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ABSTRACT OF THE THESIS

A Framework for Enabling High-End High

Performance Computing Resources as a Service

by Moustafa AbdelBaky

Thesis Director: Manish Parashar

In an era of data explosion and analysis, researchers across the globe are try-

ing to convert massive quantities of complex data into useful knowledge using

Computational and Data-Enabled Science and Engineering (CDS&E) applica-

tions. CDS&E applications are gaining traction as an important dimension of

Science, Technology, Engineering, and Mathematics research. These applications

require powerful processors with fast interconnects, extreme large scale, and elas-

tic resources. While high-end High Performance Computing (HPC) resources

provide the necessary requirements, the complexity of such systems has grown

exponentially. Furthermore, due to their high cost, limited availability, and high

demand, the queue wait times to run applications on these systems is in the order

of months. All of the above challenges prevent their adoption as a mainstream

solution.

On the other hand, Cloud computing is emerging as a dominant computing

paradigm that offers many advantages. Consequently, early adopters have looked
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into using Clouds to solve the HPC model challenges. Initially, CDS&E appli-

cations were run on commodity Clouds, but this was found to be appropriate

only for certain classes of applications. Other approaches explored complement-

ing HPC resources with Clouds but failed to address all challenges in the HPC

environment. Cloud providers also tried to provide HPC as a Cloud using small

HPC clusters connected to form a larger Cloud but were hindered by small scale

and limited performance. These approaches fall short of providing the high per-

formance necessary for CDS&E applications.

In this document, we propose a new approach to achieve the notion of HPC

as a Service. This approach targets existing high-end HPC resources and in-

vestigates how a Cloud abstraction can be applied to provide a simple interface

and support real-world applications. In particular, the application of Clouds to

supercomputers is discussed, tested, and validated on an IBM Blue Gene/P su-

percomputer. The proposed framework transforms Blue Gene/P into an elastic

cloud by bridging multiple systems to create HPC federated Clouds, support-

ing dynamic provisioning and efficient utilization, and maximizing ease-of-use

through an as a Service abstraction. In order to effectively illustrate the benefits

of such a concept, the proposed framework is demonstrated using a real-world

ensemble application.
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Chapter 1

Introduction

1.1 Motivation

Computational and Data-Enabled Science and Engineering (CDS&E) applica-

tions are becoming increasingly important in understanding complex processes

in multiple domains including Aerospace, Automobile, Business Analytics, En-

tertainment, Finance, Manufacturing, Oil & Gas, and Pharmaceuticals. As sci-

entists and engineers try to gain a greater knowledge of the complex natural,

engineered, and social systems, modeling and large-scale simulations of these ap-

plications becomes a critical issue, especially in reducing risks and supporting

quantified decision making.

CDS&E applications use parallel programming techniques to take advantage

of High Performance Computing (HPC) resources (e.g. supercomputers and large

clusters) in order to solve advanced computational and data-intensive problems

that cannot be solved otherwise. Due to their growing adoption in various fields,

the demand for efficient systems that can run such complex applications and tools

that can facilitate their development and deployment have become a necessity.

In the remainder of this document the following terms will be interchanged:

high performance computing and HPC. The terms “HPC as a Cloud” and “HPC

as a Service” will also be interchanged. The terms Computational and Data-

Enabled Science and Engineering (CDS&E) applications and scientific applica-

tions will also be interchanged.
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1.2 Problem Description

Advances in computing technologies have enabled the creation of large paral-

lel computing systems at a relatively inexpensive cost. These high-end systems

are specifically designed to run CDS&E applications with high efficiency. Their

massive scale, compute power, and fast interconnects among processors has al-

lowed these applications to run faster. However, with the increasing size of these

systems, their complexity has grown as well, requiring relatively low-level user

involvement and expert knowledge of such systems in order to achieve the desired

performance and efficiency. As a result, at the highest-end, only a few “hero”

users are able to effectively use these cutting edge systems.

Furthermore, these high-end systems only support static allocations and do

not typically support elastic provisioning and dynamic scalability. Consequently,

users have to manually stop the application, change the resource allocation, and

resubmit their application to adjust the resources as needed. This required user

interaction is a detriment to the wide adoption of such systems, due to their

complexity. Finally, while these systems are more available and cheaper than

before, they are still quite expensive and thus access to these systems can be an

issue.

1.3 Problem Statement

As the importance of CDS&E applications grows, the efficient development and

deployment of such applications becomes a major issue. While the requirements

of CDS&E applications are well served by high-end supercomputing systems that

provide the necessary scales and compute/communication capabilities, accessing

and running applications on these systems remains a tedious task, which has

impacted their adoption as a mainstream solution for CDS&E applications.
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1.4 Research Overview

This research explores how a cloud abstraction can be used effectively to support

real-world CDS&E applications. Clouds provide simple as a Service access to

elastic resources and can address some of the challenges faced by scientists using

the current high-end resources. Specifically, this research explores the concept of

an elastic HPC as a Cloud, the software infrastructure needed to support such an

abstraction, and how the abstraction can be used by CDS&E applications.

In addition, this work discusses the development of a prototype framework

that transforms the IBM Blue Gene/P supercomputer into an elastic cloud, sup-

porting dynamic provisioning and efficient utilization while maximizing ease-of-

use through the as a service abstraction. The use of this framework has been

demonstrated on an ensemble oil reservoir modeling application. This applica-

tion performs history matching using an Ensemble Kalman Filter workflow on

an elastic HPC as a Cloud infrastructure. This infrastructure consists of geo-

graphically distributed Blue Gene/P systems. The design of the aforementioned

framework and application are also described in detail.

1.5 Research Contributions

The contributions of this work are:

• Exposing high-end supercomputing resources /it as a Service

• Enabling elastic and dynamic allocation of high-end supercomputing re-

sources

• Providing ease of use in deploying and running CDS&E applications on

complex high-end systems

• Prototyping a framework and showcasing a proof of concept that can be
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generalized to provide HPC as a Service in all three layers of Cloud com-

puting (Infrastructure as a Service, Platform as a Service, and Software as

a Service)

1.6 Research Impact

HPC as a Service can support CDS&E applications in multiple ways. It can pro-

vide a platform for applications when local infrastructure is not available. It can

also supplement existing platforms to provide additional capacity or complemen-

tary capabilities to meet heterogeneous or dynamic needs. For example, Clouds

can serve as accelerators or provide resilience to scientific workflows by moving

the execution of the workflow onto alternative or fewer resources when a failure

occurs.

The simplicity of the Cloud abstraction can alleviate some of the problems

that scientific applications face in the current HPC environment. For instance, the

increasingly important and growing Many Task Computing (MTC) applications

can benefit from the abstraction of elastic and/or readily accessible resources,

ease of use, and the ability to easily scale up, down or out. Finally, Cloud com-

puting can not only help scientists address today’s problems more effectively, but

also allow them to explore new ways of formulating their application using the

abstraction of on-demand access to elastic resources.

1.7 Thesis Overview

This document is organized as follows: Chapter 2 will present the background

and related work to this research, focusing on CDS&E applications, their clas-

sification, the current challenges in HPC environments, Cloud computing, and

its benefits, the benefits of creating HPC Clouds, and a taxonomy of the current
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related work in this area. Chapter 3 will cover the design approach and archi-

tecture of the proposed framework and the necessary steps in achieving HPC

as a Service. Chapter 4 presents the detailed implementation of the prototype

framework. Chapter 5 illustrates the usefulness of such framework by presenting

a real-world CDS&E application. The overall scenario was demonstrated at the

IEEE SCALE2011 Challenge in Orange County, California, and was awarded the

first place. Chapter 6 provides the conclusion and outlines the future work and

research agenda.
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Chapter 2

Background and Related Work

2.1 CDS&E Applications: Classifications and Requirements

The wide range of CDS&E applications [13] have been broadly classified, based

on their requirements and execution behaviors, into 3 classes: high performance

computing (HPC) [20], high throughput computing (HTC), and many task com-

puting (MTC) [37].

HPC applications are tightly coupled with large amounts of inter-processor

communication and typically require large amounts of computing power for short

periods of time. In addition to the large scale, fast interconnects among processors

are needed. Message Passing Interface (MPI) applications are an example of this

class.

On the other hand, HTC applications are usually loosely coupled, where com-

munication between processors is limited or non-existent. Thus, fast interconnects

are not required. While HTC applications also require large amounts of comput-

ing power, they typically have much longer execution times than HPC applications

(months or years, rather than hours or days). MapReduce is an example of this

class of applications.

Finally, MTC applications are emerging to close the gap between HPC and

HTC applications [38]. MTC applications can consist of loosely coupled tasks,

where each of these tasks is a tightly coupled application. In addition, each of

these tasks are characterized by running for relatively short periods of time (i.e.

seconds or minutes, rather than hours, days or months). Ensemble applications



7

[12] are an example of this class. MTC applications require fast interconnects, can

potentially scale to extremely large scales (Peta & Exa scale), and often involve

dynamic workflows that require elastic resources.

2.2 Shortcomings of Current HPC Resources

CDS&E applications require powerful hardware with high-speed interconnects,

extremely large scale, and elastic resources, which should be allocated program-

matically. While high-end HPC resources (e.g. supercomputers) provide the

necessary performance, scale, and fast communication, these systems have a few

setbacks that prevent their adoption as a mainstream solution. These setbacks

can be summarized as follows:

Complexity: Current supercomputer systems are often complicated to use.

They require low-level involvement to manage, allocate, and run applications.

Scientists using these systems often spend valuable time administering the system,

when this time could be spent on making contributions to their field of study.

In addition, supercomputer systems provided by different manufacturers lack a

uniform interface. As a result, scientists and engineers must take the time to

acquire new system-level knowledge each time they use a different machine.

Lack of Elasticity: Due to the large demand and high cost of operation, these

systems must be fully utilized in order for the system owners to offset the to-

tal cost of operation (TCO). As a result, the systems are provisioned to ensure

their full utilization, which in turn leads to static allocations of these resources.

Scientists and engineers have to tailor their applications to fit these resources,

which often results in their developed algorithms being constrained by the sys-

tem they are running on. Furthermore, these static allocations prevent scientists

and engineers from running dynamic workflows that require elastic resources; for

example, ensemble applications workflows require a changing number of resources
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depending on the required resolution of the solution and the convergence rate of

the workflow. In the current environment, this is not feasible due to such rigid

allocations.

Queues: Due to the system owners’ need for ‘maximum utilization’ of hard-

ware, queuing mechanisms have been implemented on the various systems. A

queuing system accepts submission of jobs from all users on the system and then

executes them one after the other based on the available machine resources. Due

to the large demand for these resources and their scarcity, queue wait times to

run applications on such systems, while successfully guaranteed 100% utilization,

have grown to the order of months, which in return has limited the access to

such resources, and constrained scientists and engineers from truly utilizing these

systems. For example, scientists and engineers can never experiment with what-if

scenarios due to the long queue times. Furthermore, small bugs in applications

(common and sometimes unavoidable in large codes) can result in the early ter-

mination of the application. After fixing such bugs, users often resubmit their

jobs to the queues and end up having to wait for long periods of time for their

re-execution.

Price: While advances in computer architecture have brought about large

systems that are relatively less expensive than they were a few years ago, these

high-end systems are still quite expensive. Consequently, access to such systems

is limited to large universities and national laboratories that can afford them,

while researchers in smaller and mid-sized organizations are often left out from

using them and are limited to smaller HPC Clusters.

While current state of the art high-end HPC systems are well suited to run

CDS&E applications, these systems do not suit all needs of such applications

making the current HPC model far from ideal due to the fact that it is complex,

expensive, and not widely available. As such, the current HPC model cannot

serve as a mainstream solution.
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2.3 Cloud Computing

2.3.1 A Dominant Computing Paradigm

Cloud computing [14] has emerged as a dominant paradigm that has been widely

adopted by enterprises. Cloud computing is revolutionizing the enterprise world,

much as the Internet did not so long ago. Clouds are fundamentally changing

how enterprises think about IT infrastructure, both internally and externally.

They provide on-demand access to always-on computing utilities, an abstrac-

tion of unlimited resources, a potential for scale-up, scale-down and scale-out as

needed, and the opportunity for IT outsourcing and automation. Furthermore,

dynamically federated “Cloud-of-Clouds” infrastructure can support heteroge-

neous and highly dynamic applications requirements by composing appropriate

(public and/or private) Cloud services and capabilities. Finally, Clouds provide a

usage-based payment model where users essentially “rent” virtual resources and

pay for what they use.

Consolidated and virtualized data centers typically underlie these Cloud ser-

vices, exploiting economies of scale to provide attractive cost-benefit ratios. Al-

though it is still in its early stages, Cloud computing is already reshaping the IT

world in fact, according to The Wall Street Journal, four out of five businesses are

moving or planning to move some of their business functions to Cloud services.

A recent report by Gartner estimates that Cloud services will be a $150 billion

industry by 2015 [6].

2.3.2 Definitions

Cloud computing aims to make the vision of ‘computing as a utility’ a reality. In

general, a Cloud can be defined as a scalable set of network enabled on-demand

IT services with associated Quality of Service (QoS) guarantees [42]. As a utility,
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Figure 2.1: Cloud layered architecture (Source: The case for Cloud computing by
Robert Grossman [27])

a Cloud can be accessed in a simple and pervasive way. Cloud computing offers

elasticity to applications by providing on-demand access to resources over the

Internet through a pay-per-use pricing model.

2.3.3 Layers

Cloud computing provides a layered set of service abstractions (software, middle-

ware, and infrastructure) as shown in Figure 2.1.

At the lowest level, Infrastructure as a Service (IaaS) provides raw infrastruc-

ture as a service, where users can rent bare virtual machines to increase capacity

and customize them as needed. Platform as a Service (PaaS) provides the next

abstraction layer of Cloud computing, where users can rent Cloud stacks that they

can use to develop and deploy their customized Cloud services. Finally, Software

as a Service (SaaS) provides the highest level Cloud abstraction, where users can

rent and use complete software solutions that are hosted in the Cloud.

Cloud services thus represent a new paradigm for computing that is drastically

impacting price/performance behavior and trade-offs for a wide range of applica-

tions and IT services. From a provider perspective, Cloud abstractions support

building larger data centers that exploit unprecedented economies of scale [4] and
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lead to consolidation, better utilization, and efficiencies. From a users’ perspec-

tive, Clouds largely eliminate the startup costs associated with setting up a data

center, provide cost associativity benefits (i.e. 1000 computers for 1 hour has

the same price as 1 computer for 1000 hours), and provide a resilient infrastruc-

ture that can be easily configured to the users’ preference. Furthermore, hybrid

Clouds that federate different Clouds’ services can match complex applications

requirements, allowing such applications to be deployed easily and effectively.

2.4 HPC and Clouds

2.4.1 Motivations for HPC as a Cloud

At the same time that Cloud computing is redefining IT, extreme data and com-

pute scales are transforming science and engineering research by enabling new

paradigms and practices - those that are fundamentally information/data-driven

and collaborative. CDS&E applications are providing unprecedented opportuni-

ties for understanding and managing natural and engineered systems, and provid-

ing unique insights into complex problems. Recognizing this data and compute

driven transformation of science and engineering in the 21st century, the National

Science Foundation (NSF) is rethinking the national Cyberinfrastructure as part

of CIF21 [10].

Analogous to the role of Cloud computing in enterprise IT, HPC as a Cloud

can enable the outsourcing of many tasks related to the undesirable ‘scientists

as system administrators’ effect, such as deploying, configuring and managing

infrastructure, and enable scientists to focus on their field of study. HPC as a

Cloud and the associated standardization can also improve productivity, facili-

tate the sharing of research results, and enable the reproducibility of associated

computations. HPC as a Cloud can also democratize access to computational

and data resources (by providing access to researchers who do not have adequate
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local infrastructure), which has been shown to significantly improve research pro-

ductivity [9]. In fact, a recent survey of DoE users conducted by the Magellan

team found that the top motivations for users plugging into the Cloud was ease of

access to computing resources (cited by 79%), the ability to control software en-

vironments (59%), and the ability to share the setup of software and experiments

with peers (52%) [5].

However, it is also critical to look beyond the benefits of outsourcing and un-

derstand application formulations and usage modes that are meaningful in a HPC

as a Cloud infrastructure. The effective utilization of emerging data and compute

intensive application workflows is one such example. Additionally, it is important

to think about how this abstraction can enable new practices in science and en-

gineering. The simplicity, pervasiveness, and power of the Cloud abstraction can

also potentially alleviate some of the problems CDS&E applications face in the

current HPC environments. For example, MTC applications, which are growing

in importance, can benefit from an abstraction of elastic and/or readily accessible

resources and the ability to easily scale up, down or out.

2.5 Related Work

2.5.1 Current Landscape

Clouds are rapidly joining high-performance computing systems, clusters, and

Grids as viable platforms for scientific exploration and discovery. There have been

several early experiments aimed at using Clouds to support scientific applications

[42]. These include:

• HPC in the Cloud: Focused on the outsourcing of entire applications by

researchers to current public and/or private Cloud platforms.
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Figure 2.2: Hybrid HPC/Grid + Cloud usage modes for supporting real-world
science and engineering applications

• HPC plus Cloud: Focused on exploring scenarios where Clouds can com-

plement HPC/Grid resources with Cloud services to support science and

engineering application workflows, for example, to support heterogeneous

requirements, unexpected spikes in demand, etc.

• HPC as a Cloud: Focused on exposing HPC/Grid resources using elastic

on-demand Cloud abstractions, aiming to combine the flexibility of Cloud

models with the performance of HPC systems.

2.5.2 Existing Approaches and Research Challenges

HPC in the Cloud

Current Cloud platforms can provide effective platforms for certain classes for

CDS&E applications, such as HTC applications. There have been several early

projects that have reported successful deployments of applications on existing

Clouds [18, 21, 30, 31]. Running these applications typically involved using virtu-

alized commodity-based hardware, which is provisioned on-demand by commer-

cial Cloud providers, such as Amazon EC2 or Microsoft Azure.

A recent technical report by G. Fox & D. Gannon has extensively studied

running HPC applications in the Cloud [24]. According to this study, commodity
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Clouds work effectively only for certain classes of HPC applications. Examples

of these applications are embarrassingly parallel applications that analyze inde-

pendent data or spawn independent simulations that integrate distributed sensor

data, science gateways and portals, or data analytics that can use MapReduce-

like applications. In addition, research work by Fox et al. [23] and Juve et al.

[29] show that different variants of MapReduce computations do well on current

Cloud platforms, such as iterative MapReduce. In general, HPC applications

with minimal synchronization and minimal communications requirements, small

I/O requirements, and modest scales are well suited for current Cloud platforms

and can be successfully outsourced to Clouds. In cases where existing application

formulations are not directly suited for available Cloud platforms, alternate for-

mulations need to be explored before these applications can benefit from Cloud

services. For example, the asynchronous replica exchange [49] formulation is a

novel, decentralized, asynchronous and resilient formulation of the replica ex-

change algorithm for simulating the structure, function, folding, and dynamics of

proteins, and has been successfully deployed on existing Clouds.

Research Challenges: Several aspects of current commercial Clouds continue

to limit the more general deployment of applications onto Cloud platforms. These

aspects include the capabilities and heterogeneity of the typical underlying hard-

ware and the lack of high-speed interconnects to support data exchanges required

by these applications. In these cases, if Clouds are the platform of choice (possibly

due to availability), then alternate formulations must be explored, such as in the

case of the replica exchange example above. The cost and relative performance

can still be a concern [18], even in the case of suitable CDS&E applications. For

example, the Magellan report cites [46] that Cloud services were found to be 7

to 13 times more expensive. Finally, HPC applications based on loose or bulk

synchronizations cannot take advantage of the scalability, elasticity, and fault-

tolerance due to the high latency in commercial Clouds. For example, Iosup et
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al. [28] evaluated the performance of Amazon EC2 for scientific workloads and

found that the reliability and the performance of EC2 are low. However, the

performance and reliability of virtualized resources depends heavily on the un-

derlying hardware and network. Younge et al. [47] compared the performance

of various virtualization technologies against bare-metal on a high performance

cluster and InfiniBand network provided by FutureGrid. The result was that the

performance on a virtualized HPC environment is close to that of bare-metal in

this case.

HPC plus Cloud

Running CDS&E applications on more traditional HPC resources and bursting

onto a Cloud when there is a spike in the demand for computing capacity, or

a specific capability is needed to meet heterogeneous applications requirements

(also known as Cloud bursting), is an attractive approach for heterogeneous and

dynamic application workflows. This holds true especially as CDS&E applications

are increasingly becoming end-to-end workflows consisting of coupled simulations

and integrated I/O and data analytics pipelines. A hybrid Cloud plus tradi-

tional HPC infrastructure can also support new and potentially more effective

usage modes and enable new application formulations that use Clouds to achieve

acceleration, resilience, or more appropriate cost/power/performance trade-offs.

Existing efforts that have explored such hybrid infrastructure include InterGrid

[19] and meta-schedulers [16], which interconnect different grids. There are also

efforts to include Clouds, such as Amazon EC2, into integrated computing infras-

tructures. Buyya et al.[17] described an approach of extending a local cluster to

Cloud resources using different scheduling strategies, while Ostermann et al. [36]

extended a grid workflow application development and computing infrastructure

to include Cloud resources and experimented with Austrian Grid and an aca-

demic Cloud installation of Eucalyptus using a scientific workflow application.
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Similarly, Vazquez et al. [41] proposed architecture for an elastic grid infrastruc-

ture using the GridWay meta-scheduler and extended grid resources to Globus

Nimbus. Parashar et al. have also explored such a hybrid-computing infrastruc-

ture, which integrated clusters with Clouds [32] and Grids with Clouds [33] and

enabled on demand autonomic Cloudbursts using CometCloud [34].

Research Challenges: The federation of traditional HPC/Grid/Cluster re-

sources with elastic Cloud resources provides a hybrid infrastructure with the

ability to dynamically add (or remove) capacity as well as capability. While

such hybrid infrastructure can support new and potentially more effective usage

modes, and even enable new application formulations, its inherent heterogeneity

and dynamism presents significant challenges. For example, the different resource

classes available in such a hybrid infrastructure can vary significantly in their

usage costs, configuration, performance, availability, runtime behaviors and the

guarantees for quality of service provided. On the other hand, on the application

side, one is often faced with dynamic requirements and constraints. As a result,

provisioning and scheduling an appropriate mix of resources for these applications

requires considering appropriate cost/performance trade-offs. Furthermore, these

requirements/constraints may change, due to a failure or an application event re-

quiring dynamic system and/or application adaptations. As manually monitoring

these dynamic behaviors and requirements and enforcing adaptation can quickly

become unfeasible, autonomic management approaches become crucial for such

workflows. A challenge also exists in programming the framework required for

specifying workflow structures as well as requirements and constraints.

HPC as a Cloud

Due to the limitations of commodity Clouds in serving general HPC applica-

tions, Cloud providers realized the need to provide Cloud solutions that are built
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specifically for HPC applications (e.g. hardware with faster processors and inter-

connects). Some providers have even provided non-virtualized hardware in order

to provide the bare-bone performance that these types of applications require.

This is commonly referred to as “HPC as a Cloud” (i.e. running HPC applica-

tions on HPC resources that are exposed as on-demand resources using Cloud

computing abstractions, in order to take advantage of the Cloud model without

sacrificing the HPC performance that scientific applications require). The current

approach uses small HPC clusters that can be connected together to form a large

Cloud. These HPC clusters can be virtualized or non-virtualized to provide bet-

ter performance. Amazon EC2 Compute Cluster, Azure, Adaptive Systems, and

Platform HPC Computing are commercial providers that use the virtualized ap-

proach, while SGI and Penguin Computing on Demand are commercial providers

using the physical approach. In addition, Goscinski et al. [26] proposed and

validated a similar academic approach for providing HPC as a Cloud using small

clusters, known as HPCynergy. While HPCynergy is a more effective approach

than commercial offerings, the scale of HPCynergy is relatively small (384 cores)

especially for realistic science and engineering applications. Finally, in an early

approach, Barcena et al. [15]have tried to create a grid-supercomputing envi-

ronment, however their approach was specific to a certain problem and a certain

system. Furthermore, Wilde et al. [45] proposed a parallel scripting framework

to easily deploy MTC applications on supercomputing resources. However, their

approach does not solve other HPC challenges such as elastic resources or long

queues.

Table 2.1: Summary of Current HPC as a Cloud approaches

Small HPC clusters that are connected together
Physical Solutions Virtualized Solutions
e.g. Penguin on Demand, Silicon
Graphics, HPCynergy

e.g. EC2 Compute Cluster, Azure,
Adaptive Systems, CloudCycle
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Research Challenges: HPC as a Cloud has a clear potential to alleviate some

of the problems scientific applications face in the current HPC environment, and

significantly improve the usability and productivity of traditional HPC overall.

However, the current HPC as Cloud offerings have several limitations.

• Scale & Performance: The scale of current commercial HPC as a Cloud is

very small (128 processors on Amazon HPC instance vs. 294,912 processors

on an IBM Blue Gene/P), and therefore cannot accommodate the require-

ments of CDS&E applications. In addition, although the performance of

these Cloud services is better than commodity Clouds, they are still out-

performed by local HPC clusters that are specifically designed to support

these applications [48]. Finally, spending more (i.e. scaling beyond a physi-

cal cluster) does not guarantee better performance, and performance can in

fact get worse (due to communication overhead), contradicting one of the

main premises of Cloud computing.

• Provisioning: In HPC as a Cloud, provisioning refers to building a virtual

layer to easily configure and access HPC resources in a “Cloud-like” manner.

Building this virtual layer can be very challenging. For instance, the layer

should be general enough that it can encompass different HPC systems

and architectures. However it should also be specific enough to take full

advantage of the underlying resources.

• Elasticity and On-demand Access: Elasticity by definition is the abstraction

for providing on-demand access to resources and the ability to scale up,

down or out as needed. However, most HPC resources currently use a

batch-queue system for running applications, which in turn prevents on-

demand access to resources. Much research is needed in order to provide

elasticity on top of batch-queue systems, and support on-demand access to

these systems as needed.
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• Programmability: While most web applications running on commodity

Clouds are agnostic of the underlying hardware, scientific applications are

often customized to the underlying hardware. For instance, maintaining

data locality when running scientific applications can minimize communi-

cation overhead. Therefore, building scientific applications that are agnostic

to the underlying hardware without compromising performance is essential.

Finally, exposing Cloud abstractions provided by HPC resources (e.g. elas-

ticity, data locality, and ease of use) to scientific applications is also critical.

2.5.3 Summary & Conclusion

As previously discussed, the initial approaches to providing HPC as a service

were aimed at deploying scientific applications on current cloud platforms built on

commodity hardware. This approach is usually referred to as HPC in the Cloud.

While this approach is effective for “suitable” applications, e.g. applications that

are loosely synchronized and have minimal communication requirements, it is not

effective for more tightly coupled and computationally demanding applications.

Reasons for this include the limited capabilities and power of the typical un-

derlying hardware and its non-homogeneity, the lack of high-speed interconnects

to support data exchanges required by these applications, as well as the physical

distance between machines. Another approach for taking advantage of cloud com-

puting for HPC is using hybrid infrastructure that combines HPC resources and

public clouds, i.e., HPC plus Clouds or Cloud bursting. Cloud bursting provides

some advantages to HPC applications such as acceleration, conservation, and re-

silience, and can support hybrid HPC workflows (e.g. HPC + Data Analytics).

However, even with these approaches, the issues related to the provisioning and

use of high-end HPC resources remain. While the HPC as a Cloud approach is

more effective and a better alternative for CDS&E applications, current offerings

and research fall short of providing all of the benefits of Cloud computing. In
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addition, these offerings at current scale are still very small, their performance is

still worse than standalone HPC systems, and they have limited QoS. A summary

of the approaches and their advantages is presented in Table 2.2.

Table 2.2: Summary of HPC and Cloud Landscape

Advantages DisadvantagesTypical Ap-
plications

Sample Sys-
tems

HPC in the
Cloud

Easy to
use, infinite
resources

Low per-
formance,
expensive

E/P, L/S, A,
HTC

Amazon
EC2, Mi-
crosoft Azure

HPC as a
Cloud

Elasticity,
on demand
access

Small scale,
limited QoS,
medium
performance

S, M, HPC,
MTC

EC2CC, SGI,
POD

HPC plus
Cloud

Acceleration,
Conserva-
tion, Re-
silience

Different
prices, per-
formance,
and avail-
ability of
resources

HPC + Ana-
lytics / Visu-
alization

CometCloud,
InterGrid,
GridWay

E/P Embarrassingly Parallel M Metaproblems
L/S Loosely Synchronous HPC High Performance Computing
S Synchronous HTC High Throughput Computing
A Asynchronous MTC Many Task Computing

HPC+Clouds: An Attractive Solution or an Elusive Approach?

At this point, it seems like Cloud computing is an elusive approach, which can

only partially improve the flexibility of HPC resources, and the cost for such im-

provement is a degradation in performance. While current research would argue

that Cloud computing is ineffective in solving the problems of High Performance

Computing, we argue that this is not the case. Instead, we show that Cloud com-

puting can effectively improve the HPC model, without sacrificing the necessary

performance for such applications. This research proposes an alternate approach

that uses large high-end HPC systems, which can be provisioned as Clouds.

In the remainder of this document, we explore how a cloud abstraction can

be effectively used to provide a simple interface for current HPC resources and
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support real-world applications. In particular, the benefits of the cloud paradigm,

such as ease of use and dynamic allocation, and their application to supercom-

puters. Specifically, these benefits are discussed, tested, and validated on the

supercomputer, IBM Blue Gene/P. The underlying framework essentially trans-

forms the Blue Gene/P supercomputer into an elastic cloud, bridging multiple

systems to create HPC federated Clouds and supporting dynamic provisioning

and efficient utilization while maximizing ease-of-use through an as a Service

abstraction.

In order to effectively illustrate the benefits of such concept, the proposed

framework is utilized on a real-world ensemble application, an oil-reservoir data

assimilation and history matching application, which consists of multiple in-

stances of reservoir realizations that are run simultaneously and the results are

filtered through an Ensemble Kalman Filter (EnKF). The choice of ensemble ap-

plications was due to the fact that these applications represent the increasingly

important class of MTC applications. In addition, MTC applications require

extreme large scale, high performance, fast interconnects, and elastic resources.

Finally, MTC applications have a dynamic workflow, thus, it is an ideal example

of validating the importance of a Cloud abstraction in HPC environments.
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Chapter 3

Framework Design and Architecture

3.1 Design Approach

As discussed in the previous chapter, past approaches to providing HPC as a Ser-

vice were (1) run HPC applications on commodity Cloud hardware (e.g. Amazon

EC2), (2) run a mix of HPC and commodity Cloud resources, and (3) create

small scale ‘HPC as a Cloud’ offerings. Each of these approaches failed to realize

that Cloud computing and High Performance Computing resources are different.

These attempts have shown that the Cloud abstraction, or at least its benefits,

must be applied in a different way to achieve HPC as a Cloud. We propose a

method for successfully implementing HPC as a Service as follows:

1. Select an existing HPC hardware that represents similar architecture to

most other HPC hardwares, in order to apply the Cloud abstractions to it.

2. Compare this HPC resource to current commodity Cloud resources

3. Differentiate between the Cloud definition, model, abstraction, and benefits

4. Investigate how these layers and functions can be applied to existing HPC

resources

5. Analyze the Cloud layers and their corresponding functions

6. Build corresponding HPC as a Cloud layers that apply the Cloud concepts

and benefits without sacrificing the high performance and also taking into

consideration the limitations (e.g. scarcity) of these HPC resources
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In the remainder of this chapter, these design steps will be discussed in de-

tails. In Chapter 4, the implementation of a prototype framework that follows

these design goals will be presented. The framework will then be evaluated and

validated in Chapter 5. Finally, Chapter 6 outlines the future research agenda to

generalize the concept of HPC as a Cloud.

3.2 HPC Resource Selection

Supercomputers provide state-of-the-art hardware. They scale much larger than

regular HPC clusters (hundreds of thousands of nodes vs. thousands of nodes).

When compared to HPC clusters of the same size/performance, supercomput-

ers have faster interconnects coupled with homogeneous and uniform hardware.

They are also cheaper and utilize less power by comparison, but have the longest

queues, rigid and non-elastic resources, and a complex usage model. Therefore,

supercomputers would benefit more than a similar sized HPC cluster from the

Cloud abstractions, and thus, they were chosen over HPC clusters to highlight

the benefits of such abstractions.

3.3 A Comparison Between HPC and Commodity Cloud

Resources

Table 3.1 summarizes the difference between HPC and commodity Cloud re-

sources. This table shows that Cloud resources and HPC resources are different

if not almost opposite to one another.

3.4 Cloud Computing Concepts

The rise in the widespread adoption of Cloud computing has caused the defini-

tion of Clouds to become ambiguous. As a result, the Cloud computing paradigm
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Table 3.1: Comparison between HPC and commodity Cloud Resources

Cloud Resources HPC Resources
Availability Instant, on-demand Queue systems

Cost Cheap Expensive
Elasticity Dynamic Rigid

Payment Model Flexible Rigid
Performance Low performance High performance

QoS Guarantee Focused on availability and
up time

Focused on performance
system utilization

Resource Sharing Isolation through virtual-
ization

Collaboration and fair
share

Resources ‘Infinite’ or abundant Finite and scarce
Scalability Nodes, sites, and hardware Nodes
Security Through isolation Through secure credentials

verification
Software Domain independent, e.g.

web applications
Domain dependent, e.g.
CDS&E applications

Usability Easy to use and manage Hard to use and manage
Users Enterprises, IT, and star-

tups
Government, national
labs, research institutes,
and Academia

started to represent many technologies and take on different meanings. There-

fore, it is essential to clarify the difference between the Cloud definition, business

model, abstraction, and benefits. This will help to distinguish between the ‘as

a Service’ model as a business model and as a utility abstraction. The Cloud

computing concepts can be summarized as follows:

Definition: In general, a Cloud can be defined as a set of network enabled

on-demand IT services, scalable and with associated QoS guarantees, which can

be accessed in a simple and pervasive way as a utility [42].

Business Model: Usually refers to a business model, where Cloud providers

with large virtualized data-centers provide different solutions (infrastructure, plat-

form, and software) as a Service for a fee. Nonetheless, this business model should

not define or confine Cloud computing to its mere implementation. For instance,
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virtualization ensures efficient utilization of the underlying resources and pro-

vides better consolidation and security measurements. Therefore, virtualization

is widely used by Cloud computing service providers (e.g. Amazon or Microsoft),

but it is not an essential component of Cloud computing.

Abstraction: Usually refers to abstractions such as infinite resources, scalabil-

ity, elasticity, instant on-demand access, ease of use, cost associativity, and pay

per use payment model

Benefits: Usually refers to benefits of the previous concepts such as economies

of scale, effective cost-benefit ratios, cheap resources, efficient resource utilization

and consolidation, eliminating startup costs, fault tolerance, and resilience.

3.5 Applying Cloud Concepts to HPC Resources

Table 3.2 summarizes which of these concepts should be applied to the HPC

resources, which concepts should not be applied, and which concepts are not

applicable.

3.6 Cloud Computing Layers

In addition to the previous Cloud concepts, one must also differentiate between

the different Cloud computing layers and their corresponding functions. Table

3.3 summarizes these layers and their functionality.

3.7 HPC as a Cloud Corresponding Layers

Looking back at Cloud computing and its three layers (IaaS, PaaS, and SaaS), it

was clear that similar layers are necessary to convert a HPC system to a Cloud.

Starting at the bottom layer and moving up the stack, three similar layers were

also formulated. These three layers of HPC Cloud computing provide the concepts
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Table 3.2: Application of Cloud Concepts to HPC Resources

Concept Application to HPC Resources
Business model No
Cheap Resources No
Cost Associativity Yes
Ease of Use Yes
Economies of Scale N/A
Efficient Resource Utilization & Consol-
idation

Yes

Elasticity Yes
Eliminate Startup Costs Yes
Fault Tolerance & Resilience Yes
Infinite Resources N/A
Infrastructure, Platform, and Software
as a Service

Yes

Instant/On-demand Access Yes
Pay Per Use Yes
QoS Guarantees Yes
Scalability Yes
Virtualization No
No = Should not be applied, Yes = Should be applied, N/A = Not applicable

and benefits of Clouds, while maintaining the performance, and considering the

limitations of such HPC resources. Table 3.4 summarizes these layers and their

functionality.
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Table 3.3: Summary of Cloud Computing Layers

Cloud
Layer

Definition Functions Users Examples

Infrastructure
as a Service

Raw of vir-
tualized
infrastruc-
ture that
users can
rent and
customize as
needed

Most control
of resources
(hardware
and soft-
ware). Ab-
straction of
unlimited
and elastic
resources
through a
pervasive
interface

System devel-
opers and ad-
ministrators

Amazon EC2
[1]

Platform as a
Service

Users can
rent Cloud
stacks that
can be used
to develop
and deploy
their cus-
tomized
Cloud ser-
vices

Simplify
application
develop-
ment and
deployment.
Autonomous
scalability of
the applica-
tion based on
the workload.

Application
developers

Google App
Engine [7]

Software as a
Service

Users can
rent and use
complete
software solu-
tions, which
are hosted in
the Cloud

Complete
applications
available
on-demand
to end-user

Software
users

Gmail [8]
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Table 3.4: Cloud Corresponding Layers to HPC

HPC as
a Cloud
Layer

Definition Functions Users Examples

Infrastructure
as a Service

users can
rent and cus-
tomize HPC
resources

Abstraction
of unlimited
and elastic re-
sources, can
be accessed
instantly
through a
pervasive
interface

Workflow
developers
who require
direct con-
trol of HPC
resources

customize the
number of
nodes to run
a particular
job during
runtime au-
tonomically

Platform as a
Service

Users can
rent Cloud
stacks that
can be used
to develop
and deploy
their cus-
tomized
Cloud ser-
vices

Simplify
application
develop-
ment and
deployment.
Autonomous
scalability of
the applica-
tion based on
workload

Scientist
developing
CDS&E
Application

Provide
EnKF as a
Service, build
domain spe-
cific ensemble
applications,
which can be
deployed au-
tonomously

Software as a
Service

Users can
rent and use
complete
software solu-
tions, which
are hosted in
the Cloud.

Complete
CDS&E ap-
plications
available
on-demand
to end-user

Software
users such
as scientists,
researchers,
and field
engineers

Providing
an oil reser-
voir history
matching
application,
which can
help field en-
gineers make
informed
decisions in
real time.
Researchers
can utilize
software writ-
ten by other
scientists to
run experi-
ments using
their own
data, and
allow for data
and result
sharing
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Chapter 4

Prototype Framework Implementation

The proposed framework mainly integrates two key components: Deep Cloud

and CometCloud. In addition, new tools have been developed to complete the

framework. The overall architecture is presented in Figure 4.1.

4.1 IBM Blue Gene/P

Blue Gene/P [40] is the second generation of the IBM Blue Gene Systems. Blue

Gene/P is designed to run continuously at 1 PFLOPS. The system consists of

compute nodes, I/O nodes, front-end nodes, a service node and a file server.

Each compute node (compute card) consists of 4 cores (processors). 32 compute

nodes are put on a node card along with up to 2 I/O nodes. 32 node cards form

a rack, and up to 72 racks can be connected together. These compute nodes

can be partitioned into partitions of size 32, 64, 128, 256, 512, etc. A 32-node

partition can run up to 128 processors. Finally, a 3D torus network connects

all compute nodes in the system, and a collective network connects all compute

and I/O nodes. Figures 4.2, 4.3, and 4.4 show an overview of the Blue Gene/P

system, its architecture, and general configuration.
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Figure 4.1: Overall Architecture of Proposed Framework

Figure 4.2: Blue Gene/P System at Rutgers University
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Figure 4.3: Blue Gene/P Architecture [40]

Figure 4.4: Blue Gene/P General Configuration [40]
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4.2 Infrastructure as a Service on Blue Gene/P using Deep

Cloud

In contrast to today’s Infrastructure as a Service (IaaS) clouds (which provide

on demand access to ‘infinite’ resources on a pay-per-use model), current super-

computers continue to rely on batch processing of jobs. While batch processing

allows the scheduler to better utilize the underlying HPC resources, if not care-

fully managed, the queuing delay can result in excessive wait times, often lasting

weeks. Fundamentally, there are two gaps in today’s HPC resource model (as

compared to the one offered by IaaS clouds). The first is the lack of on-demand,

instantaneous access to HPC resources. For example, today’s HPC resources can-

not handle interactive workloads, and the HPC schedulers cannot handle tasks

requiring elastic scaling of their resource needs. While some schedulers do al-

low on-demand access, the underlying support is typically an afterthought rather

than a first order design principle. The second gap in the resource model is the

awareness of resource limitations. A typical HPC job must not only specify the

amount of required resources, but must also be aware of the resource limitations

of the underlying HPC systems. In contrast, Cloud users are given the illusion

of infinite capacity which allows them to get the resources that they need when

they need them and only pay for what they use.

To address these two gaps (on demand access and illusion of infinite resources),

Deep Cloud [39] was implemented. At its core, Deep Cloud is a reservation-based

system backed by a dynamic pricing engine. It is currently being developed at

IBM’s T.J. Watson Research Center for managing supercomputer resources to

(1) provide users with an abstraction of unlimited resources and (2) maximize

users’ satisfaction by shaping their demand. The dynamic pricing engine in Deep

Cloud follows the same design principle as pricing models implemented across a

number of industries (e.g., hotel, transportation, and airline industries), where
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manipulating the price can control the demand of finite resources. The engine

exposes the availability of resources to users, allowing them to decide when to

run their jobs based on different price points. By carefully picking the price for

different configurations, the engine flattens the users’ demand curve. Intuitively,

the engine adapts the price such that the price of using the system is highest

at times where demand is also high. As a result, users with limited budget and

flexible execution times will run their jobs when the system is lightly loaded,

allowing users with larger budgets and pressing needs to meet their deadlines.

In addition to future reservations, Deep Cloud allows for on-demand alloca-

tion of resources, similar to the spot market on Amazon EC2. The pricing for

on-demand access is dependent on the system utilization, availability, and the

current demand for resources. Overall, the ability of users to decide when to run

their jobs maximizes their satisfaction, because they can plan ahead for their re-

source allocations. This is especially true when compared to the traditional HPC

model that queues users’ jobs without providing any explicit runtime guarantees.

Similar to mainstream cloud providers, Deep Cloud allows Blue Gene/P resources

to be programmatically reserved and instantiated. It also supports on-demand

provisioning and repartitioning of the resources. Deep Cloud can run (albeit in a

reduced functionality mode) on top of existing batch systems to support future

reservations. If proper access is given, it can bypass the scheduler’s job queues

and communicate directly with the resource database to allow instant allocation

of resources. Figure 4.5 shows the architecture of Deep Cloud.

4.3 Platform as a Service on Blue Gene/P using Comet-

Cloud

The PaaS layer is the next layer that provides a complete solution stack. PaaS

masks the underlying hardware from the user thus providing ease of use and
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Figure 4.5: Deep Cloud Overall Architecture [39]

autonomic elasticity. PaaS also can allow for multiple cloud federation, which

would allow scientists to take advantages of bridging multiple supercomputer

systems, without worrying about the physical infrastructure. The CometCloud

framework, currently being developed at Rutgers University, was used to provide

the PaaS layer.

4.3.1 Overview of CometCloud

CometCloud [34, 3] is an autonomic computing engine that enables dynamic and

on-demand federation of Clouds and grids as well as the deployment and robust

execution of applications on these federated environments. It supports highly

heterogeneous and dynamic Cloud/grid infrastructures, enabling the integration

of public/private Clouds and autonomic Cloudbursts, i.e. dynamic scale-out

to Clouds to address dynamic requirements for capabilities, heterogeneous and

dynamics workloads, spikes in demands, and other extreme requirements. The

CometCloud programming layer provides a platform for application development
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Figure 4.6: Architectural Overview of the Autonomic Application Management
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and management. It supports a range of paradigms including MapReduce, Work-

flow, and Master/Worker/BOT. The CometCloud autonomic management layer

also enables the autonomic management of application workflows as well as the

federated infrastructure and ensures that application objectives and constraints

are satisfied. The autonomic management framework can provision the appropri-

ate mix of HPC/Grid and public/private Cloud resources based on application

requirements and constraints, monitor system/application state (e.g., workload,

availability, delays) and adapt the application and/or the resources (e.g., change

algorithms used or re-provision resources) to respond to changing applications

requirements or system state. A schematic overview of the CometCloud-based

autonomic application management framework for enabling hybrid HPC platform

usage modes is presented in Figure 4.6.

4.3.2 CometCloud on Blue Gene/P

We used the Master/Worker programming framework from CometCloud. The

main components are a Comet Server, Comet Master, Comet Workers, and the
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Comet Space. The Server is responsible for handling requests from the user and

starting the corresponding Master. The Master is responsible for the execution of

the overall workflow and for guaranteeing the execution of all tasks in the Comet

Space. Usually, each task is an instance of the traditional HPC application, with

different parameters, such as input, number of processors, mode of operation,

etc. A set of these tasks is inserted into the Comet Space. Workers then connect

to the Space, pull a task, and execute it on a given partition. The pull model

guarantees load balancing, since not all tasks have the same runtime. In case a

task fails due to a system failure, the Master reinserts that task back into the

Space to be reprocessed, providing a layer of fault tolerance as well.

The Master is also responsible for adjusting the size of the allocations ac-

cording to the workload in the Comet Space, thus providing the programmatic

elasticity. This is achieved through a Blue Gene Agent. The Blue Gene Agent

is the link between CometCloud and Deep Cloud. The Comet Master communi-

cates with the Agent to adjust the Blue Gene/P allocations. The Agent also takes

into consideration user policy, such as budget and time to completion, and ad-

justs resources accordingly. The Agent communicates with the Deep Cloud API

to programmatically allocate or release resources, and get prices or availability.

Overall, the Blue Gene Agent addresses the elasticity of HPC resources from a

user perspective as well as from a programmatic perspective. The Comet Space

can be shared across multiple front-end nodes of multiple Blue Gene/P systems

to provide a federated cloud of supercomputing resources, see Figure 4.7.

A synchronization step can be performed between the different systems be-

fore a new set of tasks is processed. Workers running on each system execute

tasks separately and then return the results back to their respective front-end.

CometCloud also provides loose code coupling, where the Comet Workers are re-

sponsible for executing the parallel instances of the traditional HPC application,

and the Comet Master can couple their results if necessary.
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Figure 4.7: Federated HPC Clouds

4.4 Software as a Service on Blue Gene/P

In addition to the features provided by Deep Cloud and CometCloud, the frame-

work introduces a few other features, mainly, thin client access, interactive moni-

toring and steering, programmability and ease of use. These features are discussed

in more details below.

4.4.1 Easy Access & Interactive Monitoring

Thin clients: Thin clients, such as an Apple iPad [2], can connect to the frame-

work and launch a simulation by adjusting a few parameters. Accessing such a

large supercomputer configuration from an iPad to easily run a complex appli-

cation makes supercomputing much more accessible to scientists and engineers.

Mobile computing is on the rise, and allowing field engineers to tap into such

system as easily as possible will allow these engineers to run live simulations that

can influence their design or decisions and increase their productivity. Using this

simple interface, users can setup an experiment, adjust budget or time to com-

pletion, monitor and steer the workflow, and get interactive results. Figure 4.8

shows an iPad interface used for running supercomputing experiments.

DISCOVER: In addition to the thin client access, the proposed framework

utilizes DISCOVER. DISCOVER [35] is an attempt to develop a generic frame-

work that will enable interactive steering of scientific applications and also allow
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Figure 4.8: Apple iPad Interface
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for collaborative visualization of data sets generated by such simulations. The

goal of DISCOVER is to develop a computational infrastructure that will have

the potential of transforming large-scale distributed scientific and engineering

simulations into interactive and collaborative ones where numerous scientists, ge-

ographically distributed, will monitor, analyze, and steer scientific computations.

Scientific simulations play an increasingly critical role in all areas of science

and engineering. The simulations of expensive scientific problems are necessary to

validate and justify the investment to be made. Interactive computational steer-

ing helps increase the performance of simulations for scientists as it allows them

to drive the simulation process by interacting with their data. In addition, collab-

oration between scientists situated in geographically distributed locations would

significantly increase the understanding of the complex phenomenon underlying

these simulations.

DISCOVER is currently being developed at Rutgers University. Figure 4.9

shows the DISCOVER Portal. DISCOVER aims to build a framework that can be

used to integrate a suite of applications spanning multiple disciplines including:

• Numerical relativity and relativistic astrophysics

• Subsurface modeling and oil reservoir simulations

• Dynamics response of materials

• Turbulence modeling, shock- density inhomogeneous interaction

• Seismic whole-earth modeling

4.4.2 Programmability & Ease of Use

The proposed framework also masks the complexity of the supercomputer and

provides scientists with an easy to program interface. This allows scientists to
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Figure 4.9: DISCOVER Portal

focus on their research and spend less time on nonscientific activities such as

learning the system itself or manually allocating and adjusting resources and

executing the workflow. The proposed framework was designed to integrate new

applications easily and expose these applications to engineers through thin clients

as Software as a Service. Integrating new applications can be done using an XML

file that defines the roles of the Comet Master and Workers. Another XML file

exposes the policy to be used by the Blue Gene Agent for adjusting resources.

Scientists can also develop their own Comet Master and Workers if they desire.

An API as well as an IDE plugin are provided to allow users to integrate or even

write new applications using the proposed framework. Figure 4.10 shows the

overall architecture of the proposed API while Figure 4.11 shows an example of

the XML file.
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Figure 4.10: Proposed API

Figure 4.11: XML Integration
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Chapter 5

Prototype Framework Evaluation

5.1 Background

5.1.1 Ensemble Applications

Ensemble applications are an example of the MTC class of applications. Ensemble

applications [12] represent a significant class of applications that can effectively

utilize high-end Petascale and eventually Exascale systems. For instance, en-

semble applications can help achieve an optimal Enhanced Oil Recovery (EOR)

production strategy. Such a strategy could pay for several hundred thousand

cores of a large computer system. In real time reservoir management, data from

various sources, including sensors in the field, are being assimilated to maximize

oil production, which leads to an Instrumented Oil Field of the Future, see Fig-

ure 5.1. The instrumented oil field through ensemble data assimilation allows

for better reservoir management decisions by reducing risk leading to smarter oil

production, i.e. producing more oil with greater confidence and less investment.

Ensemble applications explore large parameter spaces in order to simulate

multi-scale and multiphase models and minimize uncertainty associated with a

single simulation. This is achieved by running hundreds to thousands of realiza-

tions simultaneously. Every time new observed data is generated, it is integrated

into each of the models to update the realizations for the next step. Each realiza-

tion can be a traditional parallel HPC application that requires a varying number

of processors and fast communication among processors. In addition, typically a
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Figure 5.1: Instrumented Oil Field of the Future

large and varying number of realizations, also referred to as ‘ensemble members’,

are also required to achieve acceptable accuracy, which in turn requires a very

large and dynamic pool of HPC resources. In addition to elasticity from an appli-

cation perspective, elasticity from a user perspective (cost vs. turnaround time)

would also be desirable. Furthermore, usually the code for the traditional HPC

application and the ensemble filter are written by different groups of scientists or

at different times, therefore, easy code coupling between the filter and applica-

tion is also useful. Finally, in addition to the extremely large scale, the elastic

resources, and the easy code coupling required by ensemble applications, these

applications would benefit from an easy to use workflow engine that guarantees

the execution of the ensemble workflow.

5.1.2 Integrated Parallel Accurate Reservoir Simulator

Integrated Parallel Accurate Reservoir Simulator (IPARS) [43, 44] provides a

framework and a growing number of physical models suitable for research and

practical applications. Both oil reservoirs and aquifers can be simulated using

either black oil or compositional equation-of-state fluid models. IPARS can solve

problems involving several million grid elements in parallel. It can handle multiple

fault blocks with unaligned grids and problems that involve different physical

models in various regions of the reservoir.
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5.1.3 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) [22] is a Monte Carlo formulation of the

Kalman filter, which consists of a forecast step and an assimilation (update)

step. The forecast step is equivalent to running the reservoir simulation (IPARS)

for a suite of different parameters for the reservoir model (a set of realizations)

independently to predict data at the next data assimilation time step. Based on

difference between the observed and predicted data, in each assimilation step the

Kalman update equation is used to update the model parameters (permeabilities,

porosities) and simulation dynamic variables (pressure, saturation, etc). The

construction of the Kalman gain matrix requires collecting a very large state

vector from each ensemble member. This process is continuously repeated in

time as new dynamic data (production data) becomes available.

The EnKF workflow (see Figure 5.2) presents an interesting use case due to the

heterogeneous computational requirements of the individual ensemble members as

well as the dynamic nature of the overall workflow. Ensemble Kalman filters are

recursive filters that can be used to handle large, noisy data; the data in this case

are the results and parameters from ensembles of reservoir models that are sent

through the filter to obtain the “true state” of the data. Since the reservoir model

varies from one ensemble to another, the runtime characteristics of the ensemble

simulation are irregular and hard to predict. Furthermore, during execution,

if real historical data is available, all the data from the different ensembles at

that simulation time must be compared to the actual production data before the

simulations are allowed to proceed. This translates into a global synchronization

point for all ensemble-members in any given stage, which can present challenges.

Figure 5.2 illustrates the variability between stages of a typical ensemble Kalman

filter based simulation. The end-to-end application consists of several stages,

and in general, at each stage, the number of models generated varies in size and

duration.
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Figure 5.2: Stages of a typical ensemble Kalman filter based simulation

5.2 Experimental Setup

The overall application scenario is presented in Figure 5.3. The workflow in-

volves multiple stages. Each stage consists of many instances of IPARS running

simultaneously, a black box, and a computationally intensive oil-reservoir history

matching application. The results of each stage are filtered through an Ensemble

Kalman Filter. Each IPARS realization requires a varying number of proces-

sors and fast communication among these processors. The number of stages and

number of ensemble members per stage are dynamic and depend on the specific

problem and the desired level of accuracy.

CometCloud is responsible for orchestrating the execution of the overall work-

flow, i.e. running the IPARS instances and integrating their results with the

EnKF. Once the set of ensemble members associated with a stage have completed

execution, the CometCloud workflow engine runs the EnKF step to process the

results produced by these instances and generate the set of ensemble members for

the next stage. The Blue Gene Agent then dynamically adjusts resources (scales

up, down, or out) to accommodate the updated set of ensemble members.

Deep Cloud is responsible for the physical allocation of resources required to

execute these tasks. The Blue Gene Agent communicates with the Deep Cloud to

obtain information about the current available resources. Using this information,
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Figure 5.3: Overall Workflow

the Agent requests allocation of required Blue Gene/P partitions to Deep Cloud

and integrates them into the CometCloud federated cloud. The partitions, which

are no longer required, are deallocated. The entire process is repeated until the

application objectives, i.e. all the available observed data is integrated, and then

all resources are released and final updated model parameters and predicted data

from ensemble members returned to the user.

5.2.1 Computational Example

The presented scenario models a two-phase flow (oil and water) in a three-

dimensional horizontal reservoir with a 50x50x4 uniform grid. The model pa-

rameters are horizontal permeability and porosity. There are two water injection

wells with constant injection rate, and seven producers constrained by constant

liquid production rates. The injectors and five of the producers start operat-

ing at the beginning of the simulation time while the other two producers start

production after 1000 days. The observation data to be assimilated in this demon-

stration include oil production rate, flowing bottom-hole pressure, and water-oil
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ratio recorded every 100 days. The historical data are available for 3000 days and

the total simulation time is 4500 days.

The experimental setup follows the application scenario described in Figure

5.3. The experiment starts by running the reservoir simulator forward with 10

initial ensemble members, each one requiring 128 processors. The experiment

starts using 5 partitions (640 processors). Figure 5.4 shows the overall flowchart

of the framework. Figure 5.4a shows the first step, where using an iPad (see Figure

4.8), a user submits a request to run the experiment with the given parameters.

A Comet Server receives the request and starts an IPARS Comet Master. Based

on the given information, the Master inserts 10 tasks into the Comet Space. The

Master notifies the Blue Gene Agent of the size of the Space, and the number

of partitions given by the user. The Agent, based on the size of the Space, and

the resources provided by the user, requests 5 partitions from Deep Cloud. Deep

Cloud starts up 5 32-node partitions. The agent then starts 5 Comet Workers,

each mapped to a partition. The Workers pull tasks (IPARS instances) from the

Comet Space and execute them on the corresponding partitions. Once a task is

complete, the location of the results is sent back to the Master. The Master runs

an EnKF step to generate the next set of inputs.

In step 2, Figure 5.4b, the user has the option to increase the number of

partitions to 10 to achieve a faster turnaround time (1,280 processors). This part

of the demonstration is intended to show the simplicity of use and dynamic scale

up of the framework. Using an iPad interface, the user increases the number of

partitions. The Server receives the request and notifies the Comet Master. The

Master relays the information to the Agent, as well as the number of tasks (10)

inserted into the Space. The Agent requests from Deep Cloud 5 new partitions,

and once allocated, the Agent starts 5 more Comet Workers. The 10 Workers pull

tasks from the Space simultaneously and execute them on different Blue Gene/P

partitions. Note that the number of partitions allocated is at most equal to the
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number of tasks in the Space, which guarantees the fastest turnaround time.

Thus, if any of the 10 ensemble members would crash and the filter decides not to

forward such members in time, a fewer number of partitions would be allocated

autonomously, with no interference from the user.

Once all ensemble members’ results have been returned, the Master runs an-

other EnKF update step to generate a new set of input. At step 3, Figure 5.4c,

the filter decides that since the number of ensemble members is small, the en-

semble members will collapse. This decision is made by computing the standard

deviation of the updated model parameters. As a result, the filter will redo the

step by dynamically increasing the number of filter ensembles to 150 members.

Given that the user has requested a faster turnaround, and in order to accom-

modate the increase in compute demand, the framework will dynamically scale

up to the full potential of the IBM Blue Gene/P at Yorktown Heights, NY (128

32-node partitions, 16,384 processors). In addition, the framework will also scale

out to run dynamically on a second Blue Gene/P, in this case located in Saudi

Arabia, to run the remaining 22 ensemble members (22 64-node partitions, 5,632

processors).

The EnKF update step requests from the original Master running at Watson

in New York to increase the number of ensembles to 150 members. The Master

requests 128 partitions from the Blue Gene Agent on the Blue Gene/P at Watson

(Watson4P) and inserts 128 tasks into the Comet Space on Watson. The Master

also connects to Shaheen, a Blue Gene/P system in Saudi Arabia at KAUST,

starts a second Comet Master there, and asks it to run the remaining 22 tasks.

Even though the front-end nodes of the two systems could share the same Comet

Space, meaning any of the systems can run any of the 150 tasks, the Space is

separated to reduce data transfers between the two systems. Otherwise, the input

and output of all 150 ensemble members would have to be synchronized across

the two systems, because they do not share a common file system. In this case,
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there is no need to replicate the data between the two systems, but future work

will address the data transfer more effectively to allow for a better load balance,

task distribution, and execution among systems.

The Shaheen Master is only responsible for executing the 22 remaining tasks,

so it requests from the Blue Gene Agent running on Shaheen to allocate 22 Work-

ers. On Shaheen, jobs are run through a batch queue system. Therefore, using

Deep Cloud, a reservation ID is assigned to the jobs executed by the Comet Work-

ers. Deep Cloud then communicates with the queue to execute these tasks. The

reservation ID translates to a higher priority in the queuing system, and guaran-

tees the execution of the jobs on the Shaheen partitions with no delay. Once the

jobs are executed on both Watson and Shaheen, as in Figure 5.4d, the Shaheen

Master gathers and compresses information from the 22 ensemble members and

sends this information to the Watson Master. In essence, the data that is be-

ing transferred between Shaheen and Watson consists of one EnKF state vector

per each of the 22 ensemble members, and contains model parameters, primary

variables and predicted data. Then, the Watson Master runs an EnKF update

step and generates input (updated state vectors) for the 128 ensembles running

on Watson, as well a compressed file with the updated state vectors that gets

sent back to the Shaheen Master. Once the Shaheen Master receives this file,

the updated input files for the remaining 22 ensembles are generated. The entire

process is repeated until all the observed data is integrated, and then all resources

are released and final results are returned to the user.

5.3 Comparison to Existing HPC as a Service Approaches

We mentioned earlier that the three main approaches for integrating HPC and

Cloud computing are HPC in the Cloud, HPC plus Cloud, and HPC as a Cloud.

Our proposed framework falls under the HPC as a Cloud approach (see Figure
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(a) Step 1

(b) Step 2

Figure 5.4: Flowchart describing steps in Framework
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(c) Step 3

(d) Step 3 continued

Figure 5.4: Flowchart describing steps in Framework cont’d
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5.5). Consequently, our proposed framework will be compared to other approaches

for providing HPC as a Cloud. However, in this section, we briefly discuss the

performance of the alternative approaches, i.e. HPC in the Cloud and HPC plus

Cloud.

5.3.1 HPC in the Cloud

Extensive literature has already evaluated the performance of HPC in the Cloud

(see section (HPC in the Cloud related work)). In summary, the performance of

commodity Clouds for running tightly coupled CDS&E applications turned out

to be very low.

5.3.2 HPC plus Cloud

While this approach provides better performance by integrating a mix of HPC and

Cloud resources (see section (HPC plus Cloud related work). This approach is ori-

ented towards hybrid workflows (e.g., CDS&E & Analytics applications). There-

fore, the performance of this approach is irrelevant to our evaluation. Nonetheless,

we should point out that while this approach provides some advantages over us-

ing HPC resources only (e.g. resilience or acceleration), this approach does not

address some of the challenges of the HPC model such as ease of use or instant

on-demand access, which is addressed by our approach.

5.3.3 HPC as a Cloud

Virtualized Solutions

• Azure Scheduler: does not provide HPC as a Cloud, but an auxiliary sched-

uler to clusters running HPC server 2008 instead.
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Figure 5.5: Landscape of Current HPC and Cloud Approaches

• Adaptive Systems (Moab Adaptive HPC Suite): limited QoS, low perfor-

mance

• CloudCycle: resells Amazon EC2 Compute Cluster

• Amazon EC2 Compute Cluster:

Scale: The Amazon EC2 Compute Cluster can scale up to 128 nodes

Performance: Zhai, Y. et. al compared the performance of the Amazon

EC2CC to traditional HPC Clusters and concluded that Amazon’s perfor-

mance is less than that of local HPC clusters of similar configurations [48]

Physical Solutions

• Silicon Graphics Cyclone: hardware specifications are extremely vague and

no performance guarantees

• Penguin Computing on Demand (POD): provides remotely accessible cluster

not a cloud
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5.4 Evaluation Criteria

The presented scenario and experiment were used to test and validate that high

performance computing can be provided as a Service. The proposed HPC as

a Service framework combines the high performance of HPC resources with the

flexibility and advantages of Cloud computing. A list of evaluation measurements

are listed below. This list follows the analysis from Table 3.2: Application of

Cloud Concepts to HPC Resources. Each of these measurements is discussed in

more details, accompanied by experimental results, qualitative or quantitative

analysis, and comparison to existing efforts.

• High Performance Computing Measurements

Hardware Performance

Scale

• Cloud Computing Measurements

Cost associativity

Ease of use

Efficient Resource Utilization & Consolidation

Elasticity

Eliminate startup costs

Fault Tolerance & Resilience

Infrastructure, Platform and Software as a Service

Instant/On-Demand access

5.5 Evaluation

In this section, we will evaluate the proposed framework and compare our results

to existing HPC as a Cloud approaches.
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5.5.1 High Performance Computing Measurements

One of the main goals of the framework is to provide the Cloud abstraction

without sacrificing the high performance required by CDS&E applications, thus,

our first evaluation criteria was to measure such performance and compare it to

current solutions. We used two performance measures: hardware performance

and scalability.

• Hardware Performance: Measured by comparing the hardware for Blue

Gene/P and current offerings of HPC as a Cloud. The main factors of

such comparison are: speed of processors and interconnects.

• Scalability: Realistic CDS&E applications require extremely large scale;

therefore, the underlying hardware must be of large scale to accommodate

such applications.

Performance Evaluation of HPC as a Cloud Approaches Table 5.1

summarizes the different approaches for providing HPC as a Cloud (including

ours).

Table 5.1: Approaches for Providing HPC as a Cloud

HPC as a Cloud Re-
source

Virtualized Performance Scale

Our Proposed Framework No High Performance 22k
Amazon EC2CC Yes Medium Performance 128
Microsoft Azure Yes N/A N/A
Adaptive Solutions Yes Low Performance N/A
HPCynergy No High Performance 384
Silicon Graphics Cyclone No Medium Performance N/A
Penguin on Demand No Medium Performance N/A

5.5.2 Cloud Computing Measurements

• Cost associativity: Conceptually speaking, the pay per use model on top

of Blue Gene/P provides cost associativity (i.e. 1 BG/P partition for 10
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hours is similar to 10 partitions for 1 hour). However, realistically, due

to the scarcity of the resources and the dynamic pricing model, we cannot

guarantee cost associativity.

• Ease of use: Clouds provide an easy to use abstraction; therefore, in our

approach we have ensured such requirements in all three levels. For ex-

ample, users can programmatically allocate Blue Gene/P resources using

Deep Cloud. Moreover, users can develop and deploy applications easily

using CometCloud. Finally users, can run, monitor and interact with the

system using thin clients and the DISCOVER portal. All of these layers

mask the complexity of the systems by outsourcing the mundane tasks of

system administration.

• Efficient Resource Utilization & Consolidation: The framework ensures effi-

cient utilization of resources, by allocating and deallocating resources based

on the workflow requirement.

• Elasticity: The framework can scale up/down/out based on user objectives

and policies, as well as dynamic workflow requirements. In our experiment,

we demonstrated such concept by scaling up to gain better around time,

then scale up and out to meet the application requirements. Eliminate

Startup Costs: Providing HPC as a Service democratizes access to high-end

HPC resources, allowing small and mid-sized labs and research organization

to take advantage of such systems.

• Fault Tolerance & Resilience: The framework provides complete fault toler-

ance, and guarantees the execution of the workflow. In case of a hardware

failure, the framework is intelligent enough to move the corresponding work

to a different partition without pausing or restarting the workflow, providing

a much-needed layer of resilience. Infrastructure, Platform, and Software
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as a Service: The framework provides the three layers of Cloud comput-

ing. The framework allows the decoupling the science from the underlying

infrastructure (at the Platform as a Service layer). As a result, CDS&E

application can now be driven by science, instead of resource availability.

Furthermore, providing HPC Software as a Service opens new opportuni-

ties for CDS&E applications (e.g. better research collaboration, in field

simulations to improve decision making, data and result sharing)

• Instant/On-demand access: While instant access cannot be fully guaran-

teed, i.e. due to the scarcity of high-end HPC resources, providing a reser-

vation based model is a better model that ensures effective resource utiliza-

tion, and increases the user satisfaction by eliminating the uncertainty of

job execution (e.g. compared to a batch queue system). For example, a

researcher knows exactly when their job will run on such systems, and thus

they would be able to plan their day better. In addition, if the researcher

is time constrained, they can pay more to get faster turnaround time, while

those researcher on a constrained budget, can run their jobs, at idle times,

when the resources are cheaper to use.

5.5.3 Experimental Results

This section explains the computational results from the ensemble application as

well as some metrics to measure the overhead of the proposed framework. We

first present a small example using the parallel reservoir simulator IPARS. This

test case models two-phase flow (oil and water) in a two-dimensional horizontal

reservoir with a 20x30 uniform grid. The parameters that we estimate are perme-

ability and porosity fields with true values and well locations as shown in Figure

5.6.



58

Figure 5.6: Permeability and Porosity Fields

Figure 5.7: Prior Uncertainties of the Predicted Data

There are two water injection wells located in the middle of high permeabil-

ity and porosity regions with constant water injection rate, and five producers

constrained by total production rates.

The observation data to be assimilated in this example include oil produc-

tion rate (qoil), flowing bottom hole pressure (BHP), and water-oil ratio (WOR)

recorded every 30 days. The historical data are available for 1500 days. The prior

uncertainties of the predicted data at three wells compared to the observed data

are shown in Figure 5.7.

These results were obtained by running the reservoir simulator forward up to
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Figure 5.8: Estimated Permeability and Porosity Fields

Figure 5.9: BHP Data during Data Assimilation and Future Forecast

end time with 100 initial ensemble members. As can be seen from Figure 5.7,

there is a large uncertainty in the ensemble predictions represented by the wide

spread of the ensemble members around the truth (red curve).

Figure 5.8 shows the estimated parameters (permeability and porosity fields)

after assimilating all the observation data. Note that we have captured much of

the essential features of the truth. The BHP data matches during data assimila-

tion and future forecast for one of the producers is shown in Figure 5.9.

The vertical line denotes the end of the data assimilation period. This data

suggests that a good BHP match is obtained and the variances of the prediction
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Figure 5.10: Average and Cumulative Time over 10 EnKF Steps using 100 IPARS
tasks

are reduced compared to those obtained from initial ensemble members (Figure

5.7).

In addition to the results provided by the oil-reservoir application, we per-

formed some performance evaluation of the framework to measure the overhead

of running the application when using the proposed framework. Figure 5.10 shows

the detailed results of this analysis.

Average time to allocate a Blue Gene/P partition (including boot and start

up) is 102.8 seconds.

To measure the turnaround time, we ran the same experiment, using 100

ensemble members and 10 EnKF steps, while doubling the number of allocated

partitions (4, 8, and 16 partitions).

Using 100 ensemble members (realizations) and 10 EnKF steps, the average

time (sec) and cumulative (sec) per ensemble member is shown in 5.10.

Using 100 empty tasks (10 secs each) and 10 steps, the average time (sec) and

cumulative (sec) per step is shown in 5.11.
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Figure 5.11: Average and Cumulative Time over 10 EnKF Steps using 10 second
tasks

5.6 Evaluation Summary

In this experiment, we explored how a Cloud abstraction can be effectively used

to provide a simple interface for current HPC resources and support real-world

applications. In particular, we experimentally validated the benefits of the Cloud

paradigm, such as ease of use and dynamic allocation, and their application to

supercomputers using IBM Blue Gene/P. The CometCloud-based framework es-

sentially transformed Blue Gene/P into an elastic Cloud, bridged multiple Blue

Gene/P systems to create a larger HPC federated Cloud, and supported dynamic

provisioning. We used the framework for an oil-reservoir data assimilation and

history matching application, which consisted of the EnKF workflow with multi-

ple reservoir instances. The exercise demonstrated the ease-of-use of the elastic

as-a-service Cloud abstraction, and its effectiveness in improving utilization. This

experiment was demonstrated at the 4th IEEE SCALE Challenge [11], and was

awarded the first place. During the experiment, Blue Gene/P resources varied

from 640 to 22,016 processors, spanning across two Blue Gene systems in two

different continents. The objective of the challenge was to highlight and show-

case a real-world problem using computing that scales. The contest focused on

end-to-end problem solving using concepts, technologies and architectures that
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facilitate scaling. The framework can support a broad range of applications, as

the coupling between the CDS&E applications and the framework is loose. In ad-

dition, the ease of integrating new applications makes scientists and researchers

more inclined to use this framework.



63

Chapter 6

Conclusion

6.1 Thesis Summary

Clouds are becoming an important part of production computational environ-

ments and are joining high-performance computing systems, clusters, and Grids

as viable platforms for supporting Computational and Data-enabled Science and

Engineering. The goal of this document was to explore how a cloud abstraction

could be applied to provide an interface for current HPC resources and support

real-world science and engineering applications. Moreover, this document dis-

cussed the design, implementation, and validation of such an abstraction. The

proposed framework transformed the Blue Gene/P supercomputer into a feder-

ated elastic cloud. During experimental evaluation, the Blue Gene/P resources

varied from 640 to 22,016 processors, spanning across two Blue Gene systems in

two different continents.

The previous research and the research presented in this document help to

show that there are real benefits in using Clouds and Cloud computing abstrac-

tions to support CDS&E in order to simplify the deployment of applications and

the management of their execution, improve their efficiency, effectiveness and/or

productivity, and provide more attractive cost/performance ratios, thus, allow-

ing scientists and engineers to spend their time more effectively (see Figure 6.1).

Furthermore, Clouds and Cloud computing abstractions can support new classes

of algorithms and enable new applications formulations, which can potentially

revolutionize CDS&E research and education.
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Figure 6.1: The Future of Scientific Computing [25]

6.2 Future Work for the Proposed Framework

The proposed framework was an initial proof of concept. More work is needed

to make the framework more robust and secure, to allow for other HPC systems

to join the federated cloud, to handle communication among the different clouds

more effectively, and to generalize the solution to adapt to other HPC workflows.

These goals are discussed in more details below.

6.2.1 Provisioning other HPC Resources

It is necessary to investigate how to provision other HPC resources other than

the IBM Blue Gene/P such as Open Science Grid. One of the challenges in doing

so is to understand how to provide on-demand access to such resources. On Blue

Gene/P, Deep Cloud was utilized, which is not available for other computing

resources. This may require more research in order to integrate such systems into

the federated HPC as a Cloud.
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6.2.2 Communication across different clouds

Communication among each cloud is optimized due to the fast interconnects

within the system. However, bridging multiple systems that are geographically

distributed poses a problem for data communication. An initial approach to such

problem is to distribute the tasks among the different clouds in a way that would

require minimum or no communication among the system, aside from synchro-

nization between the workflow steps. However, more work is needed to solve

the problem in general and to optimize the communication between the different

clouds.

6.2.3 Generalize the solution

As mentioned earlier, the presented framework was a proof of concept. More work

is needed to generalize the problem and to accommodate other HPC workflows.

An initial approach to such a challenge is to start by generalizing the framework

to support any EnKF workflow, thus, providing EnKF as a service. Once the

workflow is generalized for ensemble workflow, more work will be needed to adapt

the solution to other HPC workflows.

6.2.4 Providing a complete stack

We have successfully provided an Infrastructure as a Service for HPC resources,

e.g. providing scientists with the state-of-the-art HPC resources, which can be

accessed in a programmatic manner. This framework can be extended by pro-

viding HPC at the Platform as a Service level – for example, by providing EnKF

as a service. Even more work is needed to generalize the top layer, Software as

a Service for HPC. HPC in the form of SaaS will not only allow scientists to

easily run scientific simulations, but it will also enable field engineers, doctors,

and many others to take advantage of these applications as well. Using a thin
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client that they can carry anywhere, these users can run workflows and what-if

scenarios in order to obtain insightful information that can help them, in the field

or with a diagnosis at the bedside. The HPC SaaS delivers the power of a super-

computer, and a scientific application to the palm of the many users in different

fields. In addition, with the growing number of domains that are adopting HPC

applications in order to understand the complex processes of their domain (e.g.

Aerospace, Automobile, Business Analytics, Entertainment, Finance, Manufac-

turing, Oil & Gas, Pharmaceuticals, etc.), we believe that providing HPC as a

Service will transform science: the way it is being developed and the way it is

being used. HPC as a Service will even allow for more collaboration among scien-

tists in geographically distributed locations, with centralized data and application

that are running on the Cloud.

6.3 Research Agenda for CDS&E and Clouds

6.3.1 Algorithms and Application Formulations for Clouds

A key attribute of Clouds is on-demand access to elastic resources i.e., appli-

cations programmatically access more or less resources as they evolve, to meet

changing needs. Such a capability can have a significant impact on how algorithms

are developed and applications are formulated. For example, the execution of an

application no longer has to constrain itself to a fixed set of resources that are

available at runtime and can grow or shrink its resource set based on the demands

of the science the science can drive the scale and type of resource involved, based

on the levels of refinement required to resolve a solution feature, or the number

of ensembles that need to be run to quantify the uncertainty in a solution, or the

type of online analytics services that need to be dynamically composed into the

application workflow. In addition to the usage modes and application scenarios

discussed earlier in this documents, understanding how CDS&E applications can
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effectively utilize Clouds and Cloud abstractions as part of the a hybrid cyber-

infrastructure, to enable new practices and levels of scientific insights remains a

research challenge. Discovering what application formulations and usage modes

are meaningful in a hybrid and federated Cloud infrastructure is essential. Finally,

developing application formulations that are agnostic to the underlying hardware

but can exploit on-demand federated hybrid resources without compromising per-

formance is also critical.

6.3.2 Programming Systems and Abstractions

One of the key research challenges is developing appropriate programming ab-

stractions and language extensions that can enable CDS&E application to sim-

ply and effectively take advantage of the elastic access to resources and services

during application formulation. Furthermore, it may be necessary to define con-

straints (for example, budgets, data privacy, performance, etc.) to regulate the

elasticity, and the programming abstractions my provide support for expressing

these constraints so that they can be enforced during execution. Similarly, such

annotations can also define possible adaptations, which could then be used to

increase performance, manageability and overall robustness of the application.

For example, dynamically increase the assigned resources in order to increase the

resolution of a simulation under certain convergence constraints, modify conver-

gence goals to avoid failure or guarantee completion time. The Cloud service

models can also lead to interesting services specialized to CDS&E that provide

entire applications or applications kernels as a service (i.e., SaaS). Furthermore,

and arguably more interestingly, it can also export specialized platforms for sci-

ence as a services, which encapsulate elasticity and abstract of the underlying

hybrid cyber infrastructure. In return, the scientists are only required to provide,

core kernels, meaningful parameters, and basic configurations. For example, the

proposed research is exploring the idea of EnKF-as-service.
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6.3.3 Middleware stacks, management policies, economic

models

Middleware services will need to support the new CDS&E applications formula-

tions and services enabled. A key research aspect will be the autonomic man-

agement and optimization of application execution through cross-layer applica-

tion/infrastructure adaptations. It will be essential for the middleware services

to be able to adapt to the application’s behavior as well as system configuration,

which can change at run time, using the notion of elasticity at the application

and workflow levels. Furthermore, appropriate services are necessary to be able

to provision different types of resources on demand. For example, in order to

integrate NSF funded cyberinfrastructure such as XSEDE, Open Science Grid

and FutureGrid along with commercial Clouds such as Amazon EC2 or Microsoft

Azure, autonomic provisioning and scheduling techniques, including Cloud burst-

ing will be necessary to support these usage modes. Finally, monitoring, online

data analytics for proactive application/resource management and adaptation

techniques will be essential as the scale and complexity of both the applications

and hybrid infrastructure grows.
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