by Cesar Valverde

A Dissertation submitted to the
Graduate School-Newark
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
Graduate Program in Mathematical Sciences
written under the direction of
Professor Zhengyu Mao
and approved by

\qquad
\qquad
\qquad

Newark, New Jersey
May, 2012

Abstract

Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula

By Cesar Valverde

Dissertation Director:

Professor Zhengyu Mao

In this thesis we obtain a geometric identity between Relative Trace Formula on the metaplectic group and the general linear group. As a consequence of the spectral analysis, we expect to obtain a relation between products of distinct Whittaker coefficients of a cuspidal automorphic representation on the metaplectic group and a non-split period of a related representation on the general linear group. This would generalize famous work of Kohnen and Waldspurger.

Acknowledgments

First, it is my pleasure to extend my gratitude to Prof. Zhengyu Mao not only for introducing me to topics foundational to this thesis, but also for his constant support and friendly advice.
I also wish to thank the staff at the Mathematics department at Rutgers-Newark for being always ready to help. I have learned a great deal of Mathematics from the faculty and from my fellow graduate students; to them, my heartfelt thanks.
Finally, I would like to thank my family for their continuous support and encouragement.

Contents

1. Introduction 1
1.1. Relative Trace Formula 2
1.2. Sketch of proof 6
2. Preliminaries 10
3. The trace identity between $\mathrm{GL}_{2 n}$ and $\mathrm{Sp}_{2 n}$ and an identity of periods 15
3.1. Comparison of orbits 15
3.2. Computation and comparison of the distributions. 18
3.3. Identity of periods 25
3.4. Convergence of the integrals. 37
4. Some global identities on $S p_{2 n}$ 44
4.1. Definition of $I_{1}(f)$ 44
4.2. Definition of $I_{2}(f)$ 46
4.3. Global identity 1: between $I_{1}(f)$ and $I_{2}(f)$ 47
4.4. Global identity 2: between $I_{1}(f)$ and $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)$ 52
4.5. Heisenberg representation and definition of $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ 56
4.6. Global identity 3: between $I_{2}(f)$ and $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ 57
4.7. Conclusion 61
5. Orbital integral decompositions 62
6. Comparison of orbital integrals 74
6.1. Comparison of $I_{w^{\prime} \mathbf{a}^{\prime}}(F, \Phi)$ and $J_{w^{\prime} \mathbf{a}^{\prime}}(\tilde{f})$. 74
6.2. Properties of $\Psi_{F, \Phi}$ and matching 77
7. Fundamental Lemma 81
7.1. Statement of the result 81
7.2. Unit element case 82
7.3. General Hecke element case 85
7.4. Preliminary results 87
7.5. Proof of Proposition 7.6 91
8. Proof of Theorem 1.1 93
Appendix A. Spherical functions on $S p_{n, K} \backslash S p_{2 n}$ 96
A.1. Computation of $\Psi_{z}\left(\Pi^{\lambda}\right)$ 102
A.2. Proof of Proposition A. 13 113
Appendix B. Unramified Whittaker function on metaplectic group 119
Appendix C. Proof of $T\left(\Psi_{z}^{1}\right)=c(z) T\left(\Psi_{z}^{2}\right)$ 121
C.1. Definition of the integral in (6.1) when $F=\Psi_{z}^{1}$ 121
C.2. The image of $T_{\Phi_{0}}\left(\Psi_{z}^{1}\right)$ 123
References 125

1. Introduction

Let F be a number field with ring of adeles A. Let G be a reductive group over F and let H be the subgroup of G fixed by an involutive automorphism of G.

Let π be a cuspidal automorphic representation of $G(A)$ and χ be a character of $H(A)$ trivial on $H(F)$. We consider the period integral on the space of π :

$$
\begin{equation*}
P_{(H, \chi)}(\phi)=\int_{H(F) \backslash H(A)} \phi(h) \chi(h) d h . \tag{1.1}
\end{equation*}
$$

If there exists ϕ in the space of π with $P_{(H, \chi)}(\phi) \neq 0$, then π is said to be $(H, \chi)-$ distinguished.

Such representations are of interest because they are expected to arise as functorial images of Langlands liftings. Moreover, the value of this period integral is expected to be related to special values of L-functions.

Let us explain one classical case of the relation between a period integral and a special value for an L-function. Let k be an even integer, let N be odd and square-free. Let f be a newform on $\Gamma_{0}(N)$ of weight $2 k$ and let g be the Hecke eigenform on $\Gamma_{0}^{+}(4 N)$ of weight $k+\frac{1}{2}$ associated to f via Shimura correspondence. Let m and n be fundamental discriminants. Kohnen has proved in [Koh] the following equality:

$$
\begin{equation*}
\overline{c(n)} c(m)=\frac{\langle g, g>}{<f, f>}(-1)^{k / 2} 2^{k} r_{k, N}(f ; n, m) \tag{1.2}
\end{equation*}
$$

here $c(m)$ is the m-th Fourier coefficient of g. The period integral $r_{k, N}$ is given by

$$
\sum_{Q=[a, b, c]} \omega_{n}(Q) \int_{C_{Q}} \frac{f(z)}{\left(a z^{2}+b z+c\right)^{k-1}} d z
$$

Here $Q=[a, b, c]$ runs over a set of $\Gamma_{0}(N)$ inequivalent integral binary quadratic forms of discriminant $|Q|=n m$ with $N \mid a, \omega_{n}(Q) \in\{-1,0,1\} . C_{Q}$ is the image of $a|z|^{2}+b \operatorname{Re} z+c=$ 0 in $\Gamma_{0}(N) \backslash H$.

On the other hand, in [Wa1] and [Wa2], Waldspurger has proved that

$$
\begin{equation*}
|c(m)|^{2} \sim m^{k-\frac{1}{2}} L_{f}\left(k, \chi_{m}\right) \tag{1.3}
\end{equation*}
$$

where $L_{f}\left(k, \chi_{m}\right)$ is the L-series attached to f twisted by the real character $\chi_{m}(n)=\left(\frac{m}{n}\right)$.
Combining equations (1.2) and (1.3), we obtain that the period integral $r_{k, N}(f ; m, m)$ is related to the central value of the L-series for f twisted by $\chi_{m}(n)$. This also follows from results of Waldspurger and Martin and Whitehouse ([MaWh]).
1.1. Relative Trace Formula. In order to study distinction, Jacquet introduced the Relative Trace Formula (see [J-L]). For $i=1,2$, let H_{i} be closed subgroups of G with χ_{i} global automorphic characters of $H_{i}(A)$ trivial on $H_{i}(F)$. For f a Schwartz function on $G(A)$, let $K_{f}(x, y)$ denote the kernel function for the regular representation $\rho(f)$ acting on $L^{2}(G(F) \backslash G(A))$.

We consider the following distribution:

$$
\begin{equation*}
I_{G}\left(f: H_{1}, \chi_{1} ; H_{2}, \chi_{2}\right)=\int_{H_{1}(F) \backslash H_{1}(A)} \int_{H_{2}(F) \backslash H_{2}(A)} K_{f}\left(h_{1}, h_{2}\right) \chi_{1}\left(h_{1}\right) \chi_{2}\left(h_{2}\right) d h_{2} d h_{1} . \tag{1.4}
\end{equation*}
$$

The kernel $K_{f}(x, y)$ has a 'geometric' expression of the form

$$
K_{f}(x, y)=\sum_{\gamma \in G(F)} f\left(x^{-1} \gamma y\right) .
$$

On the other hand, formally we have that the kernel for the right regular representation by f admits a decomposition where the cuspidal term is of the form

$$
\begin{equation*}
\sum_{\Pi} \sum_{\phi_{i}}\left(\rho(f) \phi_{i}\right)(x) \overline{\phi_{i}(y)} \tag{1.5}
\end{equation*}
$$

where the first summation is over all irreducible cuspidal representations of G and $\left\{\phi_{i}\right\}$ is an orthonormal basis for the space of Π.

We obtain that the distribution $I_{G}\left(f: H_{1}, \chi_{1} ; H_{2}, \chi_{2}\right)$ is equal to

$$
\begin{equation*}
\sum_{\Pi} \sum_{\phi_{i}} \int_{H_{1}(F) \backslash H_{1}(A)} \int_{H_{2}(F) \backslash H_{2}(A)}\left(\rho(f) \phi_{i}\right)\left(h_{1}\right) \chi_{1}\left(h_{1}\right) \overline{\phi_{i}\left(h_{2}\right)} \chi_{2}\left(h_{2}\right) d h_{1} d h_{2} \tag{1.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\Pi} \sum_{\phi_{i}} P_{\left(H_{1}, \chi_{1}\right)}\left(\rho(f) \phi_{i}\right) P_{\left(H_{2}, \chi_{2}\right)}\left(\overline{\phi_{i}}\right) . \tag{1.7}
\end{equation*}
$$

Suppose that $f=\otimes f_{v} \in \mathcal{S}(G(A))$, then for almost all places v, we have that $f_{v} \in$ $\mathcal{H}\left(G_{v}, K_{v}\right)$. Suppose that there exists a morphism between the L-groups of G^{\prime} and G. Then by Satake isomorphism, we have a map $\lambda_{v}: \mathcal{H}\left(G_{v}, K_{v}\right) \rightarrow \mathcal{H}\left(G_{v}^{\prime}, K_{v}^{\prime}\right)$ between the Hecke algebras. We define a set of maps $\left\{\epsilon_{v}: \mathcal{S}\left(G_{v}\right) \rightarrow \mathcal{S}\left(G_{v}^{\prime}\right)\right\}$ to be admissible if for almost all places v, we have $\epsilon_{v}=\lambda_{v}$. We say a relative trace identity

$$
I_{G}\left(f: H_{1}, \chi_{1}, H_{2}, \chi_{2}\right)=I_{G^{\prime}}\left(f^{\prime}: H_{1}^{\prime}, \chi_{1}^{\prime}, H_{2}^{\prime}, \chi_{2}^{\prime}\right)
$$

holds if there exists a set of admissible maps such that the above equality holds for $f^{\prime}=$ $\otimes \epsilon_{v}\left(f_{v}\right)$.

We see that an equality of geometric sides of the form:

$$
\begin{equation*}
I_{G}\left(f: H_{1}, \chi_{1} ; H_{2}, \chi_{2}\right)=I_{G^{\prime}}\left(f^{\prime}: H_{1}^{\prime}, \chi_{1}^{\prime} ; H_{2}^{\prime}, \chi_{2}^{\prime}\right) \tag{1.8}
\end{equation*}
$$

should lead to a relation between periods of the form (1.7).
We consider the following case. Let η be an irreducible, automorphic, cuspidal representation of $G L_{2 n}(A)$ with η self-dual. In this case, $L(s, \eta \otimes \eta)$ has a simple pole at $s=1$. We have that

$$
\begin{equation*}
L(s, \eta \otimes \eta)=L\left(s, \eta, s y m^{2}\right) L\left(s, \eta, \Lambda^{2}\right), \tag{1.9}
\end{equation*}
$$

and assume that $L\left(s, \eta, \Lambda^{2}\right)$ has a simple pole at $s=1$. In this case, η is a lift from the group $S O_{2 n+1}$.

Assume furthermore that $L(1 / 2, \eta) \neq 0$ and fix a nontrivial additive character ψ of $F \backslash A$. Then the 'backward lift' from η to a representation on $S O_{2 n+1}$ is lifted from the metaplectic group $\widetilde{S p_{2 n}}(A)$ via theta correspondence associated to ψ. This suggests, for appropriate f and \widetilde{f}, a relative trace identity of the form

$$
\begin{equation*}
I_{\mathrm{GL}_{2 n}}\left(f: \mathrm{GL}_{n} \times \mathrm{GL}_{n}, 1 ; N, \theta\right)=I_{\widetilde{\mathrm{S}}_{n}}\left(\widetilde{f}: N^{\prime}, \theta^{\prime-1} ; N^{\prime}, \theta^{\prime}\right) . \tag{1.10}
\end{equation*}
$$

where θ is the non-degenerate character of the maximal standard unipotent N of $G L_{2 n}$ defined by

$$
\begin{equation*}
\theta(n)=\psi\left(n_{1,2}+\ldots+n_{2 n-1,2 n}\right) \tag{1.11}
\end{equation*}
$$

and θ^{\prime} is the degenerate character of the maximal standard unipotent N^{\prime} of $S p_{n}$ given by

$$
\begin{equation*}
\theta^{\prime}(n)=\psi\left(n_{1,2}+\ldots+n_{n, n+1}\right) \tag{1.12}
\end{equation*}
$$

The equality of the geometric sides of equation (1.10) was proved by Mao and Rallis in [MR].

Now fix a non-square $\tau \in F^{\times}$and let K denote the quadratic extension of F given by τ. The map $a+b \tau \mapsto\left(\begin{array}{cc}a & b \tau \\ b & a\end{array}\right)$ induces an embedding of $G L_{n}(K)$ into $G L_{2 n}(F)$. We denote the image of this map by $G L_{(n, K)}(F)$. We define a degenerate character θ_{τ}^{\prime} on N^{\prime} by

$$
\begin{equation*}
\theta_{\tau}^{\prime}\left(n^{\prime}\right)=\psi\left(n_{1,2}^{\prime}+\ldots+n_{n-1, n}^{\prime}+\tau n_{n, n+1}^{\prime}\right) . \tag{1.13}
\end{equation*}
$$

The purpose of the present thesis is to obtain the following equality of geometric sides of relative trace formula:

Theorem 1.1. We have the relative trace identity

$$
\begin{equation*}
I_{G L_{2 n}}\left(f: G L_{(n, K)}, 1 ; N, \theta\right)=I_{\widetilde{S p_{n}}}\left(\tilde{f}: N^{\prime}, \theta_{\tau}^{\prime-1} ; N^{\prime}, \theta^{\prime}\right) \tag{1.14}
\end{equation*}
$$

This suggests, for a representation Π lifted from Π^{\prime} and for $\left\{\varphi_{\alpha}\right\}$ and $\left\{\widetilde{\varphi}_{\alpha}\right\}$ orthonormal bases of Π and Π^{\prime} respectively, the following identity:

$$
\begin{equation*}
\sum_{\varphi_{\alpha}} \mathcal{P}_{\tau}\left(\Pi(f)\left(\varphi_{\alpha}\right)\right) \overline{\mathcal{W}\left(\varphi_{\alpha}\right)}=\sum_{\widetilde{\varphi_{\alpha}}} \widetilde{\mathcal{W}}_{\tau}\left(\Pi^{\prime}(\widetilde{f})\left(\widetilde{\varphi}_{\alpha}\right)\right) \overline{\widetilde{\mathcal{W}}\left(\widetilde{\varphi}_{\alpha}\right)} \tag{1.15}
\end{equation*}
$$

where $\mathcal{W}, \widetilde{\mathcal{W}}$ and $\widetilde{\mathcal{W}}_{\tau}$ are Whittaker functionals and the 'non-split' period is given by

$$
\begin{equation*}
\mathcal{P}_{\tau}\left(\Pi(f) \varphi_{\alpha}\right)=\int_{C_{2 n}(A) G L_{n, K}(F) \backslash G L_{n, K}(A)}\left(\Pi(f) \varphi_{\alpha}\right)(h) d h \tag{1.16}
\end{equation*}
$$

where $C_{2 n}$ denotes the center of $G L_{2 n}$.
Equation 1.16 can be thought of as a generalization of equation (1.2). The work of Friedberg and Jacquet in [FJ] and of Friedberg and Bump in [BF] gives that

$$
\begin{equation*}
\mathcal{P}_{1}(\phi) \sim L(1 / 2, \pi) \operatorname{Res}_{s=1} L\left(s, \pi, \Lambda^{2}\right) W(\phi) \tag{1.17}
\end{equation*}
$$

where π is an automorphic cuspidal representation of G, ϕ is some cusp form in the space of π and $L\left(s, \pi, \Lambda^{2}\right)$ is the partial exterior square L function. By \sim, we mean equality up to local factors.

Combining equation (1.17) and equation (1.15) for $\tau=1$, we have:

$$
\begin{equation*}
\left|\widetilde{\mathcal{W}}\left(\widetilde{\varphi}_{\alpha}\right)\right|^{2}=L(1 / 2, \pi) \operatorname{Res}_{s=1} L\left(s, \pi, \Lambda^{2}\right)\left|\mathcal{W}\left(\varphi_{\alpha}\right)\right|^{2} \tag{1.18}
\end{equation*}
$$

This would generalize equation (1.3). From equations (1.18) and (1.15) one obtains

$$
\begin{equation*}
\left|\mathcal{P}_{\tau}\left(\varphi_{\alpha}\right)\right|^{2} \sim L(1 / 2, \pi) L\left(1 / 2, \pi \otimes \chi_{\tau}\right) \operatorname{Res}_{s=1} L\left(s, \pi, \Lambda^{2}\right)^{2}\left|\mathcal{W}\left(\varphi_{\alpha}\right)\right|^{2} \tag{1.19}
\end{equation*}
$$

where χ_{τ} is a quadratic character of idele class group A^{\times} / F^{\times}attached to the quadratic extension K. Thus we would recover an equation from work of Guo in [G] and upcoming work of Feigon, Whitehouse and Martin ([FWM]). In the case $n=1$, we would obtain results of Waldspurger and Martin and Whitehouse ([MaWh]).
1.2. Sketch of proof. Let us sketch the method of descent. Let τ be an irreducible, automorphic, cuspidal, self dual representation of $G L_{2 n}(A)$ with $L\left(s, \tau, \Lambda^{2}\right)$ having a pole at $s=1$ and with $L(1 / 2, \tau) \neq 0$. We construct the Eisenstein series $E\left(g, f_{\tau, s}^{\phi}\right)$ (precise
definition in equation (3.13)), it has a pole at $s=1$. We consider the residual Eisenstein series $E_{1}(g, \phi)=\operatorname{Res}_{s=1} E\left(g, f_{\tau, s}^{\phi}\right)$.

We consider the space $V_{\tau, k}$ spanned by Fourier-Jacobi type coefficients of the residual Eisenstein series, in other words, we consider the space $V_{\tau, k}$ spanned by functions $p_{k}(h)$ with

$$
p_{k}(h)=p_{k}(h, \phi)=\int_{N^{k}(F) \backslash N^{k}(A)} E_{1}(v h, \phi) \Theta_{\psi_{k}^{-1}}\left(j_{k}(v) h\right) \psi_{k}^{-1}(v) d v .
$$

Here $\Theta_{\psi_{k}^{-1}}$ is a Theta series and N^{k} is given by

$$
N^{(k)}=\left\{\left.n=\left(\begin{array}{ccccc}
z & u & * & * & * \tag{1.20}\\
& 1 & x & y & * \\
& & I_{2 k} & x^{\prime} & * \\
& & & 1 & u^{\prime} \\
& & & & z^{*}
\end{array}\right) \right\rvert\, z \in N_{2 n-(k+1)}\right\}
$$

The representation $\sigma_{k}(\tau)$ of $\widetilde{S p}_{k}$ is obtained by right traslation on the space $V_{\tau, k}$.
By ([GRS2, Main Theorem (global)]), this space is nonzero when $k=n$. To prove that $V_{\tau, k}=0$ for $k<n$, the authors make use of two observations. First, the $S p_{n} \times S p_{n}$ period of the residual Eisenstein series $E_{1}(g, \phi)$ is related to the $G L_{n} \times G L_{n}$ period of ϕ, this is [GRS1, Theorem 2]. In particular, because of our assumptions on τ, this period is nonzero. On the other hand, in [GRS1, Section 3] it is proved that the existence of non-trivial $S p_{n} \times S p_{n}$ period implies that $V_{\tau, k}$ is zero.

In the present case, we prove in Theorem 3.10 that the residual Eisenstein series $E_{1}(g, \phi)$ has $S p_{(n, K)}$ period which is related to the $G L_{(n, K)}$ period of ϕ. Reflecting this relation we prove in Section 3, through a matching of relevant orbits, the equation:

$$
\begin{equation*}
I_{G L_{2 n}}\left(f: G L_{n, K}, 1 ; N_{1}, \theta\right)=I_{S p_{2 n}}\left(f^{\prime}: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right) . \tag{1.21}
\end{equation*}
$$

It is possible for the residual Eisenstein series to have nontrivial degenerate Whittaker model and Fourier-Jacobi model. The next identity reflects this fact:

$$
\begin{equation*}
I_{S p_{2 n}}\left(f^{\prime}: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)=I_{S p_{2 n}}\left(f^{\prime \prime}: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right) \tag{1.22}
\end{equation*}
$$

Here $\Theta_{\psi^{-1}}^{\Phi}$ is a Theta series defined below by equation (4.37). This is proved using global methods of Ginzburg, Soudry and Rallis, as applied by Mao and Rallis in [MR]. This is carried out in Section 4. The main obstacle is to prove that $S p_{n, K}$-invariant functionals and $\left(N^{(k)}, \chi_{k, \alpha}\right)$-eigenfunctionals are disjoint. For $S p_{n} \times S p_{n}$ this is in [GRS1, Section 3.2]; it is Theorems 4.2 and 4.4 in the present paper.

Finally, the standard method of comparing orbital integrals proves the identity

$$
\begin{equation*}
I_{S p_{2 n}}\left(f^{\prime \prime}: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)=I_{\widetilde{S p_{n}}}\left(\tilde{f}: N^{\prime}, \theta_{\tau}^{\prime-1} ; N^{\prime}, \theta^{\prime}\right) \tag{1.23}
\end{equation*}
$$

In Section 5 we compute the orbital integrals arising from equation (1.23); in Section 6, we reduce their comparison to a suitable fundamental lemma.

In Section 7, we prove the fundamental lemma. The unit Hecke element case is done by a calculation, while the general Hecke element case follows from a Plancherel formula, as in [MR1]. This argument is detailed in Section 7. Section 8 proves the main theorem.

The Placherel formula needed in Section 7 follows from an explicit calculation of spherical functions on $S p_{n, K} \backslash S p_{2 n}$ and on $N_{2} \backslash \widetilde{S p_{n}}$. The first calculation is done in Appendix A, more general results are obtained in [Sak]. The calculation for the second case is done
in Appendix B and follows $[\mathrm{BFH}]$. Appendix C defines the orbital integral of spherical functions on $S p_{n, K} \backslash S p_{2 n}$ and proves that this corresponds, up to constants, to spherical functions on $N_{2} \backslash \widetilde{S p_{n}}$.

2. Preliminaries

- F is a number field with ring of adeles A, the completion of F at a local place v is denoted F_{v}.
- $\tau \in F \backslash F^{2}$.
- K is the quadratic extension of F given by τ.
- T is the square block diagonal matrix of size $2 n$ with diagonal consisting of the 2×2 matrices $\left(\begin{array}{ll} & \tau \\ 1 & \end{array}\right)$.
- \mathbf{T} is the square block diagonal matrix of size $4 n$ with diagonal consisting of the 2×2 matrices $\left(\begin{array}{ll} & \tau \\ 1 & \end{array}\right)$.
- τ_{n} (resp. 1_{n}) denote the $n \times n$ diagonal matrices consisting of τ (resp. 1) on the diagonal.

- $\mathrm{J}=\left(\begin{array}{ll} & -\sigma \\ \sigma & \end{array}\right)$
- $\mathrm{Sp}_{n}=\left\{\left.g \in G L_{2 n}\right|^{t} g J g=J\right\}$
- $\mathrm{GSp}_{n}=\left\{g \in G L_{2 n} \mid{ }^{t} g J g=\lambda(g) J ; \lambda(g) \in F^{\times}\right\}$
- ψ is either a nontrivial additive character of A / F or of F_{v}.
- $\mathrm{GL}_{n, K}=\left\{g \in G L_{2 n} \mid g^{-1} T g=T\right\}$
- $\mathrm{N}_{1}=$ standard maximal unipotent for $G L_{2 n}$
- $\mathrm{A}_{1}=$ set of diagonal matrices in $G L_{2 n}$
- $\mathrm{W}_{1}=$ Weyl group corresponding to A_{1}
- $\mathrm{N}_{1, g}=\left\{n \in N_{1} \mid n^{-1} g n=g\right\}$
- $\mathrm{N}_{1, \gamma}^{\prime}=\gamma^{-1} H_{1} \gamma \cap N_{1}$
- θ_{1} is a character of N_{1} with $\theta_{1}(n)=\psi\left(n_{1,2}+\ldots+n_{2 n-1,2 n}\right)$
- $\mathrm{Sp}_{n, K}=\left\{g \in S p_{2 n} \mid g^{-1} T g=T\right\}$
- $\mathrm{N}_{3}=$ standard maximal unipotent for $S p_{2 n}$
- $\mathrm{A}_{3}=$ set of diagonal matrices in $S p_{2 n}$
- $\mathrm{W}_{3}=$ Weyl group corresponding to A_{3}
- $\mathrm{P}_{3}=$ Maximal Siegel parabolic in $S p_{2 n}$
- $\mathrm{V}_{3}=$ Siegel unipotent radical for $S p_{2 n}$
- $\mathrm{K}_{3}=$ Maximal compact subgroup of $S p_{2 n}$
- $\mathrm{K}_{S p_{n, K}}=K_{3} \cap S p_{n, K}$
- $\mathrm{V}_{S p_{n, K}}=V_{3} \cap S p_{n, K}$
- $\mathrm{N}_{3, g}=\left\{n^{\prime} \in N_{3} \mid n^{\prime-1} g n^{\prime}=g\right\}$
- $\mathrm{N}_{3, \gamma}^{\prime}:=\gamma^{-1} H_{3} \gamma \cap N_{3}$
- θ_{3} is a (degenerate) character of N_{3} with $\theta_{3}(n)=\psi\left(n_{1,2}+\ldots+n_{2 n-1,2 n}\right)$
- $\mathrm{g}^{*}=\sigma^{t} g^{-1} \sigma$
- S_{n} is the set of matrices $g \in \mathrm{GL}_{n}$ satisfying $\sigma_{n} g$ is a symmetric matrix.
- For $g \in G L_{n}$, the map $i_{1}: G L_{n} \rightarrow S p_{n}$ is given by $i_{1}(g)=\left(\begin{array}{ll}g & \\ & g *\end{array}\right)$.
- For $g \in G L_{n}$, the map $i_{\tau}: G L_{n} \rightarrow G S p_{n}$ is given by $i_{\tau}(g)=\left(\begin{array}{ll}g & \\ & \\ & \tau g *\end{array}\right)$.

Let F be a number field with ring of adeles A and let τ a nonsquare in F. Denote by K the quadratic extension $F[\sqrt{\tau}]$, then an element in K embeds in $G L_{2}(F)$ via $a+$ $b \sqrt{\tau} \mapsto\left(\begin{array}{cc}a & b \tau \\ b & a\end{array}\right)$, and this naturally extends to an embedding of $G L_{n}(K)$ into $G L_{2 n}(F)$. We denote the image of $G L_{n}(K)$ in $G L_{2 n}(F)$ under this embedding by $G L_{(n, K)}(F)$ and remark that if we denote by T the nonsplit torus

We define an injection $j: S p_{n} \rightarrow S p_{2 n}$ by $j(g)=\left(\begin{array}{lll}1_{n} & & \\ & g & \\ & & 1_{n}\end{array}\right)$
$G_{2}=\widetilde{S p_{n}}$
$N_{2}=$ maximal unipotent for $S p_{n}$
$N_{2, w^{\prime} a^{\prime}}=\left(w^{\prime} a^{\prime}\right)^{-1} N_{2}\left(w^{\prime} a^{\prime}\right) \cap N_{2}$
$N_{2, w^{\prime} a^{\prime}}^{\prime}:=\left(w^{\prime} a^{\prime}\right) N_{2}\left(w^{\prime} a^{\prime}\right)^{-1} \cap N_{2}$
$I_{2}=I_{S p_{n, K}}\left(\widetilde{f}: N_{2}, \theta_{2}^{-1} ; N_{2}, \theta_{2}\right)$
$U_{w a}^{1}$ is defined by equation (5.15)
$U_{w a}^{2}$ is defined by equation (5.17)
$\theta_{2}(n)=\psi\left(n_{1,2}+\ldots+n_{n-1, n}+n_{n, n+1}\right)$ for $n \in N_{2}$
$\theta_{2, \tau}(n)=\psi\left(n_{1,2}+\ldots+n_{n-1, n}+\tau n_{n, n+1}\right)$ for $n \in N_{2}$
2.0.1. Characters. $-\psi$ is either a nontrivial additive character of A / k or of k_{v}.

- θ_{1} is a character of N_{1} with

$$
\theta_{1}(n)=\psi\left(n_{1,2}+\ldots+n_{2 n-1,2 n}\right) .
$$

- θ_{2} is a character of N_{2} with

$$
\theta_{2}(n)=\psi\left(n_{1,2}+\ldots+n_{n-1, n}+n_{n, n+1}\right)
$$

- θ_{3} is a character of N_{3} with

$$
\theta_{3}(n)=\psi\left(n_{1,2}+\ldots+n_{2 n-1,2 n}\right)
$$

- θ_{4} is a character of N_{3} defined by (4.38).
2.0.2. Weil representation and Theta function. Recall for a fixed ψ, the Weil representation is defined for the metaplectic group $\widetilde{\mathrm{Sp}_{n}}$. We use $\gamma(*, \psi)$ to denote the Weil constant, and ω_{ψ} to denote the Weil representation. We describe explicitly a model of the Weil representation.

Let $\Phi \in \mathcal{S}\left(A^{n}\right)$. Then

$$
\begin{align*}
\omega_{\psi}(\widetilde{m(g)}) \Phi(X) & =|\operatorname{det} g|^{1 / 2} \frac{\gamma(1, \psi)}{\gamma(\operatorname{det} g, \psi)} \Phi(X g), g \in \mathrm{GL}_{n} \tag{2.1}\\
\omega_{\psi}\left(\binom{1_{n}}{1_{n}}, 1\right) \Phi(X) & =\psi\left(\operatorname{tr}\left(X^{t} V \sigma_{n} X\right)\right) \Phi(X), V \in \mathcal{S}_{n} . \tag{2.2}\\
\omega_{\psi}\left(\widetilde{J_{n}}\right) \Phi(X) & =\gamma(1, \psi)^{-n} \widehat{\Phi}(X), \tag{2.3}
\end{align*}
$$

where

$$
\widehat{\Phi}(X)=\int_{A^{n}} \psi\left(\operatorname{tr}\left(X^{t} \sigma_{n} Y\right)\right) \Phi(Y) d Y
$$

The above describes the action of the metaplectic group on $\mathcal{S}\left(A^{n}\right)$ under the Weil representation.

We use $\Theta_{\psi^{-1}}^{\Phi}$ to denote the Theta function defined by (4.37).

- The space $\mathcal{S}\left(G\left(F_{v}\right)\right)$ of Schwartz functions on a reductive group G over a local field F_{v} at a non-archimedean place v consists of smooth functions of local support; at an archimedean place, we use the definition of Casselman.

3. The trace identity Between $\mathrm{GL}_{2 n}$ And $\mathrm{Sp}_{2 n}$ and an identity of periods

We have a local correspondence of Schwartz functions on $S p_{2 n}\left(F_{v}\right)$ and $G L_{2 n}\left(F_{v}\right)$ given by $f_{v} \in \mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right) \mapsto f_{v}^{\prime} \in \mathcal{S}\left(G L_{2 n}\left(F_{v}\right)\right)$ where f_{v}^{\prime} is given by

$$
\begin{equation*}
f_{v}^{\prime}(g)=\int_{u \in V_{3}\left(F_{v}\right)} \int_{k \in K_{3} \cap S p_{n, K}\left(F_{v}\right)} f_{v}\left(k i_{1}(g) u\right)|\operatorname{det}(g)|_{v}^{n+1} d k d u \tag{3.1}
\end{equation*}
$$

where K_{3} and V_{3} are the maximal compact subgroup of $S p_{2 n}$ and the unipotent radical for the maximal Siegel parabolic in $S p_{2 n}$ respectively.

From [JR], one expects a relation between the inner period on a Levi subgroup and the outer period on the group. In our case, the embedding of $G L_{2 n}$ as the Levi subgroup of the Siegel parabolic of $S p_{2 n}$ suggests the following relative trace formula:

Theorem 3.1. Let $f=\otimes f_{v} \in \mathcal{S}\left(S p_{2 n}(A)\right)$ and $f^{\prime}=\otimes f_{v}^{\prime} \in \mathcal{S}\left(G L_{2 n}(A)\right)$ where for all v, f_{v} and f_{v}^{\prime} are related by correspondence (3.1) then

$$
\begin{equation*}
I_{G L_{2 n}}\left(f: G L_{(n, K)}, 1 ; N_{1}, \theta_{1}\right)=I_{S p_{2 n}}\left(f^{\prime}: S p_{(n, K)}, 1 ; N_{3}, \theta_{3}\right) . \tag{3.2}
\end{equation*}
$$

Moreover, at a p-adic place v, the map $f_{v} \mapsto f_{v}^{\prime}$ restricts to a Hecke algebra homomorphism.
3.1. Comparison of orbits. We introduce a space isomorphic to $G L_{n, K} \backslash G L_{2 n}$ (resp. $S p_{n, K} \backslash S p_{2 n}$), namely, we define an involution θ on $G L_{2 n}\left(\right.$ resp. $\left.S p_{2 n}\right)$ given by $\theta(g)=$ $T g T^{-1}$, then the space $Y_{1}=\left\{g^{-1} \theta(g) T \mid g \in G L_{2 n}\right\}$ (resp. $Y_{3}=\left\{g^{-1} \theta(g) T \mid g \in S p_{2 n}\right\}$) satisfies $Y_{1} \cong G L_{n, K} \backslash G L_{2 n}$ (resp. $Y_{3} \cong S p_{n, K} \backslash S p_{2 n}$). We exhibit a Bruhat decomposition for elements in these spaces. We first state a well known lemma:

Lemma 3.2. Let U be an algebraic connected unipotent group over F. Let ϑ be an automorphism of $U(F)$ with $\vartheta^{2}=1$. If $x \in U(F)$ verifies $x \vartheta(x)=1$ then there is $u \in U$ with $x=\vartheta\left(u^{-1}\right) u$.

Lemma 3.3. If $y=g^{-1} T g \in Y_{1}$ (resp. Y_{3}), then y admits the decomposition $y=n^{-1}$ wan, with $n \in N_{1}$ (resp. N_{3}), $w \in W_{1}$ (resp. W_{3}), $a \in A_{1}$ (resp. A_{3})

Proof. By the Bruhat decomposition we write $y=n_{1}^{-1} w a n_{2}$. Since $\tau y^{-1}=y$, we have that $\tau n_{2}^{-1}(w a)^{-1} n_{1}=n_{1}^{-1}(w a) n_{2}$, this implies that $(w a)^{2}=\tau$, so that we get $n_{2}^{-1} w a n_{1}=$ n_{1}^{-1} wan $_{2}$, i.e. $n_{2} n_{1}^{-1}$ wan $_{2} n_{1}^{-1}=w a$. Write $n=n_{2} n_{1}^{-1}$, then $y=n_{2}^{-1} n w a n_{2}$ so that we may assume $y=n w a$ with $n w a n=w a$.

For any $w \in W$, there exists a subgroup $N_{w} \subset N$, namely $N_{w}=w N w^{-1} \cap N$, with the property that $w^{-1} N_{w} w=N_{w}$. Thus if $y=n w a$ with nwan $=w a$ then $n \in N_{w}$ and $n^{-1}(w a)^{-1} n^{-1} w a=1$. We define an involution ϑ on N_{w} given by $\vartheta(n):=(w a)^{-1} n w a$. We have that $n^{-1} \vartheta\left(n^{-1}\right)=1$ so by Lemma 3.2, there exists $u \in N_{w}$ with $n^{-1}=\vartheta\left(u^{-1}\right) u$, i.e. $n^{-1}=(w a)^{-1} u^{-1} w a u$ so that $y=u^{-1} \frac{w a}{\tau} u(w a)(w a)=u^{-1}(w a) u$ as desired.

The right action of N_{1} on $G L_{2 n}$ (resp. N_{3} on $S p_{2 n}$), composed with the map $G L_{2 n} \rightarrow Y_{1}$ (resp. $S p_{2 n} \rightarrow Y_{3}$) gives rise to an action of N_{1} on Y_{1} (resp. N_{3} on Y_{3}) by conjugation. Upon observing that if $g \in S p_{2 n}$ then ${ }^{t}\left(g^{-1} T g\right) J\left(g^{-1} T g\right)=\tau J$, we get the following:

Corollary 3.4. The orbits of $N_{1}\left(\right.$ resp. $\left.N_{3}\right)$ in Y_{1} (resp. Y_{3}) admit representatives of the form wa with $(w a)^{2}=\tau\left(\right.$ resp. $(w a)^{2}=\tau$ and $\left.{ }^{t}(w a) J(w a)=\tau J\right)$

Definition 3.5. We call wa (resp. $w^{\prime} a^{\prime}$) relevant if θ_{1} (resp. θ_{3}) is trivial on $N_{1, w a}$ (resp. $N_{3, w^{\prime} a^{\prime}}$).

We remark that if $g^{-1} T g=w^{\prime} a^{\prime}$ then $w^{\prime} a^{\prime}$ is relevant if and only if θ_{3} is trivial on the set of $n \in N_{3}$ with $n^{-1} w^{\prime} a^{\prime} n=w^{\prime} a^{\prime}$, this condition is equivalent to $n^{-1} g^{-1} T g n=g^{-1} T g$ which is equivalent to $g n g^{-1} \in S p_{n, K}$ and equivalent to $n \in g^{-1} S p_{n, K} g \cap N_{3}=N_{3, g}^{\prime}$. Therefore we say that $g_{3} \in S p_{n, K} \backslash S p_{2 n} / N_{3}$ is relevant if θ_{3} is trivial on $N_{3, g_{3}}^{\prime}$. A similar computation leads us to define $g_{1} \in G L_{n, K} \backslash G L_{2 n} / N_{1}$ to be relevant if θ_{1} is trivial on $N_{1, g_{1}}^{\prime}$.

Lemma 3.6. The element $w^{\prime} a^{\prime}$ with $w^{\prime} \in W_{3}$ and a^{\prime} a diagonal matrix of size $4 n$ satisfying $\left(w^{\prime} a^{\prime}\right)^{2}=\tau$ and ${ }^{t}\left(w^{\prime} a^{\prime}\right) J\left(w^{\prime} a^{\prime}\right)=\tau J$ is relevant if and only if $w^{\prime} a^{\prime}=i_{\tau}(w a)$ where $w \in W_{1}$, a is a diagonal matrix of size $2 n,(w a)^{2}=\tau$ and $w a$ is relevant.

Proof. It's easy to check that $i_{\tau}(w a)$ is relevant if and only if $w a$ is; we show that for $w^{\prime} a^{\prime}$ not of the desired form, we can find a unipotent n^{\prime} with the property that $n^{\prime-1} w^{\prime} a^{\prime} n^{\prime}=w^{\prime} a^{\prime}$ and $\theta_{3}\left(n^{\prime}\right) \neq 1$. Let us write $w^{\prime}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ where A, B, C, D represent $2 n \times 2 n$ blocks; clearly, if B is zero, so is C and $w^{\prime} a^{\prime}$ is of the desired form, so let us assume that B is nonzero. B is anti-symmetric with respect to the anti-diagonal, so let i be the smallest positive integer such that $w^{\prime}(i) \geq 4 n+2-i$, we consider the root $X_{i-1, i}$.

Claim 1. The element $w^{\prime} a^{\prime}$ cannot map $X_{i-1, i}$ to a positive non-simple root.

Suppose $w^{\prime} a^{\prime}$ maps $X_{i-1, i}$ to a positive non-simple root. We consider the matrix n^{\prime} with 1 on the diagonal and with entries $n_{l, k}^{\prime}$ given by x if $(l, k)=(i-1, i), x$ multiplied by the elements in the $\sigma(i-1)$ row and the $\sigma(i)$ column of $w^{\prime} a^{\prime}$ divided by τ if $(l, k)=(\sigma(i-1), \sigma(i))$, $-x$ if $(l, k)=(4 n-i+1,4 n-i+2)$ and $-x$ multiplied by the elements in the $\sigma(4 n-i+1)$ row and the $\sigma(4 n-i+2)$ column divided by τ if $(l, k)=(\sigma(4 n-i+1), \sigma(4 n+2-i))$. One has that $n^{\prime} \in S p_{2 n}$ with $n^{\prime-1} w^{\prime} a^{\prime} n^{\prime}=w^{\prime} a^{\prime}$, and $\theta_{3}\left(n^{\prime}\right) \neq 1$ contradicting relevancy and proving our claim.

Claim 2. $w^{\prime}(j) \neq 4 n+1-j \forall j$.

We let $\alpha=w^{\prime} a^{\prime}$ and assume $w^{\prime}(j)=4 n+1-j$. The $(j, 4 n+1-j)$ coordinate of ${ }^{t} \alpha J \alpha=\tau J$ is given by $\tau J_{j, 4 n+1-j}=-\tau$. On the other hand, we have that $\alpha_{4 n+1-j, j} J_{4 n+1-j, j} \alpha_{j, 4 n+1-j}=$
τ, this is absurd and proves our claim.

Claim 3. $w^{\prime}(i)=4 n+2-i, w^{\prime}(i-1)=4 n+1-i$.

By minimality of i, we have that $w^{\prime}(i-1) \leq 4 n+1-(i-1)$. By claim 2, we may assume $w^{\prime}(i-1) \leq 4 n-i+1$. On the other hand, Claim 1 implies that $w^{\prime}(i-1) \geq w^{\prime}(i)-1 \geq$ $4 n-i+1$, thus $w^{\prime}(i-1)=4 n-i+1$ and using $w^{\prime}(i-1)=w^{\prime}(i)-1$, we have that $w^{\prime}(i)=4 n-i+2$ and our claim is proved.

Claim 4. An element $w^{\prime} a^{\prime}$ as before with $\left(w^{\prime} a^{\prime}\right)^{2}=\tau,{ }^{t}\left(w^{\prime} a^{\prime}\right) J\left(w^{\prime} a^{\prime}\right)=\tau J$ and w^{\prime} satisfying Claim 3 is nonrelevant.

To prove Claim 4 we are reduced to considering the case $\beta=\left(\begin{array}{lll} & & \\ & & \\ & & \\ 1 / b & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \end{array}\right.$
In this case the we consider $n=\left(\begin{array}{cccc}1 & x & & \\ & 1 & & \\ & & 1 & -x \\ & & & \\ & & \end{array}\right)$. We have that n stabilizes β through conjugation and that n has a nontrivial character action, contradicting the relevancy of β.
Therefore, if $w^{\prime} a^{\prime}$ is relevant with $w^{\prime}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, then $B=C=0$. This proves that $w^{\prime} a^{\prime}$ is of the form $w^{\prime} a^{\prime}=i_{\tau}(w a)$.

3.2. Computation and comparison of the distributions.

Lemma 3.7. The bijection between relevant $w^{\prime} a^{\prime}$ and relevant wa induces a bijection between representatives of relevant orbits $g_{1} \in G L_{n, K} \backslash G L_{2 n} / N_{1}$ and $g_{3} \in S p_{n, K} \backslash S p_{2 n} / N_{3}$ where $g_{1}^{-1} T g_{1}=w a$ and $g_{3}^{-1} T g_{3}=w^{\prime} a^{\prime}$ This bijection is given by $g_{1} \mapsto g_{3}=i_{1}\left(g_{1}\right)$.

Proof. It is easy to see that if $g_{1}^{-1} T g_{1}=w a$ then $i_{1}\left(g_{1}\right)^{-1} T i_{1}\left(g_{1}\right)=w^{\prime} a^{\prime}$. On the other hand, suppose $w^{\prime} a^{\prime}$ is relevant, then we know $w^{\prime} a^{\prime}=i_{\tau}(w a)$. We have that if $w^{\prime} a^{\prime}$ is of the form $w^{\prime} a^{\prime}=g_{3}^{-1} T g_{3}$, then the eigenvalues of $w^{\prime} a^{\prime}$ are $\sqrt{\tau}$ and $-\sqrt{\tau}$ with multiplicities $2 n$ respectively. We note that the set of eigenvalues of $w^{\prime} a^{\prime}$ is the union of the set of eigenvalues for $w a$ and the set of eigenvalues for $\tau(w a)^{*}$. Using that $(w a)^{2}=\tau$, we get that $w a$ has zero trace. Thus the eigenvalues of $w a$ consist of $\sqrt{\tau}$ and $-\sqrt{\tau}$ with multiplicities n respectively. Such $w a$ are seen to be of the form $w a=g_{1}^{-1} T g_{1}$, this proves our lemma.

Once we have this bijection we proceed with a formal proof of the relative trace identity we have in mind. We have

$$
\begin{array}{r}
I_{S p_{2 n}}\left(f^{\prime}: S p_{(n, K)}, 1 ; N_{3}, \theta_{3}\right)=\int_{l_{3} \in S p_{n, K}(F) \backslash S p_{n, K}(A)} \int_{n_{3} \in N_{3}(F) \backslash N_{3}(A)} K_{f}\left(l_{3}, n_{3}\right) \theta_{3}\left(n_{3}\right) d l_{3} d n_{3} \\
=\int_{l_{3} \in S p_{n, K}(F) \backslash S p_{n, K}(A)} \int_{n_{3} \in N_{3}(F) \backslash N_{3}(A)} \sum_{g_{3} \in S p_{p_{n}(}(F)} f_{3}\left(l_{3}^{-1} g_{3} n_{3}\right) \theta_{3}\left(n_{3}\right) d l_{3} d n_{3} \\
= \\
\sum_{g_{3} \in S p_{n, K} \backslash S p_{2 n} / N_{3}} \int_{l_{3} \in S p_{n, K}(A)} \int_{n_{3} \in N_{3, g_{3}}^{\prime}(F) \backslash N_{3}(A)} f_{3}\left(l_{3}^{-1} g_{3} n_{3}\right) \theta_{3}\left(n_{3}\right) d l_{3} d n_{3}
\end{array}
$$

where $N_{3, g_{3}}^{\prime}:=g_{3}^{-1} S p_{n, K} g_{3} \cap N_{3}$.

We factor this integral as
$\left.\sum_{g_{3} \in S p_{n, K} \backslash S p_{2 n} / N_{3}} \int_{l_{3} \in S p_{n, K}(A)} \int_{n_{3} \in N_{3, g_{3}}^{\prime}(A) \backslash N_{3}(A)} f_{m_{3} \in N_{3, g_{3}}^{\prime}(F) \backslash N_{3, g_{3}}^{\prime}(A)} f_{3}^{-1} g_{3} m_{3} n_{3}\right) \theta_{3}\left(n_{3}\right) \theta_{3}\left(m_{3}\right) d l_{3} d n_{3} d m_{3}$
or
$\sum_{g_{3} \in S p_{n, K} \backslash S p_{2 n} / N_{3}} \int_{l_{3} \in S p_{n, K}(A)} \int_{n_{3} \in N_{3, g_{3}}^{\prime}(A) \backslash N_{3}(A)} f_{3}\left(l_{3}^{-1} g_{3} m_{3} n_{3}\right) \theta_{3}\left(n_{3}\right) d l_{3} d n_{3} \int_{m_{3} \in N_{3, g_{3}}^{\prime}(F) \backslash N_{3, g_{3}}^{\prime}(A)} \theta_{3}\left(m_{3}\right) d m_{3}$.
The integral over m_{3} is zero if g_{3} is non-relevant. We get that $I_{S p_{2 n}}\left(f^{\prime}: S p_{(n, K)}, 1 ; N_{3}, \theta_{3}\right)$ is given by

A similar computation shows that $I_{G L_{2 n}}\left(f: G L_{(n, K)}, 1 ; N_{1}, \theta_{1}\right)$ is equal to

$$
\begin{equation*}
\sum_{g_{1} \in G L_{n, K} \backslash G L_{2 n} / N_{1}, \text { relevant } t_{l_{1} \in G L_{n, K}(A)} \int_{n_{1} \in N_{1, g_{1}}^{\prime}(A) \backslash N_{1}(A)} f_{1}\left(l_{1}^{-1} g_{1} n_{1}\right) \theta_{1}\left(n_{1}\right) d l_{1} d n_{1} ~ . ~ . ~} \tag{3.4}
\end{equation*}
$$

Lemma 3.8. (Comparison of the distributions). For any relevant $g_{1} \in G L_{2 n}$ and $g_{3} \in S p_{2 n}$ with $g_{3}=i_{1}\left(g_{1}\right)$, for any place v of F, with f_{v}^{\prime} given by correspondence (3.1), we have

$$
\begin{aligned}
\left|\operatorname{det}\left(g_{1}\right)\right|_{v}^{-n-1} \int_{l_{1} \in G L_{n, K}\left(F_{v}\right)} & \int_{n_{1} \in N_{1, g_{1}}^{\prime}\left(F_{v}\right) \backslash N_{1}\left(F_{v}\right)} f_{v}^{\prime}\left(l_{1}^{-1} g_{1} n_{1}\right) \theta_{1}\left(n_{1}\right) d l_{1} d n_{1} \\
& =\int_{l_{3} \in S p_{n, K}\left(F_{v}\right)} \int_{n_{3} \in N_{3, i_{1}\left(g_{1}\right)}^{\prime}\left(F_{v}\right) \backslash N_{3}\left(F_{v}\right)} f_{3}\left(l_{3}^{-1} i_{1}\left(g_{1}\right) n_{3}\right) \theta_{3}\left(n_{3}\right) d l_{3} d n_{3} .
\end{aligned}
$$

Proof. We fix a place v and drop the reference to F_{v} in the notation. We write $g_{3}=i_{1}\left(g_{1}\right)$, we have to consider

$$
\int_{l_{3} \in S p_{n, K}} \int_{n_{3} \in N_{3, g_{3}}^{\prime}} f_{3}\left(l_{3}^{-1} i_{1}\left(g_{1}\right) n_{3}\right) \theta_{3}\left(n_{3}\right) d l_{3} d n_{3} .
$$

We write $n \in N_{3}$ as $n_{3}=v i\left(n_{1}\right)$ with $v \in V_{3}$ and $n_{1} \in N_{1}$, then $\theta_{3}\left(n_{3}\right)=\theta_{1}\left(n_{1}\right)$. An explicit computation shows that if $n_{3} \in N_{3, g_{3}}^{\prime}$ then $n_{1} \in N_{1, g_{1}}^{\prime}$ and $i_{1}\left(g_{1}\right) v m\left(i_{1}\left(g_{1}\right)\right)^{-1} \in$ $V_{3} \cap S p_{n, K}$.

Our integral is

$$
\int_{l_{3} \in S p_{n, K}} \int_{n_{1} \in N_{1, g_{1}}^{\prime} \backslash N_{1}} \int_{v \in V_{3} \cap S p_{n, K} \backslash V_{3}} f_{3}\left(l_{3}^{-1} i_{1}\left(g_{1}\right) v i\left(n_{1}\right)\right) \theta_{1}\left(n_{1}\right) d l_{3} d n_{1} .
$$

We make a change of variables $v \mapsto i_{1}\left(g_{1}\right)^{-1} v i_{1}\left(g_{1}\right)$ to get

$$
\int_{l_{3} \in S p_{n, K}} \int_{n_{1} \in N_{1, g_{1}}^{\prime} \backslash N_{1}} \int_{v \in V_{3} \cap S p_{n, K} \backslash V_{3}} f_{3}\left(l_{3}^{-1} v i_{1}\left(g_{1} n_{1}\right)\right) \theta_{1}\left(n_{1}\right)\left|\operatorname{det}\left(g_{1}\right)\right|^{-(n+1)} d l_{3} d n_{1} d v .
$$

From the Iwasawa decomposition one has that $S p_{n, K}=\left(P_{3} \cap S p_{n, K}\right)\left(K_{3} \cap S p_{n, K}\right)$, so we write $l_{3}^{-1}=k i_{1}\left(h_{1}\right) u$ with $k \in K_{3} \cap S p_{n, K}, u \in V_{3} \cap S p_{n, K}, h_{1} \in G L_{n, K}$, we combine the u and v integrals to get
$\int_{k \in K_{3} \cap S p_{n, K}} \int_{h_{1} \in G L_{n, K}} \int_{n_{1} \in N_{1, g_{1}}^{\prime} \backslash N_{1}} \int_{u \in V_{3}} f_{3}\left(k i\left(h_{1}\right) u i_{1}\left(g_{1} n_{1}\right)\right) \theta_{1}\left(n_{1}\right)\left|\operatorname{det}\left(h_{1} g_{1}^{-1}\right)\right|^{-(n+1)} d u d n_{1} d h_{1} d k$.
We change variables $u \mapsto i\left(g_{1} n_{1}\right) u i\left(g_{1} n_{1}\right)^{-1}$, we obtain

$$
\int_{k \in K_{3} \cap S p_{n, K}} \int_{h_{1} \in G L_{n, K}} \int_{n_{1} \in N_{1, g_{1}}^{\prime} \backslash N_{1}} \int_{u \in V_{3}} f_{3}\left(k i\left(h_{1} g_{1} n_{1}\right) u\right) \theta_{1}\left(n_{1}\right)\left|\operatorname{det}\left(h_{1}\right)\right|^{n+1} d u d n_{1} d h_{1} d k .
$$

We may write this as

$$
\begin{array}{r}
\left|\operatorname{det}\left(g_{1}\right)\right|^{-n-1} \int_{h_{1} \in G L_{n, K}} \int_{n_{1} \in N_{1, g_{1}}^{\prime} \backslash N_{1}} \int_{k \in K_{3} \cap S p_{n, K}} \int_{u \in V_{3}} f_{3}\left(k i\left(h_{1} g_{1} n_{1}\right) u\right)\left|\operatorname{det}\left(h_{1} g_{1}\right)\right|^{n+1} \theta_{1}\left(n_{1}\right) d u d k d h_{1} d n_{1} \\
=\left|\operatorname{det}\left(g_{1}\right)\right|^{-n-1} \int_{h_{1} \in G L_{n, K}} \int_{n_{1} \in N_{1, g_{1} \backslash}^{\prime} \backslash N_{1}} f^{\prime}\left(h_{1} g_{1} n_{1}\right) \theta_{1}\left(n_{1}\right) d n_{1} d h_{1}
\end{array}
$$

which proves the lemma.

Proof of Theorem 3.1. As the product of $\left|\operatorname{det}\left(g_{1}\right)\right|_{v}$ over all places equals 1 , we get the equality of the distributions from equations (3.4), (3.3) and Lemma 3.8.

Now we work over a p-adic field F. For $z \in \mathbb{C}^{2 n}$, let χ_{z} be an unramified character on A_{1} given by

$$
\chi_{z}\left(\begin{array}{ccc}
a_{1} & & \tag{3.5}\\
& \ddots & \\
& & a_{2 n}
\end{array}\right)=\left|a_{1}\right|^{z_{1}} \ldots\left|a_{2 n}\right|^{z_{2 n}} .
$$

We now define, for $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$, $f^{\prime} \in \mathcal{H}\left(G L_{2 n}, K_{1}\right)$:

$$
\begin{equation*}
\hat{f}(z)=\int_{a \in A_{1}(F)} \int_{n \in N_{3}(F)} f\left(i_{1}(a) n\right) \chi_{z}(a) \delta_{3}^{1 / 2}\left(i_{1}(a)\right) d n d a, \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{f}^{\prime}(z)=\int_{a \in A_{1}(F)} \int_{n \in N_{1}(F)} f^{\prime}(a n) \chi_{z}(a) \delta_{1}^{1 / 2}\left(i_{1}(a)\right) d n d a . \tag{3.7}
\end{equation*}
$$

Here δ_{3}, δ_{1} denote the modulus functions of the Borel subgroup of $S p_{2 n}(F)$ and $G L_{2 n}(F)$ respectively.

We define a Hecke algebra homomorphism $\lambda_{1}: \mathcal{H}\left(S p_{2 n}, K_{3}\right) \rightarrow \mathcal{H}\left(G L_{2 n}, K_{1}\right)$ so that when $f^{\prime}=\lambda_{1}(f)$, we have

$$
\begin{equation*}
\widehat{f}^{\prime}\left(z-\frac{1}{2}\right)=\hat{f}(z) . \tag{3.8}
\end{equation*}
$$

We let ϵ_{1}^{\prime} be the map on $\mathcal{S}\left(S p_{2 n}(F)\right)$ given by equation (3.1). Then when $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$:

$$
\epsilon_{1}^{\prime}(f)=\int_{u \in V_{3}(F)} \int_{k \in K_{3} \cap G L_{(2 n, K)}(F)} f\left(i_{1}(g) u\right)|\operatorname{det}(g)|^{n+1} d k d u .
$$

From Iwasawa decomposition we get that $\hat{f}(z)=\widehat{\epsilon_{1}^{\prime}(f)}\left(z-\frac{1}{2}\right)$. Thus $\epsilon_{1}^{\prime}(f)=\lambda_{1}(f)$, i.e. ϵ_{1} restricts to a Hecke algebra homomorphism.

Theorem (3.1) gives a map from $f \in \mathcal{S}\left(S p_{2 n}(A)\right)$ to $f^{\prime} \in \mathcal{S}\left(G L_{2 n}(A)\right)$ with

$$
I_{G L_{2 n}}\left(f^{\prime}: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right)=I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right) .
$$

We want to construct a map in the other direction.

Corollary 3.9. For any place v there exists maps $\varepsilon_{1, v}: \mathcal{S}\left(G L_{2 n}\left(F_{v}\right)\right) \rightarrow \mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right)$, such that $I_{G L_{2 n}}\left(f_{v}^{\prime}: G L_{(n, K)}, 1 ; N_{1}, \theta_{1}\right)=I_{S p_{2 n}}\left(f_{v}: S p_{(n, K)}, 1 ; N_{3}, \theta_{3}\right)$ for $f=\otimes f_{v}$ and $f^{\prime}=\otimes f_{v}^{\prime}$ where

1. $f_{v}^{\prime}=\lambda_{1, v}\left(f_{v}\right)$ for $v \notin S$ a finite set of places containing bad places.
2. $f_{v}=\varepsilon_{1, v}\left(f_{v}^{\prime}\right)$ for $v \in S$.

Proof. Given $f_{v}^{\prime} \in \mathcal{S}\left(\operatorname{GL}_{2 n}\left(F_{v}\right)\right)$, define $f_{1, v}(p)$ on the Siegel parabolic subgroup $P_{3}\left(F_{v}\right)$ by setting $f_{1, v}\left(i_{1}(m) u\right)=f_{v}^{\prime}(m) \phi(u)$ where $m \in \mathrm{GL}_{2 n}\left(F_{v}\right), u \in V_{3}\left(F_{v}\right)$ and $\phi(u)$ is a Schwartz function on $V_{3}\left(F_{v}\right)$ such that $\int_{V_{3}\left(F_{v}\right)} \phi(u) d u=1$. Define

$$
f_{2, v}(p)=\int_{k \in K_{3} \cap S p_{n, K} \cap P_{3}\left(F_{v}\right)} f_{1, v}(k p) d k
$$

Then $f_{2, v}$ is left $K_{3} \cap S p_{n, K} \cap P_{3}\left(F_{v}\right)$ invariant. We extend $f_{2, v}$ to a function $f_{3, v}$ on $S p_{n, K} P_{3}\left(F_{v}\right)$ as follows: using the Iwasawa decomposition, any element in $S p_{n, K} P_{3}\left(F_{v}\right)$ has the form $k p$ with $k \in K_{3} \cap S p_{n, K}\left(F_{v}\right)$ and $p \in P_{3}\left(F_{v}\right)$; we let $f_{3, v}(k p)=f_{2, v}(p)$.

As $S p_{n, K} P_{3}$ is a closed subset of $\mathrm{Sp}_{2 n}$, the restriction map from $\mathcal{S}\left(\mathrm{Sp}_{2 n}\left(F_{v}\right)\right)$ to $\mathcal{S}\left(S p_{n, K} P_{3}\left(F_{v}\right)\right)$ is surjective. Thus, there is a function $f_{v} \in \mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right)$ that restricts to $f_{3, v}$. We will let $f_{v}=\epsilon_{1, v}\left(f_{v}^{\prime}\right)$.

We now check that the equality

$$
I_{G L_{2 n}}\left(f_{v}^{\prime}: G L_{(n, K)}, 1 ; N_{1}, \theta_{1}\right)=I_{S p_{2 n}}\left(f_{v}: S p_{(n, K)}, 1 ; N_{3}, \theta_{3}\right)
$$

holds under the conditions in the corollary.
For the given f_{v}^{\prime}, define a function on $\mathrm{GL}_{2 n}\left(F_{v}\right)$:

$$
f_{v}^{\prime \prime}(g)=\int_{K_{1} \cap G L_{n, K}\left(F_{v}\right)} f_{v}^{\prime}(k g) d k
$$

Then $f^{\prime \prime}=\otimes f_{v}^{\prime \prime} \in \mathcal{S}\left(\operatorname{GL}_{2 n}(A)\right)$ and

$$
\begin{equation*}
I_{G L_{2 n}}\left(f^{\prime \prime}: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right)=I_{G L_{2 n}}\left(f^{\prime}: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right) . \tag{3.9}
\end{equation*}
$$

When $v \notin S$, we have that $f_{v}^{\prime}=\lambda_{1}\left(f_{v}\right)$; since f_{v}^{\prime} is in $\mathcal{H}\left(G L_{2 n}, K_{1}\right)$, we have $f_{v}^{\prime \prime}=$ f_{v}^{\prime}. Thus from the last statement of Theorem 3.1 (and its proof), we have f_{v} and $f_{v}^{\prime \prime}$ satisfy equation (3.1). When $v \in S, f_{v}=\epsilon_{1, v}\left(f_{v}^{\prime}\right)$; we can check that f_{v} and $f_{v}^{\prime \prime}$ again satisfy equation (3.1). It follows from Theorem 3.1 that $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)$ equals $I_{G L_{2 n}}\left(f^{\prime \prime}: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right)$. From (3.9) we get the claim of the corollary.
3.3. Identity of periods. The previous section was motivated by the conjectural relation (see [JR] and [JiMR]) between the inner period on the Levi factor and the outer period on the group. In the case when τ is an irreducible cuspidal representation of $G L_{2 n}$ with its exterior square L-function having a pole at $s=1$ and with $L(1 / 2, \tau) \neq 0, \tau$ has a nontrivial $G L_{n} \times G L_{n}$ period. On the other hand, the residual Eisenstein series on $S p_{2 n}$ constructed from τ has a nontrivial period along the subgroup $S p_{n} \times S p_{n}$. The relation between the periods in this case is given as Theorem D in [GRS1].

In our present case, the residual Eisenstein series on $S p_{2 n}$ should have $S p_{(n, K)}$ period which is related to the $G L_{(n, K)}$ period of τ. This is the content of Theorem 3.10 below. For the convenience of the reader, we reproduce the material on Eisenstein series from [GRS1].

Let $P=M U$ be the Siegel parabolic subgroup of $S p_{2 n}$, we have a natural identification $M \cong G L_{2 n}$ via $i_{1}(g) \mapsto g$. Let τ be an irreducible, automorphic, cuspidal, self-dual representation of $G L_{2 n}(A)$. Let $\phi \in \operatorname{Ind}_{P(A)}^{S p_{2 n}(A)} \tau$, i.e. ϕ is a smooth function on $S p_{2 n}(A)$ with values in the space of τ with

$$
\begin{equation*}
\phi(m u g ; r)=\delta_{P}^{1 / 2}(m) \phi(g ; r m) \tag{3.10}
\end{equation*}
$$

for $m \in M(A), u \in U(A), g \in S p_{2 n}(A), r \in G L_{2 n}(A)$. We realize ϕ as a complex function on $S p_{2 n}(A) \times G L_{2 n}(A)$ such that $r \mapsto \phi(g ; r)$ is a cusp form in the space of τ; we assume ϕ is right K_{3}-finite where K_{3} is the standard maximal compact subgroup of $\operatorname{Sp}_{2 n}(A)$. If $g \in S p_{2 n}(A)$ has Iwasawa decomposition $g=a u k$ where $a \in G L_{2 n}(A), u \in U(A), k \in K_{3}$, we define for $s \in \mathbb{C}$,

$$
\begin{equation*}
\varphi_{\tau, s}^{\phi}(g ; m)=H(g)^{s-1 / 2} \phi(g ; m) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\tau, s}^{\phi}(g)=\varphi_{\tau, s}^{\phi}(g ; 1) \tag{3.12}
\end{equation*}
$$

where $H(g):=|\operatorname{det}(a)|$ for g with Iwasawa decomposition as above. We also denote by χ_{c} the characteristic function of all real numbers larger than c; by χ^{c}, the characteristic function of the interval $(0, c]$.

Consider the Eisenstein series

$$
\begin{equation*}
E\left(g, f_{\tau, s}^{\phi}\right)=\sum_{\gamma \in P_{S P_{2 n}}(F) \backslash S p_{2 n}(F)} f_{\tau, s}^{\phi}(\gamma g) \tag{3.13}
\end{equation*}
$$

The constant term along U is given by

$$
\begin{equation*}
E^{U}\left(g, f_{\tau, s}^{\phi}\right)=\int_{U(A) / U(F)} E\left(u g, f_{\tau, s}^{\phi}\right) d u=f_{\tau, s}^{\phi}(g)+M(s) f_{\tau, s}^{\phi}(g) \tag{3.14}
\end{equation*}
$$

where M is the intertwining operator given by

$$
\begin{equation*}
M(s) f_{\tau, s}^{\phi}(g)=\int_{U(A)} f_{\tau, s}^{\phi}\left(w^{-1} u g\right) d u \tag{3.15}
\end{equation*}
$$

with $w=\left(\begin{array}{ll} & I_{2 n} \\ -I_{2 n} & \end{array}\right)$; write

$$
\begin{equation*}
E_{1}(g, \phi)=\operatorname{Res}_{s=1} E\left(g, f_{\tau, s}^{\phi}\right) \tag{3.16}
\end{equation*}
$$

We wish to prove the following theorem

Theorem 3.10. For a suitable choice of measures we have

$$
\begin{equation*}
\int_{S p_{(n, K)}(F) / S p_{(n, K)}(A)} E_{1}(h, \phi) d h=\int_{K_{S_{p_{n, K}}}} \int_{C_{2 n}(A) G L_{n, K}(F) \backslash G L_{n, K}(A)} \phi(k ; a) d a d k \tag{3.17}
\end{equation*}
$$

with $K_{S p_{(n, K)}}=K \cap S p_{n, K}$ and $C_{2 n}$ the center of $G L_{2 n}$.

As in [GRS1], we apply the truncation operator Λ^{c} to $E\left(g, f_{\tau, s}^{\phi}\right)$, we get

By (3.14) and (3.18) we have
(3.19) $\quad \Lambda^{c} E\left(g, f_{\tau, s}^{\phi}\right)=E\left(g, f_{\tau, s}^{\phi}\right)-\sum_{\gamma \in P_{S_{p_{2 n}}(F) \backslash S p_{2 n}(F)}}\left(f_{\tau, s}^{\phi}(\gamma g)+M(s) f_{\tau, s}^{\phi}(\gamma g)\right) \chi_{c}(H(\gamma g))$
$(3.20)=\sum_{\gamma \in P_{S P_{P_{2 n}}}(F) \backslash S p_{2 n}(F)} f_{\tau, s}^{\phi}(\gamma g) \chi^{c}(H(\gamma g))-\sum_{\gamma \in P_{S p_{2 n}}(F) \backslash S P_{p_{n}}(F)} M(s) f_{\tau, s}^{\phi}(\gamma g) \chi_{c}(H(\gamma g))$
Denote

$$
\begin{equation*}
\theta_{1}^{c}\left(g, f_{\tau, s}^{\phi}\right):=\sum_{\gamma \in P_{S_{P_{2 n}}}(F) \backslash S p_{2 n}(F)} f_{\tau, s}^{\phi}(\gamma g) \chi^{c}(H(\gamma g)), \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{2}^{c}\left(g, f_{\tau, s}^{\phi}\right):=\sum_{\gamma \in P_{S_{P_{2 n}}}(F) \backslash S p_{2 n}(F)} M(s) f_{\tau, s}^{\phi}(\gamma g) \chi_{c}(H(\gamma g)) . \tag{3.22}
\end{equation*}
$$

Applying Λ^{c} to E_{1} and noticing that $f_{\tau, s}^{\phi}$ is holomorphic, we get

$$
\begin{equation*}
\Lambda^{c} E_{1}(g, \phi)=E_{1}(g, \phi)-\theta_{3}^{c}(g, \phi) \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{3}^{c}(g, \phi)=\sum_{\gamma \in P_{S p_{2 n}}(F) \backslash S p_{2 n}(F)} M_{1}\left(f_{\tau, s}^{\phi}(\gamma g) \chi_{c}(H(\gamma g))\right) \tag{3.24}
\end{equation*}
$$

and $M_{1}:=\operatorname{Res}_{s=1} M(s)$. It is enough to prove the following proposition:

Proposition 3.11. The following formulae are valid with certain choice of measure:

$$
\begin{equation*}
\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \theta_{1}^{c}\left(h, f_{\tau, s}^{\phi}\right) d h=\frac{c^{s-1}}{s-1} \int_{K_{S p_{n, K}}} \int_{C_{2 n}(A) G L_{n, K}(F) \backslash G L_{n, K}(A)} \phi(k, a) d a d k, \tag{3.25}
\end{equation*}
$$

$$
\begin{equation*}
\int_{S p_{n, K}(F) \backslash S P_{n, K}(A)} \theta_{2}^{c}\left(h, f_{\tau, s}^{\phi}\right) d h=\frac{c^{-s}}{s} \int_{K_{S p_{n, K}}} \int_{C_{2 n}(A) G L_{n, K}(F) \backslash G L_{n, K}(A)} M(s)\left(\varphi_{\tau, s}^{\phi}\right)(k ; a) d a d k, \tag{3.26}
\end{equation*}
$$

$$
\begin{equation*}
\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \theta_{3}^{c}(h, \phi) d h=c^{-1} \int_{K_{S p_{n, K}}} \int_{C_{2 n}(A) G L_{n, K}(F) \backslash G L_{n, K}(A)} M_{1}\left(\varphi_{\tau, 1}\right)^{\phi}(k ; a) d a d k . \tag{3.27}
\end{equation*}
$$

Assuming Proposition 3.11, let us show Theorem 3.10. By equation (3.20), we have that $\Lambda^{c} E\left(g, f_{\tau, s}^{\phi}\right)$ is equal to

$$
\sum_{\gamma \in P_{S_{p_{2 n}}}(F) \backslash S p_{2 n}(F)} f_{\tau, s}^{\phi}(\gamma g) \chi^{c}(H(\gamma g))-\sum_{\gamma \in P_{S_{p_{2 n}}}(F) \backslash S p_{p_{n}}(F)} M(s) f_{\tau, s}^{\phi}(\gamma g) \chi_{c}(H(\gamma g)) .
$$

Integrating along $S p_{n, K}(F) \backslash S p_{n, K}(A)$ and using equations (3.25) and (3.26), we obtain that $\int_{S p_{n, k}(F) \backslash S p_{n, K}(A)} \Lambda^{c} E\left(h, f_{\tau, s}^{\phi}\right) d h$ is equal to

$$
\frac{c^{s-1}}{s-1} \iint \phi(k, a) d a d k-\frac{c^{-s}}{s} \iint M(s)\left(\varphi_{\tau, s}^{\phi}\right)(k ; a) d a d k
$$

here the integrals are over K_{3} and $C_{2 n}(A) G L_{n, K}(F) \backslash G L_{n, K}(A)$.
Taking residues at $s=1$, we get

$$
\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \Lambda^{c} E_{1}\left(h, f_{\tau, s}^{\phi}\right) d h=\iint \phi(k, a) d a d k-c^{-1} \iint M_{1}\left(\varphi_{\tau, 1}^{\phi}\right)(k, a) d a d k .
$$

Using equation (3.27), this is

$$
\begin{equation*}
\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \Lambda^{c} E_{1}\left(h, f_{\tau, s}^{\phi}\right) d h=\iint \phi(k, a) d a d k-\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \theta_{3}^{c}(h, \phi) d h . \tag{3.28}
\end{equation*}
$$

On the other hand, using equation (3.23), we get
$\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \Lambda^{c} E_{1}\left(h, f_{\tau, s}^{\phi}\right) d h=\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} E_{1}(h, \phi) d h-\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \theta_{3}^{c}(h, \phi) d h$.
Comparing equations (3.28) and (3.29) proves Theorem 3.10.
Proof of Proposition 3.11. To prove this proposition we write the integrals $\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \theta_{j}(h) d h$ in terms of $I_{j, d}$ (defined in equation (3.33)) and show that $I_{j, d}=0$ for $d<n$; the case $d=n$ gives the result.

The functions θ_{j}^{c} have the form $\theta_{j}(g)=\sum_{\gamma \in P(F) \backslash G(F)} \xi_{j}(\gamma g)$ with

$$
\xi_{j}(g)= \begin{cases}f_{\tau, s}^{\phi}(g) \chi^{c}(H(g)), & \mathrm{j}=1 \tag{3.30}\\ M(s)\left(f_{\tau, s}^{\phi}\right)(g) \chi_{c}(H(g)), & \mathrm{j}=2 \\ M_{1}\left(f_{\tau, 1}^{\phi}\right)(g) \chi_{c}(H(g)), & \mathrm{j}=3\end{cases}
$$

Proceeding formally,

$$
\begin{equation*}
\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \theta_{j}(h) d h=\int_{S p_{n, K}(F) \backslash S p_{n, K}(A)} \sum_{\gamma \in P(F) \backslash S p_{2 n}(F)} \xi_{j}(\gamma h) d h, \tag{3.31}
\end{equation*}
$$

and this is

$$
\begin{equation*}
\sum_{\left.\gamma \in P(F) \backslash S p_{2 n}(F) / S S_{n, K}(F)\right)_{\gamma^{-1}}} \int_{P(F) \gamma \cap S_{n, K}(F) \backslash S_{n}, K(A)} \xi_{j}(\gamma h) d h . \tag{3.32}
\end{equation*}
$$

Recall the description of the double cosets $N_{3}(F) \backslash S p_{2 n}(F) / S p_{(n, K)}(F)$ under the map $g \mapsto g T g^{-1}$: namely, we may take as representatives elements $g \in S p_{2 n}$ with $g T g^{-1}=$ $w a$ with $(w a)^{2}=\tau$ and ${ }^{t}(w a) J(w a)=\tau J$. We remark that by considering the effect of the parabolic part and after conjugation by an appropriate element of the form $\left(\begin{array}{cc}W & \\ & W^{*}\end{array}\right)$ with $W \in W\left(G L_{n}\right)$, we may take $w a$ to be of the form $w a=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with
$\left(\begin{array}{ll}0 & \tau \\ 1 & 0\end{array}\right.$
$\left.A=\xlongequal{\ddots} \begin{array}{lllll} & & & \\ & & 0 & \tau & \\ & & 1 & 0 & \\ & & & & 0\end{array}\right]$

0
$\begin{array}{ll}0 & \tau \\ 1 & 0\end{array}$

We attach a parameter d to such $w a$, where $2 d$ is the number of nonzero rows on the A block, and we label such $w a$ as $w a_{d}$.

denote the corresponding g as g_{r}.
We have that if $\gamma_{d}=\left(\begin{array}{ccc}I d_{2 d} & & \\ & g_{r} & \\ & & I d_{2 d}\end{array}\right)$, then $\gamma_{d} T \gamma_{d}^{-1}=w a_{d}$.
As in [GRS1], we let $Q_{d}=\gamma_{d}^{-1} P \gamma_{d} \cap S p_{n, K}$ and we need to compute the integrals

$$
\begin{equation*}
I_{j, d}=\int_{Q_{d}(F) \backslash S p_{n, K}(A)} \xi_{j}\left(\gamma_{d} h\right) \tag{3.33}
\end{equation*}
$$

for $0 \leq d \leq n$ and $j=1,2,3$. We assume that $\gamma_{d} T \gamma_{d}^{-1}=w a_{d}$ and remark that to find Q_{d} it is enough to find $p \in P$ with $\gamma^{-1} p \gamma \in S p_{(n, K)}(F)$, which is equivalent to wap $=p w a$.

Case $d=0$:

In this case we have $w a=\left(\begin{array}{ll} & \alpha \\ \beta & \end{array}\right)$ with
wap $=p w a$ then $\left(\begin{array}{ll} & \alpha P_{3} \\ \beta P_{1} & \beta P_{2}\end{array}\right)=\left(\begin{array}{ll}P_{2} \beta & P_{1} \alpha \\ P_{3} \beta & \end{array}\right)$ then $P_{2}=0$ and since $P_{3}=\sigma^{t} P_{1}^{-1} \sigma$ we have $\beta P_{1}=\sigma^{t} P_{1}^{-1} \sigma \beta$ which implies ${ }^{t} P_{1} \sigma \beta P_{1}=\sigma \beta$ but

$$
\sigma \beta=\left(\begin{array}{ccccc}
0 & -1 & & & \\
1 & 0 & & & \\
& & \cdot & & \\
& & & 0 & \\
& & & 0 & -1 \\
& & & 0
\end{array}\right) \text { so that } p=i\left(P_{1}\right)=\left(\begin{array}{ll}
P_{1} & \\
& P_{1} *
\end{array}\right) \text { where } P_{1} \in S p_{n} . \text { As } P_{1}
$$

runs over $S p_{n}$, so does $Q_{d}=\gamma_{0}^{-1} i\left(P_{1}\right) \gamma_{0}$, embedded via i_{2} as a subgroup of $S p_{n, K}$.
We have

$$
\begin{equation*}
I_{j, 0}=\int_{i_{2}\left(S p_{n}(F) \backslash \backslash S p_{2 n}\left(A_{K}\right)\right.} \xi_{j}\left(\gamma_{0} h\right) d h . \tag{3.34}
\end{equation*}
$$

We write $h=i_{2}(a) b$ where $i_{2}(a) \in i_{2}\left(S p_{n}(F)\right) \backslash i_{2}\left(S p_{n}\left(A_{F}\right)\right)$ and $b \in i_{2}\left(S p_{n}\left(A_{F}\right)\right) \backslash S p_{n}\left(A_{K}\right)$.
We factor the integral as

$$
\begin{equation*}
I_{j, 0}=\int_{i_{2}(a) \in i_{2}\left(S p_{n}(F)\right) \backslash i_{2}\left(S p_{n}\left(A_{F}\right)\right)} \int_{b \in i_{2}\left(S p_{n}\left(A_{F}\right)\right) \backslash S p_{n}\left(A_{K}\right)} \xi_{j}\left(\gamma_{0} i_{2}(a) \gamma_{0}^{-1} \gamma_{0} b\right) d i_{2}(a) d b . \tag{3.35}
\end{equation*}
$$

This includes the integration of a cusp form in τ along $i_{2}\left(S p_{n}(F)\right) \backslash i_{2}\left(S p_{n}\left(A_{F}\right)\right)$ which equals zero by [Jacquet-Rallis, Prop 1].

Case $0<d<n$:
In this case we write $w a=\left(\begin{array}{llll}\alpha & & & \\ & & \beta & \\ & \beta / \tau & \\ & & & \alpha\end{array}\right)$ with

where $P_{1}, P_{2}, P_{3}, P_{5}$ are squares matrices of sizes $2 d, 4(n-d), 2 d, 2 d$ respectively, P_{4}^{1} and P_{4}^{2} are of sizes $2 d \times 2(n-d), P_{6}^{1}$ and P_{6}^{2} of sizes $2(n-d) \times 2 d$ and p satisfies wap $=p w a$ then

$$
\left(\begin{array}{cccc}
\alpha P_{1} & \alpha P_{4}^{1} & \alpha P_{4}^{2} & \alpha P_{5} \tag{3.36}\\
& \delta P_{2} & & \beta P_{6}^{2} \\
& & & \frac{\beta}{\tau} P_{6}^{1} \\
& & & \alpha P_{3}
\end{array}\right)=\left(\begin{array}{cccc}
P_{1} \alpha & P_{4}^{2} \frac{\beta}{\tau} & P_{4}^{1} \beta & P_{5} \alpha \\
& P_{2} \delta & & P_{6}^{1} \alpha \\
& & & P_{6}^{2} \alpha \\
& & & P_{3} \alpha
\end{array}\right)
$$

where $\delta=\left(\begin{array}{ll} & \\ \beta / \tau & \end{array}\right)$.
Write this as a semidirect product $M_{d} \times V_{d}$, write the Iwasawa decomposition in $S p_{n, K}(A)$, $h=v m k$ where $m \in M_{d}(A), v \in V_{d}(A), k \in K_{S p_{n, K}}, d h=\delta^{-1}(m) d v d m d k$, where δ is the
modulus function of the parabolic subgroup Q_{d}, then

$$
\begin{equation*}
I_{j, d}=\int_{K_{S P_{n, K}}} \int_{M_{d}(A) / M_{d}(F)} \int_{V_{d}(A) / V_{d}(F)} \xi_{j}\left(\gamma_{d} v \gamma_{d}^{-1} \cdot \gamma_{d} m k\right) \delta^{-1}(m) d v d m d k \tag{3.37}
\end{equation*}
$$

We let $P_{4}=\left(\begin{array}{ll}P_{4}^{1} & P_{4}^{2}\end{array}\right)$ and $P_{6}=\binom{P_{6}^{1}}{P_{6}^{2}}$. One has that $\gamma_{d}^{-1} P \gamma=\left(\begin{array}{ccc}P_{1} & P_{4} g_{r} & P_{5} \\ & g_{r}^{-1} P_{2} g & g^{-1} P_{6} \\ & & P_{3}\end{array}\right)$,
from equation (3.36) we have that $P_{1}, P_{5}, P_{3} \in G L_{n, K}$. The equation $\alpha P_{4}=P_{4} \delta$ implies $T P_{4}=P_{4} g_{r} T g_{r}^{-1}$ so that $P_{4} g_{r} \in G L_{n, K}$. Similarly, we have that $g_{r}^{-1} P_{2} g_{r}, g_{r}^{-1} P_{6} \in G L_{n, K}$. Thus, the projection to $S p_{(n, K)}$ of $\gamma_{d} v \gamma_{d}^{-1}$ as v varies in V_{d} is a unipotent radical in $G L_{2 n}$. We have $H\left(\gamma_{d} v \gamma_{d}^{-1}\right)=1$ and $I_{j, d}$ involves an integration of a cusp form in τ along $V_{d}(F) \backslash V_{d}(A)$, so $I_{j, d}=0$ for $0<d<2 n, j=1,2,3$.

Case $d=n$:

Using the Iwasawa decomposition $S p_{n, K}=K_{S p_{n, K}} i_{1}\left(G L_{n, K}\right) V_{S p_{n, K}}$, where $K_{H}=K_{3} \cap$ $S p_{n, K}$ and $V_{S p_{n, K}}=V_{3} \cap S p_{n, K}$ we have

$$
I_{j, n}=\int_{K_{S p_{n, K}}} \int_{G L_{n, K}(F) \backslash G L_{n, K}(A)} \xi_{j}\left(\left(\begin{array}{cc}
a & \tag{3.38}\\
& a^{*}
\end{array}\right) k\right)|\operatorname{det}(a)|^{-(n+1)} d a d k
$$

$$
=\int_{K_{S P_{n, K}}} \int_{G L_{n, K}(F) \backslash G L_{n, K}(A)^{0}} \int_{F^{\times} \backslash A^{\times}} \xi_{j}\left(\left(\begin{array}{cc}
t a & \tag{3.39}\\
& t^{-1} a^{*}
\end{array}\right) k\right)|t|^{-2 n(n+1)} d^{\times} t d a d k .
$$

When $j=1$ we get

$$
I_{1, d}=\int_{K_{S P_{n, K}}} \int_{G L_{n, K}\left(F \backslash \backslash G L_{n, K}(A)^{0}\right.} \int_{F^{\times} \backslash A^{\times}} f_{\tau, s}^{\phi}\left(\left(\begin{array}{ll}
t a & \tag{3.40}\\
& t^{-1} a^{*}
\end{array}\right) k\right) \chi^{c}\left(H\left(\begin{array}{ll}
t a & \\
& t^{-1} a^{*}
\end{array}\right)\right)|t|^{-2 n(n+1)} d^{\times} t d a d k
$$

$$
\begin{align*}
& =\int_{K_{S P_{n, K}}} \int_{G L_{n, K}(F) \backslash G L_{n, K}(A)^{0}} \int_{F \times \backslash A^{\times}} \varphi_{\tau, s}^{\phi}\left(\left(\begin{array}{cc}
t a & \\
& t^{-1} a^{*}
\end{array}\right) k ; 1\right) \chi^{c}\left(H\left(\begin{array}{cc}
t a & \\
& t^{-1} a^{*}
\end{array}\right)\right)|t|^{-2 n(n+1)} d^{\times} t d a d k \tag{3.41}\\
& =\int_{K_{S P_{n, K}}} \int_{G L_{n, K}(F) \backslash G L_{n, K}(A)^{0}} \int_{F \times \backslash A^{\times}}\left(H\left(\begin{array}{cc}
t a & \\
& t^{-1} a^{*}
\end{array}\right)\right)^{s-1 / 2} \phi\left(\left(\begin{array}{cc}
t a \\
& t^{-1} a^{*}
\end{array}\right) k ; 1\right)
\end{align*}
$$

$$
\times \chi^{c}\left(|t|^{2 n}\right)|t|^{-2 n(n+1)} d^{\times} t d a d k
$$

$=\int_{K_{S P_{n, K}}} \int_{G L_{n, K}(F) \backslash G L_{n, K}(A)^{0}} \int_{F^{\times} \backslash A^{\times},|t|^{2 n} \leq c}|t|^{2 n(s-1 / 2)} \phi(k ; a) \delta_{P_{S_{P_{2 n}}}}\binom{t a}{t^{-1} a *}^{1 / 2}|t|^{-2 n(n+1)} d a d^{\times} t d k$.
But we have that $\delta_{P_{S p_{2 n}}}\left(\begin{array}{ll}t a & \\ & t^{-1} a^{*}\end{array}\right)=\left|t^{2}\right|^{2 n\left(\frac{2 n+1}{2}\right)}$ so that we get

$$
\begin{equation*}
=\int_{K_{S p_{n, K}}} \int_{G L_{n, K}(F) \backslash G L_{n, K}(A)^{0}} \phi(k ; a) d(a) d k \int_{t \in F^{\times} \backslash A^{\times},|t|^{2 n} \leq c}|t|^{2 n(s-1)} d^{*} t \tag{3.43}
\end{equation*}
$$

We choose $d^{*} t$ so that the integral over t equals $\int_{0}^{c} t^{s-1} \frac{d t}{t}=\frac{c^{s-1}}{s-1}$, for $\operatorname{Re}(s)>1$.
3.4. Convergence of the integrals. We need to prove the absolute convergence of the integrals

$$
\begin{equation*}
\int_{\gamma_{d}^{-1} P \gamma_{d} \cap S p_{2 n, K}(F) \backslash S p_{2 n, K}(A)} \xi_{j}\left(\gamma_{d} h\right) \tag{3.44}
\end{equation*}
$$

For this we write the Iwasawa decomposition for elements in $S p_{4 n, K}$ as $M^{\prime} V K$ where

$$
M^{\prime}=\left(\begin{array}{ccc}
P_{1} & & \\
& P^{\prime} & \\
& & P_{1}^{*}
\end{array}\right) \text { and } V=\left(\begin{array}{ccc}
1 & \left(\begin{array}{ll}
P_{2} & P_{3}
\end{array}\right) & P_{4} \\
& & \\
& & \\
& & \\
& & \\
P_{3}
\end{array}\right)
$$

where $P_{1} \in G L_{2 d, K}, P^{\prime} \in S p_{4(n-d), K}, P_{2}, P_{3} \in M_{2 d \times 2(n-d), K}, P_{4} \in G L_{2 d, K}$ and K denotes the maximal compact subgroup of $S p_{4 n, K}$.

Now P satisfies $\gamma_{d}^{-1} P \gamma_{d} \in S p_{4 n, K}$ if and only if $h P=P h$, this implies that $\gamma_{d}^{-1} P \gamma_{d}$ is
of the form $\left(\begin{array}{ccc}P_{1} & \left(\begin{array}{ll}P_{2} & P_{3}\end{array}\right) & P_{4} \\ & \left(\begin{array}{ll}P_{6} & \\ & P_{6}^{*}\end{array}\right) & \binom{P_{2}}{P_{3}} \\ & & P_{1}^{*}\end{array}\right)$, with ${ }^{t} P_{6} \sigma \beta^{-1} P_{6}=\sigma \beta^{-1},\left(P_{2} P_{3}\right) \delta=\alpha\left(P_{2} P_{3}\right)$,
$\alpha P_{i}=P_{i} \alpha$ for $i=1,4$ and $P_{6}^{*} \equiv \beta^{-1} P_{6} \beta$.
The conjugation by γ gives

$$
\gamma^{-1} P \gamma \cap S p_{4 n, K}=\left(\begin{array}{ccc}
P_{1} & \left(\begin{array}{ll}
P_{2} & P_{3}
\end{array}\right) \gamma & P_{4} \tag{3.45}\\
& \gamma^{-1}\left(\begin{array}{ll}
P_{6} & \\
& P_{6}^{*}
\end{array}\right) \gamma & \gamma^{-1}\binom{P_{2}}{P_{3}} \\
& &
\end{array}\right)
$$

We define $M:=\left(\begin{array}{llll}P_{1} & & & \\ & & & \\ & \gamma^{-1}\left(\begin{array}{lll}P_{6} & \\ & & \\ & & P_{6}^{*}\end{array}\right) & & \\ & & & \\ & & & \\ & & & \\ \text { with } P_{1}^{*} \in G L_{2 d, K} \text { and } P_{6} \in S p_{2(n-d)} \text {. }\end{array}\right.$
We thus get that $r \in \mathrm{M}(F) \backslash M(A)$ is of the form $r=\left(\begin{array}{llll}P_{1} & & & \\ & & & \\ & \gamma^{-1}\left(\begin{array}{ll}P_{6} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \hline\end{array}\right) \gamma & \\ & \\ & & & \\ \hline\end{array}\right)$, where $P_{1} \in G L_{2 d, K}(F) \backslash G L_{2 d, K}(A)$ and $P_{6} \in S p_{2(n-d)}(F) \backslash S p_{2(n-d)}(A)$.
For such r, we have that $\gamma r \gamma^{-1}=\left(\begin{array}{llll}P_{1} & & & \\ & P_{6} & & \\ & & P_{6}^{*} & \\ & & & P_{1}^{*}\end{array}\right)$ with the projection to $G L_{2 n}$
of its Levi component being of the form $\left(\begin{array}{ll}a & \\ & \\ & b\end{array}\right)$ with $a \in G L_{2 d, K}(F) \backslash G L_{2 d, K}(A)$ and $b \in S p_{2(n-d)}(F) \backslash S p_{2(n-d)}(A)$.

Similarly, we define $V:=\left(\begin{array}{ccc}1 & \left(\begin{array}{ll}P_{2} & P_{3}\end{array}\right) & P_{4} \\ & & \left(\begin{array}{c}P_{2} \\ \\ P_{3}\end{array}\right)^{*} \\ & & \\ & & \end{array}\right)$ with $P_{2}, P_{3} \in M_{2 d \times 2(n-d), K}$ and
$P_{4} \in G L_{2 d, K}$. Thus $v \in V(F) \backslash V(A)$ is of the form $v=\left(\begin{array}{ccc}1 & \left(\begin{array}{ll}P_{2} & P_{3}\end{array}\right) & P_{4} \\ & & \\ & & \\ & & \\ & & \\ P_{3}\end{array}\right)$ with $P_{2}^{\prime}, P_{3}^{\prime} \in M_{2 d \times 2(n-d), K}(F) \backslash M_{2 d \times 2(n-d), K}(A)$ and $P_{4} \in G L_{2 d, K}(F) \backslash G L_{2 d, K}(A)$.
For v as above, we have that $\gamma v \gamma^{-1}$ is of the form $\left(\begin{array}{ccc}1 & \left(\begin{array}{ll}P_{2} & P_{3}\end{array}\right) \gamma^{-1} & P_{4} \\ & 1 & \\ & & \\ & & \\ P_{2} \\ P_{3}\end{array}\right)$ with
P_{2}, P_{3} and P_{4} as above. The projection to $G L_{2 n}$ of the Levi component of $\gamma v \gamma^{-1}$ is thus of the form $\left(\begin{array}{cc}I_{2 d} & y \\ & I_{2(n-d)}\end{array}\right)$ with $y \in M_{2 d \times 2(n-d)}(F) \backslash M_{2 d \times 2(n-d)}(A)$.

We remark that the Iwasawa decomposition for $\gamma^{-1} P \gamma \cap S p_{4 n, K}$ is $M V$.

As P_{6} varies in $S p_{2(n-d)}(F), \gamma^{-1}\left(\begin{array}{cc}P_{6} & \\ & P_{6}^{*}\end{array}\right) \gamma$ varies over $S p_{4(n-d), K}(F)$ where the embedding from F into $G L_{2, K}(F)$ is given by $a \mapsto\left(\begin{array}{ll}a & \\ & \\ & a\end{array}\right)$ with $a \in F$. We take the Iwasawa
decomposition of $\gamma^{-1}\left(\begin{array}{cc}P_{6} & \\ & \\ & P_{6}^{*}\end{array}\right) \gamma$ according to the Borel subgroup. Thus we may take $m^{\prime} \in M(A) \backslash M^{\prime}(A)$ to be of the form $\left(\begin{array}{lll}I_{2 d} & & \\ & m & \\ & & I_{2 d}\end{array}\right)$ with $m=m(A)=m_{2(n-d)-1} \times$ $m_{2(n-d)-2} \times \ldots \times m_{1} \times t$ where $t=\left(\begin{array}{ll}A^{*} & \\ & A\end{array}\right)$ with $A=\left(\begin{array}{ccccc}a_{1} & \tau & & & \\ 1 & a_{1} & & & \\ & & \ddots & & \\ & & & & \\ & & & a_{n-d} & \tau \\ & & & 1 & a_{n-d}\end{array}\right)$
and $m_{i}=\left(\begin{array}{ccccc}I_{2} & \ldots & X_{\alpha} & & \\ & I_{2} & & X_{\alpha+1} & \\ & & \ddots & & X_{\omega} \\ & & & I_{2} & \vdots \\ & & & & I_{2}\end{array}\right)$ where the $X^{\prime} s$ lie on the i th superdiagonal with
$X_{j}=\binom{x_{j} \tau}{x_{j}}, \alpha=2(i-1)(n-d)-\frac{i(i-1)}{2}+1$ and $\omega=\alpha+2(n-d)-i-1$. We also remark that the $X^{\prime} s$ are related by the symplectic structure on m_{i}.

For γm with m as above, we write the Iwasawa decomposition according to the Borel subgroup as $\gamma m=l_{m} u_{m} k_{m}$ and $d m:=\prod_{i} \frac{d x_{i}}{\left|x_{i}^{2}-\tau\right|}$. We also write $|g|$ for $|\operatorname{det}(g)|$.

Lemma 3.12. For $m(A)$ as above, we have:

1) $\left|l_{m}\right| \leq 1$.
2) The integral $\int_{m}\left|l_{m}\right|^{t} d m$ converges, provided t is large enough.

Proof. We denote by r the matrix obtained by taking the even rows of m. We have that $\left|l_{m}\right|^{-1}$ is greater than or equal to the maximum of the determinant of the $2(n-d) \times 2(n-d)$ minors of the matrix r, note in particular that these minors are upper triangular.

For $1 \leq j \leq n-d$ we have that the last entries of the columns $2(n-d)+2 j-1$ and $2(n-d)+2 j$ are up to signs, 1 and a_{j} respectively, both located at the row $n-d+j$.

Also, the last entry of the columns $2(n-d)-2 j+1$ and $2(n-d)-2 j+2$ are up to signs, $\frac{1}{a_{j}^{2}-\tau}$ and $\frac{a_{j}}{a_{j}^{2}-\tau}$ respectively, both located at the row $n-d-j+1$.

For $a_{j}^{2}-\tau$ small, we choose the columns $\left.2(n-d)+2 j-1\right)$ and $2(n-d)-2 j+1$, we remark that the product of their last entries is $1 \times \frac{1}{a_{j}^{2}-\tau}$.
For $a_{j}^{2}-\tau$ large, we choose the columns $2(n-d)+2 j$ and $2(n-d)-2 j+2$, we remark that the product of their last entries is $a_{j} \times \frac{a_{j}}{a_{j}^{2}-\tau}$.
In either case, we have that $\max \left\{\frac{1}{a_{j}^{2}-\tau}, \frac{a_{j}^{2}}{a_{j}^{2}-\tau}\right\} \geq 1$. Thus after choosing columns as described, we get that $\left|l_{m}\right| \leq 1$.

We remark that by the symplectic structure of m, it is enough to consider the convergence over the variables x_{i} where x_{i} lies on a column k with $k \geq 2(n-d)+1$.

For such a variable x, we let j be such that (after a change of variables) the elements $a_{j} x, \tau x$ appear on the columns $2(n-d)+2 j+1$ and $2(n-d)+2 j+2$ respectively with $1 \leq j \leq n-d$ and j minimal with respect to this property. We also let i be the row for such $a_{j} x$ and τx.

We choose the columns $2(n-d)+2 j+1$ and $2(n-d)+2 j+2$ with j as above and for the remaining columns we make a choice similar to the one used in the proof of 1). The determinant of the minor obtained is $\left|a_{j}^{2}-\tau\right| \times|x|$.

We choose the columns $2(n-d)-2 j+1$ and $2(n-d)+2 j-1$ with j as above and for the remaining columns we follow the proof of 1) as before, we get that the determinant of the minor thus obtained is $\left|\frac{1}{a_{j}^{2}-\tau}\right|$.

Combining the last two observations with the fact that $\left|l_{m}\right| \leq 1$, we see that $\left|l_{m}\right| \leq$ $\min \left\{1,\left|a_{i}^{2}-\tau\right|,\left|a_{i}^{2}-\tau\right|^{-1}\left|x_{j}\right|^{-1}\right\}$. When $a_{i}^{2}-\tau$ is large, we have $\left|l_{m}\right| \leq\left|a_{i}^{2}-\tau\right|^{-1}\left|x_{j}\right|^{-1}$. On the other hand, when $\left|a_{i}^{2}-\tau\right|$ is small, we have $\left|l_{m}\right| \leq\left|a_{i}^{2}-\tau\right|^{\alpha}\left|x_{i}^{2}-\tau\right|^{\alpha-1}\left|x_{j}\right|^{\alpha-1}$ where $1 / 2<\alpha<1$. We get that $\left|l_{m}\right| \leq\left|a_{i}^{2}-\tau\right|^{2 \alpha-1}\left|x_{j}\right|^{\alpha-1}$ which gives a convergent integral in x. Repeating this over $x^{\prime} s$, we obtain the second assertion in the Lemma.

Our integral becomes

$$
\begin{equation*}
I_{j, d}=\int_{K_{H}} \int_{m \in M(A) \backslash M^{\prime}(A)} \int_{r \in M(F) \backslash M(A)} \int_{v \in V_{d}(F) \backslash V_{d}(A)} \xi_{j}\left(\gamma v \gamma^{-1} \cdot \gamma r \gamma^{-1} \cdot \gamma_{d} m k\right) \delta^{-1}(r) d v d m d k \tag{3.46}
\end{equation*}
$$

By the definition of ξ_{j}, this is

$$
\int \phi_{j}\left(k ;\left(\begin{array}{cc}
I_{2 d} & y \tag{3.47}\\
& I_{2(n-d)}
\end{array}\right)\left(\begin{array}{cc}
a & \\
& b
\end{array}\right)\left(\begin{array}{cc}
I_{2 d} & \\
& l_{m}
\end{array}\right)\right)|a|^{s_{j}\left|l_{m}\right|^{s_{j}^{\prime}} \chi_{j, c}\left(|a|\left|l_{m}\right|\right) d a d b d y d m}
$$

where $y \in M_{2 d \times 2(n-d)}(F) \backslash M_{2 d \times 2(n-d)}(A), a \in G L_{2 d, K}(F) \backslash G L_{2 d, K}(A), b \in S p_{2(n-d)}(F) \backslash S p_{2(n-d)}(A)$ and l_{m} as above.

Case $j=1, d=0$ Our integral becomes

$$
\begin{equation*}
\int_{m \in M(A) \backslash M^{\prime}(A),\left|l_{m}\right|<c} \int_{b \in S p_{2(n-d)}(F) \backslash S p_{2(n-d)}(A)} \varphi\left(b l_{m}\right)\left|l_{m}\right|^{s+n} d b d m . \tag{3.48}
\end{equation*}
$$

Since $\left|l_{m}\right| \leq 1$ by Lemma 3.12 and $c>1$, we have that $\left|l_{m}\right| \leq c$ always holds. Since φ is bounded and $S p_{2 n}(F) \backslash S p_{2 n}(A)$ has finite volume, it is enough to consider $\int\left|l_{m}\right|^{s+n} d m$. By Lemma 3.12, this converges for $\operatorname{Re}(s)$ large enough.

Case $j=2,3, d=0$ Our integral becomes

$$
\begin{equation*}
\int_{m \in M(A) \backslash M^{\prime}(A),\left|l_{m}\right|>c b \in S p_{2(n-d)}(F) \backslash S p_{2(n-d)}(A)} \int_{\left(b l_{m}\right)\left|l_{m}\right|^{1-s+n} d b d m ~} \tag{3.49}
\end{equation*}
$$

Here the domain of integration is empty by Lemma 3.12 and the fact that $c>1$.

The proof for the cases where $0<d<n$ is similar to [GRS1], with Lemma 3.12 in place of Lemmas 6 and 7.

4. Some global identities on $S p_{2 n}$

We want to relate the distributions $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)$ and $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$. We use (modified) results from [GRS2] and [GRS1]. We recall the setup in [MR].

For $f \in \mathcal{S}\left(S p_{2 n}(A)\right)$, define

$$
\Psi_{f}(g)=\int_{l \in S p_{n, K}(F) \backslash S p_{n, K}(A)} K_{f}(l, g) d l .
$$

Then $\Psi_{f}(g)$ is a left $S p_{2 n}(F)$ invariant form on $S p_{2 n}(A)$ satisfying the moderate growth condition: $\left|\Psi_{f}(g)\right|$ is bounded by a polynomial in $\|g\|$ where

$$
\begin{equation*}
\|g\|=\prod_{v}\left\|g_{v}\right\|_{v}=\prod_{v}\left(\max _{i, j}\left\{\left|g_{i, j, v} v_{v},\left|g_{i, j, v}^{-1}\right|_{v}\right\}\right) .\right. \tag{4.1}
\end{equation*}
$$

Clearly $f \mapsto \Psi_{f}(g)$ is a linear map. When $f_{g^{\prime}}(g)=f\left(g g^{\prime}\right)$, we have $\Psi_{f_{g^{\prime}}}(g)=\Psi_{f}\left(g g^{\prime}\right)$.
4.1. Definition of $I_{1}(f)$. We recall the definition of sets \mathcal{X}_{0} and $Y_{n-1, n}^{*}$, elements ν_{0} and ω in [GRS2, §4].

Let $\widetilde{\omega}$ be a permutation matrix in $\mathrm{GL}_{2 n}$ such that

$$
\widetilde{\omega}_{2 i, i}=1, \quad \widetilde{\omega}_{2 i-1, n+i}=1, \quad i=1, \ldots, n .
$$

Recall i_{1} is map from $\mathrm{GL}_{2 n}$ to $\mathrm{Sp}_{2 n}: i_{1}(g)=\binom{g}{g^{*}}$. Let $\omega=i_{1}(\widetilde{\omega})$. Let

$$
a=\operatorname{diag}\left[b, \ldots, b, b^{*}, \ldots, b^{*}\right] \in \operatorname{Sp}_{2 n}, \quad b=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right),
$$

and ν be the Weyl element in $\mathrm{Sp}_{2 n}$ such that

$$
\nu_{i, 2 i-1}=\nu_{n+i, 2 n+2 i-1}=\nu_{3 n+i, 2 n+2 i}=1, \quad \nu_{2 n+i, 2 i}=-1, \quad i=1, \ldots, n .
$$

Let $\nu_{0}=\nu a$. We only need to note here that ν_{0} and ω are elements in $\mathrm{Sp}_{2 n}(F)$; and over a p-adic place v where p is odd, ν_{0} and ω lie in the maximal compact subgroup of $\mathrm{Sp}_{2 n}\left(F_{v}\right)$.

Recall that $\sigma \in \mathrm{GL}_{n}$ denotes the longest Weyl element, and the set \mathcal{S}_{n} is the set of matrices $g \in \mathrm{GL}_{n}$ satisfying σg is a symmetric matrix. Let

$$
\begin{equation*}
\mathcal{X}_{0}=\left\{x \in \mathcal{S}_{2 n} \mid x \text { is nilpotent and upper triangular }\right\} . \tag{4.2}
\end{equation*}
$$

For $x \in \mathcal{X}_{0}$, let

$$
\bar{l}(x)=\left(\begin{array}{ll}
1_{2 n} & \tag{4.3}\\
x & 1_{2 n}
\end{array}\right) .
$$

Let $T(n) \subset \mathrm{GL}_{2 n}$ be defined as in [GRS2, (4.34),(4.35)], then $T(n)=\widetilde{\omega} N_{\backslash n} \widetilde{\omega}^{-1}$ where $N_{\backslash_{n}}$ denotes the subgroup of N_{1} consisting of matrices whose n-th row has only one nonzero entry. Let $Y_{n-1, n}^{*}$ be the set

$$
\begin{equation*}
\left\{i_{1}(T) \mid T \in T(n), T \text { is lower triangular }\right\} \subset \mathrm{Sp}_{2 n} . \tag{4.4}
\end{equation*}
$$

Define:

$$
\begin{equation*}
I_{1}(f)=\int_{y^{*} \in Y_{n-1, n}^{*}(A)} \int_{x \in \mathcal{X}_{0}(A)} \int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f}\left(n \bar{l}(x) \nu_{0} y^{*} \omega\right) \theta_{3}(n) d n d x d y^{*} \tag{4.5}
\end{equation*}
$$

This definition is motivated by the Corollary on p. 895 of [GRS2]. The integral over \mathcal{X}_{0} and $Y_{n-1, n}^{*}$ are absolutely convergent, which is clear from equation (4.26) after applying the Dixmier-Malliavin Theorem.
4.2. Definition of $I_{2}(f)$. Let j be the injection from Sp_{n} to $\mathrm{Sp}_{2 n}$:

$$
j: g \mapsto j(g)=\left(\begin{array}{lll}
1_{n} & & \tag{4.6}\\
& g & \\
& & 1_{n}
\end{array}\right)
$$

We define some subgroups of N_{3}. Let Z_{i} be the maximal unipotent subgroup of GL_{i} consisting of upper triangular matrices with unit diagonal. Let

$$
\hat{N}^{k}=\left\{\left.v=\left(\begin{array}{ccc}
z & * & * \tag{4.7}\\
& 1_{4 n-2 k+2} & * \\
& & z^{*}
\end{array}\right) \in N_{3} \right\rvert\, z \in Z_{k-1}\right\} .
$$

Then \hat{N}^{k} is a normal subgroup of \hat{N}^{j} whenever $k<j \leq 2 n+1$.
Define a subgroup U^{n} of N_{3} :

$$
U^{n}=\left\{\eta(\mathbf{x}, \mathbf{y}, t)=\left(\begin{array}{llllll}
1_{n-1} & & & & & \tag{4.8}\\
& 1 & \mathbf{x} & \mathbf{y} & t & \\
& & 1_{n} & 0 & * & \\
& & & & 1_{n} & * \\
& & & & & \\
& & & & 1 & \\
& & & & & 1_{n-1}
\end{array}\right)\right\}
$$

Then U^{n} is a Heisenberg group and is isomorphic to $\hat{N}^{n} \backslash \hat{N}^{n+1}$. Let U_{0}^{n} be the normal subgroup of U^{n} consisting of $\eta(\mathbf{0}, \mathbf{y}, t)$.

Define \tilde{N}^{n} to be $U_{0}^{n} \hat{N}^{n}$. Define a character $\tilde{\chi}_{n}$ on $\tilde{N}^{n}(A)$, such that for $n=\eta(\mathbf{0}, \mathbf{y}, t) n^{\prime}$ with $n^{\prime} \in \hat{N}^{n}$:

$$
\begin{equation*}
\tilde{\chi}_{n}\left(\eta(\mathbf{0}, \mathbf{y}, t) n^{\prime}\right)=\psi\left(\sum_{i=1}^{n-1} n_{i, i+1}^{\prime}+t\right) \tag{4.9}
\end{equation*}
$$

Note that $j\left(N_{2}\right) \tilde{N}^{n}$ is a group with \tilde{N}^{n} being a normal subgroup. Define

$$
\begin{equation*}
I_{2}(f)=\int_{n_{2} \in N_{2}(F) \backslash N_{2}(A)} \int_{v \in \tilde{N}^{n}(F) \backslash \tilde{N}^{n}(A)} \Psi_{f}\left(v j\left(n_{2}\right)\right) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) d v d n_{2} . \tag{4.10}
\end{equation*}
$$

This expression can be rewritten as $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; j\left(N_{2}\right) \tilde{N}^{n}, \theta_{2} \tilde{\chi}^{-1}\right)$, which is absolutely convergent.

4.3. Global identity 1: between $I_{1}(f)$ and $I_{2}(f)$.

Proposition 4.1. The equation $I_{1}(f)=I_{2}(f)$ holds for any $f \in \mathcal{S}\left(\operatorname{Sp}_{2 n}(A)\right)$.

Proof. This is Proposition 3.1 in [MR] and we follow its proof, namely, we consider $\Psi_{f}(g)$ in place of $\mathcal{E}(g, \phi)=\operatorname{Res}_{s=1} E\left(g, \phi_{\eta, s}\right)$ in the setting of [GRS2, Theorem 2] to obtain

$$
\begin{equation*}
I_{2}(f)=\int_{Y_{n-1, n}^{*}(A)} \int_{u \in E_{2 n}(F) \backslash E_{2 n}(A)} \Psi_{f}\left(u y^{*} \omega\right) \psi^{2 n}(u) d u d y^{*} \tag{4.11}
\end{equation*}
$$

We remark that [GRS2, Theorem 5.2] is a general statement about automorphic forms on $S p_{2 n}(A)$, hence our present use of it is justified.

Let us assume equation $\left[\operatorname{GRS} 2\right.$, (5.16)] with $\Psi_{f}(g)$ in place of $\operatorname{Res}_{s=1} E\left(g, \phi_{\eta, s}\right)$. We obtain:

$$
\begin{equation*}
\int_{E_{2 n}(F) \backslash E_{2 n}(A)} \Psi_{f}(u) \psi^{2 n}(u) d u=\int_{x \in \mathcal{X}_{0}(A)} \int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f}\left(n_{3} \bar{l}(x) \nu_{0}\right) \theta_{3}\left(n_{3}\right) d n_{3} d x . \tag{4.12}
\end{equation*}
$$

From equations (4.11), (4.12) and the definition of $I_{1}(f)$ in (4.5), we obtain the proof of the Proposition.

We must now justify our use of [GRS2, (5.16)] in the present case. The argument leading up to [GRS2, (5.16)] applies in our case up to equation [GRS2, (5.2)], namely

$$
\begin{equation*}
\int_{N^{(k)}(F) \backslash N^{(k)}(A)} \Psi_{f}(n) \chi_{k, \alpha}^{-1}(n) d n=0 \tag{4.13}
\end{equation*}
$$

whenever $1 \leq k<n$. The groups $N^{(k)}$ are defined below in equation (5).
Equation (4.13) follows from a result on disjointness of $S p_{(n, K)}$-invariant functionals and $\left(N^{(k)}, \chi_{k, \alpha}\right)$-eigenfunctionals. The local results which give disjointness of $S p_{n} \times$ $S p_{n}$-invariant functionals and $\left(N^{(k)}, \chi_{k, \alpha}\right)$-eigenfunctionals are given by [GRS1, Theorem 16,17]. In our case, the following Theorem is analogous to [GRS1, Theorem 16], it implies the analogous statement to [GRS1, Theorem 17] and justifies equation (4.13) and our use of [GRS2, (5.16)].

For $0 \leq k<n$, the subgroup $N^{(k)}$ is defined by

$$
N^{(k)}=\left\{\left.n=\left(\begin{array}{ccccc}
z & u & * & * & * \tag{4.14}\\
& 1 & 0 & y & * \\
& & I_{2 k} & 0 & * \\
& & & 1 & u^{\prime} \\
& & & & z^{*}
\end{array}\right) \right\rvert\, z \in Z_{2 n-(k+1)}\right\}
$$

and its character $\chi_{k, \alpha}$ is defined by $\chi_{k, \alpha}(n)=\psi\left(z_{1,2}+z_{2,3}+\ldots+z_{2 n-k-2,2 n-k-1}+\right.$ $\left.u_{2 n-k-1}\right) \psi(y)$. Note that on $N^{(k)}$ the characters $\chi_{n, 1}$ and $\widetilde{\chi_{n}}$ are equal.

Theorem 4.2. For $0 \leq k<n$, the Jacquet module $J_{N^{(k)}, \chi_{k, \alpha}}\left({ }^{c} I n d_{S p_{n, K}}^{S p_{2 n}} 1\right)$ is zero.

Proof. We prove this by standard Bruhat theory, we consider the double cosets $S p_{n, K} \backslash S p_{2 n} / N^{(k)}$ and show that for all $g \in S p_{2 n}\left(F_{v}\right)$ one has $\chi_{k, \alpha} \mid g^{-1} S p_{n, K} g \cap N^{(k)} \neq 1$. As before, we consider a symmetric space isomorphic to $S p_{n, K} \backslash S p_{2 n}$, namely given $g \in S p_{2 n}$ we define the
involution $\theta(g):=\mathbf{T} g \mathbf{T}^{-1}$. The centralizer of \mathbf{T} in $S p_{2 n}$ is $S p_{n, K}$. The symmetric space Y is defined by $Y=\left\{g^{-1} \theta(g) \mathbf{T} \mid g \in S p_{2 n}\right\}=\left\{g^{-1} \mathbf{T} g \mid g \in S p_{2 n}\right\}$ and $Y \cong S p_{n, K} \backslash S p_{2 n}$. We recall that $y \in Y$ admits a decomposition

$$
\begin{equation*}
y=n^{-1} w a n \text { where } n \in N_{3},(w a)^{2}=\tau,{ }^{t}(w a) J(w a)=\tau J . \tag{4.15}
\end{equation*}
$$

Now an element $v \in N^{(k)}$ is in the stabilizer of n^{-1} wan if and only if $v^{-1} n^{-1}$ wanv $=$ n^{-1} wan, that is, $\left(n v n^{-1}\right)^{-1} w a\left(n v n^{-1}\right)=w a$.

Let $U^{(k)}=\left\{\left.\left(\begin{array}{ccc}I_{2 n-k-1} & & \\ & u & \\ & & I_{2 n-k-1}\end{array}\right) \right\rvert\, u \in N_{S p_{k+1}(F)}\right\}$.
Clearly, $N_{3}=N^{(0)}=U^{(k)} N^{(k)}, U^{(k)}$ normalizes $N^{(k)}$ and for $u \in U^{(k)}, v \in N^{(k)}$, we have

$$
\begin{equation*}
\chi_{k, \alpha}\left(u v u^{-1}\right)=\chi_{k, \alpha}(v) . \tag{4.16}
\end{equation*}
$$

Note that $U^{(k)} \cap N^{(k)}$ is the center of $U^{(k)}$. From the decomposition in equation (4.15), we have that the $N^{(k)}$ orbits on Y admit representatives of the form

$$
u^{-1} w a u
$$

with $u \in U^{(k)}$ and $w a$ as in (4.15). Now an element $v \in N^{(k)}$ is in the stabilizer of u^{-1} wau if and only if $\left(u v u^{-1}\right)^{-1} w a\left(u v u^{-1}\right)=w a$ and by equation (4.16), it suffices to assume $u=1$. Thus we are reduced to solving n^{-1} wan $=w a, n \in N^{(k)}$.

We call wa satisfying $(w a)^{2}=\tau,{ }^{t}(w a) J w a=\tau J$ nonrelevant, if the above equation admits solutions n in $N^{(k)}$ such that $\chi_{k, \alpha}(n) \neq 1$. Otherwise, we call $w a$ relevant. In order to prove our theorem, we have to show all $w a$ with $(w a)^{2}=\tau,{ }^{t}(w a) J w a=\tau J$ are nonrelevant if $k<n$. We first need a Lemma.

Lemma 4.3. With definitions as in the previous theorem and for a fixed $k, 1 \leq k \leq n$, if wa is relevant then wa is of the form

$$
w a=\left(\begin{array}{ccc}
0_{2 n-k} & * & 0_{2 n-k} \tag{4.17}\\
* & * & * \\
0_{2 n-k} & * & 0_{2 n-k}
\end{array}\right)
$$

where $0_{2 n-k}$ is the zero square matrix of size $2 n-k$.

Proof. We note that solving the equation n^{-1} wan $=w a, n \in N^{(k)}$ is equivalent to solving $(w a) n(w a)=\tau n$. We denote the element $n_{i, j}$ by (i, j), so that the elements of $n \in N^{(k)}$ on which $\chi_{k, \alpha}$ acts are $(1,2),(3,4), \ldots,(2 n-k-1,2 n-k),(2 n-k, 2 n+k+1)$. We remark that under the action of left and right multiplication by $w a$, the element (i, j) maps to $(\sigma(i), \sigma(j))$ where σ denotes the natural action of $w a$.

As a first step, we note that it is enough by the symplectic structure of w to show that $(i, j)=0$ for $1 \leq i \leq 2 n-k, 4 n-i+1 \leq j \leq 4 n$ and for $1 \leq i \leq 2 n-k, 1 \leq j \leq i$.

We prove the first assertion by induction on the rows. We remark that the entries of w satisfy $(i, 4 n-i+1)=0$, which in particular gives the initial case in our induction. Now let us assume that $(i, j)=0$ for $1 \leq i \leq l-1,4 n-i+1 \leq j \leq 4 n$. We want to show that $\sigma(l) \notin\{4 n-l+2,4 n-l+3, \ldots, 4 n\}$.

We do this by contradiction, we assume $\sigma(l)=4 n-\gamma$ with $\gamma \in\{0,1, \ldots, l-3\}$. We consider the root $X=(l-1, l)$ and remark that w maps X to $(\sigma(l-1), 4 n-\gamma)$. This allows us to construct $n \in N^{(k)}$ with non trivial character action (contradicting the relevancy of $w)$ unless $\sigma(l-1) \in\{4 n-\gamma-1,4 n-\gamma, \ldots 4 n\}$, but this is impossible by the induction hypothesis. This proves that $\sigma(l) \notin\{4 n-l+3, \ldots, 4 n\}$.
We now assume that $\sigma(l)=4 n-l+2$ and again consider the root $X=(l-1, l)$. As before, w carries X to $(\sigma(l-1), 4 n-l+2)$ and this gives rise to $n \in N^{(k)}$ with nontrivial character action unless $\sigma(l-1) \in\{4 n-l+1,4 n-l+2,4 n-l+3, \ldots, 4 n\}$.

The induction hypothesis gives that $\sigma(l-1) \notin\{4 n-l+2, \ldots, 4 n\}$ so that we are left to consider the case $\sigma(l-1)=4 n-l+1$. In this case the root X is mapped to the element $(4 n-l+1,4 n-l+2)$ which is related by the symplectic structure of n to X, this allows us once more to define $n \in N^{(k)}$ with nontrivial character action, contradicting the relevancy of w. This shows that $\sigma(l) \notin\{4 n-l+2,4 n-l+3, \ldots, 4 n\}$ and concludes the induction.

We similarly prove the second claim by induction on the rows. By hypothesis we have that $(i, j)=0$ for $i \in\{2 n-k, 2 n-k-1, \ldots, 2 n-k-(l-1)\}$ with $1 \leq j \leq i$. We assume that $\sigma(2 n-k-l+1) \in\{1,2, \ldots, 2 n-k-l\}$, and we consider the root $(2 n-k-$ $(l-1), 2 n-k-l+2)$. This root gets mapped by w to $(\sigma(2 n-k-l+1), \sigma(2 n-k-l+1))$. This gives rise to $n \in N^{(k)}$ with nontrivial character action contradicting the relevancy of w unless $\sigma(2 n-k-l+2) \in\{1,2, \ldots, \sigma(2 n-k-l+1)+1\}$. This last condition is impossible by the induction hypothesis. This proves the induction step.

For the initial case, we have to prove $(i, j)=0$ whenever $i=2 n-k$ and $1 \leq j \leq i$. We assume that $\sigma(2 n-k) \in\{1,2, \ldots, 2 n-k-1\}$. We consider the root $(2 n-k, 2 n+$ $k+1)$ and remark that this root gets mapped by w to the element $(\sigma(2 n-k), \sigma(2 n+k+$ $1)$). This implies the existence of $n \in N^{(k)}$ with nontrivial character action contradicting the relevancy of w unless $\sigma(2 n+k+1) \in\{1,2, \ldots \sigma(2 n-k)-1\}$. This is impossible as a consequence of the first assertion in the proof. This proves the initial case of our induction.

We remark that if $k<n$ the matrix $w a$ of type (4.17) is not invertible, since w is in the Weyl group of $S p_{2 n}\left(F_{v}\right)$. This proves Theorem 4.2.

The following is the equivalent of [GRS1, Theorem 17] our case, the proof is the same as in [GRS1], we present it here for completeness.

Theorem 4.4. Let π be an irreducible, admissible representation of $\operatorname{Sp}_{2 n}\left(F_{v}\right)$. Assume that the space of π admits a nontrivial $S p_{(n, K)}$-invariant functional. Then for $0 \leq k<n$, $J_{N^{(k)}, \chi_{k}}(\pi)=0$, i.e. π has no nontrivial $\left(N^{(k)}, \chi_{k}\right)$-eigenfunctionals.

Proof. By [MVW, P. 91], we have that $\tilde{\pi} \cong \pi^{\delta}$ where π^{δ} stands for the composition of π with conjugation by $\check{\delta}$ where $\check{\delta}=\left(\begin{array}{ll}I_{2 n} & \\ & \delta I_{2 n}\end{array}\right) \in G S p_{2 n}\left(F_{v}\right)$ and δ is a non square in F_{v}. We remark that conjugation by $\check{\delta}$ preserves $S p_{(n, K)}$. Then if π acts on the space V_{π} and l is a $S p_{(n, K)}$ invariant functional on V_{π}, then $l\left(\pi^{\delta}(h) \xi\right)=l\left(\pi\left(h^{\delta}\right) \xi\right)=l(\xi)$ for $h \in S p_{(n, K)}$ and $\xi \in V_{\tilde{\pi}}=V_{\pi^{\delta}}$ so that l serves as an $S p_{(n, K)}$ invariant functional for π^{δ} as well, hence π admits $S p_{(n, K)}$ invariant functionals if and only if $\tilde{\pi}$ does. This happens if and only if $\tilde{\pi}$ embeds in $\operatorname{Ind}_{S p_{n, K}}^{S p_{2 n}} 1=C^{\infty}\left(S p_{n, K} \backslash S p_{2 n}\right)$, which is the same as the existence of a surjection ${ }^{c} \operatorname{Ind}_{S_{p_{n}, K}}^{S p_{2 n}} 1 \rightarrow \tilde{\tilde{\pi}} \cong \pi$ and by the exactness of Jacquet functors and Theorem 4.2, we get $J_{N^{(k)}, \chi_{k}}(\pi)=0$

To relate the distributions $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)$ and $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$, we require two other trace identities. The following trace identities are in [MR], we state them here for completeness.
4.4. Global identity 2 : between $I_{1}(f)$ and $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)$. Recall:

$$
\begin{equation*}
I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)=\int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f}(n) \theta_{3}(n) d n . \tag{4.18}
\end{equation*}
$$

Theorem 4.5. There exist maps $\epsilon_{2, v}$ from $\mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right)$ to itself, such that
(1) the equation

$$
\begin{equation*}
I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)=I_{1}\left(f^{\prime}\right) \tag{4.19}
\end{equation*}
$$

holds for $f=\otimes f_{v}, f^{\prime}=\otimes f_{v}^{\prime}$ when $f_{v}^{\prime}=\epsilon_{2, v}\left(f_{v}\right)$.
(2) for v a good place, $\epsilon_{2, v}$ restricts to identity map on Hecke algebra $\mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)_{v}$.

Similarly there exist maps $\epsilon_{2, v}^{\prime}$ satisfying condition (2) such that (4.19) holds when $f_{v}=$ $\epsilon_{2, v}^{\prime}\left(f_{v}^{\prime}\right)$.

Proof. We set $f_{v}^{1}(g)=f_{v}^{\prime}(g \omega)$ for all places v. Then we have that

$$
\begin{equation*}
I_{1}\left(f^{\prime}\right)=\int_{y^{*} \in Y_{n-1, n}^{*}(A)} \int_{x \in \mathcal{X}_{0}(A)} \int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f^{1}}\left(n \bar{l}(x) \nu_{0} y^{*}\right) \theta_{3}(n) d n d x d y^{*} . \tag{4.20}
\end{equation*}
$$

Recall that ω is in the maximal compact subgroup of $S p_{2 n}\left(F_{v}\right)$ for v an odd p-adic place. Thus we have that if f_{v}^{\prime} is a Hecke function at a good place v, then $f_{v}^{1}(g)=f_{v}^{\prime}(g)$.

Next we note that $Y_{n-1, n}^{*}$ is an abelian group which can be written as $Y_{n-1, n}^{*}=\prod_{i=1}^{n-1} K_{i}$ where

$$
\begin{equation*}
K_{i}=\left\{i_{1}\left(1_{2 n}+\sum_{j=1}^{i} t_{j} e_{2 i, 2 j-1}\right)\right\} . \tag{4.21}
\end{equation*}
$$

Let $K^{i}=\prod_{l=1}^{i} K_{l}$, note that $K^{0}=\left\{1_{4 n}\right\}$ and $K^{n-1}=Y_{n-1, n}^{*}$.
Let

$$
\begin{equation*}
h_{f}(g)=\int_{x \in \mathcal{X}_{0}(A)} \int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f}\left(n \bar{l}(x) \nu_{o} g\right) \theta_{3}(n) d n d x . \tag{4.22}
\end{equation*}
$$

Let L be a space of smooth functions on $S p_{2 n}(A)$ such that $f(g) \in L$ implies $f(u g)=$ $\psi^{2 n}\left(u^{-1}\right) f(g)$ for $u \in E_{2 n}$. From equation (4.12), we have that $h_{f}(g) \in L$. The righthand side of equation (4.20) is

$$
\begin{equation*}
\int_{K^{n-1}(A)} h_{f^{1}}(y) d y . \tag{4.23}
\end{equation*}
$$

From the Theorem of Dixmier-Mallavin [DMa], we have that f_{v}^{1} can be written as

$$
\begin{equation*}
f_{v}^{1}(g)=\sum_{\alpha_{v}} \int_{F_{v}^{i}} \phi_{\alpha_{v}}\left(x_{1}, \ldots, x_{i}\right) f_{\alpha_{v}}\left(g r_{i}\left(x_{1}, \ldots, x_{i}\right)\right) d\left(x_{1}, \ldots, x_{i}\right) \tag{4.24}
\end{equation*}
$$

for some $f_{\alpha_{v}} \in \mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right)$ and $\phi_{\alpha_{v}} \in \mathcal{S}\left(F_{v}^{i}\right)$; here r_{i} is the homomorphism from A^{i-1} to $S p_{2 n}(A)$ given by

$$
\begin{equation*}
r_{i}\left(t_{1}, \ldots, t_{i-1}\right)=i_{1}\left(1_{2 n}+\sum_{j=1}^{i-1} t_{j} e_{2 j-1,2 i}\right) \tag{4.25}
\end{equation*}
$$

Moreover, at good places f_{v}^{1} is a Hecke function and can be expressed as above with a single α_{v} with $\phi_{\alpha_{v}}$ being the characteristic function of the integer lattice and $f_{\alpha_{v}}=f_{v}^{1}$.

We have that

$$
\begin{equation*}
h_{f^{1}}(g)=\sum_{\alpha} \int_{A^{i}} \phi_{\alpha}\left(x_{1}, \ldots, x_{i}\right) h_{f \alpha}\left(g r_{i}\left(x_{1}, \ldots, x_{i}\right)\right) d\left(x_{1}, \ldots, x_{i}\right) \tag{4.26}
\end{equation*}
$$

for some $f_{\alpha} \in \mathcal{S}\left(\operatorname{Sp}_{2 n}(A)\right)$ and $\phi_{\alpha} \in \mathcal{S}\left(A^{i}\right)$.
From the proof of [GRS2, Lemma 5.1], we get the following:

Lemma 4.6. For fixed i and a function $h_{i}(g) \in L$, such that $h_{i}(g)$ equals

$$
\sum_{\alpha} \int_{A^{i}} \phi_{\alpha}\left(x_{1}, \ldots, x_{i}\right) h_{\alpha}\left(g r_{i}\left(x_{1}, \ldots, x_{i}\right)\right) d\left(x_{1}, \ldots, x_{i}\right)
$$

for some $h_{\alpha} \in L$ and $\phi_{\alpha} \in \mathcal{S}\left(A^{i}\right)$, we have

$$
\begin{equation*}
\int_{K^{i}(A)} h_{i}(y) d y=\int_{K^{i-1}(A)} h_{i-1}(y) d y, \tag{4.27}
\end{equation*}
$$

where

$$
h_{i-1}(g)=\sum_{\alpha} \int_{A^{i}} \widehat{\phi_{\alpha}}\left(x_{1}, \ldots, x_{i}\right) h_{\alpha}\left(g r_{i}\left(x_{1}, \ldots, x_{i}\right)\right) d\left(x_{1}, \ldots, x_{i}\right),
$$

$\widehat{\phi_{\alpha}}$ is the Fourier transform of ϕ_{α} :

$$
\widehat{\phi_{\alpha}}\left(x_{1}, \ldots, x_{i}\right)=\int \phi_{\alpha}\left(t_{1}, \ldots, t_{i}\right) \psi\left(\sum_{j=1}^{i} x_{i} t_{i}\right) d\left(t_{1}, \ldots, t_{i}\right) .
$$

From equation(4.27), we get a $f_{n-2}^{1}=\otimes f_{n-2, v}^{1} \in \mathcal{S}\left(\operatorname{Sp}_{2 n}(A)\right)$ defined by

$$
\begin{equation*}
f_{n-2, v}^{1}(g)=\sum_{\alpha_{v}} \int_{F_{v}^{i}} \widehat{\phi_{\alpha_{v}}}\left(x_{1}, \ldots, x_{i}\right) f_{\alpha_{v}}\left(g r_{i}\left(x_{1}, \ldots, x_{i}\right)\right) d\left(x_{1}, \ldots, x_{i}\right), \tag{4.28}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\int_{K^{n-1}(A)} h_{f^{1}}(y) d y=\int_{K^{n-2}(A)} h_{f_{n-2}^{1}}(y) d y . \tag{4.29}
\end{equation*}
$$

Note that from (4.28), $f_{n-2, v}^{1}=f_{v}^{1}$ when f_{v}^{1} is a Hecke function at a good place v. Continuing the procedure we get eventually $f^{2}=f_{0}^{1} \in \mathcal{S}\left(\operatorname{Sp}_{2 n}(A)\right)$, with $f_{v}^{2}=f_{v}^{1}$ when f_{v}^{1} is a Hecke function at a good place v, and

$$
\int_{K^{n-1}(A)} h_{f^{1}}(y) d y=\int_{K^{0}(A)} h_{f_{0}^{1}}(y) d y=h_{f^{2}}\left(1_{4 n}\right) .
$$

We get that the righthand side of (4.20) equals:

$$
\begin{equation*}
\int_{x \in \mathcal{X}_{0}(A)} \int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f^{2}}\left(n \bar{l}(x) \nu_{0}\right) \theta_{3}(n) d n d x . \tag{4.30}
\end{equation*}
$$

Moreover $f_{v}^{2}=f_{v}^{1}$ when f_{v}^{1} is a Hecke function at a good place v.

By letting $f^{3}(g)=f^{2}\left(g \nu_{0}\right)$, we get (4.30) equals

$$
\begin{equation*}
\int_{x \in \mathcal{X}_{0}(A)} \int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f^{3}}(n \bar{l}(x)) \theta_{3}(n) d n d x . \tag{4.31}
\end{equation*}
$$

Clearly $f_{v}^{3}=f_{v}^{2}$ when f_{v}^{2} is a Hecke function at a good place v.
We now consider

$$
\bar{h}_{f}(g)=\int_{N_{3}(F) \backslash N_{3}(A)} \Psi_{f}(n g) \theta_{3}(n) d n .
$$

We have that $\bar{h}_{f}(g) \in \bar{L}$, where \bar{L} consists of functions satisfying $\phi(n g)=\theta_{3}\left(n^{-1}\right) \phi(g)$. As in Lemma 4.6, we have that the equation

$$
\begin{equation*}
\int_{\bar{K}^{i}(A)} \bar{h}_{i}(y) d y=\int_{\bar{K}^{i-1}(A)} \bar{h}_{i-1}(y) d y \tag{4.32}
\end{equation*}
$$

holds for $\bar{h}_{i}, \bar{h}_{i-1} \in \bar{L}$ related as in Lemma 4.6. Here the subgroups \bar{K}^{i} are defined as on [GRS2, p.897]; we note that $\bar{K}^{2 n}=\bar{l}\left(\mathcal{X}_{0}\right)$ and $\bar{K}^{1}=\left\{1_{4 n}\right\}$. Similar to the above argument, using (4.32) we get a function $f^{4} \in \mathcal{S}\left(\operatorname{Sp}_{2 n}(A)\right)$, with $f_{v}^{4}=f_{v}^{3}$ when f_{v}^{3} is a Hecke function at a good place v, such that (4.31) equals $\bar{h}_{f^{4}}\left(1_{4 n}\right)$. Since $\bar{h}_{f^{4}}\left(1_{4 n}\right)$ is just $I_{S p_{2 n}}\left(f^{4}: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)$, we can set $f=\epsilon_{2}^{\prime}\left(f^{\prime}\right)=f^{4}$. Then $f_{v}=f_{v}^{\prime}$ when f_{v}^{1} is a Hecke function at a good place v, and the equality (4.19) holds.

As each of the steps above can be reversed, given f, we can find $f^{\prime}=\epsilon_{2}(f)$ to make the equality (4.19) hold.
4.5. Heisenberg representation and definition of $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$. Recall the definition of the map η in (4.8). The character ψ determines an irreducible unitary
representation of Heisenberg group U^{n} acting on $\mathcal{S}\left(F^{n}\right)$, denoted again by ω_{ψ}; then:

$$
\begin{align*}
\omega_{\psi}(\eta(\mathbf{x}, 0,0)) \Phi(X) & =\Phi(X+\mathbf{x}) \tag{4.33}\\
\omega_{\psi}(\eta(0, \mathbf{y}, t)) \Phi(X) & =\psi\left(t+2 \operatorname{tr}\left(\mathbf{y} \sigma_{n} X\right)\right) \Phi(X) \tag{4.34}\\
\omega_{\psi}(\widetilde{g}) \omega_{\psi}\left(j(g)^{-1} u j(g)\right) \Phi(X) & =\omega_{\psi}(u) \omega_{\psi}(\widetilde{g}) \Phi(X), g \in \operatorname{Sp}_{n}, u \in U^{n} \tag{4.35}
\end{align*}
$$

For $n \in N_{3}$, we will use $\operatorname{pr}(n)$ to denote the middle $2 n+2 \times 2 n+2$ block of n. Then $\operatorname{pr}(n)=j\left(n_{2}\right) \eta(\mathbf{x}, \mathbf{y}, t)$ for some $\eta(\mathbf{x}, \mathbf{y}, t)$ in the Heisenberg group and $n_{2} \in N_{2}$. We define:

$$
\begin{equation*}
\omega_{\psi^{-1}}(n) \Phi(X)=\omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \omega_{\psi^{-1}}(\eta(\mathbf{x}, \mathbf{y}, t)) \Phi(X), \operatorname{pr}(n)=j\left(n_{2}\right) \eta(\mathbf{x}, \mathbf{y}, t) \tag{4.36}
\end{equation*}
$$

Clearly the above defines an action of N_{3} on the space $\mathcal{S}\left(A^{n}\right)$. Define the Theta function

$$
\begin{equation*}
\Theta_{\psi^{-1}}^{\Phi}(n)=\sum_{X \in F^{n}} \omega_{\psi^{-1}}(n) \Phi(X) \tag{4.37}
\end{equation*}
$$

Define a character θ_{4} on N_{3} by setting

$$
\begin{equation*}
\theta_{4}(n)=\psi\left(\sum_{i=1}^{n-1}-n_{i, i+1}\right) \theta_{2}\left(n_{2}\right), \text { if } \operatorname{pr}(n)=j\left(n_{2}\right) \eta(\mathbf{x}, \mathbf{y}, t) \tag{4.38}
\end{equation*}
$$

Define $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ to be:

$$
\begin{equation*}
\int_{l \in S p_{n, K}(F) \backslash S p_{n, K}(A)} \int_{n \in N_{3}(F) \backslash N_{3}(A)} K_{f}(l, n) \theta_{4}(n) \Theta_{\psi^{-1}}^{\Phi}(n) d n d l . \tag{4.39}
\end{equation*}
$$

4.6. Global identity 3: between $I_{2}(f)$ and $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$.

Theorem 4.7. We have $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)=I_{2}\left(f^{\prime}\right)$ when

$$
\begin{equation*}
f^{\prime}(g)=\int_{X \in A^{n}} \Phi(X) f(g \eta(X, \mathbf{0}, 0)) d X \tag{4.40}
\end{equation*}
$$

Proof. We have that $I_{2}\left(f^{\prime}\right)$ is equal to

$$
\int_{n_{2} \in N_{2}(F) \backslash N_{2}(A)} \int_{v \in \tilde{N}^{n}(F) \backslash \tilde{N}^{n}(A)} \Psi_{f^{\prime}}\left(v j\left(n_{2}\right)\right) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) d v d n_{2}
$$

which is

$$
\begin{equation*}
\int_{n_{2} \in N_{2}(F) \backslash N_{2}(A)} \int_{v \in \tilde{N}^{n}(F) \backslash \tilde{N}^{n}(A)} \int_{X \in A^{n}} \Psi_{f}\left(v j\left(n_{2}\right) \eta(X, 0,0)\right) \Phi(X) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) d X d v d n_{2} . \tag{4.41}
\end{equation*}
$$

From equations (2.1), (2.2) and (4.33), we get

$$
\begin{equation*}
\Phi(X)=\omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \omega_{\psi^{-1}}(\eta(X, 0,0)) \Phi(0) \tag{4.42}
\end{equation*}
$$

Also, recall that $U^{n}=\{\eta(\mathbf{x}, \mathbf{y}, t)\}$, while $U_{0}^{n}=\{\eta(\mathbf{0}, \mathbf{y}, t)\}$ and U_{0}^{n} is normal in U^{n}. Thus, we may identify $\eta(\mathbf{X}, \mathbf{0}, 0)$ with $U_{0}^{n} \backslash U^{n}(A)$. Then $I_{2}\left(f^{\prime}\right)$ is equal to
$\int_{n_{2} \in N_{2}(F) \backslash N_{2}(A)} \int_{v \in \tilde{N}^{n}(F) \backslash \tilde{N}^{n}(A)} \int_{u \in U_{0}^{n} \backslash U^{n}(A)} \Psi_{f}\left(v j\left(n_{2}\right) u\right) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \omega_{\psi^{-1}}(u) \Phi(0) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) d u d v d n_{2}$.
Note that $j\left(N_{2}\right)$ acts on U^{n} by conjugation and it stabilizes U_{0}^{n}; we change variables $u \mapsto j\left(n_{2}\right)^{-1} u j\left(n_{2}\right)$, we obtain
$\int_{N_{2}(F) \backslash N_{2}(A)} \int_{v \in \tilde{N}^{n}(F) \backslash \tilde{N}^{n}(A)} \int_{u \in U_{0}^{n} \backslash U^{n}(A)} \Psi_{f}\left(v u j\left(n_{2}\right)\right) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \omega_{\psi^{-1}}\left(j\left(n_{2}\right)^{-1} u j\left(n_{2}\right)\right) \Phi(0) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) d u d v d n_{2}$
By equation (4.35), this is
$\int_{n_{2} \in N_{2}(F) \backslash N_{2}(A)} \int_{v \in \tilde{N}^{n}(F) \backslash \tilde{N}^{n}(A)} \int_{u \in U_{0}^{n} \backslash U^{n}(A)} \Psi_{f}\left(v u j\left(n_{2}\right)\right) \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(0) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) d u d v d n_{2}$.
Since by definition, $\tilde{N}^{n}=U_{0}^{n} \hat{N}^{n}$, we get the above expression is
$\int_{n_{2} \in N_{2}(F) \backslash N_{2}(A)} \int_{u \in U_{0}^{n}(F) \backslash U^{n}(A)} \int_{v \in \hat{N}^{n}(F) \backslash \hat{N}^{n}(A)} \Psi_{f}\left(v u j\left(n_{2}\right)\right) \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(0) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) d u d v d n_{2}$,
which is
$\int_{N_{2}(F) \backslash N_{2}(A)} \int_{u \in U^{n}(F) \backslash U^{n}(A)} \int_{u^{\prime} \in U_{0}^{n}(F) \backslash U^{n}(F)} \int_{v \in \hat{N}^{n}(F) \backslash \hat{N}^{n}(A)} \Psi_{f}\left(v u^{\prime} u j\left(n_{2}\right)\right) \omega_{\psi^{-1}}\left(u^{\prime} u\right) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(0) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v)$.
We change variables $v \mapsto u^{\prime} v\left(u^{\prime}\right)^{-1}$, we get
$\int_{N_{2}(F) \backslash N_{2}(A)} \int_{u \in U^{n}(F) \backslash U^{n}(A)} \int_{v \in \hat{N}^{n}(F) \backslash \hat{N}^{n}(A)} \sum_{u^{\prime} \in U_{0}^{n}(F) \backslash U^{n}(F)} \Psi_{f}\left(u^{\prime} v u j\left(n_{2}\right)\right) \omega_{\psi^{-1}}\left(u^{\prime} u\right) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(0) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v)$.
Since Ψ_{f} is $S p_{2 n}(F)$-left invariant and $\tilde{\chi}_{n}$ is stabilized under conjugation by U^{n}, we obtain

$$
\int_{N_{2}(F) \backslash N_{2}(A)} \int_{u \in U^{n}(F) \backslash U^{n}(A)} \int_{v \in \hat{N}^{n}(F) \backslash \hat{N}^{n}(A)} \Psi_{f}\left(v u j\left(n_{2}\right)\right) \sum_{u^{\prime} \in U_{0}^{n}(F) \backslash U^{n}(F)} \omega_{\psi^{-1}}\left(u^{\prime} u\right) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(0) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v) .
$$

Identifying $U_{0}^{n} \backslash U^{n}$ with $\eta(\mathbf{X}, \mathbf{0}, 0)$ and using equation (4.33), we obtain

$$
\sum_{u^{\prime} \in U_{0}^{n}(F) \backslash U^{n}(F)} \omega_{\psi^{-1}}\left(u^{\prime} u\right) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(0)=\sum_{X \in F^{n}} \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(X) .
$$

So we have that $I_{2}\left(f^{\prime}\right)$ is
$\int_{N_{2}(F) \backslash N_{2}(A)} \int_{u \in U^{n}(F) \backslash U^{n}(A)} \int_{v \in \hat{N}^{n}(F) \backslash \hat{N}^{n}(A)} \Psi_{f}\left(v u j\left(n_{2}\right)\right) \sum_{X \in F^{n}} \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(X) \theta_{2}\left(n_{2}\right) \tilde{\chi}_{n}^{-1}(v)$.
On the other hand, we have that $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ is equal to

$$
\int_{n \in N_{3}(F) \backslash N_{3}(A)} \Psi_{f}(n) \theta_{4}(n) \Theta_{\psi^{-1}}^{\Phi}(n) d n
$$

Since $\hat{N}^{n+1} \backslash N_{3} \cong j\left(N_{2}\right)$ and $\hat{N}^{n} \backslash \hat{N}^{n+1} \cong U^{n}$, we obtain

$$
\int_{N_{2}(F) \backslash N_{2}(A)} \int_{U^{n}(F) \backslash U^{n}(A)} \int_{\hat{N}^{n}(F) \backslash \hat{N}^{n}(A)} \Psi_{f}\left(v u j\left(n_{2}\right)\right) \theta_{4}\left(v u j\left(n_{2}\right)\right) \Theta_{\psi^{-1}}^{\Phi}\left(v u j\left(n_{2}\right)\right) d v d u d n_{2} .
$$

We have that

$$
\Theta_{\psi^{-1}}^{\Phi}\left(\operatorname{vuj}\left(n_{2}\right)\right)=\sum_{X \in F^{n}} \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}\left(\widetilde{n_{2}}\right) \Phi(X)
$$

and $\theta_{4}\left(v u j\left(n_{2}\right)\right)=\theta_{4}(v) \theta_{2}\left(n_{2}\right)$. Furthermore, θ_{4} agrees with $\tilde{\chi}_{n}^{-1}$ on \hat{N}^{n}. Thus we obtain $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ is equal to equation (4.46).

Corollary 4.8. There exist maps $\epsilon_{3, v}$ from $\mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right)$ to $\mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right) \otimes \mathcal{S}\left(F_{v}^{n}\right)$, such that:
(1) at a good place $v, \epsilon_{3, v}\left(f_{v}\right)=f_{v} \otimes \Phi_{0, v}$ when f_{v} is a Hecke function and $\Phi_{0, v}$ is the characteristic function of \mathcal{O}_{v}^{n}.
(2) when $\epsilon_{3}=\otimes \epsilon_{3, v}$ and $f \otimes \Phi=\epsilon_{3}\left(f^{\prime}\right)$:

$$
\begin{equation*}
I_{2}\left(f^{\prime}\right)=I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right) . \tag{4.47}
\end{equation*}
$$

Proof. From Theorem 4.7, to define $\epsilon_{3, v}\left(f_{v}^{\prime}\right)$ so that (4.47) holds, we only need to find f and Φ so that (4.40) holds. The map $(f, \Phi) \mapsto f^{\prime}$ defined by (4.40) is a convolution, it clearly factors into local maps. The existence of f_{v} and Φ_{v} follows from the result of Dixmier-Malliavin [DMa]. For v a good place, it is clear that when f_{v} is a Hecke function and $\Phi_{v}=\Phi_{0, v}$,

$$
\begin{equation*}
\int_{X \in F_{v}^{n}} f_{v}(g \eta(X, 0,0)) \Phi_{0, v}(X) d X=f_{v}(g) . \tag{4.48}
\end{equation*}
$$

Thus at good place v, we can choose $f_{v}=f_{v}^{\prime}$ and Φ_{v} to be $\Phi_{0, v}$.
We remark that equation (4.40) defines the map $\epsilon_{3, v}^{\prime}$ from $\mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right) \otimes \mathcal{S}\left(F_{v}^{n}\right)$ to $\mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right)$, with the property that at good places $\epsilon_{3, v}^{\prime}\left(f_{v} \otimes \Phi_{0, v}\right)=f_{v}$ when f_{v} is a Hecke function, and equation (4.47) holds when $f^{\prime}=\epsilon_{3}^{\prime}(f \otimes \Phi)$.
4.7. Conclusion. Combining the three global identities on $S p_{2 n}$, we get:

Corollary 4.9. There exist maps $\epsilon_{4, v}$ from $\mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right)$ to $\mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right) \otimes \mathcal{S}\left(F_{v}^{n}\right)$ such that: (1) at a good place $v, \epsilon_{4, v}\left(f_{v}\right)=f_{v} \otimes \Phi_{0, v}$ when f_{v} is a Hecke function and $\Phi_{0, v}$ is the characteristic function of \mathcal{O}_{v}^{n}.
(2) when $\epsilon_{4}=\otimes \epsilon_{4, v}$ and $f \otimes \Phi=\epsilon_{4}\left(f^{\prime}\right)$:

$$
\begin{equation*}
I_{S p_{2 n}}\left(f^{\prime}: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)=I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right) \tag{4.49}
\end{equation*}
$$

Proof. Define $\epsilon_{4, v}=\epsilon_{3, v} \epsilon_{2, v}$. The claim follows from Proposition 4.1, Theorem 4.5 and Corollary 4.8.

We remark that one can also define the maps $\epsilon_{4, v}^{\prime}=\epsilon_{2, v}^{\prime} \epsilon_{3, v}^{\prime}$ from $\mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right) \otimes \mathcal{S}\left(F_{v}^{n}\right)$ to $\mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right)$, such that at a good place $\epsilon_{4, v}^{\prime}\left(f_{v} \otimes \Phi_{0, v}\right)=f_{v}$ when f_{v} is a Hecke function, and equation (4.49) holds when $f^{\prime}=\epsilon_{4}^{\prime}(f \otimes \Phi)$.

5. Orbital integral decompositions

In this section we wish to relate the distributions $I_{S p_{2 n}}\left(f: S p_{(n, K)}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ and $I_{\widetilde{S p_{n}}}\left(\widetilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right)$.

As before, we consider a space isomorphic to $S p_{n, K} \backslash S p_{2 n}$, namely given $g \in S p_{2 n}$ we define the involution $\theta(g):=\mathbf{T} g \mathbf{T}^{-1}$. The centralizer of \mathbf{T} in $S p_{2 n}$ is $S p_{n, K}$. The space Y is defined by $Y=\left\{g^{-1} \theta(g) \mathbf{T} \mid g \in S p_{2 n}\right\}=\left\{g^{-1} \mathbf{T} g \mid g \in S p_{2 n}\right\}$ and we have that $Y \cong$ $S p_{n, K} \backslash S p_{2 n}$.

We unwind the distribution $I_{S p_{2 n}}\left(f: S p_{(n, K)}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$, we have that it equals

$$
\begin{equation*}
\int_{l_{3} \in S p_{n, K}(F) \backslash S p_{n, K}(A)} \int_{n_{3} \in N_{3}(F) \backslash N_{3}(A)} K_{f}\left(l_{3}, n_{3}\right) \theta_{4}\left(n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n_{3}\right) d l_{3} d n_{3} \tag{5.1}
\end{equation*}
$$

(5.2) $=\int_{l_{3} \in S p_{n, K}(F) \backslash S p_{n, K}(A)} \int_{n_{3} \in N_{3}(F) \backslash N_{3}(A)} \sum_{g_{3} \in S p_{2_{n}}(F)} f_{3}\left(l_{3}^{-1} g_{3} n_{3}\right) \theta_{4}\left(n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n_{3}\right) d l_{3} d n_{3}$
$(5.3)=\sum_{g_{3} \in S p_{n, K}(F) \backslash S p_{2 n}(F) / N_{3}(F)_{l_{3} \in H_{3}(A)} \int_{n_{3} \in N_{3, g_{3}}^{\prime}(F) \backslash N_{3}(A)} f_{3}\left(l_{3}^{-1} g_{3} n_{3}\right) \theta_{4}\left(n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n_{3}\right) d l_{3} d n_{3}}$
where $N_{3, g_{3}}^{\prime}:=g_{3}^{-1} S p_{n, K} g_{3} \cap N_{3}$. We now define

$$
\begin{equation*}
F\left(g^{-1} \mathbf{T} g\right):=\int_{l_{3} \in S P_{n, K}(A)} f\left(l_{3}^{-1} g\right) d l_{3} \tag{5.4}
\end{equation*}
$$

then the distribution $I_{S p_{2 n}}\left(f: S p_{(n, K)}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ is

$$
\begin{equation*}
\sum_{g_{3} \in S p_{n, K}(F) \backslash S p_{2 n}(F) / N_{3}(F)_{n_{3} \in N_{3, g_{3}}^{\prime}} \int_{F) \backslash N_{3}(A)} F\left(n_{3}^{-1} g_{3}^{-1} \mathbf{T} g_{3} n_{3}\right) \theta_{4}\left(n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n_{3}\right) d n_{3} ~ . ~} \tag{5.5}
\end{equation*}
$$

We recall from Lemma (3.3) and Corollary (3.4) that elements in Y admit a decomposition $y=n^{-1}$ wan where $w \in W_{3}$ and a is a diagonal matrix of size $4 n$ satisfying $(w a)^{2}=\tau$ and ${ }^{t}(w a) J(w a)=\tau J$. Moreover, with the action of N_{3} by conjugation, to each representative $g_{3} \in S p_{n, K} \backslash S p_{2 n} / N_{3}$ there corresponds a $w a$ as above such that $g^{-1} \mathbf{T} g$ and $w a$ are in the same N_{3} orbits of Y.

Lemma 5.1. If $g \in S p_{2 n}$ satisfies $g^{-1} \mathbf{T} g=w a$, then $N_{3, g}^{\prime}=N_{3, w a}$

Proof. The condition $n \in N_{3, w a}$ is equivalent to $n \in N_{3}$ with n^{-1} wan $=w a$, or $n^{-1} g^{-1} \mathbf{T} g n=$ $g^{-1} \mathbf{T} g$. This is equivalent to $g n^{-1} g^{-1} \mathbf{T} g n g^{-1}=\mathbf{T}$, or $n \in g^{-1} S p_{n, K} g \cap N_{3}$.

We get that $I_{S p_{2 n}}\left(f: S p_{(n, K)}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ equals

$$
\begin{equation*}
\sum_{w a,(w a)^{2}=\tau,{ }^{t} w a J=J w a_{n_{3} \in N_{3, w a}(F) \backslash N_{3}(A)}} F\left(n_{3}^{-1} w a n_{3}\right) \theta_{4}\left(n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n_{3}\right) d n_{3} . \tag{5.6}
\end{equation*}
$$

We factor the integral as

$$
\begin{equation*}
\int_{n_{3} \in N_{3, w a}(A) \backslash N_{3}(A)} F\left(n^{-1} w a n\right) \int_{n^{\prime} \in N_{3, w a}(F) \backslash N_{3, w a}(A)} \theta_{4}\left(n^{\prime} n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n^{\prime} n_{3}\right) d n^{\prime} d n_{3} . \tag{5.7}
\end{equation*}
$$

Recall that the subgroup $N^{(k)}$ is defined by

$$
N^{(k)}=\left\{\left.n=\left(\begin{array}{ccccc}
z & u & * & * & * \\
& 1 & 0 & y & * \\
& & I_{2 k} & 0 & * \\
& & & 1 & u^{\prime} \\
& & & & z^{*}
\end{array}\right) \right\rvert\, z \in Z_{2 n-(k+1)}\right\}
$$

The subgroup $N^{(n)}$ can also be described as follows. We have that an element of \widetilde{N}^{n} can be written as $\eta(\mathbf{0}, \mathbf{y}, t) n$ with $n \in \widehat{N}^{n} ; N^{(n)}$ consists of elements with $\mathbf{y}=0$. Then for $n^{\prime} \in N^{(n)}$ we have $\theta_{4}\left(n^{\prime} n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n^{\prime} n_{3}\right)=\widetilde{\chi}_{n}^{-1}\left(n^{\prime}\right) \theta_{4}\left(n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n_{3}\right)$. For the inner integral in equation (5.7) to be nonzero, $\widetilde{\chi}_{n}$ must be trivial on $N^{(n)} \cap N_{3, w a}$.

Lemma 5.2. If $\tilde{\chi}_{n}$ is trivial on $N^{(n)} \cap N_{3, w a}$, then w has the form $w=\left(\begin{array}{cccc}0 & * & * & 0 \\ * & 0 & 0 & * \\ * & 0 & 0 & * \\ 0 & * & * & 0\end{array}\right)$, where each entry represents an $n \times n$ block.

Proof. Using Lemma (4.3) in the case $k=n$, we get that w is of the form:

$$
w=\left(\begin{array}{cccc}
0 & A & B & 0 \\
C & D & E & F \\
G & H & I & J \\
0 & K & L & 0
\end{array}\right)
$$

where each entry represents a $n \times n$ block. Since w^{2} is a diagonal matrix, we get that

$$
\left(\begin{array}{cc}
A & B \\
K & L
\end{array}\right)\left(\begin{array}{cc}
D & E \\
H & I
\end{array}\right)=0,\left(\begin{array}{cc}
A & B \\
K & L
\end{array}\right)\left(\begin{array}{cc}
C & F \\
G & J
\end{array}\right) \text { is invertible. }
$$

Thus $D=E=H=I=0$ and w is of the form in the Lemma.

We wish to define a bijection between $w^{\prime} a^{\prime} \in S p_{n}$ and $w a \in S p_{2 n}$ with $(w a)^{2}=$ $\tau_{,}^{t}(w a) J=J(w a)$; for this purpose we introduce the matrix $E:=\left(\begin{array}{lll} & \tau_{n} & \\ 1_{n} & & \\ & & \\ & & \tau_{n} \\ & & 1_{n}\end{array}\right)$ and consider the map on $g \in S p_{n}$ given by

$$
\begin{equation*}
P(g)=j(g)^{-1} E j(g) \tag{5.8}
\end{equation*}
$$

Lemma 5.3. The map P defines a bijection from the set of $w^{\prime} a^{\prime} \in S p_{n}$ to the set wa where $w \in W_{3}$ and a is a diagonal matrix of size $4 n$ with $(w a)^{2}=\tau,{ }^{t}(w a) J(w a)=\tau J$, with w as in Lemma 5.2.

Proof. We note that $E^{2}=\tau$, hence $P\left(w^{\prime} a^{\prime}\right)^{2}=\tau$. We also have that ${ }^{t} P\left(w^{\prime} a^{\prime}\right) J P\left(w^{\prime} a^{\prime}\right)=$ τJ using that ${ }^{t} E J E=\tau E$. Also, $P\left(w^{\prime} a^{\prime}\right)$ is clearly of the form in Lemma 5.2.

For g a square matrix of size $4 n$, we denote by $\rho^{\prime}(g)$ its middle $2 n \times 2 n$ block. It's clear that $\rho^{\prime}\left(E P\left(w^{\prime} a^{\prime}\right) / \tau\right)=w^{\prime} a^{\prime}$, so P is an injection.

On the other hand, given $w a$ as in Lemma 5.2, we have that $E(w a) / \tau$ verifies

$$
{ }^{t}(E(w a) / \tau) J(E(w a) / \tau)={ }^{t}(w a) J(w a) / \tau=J,
$$

thus $E(w a) / \tau \in S p_{2 n}$. The element $E w a / \tau \in S p_{2 n}$ is of the form $\left(\begin{array}{cccc}* & 0 & 0 & * \\ 0 & * & * & 0 \\ 0 & * & * & 0 \\ * & 0 & 0 & *\end{array}\right)$ and any $g \in S p_{2 n}$ of this form satisfies $\rho^{\prime}(g) \in S p_{n}$. Hence $\rho^{\prime}(E w a / \tau)$ has the form $w^{\prime} a^{\prime}$ where $w^{\prime} \in W_{2}$ and a^{\prime} is diagonal in $S p_{n}$.

We prove surjectivity by showing the identity

$$
\begin{equation*}
P\left(\rho^{\prime}(E(w a) / \tau)\right)=w a \tag{5.9}
\end{equation*}
$$

Write $w a=\left(\begin{array}{cccc}0 & a & b & 0 \\ c & 0 & 0 & d \\ e & 0 & 0 & f \\ 0 & g & h & 0\end{array}\right)$ so that $\rho^{\prime}(E w a / \tau)=\left(\begin{array}{cc}a / \tau & b / \tau \\ g & h\end{array}\right)$. Denote this matrix $w^{\prime} a^{\prime}$.
It suffices to show

$$
\tau=E j\left(w^{\prime} a^{\prime}\right)(w a) j\left(w^{\prime} a^{\prime}\right)^{-1}
$$

and this is easily checked.

From the previous lemma, we see that the distribution $I_{S p_{2 n}}\left(f: S p_{(n, K)}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ may be written as

$$
\begin{equation*}
\sum_{w a,(w a)^{2}=\tau, t(w a) J(w a)=\tau J_{n_{3} \in N_{3}, w a}} \int_{(F) \backslash N_{3}(A)} F\left(n_{3}^{-1} w a n_{3}\right) \theta_{4}\left(n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n_{3}\right) d n_{3} \tag{5.10}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{w a,(w a)^{2}=\tau, r^{t}(w a) J(w a)=\tau J_{n_{3} \in N_{3, w a}(A) \backslash N_{3}(A)}} F\left(n^{-1} w a n\right) \int_{n^{\prime} \in N_{3, w a}(F) \backslash N_{3, w a}(A)} \theta_{4}\left(n^{\prime} n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n^{\prime} n_{3}\right) d n^{\prime} d n_{3} \tag{5.11}
\end{equation*}
$$

Given $w^{\prime} a^{\prime}$ with w^{\prime} in the Weyl group of $S p_{n}$ and a^{\prime} a diagonal matrix in $S p_{n}$, we define $N_{2, w^{\prime} a^{\prime}}^{\prime}=\left(w^{\prime} a^{\prime}\right) N_{2}\left(w^{\prime} a^{\prime}\right)^{-1} \cap N_{2}$. We wish to prove the following:

Proposition 5.4. We have

$$
\begin{equation*}
\left.\int_{n^{\prime} \in N_{3, w a}(F) \backslash N_{3, w a}(A)} \theta_{4}\left(n^{\prime}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n^{\prime}\right) d n^{\prime}=c\left(w^{\prime} a^{\prime}\right) \omega_{\psi^{-1}} \widetilde{\left(w^{\prime} a^{\prime}\right.}\right) \Phi(0) \tag{5.12}
\end{equation*}
$$

where $w a=P\left(w^{\prime} a^{\prime}\right)$ and $c\left(w^{\prime} a^{\prime}\right)$ is defined by

$$
\begin{equation*}
c\left(w^{\prime} a^{\prime}\right)=\int_{n^{\prime} \in N_{2, w^{\prime} a^{\prime}}^{\prime}(F) \backslash N_{2, w^{\prime} a^{\prime}}^{\prime}(A)} \theta_{2}\left(\left(w^{\prime} a^{\prime}\right)^{-1} n^{\prime}\left(w^{\prime} a^{\prime}\right)\right) \theta_{2, \tau}^{-1}\left(n^{\prime}\right) d n^{\prime} . \tag{5.13}
\end{equation*}
$$

We first describe the sets $N_{3, w a}$. When $w a=E$, we get from the definition that

$$
N_{3, E}=\left\{u(n, B, T): \left.=\left(\begin{array}{cccc}
n & & n B & n T \tau \tag{5.14}\\
& n & n T & n B \\
& & n^{*} & \\
& & & n^{*}
\end{array}\right) \in N_{3} \right\rvert\, n \in Z_{n}, B, T \in \mathcal{S}_{n}\right\}
$$

We use V_{E} to denote the intersection of $N_{3, E}$ with the Siegel unipotent. It consists of $u\left(1_{n}, B, T\right)$. Define U_{E}^{1} to be the subgroup consisting of $u\left(1_{n}, B, 0\right)$.

Lemma 5.5. If $w a=P\left(w^{\prime} a^{\prime}\right)$, then $N_{3, w a}=j\left(w^{\prime} a^{\prime}\right)^{-1} N_{3, E} j\left(w^{\prime} a^{\prime}\right) \cap N_{3}$
Proof. If $n \in j\left(w^{\prime} a^{\prime}\right)^{-1} N_{3, E} j\left(w^{\prime} a^{\prime}\right) \cap N_{3}$ then $j\left(w^{\prime} a^{\prime}\right) n^{-1} j\left(w^{\prime} a^{\prime}\right)^{-1} E j\left(w^{\prime} a^{\prime}\right) n j\left(w^{\prime} a^{\prime}\right)^{-1}=E$ which implies that $n \in N_{3, w a}$. On the other hand, given $n \in N_{3, w a}$ we have that $j\left(w^{\prime} a^{\prime}\right) n j\left(w^{\prime} a^{\prime}\right)^{-1}$ fixes E through conjugation and has the form $\left(\begin{array}{ccc}n & * & * \\ & * & * \\ & & n^{*}\end{array}\right)$ where $n \in$ Z_{n}; any element of the above form fixing E through conjugation must lie in N_{3}, so $j\left(w^{\prime} a^{\prime}\right) n j\left(w^{\prime} a^{\prime}\right)^{-1} \in N_{3, E}$.

Define the group

$$
\begin{equation*}
U_{w a}^{1}:=j\left(w^{\prime} a^{\prime}\right)^{-1} U_{E}^{1} j\left(w^{\prime} a^{\prime}\right) \tag{5.15}
\end{equation*}
$$

We have that $U_{w a}^{1}$ is a normal subgroup of $N_{3, w a}$ as U_{E}^{1} is a normal subgroup of $N_{3, E}$.
Lemma 5.6. We have $\left.\int_{u \in U_{w a}^{1}(F) \backslash U_{w a}^{1}(A)} \theta_{4}(u) \Theta_{\psi^{-1}}^{\Phi}(u) d u=\omega_{\psi^{-1}} \widetilde{\left(w^{\prime} a^{\prime}\right.}\right) \Phi(0)$.

Proof. Since $U_{w a}^{1}:=j\left(w^{\prime} a^{\prime}\right)^{-1}\left\{u\left(1_{n}, B, 0\right)\right\} j\left(w^{\prime} a^{\prime}\right)$, we have that $\theta_{4}(u)=1$ for $u \in U_{w a}^{1}$. Using Poisson summation, we get that

$$
\begin{aligned}
\Theta_{\psi^{-1}}^{\Phi}(u) & =\sum_{X \in F^{n}} \omega_{\psi^{-1}}(u) \Phi(X) \\
& =\sum_{X \in F^{n}} \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \omega_{\psi^{-1}}(u) \Phi(X) .
\end{aligned}
$$

So that the integral in the Lemma is given by

$$
\int_{u \in U_{w a}^{1}(F) \backslash U_{w a}^{1}(A)} \sum_{X \in F^{n}} \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \omega_{\psi^{-1}}(u) \Phi(X) d u
$$

We write $u=j\left(w^{\prime} a^{\prime}\right)^{-1} u\left(1_{n}, B, 0\right) j\left(w^{\prime} a^{\prime}\right)$ with $B \in \mathcal{S}_{n}$. The above integral is

$$
\int_{\mathcal{S}_{n}(F) \backslash \mathcal{S}_{n}(A)} \sum_{X \in F^{n}} \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \omega_{\psi^{-1}}\left(j\left(w^{\prime} a^{\prime}\right)^{-1} u\left(1_{n}, B, 0\right) j\left(w^{\prime} a^{\prime}\right)\right) \Phi(X) d B .
$$

By equation (4.35), this is

$$
\left.\int_{\mathcal{S}_{n}(F) \backslash \mathcal{S}_{n}(A)} \sum_{X \in F^{n}} \omega_{\psi^{-1}}\left(u\left(1_{n}, B, 0\right)\right) \omega_{\psi^{-1}} \widetilde{\left(w^{\prime} a^{\prime}\right.}\right) \Phi(X) d B .
$$

By equation (4.34), this is

$$
\int_{\mathcal{S}_{n}(F) \backslash \mathcal{S}_{n}(A)} \sum_{X \in F^{n}} \omega_{\psi^{-1}} \widetilde{\left(w^{\prime} a^{\prime}\right)} \Phi(X) \psi^{-1}(2\langle B, X\rangle) d B .
$$

where $\langle B, X\rangle$ denotes the inner product of the last row of B with X. The integral over B is zero unless $X=0$. In this case we obtain

$$
\int_{\mathcal{S}_{n}(F) \backslash \mathcal{S}_{n}(A)} \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \Phi(0) d B=\omega_{\psi^{-1}}\left(\widetilde{\left(w^{\prime} a^{\prime}\right.}\right) \Phi(0)
$$

as desired.

Note that $U_{E}^{2}=u(n, 0, T)$ is isomorphic to N_{2} through the embedding $i_{2}: N_{2} \rightarrow S p_{2 n}$ given by

$$
i_{2}\left(\begin{array}{cc}
n & n T \tag{5.16}\\
& n^{*}
\end{array}\right)=u(n, 0, T)
$$

Let

$$
\begin{equation*}
U_{w a}^{2}=j\left(w^{\prime} a^{\prime}\right)^{-1} U_{E}^{2} j\left(w^{\prime} a^{\prime}\right) \cap N_{3} . \tag{5.17}
\end{equation*}
$$

From Lemma 5.5, we have that $N_{3, w a}=j\left(w^{\prime} a^{\prime}\right)^{-1} N_{3, E} j\left(w^{\prime} a^{\prime}\right) \cap N_{3}$, so that $U_{w a}^{2} \cong U_{w a}^{1} \backslash N_{3, w a}$. Recall that $N_{2, w^{\prime} a^{\prime}}^{\prime}:=\left(w^{\prime} a^{\prime}\right) N_{2}\left(w^{\prime} a^{\prime}\right)^{-1} \cap N_{2}$.

Lemma 5.7. We have that $U_{w a}^{2}=j\left(w^{\prime} a^{\prime}\right)^{-1} i_{2}\left(N_{2, w^{\prime} a^{\prime}}^{\prime}\right) j\left(w^{\prime} a^{\prime}\right)$.

Proof. Since $U_{w a}^{2}=j\left(w^{\prime} a^{\prime}\right)^{-1} U_{E}^{2} j\left(w^{\prime} a^{\prime}\right) \cap N_{3}$, we have that the group $j\left(w^{\prime} a^{\prime}\right) U_{w a}^{2} j\left(w^{\prime} a^{\prime}\right)^{-1}$ consists of $i_{2}(n), n \in N_{2}$ with $j\left(w^{\prime} a^{\prime}\right)^{-1} i_{2}(n) j\left(w^{\prime} a^{\prime}\right) \in N_{3}$. Explicitly, we have that
is an element in N_{3}. This is equivalent to $\left(w^{\prime} a^{\prime}\right)^{-1} n_{2}\left(w^{\prime} a^{\prime}\right) \in N_{2}$ or $n_{2} \in N_{2, w^{\prime} a^{\prime}}^{\prime}$.

Proof of Proposition 5.4. From Lemma (5.6) we get that

$$
\begin{equation*}
\int_{n^{\prime} \in N_{3, w a}(F) \backslash N_{3, w a}(A)} \theta_{4}\left(n^{\prime}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n^{\prime}\right) d n^{\prime}=\int_{n^{\prime} \in U_{w a}^{2}(F) \backslash U_{w a}^{2}(A)} \theta_{4}\left(n^{\prime}\right) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}} n^{\prime}\right) \Phi(0) d n^{\prime} \tag{5.19}
\end{equation*}
$$

Since $U_{w a}^{2}=j\left(w^{\prime} a^{\prime}\right)^{-1} i_{2}\left(N_{2, w^{\prime} a^{\prime}}^{\prime}\right) j\left(w^{\prime} a^{\prime}\right)$ by Lemma (5.7), our integral becomes

$$
\begin{equation*}
\int_{n^{\prime} \in N_{2, w^{\prime} a^{\prime}}^{\prime}(F) \backslash N_{2, w^{\prime} a^{\prime}}(A)} \theta_{4}\left(j\left(w^{\prime} a^{\prime}\right)^{-1} i_{2}\left(n^{\prime}\right) j\left(w^{\prime} a^{\prime}\right)\right) \omega_{\psi^{-1}}\left(i_{2}\left(n^{\prime}\right)\right) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \Phi(0) d n^{\prime} \tag{5.20}
\end{equation*}
$$

here we used equations (4.34) and (4.36).
Write $n^{\prime} \in N_{2}$ as $n^{\prime}=\left(\begin{array}{cc}n^{\prime \prime} & n^{\prime \prime} T \\ & n^{\prime \prime *}\end{array}\right)$, from the formulas (2.1), (2.2), (4.34) and (4.36), we have

$$
\begin{equation*}
\omega_{\psi^{-1}}\left(i_{2}\left(n^{\prime}\right)\right) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \Phi(0)=\omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \Phi(0) \psi^{-1}\left(T_{n, 1} \cdot \tau\right) \tag{5.21}
\end{equation*}
$$

where $T_{n, 1}$ stands for the lower left entry of T.
From equation (4.38) we obtain

$$
\begin{equation*}
\theta_{4}\left(j\left(w^{\prime} a^{\prime}\right)^{-1} i_{2}\left(n^{\prime}\right) j\left(w^{\prime} a^{\prime}\right)\right)=\psi^{-1}\left(\sum_{i=1}^{n-1} n_{i, i+1}^{\prime \prime}\right) \theta_{2}\left(\left(w^{\prime} a^{\prime}\right)^{-1} n^{\prime}\left(w^{\prime} a^{\prime}\right)\right) \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{2, \tau}\left(n^{\prime}\right)=\psi\left(\sum_{i=1}^{n-1} n_{i, i+1}^{\prime \prime}+T_{n, 1} \cdot \tau\right) \tag{5.23}
\end{equation*}
$$

Thus our integral (5.20) becomes

$$
\begin{equation*}
\int_{n^{\prime} \in N_{2, w^{\prime} a^{\prime}}^{\prime}(F) \backslash N_{2, w^{\prime} a^{\prime}}^{\prime}(A)} \theta_{2}\left(\left(w^{\prime} a^{\prime}\right)^{-1} n^{\prime}\left(w^{\prime} a^{\prime}\right)\right) \theta_{2, \tau}^{-1}\left(n^{\prime}\right) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \Phi(0) d n^{\prime} . \tag{5.24}
\end{equation*}
$$

We recall we defined

$$
c\left(w^{\prime} a^{\prime}\right)=\int_{n^{\prime} \in N_{2, w^{\prime} a^{\prime}}^{\prime}(F) \backslash N_{2, w^{\prime} a^{\prime}}^{\prime}(A)} \theta_{2}\left(\left(w^{\prime} a^{\prime}\right)^{-1} n^{\prime}\left(w^{\prime} a^{\prime}\right)\right) \theta_{2, \tau}^{-1}\left(n^{\prime}\right) d n^{\prime}
$$

so our integral is

$$
\begin{equation*}
c\left(w^{\prime} a^{\prime}\right) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \Phi(0) \tag{5.25}
\end{equation*}
$$

as desired.
We recall from equations (5.6) and (5.7) that our distribution $I_{S p_{2 n}}\left(f: S p_{(n, K)}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ is equal to
$\sum_{w^{\prime} a^{\prime} \in S p_{n}(F), w a=P\left(w^{\prime} a^{\prime}\right)} \int_{n_{3} \in N_{3, w a}(A) \backslash N_{3}(A)} F\left(n^{-1} w a n\right) \int_{n^{\prime} \in N_{3, w a}(F) \backslash N_{3, w a}(A)} \theta_{4}\left(n^{\prime} n_{3}\right) \Theta_{\psi^{-1}}^{\Phi}\left(n^{\prime} n_{3}\right) d n^{\prime} d n_{3}$.
Using proposition 5.4 this is equal to

$$
\begin{equation*}
\sum_{w^{\prime} a^{\prime} \in S p_{n}(F), w a=P\left(w^{\prime} a^{\prime}\right)} c\left(w^{\prime} a^{\prime}\right) \int_{n_{3} \in N_{3, w a}(A) \backslash N_{3}(A)} F\left(n^{-1} w a n\right) \theta_{4}(n) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}} \cdot n\right) \Phi(0) d n \tag{5.27}
\end{equation*}
$$

which is

$$
\begin{equation*}
\sum_{w^{\prime} a^{\prime} \in S p_{n}(F), w a=P\left(w^{\prime} a^{\prime}\right)} c\left(w^{\prime} a^{\prime}\right) \prod_{v} \int_{n_{3} \in N_{3, w a}\left(F_{v}\right) \backslash N_{3}\left(F_{v}\right)} F\left(n^{-1} w a n\right) \theta_{4}(n) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}} . n\right) \Phi(0) d n \tag{5.28}
\end{equation*}
$$

We have proved the following proposition:

Proposition 5.8. When $f=\otimes f_{v}, \Phi=\otimes \Phi_{v}, F=\otimes F_{v}$, we have that the distribution $I_{S p_{2 n}}\left(f: S p_{(n, K)}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$ is equal to

$$
\begin{equation*}
\sum_{w^{\prime} a^{\prime} \in S p_{n}(F)} c\left(w^{\prime} a^{\prime}\right) \prod_{v} I_{w^{\prime} a^{\prime}}\left(F_{v}, \Phi_{v}\right) \tag{5.29}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{w^{\prime} a^{\prime}}\left(F_{v}, \Phi_{v}\right)=\int_{n \in N_{3, \mathrm{P}\left(w^{\prime} a^{\prime}\right)}\left(F_{v}\right) \backslash N_{3}\left(F_{v}\right)} F_{v}\left(n^{-1} \mathrm{P}\left(w^{\prime} a^{\prime}\right) n\right) \theta_{4}(n) \omega_{\psi^{-1}} \widetilde{\left(\widetilde{w^{\prime} a^{\prime}} \cdot n\right) \Phi_{v}(0) d n} \tag{5.30}
\end{equation*}
$$

We have a similar decomposition for $I_{\widetilde{S p_{n}}}\left(\widetilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right)$:

Proposition 5.9. When $f=\otimes f_{v}$, we have

$$
\begin{equation*}
I_{\widetilde{S p_{n}}}\left(\widetilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right)=\sum_{w^{\prime} a^{\prime} \in S p_{n}(F)} c\left(w^{\prime} a^{\prime}\right) \prod_{v} J_{w^{\prime} a^{\prime}}\left(\widetilde{f}_{v}\right) \tag{5.31}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{w^{\prime} a^{\prime}}\left(\widetilde{f_{v}}\right)=\int_{n_{2} \in N_{2, w^{\prime} a^{\prime}}\left(F_{v}\right) \backslash N_{2}\left(F_{v}\right)} \int_{n_{1} \in N_{2}\left(F_{v}\right)} \widetilde{f}_{v}\left(\widetilde{n_{1}}-1 \cdot \widetilde{w^{\prime} a^{\prime}} \cdot \widetilde{n_{2}}\right) \theta_{2, \tau}\left(n_{1}^{-1}\right) \theta_{2}\left(n_{2}\right) d n_{1} d n_{2} \tag{5.32}
\end{equation*}
$$

Proof. Using the Bruhat decomposition we have $I_{\widetilde{S p_{n}}}\left(\widetilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right)$ equals

$$
\begin{align*}
& \int_{N_{2}(F) \backslash N_{2}(A)} \sum_{N_{2}(F) \backslash N_{2}(A)} \tilde{\gamma \in N_{2}(F) \backslash S p_{n}(F) / N_{2}(F)} \mid \widetilde{f}\left(\widetilde{n}_{1}^{-1} \widetilde{\gamma} \widetilde{n_{2}}\right) \theta_{2, \tau}^{-1}\left(n_{1}\right) \theta_{2}\left(n_{2}\right) d n_{1} d n_{2} \tag{5.33}\\
& =\sum_{w^{\prime} a^{\prime} \in S p_{n}(F)} \int_{n_{2} \in N_{2, w^{\prime}} a^{\prime}(F) \backslash N_{2}(A)} \int_{n_{1} \in N_{2}(A)} \widetilde{f}\left(\widetilde{n_{1}}-\widetilde{w^{\prime} a^{\prime}} \widetilde{n_{2}}\right) \theta_{2, \tau}^{-1}\left(n_{1}\right) \theta_{2}\left(n_{2}\right) d n_{1} d n_{2}
\end{align*}
$$

where $N_{2, w^{\prime} a^{\prime}}=\left(w^{\prime} a^{\prime}\right)^{-1} N_{2}\left(w^{\prime} a^{\prime}\right) \cap N_{2}$.

We may write this integral as

$$
\begin{equation*}
\int_{n_{2} \in N_{2, w^{\prime} a^{\prime}}(A) \backslash N_{2}(A)} \int_{n^{\prime} \in N_{2, w^{\prime} a^{\prime}}(F) \backslash N_{2, w^{\prime} a^{\prime}}(A)} \int_{n_{1} \in N_{2}(A)} \widetilde{f}\left(\widetilde{n_{1}}-\widetilde{w^{\prime} a^{\prime}} \widetilde{n^{\prime}} \widetilde{n_{2}}\right) \theta_{2, \tau}^{-1}\left(n_{1}\right) \theta_{2}\left(n^{\prime} n_{2}\right) \tag{5.35}
\end{equation*}
$$

Since for $n^{\prime} \in N_{2, w^{\prime} a^{\prime}}$ we have that $\left(w^{\prime} a^{\prime}\right) n^{\prime}\left(w^{\prime} a^{\prime}\right)^{-1} \in N_{2}$, we can make a change of variable $n_{1} \mapsto\left(w^{\prime} a^{\prime}\right) n^{\prime}\left(w^{\prime} a^{\prime}\right)^{-1} n_{1}$. Using the fact that when $n \in N_{2}$ we have $\widetilde{n} \cdot \widetilde{g}=\widetilde{n g}$ and $\widetilde{g} \cdot \widetilde{n}=\widetilde{g n}$, we get:

$$
\begin{equation*}
\left(w^{\prime} a^{\prime} n^{\prime}\left(w^{\prime} a^{\prime}\right)^{-1} n_{1}\right)^{-1} \widetilde{w^{\prime} a^{\prime}} \widetilde{n^{\prime}}=\widetilde{n_{1}}-\widetilde{w^{\prime} a^{\prime} n^{\prime}} \widetilde{-1 \widetilde{w^{\prime} a^{\prime}}}{ }^{-1} \widetilde{w^{\prime} a^{\prime} n^{\prime}}=\widetilde{n_{1}}{ }^{-1} \widetilde{w^{\prime} a^{\prime}} . \tag{5.36}
\end{equation*}
$$

Our integral becomes
$\int_{n_{2} \in N_{2, w^{\prime} a^{\prime}}(A) \backslash N_{2}(A)} \int_{n^{\prime} \in N_{2, w^{\prime} a^{\prime}}(F) \backslash N_{2, w^{\prime} a^{\prime}}(A)} \widetilde{n_{1} \in N_{2}(A)} \mid \widetilde{f}\left(\widetilde{n_{1}}-\widetilde{w^{\prime} a^{\prime}} \widetilde{n_{2}}\right) \theta_{2, \tau}^{-1}\left(w^{\prime} a^{\prime} n^{\prime}\left(w^{\prime} a^{\prime}\right)^{-1} \cdot n_{1}\right) \theta_{2}\left(n^{\prime} n_{2}\right) d n_{1} d n_{2} d n^{\prime}$.
Clearly $n^{\prime} \in N_{2, w^{\prime} a^{\prime}}$ iff $\left(w^{\prime} a^{\prime}\right) n^{\prime}\left(w^{\prime} a^{\prime}\right)^{-1} \in N_{2, w^{\prime} a^{\prime}}^{\prime}$, so our integral equals

$$
\begin{align*}
& \int_{n_{2} \in N_{2, w^{\prime} a^{\prime}}(A) \backslash N_{2}(A)} \int_{n_{1} \in N_{2}(A)} \widetilde{f}\left(\widetilde{n_{1}}-1 \cdot \widetilde{w^{\prime} a^{\prime}} \widetilde{n_{2}}\right) \theta_{2, \tau}^{-1}\left(n_{1}\right) \theta_{2}\left(n_{2}\right) d n_{1} d n_{2} \tag{5.38}\\
& \times \int_{n \in N_{2, w^{\prime} a^{\prime}}^{\prime}(F) \backslash N_{2, w^{\prime} a^{\prime}}^{\prime}(A)} \theta_{2, \tau}^{-1}(n) \theta_{2}\left(\left(w^{\prime} a^{\prime}\right)^{-1} n w^{\prime} a^{\prime}\right) d n_{1} d n_{2} d n \\
& =c\left(w^{\prime} a^{\prime}\right) \int_{n_{2} \in N_{2, w^{\prime} a^{\prime}}(A) \backslash N_{2}(A)} \int_{n_{1} \in N_{2}(A)} \widetilde{f}\left(\widetilde{n_{1}}-1 \cdot \widetilde{w^{\prime} a^{\prime}} \widetilde{n_{2}}\right) \theta_{2, \tau}^{-1}\left(n_{1}\right) \theta_{2}\left(n_{2}\right) d n
\end{align*}
$$

Factoring this integral over places v completes the proof.

6. Comparison of orbital integrals

To compare the distributions $I_{\widehat{S p_{n}}}\left(\widetilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right)$ and $I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)$, we only need to compare the local orbital integrals $I_{w^{\prime} a^{\prime}}\left(F_{v}, \Phi_{v}\right)$ and $J_{w^{\prime} a^{\prime}}\left(\widetilde{f}_{v}\right)$. In this section, we fix a place v and omit it in our notation.

$$
\begin{aligned}
& \text { Recall that } U^{n}=\left\{\eta(\mathbf{x}, \mathbf{y}, t):=\left(\begin{array}{llllll}
1_{n-1} & & & & & \\
& 1 & \mathbf{x} & \mathbf{y} & t & \\
& & 1_{n} & 0 & * & \\
& & & 1_{n} & * & \\
& & & & 1 & \\
& & & & & \\
& & & & & 1_{n-1}
\end{array}\right)\right\} \text { and } \\
& \widehat{N}^{k}:=\left\{\left.\left(\begin{array}{ccc}
z & * & * \\
& 1_{4 n-2 k+2} & * \\
& & z^{*}
\end{array}\right) \in N_{3} \right\rvert\, z \in Z_{k-1}\right\} .
\end{aligned}
$$

$\hat{N}^{n+1}=U^{n} \hat{N}^{n}$ is a normal subgroup of N_{3} with $N_{3} / \hat{N}^{n+1} \cong N_{2}$. Note also $N_{3, E} \cap \hat{N}^{n+1}$ is just the group $U_{E}^{1}=u\left(1_{n}, B, 0\right)$. Recall that $Y \cong S p_{n, K} \backslash S p_{2 n}$. Given a function $F \in \mathcal{S}(Y(F))$, and $\Phi \in \mathcal{S}\left(F^{n}\right)$, we define a genuine function on $\widetilde{S p}_{n}(F)$:

$$
\begin{equation*}
\Psi_{F, \Phi}(\widetilde{g})=\int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(j(g)^{-1} u^{-1} E u j(g)\right) \theta_{4}(u) \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}(\widetilde{g}) \Phi(0) d u . \tag{6.1}
\end{equation*}
$$

6.1. Comparison of $I_{w^{\prime} \mathbf{a}^{\prime}}(F, \Phi)$ and $J_{w^{\prime} \mathbf{a}^{\prime}}(\tilde{f})$. For a compatible choice of measures, we have:

Lemma 6.1.

$$
\begin{equation*}
I_{w^{\prime} a^{\prime}}(F, \Phi)=\int_{n \in N_{2, w^{\prime} a^{\prime} \backslash N_{2}}} \Psi_{F, \Phi}\left(\widetilde{w^{\prime} a^{\prime}} \cdot \widetilde{n}\right) \theta_{2}(n) d n . \tag{6.2}
\end{equation*}
$$

Proof. For $g \in S p_{n}$, we let $U_{\mathrm{P}(g)}^{1}=j(g)^{-1} U_{E}^{1} j(g) \subset N_{3}$. Then from Lemma (5.5) we have that $N_{3, \mathrm{P}\left(w^{\prime} a^{\prime}\right)} \cap \hat{N}^{n+1}=U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{1}$. From (5.30), we get that $I_{w^{\prime} a^{\prime}}(F, \Phi)$ equals

$$
\begin{aligned}
& \iint_{\left(w^{\prime} a^{\prime}\right) \hat{N}^{n+1} \backslash N_{3}} F\left(n^{-1} u^{-1} \mathrm{P}\left(w^{\prime} a^{\prime}\right) u n\right) \\
& \theta_{\mathbf{P}\left(w^{\prime} a^{\prime}\right) \backslash \hat{N}^{n+1}}(u n) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \omega_{\psi^{-1}}(u n) \Phi(0) d u d n
\end{aligned}
$$

As $N_{3}=j\left(N_{2}\right) \hat{N}^{n+1}$ and $j\left(N_{2}\right) \cap \hat{N}^{n+1}$ consists just of identity element, we can write an element in N_{3} in a unique way as $j(n) u$ such that $n \in N_{2}$ and $u \in \hat{N}^{n+1}$.

Since $N_{3, \mathrm{P}\left(w^{\prime} a^{\prime}\right)}=U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{1} U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{2}$, with $U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{1} \subset \hat{N}^{n+1}$, we have

$$
N_{3, \mathrm{P}\left(w^{\prime} a^{\prime}\right)} \hat{N}^{n+1}=U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{2} \hat{N}^{n+1} .
$$

As $U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{2}=j\left(w^{\prime} a^{\prime}\right)^{-1} i_{2}\left(N_{2, w^{\prime} a^{\prime}}^{\prime}\right) j\left(w^{\prime} a^{\prime}\right)$ from Lemma 5.7,

$$
U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{2} \hat{N}^{n+1}=j\left(\left(w^{\prime} a^{\prime}\right)^{-1} N_{2, w^{\prime} a^{\prime}}^{\prime}\left(w^{\prime} a^{\prime}\right)\right) \hat{N}^{n+1}=j\left(N_{2, w^{\prime} a^{\prime}}\right) \hat{N}^{n+1} .
$$

Thus we can choose the representatives in $N_{3, \mathrm{P}\left(w^{\prime} a^{\prime}\right)} \hat{N}^{n+1} \backslash N_{3}$ as $j(n)$ with $n \in N_{2, w^{\prime} a^{\prime}} \backslash N_{2}$. The above integral equals:

$$
\int_{n \in N_{2, w^{\prime} a^{\prime} \backslash N_{2}}} \int_{u \in U_{\mathrm{P}\left(w^{\prime} a^{\prime}\right)}^{1} \hat{N}^{n+1}} F\left(j(n)^{-1} u^{-1} \mathrm{P}\left(w^{\prime} a^{\prime}\right) u j(n)\right)
$$

$$
\theta_{4}(u j(n)) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} a^{\prime}}\right) \omega_{\psi^{-1}}(u j(n)) \Phi(0) d u d n
$$

As $j\left(w^{\prime} a^{\prime}\right)$ stabilizes \hat{N}^{n+1} through conjugation, we can make a change of variable $u \mapsto$ $j\left(w^{\prime} a^{\prime}\right)^{-1} u j\left(w^{\prime} a^{\prime}\right)$. Notice that $\theta_{4}\left(j\left(w^{\prime} a^{\prime}\right)^{-1} u j\left(w^{\prime} a^{\prime}\right)\right)=\theta_{4}(u)$, and from (4.35), (4.36) and
(5.15), the above integral is the same as:
$\int_{n \in N_{2, w^{\prime} a^{\prime} \backslash N_{2}}} \int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(j\left(w^{\prime} a^{\prime} n\right)^{-1} u^{-1} E u j\left(w^{\prime} a^{\prime} n\right)\right)$

$$
\theta_{4}(u j(n)) \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}\left(\widetilde{w^{\prime} \mathbf{a}^{\prime} n}\right) \Phi(0) d u d n
$$

From the definition of $\Psi_{F, \Phi}$ in equation (6.1), the above integral equals:

$$
\int_{n \in N_{2, w^{\prime} a^{\prime} \backslash N_{2}}} \Psi_{F, \Phi}\left(\widetilde{w^{\prime} a^{\prime} n}\right) \theta_{4}(j(n)) d n
$$

Since $\theta_{4}(j(n))=\theta_{2}(n)$ for $n \in N_{2}$, we get the Lemma.
We have the following
Corollary 6.2. If $\tilde{f} \in \mathcal{S}\left(\widetilde{\mathrm{Sp}_{n}}(F)\right), f \in \mathcal{S}\left(\mathrm{Sp}_{2 n}(F)\right)$ and $\Phi \in \mathcal{S}\left(F^{n}\right)$ satisfying (for F defined by (5.4))

$$
\begin{equation*}
\Psi_{F, \Phi}(\widetilde{g})=\int_{N_{2}} \tilde{f}\left(\widetilde{n}^{-1} \cdot \widetilde{g}\right) \theta_{2, \tau}^{-1}(n) d n \tag{6.3}
\end{equation*}
$$

then $I_{w^{\prime} a^{\prime}}(F, \Phi)=J_{w^{\prime} a^{\prime}}(\tilde{f})$.

Proof. From Lemma 6.1, we have

$$
I_{w^{\prime} a^{\prime}}(F, \Phi)=\int_{n \in N_{2, w^{\prime} a^{\prime}} \backslash N_{2}} \Psi_{F, \Phi}\left(\widetilde{w^{\prime} a^{\prime}} \cdot \widetilde{n}\right) \theta_{2}(n) d n
$$

By our assumption on $\Psi_{F, \Phi}$, this is

$$
\int_{n_{2} \in N_{2, w^{\prime} a^{\prime} \backslash N_{2}}} \int_{n_{1} \in N_{2}} \tilde{f}\left({\widetilde{n_{1}}}^{-1} \cdot \widetilde{w^{\prime} a^{\prime}} \widetilde{n_{2}}\right) \theta_{2, \tau}^{-1}\left(n_{1}\right) \theta_{2}\left(n_{2}\right) d n_{1} d n_{2}
$$

which is $J_{w^{\prime} a^{\prime}}(\widetilde{f})$.
6.2. Properties of $\Psi_{F, \Phi}$ and matching. The function $\Psi_{F, \Phi}(\widetilde{g})$ defined by (6.1) has the following equivariance property:

Lemma 6.3. The function $\Psi_{F, \Phi}(\widetilde{g})$ satisfies for all $n \in N_{2}$:

$$
\begin{equation*}
\Psi_{F, \Phi}(\widetilde{n} \cdot \widetilde{g})=\theta_{2, \tau}^{-1}(n) \Psi_{F, \Phi}(\widetilde{g}) . \tag{6.4}
\end{equation*}
$$

Proof. We only need to establish the identity in the case g is identity, which we now assume. Recall the definition of $u(n, B, T) \in N_{3, E}$ in (5.14):

$$
u(n, B, T):=\left\{\left.\left(\begin{array}{cccc}
n & & n B & n T \tau \\
& n & n T & n B \\
& & n^{*} & \\
& & & \\
& & & n^{*}
\end{array}\right) \in N_{3} \right\rvert\, n \in Z_{n}, B, T \in \mathcal{S}_{n}\right\} .
$$

From (6.1) $\Psi_{F, \Phi}(\widetilde{n})$ equals:

$$
\begin{equation*}
\int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(j(n)^{-1} u^{-1} E u j(n)\right) \theta_{4}(u) \omega_{\psi^{-1}}(u j(n)) \Phi(0) d u . \tag{6.5}
\end{equation*}
$$

Write n as $\left(\begin{array}{cc}n^{\prime} & n^{\prime} T^{*} \\ \left(n^{\prime}\right)^{*}\end{array}\right)$.
Case (1): when n^{\prime} is identity. We observe $u\left(1_{n}, 0, T\right) \in N_{3, E}$ and $j(n) u\left(1_{n}, 0, T\right)^{-1} \in$ \hat{N}^{n+1}. Since $j\left(N_{2}\right)$ and $u\left(1_{n}, 0, T\right)$ fix the group $U_{E}^{1}=u\left(1_{n}, B, 0\right)$ by conjugation, we can make a change of variable $u \mapsto u\left(1_{n}, 0, T\right) u j(n)^{-1}$ in \hat{N}^{n+1}. Notice that $u\left(1_{n}, 0, T\right)$ fixes E through conjugation; the above integral becomes:

$$
\int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(u^{-1} E u\right) \theta_{4}\left(u\left(1_{n}, 0, T\right) u j(n)^{-1}\right) \omega_{\psi^{-1}}\left(u\left(1_{n}, 0, T\right) u\right) \Phi(0) d u .
$$

Clearly $\theta_{4}\left(u\left(1_{n}, 0, T\right) u j(n)^{-1}\right)=\theta_{4}(u)$. From (4.34) and (4.36) we have

$$
\omega_{\psi^{-1}}\left(u\left(1_{n}, 0, T\right) u\right) \Phi(0)=\psi^{-1}\left(T_{n, 1} \cdot \tau\right) \omega_{\psi^{-1}}(u) \Phi(0)
$$

where $T_{n, 1}$ is the lower left entry of T. The above integral becomes:

$$
\psi^{-1}\left(T_{n, 1} \cdot \tau\right) \int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(u^{-1} E u\right) \theta_{4}(u) \omega_{\psi^{-1}}(u) \Phi(0) d u
$$

which is $\theta_{2, \tau}^{-1}(n) \Psi_{F, \Phi}\left(\widetilde{1_{2 n}}\right)$ in the case n^{\prime} is identity.
Case (2): when $T^{\prime}=0$. Now $u\left(n^{\prime}, 0,0\right) \in N_{3, E}$ and $u\left(n^{\prime}, 0,0\right) j(n)^{-1} \in \hat{N}^{n+1}$. Since $u\left(n^{\prime}, 0,0\right)$ and $j(n)$ fixes the group U_{E}^{1} by conjugation, we can change u to $u\left(n^{\prime}, 0,0\right) u j(n)^{-1}$. Using that $u\left(n^{\prime}, 0,0\right)^{-1} E u\left(n^{\prime}, 0,0\right)=E$, the integration (6.5) becomes:

$$
\int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(u^{-1} E u\right) \theta_{4}\left(u\left(n^{\prime}, 0,0\right) u j(n)^{-1}\right) \omega_{\psi^{-1}}\left(u\left(n^{\prime}, 0,0\right) u\right) \Phi(0) d u .
$$

Clearly $\theta_{4}\left(u\left(n^{\prime}, 0,0\right) u j(n)^{-1}\right)=\theta_{4}(u) \theta_{2}^{-1}(n)$ (in our case $\left.T=0\right)$. From (2.1) and (4.36) we get

$$
\omega_{\psi^{-1}}\left(u\left(n^{\prime}, 0,0\right) u\right) \Phi(0)=\omega_{\psi^{-1}}(u) \Phi(0)
$$

Thus the above integral is just

$$
\theta_{2}^{-1}(n) \int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(u^{-1} E u\right) \theta_{4}(u) \omega_{\psi^{-1}}(u) \Phi(0) d u
$$

which is $\theta_{2, \tau}(n)^{-1} \Psi_{F, \Phi}\left(\widetilde{1_{2 n}}\right)$. Here we used that for $n=\left({ }^{n^{\prime}}{ }_{\left(n^{\prime}\right)^{*}}\right)$ we have that $\theta_{2, \tau}(n)=$ $\theta_{2}(n)$.

From the above two cases, identity (6.4) holds for any $n \in N_{2}$ when g is identity, thus holds in general.

We also need to consider the behavior of the function $\Psi_{F, \Phi}(\widetilde{g})$ when $g=\operatorname{diag}\left[\mathbf{a}, \mathbf{a}^{*}\right]$ where $\mathbf{a}=\operatorname{diag}\left[a_{1}, \ldots, a_{n}\right]$ is a diagonal matrix. The proof of the following Lemma is similar to that of [MR, Lemma 5.4] and we omit it.

Lemma 6.4. When $F \in \mathcal{S}(Y)$ and $\Phi \in \mathcal{S}\left(F^{n}\right)$, as function of $\mathbf{a}, \Psi_{F, \Phi}\left(\widetilde{\operatorname{diag}\left[\mathbf{a}, \mathbf{a}^{*}\right]}\right)$ is a Schwartz function on $\left(F^{\times}\right)^{n}$.

The following is [MR2, Lemma 5.6].

Lemma 6.5. Let T be a Schwartz function on $N_{2} \backslash \widetilde{S p_{n}}$ with $T(\tilde{n} g)=\theta(n) T(g)$. Then there exists a Schwartz function \widetilde{f} on $\widetilde{S p_{n}}$ with

$$
\int_{N_{2}} \widetilde{f}\left(\tilde{n}^{-1} g\right) \theta(n) d n=T(g) .
$$

Moreover, the function \tilde{f} may be defined by

$$
\widetilde{f}(n a k)=\lambda(n) T(a k),
$$

where λ is any Schwartz function on N_{2} with

$$
\int_{N_{2}} \lambda\left(n^{-1}\right) \theta(n) d n=1 .
$$

Corollary 6.6. Given any $f \in \mathcal{S}\left(\mathrm{Sp}_{2 n}\right)$ and $\Phi \in \mathcal{S}\left(F^{n}\right)$, there is $\tilde{f} \in \mathcal{S}\left(\widetilde{\mathrm{Sp}_{n}}\right)$ such that equation (6.3) holds.

Proof. From Lemmas 6.4 and 6.3, $\Psi_{F, \Phi}$ is Schwartz function on $N_{2} \backslash \widetilde{S p_{n}}$ satisfying the equivariance property

$$
\Psi_{F, \Phi}(\widetilde{n} \cdot \widetilde{g})=\theta_{2, \tau}(n)^{-1} \Psi_{F, \Phi}(\widetilde{g}) .
$$

By Lemma 6.5 , we obtain the desired \tilde{f} satisfying

$$
\Psi_{F, \Phi}(\widetilde{g})=\int_{N_{2}} \tilde{f}\left(\widetilde{n}^{-1} \cdot \widetilde{g}\right) \theta_{2, \tau}^{-1}(n) d n
$$

From Corollary (6.2), we get:

Corollary 6.7. There is a map ϵ_{5} from $\mathcal{S}\left(\mathrm{Sp}_{2 n}\right) \otimes \mathcal{S}\left(F^{n}\right)$ to $\mathcal{S}\left(\widetilde{\mathrm{Sp}}_{n}\right)$ such that when $\tilde{f}=$ $\epsilon_{5}(F \otimes \Phi), I_{w^{\prime} \mathbf{a}^{\prime}}(F, \Phi)=J_{w^{\prime} \mathbf{a}^{\prime}}(\tilde{f})$.

7. Fundamental Lemma

7.1. Statement of the result. Let v be a nonarchimedean place with odd residue characteristic, and where ψ is unramified. We will omit v in the notations.

Let \mathcal{O} be the ring of integers in F. Recall $K_{3}=S p_{2 n}(\mathcal{O})$ and K_{2} is the image of an embedding of $S p_{n}(\mathcal{O})$ in $\widetilde{S p_{n}}$, (the covering splits over $S p_{n}(\mathcal{O})$). Let $\mathcal{H}\left(S p_{2 n}, K_{3}\right)$ (and $\mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$) be the algebra of Hecke functions on $S p_{2 n}$ (and $\widetilde{S p_{n}}$ respectively). For $\tilde{f} \in \mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$, define

$$
\widehat{\tilde{f}}(z)=\int_{a \in T_{n}} \int_{n \in N_{2}} \tilde{f}\left(\widetilde{i_{1}(a)} \cdot \widetilde{n}\right) \gamma\left(\operatorname{det} a, \psi^{-1}\right)^{-1} \chi_{z}(a) \delta_{2}^{\frac{1}{2}}\left(i_{1}(a)\right) d n d a
$$

where δ_{2} is the modulus functions of the Borel subgroup of $S p_{n}$ and χ_{z} is the unramified character defined on the subgroup of diagonal matrices in $G L_{n}$ by

$$
\chi_{z}\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right)=\left|a_{1}\right|_{v}^{z_{1}} \ldots\left|a_{n}\right|_{v}^{z_{n}} .
$$

We can define a homomorphism $f \mapsto \tilde{f}$ between $\mathcal{H}\left(S p_{2 n}, K_{3}\right)$ and $\mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$ so that:

$$
\begin{equation*}
\widehat{f}\left(z_{1}-\frac{1}{2}, z_{1}+\frac{1}{2}, \ldots, z_{n}-\frac{1}{2}, z_{n}+\frac{1}{2}\right)=\widehat{\tilde{f}}\left(z_{1}, \ldots, z_{n}\right) \tag{7.1}
\end{equation*}
$$

We prove

Proposition 7.1. If $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$ and $\tilde{f} \in \mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$ are related by (7.1), then when Φ_{0} is the characteristic function of \mathcal{O}^{n}, we have

$$
\begin{equation*}
\Psi_{F, \Phi}(\widetilde{g})=\int_{N_{2}} \tilde{f}\left(n^{-1} \cdot \widetilde{g}\right) \theta_{2, \tau}^{-1}(n) d n \tag{7.2}
\end{equation*}
$$

where F is defined by (5.4).

From Corollary 6.2, we get:
Corollary 7.2. When $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$ and $\tilde{f} \in \mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$ are such that (7.1) holds, then when Φ_{0} is the characteristic function of \mathcal{O}^{n}, we have $I_{w^{\prime} a^{\prime}}\left(F, \Phi_{0}\right)=J_{w^{\prime} a^{\prime}}(\tilde{f})$ where F is defined by (5.4).

This identity of orbital integrals is the fundamental lemma for the case at hand. The rest of the section gives the proof of Proposition 7.1.
7.2. Unit element case. We prove the Proposition first in the case when both f and \tilde{f} are unit elements. In this case we denote the functions by f_{0} and \tilde{f}_{0} respectively. Then f_{0} is the characteristic functions of K_{3}, while \tilde{f}_{0} takes value 1 over K_{2}, and vanishes outside the inverse image of $\operatorname{Sp}_{n}(\mathcal{O})$ in $\widetilde{S p_{n}}$. Let F_{0} be the function associated to f_{0} by (5.4), namely

$$
F_{0}\left(g^{-1} T g\right)=\int_{l \in S p_{n, K}} f_{0}\left(l^{-1} g\right) d l .
$$

Lemma 7.3. The function F_{0} is the characteristic function of $Y \cap K_{3}$.

Proof. Clearly F_{0} is a K_{3}-invariant function on Y. As $l g \in K_{3}$ for $l \in S p_{n, K}$ implies $g^{-1} T g \in K_{3}$, we get F_{0} vanishes outside $Y \cap K_{3}$. By Lemma (A.1) below, we see $Y \cap K_{3}$ is a single K_{3}-orbit of T. Hence we get F_{0} is constant on $Y \cap K_{3}$. Putting $g=1_{4 n}$ in the definition of F_{0} shows that F_{0} is the characteristic function of $Y \cap K_{3}$.

Denote the right hand side of (7.2) by $\Psi_{\tilde{f}}(\widetilde{g})$, i.e.

$$
\Psi_{\tilde{f}}(\widetilde{g})=\int_{N_{2}} \tilde{f}\left(n^{-1} \cdot \widetilde{g}\right) \theta_{2, \tau}^{-1}(n) d n
$$

Then

$$
\Psi_{\tilde{f}_{0}}(\widetilde{n} \cdot \widetilde{g})=\theta_{2, \tau}^{-1}(n) \Psi_{\tilde{f}_{0}}(\widetilde{g}), n \in N_{2} .
$$

Lemma 6.3 shows that $\Psi_{F_{0}, \Phi_{0}}$ satisfies the same left N_{2}-equivariance condition. Both functions $\Psi_{\tilde{f}_{0}}$ and $\Psi_{F_{0}, \Phi_{0}}$ are clearly right K_{2}-invariant. Thus from the Iwasawa decomposition to show the identity (7.2), we only need to show it holds when $\widetilde{g}=\widetilde{a}$ where

$$
a=\operatorname{diag}\left[a_{1}, \ldots, a_{n}, a_{n}^{-1}, \ldots, a_{1}^{-1}\right]
$$

is a diagonal matrix.
It is easy to see that $\Psi_{\tilde{f}_{0}}(\widetilde{a})=1$ when $\left|a_{i}\right|=1$ for $i=1, \ldots, n$, and $\Psi_{\tilde{f}_{0}}(\widetilde{a})=0$ otherwise. Thus the Proposition in this case follows from

Lemma 7.4. When $\left|a_{i}\right|=1$ for $i=1, \ldots, n, \Psi_{F_{0}, \Phi_{0}}(\widetilde{a})=1$. Otherwise $\Psi_{F_{0}, \Phi_{0}}(\widetilde{a})=0$.

Proof. Recall that

$$
\Psi_{F_{0}, \Phi_{0}}(\widetilde{g})=\int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F_{0}\left(j(g)^{-1} u^{-1} E u j(g)\right) \theta_{4}(u) \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}(\widetilde{g}) \Phi_{0}(0) d u
$$

For $u \in \hat{N}^{n+1}$, it has the form $\left(\begin{array}{c}n_{1}\left(\begin{array}{cc}* & * \\ & *\end{array}\right) \\ \\ n_{1}^{*}\end{array}\right)$ with n_{1} having the form $\left(\begin{array}{ll}n_{2} & v \\ 1_{n}\end{array}\right)$, where $n_{2} \in Z_{n}$ the maximal unipotent subgroup of GL_{n}. The matrix $j(a)^{-1} u^{-1} E u j(a)$ lies in the Siegel parabolic subgroup; it has the form $\binom{A}{A^{*}}$ where

$$
A=\left(\begin{array}{cc}
1_{n} & \\
& b^{-1}
\end{array}\right)\left(\begin{array}{cc}
n_{2}^{-1} & v^{\prime} \\
& 1_{n}
\end{array}\right)\left(\begin{array}{cc}
& \tau_{n} \\
1_{n} &
\end{array}\right)\left(\begin{array}{cc}
n_{2} & v \\
& 1_{n}
\end{array}\right)\left(\begin{array}{cc}
1_{n} & \\
& b
\end{array}\right)
$$

with $b=\operatorname{diag}\left[a_{1}, \ldots, a_{n}\right]$, and $v^{\prime}=-n_{2}^{-1} v$. A computation shows:

$$
A=\left(\begin{array}{cc}
v^{\prime} n_{2} & \tau_{n} n_{2}^{-1} b+v^{\prime} v b \\
b^{-1} n_{2} & b^{-1} v b
\end{array}\right)
$$

If $\left|a_{i}\right|<1$ for some i, we get from looking at the lower left block of A that

$$
F_{0}\left(j(a)^{-1} u^{-1} E u j(a)\right)=0 .
$$

Thus in this case $\Psi_{F_{0}, \Phi_{0}}(\widetilde{a})=0$.
On the other hand, since

$$
\Psi_{F_{0}, \Phi_{0}}(\widetilde{n} \cdot \widetilde{g} \cdot \bar{k})=\theta_{2, \tau}^{-1}(n) \Psi_{F_{0}, \Phi_{0}}(\widetilde{g})
$$

when $n \in N_{2}$ and $\bar{k} \in K_{2}$, we get $\Psi_{F_{0}, \Phi_{0}}(\widetilde{a})=0$ whenever $\left|a_{i}\right|>\left|a_{i+1}\right|$ for some i or $\left|a_{n}\right|>\left|a_{n}\right|^{-1}$.
Therefore, $\Psi_{F_{0}, \Phi_{0}}(\widetilde{a})$ is nonzero only when $\left|a_{n}\right|^{-1} \geq\left|a_{n}\right| \geq \ldots \geq\left|a_{1}\right|$ and $\left|a_{1}\right| \geq 1$. This condition is only satisfied when $\left|a_{i}\right|=1$ for all i, in which case using the K_{3}-invariance of F_{0} and K_{2}-invariance of Φ_{0}, we get

$$
\Psi_{F_{0}, \Phi_{0}}(\widetilde{a})=\Psi_{F_{0}, \Phi_{0}}\left(\widetilde{1_{2 n}}\right) .
$$

Consider now the case $a=1_{2 n}$. Use the computation of the matrix A again. From the lower left block and lower right block of A, we see in this case if $u^{-1} E u \in K_{3} \cap Y, n_{2}$ is in $\mathrm{GL}_{n}(\mathcal{O})$ and v has integral entries. Thus $u=\left(\begin{array}{cc}n_{1} & v_{1} \\ n_{1}^{*}\end{array}\right)$ with $n_{1} \in \mathrm{GL}_{2 n}(\mathcal{O})$.

Write u as $i_{1}\left(n_{1}\right) v$ with v in the Siegel unipotent subgroup of $\mathrm{Sp}_{2 n}$. Since $n_{1} \in \mathrm{GL}_{2 n}(\mathcal{O})$, we get $v^{-1} E v \in K_{3} \cap Y$. Write $v=\left(\begin{array}{cc}1_{2 n} & \mathbf{v} \\ & 1_{2 n}\end{array}\right)$, and $\mathbf{v}=\left(\begin{array}{cc}B_{1} & T \\ B_{2}\end{array}\right)$, then the condition is equivalent to all entries in T and $B_{1}-B_{2}$ are integers. Since $U_{E}^{1}=u(1, B, 0)$ consists of v of the above form with $T=0$ and $B_{1}=B_{2}$, we see over the subdomain where
$F_{0}\left(u^{-1} E u\right) \neq 0$, the representatives of $U_{E}^{1} \backslash \hat{N}^{n+1}$ can be chosen to be in K_{3}. Thus:

$$
\Psi_{F_{0}, \Phi_{0}}\left(\widetilde{1_{2 n}}\right)=\int_{u \in U_{E}^{1}(\mathcal{O}) \backslash \hat{N}^{n+1}(\mathcal{O})} \theta_{4}(u) \omega_{\psi^{-1}}(u) \Phi(0) d u
$$

Over the domain $\theta_{4}(u)=1$ and $\omega_{\psi^{-1}}(u) \Phi(0)=\Phi(0)=1$. Thus we get $\Psi_{F_{0}, \Phi_{0}}\left(\widetilde{1_{2 n}}\right)=1$. We get the claim in the Lemma.
7.3. General Hecke element case. The result we need follows from a Plancherel formula and the fact that the orbital integrals of spherical functions on $S p_{n, K} \backslash S p_{2 n}$ are related to spherical functions on $N_{2} \backslash \widetilde{S p_{n}}$. The argument is essentially that of Mao and Rallis in [MR1], where the split case is treated. Here we carry out the main argument and relegate some details to the Appendix.

Let F be a p-adic field with p odd. Let \mathcal{O} be the ring of integers in F. Let π be a prime in \mathcal{O} and let $q=|\pi|^{-1}$. Let G be a reductive group over F with maximal compact subgroup K. Let H be a closed unimodular subgroup of G with the property that there exists a Borel $B \subset G$ with $B H$ open in G. Let χ be a unitary character on H, trivial on $H \cap K$. Denote by $C_{K}^{\infty}(H \backslash G, \chi)$ the space of complex functions on G with $f(h g k)=\chi(h) f(g)$. Denote by $\mathcal{S}_{K}(H \backslash G, \chi)$ the subspace consisting of functions of compact support modulo H in $C_{K}^{\infty}(H \backslash G, \chi)$.

We consider $G_{1}=S p_{2 n}, H_{1}=S p_{n, K}, K_{1}=S p_{2 n}(O)$ and χ_{1} the trivial character, $G_{2}=\widetilde{S p_{n}}, H_{2}=$ maximal unipotent of G_{2} and $K_{2}=S p_{n}(\mathcal{O})$. We take the character χ_{2} to be $\theta_{2, \tau}^{-1}$.

Denote by $\mathcal{H}(G, K)$ the Hecke algebra of G with respect to K. It consists of compactly supported functions on G satisfying $f\left(k_{1} g k_{2}\right)=f(g)$ for all $g \in G, k_{1}, k_{2} \in K$. The multiplication is given by the convolution product.

The Hecke algebra $\mathcal{H}(G, K)$ acts on $C_{K}^{\infty}(H \backslash G, \chi)$ by

$$
\begin{equation*}
(f * \phi)(g)=\int_{G} f(h) \phi(g h) d h, \quad f \in \mathcal{H}(G, K), \phi \in C_{K}^{\infty}(H \backslash G, \chi) . \tag{7.3}
\end{equation*}
$$

A spherical function in $C_{K}^{\infty}(H \backslash G, \chi)$ is an eigenfunction $\Psi(g)$ in $C_{K}^{\infty}(H \backslash G, \chi)$ under the action of $\mathcal{H}(G, K)$ normalized so that $\Psi(1)=1$.

Call an element $g \in G$ relevant if χ is trivial on $g K g^{-1} \cap H$. The subset of relevant elements in G is denoted $G^{\text {rel }}$. We have the following characterization of relevant elements:

Lemma 7.5. Let

$$
\begin{equation*}
\Lambda_{n}^{+}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbf{Z}^{n} \mid \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq 0\right\} \tag{7.4}
\end{equation*}
$$

There are injective maps $\Pi_{1}: \Lambda_{n}^{+} \rightarrow S p_{2 n}, \Pi_{2}: \Lambda_{n}^{+} \rightarrow \widetilde{S p_{n}}$ such that ${\widetilde{S p_{n}}}^{\text {rel }}=$ $\cup_{\lambda \in \Lambda_{n}^{+}} N_{2} \Pi_{2}(\lambda) K_{2}$ and $S p_{2 n}^{r e l}=\cup_{\lambda \in \Lambda_{n}^{+}} S p_{n, K} \Pi_{2}(\lambda) K_{3}$ as a disjoint union. Moreover, $\Pi_{1}(0, \ldots, 0)$ and $\Pi_{2}(0, \ldots, 0)$ are elements in K_{3} and K_{2} respectively.

Proof. In the second case, this follows if we let Π_{2} be given by $\Pi_{2}(\lambda)=\left(\tilde{\Pi}^{\lambda}, 1\right)$ where

$$
\tilde{\Pi}^{\lambda}=\operatorname{diag}\left[\pi^{\lambda_{1}}, \ldots, \pi^{\lambda_{n}}, \pi^{-\lambda_{n}}, \ldots, \pi^{-\lambda_{1}}\right] .
$$

In the first case, it follows from Lemma A. 1 below.

We recall an explicit linear map from $\mathcal{S}_{K_{3}}\left(S p_{n, K} \backslash S p_{2 n}, 1\right)$ to $\mathcal{S}_{K_{2}}\left(N_{2} \backslash \widetilde{S p_{n}}, \theta_{2, \tau}^{-1}\right)$.

Recall $E=\left(\right.$	$\left.\begin{array}{lll}\tau_{n} & & \\ 1_{n} & & \\ & & \\ & & \\ & & \tau_{n}\end{array}\right)$ and ϵ_{0} is chosen so that $E=\epsilon_{0}^{-1} \mathbf{T} \epsilon_{0}$. The subgroup $\hat{N}^{n+1}, ~$	

of N_{3} is given by $\hat{N}^{n+1}=\left\{\left.\left(\begin{array}{ccc}u & * & * \\ & 1_{2 n} & * \\ & & u^{*}\end{array}\right) \right\rvert\, u \in Z_{n}\right\}$.
Recall the Weil representation $\omega_{\psi^{-1}}$ of $\widetilde{S p_{n}}$ acts on the space $\mathcal{S}\left(F^{n}\right)$ of Schwartz functions on F^{n}. For $\Phi \in \mathcal{S}\left(F^{n}\right)$, in equation (6.1) we defined, for $g \in S p_{n}$ and $\zeta \in\{ \pm 1\}$:

$$
\begin{equation*}
T_{\Phi}(F)(g, \zeta)=\int_{u \in U_{E}^{1} \backslash \hat{N}^{n+1}} F\left(j(g)^{-1} u^{-1} E u j(g)\right) \theta_{4}(u) \omega_{\psi^{-1}}(u) \omega_{\psi^{-1}}(\widetilde{g}) \Phi(0) d u \tag{7.5}
\end{equation*}
$$

Then T_{Φ} is a linear map from $\mathcal{S}_{K_{3}}\left(S p_{n, K} \backslash S p_{2 n}\right)$ to the set of genuine functions on $\widetilde{S p}_{n}$.
For $\lambda \in \Lambda_{n}^{+}$, define $c h_{\lambda}$ to be a function in $\mathcal{S}_{K}(H \backslash G, \chi)$ such that $c h_{\lambda}\left(\Pi\left(\lambda^{\prime}\right)\right)=0$ unless $\lambda=\lambda^{\prime}$, in which case $c h_{\lambda}\left(\Pi\left(\lambda^{\prime}\right)\right)=1$. We will use $c h_{\mathbf{0}}^{1}$ to denote the function on $S p_{n, K} \backslash S p_{2 n}$ corresponding to the function $c h_{\mathbf{0}}$ on X (through the identification in section 3.1), and let $c h_{\mathbf{0}}^{2}$ be the function $c h_{\mathbf{0}}$ on $\widetilde{S p_{n}}$. Let Φ_{0} be the characteristic function of \mathcal{O}^{n}.

We remark that for $f_{1} \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$, we have that $f_{1} * c h_{\mathbf{0}}^{1}=F$ where F is related to f_{1} by equation (5.4). Similarly, for $f_{2} \in \mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$, we have $f_{2} * c h_{\mathbf{0}}^{2}$ is equal to the right hand side of (7.2). Thus to prove Proposition 7.1 it is enough to prove:

Proposition 7.6. For $f_{1}, f_{2} \in \mathcal{H}\left(S p_{2 n}, K_{3}\right), \mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$ respectively, such that $\tilde{f}_{1}(z) \equiv$ $\tilde{f}_{2}(z)$, we have $T_{\Phi_{0}}\left(f_{1} * c h_{\mathbf{0}}^{1}\right)=f_{2} * c h_{\mathbf{0}}^{2}$.
7.4. Preliminary results. Let S be the reduced root system of type C_{n}, let R be the root system of type $B C_{n}$. The root systems R and S are inside the same vector space
identified with \mathbf{C}^{n}. Let $\epsilon_{i}, i=1, \ldots, n$ be the standard basis of \mathbf{C}^{n}, then

$$
\begin{gathered}
S=\left\{ \pm \epsilon_{i} \pm \epsilon_{j}, \pm \epsilon_{i}, 1 \leq i \leq n, i<j \leq n .\right\} \\
R=\left\{ \pm \epsilon_{i} \pm \epsilon_{j}, \pm \epsilon_{i}, \pm 2 \epsilon_{i}, 1 \leq i \leq n, i<j \leq n .\right\} .
\end{gathered}
$$

The root systems R and S have the same Weyl group W which is the Weyl group of $S p_{n}$. There is a natural action of W on \mathbf{C}^{n}.

A Macdonald polynomial has the form ([Mc1], equation (10.1))

$$
\begin{equation*}
Q_{\lambda}^{t}(z)=P_{\lambda}^{t}\left(e^{\epsilon_{i}}\right)=V_{\lambda}(t)^{-1} \sum_{w \in W} w\left(e^{\lambda} \prod_{\alpha \in R^{+}} \frac{1-t_{\alpha} t_{2 \alpha}^{\frac{1}{2}} e^{-\alpha}}{1-t_{2 \alpha}^{\frac{1}{2}} e^{-\alpha}}\right) . \tag{7.6}
\end{equation*}
$$

Here $\lambda \in \Lambda_{n}^{+}$is identified with dominant weights of R, R^{+}is the set of positive roots, and $e^{\epsilon_{i}}$ are the independent variables of the polynomial $P_{\lambda}^{t} ; Q_{\lambda}^{t}$ and P_{λ}^{t} are related through the equation $e^{\epsilon_{i}}=q^{-z_{i}}$. The data t_{α} are parameters such that when α is not a root in R, $t_{\alpha}=t_{\alpha}^{\frac{1}{2}}=1$. Thus the parameters t are determined by values of t_{α} when α is a long root in S, and t_{α} with $t_{2 \alpha}^{\frac{1}{2}}$ when α is a short root in $S . V_{\lambda}(t)$ are nonzero constants independent of variables $e^{\epsilon_{i}}$; they are defined in [Mc1] (denoted $W_{\lambda}(t)$ there).

Let $\mathbf{C}\left[q^{z}, q^{-z}\right]^{W}$ be the space of functions on $\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}$ that are polynomials in $q^{z_{i}}$ and $q^{-z_{i}}$ and that are invariant under the action of W. We have that $\left\{Q_{\lambda}^{t}(z) \mid \lambda \in \Lambda_{n}^{+}\right\}$ forms a basis of $\mathbf{C}\left[q^{z}, q^{-z}\right]^{W}$.

Theorems A. 2 and B. 1 below give:

Theorem 7.7. For $i=1,2$, there are choices of real numbers parameters t_{α}^{i} for α roots in R and nonzero values $a_{i}(\lambda)$ for $\lambda \in \Lambda_{n}^{+}$, such that for all $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}$,

$$
\begin{equation*}
\Psi_{z}^{i}\left(\Pi_{i}(\lambda)\right)=a_{i}(\lambda) Q_{\lambda}^{t^{i}}(z), \quad \lambda \in \Lambda_{n}^{+}, \tag{7.7}
\end{equation*}
$$

determines a spherical function Ψ_{z}^{1} in $C_{K_{3}}^{\infty}\left(S p_{n, K} \backslash S p_{2 n}, 1\right), \Psi_{z}^{2}$ in $C_{K_{2}}^{\infty}\left(N_{2} \backslash \widetilde{S p_{n}}, \theta_{2, \tau}^{-1}\right)$.

For $f \in \mathcal{H}(G, K)$, recall that $\tilde{f}(z)$ is the eigenvalue of $f^{*}(g)=f\left(g^{-1}\right)$ acting on $\overline{\Psi_{z}}$ through equation (7.3), that is:

$$
\begin{equation*}
\tilde{f}(z)=\int f\left(g^{-1}\right) \overline{\Psi_{z}(g)} d g \tag{7.8}
\end{equation*}
$$

Then $f \mapsto \tilde{f}(z)$ is an algebra homomorphism from $f \in \mathcal{H}(G, K)$ to $\mathbf{C}\left[q^{\bar{z}}, q^{-\bar{z}}\right]^{W}$. We can consider $\mathbf{C}\left[q^{\bar{z}}, q^{-\bar{z}}\right]^{W}$ as a $\mathcal{H}(G, K)$ module through the multiplication by $\tilde{f}(z)$.

When $\phi \in \mathcal{S}_{K}(H \backslash G, \chi)$, we define its Fourier transform $\hat{\phi}(z)$ by

$$
\begin{equation*}
\hat{\phi}(z)=\left\langle\phi, \Psi_{z}\right\rangle=\int_{H \backslash G} \phi(g) \overline{\Psi_{z}(g)} d g \tag{7.9}
\end{equation*}
$$

Clearly $\hat{\phi}(z) \in \mathbf{C}\left[q^{\bar{z}}, q^{-\bar{z}}\right]^{W}$. Recall $\mathcal{S}_{K}(H \backslash G, \chi)$ is a $\mathcal{H}(G, K)$ module through (7.3).

Theorem 7.8. The map $\phi \mapsto \hat{\phi}$ gives an isomorphism of $\mathcal{H}(G, K)$-modules between $\mathcal{S}_{K}(H \backslash G, \chi)$ and $\mathbf{C}\left[q^{\bar{z}}, q^{-\bar{z}}\right]^{W}$.

Proof. A basis of $S_{K}(H \backslash G, \chi)$ is given by functions $c h_{\lambda}, \lambda \in \Lambda_{n}^{+}$where $c h_{\lambda}\left(\Pi\left(\lambda^{\prime}\right)\right)$ is given by $\delta_{\lambda}^{\lambda^{\prime}}$ where δ is the Kronecker delta. On the other hand, the set of $Q_{\lambda}^{t}(z)$ for $\lambda \in \Lambda_{n}^{+}$ gives a basis for $\mathbf{C}\left[q^{z}, q^{-z}\right]^{W}$.

We have that

$$
\widehat{c h_{\lambda}}(z)=\int_{H \backslash G} c h_{\lambda}(g) \overline{\Psi_{z}(g)} d g
$$

and this is, up to a volume factor, equal to $\overline{a(\lambda) Q_{\lambda}^{t}(z)}$. Thus the map $\phi \mapsto \widehat{\phi}$ establishes a bijection between bases of $S_{K}(H \backslash G, \chi)$ and of $\mathbf{C}\left[q^{\bar{z}}, q^{-\bar{z}}\right]^{W}$.

We now show it is a $\mathcal{S}_{K}(H \backslash G, \chi)$ - homomorphism. Take $f \in \mathcal{H}(G, K), \phi \in \mathcal{S}_{K}(H \backslash G, \chi)$, then

$$
\widehat{f * \phi}(z)=\int_{G} \int_{H \backslash G} f(g) \phi(h g) \overline{\Psi_{z}(h)} d h d g .
$$

Changing $h \mapsto h g^{-1}$, we get

$$
\begin{aligned}
\widehat{f * \phi}(z) & =\int_{G} \int_{H \backslash G} f(g) \phi(h) \overline{\Psi_{z}\left(h g^{-1}\right)} d h d g \\
& =\int_{H \backslash G} \int_{G} f\left(g^{-1}\right) \phi(h) \overline{\Psi_{z}(h g)} d h d g \\
& =\tilde{f}(z) \hat{\phi}(z)
\end{aligned}
$$

as desired.

Theorem 7.9. Let $\Delta^{t}(z)=\prod_{\alpha \in R} \frac{1-t_{2}^{\frac{1}{2}} e^{\alpha}}{1-t_{2}^{\frac{1}{2}} e^{\alpha}}$. Denote by D_{n} the direct product of n copies of $\sqrt{-1} \mathbf{R} /((2 \pi / \log q) \mathbf{Z})$. For $\phi \in \mathcal{S}_{K}(H \backslash G, \chi)$, we have

$$
\begin{equation*}
\phi(g)=\int_{D_{n}} \hat{\phi}(z) \Psi_{z}(g) d_{\mu}(z) \tag{7.10}
\end{equation*}
$$

where the measure $d_{\mu}(z)=\frac{1}{|W|} V_{0}(t) \Delta^{t}(z) d z$.

Proof. In the case of $\widetilde{S p_{n}}$, this holds with $d_{\mu}^{2}(z)=\frac{1}{|W|} \Delta^{t^{I I}}(z)$. It follows from the fact that the volume of $N_{2} \backslash N_{2}\left(\tilde{\Pi}^{\lambda}, 1\right) K_{2}$ equals $\delta^{-1}\left(\tilde{\Pi}^{\lambda}\right)$ using the argument in [Mc2].

In the case of $S p_{2 n}$, it is a consequence (c.f. [MR1], Section 2.3.) of Lemma 7.5, Theorem 7.7, Corollary A. 4 and the fact that

$$
f * \Phi=f^{*} * \Phi
$$

for all $\Phi \in C_{K_{3}}^{\infty}\left(S p_{n, K} \backslash S p_{2 n}, 1\right)$ and $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$, where $f^{*}(g)=f\left(g^{-1}\right)$.
This last property holds since $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$ implies, by Cartan decomposition, that $f(g)=f\left(g^{-1}\right)$.

Suppose T is a map from $\mathcal{S}_{K_{1}}\left(H_{1} \backslash G_{1}, \chi_{1}\right)$ to $\mathcal{S}_{K_{2}}\left(H_{2} \backslash G_{2}, \chi_{2}\right)$ satisfying $T\left(\Psi_{z}^{1}\right)=c(z) \Psi_{z}^{2}$. Then from Theorem 7.9, formally we have:

$$
\begin{equation*}
T\left(\phi_{1}\right)=\int_{D_{n}} \hat{\phi}_{1}(z) \Psi_{z}^{2} c(z) d_{\mu}^{1}(z), \forall \phi_{1} \in \mathcal{S}_{K_{1}}\left(H_{1} \backslash G_{1}, \chi_{1}\right) \tag{7.11}
\end{equation*}
$$

Lemma 7.10. Let T be a linear map satisfying
(1) equation (7.11) holds for some function $c(z)$,
(2) $T\left(S_{1}^{-1}(1)\right)=S_{2}^{-1}(1)$,
then $S_{1}=S_{2} T$ on $\mathcal{S}_{K_{1}}\left(H_{1} \backslash G_{1}, \chi_{1}\right)$.

Proof. Let $\phi_{i} \in \mathcal{S}_{K_{i}}\left(H_{i} \backslash G_{i}, \chi_{i}\right)$ such that $S_{1}\left(\phi_{1}\right)=S_{2}\left(\phi_{2}\right)$, we show $\phi_{2}=T\left(\phi_{1}\right)$.
By Theorem 7.9,

$$
\phi_{2}=\int_{D_{n}} \hat{\phi}_{2}(z) \Psi_{z}^{2} d_{\mu}^{2}(z)
$$

Since $\hat{\phi}_{1}(z)=\hat{\phi}_{2}(z)$, we get there is a function $c^{\prime}(z)$ on D_{n} with:

$$
\begin{equation*}
T\left(\phi_{1}\right)-\phi_{2}=\int_{D_{n}} \hat{\phi}_{2}(z) \Psi_{z}^{2} c^{\prime}(z) d z \tag{7.12}
\end{equation*}
$$

When $\hat{\phi}_{2}(z) \equiv 1$, condition (2) implies:

$$
\begin{equation*}
\int_{D_{n}} \Psi_{z}^{2}\left(\Pi_{2}(\lambda)\right) c^{\prime}(z) d z \equiv 0, \quad \forall \lambda \in \Lambda_{n}^{+} \tag{7.13}
\end{equation*}
$$

When $z \in D_{n}, \bar{z}=-z$; thus we can consider $\hat{\phi}_{2}(z)$ as a polynomial in $\mathbf{C}\left[q^{z}, q^{-z}\right]^{W}$ For any $\lambda \in \Lambda_{n}^{+}$and any $\phi_{2}, \hat{\phi}_{2}(z) \Psi_{z}^{2}\left(\Pi_{2}(\lambda)\right) \in \mathbf{C}\left[q^{z}, q^{-z}\right]^{W}$, thus it is a linear combination $\sum c_{i} \Psi_{z}^{2}\left(\Pi_{2}\left(\lambda_{i}\right)\right)$. From (7.12) and (7.13), we get $\left(T\left(\phi_{1}\right)-\phi_{2}\right)\left(\Pi_{2}(\lambda)\right)=0$; thus $T\left(\phi_{1}\right)=$ ϕ_{2}.

7.5. Proof of Proposition 7.6.

Lemma 7.11. For $F \in \mathcal{S}_{K_{3}}\left(S p_{n, K} \backslash S p_{2 n}\right)$, and Φ_{0} the characteristic function of \mathcal{O}^{n},

$$
T_{\Phi_{0}}(F)=\int_{D_{n}} \hat{F}(z) c(z) \Psi_{z}^{2} d_{\mu}^{1} z .
$$

Proof. From Theorem 7.9,

$$
T_{\Phi_{0}}(F)=T_{\Phi_{0}}\left(\int_{D_{n}} \hat{F}(z) \Psi_{z}^{1} d_{\mu}^{1} z\right) .
$$

As $T_{\Phi_{0}}$ is an iterated integral over a fixed compact set, we can interchange the integral and operator $T_{\Phi_{0}}$ and use Proposition C. 2 to get:

$$
\begin{aligned}
T_{\Phi_{0}}(F) & =\int_{D_{n}} \hat{F}(z) T_{\Phi_{0}}\left(\Psi_{z}^{1}\right) d_{\mu}^{1} z \\
& =\int_{D_{n}} \hat{F}(z) c(z) \Psi_{z}^{2} d_{\mu}^{1} z
\end{aligned}
$$

We have already proved that

Lemma 7.12. $T_{\Phi_{0}}\left(c h_{\mathbf{0}}^{1}\right)=c h_{\mathbf{0}}^{2}$.

Since clearly $S_{1}\left(c h_{\mathbf{0}}^{1}\right)=S_{2}\left(c h_{\mathbf{0}}^{2}\right)=1$, we checked the two conditions in Lemma 7.10 are satisfied for the map $T_{\Phi_{0}}$. From Theorem 7.8, for $f_{1}, f_{2} \in \mathcal{H}\left(S p_{2 n}, K_{3}\right), \mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$, $S_{1}\left(f_{1} * c h_{\mathbf{0}}^{1}\right)=S_{2}\left(f_{2} * c h_{\mathbf{0}}^{2}\right)$ whenever $\tilde{f}_{1}(z) \equiv \tilde{f}_{2}(z)$. Lemma 7.10 gives that $S_{2} T\left(f_{1} * c h_{\mathbf{0}}^{1}\right)=$ $S_{2}\left(f_{2} * c h_{\mathbf{0}}^{2}\right)$ and using that S_{2} is an isomorphism, we obtain Proposition 7.6.

8. Proof of Theorem 1.1

From the previous sections, we get the following trace identity:

Theorem 8.1. There exists maps $\epsilon_{5, v}$ from $\mathcal{S}\left(S p_{2 n}\left(F_{v}\right)\right) \otimes \mathcal{S}\left(F_{v}^{n}\right)$ to $\mathcal{S}\left(\widetilde{\operatorname{Sp}_{n}}\left(F_{v}\right)\right)$, such that

$$
\begin{equation*}
I_{S p_{2 n}}\left(f: S p_{n, K}, 1 ; N_{3}, \theta_{4} \Theta_{\psi^{-1}}^{\Phi}\right)=I_{\widetilde{S p_{n}}}\left(\tilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right) \tag{8.1}
\end{equation*}
$$

when
(1) at $v \notin S$ where S is a finite set of places containing all bad places, f_{v} is a Hecke function and Φ_{v} is the characteristic function of the lattice $\mathcal{O}_{v}^{n}, \tilde{f}_{v}$ is the Hecke function associated to f_{v} by (7.1).
(2) at $v \in S, \tilde{f}_{v}=\epsilon_{5, v}\left(f_{v} \otimes \Phi_{v}\right)$.

Proof. : Given f_{v}, Φ_{v}, we find \tilde{f}_{v} through Corollary 6.7. The identity follows from Propositions 5.8, 5.9, and Corollary 7.2.

Proof of Theorem 1.1:

Given $f_{v} \in \mathcal{S}\left(\operatorname{GL}_{2 n}\left(F_{v}\right)\right)$, we find $f_{v}^{\prime} \in \mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right)$ through Corollary 3.9, then we find a pair $f_{v}^{\prime \prime} \in \mathcal{S}\left(\operatorname{Sp}_{2 n}\left(F_{v}\right)\right)$ and $\Phi_{v} \in \mathcal{S}\left(F_{v}^{n}\right)$ through Corollary 4.9, then we find $\tilde{f}_{v} \in \mathcal{S}\left(\widetilde{\mathrm{Sp}_{n}}\left(F_{v}\right)\right)$ through Theorem 8.1. This gives the map ϵ_{v} which is $\epsilon_{5, v} \epsilon_{4, v} \epsilon_{1, v}$.

At a good place v, the Hecke algebra homomorphism $\lambda_{v}: f_{v} \mapsto \tilde{f}_{v}$ from $\mathcal{H}\left(G L_{2 n}, K_{1}\right)$ to $\mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$ is defined so that

$$
\widehat{f}_{v}\left(z_{1},-z_{1}, z_{2},-z_{2}, \ldots, z_{n},-z_{n}\right)=\widehat{\tilde{f}}_{v}\left(z_{1}, \ldots, z_{n}\right)
$$

Let S be a finite set of places containing archimedean places and even places and places where ψ is not unramified. Assume $f=\otimes f_{v}$ and $\tilde{f}=\otimes_{v \in S} \epsilon_{v}\left(f_{v}\right) \otimes_{v \notin S} \lambda_{v}\left(f_{v}\right)$. We need to show the equality

$$
\begin{equation*}
I_{G L_{2 n}}\left(f: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right)=I_{\widehat{S p_{n}}}\left(\tilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right) . \tag{8.2}
\end{equation*}
$$

For $v \notin S$, there is $f_{v}^{\prime} \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$ such that equation (7.1) holds. From Theorem 8.1, equation (8.1) holds when we replace $f \otimes \Phi$ by

$$
\otimes_{v \in S} \epsilon_{4, v} \epsilon_{1, v}\left(f_{v}\right) \otimes_{v \notin S}\left(f_{v}^{\prime} \otimes \Phi_{0, v}\right) .
$$

From Corollary 4.9, we get $I_{\widetilde{S p_{n}}}\left(\tilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right)$ equals $I_{S p_{2 n}}\left(f^{\prime}: S p_{n, K}, 1 ; N_{3}, \theta_{3}\right)$ when $f^{\prime}=\otimes_{v \in S} \epsilon_{1, v}\left(f_{v}\right) \otimes_{v \notin S} f_{v}^{\prime}$.

From Corollary 3.9, we get $I_{\widetilde{S p_{n}}}\left(\tilde{f}: N_{2}, \theta_{2, \tau}^{-1} ; N_{2}, \theta_{2}\right)$ equals $I_{G L_{2 n}}\left(f_{1}: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right)$ where

$$
f_{1}=\otimes_{v \in S} f_{v} \otimes_{v \notin S} f_{1, v}, \quad f_{1, v}=\lambda_{1, v}\left(f_{v}^{\prime}\right)
$$

We have the following relationship between f_{v} and $f_{1, v}$:

Lemma 8.2. For all $z \in \mathbf{C}^{n}$:

$$
\begin{equation*}
\widehat{f_{v}}\left(z_{1},-z_{1}, z_{2},-z_{2}, \ldots, z_{n},-z_{n}\right)=\widehat{f_{1, v}}\left(z_{1},-z_{1}, z_{2},-z_{2}, \ldots, z_{n},-z_{n}\right) . \tag{8.3}
\end{equation*}
$$

Proof. The left hand side of the equation is $\widehat{\tilde{f}}\left(z_{1}, \ldots, z_{n}\right)$, which equals

$$
\widehat{f_{v}^{\prime}}\left(z_{1}+\frac{1}{2}, z_{1}-\frac{1}{2}, \ldots, z_{n}+\frac{1}{2}, z_{n}-\frac{1}{2}\right) .
$$

Using the invariance under the Weyl group of $\mathrm{Sp}_{2 n}$, the above equals:

$$
\widehat{f}_{v}^{\prime}\left(z_{1}+\frac{1}{2},-z_{1}+\frac{1}{2}, \ldots, z_{n}+\frac{1}{2},-z_{n}+\frac{1}{2}\right) .
$$

Using the relation (3.8) we get the above equals the right hand side of the equation.

To complete the proof of identity (8.2), we only need to show

$$
I_{G L_{2 n}}\left(f_{1}: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right)=I_{G L_{2 n}}\left(f: G L_{n, K}, 1 ; N_{1}, \theta_{1}\right)
$$

From the orbital integral decomposition in equation (3.4), this will follow from

Lemma 8.3. When equation (8.3) holds for all $z \in C^{n}$,

$$
\int_{G L_{n, K}\left(F_{v}\right)} f_{v}(h g) d h=\int_{G L_{n, K}\left(F_{v}\right)} f_{1, v}(h g) d h .
$$

Proof. We work over a place v, which we omit it in the notation. Let $C_{K_{1}}^{C}\left(G L_{n, K} \backslash G L_{2 n}\right)$ be the space of right K_{1} and left $G L_{n, K}$ invariant functions compactly supported on $G L_{2 n}\left(F_{v}\right)$. Then the Hecke algebra $\mathcal{H}\left(G L_{2 n}, K_{1}\right)$ acts on this space by:

$$
f * \phi(g)=\int \phi(g h) f\left(h^{-1}\right) d h, \phi \in C_{K_{1}}^{C}\left(G L_{n, K} \backslash G L_{2 n}\right), f \in \mathcal{H}\left(G L_{2 n}, K_{1}\right) .
$$

Let $f_{0, v}$ be the unit Hecke function on $G L_{2 n}$, and define

$$
\Xi_{0, v}(g)=\int_{G L_{n, K}\left(F_{v}\right)} f_{0, v}(h g) d h .
$$

Then $\Xi_{0, v} \in C_{K_{1}}^{C}\left(G L_{n, K} \backslash G L_{2 n}\right)$. It is clear the two sides of the equation in Lemma are $f_{v} * \Xi_{0, v}$ and $f_{1, v} * \Xi_{0, v}$.

By [O, Proposition 4.9], we have that $C_{K_{1}}^{C}\left(G L_{n, K} \backslash G L_{2 n}\right)$ is isomorphic to $\mathbf{C}\left[q^{z}, q^{-z}\right]^{W_{1}}$ as $\mathcal{H}\left(G L_{2 n}, K_{1}\right)$-modules. In particular, the action of f is determined by the values of $\widehat{f}\left(z_{1},-z_{1}, \ldots, z_{n},-z_{n}\right)$ and thus we have $f_{v} * \phi=f_{1, v} * \phi$ for all $\phi \in C_{K_{1}}^{C}\left(G L_{n, K} \backslash G L_{2 n}\right)$, when f_{v} and $f_{1, v}$ satisfy (8.3).

This completes the proof of Theorem 1.1.

Appendix A. Spherical functions on $S p_{n, K} \backslash S p_{2 n}$

Recall that \mathbf{T} is the square matrix of size $4 n$ consisting of $\left(\begin{array}{ll} & \tau \\ 1 & \end{array}\right)$ on the diagonal and zero elsewhere; the group $S p_{n, K}$ consists of g in $S p_{2 n}$ with $g^{-1} \mathbf{T} g=\mathbf{T}$. Let X^{\prime} be the space of antisymmetric matrices in $S p_{2 n}$. We have a map $S p_{n, K} \backslash S p_{2 n} \rightarrow X^{\prime}$ given by $g \mapsto g^{-1} \mathbf{T} g J$. We denote the image of this map by $X \subset X^{\prime}$. The group $S p_{2 n}$ acts on X by $g \cdot x=g x^{t} g$.

Recall that

$$
\Lambda_{n}^{+}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbf{Z}^{n} \mid \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq 0\right\}
$$

We denote by Π_{a} the matrix $\left(\begin{array}{cc} & \pi^{a} \\ -\pi^{a} & \end{array}\right)$; for $\lambda \in \Lambda_{n}^{+}$, we denote by $\Pi^{\lambda} \in X$ the matrix with the diagonal being $\left[\tau \Pi_{\lambda_{1}}, \tau \Pi_{\lambda_{2}}, \ldots, \tau \Pi_{\lambda_{n}},-\Pi_{-\lambda_{n}}, \ldots,-\Pi_{-\lambda_{1}}\right]$.

Lemma A.1. As a disjoint union,

$$
\begin{equation*}
X=\cup K \cdot \Pi^{\lambda}, \quad \lambda \in \Lambda_{n}^{+} . \tag{A.1}
\end{equation*}
$$

Proof. Let $x \in X$. Let $x_{i_{0}, j_{0}}$ be the entry with the largest norm in x. Since x is antisymmetric, we have that $i_{0} \neq j_{0}$ and so through the action of a suitable Weyl element $w \in K_{3}$ and a diagonal matrix $a \in K_{3}$, we have that $x^{\prime}=w a \cdot x$ has one of the following two properties: either $x_{1,2}^{\prime}=-x_{2,1}^{\prime}=\pi^{-\lambda_{1}}$ is the element with the largest norm or $x_{1,4 n}^{\prime}$ is the element with the largest norm in x^{\prime}.

We now consider the second case, we assume that for elements in $K \cdot x$ the entry with the largest norm lies on the antidiagonal. In this case, there is an element y in the orbit $K \cdot x$ which is antidiagonal. But then y must satisfy $y J^{2}=\tau$, this is a contradiction.

In the first case, there exists a lower triangular matrix $n \in K_{3}$ with $x^{\prime \prime}=n \cdot x^{\prime}$ has the property that $x_{1, i}^{\prime \prime}=0$ when $i \neq 2$ and $x_{2, j}^{\prime \prime}=0$ when $j \neq 1$. Since $x \in X$ satisfies
$x^{t} J x=\tau J$, we have that $x_{1, i}^{\prime \prime}=x_{2, j}^{\prime \prime}=x_{i, 1}^{\prime \prime}=x_{j, 2}^{\prime \prime}=x_{4 n+1-j, 4 n-1}^{\prime \prime}=x_{4 n+1-i, 4 n}^{\prime \prime}=0$ unless $i=2$ or $j=1$; furthermore, $x_{4 n, 4 n-1}^{\prime \prime}=-x_{4 n-1,4 n}^{\prime \prime}=\pi^{\lambda_{1}}$. Thus $x^{\prime \prime}$ is a diagonal matrix with elements in the diagonal being $\Pi_{\lambda_{1}}, y$ and $-\Pi_{\lambda_{1}}$ where y is an antisymmetric square matrix of size $4(n-1)$ with $(y J)^{2}=\tau$ and ${ }^{t} y J y=\tau J$. Moreover, the maximum norm of the entries of y is $q^{\lambda_{2}}$ with $\lambda_{2} \leq \lambda_{1}$. Continuing this process, we see that $x \in K \cdot \Pi^{-\lambda}$ with $\lambda \in \Lambda_{n}^{+}$. Moreover, the sets $K \cdot \Pi^{-\lambda}$ are clearly disjoint for distinct $\lambda \in \Lambda_{n}^{+}$.

Let $C_{K_{3}}^{\infty}(X)$ be the space of all K_{3}-invariant complex functions on X and $\mathcal{S}_{K_{3}}(X)$ the subspace consisting of all compactly supported functions in $C_{K_{3}}^{\infty}(X)$. With the identification between $S p_{n, K} \backslash S p_{2 n}$ and X, the action of $\mathcal{H}\left(S p_{2 n}, K_{3}\right)$ on $C_{K_{3}}^{\infty}(X)$ becomes the convolution product:

$$
\begin{equation*}
(f * \Phi)(x)=\int_{S p_{2 n}} f(g) \Phi\left(g^{-1} \cdot x\right) d g f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right), \Phi \in C_{K_{3}}^{\infty}(X) . \tag{A.2}
\end{equation*}
$$

A spherical function on X is by definition an eigenfunction $\Psi(x)$ in $C_{K_{3}}^{\infty}(X)$ of all the convolutions defined by elements in $\mathcal{H}\left(S p_{2 n}, K_{3}\right)$ normalized such that $\Psi\left(\Pi^{0}\right)=1$. Here $\mathbf{0}$ is the vector in Λ_{n}^{+}where all entries are 0 . The spherical functions on X are clearly in one-one correspondence with spherical functions on $C_{K_{3}}^{\infty}\left(S p_{n, K} \backslash S p_{2 n}, 1\right)$.

Recall by equation (10.1) of [Mc1] that a Macdonald polynomial has the form

$$
Q_{\lambda}^{t}(z)=P_{\lambda}^{t}\left(e^{\epsilon_{i}}\right)=V_{\lambda}(t)^{-1} \sum_{w \in W} w\left(e^{\lambda} \prod_{\alpha \in R^{+}} \frac{1-t_{\alpha} t_{2 \alpha}^{\frac{1}{2}} e^{-\alpha}}{1-t_{2 \alpha}^{\frac{1}{2}} e^{-\alpha}}\right),
$$

where the parameters t are determined by the values of t_{α} when α is a long root in S, and t_{α} with $t_{2 \alpha}^{\frac{1}{2}}$ when α is a short root in S.

We will prove the following result:

Theorem A.2. For $z=\left(z_{1}, \ldots, z_{n}\right) \in C, \Psi_{z}(x)$ defined by the following equation is a spherical function on X :

$$
\begin{equation*}
\Psi_{z}\left(\Pi^{\lambda}\right)=q^{b(\lambda)} \frac{V_{\lambda}\left(t^{I}\right)}{V_{0}\left(t^{I}\right)} Q_{\lambda}^{t^{I}}, \quad \lambda \in \Lambda_{n}^{+} \tag{A.3}
\end{equation*}
$$

where $b(\lambda)=-\sum_{i=1}^{n}(2(n-i+1)-1 / 2) \lambda_{i}$. The parameter t_{α}^{I} in the definition of $Q_{\lambda}^{t^{I}}$ is given by: when α is a long root in $S, t_{\alpha}^{I}=q^{-2}$; when α is a short root in S, we set $t_{\alpha}^{I}=q^{-1}$, $t_{2 \alpha}^{I}{ }^{1 / 2}=q^{-1 / 2}$.

We will construct a function $\Psi_{z}(x)$ on X that is an eigenfunction under the Hecke algebra action, thus a spherical function, then we establish formula (A.3) for $\Psi_{z}(x)$.

For $x \in X$, denote by $\mathcal{P} f_{i}(x)(1 \leq i \leq n)$ the Pfaffian of the lower right $2 i \times 2 i$ block of x. Define the integral

$$
\begin{equation*}
\zeta(x ; s)=\zeta\left(x ; s_{1}, \ldots, s_{n}\right)=\int_{K_{3}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}(k \cdot x)\right|^{s_{i}} d k \tag{A.4}
\end{equation*}
$$

where $x \in X$ and $s \in \mathbf{C}^{n}$. The integral is taken over the open subset

$$
\left\{k \in K_{3}\left|\prod_{i=1}^{n}\right| \mathcal{P} f_{i}(k \cdot x) \mid \neq 0\right\}
$$

Set

$$
\begin{equation*}
\Psi_{z}(x)=\zeta(x ; s) / \zeta\left(\Pi^{0}, s\right), x \in X \tag{A.5}
\end{equation*}
$$

where $z=\left(z_{1}, \ldots, z_{n}\right)$ satisfies the relation:

$$
\begin{equation*}
\sum_{i=j}^{n} s_{i}=-z_{j}-2(n-j)-\frac{3}{2}, j=1, \ldots, n \tag{A.6}
\end{equation*}
$$

A.0.1. Hecke algebra action. We first prove $\Psi_{z}(x)$ is an eigenfunction of the Hecke algebra $\mathcal{H}\left(S p_{2 n}, K_{3}\right)$.

Recall that A_{3} is the set of diagonal matrices in $S p_{2 n}$ and N_{3} is the standard maximal unipotent subgroup of $S p_{2 n}$. Let $B=A_{3} N_{3}$ be the standard Borel subgroup. Given $\nu=\left(\nu_{1}, \ldots, \nu_{2 n}\right) \in \mathbf{C}^{2 n}$, let $\Phi_{\nu}(g)$ be the K_{3}-invariant vector in the induced representation $I\left(\chi_{\nu}\right)=\operatorname{Ind}_{B}^{S p_{2 n}} \chi_{\nu}$, where

$$
\chi_{\nu}(a u)=\prod_{i=1}^{2 n}\left|a_{i}\right|^{\nu_{i}}, a=\operatorname{diag}\left[a_{1}, \ldots, a_{2 n}, a_{2 n}^{-1}, \ldots, a_{1}^{-1}\right], u \in N_{3} .
$$

We normalize Φ_{ν} so that

$$
\begin{equation*}
\Phi_{\nu}(a u k)=\prod_{i=1}^{2 n}\left|a_{i}\right|^{\nu_{i}+(2 n-i+1)}, k \in K_{3} . \tag{A.7}
\end{equation*}
$$

The Satake transform $\hat{f}(\nu)$ of $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$ is defined by

$$
\hat{f}(\nu)=\int_{S p_{2 n}} f(g) \Phi_{\nu}(g) d g
$$

By the Iwasawa decomposition, this agrees with the definition in equation (3.6).
We will let

$$
\begin{equation*}
\omega_{f}(z)=\hat{f}\left(-z_{1}+\frac{1}{2},-z_{1}-\frac{1}{2}, \ldots,-z_{n}+\frac{1}{2},-z_{n}-\frac{1}{2}\right) \tag{A.8}
\end{equation*}
$$

The following proposition shows Ψ_{z} is a spherical function.

Proposition A.3. When $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$,

$$
\begin{equation*}
\left(f * \Psi_{z}\right)(x)=\omega_{f}(z) \Psi_{z}(x), x \in X \tag{A.9}
\end{equation*}
$$

Proof. Let $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$. Recall from equation (A.5) that

$$
\zeta\left(\Pi^{0} ; s\right) \Psi_{z}(x)=\zeta(x ; s)
$$

We compute

$$
\begin{aligned}
\zeta\left(\Pi^{\mathbf{0}} ; s\right)\left(f * \Psi_{z}\right)(x) & =\zeta\left(\Pi^{\mathbf{0}} ; s\right) \int_{S p_{2 n}} f(g) \Psi_{z}\left(g^{-1} \cdot x\right) d g \\
& =\int_{S p_{2 n}} f(g) \zeta\left(g^{-1} \cdot x ; s\right) d g \\
& =\int_{S p_{2_{2 n}}} f(g)\left\{\int_{K_{3}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}\left(k g^{-1} \cdot x\right)\right|^{s_{i}} d k\right\} d g
\end{aligned}
$$

Changing variables on g and using that $f \in \mathcal{H}\left(S p_{2 n}, K_{3}\right)$, we get that this is

$$
\int_{S_{p_{2 n}}} f(g) \prod_{i=1}^{n}\left|\mathcal{P} f_{i}\left(g^{-1} \cdot x\right)\right|^{s_{i}} d g
$$

By the Iwasawa decomposition, we write g as $g=k^{-1} b$ where $k \in K_{3}, b \in B$. We get that

$$
\zeta\left(\Pi^{\mathbf{0}} ; s\right)\left(f * \Psi_{z}\right)(x)=\int_{K_{3}} \int_{B} f\left(k^{-1} b\right) \prod_{i=1}^{n}\left|\mathcal{P} f_{i}\left(b^{-1} k \cdot x\right)\right|^{s_{i}} d k d b,
$$

here $d_{*} b$ is a right invariant measure on B.
Note that for $b \in B$,

$$
\begin{equation*}
\left|\mathcal{P} f_{i}(b \cdot x)\right|^{s_{i}}=\left|d_{i}(b)\right|^{s_{i}}\left|\mathcal{P} f_{i}(x)\right|^{s_{i}}, \tag{A.10}
\end{equation*}
$$

where $d_{i}(b)$ is the determinant of the lower right $2 i \times 2 i$ block of b.
Thus

$$
\zeta\left(\Pi^{\mathbf{0}} ; s\right)\left(f * \Psi_{z}\right)(x)=\int_{K_{3}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}(k \cdot x)\right|^{s_{i}} d k \int_{B} f(b) \prod_{i=1}^{n}\left|d_{i}\left(b^{-1}\right)\right|^{s_{i}} d_{*} b .
$$

The relation of z and s gives that

$$
\omega_{f}(z)=\hat{f}\left(-z_{1}+\frac{1}{2},-z_{1}-\frac{1}{2}, \ldots,-z_{n}+\frac{1}{2},-z_{n}-\frac{1}{2}\right)=\int_{B} f(b) \prod_{i=1}^{n}\left|d_{i}\left(b^{-1}\right)\right|^{s_{i}} d_{*} b .
$$

Therefore we obtain

$$
\zeta\left(\Pi^{0} ; s\right)\left(f * \Psi_{z}(x)\right)=\zeta(x ; s) \omega_{f}(z) .
$$

This equation implies Proposition A.3.
Corollary A.4. The map from $\mathcal{H}\left(S p_{2 n}, K_{3}\right)$ to $\mathbf{C}\left[q^{\bar{z}}, q^{-\bar{z}}\right]^{W_{3}}$ given by $f \mapsto \omega_{f}(z)$ is onto.
A.0.2. Another definition of $\Psi_{z}(x)$. Given $x \in X$, define

$$
\begin{equation*}
F_{z}^{x}(g)=\prod_{i=1}^{n}\left|\mathcal{P} f_{i}(g \cdot x)\right|^{s_{i}}, g \in S p_{2 n} \tag{A.11}
\end{equation*}
$$

where z and s are related by

$$
\sum_{i=j}^{n} s_{i}=-z_{j}-2(n-j)-\frac{3}{2}, j=1, \ldots, n .
$$

Then $\zeta(x ; s)=\int_{K_{3}} F_{z}^{x}(k) d k$. By equation (A.10) we have

$$
\begin{equation*}
F_{z}^{x}(b g)=\prod_{i=1}^{n}\left|d_{i}(b)\right|^{s_{i}} F_{z}^{x}(g) . \tag{A.12}
\end{equation*}
$$

Therefore F_{z}^{x} defines a distribution on the space of $I\left(\chi_{-\nu(z)}\right)$, where

$$
\nu(z)=\left(z_{1}-\frac{1}{2}, z_{1}+\frac{1}{2}, \ldots, z_{n}-\frac{1}{2}, z_{n}+\frac{1}{2}\right) .
$$

The distribution is given by

$$
\begin{equation*}
F_{z}^{x}(\Phi)=\int_{B \backslash S p_{2 n}} F_{z}^{x}(g) \Phi(g) d g \tag{A.13}
\end{equation*}
$$

for $\Phi \in I\left(\chi_{-\nu(z)}\right)$.

When $x=\mathbf{T} J$, since $h \cdot \mathbf{T} J=\mathbf{T} J$ for $h \in S p_{n, K}$, we get $F_{z}^{\mathbf{T} J}(g h)=F_{z}^{\mathbf{T} J}(g)$ for $h \in S p_{n, K} \subset S p_{2 n}$. Therefore if $L(\Phi)=F_{z}^{\mathbf{T} J}(\Phi)$, then L is a $S p_{n, K}$-invariant linear form on $I\left(\chi_{-\nu(z)}\right)$.

Proposition A.5. Let L be the linear form above, and $\Phi_{-\nu(z)}$ be the vector in $I\left(\chi_{-\nu(z)}\right)$ defined by (A.7). Denote the action of $S p_{2 n}$ on $I\left(\chi_{-\nu(z)}\right)$ by ρ. Then when $x=g \cdot \mathbf{T} J$, $g \in S p_{2 n}$,

$$
\begin{equation*}
\zeta(x ; s)=L\left(\rho\left(g^{-1}\right) \Phi_{-\nu(z)}\right) \tag{A.14}
\end{equation*}
$$

Proof. The right hand side of the equation is:

$$
\int_{B \backslash S p_{2 n}} F_{z}^{\mathbf{T} J}(h) \rho\left(g^{-1}\right) \Phi_{-\nu(z)}(h) d h=\int_{B \backslash S p_{2 n}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}(h \cdot \mathbf{T} J)\right|^{s_{i}} \Phi_{-\nu(z)}\left(h g^{-1}\right) d h .
$$

Making a change of variable $h \mapsto h g$, this becomes

$$
\int_{B \backslash S p_{2 n}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}(h \cdot x)\right|^{s_{i}} \Phi_{-\nu(z)}(h) d h .
$$

By the Iwasawa decomposition, this is

$$
\int_{K_{3}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}(k \cdot x)\right|^{s_{i}} \Phi_{-\nu(z)}(k) d k
$$

Since $\Phi_{-\nu(z)}(k)=1$, we get the equation above.
A.1. Computation of $\Psi_{z}\left(\Pi^{\lambda}\right)$. The calculation of $\zeta(x ; s)$, as in [MR], follows Casselman's $\operatorname{method}([\mathrm{C}])$. We assume $\nu(z)$ is such that the numbers $\left\{\left.z_{i} \pm \frac{1}{2} \right\rvert\, i=1, \ldots n\right\}$ are all distinct. The analytic continuation would give the formula for all cases of z.
A.1.1. Expansion in the basis $\left\{f_{w}^{z}\right\}$. Let B_{0} be the Iwahori subgroup of $S p_{2 n}$, define

$$
\begin{equation*}
\xi_{z}^{x}(g)=\int_{B_{0}} F_{z}^{x}(g b) d b \tag{A.15}
\end{equation*}
$$

here the measure is normalized so B_{0} has volume 1 . We have that $\xi_{z}^{x}(g)$ is right B_{0} invariant. From (A.12), we see that $\xi_{z}^{x}(g)$ is a B_{0} fixed vector in $I\left(\chi_{\nu(z)}\right)$, where

$$
\nu(z)=\left(z_{1}-\frac{1}{2}, z_{1}+\frac{1}{2}, \ldots, z_{n}-\frac{1}{2}, z_{n}+\frac{1}{2}\right) .
$$

In [C], Casselman defined a basis $\left\{f_{w}^{z} \mid w \in W_{3}\right\}$ of the space of B_{0} fixed vectors in $I\left(\chi_{\nu(z)}\right)$. We have that there exist functions $\left\{a_{w}(x ; z) \mid w \in W_{3}\right\}$, so that

$$
\begin{equation*}
\xi_{z}^{x}(g)=\sum_{w \in W_{3}} a_{w}(x ; z) f_{w}^{z}(g) . \tag{A.16}
\end{equation*}
$$

Here by definition:

$$
\begin{equation*}
a_{w}(x ; z)=T_{w}^{z}\left(\xi_{z}^{x}\right)(1) \tag{A.17}
\end{equation*}
$$

where T_{w}^{z} is the intertwining operator of w from the space $I\left(\chi_{\nu(z)}\right)$ to $I\left(w \chi_{\nu(z)}\right)$, defined by analytic continuation of the following integration:

$$
T_{w}^{z}(\varphi)(g)=\int_{N_{3} \cap w N_{3} w^{-1} \backslash N_{3}} \varphi\left(w^{-1} u g\right) d u .
$$

As $\zeta(x ; s)=\int_{K_{3}} F_{z}^{x}(k) d k=\int_{K_{3}} \xi_{z}^{x}(k) d k$, we get

$$
\begin{equation*}
\zeta(x ; s)=\sum_{w \in W_{3}} a_{w}(x ; z) \int_{K_{3}} f_{w}^{z}(k) d k . \tag{A.18}
\end{equation*}
$$

The integral $\int_{K_{3}} f_{w}^{z}(k) d k$ is computed in [C]. Recall that the root system of $S p_{n}$ is given by S, we will denote by $S_{2 n}$ the root system of $S p_{2 n}$. Let $S_{2 n}^{+}$and $S_{2 n}^{-}$be the set of positive and negative roots respectively. We define e^{α} for a given $z^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{2 n}^{\prime}\right)$ by $e^{\epsilon_{i}}=q^{-z_{i}}$.

Let

$$
c_{w}\left(z^{\prime}\right)=\prod_{\alpha \in S_{2 n}^{+}, w \alpha \in S_{2 n}^{-}} \frac{1-q^{-1} e^{\alpha}}{1-e^{\alpha}}
$$

Let w_{l} be the longest Weyl element in W_{3}. Then we have

$$
\begin{equation*}
\int_{K_{3}} f_{w}^{z}(k) d k=Q^{-1} c_{w_{l}}\left(w_{l} w \nu(z)\right) / c_{w}(\nu(z)) . \tag{A.19}
\end{equation*}
$$

Here Q is some constant independent of z defined in [C].
A.1.2. Vanishing of $a_{w}(x ; z)$. We now turn attention to the computation of $a_{w}(x ; z)$. As in [Hi], define an intertwining operator \tilde{T}_{w}^{z} from $I\left(\chi_{-\nu(z)}\right)^{*}$ to $I\left(w \chi_{-\nu(z)}\right)^{*}$, where $I(\chi)^{*}$ is the dual of $I(\chi)$, (see Proposition 1.6 in [Hi]). By equation (A.13), we have that $F_{z}^{x} \in$ $I\left(\chi_{-\nu(z)}\right)^{*}$. Then as in [Hi], \tilde{T}_{w}^{z} extends the intertwining operator T_{w}^{z}.

Similar to Proposition 1.7 in [Hi], we have

$$
\begin{equation*}
a_{w}(x ; z)=T_{w}^{z}\left(\xi_{z}^{x}\right)(1)=\int_{B_{0}} \tilde{T}_{w}^{z}\left(F_{z}^{x}\right)(b) d b \tag{A.20}
\end{equation*}
$$

From now on we assume $x=\Pi^{\lambda}$ for some $\lambda \in \Lambda_{n}^{+}$. We show then $a_{w}(x ; z)=0$ for most $w \in W_{3}$. Define $Y \subset S p_{2 n}:$

$$
\begin{equation*}
Y=\left\{g \in S p_{2 n} \mid F_{z}^{\mathbf{T} J}(g) \neq 0\right\} \tag{A.21}
\end{equation*}
$$

Clearly Y is an open subset of $S p_{2 n}$.

Lemma A.6. Let $b \in B$, then $g \in S p_{2 n}$ is in Y if and only if $b g \in Y$.

Proof. This follows from equation (A.12).

Lemma A.7. When $g \in S p_{2 n}$ is such that $g \cdot \mathbf{T} J=x=\Pi^{\lambda}$ for some $\lambda \in \Lambda_{n}^{+}, F_{z}^{\mathbf{T} J}(b g)=$ $F_{z}^{x}(b)=F_{z}^{x}(1)$ when $b \in B_{0}$.

Proof. It is clear from (A.12) that when $b \in B_{0} \cap B$,

$$
F_{z}^{x}(b)=\prod_{i=1}^{n}\left|d_{i}(b)\right|^{s_{i}} F_{z}^{x}(1)=F_{z}^{x}(1)
$$

We now assume $b \in B_{0} \cap \bar{B}$ where \bar{B} is the set of lower triangular matrices in $S p_{2 n}$. We show in this case $\left|\mathcal{P} f_{i}(b \cdot x)\right|=\left|\mathcal{P} f_{i}(x)\right|$ for $i=1, \ldots, n$.
Write x as $\left(\begin{array}{cc}A_{1} & \\ & A_{2}\end{array}\right)$ where A_{2} is the lower right $2 i \times 2 i$ block of x. Write b as $\left(\begin{array}{cc}b_{1} & \\ S & b_{2}\end{array}\right)$, where b_{2} is the lower right $2 i \times 2 i$ block of b. Thus b_{2} is a lower-triangular matrix, in the Iwahori subgroup of $G L_{2 i}$. With these notations, we see

$$
\left|\mathcal{P} f_{i}(b \cdot x)\right|=\left|\mathcal{P} f\left(b x^{t} b\right)\right|=\left|\mathcal{P} f\left(b_{2} A_{2}{ }^{t} b_{2}+S A_{1}{ }^{t} S\right)\right| .
$$

Since the entries of S are in the prime ideal $\mathcal{P} \subset \mathcal{O}$, with our choice of x, we see

$$
b_{2} A_{2}{ }^{t} b_{2}+S A_{1}{ }^{t} S=b_{2} A_{2}{ }^{t} b_{2} \bmod P^{1-\lambda_{i}} .
$$

Thus

$$
\left|\mathcal{P} f\left(b_{2} A_{2}{ }^{t} b_{2}+S A_{1}{ }^{t} S\right)\right|=\left|\mathcal{P} f\left(b_{2} A_{2}{ }^{t} b_{2}\right)\right|=\left|\mathcal{P} f\left(A_{2}\right)\right|=\left|\mathcal{P} f_{i}(x)\right| .
$$

We have proved $\left|\mathcal{P} f_{i}(b \cdot x)\right|=\left|\mathcal{P} f_{i}(x)\right|$, thus the identity $F_{z}^{x}(b)=F_{z}^{x}(1)$.

Proposition A.8. Let $x=\Pi^{\lambda}$ for some $\lambda \in \Lambda_{n}^{+}$. If the distribution $\tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right) \in I\left(w \chi_{-\nu(z)}\right)^{*}$ is supported away from Y, then $a_{w}(x ; z)=0$.

Proof. Let Φ_{0}^{w} be the vector in $I\left(w \chi_{-\nu(z)}\right)$, such that Φ_{0}^{w} is supported on $B B_{0}$, and $\Phi_{0}^{w}(b)=$ 1 when $b \in B_{0}$. Then we have that $\tilde{T}_{w}^{z}\left(F_{z}^{x}\right)\left(\Phi_{0}^{w}\right)$ is equal to

$$
\begin{equation*}
\int_{B \backslash S p_{2 n}} \tilde{T}_{w}^{z}\left(F_{z}^{x}\right)(g) \Phi_{0}^{w}(g) d g=\int_{B_{0}} \tilde{T}_{w}^{z}\left(F_{z}^{x}\right)(b) d b . \tag{A.22}
\end{equation*}
$$

Thus from (A.20), we have that

$$
a_{w}(x ; z)=\tilde{T}_{w}^{z}\left(F_{z}^{x}\right)\left(\Phi_{0}^{w}\right)
$$

Assume $x=g \cdot \mathbf{T} J$, let ρ_{w} denote the representation on the space $I\left(w \chi_{-\nu(z)}\right)^{*}$ and let ρ_{w}^{\prime} denote the representation on the space $I\left(w_{\left.\chi_{-\nu(z)}\right)}\right.$. We calculate that for $\phi \in I\left(w_{-\nu(z)}\right)$ we have that

$$
\begin{aligned}
\rho_{w}(g) \tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right)(\phi) & =\tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right)\left(\rho_{w}^{\prime}\left(g^{-1}\right) \phi\right) \\
& =\int_{B \backslash S p_{2 n}} \int_{N_{3} \cap w N_{3} w^{-1} \backslash N_{3}} F_{z}^{\mathbf{T} J}\left(w^{-1} u h\right) \phi\left(h g^{-1}\right) d u d h \\
& =\int_{B \backslash S p_{2 n}} \int_{N_{3} \cap w N_{3} w^{-1} \backslash N_{3}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}\left(w^{-1} u h \cdot \mathbf{T} J\right)\right|^{s_{i}} \phi\left(h g^{-1}\right) d u d h \\
& =\int_{B \backslash S p_{2 n}} \int_{N_{3} \cap w N_{3} w^{-1} \backslash N_{3}} \prod_{i=1}^{n}\left|\mathcal{P} f_{i}\left(w^{-1} u h \cdot x\right)\right|^{s_{i}} \phi(h) d u d h \\
& =\int_{B \backslash S p_{2 n}} \int_{N_{3} \cap w N_{3} w^{-1} \backslash N_{3}} F_{z}^{x}\left(w^{-1} u h\right) \phi(h) d u d h .
\end{aligned}
$$

Thus, $\tilde{T}_{w}^{z}\left(F_{z}^{x}\right)=\rho_{w}(g) \tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right)$ and

$$
a_{w}(x ; z)=\tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right)\left(\rho_{w}^{\prime}\left(g^{-1}\right) \Phi_{0}^{w}\right)
$$

We show $\rho_{w}^{\prime}\left(g^{-1}\right) \Phi_{0}^{w}$ is supported on Y; then if the assumption of the Proposition holds, $a_{w}(x ; z)=0$.

The support of $\rho_{w}^{\prime}\left(g^{-1}\right) \Phi_{0}^{w}$ is $B B_{0} g$. Let $b_{1} \in B, b_{2} \in B_{0}$. From Lemma A.7, $F_{z}^{\mathbf{T} J}\left(b_{2} g\right)=$ $F_{z}^{x}\left(b_{2}\right)=F_{z}^{x}(1) \neq 0$, thus from Lemma A. 6 we have that $F_{z}^{\mathbf{T} J}\left(b_{1} b_{2} g\right) \neq 0$. We have shown that $\rho_{w}^{\prime}\left(g^{-1}\right) \Phi_{0}^{w}$ is supported on Y, this gives the Proposition.

Proposition A.9. The distribution $\tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right) \in I\left(w \chi_{-\nu(z)}\right)^{*}$ is supported away from Y unless $w \chi_{\nu(z)}=\chi_{\nu\left(w^{\prime} z\right)}$ for some w^{\prime} in W_{2}.

Proof. Assume $\tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right)$ is not supported away from Y. Let $I_{Y}\left(w \chi_{-\nu(z)}\right)$ be the subspace of $I\left(w_{\left.\chi_{-\nu(z)}\right)}\right)$ consisting of sections supported on Y. Then $\tilde{T}_{w}^{z}\left(F_{z}^{\mathbf{T J}}\right)$ defines a nontrivial $S p_{n, K}$-invariant linear form on $I_{Y}\left(w \chi_{-\nu(z)}\right)$.

Note that $Y=P_{2} g_{0} S p_{n, K}$ for some g_{0} in $S p_{2 n}$, where P_{2} is the parabolic group containing B and with 2×2 blocks on the diagonal. Let $S p_{n, K g_{0}}=g_{0}^{-1} P_{2} g_{0} \cap S p_{n, K}$ and $\sigma=$ $\operatorname{Ind}_{B}^{P_{2}} w \chi_{-\nu(z)}$. Consider the $S p_{n, K}-\operatorname{module} \operatorname{Ind}_{S p_{n, K} g_{0}}^{S p_{n, K}}\left(\sigma^{g_{0}} \delta_{P_{0}}^{g_{0}}\right)$ consisting of modulo $S p_{n, K g_{0}}$ compactly supported functions ϕ on $S p_{n, K}$ with values in the space of σ, satisfying:

$$
\phi\left(h_{0} h\right)=\delta_{P_{0}}\left(g_{0} h_{0} g_{0}^{-1}\right) \sigma\left(g_{0} h_{0} g_{0}^{-1}\right) \phi(h), h_{0} \in S p_{n, K g_{0}} .
$$

As $S p_{n, K}$-modules, we have $I_{Y}\left(w \chi_{-\nu(z)}\right) \cong \operatorname{Ind}_{S p_{n, K}}^{S p_{n}}\left(\sigma^{g_{0}} \delta_{P_{0}}^{g_{0}}\right)$.
From Frobenius reciprocity, the existence of nontrivial $S p_{n, K}$-invariant linear form on $I_{Y}\left(w \chi_{-\nu(z)}\right)$ implies that as a representation of $S p_{n, K g_{0}}, \sigma^{g_{0}} \delta_{P_{0}}^{g_{0}}$ contains a trivial representation. Equivalently, as the representation of $g_{0} S p_{n, K g_{0}} g_{0}^{-1}, \sigma \delta_{P_{0}}$ contains a trivial representation. Notice that $g_{0} S p_{n, K g_{0}} g_{0}^{-1}$ equals n copies of $S L_{2}$ sitting in the diagonal 2×2 blocks of P_{2}, over which $\delta_{P_{0}}$ is trivial; we see that σ contains the trivial representation of $S L_{2} \times \ldots \times S L_{2}$. With our assumption that z is in the general position, it is only possible when w is as described in the Proposition.

For each $w^{\prime} \in W_{2}$, there is a unique $w \in W_{3}$ such that

$$
w \chi_{\nu(z)}=\chi_{\nu\left(w^{\prime} z\right)} .
$$

We will write $w=\sigma\left(w^{\prime}\right)$ if this is the case. Furthermore, if $w, \alpha \in W_{3}$ and $w^{\prime}, \alpha^{\prime} \in W_{2}$ satisfy $\sigma\left(w^{\prime}\right)=w$ and $\sigma\left(\alpha^{\prime}\right)=\alpha$, then

$$
w \alpha \chi_{\nu(z)}=w \chi_{\nu\left(\alpha^{\prime} z\right)}=\chi_{\nu\left(w^{\prime} \alpha^{\prime} z\right)},
$$

so that σ is a group homomorphism.
Corollary A.10. $a_{w}(x ; z)=0$ unless $w=\sigma\left(w^{\prime}\right)$ for some w^{\prime} in the Weyl group of $S p_{n}$.
Given $w=\sigma\left(w^{\prime}\right)$ with w^{\prime} in the Weyl group of $S p_{n}$, then $F_{w^{\prime} z}^{x} \in I\left(w \chi_{-\nu(z)}\right)^{*}$. Write $x=g \cdot \mathbf{T} J=\Pi^{\lambda}$. As $T_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right)$ and $F_{w^{\prime} z}^{\mathbf{T} J}$ satisfy the same left equivariance condition over P_{2} and right $S p_{n, K}$-invariance condition, we get

$$
T_{w}^{z}\left(F_{z}^{\mathbf{T} J}\right)(h g)=\delta\left(w^{\prime}, z\right) F_{w^{\prime} z}^{\mathbf{T} J}(h g)
$$

or

$$
T_{w}^{z}\left(F_{z}^{x}\right)(h)=\delta\left(w^{\prime}, z\right) F_{w^{\prime} z}^{x}(h)
$$

for some number $\delta\left(w^{\prime}, z\right)$ independent of $h \in S p_{2 n}$.
From (A.20), we get

$$
\begin{equation*}
a_{w}(x ; z)=\delta\left(w^{\prime}, z\right) \int_{B_{0}} F_{w^{\prime} z}^{x}(b) d b \tag{A.23}
\end{equation*}
$$

From Lemma A.7, we see that $a_{w}(x ; z)=\delta\left(w^{\prime}, z\right) F_{w^{\prime} z}^{x}(1)$. From (A.11),

$$
\begin{equation*}
F_{w^{\prime} z}^{x}(1)=\prod_{i=1}^{n}\left|\mathcal{P} f_{i}\left(\Pi^{\lambda}\right)\right|^{s_{i}}=e^{w^{\prime} \lambda} q^{b(\lambda)} \tag{A.24}
\end{equation*}
$$

when $x=\Pi^{\lambda}$. Here $b(\lambda)$ is as defined in Theorem A.2, by

$$
b(\lambda)=-\sum_{i=1}^{n}(2(n-i+1)-1 / 2) \lambda_{i}
$$

and e^{λ} is defined with $e^{\epsilon_{i}}=q^{-z_{i}}$. Note that considered as function of $z, F_{w^{\prime} z}^{x}(1)$ is an additive character of z.

Summarizing the results so far, we get

Lemma A.11. When $x=\Pi^{\lambda}$ for some $\lambda \in \Lambda_{n}^{+}$, we have:

$$
\begin{equation*}
\zeta\left(\Pi^{\lambda} ; z\right)=\sum_{w \in W_{2}} Q^{-1} q^{b(\lambda)} c(w, z) e^{w \lambda} . \tag{A.25}
\end{equation*}
$$

where $c(w, z)=c_{w_{l}}\left(w_{l} \sigma(w) \nu(z)\right) \delta(w, z) / c_{\sigma(w)}(\nu(z))$.
A.1.3. Functional equations. We see when $w=e$ is the identity, $c(e, z)$ in the lemma equals $c_{w_{l}}\left(w_{l} \nu(z)\right)$ which is:

$$
\begin{equation*}
\left(1+q^{-1}\right)^{n} \prod_{\alpha \in S^{+L}}\left(\frac{1-q^{-2} e^{-\alpha}}{1-e^{-\alpha}} \frac{1-q^{-1} e^{-\alpha}}{1-q e^{-\alpha}}\right) \prod_{\alpha \in S^{+}}\left(\frac{1-q^{-1} e^{-2 \alpha}}{1-e^{-2 \alpha}} \frac{1-q^{-\frac{3}{2}} e^{-\alpha}}{1-q^{\frac{1}{2}} e^{-\alpha}}\right) \tag{A.26}
\end{equation*}
$$

where S^{+L} and S^{+S} are the set of long and short positive roots. We will use the functional equations of $\zeta(x ; s)$ to determine $c(w, z)$ for other $w \in W_{2}$.

Proposition A.12. The function $\Psi_{z}(x)=\zeta(x ; s) / \zeta\left(\Pi^{0} ; s\right)$ satisfies the functional equation $\Psi_{w z}(x)=\Psi_{z}(x)$ for all $w \in W_{2}$.

Proof. Let $w_{0} \in W_{2}$. Then from (A.25):

$$
\Psi_{w_{0} z}\left(\Pi^{\lambda}\right)=\frac{\sum_{w \in W_{2}} q^{b(\lambda)} c\left(w, w_{0} z\right) e^{w w_{0} \lambda}}{\sum_{w \in W_{2}} c\left(w, w_{0} z\right)} .
$$

Let $w_{1} \in W_{2}$. We compare the coefficient of $e^{w_{1} w_{0} \lambda}$ for $\Psi_{z}\left(\Pi^{\lambda}\right)$ and $\Psi_{w_{0} z}\left(\Pi^{\lambda}\right)$. They are

$$
\begin{equation*}
q^{b(\lambda)} c\left(w_{1} w_{0}, z\right) / \sum_{w \in W_{2}} c(w, z) \tag{A.27}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{b(\lambda)} c\left(w_{1}, w_{0} z\right) / \sum_{w \in W_{2}} c\left(w, w_{0} z\right) \tag{A.28}
\end{equation*}
$$

From the definition of $c(w, z)$, we see that the quotient of $c\left(w w^{\prime}, z\right)$ by $c\left(w, w^{\prime} z\right)$ is given by
$\left\{c_{w_{l}}\left(w_{l} \sigma\left(w w^{\prime}\right) \nu(z)\right) \delta\left(w w^{\prime}, z\right) / c_{\sigma\left(w w^{\prime}\right)}(\nu(z))\right\} \times c_{\sigma(w)}\left(\nu\left(w^{\prime} z\right)\right) /\left\{c_{w_{l}}\left(w_{l} \sigma(w) \nu\left(w^{\prime} z\right)\right) \delta\left(w, w^{\prime} z\right)\right\}$.

Using that σ is a homomorphism and that $\sigma\left(w^{\prime}\right) \nu(z)=\nu\left(w^{\prime} z\right)$, this is equal to

$$
\frac{\delta\left(w w^{\prime}, z\right)}{\delta\left(w, w^{\prime} z\right)} \frac{c_{\sigma(w)}\left(\nu\left(w^{\prime} z\right)\right)}{c_{\sigma\left(w w^{\prime}\right)}(\nu(z))}
$$

It is well known that

$$
c_{\sigma\left(w w^{\prime}\right)}(\nu(z))=c_{\sigma(w)}\left(\nu\left(w^{\prime} z\right)\right) c_{\sigma\left(w^{\prime}\right)}(\nu(z)),
$$

so our expression is

$$
\frac{\delta\left(w w^{\prime}, z\right)}{\delta\left(w, w^{\prime} z\right) c_{\sigma\left(w^{\prime}\right)}(\nu(z))} .
$$

Since the intertwining operator $T_{w w^{\prime}}^{z}$ is given by the composition of $T_{w}^{w^{\prime} z}$ and $T_{w^{\prime}}^{z}$, we see that

$$
\delta\left(w w^{\prime}, z\right)=\delta\left(w, w^{\prime} z\right) \delta\left(w^{\prime}, z\right) .
$$

Thus we obtain that

$$
\begin{equation*}
\frac{c\left(w w^{\prime}, z\right)}{c\left(w, w^{\prime} z\right)}=\frac{\delta\left(w^{\prime}, z\right)}{c_{\sigma\left(w^{\prime}\right)}(\nu(z))} . \tag{A.29}
\end{equation*}
$$

From equation (A.29), the quotient of (A.27) by (A.28) is given by

$$
\frac{\sum_{w \in W_{2}} c\left(w, w_{0} z\right) \delta\left(w_{0}, z\right) / c_{\sigma\left(w_{0}\right)}(\nu(z))}{\sum_{w \in W_{2}} c(w, z)} .
$$

Using equation (A.29), we see that

$$
c\left(w, w_{0} z\right) \delta\left(w_{0}, z\right) / c_{\sigma\left(w_{0}\right)}(\nu(z))=c\left(w w_{0}, z\right)
$$

so that the quotient of $c\left(w w^{\prime}, z\right)$ by $c\left(w, w^{\prime} z\right)$ is equal to

$$
\frac{\sum_{w \in W_{2}} c\left(w w_{0}, z\right)}{\sum_{w \in W_{2}} c(w, z)}=1 .
$$

We have shown the coefficients of $e^{w_{1} w_{0} \lambda}$ for $\Psi_{z}\left(\Pi^{\lambda}\right)$ and $\Psi_{w_{0} z}\left(\Pi^{\lambda}\right)$ equal. Thus $\Psi_{z}(x)=$ $\Psi_{w_{0} z}(x)$.

To introduce a more precise functional equation, let

$$
\Gamma_{1}(z)=\prod_{\alpha \in S^{+L}} \frac{1-q e^{-\alpha}}{1-q^{-1} e^{-\alpha}}
$$

and

$$
\Gamma_{2}(z)=\prod_{\alpha \in S^{+} S} \frac{1-q^{\frac{1}{2}} e^{-\alpha}}{1-q^{-\frac{1}{2}} e^{-\alpha}}
$$

Proposition A.13. Let $\tilde{\zeta}(x ; z)=\Gamma_{1}(z) \Gamma_{2}(z) \zeta(x ; s)$. Then

$$
\begin{equation*}
\tilde{\zeta}(x ; w z)=\tilde{\zeta}(x, z) \tag{A.30}
\end{equation*}
$$

for all $w \in W_{2}$.

We will give the proof in the next section. From Proposition A.13, equations (A.25) and (A.26), and the linear independence of the characters $F_{w z}^{x}(1)$ (as characters of z), we get for $\lambda \in \Lambda_{n}^{+}, \tilde{\zeta}\left(\Pi^{\lambda} ; z\right)$ equals

$$
Q^{-1}\left(1+q^{-1}\right)^{n} q^{b(\lambda)} \sum_{w \in W_{2}} w\left(e^{\lambda} \Gamma_{1}(z) \Gamma_{2}(z) c(e, z)\right),
$$

which is

$$
\begin{equation*}
Q^{-1}\left(1+q^{-1}\right)^{n} q^{b(\lambda)} \sum_{w \in W_{2}} w\left(e^{\lambda} \prod_{\alpha \in S^{+L}} \frac{1-q^{-2} e^{-\alpha}}{1-e^{-\alpha}} \prod_{\alpha \in S^{+S}} \frac{\left(1+q^{-\frac{1}{2}} e^{-\alpha}\right)\left(1-q^{-\frac{3}{2}} e^{-\alpha}\right)}{1-e^{-2 \alpha}}\right) \tag{A.31}
\end{equation*}
$$

Comparing this with the definition of the Macdonald polynomial $Q_{\lambda}^{t}(z)$, we see that

$$
\begin{equation*}
\tilde{\zeta}\left(\Pi^{\lambda} ; z\right)=Q^{-1}\left(1+q^{-1}\right)^{n} q^{b(\lambda)} V_{\lambda}\left(t^{I}\right) Q_{\lambda}^{t^{I}}(z) \tag{A.32}
\end{equation*}
$$

and

$$
\tilde{\zeta}\left(\Pi^{0} ; z\right)=Q^{-1}\left(1+q^{-1}\right)^{n} V_{\mathbf{0}}\left(t^{I}\right) Q_{\mathbf{0}}^{t^{I}}(z)
$$

when $\lambda \in \Lambda_{n}^{+}$and t^{I} is the parameter defined in Theorem A. 2 by $t_{\alpha}^{I}=q^{-2}$ when α is a long root in S and $t_{\alpha}^{I}=q^{-1}, t_{2 \alpha}^{I}{ }^{1 / 2}=q^{-1 / 2}$ for α a short root in S.

Since

$$
\tilde{\zeta}(x ; z) / \tilde{\zeta}\left(\Pi^{0} ; z\right)=\Psi_{z}(x)
$$

we get

$$
\begin{equation*}
\Psi_{z}\left(\Pi^{\lambda}\right)=q^{b(\lambda)} V_{\lambda}\left(t^{I}\right) Q_{\lambda}^{t^{I}}(z) /\left(Q_{\mathbf{0}}^{t^{I}}(z) V_{\mathbf{0}}\left(t^{I}\right)\right) \tag{A.33}
\end{equation*}
$$

when $\lambda \in \Lambda_{n}^{+}$. From [Mc1], we see $Q_{\mathbf{0}}^{t^{I}}(z)=1$. Thus the function Ψ_{z} defined in (A.5) by

$$
\Psi_{z}(x)=\zeta(x ; s) / \zeta\left(\Pi^{0}, s\right), x \in X
$$

is given by

$$
q^{b(\lambda)} \frac{V_{\lambda}\left(t^{I}\right)}{V_{0}\left(t^{I}\right)} Q_{\lambda}^{t^{I}}, \quad \lambda \in \Lambda_{n}^{+} .
$$

We have proved Theorem A.2.
A.2. Proof of Proposition A.13. We prove (A.30) here. The Weyl group W_{2} is generated by elements $\sigma_{i}(1 \leq i \leq n-1)$ and r_{n}, where σ_{i} fixes ϵ_{j} if $j \neq i, i+1$, and switches ϵ_{i} with $\epsilon_{i+1} ; r_{n}$ fixes ϵ_{j} if $j<n$ and maps ϵ_{n} to $-\epsilon_{n}$.
A.2.1. Functional equation for σ_{i}. Assume $n>1$. We fix an $i \leq n-1$. Recall that s and z are related in equation (A.6) by

$$
\sum_{i=j}^{n} s_{i}=-z_{j}-2(n-j)-\frac{3}{2}, j=1, \ldots, n
$$

From this relation, the following lemma is clear.

Lemma A.14. The ordered set of complex numbers ($s_{1}, \ldots, s_{i-2}, s_{i-1}+\frac{s_{i}}{2}, \frac{s_{i}}{2}+s_{i+1}, s_{i+2}, \ldots, s_{n}$) is invariant under the map $z \mapsto \sigma_{i} z$.

Let $Y^{\prime}=Y \cdot \mathbf{T} J$, then by definition of Y in (A.21), $Y=\left\{g \in S p_{2 n} \mid F_{z}^{\mathbf{T J} J}(g) \neq 0\right\}$, we see $Y^{\prime}=\left\{x \in X \mid F_{s}^{x}(1) \neq 0\right\}$. Recall that P_{2} is the parabolic subgroup of $S p_{2 n}$ whose Levi subgroup is a product of $G L_{2}$'s and whose unipotent subgroup consists of upper triangular matrices. We have the following lemma.

Lemma A.15. The set Y^{\prime} is transitive under P_{2}. Any $x \in Y^{\prime}$ has a decomposition $x=$ $p \cdot \Pi^{\lambda(x)}$ where $\lambda(x) \in \mathbf{Z}^{n}$ and the Levi part of $p \in P_{2}$ lies in products of $G L_{2}(\mathcal{O})$.

We will embed $K_{4}=G L_{4}(\mathcal{O})$ in $S p_{2 n}$ as follows: If $\left\{e_{j} \mid j=1, \ldots, 4 n\right\}$ is the standard basis of the vector space $S p_{2 n}$ acting on, then $k \in K_{4}$ acts trivially on the space generated by $\left\{e_{1}, \ldots, e_{2 i-2}, e_{2 i+3}, \ldots, e_{4 n-2 i-2}, e_{4 n-2 i+3}, \ldots, e_{4 n}\right\}$; acts by multiplication of k on the space
generated by $\left\{e_{2 i+j} \mid j=-1,0,1,2\right\}$ and by multiplication of k^{*} on the space generated by $\left\{e_{4 n-2 i+j} \mid j=-1,0,1,2\right\}$. Then

$$
\begin{equation*}
\zeta(x ; s)=\int_{k \in K_{3}} \int_{k^{\prime} \in K_{4}} \prod_{j=1}^{n}\left|\mathcal{P} f_{j}\left(k^{\prime} k \cdot x\right)\right|^{s_{j}} d k^{\prime} d k . \tag{A.34}
\end{equation*}
$$

The proof of the following lemma is as in [MR1].

Lemma A.16. Given any $x \in X$, the expression

$$
\begin{equation*}
\frac{1-q^{z_{i}-z_{i+1}+1}}{1-q^{z_{i}-z_{i+1}-1}} \int_{k \in K_{4}} \prod_{j=1}^{n}\left|\mathcal{P} f_{j}(k \cdot x)\right|^{s_{j}} d k \tag{A.35}
\end{equation*}
$$

is invariant under the action $z \mapsto \sigma_{i} z$.

From the Lemma, after multiplying by $\frac{1-q^{z_{i}-z_{i+1}+1}}{1-q^{z_{i}-z_{i+1}-1}}$ the inner integral in (A.34) is invariant under $z \mapsto \sigma_{i} z$. Thus we get

Lemma A.17. The expression $\frac{1-q^{z_{i}-z_{i+1}+1}}{1-q^{z_{i}-z_{i+1}-1}} \zeta(x ; s)$ is invariant under $z \mapsto \sigma_{i} z$.
A.2.2. Functional equation for r_{n}. We first consider the case $n=1$. Here $z \in \mathbf{C}$ and $r_{n} z=-z$. From Proposition A.12, to get an explicit function equation, we only need to compute $\zeta\left(\Pi^{0} ; s\right)$.

Lemma A.18. When $n=1$,

$$
\begin{equation*}
\zeta\left(\Pi^{0} ; s\right)=\frac{1-q^{z-\frac{1}{2}}}{\left(1+q^{-1}\right)\left(1-q^{z+\frac{1}{2}}\right)} \tag{A.36}
\end{equation*}
$$

Proof. Let K^{m} be the set of $k \in K_{3}$ such that $\left|\mathcal{P} f_{1}\left(k \cdot \Pi^{0}\right)\right|=q^{-m}$. Then

$$
\begin{equation*}
\zeta\left(\Pi^{0} ; s\right)=\sum_{m=0}^{\infty} \operatorname{vol}\left(K^{m}\right) q^{-s m} . \tag{A.37}
\end{equation*}
$$

The set $K \cdot \Pi^{0}$ is given by the elements in X whose entries are all in \mathcal{O}. This set can be described as:

$$
\left\{\left.\left(\begin{array}{cccc}
& a & b_{1} & b_{2} \\
-a & & -b_{2} & b_{3} \\
-b_{1} & b_{2} & & d \\
-b_{2} & -b_{3} & -d &
\end{array}\right) \right\rvert\, b_{2}^{2}+b_{1} b_{3}=\tau+a d, a, d, b_{1}, b_{2}, b_{3} \in \mathcal{O}\right\}
$$

Let X_{m} be the subset with $|d|=q^{-m}$. Choose a $g_{0} \in K_{3}$ such that $g_{0} \cdot \mathbf{T} J=\Pi^{0}$, and let $S p_{n, K}^{\prime}=g_{0} S p_{n, K} g_{0}^{-1}$. Then $S p_{n, K}^{\prime} \cdot \Pi^{0}=\Pi^{0}$.

Lemma A.19. Let $m>1$, let K_{m} be the set of $k \in K_{3}$ with $k=1 \bmod P^{m}$. Then $\rho: k \mapsto k \cdot \Pi^{0}$ induces a bijection between $K_{m} \backslash K_{3} / K_{3} \cap S p_{n, K}^{\prime}$ and $K_{3} \cdot \Pi^{0} \bmod P^{m}$.

Proof. Surjectivity follows as in [MR1]. To show injectivity, we do a counting of the number of the double cosets $K_{m} \backslash K_{3} / K_{3} \cap S p_{n, K}^{\prime}$ and the number of the cosets $K_{3} \cdot \Pi^{0} \bmod P^{m}$.

Notice that $\left|K_{m} \backslash K_{3} / K_{3} \cap S p_{n, K}^{\prime}\right|$ is equal to the number of $K_{3} \bmod P^{m}$ divided by the number of $K_{3} \cap S p_{n, K}^{\prime} \bmod P^{m}$.

We have that

$$
\begin{equation*}
\left|K_{3} \bmod P^{m}\right|=q^{3 m}\left(1-q^{-2}\right) q^{7 m}\left(1-q^{-4}\right) \tag{A.38}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left|K_{3} \cap S p_{n, K}^{\prime} \bmod P^{m}\right|=q^{6 m}\left(1-q^{-4}\right) . \tag{A.39}
\end{equation*}
$$

Thus we obtain that

$$
\begin{equation*}
\left|K_{m} \backslash K_{3} / K_{3} \cap S p_{n, K}^{\prime}\right|=\frac{q^{10 m}\left(1-q^{-2}\right)\left(1-q^{-4}\right)}{q^{6 m}\left(1-q^{-4}\right)}=q^{4 m}\left(1-q^{-2}\right) . \tag{A.40}
\end{equation*}
$$

On the other hand, the number of $K_{3} \cdot \Pi^{0} \bmod P^{m}$ is equal to the number of solutions of $b_{2}^{2}+b_{1} b_{3}=\tau+a d$ in $(O / P)^{5}$. In the case when b_{1} is a unit, we obtain $q^{4 m}\left(1-q^{-1}\right)$ solutions. When b_{1} is not a unit, but d is a unit, we have $q^{4 m}\left(q^{-1}-q^{-2}\right)$ solutions. The case when $b_{1}, d \in P$ contributes no solutions. Thus the number of cosets $K_{3} \cdot \Pi^{0} \bmod P^{m}$ is equal to $q^{4 m}\left(1-q^{-2}\right)$. This proves that the map $k \mapsto k \cdot \Pi^{0}$ induces a bijection between $K_{m} \backslash K_{3} / K_{3} \cap S p_{n, K}^{\prime}$ and $K_{3} \cdot \Pi^{0} \bmod P^{m}$.

We continue with the proof of Lemma A.18. We have that

$$
\begin{equation*}
\operatorname{vol}\left(K^{m}\right)=\operatorname{vol}\left(K_{m+1}\right)\left|X_{m} \bmod P^{m} \| K_{3} \cap S p_{n, K}^{\prime} \bmod P^{m+1}\right| . \tag{A.41}
\end{equation*}
$$

We already know that

$$
\begin{equation*}
\left|K_{3} \cap S p_{n, K}^{\prime} \bmod P^{m+1}\right|=q^{6(m+1)}\left(1-q^{-4}\right) . \tag{A.42}
\end{equation*}
$$

To count the cosets of X_{m}, we remark that since $|d|=q^{-m}<1$, we have the cases $\left|b_{1}\right|=1$ and $\left|b_{1}\right|<1$. The first case contributes $q^{3(m+1)}(q-1)\left(1-q^{-1}\right)$ elements, while the second case contributes no solutions. Thus,

$$
\begin{equation*}
\left|X_{m} \bmod P^{m}\right|=q^{3(m+1)}(q-1)\left(1-q^{-1}\right) \tag{A.43}
\end{equation*}
$$

With our assumption that $\operatorname{vol}\left(K_{3}\right)=1$, we obtain that

$$
\begin{equation*}
\operatorname{vol}\left(K_{m+1}\right)=q^{-3(m+1)}\left(1-q^{-2}\right)^{-1} q^{-7(m+1)}\left(1-q^{-4}\right)^{-1} \tag{A.44}
\end{equation*}
$$

Thus, for $m>0$, we obtain that

$$
\begin{equation*}
\operatorname{vol}\left(K^{m}\right)=q^{-(m+1)}(q-1)\left(1+q^{-1}\right)^{-1}=q^{-m} \frac{1-q^{-1}}{1+q^{-1}} \tag{A.45}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\operatorname{vol}\left(K^{0}\right)=1-\sum_{m=1}^{\infty} \operatorname{vol}\left(K^{m}\right)=1-\frac{1-q^{-1}}{1+q^{-1}} \cdot \frac{q^{-1}}{1-q^{-1}}=\frac{1}{1+q^{-1}} . \tag{A.46}
\end{equation*}
$$

Using $\zeta\left(\Pi^{0} ; s\right)=\sum_{m=0}^{\infty} \operatorname{vol}\left(K^{m}\right) q^{-s m}$, we obtain that

$$
\begin{equation*}
\zeta\left(\Pi^{0} ; s\right)=\frac{1}{1+q^{-1}}+\frac{1-q^{-1}}{1+q^{-1}} \sum_{m=1}^{\infty} q^{m(-1-s)}=\frac{1-q^{-2-s}}{\left(1+q^{-1}\right)\left(1-q^{-1-s}\right)} . \tag{A.47}
\end{equation*}
$$

Using the relation between s and z in equation (A.6), we get that $s=-z-\frac{3}{2}$, so that

$$
\begin{equation*}
\zeta\left(\Pi^{0} ; s\right)=\frac{1-q^{z-\frac{1}{2}}}{\left(1+q^{-1}\right)\left(1-q^{z+\frac{1}{2}}\right)} \tag{A.48}
\end{equation*}
$$

as desired.

We have the following corollary:

Corollary A.20. When $n=1, s=-z-\frac{3}{2}$, then $\frac{1-q^{z+\frac{1}{2}}}{1-q^{z-\frac{1}{2}}} \zeta(x ; s)$ is invariant under $z \mapsto-z$. Proof. We have that $\frac{1-q^{z+\frac{1}{2}}}{1-q^{z-\frac{1}{2}}} \zeta(x ; s)$ is equal to

$$
\frac{1-q^{z+\frac{1}{2}}}{1-q^{z-\frac{1}{2}}} \zeta\left(\Pi^{0} ; s\right) \Psi_{z}(x)=\left(1+q^{-1}\right)^{-1} \Psi_{z}(x)
$$

and this is invariant under $z \mapsto-z$ by Proposition A.12.

Now assume $n>1$. Let K_{2}^{\prime} be $S p_{2}(\mathcal{O})$, and embed it into K_{3} with the embedding of the F^{4} into the subspace of $F^{4 n}$ generated by part of the standard basis e_{j} with $j=$ $2 n-1,2 n, 2 n+1,2 n+2$. Then

$$
\begin{equation*}
\zeta(x ; s)=\int_{k \in K_{3}} \int_{k^{\prime} \in K_{2}^{\prime}} \prod_{j=1}^{n}\left|\mathcal{P} f_{j}\left(k^{\prime} k \cdot x\right)\right|^{s_{j}} d k^{\prime} d k . \tag{A.49}
\end{equation*}
$$

Lemma A.21. Given any $x \in X$, the expression

$$
\begin{equation*}
\frac{1-q^{z_{n}+\frac{1}{2}}}{1-q^{z_{n}-\frac{1}{2}}} \int_{k \in K_{2}^{\prime}} \prod_{j=1}^{n}\left|\mathcal{P} f_{j}(k \cdot x)\right|^{s_{j}} d k \tag{A.50}
\end{equation*}
$$

is invariant under the action $z \mapsto r_{n} z$.

Proof. Without loss of generality, we can assume $x \in Y^{\prime}$ and has the form $x=p \cdot \Pi^{\lambda(x)}$ with $p \in P_{2}$ as in Lemma A.15. Let P_{2}^{\prime} be the subgroup of P_{2} where the middle 4×4 block is the identity, a change of variable shows that the integral in (A.50) remains the same with x replaced by $p \cdot x$ with $p \in P_{2}^{\prime}$. Since $P_{2} \subset P_{2}^{\prime} K_{2}^{\prime}$, we only need to consider the case $x=\Pi^{\lambda(x)}$, which we now assume.

Let \tilde{x} be the middle 4×4 block of x. Then clearly $\left|\mathcal{P} f_{j}(k \cdot x)\right|=\left|\mathcal{P} f_{j}(x)\right|$ when $j \neq n$, and $\left|\mathcal{P} f_{n}(k \cdot x)\right|=\left|\mathcal{P} f_{n-1}(x)\right||\mathcal{P} f(k \cdot \tilde{x})|$. Thus (A.50) equals:

$$
\begin{aligned}
& \frac{1-q^{z_{n}+\frac{1}{2}}}{1-q^{z_{n}-\frac{1}{2}}}\left(\prod_{j=1}^{n-2}\left|\mathcal{P} f_{j}(x)\right|^{s_{j}}\right)\left|\mathcal{P} f_{n-1}(x)\right|^{s_{n-1}+s_{n}} \int_{K_{2}^{\prime}}|\mathcal{P} f(k \cdot \tilde{x})|^{s_{n}} d k \\
= & \frac{1-q^{z_{n}+\frac{1}{2}}}{1-q^{z_{n}-\frac{1}{2}}}\left(\prod_{j=1}^{n-2}\left|\mathcal{P} f_{j}(x)\right|^{s_{j}}\right)\left|\mathcal{P} f_{n-1}(x)\right|^{s_{n-1}+s_{n}} \zeta\left(\tilde{x} ; s_{n}\right) .
\end{aligned}
$$

From (A.6), the ordered set $\left(s_{1}, \ldots, s_{n-2}, s_{n-1}+s_{n}\right)$ is invariant under $z_{n} \mapsto-z_{n}$. Also from (A.6), $s_{n}=-z_{n}-\frac{3}{2}$, thus our Lemma follows from Corollary A. 20 .

From the Lemma, after multiplying by $\frac{1-q^{z_{n}}+\frac{1}{2}}{1-q^{z_{n}-\frac{1}{2}}}$ the inner integral in (A.49) is invariant under $z \mapsto r_{n} z$. Thus we get

Lemma A.22. The expression $\frac{1-q^{z_{n}+\frac{1}{2}}}{1-q^{z_{n}-\frac{1}{2}}} \zeta(x ; s)$ is invariant under $z \mapsto r_{n} z$.

A.2.3. Proof of Proposition A.13.

Proof. Since r_{n} reflects the long positive roots to long positive roots, it leaves $\Gamma_{1}(z)$ invariant. The reflection r_{n} also fixes all positive short roots except when $\alpha=\epsilon_{n}$, in which
case:

$$
\frac{1-q^{\frac{1}{2}} e^{-\alpha}}{1-q^{-\frac{1}{2}} e^{-\alpha}}=\frac{1-q^{z_{n}+\frac{1}{2}}}{1-q^{z_{n}-\frac{1}{2}}}
$$

Thus from Lemma A.22, $\Gamma_{2}(z) \zeta(x ; s)$ is invariant under r_{n}. Thus $\tilde{\zeta}(x ; z)$ is invariant under r_{n}.

Since σ_{i} maps the short positive roots to short positive roots, it leaves $\Gamma_{2}(z)$ invariant. It also acts as a permutation of $S^{+L} \backslash \alpha_{i}$ where $\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}$. Thus

$$
\Gamma_{1}(z)\left(\frac{1-q e^{-\alpha_{i}}}{1-q^{-1} e^{-\alpha_{i}}}\right)^{-1}
$$

is invariant under σ_{i}. Since

$$
\frac{1-q e^{-\alpha_{i}}}{1-q^{-1} e^{-\alpha_{i}}}=\frac{1-q^{z_{i}-z_{i+1}+1}}{1-q^{z_{i}-z_{i+1}-1}},
$$

from Lemma A.17, we see $\Gamma_{1}(z) \zeta(x ; s)$ is invariant under σ_{i}. Thus $\tilde{\zeta}(x ; z)$ is invariant under σ_{i}.

As the Weyl group W_{2} is generated by σ_{i} and r_{n}, we get $\tilde{\zeta}(x ; z)$ is invariant under W_{2}.

Appendix B. Unramified Whittaker function on metaplectic group

Denote an element in $\widetilde{S p_{n}}$ by (g, ζ) with $g \in S p_{n}$ and $\zeta= \pm 1$. Recall the functions in $C_{K_{2}}^{\infty}\left(N_{2} \backslash \widetilde{S p_{n}}, \theta_{2, \tau}^{-1}\right)$ are genuine; namely for $f(g, \zeta)$ in this space, we have $f(g, \zeta)=\zeta f(g, 1)$

Recall that the character $\theta_{2, \tau}$ is defined on N_{2} as follows:

$$
\begin{equation*}
\theta_{2, \tau}(u, \zeta)=\zeta \psi\left(u_{12}+u_{2,3}+\ldots+\tau u_{n, n+1}\right) \tag{B.1}
\end{equation*}
$$

where ψ is an additive character trivial on \mathcal{O} but nontrivial on $\pi^{-1} \mathcal{O}$.
We are interested in computing the spherical functions in $C_{K_{2}}^{\infty}\left(N_{2} \backslash \widetilde{S p_{n}}, \theta_{2, \tau}^{-1}\right)$. Let \mathcal{T} denote the diagonal matrix $\operatorname{diag}\left[\tau^{n}, \tau^{n-1}, \ldots, 1,1, \tau^{-1} \ldots \tau^{-n}\right] \in K_{2}$. Let ${ }_{\tau} \theta_{2}$ denote the character on N_{2} given by

$$
{ }_{\tau} \theta_{2}(u, \zeta)=\zeta \psi\left(\tau u_{12}+\tau u_{2,3}+\ldots+\tau u_{n, n+1}\right) .
$$

Then we have an isomorphism of $\mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$-modules:

$$
\begin{equation*}
\mathcal{S}_{K_{2}}\left(N_{2} \backslash \widetilde{S p_{n}}, \theta_{2, \tau}^{-1}\right) \rightarrow \mathcal{S}_{K_{2}}\left(N_{2} \backslash \widetilde{S p_{n}},{ }_{\tau} \theta_{2}^{-1}\right) \tag{B.2}
\end{equation*}
$$

given by $f \mapsto f^{\mathcal{T}}$ where $f^{\mathcal{T}} \in \mathcal{S}_{K_{2}}\left(N_{2} \backslash \widetilde{S p_{n}},{ }_{\tau} \theta_{2}^{-1}\right)$ is given by $f^{\mathcal{T}}(g)=f\left(\mathcal{T} g \mathcal{T}^{-1}\right)$.
We first exhibit spherical functions in $\mathcal{S}_{K_{2}}\left(N_{2} \backslash \widetilde{S p_{n}}, \tau_{2}^{-1}\right)$.
Let $\lambda \in \Lambda_{n}^{+}$, and let $\tilde{\Pi}^{\lambda}$ be the diagonal matrix

$$
\operatorname{diag}\left[\pi^{\lambda_{1}}, \ldots, \pi^{\lambda_{n}}, \pi^{-\lambda_{n}}, \ldots, \pi^{-\lambda_{1}}\right]
$$

It is well known that ${\widetilde{S p_{n}}}^{\text {rel }}=\cup_{\lambda \in \Lambda_{n}^{+}} N_{2}\left(\tilde{\Pi}^{\lambda}, 1\right) K_{2}$ as a disjoint union.
Let $\chi=\chi_{z}$ be an unramified character on the group A_{2} of diagonal matrices given by

$$
\begin{equation*}
\chi\left(\tilde{\Pi}^{\lambda}\right)=\prod_{i=1}^{n} \alpha_{i}^{\lambda_{i}}=\prod_{i=1}^{n} q^{z_{i} \lambda_{i}} . \tag{B.3}
\end{equation*}
$$

This character extends to a genuine character $\tilde{\chi}$ of \tilde{A}_{2} the double cover of A_{2} :

$$
\begin{equation*}
\tilde{\chi}(\mathbf{a}, \zeta)=\chi(\mathbf{a}) \zeta \gamma_{\psi_{\tau}}(\mathbf{a})^{-1}, \mathbf{a} \in A_{2} \tag{B.4}
\end{equation*}
$$

Here ψ_{τ} is the character ψ composed with multiplication by τ and $\gamma_{\psi_{\tau}}$ is a fourth root of unity defined by the equation following (1.5) in $[\mathrm{BFH}]$. The unramified Whittaker function $W_{\tilde{\chi}}(g)$ in the principal series representation $I(\tilde{\chi})$ will be normalized so that $W_{\tilde{\chi}}\left(1_{2 n}, 1\right)=1$ and will satisfy $W_{\tilde{\chi}}(g)=W_{w \tilde{\chi}}(g)$ for all $w \in W_{2}$, where $w \tilde{\chi}(\mathbf{a})=\tilde{\chi}\left(\tilde{w}^{-1} \mathbf{a} \tilde{w}\right)$, with \tilde{w} being the inverse image of w in $\widetilde{S p_{n}}$.

The proof in $[\mathrm{BFH}]$ shows $W_{\tilde{\chi}}\left(\tilde{\Pi}^{\lambda}, 1\right)$ equals

$$
\gamma_{\psi_{\tau}}\left(\tilde{\Pi}^{\lambda}\right)^{-1} \delta_{2}^{\frac{1}{2}}\left(\tilde{\Pi}^{\lambda}\right) \sum_{w \in W_{2}} w\left(\prod_{i=1}^{n} \alpha_{i}^{-\lambda_{i}} \frac{1-q^{-1} \alpha_{i}^{2}}{\left(1+(p, p) q^{-\frac{1}{2}} \alpha_{i}\right)\left(1-\alpha_{i}^{2}\right)} \prod_{i>j} \frac{1}{\left(1-\alpha_{i} \alpha_{j}\right)\left(1-\alpha_{j} \alpha_{i}^{-1}\right)}\right) .
$$

Here (p, p) is a Hilbert symbol taking value ± 1 and δ_{2} is the modulus function of the Borel subgroup of N_{2}. We rewrite above formula in terms of Macdonald polynomial:

Theorem B.1. For $z=\left(z_{1}, \ldots, z_{n}\right)$ in \mathbf{C}^{n}, let χ and $\tilde{\chi}$ be defined as in (B.3) and (B.4), then

$$
\begin{equation*}
\Psi_{z}^{2}\left(\tilde{\Pi}^{\lambda}, 1\right)=W_{\tilde{\chi}}\left(\tilde{\Pi}^{\lambda}, 1\right)=V_{\lambda}\left(t^{I I}\right) \gamma_{\psi_{\tau}}\left(\tilde{\Pi}^{\lambda}\right)^{-1} \delta_{2}^{\frac{1}{2}}\left(\tilde{\Pi}^{\lambda}\right) Q_{\lambda}^{I I}(z) \tag{B.5}
\end{equation*}
$$

is a spherical function in $C_{K_{2}}^{\infty}\left(N_{2} \backslash \widetilde{S p_{n}},{ }_{\tau} \theta_{2}^{-1}\right)$. Here when $\beta \in S, t_{\beta}^{I I}=0$; when β is a short root in $S,\left(t_{2 \beta}^{I I}\right)^{\frac{1}{2}}=-(p, p) q^{-\frac{1}{2}}$.

As a consequence of the isomorphism (B.2) and the fact that $\tilde{\Pi}^{\lambda}$ is stabilized under conjugation by \mathcal{T} we get that $\left\{\Psi_{z}^{2}\right\}$ also serve as spherical functions in $\mathcal{S}_{K_{2}}\left(N_{2} \backslash \widetilde{S p_{n}}, \theta_{2, \tau}^{-1}\right)$.
It is well known in this case that the map $f \mapsto \tilde{f}(z)$ from $\mathcal{H}\left(\widetilde{S p_{n}}, K_{2}\right)$ to $\mathbf{C}\left[q^{\bar{z}}, q^{-\bar{z}}\right]^{W_{2}}$ is onto. Since $t_{\beta}^{I I}=0$ for all $\beta \in S$, from the definition of $V_{\lambda}\left(t^{I I}\right)$ in equations (3.8) and (10.1) of [Mc1] we have

$$
V_{\lambda}\left(t^{I I}\right)=1 \forall \lambda \in \Lambda_{n}^{+}
$$

Note that it is clear that the volume of $N_{2} \backslash N_{2}\left(\tilde{\Pi}^{\lambda}, 1\right) K_{2}$ equals $\delta_{2}^{-1}\left(\tilde{\Pi}^{\lambda}\right)$.

Appendix C. Proof of $T\left(\Psi_{z}^{1}\right)=c(z) T\left(\Psi_{z}^{2}\right)$

C.1. Definition of the integral in (6.1) when $F=\Psi_{z}^{1}$. The integral in (6.1) is clearly well defined if F is compactly supported. For Ψ_{z} the spherical function described in Theorem A.2, through the identification $S p_{n, K} \backslash S p_{2 n} \cong X, \Psi_{z}^{1}(g)=\Psi_{z}\left(g^{-1} T g J\right)$ defines
a spherical function on $S p_{n, K} \backslash S p_{2 n}$. The integral (6.1) still can be defined for $F=\Psi_{z}^{1}$, though the definition is more subtle.

Denote by π_{z} the induced representation $I\left(\chi_{-\nu(z)}\right)$. Then π_{z} is induced from an unramified representation τ_{z} of $G L_{2 n}$. Thus a model of π_{z} is given by a space of functions of two variables $\phi(g, h)$ with $g \in S p_{2 n}, h \in G L_{2 n}$ satisfying:

1. $\phi\left(\left(\begin{array}{ll}h_{1} & \\ & h_{1}^{*}\end{array}\right) g, h\right)=\phi\left(g, h h_{1}\right)$,
2. $\phi(g, h)$ as a function of g is compactly supported over $P \backslash S p_{2 n}$.
3. For fixed $g, \phi(g, h)$ is a vector in τ_{z} with model in $\operatorname{Ind} d_{G L_{n, K}}^{G L_{2 n}} 1$. Here $G L_{n, K}$ is thought of as a subgroup of $G L_{2 n}$ and $G L_{2 n}$ embeds in $S p_{2 n}$ as the Levi factor of the Siegel parabolic.

Let V_{E} be the subgroup of elements $u \in V$ such that $E u=u E$, concretely

$$
V_{E}=\left\{\left(\begin{array}{cc}
1_{2 n} & v \\
& 1_{2 n}
\end{array}\right), \left.v=\left(\begin{array}{cc}
X & \tau Y \\
Y & X
\end{array}\right) \right\rvert\, X, Y \in \mathcal{S}_{n}\right\} .
$$

Lemma C.1. There is an unramified vector $\phi_{z}(g, h)$ in the space of π_{z} such that

$$
\begin{equation*}
\Psi_{z}^{1}\left(\epsilon_{0} g\right)=\Psi_{z}\left(g^{-1} E g J\right)=\int_{v \in V_{E}} \phi_{z}\left(J_{2 n} \epsilon_{0} v g, 1_{2 n}\right) d v \tag{C.1}
\end{equation*}
$$

and the above integral converges absolutely.

Proof. Use $L_{g}(\phi)$ to denote the above integral with ϕ_{z} replaced by ϕ a vector in space of π_{z}. We let $\phi_{g}^{\prime}\left(g^{\prime}\right)=\phi\left(g^{\prime} g, 1_{2 n}\right)$ where $g^{\prime} \in S p_{n, K}$. Then ϕ_{g}^{\prime} is a left-invariant under the Levi subgroup $G L_{n, K}$ of $S p_{n, K}$.

We remark that if $u \in V_{E}$, then $\epsilon_{0} u^{-1} \epsilon_{0}^{-1} T \epsilon_{0} u \epsilon_{0}^{-1}=T$. Thus we have that $\epsilon_{0} V_{E} \epsilon_{0}^{-1}$ is the unipotent subgroup for the parabolic subgroup in $S p_{n, K}$ with Levi subgroup $G L_{n, K}$.

Thus $L_{\epsilon_{0}^{-1}}$ is an intertwining operator on π_{z} considered as a representation of $S p_{n, K}$; it satisfies $L_{\epsilon_{0}^{-1}}\left(\pi_{z}(h) \phi\right)=L_{\epsilon_{0}^{-1}}(\phi)$. Thus $L_{\epsilon_{0}^{-1}}$ is a $S p_{n, K}$ invariant linear form on π_{z}. By
work of Zhang in [Zha], such a form is unique up to multiple. Proposition A. 5 implies the Lemma.

With the previous Lemma, the precise definition of integral (6.1) in the case $F=\Psi_{z}^{1}$ is through a series of compactly supported integrals, as in Lemmas 8.3 and 8.4 of [MR1].

C.2. The image of $T_{\Phi_{0}}\left(\Psi_{z}^{1}\right)$.

Proposition C.2. There is a function $c(z)$ on \mathbf{C}^{n} such that $T_{\Phi_{0}}\left(\Psi_{z}^{1}\right)=c(z) \Psi_{z}^{2}$ for $z \in \mathbf{C}^{n}$. Proof. In the definition of $T_{\Phi}\left(\Psi_{z}^{1}\right)$ in [MR1] we can replace ϕ_{z} by any vector ϕ in π_{z}. Let F_{ϕ} be the function on $S p_{n, K} \backslash S p_{2 n}$ such that $F_{\phi}\left(\epsilon_{0} g\right)$ is given by the integral in (C.1) with ϕ_{z} replaced by ϕ. Through the process of iterated integration in [MR1], we can define a linear map T on the space of $\pi_{z} \otimes \omega_{\psi^{-1}}$ to functions on $\widetilde{S p_{n}}$.

It is shown in Lemma 6.3 that T is a map from $\pi_{z} \otimes \omega_{\psi^{-1}}$ to $I n d_{N_{2}}^{\widetilde{p_{n}}} \theta_{2, \tau}^{-1}$ where θ_{2} is defined in (B.1). Observe that $\widetilde{S p_{n}}$ acts on $\pi_{z} \otimes \omega_{\psi^{-1}}$ through the embedding j of $S p_{n}$ in $S p_{2 n}$. Since $\pi_{z}(j(h)) \phi_{z}(j(g))=\phi_{z}(j(g h))$ for $g, h \in S p_{n}$, we get:

Lemma C.3. The map T is a $\widetilde{S p_{n}}$-module homomorphism from $\pi_{z} \otimes \omega_{\psi^{-1}}$ to $\operatorname{Ind}_{N_{2}}^{\widetilde{S p_{n}}} \theta_{2, \tau}^{-1}$.
Recall that \hat{N}^{n+1} is defined by

$$
\hat{N}^{n+1}=\left\{\left.\left(\begin{array}{ccc}
u & * & * \\
& 1_{2 n} & * \\
& & u^{*}
\end{array}\right) \in S p_{2 n} \right\rvert\, u \in Z_{n}\right\} .
$$

Lemma C.4. Let $u \in \hat{N}^{n+1}$, then $T\left(\pi_{z}(u) \phi \otimes \omega_{\psi^{-1}}(u, 1) \Phi\right)=T(\phi \otimes \Phi) \theta^{\prime}(u)$, where for $u=\left(u_{i, j}\right) \in \hat{N}^{n+1}$

$$
\theta^{\prime}(u)=\psi\left(-u_{1,2}-u_{2,3}-\ldots-u_{n-1, n}\right) .
$$

Proof. We have that $T\left(\pi_{z}(u) \phi \otimes \omega_{\psi^{-1}}(u, 1) \Phi\right)(g, 1)$ is equal to

$$
\int_{w \in U_{\Xi}^{1} \backslash \hat{N}^{n+1}} \phi\left(\epsilon_{0} w j(g) u\right) \theta_{4}(w) \omega_{\psi^{-1}}(w) \omega_{\psi^{-1}}(g) \omega_{\psi^{-1}}(u) \Phi(0)
$$

Since $j(g)$ normalizes \hat{N}^{n+1}, we write $j(g) u=u^{\prime} j(g)$ and change variables $w \mapsto w u^{\prime-1}$. We obtain the above integral is

$$
\theta_{4}\left(u^{\prime-1}\right) \int_{w \in U_{E}^{1} \backslash \hat{N}^{n+1}} \phi\left(\epsilon_{0} w j(g)\right) \theta_{4}(w) \omega_{\psi^{-1}}(w) \omega_{\psi^{-1}}(g) \Phi(0)
$$

Since $\theta_{4}\left(u^{\prime-1}\right)=\theta^{\prime}(u)$, we obtain the Lemma.
The Jacquet module $J_{\hat{N}^{n+1}, \theta^{\prime}}\left(\pi_{z} \otimes \omega_{\psi^{-1}}\right)$ is considered in [GRS4]. It is a $\widetilde{S p}_{n}$ module defined in (1.6) of [GRS4]. The above lemma shows that T factors through to a map \bar{T} from $J_{\hat{N}^{n+1}, \theta^{\prime}}\left(\pi_{z} \otimes \omega_{\psi^{-1}}\right)$ to $I n d_{N_{2}}^{\widetilde{S_{p_{n}}}} \theta_{2, \tau}^{-1}$. It follows from Theorem B of [GRS4] that

$$
J_{\hat{N}^{n+1}, \theta^{\prime}}\left(\pi_{z} \otimes \omega_{\psi^{-1}}\right) \cong \bar{\pi}_{z}
$$

where $\bar{\pi}_{z}=I(\tilde{\chi})$ when $\alpha_{i}=q^{z_{i}}$ in the definition (B.3) of $\tilde{\chi}$.
Since there is a unique Whittaker model for $\bar{\pi}_{z}$, the map \bar{T} is the unique (up to scalar multiple) map of $\bar{\pi}_{z}$ into $\operatorname{Ind}{N_{2}}_{\widehat{S_{n}}}^{\theta_{2, \tau}^{-1}}$. The function $T_{\Phi_{0}}\left(\Psi_{z}^{1}\right)$ is the image of the unramified vector in $\pi_{z} \otimes \omega_{\psi^{-1}}$. The image is clearly an unramified vector in $\operatorname{In} d_{N_{2}}^{\widetilde{P_{n}}} \theta_{2, \tau}^{-1}$, thus $T_{\Phi_{0}}\left(\Psi_{z}^{1}\right)$ corresponds to the image of the unramified vector of $\bar{\pi}_{z}$ under the Whittaker map to $\operatorname{In} d_{N_{2}}^{\widetilde{S p_{n}}} \theta_{2, \tau}^{-1}$. This image is just the unramified Whittaker function of $\bar{\pi}_{z}$. Thus we have proved that $T_{\Phi_{0}}\left(\Psi_{z}^{1}\right)(g)$ is a multiple of $\Psi_{z}^{2}(g)$.

References

[BF] Bump D., Friedberg S., The exterior square L-functions on $G L_{n}$, in Festschrift in Honour of Prof. I.I. Piatetski-Shapiro, Israel Math. Conf. Proc. 3 (1990) p. 47-65.
[BFH] Bump D., Friedberg S., Hoffstein J., p-adic Whittaker functions on the metaplectic group, Duke Math. J. 63 (1991) p. 379-397.
[Ca] Casselman W., Introduction to the Schwartz space of $\Gamma \backslash G$, Canadian J. Math. 40 (1989) p. 285320.
[C] Casselman W., The unramified principal series of p-adic groups I: the spherical function, Comp. Math. 40 (1980) p. 387-406
[DMa] Dixmier J., Malliavin P., Factorizations de fonctions et de vecteurs indéfiniment difféntialbes, Bull. Sci. Math., II. Sér. 102 (1978) p. 471-542.
[FWM] Feigon, B., Martin K., Whitehouse D., preprint.
[FJ] Friedberg S., Jacquet H., Linear periods, J. Reine. Angew. Math. 443 (1993) p. 91-139.
[GRS1] Ginzburg D., Rallis S., Soudry D., On explicit lifts of cusp forms from GL m_{m} to classical groups, Ann. of Math. (2) 150 (1999) p. 807-866.
[GRS2] Ginzburg D., Rallis S., Soudry D. On a correspondence between cuspidal representations of $\mathrm{GL}_{2 n}$ and $\widetilde{\mathrm{Sp}}_{2 n}$, J. Amer. Math. Soc. 12 (1999) p. 849-907.
[GRS3] Ginzburg D., Rallis S., Soudry D., Self-dual automorphic GL n_{n} modules and construction of a backward lifting from GL_{n} to classical groups, IMRN 14 (1997) p. 687-701.
[GRS4] Ginzburg D., Rallis S., Soudry D. Lifting cusp froms on $G L_{2 n}$ to $\widetilde{S p}_{2 n}$: the unramified correspondence, Duke Math. J., 100 (1999) p. 243-266
[G] Guo, J., On a generalization of a result of Waldspurger, Can. J. Math. 48(1), (1996) p. 105-142.
[H] Han, A simple twisted relative trace formula.
[Hi] Hironaka Y., Spherical functions and local densities on hermitian forms, J. Math. Soc. Japan, 51 (1999) p. 553-581
[J-L] Jacquet H., Lai K.F., A relative trace formula, Compositio Math. 54(2) (1985), p. 243-310.
[JR] Jacquet H., Rallis S., Kloosterman integrals for skew symmetric matrices, Pacific J. Math. 134 (1992) p. 265-283.
[JiMR] Jiang D., Mao Z., Rallis S., A relative Kuznietsov trace formula on G_{2}, Manuscripta Math. 99 (1999) p. 411-423.
[Koh] Kohnen W., Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271, (1985) p. 237-268.
[Mc1] Macdonald I.G., Orthogonal polynomials associated with root systems, Séminaire Lotharingien de Combinatoire 45 (2000), Article B45a.
[Mc2] Macdonald I.G., Spherical functions on a group of p-adic type, Ramanujan Institute, Centre for Advanced Study in Mathematics, University of Madras. Publications of Ramanujan Institute No. 2 (1971).
[MR] Mao Z., Rallis S., A relative trace identity between $G L(2 n)$ and $\widetilde{S p}(n)$, Duke Math. J. 152 (2010) p. 207-255.
[MR1] Mao Z., Rallis S., A Plancherel formula for $\mathrm{Sp}_{2 n} / \mathrm{Sp}_{n} \times \mathrm{Sp}_{n}$ and its application, Compos. Math. 145 (2009) p. 501-527.
[MR2] Mao Z., Rallis S., Jacquet modules of the Weil representations and families of relative trace identities, Compos. Math. 140 (2004) p. 855-886.
[MR3] Mao Z., Rallis S., Global method in relative trace identities, in "Automorphic representations, L-functions and applications: progress and prospects", Ohio State Univ. Math. Res. Inst. Publ., 11 (2005) p. 403-417.
[MaWh] Martin K., Whitehouse D., Central L-values and Toric periods for GL(2), IMRN (2009) p. 141-191.
[MVW] Mœglin, C., Vignéras, M.F., Waldspurger, J.L., Correspondances de Howe sur un corps p-adique, Springer (1987)
[O] Offen O., Relative spherical functions on p-adic symmetric spaces (three cases), Pacific J. Math, 215 (2004) p. 97-149.
[Sak] Sakellaridis, Y., Spherical functions on spherical varieties., Preprint.
[Wa] Waldspurger J-L., Endoscopie et analyse harmonique sur les groupe p-adiques, preprint.
[Wa1] Waldspurger J-L., Correspondances de Shimura et Shintani, J. Math. Pures Appl. 59, (1980) p. 1-133.
[Wa2] Waldspurger J-L., Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60, (1981) p 375-484.
[Zha] Zhang, L., Gelfand pairs $\left(S p_{4 n}(F), S p_{2 n}(E)\right)$, Journal of Number Theory 130, (2010), p. 2428 2441.

CESAR VALVERDE

Rutgers University - Newark, Department of Mathematics and Computer Science, 101 Warren St. (Smith 216), Newark, New Jersey 07102
cvalverd@rutgers.edu

CITIZENSHIP:

- Born October 1, 1984 in Guayaquil, Ecuador. Citizen of the United States and of Ecuador.

EDUCATION

2012 Ph.D. in Mathematics (expected May 2012)

- Thesis: Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula, Rutgers University - Newark.
- Advisor: Zhengyu Mao

2006 B.S. in Mathematics from Rutgers University - Newark.

Awards and Scholarships

2011 Rutgers - Newark Graduate Dissertation Fellowship.
2006 Samuel Greitzer Award - awarded to the top undergraduate student in Mathematics. Rutgers - Newark.

Talks given

- A relative trace formula between the metaplectic and general linear groups (CUNY Collaborative Number Theory Seminar, Feb. 2012.)
- A relative trace formula and a generalization of work of Kohnen (University of Michigan Group, Lie and Number Theory Seminar, Jan. 2012.)
- A generalization of a result of Kohnen (2011 Fall AMS Eastern Sectional Meeting, Cornell University, Ithaca, NY, Sept. 2011.)

PAPERS

- Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula, Thesis.
- On induced representations distinguished by orthogonal groups, to appear in Canadian Mathematical Bulletin, 14 pages.
- Periods of Eisenstein Series on $S p_{2 n}$, in preparation.

