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In this thesis we obtain a geometric identity between Relative Trace Formula on the
metaplectic group and the general linear group. As a consequence of the spectral
analysis, we expect to obtain a relation between products of distinct Whittaker
coefficients of a cuspidal automorphic representation on the metaplectic group and a
non-split period of a related representation on the general linear group. This would
generalize famous work of Kohnen and Waldspurger.
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1. INTRODUCTION

Let F' be a number field with ring of adeles A. Let G be a reductive group over F' and
let H be the subgroup of G fixed by an involutive automorphism of G.
Let 7 be a cuspidal automorphic representation of G(A) and x be a character of H(A)

trivial on H(F'). We consider the period integral on the space of m:

(L1) Pt () = / o(h)x(h)dh.
)

H(F)\H(A

If there exists ¢ in the space of 7 with P y)(¢) # 0, then 7 is said to be (H,x)—
distinguished.

Such representations are of interest because they are expected to arise as functorial
images of Langlands liftings. Moreover, the value of this period integral is expected to be
related to special values of L-functions.

Let us explain one classical case of the relation between a period integral and a special
value for an L-function. Let k be an even integer, let N be odd and square-free. Let
f be a newform on I'o(N) of weight 2k and let g be the Hecke eigenform on I'f (4N) of
weight k + % associated to f via Shimura correspondence. Let m and n be fundamental

discriminants. Kohnen has proved in [Koh] the following equality:

YN _<g7g>

(1.2) c(n)e(m) = W(—l)m?km,zv(f; n,m),

here ¢(m) is the m-th Fourier coefficient of g. The period integral r y is given by

f(2)
Z wn(@) / (az? + bz + c)kfldz'

Q:[a»b’c] CQ
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Here Q) = [a, b, ¢] runs over a set of I'g(IV) inequivalent integral binary quadratic forms of
discriminant |Q| = nm with Nla, w,(Q) € {—1,0,1}. Cg is the image of a|z|*+bRe z+c =
0 in To(N)\H.

On the other hand, in [Wal] and [Wa2], Waldspurger has proved that

(1.3) le(m)[2 ~ m*2 Ly (k, xn)

where Ly (k, xn) is the L-series attached to f twisted by the real character x,,(n) = (2).
Combining equations (1.2) and (1.3), we obtain that the period integral 7 x(f;m,m) is
related to the central value of the L-series for f twisted by x.,(n). This also follows from

results of Waldspurger and Martin and Whitehouse ([MaWh]).

1.1. Relative Trace Formula. In order to study distinction, Jacquet introduced the
Relative Trace Formula (see [J-L]). For i = 1,2, let H; be closed subgroups of G with y;
global automorphic characters of H;(A) trivial on H;(F'). For f a Schwartz function on
G(A), let K¢(z,y) denote the kernel function for the regular representation p(f) acting on
L(G(F)\G(A)).

We consider the following distribution:

(14)  To(f 2 Hyy s Hoy xa) = /

/ Ky (h1, ho)x1(hi)x2(he) dho dhy.
Hy1(F)\H1(A) J Ha(F)\H2(A)

The kernel Ky(x,y) has a 'geometric’ expression of the form

Ki(zy)= Y fla ).
)

YEG(F

On the other hand, formally we have that the kernel for the right regular representation

by f admits a decomposition where the cuspidal term is of the form



(15) S S 0060 @)6i()

I ¢
where the first summation is over all irreducible cuspidal representations of G and {¢;}

is an orthonormal basis for the space of II.

We obtain that the distribution Ig(f : Hy, x1; Ha, X2) is equal to

(p(f)ei)(h1)xa(h1)@i(ha)x2(he)dhidhy

w X

T ¢ 7 HI(F)\Hi(A) /HQ(F)\HQ(A)

or

(17) Z Z P(H17X1)(p(f)qbi)P(HQ,XQ)(a)'

I ¢
Suppose that f = ®f, € S(G(A)), then for almost all places v, we have that f, €
H(G,, K,). Suppose that there exists a morphism between the L—groups of G’ and G.
Then by Satake isomorphism, we have a map A\, : H(G,, K,) — H(G,, K|) between the
Hecke algebras. We define a set of maps {¢, : S(G,) — S(G))} to be admissible if for

almost all places v, we have €, = \,. We say a relative trace identity

IG(f : H17X1,H27X2) = IG’(f/ : HiaxllvHévX,Q)

holds if there exists a set of admissible maps such that the above equality holds for f/ =
®€U(f'l})'

We see that an equality of geometric sides of the form:



(1-8) IG(f : H17X1;H27X2) = IG’(f/ : H{aXi;HéaXlg)

should lead to a relation between periods of the form (1.7).
We consider the following case. Let n be an irreducible, automorphic, cuspidal repre-
sentation of G' Ly, (A) with n self-dual. In this case, L(s,7®n) has a simple pole at s = 1.

We have that
(1.9) L(s,n®mn) = L(s,n, sym*)L(s,n,A?),

and assume that L(s,n, A?) has a simple pole at s = 1. In this case, 1 is a lift from the
group SOop 1.

Assume furthermore that L(1/2,7) # 0 and fix a nontrivial additive character ¢ of F'\ A.
Then the 'backward lift’” from 7 to a representation on SOy, 1 is lifted from the metaplectic
group %(A) via theta correspondence associated to 1. This suggests, for appropriate f

and f, a relative trace identity of the form

(1.10) I, (f : GL, x GL,, 1; N, 0) = I%n(f: N' .0~ N'.¢).

where 6 is the non-degenerate character of the maximal standard unipotent N of G Lo,

defined by

(1.11) O(n) =(nis+ ...+ nop_120)

and 6’ is the degenerate character of the maximal standard unipotent N’ of Sp, given

by



(1.12) 0'(n) = b(n1a+ ... + Npns1)-

The equality of the geometric sides of equation (1.10) was proved by Mao and Rallis in
[MR].
Now fix a non-square 7 € F'* and let K denote the quadratic extension of F' given by 7.

a bt
The map a + b1 — induces an embedding of GL,,(K) into G Ly, (F'). We denote

b a
the image of this map by GL, k)(F). We define a degenerate character 6. on N’ by
(1.13) 0.(n) =(nig+ ..+ gy, + T ).

The purpose of the present thesis is to obtain the following equality of geometric sides

of relative trace formula:

Theorem 1.1. We have the relative trace identity

(1.14) 1615, (f : GL(nx), 1; N, 0) = I%(f; N, 671N 9.

This suggests, for a representation II lifted from II" and for {¢,} and {@,} orthonormal

bases of IT and II' respectively, the following identity:

(1.15) Y P (pa))Wipa) = Z W (IT(f)(Za)) V()

where W, W and V/{//T are Whittaker functionals and the 'non-split’ period is given by



(1.16) PoII(f)pa) = / (IL(f)pu) ()R
C2n(A)GLy, k (F)\GLy, k(A)

where C5,, denotes the center of GGLs,.

Equation 1.16 can be thought of as a generalization of equation (1.2). The work of

Friedberg and Jacquet in [FJ] and of Friedberg and Bump in [BF] gives that
(1.17) Pi(¢) ~ L(1/2, 7)Rese—1 L(s, 7, A*)W ()

where 7 is an automorphic cuspidal representation of GG, ¢ is some cusp form in the space
of m and L(s,m, A?) is the partial exterior square L function. By ~, we mean equality up
to local factors.

Combining equation (1.17) and equation (1.15) for 7 = 1, we have:

(1.18) IW(Za)|* = L(1/2,m)Ress1 L(s, m, A) W) [
This would generalize equation (1.3). From equations (1.18) and (1.15) one obtains
(1.19) [Pr(pa) [ ~ L(1/2,7)L(1/2,7 @ Xr)Ress1 L(s, m, A%)*[W(ga) |

where x, is a quadratic character of idele class group A*/F* attached to the quadratic
extension K. Thus we would recover an equation from work of Guo in [G] and upcoming
work of Feigon, Whitehouse and Martin ([FWM]). In the case n = 1, we would obtain
results of Waldspurger and Martin and Whitehouse ([MaWh]).

1.2. Sketch of proof. Let us sketch the method of descent. Let 7 be an irreducible,
automorphic, cuspidal, self dual representation of G La,(A) with L(s, 7, A?) having a pole

at s = 1 and with L(1/2,7) # 0. We construct the Eisenstein series E(g, f¢,) (precise
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definition in equation (3.13)), it has a pole at s = 1. We consider the residual Eisenstein
series E1(g, ¢) = Res,—1E(g, f2,).

We consider the space V; spanned by Fourier-Jacobi type coefficients of the residual
Eisenstein series, in other words, we consider the space V;; spanned by functions py(h)

with

p =)= [ Eh )0 Gi)n @)

NF(F)\N*(A)

Here © 1 is a Theta series and N* is given by
Uy

\
Z U X * *
1 = y =
(1.20) N® = n= Ly o * |12 € Non_gesy)
1 o
\ Z* /

The representation o (7) of %k is obtained by right traslation on the space V, .

By ([GRS2, Main Theorem (global)]), this space is nonzero when k = n. To prove that
Vi = 0 for k£ < n, the authors make use of two observations. First, the Sp,, x Sp, period
of the residual Eisenstein series F(g, ¢) is related to the GL,, x GL,, period of ¢, this is
[GRS1, Theorem 2]. In particular, because of our assumptions on 7, this period is nonzero.
On the other hand, in [GRS1, Section 3] it is proved that the existence of non-trivial
Spn, X Spy, period implies that V. is zero.

In the present case, we prove in Theorem 3.10 that the residual Eisenstein series E (g, ¢)
has Sp(,, k) period which is related to the GL, k) period of ¢. Reflecting this relation we

prove in Section 3, through a matching of relevant orbits, the equation:



(121) IGLQn(f . GLn,Ka 17 N1,9) = ‘[SPQn(f/ . Spn,Ka ]_, N3,¢93).

It is possible for the residual Eisenstein series to have nontrivial degenerate Whittaker

model and Fourier-Jacobi model. The next identity reflects this fact:

(1.22) Lspo, (" Spnic; 15 N3, 03) = Isp,, (f" : Spnic. 1; N3, 0405 1),

Here @;{Z,l is a Theta series defined below by equation (4.37). This is proved using global
methods of Ginzburg, Soudry and Rallis, as applied by Mao and Rallis in [MR]. This is
carried out in Section 4. The main obstacle is to prove that Sp, x-invariant functionals
and (N®) x} o )-eigenfunctionals are disjoint. For Sp, x Sp, this is in [GRS1, Section 3.2];
it is Theorems 4.2 and 4.4 in the present paper.

Finally, the standard method of comparing orbital integrals proves the identity

(1.23) Lsps, (f": Spnsc, 1; N3, 0405 1) = I (f+ N', 67 N, '),

In Section 5 we compute the orbital integrals arising from equation (1.23); in Section 6,
we reduce their comparison to a suitable fundamental lemma.

In Section 7, we prove the fundamental lemma. The unit Hecke element case is done by
a calculation, while the general Hecke element case follows from a Plancherel formula, as
in [MR1]. This argument is detailed in Section 7. Section 8 proves the main theorem.

The Placherel formula needed in Section 7 follows from an explicit calculation of spherical
functions on Sp, k\Sp2, and on NQ\S—;);. The first calculation is done in Appendix A,

more general results are obtained in [Sak]. The calculation for the second case is done
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in Appendix B and follows [BFH]. Appendix C defines the orbital integral of spherical
functions on Sp,, \Spa, and proves that this corresponds, up to constants, to spherical

functions on Nz\:S’EL.
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2. PRELIMINARIES

e F'is a number field with ring of adeles A, the completion of F' at a local place v is
denoted F,.

o7 € F\F2

e K is the quadratic extension of F' given by 7.

e T’ is the square block diagonal matrix of size 2n with diagonal consisting of the 2 x 2

' T
matrices
1
e T is the square block diagonal matrix of size 4n with diagonal consisting of the 2 x 2
' T
matrices
1
e 7, (resp. 1,) denote the n x n diagonal matrices consisting of 7 (resp. 1) on the
diagonal.
Tn
L,
o |k =
Tn
L,
1
® J —
1
—0
o J=
o

e Sp, = {g € GLy,|'gJg = J}
e GSp, = {g € GLa|'9gJg = X(g)J; \(g) € F*}



e ¢ is either a nontrivial additive character of A/F or of F,.

e GL,x = {9 € GLa,|g'Tg="T}

e N; =standard maximal unipotent for G Lo,

e A, =set of diagonal matrices in G Lo,

e W; =Weyl group corresponding to A;

e Ny, = {n € Niln~'gn = g}

o N = Yy IHyN N

e 0, is a character of Ny with 61(n) = ¢¥(n12+ ... + Nop_12n)

® Spax = {9 € Spanlg™'Tg =T}

e N3 =standard maximal unipotent for Sps,

e A =set of diagonal matrices in Spy,

e W3 =Weyl group corresponding to As

e P3; =Maximal Siegel parabolic in Sps,

e V3 = Siegel unipotent radical for Sps,

e K3 =Maximal compact subgroup of Sps,

® Kgp, » = K3N Spnie

® Vi, = V3N Spnx

o N3, ={n' € N3|n""tgn’ = g}

° Ng‘w =~y tH3y N Nj

e 05 is a (degenerate) character of N3 with 05(n) = ¥(n1s + ... + nan—1.2,)
oot =olgla
e S, is the set of matrices g € GL,, satisfying o,g is a symmetric matrix.

g
e For g € GL,, the map iy : GL, — Sp, is given by i(g) =

gx

11
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e For g € GL,, the map i, : GL,, — GSp, is given by i,(g) = J

Tg*

Let F' be a number field with ring of adeles A and let 7 a nonsquare in F. Denote
by K the quadratic extension F[\/7], then an element in K embeds in GLy(F) via a +

a br
b\/T +— , and this naturally extends to an embedding of GL,(K) into G Lo, (F).
b a

We denote the image of GL,(K) in GLy,(F) under this embedding by G L, k)(F) and
remark that if we denote by T" the nonsplit torus

-
1
, then G L, ) (F) consists of g € GLo,(F) with ¢7'Tg =T.
-
1
L,
We define an injection j : Sp, — Spa, by j(g) = g
L,

Gz = Spa

N5 =maximal unipotent for Sp,
NQ,w’a’ = (w’a’)leQ(w’a’) N NQ
N/

2w'a’

= (w'a")Ny(w'a’) ™t N Ny

I, = I@;{(f : No, 055 No, 0)

U}, is defined by equation (5.15)

UZ, is defined by equation (5.17)

02(71) = T/)(TZLQ + ...+ nn_Ln —+ nmnﬂ) fOI‘ n e N2

Or-(n) = Y(n1a+ ... + Np1n + TNy pyr) for n € Ny
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2.0.1. Characters. e 1) is either a nontrivial additive character of A/k or of k,.

e () is a character of N; with
Bi(n) =Y(n1a+ ...+ Nop_12n)-
e (), is a character of N, with
Oa(n) = Y(nig+ ...+ N1 + Nyt
e 05 is a character of N3 with
O5(n) = Y(nig+ ...+ Nop_1.9n)-

e 0, is a character of N5 defined by (4.38).

2.0.2. Weil representation and Theta function. Recall for a fixed 1, the Weil representation
is defined for the metaplectic group é?)n We use 7y(*,1) to denote the Weil constant,
and wy to denote the Weil representation. We describe explicitly a model of the Weil
representation.

Let ® € S(A™). Then

(2.1) wy(m(g))B(X) = ydetgw%qu@, g€GL,.
(2.2) we( V), D)B(X) = $(tr(X'Ve,X))(X), V € Sy
(2:3) wp(J)@(X) = A(1,4)"B(X),

where

d(X) = B (X', Y))(Y) dY.

The above describes the action of the metaplectic group on S(A™) under the Weil repre-

sentation.
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We use @;{;_1 to denote the Theta function defined by (4.37).
e The space S(G(F,)) of Schwartz functions on a reductive group G over a local field
F, at a non-archimedean place v consists of smooth functions of local support; at an

archimedean place, we use the definition of Casselman.
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3. THE TRACE IDENTITY BETWEEN GLy, AND Sp,, AND AN IDENTITY OF PERIODS

We have a local correspondence of Schwartz functions on Spa,(F,) and G L, (F,) given

by f, € S(Span(E,)) — f, € S(GLyy(F,)) where f is given by

(3.1) fi(g) = / / fo ki (g)u)| det(g)|+ dkdu

uEVg(Fv) kEKgﬂSpnyK(Fv)

where K3 and V3 are the maximal compact subgroup of Sps, and the unipotent radical for
the maximal Siegel parabolic in Sp,, respectively.

From [JR], one expects a relation between the inner period on a Levi subgroup and the
outer period on the group. In our case, the embedding of G Ly, as the Levi subgroup of

the Siegel parabolic of Spo, suggests the following relative trace formula:

Theorem 3.1. Let f = ®f, € S(Span(A)) and f' = @f) € S(GLa,(A)) where for all v,

fo and f! are related by correspondence (3.1) then

(3.2) Icr,, (f - GLg k), 13 N1, 01) = Iy, (f' - SP(n k), 1; N3, 03).
Moreover, at a p-adic place v, the map f, — f. restricts to a Hecke algebra homomorphism.

3.1. Comparison of orbits. We introduce a space isomorphic to GL, x\GLa, (resp.
SPn. i \SP2n), namely, we define an involution § on GLy, (resp. Spa,) given by 0(g) =
TgT~!, then the space Y = {¢7'0(9)T|g € GLy,} (resp. Y3 = {g7'0(9)T|g € Span})
satisfies Y1 = GL,, k\GLa, (resp. Y3 = Sp, k\Sp2n). We exhibit a Bruhat decomposition

for elements in these spaces. We first state a well known lemma:

Lemma 3.2. Let U be an algebraic connected unipotent group over F'. Let 9 be an auto-
morphism of U(F) with 9> = 1. If x € U(F) verifies x9(z) = 1 then there is u € U with
r=19u)u. d
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Lemma 3.3. Ify = g 'Tqg €Y, (resp. Y3), then y admits the decomposition y = n~ wan,
with n € Ny (resp. N3), w € Wy (resp. Ws), a € Ay (resp. As)

' = ¢, we have

Proof. By the Bruhat decomposition we write y = n; wany. Since 7y~
that 7n, ' (wa)~'n; = ny ' (wa)ns, this implies that (wa)? = 7, so that we get n; 'wan;, =
nylwany, i.e. nony wanyny' = wa. Write n = nony ', then y = n, 'nwany so that we may
assume y = nwa with nwan = wa.

For any w € W, there exists a subgroup N, C N, namely N, = wNw™! N N, with
the property that w N, w = N,,. Thus if y = nwa with nwan = wa then n € N,, and
n~H(wa) 'n"twa = 1. We define an involution ¥ on N,, given by ¥(n) := (wa) 'nwa. We
have that n™19(n™!) = 1 so by Lemma 3.2, there exists u € N,, with n™! = J(u"!)u, i.e.

-1

n~t = (wa) tu"twau so that y = u=1%2e

“ou(wa)(wa) = u~(wa)u as desired. O

The right action of Ny on G Ly, (resp. N3 on Sps,), composed with the map G Lo, — Y]
(resp. Spa, — Y3) gives rise to an action of Ny on Y; (resp. N3 on Y3) by conjugation.

Upon observing that if g € Spa, then (¢~ 'Tg)J (g 'Tg) = 7J, we get the following:

Corollary 3.4. The orbits of Ny (resp. N3) in Yy (resp. Y3) admit representatives of the

form wa with (wa)? = 7 (resp. (wa)* =7 and *(wa)J(wa) = 1J)

Definition 3.5. We call wa (resp. w'a’) relevant if 61 (resp. 05) is trivial on Ny ., (Tesp.

NS,w’a’)-

We remark that if g7'Tg = w'a’ then w'a’ is relevant if and only if 63 is trivial on the set
of n € N3 with n~*w’a’n = w'd’, this condition is equivalent to n=tg=1T'gn = ¢~'T'g which
is equivalent to gng~' € Spn x and equivalent to n € g~'Spp kg N N3 = Nj . Therefore
we say that gs € Sp, i \Span/Ns is relevant if 05 is trivial on N3 4, A similar computation

leads us to define g; € GL,, x\GLa,/N; to be relevant if ) is trivial on N g1
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Lemma 3.6. The element w'a’ with w' € W3 and ' a diagonal matrixz of size 4n satisfying
(w'a')* =7 and '(w'd")J(w'a") = 7J is relevant if and only if w'a’ = i,(wa) where w € Wy,

a is a diagonal matriz of size 2n, (wa)? = 7 and wa is relevant.

Proof. It’s easy to check that i,(wa) is relevant if and only if wa is; we show that for w'a’

not of the desired form, we can find a unipotent n’ with the property that n'~'w'a’n’ = w'a’

A B
and 05(n’) # 1. Let us write w’ = where A, B, C, D represent 2n x 2n blocks;

¢ D

clearly, if B is zero, so is C and w'a’ is of the desired form, so let us assume that B is
nonzero. B is anti-symmetric with respect to the anti-diagonal, so let ¢ be the smallest

positive integer such that w'(i) > 4n + 2 — i, we consider the root X;_1 ;.

Claim 1. The element w'a’ cannot map X;_;; to a positive non-simple root.

Suppose w'a’ maps X;_; ; to a positive non-simple root. We consider the matrix n’ with 1
on the diagonal and with entries nj,, given by x if (I, k) = (i —1,),  multiplied by the ele-
ments in the o(i—1) row and the (i) column of w'a’ divided by 7 if (I, k) = (0(i—1),0(7)),
—zif (I,k) = (4n—i+1,4n—i+2) and —z multiplied by the elements in the o(4n —i+1)
row and the o(4n — i + 2) column divided by 7 if (I,k) = (c(4n — i+ 1),0(4n + 2 — 7).
One has that n’ € Spo,, with n’~*w'a’n’ = w'a’, and 03(n’) # 1 contradicting relevancy and

proving our claim.

Claim 2. w'(j) #4n+1—j Vj.

We let @ = w'a’ and assume w'(j) = 4n+1—74. The (j, 4n+1—j) coordinate of ‘aJov = 7.J

is given by 7J; 4n+1-; = —7. On the other hand, we have that cani1—j jJant1-j,j0j ant1—5 =



18

7, this is absurd and proves our claim.

Claim 3. w'(i) =4n+2 —d,w'(i — 1) =4n + 1 —i.

By minimality of 7, we have that w'(i —1) < 4n+1—(i—1). By claim 2, we may assume
w'(i —1) < 4n —i+ 1. On the other hand, Claim 1 implies that w'(i — 1) > w'(i) — 1 >
dn — i+ 1, thus w'(i — 1) = 4n — i+ 1 and using w'(i — 1) = w'(i) — 1, we have that

w'(i) = 4n — i + 2 and our claim is proved.

Claim 4. An element w'a’ as before with (w'a’)? = 7, Y(w'a’)J(w'a’) = 7J and w’ satis-

fying Claim 3 is nonrelevant.

br
—br
To prove Claim 4 we are reduced to considering the case =

1/b
~1/b

In this case the we consider n = . We have that n stabilizes 8 through

conjugation and that n has a nontrivial character action, contradicting the relevancy of .

B
Therefore, if w'a’ is relevant with w' = , then B = C' = 0. This proves that

C D

w'a is of the form w'a’ =i, (wa). d

3.2. Computation and comparison of the distributions.
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Lemma 3.7. The bijection between relevant w'a’ and relevant wa induces a bijection be-
tween representatives of relevant orbits g1 € GLy k\GLay/N1 and g3 € Sppn i \Span/N3

where g, 'T'gy = wa and g3 ' Tgs = w'a’ This bijection is given by g1 — g3 = i1(g1).

Proof. Tt is easy to see that if g;'T'g; = wa then i1(g1)"'Ti1(g1) = w'a’. On the other
hand, suppose w'a’ is relevant, then we know w'a’ = i.(wa). We have that if w'a’ is of
the form w'a’ = g3 'Tgs, then the eigenvalues of w'a’ are /7 and —+/7 with multiplicities
2n respectively. We note that the set of eigenvalues of w’a’ is the union of the set of
eigenvalues for wa and the set of eigenvalues for 7(wa)*. Using that (wa)? = 7, we get that
wa has zero trace. Thus the eigenvalues of wa consist of /7 and —/7 with multiplicities n

respectively. Such wa are seen to be of the form wa = g; 'Tgy, this proves our lemma. [J

Once we have this bijection we proceed with a formal proof of the relative trace identity

we have in mind. We have

Isp,, (" Spnk), 1; N3, 03) = / / K¢(l3,n3)05(ns3)dlsdng
l3ESpn,K(F)\Spn7K(A) n5EN3(F)\N3(A)

_ / / ST Sl gsms)0s(ns)disdng

15€Spn. 1 (F)\Spn. i (A) n3€Ns(F)\N3(A) 93€5P2n(F)

- ¥ / / Fa(l5  gss)0s (ns)dizdn

93P 1\ /NS €5, 1 (4) ng €N, (F)\Na(A)

where Né,gg = g?:lSpn,Kgg N Ns.

We factor this integral as

Z / / / f3(15 " gsmans)03(ns)0s(ms)dizdnzdms

gBGSpn,K\SPZn/NZ?' lgespn,K(A) n?’ENé,gg (A)\N3(A) m3EN§,93 (F)\Né7g3 (A)

or
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Z / / f3(15 " gsmsng)0s(ns)dlsdns / 05(ms)dms.

93€SDn, Kk \SP2n/N3 13€Spn, i (A) nzeN} o

(A)\Ns(4) ms Ny oo (F)\NS ,, (A)
The integral over mg is zero if g5 is non-relevant. We get that Isp,, (' : Sp@m, k), 1; N3, 03)

is given by

(3.3) > / / F3(I5 1 gsn3)03(ns)dlsdns.

g3 ESpn,K\SPQn/Ng’l”@le’l)antlggespn,;((A) ns3 ENé,QS (A)\Ng(A)

A similar computation shows that Igp,,(f : GL@ k), 1; N1, 01) is equal to

(3.4) 3 / / F1(05 ginn) 0y (n )Ly dns.

g16GLn,K\G’L2n/N1,relevantlleGLn’K(A) nleN{,gl (A)\Nl (A)

Lemma 3.8. (Comparison of the distributions). For any relevant g € G Loy, and g3 € Spay,

with g3 = i1(g1), for any place v of F, with f given by correspondence (3.1), we have

|det(91)|;n_1 / / f{)(ll_lglnl)el(nl)dlldnl

1W€e€GLy, k(Fy) ny EN{’gl (Fy)\N1(Fy)

_ / / Fo(l Vi1 (g1)ns) 05 (ng)dlsdns,

l3€Spn,K(Fv) HSENAH (gl>(FU)\N3(Fv)

Proof. We fix a place v and drop the reference to F, in the notation. We write g3 = 1(g1),

we have to consider

/ f3<l51i1(gl)ng)gg(ng)dlgdng.

[3€Spn, K n3€N§7g3 \ N3
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We write n € N3 as ng = vi(n;) with v € V3 and ny € Ny, then 03(n3) = 61(ny). An
explicit computation shows that if ng € Nj, then ny € N{, and i1(g1)vm(is(g1))~" €
‘/3 N Spn,K-

Our integral is

/ / / Fa(l5 i1 (g1)vi(na))0 (n)dlsdn,

lSESpn,K ni GN{,gl \N1 ’UEV3ﬂSpn’K\V3

We make a change of variables v +— 4;(g;) " vii(g1) to get

fg(lglvil(glnl))el (nl)\ det(gl)\*("ﬂ)dlgdnldv.
13€Spn, ik M1 ENY ; \N1 vEVENSPy i \V3
From the Iwasawa decomposition one has that Sp, x = (P3N Sppr)(Ks N Sppx), so we
write I3 = kii(hy)u with k € K3 N Sp,r,u € V3N Spyx, b € GL, k, we combine the u

and v integrals to get
/ / / / fg(kz(hl)uzl(glnl))Ql (TLl)’ det(hlgfl)]*("H)dudnldhldk
k€EK3NSpy, k h1€GLy K 11 EN{*]1 \N1 ueVs
We change variables u — i(gin;)ui(gini) ™!, we obtain
/ / / / fS(ki(hlglnl)U)01 (7’L1)| det(h1)|”+1dudn1dh1dk:.
kEKgﬂSpnyK h1 EGLTL,K ni GN{«QI \N1 u€eVs

We may write this as

| det(g1)|™™" / / / / f3(ki(higiny)u)| det(higr)|" 601 (n1)du dk dhy dny

h1 GGLn’K ni eN{,gl \N1 k€K3ﬂSpn,K u€eVs

= | det(m)ﬁ"” / / f'(higiny)6 (n1)dnydhy

h1€GLy i ”1€N{,g1 \ N1
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which proves the lemma. Il

Proof of Theorem 3.1. As the product of | det(g1)|, over all places equals 1, we get the
equality of the distributions from equations (3.4), (3.3) and Lemma 3.8.
Now we work over a p-adic field F. For z € C*, let x, be an unramified character on

Aj given by

a1

(3.5) Xz = |ai[* ... |ag,|[™".
Aon

We now define, for f € H(Spon, K3), ' € H(GLay, K7):

(3.6) f(z) = / / £(i2 (a)n)x(a)6Y/ (i (a)) dnda,

a€A; (F) TLENg(F)

(3.7) f'(z) = / / F'(an)x.(a)8,* (i1(a))dnda.

a€Ay (F) neNy (F)

Here 03, 1 denote the modulus functions of the Borel subgroup of Sps,(F') and G La, (F)
respectively.

We define a Hecke algebra homomorphism A; : H(Spe,, K3) — H(GLay, K1) so that
when " = A\ (f), we have

1

(33) fiiz = 5) = fea)

We let €] be the map on S(Spa,(F)) given by equation (3.1). Then when f € H(Spa,, K3):
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an= [ [ a@uldelgl i
uEVg(F) kngﬂG’L(gnJQ (F)
From Iwasawa decomposition we get that f(z) = e’1(/7)(z — 3). Thus €/(f) = M (f), ie.
€1 restricts to a Hecke algebra homomorphism. O

Theorem (3.1) gives a map from f € S(Sp2,(A)) to f' € S(GLy,(A)) with

IGL2n(f/ : GLn,K; 1; Nla 61) = ISPQn(f : Spn,Ka 13 N37 93)
We want to construct a map in the other direction.

Corollary 3.9. For any place v there exists maps 1, : S(G Loy (F,)) — S(Span(Ey)), such
that Igr,, (f, : GLmxy, 13 N1, 01) = Isp,, (fo : SP(ni)s 13 N3, 03) for [ =&f, and f' = &f,
where

1. fl = Mow(fy) forv & S a finite set of places containing bad places.

2. fo=-c10(f)) forves.

Proof. Given f € S(GLa,(F},)), define fi,(p) on the Siegel parabolic subgroup Ps(F,) by
setting f1,(i1(m)u) = f,(m)o(u) where m € GLy, (F,), u € V3(F,) and ¢(u) is a Schwartz
function on V5(F},) such that ng(Fv) ¢(u) du = 1. Define

fow(p) = Fro(kp) dk.

/IfeK{;ﬂSpn’KﬂPg(Fv)

Then fo, is left K3 N Sp, x N P3(F,) invariant. We extend fy, to a function f;, on
Spn. i P3(F,) as follows: using the Iwasawa decomposition, any element in Sp,, x P3(F,) has
the form kp with k € K3 N Sp, x(F,) and p € P3(F,); we let f3,(kp) = fa.(p).

As Sp,, k Ps is a closed subset of Sp,,,, the restriction map from S(Sp,,,(F,)) to S(Spn x Ps(Fy))

is surjective. Thus, there is a function f, € S(Sp,,(F,)) that restricts to fs,. We will let
Jo= El,v(fqu)'
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We now check that the equality

Icr,, (fy: GLn ), 1; N1, 01) = Isp,, (fo © SPk)s 15 N3, 03)

holds under the conditions in the corollary.

For the given f/, define a function on GLy,(F,):

i) = [ fi(kg) dh
KlﬂGLmK(Fv)

Then " = ®f! € S(GLy,(A)) and

(39) IGLQn(f” : GLn,K7 17 N1>91) = [GLQn(f/ : GLTL,K7 1) Nlael)'

When v ¢ S, we have that f) = A (f,); since f is in H(GLa,, K1), we have f! =
f!. Thus from the last statement of Theorem 3.1 (and its proof), we have f, and f/”
satisfy equation (3.1). When v € S, f, = €e1,(f}); we can check that f, and f again
satisfy equation (3.1). It follows from Theorem 3.1 that Ig,, (f : Spu i, 1; N3, 65) equals
Ir,, (f" : GL, k,1; N1,60;). From (3.9) we get the claim of the corollary. O
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3.3. Identity of periods. The previous section was motivated by the conjectural relation
(see [JR] and [JIMR]) between the inner period on the Levi factor and the outer period on
the group. In the case when 7 is an irreducible cuspidal representation of G Lo, with its
exterior square L-function having a pole at s = 1 and with L(1/2,7) # 0, 7 has a nontrivial
GL, x GL, period. On the other hand, the residual Eisenstein series on Sps, constructed
from 7 has a nontrivial period along the subgroup Sp, x Sp,. The relation between the
periods in this case is given as Theorem D in [GRS1].

In our present case, the residual Eisenstein series on Sps, should have Sp(, k) period
which is related to the G L, k) period of 7. This is the content of Theorem 3.10 below. For
the convenience of the reader, we reproduce the material on Eisenstein series from [GRS1].

Let P = MU be the Siegel parabolic subgroup of Sps,, we have a natural identification
M = GLy, via i1(g) — ¢g. Let 7 be an irreducible, automorphic, cuspidal, self-dual
representation of GLg,(A). Let ¢ € ndi}EZS(A)T, i.e. ¢ is a smooth function on Spo,(A)

with values in the space of 7 with

(3.10) ¢(mug;r) = 67 (m)d(g; rm)

form e M(A), u € U(A),g € Spa(A),r € GLy,(A). We realize ¢ as a complex function
on Spo,(A) X GLg,(A) such that r — ¢(g;r) is a cusp form in the space of 7; we assume
¢ is right K3—finite where K3 is the standard maximal compact subgroup of Sps,(A). If
g € Span(A) has Twasawa decomposition g = auk where a € GLs,(A),u € U(A), k € K3,

we define for s € C,

(3.11) ©? (g;m) = H(g)* ¢(g;m)

and

(3.12) f2.(9) =2 (g:1)
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where H(g) := | det(a)| for g with Iwasawa decomposition as above. We also denote by
Xc the characteristic function of all real numbers larger than c¢; by x¢, the characteristic
function of the interval (0, c].

Consider the Eisenstein series
(3.13) E(g, f2,) = > 2.(v9)
YEPsp,,, (F)\Sp2n (F)
The constant term along U is given by
BU) Eoft) = [ Bl fdu= 1200 + ME)EL)
U(A)/U(F)

where M is the intertwining operator given by

(3.15) M) = [ T2 ug)d
U(A)
]2n
with w = ; write
_]2n
(316) El(ga ¢) = R€SS:1E(9, fjjs>

We wish to prove the following theorem

Theorem 3.10. For a suitable choice of measures we have

(3.17) / By (h, 6)dh — / / 6 (k: a)dadk

Sp(n, k) (F)/Sp(n, k) (A) Kspp i Con(A)GLn k (F)\GLn k (A)

with Kg = KN Sp,x and Cs, the center of GLs,.
P(n,K) )

As in [GRS1], we apply the truncation operator A° to E(g, fﬁjs), we get
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(3.18)  A°E(g, f2,) = E(g, f2,) — > EY (v, f2)x(H(79))-

VEPspy,, (F)\Span (F)

By (3.14) and (3.18) we have

(3.19)  A°E(g, f2,) = Elg, f2,) — > (f2,(vg) + M(s) 2, (v9))xe(H (v9))
1€ Py (FI\Sp2n ()
(3.20) = £2.(va)x“(H(vg)) - > M(s)f2,(v9)x(H (v9))
7€ Ppy, (FN\Sp2n (F) 1€ Py (FI\Sp2n (F)
Denote
(3.21) 05(g, £2,) = > £2.(v9)X (H(9)).

YEPsp,,, (F)\Sp2n (F)

(3.22) 05(g. f2,) == > M(s) £2,(v9)xe(H (9)).

Y€Psp,y, (F)O\Sp2n (F)

Applying A° to E; and noticing that ffjs is holomorphic, we get

(3.23) AEr(g,0) = Ei(g,¢) — 05(g,¢)

where

(3.24) 05(g,6) = > My(f2,(v9)xc(H(vg)))
Y€ Pspy,, (F)\Sp2n (F)

and M; := Ress—1 M (s). It is enough to prove the following proposition:

Proposition 3.11. The following formulae are valid with certain choice of measure:
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s—1
(3.25) [ etgzm= | / o(k, a) dad,
, .
Spn,K(F)\Spn,K(A) KSPn,K CQH(A)GLW,,K(F)\GLTL,K(A)
(3.26)
/ 05(h, 12 )dh = < / / M(s)(g? ) (k: a) dad,
I 8 b
Spn,K(F)\Spn,K(A) KSPn,K CQH(A)GLW,,K(F)\GLTL,K(A)
(3.27)
/ 05(h, ¢)dh = ¢ / / M, (p71)%(k; a) da dk.
Spn,K(F)\Spn,K(A) KSpn,K C2n(A)GLn,K(F)\GLn,K(A)

Assuming Proposition 3.11, let us show Theorem 3.10. By equation (3.20), we have that
A°E(g, f2,) is equal to

> L (vg)x (H(vg)) — > M(s) 2, (vg)xe(H (79)).

YEPsps,, (F)\Sp2n (F) YEPspy,, (F)\Sp2n (F)

Integrating along Sp, x(F)\Spn k(A) and using equations (3.25) and (3.26), we obtain

that i A°E(h, f2,) dh is equal to
Spn,k(F)\Spn, i (A)

8_1//¢kadad

here the integrals are over K3 and Cy,(A)G Ly, ik (F)\G Ly k(A).

)(k; a) da dk,

Taking residues at s = 1, we get

/ AEy (h, f2,) dh = //qsk;adadk—c //M1 )(k,a) da dk.

Spn,K(F)\Spn,K(A)



29

Using equation (3.27), this is

(3.28) / AEy(h, f2,) dh = / / é(k, a) da dk — / 05(h, ¢) dh.

Spn,K(F)\Spn,K(A) Spn,K(F)\Spn,K(A)

On the other hand, using equation (3.23), we get

(3.29)
/ By (h, £2,) dh = / Ey(h, 6) dh — / 0 (h, 6) dh.

Spn, K (F)\Spn, Kk (4) Spp, i (F)\Spn, i (A) Spn, i (F)\Spn, i (A)

Comparing equations (3.28) and (3.29) proves Theorem 3.10.
Proof of Proposition 3.11. To prove this proposition we write the integrals J 6;(h)dh
Spn,K(F)\Spn,K(A)
in terms of I;, (defined in equation (3.33)) and show that I;; = 0 for d < n; the case

d = n gives the result.

The functions 0]? have the form 6;(g) = Z ¢;(vg) with
YEP(F)\G(F)
f2.(9)x“(H(g)), =
(3:30) §(9) =3 M(s)(f2)(9)xe(H(g), =2
Mi(f2)(9)x(H(g)), i=3

Proceeding formally,

(3:31) [ swa- ST g(mn

P, (F)\Spn, i (A) Spn, i (F)\Spn, s (4) TEPUNSP2n (F)

and this is
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(3.32) > / &;(yh)dh.

PYEP(F)\SPQ”(F)/Sme(F)W_1P(F)’yﬂSpn’K(F)\Spn7K(A)

Recall the description of the double cosets N3(F)\Spon(F')/Spm,)(F) under the map

g — ¢Tg™!': namely, we may take as representatives elements g € Sp,, with ¢T¢~! =

wa with (wa)? = 7 and *(wa)J(wa) = 7J. We remark that by considering the ef-

fect of the parabolic part and after conjugation by an appropriate element of the form

w A B
with W € W(GL,,), we may take wa to be of the form wa = with

w* C D
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We attach a parameter d to such wa, where 2d is the number of nonzero rows

on the A block, and we label such wa as way.

0 7
10

31
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-
—T
We have that gTg~! = ' where g = 4B € Spy, with
C D
1
—1
1 0 1
0 -1 0
A= , B = , C = , D =
1 0 1
0 -1 0
0 T
1 —T
. If the square matrix . is of size 2r, then we
0 1
1 —1
denote the corresponding g as g,.
Idyg
We have that if v4 = gr , then 'ydT'yd’l = wayg.
Tdyq

As in [GRS1], we let Qg = fyd’lP’yd N Sp,.x and we need to compute the integrals

(3.33) Lia= / &i(vah)

Qa(F)\Spn,k (A)
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for 0 < d <mnandj=1,23 We assume that 747y, = wa, and remark that to find Qg

it is enough to find p € P with vy~ lpy € SPen,i)(F'), which is equivalent to wap = pwa.

Case d = 0:
a
In this case we have wa = with
B
T 1
-7 -1
a = ' and 3 = ’ and if p = (Pl PZ) with
. . by
T 1
—T -1
Oépg PQﬂ Ploz . 1
wap = pwa then = then P, = 0 and since P3 = ¢'P; o we
BP (P Py
have 3P, = o' P[ 'o3 which implies  P,o 3P, = o3 but
0 —1
1 0
. P
ol = so that p = i(P) = where P, € Sp,. As P,
0 —1 Pl*
1 0

runs over Sp,, so does Qg = v, “i(P1 )70, embedded via iy as a subgroup of Sp,, -

We have
(3.34) Lo= [ &lhn

i2(Spn (F)\Sp2n(Ax)
We write h = iy(a)b where ig(a) € io(Spn(F))\i2(Spn(Ar)) and b € is(Spn(Ar))\Spn(Ak).

We factor the integral as

(335) L= / / € (10ia(a)7g " ob)dia(a)db.
i2(a)€i2(Spn (F))\i2(Spn(AF)) bEia(Spn(Ar))\Spn(AK)
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This includes the integration of a cusp form in 7 along is(Sp,(F))\i2(Spn(Ar)) which
equals zero by [Jacquet-Rallis, Prop 1].

Case 0 < d < n:

«
. . 5 .
In this case we write wa = with
B/t
o
T T

1 —T P1 P41 P42 P5
1
o= and 8 = and p = e ?62
6
T T P

1 —T

where Pj, P, P35, P5 are squares matrices of sizes 2d, 4(n — d), 2d, 2d respectively, P} and

P? are of sizes 2d x 2(n — d), P} and P? of sizes 2(n — d) x 2d and p satisfies wap = pwa

then

aP, aP} aP} oP; P P} PlB P
oP. BP? Py Pla
(3.36) ’ Sl = ’ ‘
5p} Pla
OzP3 P3C¥

g

where 0 =
BT

Write this as a semidirect product Myx Vy, write the Iwasawa decomposition in Sp,, x (A),

h = vmk where m € My(A),v € V4(A),k € Kgp, .,dh = 6~ (m)dvdmdk, where § is the
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modulus function of the parabolic subgroup @4, then

(3.37) Lig= / / / & (vavyy tyamk)d (m)dvdmdk.
Ksp,, x Ma(A)/Ma(F) Va(A)/Va(F)

. P Py, Py

Welet Py = <P41 Pf) and Py = 62 . One has that ”yd’ley = g;1P29 g Py |
P P

from equation (3.36) we have that Py, Ps, P; € GL,, . The equation P, = P, implies

TP, = Pyg,Tg; " so that P,g, € GL,, k. Similarly, we have that g, ' Pag,, g, 'Ps € GL, k.

Thus, the projection to Sp, k) of 'dev;l as v varies in Vj is a unipotent radical in G Lo,,. We

have H(yquy;"') = 1 and I, 4 involves an integration of a cusp form in 7 along Vy(F)\Va(A),

soljq=0for0<d<2n,j=123.

Case d = n:
-
1
. . 1 P :
We have wa = and if p = with pwa = wap then
Py
-
1
T T
1 1

P ' = ' P, ie. P, € GL,k(F) fori=1,2,3.

T T
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Using the Iwasawa decomposition Spn x = Kgp, 1 i1(GLn k) Vsp, » where Ky = K3 N

Spnic and Vs, . = V3N Sp, x we have

a
(3.38) Iy = / / 13 k| | det(a)|”"*Vdadk

KSPn,K GL"aK(F)\GLn,K(A)

ta
t*la*

Ksp, g GLn,k (F)\GLp,  (A)0 FX\AX

When j =1 we get

(3.40)
ta ta
I1,d = / / / f;_i’s k Xc H |t|—2n(n+1)dxtdadk
7 t_la* t_la*
KSpn,K GL”,K(F)\GLTL,K(A)O FX\AX
(3.41)
ta ta
= / / / 02 1) x“ | H 1t|~2 D > tdadk
’ —1 % 1%
Ksp,, i GLn,k (F)\GLy, 1 (A4)0 FX\A% ta t™a
s—1/2

ta ta
B / / / H ¢ k;1
t_la* t—la*

Ksp, g GLn k (F)\GLn i (A)°? FX\AX

< (|12 [t| 72+ @* tdadk
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(3.42)
1/2

ta
= / / / ]t\2”(571/2)¢(k;a)5psp2n ‘t’an(nJrl)dadXtdk'

tLax
KSPn,K GLn,K(F)\GLn,K(A)O FX\AX7|t|2nSC

ta ”
But we have that dp,, = [¢222(*3) 50 that we get

t_la*

(343 = / / o (k: a)d(a)dk / 20D g

Kspp, 1¢ GLn i (F\\GLy, i (A)0 LEF\AX Ji2n<c

We choose d*t¢ so that the integral over ¢ equals [ "7 1% = Cs:ll, for Re(s) > 1. O
0

3.4. Convergence of the integrals. We need to prove the absolute convergence of the

integrals

(3.44) / i (vah).

V7 PYaNSpan, & (F)\Sp2n, i (A)

For this we write the Iwasawa decomposition for elements in Spy, x as M'V K where

1 (P2 Pg) P4
P .
M= P and V = 1 b

Py
P

1
where P1 € GL2d,K7 P’ c Sp4(n—d),K7 P27P3 € M?de(n—d),K; P4 c GLQd’K and K denotes

the maximal compact subgroup of Sps, k.

Now P satisfies Vd_lPVd € Span k if and only if hP = Ph, this implies that 7d_1P7d is
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Pl (PQ Pg) P4
P, P
of the form 6 ? , with 'Pso 871 Py = o371, (PaP3)0 = a(Py D),
pr] \p
Py

aP; = Pa for i = 1,4 and P} = 371 Bs03.

The conjugation by ~ gives

Pl (PQ P3> v P4
P P.
(3.45) ’y_lP'y N Sp4n7K = 'y_l 0 vy 7_1 2
Py Ps
Py
Py
Fs
We define M := 1 ol with Py € GLygx and Ps € Spyn—a).
F
Py
Py
Fs
We thus get that r € M(F)\M(A) is of the form r = 1 Y , where
I
Py
P1 € GLQd’K(F)\GLQdJ((A) and P@ - Spg(n_d)(F>\Sp2(n_d)(A).
Py
Fs
For such r, we have that yry=! = with the projection to GLs,




a
of its Levi component being of the form

b
b € Span-a)(F)\Sp2n-a)(A).

1 <P2 P3> P4
. Py
Similarly, we define V := 1
Ps
1
1 (p, B)
Py € GLyg . Thus v € V(F)\V(A) is of the form v = 1

Py, P; € M2d><2(n7d),K(F)\M2d><2(nfd),K<A> and Py € GLag i (F)\GLag k(A).

For v as above, we have that yvy~! is of the form

Py, P; and P, as above. The projection to G Lo, of the Levi component of yvy~

I
of the form 2d

Iyn—a)

We remark that the Iwasawa decomposition for v"'Py N S Pan,x 18 MV

P
As Py varies in Spyn—a)(F), 77* "
F

bedding from F into G L x(F) is given by a —

t(pop)

1

with y € Magxom—a)(F)\Maaxam-a)(A)-

Py

P

Py
1

Py

1
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with a € GLQd,K(F)\GLQd,K(A> and

with P, P; € M2d><2(nfd),K and

with

with

is thus

7 varies over Spyn—q),x (F) where the em-

with a € F. We take the Iwasawa
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P

decomposition of =1 v according to the Borel subgroup. Thus we may take
I
oy
m' € M(A)\M'(A) to be of the form m with m = m(A) = mam-ay—1 X
Iz
a, T
1 ap
A*
Mao(n—d)—2 X ... X my X t where t = with A =
A
Ay —( T
1 An—d
I Xa
I Xa+1
and m; = X, | where the X's lie on the ith superdiagonal with
I
I
X LT : i(i—1) :
;= ,a=20—-1)(n—d)—"5=+landw=a+2(n—d)—i—1 Wealso

Ly

remark that the X’s are related by the symplectic structure on m;.

For ym with m as above, we write the Iwasawa decomposition according to the Borel

subgroup as Ym = Lty ky, and dm = [] ~2%i-. We also write |g| for | det(g)|.

|27 —7|"

Lemma 3.12. For m(A) as above, we have:
1) I, < 1.

2) The integral [ |l,,|'dm converges, provided t is large enough.
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Proof. We denote by r the matrix obtained by taking the even rows of m. We have that
|lm| 7! is greater than or equal to the maximum of the determinant of the 2(n—d) x 2(n—d)
minors of the matrix r, note in particular that these minors are upper triangular.

For 1 < j < n — d we have that the last entries of the columns 2(n — d) +2j — 1 and
2(n — d) + 27 are up to signs, 1 and a; respectively, both located at the row n —d + j.
Also, the last entry of the columns 2(n —d) — 25 + 1 and 2(n — d) — 2j + 2 are up to signs,

a2.1—T and a;i} respectively, both located at the row n —d — 7 + 1.
J J

For a3 — 7 small, we choose the columns 2(n — d) +2j — 1) and 2(n — d) — 2j + 1, we

remark that the product of their last entries is 1 x ﬁ
J

For a7 — 7 large, we choose the columns 2(n — d) 4 2j and 2(n — d) — 2j + 2, we remark

that the product of their last entries is a; X ——

at—T1"
Jj

2

In either case, we have that max {ag—;, aza - T} > 1. Thus after choosing columns as de-
i j

scribed, we get that |[,,| < 1.

We remark that by the symplectic structure of m, it is enough to consider the convergence

over the variables z; where x; lies on a column k with k > 2(n — d) + 1.

For such a variable z, we let j be such that (after a change of variables) the elements
a;jx, Tx appear on the columns 2(n — d) +2j + 1 and 2(n — d) + 2j + 2 respectively with
1 <j <n—dand j minimal with respect to this property. We also let ¢ be the row for

such a;z and Tx.

We choose the columns 2(n —d) +2j + 1 and 2(n — d) + 2j + 2 with j as above and for
the remaining columns we make a choice similar to the one used in the proof of 1). The

determinant of the minor obtained is |a} — 7| x |z].
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We choose the columns 2(n —d) — 27 + 1 and 2(n — d) + 2j — 1 with j as above and for

the remaining columns we follow the proof of 1) as before, we get that the determinant of

1 | )

the minor thus obtained is | —
J

Combining the last two observations with the fact that |l,,|] < 1, we see that |l,,| <
min{1,la? — 7|,|a? — 7| *|z;|7'}. When af — 7 is large, we have |l,,| < |a? — 7|7 |71
On the other hand, when |a? — 7] is small, we have |I,,| < |a? — 7|*|2? — 7|*|2;|*~" where
1/2 < a < 1. We get that [l,,| < |a? — 7] |;]*"! which gives a convergent integral in

x. Repeating this over x’s, we obtain the second assertion in the Lemma. ]

Our integral becomes

(3.46)

Lig= / / / / & (yoy Lyry T ygmk) s (r)dvdmdk.

Kpg meM(A)\M'(A) reM(F)\M(A) veVa(F)\Vi(A)

By the definition of ¢;, this is

Yy a I

]2d ) s
g [olk ] )l 5.1l [ dadbydm
2

(n—d) b lm

where y € M2d><2(n7d)(F)\Mde2(n7d)<A>7 a € GLyy k (F)\GLoq i (A),b € Sp2(nfd)(F)\Sp2(nfd) (A)

and [, as above.

Case j =1, d = 0 Our integral becomes

(3.48) / / () | L |**" dbdm.

meM (A)\M'(A),[lm|<c bESPa(s—ay(F)\SP2(n—d)(A)
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Since |l,,| <1 by Lemma 3.12 and ¢ > 1, we have that |l,,,| < ¢ always holds. Since ¢
is bounded and Spa,(F)\Sp2n(A) has finite volume, it is enough to consider [ |I,,|*t"dm.

By Lemma 3.12, this converges for Re(s) large enough.

Case j = 2,3, d = 0 Our integral becomes

(3.49) / / (bo) | [~ bl

meM (A)\M’(A),|lm|>c bESP2(n—a) (F)\SP2(rn—ay(A)

Here the domain of integration is empty by Lemma 3.12 and the fact that ¢ > 1.

The proof for the cases where 0 < d < n is similar to [GRS1], with Lemma 3.12 in place

of Lemmas 6 and 7.
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4. SOME GLOBAL IDENTITIES ON Spa,

We want to relate the distributions Igy,, (f : Spn.k, 1; N3, 03) and Is,,, (f : Spnk, 1; N3, 94@?;_1).
We use (modified) results from [GRS2] and [GRS1]. We recall the setup in [MR].
For f € §(Span(A)), define

W, (g) = / K (1, g)dl.

1€Spn. & (F)\SPn, k (A)

Then W(g) is a left Spo, (F') invariant form on Spo,(A) satistying the moderate growth

condition: |W;(g)| is bounded by a polynomial in ||g|| where

(4.1) lgll =TT llgll. = H(Hll‘(}x{lgi,j,vh, 195 juolo})-

v

Clearly f — WU(g) is a linear map. When f,(g) = f(g¢'), we have Uy, (9) =Vy(99).

4.1. Definition of I;(f). We recall the definition of sets &y and Y}, ,
w in [GRS2, §4].

elements vy and

Let @ be a permutation matrix in GLy, such that
Woi =1, Wy =1, i=1,...,n.
Recall 7; is map from GLs, to Spy,: i1(g9) = (g g ) Let w = i;(w). Let
a = diag[b,...,b,b*, ..., b*] €Spy,, b=(17"),
and v be the Weyl element in Sp,,, such that

Vi 2i—1 = Vn+i2n+2i—1 = V3n+i2n+2i = 1, Von+44,2i = -1, 1=1,...,n.
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Let vy = va. We only need to note here that vy and w are elements in Sp,,, (F'); and
over a p—adic place v where p is odd, 1y and w lie in the maximal compact subgroup of
SPay, (F)-

Recall that 0 € GL, denotes the longest Weyl element, and the set S, is the set of

matrices g € GL, satisfying og is a symmetric matrix. Let
(4.2) Xy = {x € Sy, | x is nilpotent and upper triangular}.

For z € Ay, let
(4.3) [(z) =

Let T'(n) C GLy, be defined as in [GRS2, (4.34),(4.35)], then T'(n) = &N\, where
N\, denotes the subgroup of N; consisting of matrices whose n—th row has only one

nonzero entry. Let Y,* ,  be the set
(4.4) {ir(T)|T € T(n), T is lower triangular} C Sp,, .

Define:

(4.5) L(f) = / / / U (nl(x)voy*w)fs(n) dn dz dy*.

Y €Y, (A) 2€Xo(A) N3(F)\N3(A)

n

This definition is motivated by the Corollary on p.895 of [GRS2]. The integral over X
and Y

1. are absolutely convergent, which is clear from equation (4.26) after applying

the Dixmier-Malliavin Theorem.
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4.2. Definition of I,(f). Let j be the injection from Sp,, to Spy,:
L,

(4.6) i g—ilg) = g
1n

We define some subgroups of N3. Let Z; be the maximal unipotent subgroup of GL;

consisting of upper triangular matrices with unit diagonal. Let

z * *
(4.7) NE={v = Lin_okrs * | €Nslz € Zpq}.
Z*

Then N* is a normal subgroup of N7 whenever k < 7 <2n+1.

Define a subgroup U™ of Nj:

1n—1
1 x y ¢t
. 1, 0 =x
(4.8) U ={nxyt) = 2
1, *
1
1n—1

Then U™ is a Heisenberg group and is isomorphic to N ”\N "1 Let U be the normal
subgroup of U™ consisting of 1(0,y,t).
Define N” to be U N™. Define a character y,, on N"(A), such that for n = 7(0,y,)n’

with n’ € N™:

(4.9 %00y, 00) = v (Z Wi + t) .
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Note that j(N;)N™ is a group with N™ being a normal subgroup. Define

aw  nn- [ Wi, ) dudne
n2€N2(F)\N2(A) ve Nn(F)\N™(A)
This expression can be rewritten as Iy, (f : Spasc, 1;§(Na)N™, 6,3~ 1), which is abso-

lutely convergent.

4.3. Global identity 1: between [;(f) and I5(f).
Proposition 4.1. The equation I(f) = I(f) holds for any f € S(Spsy,(A)).

Proof. This is Proposition 3.1 in [MR] and we follow its proof, namely, we consider W ;(g)
in place of £(g, ¢) = Ress—1E(g, ¢,s) in the setting of [GRS2, Theorem 2] to obtain

(4.11) I(f) = / / U ()" (u) du dy

Y1 (A) u€Eon (F)\E2n(A)

n—1,n
We remark that [GRS2, Theorem 5.2] is a general statement about automorphic forms
on Spa,(A), hence our present use of it is justified.
Let us assume equation [GRS2, (5.16)] with W(g) in place of Res,—1E(g,¢,s). We

obtain:

(4.12) / ()" (u) du = / / U (gl (2)v0)0s (ns) dns da.

Eon (F)\E2n(A) £E€Xp(A) N3(F)\N3(A)

From equations (4.11), (4.12) and the definition of /;(f) in (4.5), we obtain the proof of

the Proposition. O
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We must now justify our use of [GRS2, (5.16)] in the present case. The argument leading

up to [GRS2, (5.16)] applies in our case up to equation [GRS2, (5.2)], namely

(4.13) U(n)Xpe(n)dn =0
NI (F)N B (4)
whenever 1 < k < n. The groups N*) are defined below in equation (5).

Equation (4.13) follows from a result on disjointness of Sp(, k)-invariant functionals
and (N® .y o)—eigenfunctionals. The local results which give disjointness of Sp, x
Sp,—invariant functionals and (N*) y, ,)—eigenfunctionals are given by [GRS1, Theo-
rem 16,17]. In our case, the following Theorem is analogous to [GRS1, Theorem 16], it
implies the analogous statement to [GRS1, Theorem 17] and justifies equation (4.13) and
our use of [GRS2, (5.16)].

For 0 < k < n, the subgroup N¥) is defined by

( \
zZ U * * *
1 0 y =

(4.14) N® ={n= Lr 0 x |12€ Zon_rsy
1
o

\ /
and its character i, is defined by xgpa(n) = (212 + 223 + ... + 2on—k-—29n-k—1 +

Ugn_1—1)Y(y). Note that on N*) the characters y,; and Y, are equal.
Theorem 4.2. For 0 < k < n, the Jacquet module JN<k)7Xk7a(C[nd§Zi”‘K1) 18 zero.

Proof. We prove this by standard Bruhat theory, we consider the double cosets Sp, x \Spa,/N*)
and show that for all g € Spa,(F,) one has xp.alg ' Spnxg N N® #£ 1. As before, we con-

sider a symmetric space isomorphic to Sp,, x\Spa,, namely given g € Spy, we define the
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involution 6(g) := T¢gT~!. The centralizer of T in Spa, is Sp, k. The symmetric space
Y is defined by Y = {¢7'0(9)T|g € Span} = {97 'Tyglg € Span} and Y = Sp,, £\ Spa,. We

recall that y € Y admits a decomposition
(4.15) y = n'wan where n € N3, (wa)* = 7, (wa)J(wa) = 7J.

Now an element v € N® ig in the stabilizer of n~'wan if and only if v~'n " wanv =
n~twan, that is, (nuvn™')wa(nvn=1) = wa.
I2nfk71

Let U®) = U lu € NSpk+1(F)

IQn—k—l
Clearly, Ny = NO = U NE  UF normalizes N*® and for u € U® v € N*®) | we have

(4'16) Xk,a(uvu_l) = Xk,a(v)'

Note that U®) N N®*) is the center of U®). From the decomposition in equation (4.15),

we have that the N® orbits on Y admit representatives of the form

u twau

with u € U® and wa as in (4.15). Now an element v € N* is in the stabilizer of v~ wau if

and only if (uvu™!) " wa(uvu™!) = wa and by equation (4.16), it suffices to assume u = 1.

lwan = wa,n € N®).

Thus we are reduced to solving n~
We call wa satisfying (wa)? = 7,! (wa)Jwa = 7J nonrelevant, if the above equation
admits solutions n in N®) such that yj.(n) # 1. Otherwise, we call wa relevant. In

order to prove our theorem, we have to show all wa with (wa)? = 7! (wa)Jwa = 7J are

nonrelevant if k& < n. We first need a Lemma.
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Lemma 4.3. With definitions as in the previous theorem and for a fired k, 1 < k <n, if

wa s relevant then wa is of the form

O2n—r * O2p—p

(417) wa = * * *
02n7k * 02n7k

where 0o, 1S the zero square matrix of size 2n — k.

lwan = wa,n € N® is equivalent to solving

Proof. We note that solving the equation n~
(wa)n(wa) = tn. We denote the element n; ; by (4, ), so that the elements of n € N®*) on
which yy.. acts are (1,2),(3,4),...,2n—k—1,2n — k), (2n — k,2n + k + 1). We remark
that under the action of left and right multiplication by wa, the element (7, ) maps to
(0(i),0(7)) where o denotes the natural action of wa.

As a first step, we note that it is enough by the symplectic structure of w to show that
(1,7)=0for 1 <i<2n—kdn—i+1<j<4dnandfor1 <i<2n—Fk,1<j<i.

We prove the first assertion by induction on the rows. We remark that the entries of w
satisfy (i,4n — i+ 1) = 0, which in particular gives the initial case in our induction. Now
let us assume that (i,j) =0for 1 <i<[l—1,4n—i+1 < j <4n. We want to show that
o) ¢ {dn—1+2,4n—1+3,...,4n}.

We do this by contradiction, we assume o(l) = 4n — v with v € {0,1,...,1 —3}. We
consider the root X = (I—1,1) and remark that w maps X to (o(l—1),4n—-~). This allows
us to construct n € N®) with non trivial character action (contradicting the relevancy of
w) unless o(l — 1) € {4n —~ — 1,4n — ~,...4n}, but this is impossible by the induction
hypothesis. This proves that o(l) ¢ {4n — [+ 3,...,4n}.

We now assume that o(l) = 4n — [ + 2 and again consider the root X = (I — 1,1).
As before, w carries X to (o(I — 1),4n — | + 2) and this gives rise to n € N® with

nontrivial character action unless o(l — 1) € {dn—1+1,4n —1+2,4n — 1+ 3,...,4n}.
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The induction hypothesis gives that o(l — 1) ¢ {4n — [+ 2,...,4n} so that we are left to
consider the case o(l — 1) = 4n — [+ 1. In this case the root X is mapped to the element
(4n—1+1,4n — [+ 2) which is related by the symplectic structure of n to X, this allows us
once more to define n € N®) with nontrivial character action, contradicting the relevancy
of w. This shows that o(l) ¢ {4n — [+ 2,4n — [+ 3,...,4n} and concludes the induction.

We similarly prove the second claim by induction on the rows. By hypothesis we have
that (i,7) = 0fori € {2n—k,2n—k—1,....2n—k—(l—1)} with 1 < j < i. We
assume that o(2n —k—1+1) € {1,2,...,2n — k — [}, and we consider the root (2n — k —
(I—1),2n—k—142). This root gets mapped by w to (c(2n—k—1+1),0(2n—k—1+1)).

(k) with nontrivial character action contradicting the relevancy

This gives rise to n € N
of wunless o(2n — k —1+2) € {1,2,...,0(2n—k—1+ 1)+ 1}. This last condition is
impossible by the induction hypothesis. This proves the induction step.

For the initial case, we have to prove (i,7) = 0 whenever i = 2n — k and 1 < 5 < 4.
We assume that o(2n — k) € {1,2,...,2n — k — 1}. We consider the root (2n — k,2n +
k + 1) and remark that this root gets mapped by w to the element (o(2n — k),o(2n+ k +
1)). This implies the existence of n € N*) with nontrivial character action contradicting
the relevancy of w unless o(2n + k + 1) € {1,2,...0(2n — k) — 1}. This is impossible

as a consequence of the first assertion in the proof. This proves the initial case of our

induction. O

We remark that if & < n the matrix wa of type (4.17) is not invertible, since w is in the

Weyl group of Sps,(F,). This proves Theorem 4.2. O

The following is the equivalent of [GRS1, Theorem 17] our case, the proof is the same

as in [GRS1], we present it here for completeness.
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Theorem 4.4. Let m be an irreducible, admissible representation of Spe,(F,). Assume
that the space of ™ admits a nontrivial Sp(, k)-invariant functional. Then for 0 < k <n,

k)

Inw 1, () = 0, i.e. ™ has no nontrivial (N®) 1) -eigenfunctionals.

Proof. By [MVW, P. 91], we have that @ = 7% where 7° stands for the composition of 7

< < ]2n
with conjugation by ¢ where 6 = € GSpy,(F,) and 9§ is a non square in F,.

012
We remark that conjugation by & preserves SPn,k)- Then if m acts on the space V, and [
is a Sp(n,r) invariant functional on Vi, then {(7°(h)E) = I(m(h%)€) = () for h € Spin,x)
and § € Vz = Vs so that [ serves as an Sp, k) invariant functional for 70 as well, hence
7 admits Sp(, k) invariant functionals if and only if 7 does. This happens if and only if 7
embeds in Indgif:](l = C°(SPn.x \Sp2n), which is the same as the existence of a surjection

CIndngL”Kl — 7 = 7 and by the exactness of Jacquet functors and Theorem 4.2, we get

JN(k),Xk(ﬂ') =0 O

To relate the distributions Is,, (f : Spn,1; N3, 03) and Isp,, (f : Spax, 1; N3,64@:I;,1),
we require two other trace identities. The following trace identities are in [MR], we state

them here for completeness.
4.4. Global identity 2: between I;(f) and Ig,,, (f : Spnk,1; N3, 03). Recall:

(4.18) Ispo, (f + Spnic,1; N3, 03) = / U (n)f3(n) dn.

N3(F)\N3(A)

Theorem 4.5. There exist maps €, from S(Sp,y, (Fy)) to itself, such that

(1) the equation
(419) -[szn(f : Spn’K,l;Ng,g?,) = ]1(f/)

holds for f = ®f,, f' = ®f, when f, = e3u(f,)-

(2) for v a good place, €, restricts to identity map on Hecke algebra H(%, Ks),.
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Similarly there exist maps €, ,, satisfying condition (2) such that (4.19) holds when f, =
€5 (f2)-

Proof. We set fl(g) = f!(gw) for all places v. Then we have that

(4200  L(f) = / / / U 1 (nl(@)voy™ )03 (n) dndady® .

yrEY* . (A) 2€Xo(A) N3(F)\N3(A)

n—1,n

Recall that w is in the maximal compact subgroup of Sps, (F,) for v an odd p-adic place.

Thus we have that if f! is a Hecke function at a good place v, then fl(g) = f/(g).
n—1

is an abelian group which can be written as V", = [] K;
i=1

Next we note that Y*

n—1,n

where

(421) Kz = {Zl(lgn + Z tj62i,2j1)} .
j=1

Let K* = ] Ki, note that K° = {1} and K" =Y, .
=1
Let

(4.22) hig) = / / U (nl(2)vog)0s(n) dnd.

z€Xo(A) N3(F)\N3(A)

Let L be a space of smooth functions on Spy,(A) such that f(g) € L implies f(ug) =
*(u) f(g) for u € Es,. From equation (4.12), we have that h;(g) € L. The righthand

side of equation (4.20) is

(4.23) / b () dy.

anl(A)
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From the Theorem of Dixmier-Mallavin [DMa], we have that f, can be written as

(4.24) flg) = Z/gbav(acl,...,xi)fav(gri(xl,...,xi))d(xl,...,wi)

for some f,, € S(Spa.(F,)) and ¢,, € S(F?); here r; is the homomorphism from A™!

to Span(A) given by

(4.25) ri(ty, ..o tie 1(12n + Zt €2;-1,2i)

Moreover, at good places f! is a Hecke function and can be expressed as above with a
single o, with ¢, being the characteristic function of the integer lattice and f,, = f..

We have that

(4.26) hyi(g Z/% 1,2 hyalgri(an, o a)d(@ns )

for some f, € S(Spy,(A)) and ¢, € S(A?).
From the proof of [GRS2, Lemma 5.1], we get the following:

Lemma 4.6. For fized i and a function h;(g) € L, such that h;(g) equals
Z/qﬁa 1y ) ha(gri(zy, ..o xy)) d(xy, . .. 2y)
for some h, € L and ¢, € S(AY), we have

(4.27) / hi(y) dy = / hi—1(y) dy,

Ki(A) Ki=1(A)
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where

hi—1(g) = Z/@(xl, ooy x)he(gri(zy, .o xy)) d(x, . Ty),

gﬁ; 1s the Fourier transform of ¢q:

q/b;(xl, e ,(L’i) = /gba(tl; c. 7@)1/)(2 Iztz) d(tl, C 7tz>
j=1
From equation(4.27), we get a f) , = ®f, o, € S(Spy,(A)) defined by

429) Sl =X [ G md oo ) ),

satisfying
(4.29) / hp(y)dy = / hyi (y) dy.
Kn=1(A) Kn=2(A)

Note that from (4.28), fi_,, = f. when f} is a Hecke function at a good place v.

Continuing the procedure we get eventually f? = f3 € S(Spy,(A)), with f2 = f! when f!

is a Hecke function at a good place v, and
/ hy(y)dy = / hyi(y) dy = hyz(1an).
Kn—1(A) KO(A)
We get that the righthand side of (4.20) equals:
(4.30) / / W sz (nl(z)vg)03(n) dn dx.
z€Xp(A) N3(F)\N3(A)

Moreover f2 = fl} when f! is a Hecke function at a good place v.
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By letting f3(g) = f%(gvo), we get (4.30) equals

(4.31) / / U s (nl(w))03(n) dn da.

IEE/Y()(A )\N3( )

Clearly f3 = f2 when f2? is a Hecke function at a good place v.

We now consider

hilg) = / W, (ng)0s(n) dn.
N3(F)\N3(A)

We have that hs(g) € L, where L consists of functions satisfying ¢(ng) = 03(n=)¢(g).

As in Lemma 4.6, we have that the equation

(132 [ = [ ey
Ki(A) Ki=1(4)

holds for h;, h,_1 € L related as in Lemma 4.6. Here the subgroups K are defined
as on [GRS2, p.897]; we note that K?" = [(X;) and K' = {1,,}. Similar to the above
argument, using (4.32) we get a function f* € S(Spy,(A4)), with f! = f3 when f3 is a
Hecke function at a good place v, such that (4.31) equals ha(1y,). Since hypa(ly,) is just
Isp,, (f*: Spnx,1; N3, 03), we can set f = ey(f’) = f* Then f, = f/ when f! is a Hecke
function at a good place v, and the equality (4.19) holds.

As each of the steps above can be reversed, given f, we can find f = e;(f) to make the

equality (4.19) hold. O

4.5. Heisenberg representation and definition of Ig,, (f : Spnx,1; N3, 9463,1). Re-

call the definition of the map 7 in (4.8). The character ¢ determines an irreducible unitary
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representation of Heisenberg group U™ acting on S(F™), denoted again by wy; then:

(4.33) wy(n(x,0,0))2(X) = (X +x).
(4.34) wy(n(0,y, 1) 2(X) = ¥(t+2tr(yo,X))P(X).

(435)  wu(@wu(i(9) Mui(9)2(X) = wy(u)wy(§)(X), g € Sp,, ue U™

For n € N3, we will use pr(n) to denote the middle 2n + 2 x 2n + 2 block of n. Then

pr(n) = j(n2)n(x,y,t) for some n(x,y,t) in the Heisenberg group and ny, € Ny. We define:
(436) Wy—1 (n)q)(X) = Wyt (%)wdﬂ_l (77(X> y, t))@(X), pr(”’) = j(n2)77(X7 y, t)

Clearly the above defines an action of N3 on the space S(A™). Define the Theta function
(4.37) Oy 1(n) = > wy-1(n)@(X).
XeFn

Define a character 6, on N3 by setting

(4.38) O4(n) = <2 —nm-H) 0o(ny), if pr(n) = j(no)n(x,y,t).

i=1

Define Isy,, (f : Spni, 15 N3, 0407 1) to be:

(4.39) / / Ky(1,n)04(n)O3 1 (n) dn dl.

1€Spn, Kk (F)\SPn, i (A) n€EN3(F)\N3(A)

4.6. Global identity 3: between I»(f) and Ig,,,(f : Spn K, 1;N3,6’4@i,1).

Theorem 4.7. We have Isy,,(f : Spn, 1; N3, 0407 1) = I(f') when

(4.40) f(g) = / (X)f(gn(X,0,0)) dX.

XeAn

Proof. We have that I(f’) is equal to
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/ [ vt em) e o) dvdn,
n2€N2(F)\N2(A) e N7 (F)\N"(A)
which is
(4.41) / / / U (0 (n2) (X, 0,0))B(X)f(n2) T (v) dX dv dn.

n2€N2 (F)\N2(A) ye Nn(F)\N7(A) XEA™

From equations (2.1), (2.2) and (4.33), we get

(4.42) (X) = wy1 ()1 (1(X, 0,0))(0).

Also, recall that U" = {n(x,y,t)}, while U} = {n(0,y,t)} and U is normal in U".
Thus, we may identify 7(X,0,0) with UJ\U"(A). Then Iy(f’) is equal to

(4.43)
/ / / W (0 ()1 (7 o1 (1) B(0)03(na) T (v) du o .

n2€N2(F)\N2(A) ve N (F)\N7(A) u€UF\U™(A)

Note that j(N3) acts on U™ by conjugation and it stabilizes Uj; we change variables

u +— j(ny)'uj(ns), we obtain

(4.44)

/ / [ wousn) oo (o () i) 0)0a(02) 0 (0) dulo dr

Na(F)\N2(A) ve N7 (F)\Nn(A) u€UG\U™(A)

By equation (4.35), this is
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(4.45)
/ / / U (vug(ng))wyp-1 (wwy-1(n2)@(0)02(n2) X, (v) du dv dns.

n2€N2(F)\N2(A) ve N7 (F)\N7(A) u€UF\U™(A)

Since by definition, N™ = U(?N " we get the above expression is

/ / / U s (v (na) Jwy1 (w)wy-1 (72) 2(0)02(n2) X, (v) du dv dna,

n2€N2(F)\N2(A) weUF (F)\U™(A) ve N (F)\N"(A)
which is

/ / [ ) e (e ()08, o)
Na(F)\Na(A) ucUn(F\U(A) ¥ EUSENT™E) g oy g a)

We change variables v — v/v(u') ™!, we get

/ / / ST (o (ng) s (a1 () 0(0)Ba ()X ()

Na(F)\N2(A) weUn(F)\U™(A) e Nm (F)\Km(4) @ €U0 ENUE)

Since W; is Spa,(F')—left invariant and x,, is stabilized under conjugation by U", we

obtain

/ / / Up(ouj(na)) D wyor (Ww)wyr (W) 8(0)6a(n2) X (v).

N3(F)\N2(A) weUn (F)\U™(A) pe Nn(F)\Nn (A) u' €U (F)\U™(F)

Identifying UJ\U™ with n(X, 0,0) and using equation (4.33), we obtain

Y wp (W) (M) P(0) = ) wyer (uwyr (112) (X).

W eUr (F)\U™(F) XeFn
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So we have that Io(f’) is

(4.46)

/ / / p(vuj(na) Y wpes 112) (X )a(n2) X, (v).

N2(F)\N2(A) u€Un(F)\U™(A) pe Nm (F)\ N7 (A) Xern

On the other hand, we have that Ig,, (f:Spnk,1; N3, 9463_1) is equal to

U 4(n)0s(n)O%-1(n) dn.

neN3(F)\N3(A)

Since N"*1\ N3 2 j(N,) and N\ N"t! = U, we obtain

/ \Iff(vuj(nz))«%(vuj(ng))@;{;,l (vuj(ng)) dv dudns.
No(F)\N2(A) U (F)\U™(A) Nn(F)\Nn(A)

We have that

@w 1 (vugj(ng)) Z W1 12)P(X)

Xepn
and 04 (vuj(ng)) = 04(v)0a(ny). Furthermore, 6, agrees with ¥;* on N”. Thus we obtain
Ispo, (f + SPnk,1; N3, 9493,1) is equal to equation (4.46). d

Corollary 4.8. There exist maps €3, from S(Spy,,(Fy)) to S(Sps,(Fy)) RS(FY), such that:
(1) at a good place v, €3,(f,) = fo @ o, when f, is a Hecke function and P, is the
characteristic function of OJ.

(2) when €3 = ez, and f @ D = e5(f'):

(4.47) I(f') = Isps, (f : Spnic; 1; N3, 0207 1).
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Proof. From Theorem 4.7, to define €;,(f]) so that (4.47) holds, we only need to find
f and ® so that (4.40) holds. The map (f,®) — f’ defined by (4.40) is a convolution,
it clearly factors into local maps. The existence of f, and ®, follows from the result of

Dixmier-Malliavin [DMa]. For v a good place, it is clear that when f, is a Hecke function

and @, = P,
(4.48) [ an(X,0,0)20,(X) X = £i(9)
XEFn
Thus at good place v, we can choose f, = f] and ®, to be @, O

We remark that equation (4.40) defines the map e;, from S(Sp,,(F,)) @ S(F}) to
S(Spy, (Fy)), with the property that at good places € (f, ® ®o,) = f, when f, is a
Hecke function, and equation (4.47) holds when [’ = €;(f @ ®).

4.7. Conclusion. Combining the three global identities on Spo,, we get:

Corollary 4.9. There exist maps €4, from S(Span(Fy)) to S(Span(Fy,)) @S(FY) such that:
(1) at a good place v, €4,(f,) = fo @ o, when f, is a Hecke function and P, is the
characteristic function of OF.

(2) when €4 = €y, and f @ @ = es(f'):
(4.49) Lspo, ('t SPnic; 15 N3, 03) = Isp,, (f : Spuxc, 1; N3, 0405 1).
Proof. Define €4, = €3,€2,. The claim follows from Proposition 4.1, Theorem 4.5 and

Corollary 4.8. U

We remark that one can also define the maps €}, = €, 5, from S(Spe,.(F,)) ® S(F})
to S(Span(Fy)), such that at a good place €} ,(f, ® @) = f, when f, is a Hecke function,
and equation (4.49) holds when f' = €,(f ® ®).
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5. ORBITAL INTEGRAL DECOMPOSITIONS

In this section we wish to relate the distributions Ig,,,(f : SP@m,k), 1; N3, 646;{;_1) and

I (f: Ny, 0515 Na, 05).

As before, we consider a space isomorphic to Sp, x\Spa,, namely given g € Spa, we
define the involution 6(g) := TgT'. The centralizer of T in Spa, is Sp, k. The space
Y is defined by Y = {g7'0(9)T|g € Span} = {9 'Tglg € Sp2n} and we have that ¥ =
SPn,K\SP2n-

We unwind the distribution Igp,, (f : Spm,.k), 1; N3, 94@;{;_1), we have that it equals

(5.1) / / K(l3,n3)04(n3) O 1 (ng)dlsdns

lgespn7K(F)\Spn7K(A) n3€N3(F)\N3(A)

(52) = / / Z f3(1§193n3)94(n3)@?;71 (ng)dlgdng

15€Spn. 1 (F)\Spn. 1 (A) n3€N3(F)\N3(A) 93E5P2n(F)

(53) = Z / / fg(lglggn3)94(n3)@;{;71 (ng)dlgdng

93€5n, 1 (FN\SP2n (F)/N3(F )y 11y () ey, (F)\Ns(4)

where N/

305 = gngpn,Kgg N N3. We now define

(5.4) F(g'Tg) = / fliztg)dis

l3€Spn’K(A)

then the distribution Isy,, (f : Spm.x), 1; N3, 0407 1) is
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(5.5) 3 / F(n3" g3 " Tgsns)04(ns)0% 1 (ns)dns.

93€5Pn, K (F)\Sp2n (F)/N3(F), . N7

5 0 )\ N3(A)

We recall from Lemma (3.3) and Corollary (3.4) that elements in Y admit a decomposi-

1 2

tion y = n~'wan where w € W3 and a is a diagonal matrix of size 4n satisfying (wa)* = 7
and *(wa)J(wa) = 7J. Moreover, with the action of N3 by conjugation, to each represen-
tative g3 € Sppn i \Span/N3 there corresponds a wa as above such that g7'Tg and wa are

in the same N3 orbits of Y.
Lemma 5.1. If g € Spy, satisfies g-'Tg = wa, then N3y = N3uwa

Proof. The condition n € N3, is equivalent to n € N3 with n™'wan = wa, orn™'g~'Tgn =

g~ 'Tg. This is equivalent to gn™'g™'Tgng™' =T, or n € g7 Sp, kg N N3. O

We get that Igp,, (f : SPm k), 1; Ns, 04@$,1) equals

(5.6) Z / F(n3 'wan)04(n3)03 1 (n3)dns.

wa,(wa)QzT,twaJ:JwangeNg wa(F)\N3(A)

We factor the integral as

(5.7) / F(nwan) / 04(n'ng)O2_. (n'ng)dn’dns.

n3EN3 wa(A)\N3(A) 1 €N3,wa (F)\N3,wa(A)
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Recall that the subgroup N*) is defined by

) N
2 ou * ok %
1 0 y =
N® = {n= Iy 0 x |[2€ Zon_griyy
1 o
o

\ )

The subgroup N™ can also be described as follows. We have that an element of N©
can be written as 7(0,y,t)n with n € N7 N® consists of elements with y = 0. Then for
n’ € N we have 94(n'n3)@$,1(n’n3) = %;1(n’)94(n3)®$,1(n3). For the inner integral in

equation (5.7) to be nonzero, X, must be trivial on N™ N N3 wa-

Lemma 5.2. If Y, is trivial on N™ N N3 pq, then w has the form w =

where each entry represents an nxn block.

Proof. Using Lemma (4.3) in the case k = n, we get that w is of the form:

& 0~ = W
o W T o

o O O o
ST & S

2

where each entry represents a n x n block. Since w* is a diagonal matrix, we get that

A B D FE A B C F
=0, is invertible.

K L H I K L G J
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Thus D =F = H =1 =0 and w is of the form in the Lemma. O

We wish to define a bijection between w'a’ € Sp, and wa € Spy, with (wa)? =
Tn
L,

7.5 (wa)J = J(wa); for this purpose we introduce the matrix £ :=
Tn

and consider the map on g € Sp, given by

(5.8) P(g) =j(9) 'Ej(g)

Lemma 5.3. The map P defines a bijection from the set of w'a’ € Sp,, to the set wa where
w € W3 and a is a diagonal matriz of size 4n with (wa)* = 7,' (wa)J(wa) = 7J, with w as

in Lemma 5.2.

Proof. We note that E? = 7, hence P(w'a’)*> = 7. We also have that 'P(w'a’)JP(w'a’) =
7J using that ‘EJE = 7E. Also, P(w'a’) is clearly of the form in Lemma 5.2.

For g a square matrix of size 4n, we denote by p'(¢g) its middle 2n x 2n block. It’s clear
that p'(EP(w'a’)/T) = w'd’, so P is an injection.

On the other hand, given wa as in Lemma 5.2, we have that E(wa)/7 verifies
"E(wa)/T)J(E(wa)/7) = Y(wa)J(wa)/T = J,

* 0 0 =

0 = x 0
thus E(wa)/T € Spa,. The element Ewa/T € Spy, is of the form and any

0 « *x 0

* 0 0 =
g € Spay, of this form satisfies p/'(g) € Sp,. Hence p'(Ewa/7) has the form w'a’ where

w' € Wy and ' is diagonal in Sp,.
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We prove surjectivity by showing the identity

(5.9) P(p'(E(wa)/T)) = wa.
0 a b O
c 00 d a/T b/T
Write wa = so that p/'(Ewa/T) = . Denote this matrix w'a’.
e 00 f g h
0 g h O

It suffices to show

r = Bj(u'a’)(wa)j(w'a’)

and this is easily checked.

From the previous lemma, we see that the distribution gy, (f : Spm.k), 1; Ns, 94@;{;_1)

may be written as

(5.10) Z / F(n3'wans)04(n3)Oy 1 (n3)dns

wa,(wa)?=r,t (wa)J(wa):TJn?)eNB’wa (F)\IN3(A)

(5.11)
— Z / F(n twan) / 04(n'n3)O;y 1 (n'ng)dn’dns.

wa,(wa)2:7—7t(wa)J(wa):TJngeN&wa(A)\NB(A) 7€ N3 wa (F)\Ns.wa (A)
Given w'a’ with w’ in the Weyl group of Sp, and ¢’ a diagonal matrix in Sp,,, we define

N/

2w'a’

= (w'a’) No(w'a’)™' N Ny. We wish to prove the following:

Proposition 5.4. We have

—_—

(5.12) / Ba (YO (')’ = (e Yy (W) D(0)

n’€N3,wa (F)\N3,wa(A)
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where wa = P(w'a’) and c(w'a’) is defined by

(5.13) c(w'a") = / O ((w'a’)~'n' (w'a’)) 05 1 (n)dn/.
(FO\NNG 1 ar (A)

2w’ a

n’eN!

2,w’a’

We first describe the sets N ,,,. When wa = E, we get from the definition that

¢ 3
n nB nTT
n nl nB
(5.14) Nsp=<uln, B,T):= € Nsne Z,,B, T €S,
n*
n*
\ )

We use Vg to denote the intersection of N3 p with the Siegel unipotent. It consists of

u(1l,, B,T). Define U}, to be the subgroup consisting of u(1,, B,0).
Lemma 5.5. I[f wa = P(w'd’), then N3, = j(w'a’) N3 pj(w'a’) N N3

Proof. It n € j(w'a’) ' N3 gj(w'a’) N N3 then j(w'a)n~tj(w'a ) Ej(w'a )nj(w'a’ ) = E

which implies that n € Ns,,. On the other hand, given n € Ns,, we have that

nox
j(w'a)nj(w'a’)~! fixes E through conjugation and has the form ¥ x | where n €
n*

Zy,; any element of the above form fixing F through conjugation must lie in N3, so
j(w'anj(w'a)™' € N3 g. O

Define the group
(5.15) Ul = jwd) Ugj(w'a).

We have that U}, is a normal subgroup of N3, as Uj is a normal subgroup of N3 f.

—_—

Lemma 5.6. We have Ik 04(w)O2_, (u)du = wy-1(w'a’)P(0).

)1
€U Lo (F)\Uja(A)
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Proof. Since U} = j(w'a’)™" {u(1,, B,0)} j(w'a’), we have that 0,(u) = 1 for u € U}.

Using Poisson summation, we get that

Op 1(u) = Y wyr(u)d(X)

XeFmn

= > wpr (Wa)wy- (u)d(X).

XeFn

So that the integral in the Lemma is given by

/ Z Wy—1 (u?g’)wwq (u)®(X) du.

XeFn
UEU 4y (F)\Uyo (A)

We write v = j(w'a’)'u(1,, B,0)j(w'a’) with B € S,,. The above integral is

> wymr (wawy (j(w'a) " u(ly, B, 0)j(w'a’))®(X) dB.
Su(F)\Sp(4) X

By equation (4.35), this is

/ > wyr(u(ly, B, 0)wy-1 (w'a')d(X) dB.

Su(FN\Sa(4) X

By equation (4.34), this is

/ D wymr (w'a) (X)) (2(B, X)) dB.
Sn(F)\Sn(4) X"

where (B, X) denotes the inner product of the last row of B with X. The integral over

B is zero unless X = 0. In this case we obtain

/ w1 (W'a)P(0) dB = wy-1 (w'a’)B(0)

Sn(F)\Sn(A)
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as desired. 0

Note that Uz = u(n,0,T) is isomorphic to N, through the embedding is : No — Spa,

given by
n nl
(5.16) io =u(n,0,T).
n*
Let
(5.17) U2, =j(w'a) 'Uzj(w'a’) N Ns.

From Lemma 5.5, we have that N3 ,,, = j(w'a’) ™' N3 gj(w'a’)NN3, so that U2, = UL\ N3 wa-

Recall that N/

2w’a’

= (w'a’)Ny(w'a’) ™' N Ny.
Lemma 5.7. We have that U, = j(w'a’) " ia(Ng ) j(w'a’).

Proof. Since U2, = j(w'a’)"'U%j(w'a’) N N3, we have that the group j(w'a’)UZ2,j(w'a’)~!
consists of iy(n),n € Ny with j(w'a’)"tiy(n)j(w'a’) € N3. Explicitly, we have that
(5.18)

n nl'T n
1 1
n nl n nl
(w/a/)—l (w/a/) — (w/a/)—l (w/a/)
n* n*
1 1
n*
is an element in N3. This is equivalent to (w'a’) " 'ny(w'a’) € Ny or ny € Né}w,a,. O

Proof of Proposition 5.4. From Lemma (5.6) we get that

(5.19) / 04(n)O5 -1 (n)dn' = / 04(n")wy-1 (w'a' n')®(0)dn’

n,GNS,wa(F)\N&wa(A) nleU'LQua(F)\U'LQua(A)

nl'r
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Since Uz, = j(w'a’)"Vig(N] 0 )j(w'a’) by Lemma (5.7), our integral becomes

(5.20) / 047 (w'a') (') (00 w1 (in (') w1 () B(0)
(FON i (A)

2,w’a

n’eN!

2,w’a’

here we used equations (4.34) and (4.36).

n// n//T
Write n’ € Ny as n/ = , from the formulas (2.1), (2.2), (4.34) and (4.36), we
n//*
have
(5.21) Wy (ig(n))wy1 (w'a")(0) = wy1 (w'a')D(0)h~ (T, 1.7)

where T),; stands for the lower left entry of 7".

From equation (4.38) we obtain

(5.22) 0u(j(w'a") Hig(n)j(w'a)) = ¢ (i né’,m) B2 ((w'a’) " 0’ (w'a))
and

n—1
(523) 92’7—(”,) — w (Z n;/ﬂ+1 + Tn,l-T) .
=1

Thus our integral (5.20) becomes

(5.24) / bo((w'a') 10 (w'a' )0y (1 oy (W) D (0) .

(FONNG, 1 ar (A)

2,w'a

n’eN!

Q,w/a/

We recall we defined

c(w'a") = / O ((w'a’)"'n' (w'a’)) 05 L (n")dn/,

(FONNG 1 ar (A)

2,w’a

n’e€N!

2,w’a’
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so our integral is

—_—

(5.25) c(w'a")wy-1(w'a’)®(0)

as desired. O
We recall from equations (5.6) and (5.7) that our distribution Ig,,, (f : SP@m,K), 1; N3, 94@;{;,1)
is equal to

(5.26)
Z / F(n twan) / 04(n'ns)O 1 (n'ng)dn’dns.

w'a'€Spn (F)wa=P(w'a')y e Ny q(A)\N3(A) 7' €N3wa (F)\N3,wa(A)
Using proposition 5.4 this is equal to
(5.27) S c(w'd) / F(n~ wan)8s(n)wy+ (d-n)B(0)dn
w'a! €Spn (F)wa=P(w'a’) s N3 (A)\ Vs (4)
which is
(5.28)
Z c(w'a’) H / F(n~'wan)fy(n)wy— (w'a’.n)®(0)dn.

!l — !l
w’'a’€Spn (F),wa=P(w'a’) v n3€ N3 wa (Fo)\N3(Fy)

We have proved the following proposition:

Proposition 5.8. When f = ®f,, ® = ®9,, ' = ®F,, we have that the distribution
Lsps,, (f + SPnicy; 1; N3, 0407 1) is equal to

(5.29) > cd) [[ Luw(F., @)

w'a’€Spn(F)

where

(5.30)  Iya(Fy, @) = Fy(n~ ' P(w'a')n)0y(n)wy (w'a - n)®,(0) dn

NEN3 p(w/ /) (Fo)\Ns(Fy)
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We have a similar decomposition for I%(f: No, 82_;; Ny, 6,):

Proposition 5.9. When f = ®f,, we have

(531) [S*;n(f NQveii;N2>62) = Z C(w/a/)HJw’a’<ﬁi>
w'a’ €Spp (F) v
where
(532)  Jwwlf)) = / / (1 7330 (1 1)05 () dny s

n2ENy 1o (Fu)\N2(Fy) n1 €Na (Fy)

Proof. Using the Bruhat decomposition we have [ S (f Ny, 0, L Ny, 05) equals

(5.33) / / > F ™ A2) 05 L (1) (o) dn dny

No(F)\Na(A) Na(F)\Na(A) TEN2(EN\Spn(F)/Na(F)

(5.34) = ) / / Fm w'a' )05, (n1) 0 (na) dndns

W' €SPy €Ny s (F)\N2(A) n1 €Nz (A)

where Ny o = (w'a’) ™ No(w'a’) N Ns.

We may write this integral as

(5.35) / / [T e
12€Ny 1y (ANNa(A) 1/ €Ny oy (F)\Ny 11 (A) i €N (4)
Since for n' € Ny, we have that (w'a’)n/(w'a’)™' € Nj, we can make a change of
variable ny — (w'a’)n/(w'a’) " n;. Using the fact that when n € Ny we have - g = ng and
g-n=gn, we get:

—~— -1

| ~—1—— 11—~ | —

(5.36) (wan'(w'a)"'ny) wan' = ‘wan' wd wan' = w'd.



Our integral becomes

(5.37)

/ / / i waling); Hw'a'n (w'd) " ony

N2ENy 10t (A)\N2(A) 1 ENy 10 (F)\Ny. 1 (A) n1 €N2 (A)

Clearly n' € Ny o iff (w'a’)n/(w'a’)~! € N}, so our integral equals

awla’s
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)02(n'ng)dnydnydn’.

(5.38) / / F ™" w'a' )05, ()0 (n2)dny dny
n2ENy 1 o (A)\N2(A) n1EN2(A)
X / 051 (n)bs((w'a’) " nw'a’)dnydnydn
nENy 1ot (NG i (A)

—cwa) / Fl - w05 (m)0(na)dn

anNZw/ /(A)\N2(A) n1eNa(A

Factoring this integral over places v completes the proof.



74

6. COMPARISON OF ORBITAL INTEGRALS

To compare the distributions Ig;l(f : Ny, 62’;; Ny, 05) and Igy,, (f : Spnr, 1; Ns, 9463_1),
we only need to compare the local orbital integrals I, (F,, ®,) and Jw:a/(ﬁ,). In this

section, we fix a place v and omit it in our notation.

( 3\
1n—1
1 x y t
1, *
Recall that U™ = < n(x,y,t) := and
1, *
1
\ Lt )
z * s
Nk = Lin-ok2  * | € N3z € Zpy
Z*

N1 = U"N™ is a normal subgroup of N3 with N3/ N"! = Nj,. Note also Ny gz N N"+!
is just the group Ui = wu(l,,B,0). Recall that Y = Sp, c\Spa,. Given a function
F e S(Y(F)), and ® € S(F™), we define a genuine function on Sp,, (F):

(6.1)  Vpal(g) = / F(j(g)" u™" Bugj(g))0s(u)wy-1 (w)wy-1(3)(0) du.
u€UL\Nn+1

6.1. Comparison of I, (F,®) and J,«(f). For a compatible choice of measures, we

have:

Lemma 6.1.

(6.2) Ly (F. @) = / oo (Wi - 7)0(n) dn.

nGNQ,w/a/\NQ
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Proof. For g € Sp,, we let U,y = j(9)"'Ugj(g) C N3. Then from Lemma (5.5) we have
that N3 p(uwa) N Nt = Ull(w,a, From (5.30), we get that I, (F,®) equals

/ / Fln—"u=" P(w/'a/)un)

n€N3,P(w/a’)Nn+1\N3 ueU} ,)\N"+l

P(w’a

Os(un)wy—1 (w'a)wyp-1 (un)®(0) du dn.

As N3 = j(N,)N™1 and j(N,) 0 N™*! consists just of identity element, we can write an
element in N3 in a unique way as j(n)u such that n € Ny and u € Nt

Since N p(uwa) = Uburan Ubwrarys With Up ey © N™1 we have
NS,P(w’a’)Nn+1 = Ulg(w’a’)Nn+l‘

As U};Q,

(w'a) = j(w'a’)ig(Ng o )j(w'a’) from Lemma 5.7,
Ulg(w’a’)Nn+l = j(( ) 1N2w a’( /a/))Nn-I-l = j(NQ,w’a’)Nn+l'

Thus we can choose the representatives in N37p(w/a/)Nn+1\N3 as j(n) with n € Na e\ No.

The above integral equals:

/ [ PU) e @)

n€N2’w/a/\N2 ueUli(w’a’)\Nn-‘—l

O1(uj(n))wy-1 (w'a")wy-1(uj(n))®(0) du dn.

As j(w'a’) stabilizes Nl through conjugation, we can make a change of variable u +—

Jj(w'a)tuj(w'a’). Notice that 0,(j(w'a’) tuj(w'a’)) = 04(u), and from (4.35), (4.36) and
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(5.15), the above integral is the same as:

/ F(j(w'd'n)"u™ Buj(w'a'n))

nGNQleaI\NQ ueU]lE\Nn-&-l

04(u (1))wy-1 (w)wy (w'an)®(0) du dn.
From the definition of W4 in equation (6.1), the above integral equals:

U o (w'an)04(j(n))dn.
n€N27w/a/\N2
Since 04(j(n)) = 3(n) for n € Na, we get the Lemma. O
We have the following

Corollary 6.2. If f € S(Sp,(F)), f € S(Spy,(F)) and ® € S(F") satisfying (for F
defined by (5.4))

(63) Vrol@) = [ 7565 n)an,

then Lo (F, ®) = Jya(f).

Proof. From Lemma 6.1, we have

Ly (F. @) = / U o (W - 7)6a(n) dn.
TLGNQ’w/a/\NQ

By our assumption on Vp g, this is

/ / FR - wain)f3 1 (n1)0a(n2) dny dns,

HQGNQ’W/(L/\NQ n1EN2

which is Jya (f). O
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6.2. Properties of ¥4 and matching. The function Vg (g) defined by (6.1) has the

following equivariance property:
Lemma 6.3. The function Vpq(g) satisfies for all n € Ny:
(6.4) Ura(7t-9) = 02 (n)Pra(9).

Proof. We only need to establish the identity in the case g is identity, which we now assume.

Recall the definition of u(n, B,T) € N3 g in (5.14):

( 3\

n nB nl'T

n nl nB
u(n, B,T) := € N3slne Z,,B,T €S,

n*

n*

\ Ve
From (6.1) Ve (n) equals:
(6.5) / F(i(n) " u Buj(n))0s(u)wy-1 (uj(n))®(0) du.

uEU}E\]\Af’T‘H
Write n as (”/ (Zl,)T* ).
Case (1): when 7’ is identity. We observe u(1,,0,T) € N3 g and j(n)u(1,,0,7)"" €
N"*+1 Since j(Ny) and u(1,,0,T) fix the group U} = u(l,, B,0) by conjugation, we can
make a change of variable u — u(1,,0, T)uj(n)"" in N**1. Notice that u(1,,0,T) fixes E

through conjugation; the above integral becomes:

/ F(u ' Eu)fy(u(1,,0, T)uj(n) wy-1 (u(1,, 0, T)u)®(0) du.

uEU}E\N”*l

Clearly 04(u(1,,,0,T)uj(n)') = 64(u). From (4.34) and (4.36) we have

wy-1 (u(1y, 0, T)u)®(0) = v~ (T, - T)wy—1 (u)P(0)
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where T}, ; is the lower left entry of 7. The above integral becomes:

N (Toy - 7) / Fu Eu)fs(w)wy (u)®(0) du
uEU}E\]\Af"""1
which is 6} (n)W¥ ch(l/;;b) in the case n' is identity.
Case (2): when 77 = 0. Now u(n/,0,0) € Nsp and u(n’,0,0)j(n)"' € N™'. Since
1

u(n’,0,0) and j(n) fixes the group U by conjugation, we can change u to u(n’, 0, 0)uj(n)!.
Using that u(n’,0,0)"'Eu(n’,0,0) = E, the integration (6.5) becomes:

/ F(u " Eu)fy(u(n',0,0)uj(n) Hwy-1(u(n’,0,0)u)®(0) du.
uGUI%j\]\AV”l
Clearly 04(u(n’,0,0)uj(n)~!) = 0,4(u)f;'(n) (in our case T = 0). From (2.1) and (4.36)
we get

wy-1(u(n',0,0)u)®(0) = wy-1(u)P(0).

Thus the above integral is just

051 (n) / F(u " Bu)0s(u)wy—1 (u)®(0) du
uEUé\]\Af”“'1
which is 0277(71)*1\111:;@(1/;1). Here we used that for n = (”/ (n,)*) we have that 05 ,(n) =
92(”)
From the above two cases, identity (6.4) holds for any n € Ny when ¢ is identity, thus

holds in general. O

We also need to consider the behavior of the function ¥ 4(g) when g = diag[a, a*] where
a = diaglay, . .., a,] is a diagonal matrix. The proof of the following Lemma is similar to

that of [MR, Lemma 5.4] and we omit it.
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Lemma 6.4. When F € S(Y) and ® € S(F™), as function of a, Vpe(diagla,a*]) is a

Schwartz function on (F*)".
The following is [MR2, Lemma 5.6].

Lemma 6.5. Let T be a Schwartz function on No\Sp, with T(fig) = 6(n)T(g). Then

there exists a Schwartz function f on ST% with

/ F(ig)0(n) dn = T(g).

Moreover, the function f may be defined by

f(nak) = A(n)T (ak),
where X\ is any Schwartz function on Ny with

/A(n—l)e(n) dn = 1.

No

Corollary 6.6. Given any f € S(Spy,) and ® € S(F"), there is fe S(é?)n) such that
equation (6.3) holds.

Proof. From Lemmas 6.4 and 6.3, ¥pg is Schwartz function on Ng\gg\%; satisfying the

equivariance property

Urg(n-g) =0s,(n) "Vre (7).

By Lemma 6.5, we obtain the desired f satisfying

Upa(g) = / - 5051 (n)dn.
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From Corollary (6.2), we get:

Corollary 6.7. There is a map €5 from S(Spy,) ® S(F™) to S(Sp,) such that when f =
e5(F @ D), Lya (F,®) = Juya (f).
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7. FUNDAMENTAL LEMMA

7.1. Statement of the result. Let v be a nonarchimedean place with odd residue char-
acteristic, and where v is unramified. We will omit v in the notations.

Let O be the ring of integers in F. Recall K3 = Sp,(O) and K is the image of
an embedding of Sp,(O) in P, (the covering splits over Sp,(0)). Let H(Spon, Ks3)
(and H(:S?);, K5)) be the algebra of Hecke functions on Sp,, (and Spn respectively). For
fe H(:S’—EL,KQ), define

o= [ [ F@a - antdeta o) @) (o) dnda

where d5 is the modulus functions of the Borel subgroup of Sp, and y. is the unramified

character defined on the subgroup of diagonal matrices in GL,, by

a1

X- = lax 3t - fanl3".
We can define a homomorphism f — f between H(Spon, K3) and H(%, K5) so that:

~ 1 1 1 1

(7.1) f(zl—5,21—1—5,...,2”—5,2”—1—5):f(zl,...,zn).

We prove

Proposition 7.1. If f € H(Span, K3) and f € H(EZ\Q;,KQ) are related by (7.1), then when

® is the characteristic function of O™, we have

(7.2) Tpa(f) = / (- 5051 (n) i,



82

where F' is defined by (5.4).
From Corollary 6.2, we get:

Corollary 7.2. When f € H(Span, K3) and f € H(Spn, Ks) are such that (7.1) holds,
then when ®q is the characteristic function of O™, we have Ly (F, ®q) = Jw/a/(f) where F
is defined by (5.4).

This identity of orbital integrals is the fundamental lemma for the case at hand. The

rest of the section gives the proof of Proposition 7.1.

7.2. Unit element case. We prove the Proposition first in the case when both f and f
are unit elements. In this case we denote the functions by f, and fy respectively. Then fo
is the characteristic functions of K3, while fo takes value 1 over K5, and vanishes outside
the inverse image of Sp,(O) in Sp,. Let Fy be the function associated to fy by (5.4),

namely

Fo(g~'Tg) = /fozl

lespn K

Lemma 7.3. The function Fy is the characteristic function of Y N Ks.

Proof. Clearly Fy is a Ks—invariant function on Y. As lg € K3 for | € Sp,, x implies
g 'Tg € K3, we get F, vanishes outside Y N K3. By Lemma (A.1) below, we see Y N K3
is a single K3—orbit of T'. Hence we get F{ is constant on Y N K3. Putting g = 14, in the

definition of Fy shows that Fj is the characteristic function of Y N K. Il

Denote the right hand side of (7.2) by ¥7(g), i.e

W(G) = / Fnt - 5651 (n) dn.
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Then
U (- g) =05, (n)¥5 (9), n € No.
Lemma 6.3 shows that U, ¢, satisfies the same left Ny-equivariance condition. Both func-

tions W 7 and Vg, g, are clearly right Ks-invariant. Thus from the Iwasawa decomposition

to show the identity (7.2), we only need to show it holds when g = @ where

1 —1]

a = diaglay, ..., an,a, ... a]

is a diagonal matrix.
It is easy to see that W7 (a) = 1 when |a;| = 1 fori=1,...,n, and ¥} (a) = 0 otherwise.

Thus the Proposition in this case follows from
Lemma 7.4. When |a;| =1 fori=1,...,n, Vg e,(a) = 1. Otherwise Vg, o,(a) = 0.

Proof. Recall that

U rya0(9) = /EU1 . Fo(i(9) " u" " Euj(g))0a(u)wy-1 (w)wy-1(9)@o(0) du.

A n1
For w € N™! it has the form * with n; having the form (™ ), where

ny
ny € Z, the maximal unipotent subgroup of GL,,. The matrix j(a) 'u~!Fuj(a) lies in the

Siegel parabolic subgroup; it has the form (4 % ) where

1, ny,t Tn Ny v 1,

b1 1, 1, 1, b
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with b = diag[ay, ..., a,], and v = —ny'v. A computation shows:

v'ng  Tang b+ v'vb

If |a;] < 1 for some i, we get from looking at the lower left block of A that
Fy(j(a) 'u™' Bug(a)) = 0.

Thus in this case Vg, ¢,(a) = 0.

On the other hand, since
\IJFO,‘I)O (% ' g ]%) = 927,71-(71)\1]1[7074)0 (5)

when n € Ny and k € Ky, we get Ug, 5,(a) = 0 whenever |a;| > |a;41] for some i or
lan| > la,| ™"

Therefore, U, ¢,(a) is nonzero only when |a,|™" > |a,| > ... > |a;| and |a;| > 1. This
condition is only satisfied when |a;| = 1 for all i, in which case using the K3—invariance of

Iy and Ky—invariance of @, we get

lIJFO,(PO (a) - \IIF07‘1)0 (1;:1)

Consider now the case a = 1g,. Use the computation of the matrix A again. From the
lower left block and lower right block of A, we see in this case if u " '!Fu € K3NY, ny is in
GL,(0) and v has integral entries. Thus u = ("' ;) with n; € GLy,(O).

Write u as i1 (nq)v with v in the Siegel unipotent subgroup of Sp,,,. Since n; € GlLs, (O),
we get v IEv € K3NY. Write v = (12" 1;), and v = (B1 52), then the condition is

equivalent to all entries in 7" and B; — By are integers. Since U} = u(1, B,0) consists

of v of the above form with 7" = 0 and By = Bs, we see over the subdomain where
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Fo(u™'Eu) # 0, the representatives of U]%\N”Jrl can be chosen to be in K3. Thus:

\I[Fo,‘bo(gl) = 94(“)(")10*1(“)(1)(0) du.

/ueU,%;<O>\Nn+1<O>

Over the domain 04(u) = 1 and wy-1(u)@(0) = ®(0) = 1. Thus we get U 00 (1) = 1.

We get the claim in the Lemma. O

7.3. General Hecke element case. The result we need follows from a Plancherel formula
and the fact that the orbital integrals of spherical functions on Sp,, i\ Spa, are related to
spherical functions on Ng\gﬁ. The argument is essentially that of Mao and Rallis in
[MR1], where the split case is treated. Here we carry out the main argument and relegate
some details to the Appendix.

Let F be a p—adic field with p odd. Let O be the ring of integers in F. Let m be a prime
in O and let ¢ = |7|7!. Let G be a reductive group over F' with maximal compact subgroup
K. Let H be a closed unimodular subgroup of G with the property that there exists a
Borel B C G with BH open in G. Let x be a unitary character on H, trivial on H N K.
Denote by C(H\G, x) the space of complex functions on G with f(hgk) = x(h)f(g).
Denote by Sk (H\G, x) the subspace consisting of functions of compact support modulo
H in CP(H\G, ).

We consider Gy = Spa,, Hi = Spnkx, K1 = Sp2,(0O) and x; the trivial character,
Gy = EE;, Hy = maximal unipotent of Gy and Ky = Sp,(O). We take the character xs to
be 0 L

Denote by H(G, K) the Hecke algebra of G with respect to K. It consists of compactly
supported functions on G satisfying f(kigks) = f(g) for all ¢ € G, ki,ky € K. The

multiplication is given by the convolution product.
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The Hecke algebra H(G, K) acts on C°(H\G, x) by
13 (F+0)g) = [ Fhelghidn,  f € MG K).6 € CFH\G. )
G

A spherical function in C(H\G, x) is an eigenfunction ¥(g) in C(H\G, x) under the
action of H(G, K') normalized so that W(1) = 1.
Call an element g € G relevant if x is trivial on gK¢g~' N H. The subset of relevant

elements in G is denoted G*'. We have the following characterization of relevant elements:

Lemma 7.5. Let

(7.4) A ={x=, .., ) EZM A >N >0 > )\, >0}

n

— ——rel
There are injective maps 11y : At — Spo,, Ty : AF — Sp, such that Sp, =
Usear Vollo(A) Ko and Spret = Usenar SPn,xla(A) K3 as a disjoint union. Moreover, 11,(0, ..., 0)

and I15(0,...,0) are elements in K3 and Ky respectively.
Proof. In the second case, this follows if we let IT, be given by ITy(A) = (IT*, 1) where

I = diag[r™, ..., 7t 0™ o o ™M)

In the first case, it follows from Lemma A.1 below. [l

We recall an explicit linear map from Sk, (Spn,x\SpP2n, 1) to SKQ(NQ\:STP;“ 051).
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Tn
Recall £ = b and € is chosen so that F = ¢, ITe,. The subgroup Nt
Tn
L,
uo ok %
of Nj is given by N1 = 1o, * ||u€Z,

*

u

Recall the Weil representation wy,-1 of S/??n acts on the space S(F™) of Schwartz functions
on ™. For & € S(F™), in equation (6.1) we defined, for g € Sp,, and ¢ € {£1}:

15 Ta(F)a.0) = [ F(j(g) ™0™ Buj(9))0a(w)wy—: (w)wy- (5)2(0) du.

uEU}E\N"JFl

Then Ty is a linear map from Sk, (Spn x \Sp2n) to the set of genuine functions on 5‘;9”

For A € A}, define chy to be a function in Sk (H\G, x) such that chy(II(\)) = 0 unless
A = X, in which case chy (II(X)) = 1. We will use ch to denote the function on Sp,, \Span
corresponding to the function chg on X (through the identification in section 3.1), and let
ch? be the function chg on :9}9; Let ®y be the characteristic function of O".

We remark that for f; € H(Span,, K3), we have that f,  ch) = F where F is related to
f1 by equation (5.4). Similarly, for f; € H(S’EL, K5), we have fy x ch? is equal to the right

hand side of (7.2). Thus to prove Proposition 7.1 it is enough to prove:

Proposition 7.6. For fi, fo € H(Spgn,Kg),H(E];;,Kg) respectively, such that fl(z) =
fa(2), we have To,(f1 % chl) = fo * ch?.

7.4. Preliminary results. Let S be the reduced root system of type C,, let R be the

root system of type BC,. The root systems R and S are inside the same vector space
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identified with C". Let ¢;, ¢ = 1,...,n be the standard basis of C", then
S={xete,£e,1<i<ni<j<n};

R={%e £¢j, e, +£2¢;,1 <i<n,i<j<n.}

The root systems R and S have the same Weyl group W which is the Weyl group of Sp,.
There is a natural action of W on C™.

A Macdonald polynomial has the form ([Mcl], equation (10.1))

(7.6) Qi (z) = Pi(e%) = Va(t) ™" Z w (6’\ H M) '

weW wchr+ 1 — téae—a

Here A € A is identified with dominant weights of R, R" is the set of positive roots, and
e are the independent variables of the polynomial P}; Q% and P} are related through the
equation e = ¢~%*. The data t, are parameters such that when « is not a root in R,
to = té = 1. Thus the parameters t are determined by values of ¢, when « is a long root
in S, and ¢, with tzéa when « is a short root in S. V) (t) are nonzero constants independent
of variables e“; they are defined in [Mcl] (denoted Wy(t) there).

Let Cl¢?, ¢ *]" be the space of functions on (zy,...,2,) € C" that are polynomials in
¢* and ¢~* and that are invariant under the action of W. We have that {Q%(2)|\ € A}

w

forms a basis of C[¢*, ¢7*]".

Theorems A.2 and B.1 below give:

Theorem 7.7. Fori=1,2, there are choices of real numbers parameters t', for a roots in

R and nonzero values a;(\) for X € A, such that for all z = (z1,...,2,) € C",

(7.7) TILN) = a;(NQ4 (2), A€ AL,

determines a spherical function W} in C3 (Spp,x\Sp2n. 1), V2 in C’j’%(]\fg\%, 9;)
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For f € H(G, K), recall that f(z) is the eigenvalue of f*(g) = f(¢~!) acting on W,

through equation (7.3), that is:

(7.8) f(2) = / J(g)(g)dg.

Then f — f(z) is an algebra homomorphism from f € H(G, K) to C[¢?, ¢ ?]". We can
consider C[¢?, ¢ %] as a H(G, K) module through the multiplication by f(z).
When ¢ € Sx(H\G, x), we define its Fourier transform qg(z) by

~

(7.9) ¢(2) = (6, V.) = P(9)V-(9)dg

H\G

Clearly ¢(z) € Cl¢7, ¢7]". Recall Sx(H\G, ) is a H(G, K) module through (7.3).

Theorem 7.8. The map ¢ — gg gives an isomorphism of H(G, K)—modules between
Sk(H\G,x) and Clg*,¢*]",

Proof. A basis of Sk (H\G, x) is given by functions chy, A € A}t where chy(II()\')) is given
by 8% where § is the Kronecker delta. On the other hand, the set of Qf(2) for A € A}
gives a basis for Clg*, ¢~ *]".

We have that

() = / ch(9) T2 (g)dg

H\G

and this is, up to a volume factor, equal to a(A)Q%(2). Thus the map ¢ — gg establishes
a bijection between bases of Sg(H\G, x) and of C[¢?, ¢~ *]".

We now show it is a S (H\G, x)— homomorphism. Take f € H(G, K), ¢ € Sx(H\G, ),

then
Frolz) = / 1(9)6(hg) T (R)dhdg.
¢ JH\G



90

1

Changing h — hg™", we get
Fro) = [ [ saom.tg g
H\G
= -1 hg)dhd
/. / Fla™)6(h) V- (hg)dhdg
= f(2)e(z)
as desired. 0

1
Theorem 7.9. Let A'(z) = [] ﬁ Denote by D,, the direct product of n copies of

a€R 1*15220‘6“

V—1IR/((2r/logq)Z). For ¢ € Sx(H\G,X), we have
(7.10) o(g9)= [ ¢(2)V.(9)du(2)

where the measure d,,(z) =

Proof. In the case of Sp,, this holds with d2(z) = |W|At”( z). It follows from the fact that
the volume of Ny\Ny(IT*, 1) K5 equals 6~ (IT") using the argument in [Mc2].

In the case of Spa,, it is a consequence (c.f. [MR1], Section 2.3.) of Lemma 7.5, Theorem
7.7, Corollary A.4 and the fact that

fxd=f"%xD

for all ® € CF (Spn,x\Sp2n, 1) and f € H(Span, K3), where f*(g) = f(g™').

This last property holds since f € H(Span, K3) implies, by Cartan decomposition, that
flg) = flg™h). 0
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Suppose T is a map from Sk, (H;\G1, x1) to Sk, (Ha\Gs, x2) satisfying T'(V1) = ¢(z)¥2.
Then from Theorem 7.9, formally we have:
(711) T(¢1) = /él(Z)\IJZC(Z)d}L<Z),V¢1 S SK1 (HI\GLXI)'
Lemma 7.10. Let T be a linear map satisfying

(1) equation (7.11) holds for some function c(z),

(2) T(S7'(1)) = 83 '(1),

then S; = ST on Sk, (H1\G1, x1)-
P?"OOf. Let ¢z S SKZ(HZ\G“XZ) such that Sl(¢1) = SQ(¢2), we show ¢2 = T(gbl)

By Theorem 7.9,

62 = / AOLEAE
Since ¢1(2) = ¢o(2), we get there is a function ¢(z) on D, with:
(7.12) T(6) — b2 = / bo(2) W2 (2) 2.
When ¢(z) = 1, condition (2) implies:
(7.13) / P2(T,(\)e/(2)dz = 0, VA € A
Dn

When 2z € D,, z = —z; thus we can consider ¢A2(2) as a polynomial in C[g?, ¢~*]" For

any A € A and any ¢, ¢§2(z)\IJ§(H2(>\)) € Clg%, ¢ *]", thus it is a linear combination
ST WE(TIy(N;)). From (7.12) and (7.13), we get (T'(¢1) — ¢2)(I1x(N\)) = 0; thus T'(¢1) =

-

7.5. Proof of Proposition 7.6.

g
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Lemma 7.11. For F' € Sk, (Spn.x\Sp2n), and ®q the characteristic function of O",

Ty, (F) = / F(z)c(2)02d)z.

Dn

Proof. From Theorem 7.9,

To,(F) = Ty, (D/ F(z)\lf;d;z

As Ty, is an iterated integral over a fixed compact set, we can interchange the integral and

operator Ty, and use Proposition C.2 to get:

Too(F) = / F(2) Ty (V))d2

We have already proved that
Lemma 7.12. Ty, (chy) = chy.

Since clearly Sj(chy) = Sa(chl) = 1, we checked the two conditions in Lemma 7.10
are satisfied for the map Tp,. From Theorem 7.8, for fi, fo € H(Span, Kg),H(S—];;,KQ),
S1(f1xchy) = Sy(faxch?) whenever fi(z) = fo(2). Lemma 7.10 gives that SoT'(f1*chd) =

So(fo * chd) and using that S, is an isomorphism, we obtain Proposition 7.6.
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8. PROOF OF THEOREM 1.1

From the previous sections, we get the following trace identity:

Theorem 8.1. There exists maps €5, from S(Spe,(F,)) @S(F)) to S(é?)n(Fv)), such that

(8.1) Ispo, (f  Spnic, 15 N3, 0407 1) = [gg,“n(fi Ny, 057 Na, 05)

when

(1) at v & S where S is a finite set of places containing all bad places, f, is a Hecke
function and ®, is the characteristic function of the lattice O, f, is the Hecke function
associated to f, by (7.1).

(2) atv e S, fo= €50 (fo @ y).

Proof. : Given f,, ®,, we find fv through Corollary 6.7. The identity follows from Propo-
sitions 5.8, 5.9, and Corollary 7.2. U

PRrROOF OF THEOREM 1.1:

Given f, € S(GLy,(F,)), we find f! € S(Sp,,(F,)) through Corollary 3.9, then we find a
pair f” € S(Spy, (F,)) and ®, € S(F") through Corollary 4.9, then we find f, € S(é?)n(Fv))
through Theorem 8.1. This gives the map €, which is €5 ,€4 €1 .

At a good place v, the Hecke algebra homomorphism A\, : f, — ﬁ, from H(G La,, K1) to
H(Spn, K») is defined so that

~
~ '~

fv(217 TR1,R2, TRy ..oy By, _Z'rl) - fU(Z17 v 7Zn>‘

Let S be a finite set of places containing archimedean places and even places and places
where 1 is not unramified. Assume f = @f, and f = Rpes€n(fo) Rugs Av(fu). We need to

show the equality
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(82) IG’LG(f : GLnJ(, ]_, N1,01) = IS’,;TL(}Y N2,92_771_, NQ,QQ).

For v ¢ S, there is f € H(Span, K3) such that equation (7.1) holds. From Theorem 8.1,

equation (8.1) holds when we replace f ® ® by

®v€5’€4,v61,v(fv) ®v€S (le; X (I)O,v)-

From Corollary 4.9, we get ]s’;,;(f : No,052%; Na,6) equals Igy,, (f' : Spn,1; N3, 03)
when f' = ®@yese1,o(fo) Qugs [

From Corollary 3.9, we get Iéﬁ(f : NQ,GQ_};NZ,QQ) equals Igr,, (fi : GLyk,1; Ny,01)
where

fl - ®v€5fv ®v¢S fl,m fl,v - >‘1,v(fz/)>‘

We have the following relationship between f, and f; ,:

Lemma 8.2. For all z € C":

(8.3) folz1, =21, 20, =22, ooy Zny —2n) = fro(21, —21, 22, =22, + y Zny —2n)-

Proof. The left hand side of the equation is f (21, ..., 2n), which equals

~ 1 1 1 1
! _ I _ I
fv<zl+ 272;1 27"'7zn+ 2>Zn 2)

Using the invariance under the Weyl group of Sp,,,, the above equals:

7z ~|—1—z +1 z~|—1—z +1)
v\#1 27 1 27"'an 27 n 2

Using the relation (3.8) we get the above equals the right hand side of the equation. [
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To complete the proof of identity (8.2), we only need to show
Iar,, (f1: GLnx,1; N1,01) = Igr,, (f : GLnx, 1; N1, 01).
From the orbital integral decomposition in equation (3.4), this will follow from

Lemma 8.3. When equation (8.3) holds for all z € C™,

/ fo(hg) dh = / f10(hg)dh.
GLn,K(Fv) GLTL,K(F'U)

Proof. We work over a place v, which we omit it in the notation. Let C’I% (GL,, k\GLs,) be
the space of right K and left GL,,  invariant functions compactly supported on G Ly, (F,).
Then the Hecke algebra H(G Lo, K1) acts on this space by:

£+ 6(g / (o) f(h"Ydh, ¢ € C (GLuix\GLan), f € H(GLon, Ky).

Let fo, be the unit Hecke function on G'Ly,, and define

‘—‘OU / va hg

GLy k(Fo)

Then =, € CIC(I(GLH,K\GL%). It is clear the two sides of the equation in Lemma are
Jo * S0 and fi, * Zg .

By [O, Proposition 4.9], we have that Cg (G Ly x\GLa,) is isomorphic to Clg?, ¢—* "™
as ‘H(GLay,, Ki)—modules. In particular, the action of f is determined by the values of

f(z1,—21,. .., 2n, —2,) and thus we have f, x ¢ = f1, % ¢ for all ¢ € CIC(I(GLn,K\GLQn),
when f, and f;, satisty (8.3).

This completes the proof of Theorem 1.1. [J
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APPENDIX A. SPHERICAL FUNCTIONS ON Sp, x\Sp2,

-
Recall that T is the square matrix of size 4n consisting of on the diagonal
1

and zero elsewhere; the group Sp, x consists of g in Spy, with g7'Tg = T. Let X' be
the space of antisymmetric matrices in Spy,. We have a map Sp,, x\Sp2, — X' given by
g +— g 'TgJ. We denote the image of this map by X C X’. The group Sps, acts on X
by g -z = gx'yg.

Recall that

A:{:{)\:()\l,)\g,,)\H)EZ"\MZAQZzAnZO}

a

7r
We denote by II, the matrix ; for A € A}, we denote by II* € X the matrix

with the diagonal being [711,,, 711y, ..., 71\, —I1_, ..., —I1_y,].

Lemma A.1. As a disjoint union,
(A1) X =UK-TI*, XeA].

Proof. Let x € X. Let x;, j, be the entry with the largest norm in z. Since z is antisym-
metric, we have that ig # jo and so through the action of a suitable Weyl element w € K3
and a diagonal matrix a € K3, we have that 2’ = wa - = has one of the following two

: . : / ! _ —)\1
properties: either 7, = —zy, =7

is the element with the largest norm or /4, is the
element with the largest norm in z’.

We now consider the second case, we assume that for elements in K - x the entry with
the largest norm lies on the antidiagonal. In this case, there is an element y in the orbit
K -z which is antidiagonal. But then y must satisfy yJ? = 7, this is a contradiction.

In the first case, there exists a lower triangular matrix n € K3 with 2”7 = n - 2’ has

the property that 27, = 0 when i # 2 and z5; = 0 when j # 1. Since r € X satisfies



97

a'Jr = 7J, we have that of; = a5 ; = o}, = 2%y = 2\ ;4,1 = ¥4, 1 4, = O unless

M Thus 2" is a diagonal matrix

i =2orj = 1; furthermore, @, 4, | = =%, 14, =7
with elements in the diagonal being IIy,, y and —II,, where y is an antisymmetric square
matrix of size 4(n — 1) with (yJ)? = 7 and 'yJy = 7.J. Moreover, the maximum norm of

the entries of y is ¢* with )\ < \;. Continuing this process, we see that x € K - II™* with

X € Af. Moreover, the sets K - II™* are clearly disjoint for distinct A € A O

Let C% (X) be the space of all K3—invariant complex functions on X and Sk, (X) the
subspace consisting of all compactly supported functions in C% (X). With the identifi-
cation between Sp, r\Sp2, and X, the action of H(Sp,, K3) on CF (X) becomes the

convolution product:

(A.2) (f*®)( / f(g “1.2)dg f € H(Span, K3),® € 7, (X).

Span
A spherical function on X is by definition an eigenfunction ¥(z) in C%,(X) of all the
convolutions defined by elements in H(Spa,, K3) normalized such that ¥(I1°) = 1. Here
0 is the vector in A where all entries are 0. The spherical functions on X are clearly in
one-one correspondence with spherical functions on C2 (Spn,x\Span, 1).

Recall by equation (10.1) of [Mc1] that a Macdonald polynomial has the form

Q\(2) = Pie") = Vi Zw( HL>

weW a€eRt 1— tga

where the parameters ¢ are determined by the values of ¢, when « is a long root in .5,
1
and ¢, with t5, when « is a short root in S.

We will prove the following result:
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Theorem A.2. For z = (z1,...,2,) € C, VY, (x) defined by the following equation is a
spherical function on X:

ooy VA" i

(A.3) U (1Y) = ¢ Vo)

Ae At

where b(X\) = — S2(2(n—i+1) —1/2) ;. The parameter t!, in the definition of Q% is given
i=1
by: when « is a long root in S, t, = ¢72; when « is a short root in S, we set t& = q71,

t£a1/2 — g2

We will construct a function ¥, (x) on X that is an eigenfunction under the Hecke algebra
action, thus a spherical function, then we establish formula (A.3) for W, (z).
For x € X, denote by Pf,(z) (1 <i < n) the Pfaffian of the lower right 2i x 2i block of

x. Define the integral

“idk

(A1) (i) = Caisieosn) = [ TLPFGE-2)

Kg '™

where x € X and s € C". The integral is taken over the open subset

{kngiﬂrPfi(M)l #0}.

Set
(A.5) U.(z) = C(a5)/¢(I1°%,5), @ € X,
where z = (21, .., z,) satisfies the relation:
(A.6) Xn:si:—z~—2(n—j)—§ j=1,...,n.
— J 27 ) )

A.0.1. Hecke algebra action. We first prove ¥, () is an eigenfunction of the Hecke algebra
H(Spgn, K3)
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Recall that Aj is the set of diagonal matrices in Spy,, and N3 is the standard maximal
unipotent subgroup of Spy,. Let B = A3Nj3 be the standard Borel subgroup. Given
v=(v1,...,10,) € C*™ let ®,(g) be the K3—invariant vector in the induced representation

I(x,) = Ind;"x,,, where

Vi

, —1 —1
, a =diaglay, ..., agpm, a9, ,...,a] ], u € N3.

2n
Xo(au) = [ las
i=1
We normalize ®, so that

(A7) O, (auk) = H |a;

i=1
The Satake transform f(v) of f € H(Span, K3) is defined by

fv) = / F(9)%,(g)dg.

Span

By the Iwasawa decomposition, this agrees with the definition in equation (3.6).

We will let

a 1 1 1 1
(A.8) Wf(z>:f(—21+§7—21—§7--->— -

The following proposition shows W, is a spherical function.

Proposition A.3. When f € H(Spa, K3),
(A.9) (f*U)(x) =wp(z)V,(x), v € X.
Proof. Let f € H(Spa,, K3). Recall from equation (A.5) that

CI1% 5) W, (2) = ((x35).
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We compute

IO 8)(f + W) (@) = C(TI%s) / F(9)V.(g™" - x)dg

Span
- / F()C(™ - 7 5)dg
- [ {/KS]IW" |81dk:}
Span ¢

Changing variables on g and using that f € H(Span, K3), we get that this is

[ it H|Pf )| dg.

Span

By the Iwasawa decomposition, we write g as ¢ = k~'b where k € K3, b € B. We get
that

* dk db,

) s = [ [ 1 [[PAG o)

here d,b is a right invariant measure on B.

Note that for b € B,

Si

(A.10) |Pfib-x)

"= di(b)

Pfi(x)]™,

where d;(b) is the determinant of the lower right 2i x 2i block of b.
Thus

n

)[oid / Fo) T 10

B i=1

*d,b.

CII% ) (f = W.)( /Hypka



The relation of z and s gives that

1 1 1 1

we(z) = f=2z + 30 TR T Gy T + 30 T~ 5) = /f(b) H |d; (b~ Y)[* d.b.

Therefore we obtain
CI% 8)(f * W () = (a5 5)wy(2).

This equation implies Proposition A.3.
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g

Corollary A.4. The map from H(Span, K3) to Clg7, ¢ *|""* given by f + wy(2) is onto.

A.0.2. Another definition of V,(z). Given x € X, define

(A.11) FZ(g H|77f (g-x)*, g € Spay.

=1

where z and s are related by

Zsl —z; — 2 n—j)—§, j=1,...,n.
2
Then ((z; s) f F*(k)dk. By equation (A.10) we have
(A.12) Fz(bg) = [ [1d:(0) | F2 ().
i=1

Therefore F? defines a distribution on the space of I(x_,(s)), where

1 1 1 1

V(Z) = (21 — §7zl+§7”-72n — §,Zn+§)
The distribution is given by
(A.13) @) = [ o
B\Sp2n

for @ € I(x_u(2))-
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When z = TJ, since h - TJ = TJ for h € Sp,r, we get FX/(gh) = F¥/(g) for
h € Spnx C Span. Therefore if L(®) = FT/(®), then L is a Sp, x—invariant linear form

on [<X—V(Z))

Proposition A.5. Let L be the linear form above, and ®_,.) be the vector in I(x_,(.))
defined by (A.7). Denote the action of Spa, on I(X_y)) by p. Then when x = g-TJ,

g€ Sp2n;
(A.14) (s s) = Lip(g™)D (o).

Proof. The right hand side of the equation is:

n

| Fmsteepman= [ TPsn-T)

B\SPQn B\Sp2n =1

Siq)_,,(z) (hg_l)dh.

Making a change of variable h — hg, this becomes

n

[I1Pfih-a)

i=1

SO_, (. (h)dh.

B\Sp2n

By the Iwasawa decomposition, this is

/ 1170k 2)

K =1

SO0 (k) dk.

Since ®_,.)(k) = 1, we get the equation above. d

A.1. Computation of ¥_(I1*). The calculation of {(; s), as in [MR], follows Casselman’s
method ([C]). We assume v(z) is such that the numbers {z;+3|i = 1,...n} are all distinct.

The analytic continuation would give the formula for all cases of z.
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A.1.1. Expansion in the basis {f2}. Let By be the Iwahori subgroup of Spy,, define

(A.15) £(g) = / F=(gb)db,

By

here the measure is normalized so By has volume 1. We have that {Z(g) is right Bo-

invariant. From (A.12), we see that £7(g) is a By fixed vector in I(x,(z)), where

1 1 1
V(Z):(21—5,21—{—5,...,2”—§,Zn+§).

In [C], Casselman defined a basis {fZ|w € W3} of the space of By fixed vectors in

I(Xu(z))- We have that there exist functions {a,(z; 2)|w € W3}, so that

(A.16) E(9) = Y aul(z:2)f5(9)-

weWs3

Here by definition:
(A17) aulw; 2) = THED) (1)

where T} is the intertwining operator of w from the space I(x,(.)) to I(wx,.)), defined

by analytic continuation of the following integration:

T30)0) = | o (wug)du,
N3NwN3w—1\ N3
As ((z;5) = [ FE(k)dk = [ &(k)dk, we get
K3 K3
(A18) i) = 3 anlaws2) [ £k
weWs K

The integral [ fZ(k)dk is computed in [C]. Recall that the root system of Sp, is given
K3
by S, we will denote by Sa, the root system of Spy,. Let S5, and S, be the set of positive

and negative roots respectively. We define e* for a given 2’ = (21, 2, ..., 25,) by €% = ¢ *.
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Let

1— -1, «
@)= ] e e

I —e~
€Sy waes;,

Let w; be the longest Weyl element in W3. Then we have
(A.19) [ £k = Qe (wv() feulv(2)
K3
Here @ is some constant independent of z defined in [C].

A.1.2. Vanishing of a,(z;z). We now turn attention to the computation of a,(z;z). As
in [Hi], define an intertwining operator T from I(x_,(»))* to T(wx_,(z))*, where I(x)* is
the dual of I(x), (see Proposition 1.6 in [Hi]). By equation (A.13), we have that F¥ €
I(X_y(»y)*. Then as in [Hi], T? extends the intertwining operator T7.

Similar to Proposition 1.7 in [Hi], we have

(A.20) 0l 2) = THE)(1) = / T2 (F*)(b)db.

Byo

From now on we assume x = I[I* for some A € At. We show then a,,(z;z) = 0 for most

w € Ws3. Define Y C Spa,:

(A.21) Y = {g € Span| F(g) # 0}

Clearly Y is an open subset of Spo,.

Lemma A.6. Let b € B, then g € Spa, is in'Y if and only if bg € Y.

Proof. This follows from equation (A.12). O

Lemma A.7. When g € Spy, is such that g- TJ = x = II* for some A € A}, FX/(bg) =
FZ(b) = F*(1) when b € By.
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Proof. 1t is clear from (A.12) that when b € By N B,

n

Fr(b) = [ [1di®)[ F2 (1) = FZ (1)

i=1
We now assume b € By N B where B is the set of lower triangular matrices in Sps,,. We

show in this case |Pf;(b-x)| = |Pf;(z)| fori=1,...,n.

A
Write x as ! where As is the lower right 2i x 2¢ block of x. Write b as
As
by
, where by is the lower right 2i x 2¢ block of b. Thus by is a lower-triangular
S by

matrix, in the Iwahori subgroup of GLg;. With these notations, we see
[Pfi(b- @) = [Pfba'd)| = [Pf(boAz b2 + SAL"S)|.
Since the entries of S are in the prime ideal P C O, with our choice of x, we see
byAs by + SA; LS = by Ay thy mod PN,

Thus
[P f(b2As by + SAL'S)| = [P f(baAs 'by)| = [P f(As)| = [P fi(x)].

We have proved [Pf,(b-x)| = |Pf;(x)|, thus the identity FZ(b) = FZ¥(1). O

Proposition A.8. Letx = II* for some A € A+, If the distribution TZ(FX7) € I(wx_,(»))*

is supported away from'Y, then a,(z;z) = 0.

Proof. Let ®f be the vector in I(wx_,.)), such that ®f is supported on BBy, and &f'(b) =
1 when b € By. Then we have that T2 (F*)(®¥) is equal to



(A.22)

/ T3 (F7) ()Y (g)dg = / T3 (F*)(b)db.

B\Span By

Thus from (A.20), we have that

aw(w;2) = T (F2)(®F).
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Assume x = ¢g-TJ, let p,, denote the representation on the space I(wx_,(»))* and let pl,

denote the representation on the space I(wx_,(z)). We calculate that for ¢ € I(wx_,(.))

we have that

pu(9)TH(FI) () =

Thus, T7(F¥)

TH(FX) (g7 )e)
/ / FX (w™tuh)é(hg™")du dh

B\szn Ngﬂ’ngw_l\N3

/ / ﬁ |Pf,(wtuh - TJ)

B\szn Ngl"\legw*l\N3 i=1

Y | (AT

B\Sp2n N3sNwN3w=1\N3 =1

/ / Fo (w="uh)é(h)du dh.

B\San NgﬂU)Ng’w*l\N‘g,

Sigp(hg™t)du dh

sip(h)du dh

= pu(9)TZ(FX’) and

aw(w;2) = To(F) (0l (971 @)

We show p/, (g7 )@Y is supported on Y’; then if the assumption of the Proposition holds,

ay(x;2) = 0.
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The support of p! (g71)®Y is BByg. Let b; € B, by € By. From Lemma A.7, FX(byg) =
F2(by) = F*(1) # 0, thus from Lemma A.6 we have that FT7(bbyg) # 0. We have shown

that pl,(¢g71)®Y is supported on Y, this gives the Proposition. O

Proposition A.9. The distribution TZ(FX') € I(wx_,))* is supported away from Y

unless WX, (z) = Xu(w'z) for some w' in Ws.

Proof. Assume T7(FX”) is not supported away from Y. Let Iy (w)_,(.)) be the subspace
of I(wx_,(.)) consisting of sections supported on Y. Then T7?(FX/) defines a nontrivial
Spn,x—invariant linear form on ]y(wx_,,(z)).

Note that Y = P»goSpy,, i for some go in Spa,, where P; is the parabolic group containing

B and with 2 x 2 blocks on the diagonal. Let Sp, kg = go_nggo N Sppx and o =

Pn,K

IndewX—l/(z) . COnSider the Spn,K_mOdule Indgpn Kgo

(09067 ) consisting of modulo Spy, kg,

compactly supported functions ¢ on Sp, x with values in the space of o, satisfying:

d(hoh) = dp, (gohogy ) (gohoge )o(h), ho € SPr.K -

As Sp, x—modules, we have Iy (wx_,(.)) = Indiﬁi:igo(ag(’é%(’)).

From Frobenius reciprocity, the existence of nontrivial Sp,, x—invariant linear form on
Iy (wX_y(z)) implies that as a representation of Spy, x4,, 0%°0% contains a trivial represen-
tation. Equivalently, as the representation of goSpn i g,90 ! 0dp, contains a trivial repre-
sentation. Notice that goSpn i g.90 I equals n copies of SL, sitting in the diagonal 2 x 2
blocks of P», over which dp, is trivial; we see that o contains the trivial representation of

SLy x ...x SLy. With our assumption that z is in the general position, it is only possible

when w is as described in the Proposition. [l

For each w’ € W, there is a unique w € W3 such that

WXp(z) = Xv(w'z)-
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We will write w = o(w') if this is the case. Furthermore, if w, a € W3 and w', o/ € Wy

satisfy o(w') = w and o(a’) = «, then

WAXy(z) = WXy(a'z) = Xv(w'a'z),
so that ¢ is a group homomorphism.
Corollary A.10. a,(z;2) =0 unless w = o(w') for some w' in the Weyl group of Sp,.

Given w = o(w') with w’ in the Weyl group of Sp,, then Fj, € I(wx_,())*. Write
r=g-TJ=1" As T?(FX’) and FL/ satisfy the same left equivariance condition over

P, and right Sp,, x—invariance condition, we get

T (FM)(hg) = 6(w', 2) Fyl(hy),

or

TL(FD)(h) = 6(w', 2) . (h)

for some number §(w’, z) independent of h € Spa,.

From (A.20), we get

(A.23) ay(z;2) =0(w', 2) /qu,z(b)db.

By

(1). From (A.11),

From Lemma A.7, we see that a,(x;z) = d(w', 2) FZ

w'z

Si __ ew’)\qb()\)

(A24) Fi.(0) = [[ IPrar)

when z = IT*. Here b()\) is as defined in Theorem A.2, by

n

b(A) == (2n—i+1)—1/2))

=1
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and e* is defined with e% = ¢~*. Note that considered as function of z, F? (1) is an
additive character of z.

Summarizing the results so far, we get

T we have:

n’

Lemma A.11. When z = II* for some A € A

(A.25) C(ITY; 2) = Z Q1" Ve(w, 2)e™.

weWa

where c(w, z) = ¢y, (Wio(W)v(2))0(w, 2) /o) (V(2)).

A.1.3. Functional equations. We see when w = e is the identity, c(e, z) in the lemma equals

Cu, (wy(2)) which is:

_ 1—q 21l —qle™ 1—qgle 221 — q—%e*a
A.26 L+q¢ )"
( ) U+ H < l—e 1—gqge@ H 1 —e 2

1
—gze— ¢
acS+L acS+s 1 q=€

where S*tX and S*9 are the set of long and short positive roots. We will use the functional

equations of ((z;s) to determine ¢(w, z) for other w € Ws.

Proposition A.12. The function ¥_(z) = ((x;s)/C(11%; s) satisfies the functional equation
Uy (x) =V, (x) for all w € W,

Proof. Let wy € Wy. Then from (A.25):

ZUJEWQ qb()‘)c(w, woz)ewwor

Z’LUGWQ C('LU, wOZ)

\ijoza_[)\) =
Let w; € Wy. We compare the coefficient of e¥1%o* for W_(I1*) and W,,,.(I1*). They are

(A.27) "M e(wiwy, 2)/ Z c(w, 2)

weWs
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and

(A.28) " Ve(wy, woz)/ Z c(w, wyz)

weWs

From the definition of ¢(w, z), we see that the quotient of c(ww’, z) by ¢(w,w’z) is given

by

{eun (110 (w010 ()00, 2) (2 } %o (0(02)) ] {0 () (') w0, 0'2)}
Using that ¢ is a homomorphism and that o(w')v(z) = v(w'z), this is equal to

d(ww', 2) Copwy(v(w'z))
S(w, w'z2) Cowuy(V(2))

It is well known that

Ca(ww’)(V(Z» = CU(w)(V(wlz))cd(w’)(y(z))a

SO our expression is

d(ww', 2)
S(w, w'z) o (V(2))

Since the intertwining operator 777, is given by the composition of 7% and T7,, we see

that

d(ww', z) = o(w,w'2)d(w', 2).

Thus we obtain that

(A.29) -

From equation (A.29), the quotient of (A.27) by (A.28) is given by
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> wew, (W, wo2)d(wo, 2)/ Cowe) (¥(2))
ZWEWQ C(UJ, Z) .

Using equation (A.29), we see that

c(w, woz)d(wo, 2) /Couw) (V(2)) = c(ww, 2),

so that the quotient of c(ww', 2) by c¢(w,w’z) is equal to

Z’UJGWQ c(ww(]’ Z) o
ZUJEWQ C<w7 Z)

We have shown the coefficients of e¥1%o* for W_(I1*) and W, (I1*) equal. Thus ¥, (z) =

U (). O

To introduce a more precise functional equation, let
(0%

Ty (2) = H e

_ g 1lp—«
aeStL 1 1 ¢

and

[0}

Ty(z) = H i

1
acois L —a2e€

Proposition A.13. Let ((x;z) = I'y(2)T9(2)¢(2;s). Then

(A.30) C(zywz) = 5(:5, z)
for all w € Ws.

We will give the proof in the next section. From Proposition A.13, equations (A.25) and
(A.26), and the linear independence of the characters F¥ (1) (as characters of z), we get

for X € At, ((IT; 2) equals
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QM (1+q1)"¢"Y > w(ETi(2)Ta(2)cle, 2)),

weWs
which is
(A.31)
. . 1— g% (1+q e ) (1—q e
1 1\n b(N) A
D O | | ]
weWs acSt+L aESTS

Comparing this with the definition of the Macdonald polynomial Q% (z), we see that

(A32) (I 2) = Q7 (1 +47 )" VVA(t)QS (2)
and
(% 2) = Q7 (14 ¢7)"Vo(t)Qp (2)
when A € A and ¢! is the parameter defined in Theorem A.2 by t! = ¢=2 when « is a

long root in S and tf = ¢!, ¢} 1?2 = ¢71/2 for a a short root in S.

Since
((2:2)/C(11°% 2) = W.(x),
we get
(A.33) W (I1Y) = ¢" VA ()@Y (2)/(Qh (2)Va(t'))

when A € A, From [Mecl], we see Q4 (z) = 1. Thus the function ¥, defined in (A.5) by

U.(2) = ¢(2;5)/C(I1°,5), = € X.

is given by
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NGV,
b(A\) YA t e AT,
%(t]) Ao S n

We have proved Theorem A.2.

A.2. Proof of Proposition A.13. We prove (A.30) here. The Weyl group W5 is gener-
ated by elements o; (1 <i <n—1) and r,, where o; fixes ¢; if j # 4,74 1, and switches ¢;

with €;41; 1, fixes ¢; if j < n and maps €, to —¢,.

A.2.1. Functional equation for o;. Assume n > 1. We fix an i < n — 1. Recall that s and

z are related in equation (A.6) by

- .3
Zsi:—zj—Q(n—j)—g, j=1,...,n.
i=

From this relation, the following lemma is clear.

Lemma A.14. The ordered set of complex numbers (s1, ..., s;i_2, Sic1t+%, 5 +Sivt, Sita, - - Sn)

18 1nvariant under the map z — 0;z.

Let Y/ =Y - TJ, then by definition of Y in (A.21), Y = {g € Spo,|FT/(g) # 0}, we see
Y' = {z € X|F?(1) # 0}. Recall that P, is the parabolic subgroup of Sps, whose Levi
subgroup is a product of GGLs’s and whose unipotent subgroup consists of upper triangular

matrices. We have the following lemma.

Lemma A.15. The set Y’ is transitive under Py. Any x € Y' has a decomposition x =

p - IIM®) where \(z) € Z" and the Levi part of p € P lies in products of G Ly(O).

We will embed Ky = GL4(O) in Spa, as follows: If {e;[j = 1,...,4n} is the standard
basis of the vector space Sps, acting on, then k € K, acts trivially on the space generated by

{€1,. .., €2 2,913, ..., €an_2i_2,C4n_2i+3,- - -, €4y }; acts by multiplication of k£ on the space
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generated by {eq; ;|7 = —1,0,1,2} and by multiplication of £* on the space generated by
{€4n72i+j‘j = —1, 0, 1, 2} Then

(A.34) Cla:s) = / / T11Pf, 0% - ) did:

keKs k'eky I=1

The proof of the following lemma is as in [MR1].

Lemma A.16. Given any x € X, the expression

1 — qzz‘*zi+1+1

(A.35) / [1P#;k - 21 dk

1 _ qu—Zi+1—1 i
kK, =1

18 1tnvariant under the action z — o0;z.

1_qzi—zi+1+1

From the Lemma, after multiplying by g T the inner integral in (A.34) is invariant

under z — o;z. Thus we get

l_qzifzi+1+l

WC@; s) is invariant under z +— o;z.

Lemma A.17. The expression

A.2.2. Functional equation for r,. We first consider the case n = 1. Here z € C and
r,z = —z. From Proposition A.12, to get an explicit function equation, we only need to

compute ((I1°% s).

Lemma A.18. Whenn =1,

1— qz_%
(1+q (1 —gt7)

(A.36) (T, 5) =
Proof. Let K™ be the set of k € K3 such that |Pf,(k-11°)| = ¢-™. Then

(A.37) C(I%s) = > vol(K™)qg ™
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The set K - II° is given by the elements in X whose entries are all in O. This set can be

described as:

( )
a bl b2
—a —bg bg 9
|b2 +b1b3 = 7'+ad, a,d,bhbg,bg eO
—b; b d
—by —bsy —d

\ /

Let X,, be the subset with |d| = ¢~™. Choose a gy € K3 such that go - TJ = I1°, and let

SP%,K = gOSpn,Kgo_l. Then SPZ,K .19 = 1710,

Lemma A.19. Let m > 1, let K,, be the set of k € K3 with k = 1 mod P™. Then
p:k— k-1 induces a bijection between Kn,\Ks/Ks N Spl, ;o and K- 11° mod P™.

Proof. Surjectivity follows as in [MR1]. To show injectivity, we do a counting of the number
of the double cosets K,,\ K3/ K3 M Sp), ; and the number of the cosets K - I1° mod P™.

Notice that |K,,\K3/K3 N Sp, k| is equal to the number of K3 mod P™ divided by the
number of K3 N Sp;, jr mod P™.

We have that

(A.38) |K3 mod P™| = ¢*™(1 — ¢ 3q™(1 —q %)
and that
(A.39) | K30 Spl,  mod P =¢"™(1—q7%).

Thus we obtain that

¢""(1—=q¢*)(1-q")
"™ (1 —q™*)

(A.40) | K\ K3/ K5 N Spl, x| = =q¢"™(1—q?).
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On the other hand, the number of K3 - II° mod P™ is equal to the number of solutions
of b3 + bib3 = 7 + ad in (O/P)°. In the case when b; is a unit, we obtain ¢*™(1 — ¢ ')
solutions. When b; is not a unit, but d is a unit, we have ¢*™ (¢~ — ¢~2) solutions. The
case when by, d € P contributes no solutions. Thus the number of cosets K3 - II° mod P™
is equal to ¢*™(1 — ¢~2). This proves that the map k — k - I1° induces a bijection between
K \Ks/KsnN Sp;%K and K5 - I1° mod P™. O

We continue with the proof of Lemma A.18. We have that
(A.41) vol(K™) = vol(K i 41)| X, mod P™||K3 N Sp), , mod P™H.
We already know that
(A.42) | K50 Spl, ;¢ mod P = ¢®mt(1 —g7*).

m

To count the cosets of X,,, we remark that since |d| = ¢7™ < 1, we have the cases

|by| = 1 and |b;| < 1. The first case contributes ¢*™ (¢ —1)(1 — ¢!) elements, while the

second case contributes no solutions. Thus,
(A.43) | X mod P| = ¢*™ (g —1)(1—q ")
With our assumption that vol(K3) = 1, we obtain that
(A.44) VOI(K 1) = ¢ "D (1= ¢72) g7 (1 — g7

Thus, for m > 0, we obtain that

1 _
(A.45) vol(K™) = ™ (g = 1)1+ ¢ ) = g1
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Thus,

1—qgt ¢t B 1
1+q—1'1_q—1 o 1+q—1'

(A.46) vol(K°) =1 — i vol(K™) =1—

m=1

Using ((I1% s) = > vol(K™)g *™, we obtain that

m=0
(A.47) (s = —L I i gt - Lo
' ’ R (I+g (=g ')
Using the relation between s and z in equation (A.6), we get that s = —z — %, so that
(A.48) ()= LT
' ’ (1+q (1 —g*3)
as desired. 0

We have the following corollary:

.t
Corollary A.20. Whenn =1, s= —z— %, then quf C(x; 8) is invariant under z — —z.
—q

[N

Proof. We have that e

((x; s) is equal to

Nl

1—-¢*~
1 — gz 0 —1y—1
— sV (x) = (1+q ) ¥a(2)
1—q¢*2
and this is invariant under z — —z by Proposition A.12. U

Now assume n > 1. Let K} be Spe(O), and embed it into K3 with the embedding
of the F* into the subspace of F" generated by part of the standard basis e; with j =
2n —1,2n,2n + 1,2n + 2. Then

(A.49) C(x;s):/ /H|Pfj(k'k-x)|8fdk'dk.

keKs krek) I
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Lemma A.21. Given any x € X, the expression
1 _ qzn+2

g /H|73f (k- x)|> dk

kekl 7T 1

(A.50)

1s tnvariant under the action z — r,z.

Proof. Without loss of generality, we can assume € Y’ and has the form = = p - [1'®)
with p € P, as in Lemma A.15. Let Pj be the subgroup of P, where the middle 4 x 4 block
is the identity, a change of variable shows that the integral in (A.50) remains the same
with z replaced by p -z with p € Pj. Since P, C PyK/, we only need to consider the case
x = I1"®) which we now assume.

Let & be the middle 4 x 4 block of z. Then clearly [Pf;(k - x)| = |Pf;(x)| when j # n,
and |Pf,(k-x)| =|Pf,_1(x)||Pf(k-Z)|. Thus (A.50) equals:

1 - q2n+% T 5 s s ~\|S
——— | [TIP£;@) ) [Pfoa(@)fomtom [ [P f(k - )| dk
1—qg™m2
q j=1 i
1— qzn—&-% n-2 , 5
= — [ [T1Pr @ | IPfo @) G (@ 50).
1—qg™m 2
q j=1
From (A.6), the ordered set (si,...,Sy_2,8,—1 + S,) is invariant under z, — —z,. Also
from (A.6), s, = —2, — £, thus our Lemma follows from Corollary A.20. O

zZn 1
From the Lemma, after multiplying by % the inner integral in (A.49) is invariant
1—g"" "2

under z — r,z. Thus we get

, gt . .
Lemma A.22. The expression *=L—1((x;s) is invariant under z +— r,z.
1—-¢g"" "2

A.2.3. Proof of Proposition A.13.

Proof. Since r, reflects the long positive roots to long positive roots, it leaves I'1(z) in-

variant. The reflection r, also fixes all positive short roots except when a = ¢,, in which
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1 1
J— qu o — an 2

11— q_%e—a 1 qZ"_%'
Thus from Lemma A.22, T'5(2)((x; s) is invariant under r,. Thus ¢ (x; 2) is invariant under
T
Since o; maps the short positive roots to short positive roots, it leaves I'y(z) invariant.

It also acts as a permutation of S+L\ai where o; = €; — €;11. Thus

1 —qge ™ -
fi(2) (W)

is invariant under ;. Since

1 — qe—ai _ 1— qzi—2i+1+1

1 _ q—le—az‘ - 1 _ qzi—zzqu—l’

from Lemma A.17, we see I'y(2)((x; s) is invariant under ;. Thus {(z; 2) is invariant under
g;.

As the Weyl group W, is generated by o; and r,,, we get 5 (x; z) is invariant under Wy, O

APPENDIX B. UNRAMIFIED WHITTAKER FUNCTION ON METAPLECTIC GROUP

Denote an element in 5;7; by (g,¢) with g € Sp, and ¢ = £1. Recall the functions in
C’j’%(]\fg\%, 0.1) are genuine; namely for f(g,¢) in this space, we have f(g.¢) = (f(g.1)

Recall that the character 0, ; is defined on N, as follows:

(B.1) Oy (u, ) = C(ura +ugs + ... + TUpni1)

where 1 is an additive character trivial on O but nontrivial on 771O.

We are interested in computing the spherical functions in C;’%(NQ\EEL,GQ, ). Let T

T

n—1

denote the diagonal matrix diag[r", 7" 1, ..., 1,1,771...77"] € K,. Let .0, denote the

character on Ny given by
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02(u, ) = C(Tura + Tugs + ... + TUppt1)-

Then we have an isomorphism of H(QEL, Ky)—modules:

(B.2) i, (N2\Spa, 05.1) = Sic, (N2\Spn, 05

given by f — f7 where f7 € Sk, (No\Sp,, -05") is given by f7(g) = f(TgT ).
We first exhibit spherical functions in Sk, (N2\Spn, 65 ).

Let A € Af, and let TI* be the diagonal matrix

An —An

diag[r™, ... 7t w7 M.

——rel ~
It is well known that Sp, = U,,+ No(II*, 1)K, as a disjoint union.

Let x = x. be an unramified character on the group A, of diagonal matrices given by

(B.3) W) = [ =T

This character extends to a genuine character y of A, the double cover of As:

(B.4) X(a,¢) = x(a)¢yy, (a)™!, a€ A,.

Here 1), is the character 1) composed with multiplication by 7 and -, is a fourth root of
unity defined by the equation following (1.5) in [BFH]. The unramified Whittaker function
W5(g) in the principal series representation I(x) will be normalized so that W5 (1s,,1) =1
and will satisfy W5 (g) = Wyz(g) for all w € Wa, where wy(a) = y(w'aw), with w being

the inverse image of w in %n
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The proof in [BFH] shows W (IT*, 1) equals

’yd,f(l:[A)—l(Sz%(f[)‘) Z w (H a N l—q¢ o 5 H = aia»)(ll - a-a.‘l)> .

1
wEWs i=1 (14 (@, p)g 2a)(1 — o]

1>]
Here (p,p) is a Hilbert symbol taking value +1 and s is the modulus function of the

Borel subgroup of Ny. We rewrite above formula in terms of Macdonald polynomial:

Theorem B.1. For z = (z1,...,2,) in C", let x and X be defined as in (B.3) and (B.4),
then

(B.5) W 1) = Wi(I, 1) = V(T )y, (1Y) 103 (T QY (2)

is a spherical function in C%(NQ\EE);, 051, Here when B € S, tff = 0; when 3 is a short

root in S, (t%)% = —(p,p)q_%.

As a consequence of the isomorphism (B.2) and the fact that II* is stabilized under
conjugation by 7 we get that {¥2} also serve as spherical functions in Sk, (N2\Spn, 01).
It is well known in this case that the map f — f(2) from H(Sp,, K>) to C[q¢7, ¢~%|"?
is onto. Since ¢t = 0 for all § € S, from the definition of Vj(¢) in equations (3.8) and

(10.1) of [Mc1] we have

Vi(t'') =1 VA € A

Note that it is clear that the volume of N\ Ny(IT*, 1)K, equals 65 L (ITY).

APPENDIX C. PROOF OF T(V!) = ¢(2)T(¥2)

C.1. Definition of the integral in (6.1) when F = U!. The integral in (6.1) is clearly
well defined if F' is compactly supported. For W, the spherical function described in
Theorem A.2, through the identification Sp, \Spa, = X, Vl(g) = U,(¢g7'TgJ) defines
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a spherical function on Sp, \Spa,. The integral (6.1) still can be defined for F' = W,
though the definition is more subtle.

Denote by 7. the induced representation I(x_,(.)). Then =, is induced from an unram-
ified representation 7, of GLs,. Thus a model of 7, is given by a space of functions of two

variables ¢(g, h) with g € Spa,, h € G Ls, satisfying:

hy
L. Qb( gah):gb(gah’h’l)?
hi
2. ¢(g,h) as a function of g is compactly supported over P\Spa,.
3. For fixed g, ¢(g, h) is a vector in 7, with model in [ ndgﬁ”}{l. Here GL, k is thought of
as a subgroup of G Lg, and G Ls, embeds in Sp,, as the Levi factor of the Siegel parabolic.

Let Vg be the subgroup of elements v € V' such that Fu = uF, concretely

TY
VE: ’U: |X7Y€8n
15, Y X

Lemma C.1. There is an unramified vector ¢.(g,h) in the space of m, such that

(C'l) \Pi(GOQ) = \Ilz(g_lEgJ) = ¢Z(J2n60vg, 12n)dva

veVE

and the above integral converges absolutely.

Proof. Use Ly(¢) to denote the above integral with ¢, replaced by ¢ a vector in space of
m.. We let ¢(9') = ¢(g'g, 12n) where ¢’ € Sp, k. Then ¢ is a left-invariant under the
Levi subgroup GL,, i of Sp, k.
We remark that if u € Vg, then eou_leo_lTeoueal = T. Thus we have that GOVEegl is
the unipotent subgroup for the parabolic subgroup in Sp, x with Levi subgroup GL, .
Thus L€61 is an intertwining operator on 7, considered as a representation of Sp,, k; it

satisfies L1 (m.(h)¢) = L-1(¢). Thus L1 is a Spy g invariant linear form on .. By
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work of Zhang in [Zha|, such a form is unique up to multiple. Proposition A.5 implies the

Lemma. O

With the previous Lemma, the precise definition of integral (6.1) in the case F' = W! is

through a series of compactly supported integrals, as in Lemmas 8.3 and 8.4 of [MR1].

C.2. The image of Ty, (V1).
Proposition C.2. There is a function c(z) on C" such that Te, (V') = c(2)V? for z € C™.

Proof. In the definition of Ty (¥!) in [MR1] we can replace ¢, by any vector ¢ in 7,. Let
F, be the function on Sp, x\Spa, such that F,(eyg) is given by the integral in (C.1) with
¢, replaced by ¢. Through the process of iterated integration in [MR1], we can define a
linear map 7" on the space of 7, ® wy-1 to functions on :S?)n

It is shown in Lemma 6.3 that 7" is a map from 7, ® wy-1 to [ nd%}@i i where 65 is

defined in (B.1). Observe that EEL acts on 7, ® wy-1 through the embedding j of Sp, in
Span. Since m.(j(h))$-(j(9)) = ¢-(j(gh)) for g, h € Sp,, we get:

Lemma C.3. The map T s a :S'El—module homomorphism from m, ® wy-1 to Ind%"@ii.

Recall that N™*! is defined by

Uu * *
Nn—H _ S 7
- Loy, S p2n|u € Znp

u*

Lemma C.4. Let u € N, then T(m,(u)¢ @ wy-1(u, 1)®) = T(¢p @ ®)0'(u), where for
u = (Ui7j) € Nn+1

Gl(u) = w(—um — 'U/273 — ... — un,l,n).

Proof. We have that T'(7.(u)¢ ® wy-1(u, 1)®)(g, 1) is equal to
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[ otawitgmbiuis, s @l (g @o0),
wEU}E\N"Jfl
Since j(g) normalizes Nt we write j(g)u = u/j(g) and change variables w — wu/~'.

We obtain the above integral is

O,(u/ ™) / d(e0wj(g))0a(w)wy-1(w)wy-1(g)P(0).
wGU}E\N”‘H

Since 64(u'~') = 0'(u), we obtain the Lemma. d

The Jacquet module Jgni1 (7. @ wy-1) is considered in [GRS4]. It is a %n module
defined in (1.6) of [GRS4]. The above lemma shows that T factors through to a map T

from Jygnss g (7 @ wy1) to Ind3P6; 1. Tt follows from Theorem B of [GRS4] that

‘]Nn+1,0' (7, @ wy-1) E 7,

where 7, = I(x) when «; = ¢* in the definition (B.3) of x.

Since there is a unique Whittaker model for 7., the map T is the unique (up to scalar
multiple) map of 7, into [ nd%}ﬁi L. The function Ty, (¥!) is the image of the unramified
vector in 7, ® wy-1. The image is clearly an unramified vector in I nd% 051, thus T, (V1)
corresponds to the image of the unramified vector of 7, under the Whittaker map to
1 ndjé\g"@i L. This image is just the unramified Whittaker function of 7,. Thus we have

proved that Tp,(¥1)(g) is a multiple of ¥2(g). O
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