) tunnel leading to a tomb m x 2 m). Such artifacts represent
resistive targets likely to be detected with eiealrmethods. Note that, in both cases, the
photos show the cavities post excavation, followigrgoval infilling soil, debris and
artifacts. Arrow denotes direction towards surface
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The inversion followed the same processing stepsiessribed in Figure 2.1 and as
performed on the synthetic datasets. Figure (2.38fhayvs an inverted resistivity profile
along one of the eight parallel lines obtained gsithe robust inversion and a

homogeneous starting model. The section displayisl@ range of resistivity values.
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Figure 2.11: Results of the watershed applicatiothe western bank of Luxor resistivity
profile (a) Res2dinv section (b) detected boundabased from ‘a’ (c) disconnect
inversion model (d) Collected GPR profile using 2BHz shielded antenna, trace
increment of 0.05 m, and an average velocity of36.In/ns estimated from the

hyperbolic shapes in the figure.
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The top resistive layer (~ 3000 Ohm m) is often emtered in this environment due to
very dry sediments on the earth’s surface (highpsatures, regularly reaching 46°C at
this site, result in very low moisture contents doeevaporative loss). Beneath this
surface layer, resistivities are much lower, raggnom 20-300 Ohm m, primarily due to
increasing moisture content with depth. An anomaloelatively high resistivity zone
(between 1-3.5 m depth) occupies the area betweto 20 m along the line and is

believed to relate to a cavity filled with frialdeils.

The results of applying the watershed by simulat@dersion technique on Figure 2.11a
is shown in Figure 2.11b. A number of boundaries @redicted in the near surface and
reflect the upper resistive layer. One boundarglatected at depth and associated with
the cavity. Based on this model, the cavity istedaat 1.6 m depth and is 4 m wide (Fig.
2.11b), which is consistent with the excavationswahin Figure 2.10. The dataset was
then re-inverted using all boundaries determindéigure 2.11b with the model shown in

Figure 2.11a as the starting model. This disconineersion result is presented in Figure
(2.11c). The root mean square (RMS) error betwlentheoretical and measured data
was 9.3% without using the disconnect boundarnheinversion, compared with 6.6%

after employing it.

In addition to predicting the cavity boundaries, mae that the watershed method also
detected the boundary between the resistive ugyer land the underlying half space.
The estimated depth of this boundary, varying frerim to 1.5 m, is consistent with a

horizontally continuous reflection recorded in daaprofile collected very close to the
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resistivity line (Figure 2.11d). This GPR profileasscollected using the common-offset
method. The GSSI Subsurface Interface Radar (SiR)e$-2000 equipped with 200

MHz shielded antenna was employed for the dateectdin. The number of traces,

number of samples per trace, trace increment, iarelihcrement were 899,512, 0.05 m,
0.195 ns, respectively. A strong GPR reflectior2@30 ns (1-1.5 m depth based on a
velocity of 0.136 m/ns calculated from diffractitryperbolae in the data), at a depth
consistent with the boundary identified in the s@sity image, suggests that it results

from an increase in soil moisture at depth.

2.5. Discussion and conclusion

We have shown that the boundaries of cavities prediusing the watershed algorithm
are consistent with the edges of resistivity modélaracterized by sharp boundaries for
which we only have a smooth resistivity model. Hoere the success of the watershed
algorithm to predict accurate target boundarieseddp on the success of the inversion in
reconstructing the investigated targets. The perémce of the watershed algorithm will

vary depending on the minimization procedure used.(smooth vs robust) as shown
here. The effect of the watershed algorithm waloalikely depend on the inversion code
used, although this is beyond the scope of ourmpd&early, the final image produced

following the disconnect inversion is very sentito the definition of the boundary

extracted from the watershed algorithm. One adggntd this approach is that it can be
applied to images, without needing raw data, toaextquantitative information on target

dimensions not available from the inversion. Fumi@e, the boundaries can

subsequently be used to define disconnects in riiersion in order to estimate an



35

updated model of the resistivity structure thatdyepredicts the resistivity structure of

the cavities.

Synthetic studies show that our approach facibtdbee estimation of boundaries from
smooth resistivity images and improves the recanstn of the geometry of buried
archaeological targets, with high accuracy (< 158fore in most synthetic cases
examined. However, the method will generate bouadawithin images wherever the
resistivity changes significantly, making it somewlsubjective to pick a boundary
assumed to relate to an anomaly in the image agedcwith a cavity. The selection of
the boundary associated with an anomaly of a butdéeab is based upon the main
criterion that the selected boundary exists in shme location as the anomaly. Most
often, as in the scenarios presented here (inguthe field site), the boundary is

obvious.

Even when the watershed method cannot accuratetgdece the target dimensions, we
find that it may still improve the interpretatiof the subsurface model structure from a
smooth inversion. For example, based on the syntbitdies, the single cavity and the
two closely spaced cavity inversion results lookiikr and both would likely be

interpreted as a single buried cavity model (compawversion results presented in Figure
2.2b and 2.5b). However, the watershed identifmsbaries in the closely spaced cavity
image that are not present when it is applied ¢osihgle cavity model (compare Figure
2.2c and e with Figure 2.5¢c and e). Although theatisions of the two cavities are not

well predicted, the presence of two features (rathan just one, as might be inferred
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from the resistivity image) is predicted. Moreoviey, using the located boundaries as a
constraint in a second inversion step (using theammodel as the starting model), the
reconstruction of the geometries of these clospfced cavities significantly improved.
The disconnect inversion, based on these boundatssimproves the estimation of the
true resistivity of the targets, although the tresistivity remains poorly resolved. This is

an inherent limitation of using 2D imaging over &idgets with small dimensions.

We have demonstrated the application of our metloggdo field datasets collected over
archaeological sites where cavities/tombs are stsgpeResults from these field studies
suggest that the cavity outline can be predictednewith the additional model

complexity caused by a highly resistive, thin oweden as often found at these sites. In
fact, the watershed algorithm also appears to preélde overburden thickness based on
comparison with a strong reflector (assumed toasgmt a sharp transition in moisture

content) from GPR data collected at the site.

Electrical imaging of buried archaeological targets potentially be improved when
acquiring and inverting three dimensional (3D) data using a 3D inversion code, since
cavities are 3D structures and the 2D inversionr@guh is based on the assumption that
the buried features are two dimensional (e.g., Negal., 2008). Our approach could
equally be applied to 3D datasets as well, whetebywatershed method could be used
to extract boundaries of different anomalies froB @sistivity vertical or horizontal
slices of the model domain. Such boundaries cdshllze used a& priori information in

a final inversion step to better reconstruct ther88)stivities of those targets.
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Chapter 3: Improving Reconstruction of Discrete Resstivity Targets Using Coupled

Artificial Neural Networks and Watershed algorithms®

Abstract

Estimating the dimensions of discrete targets wittasistivity models produced as a
result of applying smoothness constraints in mostkension algorithms is difficult,
especially when targets are closely spaced. Hexecouple an image processing
technique with a trained Artificial Neural NetwofANN) model to arrive at predictions
of the geometry and resistivity of discrete targetsn an initial smoothness constraint
resistivity model. These predictions are comparét those obtained from applying the
watershed algorithm alone, the L1 norm and whemaoshing disconnect is defined
using the image processing and data subsequentlyeged to arrive at a revised model
estimate. Synthetic studies were first conducted simgle cavity model, a model for two
widely spaced cavities (spacing >> unit electrogacsg), a model for two closely
spaced cavities (spacing < unit electrode spaangd)a model for three closely spaced
cavities (spacing < unit electrode spacing). Imadldel scenarios, the average Root Mean
Square (RMS) model error for any dimension is belowvhilst the average combined
rms model error when including target resistivigy8b for the single cavity, 30 for widely
spaced targets, and 75 for the closely spacedtsarDespite the higher errors in the

closely spaced cavity models, application of tlgoathm confirms the presence of

This chapter has been submitted as: Elwaseif, M, $later, L., Improving Reconstruction of
Discrete Resistivity Targets Using Coupled Artidici Neural Networks and Watershed
Algorithms. Submitted to Near Surface Geophysiagdal (submitted on March 09, 2011 and
revisions were requested on Jan 23, 2012)
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multiple features, which is not ascertainable frima smooth inversion, or even when
using the disconnect constraint. The ANN derivedleisignificantly reduces the root-
mean-square (RMS) misfit between synthetic andriedemodels. We demonstrate the
approach using field measurements collected oyeeeisely known void and also apply
the method to smooth resistivity images obtain@nfrmeasurements collect over the

archaeological site at Qurnet Murai, Luxor City yag

3.1. Introduction

The smoothness regularization is conceptually gp@te when the objective is to
predict changes in resistivity due to variationsmoisture and/or salinity across space
and time. However, when the objective is to preticgets that are characterized by
sharp resistivity contrasts (e.g., sinkholes, tlsyneids), the smoothness constraint is
often conceptually inappropriate as our prior exgken is that such targets represent a
sharp change in resistivity across some unknowmdbany location. In addition, it is
difficult to assess the true resistivity and quigntine dimensions (defined here as width,
height and depth of burial) of these targets fronoasth resistivity models (Nguyen et al.,
2005). Two-dimensional (2D) surveys and 2D inversaee still most often used to image
inherently three-dimensional (3D) targets such agties (e.g., EI-Qady et al., 2005),
since fully 3D surveys are often time consuming @&odt-prohibitive. Although 3D
current flow is usually modeled, the 2D inversi@s@ames that there are no changes in
the subsurface resistivity in the direction perpeunidr to the survey line, which may lead

to significant artifacts in the resulting model 81D targets.
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Several studies have been conducted to improve rédo®nstruction of targets
characterized by sharp boundaries (Kaipio et 8091 Slater and Binley (2006); Hordt et
al., (2007); Blaschek et al. (2008)). Slater analdi (2006) describe a disconnect
inversion whereby a ‘disconnect’ in the model damiai defined along the boundary of
an object. However, the approach requires thabthndary of the object to be known a
priori. Hordt et al. (2007) and Blaschek et al. (2008)3ctibe a complex resistivity
inversion that incorporates a regularization pateméhat attempts to estimate sharp
boundaries based on minimum gradient support (Rgume and Zhdanov, 1999)
without a priori information while still allowing for smooth modstructure within the
target and away from it. However, since differealues of that regularization parameter
will lead to different models, these studies s#ljuire additional constraints on expected

subsurface geology to achieve a reliable model.

Elwaseif and Slater (2010) describe processing guhoes for the reconstruction of
geometries and resistivities of buried targets attarized by sharp boundaries without
the need for incorporation of subsurfgeri information. Their approach combines (1)
an initial 2D inversion using the standard smoosisneonstraint and a homogeneous
starting model (as typically most often done incfige), (2) an image processing
technique known as the watershed algorithm to sulesdly predict target dimensions
(width and height) and depth from the smooth image] (3) a second inversion step
incorporating a disconnect in the regularizatiosdoshon the output of the watershed

algorithm. Although this approach resulted in ampiliaved estimate of the geometries of
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individual targets, it was not very effective aegicting the resistivity of the targets and

resolving closely spaced targets.

Here, we describe three processing proceduresnfigroving the reconstruction of
discrete targets characterized by sharp resistoattrasts. We focus on synthetic studies
of discrete targets with dimensions typical of ti@gi found at archaeological sites in
Egypt. We emphasize that, in such archaeologicaliest, recovering the geometry and
resistivity of those targets is needed to fulfilet objectives of a non-invasive
archaeological survey. The resistivity of thesegeéts provides information on the
material filling the cavities, whereas the geometfythese targets is important for

performing a successful excavation operation.

We explore an approach whereby the secondary digsobninversion step used by
Elwaseif and Slater (2010) is replaced by a traiAeificial Neural Network (ANN)
method and compare the results of the two apprea¢hgure 3.1). We apply the
approach to the synthetic models described in Eiasnd Slater (2010) for consistency
and to facilitate comparison with results reporitedheir study involving a final model
improvement step based on a disconnect inversigmth8tic studies demonstrate that the
ANN approach is more effective than either the sitmoess constraint inversion (using
L1 norm) or the disconnect inversion for resolvihg geometry and resistivity of both
widely and closely spaced targets. We also dematesthe approach on field data

collected over a bridge in New Jersey (NJ) wheeeptoblem is the detection of a void
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of known dimensions underneath the bridge. Finally,apply the approach on datasets

collected at an archaeological site in Egypt wlzecavity is suspected.

3.2. Methodology

3.2.1. Inversion with Smoothness Constraints

The objective of regularized resistivity inversig to find a model that contains a
resistivity structure consistent with expectatiamgarding the likely distribution of
resistivity within the subsurface, whilst providilagset of theoretical measurements that
fit the measured data to some pre-described addeplavel (e.g., Loke et al., 2003;
Gunther et al., 2006). The smoothness constraugrgion is utilized to produce smooth
resistivity images in the absenceabpriori information about the subsurface structures.
This regularization constraint is conceptually ipegpriate, when the objective is to
predict targets that are characterized by sharfstingt/ contrasts (e.g., sinkholes,
tunnels, voids), as our priori expectation is thath targets represent a sharp change in
resistivity across some unknown boundary locatlonaddition to that, it is difficult to
assess the true resistivity and quantify the geoesetof the targets from smooth

resistivity models.

Smoothness regularization is typically employechvahe of two minimization schemes
commonly referred to as the L2 norm and the L1 n#ifis and Oldenburg, 1994). The
L2 norm minimize the squares of the differencesvben the measured and modeled

transfer resistances and/or differences betweeestmated model and expected model
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structure, and it tends to emphasize models witbhosher variations of resistivity. The
L1 norm minimizes the absolute differences betwawasured and modeled resistivity
values (and/or differences between the estimatedeimand expected model structure),
and it tends to emphasize models with sharper lame®glbetween regions of different
resistivity, although resistivity values vary lesghin each region (Loke et al., 2003).
The L1 norm is therefore conceptually more appaiprior imaging cavities/tunnels than
the L2 norm, since cavities typically present shaagistivity contrasts within the host
medium at distinct boundaries. However, the daiaens more likely to be propagated

into the model space using the L1 norm (Hordt ¢t28107).
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Figure 3.1: Flow chart showing the processing stesesl in this study.

3.2.2. Watershed by Simulated Immersion

The watershed by simulated immersion is a technigueegmenting a given image into
regions with distinctive boundaries based on matimal properties of the image
parameter space (Roueff et al., 2004; Barraud, 0% watershed method could be

applied on the output model parameters from anjstreisy code that employs the
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smoothness constraint in the regularization (Ehfaaad Slater, 2010). Following
Elwaseif and Slater (2010), we apply the methogredict the edges of the resistivity
anomaly manifest in conventional resistivity inversmodels as smooth boundaries. The
predicted boundaries are assumed to be consistémttie edges of some unknown
resistivity model characterized by sharp boundaoesvhich we have a smooth image.
We apply a sequence of pre-processing steps tedserthe contrast between different
pixels, reduce noise, and enhance the boundaryebetwlifferent features within the
images. The order of these processing steps igibdeddn Figure 3.1. The result of the
initial smoothness constraint inversion is plotéesda grayscale image to facilitate image
processing. Gaussian blur and mean filters aredpehed to preserve feature boundaries
whilst reducing noise in the image by replacinghepixel with its neighborhood means
(Nixon and Aguado, 2002). The watershed algoriteitihhén applied to the filtered image.

We refer to Elwaseif and Slater (2010) for furtbetails of this approach.

3.2.3. Disconnect Inversion Approach

The smoothness constraint inversion is appropriate predicting targets that are

characterized by gradational, rather than shagistreity contrasts. Several studies have
been conducted to improve the reconstruction ofjetar characterized by sharp
boundaries (e.g., Slater and Binley, 2006; Hordilgt2007; Blaschek et al., 2008). For
example, Slater and Binley (2006) describe a maalion of the smoothness constraint
to accommodate sharp boundaries whereby a ‘disctinnethe model space is defined

along the boundary of an object. They applied gehnique to a highly conductive target,

a permeable reactive barrier made of zero valemt, ibeing buried in a relatively less
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conductive host medium. The disconnect inversionmplemented by giving small
weights within the weighting matrix at the positiof the known boundary and the
regularization matrix is then updated, which resuh inverted models with sharp
gradients at the locations of the known boundary.(¢€oke and Lane, 2002; Bouchedda
et al., 2012). However, this method requires thatlioundary of the target be known a
priori, and the inversion then solves for a smoothly wmarynodel structure across the
host medium and within the disconnected targetvakeéif and Slater (2010) suggested an
approach based on applying the watershed algorithan smooth resistivity image in
order to define the likely boundary of a target,ehhsubsequently was used as a priori

information to define a disconnect in the regulatian.

3.2.4. Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN) is based on ana#lel computational system that
attempts to simulate the interconnected systemeafams in the human brain (Smith,
1993). The method has been previously used to gsogeophysical data (e.g., Raiche,
1991; Zhang and Poulton, 2001; Winkler and Seil#003; Park et al., 2010). An ANN
consists of an interconnected group of artificiaurons’ that learn through trial and
error. Figure 3.2 shows the learning steps of tiNNAused in this study. The ANN
consists of an input layer, which has a numberenfrons equal to the number of input

parameters, and an output layer
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Figure 3.2: Artificial Neural Networks training gi® The input layer is compared with
the output layer and connection weights are updatethe hidden layer until a good fit
between both is achieved.

which consists of neurons forming the output patanse In our case, the input
parameters are the target dimensions predicted &mplying the watershed on the initial
smoothness constraint inversion, the average heslium resistivity surrounding each
resistivity anomaly and the central resistivitytbe target. Note that these two input
resistivities are determined from the initial snmowss constraint inversion step (Figure
3.1). Furthermore, the ANN only takes the paransetérindividual target anomalies as
an input. That said, in case of multiple targéh® watershed algorithm predicts the
geometry of those targets and we feed each tammnhetry as input to the ANN. The

output parameters are the revised dimensions asistivety of buried targets based on
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the trained ANN. Due to the highly non-uniform hassistivity at our field sites, an
estimate of the host resistivity is not output floe field datasets. The number of layers
forming the ANN (i.e. complexity) can be increadayl including more hidden layers
between the input and output layers. All the layees connected via connection weights
that are established during a training phase, aedvalue of each output parameter

depends on the combined values of all the inplamaters.

During the learning (or training) stage, a largenber of known models are input into the
neural network. In this research, we created datapproximately 250 model scenarios
for single and multiple closely and widely spacedwity targets having resistivity and
geometry values cover our expected possible rarfgeargets typically found at
archaeological sites in Egypt. The modeled caviteege different dimensions (length and
width) that range from 1 frup to 20 M, and were buried at different depths up to 3 m. In
addition, the cavities were assigned resistivityea ranges from 400 Ohm m up to 100k
Ohm m. Furthermore, we assumed a homogeneous teabtim resistivity values that
ranges from 50 Ohm m up to 500 Ohm m. Finally, thsultant synthetic data were

contaminated with different Gaussian noise levéR, &, 5, 6 and 10%.

The resulting output from the hidden layers is cared with the desired output (i.e. the
known model parameters) and the hidden layerssee to adjust the connection weights
until a good approximation between the input areldbsired output is achieved (Figure
3.2). There are different approaches to minimize ¢iror between the input and the

desired output (e.g., Simpson, 1990; Stanley antkkMlainen, 2002). In the back-
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propagation method used in this study, the errathatoutput layer is quantified and
propagated backwards to the hidden layers and dhaection weights attached to the
hidden layers are updated to minimize that erremiBlhart, 1986). After the network is
correctly trained (i.e., the lowest RMS error betwe&nown input and desired output is
achieved), the ANN can predict the output for newuts quickly and accurately,
assuming it is within the range of different paréeng included in the trained models
(Smith 1993). Here, we use the ANN to predict tireeshsions and resistivity of buried

targets characterized by sharp boundaries relatittee host medium.

Conventional smoothness regularization constramtgesistivity inversion result in a
highly underdetermined problem, where the numbanoflel parameters much exceeds
the number of measurements. In contrast, the ioptthe ANN consists of five model
parameters (one model parameter for the host medlidrifour model parameters for each
resistive target within the model space (depth,thyidength and resistivity value)),
whereas the output consists of four parameterstidepdth, length and resistivity value
for each resistive target) (Fig. 3.3). Our ANN reexy approach is thus an
overdetermined problem. A disadvantage of an oe¢erchined problem is that it can be
difficult to minimize the data misfit due to themited number of model parameters,
which cannot fully describe the whole model spaédée show here that the ANN

approach results in a much reduced model misfitifercase of such discrete targets.

3.3. Synthetic models

Here we calculate synthetic apparent resistivitgup®sections for the same synthetic
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models as described in Elwaseif and Slater (20499, subsequently invert these data
using Res2dInv (Loke and Barker, 1996) to allow diimect comparison between the

ANN approach and the L1 norm and disconnect ingaregported previously. The

et — :
0 j|<Average host resistivity oustide targets
| s s [ T T 1
| Predicted | - = = p
| ( B l_watershed o/ | !
boundaries |7V _ S
pd — — —
| = - -
Suspected cavity anomalies

Figure 3.3: sketch showing the input parameterstii@r cavities with different shapes
buried in non-uniform host medium.

synthetic models considered are , [i] a single tgaVii] two widely spaced cavities
(separation > unit electrode spacing), [iii] twlosely spaced cavities (separation < unit
electrode spacing), and [iv] three closely spacadties (separation < unit electrode
spacing). The 2D forward modeling datasets wereeiggad using a 3D forward
modeling code, Res3dMod (Loke and Barker, 19963jraulate real data collected in the
field over cavity features, by accounting for b&b current flow and a 3D resistivity
structure (Elwaseif and Slater, 2010). The caviiiese assigned a resistivity of either
500, 1000 or 100k Ohm m, whereas the host mediumasaigned a resistivity of 100
Ohm m in all scenarios. These were considered nadr® representative values based on
known results from cavities at archaeological siteEgpyt (e.g., EI-Qady et al., 2005)

(Figure 2.10). Following Elwaseif and Slater (201Bjrty two electrodes were used to
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create the synthetic data and a dipole-dipole anay chosen due to its relatively high
sensitivity to horizontal changes in resistivity.gie Dahlin and Zhou, 2004). The

electrode spacing was 1 m and ten depth levelsr(dipole spacings) were utilized,

providing 390 measurements and a maximum investigatepth of about 4.5 m based
on theoretical relations between electrode spagamghetry and investigation depth for a
homogeneous earth medium (e.g., Loke, 2004). Aithstic datasets were contaminated
with 2% uniformly distruted noise, representativenoise levels expected in typical field

data such that

datgise= dat@pise-reet 0.02*R  (3.1)

where R is a random variable with mean = 0 anchvag = 1.

We created the same three model scenarios aslsani Elwaseif and Slater (2010), in
addition to a fourth model that consists of thréesely spaced cavities filled with
sediments and air. In the first scenario, a sigldty was buried at 1.2 m depth, having
a width, a breadth and a length of 4 m and red#igtof 1000 Ohm m (Figure 3.4a). The
second scenario involved two cavities having resigtvalues of 500 and 1000 Ohm m.
Two cases of this two cavity model were considéegda widely-spaced cavities model
involving cavities with widths, breadths and lergytf 4 m and spaced 4 m apart (edge to
edge) i.e. greater than unit electrode spacingu(Ei@.4b); (b) a closely-spaced cavities
model involving cavities with widths, breadths aedgths of 2.8, 2.8 and 2.7 m and
spaced 0.6 m apart (edge to edge) i.e. less tleamnih electrode spacing (Figure 3.4c). In
addition, we created a three closely- spaced esvitiodel having resistivity values of

500, 1000 and 100k Ohm m (air filled), and havingths, breadths and lengths of 2.8,
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2.8, and 2.7 m and spaced 0.6 m apart (Figure.3.4d)

Distance (m)

(w) ydaq (W) ydeq (w) yideg
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00000}

Figure 3.4: Synthetic 3D model scenarios. (a) grgivity (b) widely spaced cavities (c)
two closely spaced cavities (d) three closely spamvities. The breadth of the single
cavity and widely spaced cavities is 4 m, wherdwes lireadth of the closely spaced

cavities is 2.8 m.



52

3.4. L1 norm Inversion

As outlined earlier, we chose to perform a 2D isi@r of the datasets generated using
3D forward modeling as this best represents thesan for datasets typically obtained
from the field i.e. 2D resistivity profiles overvities will record measurements resulting
from 3D current flow through 3D structures but whlé interpreted with codes that

assume the structures are two dimensional.

We chose to invert all the data using the L1 noppreach, since it is more appropriate
for imaging cavities/tunnels than the L2 norm, sirgavities exhibit sharp contrasts
within the host medium at distinct boundaries. llicases, a homogeneous medium was
used as the starting model, and five iterationevwperformed. The results of applying the
inversion on the single, widely spaced, and closglgced cavity models are shown in
Figures 3.5a, 3.6a, 3.7a and 3.8a, respectivelyiteMutlines show the true cavity
dimensions. The RMS model errors for each inversi@estimated using the following

formula and included in the figures:

RMS= y/mear{(Myea) ~Mes)?)  (3.2)

where myy is the actual model parameters ang; i® the estimated model parameters.

The widely spaced cavities are clearly associatéth wdividual anomalies in the
resistivity images (Fig. 3.6a). However, the clgsgbaced cavities appear as a single
anomaly (Fig. 3.7a and 3.8a), instead of separedturfes, due to the small spacing

between cavities (here less than the unit electspdeing) (Elwaseif and Slater, 2010).
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The watershed algorithm was subsequently appligth@se inverted resistivity images to
predict likely boundaries of the target anomaliBse results of applying the watershed
algorithm on the single, widely spaced, and closgsced cavity models are shown in
Figures 3.5b, 3.6b, 3.7b and 3.8b, respectivele method predicts a boundary in the
resistivity anomaly associated with the closelycgiacavities, despite that evidence for
this boundary cannot be visually inferred from theerted resistivity model. To better

understand the influence of data noise on the wla¢er algorithm results, the data of the
closely spaced cavity model was contaminated witthee 2% or 10% noise and each
data was inverted assuming 2%, 5% and 10% data.nBigure 3.9 shows that the

performance of the watershed algorithms is depeanoierthe accuracy of the inversion

process.

The optimum result was obtained when assuming aurate noise levels. However, in
all cases, the watershed algorithm predicted a denyrbetween the two cavity anomaly.
As the assumed data noise overestimates the axtisal level (Figure 3.9a), the accuracy
of watershed prediction gets less accurate. Silpjlaas the assumed data noise
underestimates the actual noise, the accuracy trséeed prediction gets worse (Figure
3.9b). However, the accuracy of watershed predidtiocase of overestimating the noise
level is better than when underestimating it prdpabecause the data itself is
contaminated with less data noise. The watershedigied target boundaries are used to
define disconnects in the initial smoothness cairgtrinversion in order to estimate a
model that better predicts the resistivity struetaf the cavities as described in Elwaseif

and Slater (2010). The watershed predicted targendaries and the central resistivity



55

value of the resistivity anomalies were used asts o the ANN (Figure 3.1).
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3.5. Re-inverting datasets using the ANN

The ANN model was trained using 251 known syntheaegity models, each having
different geometries, resistivity values and hogtddiam resistivity. All cavity targets
were modeled as quadrilaterial objects in the inginbeing representative of target
cavities often found at archaeological sites infEde.g., EI-Qady et al., 2005; Miller et
al., 2005) (Figure 3.3). The objective of the thaghwas to establish a relationship
between the inputs and outputs of the ANN, by mining the back-propagation

objective function (Figure 3.2).

Figures 3.5¢c and 3.5d shows the disconnect inverar@ ANN section for the single
cavity model. The disconnect inversion results m iemproved recovery of target
geometry relative to that obtained from initial ®thness constraint inversion. The
detected cavity boundary from the ANN model hasagrage model error of 0.1, while
the average model error for the watershed predgeetnetry is 0.3 In addition, the ANN
shows improved recovery for the single cavity magty relative to that obtained from
the initial smoothness constraint and disconnecersions. The average model error
when including the resistivity of the single cavity the ANN is 35 relative to 375 in the

L1 norm image and 400 in the disconnect inversioage.

Figures 3.6¢c and 3.6d shows the disconnect inverai ANN section for the widely
spaced cavities model. The disconnect inversiomagaults in an improved recovery of
both geometries and resistivity of both cavitielatree to that obtained from the initial

smoothness constraint inversion. The ANN, howelvas, more success in predicting the
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geometry and resistivity of each cavity than thetenshed predicted geometry and
disconnect image. The average model error whemastig cavities dimensions in case
of ANN is O15relative to 0.2 in the weatershed imaghe average model error when
including the resistivity of each cavity for the ANs 32.5 relative to 262.5 in the L1

norm image and 257 in the disconnect inversion an&ggures 3.7¢ and 3.7d shows the

disconnect inversion and ANN section for the clpssdaced cavities model. Unlike in

the L1 norm and disconnect inversion approach (B#ieand Slater, 2010), the ANN
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section clearly depicts the presence of two ressfeatures basically due to the initial
success of the watershed algorithm in identifyingnt , with the cavity on the right
predicted as the more resistive. The reconstrucfgeometries and resistivity values of
both cavities are improved compared with the resalitained from the L1 norm or
disconnect inversion. The detected cavity boundafiem the ANN model has an
average model error of 0.15 relative to 0.3 in cakaevatershed predicted geometry,
whilst the model error when including the residtivof each cavity for ANN is 75
relative to 302 in the L1 norm image and 212.5hi& disconnect inversion. Figures 3.8c
and 3.8d shows the disconnect inversion and ANNisedor the three closely spaced
cavities model. As expected, the ANN section cleakkpicts the presence of three
resistive features, with the cavity on the righgdicted as air filled. The reconstruction of
geometries and resistivity values of the cavitiesimproved compared with the results
obtained from watershed algorithm, L1 norm or diseect inversion. The detected cavity
boundaries from the ANN model has an average merdet of 0.3 relative to 0.6 in case
of watershed image, whilst the model error wheruiiag the resistivity of each cavity

for ANN is 23k relative to 28k in the L1 norm im@agnd 29k in the disconnect image.

Table 3.1 summarizes the performance of the disatnnversion and the ANN for the
four model scenarios. In general, the RMS errothef ANN model misfit is much less
than the model misfit of the watershed algorithnmLbrmorm for all model scenarios. In
addition the RMS model misfit based on when thgdaresistivity is included in the

model misfit calculation is significantly reducednepared to when it is included.
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To test the performance of our ANN model on morisydata, we applied our approach
on the two closely spaced cavity model obtainedhfioverting data contaminated with
5% and 10% noise. We assumed an accurate data leemsis during the inversion

process and we followed the same processing stepdescribed in other synthetic
models. As shown in Figure 3.10, the ANN betteokers the geometry and resistivity
values of the two cavities compared with the wdiedsalgorithm, L1 norm model and
the disconnect inversion model. In addition, thenested geometry and resistivity of the

two cavities are consistent with the previous rsstéscribed in Figure 3.7d.

Table 3.1, Comparison between the model misfitltesi disconnect inversion and ANN
for the known field and synthetic models, where-Ddepth, ‘W’— width, ‘H’ — height,
‘R’ — resistivity (Ohm m), and ‘L1’ — L1 norm.

Resistivity . . Watershed L1 ANN RMS model error
True dimensions (m) .
Models Algorithm (WA)
D W H R D w H R D W R Without ‘R’ With ‘R’
L1  ANN
WA | ANN
Onecavity 1.2 40 245 1000 08 43 21 200 1 3.25 930 0.3 0.1 375 35
Two 1.0 40 1.7 500 1.2 40 15 200 1.1 4 1.9 444 0.2.1 0 150 28
cavities-
widely 1.0 40 1.7 1000 1 43 1.7 250 1 4.1 2 926 0.2 0.8375 37
spaced
Two 1.7 28 1.5 500 16 31 14 200 1.8 29 1.7 562 0.20.1 125 31
cavities-
closely 1.7 27 1.5 1000 14 29 16 200 16 28 1.8 759 2 0.0.2 300 120
spaced
Three
. 1.7 27 1.5 500 1.1 28 2 200 14 2.6 1.3 501 0.5 .2 0 150 0.5
cavities-
closely
1.7 27 1.5 1000 11 3 21 200 1.4 2.5 1.4 630 0.50.2 400 185
spaced
17 27 15 100k 11 35 24 250 14 29 21 17K.8 0 04 49 41k
Field
08 29 14 09 16 12 18 102 29 098 176k8 0. 0.3 -

example
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Figure 3.10: Results of the more noisy two closgdgaced cavities model (a) L1 norm
section obtained from inverting data contaminatét &% noise (b) detected boundaries
based on a (c) ANN model (d) L1 norm section ol#dinfrom inverting data

contaminated with 10% noise (e) detected boundaassd on d (c) ANN model (model

misfits are shown in sections and boxes denotectugy outline).
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3.6. Field studies

3.6a. Application to field data: Locating a knowmmel

In order to illustrate this approach on real datggbe ANN was first applied on datasets
acquired over a known void underneath a bridge. déph and dimensions of the void
underneath the bridge were recorded in the fielek Void is filled with air and buried at

a depth of 0.8 m, having a width and a length 8ffi.and 1.4 m (Fig. 3.11a). The survey
line was laid out about 1 m from the edge of then&l and the tunnel extended
sufficiently far in the direction perpendicularttee survey line, that it can essentially be

considered a 2D structure appropriate for 2D adipmisand inversion.

A 2D dipole-dipole array with 1 m electrode spacengd 6 depth levels was acquired
using a Supersting automatic resistivity system I(AGtruments, USA), providing 864
measurements, with a modeled maximum investigatepth of about 6 m. The inversion
followed the same processing steps as performetthesynthetic datasets. Figure 3.8b
shows the inverted resistivity profile using théial smoothness constraint inversion and
a homogeneous starting model. The section dis@aysde range of resistivity values.
The anomalous zone of high resistivity located leetwll to 13 m on the profile and at a
depth of about 1 m coincides with the bridge andssumed to be the response of the
void underneath the bridge. This anomaly is eloedjadnd is not a good representation
of the known geometry of the void. In addition, thad is not represented by a feature
with a homogeneous resistivity. The results of wipgl the watershed by simulated

immersion technique on Figure 3.11b is shown irufgg3.11c. Based on this result, the
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void is predicted at 1.1 m depth, with a width amdength of 1.5 m and 1.7 m
respectively. The disconnect inversion resultshiswn in Figure 3.11d. The anomalous
zone belonging to the void has sharper boundarigss still elongated and its resistivity
is significantly less than that expected from arfiled void. The results from the initial
smoothness constraint inversion and the waterslgedthms were input in the ANN and
the result is shown in Figure 3.11c. The ANN preddec void with a very high resistivity
176300 Ohm m) and with a geometry that has an RM8efrerror of 0.3 relative to 0.8

in the watershed image based on the known fieldhgty (Table 3.1).

3.6b. Application to field data: mapping cavitiesQurnet Murai

We next applied both the disconnect inversion amdNAon datasets acquired from
Qurnet Murai, Egypt (Figure 3.12). The site is kechon the western bank of Luxor city.
Resistivity surveys have been conducted at thesisitan effort to locate undiscovered
artifacts, primarily tombs. As previously discussdte geometries of those tombs are
expected to have similar dimensions to the synthedivities explored in this study
(Elwaseif and Slater, 2010). Eight parallel 2D sésity lines, 32 m long and spaced 5 m
apart, were collected at the survey site in May&0® dipole-dipole array with 1 m
electrode spacing and 6 depth levels was utilipedyiding 111 measurements and a
maximum investigation depth of about 4 m. Due tmeti constraints in the field,
additional quadripoles used in the synthetic swidieere not collected during this
experiment. Figure 3.12a shows the inverted re#igtiprofile from the initial
smoothness constraint inversion. The section dyspdawide range of resistivity values.

The top resistive layer (~ 3000 ohm m) is commothia environment due to very dry
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sediments at the surface as a result of extensigoeation driven by high temperatures
(regularly reaching 46° C at this site). Below tBigface layer, resistivities are much
lower, ranging from 20-300 ohm m, primarily dueitacreasing moisture content with
depth. An anomalous, relatively high resistivitynea(between 1-3.5 m depth) occupies
the area between 16 to 20 m along the line andispexted to relate to a cavity filled

with friable soils.

The results of applying the watershed by simulat@dersion technique predict that this
suspected cavity is located at 1.6 m depth andmswlide (fig 3.12b). The disconnect

inversion result is presented in figure 3.12c. Thet mean square error between the
theoretical and measured data was 9.3 % withouigus$ie disconnect boundary in the
inversion, compared with 7 % after employing it.pApng the ANN (Fig. 3.12d), the

suspected cavity is located at 1.2 m depth, is Wide and is 4 m long. The estimated
depth of this cavity, is consistent with the preserof diffraction hyperbolae at a

horizontal distance of around 14 m on the profild at a depth of 1.25 m recorded in a
radar profile collected very close to the resisgiline (Elwaseif and Slater, 2010). The
predicted cavity dimension is also consistent vpitbvious excavations at field sites in

Egypt (e.g., Metwaly et al., 2005).
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Figure 3.11: Results of the known cavity model Pdoto of the cavity (b) L1 norm
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Figure 3.12: Results of the unknown field modell{Anorm section (b) detected
boundaries based on a (c) disconnect inversion hfdd&NN model.

3.7. Discussion

The commonly applied smoothness constraint invergonot ideal for imaging buried

targets with sharp resistivity edges, since it gates models characterized by a smooth
distribution of resistivities over a wide rangewvafiues. Using a disconnect boundary in
the inversion estimated from the watershed algaoritlan improve imaging the geometry

of such targets, although target resistivity valaes underestimated and closely spaced
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targets are not individually resolved (Elwaseif aldter, 2010). We have shown here
that using a trained ANN in place of this discortr&tep can improve the reconstruction
of dimensions and resistivities of such targetst &wample, based on the synthetic
studies, the single cavity and the closely spacadties models show very similar
smooth inversion results and both images wouldylike interpreted as evidence of a
single buried cavity. Although the watershed idiggi boundaries in the closely spaced
cavity image, the resistivity and dimensions of tlwe cavities are not well predicted in
the disconnect inversion model. In contrast, asvshio Figure 7d, the ANN significantly
improved the reconstruction of the resistivity agpebmetries of these closely spaced

cavities.

We have described a two step approach whereby inpageessing of an initial
smoothness constraint inversion is used to determairfirst estimate of likely target
location and geometry, from which the ANN is aldeoptimize. The performance of the
ANN depends significantly on the given model scargaduring the training stage. Better
performance will be achieved when a large numbemotiel scenarios with different
dimensions and resistivity values are input. Hére, ANN was trained on quadrilateral
targets due to oua priori knowledge that the targets of interest fit thismgetry. Thus,
unlike the disconnect inversion approach descrimyedElwaseif and Slater (2010) that
does not require angriori information, the expected shape of the targetsl uisehe
training is the required priori information in this approach. Since the shapdeftarget
is known priori, it might be not surprising that the ANN gives bettesults than the

disconnect inversion approach. However, furthemimng on a wider array of target
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shapes would reduce the amount of a priori infolonaéffectively incorporated within
the ANN. That said, the strength of the ANN isttiigrovides a very effective way to
incorporate appropriate a prior information througaining when targets have specific

shapes as often the case for archaeological fesature

Synthetic studies demonstrate that the ANN largetuces the model misfit relative to
that obtained with the initial smoothness constrand disconnect inversions and
generates more realistic representations of des¢aggiets considered here. Data misfit is
compromised, but this is to be expected given thatANN is trained to predict few
model parameters that are only related to targeamatfies. The highly over-
parameterized smoothness-constrained inversionamithys find numerous models from
the large number of possible parameter combinatibas result in a low data misfit.
However, these models usually do not provide a gmsbidnate of target dimensions in the

case of discrete targets.

The ANN used here is effective at predicting taidgeation and geometry. In addition,
our approach shows more success in reconstruttengegometry and resistivity of targets
than the L1 norm, disconnect inversion approactvatershed algorithm. This is clearly
shown from the model misfit results presented bietd.. The model misfit for excluding
resistivity (i.e. only using target geometries)ass than the model misfit when the target
resistivity is included. The estimation of targetsistivity and geometry could be
improved by increasing the number of models usettaiming the ANN. However, the

limited accuracy in the target resistivity will eft not be a major concern in many
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archaeological and engineering studies where wenast often interested in target

location and geometry.

We have demonstrated the application of our appré@adield datasets collected at a site
in NJ over a known void and a site in Egypt whexeitees are suspected. The approach,
particularly the application of the watershed, asnewhat subjective, especially in the
case of dealing with noisy data when smooth resigtimages will likely contain image
artifacts or additional local resistivity structubeyond that caused by the targets of
interest. Without additional information (as wasaidable in the survey over a known
tunnel), it would be difficult to identify appropie boundaries from the watershed
algorithm. Such ambiguity could be reduced from tksults of other geophysical
methods as we describe in our field study at QuiMatai. In this field study, the
suspected anomaly in the resistivity model thatltesfrom the cavity was confirmed

using the GPR data.

Our synthetic studies were overly simple in thaeythassumed a single uniform
background resistivity that the ANN was trainedptedict. However, as a result of the
highly variable resistivity away from targets atlréield sites, the ANN approach was
adjusted to search only for target resistivity amensions. In this case, the ANN was
given the average resistivity outside of the priediavatershed target boundaries as input.
Based on observations during the training of theNAtNe ratio of target to background
resistivity has a significant effect on both thendnsions and the centre resistivity of

predicted targets. For example, as the ratio gfetato background resistivity increases,
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the predicted target anomaly will have sharper dades but the centre resistivity value

of the anomaly will be smaller than the actual ealu

Results from the field and the synthetic studieggsst that the ANN approach has
potential for reconstructing the geometry and tesig of discrete targets in field

datasets. One interesting advantage of our appngaitiat it can be applied to images,
without needing raw data, to provide estimatesanfidt geometry. The average host
medium resistivity and the target central resigtiwalue can be estimated from the
resistivity scale, whereas the target boundaries @ estimated using the watershed
algorithms. These estimations can be used as am taphe ANN in order to estimate an

updated model of the target resistivity and geoynetr

Our approach is subject to some distinct limitadiofirstly, the performance of an ANN
will depend on the adequacy of the training effortthis study, the training of the ANN
is based only on synthetic datasets. Ideally, thiNAshould be trained on field data
where target are known (Park et al., 2010). Unfaately, such datasets are most often
unavailable. Furthermore, the ANN output is ultietgtin part conditioned on the

original smoothness constraint step on which thiershed algorithm was applied.

3.8. Conclusions
Application of an ANN conditioned on the results af initial smoothness constraint
inversion and subsequent image processing, apfdeatse a viable approach for

determining the location of discrete targets instesty datasets. We have shown that the
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predicted boundaries and resistivity of the targessng an ANN are significantly
improved when compared with results from the ihgi@moothness constraint, disconnect
inversions and watershed algorithm. However, thé&NAdyproach shows more success in
predicting the geometries of targets than theiistiegty values, which make it an
appropriate approach for studies that focus moreresovering the geometry of
subsurface targets such as archaeological studigsing this approach the geometry of
multiple targets, even when separated by a distlassethan the unit electrode spacing,
are fairly well recovered. Our approach was denrates on targets that have rectangular
shapes, but it can be adjusted to fit any targapshoy retraining the ANN on those
shapes. The approach appears promising for piregl@rchaeological artifacts in Egypt
where previous excavation confirmed the same shdpssribed here. In addition to
archaeological artifacts, the approach might algo appropriate for predicting the

location of engineering structures and voids irskanvironments.
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Chapter 4: Improved Resistivity Imaging of Targetswith Sharp Boundaries Using

an Iterative Disconnect Proceduré

Abstract
The smoothness constraint inversion is not appapifior imaging sharp targets such as
archaeological structures. Alternative approachexpiires either a priori information
about the subsurface (e.g. disconnect inversionjequires two or more geophysical
datasets to be collected at the same site (et ijoversion). Here we propose a 3D
inversion strategy that does not require a prioforimation and is theoretically more
appropriate for imaging targets with sharp resisticontrasts. Our approach combines
an initial smoothness constraint inversion thatged only at the first iteration to recover
a resistivity model that is fairly consistent witre measured data, from which an initial
target location is estimated using an edge detecaihod and from which a disconnect
in the inversion is identified. This disconnectfidieg the target outline is then
progressively improved following each iterationtloé inverse procedure. We applied our
approach on 3D synthetic studies that include glsioavity, widely and closely spaced
cavity models. In addition, we tested our approaclka challenging synthetic field model
scenario that simulates archaeological field sitelSgypt. Synthetic studies demonstrate
the effectiveness of our approach in recoverind iesistivity and geometry of buried

targets over the smoothness constraint inversipnoagh.

This chapter has been accepted as: Elwaseif, ML, Sdater, L., 2012, Improved Resistivity
Imaging of Targets with Sharp Boundaries Using tamative Disconnect Procedure, Journal of
Environmental and Engineering Geophysics, Accepted.
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4.1. Introduction

The resistivity method is used to predict buriedjeéts that have a detectable electrical
resistivity contrast relative to the host mediunmheTsuccess of the method in imaging
targets is based on employing both an appropria@® dollection setup and an
appropriate inversion strategy honoring the charsstics of the subsurface environment.
The data collection setup should take into accaumtumber of parameters such as
subsurface geology, depth and dimensions of inyat&td targets (e.g., Loke, 2004). Such
parameters would determine the amount of injectadent to the ground, array
configuration, and electrode spacing. Recent ac&ntmulti-channel resistivity meters,
in addition to advances in computing power makedkdimensional (3D) resistivity
surveys more common, less time consuming and estspcohibitive. Such 3D surveys
and accompanying 3D inversion are inherently mpg@priate to image targets such as
isolated cavities at archaeological sites than BEveys and 2D inversion, since such

cavities are inherently 3D targets.

The choice of an appropriate inversion strategyaised upon the availability af priori
subsurface information from geological logs or miation from other geophysical
methods, along with the characteristics of the emfgguspected targets [i.e., diffuse vs.
sharp]. In the absence afpriori subsurface information on the geometry and distidin

of buried targets, the smoothness constraint imwerss utilized to produce smooth
resistivity images that represent the minimal dtrieerequired to satisfy the data. Such a
regularization constraint is often very appropriatben the objective is to predict

changes in resistivity due to variations in moistand/or salinity across space and time.
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However, when the objective is to predict targétst have sharp resistivity edges (e.g.,
cavities, tunnels, voids), the smoothness constrainonceptually inappropriate as such
targets represent a sharp change in resistivitgysacsome unknown boundary location.
Therefore, it is difficult to assess the true regity and edges of these targets from the

obtained resistivity models.

When a priori information is available, other inversion stragsgmore appropriate for
defining sharp resistive targets such as disconmreint inversion can be utilized. For
example, Slater and Binley (2006) describe a meatkibn of the smoothness constraint
to accommodate sharp boundaries whereby a ‘disctinnethe smoothing is defined
along the boundary of an object. The inversion thares for a smoothly varying model
structure across the host medium and within theodisected target but does not permit
smoothing across the boundary defined by the disstin Bouchedda et al. (2012)
describe a joint structural inversion algorithm foross-hole electrical resistance
tomography (ERT) and cross-hole radar travel timmadgraphy (RTT) that better

reconstruct zones characterized by sharp boundaries

A few studies have been conducted to improve tbengruction of targets characterized
by sharp boundaries without the needddqriori information. For example, Hordt et al.
(2007) and Blaschek et al. (2008)) describe a 2bBiptex resistivity inversion that
incorporates a regularization parameter that attengpestimate sharp boundaries based
on minimum gradient support. However, since différealues of that regularization

parameter will lead to different models, these igtsidtill require additional constraints
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on expected subsurface geology to achieve a relialoldel. Elwaseif and Slater (2010)
describe processing procedures for the reconsbtructi geometries and resistivities of
buried targets. Their approach combines an iniR2lsmoothness constraint inversion
coupled with a digital image processing technignevkn as the watershed algorithm to
predict the target boundary and a second inversigm incorporating a disconnect in the
regularization based on the boundary output bywhtershed algorithm. Although this
approach resulted in an improved estimate of tlengdries of individual targets, it was
not very effective at predicting the resistivity thie targets or resolving closely spaced
targets. Elwaseif and Slater (under review) enhdntieeir previous approach by
replacing the second disconnect inversion step wittained Artificial Neural Network
(ANN). Although this approach has been proven déffecfor resolving widely and
closely spaced archeological targets, it is timesoming and the results depend largely

on the quality of ANN training.

Here we propose a 3D resistivity inversion approtitdt does not requira priori

information, and is more appropriate for imagingyéds with high resistivity contrasts.
Our approach combines smoothness constraint aedrgtisct inversion coupled with a
digital edge detector technique called Robertsssmgradient operator to improve the
model through iterative updates of both the restgtimodel parameters and the
disconnect boundary. We tested our combined inmerapproach on 3D synthetic studies
that of a single cavity, widely and closely spaca¥ity models, and a field model

scenario.
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We focus on synthetic studies of discrete targepsesentative of expected features at
archaeological sites in Egypt. We emphasize thatsuch archaeological studies,
recovering the geometry and resistivity of thosgets is needed to fulfill the objectives
of a non-invasive archaeological survey. The resigt of these targets provides
information on the material filling the cavitieshereas the geometry of these targets is
important for performing a successful excavationerapon. Synthetic studies
demonstrate the effectiveness of our approachdovexing the resistivity and geometry

for single and multiple cavity features.

4.2. Methodology

4.2.1. Smoothness constraint and disconnect irorersi

The objective of resistivity inversion is to finch@odel that contains a resistivity structure
consistent with expectations regarding the likeigtribution of resistivity within the
subsurface, whilst providing a set of theoreticalasurements that fit the measured data
to some pre-described acceptable level (e.g., kbla., 2003; Gunther et al., 2006). The
smoothness constraint inversion is utilized to poed smooth resistivity images that
represent the minimal structure required to satibfy data (respecting the noise level)
when subsurfaca priori information is absent. Smoothness regularizatsocommonly
based on two minimization schemes commonly refetoeds the L2 norm and the L1
norm (Ellis and Oldenburg, 1994). The L2 norm engi#es models with smoother
variations of resistivity as it minimizes the sqemrof the differences between the

measured and modeled transfer resistances andferedces between the estimated
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model and expected model structure. The L1 normhasipes models with sharper
boundaries between regions of different resistivéijnce it minimizes the absolute
differences between measured and modeled resystaities (and/or differences between
the estimated model and expected model structuake(et al., 2003). The L1 norm is
therefore conceptually more appropriate for imagshgrp resistive targets than the L2

norm, although it suffers from being more sensitivelata noise (Hordt et al., 2007).

The resistivity inversion is an underdeterminedbfgm since the number of model
parameters is much larger than the number of meamnts. In addition, since many
models can fit the measured data to the same agcle®el, regularization is a critical
component in the inversion process to ensure fgndimeasonable resistivity model. The
smoothness constraint inversion is carried outdbyirsg the following objective function

(Claerbout and Muir, 1973):

(.P(l'ﬂ] = Elllwd (dmeas - du:nl:lsj"2 + S "W(Iﬂ— mrefjllz---(4-1)

where W, is the data weighting matrixghisrepresents forward response for a specified
model, dps is the measured field datf, is the regularization parametad/ is the
regularization matrixm is a model at a given iteration, angk is the reference model.
The objective function in equation (4.1) has bo#tadand model terms to ensure
obtaining a reliable final model. The first termata misfit, ensures that the forward
response of the predicted model is consistent thithmeasured data. The data weighing
matrix permits incorporation of the data noiselia inversion process. The second term

forces the model to fit our expectations basedchemtpriori information contained in the



79

regularization matrix. The regularization matrixsithe following form (Loke and Lane,

2002):

W =, CIR,,C, +o, CTR,C, +, CTR,,C,...(4.2),

wherea is the smoothing parametér, is the roughness matrix, aml, is the model

weighting matrix. Starting from a homogeneous eambdel, the Gauss-Newton
approach is used to invert for the ‘best’ modet thaclose to our priori expectations and
well fits the observed data. The approach minisitbe objective function by estimating

the model perturbation using the following equaiiBrdlisecky et al., 2007):

0T+ BWW)AM = — (JT(dumess — daps) + BWTW(m —m,) ) (3)

(J'7+ pWTW)Am
= (]T(dmeas - dﬂhs} + BWTWEIH— mrefj) E43j

whereJ is the Jacobian matrix aman is the model perturbation.

The disconnect inversion is a modification of tinaditional smoothness constraint to
accommodate sharp boundaries whereby a ‘disconmet¢tie model space is defined
along the boundary of an object (Slater and Bin2&§)6). However, the method requires
that the boundary of the target be knowrpriori. In the case of a known subsurface
boundary, the disconnect inversion is be implentbiegiving small weights within the

weighting matrix at the position of the boundaryg @pecifying a different regularization

weight inside the boundary region (e.g., Loke aadd, 2002; Bouchedda et al., 2012).

The regularization matrix (equation 4.2) is thendated based on the information
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contained in the weighing matrix, which resultsmodels containing sharp gradients at

the locations of a known boundary.

4.2.2. Edge detection using Roberts’ Cross-graddgrator

Edge detector methods can be applied on resistimiyges to locate the edges of
different target anomalies. Locating an edge ineslapplying filter masks to compute
the magnitude of the gradient at every pixel laoatwithin an image (Gonzalez and
Woods, 1992). The masks employed in the Robertsssegradient operator (Robert,
1963) and sample image are shown in Figure 4.1si@ena 3 x 3 resistivity image
having gray values with intensity {Zwhere i = 1 to 9. The first-order partial deriiat

at Zs in the x and y directions can be estimated usinggons (4.4 and 4.5),

Sample grayscale image with intensity ‘Z’

Zy | Zp | L3
Zy | Zs | Zg
Zy; | Zg | Zg

Roberts’ filter masks (K)

Y-direction X-direction
0| -1 1] 0
110 0| -1

Figure 4.1: An example image and masks used to atemiie edges using Roberts’
operator (after Gonzalez and Woods, 1992).

G,=(Z,—ZHK ....(4.9)
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G, = (Zg— Z)K ....(4.5)

whereK is the Roberts’ filter masks shown in Figure 4.1.

The magnitude of the gradient, as well as thectoe of an edge perpendicular to the
direction of a gradient vector, are computed usngations (6 and 7) (Gonzalez and

Woods, 1992).

1
Vf = mag(VF) = [G2 + GZ]*k ... (4.6)

o (x,y) =tan™?! (%)k . (47

x
The Roberts’ cross-gradient Operator was selecteoing other popular edge detector
methods such as Canny (Canny, 1986) and Sobel (Ehgd, 2006), since it provided

more accurate edges when tested on different 3Btikety images. Figure 4.2 shows a
comparison between the performances of the thrge ddtector methods when applied
on a resistivity image to locate the edges of twmnaalies. The Canny method

overestimated the edge locations and created additiunrealistic edges, whereas the
Sobel method underestimated the edge locations Rbfeerts’ method gives the closest

approximation to the actual edges.
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(B)

Canny

Sobel

Roberts'

Figure 4.2Results of applying the Canny, Sobel, and Robedge detectors on the (A)
widely spaced cavity model, and (B) closely spazadty model.

4.2.3. Description of the approach

We propose a combined inversion strategy that doesequirea priori information and

involves both smoothness constraint and discoringetsion coupled with digital image

processing. The disconnect inversion is carried umihg a priori information on the

target locations obtained from the Roberts’ crasshgnt operator. The major element

and advantage of our approach is that it iterativiehproves the location of the

disconnect boundary after each iteration, allowiog a better prediction of both

resistivity and geometry of buried targets.
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Check for convergence?

Solution
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Update model

Figure 4.3: Flow chart showing (A) digital imagepessing steps and (B) the processing
steps used in this study.

The sequence of processing steps involved in oproagph is described in Figure 4.3.
During the inversion process, starting from a hoemmyis earth model, the smoothness
constraint inversion is performed only on the fitstration of the non-linear iterative
optimization algorithm, since it usually producesiaitial resistivity model that is fairly
consistent with the measured data The Robertssayoedient operator is then applied on
that model to predict the edges of any targetse@sd image processing step is then

applied on the resultant edge detector image tarenthat the predicted edge is fully
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closed and to fill the boundary region. The residlthe second step is a binary image
with 1's located at the anomaly region and O’s ywhiere else. The latter two steps help
to identify the location of the edges and the enéinomaly regions as shown in Figure
4.2a. Those locations are then used to update tiaelnweighting and regularization

matrices as described above. The inversion prabessprogresses using the disconnect
inversion and the above steps are repeated uatgdiution converges. Figure 4.4 shows
the iterative inversion results for the single tawnodel using our approach. The

resistivity and geometry of the cavity anomaly pesgively improve after each iteration.

4.3. Synthetic models

We calculated the synthetic apparent resistivityaskets for a sediment filled single
cavity, two widely spaced cavities (separation >wt @lectrode spacing), two closely
spaced cavities (separation < unit electrode sgacamd a field model scenario consists
of a single cavity buried underneath a top resstayer considered to be representative
of site conditions in Egypt. The 3D forward modglidatasets were generated using the
forward modeling and inversion code, RESINVM3D (Recky et al., 2007). The
cavities were assigned a resistivity of either m001000 Ohm m, whereas the host
medium was assigned a resistivity of 100 Ohm nllis@narios. These were considered
reasonable representative values based on knowfsré®m cavities at archaeological
sites in Egpyt (e.g., Metwaly et al., 2005). Wddwaled the simulation setup as described
in Pidlisecky et al. (2007). In each case, ninekyetectrodes were used to create the
synthetic data; thirty eight of these electroddsoaty as potential electrodes, whereas the

remaining fifty eight electrodes act as both curard potential electrodes. The electrode
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Figure 4.4: Example of the combined inversion rsspker iteration (A) first iteration
using smoothness constraint inversion, (B) to (&€)the second to fifth iterations using
disconnect inversion.
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spacing is 1m and the simulations involve forty am#ependent current pairs. For each
of these pairs, data are recoded using dipolebearédmaining ninety four electrodes,
providing 3813 measurements for each model scenatlosynthetic datasets were
contaminated with 3% Gaussian noise, representafivise levels expected in typical

field data.

The first single cavity model involved a cavity lagr at 1.3 m depth, having a width and
breadth of 2.5 m and a length of 1.5 m and regigtof 1000 Ohm m (Figure 4.5a). The
second scenario involved two cavities having theesgeometry (depth, breadth and
length) as the single cavity and resistivity valoé$00 and 1000 Ohm m. Two cases of
this two cavity model were considered (a) a widghgced cavities spaced 4 m apart
(edge to edge) i.e. greater than unit electrodeisggFigure 4.6a); (b) a closely-spaced
cavities model spaced 0.5 m apart (edge to edgeless than the unit electrode spacing
(Figure 4.7a). In the last scenario (Fig. 4.8a3jrmle cavity was buried at 1.7 m depth,
having a width and breadth of 4 m, length of 1.7and resistivity of 1000 Ohm m,
overlain by a high resistivity (2000 Ohm m), 1.7thick layer. This model is more
representative of expected field scenarios at aalbgical sites in southern Egypt, where
the hot weather conditions makes the near surfaderesistive (Elwaseif and Slater,

2010).
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Figure 4.5: Inversion results of the single cawuitydel (A) subsurface model (B)
smoothness constraint inversion (C) combined snrmasthand disconnect inversion
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4.3.1. Smoothness constraint inversion

The synthetic data were inverted using RESINVM3DOdI{§ecky et al., 2007). The
regularization part of the code was modified tofqen our iteratively updated
disconnect inversion approach. We chose to invitrthe data using the L1 norm
approach, since cavities exhibit sharp contrasthinvithe host medium at distinct
boundaries. In all cases a homogeneous medium lbaste average apparent resistivity
of the synthetic dataset was used as the startindein and five iterations were
performed. The results of applying the inversiontba single, widely spaced, closely
spaced cavity, and field model are shown in Figudesb, 4.6b, 4.7b and 4.8Db,
respectively. In all cases, the resistivity valdeh® recovered targets is underestimated.
In addition, it is difficult to identify a clear dline of each target anomaly. The widely
spaced cavities are clearly associated with indaicdainomalies in the resistivity images
(Fig. 4.6b). However, the two closely spaced casitppear as a single anomaly (Fig.
4.7b), instead of two separate features, due tethal spacing between cavities (here
less than the unit electrode spacing). Finally,dimgle cavity in the field model scenario

(Fig. 4.8b) is not clearly recovered, due to thghty resistive overburden.
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Figure 4.6: Inversion results of the widely spacadity model (A) subsurface model (B)
smoothness constraint inversion (C) combined snrmasthand disconnect inversion
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4.3.2. Re-inverting datasets using our combinedrsion approach

The geometry and resistivity of different synthdétiogets are difficult to predict from the
smoothness constraint inversion results, sincertbénod produces models characterized
by a smooth distribution of resistivity over a widinge of values. Re-inverting the data
with an additional constraint on the inferred legatof cavity boundaries could lead to
an improved estimate of resistivity structure wittine host medium or within the target
(Elwaseif and Slater, 2010). Figures 4.5c, 4.6¢c 4nd 4.8c show the final inverted
images of the single cavity, widely spaced doulaleity, closely spaced double cavity,
and the synthetic field model using the combineatision approach described in Figure
4.3. Our approach results in an improved recovédrpath resistivity structure of the
single cavity and widely spaced cavity models redatto that obtained from the
smoothness constraint inversion. The edge detawtinod was unsuccessful in resolving
two separate closely spaced anomalies (Figure ptegumably because there was not
sufficient grey level contrast within the singleafiere resolved by the inversion.
However, the result for the closely spaced modearty depicts the presence of two
resistive features coincident with the cavitiesn€lstent with the true model, the cavity
on the left is predicted as the more resistivealijinthe resistivity of the single cavity
and the top resistive layer of the field model scenare better recovered using our
approach (Fig. 4.8c). In addition, the combinecemsion clearly shows the outline of the
single cavity especially at higher depth. Howeiteshows the same inversion artifacts as

in the smoothness constraint inversion results.
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To assess the performance of the smoothness dohstnd our combined inversions in a
more quantitative way, the values of data misfitves are plotted at all five iteration
steps for different model scenarios in Figure 4Fhe misfits are low for all models.
However, the RMS curve of the combined inversioffrigure 4.9b shows an oscillatory
pattern, suggesting that the solution is trappeal lmcal minimum at iteration 3. Despite
this disturbance, the average data misfits foitelations are about 6% lower in the case

of the combined inversion.

4.4. Discussion
The commonly applied smoothness constraint invergonot ideal for imaging buried

targets with sharp resistivity edges, since it gates models characterized by a smooth
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distribution of resistivities over a wide range \dlues. For example, based on the
synthetic studies, the single cavity and the closplaced cavities models show similar
smooth inversion results and both images wouldylike interpreted as evidence of a
single buried cavity. Using a disconnect boundaryhe inversion can improve imaging
the geometry and resistivity of such targets. Aeashin Figure 6b, although the closely
spaced targets are not individually resolved, gwstivity of these targets is close to the

actual resistivity values (i.e., 500 and 100 Ohm m)

We have shown here that such disconnect boundarybeaestimatedvithout a priori
information using the Roberts’ cross-gradient operator. Initemd unlike traditional
disconnect inversion that has a fixed location led known boundary, our approach
optimizes the location of the boundary after edehation. Such updates will refine the

estimate of the anomaly edges and results in ingardarget location.

We have described a 3D inversion approach wheridlgy smoothness constraint
inversion is used only at the first iteration t@woeer a resistivity model that is fairly
consistent with the measured data, from which dmirtarget location is determined
using an edge detector method and from which tlseodnect inversion is able to

optimize.

The performance of our approach depends significam the accuracy of the edge
detector step. We assume that the boundaries diesapredicted using the Robert’s

cross-gradient operator are consistent with theeedd resistivity models characterized
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by sharp boundaries for which we only have a smoesistivity model. However, the
success of the edge detector method to predictaectarget boundaries depends on the
success of the initial smoothness constraint ineerstep in defining the general location
of investigated targets. That said, the final mam®hined from our inversion strategy is
sensitive to the definition of the boundary exteglcfrom the Roberts’ cross-gradient
operator. However, even when the Roberts’ crosdignd operator method cannot
accurately reproduce the target dimensions, we thiatl our approach can still improve
the interpretation of the subsurface model stractbkior example, although the Roberts’
cross-gradient operator was not able to identiyoandary between the closely spaced
cavity model because of the low gray level conttztween the two anomalies (see
Figure 2b), the recovered resistivity values of tiwe cavities are close to the actual

resistivity values.

Results from the synthetic studies suggest that approach has potential for
reconstructing the geometry and resistivity of dige targets in field datasets. One
advantage of our approach is that it does not regupriori information and the entire
processing steps are done automatically within itihveersion routine without any
interference from the user. However, the approamhisuffer from distinct limitations
when applied to field data as the effect of invamsartifacts on the final model result is
currently unclear. Given that the field studies &emore complex than the synthetic
studies presented here, the inversion might contanealistic anomalies and both the
edge detector and disconnect inversion would déhl tvose artifacts as real anomalies.

For example, given the inversion results of thettsgtic field model scenario (Fig. 8), it
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is clear that our combined inversion approach recothe resistivity and geometry of the
single cavity better than the smoothness constiawgrsion. However, the approach
magnifies the artifacts in the smoothness congtraodel. Therefore, it will be necessary
to avoid inversion artifacts by correctly quanitiky noise levels in the data and starting
with a homogenous model that represents the besisgof than situ resistivity. In the

case of no priori information about the backgrovesistivity, it is appropriate to use the

average value of the measured apparent resissiaiea starting model.

4.5. Conclusions

Application of the smoothness constraint inverstoapled with an interatively updated
inversion disconnect and digital image processapgpears to be a viable approach for
determining the resistivity and location of diserédrgets in resistivity datasets. We have
shown that the predicted boundaries and resistvityhe targets using our combined
inversion approach are significantly improved whmympared with results from the
smoothness constraint inversion. Using this apprahe geometry and resistivity of
multiple targets, even when separated by a distlssethan the unit electrode spacing,
are fairly well recovered. The approach appearsming for predicting archaeological
artifacts in Egypt where the field model scenari;esgnted here confirmed the
effectiveness of our approach. In addition to aechagical artifacts, the approach will
also be appropriate for predicting the locatiorfineering structures and voids in karst

environments.



97

Chapter 5: Conclusions

5.1. Summary and conclusions

The main objective of this research was to develapsistivity inversion strategy that:
[1] does not require priori information, and [i§ more appropriate for recovering the
geometry and resistivity of isolated and closelstcgul targets particularly those expected
at archaeological sites in Egypt. | have develojmede resistivity inversion approaches
that were applied on field data collected at arhaeological site in Egypt and/or
synthetic data representative of expected featatemchaeological sites in Egypt. The
common idea of the three approaches is centeregpiyging edge detector techniques on
smooth resistivity models explicitly or implicithyduring the resistivity inverse
procedures. The first approach involves applyingadershed algorithm on 2D smooth
resistivity images to predict target boundaried tten subsequently be used to define
disconnects in the inversion, whereas the secoptbaph uses the predicted boundaries
from the watershed algorithm along with the L1 nosoovered host medium resistivity
and target’s central resistivity as an input toaaned ANN. The final approach is a 3D
iterative inversion strategy that combines smoakneonstraint inversion that is used
only at the first iteration to recover a resisgvihodel that is fairly consistent with the
measured data, from which an initial target logati® estimated using Roberts cross-
gradient operator and from which a disconnect @itiversion is identified and updated
until the solution converges. Generally, the theggroaches improve the resistivity
imaging of investigated targets better than theahress constraint inversion. The first

approach is effective only at predicting the geoyneif isolated resistive targets.
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Although the second approach is effective in edimgathe geometry and resistivity of
isolated and closely spaced resistive targetspthput of the ANN depends largely on
the initial L1 inversion step and the accuracyh# watershed predicted geometry. The
third approach, in contrast, gives the optimum ltssover other approaches in terms of

speed, and confidence levels of retrieval.

5.2. Technical contributions

The dissertation presents three novel strategiesffsetting the pitfalls that result from
applying the smoothness-based regularization appro@r reconstruction of the
geometries and resistivities of subsurface resigtitargets at archaeological sites in
Egypt. The first two approaches can be appliedht@rted resistivity images directly,
without needing raw data, to extract quantitatiwBbimation on target dimensions not
ascertainable from the inverted images. Furtherptbeeboundaries can subsequently be
used as input to a trained ANN in order to estinaateupdated model of the resistivity
structure of the targets. The third iterative diswect procedure approach can be applied
as well to determine the resistivity and locatioh conductive discrete targets in
resistivity datasets. In addition, the three apphea will also be appropriate for

predicting the location of engineering structured ®oids in karst environments.

5.3. Recommendations for future work
The watershed algorithm appears to be an effecdpperoach at predicting targets
geometries from the smooth resistivity images exawhiin this research. However,

further work is needed to examine the performaricéthe watershed algorithm under
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more complex model scenarios (e.g., models thatagontargets having different
geometries, varied resistivity values and buried heterogeneous host medium).
Furthermore, more work is needed to better undaisthe effects of using different
inversion algorithms on the watershed results asd & find ways to enhance the

geometry prediction of the watershed algorithm wapplied to noisy data sets.

The application of the ANN approach on more fieldtad collected at different
archaeological sites in Egypt is needed to refirgeapproach, for example, by increasing

the learning capacity of the ANN by training itngireal field data.

Although the iterative disconnect approach has Ipeewven effective in synthetic studies,
application of the method on field data is essémtiaexamine the performance of the
approach. Furthermore, finding alternative edgeeatet methods more appropriate in
predicting edges in 3D smooth images and moreieffian predicting closely spaced
targets might significantly improve the performangiethe approach. In addition to
examine it on field archaeological data, the apghmo&an be adapted to invert
hydrogephysical resistivity data, particularly whitvere is a sharp change in resistivity

between subsurface layers.
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Appendix I: Applying the watershed algorithm and disconnect inversion on

resistivity images

[1] Required codes:

[a] A 2D resistivity forward modeling and inversionde such as Resd2inv and R2 (free
for academic use).

[b] A digital image processing code with the waltexs algorithm included such as

ImageJ or Matlab with image processing toolboxuded.

[2] Step by step instructions on applying the wateshed algorithm on resistivity

images:

[a] Plotting the inverted resistivity model withagtaling the model resistivity values.

Distance (m)
5 10 15 20 25

Inverted resistivity image
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[b] Converting the resistivity image to a grey scahage.

Distance (m)
10 15 20

(w) yydaq

Grey scale resistivity image

[c] Applying the Gaussian blur and mean filterdlte Grey scale image.
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Filtered resistivity image using mean filter
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[d] Applying the watershed algorithm on the filtdrenage.

Distance (m)
5 10 15 20 25

w) yideg

(

Results of applying the watershed algorithm on théltered image

Note: the Gaussian blur and mean filters are necessgmetent over segmentation as

shown in the figure below.

Distance (m)
5 10 15 20 25

(w) ydeag

Results of applying the watershed algorithm on thenfiltered image

[3] Inverting the data using the disconnect inversin approach

Most commercially (or academically) available résity inversion codes such as
Res2dinv allows for the direct incorporation of kWmoboundaries in the inversion
process. Following the application of watershegathm, the x and z locations of the

predicted boundaries are used as priori informatidhe disconnect inversion approach.
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Appendix II: Applying the watershed algorithm coupled with the L1 norm and
Artificial Neural Networks (ANN).

[1] Required codes:

[a] 2D resistivity forward modeling and inversioode.

[b] A digital image processing code with the walexd algorithm included.

[c] ANN software such as Neurosolutions and Matlalth Neural Networks toolbox

included).

[2] Instructions for training the ANN:

[a] Creating resistivity synthetic data that représa wide range of possible expected
targets at field sites, and contaminating that datia noise levels similar to those
expected when collecting the real data.

[b] Inverting the data using the L1 norm approaglassuming correct, underestimate

and overestimate noise levels.

[c] Applying the watershed algorithm on the invedrtaodels and extracting the input
parameters for the ANN as shown in the figure beliosv, host medium resistivity and
central resistivity value of each target anomahgd depth, width, and height of each
target anomaly).

[d] Training the ANN by using as an input the egteal parameters from the L1 norm
and watershed algorithm, and using as an outpuadhel parameters of the synthetic
targets.
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[3] Notes:

[a] The performance of the ANN will significantlgnproved if the ANN is trained using

field data in addition to synthetic data.

[b] The ANN could be trained to recover targetd tieve irregular geometries by
increasing the number of inputs for each paramEtarexample, the depth of a target

could be defined using three values instead of one;value at each end of the target

surface and one value at the center.

Distance (m)
5 10 15 20 25

)
(0]
g_ Host medium resistivity
= Central resistivity
Distance (m)
5 10 15 20 25

0
3 NS
5
3T 4

(

6
Extracting the input parameters for the ANN. Ndtattthe host medium resistivity value

should be defined using the resistivity value @ slame color contour for all models, and
the target’s width (w), depth (d), and height (Ig extracted at the middle of the

watershed boundary.
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Apendix llI: Iterative disconnect inversion
[1] Required codes:
Open source 3D resistivity inversion code such BSIRVM3D.
[2] Instructions for the approach:
The resistivity code should be modified such thatédge detector method is applied on
the smoothness constraint resistivity model th&iokd from the first iteration. The
model weighting matrix is then updated by defingngall weighting values at the

locations of the predicted boundaries. The lakp 8till initiate the disconnect inversion

procedure, which will continue until the solutioonwerges.
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Appendix IV: Geophysical and Hydrological Investigdions at the West Bank of Nile

River (Luxor, Egypt)*

Abstract
Luxor, the modern Egyptian city that occupies tie of ancient Thebes, is famed for its
magnificent ancient monuments. Since 1967 the Ashigh dam has prevented the
annual flooding of the Nile River, resulting in @ssive salt accumulation on the Nile
floodplains and on exposed monument surfaces.drtiad, the expansion of agricultural
land within the Luxor study area has resulted osreased salinity and groundwater level.
These conditions accelerate the degradation oé8wnd exposed monuments that were
fairly well preserved in the past. To mitigate ttpsoblem, it is necessary to first
understand the near-surface setting and the graatedwonditions of the Luxor area. A
geophysical investigation was carried out usingstiéty and electromagnetic surveys.
Additionally, a chemical analysis was conductedahe surface water samples collected
from canals and the sacred lake of Memnon TempBased on the results of the
geophysical surveys and the chemical analysis ef water samples, the shallow
subsurface was characterized into four geoeleaiennits. Groundwater flow directions
were determined to be from the central area taviést, causing a rise in the groundwater

levels and groundwater salinity in the area of nmoents.

This paper has published as: Elwaseif, M., Abddila, Abdel-Rahman, M., and Ismail, A.,
2012, Geophysical and Hydrological Investigationstree West Bank of Nile River (Luxor,
Egypt), Environmental Earth Sciences Journal, 80i1007/s12665-012-1525-2
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Introduction

Luxor, Egypt, occupies the site ancient Thebesclwhvas known for its buildings and
many large gates. The west bank of Luxor (Figuredntains more than thirty known
limestone temples, most of them built by the rulefdhe New Kingdom (1549-1069
BC). Both buried and exposed archaeological featare affected by the high level of
saline groundwater at the west bank of Luxor aneeesthe construction of Aswan high
dam and the resultant expansion of agriculturatidaaround the temples’ area. Saline
groundwater is transported into the monuments’ dations through underlying soil by
means of capillary rise. When those saline wateap@rate, residual salts accumulate on
the surface and within the pore spaces of the fatioils. The pressure developed during
crystallization and hydration of the residual sadtefoliates the outer layers of the
foundations’ stone, increasing their susceptibildyerosion by wind and other physical
processes (Rodriguez-Navarro and Doehne 1999)rd-igushows an example of the

monuments’ degradation at Habu Temple in the wask lof Luxor.
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Figure 1: Location map of a- Egypt, and b- Luxardst area including the locations of
collected water samples, VES and TEM data.
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Geophysical methods have been widely applied tourglovater exploration (e.g.,

Asfahani 2007; Ismail 2003; Albouy et al. 2001).fé#sani (2007) employed vertical

electrical sounding (VES) at the Khanasser Val®yria) and successfully identified the
nature and geometry of a deep aquifer. Ismail (2@@8ducted a study to mitigate the
degradation of monuments on the east bank of LugorployingVES and seismic

surveys to characterize the hydrostratigraphy ef ghallow subsurface. Albouy et al.
(2001) examined the merits of using VES and tramisséectromagnetic (TEM) methods
for coastal groundwater exploration north of Biarrand at two selected sites at the
flanks of le Piton de la Fournaise, France. Thasensists showed that joint inversion of
VES and TEM data is an efficient tool to resolve #mbiguity of each measurement
method alone, especially in the absence of sumgogeological information such as well

log data.

Figure 2: Effects of shallow saline groundwaterthe Habu temple (note the severe
cracks and salt accumulations)
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The TEM method is an electromagnetic induction négpine by which the response of the
earth to an electromagnetic impulse is measurdtiartime domain. The VES method
uses direct current to measure the resistance eofstitbsurface using grounded steel
electrodes. Although electrical resistivity andcélemagnetic techniques measure the
same physical property, soil resistivity, the taghes are sensitive to different
characteristics (Gomez-Trevino and Edwards 1983¢Heaet al. 1985). Well-resolved
electrical resistivity data obtained using the VE&#thod are the product of layer
resistivity and layer thickness (Fitterman et @88). Such data do not provide good
independent estimates of layer resistivity andridlyekness. In contrast, electromagnetic
methods are good for establishing the thickneskks/ers but not their resistivity values
(Fitterman et al. 1988). The combined inversionT&M and VES data constrains the
resistivity-depth geophysical model and reducesiguniiies in the interpretation of the

measurements (Sasaki 1989; Sandberg 1993; Albcaly 2001).

In this study, a large-scale geophysical survey wasducted and chemical analysis
performed of surface water samples at the west battke Nile River (west Luxor area)
to characterize the near subsurface hydrogeolaogfiing and to identify the sources
responsible for increasing the salinity of grountewaThe geophysical survey is in the
form of integrated TEM and VES measurements. Thrurggwater analysis included
chemical analysis of six surface samples collefteoh areas adjacent to the degraded
monuments. The results of this study will be caitio developing conservation plans for

the existing archaeological structures.
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2. Study area

The study area, located on the alluvial plains t@d Nile Valley and surrounded by
elevated structural plateaus capped by Eocenetlmesis underlain by Paleocene shale
(Figure 3). The alluvial plains generally exhildatfsurfaces that gently slope northward.
The average ground surface elevation is about msabove mean sea level, but rises to
about 79 m at the fringes of the Nile Valley. Thedlavial plains can be differentiated
into (1) a densely cultivated younger plain occagythe central part of the Nile Valley
and covered by Holocene silt and clay, and (2) laleroreclaimed plain covered by

Pleistocene sand and gravel (El Hossary 1994; Reséastitute of Groundwater 1997).
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Figure 3: Geologic map of Luxor area (El Hosary94)9
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The near-surface Pliocene-Holocene sediments iceh&al part of the Nile Valley rest
uncomformably on a succession of Late Cretaceody-Eacene marine sedimeni&he

Pliocene-Holocene sediments have been subdividedlifferent lithological units, each
of which was deposited by an identified ancestrabern river system (Ismail 2003),

including the Eonile, Paleonile, Protonile, Prendad Neonile.

Two main aquifer systems are distinguished withim Pliocene-Pleistocene in the Luxor
study area: the shallow Quaternary aquifer and uhéerlying Pliocene-Pleistocene
aquifer. The Quaternary aquifer is composed maeoflygraded sand and gravel and
locally thickness ranges from 5 to 95 m and salirgtabout 2.6 mg/L. The underlying
Pliocene-Pleistocene aquifer, composed of sandckayd is the secondary aquifer in the

study area and has an average salinity value ofit§Q (Ismail 2003).

4. Geophysical Data Acquisition and Processing

Eighteen VESs were acquired using the Syscal R2rument (Figure 1). The

Schlumberger electrode configuration was emploged, the maximum current electrode
spacing (AB/2) varied from 300 to 400 m. The VESsrevspaced at 0.5-km to 1-km
intervals. The measurements were taken in theveastdirection, perpendicular to the
Nile Valley. The measured apparent resistivitieenfr each VES were plotted
simultaneously against AB/2 values on log-log papéhe field for quality control of the

data.
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A suite of 23 TEM soundings were measured usingBROTEM system close to the
locations of the resistivity measurements. A simgpdéncident loop configuration was
employed; in this configuration, the same loop sraits and receives signals. The loop
side length was 50 m. During data aquisition, mesaments were repeated several times

to ensure a high signal-to-noise ratio.

Due to the lack of boreholes at the study site iandrder to roughly control the VES
interpretation, the present study used the lithstiggy model of Ismail (2003), based on
two boreholes located about 200 m away from thalieed VESs at the east bank of
Luxor. In that model, four litho-resistivity unitsere characterized: (1) an upper unit of
dry silty clay with relatively high resistivity (~2@hm-m), (2) a lower unit with
significantly low resistivity (~4 ohm-m) assignedttee moist silty clay, (3) a thick unit
(> 20 ohm-m) with high resistivity assigned to thain Quaternary aquifer layer, and (4)
a low resistivity layer (< 4 ohm-m) assigned tceaadary aquifer layer (Figure 4a and

b).

The resistivity data were first inverted in terni©one-dimensional (1-D) resistivity-depth
models using software described by Zohdy (1989) Megh (1991). The output models
were used as initial models for inverting the ngafEM data using TEMIXXL (1996)
software. The resultant TEMIXXL models were usedia@s initial models for inverting
the resistivity data in RESIST (1988) software. Thisfit errors between the measured
and calculated models for the whole data set rémge 2.8 and 7.3% (Figure 4c and d).

This iterative method was continued until reliat#sistivity-depth models were obtained
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that seemed to be consistent with the subsurfaglegje setting. The final models were

interpolated to generate 2-D resistivity cross isast parallel and perpendicular to the

Nile River.
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lithologic units at two boreholes (a and b), ¢ dnake the processing results of two VESs
(after Ismail, 2003)
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5. VES and TEM results

Based on the joint inversion of resistivity andcélemagnetic data, two geoelectrical
resistivity cross sections were generated, onellphta the Nile River, and the other
perpendicular to the Nile (Figures 5 and 6). Theetgctrical resistivity cross sections
exhibit four geoelectrical units. No significardatéral resistivity variation was found

within individual units:

1- The first (upper) geoelectrical unit consists gfdIrelatively dry silty clay
agricultural soil less than 4 m thick with resiggwalues ranging from 5
to 28 ohm-m, and (2) dry silty clay and gravel sbéving a resistivity

value of 50 ohm-m and a thickness of 2 m.
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Figure 5: Geoelectrical cross-section extendinglferto the River Nile
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The second geoelectrical unit consists of sant,asitd gravel of the main
Quaternary aquifer. The average resistivity vale 20 ohm-m,
andthickness is about 48 m. The thickness of thafer layer decreases

significantly toward the west plateau.

The third geoelectrical unit is characterized by I@sistivity value (< 5
ohm-m) and thickness ranging from about 4 m neaNite River to about
48 m near the western plateau. This unit repregbetsecondary aquifer
in the study area (Pliocene-Pleistocene aquifdrg Jignificant resistivity
contrast between the Quaternary aquifer and theeriymdg Pliocene-
Pleistocene aquifer is attributed to the highemggl (700 mg/L vs. 2.6
mg/L) and clay content of the sediments within tRko-Pleistocene

aquifer (Ismail 2003).

The fourth geoelectrical unit is characterized byeaistivity value of
about 10 ohm-m. This unit appears only at the baskee plateau area at a
depth of 2 m to 5 m. This unit represents the Ralee shale layer. Its low
resistivity is due to lateral seepage of groundwdtem the adjacent
Pliocene-Pleistocene aquifer. A normal fault sejgaréhe third and fourth
units, and this fault was traced on the resistisiggtion of Figure 11. The
location and orientation of this fault seem to besistent with the major

fault forming the Nile Valley in this area (El Hogal994).

123
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Figure 6: Geoelectrical cross-section extending@edicular to the River
Nile

The inverted resistivity, or “true” resistivity, @fach of the specified geoelectric
units was mapped to better demonstrate the latesadtivity variation with depth

and its possible impact on the degradation of tka’a monuments.
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Figure 7: Spatial resistivity distributions at 1d@pth

Resistivity distribution at 1 m depth: The first unit represents the dry silty clay topsoi
The resistivity values of this unit vary from 576 ohm-m (Figure 7)Although surface
conditions, such as farming and urbanization, affesistivity distribution, the values
still provide a good indication of the moisture Ardsalinity distribution within the
topsoil, which is in direct contact with the arcblgical features. The high-resistivity
values of 25 to 75 ohm-m are observed near thenuabeas (parallel to the Nile River)
and near the limestone plateau. The low resistivilues of less than 24 ohm-m are

found for the central cultivated areas in the stsitly. These low values are a direct result
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of increased moisture content due to irrigation excteased salinity caused by excessive

evaporation and use of fertilizers.
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Figure 8: Spatial resistivity distributions at 4d@pth

Resistivity distribution at a depth of 4 m: This unit has resistivity values range from 3
and 29 ohm-m and is characterized by three maistirgty zones (A, B and C), which
correspond to the second, third, and fourth getrétet units, respectively (Figure 8).
Resistivity values range from 10 to 29 ohm-m fon&d\, which represents the saturated
sand and silt sediments of the Quaternary aguitee. water within this aquifer seems to

be fresh and originating from the Nile and irrigaticanals (e.g., Asfon canal) in the
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study area . The resistivity value is low (5 ohmpfor Zone B, which representsthe
Pliocene-Pleistocene aquifer in the study areaeZdonrepresenting the Paleocene shale,
has resistivity values ranging from 8 to 16 ohmpmabably because of its high moisture

content and/or salt.
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Figure 9: Spatial resistivity distributions at 48depth

Resistivity distribution at 48 m depth: This unit has low resistivity values ranging from
1 to 7.5 ohm-m. Although the range is narrow, ZoBeand C are obvious, as shown in
Figure 9. Zone B resistivity values range between é&d 7.5 ohm-m. This zone is

probably an extension of the Pliocene-Pleistocemafer that consists of sand with



128

clayey sediments. Zone C, which corresponds torthist Paleocene shale layer, exhibits

a very low resistivity value of 2 ohm-m.

To better visualize the surface and subsurfacehat study site, we constructed a
composite model that shows the spatial resistigyribution of subsurface geoelectrical
units, the surface location of temples, cultivaéedas, and the Nile River. As shown in
Figure 10, the Nile River does not contribute e groundwater recharge in the study
area, since the resistivity values of differenaistrincrease toward the east (i.e., toward
the Nile), which is consistent with the conclusadrismail (2003). The groundwater flow
seems to flow from west to east, and, in the serfiayer, from the cultivated areas

outward.
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Figure 10: Composite model of Luxor study area
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6. Chemical analysis of the water samples

Results of the chemical analysis of water sampdesbe integrated with the geophysical
interpretation to yield valuable information on tlauses of increasing salinity and
groundwater level at Luxor study area. Six surfaeger samples were collected from the
study area from the Nile River, the canals, andstnered lake of Memnon Temple. The
results of the chemical analyses are presentedlfeTL. The sources of different ions in

the examined water could be grouped as follow:

Table 1:Results of geochemical analysis of water samplegi(€ 5 shows the location
of these samples)

Sample Anions (ppm) Cations (ppm)
No PH Tbs 2 -1 -1 2 +1 +1 +2 +2 EC
. co; HCO, cl SO, Na K Ca Mg

‘ 1 8.3 217.6 122 28 28 36 1.17 16.5 12 340
‘ 2 8.2 211.2 134 22 23 41 1.17 14 9.5 330
‘ 3 8.2 211.2 122 25 28 38 1.17 12 12 330
‘ 4 8.2 217.6 134 24.5 24 38 1.6 14 12 340
‘ 5 8.3 204.8 134 21 19 41 1.17 10 11 320 ‘

Temple 8.3 716.8 30 354 190 96 195 35 22 18 1120

6.1. Cultivated lands

Sodium (N&%), an essential constituent used in fertilizerg.(ePhillips et al. 2001), was
195 ppm in water sampled at Memnon Temple compartdd 36 ppm from the River
Nile. The high sodium concentration observed attédmeple is evidence that the water

inside the monument migrated from the nearby caliéig lands.
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Potassium (K% is an essential plant nutrient (e.g., Mengel ity 1980). Potassium is
highest (3.5 ppm) in the water sample taken fronmiien Temple, again supporting the

interpretation that this water migrated from thersunding cultivated areas.

Sulfate (SQ?) is derived from gypsum, acid rains, and fertiizéGarg 1978). The
highest concentration (96 ppm) of sulfate is obsgér@at Menmon Temple, indicating that

its water probably comes from nearby cultivatecgare

Chloride (CI") is mostly presented either as salt crystals osdlution (N&* and Ct*
ions) (Hem 1970). The concentration of chloridegesfrom 21 ppm at the eastern side
of the study area to 190 ppm at Memnon Temple. Higke concentration of chloride at
the temple is related to the successive accumuakatad water inside the temple that

probably migrated from cultivated areas.

6.2. Weathering of monuments/temples

Calcium (C&") and magnesium (M@ are the principal minerals forming carbonate
rocks such as limestone (Cag@nd dolomite (CaMg [C€),). The highest calcium (22
ppm) and magnesium concentrations (18 ppm) werereéd at Memnon Temple,

probably due to the dissolution of carbonate rdoksing its stone foundations.
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Bicarbonates (HC®") are formed when carbon dioxide is dissolved aived from

limestone (e.g., Rogers et al. 1985). The bicarteoigancentration of water sampled
from the Nile River is 122 ppm; from the irrigatichannels, 134 ppm; and at Memnon
Temple, 354 ppm. The high concentration of bicadterat Menmon Temple is because

of the dissolution of the limestone of its stonerfdations.

6.3. Natural sources

The pH value of water is a measure of the concemtraf hydrogen ions (B. The pH
values of the water samples from the study arew batween 8.2 and 8.3, indicating
alkalinity and the dissolution of calcium and magjoen ions in the water samples (e.g.,
Psenner 1988). Electrical conductivity of surfacaters increases from east (320 micro
S/cm) to west at Menmon Temple (1120 micro S/cmatél with high electrical
conductivity contains sodium and magnesium cat@ssvell as calcium, chloride, and
bicarbonate anions (e.g., Freund et al. 1993). ¥®e&ed, total dissolved solids (TDS)
was highest (716.8 mg/l) in the water sample ct#lddrom the sacred lake of Memnon
Temple and lowest (204.8 mg/l) in the water samfiles canals in the eastern side of
the study area. The high TDS value from the Memfemple is due to the evaporation

of the water in the temple’s sacred lake.

7. Discussion and conclusions
The joint inversion of VES and TEM data and theulssof chemical analyses of water
samples were successfully integrated to generagita of geoelectric resistivity cross

sections and subsurface maps. The main disadvaatabe employed techniques is the
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limited spatial subsurface coverage and the unogytavhen generating the 2-D cross
sections. Obviously, 2-D/3-D techniques (e.g.,stesty and ground-penetrating radar)
would produce more subsurface coverage and morgatecmodels. Those techniques,
however, are probably not the best choice at tigsgven the large survey area, time
constraints, and, most importantly, because thd gbdhis present study is not the
detailed hydrogeology of the field site. Furthermyothe methods employed in the
present study are inexpensive, data acquisitiguoiisk, and achievable penetration depth

can be very deep (depending on AB/2 spacing antbtpesize of the TEM survey).

Study results indicate that the shallow subsurfadde Luxor study area is divided into
four distinct geologic/hydrologic units. Such claeaization represents the foundation of
any plan to lower the groundwater level and deeret®e salinity of capillary soil
moisture in the area of the Luxor monuments. Shaljpoundwater flow paths were
expected to have originated from the recently catéd areas west of Luxor and to flow
toward the River Nile. The elevated groundwaterthe area of the temples appears
attributable to flood irrigation of recently reafa@d lands lying on the alluvial/floodplain
transition. The progressive increase in salinitgngl the groundwater flow path is
reflected in the recent deposition of precipitasedts observed at Habu Temple (Figure
2). Based on our interpretation of the acquirecdhdatd the field observations, the salt
accumulation on the foundations of the monumentsears to be ascribable to salt
transport by capillary water from the relativelghisalinity groundwater or from connate

water in the silty clay unit.
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As a final comment on the study area, recommenagsioe to avoid cultivation of crops
that require much water and to regulate the usego€ultural chemicals in areas of thin
silty clay soil. Further recommendations are to dwart high-resolution geophysical
surveys (e.g. 3-D electrical resistivity) and dethi chemical analysis of the water
proximal to the Luxor monuments. These suggestimight reduce the groundwater

discharge at the temple areas and reduce its €fbecthe stone foundations.
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