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In this thesis we obtain a geometric identity between Relative Trace Formula on the
metaplectic group and the general linear group. As a consequence of the spectral
analysis, we expect to obtain a relation between products of distinct Whittaker

coefficients of a cuspidal automorphic representation on the metaplectic group and a
non-split period of a related representation on the general linear group. This would

generalize famous work of Kohnen and Waldspurger.
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1. Introduction

Let F be a number field with ring of adeles A. Let G be a reductive group over F and

let H be the subgroup of G fixed by an involutive automorphism of G.

Let π be a cuspidal automorphic representation of G(A) and χ be a character of H(A)

trivial on H(F ). We consider the period integral on the space of π:

(1.1) P(H,χ)(φ) =

∫

H(F )\H(A)

φ(h)χ(h)dh.

If there exists φ in the space of π with P(H,χ)(φ) 6= 0, then π is said to be (H,χ)−

distinguished.

Such representations are of interest because they are expected to arise as functorial

images of Langlands liftings. Moreover, the value of this period integral is expected to be

related to special values of L-functions.

Let us explain one classical case of the relation between a period integral and a special

value for an L-function. Let k be an even integer, let N be odd and square-free. Let

f be a newform on Γ0(N) of weight 2k and let g be the Hecke eigenform on Γ+
0 (4N) of

weight k + 1
2

associated to f via Shimura correspondence. Let m and n be fundamental

discriminants. Kohnen has proved in [Koh] the following equality:

(1.2) c(n)c(m) =
< g, g >

< f, f >
(−1)k/22krk,N(f ;n,m),

here c(m) is the m-th Fourier coefficient of g. The period integral rk,N is given by

∑

Q=[a,b,c]

ωn(Q)

∫

CQ

f(z)

(az2 + bz + c)k−1
dz.
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Here Q = [a, b, c] runs over a set of Γ0(N) inequivalent integral binary quadratic forms of

discriminant |Q| = nm with N |a, ωn(Q) ∈ {−1, 0, 1}. CQ is the image of a|z|2+bRe z+c =

0 in Γ0(N)\H.

On the other hand, in [Wa1] and [Wa2], Waldspurger has proved that

(1.3) |c(m)|2 ∼ mk− 1
2Lf (k, χm)

where Lf (k, χm) is the L-series attached to f twisted by the real character χm(n) =
(
m
n

)
.

Combining equations (1.2) and (1.3), we obtain that the period integral rk,N(f ;m,m) is

related to the central value of the L-series for f twisted by χm(n). This also follows from

results of Waldspurger and Martin and Whitehouse ([MaWh]).

1.1. Relative Trace Formula. In order to study distinction, Jacquet introduced the

Relative Trace Formula (see [J-L]). For i = 1, 2, let Hi be closed subgroups of G with χi

global automorphic characters of Hi(A) trivial on Hi(F ). For f a Schwartz function on

G(A), let Kf (x, y) denote the kernel function for the regular representation ρ(f) acting on

L2(G(F )\G(A)).

We consider the following distribution:

(1.4) IG(f : H1, χ1;H2, χ2) =

∫

H1(F )\H1(A)

∫

H2(F )\H2(A)

Kf (h1, h2)χ1(h1)χ2(h2) dh2 dh1.

The kernel Kf (x, y) has a ’geometric’ expression of the form

Kf (x, y) =
∑

γ∈G(F )

f(x−1γy).

On the other hand, formally we have that the kernel for the right regular representation

by f admits a decomposition where the cuspidal term is of the form
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(1.5)
∑

Π

∑

φi

(ρ(f)φi)(x)φi(y)

where the first summation is over all irreducible cuspidal representations of G and {φi}

is an orthonormal basis for the space of Π.

We obtain that the distribution IG(f : H1, χ1;H2, χ2) is equal to

(1.6)
∑

Π

∑

φi

∫

H1(F )\H1(A)

∫

H2(F )\H2(A)

(ρ(f)φi)(h1)χ1(h1)φi(h2)χ2(h2)dh1dh2

or

(1.7)
∑

Π

∑

φi

P(H1,χ1)(ρ(f)φi)P(H2,χ2)(φi).

Suppose that f = ⊗fv ∈ S(G(A)), then for almost all places v, we have that fv ∈

H(Gv, Kv). Suppose that there exists a morphism between the L−groups of G′ and G.

Then by Satake isomorphism, we have a map λv : H(Gv, Kv) → H(G′
v, K

′
v) between the

Hecke algebras. We define a set of maps {ǫv : S(Gv) → S(G′
v)} to be admissible if for

almost all places v, we have ǫv = λv. We say a relative trace identity

IG(f : H1, χ1, H2, χ2) = IG′(f ′ : H ′
1, χ

′
1, H

′
2, χ

′
2)

holds if there exists a set of admissible maps such that the above equality holds for f ′ =

⊗ǫv(fv).

We see that an equality of geometric sides of the form:
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(1.8) IG(f : H1, χ1;H2, χ2) = IG′(f ′ : H ′
1, χ

′
1;H

′
2, χ

′
2)

should lead to a relation between periods of the form (1.7).

We consider the following case. Let η be an irreducible, automorphic, cuspidal repre-

sentation of GL2n(A) with η self-dual. In this case, L(s, η ⊗ η) has a simple pole at s = 1.

We have that

(1.9) L(s, η ⊗ η) = L(s, η, sym2)L(s, η,Λ2),

and assume that L(s, η,Λ2) has a simple pole at s = 1. In this case, η is a lift from the

group SO2n+1.

Assume furthermore that L(1/2, η) 6= 0 and fix a nontrivial additive character ψ of F\A.

Then the ’backward lift’ from η to a representation on SO2n+1 is lifted from the metaplectic

group S̃p2n(A) via theta correspondence associated to ψ. This suggests, for appropriate f

and f̃ , a relative trace identity of the form

(1.10) IGL2n
(f : GLn×GLn, 1;N, θ) = IS̃pn

(f̃ : N ′, θ′−1;N ′, θ′).

where θ is the non-degenerate character of the maximal standard unipotent N of GL2n

defined by

(1.11) θ(n) = ψ(n1,2 + . . .+ n2n−1,2n)

and θ′ is the degenerate character of the maximal standard unipotent N ′ of Spn given

by
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(1.12) θ′(n) = ψ(n1,2 + . . .+ nn,n+1).

The equality of the geometric sides of equation (1.10) was proved by Mao and Rallis in

[MR].

Now fix a non-square τ ∈ F× and let K denote the quadratic extension of F given by τ .

The map a+ bτ 7→


a bτ

b a


 induces an embedding of GLn(K) into GL2n(F ). We denote

the image of this map by GL(n,K)(F ). We define a degenerate character θ′τ on N ′ by

(1.13) θ′τ (n
′) = ψ(n′

1,2 + . . .+ n′
n−1,n + τn′

n,n+1).

The purpose of the present thesis is to obtain the following equality of geometric sides

of relative trace formula:

Theorem 1.1. We have the relative trace identity

(1.14) IGL2n
(f : GL(n,K), 1;N, θ) = IS̃pn

(f̃ : N ′, θ′−1
τ ;N ′, θ′).

This suggests, for a representation Π lifted from Π′ and for {ϕα} and {ϕ̃α} orthonormal

bases of Π and Π′ respectively, the following identity:

(1.15)
∑

ϕα

Pτ (Π(f)(ϕα))W(ϕα) =
∑

ϕ̃α

W̃τ (Π
′(f̃)(ϕ̃α))W̃(ϕ̃α)

where W , W̃ and W̃τ are Whittaker functionals and the ’non-split’ period is given by
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(1.16) Pτ (Π(f)ϕα) =

∫

C2n(A)GLn,K(F )\GLn,K(A)

(Π(f)ϕα)(h)dh

where C2n denotes the center of GL2n.

Equation 1.16 can be thought of as a generalization of equation (1.2). The work of

Friedberg and Jacquet in [FJ] and of Friedberg and Bump in [BF] gives that

(1.17) P1(φ) ∼ L(1/2, π)Ress=1L(s, π,Λ2)W (φ)

where π is an automorphic cuspidal representation of G, φ is some cusp form in the space

of π and L(s, π,Λ2) is the partial exterior square L function. By ∼, we mean equality up

to local factors.

Combining equation (1.17) and equation (1.15) for τ = 1, we have:

(1.18) |W̃(ϕ̃α)|2 = L(1/2, π)Ress=1L(s, π,Λ2)|W(ϕα)|2.

This would generalize equation (1.3). From equations (1.18) and (1.15) one obtains

(1.19) |Pτ (ϕα)|2 ∼ L(1/2, π)L(1/2, π ⊗ χτ )Ress=1L(s, π,Λ2)2|W(ϕα)|2

where χτ is a quadratic character of idele class group A×/F× attached to the quadratic

extension K. Thus we would recover an equation from work of Guo in [G] and upcoming

work of Feigon, Whitehouse and Martin ([FWM]). In the case n = 1, we would obtain

results of Waldspurger and Martin and Whitehouse ([MaWh]).

1.2. Sketch of proof. Let us sketch the method of descent. Let τ be an irreducible,

automorphic, cuspidal, self dual representation of GL2n(A) with L(s, τ,Λ2) having a pole

at s = 1 and with L(1/2, τ) 6= 0. We construct the Eisenstein series E(g, fφτ,s) (precise
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definition in equation (3.13)), it has a pole at s = 1. We consider the residual Eisenstein

series E1(g, φ) = Ress=1E(g, fφτ,s).

We consider the space Vτ,k spanned by Fourier-Jacobi type coefficients of the residual

Eisenstein series, in other words, we consider the space Vτ,k spanned by functions pk(h)

with

pk(h) = pk(h, φ) =

∫

Nk(F )\Nk(A)

E1(vh, φ)Θψ−1
k

(jk(v)h)ψ
−1
k (v)dv.

Here Θψ−1
k

is a Theta series and Nk is given by

(1.20) N (k) =





n =




z u ∗ ∗ ∗

1 x y ∗

I2k x′ ∗

1 u′

z∗




|z ∈ N2n−(k+1)





.

The representation σk(τ) of S̃pk is obtained by right traslation on the space Vτ,k.

By ([GRS2, Main Theorem (global)]), this space is nonzero when k = n. To prove that

Vτ,k = 0 for k < n, the authors make use of two observations. First, the Spn × Spn period

of the residual Eisenstein series E1(g, φ) is related to the GLn × GLn period of φ, this is

[GRS1, Theorem 2]. In particular, because of our assumptions on τ , this period is nonzero.

On the other hand, in [GRS1, Section 3] it is proved that the existence of non-trivial

Spn × Spn period implies that Vτ,k is zero.

In the present case, we prove in Theorem 3.10 that the residual Eisenstein series E1(g, φ)

has Sp(n,K) period which is related to the GL(n,K) period of φ. Reflecting this relation we

prove in Section 3, through a matching of relevant orbits, the equation:
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(1.21) IGL2n
(f : GLn,K , 1;N1, θ) = ISp2n

(f ′ : Spn,K , 1;N3, θ3).

It is possible for the residual Eisenstein series to have nontrivial degenerate Whittaker

model and Fourier-Jacobi model. The next identity reflects this fact:

(1.22) ISp2n
(f ′ : Spn,K , 1;N3, θ3) = ISp2n

(f ′′ : Spn,K , 1;N3, θ4Θ
Φ
ψ−1).

Here ΘΦ
ψ−1 is a Theta series defined below by equation (4.37). This is proved using global

methods of Ginzburg, Soudry and Rallis, as applied by Mao and Rallis in [MR]. This is

carried out in Section 4. The main obstacle is to prove that Spn,K-invariant functionals

and (N (k), χk,α)-eigenfunctionals are disjoint. For Spn×Spn this is in [GRS1, Section 3.2];

it is Theorems 4.2 and 4.4 in the present paper.

Finally, the standard method of comparing orbital integrals proves the identity

(1.23) ISp2n
(f ′′ : Spn,K , 1;N3, θ4Θ

Φ
ψ−1) = IS̃pn

(f̃ : N ′, θ′−1
τ ;N ′, θ′).

In Section 5 we compute the orbital integrals arising from equation (1.23); in Section 6,

we reduce their comparison to a suitable fundamental lemma.

In Section 7, we prove the fundamental lemma. The unit Hecke element case is done by

a calculation, while the general Hecke element case follows from a Plancherel formula, as

in [MR1]. This argument is detailed in Section 7. Section 8 proves the main theorem.

The Placherel formula needed in Section 7 follows from an explicit calculation of spherical

functions on Spn,K\Sp2n and on N2\S̃pn. The first calculation is done in Appendix A,

more general results are obtained in [Sak]. The calculation for the second case is done
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in Appendix B and follows [BFH]. Appendix C defines the orbital integral of spherical

functions on Spn,K\Sp2n and proves that this corresponds, up to constants, to spherical

functions on N2\S̃pn.
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2. Preliminaries

• F is a number field with ring of adeles A, the completion of F at a local place v is

denoted Fv.

• τ ∈ F\F 2.

• K is the quadratic extension of F given by τ .

• T is the square block diagonal matrix of size 2n with diagonal consisting of the 2 × 2

matrices


 τ

1


.

• T is the square block diagonal matrix of size 4n with diagonal consisting of the 2 × 2

matrices


 τ

1


.

• τn (resp. 1n) denote the n × n diagonal matrices consisting of τ (resp. 1) on the

diagonal.

• E =




τn

1n

τn

1n




• σ =




1

.

.

1




• J=


 −σ

σ




• Spn = {g ∈ GL2n|tgJg = J}

• GSpn = {g ∈ GL2n|tgJg = λ(g)J ;λ(g) ∈ F×}
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• ψ is either a nontrivial additive character of A/F or of Fv.

• GLn,K = {g ∈ GL2n|g−1Tg = T}

• N1 =standard maximal unipotent for GL2n

• A1 =set of diagonal matrices in GL2n

• W1 =Weyl group corresponding to A1

• N1,g = {n ∈ N1|n−1gn = g}

• N′
1,γ = γ−1H1γ ∩N1

• θ1 is a character of N1 with θ1(n) = ψ(n1,2 + ...+ n2n−1,2n)

• Spn,K = {g ∈ Sp2n|g−1Tg = T}

• N3 =standard maximal unipotent for Sp2n

• A3 =set of diagonal matrices in Sp2n

• W3 =Weyl group corresponding to A3

• P3 =Maximal Siegel parabolic in Sp2n

• V3 = Siegel unipotent radical for Sp2n

• K3 =Maximal compact subgroup of Sp2n

• KSpn,K
= K3 ∩ Spn,K

• VSpn,K
= V3 ∩ Spn,K

• N3,g = {n′ ∈ N3|n′−1gn′ = g}

• N′
3,γ := γ−1H3γ ∩N3

• θ3 is a (degenerate) character of N3 with θ3(n) = ψ(n1,2 + ...+ n2n−1,2n)

• g∗ = σtg−1σ

• Sn is the set of matrices g ∈ GLn satisfying σng is a symmetric matrix.

• For g ∈ GLn, the map i1 : GLn → Spn is given by i1(g) =


g

g∗


 .
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• For g ∈ GLn, the map iτ : GLn → GSpn is given by iτ (g) =


g

τg∗


 .

Let F be a number field with ring of adeles A and let τ a nonsquare in F . Denote
by K the quadratic extension F [

√
τ ], then an element in K embeds in GL2(F ) via a +

b
√
τ 7→


a bτ

b a


, and this naturally extends to an embedding of GLn(K) into GL2n(F ).

We denote the image of GLn(K) in GL2n(F ) under this embedding by GL(n,K)(F ) and
remark that if we denote by T the nonsplit torus




τ
1

.
.

τ
1




, then GL(n,K)(F ) consists of g ∈ GL2n(F ) with g−1Tg = T .

We define an injection j : Spn → Sp2n by j(g) =




1n

g

1n




G2 = S̃pn

N2 =maximal unipotent for Spn

N2,w′a′ = (w′a′)−1N2(w
′a′) ∩N2

N ′
2,w′a′ := (w′a′)N2(w

′a′)−1 ∩N2

I2 = I
S̃pn,K

(f̃ : N2, θ
−1
2 ;N2, θ2)

U1
wa is defined by equation (5.15)

U2
wa is defined by equation (5.17)

θ2(n) = ψ(n1,2 + ...+ nn−1,n + nn,n+1) for n ∈ N2

θ2,τ (n) = ψ(n1,2 + ...+ nn−1,n + τnn,n+1) for n ∈ N2
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2.0.1. Characters. • ψ is either a nontrivial additive character of A/k or of kv.

• θ1 is a character of N1 with

θ1(n) = ψ(n1,2 + . . .+ n2n−1,2n).

• θ2 is a character of N2 with

θ2(n) = ψ(n1,2 + . . .+ nn−1,n + nn,n+1).

• θ3 is a character of N3 with

θ3(n) = ψ(n1,2 + . . .+ n2n−1,2n).

• θ4 is a character of N3 defined by (4.38).

2.0.2. Weil representation and Theta function. Recall for a fixed ψ, the Weil representation

is defined for the metaplectic group S̃pn. We use γ(∗, ψ) to denote the Weil constant,

and ωψ to denote the Weil representation. We describe explicitly a model of the Weil

representation.

Let Φ ∈ S(An). Then

ωψ(m̃(g))Φ(X) = | det g|1/2 γ(1, ψ)

γ(det g, ψ)
Φ(Xg), g ∈ GLn .(2.1)

ωψ(
(

1n V
1n

)
, 1)Φ(X) = ψ(tr(X tV σnX))Φ(X), V ∈ Sn.(2.2)

ωψ(J̃n)Φ(X) = γ(1, ψ)−nΦ̂(X),(2.3)

where

Φ̂(X) =

∫

An

ψ(tr(X tσnY ))Φ(Y ) dY.

The above describes the action of the metaplectic group on S(An) under the Weil repre-

sentation.
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We use ΘΦ
ψ−1 to denote the Theta function defined by (4.37).

• The space S(G(Fv)) of Schwartz functions on a reductive group G over a local field

Fv at a non-archimedean place v consists of smooth functions of local support; at an

archimedean place, we use the definition of Casselman.
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3. The trace identity between GL2n and Sp2n and an identity of periods

We have a local correspondence of Schwartz functions on Sp2n(Fv) and GL2n(Fv) given

by fv ∈ S(Sp2n(Fv)) 7→ f
′

v ∈ S(GL2n(Fv)) where f ′
v is given by

(3.1) f ′
v(g) =

∫

u∈V3(Fv)

∫

k∈K3∩Spn,K(Fv)

fv(ki1(g)u)| det(g)|n+1
v dkdu

where K3 and V3 are the maximal compact subgroup of Sp2n and the unipotent radical for

the maximal Siegel parabolic in Sp2n respectively.

From [JR], one expects a relation between the inner period on a Levi subgroup and the

outer period on the group. In our case, the embedding of GL2n as the Levi subgroup of

the Siegel parabolic of Sp2n suggests the following relative trace formula:

Theorem 3.1. Let f = ⊗fv ∈ S(Sp2n(A)) and f ′ = ⊗f ′
v ∈ S(GL2n(A)) where for all v,

fv and f ′
v are related by correspondence (3.1) then

(3.2) IGL2n
(f : GL(n,K), 1;N1, θ1) = ISp2n

(f ′ : Sp(n,K), 1;N3, θ3).

Moreover, at a p-adic place v, the map fv 7→ f ′
v restricts to a Hecke algebra homomorphism.

3.1. Comparison of orbits. We introduce a space isomorphic to GLn,K\GL2n (resp.

Spn,K\Sp2n), namely, we define an involution θ on GL2n (resp. Sp2n) given by θ(g) =

TgT−1, then the space Y1 = {g−1θ(g)T |g ∈ GL2n} (resp. Y3 = {g−1θ(g)T |g ∈ Sp2n})

satisfies Y1
∼= GLn,K\GL2n (resp. Y3

∼= Spn,K\Sp2n). We exhibit a Bruhat decomposition

for elements in these spaces. We first state a well known lemma:

Lemma 3.2. Let U be an algebraic connected unipotent group over F . Let ϑ be an auto-

morphism of U(F ) with ϑ2 = 1. If x ∈ U(F ) verifies xϑ(x) = 1 then there is u ∈ U with

x = ϑ(u−1)u. �
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Lemma 3.3. If y = g−1Tg ∈ Y1 (resp. Y3), then y admits the decomposition y = n−1wan,

with n ∈ N1 (resp. N3), w ∈ W1 (resp. W3), a ∈ A1 (resp. A3)

Proof. By the Bruhat decomposition we write y = n−1
1 wan2. Since τy−1 = y, we have

that τn−1
2 (wa)−1n1 = n−1

1 (wa)n2, this implies that (wa)2 = τ , so that we get n−1
2 wan1 =

n−1
1 wan2, i.e. n2n

−1
1 wan2n

−1
1 = wa. Write n = n2n

−1
1 , then y = n−1

2 nwan2 so that we may

assume y = nwa with nwan = wa.

For any w ∈ W , there exists a subgroup Nw ⊂ N , namely Nw = wNw−1 ∩ N , with

the property that w−1Nww = Nw. Thus if y = nwa with nwan = wa then n ∈ Nw and

n−1(wa)−1n−1wa = 1. We define an involution ϑ on Nw given by ϑ(n) := (wa)−1nwa. We

have that n−1ϑ(n−1) = 1 so by Lemma 3.2, there exists u ∈ Nw with n−1 = ϑ(u−1)u, i.e.

n−1 = (wa)−1u−1wau so that y = u−1wa
τ
u(wa)(wa) = u−1(wa)u as desired. �

The right action of N1 on GL2n (resp. N3 on Sp2n), composed with the map GL2n → Y1

(resp. Sp2n → Y3) gives rise to an action of N1 on Y1 (resp. N3 on Y3) by conjugation.

Upon observing that if g ∈ Sp2n then t(g−1Tg)J(g−1Tg) = τJ , we get the following:

Corollary 3.4. The orbits of N1 (resp. N3) in Y1 (resp. Y3) admit representatives of the

form wa with (wa)2 = τ (resp. (wa)2 = τ and t(wa)J(wa) = τJ)

Definition 3.5. We call wa (resp. w′a′) relevant if θ1 (resp. θ3) is trivial on N1,wa (resp.

N3,w′a′).

We remark that if g−1Tg = w′a′ then w′a′ is relevant if and only if θ3 is trivial on the set

of n ∈ N3 with n−1w′a′n = w′a′, this condition is equivalent to n−1g−1Tgn = g−1Tg which

is equivalent to gng−1 ∈ Spn,K and equivalent to n ∈ g−1Spn,Kg ∩ N3 = N ′
3,g. Therefore

we say that g3 ∈ Spn,K\Sp2n/N3 is relevant if θ3 is trivial on N ′
3,g3

. A similar computation

leads us to define g1 ∈ GLn,K\GL2n/N1 to be relevant if θ1 is trivial on N ′
1,g1

.
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Lemma 3.6. The element w′a′ with w′ ∈ W3 and a′ a diagonal matrix of size 4n satisfying

(w′a′)2 = τ and t(w′a′)J(w′a′) = τJ is relevant if and only if w′a′ = iτ (wa) where w ∈ W1,

a is a diagonal matrix of size 2n, (wa)2 = τ and wa is relevant.

Proof. It’s easy to check that iτ (wa) is relevant if and only if wa is; we show that for w′a′

not of the desired form, we can find a unipotent n′ with the property that n′−1w′a′n′ = w′a′

and θ3(n
′) 6= 1. Let us write w′ =


A B

C D


 where A,B,C,D represent 2n × 2n blocks;

clearly, if B is zero, so is C and w′a′ is of the desired form, so let us assume that B is

nonzero. B is anti-symmetric with respect to the anti-diagonal, so let i be the smallest

positive integer such that w′(i) ≥ 4n+ 2 − i, we consider the root Xi−1,i.

Claim 1. The element w′a′ cannot map Xi−1,i to a positive non-simple root.

Suppose w′a′ maps Xi−1,i to a positive non-simple root. We consider the matrix n′ with 1

on the diagonal and with entries n′
l,k given by x if (l, k) = (i−1, i), x multiplied by the ele-

ments in the σ(i−1) row and the σ(i) column of w′a′ divided by τ if (l, k) = (σ(i−1), σ(i)),

−x if (l, k) = (4n− i+1, 4n− i+2) and −x multiplied by the elements in the σ(4n− i+1)

row and the σ(4n − i + 2) column divided by τ if (l, k) = (σ(4n − i + 1), σ(4n + 2 − i)).

One has that n′ ∈ Sp2n with n′−1w′a′n′ = w′a′, and θ3(n
′) 6= 1 contradicting relevancy and

proving our claim.

Claim 2. w′(j) 6= 4n+ 1 − j ∀j.

We let α = w′a′ and assume w′(j) = 4n+1−j. The (j, 4n+1−j) coordinate of tαJα = τJ

is given by τJj,4n+1−j = −τ . On the other hand, we have that α4n+1−j,jJ4n+1−j,jαj,4n+1−j =
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τ , this is absurd and proves our claim.

Claim 3. w′(i) = 4n+ 2 − i, w′(i− 1) = 4n+ 1 − i.

By minimality of i, we have that w′(i−1) ≤ 4n+1− (i−1). By claim 2, we may assume

w′(i − 1) ≤ 4n − i + 1. On the other hand, Claim 1 implies that w′(i − 1) ≥ w′(i) − 1 ≥

4n − i + 1, thus w′(i − 1) = 4n − i + 1 and using w′(i − 1) = w′(i) − 1, we have that

w′(i) = 4n− i+ 2 and our claim is proved.

Claim 4. An element w′a′ as before with (w′a′)2 = τ , t(w′a′)J(w′a′) = τJ and w′ satis-

fying Claim 3 is nonrelevant.

To prove Claim 4 we are reduced to considering the case β =




bτ

−bτ

1/b

−1/b




.

In this case the we consider n =




1 x

1

1 −x

1




. We have that n stabilizes β through

conjugation and that n has a nontrivial character action, contradicting the relevancy of β.

Therefore, if w′a′ is relevant with w′ =


A B

C D


, then B = C = 0. This proves that

w′a′ is of the form w′a′ = iτ (wa). �

3.2. Computation and comparison of the distributions.
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Lemma 3.7. The bijection between relevant w′a′ and relevant wa induces a bijection be-

tween representatives of relevant orbits g1 ∈ GLn,K\GL2n/N1 and g3 ∈ Spn,K\Sp2n/N3

where g−1
1 Tg1 = wa and g−1

3 Tg3 = w′a′ This bijection is given by g1 7→ g3 = i1(g1).

Proof. It is easy to see that if g−1
1 Tg1 = wa then i1(g1)

−1Ti1(g1) = w′a′. On the other

hand, suppose w′a′ is relevant, then we know w′a′ = iτ (wa). We have that if w′a′ is of

the form w′a′ = g−1
3 Tg3, then the eigenvalues of w′a′ are

√
τ and −√

τ with multiplicities

2n respectively. We note that the set of eigenvalues of w′a′ is the union of the set of

eigenvalues for wa and the set of eigenvalues for τ(wa)∗. Using that (wa)2 = τ , we get that

wa has zero trace. Thus the eigenvalues of wa consist of
√
τ and −√

τ with multiplicities n

respectively. Such wa are seen to be of the form wa = g−1
1 Tg1, this proves our lemma. �

Once we have this bijection we proceed with a formal proof of the relative trace identity

we have in mind. We have

ISp2n
(f ′ : Sp(n,K), 1;N3, θ3) =

∫

l3∈Spn,K(F )\Spn,K(A)

∫

n3∈N3(F )\N3(A)

Kf (l3, n3)θ3(n3)dl3dn3

=

∫

l3∈Spn,K(F )\Spn,K(A)

∫

n3∈N3(F )\N3(A)

∑

g3∈Sp2n(F )

f3(l
−1
3 g3n3)θ3(n3)dl3dn3

=
∑

g3∈Spn,K\Sp2n/N3

∫

l3∈Spn,K(A)

∫

n3∈N ′

3,g3
(F )\N3(A)

f3(l
−1
3 g3n3)θ3(n3)dl3dn3

where N ′
3,g3

:= g−1
3 Spn,Kg3 ∩N3.

We factor this integral as

∑

g3∈Spn,K\Sp2n/N3

∫

l3∈Spn,K(A)

∫

n3∈N ′

3,g3
(A)\N3(A)

∫

m3∈N ′

3,g3
(F )\N ′

3,g3
(A)

f3(l
−1
3 g3m3n3)θ3(n3)θ3(m3)dl3dn3dm3

or
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∑

g3∈Spn,K\Sp2n/N3

∫

l3∈Spn,K(A)

∫

n3∈N ′

3,g3
(A)\N3(A)

f3(l
−1
3 g3m3n3)θ3(n3)dl3dn3

∫

m3∈N ′

3,g3
(F )\N ′

3,g3
(A)

θ3(m3)dm3.

The integral over m3 is zero if g3 is non-relevant. We get that ISp2n
(f ′ : Sp(n,K), 1;N3, θ3)

is given by

(3.3)
∑

g3∈Spn,K\Sp2n/N3relevant

∫

l3∈Spn,K(A)

∫

n3∈N ′

3,g3
(A)\N3(A)

f3(l
−1
3 g3n3)θ3(n3)dl3dn3.

A similar computation shows that IGL2n
(f : GL(n,K), 1;N1, θ1) is equal to

(3.4)
∑

g1∈GLn,K\GL2n/N1,relevant

∫

l1∈GLn,K(A)

∫

n1∈N ′

1,g1
(A)\N1(A)

f1(l
−1
1 g1n1)θ1(n1)dl1dn1.

Lemma 3.8. (Comparison of the distributions). For any relevant g1 ∈ GL2n and g3 ∈ Sp2n

with g3 = i1(g1), for any place v of F , with f ′
v given by correspondence (3.1), we have

| det(g1)|−n−1
v

∫

l1∈GLn,K(Fv)

∫

n1∈N ′

1,g1
(Fv)\N1(Fv)

f ′
v(l

−1
1 g1n1)θ1(n1)dl1dn1

=

∫

l3∈Spn,K(Fv)

∫

n3∈N ′

3,i1(g1)
(Fv)\N3(Fv)

f3(l
−1
3 i1(g1)n3)θ3(n3)dl3dn3.

Proof. We fix a place v and drop the reference to Fv in the notation. We write g3 = i1(g1),

we have to consider

∫

l3∈Spn,K

∫

n3∈N ′

3,g3
\N3

f3(l
−1
3 i1(g1)n3)θ3(n3)dl3dn3.
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We write n ∈ N3 as n3 = vi(n1) with v ∈ V3 and n1 ∈ N1, then θ3(n3) = θ1(n1). An

explicit computation shows that if n3 ∈ N ′
3,g3

then n1 ∈ N ′
1,g1

and i1(g1)vm(i1(g1))
−1 ∈

V3 ∩ Spn,K .

Our integral is

∫

l3∈Spn,K

∫

n1∈N ′

1,g1
\N1

∫

v∈V3∩Spn,K\V3

f3(l
−1
3 i1(g1)vi(n1))θ1(n1)dl3dn1.

We make a change of variables v 7→ i1(g1)
−1vi1(g1) to get

∫

l3∈Spn,K

∫

n1∈N ′

1,g1
\N1

∫

v∈V3∩Spn,K\V3

f3(l
−1
3 vi1(g1n1))θ1(n1)| det(g1)|−(n+1)dl3dn1dv.

From the Iwasawa decomposition one has that Spn,K = (P3 ∩ Spn,K)(K3 ∩ Spn,K), so we

write l−1
3 = ki1(h1)u with k ∈ K3 ∩ Spn,K , u ∈ V3 ∩ Spn,K , h1 ∈ GLn,K , we combine the u

and v integrals to get

∫

k∈K3∩Spn,K

∫

h1∈GLn,K

∫

n1∈N ′

1,g1
\N1

∫

u∈V3

f3(ki(h1)ui1(g1n1))θ1(n1)| det(h1g
−1
1 )|−(n+1)dudn1dh1dk.

We change variables u 7→ i(g1n1)ui(g1n1)
−1, we obtain

∫

k∈K3∩Spn,K

∫

h1∈GLn,K

∫

n1∈N ′

1,g1
\N1

∫

u∈V3

f3(ki(h1g1n1)u)θ1(n1)| det(h1)|n+1dudn1dh1dk.

We may write this as

| det(g1)|−n−1

∫

h1∈GLn,K

∫

n1∈N ′

1,g1
\N1

∫

k∈K3∩Spn,K

∫

u∈V3

f3(ki(h1g1n1)u)| det(h1g1)|n+1θ1(n1)du dk dh1 dn1

= | det(g1)|−n−1

∫

h1∈GLn,K

∫

n1∈N ′

1,g1
\N1

f ′(h1g1n1)θ1(n1)dn1dh1



22

which proves the lemma. �

Proof of Theorem 3.1. As the product of | det(g1)|v over all places equals 1, we get the

equality of the distributions from equations (3.4), (3.3) and Lemma 3.8.

Now we work over a p-adic field F . For z ∈ C2n, let χz be an unramified character on

A1 given by

(3.5) χz




a1

. . .

a2n


 = |a1|z1 . . . |a2n|z2n .

We now define, for f ∈ H(Sp2n, K3), f
′ ∈ H(GL2n, K1):

(3.6) f̂(z) =

∫

a∈A1(F )

∫

n∈N3(F )

f(i1(a)n)χz(a)δ
1/2
3 (i1(a))dnda,

(3.7) f̂ ′(z) =

∫

a∈A1(F )

∫

n∈N1(F )

f ′(an)χz(a)δ
1/2
1 (i1(a))dnda.

Here δ3, δ1 denote the modulus functions of the Borel subgroup of Sp2n(F ) and GL2n(F )

respectively.

We define a Hecke algebra homomorphism λ1 : H(Sp2n, K3) → H(GL2n, K1) so that

when f ′ = λ1(f), we have

(3.8) f̂ ′(z − 1

2
) = f̂(z).

We let ǫ′1 be the map on S(Sp2n(F )) given by equation (3.1). Then when f ∈ H(Sp2n, K3):
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ǫ′1(f) =

∫

u∈V3(F )

∫

k∈K3∩GL(2n,K)(F )

f(i1(g)u)| det(g)|n+1dkdu.

From Iwasawa decomposition we get that f̂(z) = ǫ̂′1(f)(z − 1
2
). Thus ǫ′1(f) = λ1(f), i.e.

ǫ1 restricts to a Hecke algebra homomorphism. �

Theorem (3.1) gives a map from f ∈ S(Sp2n(A)) to f ′ ∈ S(GL2n(A)) with

IGL2n
(f ′ : GLn,K , 1;N1, θ1) = ISp2n

(f : Spn,K , 1;N3, θ3).

We want to construct a map in the other direction.

Corollary 3.9. For any place v there exists maps ε1,v : S(GL2n(Fv)) → S(Sp2n(Fv)), such

that IGL2n
(f ′
v : GL(n,K), 1;N1, θ1) = ISp2n

(fv : Sp(n,K), 1;N3, θ3) for f = ⊗fv and f ′ = ⊗f ′
v

where

1. f ′
v = λ1,v(fv) for v /∈ S a finite set of places containing bad places.

2. fv = ε1,v(f
′
v) for v ∈ S.

Proof. Given f ′
v ∈ S(GL2n(Fv)), define f1,v(p) on the Siegel parabolic subgroup P3(Fv) by

setting f1,v(i1(m)u) = f ′
v(m)φ(u) where m ∈ GL2n(Fv), u ∈ V3(Fv) and φ(u) is a Schwartz

function on V3(Fv) such that
∫
V3(Fv)

φ(u) du = 1. Define

f2,v(p) =

∫

k∈K3∩Spn,K∩P3(Fv)

f1,v(kp) dk.

Then f2,v is left K3 ∩ Spn,K ∩ P3(Fv) invariant. We extend f2,v to a function f3,v on

Spn,KP3(Fv) as follows: using the Iwasawa decomposition, any element in Spn,KP3(Fv) has

the form kp with k ∈ K3 ∩ Spn,K(Fv) and p ∈ P3(Fv); we let f3,v(kp) = f2,v(p).

As Spn,KP3 is a closed subset of Sp2n, the restriction map from S(Sp2n(Fv)) to S(Spn,KP3(Fv))

is surjective. Thus, there is a function fv ∈ S(Sp2n(Fv)) that restricts to f3,v. We will let

fv = ǫ1,v(f
′
v).
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We now check that the equality

IGL2n
(f ′
v : GL(n,K), 1;N1, θ1) = ISp2n

(fv : Sp(n,K), 1;N3, θ3)

holds under the conditions in the corollary.

For the given f ′
v, define a function on GL2n(Fv):

f ′′
v (g) =

∫

K1∩GLn,K(Fv)

f ′
v(kg) dk.

Then f ′′ = ⊗f ′′
v ∈ S(GL2n(A)) and

(3.9) IGL2n
(f ′′ : GLn,K , 1;N1, θ1) = IGL2n

(f ′ : GLn,K , 1;N1, θ1).

When v 6∈ S, we have that f ′
v = λ1(fv); since f ′

v is in H(GL2n, K1), we have f ′′
v =

f ′
v. Thus from the last statement of Theorem 3.1 (and its proof), we have fv and f ′′

v

satisfy equation (3.1). When v ∈ S, fv = ǫ1,v(f
′
v); we can check that fv and f ′′

v again

satisfy equation (3.1). It follows from Theorem 3.1 that ISp2n
(f : Spn,K , 1;N3, θ3) equals

IGL2n
(f ′′ : GLn,K , 1;N1, θ1). From (3.9) we get the claim of the corollary. �
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3.3. Identity of periods. The previous section was motivated by the conjectural relation

(see [JR] and [JiMR]) between the inner period on the Levi factor and the outer period on

the group. In the case when τ is an irreducible cuspidal representation of GL2n with its

exterior square L-function having a pole at s = 1 and with L(1/2, τ) 6= 0, τ has a nontrivial

GLn ×GLn period. On the other hand, the residual Eisenstein series on Sp2n constructed

from τ has a nontrivial period along the subgroup Spn × Spn. The relation between the

periods in this case is given as Theorem D in [GRS1].

In our present case, the residual Eisenstein series on Sp2n should have Sp(n,K) period

which is related to the GL(n,K) period of τ . This is the content of Theorem 3.10 below. For

the convenience of the reader, we reproduce the material on Eisenstein series from [GRS1].

Let P = MU be the Siegel parabolic subgroup of Sp2n, we have a natural identification

M ∼= GL2n via i1(g) 7→ g. Let τ be an irreducible, automorphic, cuspidal, self-dual

representation of GL2n(A). Let φ ∈ Ind
Sp2n(A)
P (A) τ , i.e. φ is a smooth function on Sp2n(A)

with values in the space of τ with

(3.10) φ(mug; r) = δ
1/2
P (m)φ(g; rm)

for m ∈ M(A), u ∈ U(A), g ∈ Sp2n(A), r ∈ GL2n(A). We realize φ as a complex function

on Sp2n(A) ×GL2n(A) such that r 7→ φ(g; r) is a cusp form in the space of τ ; we assume

φ is right K3−finite where K3 is the standard maximal compact subgroup of Sp2n(A). If

g ∈ Sp2n(A) has Iwasawa decomposition g = auk where a ∈ GL2n(A), u ∈ U(A), k ∈ K3,

we define for s ∈ C,

(3.11) ϕφτ,s(g;m) = H(g)s−1/2φ(g;m)

and

(3.12) fφτ,s(g) = ϕφτ,s(g; 1)
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where H(g) := | det(a)| for g with Iwasawa decomposition as above. We also denote by

χc the characteristic function of all real numbers larger than c; by χc, the characteristic

function of the interval (0, c].

Consider the Eisenstein series

(3.13) E(g, fφτ,s) =
∑

γ∈PSp2n
(F )\Sp2n(F )

fφτ,s(γg)

The constant term along U is given by

(3.14) EU(g, fφτ,s) =

∫

U(A)/U(F )

E(ug, fφτ,s)du = fφτ,s(g) +M(s)fφτ,s(g)

where M is the intertwining operator given by

(3.15) M(s)fφτ,s(g) =

∫

U(A)

fφτ,s(w
−1ug)du

with w =


 I2n

−I2n


; write

(3.16) E1(g, φ) = Ress=1E(g, fφτ,s)

We wish to prove the following theorem

Theorem 3.10. For a suitable choice of measures we have

(3.17)

∫

Sp(n,K)(F )/Sp(n,K)(A)

E1(h, φ)dh =

∫

KSpn,K

∫

C2n(A)GLn,K(F )\GLn,K(A)

φ(k; a)dadk

with KSp(n,K)
= K ∩ Spn,K and C2n the center of GL2n.

As in [GRS1], we apply the truncation operator Λc to E(g, fφτ,s), we get
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(3.18) ΛcE(g, fφτ,s) = E(g, fφτ,s) −
∑

γ∈PSp2n
(F )\Sp2n(F )

EU(γg, fφτ,s)χc(H(γg)).

By (3.14) and (3.18) we have

(3.19) ΛcE(g, fφτ,s) = E(g, fφτ,s) −
∑

γ∈PSp2n
(F )\Sp2n(F )

(fφτ,s(γg) +M(s)fφτ,s(γg))χc(H(γg))

(3.20) =
∑

γ∈PSp2n
(F )\Sp2n(F )

fφτ,s(γg)χ
c(H(γg)) −

∑

γ∈PSp2n
(F )\Sp2n(F )

M(s)fφτ,s(γg)χc(H(γg))

Denote

(3.21) θc1(g, f
φ
τ,s) :=

∑

γ∈PSp2n
(F )\Sp2n(F )

fφτ,s(γg)χ
c(H(γg)),

(3.22) θc2(g, f
φ
τ,s) :=

∑

γ∈PSp2n
(F )\Sp2n(F )

M(s)fφτ,s(γg)χc(H(γg)).

Applying Λc to E1 and noticing that fφτ,s is holomorphic, we get

(3.23) ΛcE1(g, φ) = E1(g, φ) − θc3(g, φ)

where

(3.24) θc3(g, φ) =
∑

γ∈PSp2n
(F )\Sp2n(F )

M1(f
φ
τ,s(γg)χc(H(γg)))

and M1 := Ress=1M(s). It is enough to prove the following proposition:

Proposition 3.11. The following formulae are valid with certain choice of measure:
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(3.25)

∫

Spn,K(F )\Spn,K(A)

θc1(h, f
φ
τ,s)dh =

cs−1

s− 1

∫

KSpn,K

∫

C2n(A)GLn,K(F )\GLn,K(A)

φ(k, a) da dk,

(3.26) ∫

Spn,K(F )\Spn,K(A)

θc2(h, f
φ
τ,s)dh =

c−s

s

∫

KSpn,K

∫

C2n(A)GLn,K(F )\GLn,K(A)

M(s)(ϕφτ,s)(k; a) da dk,

(3.27) ∫

Spn,K(F )\Spn,K(A)

θc3(h, φ)dh = c−1

∫

KSpn,K

∫

C2n(A)GLn,K(F )\GLn,K(A)

M1(ϕτ,1)
φ(k; a) da dk.

Assuming Proposition 3.11, let us show Theorem 3.10. By equation (3.20), we have that

ΛcE(g, fφτ,s) is equal to

∑

γ∈PSp2n
(F )\Sp2n(F )

fφτ,s(γg)χ
c(H(γg)) −

∑

γ∈PSp2n
(F )\Sp2n(F )

M(s)fφτ,s(γg)χc(H(γg)).

Integrating along Spn,K(F )\Spn,K(A) and using equations (3.25) and (3.26), we obtain

that
∫

Spn,k(F )\Spn,K(A)

ΛcE(h, fφτ,s) dh is equal to

cs−1

s− 1

∫ ∫
φ(k, a)dadk − c−s

s

∫ ∫
M(s)(ϕφτ,s)(k; a) da dk,

here the integrals are over K3 and C2n(A)GLn,K(F )\GLn,K(A).

Taking residues at s = 1, we get

∫

Spn,K(F )\Spn,K(A)

ΛcE1(h, f
φ
τ,s) dh =

∫ ∫
φ(k, a) da dk − c−1

∫ ∫
M1(ϕ

φ
τ,1)(k, a) da dk.
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Using equation (3.27), this is

(3.28)

∫

Spn,K(F )\Spn,K(A)

ΛcE1(h, f
φ
τ,s) dh =

∫ ∫
φ(k, a) da dk −

∫

Spn,K(F )\Spn,K(A)

θc3(h, φ) dh.

On the other hand, using equation (3.23), we get

(3.29) ∫

Spn,K(F )\Spn,K(A)

ΛcE1(h, f
φ
τ,s) dh =

∫

Spn,K(F )\Spn,K(A)

E1(h, φ) dh−
∫

Spn,K(F )\Spn,K(A)

θc3(h, φ) dh.

Comparing equations (3.28) and (3.29) proves Theorem 3.10.

Proof of Proposition 3.11. To prove this proposition we write the integrals
∫

Spn,K(F )\Spn,K(A)

θj(h)dh

in terms of Ij,d (defined in equation (3.33)) and show that Ij,d = 0 for d < n; the case

d = n gives the result.

The functions θcj have the form θj(g) =
∑

γ∈P (F )\G(F )

ξj(γg) with

(3.30) ξj(g) =





fφτ,s(g)χ
c(H(g)), j= 1

M(s)(fφτ,s)(g)χc(H(g)), j = 2

M1(f
φ
τ,1)(g)χc(H(g)), j = 3

Proceeding formally,

(3.31)

∫

Spn,K(F )\Spn,K(A)

θj(h)dh =

∫

Spn,K(F )\Spn,K(A)

∑

γ∈P (F )\Sp2n(F )

ξj(γh)dh,

and this is
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(3.32)
∑

γ∈P (F )\Sp2n(F )/Spn,K(F )

∫

γ−1P (F )γ∩Spn,K(F )\Spn,K(A)

ξj(γh)dh.

Recall the description of the double cosets N3(F )\Sp2n(F )/Sp(n,K)(F ) under the map

g 7→ gTg−1: namely, we may take as representatives elements g ∈ Sp2n with gTg−1 =

wa with (wa)2 = τ and t(wa)J(wa) = τJ . We remark that by considering the ef-

fect of the parabolic part and after conjugation by an appropriate element of the form
W

W ∗


 with W ∈ W (GLn), we may take wa to be of the form wa =


A B

C D


 with
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A =




0 τ

1 0

. . .

0 τ

1 0

0

. . .

0




, B =




0

.

.

0

τ 0

0 −τ

.

.

τ 0

0 −τ




,

C =




1 0

0 −1

.

.

1 0

0 −1

0

.

.

0




, D =




0

.

.

0

0 τ

1 0

.

.

0 τ

1 0




.

We attach a parameter d to such wa, where 2d is the number of nonzero rows

on the A block, and we label such wa as wad.
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We have that gTg−1 =




τ

−τ

.

.

1

−1




where g =


A B

C D


 ∈ Sp2n with

A =




1

0

.

.

1

0




, B =




0

−1

.

.

0

−1




, C =




1

0

.

.

1

0




, D =




0

1

.

.

0

1




. If the square matrix




τ

−τ

.

.

1

−1




is of size 2r, then we

denote the corresponding g as gr.

We have that if γd =




Id2d

gr

Id2d


, then γdTγ

−1
d = wad.

As in [GRS1], we let Qd = γ−1
d Pγd ∩ Spn,K and we need to compute the integrals

(3.33) Ij,d =

∫

Qd(F )\Spn,K(A)

ξj(γdh)
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for 0 ≤ d ≤ n and j = 1, 2, 3. We assume that γdTγ
−1
d = wad and remark that to find Qd

it is enough to find p ∈ P with γ−1pγ ∈ Sp(n,K)(F ), which is equivalent to wap = pwa.

Case d = 0:

In this case we have wa =


 α

β


 with

α =




τ
−τ

.
.

τ
−τ




and β =




1
−1

.
.

1
−1




and if p =

(
P1 P2

P3

)
with

wap = pwa then


 αP3

βP1 βP2


 =


P2β P1α

P3β


 then P2 = 0 and since P3 = σtP−1

1 σ we

have βP1 = σtP−1
1 σβ which implies tP1σβP1 = σβ but

σβ =




0 −1
1 0

.
.

0 −1
1 0




so that p = i(P1) =


P1

P1∗


 where P1 ∈ Spn. As P1

runs over Spn, so does Qd = γ−1
0 i(P1)γ0, embedded via i2 as a subgroup of Spn,K .

We have

(3.34) Ij,0 =

∫

i2(Spn(F ))\Sp2n(AK)

ξj(γ0h)dh.

We write h = i2(a)b where i2(a) ∈ i2(Spn(F ))\i2(Spn(AF )) and b ∈ i2(Spn(AF ))\Spn(AK).

We factor the integral as

(3.35) Ij,0 =

∫

i2(a)∈i2(Spn(F ))\i2(Spn(AF ))

∫

b∈i2(Spn(AF ))\Spn(AK)

ξj(γ0i2(a)γ
−1
0 γ0b)di2(a)db.
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This includes the integration of a cusp form in τ along i2(Spn(F ))\i2(Spn(AF )) which

equals zero by [Jacquet-Rallis, Prop 1].

Case 0 < d < n:

In this case we write wa =




α

β

β/τ

α




with

α =




τ
1

.
.

τ
1




and β =




τ
−τ

.
.

τ
−τ




and p =




P1 P 1
4 P 2

4 P5

P2 P 1
6

P 2
6

P3




where P1, P2, P3, P5 are squares matrices of sizes 2d, 4(n− d), 2d, 2d respectively, P 1
4 and

P 2
4 are of sizes 2d× 2(n− d), P 1

6 and P 2
6 of sizes 2(n− d) × 2d and p satisfies wap = pwa

then

(3.36)




αP1 αP 1
4 αP 2

4 αP5

δP2 βP 2
6

β
τ
P 1

6

αP3




=




P1α P 2
4
β
τ

P 1
4 β P5α

P2δ P 1
6α

P 2
6α

P3α




where δ =


 β

β/τ


.

Write this as a semidirect productMd×Vd, write the Iwasawa decomposition in Spn,K(A),

h = vmk where m ∈ Md(A), v ∈ Vd(A), k ∈ KSpn,K
, dh = δ−1(m)dvdmdk, where δ is the
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modulus function of the parabolic subgroup Qd, then

(3.37) Ij,d =

∫

KSpn,K

∫

Md(A)/Md(F )

∫

Vd(A)/Vd(F )

ξj(γdvγ
−1
d .γdmk)δ

−1(m)dvdmdk.

We let P4 =
(
P 1

4 P 2
4

)
and P6 =


P

1
6

P 2
6


. One has that γ−1

d Pγ =




P1 P4gr P5

g−1
r P2g g−1P6

P3


,

from equation (3.36) we have that P1, P5, P3 ∈ GLn,K . The equation αP4 = P4δ implies

TP4 = P4grTg
−1
r so that P4gr ∈ GLn,K . Similarly, we have that g−1

r P2gr, g
−1
r P6 ∈ GLn,K .

Thus, the projection to Sp(n,K) of γdvγ
−1
d as v varies in Vd is a unipotent radical inGL2n. We

have H(γdvγ
−1
d ) = 1 and Ij,d involves an integration of a cusp form in τ along Vd(F )\Vd(A),

so Ij,d = 0 for 0 < d < 2n, j = 1, 2, 3.

Case d = n:

We have wa =




τ

1

.

.

τ

1




and if p =


P1 P2

P3


 with pwa = wap then

Pi




τ

1

.

.

τ

1




=




τ

1

.

.

τ

1




Pi, i.e. Pi ∈ GLn,K(F ) for i = 1, 2, 3.
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Using the Iwasawa decomposition Spn,K = KSpn,K
i1(GLn,K)VSpn,K

, where KH = K3 ∩

Spn,K and VSpn,K
= V3 ∩ Spn,K we have

(3.38) Ij,n =

∫

KSpn,K

∫

GLn,K(F )\GLn,K(A)

ξj




a

a∗


 k


 | det(a)|−(n+1)dadk

(3.39) =

∫

KSpn,K

∫

GLn,K(F )\GLn,K(A)0

∫

F×\A×

ξj




ta

t−1a∗


 k


 |t|−2n(n+1)d×tdadk.

When j = 1 we get

(3.40)

I1,d =

∫

KSpn,K

∫

GLn,K(F )\GLn,K(A)0

∫

F×\A×

fφτ,s




ta

t−1a∗


 k


χc


H


ta

t−1a∗




 |t|−2n(n+1)d×tdadk

(3.41)

=

∫

KSpn,K

∫

GLn,K(F )\GLn,K(A)0

∫

F×\A×

ϕφτ,s




ta

t−1a∗


 k; 1


χc


H


ta

t−1a∗




 |t|−2n(n+1)d×tdadk

=

∫

KSpn,K

∫

GLn,K(F )\GLn,K(A)0

∫

F×\A×


H


ta

t−1a∗





s−1/2

φ




ta

t−1a∗


 k; 1




×χc(|t|2n)|t|−2n(n+1)d×tdadk
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(3.42)

=

∫

KSpn,K

∫

GLn,K(F )\GLn,K(A)0

∫

F×\A×,|t|2n≤c

|t|2n(s−1/2)φ(k; a)δPSp2n


ta

t−1a∗




1/2

|t|−2n(n+1)dad×tdk.

But we have that δPSp2n


ta

t−1a∗


 = |t2|2n( 2n+1

2
) so that we get

(3.43) =

∫

KSpn,K

∫

GLn,K(F )\GLn,K(A)0

φ(k; a)d(a)dk

∫

t∈F×\A×,|t|2n≤c

|t|2n(s−1)d∗t

We choose d∗t so that the integral over t equals
c∫
0

ts−1 dt
t

= cs−1

s−1
, for Re(s) > 1. �

3.4. Convergence of the integrals. We need to prove the absolute convergence of the

integrals

(3.44)

∫

γ−1
d
Pγd∩Sp2n,K(F )\Sp2n,K(A)

ξj(γdh).

For this we write the Iwasawa decomposition for elements in Sp4n,K as M ′V K where

M ′ =




P1

P ′

P ∗
1


 and V =




1
(
P2 P3

)
P4

1


P2

P3




∗

1




where P1 ∈ GL2d,K , P ′ ∈ Sp4(n−d),K , P2, P3 ∈ M2d×2(n−d),K , P4 ∈ GL2d,K and K denotes

the maximal compact subgroup of Sp4n,K .

Now P satisfies γ−1
d Pγd ∈ Sp4n,K if and only if hP = Ph, this implies that γ−1

d Pγd is



38

of the form




P1

(
P2 P3

)
P4


P6

P ∗
6





P2

P3




∗

P ∗
1




, with tP6σβ
−1P6 = σβ−1, (P2P3)δ = α(P2P3),

αPi = Piα for i = 1, 4 and P ∗
6 ≡ β−1P6β.

The conjugation by γ gives

(3.45) γ−1Pγ ∩ Sp4n,K =




P1

(
P2 P3

)
γ P4

γ−1


P6

P ∗
6


 γ γ−1


P2

P3




∗

P ∗
1




We define M :=




P1

γ−1


P6

P ∗
6


 γ

P ∗
1




with P1 ∈ GL2d,K and P6 ∈ Sp2(n−d).

We thus get that r ∈ M(F )\M(A) is of the form r =




P1

γ−1


P6

P ∗
6


 γ

P ∗
1




, where

P1 ∈ GL2d,K(F )\GL2d,K(A) and P6 ∈ Sp2(n−d)(F )\Sp2(n−d)(A).

For such r, we have that γrγ−1 =




P1

P6

P ∗
6

P ∗
1




with the projection to GL2n
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of its Levi component being of the form


a

b


 with a ∈ GL2d,K(F )\GL2d,K(A) and

b ∈ Sp2(n−d)(F )\Sp2(n−d)(A).

Similarly, we define V :=




1
(
P2 P3

)
P4

1


P2

P3




∗

1




with P2, P3 ∈ M2d×2(n−d),K and

P4 ∈ GL2d,K . Thus v ∈ V (F )\V (A) is of the form v =




1
(
P2 P3

)
P4

1


P2

P3




∗

1




with

P ′
2, P

′
3 ∈M2d×2(n−d),K(F )\M2d×2(n−d),K(A) and P4 ∈ GL2d,K(F )\GL2d,K(A).

For v as above, we have that γvγ−1 is of the form




1
(
P2 P3

)
γ−1 P4

1 γ


P2

P3




∗

1




with

P2, P3 and P4 as above. The projection to GL2n of the Levi component of γvγ−1 is thus

of the form


I2d y

I2(n−d)


 with y ∈M2d×2(n−d)(F )\M2d×2(n−d)(A).

We remark that the Iwasawa decomposition for γ−1Pγ ∩ Sp4n,K is MV .

As P6 varies in Sp2(n−d)(F ), γ−1


P6

P ∗
6


 γ varies over Sp4(n−d),K(F ) where the em-

bedding from F into GL2,K(F ) is given by a 7→


a

a


 with a ∈ F . We take the Iwasawa
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decomposition of γ−1


P6

P ∗
6


 γ according to the Borel subgroup. Thus we may take

m′ ∈ M(A)\M ′(A) to be of the form




I2d

m

I2d


 with m = m(A) = m2(n−d)−1 ×

m2(n−d)−2 × . . . × m1 × t where t =


A

∗

A


 with A =




a1 τ

1 a1

. . .

an−d τ

1 an−d




and mi =




I2 . . . Xα

I2 Xα+1

. . . Xω

I2
...

I2




where the X ′s lie on the ith superdiagonal with

Xj =


 xjτ

xj


, α = 2(i− 1)(n− d) − i(i−1)

2
+ 1 and ω = α + 2(n− d) − i− 1. We also

remark that the X ′s are related by the symplectic structure on mi.

For γm with m as above, we write the Iwasawa decomposition according to the Borel

subgroup as γm = lmumkm and dm :=
∏
i

dxi

|x2
i−τ |

. We also write |g| for | det(g)|.

Lemma 3.12. For m(A) as above, we have:

1) |lm| ≤ 1.

2) The integral
∫
m

|lm|tdm converges, provided t is large enough.
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Proof. We denote by r the matrix obtained by taking the even rows of m. We have that

|lm|−1 is greater than or equal to the maximum of the determinant of the 2(n−d)×2(n−d)

minors of the matrix r, note in particular that these minors are upper triangular.

For 1 ≤ j ≤ n − d we have that the last entries of the columns 2(n − d) + 2j − 1 and

2(n− d) + 2j are up to signs, 1 and aj respectively, both located at the row n− d+ j.

Also, the last entry of the columns 2(n− d)− 2j + 1 and 2(n− d)− 2j + 2 are up to signs,

1
a2

j−τ
and

aj

a2
j−τ

respectively, both located at the row n− d− j + 1.

For a2
j − τ small, we choose the columns 2(n − d) + 2j − 1) and 2(n − d) − 2j + 1, we

remark that the product of their last entries is 1 × 1
a2

j−τ
.

For a2
j − τ large, we choose the columns 2(n − d) + 2j and 2(n − d) − 2j + 2, we remark

that the product of their last entries is aj × aj

a2
j−τ

.

In either case, we have that max
{

1
a2

j−τ
,

a2
j

a2
j−τ

}
≥ 1. Thus after choosing columns as de-

scribed, we get that |lm| ≤ 1.

We remark that by the symplectic structure of m, it is enough to consider the convergence

over the variables xi where xi lies on a column k with k ≥ 2(n− d) + 1.

For such a variable x, we let j be such that (after a change of variables) the elements

ajx, τx appear on the columns 2(n− d) + 2j + 1 and 2(n− d) + 2j + 2 respectively with

1 ≤ j ≤ n − d and j minimal with respect to this property. We also let i be the row for

such ajx and τx.

We choose the columns 2(n− d) + 2j + 1 and 2(n− d) + 2j + 2 with j as above and for

the remaining columns we make a choice similar to the one used in the proof of 1). The

determinant of the minor obtained is |a2
j − τ | × |x|.
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We choose the columns 2(n− d)− 2j + 1 and 2(n− d) + 2j − 1 with j as above and for

the remaining columns we follow the proof of 1) as before, we get that the determinant of

the minor thus obtained is | 1
a2

j−τ
|.

Combining the last two observations with the fact that |lm| ≤ 1, we see that |lm| ≤

min {1, |a2
i − τ |, |a2

i − τ |−1|xj|−1}. When a2
i − τ is large, we have |lm| ≤ |a2

i − τ |−1|xj|−1.

On the other hand, when |a2
i − τ | is small, we have |lm| ≤ |a2

i − τ |α|x2
i − τ |α−1|xj|α−1 where

1/2 < α < 1. We get that |lm| ≤ |a2
i − τ |2α−1|xj|α−1 which gives a convergent integral in

x. Repeating this over x′s, we obtain the second assertion in the Lemma. �

Our integral becomes

(3.46)

Ij,d =

∫

KH

∫

m∈M(A)\M ′(A)

∫

r∈M(F )\M(A)

∫

v∈Vd(F )\Vd(A)

ξj(γvγ
−1.γrγ−1.γdmk)δ

−1(r)dvdmdk.

By the definition of ξj, this is

(3.47)

∫
φj(k;


I2d y

I2(n−d)




a

b




I2d

lm


)|a|sj |lm|s

′

jχj,c(|a||lm|)dadbdydm

where y ∈M2d×2(n−d)(F )\M2d×2(n−d)(A), a ∈ GL2d,K(F )\GL2d,K(A), b ∈ Sp2(n−d)(F )\Sp2(n−d)(A)

and lm as above.

Case j =1, d = 0 Our integral becomes

(3.48)

∫

m∈M(A)\M ′(A),|lm|<c

∫

b∈Sp2(n−d)(F )\Sp2(n−d)(A)

ϕ(blm)|lm|s+ndbdm.
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Since |lm| ≤ 1 by Lemma 3.12 and c > 1, we have that |lm| ≤ c always holds. Since ϕ

is bounded and Sp2n(F )\Sp2n(A) has finite volume, it is enough to consider
∫
|lm|s+ndm.

By Lemma 3.12, this converges for Re(s) large enough.

Case j = 2,3, d = 0 Our integral becomes

(3.49)

∫

m∈M(A)\M ′(A),|lm|>c

∫

b∈Sp2(n−d)(F )\Sp2(n−d)(A)

ϕ(blm)|lm|1−s+ndbdm.

Here the domain of integration is empty by Lemma 3.12 and the fact that c > 1.

The proof for the cases where 0 < d < n is similar to [GRS1], with Lemma 3.12 in place

of Lemmas 6 and 7.
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4. Some global identities on Sp2n

We want to relate the distributions ISp2n
(f : Spn,K , 1;N3, θ3) and ISp2n

(f : Spn,K , 1;N3, θ4Θ
Φ
ψ−1).

We use (modified) results from [GRS2] and [GRS1]. We recall the setup in [MR].

For f ∈ S(Sp2n(A)), define

Ψf (g) =

∫

l∈Spn,K(F )\Spn,K(A)

Kf (l, g)dl.

Then Ψf (g) is a left Sp2n(F ) invariant form on Sp2n(A) satisfying the moderate growth

condition: |Ψf (g)| is bounded by a polynomial in ||g|| where

(4.1) ||g|| =
∏

v

||gv||v =
∏

v

(max
i,j

{|gi,j,v|v, |g−1
i,j,v|v}).

Clearly f 7→ Ψf (g) is a linear map. When fg′(g) = f(gg′), we have Ψfg′
(g) = Ψf (gg

′).

4.1. Definition of I1(f). We recall the definition of sets X0 and Y ∗
n−1,n, elements ν0 and

ω in [GRS2, §4].

Let ω̃ be a permutation matrix in GL2n such that

ω̃2i,i = 1, ω̃2i−1,n+i = 1, i = 1, . . . , n.

Recall i1 is map from GL2n to Sp2n: i1(g) =
( g

g∗
)
. Let ω = i1(ω̃). Let

a = diag[b, . . . , b, b∗, . . . , b∗] ∈ Sp2n, b = ( 1 −1
1 1 ) ,

and ν be the Weyl element in Sp2n such that

νi,2i−1 = νn+i,2n+2i−1 = ν3n+i,2n+2i = 1, ν2n+i,2i = −1, i = 1, . . . , n.
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Let ν0 = νa. We only need to note here that ν0 and ω are elements in Sp2n(F ); and

over a p−adic place v where p is odd, ν0 and ω lie in the maximal compact subgroup of

Sp2n(Fv).

Recall that σ ∈ GLn denotes the longest Weyl element, and the set Sn is the set of

matrices g ∈ GLn satisfying σg is a symmetric matrix. Let

(4.2) X0 = {x ∈ S2n |x is nilpotent and upper triangular}.

For x ∈ X0, let

(4.3) l̄(x) =


 12n

x 12n


 .

Let T (n) ⊂ GL2n be defined as in [GRS2, (4.34),(4.35)], then T (n) = ω̃N\nω̃
−1 where

N\n denotes the subgroup of N1 consisting of matrices whose n−th row has only one

nonzero entry. Let Y ∗
n−1,n be the set

(4.4) {i1(T ) |T ∈ T (n), T is lower triangular} ⊂ Sp2n .

Define:

(4.5) I1(f) =

∫

y∗∈Y ∗

n−1,n(A)

∫

x∈X0(A)

∫

N3(F )\N3(A)

Ψf (nl̄(x)ν0y
∗ω)θ3(n) dn dx dy∗.

This definition is motivated by the Corollary on p.895 of [GRS2]. The integral over X0

and Y ∗
n−1,n are absolutely convergent, which is clear from equation (4.26) after applying

the Dixmier-Malliavin Theorem.



46

4.2. Definition of I2(f). Let j be the injection from Spn to Sp2n:

(4.6) j : g 7→ j(g) =




1n

g

1n


 .

We define some subgroups of N3. Let Zi be the maximal unipotent subgroup of GLi

consisting of upper triangular matrices with unit diagonal. Let

(4.7) N̂k = {v =




z ∗ ∗

14n−2k+2 ∗

z∗


 ∈ N3| z ∈ Zk−1}.

Then N̂k is a normal subgroup of N̂ j whenever k < j ≤ 2n+ 1.

Define a subgroup Un of N3:

(4.8) Un = {η(x,y, t) =




1n−1

1 x y t

1n 0 ∗

1n ∗

1

1n−1




}.

Then Un is a Heisenberg group and is isomorphic to N̂n\N̂n+1. Let Un
0 be the normal

subgroup of Un consisting of η(0,y, t).

Define Ñn to be Un
0 N̂

n. Define a character χ̃n on Ñn(A), such that for n = η(0,y, t)n′

with n′ ∈ N̂n:

(4.9) χ̃n(η(0,y, t)n
′) = ψ

(
n−1∑

i=1

n′
i,i+1 + t

)
.
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Note that j(N2)Ñ
n is a group with Ñn being a normal subgroup. Define

(4.10) I2(f) =

∫

n2∈N2(F )\N2(A)

∫

v∈Ñn(F )\Ñn(A)

Ψf (vj(n2))θ2(n2)χ̃
−1
n (v) dv dn2.

This expression can be rewritten as ISp2n
(f : Spn,K , 1; j(N2)Ñ

n, θ2χ̃
−1), which is abso-

lutely convergent.

4.3. Global identity 1: between I1(f) and I2(f).

Proposition 4.1. The equation I1(f) = I2(f) holds for any f ∈ S(Sp2n(A)).

Proof. This is Proposition 3.1 in [MR] and we follow its proof, namely, we consider Ψf (g)

in place of E(g, φ) = Ress=1E(g, φη,s) in the setting of [GRS2, Theorem 2] to obtain

(4.11) I2(f) =

∫

Y ∗

n−1,n(A)

∫

u∈E2n(F )\E2n(A)

Ψf (uy
∗ω)ψ2n(u) du dy∗.

We remark that [GRS2, Theorem 5.2] is a general statement about automorphic forms

on Sp2n(A), hence our present use of it is justified.

Let us assume equation [GRS2, (5.16)] with Ψf (g) in place of Ress=1E(g, φη,s). We

obtain:

(4.12)

∫

E2n(F )\E2n(A)

Ψf (u)ψ
2n(u) du =

∫

x∈X0(A)

∫

N3(F )\N3(A)

Ψf (n3l̄(x)ν0)θ3(n3) dn3 dx.

From equations (4.11), (4.12) and the definition of I1(f) in (4.5), we obtain the proof of

the Proposition. �



48

We must now justify our use of [GRS2, (5.16)] in the present case. The argument leading

up to [GRS2, (5.16)] applies in our case up to equation [GRS2, (5.2)], namely

(4.13)

∫

N(k)(F )\N(k)(A)

Ψf (n)χ−1
k,α(n)dn = 0

whenever 1 ≤ k < n. The groups N (k) are defined below in equation (5).

Equation (4.13) follows from a result on disjointness of Sp(n,K)-invariant functionals

and (N (k), χk,α)−eigenfunctionals. The local results which give disjointness of Spn ×

Spn−invariant functionals and (N (k), χk,α)−eigenfunctionals are given by [GRS1, Theo-

rem 16,17]. In our case, the following Theorem is analogous to [GRS1, Theorem 16], it

implies the analogous statement to [GRS1, Theorem 17] and justifies equation (4.13) and

our use of [GRS2, (5.16)].

For 0 ≤ k < n, the subgroup N (k) is defined by

(4.14) N (k) =





n =




z u ∗ ∗ ∗

1 0 y ∗

I2k 0 ∗

1 u′

z∗




|z ∈ Z2n−(k+1)





and its character χk,α is defined by χk,α(n) = ψ(z1,2 + z2,3 + . . . + z2n−k−2,2n−k−1 +

u2n−k−1)ψ(y). Note that on N (k) the characters χn,1 and χ̃n are equal.

Theorem 4.2. For 0 ≤ k < n, the Jacquet module JN(k),χk,α
(cIndSp2n

Spn,K
1) is zero.

Proof. We prove this by standard Bruhat theory, we consider the double cosets Spn,K\Sp2n/N
(k)

and show that for all g ∈ Sp2n(Fv) one has χk,α|g−1Spn,Kg ∩N (k) 6= 1. As before, we con-

sider a symmetric space isomorphic to Spn,K\Sp2n, namely given g ∈ Sp2n we define the
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involution θ(g) := TgT−1. The centralizer of T in Sp2n is Spn,K . The symmetric space

Y is defined by Y = {g−1θ(g)T|g ∈ Sp2n} = {g−1Tg|g ∈ Sp2n} and Y ∼= Spn,K\Sp2n. We

recall that y ∈ Y admits a decomposition

(4.15) y = n−1wan where n ∈ N3, (wa)
2 = τ,t (wa)J(wa) = τJ.

Now an element v ∈ N (k) is in the stabilizer of n−1wan if and only if v−1n−1wanv =

n−1wan, that is, (nvn−1)−1wa(nvn−1) = wa.

Let U (k) =








I2n−k−1

u

I2n−k−1


 |u ∈ NSpk+1(F )





.

Clearly, N3 = N (0) = U (k)N (k), U (k) normalizes N (k) and for u ∈ U (k), v ∈ N (k), we have

(4.16) χk,α(uvu
−1) = χk,α(v).

Note that U (k) ∩N (k) is the center of U (k). From the decomposition in equation (4.15),

we have that the N (k) orbits on Y admit representatives of the form

u−1wau

with u ∈ U (k) and wa as in (4.15). Now an element v ∈ N (k) is in the stabilizer of u−1wau if

and only if (uvu−1)−1wa(uvu−1) = wa and by equation (4.16), it suffices to assume u = 1.

Thus we are reduced to solving n−1wan = wa, n ∈ N (k).

We call wa satisfying (wa)2 = τ,t (wa)Jwa = τJ nonrelevant, if the above equation

admits solutions n in N (k) such that χk,α(n) 6= 1. Otherwise, we call wa relevant. In

order to prove our theorem, we have to show all wa with (wa)2 = τ,t (wa)Jwa = τJ are

nonrelevant if k < n. We first need a Lemma.
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Lemma 4.3. With definitions as in the previous theorem and for a fixed k, 1 ≤ k ≤ n, if

wa is relevant then wa is of the form

(4.17) wa =




02n−k ∗ 02n−k

∗ ∗ ∗

02n−k ∗ 02n−k




where 02n−k is the zero square matrix of size 2n− k.

Proof. We note that solving the equation n−1wan = wa, n ∈ N (k) is equivalent to solving

(wa)n(wa) = τn. We denote the element ni,j by (i, j), so that the elements of n ∈ N (k) on

which χk,α acts are (1, 2), (3, 4), . . . , (2n− k − 1, 2n− k), (2n− k, 2n+ k + 1). We remark

that under the action of left and right multiplication by wa, the element (i, j) maps to

(σ(i), σ(j)) where σ denotes the natural action of wa.

As a first step, we note that it is enough by the symplectic structure of w to show that

(i, j) = 0 for 1 ≤ i ≤ 2n− k, 4n− i+ 1 ≤ j ≤ 4n and for 1 ≤ i ≤ 2n− k, 1 ≤ j ≤ i.

We prove the first assertion by induction on the rows. We remark that the entries of w

satisfy (i, 4n− i+ 1) = 0, which in particular gives the initial case in our induction. Now

let us assume that (i, j) = 0 for 1 ≤ i ≤ l − 1, 4n− i+ 1 ≤ j ≤ 4n. We want to show that

σ(l) /∈ {4n− l + 2, 4n− l + 3, . . . , 4n}.

We do this by contradiction, we assume σ(l) = 4n − γ with γ ∈ {0, 1, . . . , l − 3}. We

consider the root X = (l−1, l) and remark that w maps X to (σ(l−1), 4n−γ). This allows

us to construct n ∈ N (k) with non trivial character action (contradicting the relevancy of

w) unless σ(l − 1) ∈ {4n− γ − 1, 4n− γ, . . . 4n}, but this is impossible by the induction

hypothesis. This proves that σ(l) /∈ {4n− l + 3, . . . , 4n}.

We now assume that σ(l) = 4n − l + 2 and again consider the root X = (l − 1, l).

As before, w carries X to (σ(l − 1), 4n − l + 2) and this gives rise to n ∈ N (k) with

nontrivial character action unless σ(l − 1) ∈ {4n− l + 1, 4n− l + 2, 4n− l + 3, . . . , 4n}.
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The induction hypothesis gives that σ(l − 1) /∈ {4n− l + 2, . . . , 4n} so that we are left to

consider the case σ(l − 1) = 4n− l + 1. In this case the root X is mapped to the element

(4n− l+1, 4n− l+2) which is related by the symplectic structure of n to X, this allows us

once more to define n ∈ N (k) with nontrivial character action, contradicting the relevancy

of w. This shows that σ(l) /∈ {4n− l + 2, 4n− l + 3, . . . , 4n} and concludes the induction.

We similarly prove the second claim by induction on the rows. By hypothesis we have

that (i, j) = 0 for i ∈ {2n− k, 2n− k − 1, . . . , 2n− k − (l − 1)} with 1 ≤ j ≤ i. We

assume that σ(2n− k− l+ 1) ∈ {1, 2, . . . , 2n− k − l}, and we consider the root (2n− k−

(l−1), 2n−k− l+2). This root gets mapped by w to (σ(2n−k− l+1), σ(2n−k− l+1)).

This gives rise to n ∈ N (k) with nontrivial character action contradicting the relevancy

of w unless σ(2n − k − l + 2) ∈ {1, 2, . . . , σ(2n− k − l + 1) + 1}. This last condition is

impossible by the induction hypothesis. This proves the induction step.

For the initial case, we have to prove (i, j) = 0 whenever i = 2n − k and 1 ≤ j ≤ i.

We assume that σ(2n − k) ∈ {1, 2, . . . , 2n− k − 1}. We consider the root (2n − k, 2n +

k+ 1) and remark that this root gets mapped by w to the element (σ(2n− k), σ(2n+ k+

1)). This implies the existence of n ∈ N (k) with nontrivial character action contradicting

the relevancy of w unless σ(2n + k + 1) ∈ {1, 2, . . . σ(2n− k) − 1}. This is impossible

as a consequence of the first assertion in the proof. This proves the initial case of our

induction. �

We remark that if k < n the matrix wa of type (4.17) is not invertible, since w is in the

Weyl group of Sp2n(Fv). This proves Theorem 4.2. �

The following is the equivalent of [GRS1, Theorem 17] our case, the proof is the same

as in [GRS1], we present it here for completeness.
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Theorem 4.4. Let π be an irreducible, admissible representation of Sp2n(Fv). Assume

that the space of π admits a nontrivial Sp(n,K)-invariant functional. Then for 0 ≤ k < n,

JN(k),χk
(π) = 0, i.e. π has no nontrivial (N (k), χk)-eigenfunctionals.

Proof. By [MVW, P. 91], we have that π̃ ∼= πδ where πδ stands for the composition of π

with conjugation by δ̌ where δ̌ =


I2n

δI2n


 ∈ GSp2n(Fv) and δ is a non square in Fv.

We remark that conjugation by δ̌ preserves Sp(n,K). Then if π acts on the space Vπ and l

is a Sp(n,K) invariant functional on Vπ, then l(πδ(h)ξ) = l(π(hδ)ξ) = l(ξ) for h ∈ Sp(n,K)

and ξ ∈ Vπ̃ = Vπδ so that l serves as an Sp(n,K) invariant functional for πδ as well, hence

π admits Sp(n,K) invariant functionals if and only if π̃ does. This happens if and only if π̃

embeds in IndSp2n

Spn,K
1 = C∞(Spn,K\Sp2n), which is the same as the existence of a surjection

cIndSp2n

Spn,K
1 → ˜̃π ∼= π and by the exactness of Jacquet functors and Theorem 4.2, we get

JN(k),χk
(π) = 0 �

To relate the distributions ISp2n
(f : Spn,K , 1;N3, θ3) and ISp2n

(f : Spn,K , 1;N3, θ4Θ
Φ
ψ−1),

we require two other trace identities. The following trace identities are in [MR], we state

them here for completeness.

4.4. Global identity 2: between I1(f) and ISp2n
(f : Spn,K , 1;N3, θ3). Recall:

(4.18) ISp2n
(f : Spn,K , 1;N3, θ3) =

∫

N3(F )\N3(A)

Ψf (n)θ3(n) dn.

Theorem 4.5. There exist maps ǫ2,v from S(Sp2n(Fv)) to itself, such that

(1) the equation

(4.19) ISp2n
(f : Spn,K , 1;N3, θ3) = I1(f

′)

holds for f = ⊗fv, f ′ = ⊗f ′
v when f ′

v = ǫ2,v(fv).

(2) for v a good place, ǫ2,v restricts to identity map on Hecke algebra H(S̃pn, K2)v.
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Similarly there exist maps ǫ′2,v satisfying condition (2) such that (4.19) holds when fv =

ǫ′2,v(f
′
v).

Proof. We set f 1
v (g) = f ′

v(gω) for all places v. Then we have that

(4.20) I1(f
′) =

∫

y∗∈Y ∗

n−1,n(A)

∫

x∈X0(A)

∫

N3(F )\N3(A)

Ψf1(nl̄(x)ν0y
∗)θ3(n)dndxdy∗.

Recall that ω is in the maximal compact subgroup of Sp2n(Fv) for v an odd p-adic place.

Thus we have that if f ′
v is a Hecke function at a good place v, then f 1

v (g) = f ′
v(g).

Next we note that Y ∗
n−1,n is an abelian group which can be written as Y ∗

n−1,n =
n−1∏
i=1

Ki

where

(4.21) Ki =

{
i1(12n +

i∑

j=1

tje2i,2j−1)

}
.

Let Ki =
i∏
l=1

Kl, note that K0 = {14n} and Kn−1 = Y ∗
n−1,n.

Let

(4.22) hf (g) =

∫

x∈X0(A)

∫

N3(F )\N3(A)

Ψf (nl̄(x)νog)θ3(n)dndx.

Let L be a space of smooth functions on Sp2n(A) such that f(g) ∈ L implies f(ug) =

ψ2n(u−1)f(g) for u ∈ E2n. From equation (4.12), we have that hf (g) ∈ L. The righthand

side of equation (4.20) is

(4.23)

∫

Kn−1(A)

hf1(y)dy.
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From the Theorem of Dixmier-Mallavin [DMa], we have that f 1
v can be written as

(4.24) f 1
v (g) =

∑

αv

∫

F i
v

φαv
(x1, . . . , xi)fαv

(gri(x1, . . . , xi))d(x1, . . . , xi)

for some fαv
∈ S(Sp2n(Fv)) and φαv

∈ S(F i
v); here ri is the homomorphism from Ai−1

to Sp2n(A) given by

(4.25) ri(t1, . . . , ti−1) = i1(12n +
i−1∑

j=1

tje2j−1,2i).

Moreover, at good places f 1
v is a Hecke function and can be expressed as above with a

single αv with φαv
being the characteristic function of the integer lattice and fαv

= f 1
v .

We have that

(4.26) hf1(g) =
∑

α

∫

Ai

φα(x1, . . . , xi)hfα(gri(x1, . . . , xi))d(x1, . . . , xi)

for some fα ∈ S(Sp2n(A)) and φα ∈ S(Ai).

From the proof of [GRS2, Lemma 5.1], we get the following:

Lemma 4.6. For fixed i and a function hi(g) ∈ L, such that hi(g) equals

∑

α

∫

Ai

φα(x1, . . . , xi)hα(gri(x1, . . . , xi)) d(x1, . . . , xi)

for some hα ∈ L and φα ∈ S(Ai), we have

(4.27)

∫

Ki(A)

hi(y) dy =

∫

Ki−1(A)

hi−1(y) dy,
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where

hi−1(g) =
∑

α

∫

Ai

φ̂α(x1, . . . , xi)hα(gri(x1, . . . , xi)) d(x1, . . . , xi),

φ̂α is the Fourier transform of φα:

φ̂α(x1, . . . , xi) =

∫
φα(t1, . . . , ti)ψ(

i∑

j=1

xiti) d(t1, . . . , ti).

From equation(4.27), we get a f 1
n−2 = ⊗f 1

n−2,v ∈ S(Sp2n(A)) defined by

(4.28) f 1
n−2,v(g) =

∑

αv

∫

F i
v

φ̂αv
(x1, . . . , xi)fαv

(gri(x1, . . . , xi)) d(x1, . . . , xi),

satisfying

(4.29)

∫

Kn−1(A)

hf1(y)dy =

∫

Kn−2(A)

hf1
n−2

(y) dy.

Note that from (4.28), f 1
n−2,v = f 1

v when f 1
v is a Hecke function at a good place v.

Continuing the procedure we get eventually f 2 = f 1
0 ∈ S(Sp2n(A)), with f 2

v = f 1
v when f 1

v

is a Hecke function at a good place v, and

∫

Kn−1(A)

hf1(y)dy =

∫

K0(A)

hf1
0
(y) dy = hf2(14n).

We get that the righthand side of (4.20) equals:

(4.30)

∫

x∈X0(A)

∫

N3(F )\N3(A)

Ψf2(nl̄(x)ν0)θ3(n) dn dx.

Moreover f 2
v = f 1

v when f 1
v is a Hecke function at a good place v.
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By letting f 3(g) = f 2(gν0), we get (4.30) equals

(4.31)

∫

x∈X0(A)

∫

N3(F )\N3(A)

Ψf3(nl̄(x))θ3(n) dn dx.

Clearly f 3
v = f 2

v when f 2
v is a Hecke function at a good place v.

We now consider

h̄f (g) =

∫

N3(F )\N3(A)

Ψf (ng)θ3(n) dn.

We have that h̄f (g) ∈ L̄, where L̄ consists of functions satisfying φ(ng) = θ3(n
−1)φ(g).

As in Lemma 4.6, we have that the equation

(4.32)

∫

K̄i(A)

h̄i(y) dy =

∫

K̄i−1(A)

h̄i−1(y) dy

holds for h̄i, h̄i−1 ∈ L̄ related as in Lemma 4.6. Here the subgroups K̄i are defined

as on [GRS2, p.897]; we note that K̄2n = l̄(X0) and K̄1 = {14n}. Similar to the above

argument, using (4.32) we get a function f 4 ∈ S(Sp2n(A)), with f 4
v = f 3

v when f 3
v is a

Hecke function at a good place v, such that (4.31) equals h̄f4(14n). Since h̄f4(14n) is just

ISp2n
(f 4 : Spn,K , 1;N3, θ3), we can set f = ǫ′2(f

′) = f 4. Then fv = f ′
v when f 1

v is a Hecke

function at a good place v, and the equality (4.19) holds.

As each of the steps above can be reversed, given f , we can find f ′ = ǫ2(f) to make the

equality (4.19) hold. �

4.5. Heisenberg representation and definition of ISp2n
(f : Spn,K , 1;N3, θ4Θ

Φ
ψ−1). Re-

call the definition of the map η in (4.8). The character ψ determines an irreducible unitary
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representation of Heisenberg group Un acting on S(F n), denoted again by ωψ; then:

ωψ(η(x, 0, 0))Φ(X) = Φ(X + x).(4.33)

ωψ(η(0,y, t))Φ(X) = ψ(t+ 2 tr(yσnX))Φ(X).(4.34)

ωψ(g̃)ωψ(j(g)−1uj(g))Φ(X) = ωψ(u)ωψ(g̃)Φ(X), g ∈ Spn, u ∈ Un.(4.35)

For n ∈ N3, we will use pr(n) to denote the middle 2n + 2 × 2n + 2 block of n. Then

pr(n) = j(n2)η(x,y, t) for some η(x,y, t) in the Heisenberg group and n2 ∈ N2. We define:

(4.36) ωψ−1(n)Φ(X) = ωψ−1(ñ2)ωψ−1(η(x,y, t))Φ(X), pr(n) = j(n2)η(x,y, t).

Clearly the above defines an action of N3 on the space S(An). Define the Theta function

(4.37) ΘΦ
ψ−1(n) =

∑

X∈Fn

ωψ−1(n)Φ(X).

Define a character θ4 on N3 by setting

(4.38) θ4(n) = ψ

(
n−1∑

i=1

−ni,i+1

)
θ2(n2), if pr(n) = j(n2)η(x,y, t).

Define ISp2n
(f : Spn,K , 1;N3, θ4Θ

Φ
ψ−1) to be:

(4.39)

∫

l∈Spn,K(F )\Spn,K(A)

∫

n∈N3(F )\N3(A)

Kf (l, n)θ4(n)ΘΦ
ψ−1(n) dn dl.

4.6. Global identity 3: between I2(f) and ISp2n
(f : Spn,K , 1;N3, θ4Θ

Φ
ψ−1).

Theorem 4.7. We have ISp2n
(f : Spn,K , 1;N3, θ4Θ

Φ
ψ−1) = I2(f

′) when

(4.40) f ′(g) =

∫

X∈An

Φ(X)f(gη(X,0, 0)) dX.

Proof. We have that I2(f
′) is equal to
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∫

n2∈N2(F )\N2(A)

∫

v∈Ñn(F )\Ñn(A)

Ψf ′(vj(n2))θ2(n2)χ̃
−1
n (v) dv dn2

which is

(4.41)

∫

n2∈N2(F )\N2(A)

∫

v∈Ñn(F )\Ñn(A)

∫

X∈An

Ψf (vj(n2)η(X, 0, 0))Φ(X)θ2(n2)χ̃
−1
n (v) dX dv dn2.

From equations (2.1), (2.2) and (4.33), we get

(4.42) Φ(X) = ωψ−1(ñ2)ωψ−1(η(X, 0, 0))Φ(0).

Also, recall that Un = {η(x,y, t)}, while Un
0 = {η(0,y, t)} and Un

0 is normal in Un.

Thus, we may identify η(X,0, 0) with Un
0 \Un(A). Then I2(f

′) is equal to

(4.43)∫

n2∈N2(F )\N2(A)

∫

v∈Ñn(F )\Ñn(A)

∫

u∈Un
0 \Un(A)

Ψf (vj(n2)u)ωψ−1(ñ2)ωψ−1(u)Φ(0)θ2(n2)χ̃
−1
n (v) du dv dn2.

Note that j(N2) acts on Un by conjugation and it stabilizes Un
0 ; we change variables

u 7→ j(n2)
−1uj(n2), we obtain

(4.44)∫

N2(F )\N2(A)

∫

v∈Ñn(F )\Ñn(A)

∫

u∈Un
0 \Un(A)

Ψf (vuj(n2))ωψ−1(ñ2)ωψ−1(j(n2)
−1uj(n2))Φ(0)θ2(n2)χ̃

−1
n (v) du dv dn2.

By equation (4.35), this is
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(4.45)∫

n2∈N2(F )\N2(A)

∫

v∈Ñn(F )\Ñn(A)

∫

u∈Un
0 \Un(A)

Ψf (vuj(n2))ωψ−1(u)ωψ−1(ñ2)Φ(0)θ2(n2)χ̃
−1
n (v) du dv dn2.

Since by definition, Ñn = Un
0 N̂

n, we get the above expression is

∫

n2∈N2(F )\N2(A)

∫

u∈Un
0 (F )\Un(A)

∫

v∈N̂n(F )\N̂n(A)

Ψf (vuj(n2))ωψ−1(u)ωψ−1(ñ2)Φ(0)θ2(n2)χ̃
−1
n (v) du dv dn2,

which is

∫

N2(F )\N2(A)

∫

u∈Un(F )\Un(A)

∑

u′∈Un
0 (F )\Un(F )

∫

v∈N̂n(F )\N̂n(A)

Ψf (vu
′uj(n2))ωψ−1(u′u)ωψ−1(ñ2)Φ(0)θ2(n2)χ̃

−1
n (v).

We change variables v 7→ u′v(u′)−1, we get

∫

N2(F )\N2(A)

∫

u∈Un(F )\Un(A)

∫

v∈N̂n(F )\N̂n(A)

∑

u′∈Un
0 (F )\Un(F )

Ψf (u
′vuj(n2))ωψ−1(u′u)ωψ−1(ñ2)Φ(0)θ2(n2)χ̃

−1
n (v).

Since Ψf is Sp2n(F )−left invariant and χ̃n is stabilized under conjugation by Un, we

obtain

∫

N2(F )\N2(A)

∫

u∈Un(F )\Un(A)

∫

v∈N̂n(F )\N̂n(A)

Ψf (vuj(n2))
∑

u′∈Un
0 (F )\Un(F )

ωψ−1(u′u)ωψ−1(ñ2)Φ(0)θ2(n2)χ̃
−1
n (v).

Identifying Un
0 \Un with η(X,0, 0) and using equation (4.33), we obtain

∑

u′∈Un
0 (F )\Un(F )

ωψ−1(u′u)ωψ−1(ñ2)Φ(0) =
∑

X∈Fn

ωψ−1(u)ωψ−1(ñ2)Φ(X).
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So we have that I2(f
′) is

(4.46)∫

N2(F )\N2(A)

∫

u∈Un(F )\Un(A)

∫

v∈N̂n(F )\N̂n(A)

Ψf (vuj(n2))
∑

X∈Fn

ωψ−1(u)ωψ−1(ñ2)Φ(X)θ2(n2)χ̃
−1
n (v).

On the other hand, we have that ISp2n
(f : Spn,K , 1;N3, θ4Θ

Φ
ψ−1) is equal to

∫

n∈N3(F )\N3(A)

Ψf (n)θ4(n)ΘΦ
ψ−1(n) dn.

Since N̂n+1\N3
∼= j(N2) and N̂n\N̂n+1 ∼= Un, we obtain

∫

N2(F )\N2(A)

∫

Un(F )\Un(A)

∫

N̂n(F )\N̂n(A)

Ψf (vuj(n2))θ4(vuj(n2))Θ
Φ
ψ−1(vuj(n2)) dv du dn2.

We have that

ΘΦ
ψ−1(vuj(n2)) =

∑

X∈Fn

ωψ−1(u)ωψ−1(ñ2)Φ(X)

and θ4(vuj(n2)) = θ4(v)θ2(n2). Furthermore, θ4 agrees with χ̃−1
n on N̂n. Thus we obtain

ISp2n
(f : Spn,K , 1;N3, θ4Θ

Φ
ψ−1) is equal to equation (4.46). �

Corollary 4.8. There exist maps ǫ3,v from S(Sp2n(Fv)) to S(Sp2n(Fv))⊗S(F n
v ), such that:

(1) at a good place v, ǫ3,v(fv) = fv ⊗ Φ0,v when fv is a Hecke function and Φ0,v is the

characteristic function of On
v .

(2) when ǫ3 = ⊗ǫ3,v and f ⊗ Φ = ǫ3(f
′):

(4.47) I2(f
′) = ISp2n

(f : Spn,K , 1;N3, θ4Θ
Φ
ψ−1).
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Proof. From Theorem 4.7, to define ǫ3,v(f
′
v) so that (4.47) holds, we only need to find

f and Φ so that (4.40) holds. The map (f,Φ) 7→ f ′ defined by (4.40) is a convolution,

it clearly factors into local maps. The existence of fv and Φv follows from the result of

Dixmier-Malliavin [DMa]. For v a good place, it is clear that when fv is a Hecke function

and Φv = Φ0,v,

(4.48)

∫

X∈Fn
v

fv(gη(X, 0, 0))Φ0,v(X) dX = fv(g).

Thus at good place v, we can choose fv = f ′
v and Φv to be Φ0,v. �

We remark that equation (4.40) defines the map ǫ′3,v from S(Sp2n(Fv)) ⊗ S(F n
v ) to

S(Sp2n(Fv)), with the property that at good places ǫ′3,v(fv ⊗ Φ0,v) = fv when fv is a

Hecke function, and equation (4.47) holds when f ′ = ǫ′3(f ⊗ Φ).

4.7. Conclusion. Combining the three global identities on Sp2n, we get:

Corollary 4.9. There exist maps ǫ4,v from S(Sp2n(Fv)) to S(Sp2n(Fv))⊗S(F n
v ) such that:

(1) at a good place v, ǫ4,v(fv) = fv ⊗ Φ0,v when fv is a Hecke function and Φ0,v is the

characteristic function of On
v .

(2) when ǫ4 = ⊗ǫ4,v and f ⊗ Φ = ǫ4(f
′):

(4.49) ISp2n
(f ′ : Spn,K , 1;N3, θ3) = ISp2n

(f : Spn,K , 1;N3, θ4Θ
Φ
ψ−1).

Proof. Define ǫ4,v = ǫ3,vǫ2,v. The claim follows from Proposition 4.1, Theorem 4.5 and

Corollary 4.8. �

We remark that one can also define the maps ǫ′4,v = ǫ′2,vǫ
′
3,v from S(Sp2n(Fv)) ⊗ S(F n

v )

to S(Sp2n(Fv)), such that at a good place ǫ′4,v(fv⊗Φ0,v) = fv when fv is a Hecke function,

and equation (4.49) holds when f ′ = ǫ′4(f ⊗ Φ).
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5. Orbital integral decompositions

In this section we wish to relate the distributions ISp2n
(f : Sp(n,K), 1;N3, θ4Θ

Φ
ψ−1) and

IS̃pn
(f̃ : N2, θ

−1
2,τ ;N2, θ2).

As before, we consider a space isomorphic to Spn,K\Sp2n, namely given g ∈ Sp2n we

define the involution θ(g) := TgT−1. The centralizer of T in Sp2n is Spn,K . The space

Y is defined by Y = {g−1θ(g)T|g ∈ Sp2n} = {g−1Tg|g ∈ Sp2n} and we have that Y ∼=

Spn,K\Sp2n.

We unwind the distribution ISp2n
(f : Sp(n,K), 1;N3, θ4Θ

Φ
ψ−1), we have that it equals

(5.1)

∫

l3∈Spn,K(F )\Spn,K(A)

∫

n3∈N3(F )\N3(A)

Kf (l3, n3)θ4(n3)Θ
Φ
ψ−1(n3)dl3dn3

(5.2) =

∫

l3∈Spn,K(F )\Spn,K(A)

∫

n3∈N3(F )\N3(A)

∑

g3∈Sp2n(F )

f3(l
−1
3 g3n3)θ4(n3)Θ

Φ
ψ−1(n3)dl3dn3

(5.3) =
∑

g3∈Spn,K(F )\Sp2n(F )/N3(F )

∫

l3∈H3(A)

∫

n3∈N ′

3,g3
(F )\N3(A)

f3(l
−1
3 g3n3)θ4(n3)Θ

Φ
ψ−1(n3)dl3dn3

where N ′
3,g3

:= g−1
3 Spn,Kg3 ∩N3. We now define

(5.4) F (g−1Tg) :=

∫

l3∈Spn,K(A)

f(l−1
3 g)dl3

then the distribution ISp2n
(f : Sp(n,K), 1;N3, θ4Θ

Φ
ψ−1) is
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(5.5)
∑

g3∈Spn,K(F )\Sp2n(F )/N3(F )

∫

n3∈N ′

3,g3
(F )\N3(A)

F (n−1
3 g−1

3 Tg3n3)θ4(n3)Θ
Φ
ψ−1(n3)dn3.

We recall from Lemma (3.3) and Corollary (3.4) that elements in Y admit a decomposi-

tion y = n−1wan where w ∈ W3 and a is a diagonal matrix of size 4n satisfying (wa)2 = τ

and t(wa)J(wa) = τJ . Moreover, with the action of N3 by conjugation, to each represen-

tative g3 ∈ Spn,K\Sp2n/N3 there corresponds a wa as above such that g−1Tg and wa are

in the same N3 orbits of Y .

Lemma 5.1. If g ∈ Sp2n satisfies g−1Tg = wa, then N ′
3,g = N3,wa

Proof. The condition n ∈ N3,wa is equivalent to n ∈ N3 with n−1wan = wa, or n−1g−1Tgn =

g−1Tg. This is equivalent to gn−1g−1Tgng−1 = T, or n ∈ g−1Spn,Kg ∩N3. �

We get that ISp2n
(f : Sp(n,K), 1;N3, θ4Θ

Φ
ψ−1) equals

(5.6)
∑

wa,(wa)2=τ,twaJ=Jwa

∫

n3∈N3,wa(F )\N3(A)

F (n−1
3 wan3)θ4(n3)Θ

Φ
ψ−1(n3)dn3.

We factor the integral as

(5.7)

∫

n3∈N3,wa(A)\N3(A)

F (n−1wan)

∫

n′∈N3,wa(F )\N3,wa(A)

θ4(n
′n3)Θ

Φ
ψ−1(n′n3)dn

′dn3.
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Recall that the subgroup N (k) is defined by

N (k) =





n =




z u ∗ ∗ ∗

1 0 y ∗

I2k 0 ∗

1 u′

z∗




|z ∈ Z2n−(k+1)





.

The subgroup N (n) can also be described as follows. We have that an element of Ñn

can be written as η(0,y, t)n with n ∈ N̂n; N (n) consists of elements with y = 0. Then for

n′ ∈ N (n) we have θ4(n
′n3)Θ

Φ
ψ−1(n′n3) = χ̃−1

n (n′)θ4(n3)Θ
Φ
ψ−1(n3). For the inner integral in

equation (5.7) to be nonzero, χ̃n must be trivial on N (n) ∩N3,wa.

Lemma 5.2. If χ̃n is trivial on N (n) ∩ N3,wa, then w has the form w =




0 ∗ ∗ 0

∗ 0 0 ∗

∗ 0 0 ∗

0 ∗ ∗ 0




,

where each entry represents an n×n block.

Proof. Using Lemma (4.3) in the case k = n, we get that w is of the form:

w =




0 A B 0

C D E F

G H I J

0 K L 0




where each entry represents a n× n block. Since w2 is a diagonal matrix, we get that


 A B

K L




 D E

H I


 = 0,


 A B

K L




 C F

G J


 is invertible.
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Thus D = E = H = I = 0 and w is of the form in the Lemma. �

We wish to define a bijection between w′a′ ∈ Spn and wa ∈ Sp2n with (wa)2 =

τ,t (wa)J = J(wa); for this purpose we introduce the matrix E :=




τn

1n

τn

1n




and consider the map on g ∈ Spn given by

(5.8) P (g) = j(g)−1Ej(g)

Lemma 5.3. The map P defines a bijection from the set of w′a′ ∈ Spn to the set wa where

w ∈ W3 and a is a diagonal matrix of size 4n with (wa)2 = τ,t (wa)J(wa) = τJ , with w as

in Lemma 5.2.

Proof. We note that E2 = τ , hence P (w′a′)2 = τ . We also have that tP (w′a′)JP (w′a′) =

τJ using that tEJE = τE. Also, P (w′a′) is clearly of the form in Lemma 5.2.

For g a square matrix of size 4n, we denote by ρ′(g) its middle 2n× 2n block. It’s clear

that ρ′(EP (w′a′)/τ) = w′a′, so P is an injection.

On the other hand, given wa as in Lemma 5.2, we have that E(wa)/τ verifies

t(E(wa)/τ)J(E(wa)/τ) = t(wa)J(wa)/τ = J,

thus E(wa)/τ ∈ Sp2n. The element Ewa/τ ∈ Sp2n is of the form




∗ 0 0 ∗

0 ∗ ∗ 0

0 ∗ ∗ 0

∗ 0 0 ∗




and any

g ∈ Sp2n of this form satisfies ρ′(g) ∈ Spn. Hence ρ′(Ewa/τ) has the form w′a′ where

w′ ∈ W2 and a′ is diagonal in Spn.
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We prove surjectivity by showing the identity

(5.9) P (ρ′(E(wa)/τ)) = wa.

Write wa =




0 a b 0

c 0 0 d

e 0 0 f

0 g h 0




so that ρ′(Ewa/τ) =


a/τ b/τ

g h


. Denote this matrix w′a′.

It suffices to show

τ = Ej(w′a′)(wa)j(w′a′)−1

and this is easily checked.

�

From the previous lemma, we see that the distribution ISp2n
(f : Sp(n,K), 1;N3, θ4Θ

Φ
ψ−1)

may be written as

(5.10)
∑

wa,(wa)2=τ,t(wa)J(wa)=τJ

∫

n3∈N3,wa(F )\N3(A)

F (n−1
3 wan3)θ4(n3)Θ

Φ
ψ−1(n3)dn3

(5.11)

=
∑

wa,(wa)2=τ,t(wa)J(wa)=τJ

∫

n3∈N3,wa(A)\N3(A)

F (n−1wan)

∫

n′∈N3,wa(F )\N3,wa(A)

θ4(n
′n3)Θ

Φ
ψ−1(n′n3)dn

′dn3.

Given w′a′ with w′ in the Weyl group of Spn and a′ a diagonal matrix in Spn, we define

N ′
2,w′a′ = (w′a′)N2(w

′a′)−1 ∩N2. We wish to prove the following:

Proposition 5.4. We have

(5.12)

∫

n′∈N3,wa(F )\N3,wa(A)

θ4(n
′)ΘΦ

ψ−1(n′)dn′ = c(w′a′)ωψ−1(w̃′a′)Φ(0)
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where wa = P (w′a′) and c(w′a′) is defined by

(5.13) c(w′a′) =

∫

n′∈N ′

2,w′a′
(F )\N ′

2,w′a′
(A)

θ2((w
′a′)−1n′(w′a′))θ−1

2,τ (n
′)dn′.

We first describe the sets N3,wa. When wa = E, we get from the definition that

(5.14) N3,E =





u(n,B, T ) :=




n nB nTτ

n nT nB

n∗

n∗




∈ N3|n ∈ Zn, B, T ∈ Sn





We use VE to denote the intersection of N3,E with the Siegel unipotent. It consists of

u(1n, B, T ). Define U1
E to be the subgroup consisting of u(1n, B, 0).

Lemma 5.5. If wa = P (w′a′), then N3,wa = j(w′a′)−1N3,Ej(w
′a′) ∩N3

Proof. If n ∈ j(w′a′)−1N3,Ej(w
′a′) ∩ N3 then j(w′a′)n−1j(w′a′)−1Ej(w′a′)nj(w′a′)−1 = E

which implies that n ∈ N3,wa. On the other hand, given n ∈ N3,wa we have that

j(w′a′)nj(w′a′)−1 fixes E through conjugation and has the form




n ∗ ∗

∗ ∗

n∗


 where n ∈

Zn; any element of the above form fixing E through conjugation must lie in N3, so

j(w′a′)nj(w′a′)−1 ∈ N3,E. �

Define the group

(5.15) U1
wa := j(w′a′)−1U1

Ej(w
′a′).

We have that U1
wa is a normal subgroup of N3,wa as U1

E is a normal subgroup of N3,E.

Lemma 5.6. We have
∫

u∈U1
wa(F )\U1

wa(A)

θ4(u)Θ
Φ
ψ−1(u)du = ωψ−1(w̃′a′)Φ(0).
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Proof. Since U1
wa := j(w′a′)−1 {u(1n, B, 0)} j(w′a′), we have that θ4(u) = 1 for u ∈ U1

wa.

Using Poisson summation, we get that

ΘΦ
ψ−1(u) =

∑

X∈Fn

ωψ−1(u)Φ(X)

=
∑

X∈Fn

ωψ−1(w̃′a′)ωψ−1(u)Φ(X).

So that the integral in the Lemma is given by

∫

u∈U1
wa(F )\U1

wa(A)

∑

X∈Fn

ωψ−1(w̃′a′)ωψ−1(u)Φ(X) du.

We write u = j(w′a′)−1u(1n, B, 0)j(w′a′) with B ∈ Sn. The above integral is

∫

Sn(F )\Sn(A)

∑

X∈Fn

ωψ−1(w̃′a′)ωψ−1(j(w′a′)−1u(1n, B, 0)j(w′a′))Φ(X) dB.

By equation (4.35), this is

∫

Sn(F )\Sn(A)

∑

X∈Fn

ωψ−1(u(1n, B, 0))ωψ−1(w̃′a′)Φ(X) dB.

By equation (4.34), this is

∫

Sn(F )\Sn(A)

∑

X∈Fn

ωψ−1(w̃′a′)Φ(X)ψ−1(2〈B,X〉) dB.

where 〈B,X〉 denotes the inner product of the last row of B with X. The integral over

B is zero unless X = 0. In this case we obtain

∫

Sn(F )\Sn(A)

ωψ−1(w̃′a′)Φ(0) dB = ωψ−1(w̃′a′)Φ(0)
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as desired. �

Note that U2
E = u(n, 0, T ) is isomorphic to N2 through the embedding i2 : N2 → Sp2n

given by

(5.16) i2


n nT

n∗


 = u(n, 0, T ).

Let

(5.17) U2
wa = j(w′a′)−1U2

Ej(w
′a′) ∩N3.

From Lemma 5.5, we have thatN3,wa = j(w′a′)−1N3,Ej(w
′a′)∩N3, so that U2

wa
∼= U1

wa\N3,wa.

Recall that N ′
2,w′a′ := (w′a′)N2(w

′a′)−1 ∩N2.

Lemma 5.7. We have that U2
wa = j(w′a′)−1i2(N

′
2,w′a′)j(w

′a′).

Proof. Since U2
wa = j(w′a′)−1U2

Ej(w
′a′) ∩ N3, we have that the group j(w′a′)U2

waj(w
′a′)−1

consists of i2(n), n ∈ N2 with j(w′a′)−1i2(n)j(w′a′) ∈ N3. Explicitly, we have that

(5.18)




1

(w′a′)−1

1







n nTτ

n nT

n∗

n∗







1

(w′a′)

1


 =




n nTτ

(w′a′)−1


n nT

n∗


 (w′a′)

n∗




is an element in N3. This is equivalent to (w′a′)−1n2(w
′a′) ∈ N2 or n2 ∈ N ′

2,w′a′ . �

Proof of Proposition 5.4. From Lemma (5.6) we get that

(5.19)

∫

n′∈N3,wa(F )\N3,wa(A)

θ4(n
′)ΘΦ

ψ−1(n′)dn′ =

∫

n′∈U2
wa(F )\U2

wa(A)

θ4(n
′)ωψ−1(w̃′a′ n′)Φ(0)dn′
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Since U2
wa = j(w′a′)−1i2(N

′
2,w′a′)j(w

′a′) by Lemma (5.7), our integral becomes

(5.20)

∫

n′∈N ′

2,w′a′
(F )\N ′

2,w′a′
(A)

θ4(j(w
′a′)−1i2(n

′)j(w′a′))ωψ−1(i2(n
′))ωψ−1(w̃′a′)Φ(0)dn′,

here we used equations (4.34) and (4.36).

Write n′ ∈ N2 as n′ =


n

′′ n′′T

n′′∗


, from the formulas (2.1), (2.2), (4.34) and (4.36), we

have

(5.21) ωψ−1(i2(n
′))ωψ−1(w̃′a′)Φ(0) = ωψ−1(w̃′a′)Φ(0)ψ−1(Tn,1.τ)

where Tn,1 stands for the lower left entry of T .

From equation (4.38) we obtain

(5.22) θ4(j(w
′a′)−1i2(n

′)j(w′a′)) = ψ−1

(
n−1∑

i=1

n′′
i,i+1

)
θ2((w

′a′)−1n′(w′a′))

and

(5.23) θ2,τ (n
′) = ψ

(
n−1∑

i=1

n′′
i,i+1 + Tn,1.τ

)
.

Thus our integral (5.20) becomes

(5.24)

∫

n′∈N ′

2,w′a′
(F )\N ′

2,w′a′
(A)

θ2((w
′a′)−1n′(w′a′))θ−1

2,τ (n
′)ωψ−1(w̃′a′)Φ(0)dn′.

We recall we defined

c(w′a′) =

∫

n′∈N ′

2,w′a′
(F )\N ′

2,w′a′
(A)

θ2((w
′a′)−1n′(w′a′))θ−1

2,τ (n
′)dn′,
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so our integral is

(5.25) c(w′a′)ωψ−1(w̃′a′)Φ(0)

as desired. �

We recall from equations (5.6) and (5.7) that our distribution ISp2n
(f : Sp(n,K), 1;N3, θ4Θ

Φ
ψ−1)

is equal to

(5.26)
∑

w′a′∈Spn(F ),wa=P (w′a′)

∫

n3∈N3,wa(A)\N3(A)

F (n−1wan)

∫

n′∈N3,wa(F )\N3,wa(A)

θ4(n
′n3)Θ

Φ
ψ−1(n′n3)dn

′dn3.

Using proposition 5.4 this is equal to

(5.27)
∑

w′a′∈Spn(F ),wa=P (w′a′)

c(w′a′)

∫

n3∈N3,wa(A)\N3(A)

F (n−1wan)θ4(n)ωψ−1(w̃′a′.n)Φ(0)dn

which is

(5.28)
∑

w′a′∈Spn(F ),wa=P (w′a′)

c(w′a′)
∏

v

∫

n3∈N3,wa(Fv)\N3(Fv)

F (n−1wan)θ4(n)ωψ−1(w̃′a′.n)Φ(0)dn.

We have proved the following proposition:

Proposition 5.8. When f = ⊗fv, Φ = ⊗Φv, F = ⊗Fv, we have that the distribution

ISp2n
(f : Sp(n,K), 1;N3, θ4Θ

Φ
ψ−1) is equal to

(5.29)
∑

w′a′∈Spn(F )

c(w′a′)
∏

v

Iw′a′(Fv,Φv)

where

(5.30) Iw′a′(Fv,Φv) =

∫

n∈N3,P(w′a′)(Fv)\N3(Fv)

Fv(n
−1 P(w′a′)n)θ4(n)ωψ−1(w̃′a′ · n)Φv(0) dn
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We have a similar decomposition for IS̃pn
(f̃ : N2, θ

−1
2,τ ;N2, θ2):

Proposition 5.9. When f = ⊗fv, we have

(5.31) IS̃pn
(f̃ : N2, θ

−1
2,τ ;N2, θ2) =

∑

w′a′∈Spn(F )

c(w′a′)
∏

v

Jw′a′(f̃v)

where

(5.32) Jw′a′(f̃v) =

∫

n2∈N2,w′a′ (Fv)\N2(Fv)

∫

n1∈N2(Fv)

f̃v(ñ1
−1.w̃′a′.ñ2)θ2,τ (n

−1
1 )θ2(n2)dn1dn2

Proof. Using the Bruhat decomposition we have IS̃pn
(f̃ : N2, θ

−1
2,τ ;N2, θ2) equals

(5.33)

∫

N2(F )\N2(A)

∫

N2(F )\N2(A)

∑

γ∈N2(F )\Spn(F )/N2(F )

f̃(ñ1
−1γ̃ñ2)θ

−1
2,τ (n1)θ2(n2)dn1dn2

(5.34) =
∑

w′a′∈Spn(F )

∫

n2∈N2,w′a′ (F )\N2(A)

∫

n1∈N2(A)

f̃(ñ1
−1w̃′a′ñ2)θ

−1
2,τ (n1)θ2(n2)dn1dn2

where N2,w′a′ = (w′a′)−1N2(w
′a′) ∩N2.

We may write this integral as

(5.35)

∫

n2∈N2,w′a′ (A)\N2(A)

∫

n′∈N2,w′a′ (F )\N2,w′a′ (A)

∫

n1∈N2(A)

f̃(ñ1
−1w̃′a′ñ′ñ2)θ

−1
2,τ (n1)θ2(n

′n2)

Since for n′ ∈ N2,w′a′ we have that (w′a′)n′(w′a′)−1 ∈ N2, we can make a change of

variable n1 7→ (w′a′)n′(w′a′)−1n1. Using the fact that when n ∈ N2 we have ñ · g̃ = ñg and

g̃ · ñ = g̃n, we get:

(5.36) ˜(w′a′n′(w′a′)−1n1)
−1

w̃′a′ñ′ = ñ1
−1w̃′a′ñ′

−1
w̃′a′

−1
w̃′a′ñ′ = ñ1

−1w̃′a′.
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Our integral becomes

(5.37) ∫

n2∈N2,w′a′ (A)\N2(A)

∫

n′∈N2,w′a′ (F )\N2,w′a′ (A)

∫

n1∈N2(A)

f̃(ñ1
−1w̃′a′ñ2)θ

−1
2,τ (w

′a′n′(w′a′)−1·n1)θ2(n
′n2)dn1dn2dn

′.

Clearly n′ ∈ N2,w′a′ iff (w′a′)n′(w′a′)−1 ∈ N ′
2,w′a′ , so our integral equals

(5.38)

∫

n2∈N2,w′a′ (A)\N2(A)

∫

n1∈N2(A)

f̃(ñ1
−1 · w̃′a′ñ2)θ

−1
2,τ (n1)θ2(n2)dn1 dn2

×
∫

n∈N ′

2,w′a′
(F )\N ′

2,w′a′
(A)

θ−1
2,τ (n)θ2((w

′a′)−1nw′a′)dn1dn2dn

= c(w′a′)

∫

n2∈N2,w′a′ (A)\N2(A)

∫

n1∈N2(A)

f̃(ñ1
−1 · w̃′a′ñ2)θ

−1
2,τ (n1)θ2(n2)dn

Factoring this integral over places v completes the proof. �
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6. Comparison of orbital integrals

To compare the distributions IS̃pn
(f̃ : N2, θ

−1
2,τ ;N2, θ2) and ISp2n

(f : Spn,K , 1;N3, θ4Θ
Φ
ψ−1),

we only need to compare the local orbital integrals Iw′a′(Fv,Φv) and Jw′a′(f̃v). In this

section, we fix a place v and omit it in our notation.

Recall that Un =





η(x,y, t) :=




1n−1

1 x y t

1n 0 ∗

1n ∗

1

1n−1








and

N̂k :=








z ∗ ∗

14n−2k+2 ∗

z∗


 ∈ N3|z ∈ Zk−1





.

N̂n+1 = UnN̂n is a normal subgroup of N3 with N3/N̂
n+1 ∼= N2. Note also N3,E ∩ N̂n+1

is just the group U1
E = u(1n, B, 0). Recall that Y ∼= Spn,K\Sp2n. Given a function

F ∈ S(Y (F )), and Φ ∈ S(F n), we define a genuine function on S̃pn(F ):

(6.1) ΨF,Φ(g̃) =

∫

u∈U1
E
\N̂n+1

F (j(g)−1u−1Euj(g))θ4(u)ωψ−1(u)ωψ−1(g̃)Φ(0) du.

6.1. Comparison of Iw′a′(F,Φ) and Jw′a′(f̃). For a compatible choice of measures, we

have:

Lemma 6.1.

(6.2) Iw′a′(F,Φ) =

∫

n∈N2,w′a′\N2

ΨF,Φ(w̃′a′ · ñ)θ2(n) dn.
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Proof. For g ∈ Spn, we let U1
P(g) = j(g)−1U1

Ej(g) ⊂ N3. Then from Lemma (5.5) we have

that N3,P(w′a′) ∩ N̂n+1 = U1
P(w′a′). From (5.30), we get that Iw′a′(F,Φ) equals

∫

n∈N3,P(w′a′)N̂
n+1\N3

∫

u∈U1
P(w′a′)

\N̂n+1

F (n−1u−1 P(w′a′)un)

θ4(un)ωψ−1(w̃′a′)ωψ−1(un)Φ(0) du dn.

As N3 = j(N2)N̂
n+1 and j(N2) ∩ N̂n+1 consists just of identity element, we can write an

element in N3 in a unique way as j(n)u such that n ∈ N2 and u ∈ N̂n+1.

Since N3,P(w′a′) = U1
P(w′a′)U

2
P(w′a′), with U1

P(w′a′) ⊂ N̂n+1, we have

N3,P(w′a′)N̂
n+1 = U2

P(w′a′)N̂
n+1.

As U2
P(w′a′) = j(w′a′)−1i2(N

′
2,w′a′)j(w

′a′) from Lemma 5.7,

U2
P(w′a′)N̂

n+1 = j((w′a′)−1N ′
2,w′a′(w

′a′))N̂n+1 = j(N2,w′a′)N̂
n+1.

Thus we can choose the representatives in N3,P(w′a′)N̂
n+1\N3 as j(n) with n ∈ N2,w′a′\N2.

The above integral equals:

∫

n∈N2,w′a′\N2

∫

u∈U1
P(w′a′)

\N̂n+1

F (j(n)−1u−1 P(w′a′)uj(n))

θ4(uj(n))ωψ−1(w̃′a′)ωψ−1(uj(n))Φ(0) du dn.

As j(w′a′) stabilizes N̂n+1 through conjugation, we can make a change of variable u 7→

j(w′a′)−1uj(w′a′). Notice that θ4(j(w
′a′)−1uj(w′a′)) = θ4(u), and from (4.35), (4.36) and
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(5.15), the above integral is the same as:

∫

n∈N2,w′a′\N2

∫

u∈U1
E
\N̂n+1

F (j(w′a′n)−1u−1Euj(w′a′n))

θ4(uj(n))ωψ−1(u)ωψ−1(w̃′a′n)Φ(0) du dn.

From the definition of ΨF,Φ in equation (6.1), the above integral equals:

∫

n∈N2,w′a′\N2

ΨF,Φ(w̃′a′n)θ4(j(n))dn.

Since θ4(j(n)) = θ2(n) for n ∈ N2, we get the Lemma. �

We have the following

Corollary 6.2. If f̃ ∈ S(S̃pn(F )), f ∈ S(Sp2n(F )) and Φ ∈ S(F n) satisfying (for F

defined by (5.4))

(6.3) ΨF,Φ(g̃) =

∫

N2

f̃(ñ−1 · g̃)θ−1
2,τ (n)dn,

then Iw′a′(F,Φ) = Jw′a′(f̃).

Proof. From Lemma 6.1, we have

Iw′a′(F,Φ) =

∫

n∈N2,w′a′\N2

ΨF,Φ(w̃′a′ · ñ)θ2(n) dn.

By our assumption on ΨF,Φ, this is

∫

n2∈N2,w′a′\N2

∫

n1∈N2

f̃(ñ1
−1 · w̃′a′ñ2)θ

−1
2,τ (n1)θ2(n2) dn1 dn2,

which is Jw′a′(f̃). �
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6.2. Properties of ΨF,Φ and matching. The function ΨF,Φ(g̃) defined by (6.1) has the

following equivariance property:

Lemma 6.3. The function ΨF,Φ(g̃) satisfies for all n ∈ N2:

(6.4) ΨF,Φ(ñ · g̃) = θ−1
2,τ (n)ΨF,Φ(g̃).

Proof. We only need to establish the identity in the case g is identity, which we now assume.

Recall the definition of u(n,B, T ) ∈ N3,E in (5.14):

u(n,B, T ) :=








n nB nTτ

n nT nB

n∗

n∗




∈ N3|n ∈ Zn, B, T ∈ Sn





.

From (6.1) ΨF,Φ(ñ) equals:

(6.5)

∫

u∈U1
E
\N̂n+1

F (j(n)−1u−1Euj(n))θ4(u)ωψ−1(uj(n))Φ(0) du.

Write n as
(
n′ n′T

(n′)∗
)
.

Case (1): when n′ is identity. We observe u(1n, 0, T ) ∈ N3,E and j(n)u(1n, 0, T )−1 ∈

N̂n+1. Since j(N2) and u(1n, 0, T ) fix the group U1
E = u(1n, B, 0) by conjugation, we can

make a change of variable u 7→ u(1n, 0, T )uj(n)−1 in N̂n+1. Notice that u(1n, 0, T ) fixes E

through conjugation; the above integral becomes:

∫

u∈U1
E
\N̂n+1

F (u−1Eu)θ4(u(1n, 0, T )uj(n)−1)ωψ−1(u(1n, 0, T )u)Φ(0) du.

Clearly θ4(u(1n, 0, T )uj(n)−1) = θ4(u). From (4.34) and (4.36) we have

ωψ−1(u(1n, 0, T )u)Φ(0) = ψ−1(Tn,1 · τ)ωψ−1(u)Φ(0)



78

where Tn,1 is the lower left entry of T . The above integral becomes:

ψ−1(Tn,1 · τ)
∫

u∈U1
E
\N̂n+1

F (u−1Eu)θ4(u)ωψ−1(u)Φ(0) du

which is θ−1
2,τ (n)ΨF,Φ(1̃2n) in the case n′ is identity.

Case (2): when T ′ = 0. Now u(n′, 0, 0) ∈ N3,E and u(n′, 0, 0)j(n)−1 ∈ N̂n+1. Since

u(n′, 0, 0) and j(n) fixes the group U1
E by conjugation, we can change u to u(n′, 0, 0)uj(n)−1.

Using that u(n′, 0, 0)−1Eu(n′, 0, 0) = E, the integration (6.5) becomes:

∫

u∈U1
E
\N̂n+1

F (u−1Eu)θ4(u(n
′, 0, 0)uj(n)−1)ωψ−1(u(n′, 0, 0)u)Φ(0) du.

Clearly θ4(u(n
′, 0, 0)uj(n)−1) = θ4(u)θ

−1
2 (n) (in our case T = 0). From (2.1) and (4.36)

we get

ωψ−1(u(n′, 0, 0)u)Φ(0) = ωψ−1(u)Φ(0).

Thus the above integral is just

θ−1
2 (n)

∫

u∈U1
E
\N̂n+1

F (u−1Eu)θ4(u)ωψ−1(u)Φ(0) du

which is θ2,τ (n)−1ΨF,Φ(1̃2n). Here we used that for n =
(
n′

(n′)∗
)

we have that θ2,τ (n) =

θ2(n).

From the above two cases, identity (6.4) holds for any n ∈ N2 when g is identity, thus

holds in general. �

We also need to consider the behavior of the function ΨF,Φ(g̃) when g = diag[a, a∗] where

a = diag[a1, . . . , an] is a diagonal matrix. The proof of the following Lemma is similar to

that of [MR, Lemma 5.4] and we omit it.
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Lemma 6.4. When F ∈ S(Y ) and Φ ∈ S(F n), as function of a, ΨF,Φ( ˜diag[a, a∗]) is a

Schwartz function on (F×)n.

The following is [MR2, Lemma 5.6].

Lemma 6.5. Let T be a Schwartz function on N2\S̃pn with T (ñg) = θ(n)T (g). Then

there exists a Schwartz function f̃ on S̃pn with

∫

N2

f̃(ñ−1g)θ(n) dn = T (g).

Moreover, the function f̃ may be defined by

f̃(nak) = λ(n)T (ak),

where λ is any Schwartz function on N2 with

∫

N2

λ(n−1)θ(n) dn = 1.

Corollary 6.6. Given any f ∈ S(Sp2n) and Φ ∈ S(F n), there is f̃ ∈ S(S̃pn) such that

equation (6.3) holds.

Proof. From Lemmas 6.4 and 6.3, ΨF,Φ is Schwartz function on N2\S̃pn satisfying the

equivariance property

ΨF,Φ(ñ · g̃) = θ2,τ (n)−1ΨF,Φ(g̃).

By Lemma 6.5, we obtain the desired f̃ satisfying

ΨF,Φ(g̃) =

∫

N2

f̃(ñ−1 · g̃)θ−1
2,τ (n)dn.
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�

From Corollary (6.2), we get:

Corollary 6.7. There is a map ǫ5 from S(Sp2n) ⊗ S(F n) to S(S̃pn) such that when f̃ =

ǫ5(F ⊗ Φ), Iw′a′(F,Φ) = Jw′a′(f̃).
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7. Fundamental Lemma

7.1. Statement of the result. Let v be a nonarchimedean place with odd residue char-

acteristic, and where ψ is unramified. We will omit v in the notations.

Let O be the ring of integers in F . Recall K3 = Sp2n(O) and K2 is the image of

an embedding of Spn(O) in S̃pn, (the covering splits over Spn(O)). Let H(Sp2n, K3)

(and H(S̃pn, K2)) be the algebra of Hecke functions on Sp2n (and S̃pn respectively). For

f̃ ∈ H(S̃pn, K2), define

̂̃f(z) =

∫

a∈Tn

∫

n∈N2

f̃(ĩ1(a) · ñ)γ(det a, ψ−1)−1χz(a)δ
1
2
2 (i1(a)) dn da

where δ2 is the modulus functions of the Borel subgroup of Spn and χz is the unramified

character defined on the subgroup of diagonal matrices in GLn by

χz




a1

. . .

an


 = |a1|z1v . . . |an|zn

v .

We can define a homomorphism f 7→ f̃ between H(Sp2n, K3) and H(S̃pn, K2) so that:

(7.1) f̂(z1 −
1

2
, z1 +

1

2
, . . . , zn −

1

2
, zn +

1

2
) = ̂̃f(z1, . . . , zn).

We prove

Proposition 7.1. If f ∈ H(Sp2n, K3) and f̃ ∈ H(S̃pn, K2) are related by (7.1), then when

Φ0 is the characteristic function of On, we have

(7.2) ΨF,Φ(g̃) =

∫

N2

f̃(n−1 · g̃)θ−1
2,τ (n) dn,
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where F is defined by (5.4).

From Corollary 6.2, we get:

Corollary 7.2. When f ∈ H(Sp2n, K3) and f̃ ∈ H(S̃pn, K2) are such that (7.1) holds,

then when Φ0 is the characteristic function of On, we have Iw′a′(F,Φ0) = Jw′a′(f̃) where F

is defined by (5.4).

This identity of orbital integrals is the fundamental lemma for the case at hand. The

rest of the section gives the proof of Proposition 7.1.

7.2. Unit element case. We prove the Proposition first in the case when both f and f̃

are unit elements. In this case we denote the functions by f0 and f̃0 respectively. Then f0

is the characteristic functions of K3, while f̃0 takes value 1 over K2, and vanishes outside

the inverse image of Spn(O) in S̃pn. Let F0 be the function associated to f0 by (5.4),

namely

F0(g
−1Tg) =

∫

l∈Spn,K

f0(l
−1g)dl.

Lemma 7.3. The function F0 is the characteristic function of Y ∩K3.

Proof. Clearly F0 is a K3−invariant function on Y . As lg ∈ K3 for l ∈ Spn,K implies

g−1Tg ∈ K3, we get F0 vanishes outside Y ∩K3. By Lemma (A.1) below, we see Y ∩K3

is a single K3−orbit of T . Hence we get F0 is constant on Y ∩K3. Putting g = 14n in the

definition of F0 shows that F0 is the characteristic function of Y ∩K3. �

Denote the right hand side of (7.2) by Ψf̃ (g̃), i.e.

Ψf̃ (g̃) =

∫

N2

f̃(n−1 · g̃)θ−1
2,τ (n) dn.
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Then

Ψf̃0
(ñ · g̃) = θ−1

2,τ (n)Ψf̃0
(g̃), n ∈ N2.

Lemma 6.3 shows that ΨF0,Φ0 satisfies the same left N2-equivariance condition. Both func-

tions Ψf̃0
and ΨF0,Φ0 are clearly right K2-invariant. Thus from the Iwasawa decomposition

to show the identity (7.2), we only need to show it holds when g̃ = ã where

a = diag[a1, . . . , an, a
−1
n , . . . , a−1

1 ]

is a diagonal matrix.

It is easy to see that Ψf̃0
(ã) = 1 when |ai| = 1 for i = 1, . . . , n, and Ψf̃0

(ã) = 0 otherwise.

Thus the Proposition in this case follows from

Lemma 7.4. When |ai| = 1 for i = 1, . . . , n, ΨF0,Φ0(ã) = 1. Otherwise ΨF0,Φ0(ã) = 0.

Proof. Recall that

ΨF0,Φ0(g̃) =

∫

u∈U1
E
\N̂n+1

F0(j(g)
−1u−1Euj(g))θ4(u)ωψ−1(u)ωψ−1(g̃)Φ0(0) du.

For u ∈ N̂n+1, it has the form



n1


∗ ∗

∗




n∗
1


 with n1 having the form ( n2 v

1n
), where

n2 ∈ Zn the maximal unipotent subgroup of GLn. The matrix j(a)−1u−1Euj(a) lies in the

Siegel parabolic subgroup; it has the form ( A ∗
A∗ ) where

A =


 1n

b−1




 n−1

2 v′

1n




 τn

1n




 n2 v

1n




 1n

b



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with b = diag[a1, . . . , an], and v′ = −n−1
2 v. A computation shows:

A =


 v′n2 τnn

−1
2 b+ v′vb

b−1n2 b−1vb


 .

If |ai| < 1 for some i, we get from looking at the lower left block of A that

F0(j(a)
−1u−1Euj(a)) = 0.

Thus in this case ΨF0,Φ0(ã) = 0.

On the other hand, since

ΨF0,Φ0(ñ · g̃ · k̄) = θ−1
2,τ (n)ΨF0,Φ0(g̃)

when n ∈ N2 and k̄ ∈ K2, we get ΨF0,Φ0(ã) = 0 whenever |ai| > |ai+1| for some i or

|an| > |an|−1.

Therefore, ΨF0,Φ0(ã) is nonzero only when |an|−1 ≥ |an| ≥ . . . ≥ |a1| and |a1| ≥ 1. This

condition is only satisfied when |ai| = 1 for all i, in which case using the K3−invariance of

F0 and K2−invariance of Φ0, we get

ΨF0,Φ0(ã) = ΨF0,Φ0(1̃2n).

Consider now the case a = 12n. Use the computation of the matrix A again. From the

lower left block and lower right block of A, we see in this case if u−1Eu ∈ K3 ∩ Y , n2 is in

GLn(O) and v has integral entries. Thus u =
( n1 v1

n∗

1

)
with n1 ∈ GL2n(O).

Write u as i1(n1)v with v in the Siegel unipotent subgroup of Sp2n. Since n1 ∈ GL2n(O),

we get v−1Ev ∈ K3 ∩ Y . Write v =
(

12n v

12n

)
, and v =

(
B1 T

B2

)
, then the condition is

equivalent to all entries in T and B1 − B2 are integers. Since U1
E = u(1, B, 0) consists

of v of the above form with T = 0 and B1 = B2, we see over the subdomain where
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F0(u
−1Eu) 6= 0, the representatives of U1

E\N̂n+1 can be chosen to be in K3. Thus:

ΨF0,Φ0(1̃2n) =

∫

u∈U1
E

(O)\N̂n+1(O)

θ4(u)ωψ−1(u)Φ(0) du.

Over the domain θ4(u) = 1 and ωψ−1(u)Φ(0) = Φ(0) = 1. Thus we get ΨF0,Φ0(1̃2n) = 1.

We get the claim in the Lemma. �

7.3. General Hecke element case. The result we need follows from a Plancherel formula

and the fact that the orbital integrals of spherical functions on Spn,K\Sp2n are related to

spherical functions on N2\S̃pn. The argument is essentially that of Mao and Rallis in

[MR1], where the split case is treated. Here we carry out the main argument and relegate

some details to the Appendix.

Let F be a p−adic field with p odd. Let O be the ring of integers in F . Let π be a prime

in O and let q = |π|−1. Let G be a reductive group over F with maximal compact subgroup

K. Let H be a closed unimodular subgroup of G with the property that there exists a

Borel B ⊂ G with BH open in G. Let χ be a unitary character on H, trivial on H ∩K.

Denote by C∞
K (H\G,χ) the space of complex functions on G with f(hgk) = χ(h)f(g).

Denote by SK(H\G,χ) the subspace consisting of functions of compact support modulo

H in C∞
K (H\G,χ).

We consider G1 = Sp2n, H1 = Spn,K , K1 = Sp2n(O) and χ1 the trivial character,

G2 = S̃pn, H2 = maximal unipotent of G2 and K2 = Spn(O). We take the character χ2 to

be θ−1
2,τ .

Denote by H(G,K) the Hecke algebra of G with respect to K. It consists of compactly

supported functions on G satisfying f(k1gk2) = f(g) for all g ∈ G, k1, k2 ∈ K. The

multiplication is given by the convolution product.
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The Hecke algebra H(G,K) acts on C∞
K (H\G,χ) by

(7.3) (f ∗ φ)(g) =

∫

G

f(h)φ(gh)dh, f ∈ H(G,K), φ ∈ C∞
K (H\G,χ).

A spherical function in C∞
K (H\G,χ) is an eigenfunction Ψ(g) in C∞

K (H\G,χ) under the

action of H(G,K) normalized so that Ψ(1) = 1.

Call an element g ∈ G relevant if χ is trivial on gKg−1 ∩ H. The subset of relevant

elements in G is denoted Grel. We have the following characterization of relevant elements:

Lemma 7.5. Let

(7.4) Λ+
n = {λ = (λ1, λ2, . . . , λn) ∈ Zn|λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0}.

There are injective maps Π1 : Λ+
n → Sp2n, Π2 : Λ+

n → S̃pn such that S̃pn
rel

=

∪λ∈Λ+
n
N2Π2(λ)K2 and Sprel

2n = ∪λ∈Λ+
n
Spn,KΠ2(λ)K3 as a disjoint union. Moreover, Π1(0, . . . , 0)

and Π2(0, . . . , 0) are elements in K3 and K2 respectively.

Proof. In the second case, this follows if we let Π2 be given by Π2(λ) = (Π̃λ, 1) where

Π̃λ = diag[πλ1 , . . . , πλn , π−λn , . . . , π−λ1 ].

In the first case, it follows from Lemma A.1 below. �

We recall an explicit linear map from SK3(Spn,K\Sp2n, 1) to SK2(N2\S̃pn, θ−1
2,τ ).
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Recall E =




τn

1n

τn

1n




and ǫ0 is chosen so that E = ǫ−1
0 Tǫ0. The subgroup N̂n+1

of N3 is given by N̂n+1 =








u ∗ ∗

12n ∗

u∗


 |u ∈ Zn





.

Recall the Weil representation ωψ−1 of S̃pn acts on the space S(F n) of Schwartz functions

on F n. For Φ ∈ S(F n), in equation (6.1) we defined, for g ∈ Spn and ζ ∈ {±1}:

(7.5) TΦ(F )(g, ζ) =

∫

u∈U1
E
\N̂n+1

F (j(g)−1u−1Euj(g))θ4(u)ωψ−1(u)ωψ−1(g̃)Φ(0) du.

Then TΦ is a linear map from SK3(Spn,K\Sp2n) to the set of genuine functions on S̃pn.

For λ ∈ Λ+
n , define chλ to be a function in SK(H\G,χ) such that chλ(Π(λ′)) = 0 unless

λ = λ′, in which case chλ(Π(λ′)) = 1. We will use ch1
0

to denote the function on Spn,K\Sp2n

corresponding to the function ch0 on X (through the identification in section 3.1), and let

ch2
0

be the function ch0 on S̃pn. Let Φ0 be the characteristic function of On.

We remark that for f1 ∈ H(Sp2n, K3), we have that f1 ∗ ch1
0

= F where F is related to

f1 by equation (5.4). Similarly, for f2 ∈ H(S̃pn, K2), we have f2 ∗ ch2
0

is equal to the right

hand side of (7.2). Thus to prove Proposition 7.1 it is enough to prove:

Proposition 7.6. For f1, f2 ∈ H(Sp2n, K3),H(S̃pn, K2) respectively, such that f̃1(z) ≡

f̃2(z), we have TΦ0(f1 ∗ ch1
0
) = f2 ∗ ch2

0
.

7.4. Preliminary results. Let S be the reduced root system of type Cn, let R be the

root system of type BCn. The root systems R and S are inside the same vector space
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identified with Cn. Let ǫi, i = 1, . . . , n be the standard basis of Cn, then

S = {±ǫi ± ǫj,±ǫi, 1 ≤ i ≤ n, i < j ≤ n.};

R = {±ǫi ± ǫj,±ǫi,±2ǫi, 1 ≤ i ≤ n, i < j ≤ n.}.

The root systems R and S have the same Weyl group W which is the Weyl group of Spn.

There is a natural action of W on Cn.

A Macdonald polynomial has the form ([Mc1], equation (10.1))

(7.6) Qt
λ(z) = P t

λ(e
ǫi) = Vλ(t)

−1
∑

w∈W

w

(
eλ
∏

α∈R+

1 − tαt
1
2
2αe

−α

1 − t
1
2
2αe

−α

)
.

Here λ ∈ Λ+
n is identified with dominant weights of R, R+ is the set of positive roots, and

eǫi are the independent variables of the polynomial P t
λ; Q

t
λ and P t

λ are related through the

equation eǫi = q−zi . The data tα are parameters such that when α is not a root in R,

tα = t
1
2
α = 1. Thus the parameters t are determined by values of tα when α is a long root

in S, and tα with t
1
2
2α when α is a short root in S. Vλ(t) are nonzero constants independent

of variables eǫi ; they are defined in [Mc1] (denoted Wλ(t) there).

Let C[qz, q−z]W be the space of functions on (z1, . . . , zn) ∈ Cn that are polynomials in

qzi and q−zi and that are invariant under the action of W . We have that {Qt
λ(z)|λ ∈ Λ+

n }

forms a basis of C[qz, q−z]W .

Theorems A.2 and B.1 below give:

Theorem 7.7. For i = 1, 2, there are choices of real numbers parameters tiα for α roots in

R and nonzero values ai(λ) for λ ∈ Λ+
n , such that for all z = (z1, . . . , zn) ∈ Cn,

(7.7) Ψi
z(Πi(λ)) = ai(λ)Qti

λ (z), λ ∈ Λ+
n ,

determines a spherical function Ψ1
z in C∞

K3
(Spn,K\Sp2n, 1), Ψ2

z in C∞
K2

(N2\S̃pn, θ−1
2,τ ).
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For f ∈ H(G,K), recall that f̃(z) is the eigenvalue of f ∗(g) = f(g−1) acting on Ψz

through equation (7.3), that is:

(7.8) f̃(z) =

∫
f(g−1)Ψz(g)dg.

Then f 7→ f̃(z) is an algebra homomorphism from f ∈ H(G,K) to C[qz̄, q−z̄]W . We can

consider C[qz̄, q−z̄]W as a H(G,K) module through the multiplication by f̃(z).

When φ ∈ SK(H\G,χ), we define its Fourier transform φ̂(z) by

(7.9) φ̂(z) = 〈φ,Ψz〉 =

∫

H\G

φ(g)Ψz(g)dg

Clearly φ̂(z) ∈ C[qz̄, q−z̄]W . Recall SK(H\G,χ) is a H(G,K) module through (7.3).

Theorem 7.8. The map φ 7→ φ̂ gives an isomorphism of H(G,K)−modules between

SK(H\G,χ) and C[qz̄, q−z̄]W .

Proof. A basis of SK(H\G,χ) is given by functions chλ, λ ∈ Λ+
n where chλ(Π(λ′)) is given

by δλ
′

λ where δ is the Kronecker delta. On the other hand, the set of Qt
λ(z) for λ ∈ Λ+

n

gives a basis for C[qz, q−z]W .

We have that

ĉhλ(z) =

∫

H\G

chλ(g)Ψz(g)dg

and this is, up to a volume factor, equal to a(λ)Qt
λ(z). Thus the map φ 7→ φ̂ establishes

a bijection between bases of SK(H\G,χ) and of C[qz̄, q−z̄]W .

We now show it is a SK(H\G,χ)− homomorphism. Take f ∈ H(G,K), φ ∈ SK(H\G,χ),

then

f̂ ∗ φ(z) =

∫

G

∫

H\G

f(g)φ(hg)Ψz(h)dhdg.



90

Changing h 7→ hg−1, we get

f̂ ∗ φ(z) =

∫

G

∫

H\G

f(g)φ(h)Ψz(hg−1)dhdg

=

∫

H\G

∫

G

f(g−1)φ(h)Ψz(hg)dhdg

= f̃(z)φ̂(z)

as desired. �

Theorem 7.9. Let ∆t(z) =
∏
α∈R

1−t
1
2
2αe

α

1−t
1
2
2αe

α

. Denote by Dn the direct product of n copies of
√
−1R/((2π/ log q)Z). For φ ∈ SK(H\G,χ), we have

(7.10) φ(g) =

∫

Dn

φ̂(z)Ψz(g)dµ(z)

where the measure dµ(z) = 1
|W |
V0(t)∆

t(z)dz.

Proof. In the case of S̃pn, this holds with d2
µ(z) = 1

|W |
∆tII

(z). It follows from the fact that

the volume of N2\N2(Π̃
λ, 1)K2 equals δ−1(Π̃λ) using the argument in [Mc2].

In the case of Sp2n, it is a consequence (c.f. [MR1], Section 2.3.) of Lemma 7.5, Theorem

7.7, Corollary A.4 and the fact that

f ∗ Φ = f ∗ ∗ Φ

for all Φ ∈ C∞
K3

(Spn,K\Sp2n, 1) and f ∈ H(Sp2n, K3), where f ∗(g) = f(g−1).

This last property holds since f ∈ H(Sp2n, K3) implies, by Cartan decomposition, that

f(g) = f(g−1). �
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Suppose T is a map from SK1(H1\G1, χ1) to SK2(H2\G2, χ2) satisfying T (Ψ1
z) = c(z)Ψ2

z.

Then from Theorem 7.9, formally we have:

(7.11) T (φ1) =

∫

Dn

φ̂1(z)Ψ
2
zc(z)d

1
µ(z),∀φ1 ∈ SK1(H1\G1, χ1).

Lemma 7.10. Let T be a linear map satisfying

(1) equation (7.11) holds for some function c(z),

(2) T (S−1
1 (1)) = S−1

2 (1),

then S1 = S2T on SK1(H1\G1, χ1).

Proof. Let φi ∈ SKi
(Hi\Gi, χi) such that S1(φ1) = S2(φ2), we show φ2 = T (φ1).

By Theorem 7.9,

φ2 =

∫

Dn

φ̂2(z)Ψ
2
zd

2
µ(z).

Since φ̂1(z) = φ̂2(z), we get there is a function c′(z) on Dn with:

(7.12) T (φ1) − φ2 =

∫

Dn

φ̂2(z)Ψ
2
zc

′(z)dz.

When φ̂2(z) ≡ 1, condition (2) implies:

(7.13)

∫

Dn

Ψ2
z(Π2(λ))c′(z)dz ≡ 0, ∀λ ∈ Λ+

n .

When z ∈ Dn, z̄ = −z; thus we can consider φ̂2(z) as a polynomial in C[qz, q−z]W For

any λ ∈ Λ+
n and any φ2, φ̂2(z)Ψ

2
z(Π2(λ)) ∈ C[qz, q−z]W , thus it is a linear combination

∑
ciΨ

2
z(Π2(λi)). From (7.12) and (7.13), we get (T (φ1) − φ2)(Π2(λ)) = 0; thus T (φ1) =

φ2. �

7.5. Proof of Proposition 7.6.
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Lemma 7.11. For F ∈ SK3(Spn,K\Sp2n), and Φ0 the characteristic function of On,

TΦ0(F ) =

∫

Dn

F̂ (z)c(z)Ψ2
zd

1
µz.

Proof. From Theorem 7.9,

TΦ0(F ) = TΦ0



∫

Dn

F̂ (z)Ψ1
zd

1
µz


 .

As TΦ0 is an iterated integral over a fixed compact set, we can interchange the integral and

operator TΦ0 and use Proposition C.2 to get:

TΦ0(F ) =

∫

Dn

F̂ (z)TΦ0(Ψ
1
z)d

1
µz

=

∫

Dn

F̂ (z)c(z)Ψ2
zd

1
µz.

�

We have already proved that

Lemma 7.12. TΦ0(ch
1
0
) = ch2

0
.

Since clearly S1(ch
1
0
) = S2(ch

2
0
) = 1, we checked the two conditions in Lemma 7.10

are satisfied for the map TΦ0 . From Theorem 7.8, for f1, f2 ∈ H(Sp2n, K3),H(S̃pn, K2),

S1(f1 ∗ ch1
0
) = S2(f2 ∗ ch2

0
) whenever f̃1(z) ≡ f̃2(z). Lemma 7.10 gives that S2T (f1 ∗ ch1

0
) =

S2(f2 ∗ ch2
0
) and using that S2 is an isomorphism, we obtain Proposition 7.6.
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8. Proof of Theorem 1.1

From the previous sections, we get the following trace identity:

Theorem 8.1. There exists maps ǫ5,v from S(Sp2n(Fv))⊗S(F n
v ) to S(S̃pn(Fv)), such that

(8.1) ISp2n
(f : Spn,K , 1;N3, θ4Θ

Φ
ψ−1) = IS̃pn

(f̃ : N2, θ
−1
2,τ ;N2, θ2)

when

(1) at v 6∈ S where S is a finite set of places containing all bad places, fv is a Hecke

function and Φv is the characteristic function of the lattice On
v , f̃v is the Hecke function

associated to fv by (7.1).

(2) at v ∈ S, f̃v = ǫ5,v(fv ⊗ Φv).

Proof. : Given fv,Φv, we find f̃v through Corollary 6.7. The identity follows from Propo-

sitions 5.8, 5.9, and Corollary 7.2. �

Proof of Theorem 1.1:

Given fv ∈ S(GL2n(Fv)), we find f ′
v ∈ S(Sp2n(Fv)) through Corollary 3.9, then we find a

pair f ′′
v ∈ S(Sp2n(Fv)) and Φv ∈ S(F n

v ) through Corollary 4.9, then we find f̃v ∈ S(S̃pn(Fv))

through Theorem 8.1. This gives the map ǫv which is ǫ5,vǫ4,vǫ1,v.

At a good place v, the Hecke algebra homomorphism λv : fv 7→ f̃v from H(GL2n, K1) to

H(S̃pn, K2) is defined so that

f̂v(z1,−z1, z2,−z2, . . . , zn,−zn) = ̂̃fv(z1, . . . , zn).

Let S be a finite set of places containing archimedean places and even places and places

where ψ is not unramified. Assume f = ⊗fv and f̃ = ⊗v∈Sǫv(fv)⊗v 6∈S λv(fv). We need to

show the equality



94

(8.2) IGL2n
(f : GLn,K , 1;N1, θ1) = IS̃pn

(f̃ : N2, θ
−1
2,τ ;N2, θ2).

For v 6∈ S, there is f ′
v ∈ H(Sp2n, K3) such that equation (7.1) holds. From Theorem 8.1,

equation (8.1) holds when we replace f ⊗ Φ by

⊗v∈Sǫ4,vǫ1,v(fv) ⊗v 6∈S (f ′
v ⊗ Φ0,v).

From Corollary 4.9, we get IS̃pn
(f̃ : N2, θ

−1
2,τ ;N2, θ2) equals ISp2n

(f ′ : Spn,K , 1;N3, θ3)

when f ′ = ⊗v∈Sǫ1,v(fv) ⊗v 6∈S f
′
v.

From Corollary 3.9, we get IS̃pn
(f̃ : N2, θ

−1
2,τ ;N2, θ2) equals IGL2n

(f1 : GLn,K , 1;N1, θ1)

where

f1 = ⊗v∈Sfv ⊗v 6∈S f1,v, f1,v = λ1,v(f
′
v).

We have the following relationship between fv and f1,v:

Lemma 8.2. For all z ∈ Cn:

(8.3) f̂v(z1,−z1, z2,−z2, . . . , zn,−zn) = f̂1,v(z1,−z1, z2,−z2, . . . , zn,−zn).

Proof. The left hand side of the equation is ̂̃f(z1, . . . , zn), which equals

f̂ ′
v(z1 +

1

2
, z1 −

1

2
, . . . , zn +

1

2
, zn −

1

2
).

Using the invariance under the Weyl group of Sp2n, the above equals:

f̂ ′
v(z1 +

1

2
,−z1 +

1

2
, . . . , zn +

1

2
,−zn +

1

2
).

Using the relation (3.8) we get the above equals the right hand side of the equation. �
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To complete the proof of identity (8.2), we only need to show

IGL2n
(f1 : GLn,K , 1;N1, θ1) = IGL2n

(f : GLn,K , 1;N1, θ1).

From the orbital integral decomposition in equation (3.4), this will follow from

Lemma 8.3. When equation (8.3) holds for all z ∈ Cn,

∫

GLn,K(Fv)

fv(hg) dh =

∫

GLn,K(Fv)

f1,v(hg)dh.

Proof. We work over a place v, which we omit it in the notation. Let CC
K1

(GLn,K\GL2n) be

the space of right K1 and left GLn,K invariant functions compactly supported on GL2n(Fv).

Then the Hecke algebra H(GL2n, K1) acts on this space by:

f ∗ φ(g) =

∫
φ(gh)f(h−1) dh, φ ∈ CC

K1
(GLn,K\GL2n), f ∈ H(GL2n, K1).

Let f0,v be the unit Hecke function on GL2n, and define

Ξ0,v(g) =

∫

GLn,K(Fv)

f0,v(hg)dh.

Then Ξ0,v ∈ CC
K1

(GLn,K\GL2n). It is clear the two sides of the equation in Lemma are

fv ∗ Ξ0,v and f1,v ∗ Ξ0,v.

By [O, Proposition 4.9], we have that CC
K1

(GLn,K\GL2n) is isomorphic to C[qz, q−z]W1

as H(GL2n, K1)−modules. In particular, the action of f is determined by the values of

f̂(z1,−z1, . . . , zn,−zn) and thus we have fv ∗ φ = f1,v ∗ φ for all φ ∈ CC
K1

(GLn,K\GL2n),

when fv and f1,v satisfy (8.3).

�

This completes the proof of Theorem 1.1. �
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Appendix A. Spherical functions on Spn,K\Sp2n

Recall that T is the square matrix of size 4n consisting of


 τ

1


 on the diagonal

and zero elsewhere; the group Spn,K consists of g in Sp2n with g−1Tg = T. Let X ′ be

the space of antisymmetric matrices in Sp2n. We have a map Spn,K\Sp2n → X ′ given by

g 7→ g−1TgJ . We denote the image of this map by X ⊂ X ′. The group Sp2n acts on X

by g · x = gxtg.

Recall that

Λ+
n = {λ = (λ1, λ2, . . . , λn) ∈ Zn|λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0}.

We denote by Πa the matrix


 πa

−πa


; for λ ∈ Λ+

n , we denote by Πλ ∈ X the matrix

with the diagonal being [τΠλ1 , τΠλ2 , . . . , τΠλn
,−Π−λn

, . . . ,−Π−λ1 ].

Lemma A.1. As a disjoint union,

(A.1) X = ∪K · Πλ, λ ∈ Λ+
n .

Proof. Let x ∈ X. Let xi0,j0 be the entry with the largest norm in x. Since x is antisym-

metric, we have that i0 6= j0 and so through the action of a suitable Weyl element w ∈ K3

and a diagonal matrix a ∈ K3, we have that x′ = wa · x has one of the following two

properties: either x′1,2 = −x′2,1 = π−λ1 is the element with the largest norm or x′1,4n is the

element with the largest norm in x′.

We now consider the second case, we assume that for elements in K · x the entry with

the largest norm lies on the antidiagonal. In this case, there is an element y in the orbit

K · x which is antidiagonal. But then y must satisfy yJ2 = τ , this is a contradiction.

In the first case, there exists a lower triangular matrix n ∈ K3 with x′′ = n · x′ has

the property that x′′1,i = 0 when i 6= 2 and x′′2,j = 0 when j 6= 1. Since x ∈ X satisfies
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xtJx = τJ , we have that x′′1,i = x′′2,j = x′′i,1 = x′′j,2 = x′′4n+1−j,4n−1 = x′′4n+1−i,4n = 0 unless

i = 2 or j = 1; furthermore, x′′4n,4n−1 = −x′′4n−1,4n = πλ1 . Thus x′′ is a diagonal matrix

with elements in the diagonal being Πλ1 , y and −Πλ1 where y is an antisymmetric square

matrix of size 4(n − 1) with (yJ)2 = τ and tyJy = τJ . Moreover, the maximum norm of

the entries of y is qλ2 with λ2 ≤ λ1. Continuing this process, we see that x ∈ K ·Π−λ with

λ ∈ Λ+
n . Moreover, the sets K · Π−λ are clearly disjoint for distinct λ ∈ Λ+

n . �

Let C∞
K3

(X) be the space of all K3−invariant complex functions on X and SK3(X) the

subspace consisting of all compactly supported functions in C∞
K3

(X). With the identifi-

cation between Spn,K\Sp2n and X, the action of H(Sp2n, K3) on C∞
K3

(X) becomes the

convolution product:

(A.2) (f ∗ Φ)(x) =

∫

Sp2n

f(g)Φ(g−1 · x)dg f ∈ H(Sp2n, K3),Φ ∈ C∞
K3

(X).

A spherical function on X is by definition an eigenfunction Ψ(x) in C∞
K3

(X) of all the

convolutions defined by elements in H(Sp2n, K3) normalized such that Ψ(Π0) = 1. Here

0 is the vector in Λ+
n where all entries are 0. The spherical functions on X are clearly in

one-one correspondence with spherical functions on C∞
K3

(Spn,K\Sp2n, 1).

Recall by equation (10.1) of [Mc1] that a Macdonald polynomial has the form

Qt
λ(z) = P t

λ(e
ǫi) = Vλ(t)

−1
∑

w∈W

w

(
eλ
∏

α∈R+

1 − tαt
1
2
2αe

−α

1 − t
1
2
2αe

−α

)
,

where the parameters t are determined by the values of tα when α is a long root in S,

and tα with t
1
2
2α when α is a short root in S.

We will prove the following result:
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Theorem A.2. For z = (z1, . . . , zn) ∈ C, Ψz(x) defined by the following equation is a

spherical function on X:

(A.3) Ψz(Π
λ) = qb(λ)Vλ(t

I)

V0(tI)
QtI

λ , λ ∈ Λ+
n

where b(λ) = −
n∑
i=1

(2(n− i+1)−1/2)λi. The parameter tIα in the definition of QtI

λ is given

by: when α is a long root in S, tIα = q−2; when α is a short root in S, we set tIα = q−1,

tI2α
1/2 = q−1/2.

We will construct a function Ψz(x) onX that is an eigenfunction under the Hecke algebra

action, thus a spherical function, then we establish formula (A.3) for Ψz(x).

For x ∈ X, denote by Pf i(x) (1 ≤ i ≤ n) the Pfaffian of the lower right 2i× 2i block of

x. Define the integral

(A.4) ζ(x; s) = ζ(x; s1, . . . , sn) =

∫

K3

n∏

i=1

|Pf i(k · x)|sidk

where x ∈ X and s ∈ Cn. The integral is taken over the open subset

{k ∈ K3|
n∏

i=1

|Pf i(k · x)| 6= 0}.

Set

(A.5) Ψz(x) = ζ(x; s)/ζ(Π0, s), x ∈ X,

where z = (z1, . . . , zn) satisfies the relation:

(A.6)
n∑

i=j

si = −zj − 2(n− j) − 3

2
, j = 1, . . . , n.

A.0.1. Hecke algebra action. We first prove Ψz(x) is an eigenfunction of the Hecke algebra

H(Sp2n, K3).
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Recall that A3 is the set of diagonal matrices in Sp2n and N3 is the standard maximal

unipotent subgroup of Sp2n. Let B = A3N3 be the standard Borel subgroup. Given

ν = (ν1, . . . , ν2n) ∈ C2n, let Φν(g) be the K3−invariant vector in the induced representation

I(χν) = IndSp2n

B χν , where

χν(au) =
2n∏

i=1

|ai|νi , a = diag[a1, . . . , a2n, a
−1
2n , . . . , a

−1
1 ], u ∈ N3.

We normalize Φν so that

(A.7) Φν(auk) =
2n∏

i=1

|ai|νi+(2n−i+1), k ∈ K3.

The Satake transform f̂(ν) of f ∈ H(Sp2n, K3) is defined by

f̂(ν) =

∫

Sp2n

f(g)Φν(g)dg.

By the Iwasawa decomposition, this agrees with the definition in equation (3.6).

We will let

(A.8) ωf (z) = f̂(−z1 +
1

2
,−z1 −

1

2
, . . . ,−zn +

1

2
,−zn −

1

2
).

The following proposition shows Ψz is a spherical function.

Proposition A.3. When f ∈ H(Sp2n, K3),

(A.9) (f ∗ Ψz)(x) = ωf (z)Ψz(x), x ∈ X.

Proof. Let f ∈ H(Sp2n, K3). Recall from equation (A.5) that

ζ(Π0; s)Ψz(x) = ζ(x; s).



100

We compute

ζ(Π0; s)(f ∗ Ψz)(x) = ζ(Π0; s)

∫

Sp2n

f(g)Ψz(g
−1 · x)dg

=

∫

Sp2n

f(g)ζ(g−1 · x; s)dg

=

∫

Sp2n

f(g)

{∫

K3

n∏

i=1

|Pf i(kg−1 · x)|sidk

}
dg.

Changing variables on g and using that f ∈ H(Sp2n, K3), we get that this is

∫

Sp2n

f(g)
n∏

i=1

|Pf i(g−1 · x)|si dg.

By the Iwasawa decomposition, we write g as g = k−1b where k ∈ K3, b ∈ B. We get

that

ζ(Π0; s)(f ∗ Ψz)(x) =

∫

K3

∫

B

f(k−1b)
n∏

i=1

|Pf i(b−1k · x)|si dk db,

here d∗b is a right invariant measure on B.

Note that for b ∈ B,

(A.10) |Pf i(b · x)|si = |di(b)|si|Pf i(x)|si ,

where di(b) is the determinant of the lower right 2i× 2i block of b.

Thus

ζ(Π0; s)(f ∗ Ψz)(x) =

∫

K3

n∏

i=1

|Pf i(k · x)|sidk

∫

B

f(b)
n∏

i=1

|di(b−1)|sid∗b.
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The relation of z and s gives that

ωf (z) = f̂(−z1 +
1

2
,−z1 −

1

2
, . . . ,−zn +

1

2
,−zn −

1

2
) =

∫

B

f(b)
n∏

i=1

|di(b−1)|sid∗b.

Therefore we obtain

ζ(Π0; s)(f ∗ Ψz(x)) = ζ(x; s)ωf (z).

This equation implies Proposition A.3. �

Corollary A.4. The map from H(Sp2n, K3) to C[qz̄, q−z̄]W3 given by f 7→ ωf (z) is onto.

A.0.2. Another definition of Ψz(x). Given x ∈ X, define

(A.11) F x
z (g) =

n∏

i=1

|Pf i(g · x)|si , g ∈ Sp2n.

where z and s are related by

n∑

i=j

si = −zj − 2(n− j) − 3

2
, j = 1, . . . , n.

Then ζ(x; s) =
∫
K3

F x
z (k)dk. By equation (A.10) we have

(A.12) F x
z (bg) =

n∏

i=1

|di(b)|siF x
z (g).

Therefore F x
z defines a distribution on the space of I(χ−ν(z)), where

ν(z) = (z1 −
1

2
, z1 +

1

2
, . . . , zn −

1

2
, zn +

1

2
).

The distribution is given by

(A.13) F x
z (Φ) =

∫

B\Sp2n

F x
z (g)Φ(g)dg.

for Φ ∈ I(χ−ν(z)).
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When x = TJ , since h · TJ = TJ for h ∈ Spn,K , we get FTJ
z (gh) = FTJ

z (g) for

h ∈ Spn,K ⊂ Sp2n. Therefore if L(Φ) = FTJ
z (Φ), then L is a Spn,K−invariant linear form

on I(χ−ν(z)).

Proposition A.5. Let L be the linear form above, and Φ−ν(z) be the vector in I(χ−ν(z))

defined by (A.7). Denote the action of Sp2n on I(χ−ν(z)) by ρ. Then when x = g · TJ ,

g ∈ Sp2n,

(A.14) ζ(x; s) = L(ρ(g−1)Φ−ν(z)).

Proof. The right hand side of the equation is:

∫

B\Sp2n

FTJ
z (h)ρ(g−1)Φ−ν(z)(h)dh =

∫

B\Sp2n

n∏

i=1

|Pf i(h · TJ)|siΦ−ν(z)(hg
−1)dh.

Making a change of variable h 7→ hg, this becomes

∫

B\Sp2n

n∏

i=1

|Pf i(h · x)|siΦ−ν(z)(h)dh.

By the Iwasawa decomposition, this is

∫

K3

n∏

i=1

|Pf i(k · x)|siΦ−ν(z)(k)dk.

Since Φ−ν(z)(k) = 1, we get the equation above. �

A.1. Computation of Ψz(Π
λ). The calculation of ζ(x; s), as in [MR], follows Casselman’s

method ([C]). We assume ν(z) is such that the numbers {zi± 1
2
|i = 1, . . . n} are all distinct.

The analytic continuation would give the formula for all cases of z.
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A.1.1. Expansion in the basis {f zw}. Let B0 be the Iwahori subgroup of Sp2n, define

(A.15) ξxz (g) =

∫

B0

F x
z (gb)db,

here the measure is normalized so B0 has volume 1. We have that ξxz (g) is right B0-

invariant. From (A.12), we see that ξxz (g) is a B0 fixed vector in I(χν(z)), where

ν(z) = (z1 −
1

2
, z1 +

1

2
, . . . , zn −

1

2
, zn +

1

2
).

In [C], Casselman defined a basis {f zw|w ∈ W3} of the space of B0 fixed vectors in

I(χν(z)). We have that there exist functions {aw(x; z)|w ∈ W3}, so that

(A.16) ξxz (g) =
∑

w∈W3

aw(x; z)f zw(g).

Here by definition:

(A.17) aw(x; z) = T zw(ξxz )(1)

where T zw is the intertwining operator of w from the space I(χν(z)) to I(wχν(z)), defined

by analytic continuation of the following integration:

T zw(ϕ)(g) =

∫

N3∩wN3w−1\N3

ϕ(w−1ug)du.

As ζ(x; s) =
∫
K3

F x
z (k)dk =

∫
K3

ξxz (k)dk, we get

(A.18) ζ(x; s) =
∑

w∈W3

aw(x; z)

∫

K3

f zw(k)dk.

The integral
∫
K3

f zw(k)dk is computed in [C]. Recall that the root system of Spn is given

by S, we will denote by S2n the root system of Sp2n. Let S+
2n and S−

2n be the set of positive

and negative roots respectively. We define eα for a given z′ = (z′1, z
′
2, . . . , z

′
2n) by eǫi = q−zi .
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Let

cw(z′) =
∏

α∈S+
2n,wα∈S

−

2n

1 − q−1eα

1 − eα
.

Let wl be the longest Weyl element in W3. Then we have

(A.19)

∫

K3

f zw(k)dk = Q−1cwl
(wlwν(z))/cw(ν(z)).

Here Q is some constant independent of z defined in [C].

A.1.2. Vanishing of aw(x; z). We now turn attention to the computation of aw(x; z). As

in [Hi], define an intertwining operator T̃ zw from I(χ−ν(z))
∗ to I(wχ−ν(z))

∗, where I(χ)∗ is

the dual of I(χ), (see Proposition 1.6 in [Hi]). By equation (A.13), we have that F x
z ∈

I(χ−ν(z))
∗. Then as in [Hi], T̃ zw extends the intertwining operator T zw.

Similar to Proposition 1.7 in [Hi], we have

(A.20) aw(x; z) = T zw(ξxz )(1) =

∫

B0

T̃ zw(F x
z )(b)db.

From now on we assume x = Πλ for some λ ∈ Λ+
n . We show then aw(x; z) = 0 for most

w ∈ W3. Define Y ⊂ Sp2n:

(A.21) Y = {g ∈ Sp2n|FTJ
z (g) 6= 0}.

Clearly Y is an open subset of Sp2n.

Lemma A.6. Let b ∈ B, then g ∈ Sp2n is in Y if and only if bg ∈ Y .

Proof. This follows from equation (A.12). �

Lemma A.7. When g ∈ Sp2n is such that g · TJ = x = Πλ for some λ ∈ Λ+
n , FTJ

z (bg) =

F x
z (b) = F x

z (1) when b ∈ B0.
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Proof. It is clear from (A.12) that when b ∈ B0 ∩B,

F x
z (b) =

n∏

i=1

|di(b)|siF x
z (1) = F x

z (1).

We now assume b ∈ B0 ∩ B̄ where B̄ is the set of lower triangular matrices in Sp2n. We

show in this case |Pf i(b · x)| = |Pf i(x)| for i = 1, . . . , n.

Write x as


 A1

A2


 where A2 is the lower right 2i × 2i block of x. Write b as


 b1

S b2


, where b2 is the lower right 2i × 2i block of b. Thus b2 is a lower-triangular

matrix, in the Iwahori subgroup of GL2i. With these notations, we see

|Pf i(b · x)| = |Pf(bx tb)| = |Pf(b2A2
tb2 + SA1

tS)|.

Since the entries of S are in the prime ideal P ⊂ O, with our choice of x, we see

b2A2
tb2 + SA1

tS = b2A2
tb2 mod P 1−λi .

Thus

|Pf(b2A2
tb2 + SA1

tS)| = |Pf(b2A2
tb2)| = |Pf(A2)| = |Pf i(x)|.

We have proved |Pf i(b · x)| = |Pf i(x)|, thus the identity F x
z (b) = F x

z (1). �

Proposition A.8. Let x = Πλ for some λ ∈ Λ+
n . If the distribution T̃ zw(FTJ

z ) ∈ I(wχ−ν(z))
∗

is supported away from Y , then aw(x; z) = 0.

Proof. Let Φw
0 be the vector in I(wχ−ν(z)), such that Φw

0 is supported on BB0, and Φw
0 (b) =

1 when b ∈ B0. Then we have that T̃ zw(F x
z )(Φw

0 ) is equal to
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(A.22)

∫

B\Sp2n

T̃ zw(F x
z )(g)Φw

0 (g)dg =

∫

B0

T̃ zw(F x
z )(b)db.

Thus from (A.20), we have that

aw(x; z) = T̃ zw(F x
z )(Φw

0 ).

Assume x = g ·TJ , let ρw denote the representation on the space I(wχ−ν(z))
∗ and let ρ′w

denote the representation on the space I(wχ−ν(z)). We calculate that for φ ∈ I(wχ−ν(z))

we have that

ρw(g)T̃ zw(FTJ
z )(φ) = T̃ zw(FTJ

z )(ρ′w(g−1)φ)

=

∫

B\Sp2n

∫

N3∩wN3w−1\N3

FTJ
z (w−1uh)φ(hg−1)du dh

=

∫

B\Sp2n

∫

N3∩wN3w−1\N3

n∏

i=1

|Pf i(w−1uh · TJ)|siφ(hg−1)du dh

=

∫

B\Sp2n

∫

N3∩wN3w−1\N3

n∏

i=1

|Pf i(w−1uh · x)|siφ(h)du dh

=

∫

B\Sp2n

∫

N3∩wN3w−1\N3

F x
z (w−1uh)φ(h)du dh.

Thus, T̃ zw(F x
z ) = ρw(g)T̃ zw(FTJ

z ) and

aw(x; z) = T̃ zw(FTJ
z )(ρ′w(g−1)Φw

0 ).

We show ρ′w(g−1)Φw
0 is supported on Y ; then if the assumption of the Proposition holds,

aw(x; z) = 0.
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The support of ρ′w(g−1)Φw
0 is BB0g. Let b1 ∈ B, b2 ∈ B0. From Lemma A.7, FTJ

z (b2g) =

F x
z (b2) = F x

z (1) 6= 0, thus from Lemma A.6 we have that FTJ
z (b1b2g) 6= 0. We have shown

that ρ′w(g−1)Φw
0 is supported on Y , this gives the Proposition. �

Proposition A.9. The distribution T̃ zw(FTJ
z ) ∈ I(wχ−ν(z))

∗ is supported away from Y

unless wχν(z) = χν(w′z) for some w′ in W2.

Proof. Assume T̃ zw(FTJ
z ) is not supported away from Y . Let IY (wχ−ν(z)) be the subspace

of I(wχ−ν(z)) consisting of sections supported on Y . Then T̃ zw(FTJ
z ) defines a nontrivial

Spn,K−invariant linear form on IY (wχ−ν(z)).

Note that Y = P2g0Spn,K for some g0 in Sp2n, where P2 is the parabolic group containing

B and with 2 × 2 blocks on the diagonal. Let Spn,Kg0 = g−1
0 P2g0 ∩ Spn,K and σ =

IndP2
B wχ−ν(z). Consider the Spn,K−module Ind

Spn,K

Spn,Kg0
(σg0δg0P0

) consisting of modulo Spn,Kg0

compactly supported functions φ on Spn,K with values in the space of σ, satisfying:

φ(h0h) = δP0(g0h0g
−1
0 )σ(g0h0g

−1
0 )φ(h), h0 ∈ Spn,Kg0 .

As Spn,K−modules, we have IY (wχ−ν(z)) ∼= Ind
Spn,K

Spn,Kg0
(σg0δg0P0

).

From Frobenius reciprocity, the existence of nontrivial Spn,K−invariant linear form on

IY (wχ−ν(z)) implies that as a representation of Spn,Kg0 , σ
g0δg0P0

contains a trivial represen-

tation. Equivalently, as the representation of g0Spn,Kg0g
−1
0 , σδP0 contains a trivial repre-

sentation. Notice that g0Spn,Kg0g
−1
0 equals n copies of SL2 sitting in the diagonal 2 × 2

blocks of P2, over which δP0 is trivial; we see that σ contains the trivial representation of

SL2 × . . .× SL2. With our assumption that z is in the general position, it is only possible

when w is as described in the Proposition. �

For each w′ ∈ W2, there is a unique w ∈W3 such that

wχν(z) = χν(w′z).
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We will write w = σ(w′) if this is the case. Furthermore, if w, α ∈ W3 and w′, α′ ∈ W2

satisfy σ(w′) = w and σ(α′) = α, then

wαχν(z) = wχν(α′z) = χν(w′α′z),

so that σ is a group homomorphism.

Corollary A.10. aw(x; z) = 0 unless w = σ(w′) for some w′ in the Weyl group of Spn.

Given w = σ(w′) with w′ in the Weyl group of Spn, then F x
w′z ∈ I(wχ−ν(z))

∗. Write

x = g · TJ = Πλ. As T zw(FTJ
z ) and FTJ

w′z satisfy the same left equivariance condition over

P2 and right Spn,K−invariance condition, we get

T zw(FTJ
z )(hg) = δ(w′, z)FTJ

w′z (hg),

or

T zw(F x
z )(h) = δ(w′, z)F x

w′z(h)

for some number δ(w′, z) independent of h ∈ Sp2n.

From (A.20), we get

(A.23) aw(x; z) = δ(w′, z)

∫

B0

F x
w′z(b)db.

From Lemma A.7, we see that aw(x; z) = δ(w′, z)F x
w′z(1). From (A.11),

(A.24) F x
w′z(1) =

n∏

i=1

|Pf i(Πλ)|si = ew
′λqb(λ)

when x = Πλ. Here b(λ) is as defined in Theorem A.2, by

b(λ) = −
n∑

i=1

(2(n− i+ 1) − 1/2)λi
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and eλ is defined with eǫi = q−zi . Note that considered as function of z, F x
w′z(1) is an

additive character of z.

Summarizing the results so far, we get

Lemma A.11. When x = Πλ for some λ ∈ Λ+
n , we have:

(A.25) ζ(Πλ; z) =
∑

w∈W2

Q−1qb(λ)c(w, z)ewλ.

where c(w, z) = cwl
(wlσ(w)ν(z))δ(w, z)/cσ(w)(ν(z)).

A.1.3. Functional equations. We see when w = e is the identity, c(e, z) in the lemma equals

cwl
(wlν(z)) which is:

(A.26) (1 + q−1)n
∏

α∈S+L

(
1 − q−2e−α

1 − e−α
1 − q−1e−α

1 − qe−α

) ∏

α∈S+S

(
1 − q−1e−2α

1 − e−2α

1 − q−
3
2 e−α

1 − q
1
2 e−α

)

where S+L and S+S are the set of long and short positive roots. We will use the functional

equations of ζ(x; s) to determine c(w, z) for other w ∈ W2.

Proposition A.12. The function Ψz(x) = ζ(x; s)/ζ(Π0; s) satisfies the functional equation

Ψwz(x) = Ψz(x) for all w ∈W2.

Proof. Let w0 ∈W2. Then from (A.25):

Ψw0z(Π
λ) =

∑
w∈W2

qb(λ)c(w,w0z)e
ww0λ

∑
w∈W2

c(w,w0z)
.

Let w1 ∈ W2. We compare the coefficient of ew1w0λ for Ψz(Π
λ) and Ψw0z(Π

λ). They are

(A.27) qb(λ)c(w1w0, z)/
∑

w∈W2

c(w, z)
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and

(A.28) qb(λ)c(w1, w0z)/
∑

w∈W2

c(w,w0z)

From the definition of c(w, z), we see that the quotient of c(ww′, z) by c(w,w′z) is given

by

{
cwl

(wlσ(ww′)ν(z))δ(ww′, z)/cσ(ww′)(ν(z))
}
×cσ(w)(ν(w

′z))/ {cwl
(wlσ(w)ν(w′z))δ(w,w′z)} .

Using that σ is a homomorphism and that σ(w′)ν(z) = ν(w′z), this is equal to

δ(ww′, z)

δ(w,w′z)

cσ(w)(ν(w
′z))

cσ(ww′)(ν(z))
.

It is well known that

cσ(ww′)(ν(z)) = cσ(w)(ν(w
′z))cσ(w′)(ν(z)),

so our expression is

δ(ww′, z)

δ(w,w′z)cσ(w′)(ν(z))
.

Since the intertwining operator T zww′ is given by the composition of Tw
′z

w and T zw′ , we see

that

δ(ww′, z) = δ(w,w′z)δ(w′, z).

Thus we obtain that

(A.29)
c(ww′, z)

c(w,w′z)
=

δ(w′, z)

cσ(w′)(ν(z))
.

From equation (A.29), the quotient of (A.27) by (A.28) is given by
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∑
w∈W2

c(w,w0z)δ(w0, z)/cσ(w0)(ν(z))∑
w∈W2

c(w, z)
.

Using equation (A.29), we see that

c(w,w0z)δ(w0, z)/cσ(w0)(ν(z)) = c(ww0, z),

so that the quotient of c(ww′, z) by c(w,w′z) is equal to

∑
w∈W2

c(ww0, z)∑
w∈W2

c(w, z)
= 1.

We have shown the coefficients of ew1w0λ for Ψz(Π
λ) and Ψw0z(Π

λ) equal. Thus Ψz(x) =

Ψw0z(x). �

To introduce a more precise functional equation, let

Γ1(z) =
∏

α∈S+L

1 − qe−α

1 − q−1e−α

and

Γ2(z) =
∏

α∈S+S

1 − q
1
2 e−α

1 − q−
1
2 e−α

.

Proposition A.13. Let ζ̃(x; z) = Γ1(z)Γ2(z)ζ(x; s). Then

(A.30) ζ̃(x;wz) = ζ̃(x, z)

for all w ∈W2.

We will give the proof in the next section. From Proposition A.13, equations (A.25) and

(A.26), and the linear independence of the characters F x
wz(1) (as characters of z), we get

for λ ∈ Λ+
n , ζ̃(Πλ; z) equals
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Q−1(1 + q−1)nqb(λ)
∑

w∈W2

w(eλΓ1(z)Γ2(z)c(e, z)),

which is

(A.31)

Q−1(1 + q−1)nqb(λ)
∑

w∈W2

w

(
eλ

∏

α∈S+L

1 − q−2e−α

1 − e−α

∏

α∈S+S

(1 + q−
1
2 e−α)(1 − q−

3
2 e−α)

1 − e−2α

)
.

Comparing this with the definition of the Macdonald polynomial Qt
λ(z), we see that

(A.32) ζ̃(Πλ; z) = Q−1(1 + q−1)nqb(λ)Vλ(t
I)QtI

λ (z)

and

ζ̃(Π0; z) = Q−1(1 + q−1)nV0(t
I)QtI

0
(z)

when λ ∈ Λ+
n and tI is the parameter defined in Theorem A.2 by tIα = q−2 when α is a

long root in S and tIα = q−1, tI2α
1/2 = q−1/2 for α a short root in S.

Since

ζ̃(x; z)/ζ̃(Π0; z) = Ψz(x),

we get

(A.33) Ψz(Π
λ) = qb(λ)Vλ(t

I)QtI

λ (z)/(QtI

0
(z)V0(t

I))

when λ ∈ Λ+
n . From [Mc1], we see QtI

0
(z) = 1. Thus the function Ψz defined in (A.5) by

Ψz(x) = ζ(x; s)/ζ(Π0, s), x ∈ X.

is given by
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qb(λ)Vλ(t
I)

V0(tI)
QtI

λ , λ ∈ Λ+
n .

We have proved Theorem A.2.

A.2. Proof of Proposition A.13. We prove (A.30) here. The Weyl group W2 is gener-

ated by elements σi (1 ≤ i ≤ n− 1) and rn, where σi fixes ǫj if j 6= i, i+ 1, and switches ǫi

with ǫi+1; rn fixes ǫj if j < n and maps ǫn to −ǫn.

A.2.1. Functional equation for σi. Assume n > 1. We fix an i ≤ n− 1. Recall that s and

z are related in equation (A.6) by

n∑

i=j

si = −zj − 2(n− j) − 3

2
, j = 1, . . . , n.

From this relation, the following lemma is clear.

Lemma A.14. The ordered set of complex numbers (s1, . . . , si−2, si−1+
si

2
, si

2
+si+1, si+2, . . . , sn)

is invariant under the map z 7→ σiz.

Let Y ′ = Y ·TJ , then by definition of Y in (A.21), Y = {g ∈ Sp2n|FTJ
z (g) 6= 0}, we see

Y ′ = {x ∈ X|F x
s (1) 6= 0}. Recall that P2 is the parabolic subgroup of Sp2n whose Levi

subgroup is a product of GL2’s and whose unipotent subgroup consists of upper triangular

matrices. We have the following lemma.

Lemma A.15. The set Y ′ is transitive under P2. Any x ∈ Y ′ has a decomposition x =

p · Πλ(x) where λ(x) ∈ Zn and the Levi part of p ∈ P2 lies in products of GL2(O).

We will embed K4 = GL4(O) in Sp2n as follows: If {ej|j = 1, . . . , 4n} is the standard

basis of the vector space Sp2n acting on, then k ∈ K4 acts trivially on the space generated by

{e1, . . . , e2i−2, e2i+3, . . . , e4n−2i−2, e4n−2i+3, . . . , e4n}; acts by multiplication of k on the space
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generated by {e2i+j|j = −1, 0, 1, 2} and by multiplication of k∗ on the space generated by

{e4n−2i+j|j = −1, 0, 1, 2}. Then

(A.34) ζ(x; s) =

∫

k∈K3

∫

k′∈K4

n∏

j=1

|Pf j(k′k · x)|sjdk′dk.

The proof of the following lemma is as in [MR1].

Lemma A.16. Given any x ∈ X, the expression

(A.35)
1 − qzi−zi+1+1

1 − qzi−zi+1−1

∫

k∈K4

n∏

j=1

|Pf j(k · x)|sjdk

is invariant under the action z 7→ σiz.

From the Lemma, after multiplying by 1−qzi−zi+1+1

1−qzi−zi+1−1 the inner integral in (A.34) is invariant

under z 7→ σiz. Thus we get

Lemma A.17. The expression 1−qzi−zi+1+1

1−qzi−zi+1−1 ζ(x; s) is invariant under z 7→ σiz.

A.2.2. Functional equation for rn. We first consider the case n = 1. Here z ∈ C and

rnz = −z. From Proposition A.12, to get an explicit function equation, we only need to

compute ζ(Π0; s).

Lemma A.18. When n = 1,

(A.36) ζ(Π0; s) =
1 − qz−

1
2

(1 + q−1)(1 − qz+
1
2 )
.

Proof. Let Km be the set of k ∈ K3 such that |Pf 1(k · Π0)| = q−m. Then

(A.37) ζ(Π0; s) =
∞∑

m=0

vol(Km)q−sm.
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The set K · Π0 is given by the elements in X whose entries are all in O. This set can be

described as:







a b1 b2

−a −b2 b3

−b1 b2 d

−b2 −b3 −d




| b22 + b1b3 = τ + ad, a, d, b1, b2, b3 ∈ O





.

Let Xm be the subset with |d| = q−m. Choose a g0 ∈ K3 such that g0 · TJ = Π0, and let

Sp′n,K = g0Spn,Kg
−1
0 . Then Sp′n,K · Π0 = Π0.

Lemma A.19. Let m > 1, let Km be the set of k ∈ K3 with k = 1 mod Pm. Then

ρ : k 7→ k · Π0 induces a bijection between Km\K3/K3 ∩ Sp′n,K and K3 · Π0 mod Pm.

Proof. Surjectivity follows as in [MR1]. To show injectivity, we do a counting of the number

of the double cosets Km\K3/K3 ∩ Sp′n,K and the number of the cosets K3 · Π0 mod Pm.

Notice that |Km\K3/K3 ∩ Sp′n,K | is equal to the number of K3 mod Pm divided by the

number of K3 ∩ Sp′n,K mod Pm.

We have that

(A.38) |K3 mod Pm| = q3m(1 − q−2)q7m(1 − q−4)

and that

(A.39) |K3 ∩ Sp′n,K mod Pm| = q6m(1 − q−4).

Thus we obtain that

(A.40) |Km\K3/K3 ∩ Sp′n,K | =
q10m(1 − q−2)(1 − q−4)

q6m(1 − q−4)
= q4m(1 − q−2).
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On the other hand, the number of K3 · Π0 mod Pm is equal to the number of solutions

of b22 + b1b3 = τ + ad in (O/P )5. In the case when b1 is a unit, we obtain q4m(1 − q−1)

solutions. When b1 is not a unit, but d is a unit, we have q4m(q−1 − q−2) solutions. The

case when b1, d ∈ P contributes no solutions. Thus the number of cosets K3 · Π0 mod Pm

is equal to q4m(1− q−2). This proves that the map k 7→ k ·Π0 induces a bijection between

Km\K3/K3 ∩ Sp′n,K and K3 · Π0 mod Pm. �

We continue with the proof of Lemma A.18. We have that

(A.41) vol(Km) = vol(Km+1)|Xm mod Pm||K3 ∩ Sp′n,K mod Pm+1|.

We already know that

(A.42) |K3 ∩ Sp′n,K mod Pm+1| = q6(m+1)(1 − q−4).

To count the cosets of Xm, we remark that since |d| = q−m < 1, we have the cases

|b1| = 1 and |b1| < 1. The first case contributes q3(m+1)(q− 1)(1− q−1) elements, while the

second case contributes no solutions. Thus,

(A.43) |Xm mod Pm| = q3(m+1)(q − 1)(1 − q−1)

With our assumption that vol(K3) = 1, we obtain that

(A.44) vol(Km+1) = q−3(m+1)(1 − q−2)−1q−7(m+1)(1 − q−4)−1.

Thus, for m > 0, we obtain that

(A.45) vol(Km) = q−(m+1)(q − 1)(1 + q−1)−1 = q−m
1 − q−1

1 + q−1
.
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Thus,

(A.46) vol(K0) = 1 −
∞∑

m=1

vol(Km) = 1 − 1 − q−1

1 + q−1
.
q−1

1 − q−1
=

1

1 + q−1
.

Using ζ(Π0; s) =
∞∑
m=0

vol(Km)q−sm, we obtain that

(A.47) ζ(Π0; s) =
1

1 + q−1
+

1 − q−1

1 + q−1

∞∑

m=1

qm(−1−s) =
1 − q−2−s

(1 + q−1)(1 − q−1−s)
.

Using the relation between s and z in equation (A.6), we get that s = −z − 3
2
, so that

(A.48) ζ(Π0; s) =
1 − qz−

1
2

(1 + q−1)(1 − qz+
1
2 )

as desired. �

We have the following corollary:

Corollary A.20. When n = 1, s = −z− 3
2
, then 1−qz+1

2

1−qz− 1
2
ζ(x; s) is invariant under z 7→ −z.

Proof. We have that 1−qz+1
2

1−qz− 1
2
ζ(x; s) is equal to

1 − qz+
1
2

1 − qz−
1
2

ζ(Π0; s)Ψz(x) = (1 + q−1)−1Ψz(x)

and this is invariant under z 7→ −z by Proposition A.12. �

Now assume n > 1. Let K ′
2 be Sp2(O), and embed it into K3 with the embedding

of the F 4 into the subspace of F 4n generated by part of the standard basis ej with j =

2n− 1, 2n, 2n+ 1, 2n+ 2. Then

(A.49) ζ(x; s) =

∫

k∈K3

∫

k′∈K′

2

n∏

j=1

|Pf j(k′k · x)|sjdk′dk.
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Lemma A.21. Given any x ∈ X, the expression

(A.50)
1 − qzn+ 1

2

1 − qzn−
1
2

∫

k∈K′

2

n∏

j=1

|Pf j(k · x)|sjdk

is invariant under the action z 7→ rnz.

Proof. Without loss of generality, we can assume x ∈ Y ′ and has the form x = p · Πλ(x)

with p ∈ P2 as in Lemma A.15. Let P ′
2 be the subgroup of P2 where the middle 4×4 block

is the identity, a change of variable shows that the integral in (A.50) remains the same

with x replaced by p · x with p ∈ P ′
2. Since P2 ⊂ P ′

2K
′
2, we only need to consider the case

x = Πλ(x), which we now assume.

Let x̃ be the middle 4 × 4 block of x. Then clearly |Pf j(k · x)| = |Pf j(x)| when j 6= n,

and |Pfn(k · x)| = |Pfn−1(x)||Pf(k · x̃)|. Thus (A.50) equals:

1 − qzn+ 1
2

1 − qzn−
1
2

(
n−2∏

j=1

|Pf j(x)|sj

)
|Pfn−1(x)|sn−1+sn

∫

K′

2

|Pf(k · x̃)|sndk

=
1 − qzn+ 1

2

1 − qzn−
1
2

(
n−2∏

j=1

|Pf j(x)|sj

)
|Pfn−1(x)|sn−1+snζ(x̃; sn).

From (A.6), the ordered set (s1, . . . , sn−2, sn−1 + sn) is invariant under zn 7→ −zn. Also

from (A.6), sn = −zn − 3
2
, thus our Lemma follows from Corollary A.20. �

From the Lemma, after multiplying by 1−qzn+1
2

1−qzn−
1
2

the inner integral in (A.49) is invariant

under z 7→ rnz. Thus we get

Lemma A.22. The expression 1−qzn+1
2

1−qzn−
1
2
ζ(x; s) is invariant under z 7→ rnz.

A.2.3. Proof of Proposition A.13.

Proof. Since rn reflects the long positive roots to long positive roots, it leaves Γ1(z) in-

variant. The reflection rn also fixes all positive short roots except when α = ǫn, in which
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case:

1 − q
1
2 e−α

1 − q−
1
2 e−α

=
1 − qzn+ 1

2

1 − qzn−
1
2

.

Thus from Lemma A.22, Γ2(z)ζ(x; s) is invariant under rn. Thus ζ̃(x; z) is invariant under

rn.

Since σi maps the short positive roots to short positive roots, it leaves Γ2(z) invariant.

It also acts as a permutation of S+L\αi where αi = ǫi − ǫi+1. Thus

Γ1(z)

(
1 − qe−αi

1 − q−1e−αi

)−1

is invariant under σi. Since

1 − qe−αi

1 − q−1e−αi
=

1 − qzi−zi+1+1

1 − qzi−zi+1−1
,

from Lemma A.17, we see Γ1(z)ζ(x; s) is invariant under σi. Thus ζ̃(x; z) is invariant under

σi.

As the Weyl group W2 is generated by σi and rn, we get ζ̃(x; z) is invariant under W2. �

Appendix B. Unramified Whittaker function on metaplectic group

Denote an element in S̃pn by (g, ζ) with g ∈ Spn and ζ = ±1. Recall the functions in

C∞
K2

(N2\S̃pn, θ−1
2,τ ) are genuine; namely for f(g, ζ) in this space, we have f(g, ζ) = ζf(g, 1)

Recall that the character θ2,τ is defined on N2 as follows:

(B.1) θ2,τ (u, ζ) = ζψ(u12 + u2,3 + . . .+ τun,n+1)

where ψ is an additive character trivial on O but nontrivial on π−1O.

We are interested in computing the spherical functions in C∞
K2

(N2\S̃pn, θ−1
2,τ ). Let T

denote the diagonal matrix diag[τn, τn−1, . . . , 1, 1, τ−1 . . . τ−n] ∈ K2. Let τθ2 denote the

character on N2 given by
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τθ2(u, ζ) = ζψ(τu12 + τu2,3 + . . .+ τun,n+1).

Then we have an isomorphism of H(S̃pn, K2)−modules:

(B.2) SK2(N2\S̃pn, θ−1
2,τ ) → SK2(N2\S̃pn, τθ−1

2 )

given by f 7→ fT where fT ∈ SK2(N2\S̃pn, τθ−1
2 ) is given by fT (g) = f(T gT −1).

We first exhibit spherical functions in SK2(N2\S̃pn, τθ−1
2 ).

Let λ ∈ Λ+
n , and let Π̃λ be the diagonal matrix

diag[πλ1 , . . . , πλn , π−λn , . . . , π−λ1 ].

It is well known that S̃pn
rel

= ∪λ∈Λ+
n
N2(Π̃

λ, 1)K2 as a disjoint union.

Let χ = χz be an unramified character on the group A2 of diagonal matrices given by

(B.3) χ(Π̃λ) =
n∏

i=1

αλi

i =
n∏

i=1

qziλi .

This character extends to a genuine character χ̃ of Ã2 the double cover of A2:

(B.4) χ̃(a, ζ) = χ(a)ζγψτ
(a)−1, a ∈ A2.

Here ψτ is the character ψ composed with multiplication by τ and γψτ
is a fourth root of

unity defined by the equation following (1.5) in [BFH]. The unramified Whittaker function

Wχ̃(g) in the principal series representation I(χ̃) will be normalized so that Wχ̃(12n, 1) = 1

and will satisfy Wχ̃(g) = Wwχ̃(g) for all w ∈ W2, where wχ̃(a) = χ̃(w̃−1aw̃), with w̃ being

the inverse image of w in S̃pn.
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The proof in [BFH] shows Wχ̃(Π̃
λ, 1) equals

γψτ
(Π̃λ)−1δ

1
2
2 (Π̃λ)

∑

w∈W2

w

(
n∏

i=1

α−λi

i

1 − q−1α2
i

(1 + (p, p)q−
1
2αi)(1 − α2

i )

∏

i>j

1

(1 − αiαj)(1 − αjα
−1
i )

)
.

Here (p, p) is a Hilbert symbol taking value ±1 and δ2 is the modulus function of the

Borel subgroup of N2. We rewrite above formula in terms of Macdonald polynomial:

Theorem B.1. For z = (z1, . . . , zn) in Cn, let χ and χ̃ be defined as in (B.3) and (B.4),

then

(B.5) Ψ2
z(Π̃

λ, 1) = Wχ̃(Π̃
λ, 1) = Vλ(t

II)γψτ
(Π̃λ)−1δ

1
2
2 (Π̃λ)QtII

λ (z)

is a spherical function in C∞
K2

(N2\S̃pn, τθ−1
2 ). Here when β ∈ S, tIIβ = 0; when β is a short

root in S, (tII2β)
1
2 = −(p, p)q−

1
2 .

As a consequence of the isomorphism (B.2) and the fact that Π̃λ is stabilized under

conjugation by T we get that {Ψ2
z} also serve as spherical functions in SK2(N2\S̃pn, θ−1

2,τ ).

It is well known in this case that the map f 7→ f̃(z) from H(S̃pn, K2) to C[qz̄, q−z̄]W2

is onto. Since tIIβ = 0 for all β ∈ S, from the definition of Vλ(t
II) in equations (3.8) and

(10.1) of [Mc1] we have

Vλ(t
II) = 1 ∀λ ∈ Λ+

n .

Note that it is clear that the volume of N2\N2(Π̃
λ, 1)K2 equals δ−1

2 (Π̃λ).

Appendix C. Proof of T (Ψ1
z) = c(z)T (Ψ2

z)

C.1. Definition of the integral in (6.1) when F = Ψ1
z. The integral in (6.1) is clearly

well defined if F is compactly supported. For Ψz the spherical function described in

Theorem A.2, through the identification Spn,K\Sp2n
∼= X, Ψ1

z(g) = Ψz(g
−1TgJ) defines
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a spherical function on Spn,K\Sp2n. The integral (6.1) still can be defined for F = Ψ1
z,

though the definition is more subtle.

Denote by πz the induced representation I(χ−ν(z)). Then πz is induced from an unram-

ified representation τz of GL2n. Thus a model of πz is given by a space of functions of two

variables φ(g, h) with g ∈ Sp2n, h ∈ GL2n satisfying:

1. φ(


 h1

h∗1


 g, h) = φ(g, hh1),

2. φ(g, h) as a function of g is compactly supported over P\Sp2n.

3. For fixed g, φ(g, h) is a vector in τz with model in IndGL2n

GLn,K
1. Here GLn,K is thought of

as a subgroup of GL2n and GL2n embeds in Sp2n as the Levi factor of the Siegel parabolic.

Let VE be the subgroup of elements u ∈ V such that Eu = uE, concretely

VE =






12n v

12n


 , v =


X τY

Y X


 |X,Y ∈ Sn



 .

Lemma C.1. There is an unramified vector φz(g, h) in the space of πz such that

(C.1) Ψ1
z(ǫ0g) = Ψz(g

−1EgJ) =

∫

v∈VE

φz(J2nǫ0vg, 12n)dv,

and the above integral converges absolutely.

Proof. Use Lg(φ) to denote the above integral with φz replaced by φ a vector in space of

πz. We let φ′
g(g

′) = φ(g′g, 12n) where g′ ∈ Spn,K . Then φ′
g is a left-invariant under the

Levi subgroup GLn,K of Spn,K .

We remark that if u ∈ VE, then ǫ0u
−1ǫ−1

0 Tǫ0uǫ
−1
0 = T . Thus we have that ǫ0VEǫ

−1
0 is

the unipotent subgroup for the parabolic subgroup in Spn,K with Levi subgroup GLn,K .

Thus Lǫ−1
0

is an intertwining operator on πz considered as a representation of Spn,K ; it

satisfies Lǫ−1
0

(πz(h)φ) = Lǫ−1
0

(φ). Thus Lǫ−1
0

is a Spn,K invariant linear form on πz. By
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work of Zhang in [Zha], such a form is unique up to multiple. Proposition A.5 implies the

Lemma. �

With the previous Lemma, the precise definition of integral (6.1) in the case F = Ψ1
z is

through a series of compactly supported integrals, as in Lemmas 8.3 and 8.4 of [MR1].

C.2. The image of TΦ0(Ψ
1
z).

Proposition C.2. There is a function c(z) on Cn such that TΦ0(Ψ
1
z) = c(z)Ψ2

z for z ∈ Cn.

Proof. In the definition of TΦ(Ψ1
z) in [MR1] we can replace φz by any vector φ in πz. Let

Fφ be the function on Spn,K\Sp2n such that Fφ(ǫ0g) is given by the integral in (C.1) with

φz replaced by φ. Through the process of iterated integration in [MR1], we can define a

linear map T on the space of πz ⊗ ωψ−1 to functions on S̃pn.

It is shown in Lemma 6.3 that T is a map from πz ⊗ ωψ−1 to IndS̃pn

N2
θ−1
2,τ where θ2 is

defined in (B.1). Observe that S̃pn acts on πz ⊗ ωψ−1 through the embedding j of Spn in

Sp2n. Since πz(j(h))φz(j(g)) = φz(j(gh)) for g, h ∈ Spn, we get:

Lemma C.3. The map T is a S̃pn-module homomorphism from πz ⊗ ωψ−1 to IndS̃pn

N2
θ−1
2,τ .

Recall that N̂n+1 is defined by

N̂n+1 =








u ∗ ∗

12n ∗

u∗


 ∈ Sp2n|u ∈ Zn




.

Lemma C.4. Let u ∈ N̂n+1, then T (πz(u)φ ⊗ ωψ−1(u, 1)Φ) = T (φ ⊗ Φ)θ′(u), where for

u = (ui,j) ∈ N̂n+1

θ′(u) = ψ(−u1,2 − u2,3 − . . .− un−1,n).

Proof. We have that T (πz(u)φ⊗ ωψ−1(u, 1)Φ)(g, 1) is equal to
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∫

w∈U1
E
\N̂n+1

φ(ǫ0wj(g)u)θ4(w)ωψ−1(w)ωψ−1(g)ωψ−1(u)Φ(0).

Since j(g) normalizes N̂n+1, we write j(g)u = u′j(g) and change variables w 7→ wu′−1.

We obtain the above integral is

θ4(u
′−1)

∫

w∈U1
E
\N̂n+1

φ(ǫ0wj(g))θ4(w)ωψ−1(w)ωψ−1(g)Φ(0).

Since θ4(u
′−1) = θ′(u), we obtain the Lemma. �

The Jacquet module JN̂n+1,θ′(πz ⊗ ωψ−1) is considered in [GRS4]. It is a S̃pn module

defined in (1.6) of [GRS4]. The above lemma shows that T factors through to a map T

from JN̂n+1,θ′(πz ⊗ ωψ−1) to IndS̃pn

N2
θ−1
2,τ . It follows from Theorem B of [GRS4] that

JN̂n+1,θ′(πz ⊗ ωψ−1) ∼= π̄z,

where π̄z = I(χ̃) when αi = qzi in the definition (B.3) of χ̃.

Since there is a unique Whittaker model for π̄z, the map T is the unique (up to scalar

multiple) map of π̄z into IndS̃pn

N2
θ−1
2,τ . The function TΦ0(Ψ

1
z) is the image of the unramified

vector in πz ⊗ωψ−1 . The image is clearly an unramified vector in IndS̃pn

N2
θ−1
2,τ , thus TΦ0(Ψ

1
z)

corresponds to the image of the unramified vector of π̄z under the Whittaker map to

IndS̃pn

N2
θ−1
2,τ . This image is just the unramified Whittaker function of π̄z. Thus we have

proved that TΦ0(Ψ
1
z)(g) is a multiple of Ψ2

z(g). �
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