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ABSTRACT OF THE DISSERTATION

On the roots of polynomials modulo primes

by John T. Bryk

Dissertation Director: Jerrold B. Tunnell

We study the problem of counting the number of roots of an irreducible polyno-

mial f(X) ∈ Z[X] modulo rational primes. We consider the family of polynomials

fn(X) = Xn − X − 1, which have Galois groups isomorphic to Sn. The approach we

take is to attach Galois representations to the counting problem and then to relate

these to automorphic forms. In particular, we attempt to attach the representations

to holomorphic forms on GL2. We show this only works when n ≤ 5, and we present

the solutions to the problem in the n = 4 and 5 cases, following methods due to Serre,

Crespo, and Buhler for explicitly constructing Galois representations. The solution to

the n = 5 case is novel, requiring Hilbert modular forms. In solving the problem, we

produce the first example of an icosahedral Hilbert form that is not the base change of

a classical form.
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Chapter 1

Introduction

A classical question in number theory is that of counting the number of solutions

to polynomial equations modulo primes, the simplest case concerning the roots of a

univariate polynomial. Initial studies focused on counting nth roots modulo primes,

with the first result being the Law of Quadratic Reciprocity, formulated by Euler and

proved by Gauss. Although the explicit statement of the theorem gives a relationship

between the Legendre symbols of two primes, we interpret it in a different fashion.

Fixing an integer d and letting p vary over all primes, the Legendre symbol gives a

formula for the number of square roots of squarefree d modulo p, namely:

#{x (mod p) : x2 ≡ d (mod p)} = 1 +
(
d

p

)
Quadratic Reciprocity then implies that the Kronecker symbol

(
d
·
)

is the quadratic

character modulo the absolute value of the discriminant D = |d| or |4d| of Q
(√

d
)

, and

computation of
(
d
·
)

is reduced to a congruence condition. Higher degree reciprocity

theorems followed: the Laws of Biquadratic and Cubic Reciprocity and Eisenstein and

Kummer’s general laws for prime-power roots. (It is worth noting that these higher

degree laws require passing to the Gaussian integers, Eisenstein integers, and rings of

integers over other cyclotomic fields.)

The true breakthrough in formulating reciprocity laws was Artin Reciprocity, which

allows representations of Galois groups of abelian extensions of number fields to be

expressed as characters on ideal class groups. If K is a number field and f(X) ∈ oK [X]

defines an abelian extension L of K, then the number of roots of f modulo almost all

primes p is given by a sum over characters of G = G(L|K):∑
χ∈ bG

χ(σp)
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where σp is the Frobenius element at p. Artin Reciprocity then represents G(L|K) as

a class group C, and the character sum becomes one over Ĉ, reducing the computation

to determining the structure of C and the class of p in C.1

The sum of characters given above can be derived by looking at the complex rep-

resentation ρ : G(L|K) → GLn(C), n = deg(f), obtained by looking at the action of

G(L|K) on L⊗K C ' Cn. Indeed, ρ can be interpreted as the permutation representa-

tion of G(L|K) acting on the roots of f . It is clear that χρ(σp) is equal to the number

of points fixed by σp, and this is precisely the number of roots of f modulo p. As ρ is

also just the regular representation of G(L|K), the irreducible character decomposition

ρ =
⊕

χ∈ bG χ then gives the character sum.

This generalizes to case thatG(L|K) is nonabelian. We now let ρ be the permutation

representation of G(L|K) acting on the C-vector space formally spanned by the roots

{x1, . . . , xn} of f in L. To proceed in the above fashion, we need a nonabelian version of

Artin Reciprocity and class field theory. This is part of the Langlands program for num-

ber fields, the veracity of which would imply, in small part, that all finite-dimensional

complex Galois representations can be attached to automorphic representations.

Examples of attaching automorphic representations to the problem of counting the

number of roots of polynomials modulo primes are given by Serre ([31]), in which

Serre also considers the density of primes with a given number of roots by applying

the Chebotarev Density Theorem. The family of polynomials fn(X) = Xn − X − 1

is studied, in part because the Galois group of fn is well-known to be isomorphic to

Sn and, hence, all possibilities for the factorization a degree n polynomial are realized.

The cases n = 2, 3, and 4 are worked out explicitly.

The case n = 2 reduces to Quadratic Reciprocity. However, irreducible representa-

tions of degree at least 2 do arise when decomposing the permutation representation

ρ for n ≥ 3. For n = 3 and 4, Serre shows that the permutation representation ρ can

be decomposed into representations of degree 1 and odd2 representations of degree 2

1This is needlessly complex in this scenario–the character sum is 0 unless p is in the trivial class of
C, in which case it is equal to the degree of |C| = [L : K].

2A degree 2 representation is odd if its determinant at complex conjugation is −1.
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on GQ. Due to results of Hecke, Langlands ([20]), and Tunnell ([37]), the degree 2

representations are known to correspond to classical modular forms, with the trace at

σp of each representation equal to the pth Fourier coefficient of the corresponding form.

Furthermore, in the n = 3 case, Serre gives an explicit expression for the modular form

in terms of theta series of quadratic forms.

In this thesis, we extend the results of Serre to the n = 5 case, with one of the

main results (Proposition 6.3.5) being a formula for the number of roots of f5(X) =

X5 − X − 1 modulo primes in terms of modular forms on GL2. However, in order

to work with degree 2 Galois representations, we must pass to Galois representations

over a real quadratic extension of K, over which f5 has Galois group equal to the

icosahedral group, A5. Thus, the representations correspond to Hilbert modular forms

over K. In particular, our second main result (Corollary 6.3.4) is showing the existence

of icosahedral Hilbert modular forms that do not arise from base change by constructing

such forms. To our knowledge, these are the first explicit examples of such.

We proceed as follows:

Chapter 2. We discuss expressing representations in terms of tensor products of smaller

degree representations, in particular showing that we cannot express the

permutation representation ρ in terms of degree 1 and 2 Galois represen-

tations when n ≥ 6. We then introduce the theory developed by Serre

([32, Ch. 9]) and Crespo ([9]) necessary to show the existence of certain

degree 2 Galois representations in the n = 4 and 5 cases.

Chapter 3. As a motivating example for the n = 5 case, we work through the n = 4

case in detail. We introduce machinery developed by Crespo ([6]) for

explicitly constructing Galois representations, and we develop some tools

for computing the ramification for the fixed fields of these representations.

We also give an explicit expression for the square of the form we construct

in terms of theta series of quadratic forms associated to a quaternion

algebra.

Chapter 4. We begin the n = 5 case, representing the permutation representation ρ in
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terms of representations of degree at most 2 on an index 2 subgroup of GQ

and using Crespo’s theory to show the existence of said representations.

The formula for the number of roots of f5 modulo primes is derived.

Chapter 5. The representations from Chapter 4 are explicitly constructed using Cre-

spo’s formulas ([7]) and methods used by Buhler ([4, Ch. 1,4]); the latter

were used in showing the existence of an icosahedral modular form over

Q. The relative merits of using Crespo’s methods versus Buhler’s are

discussed.

Chapter 6. The basic theory of Hilbert modular forms is introduced following [12],

[14], [34], and [39]. We develop a trick for constructing a weight 1 form

with specified Hecke eigenvalues, and then we use discriminant bounds due

to Poitou ([24, 25]) to show that there is only one such form. It immedi-

ately follows that this form corresponds to the representations constructed

in Chapter 5. The main results are stated in Corollary 6.3.4 and Propo-

sition 6.3.5, with the latter giving the formula for the number of roots of

f5 modulo primes in terms of icosahedral Hilbert modular forms.

We conclude with appendices containing proofs and alternate techniques for some

aspects Chapter 6.
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Chapter 2

Galois Embedding Problems and Lifting Representations

2.1 Introduction

The study of the number of roots of a polynomial modulo primes naturally leads to

linear Galois representations, while our desire to connect the problem to classical or

Hilbert modular forms necessitates expressing linear representations in terms of odd,

degree 2 projective representations. We discuss the problems that force us to work

with projective representations, and then we introduce the theory that allows us to lift

projective representations to actual Galois representations.

2.2 The Augmentation Representation

We let f(X) ∈ Z[X] be an irreducible polynomial of degree n, and we consider the

permutation representation:

ρ : GQ → GLn(C)

obtained by letting GQ act on the n-dimensional vector space formally spanned by the

roots of f(X). If ui are the roots of f(X), then the vector
∑n

i=1 ui is fixed, and the

identity representation is a summand of ρ.

Definition 2.2.1. The augmentation representation α is the degree n−1 representation

α = ρ− 1.

We study a specific family of polynomials, namely fn(X) = Xn − X − 1, n ≥ 2.

These are irreducible for all n, and the Galois group of each fn is the full symmetric

group Sn (see, e.g., [30, p. 144]). Augmentation is always irreducible. For n = 2,

α is a Dirichlet character, while for n = 3, α is an odd dihedral representation with
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determinant χ = χQ(
√
−23), so it corresponds to a newform f in S1(23, χ). In the

n = 2 case, periodicity allows the values of the Dirichlet character to be given by the

coefficients in the Taylor series of a rational function, while in the n = 3 case, Serre ([31,

p. 434]) gives an expression for the modular form as the difference of two theta series

coming from the quadratic forms associated to two of the ideal classes of Q(
√
−23):

f =
1
2

∑
x,y∈Z

qx
2+xy+6y2 −

∑
x,y,∈Z

q2x2+xy+3y2


For n ≥ 4, however, we cannot immediately attach Dirichlet characters or modular

forms to augmentation using the representations of the Galois group of fn. A naive

strategy for doing so might use virtual characters of the group Sn.

Definition 2.2.2. Let G be a profinite group. The ring of virtual characters R(G) is

the Z-linear span of the irreducible continuous characters on G. For any k ≥ 1, R(k)(G)

denotes the subring generated by characters of degree at most k.

If the character χα is in R(2)(Sn), then we can immediately associate the degree 1

representations with Dirichlet characters, while if we also assume the degree 2 characters

are odd, we can associate them with modular forms, giving the desired expression for

χα. However, this is not possible. Indeed, for n ≥ 5, there are no degree 2 characters,

and R(2)(Sn) is the Z-linear span of the identity and sign characters. For n = 4, there

is a character χ of degree 2, but χ2 = 1 + sgn + χ, so R(2)(S4) is the Z-linear span of

χ and the two degree 1 characters.

A slightly more sophisticated strategy is to extend the virtual characters under

consideration to those on GQ. In the case of n = 4, this works: we have χα ∈ R(2)(GQ),

and the degree 2 characters in the expression for χα do correspond to modular forms.

We discuss this in the Chapter 3. However, this strategy fails in general.

Theorem 2.2.1. Let L be a Galois extension of K with G(L|K) ' Sn, n ≥ 5, and let

α be the augmentation representation on Sn. Then χα 6∈ R(2)(GK).

Proof. Suppose χα ∈ R(2)(GK), so that there are ni ∈ Z and degree 1 and 2 characters
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χi,j on GK such that:

χα =
∑
i

ni
∏
j

χi,j

Adding those terms on the right with ni < 0 to the left and noting that α is irreducible,

we see that χα must occur in the irreducible character decomposition of one of the

products
∏
j χi,j on the right. We drop the index i, and we let θj be the representation

corresponding to χj , Fj be the fixed field of the kernel of θj , and F =
∏
j Fj .

Since F is the fixed field of the intersection of the kernels of the θj , Θ =
⊗

j θj is a

representation of G(F |K), as is α, being a summand of Θ. And since α is a summand

of Θ, L ⊂ F , giving a surjection G(F |K) →→ G(L|K) ' Sn. Additionally, we have

injections:

G(F |K) ↪→
∏
j

G(Fj |K) ↪→
∏
j

GL2(C)

The proof then reduces to showing that if G is a finite subgroup of
∏
GL2(C), G does

not surject onto Sn.

Let f : G →→ Sn be a surjective homomorphism. Since Sn has trivial center, the

center of G is in the kernel of f , and so we may assume that G actually embeds in

X = G1 × . . .×Gm, where:

Gi ' PGL2(C)

Let Hi be the projection of G into Gi. Let D be the final term in the derived series

of G; note that f(D) = An. D embeds into the direct product of the final terms Di

of the derived series of the Hi. By inspection of the finite subgroups of PGL2(C), it

follows that Di = 1 or Di ' A5. The result immediately follows for n > 5.

For n = 5, note that if Di ' A5, then Hi = Di, as A5 is a maximal finite subgroup

of PGL2(C). In particular, we have that NX(D) induces an inner automorphism on

D, whence NX(D) = DCX(D), whence NG(D) = DCG(D). The same is true in f(G),

but this fails for A5 in S5, whence the result.

The author thanks J. Buhler and R. Guralnick for help with the proof.
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The proof suggests that we may be able to work something out in the case n = 5–

indeed, it appears that if we restrict augmentation to A5, we may be able to express

χα in terms of degree 1 and 2 characters. Indeed, this is the case, as we see in Chapter

4, although it will necessitate passing to the absolute Galois group of K, the quadratic

subextension of L|Q corresponding to the sign representation on S5. At the same time,

the proof suggests this approach is fruitless for n ≥ 6: the proof does not depend on

the ground field being Q and shows that χα restricted to An is not in R(2)(GK).

Despite this dead end for studying the polynomials fn, n ≥ 6, using this idea, some

interesting questions do arise. For a profinite group G and a whole number k:

• Is there a nice characterization of the elements of R(k)(G)?

• What is the minimum value k, if any, such that R(k)(G) = R(G)?

• If G is the absolute Galois group over a field K, what happens when we add

extra conditions? For example, if K is totally real and k = 2, we can stipulate

that the generators be odd. In general, we can add conditions regarding, say, the

conductors of the generators.

Returning to the problem of representing augmentation in terms of degree 1 and 2

representations for f4 and f5, it is easy enough to find projective representations of S4 or

A5 that allows us to “factor” augmentation into degree 1 and 2 representations, but we

must be able to lift these to actual linear representations on GQ or GK . Furthermore,

to find the modular forms to which the degree 2 representations correspond, we must

be able to explicitly construct these linear representations, which requires studying the

fixed fields of the kernels of these representations. We now introduce the theory required

to address the problem of lifting representations.

2.3 Galois Embedding Problems

Let K be any number field, L a finite Galois extension of K. In lifting projective

representations of G(L|K) to GK , we will be concerned with the existence of a superex-

tension M |K of L|K such that G(M |K) has a particular group structure. This is an
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example of a Galois embedding problem.

Definition 2.3.1. Let:

• L and K be as above;

• G = G(L|K), with π : GK → G the natural projection; and

• G′ a finite group with a homorphism φ : G′ → G.

The corresponding Galois embedding problem is the question of determining the exis-

tence of a continuous homomorphism ψ : GK → G′ such that φ ◦ ψ = π. If such a ψ

exists, it is a solution to the problem.

In our case, we want to find M such that G′ = G(M |K); thus, we assume that φ

is surjective and require that ψ also be surjective. Our intuition is that G corresponds

to a projective representation and G′ gives a lifting of this to a linear representation.

This implies that the kernel of the surjection G′ →→ G is contained in the center of G′.

Definition 2.3.2. Let A be an abelian group, and suppose we have the exact sequence:

1→ A→ G′ → G→ 1

where the image of A is in the center of G′. Then G′ is a central extension of G by A.

Equipping A with the trivial G-action, we have that isomorphism classes of central

extensions of G by A are in one-to-one correspondence with the cohomology group

H2(G,A). In particular, note that a central extension corresponding to a coboundary

is isomorphic to the direct product G×A.

There is a natural map π∗ : H2(G,A)→ H2(GK , A) given by:

π∗(x)(σ, τ) = x(π(σ), π(τ))

for all σ, τ ∈ GK . Let c be the cocycle corresponding to the extension G′. Then we

have:

Lemma 2.3.1. Let K, G, G′, φ, GK , and c be as above. Then the Galois embedding

problem is solvable if and only if the image π∗(c) of c in H2(GK , A) is trivial.
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This is standard in the literature and is generally stated without proof. Artin and Tate

give one in the cohomology section of [2], while we give our own proof in Appendix B.1.

2.3.1 Lifting Projective Galois Representations

We now explicitly describe the problem of lifting projective Galois representations to

linear representations in terms of the framework of Galois embedding problems. Let

ρ̄ : GK → PGLn(C) be a projective representation, and let G = Im(ρ̄). We want to

answer two questions:

1. Under what circumstances does ρ̄ lift to a linear representation ρ : GK → GLn(C)?

2. What are the possibilities for the structure of the group G′ = Im(ρ)?

The first question has a surprisingly simple answer: all projective Galois represen-

tations lift to linear representations. This is an immediate consequence of the following

result due to Tate ([28, Thm. 4, p. 232]).

Proposition 2.3.2. Let K be a number field. Then H2(GK ,C×) = 1.

This result implies the existence of the following commutative diagram with exact

rows:
1 → C× → GK × C× → GK → 1

↓ ↓ ↓

1 → C× → GL(n,C) → PGL(n,C) → 1

and we obtain ρ : GK → GL(n,C) via the vertical arrow in the center.

With regard to the second question, note that the projection GLn(C)→ PGLn(C)

induces a surjection φ : G′ → G, and A = ker(φ) is a cyclic group contained in the

center of G′. So G′ is a solution to the Galois embedding problem for G and A. We

can then more or less determine the possibilities for G′ by determining all central cyclic

extensions of G and by explicitly describing the map π∗ : H2(G,A)→ H2(GK , A). The

former problem was studied extensively in Schur’s work on projective representations,

and the theory is known for the groups Sn and An, among others. The latter problem

is addressed by Serre ([32, Ch. 9]) and Crespo ([9]), and Crespo develops explicit

constructions in certain cases where the Galois embedding problem is solvable.
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2.4 Solvability of Galois Embedding Problems with G = Sn or An

2.4.1 Double Covers

Let K be a number field, L a finite extension, and G = G(L|K). We are first interested

in solving Galois embedding problems of the form:

1→ C2 → G′ → G→ 1

where C2 is the cyclic group of order 2, meaning G′ is a double cover of G. When G = S4

or A5, there are well-known nontrivial solutions: GL2(F3) is a double cover of S4, while

SL2(F5) is a double cover of A5. We show that augmentation can be represented in

terms of degree 1 and 2 representations on these groups in the following chapter.

Consider a quadratic form f of rank n over K. We may assume that f is of the

form:

f =
n∑
i=1

aiX
2
i

as any form is K-equivalent to such a form. We form the cup-product in the cohomology

ring H•(GK , C2):
n⋃
i=1

(1 + (ai)) = 1 +
n∑
j=1

wi

where wi ∈ H i(GK , C2). Here (a) is the class of a ∈ K× under the isomorphism

K×/K×
2 ' H1(GK , C2) provided by Kummer theory.

Definition 2.4.1. The ith graded term wi is the ith Stiefel-Whitney class of f .

The Stiefel-Whitney classes are invariants of the form f . Furthermore, f is char-

acterized up to K-equivalence by its rank, signature, and the first two Stiefel-Whitney

classes w1 = (disc(f)) and w2.

Now let E be an extension of K of degree n, and let ρ : GK → Sn be the permutation

representation of GK acting on the roots of a degree n polynomial defining E over K.

Let L be the Galois closure of E, so that we have an injection G(L|K)→ Sn. The map

E → K given by x 7→ TrE|K(x2) is a nondegenerate form QE of rank n over K.
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For n ≥ 4, we have ([32, p. 97]):

H1(Sn, C2) ' C2

H2(Sn, C2) ' C2 ⊕ C2

Since C2 is a trivial Sn-module, H1(Sn, C2) ' Hom(Sn, C2), the nontrivial element of

which is the sign character sgn. Then H2(Sn, C2), viewed as a vector space over F2 of

dimension 2, has basis {sgn ∪ sgn, sn}, where sn corresponds to the double cover S̃n of

Sn characterized by the property that 2-cycles lift to elements of order 2 and products

of two disjoint 2-cycles lift to elements of order 4. For the alternating groups, we have:

H1(An, C2) ' 1

H2(An, C2) ' C2

where the first group is trivial due to simplicity of An, and the second group has unique

nontrivial element an = Res(sn), the restriction of sn to An.

Let G = G(L|K) and let G̃ be the preimage of G in S̃n. The central extension:

1→ C2 → G̃→ G→ 1

then corresponds to Res(sn) ∈ H2(G,C2). To determine whether the related Galois

embedding problem is solvable, we must check whether the image e∗(sn) of Res(sn) in

H2(GK , C2) is trivial. To do this, we use:

Theorem 2.4.1 (Serre, [32, 9.2.2]). Let K, E, n, and e : GK → Sn be as above, QE

be the trace form of E over K, and let d be the discriminant of QE. Then:

1. w1(QE) = e∗sgn

2. w2(QE) = e∗sn + (2) ∪ (d)

Combining this with Lemma 2.3.1, we have:

Corollary 2.4.2. Let G be as above. Then the Galois embedding problem:

1→ C2 → G̃→ G→ 1

is solvable if and only if w2(QE) = (2) ∪ (d) in H2(GK , C2).
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We further note that if e(GK) ⊂ An, the discriminant d is a square in K, and so

(d) = (1) in H1(GK , C2). This implies that w2(QE) = e∗sn, and we have:

Corollary 2.4.3 (Serre, [32, 9.2.3]). If G ⊂ An, then the Galois embedding problem:

1→ C2 → G̃→ G(L|K)→ 1

is solvable if and only if w2(QE) = 1 in H2(GK , C2).

Corollary 2.4.2 will show that we can lift the projective representations for the n = 4

case, namely that we can realize GL2(F3) as the Galois group of a central extension of

L|Q. However, Corollary 2.4.3 will show that SL2(F5) cannot be realized as the Galois

group of a central extension of L|K, and we need to consider central extensions by

larger cyclic groups.

2.4.2 Higher Order Covers of An

Since A5 has an inclusion in PGL2(C), Tate’s result implies that there must exist some

central extension:

1→ A→ G′ → A5 → 1

with A cyclic such that the corresponding Galois problem with A5 = G(L|K) is solvable.

A priori, we do not know what A or G′ are, so we describe all cyclic central extensions

of An for any n.

For positive integers m,n, we have that:

H2(An, Cm) =

 1 if m is odd

C2 if m is even

Note that this implies all extensions with kernel of odd order are isomorphic to the

direct product An × Cm.

For even values of m, let mAn denote the unique nontrivial extension of An with

cyclic central kernel of order m. Writing m = 2rm′, m′ odd, we have an isomorphism:

mAn ' 2rAn × Cm′
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Thus we can restrict our attention to extensions with kernel of order a power of 2. We

note that for r ≤ s, there is an embedding 2rAn → 2sAn.

The following result due to Crespo completely characterizes the solvability of the

embedding problem 2rAn → An.

Proposition 2.4.4 (Crespo, [9, p. 71]). Let L|K be a Galois extension of number fields

with G(L|K) ' An, n ≥ 4. Then the embedding problem:

1→ C2r → 2rAn → G(L|K)→ 1 (1)

is solvable if and only if there exists a Galois extension K1|K with G(K1|K) ' C2r−1,

K1 ∩ L = K, and such that the cocyles corresponding to the extensions:

1→ C2 → C2r → G(K1|K)→ 1 (2)

and:

1→ C2 → 2An → G(L|K)→ 1 (3)

agree in H2(GK , C2).

The key to the proof of the proposition is to consider, instead of (1), the embedding

problem:

1→ C2 → 2rAn → G(LK1|K)→ 1 (4)

Noting that G(LK1|K) ' An×C2r−1 , (4) is solvable precisely when (1) is. The cocycle

corresponding to (4) is simply the product of the cocycles corresponding to (2) and

(3), so (4) is solvable if and only if the product of the cocycles is trivial in H2(GK , C2).

Since this group has exponent 2, this is the same as the cocycles having the same image.
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Chapter 3

The Quartic Case

3.1 Introduction

We study the roots of the polynomial f(X) = f4(X) = X4 − X − 1 modulo primes.

We show that the augmentation representation α can be written in terms of characters

of degree 1 and odd, degree 2 representations of GQ, and we attach modular forms to

the latter. We use the results of Serre and Crespo from Chapter 2 to show the ex-

istence of the representations, while we follow methods due to Crespo ([6]) and Quer

(unpublished but communicated in [9]) to explicitly construct the representations. The

long-established modularity of octahedral representations immediately gives us the de-

sired modular form, but we go a step further and answer a question of Serre’s in [31] by

giving an explicit formula for this form in terms of theta series of quaternion algebras.

We note that the suite of methods used by Crespo and Quer is only one of a few

different approaches. We discuss and apply methods due to Buhler ([4]) in Chapter

5; these avoid explicit global constructions of the fixed field of the kernel of a linear

representation. We also refer the reader to results by Jehanne ([16]), in which the fixed

field of the kernel of a linear representation is explicitly constructed by producing a

defining polynomial.

3.2 Notation

Letting f be the polynomial above, we let:

• E be a root field of f over Q;

• L be the splitting field of f over Q; and
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• K = Q(
√
−283), where −283 is the discriminant of f .

We note that:

• G(L|Q) ' S4;

• K is the fixed field of the image of A4 in G(L|Q); and

• L is unramified over K.1

3.3 Factoring Augmentation

There is a well-known double cover GL2(F3) →→ S4. This can be realized explicitly by

considering the transitive action of GL2(F3) on the projective line P1(F3) = {[1 : 0], [1 :

1], [1 : 2], [0 : 1]}. Thus, we can consider augmentation α and the sign character sgn

as representations on GL2(F3). We note that sgn corresponds to the determinant ε on

GL2(F3).

S4 has five conjugacy classes, each corresponding to the disjoint cyclic decomposition

of a permutation. Three can be determined by order alone–the classes of order 1, 3,

and 4. There are also two classes of order 2, one containing the 2-cycles and the other

consisting of the disjoint products of 2-cycles. We refer to these classes as 1 (1 element),

3 (8 elements), 4 (6 elements), 2A (6 elements), and 2B (3 elements), respectively.

GL2(F3) has 8 conjugacy classes. Letting:

z =

2 0

0 2

 , a =

1 0

0 2

 , b =

0 1

2 0

 , c =

1 1

0 1

 , d =

1 1

1 0


then the conjugacy classes have representatives 1 (1 element, order 1), z (1 element,

order 2), a (12 elements, order 2), b (6 elements, order 4), c (8 elements, order 3), zc

(8 elements, order 6), d (6 elements, order 8), and zd (6 elements, order 8). Under the

surjection GL2(F3) →→ S4, 1 and z map to 1; a to 2A; b to 2B; c and zc to 3; and d

and zd to 4.

1More generally, we have that if Xn − aX − b ∈ Z[X] has discriminant D, and (n− 1)a are nb are
relatively prime, then its splitting field is unramified over Q[

√
D] ([38]). This provides a more general

but still relatively easy to work with family of polynomials to study than simply taking a = b = 1.
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Although the theory of the representations of the general linear groups over finite

fields is well-known and can be worked out by hand for small fields, we use MAGMA

([3]) to compute the irreducible character table of GL2(F3). We list the values of three

characters–augmentation α, determinant ε, and a degree 2 irreducible representation

θ–in the table below. (We exclude the classes zc and zd as the values can be readily by

the values at z, c, and d.)

1 z a b c d

α 3 3 1 −1 0 −1

ε 1 1 −1 1 1 −1

θ 2 −2 0 0 −1
√
−2

It is clear from the table that α⊕ ε ' θ ⊗ θ, which can be expressed by the equality of

virtual characters:

χα = χ2
θ − ε

If we can realize GL2(F3) as the Galois group of a Galois superextension M of L|Q,

then we have the desired factorization of α into degree 1 and odd degree 2 representa-

tions. Indeed, that θ is odd follows from the fact that, since X4 −X − 1 has two real

roots, complex conjugation in G(L|Q) corresponds to 2A in S5. This, in turn, corre-

sponds to the class of a in GL2(F3). As θ(a) has order 2 and trace 0, its characteristic

polynomial must be 1− t2, implying det(θ(a)) = −1. (Indeed, this shows that a degree

2 Galois representation is odd so long as complex conjugation does not map to ±1.)

3.4 Lifting θ̄

The representation θ of GL2(F3) gives a projective Galois representation θ̄, and Tate’s

result that H2(GQ,C×) = 1 implies that some lifting exists. We would like to construct

this explicitly. The existence of the desired lifting comes from the results of Serre and

Crespo, while the explicit construction comes from techniques due to Crespo and Quer.

We first note that, since 2-cycles in S4 lift to elements of order 2 and products of

disjoint 2-cycles to elements of order 4 in GL2(F3), the central extension:

1→ C2 → GL2(F3)→ S4 → 1
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corresponds to the cocycle s4 ∈ H2(S4, C2). Thus, to determine whether GL2(F3) can

be realized as the Galois group of a super extension of L|Q, Corollary 2.4.2 states that

we must check that w(QE) = (2) ∪ (d) in H2(GQ, C2), where QE is the trace form of

E|Q and d is its discriminant.

Letting u be a root of f in E, and using the basis {1, u, u2, u3}, the trace form has

matrix: 

4 0 0 3

0 0 3 4

0 3 4 0

3 4 0 3


As {1, u, u2, u3} forms an integral basis for oE , the determinant of this matrix is the

discriminant of E, so the discriminant of QE is d = −283. QE is equivalent over Q

to the form corresponding to the diagonal matrix with entries {1, 1,−1, 283}, whence

w(QE) = (−1) ∪ (283).

To determine whether (−1) ∪ (283) = (2) ∪ (−283), we use the correspondence

between H2(GQ, C2) and quaternion algebras over Q. Computations in MAGMA show

that both of (−1, 283) and (2,−283) are ramified only 2 and 283, whence the desired

identity of cocycles is verified. Thus, there is a quadratic extension M of L, Galois over

Q, such that G(M |Q) ' GL2(F3). As such, we can view θ as a representation on GQ,

and we obtain the desired expression of augmentation. Noting that the determinant

character ε corresponds to the quadratic character χ−283 of discriminant −283, we have:

α = θ2 − χ−283

Furthermore, we can compute χ−283 at Frobenius using the Kronecker symbol, χ−283(σp) =

(−283
p ). Thus, we have:

χα(σp) = χθ(σp)2 −
(
−283
p

)
This implies:

Proposition 3.4.1. There exists an odd octahedral representation on GQ of conductor

283 such that for any prime p, the number of roots of X4−X − 1 modulo p is equal to:

χθ(σp)2 −
(
−283
p

)
+ 1
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3.5 Explicit Construction of M and θ

A natural method for obtaining an explicit construction of θ is to find an element γ ∈ L

such that M = L(
√
γ) is a solution to the above embedding problem. Intuitively, we

should be able to determine the trace of Frobenius at p by determining whether or not

γ is a square modulo p.

3.5.1 Crespo’s Formula

Until otherwise noted, we repurpose the notation developed above: K is a number field,

f(X) ∈ K[X] is a polynomial of degree n, E is a root field of f over K, L is the splitting

field of f over K. In the case that G(L|K) ' An and the Galois embedding problem

for the double cover of An is soluble, Crespo develops formulas for constructing γ. This

can then be modified suitably when An is replaced with Sn or when considering higher

order covers of An.

To develop some intuition for Crespo’s formula, we first state:

Proposition 3.5.1. Let γ ∈ L be such that M = L(
√
γ) is a solution to the Galois

embedding problem 1→ C2 → Ãn → An → 1.

i. For any σ ∈ G(L|K), there exists bσ ∈ L× such that γσ−1 = b2σ, and the cocycle

corresponding to the embedding problem is c(σ, τ) = bτσbτ b
−1
στ .

ii. All solutions to the embedding problem are given by k`2γ, k ∈ K× and ` ∈ L×.

These facts are stated without proof throughout the literature (e.g., [6, p. 453]), but

we provide a proof in Appendix B.2.

We give a brief overview of the derivation of the formula in [6]. The formula is

developed by considering Clifford algebras corresponding to various quadratic forms.

Definition 3.5.1. Let Q be a quadratic form on Kn. The Clifford algebra C(Q) is the

free algebra generated over Kn subject to the relations:

v2 = Q(v)

vw + wv = 2〈v, w〉
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〈·, ·〉 being the bilinear form correspond to Q.

We note that C(Q) is a central algebra over K.

The intuition is that we want to construct elements of a particular Clifford algebra

that are analogs of the field elements bσ and γ. The analogs of the bσ are easy to

construct due to a standard embedding of Ãn, the double cover of An, in a group of

units in a Clifford algebra, while Crespo constructs the analog of γ in the course of

deriving the formula for γ.

C(Q) is equipped with an automorphism α that is the extension of the map v 7→

−v on the quadratic space (Kn, Q). C(Q) then decomposes into positive (even) and

negative (odd) eigenspaces for α, C(Q) = C+(Q)⊕ C−(Q), giving C(Q) the structure

of a Z/2Z-graded algebra. There also exists a unique antiautomorphism β such that

the restriction of β to Kn is trivial. We then define the spin norm of c ∈ C(Q) by

N(x) = β(x)x.

We now let Q1 be the standard quadratic form on Kn, and let QE be the quadratic

form given by x 7→ TrE|K(x2). Clearly, the n × n identity matrix I is the matrix

corresponding to the bilinear form associated to Q1. If:

M = [u(j)
i ], 1 ≤ i, j ≤ n

where the ui form a basis of E over K and u(j)
i are the embeddings of the ui in L, then:

T = M tM = [TrE|K(uiuj)], 1 ≤ i, j ≤ n

is a matrix for the bilinear form corresponding to QE .

Ãn has an embedding in a group of units, the spin group:

Spinn(K) = {a ∈ C+(Q)×|a(Kn)a−1 ⊂ Kn, N(a) = 1}

as described in [29, 2.3]. Letting xσ, σ ∈ An, be a section, we have that for the standard

basis ei of Kn:

xσeix
−1
σ = eσ(i)

Furthermore, we have the equality of cocycles:

c(σ, τ) = xσxτx
−1
στ
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where c is the cocycle corresponding to the embedding problem.

The matrix M−1 gives an isomorphism of quadratic spaces f : Ln → E ⊗K L, and

this extends to an isomorphism f : CL(Q1) → CL(QE), where CL(Q) = C(Q) ⊗K L.

We then have:

f−1fσ(ei) = eσ(i), fσ(x) = [f(xσ
−1

)]σ

Crespo proves that, if the embedding problem is solvable, then we also have an isomor-

phism g : C(Q1)→ C(QE) of Z/2Z-graded algebras.

Letting vi = f(ei) and wi = g(ei), we construct an element of C+
L (QE):

z =
∑
εi=0,1

vε11 v
ε2
2 · · · v

εn
n w

εn
n · · ·w

ε2
2 w

ε1
1

z satisfies the identities:

viz = zwi

and, letting yσ = f(xσ):

yσviy
−1
σ zσ = vσ(i)z

σ = zσwi

Solvability of the embedding problem and the Skolem-Nöther theorem imply that z is

invertible, so we can define:

bσ = y−1
σ zσz−1

The two identities above imply that bσ is a central element of CL(QE) and, hence, is

in L. Furthermore, bσ gives the same cocycle as y−1
σ , i.e. the cocycle c corresponding

to the embedding problem. Since since N(yσ) = 1, we finally have ([6, Prop. 2]):

N(z)σ = bsσN(z)

We then let γ be a nonzero coordinate of N(z) in terms of the basis {wε11 · · ·wεnn } of

CL(QE).

The simplest case of computing a coordinate of N(z) occurs when QE and Q1 are

K-equivalent, as we can take g to be the extension of this equivalence:

Theorem 3.5.2 (Crespo, [6, Thm. 4]). Suppose QE is K-equivalent to Q1. Then there

exists P ∈ GLn(K) such that:

P tTP = I, γ = det(MP + I) 6= 0
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and L(
√
γ) is a solution to the embedding problem.

3.5.2 Ramification

We now study the ramification of the extension M |L. We begin with an obvious lemma:

Lemma 3.5.3. Suppose that L|K is a Galois extension of number fields. Let p be a

prime of K, M be a quadratic extension of L Galois over K, and P be a prime of L

over p. Then P ramifies in M if and only if all primes in L lying over p ramify.

Proof. This follows immediately from the transitivity of the action of Galois on primes

of M and L lying over a given prime in K.

We can apply this lemma in a variety of ways. For example:

Corollary 3.5.4. Let L, K, p, and M be as in the previous lemma. Suppose L|K is

unramified at p and that p does not divide 2. Furthermore, let γ ∈ L be an integer such

that M = L(
√
γ), and let n = [L : K]. If NL|Q(γ) is not divisible by N(p)n, then p is

unramified in M .

Proof. Suppose that p is ramified in M . Then there exists a prime P of L lying over p

that ramifies in M , and hence all such P ramify in M . The discriminant of the order

oL +
√
γoL of M is 4γ and is divisible by the dM |L, and so γ must be divisible by all

primes P lying over p. This implies that NL|Q is divisible by:∏
P |p

N(P ) = N(p)fr = N(p)n

where r is the number of primes P lying over p and f is the residue degree of P over p,

and n = fr due to the fact that P |p is unramified.

The situation at primes over 2 is similar to the classical case of quadratic fields over

the rationals: even if the norm of γ is odd, ramification may still occur. The criterion

for ramification at 2 in this case is essentially the same:

Lemma 3.5.5. Let M , L, and γ be as above, and assume that 2 is unramified in L.

Let P be a prime of L lying over 2 not dividing γ. Then P is unramified in M if and

only if γ is a quadratic residue modulo P 2.
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Proof. Let P be a prime of L dividing 2, and suppose that a+ b
√
γ ∈ oM , a, b ∈ L. We

first show a relationship between the valuations of a and b at P . We have TrM |L1
= 2a,

and so 2a ∈ oL and vP (a) ≥ −1. Let Q be a prime lying over P in M . The ramification

index e ofQ over P is either 1 or 2; in any case, vQ(a) ≥ −e. This implies vQ(b
√
γ) ≥ −e,

with equality holding if and only if vQ(a) = −e. Furthermore, since P does not divide

γ, this implies vQ(b) ≥ −e with equality holding if and only if vQ(a) = −e. Thus

vP (a), vP (b) ≥ −1, and equality in one case holds if and only if it holds in the other.

Next we show that P is unramified in M if and only if there exists some integer

a + b
√
γ with vP (a) = vP (b) = −1. Suppose some such integer exists. Then the

discriminant of the order oL+(a+b
√
γ)oL is 4b2γ. Since 2 is unramified in L, vP (2) = 1,

and so vP (4b2γ) = 2 · vP (2) + 2 · vP (b) = 0, whence P is unramified in M |L.

Conversely, if P is unramified in M |L, then since the discriminant of M |L is gener-

ated by the discriminants of free oL-modules contained in oM , there exist two integers

a+ b
√
γ, c+ d

√
γ ∈ oM such that P does not divide:

disc({a+ b
√
γ, c+ d

√
γ}) = 4γ(ad− bc)2

Since vP (γ) = 0 and vP (4) = 2, we must have vP (ad − bc) = −1. This implies that

some x ∈ {a, b, c, d} satisfies vP (x) < 0, which implies vP (x) = −1. Without loss of

generality, let x = a or b. Then vP (a) = vP (b) = −1.

Finally, we show that γ is a quadratic residue modulo P 2 if and only if there exists

an integer a+ b
√
γ with vP (a) = vP (b) = −1. Suppose γ satisfying the latter condition

exists. Then vQ(ab−1 +
√
γ) = vQ(ab−1−√γ) ≥ 1 for each prime Q lying over P in M ,

and so:

vP (a2b−2 − γ) = vP (NM |L(ab−1 +
√
γ)) ≥ 2

Noting that vP (ab−1) = 0, this inequality implies that γ is a square modulo P 2.

Conversely, suppose there exists x ∈ oL such that x2 ≡ γ (mod P 2). Let Q be

a prime of M lying over P . Then vQ(x − √γ) ≥ 1. For any y ∈ P−1 \ P , we have

vQ(xy − y√γ) ≥ 0, xy − y√γ ∈ oM , and vP (xy) = vP (y) = −1.
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3.5.3 Constructing M

We return to the case that f(X) = X4−X−1, and we let K = Q(
√
−283), E, and L be

as before. We cannot immediately apply Crespo’s formula to our case, as G(L|Q) ' S4.

However, we can pass to the subextension L|K, as G(L|K) ' A4. We can then find

a solution γ ∈ L to the embedding problem Ã4 →→ G(L|K). If this γ does not give a

solution to the problem S̃4 →→ G(L|Q), we must be able to find an element k ∈ K×

such that kγ does.

The choices for the matrices M and P , in addition to MAGMA code computing γ,

can be found at http://math.rutgers.edu/~jbryk/. We obtain:

γ = −376288
283

wu3
1u

2
2 −

420195
283

wu3
1u2 +

607296
283

wu3
1 −

420195
566

wu2
1u

2
2 +

280130
283

wu2
1u2

−376288
283

wu2
1 +

186058
283

wu1u
2
2 −

188144
283

wu1u2 −
1029577

566
wu1 +

188144
283

wu2
2

−36320
283

wu2 −
702411

566
w − u3

1u2 −
1
2
u2

1u
2
2 − 2u2

1u2 − 2u1u
2
2 −

1
2
u1 + u2 −

9
2

This choice of γ is integral. Letting σ ∈ G(L|Q) \ G(L|K) be the automorphism

corresponding to the odd permutation (34), we have that gσ is obtained by replacing w

with −w, and we verify through MAGMA that gσ−1 is a square in L. Thus, γ actually

gives a solution to the embedding problem over Q, and we take M = L(
√
γ).

To determine the ramification of M |L, we first compute the norm of γ:

NL|Q(γ) = 298,240,394,342,618,798,292,560,073,938,406,494,450,235,324,398,960,8512

(That the norm is a square is no surprise; since γσ−1 is a square, the product of any

two–and hence any even number–of conjugates of γ is a square.) Corollary 3.5.4 states

that if an odd prime p 6= 283 ramifies in M |Q, then p24 divides NL|Q(γ), which implies

that:

p ≤ (NL|Q(γ))1/24 < 28,590

It is trivial to check that no primes less than 28,590 divide the norm of γ and, hence,

M |L is unramified outside of primes over 2 (including 283).

A prime P over 2 is given by an embedding of L into F , the degree 4 unramified

extension of Q2. Since the Galois group of L|Q is S4, any identification of u1, . . . , u4

http://math.rutgers.edu/~jbryk/
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with the roots of f in F gives a valid embedding. Noting that our choice of the matrix

M gives det(M) = −w, the image of w is then determined as the negative of the

determinant of the image of the matrix M in Mat4(F ).

We let u denote the image of u1 in F . To get rid of 2 in the denominator in the

expression of γ to make computations easier, we let w = 2w0 + 1. We define a prime P

by the embedding (modulo 4):

u2 7→ 2u2 + u+ 1

u3 7→ u2 + 2u

u4 7→ u2 − 1

w0 7→ 2u3 + u2 + u− 1

Then γ 7→ u3 + 2u2 − u ≡ (u3 + u2 + u − 1)2 (mod P 2), whence Lemma 3.5.5 implies

that M |L is unramified.

3.5.4 Constructing θ

To construct θ–that is to say, to find the local factors of the Artin L-function of θ–we

need to find the determinant and trace at Frobenius. It is obvious that det(θ) is the

quadratic character χ−283, and, again, we can compute θ(σp) = (−283
p ). Alternately, we

can view the character as the sign character on S4 = G(L|Q), so we can compute it by

considering the disjoint cyclic decomposition of σp in this group.

To determine the trace at Frobenius, we first factor X4−X−1 modulo p.2 This gives

the class in G(L|Q), as the degrees of the irreducible factors correspond to the lengths

of cycles in the disjoint cyclic decomposition of σp. This immediately determines the

local factors when σp is in 2A or 2B, as there is only one class in G(M |Q) lying above

each of these classes.

2This may seem to defeat the purpose of introducing representation theory. Indeed, our original
problem is to count the number of roots of a polynomial modulo primes, while computing the trace at
Frobenius requires we go beyond this and completely factor the polynomial. However, we need only do
this for sufficiently many primes to identify the modular form that corresponds to the representation.
Once this is accomplished, methods of computing coefficients of modular forms can then be applied to
compute traces at Frobenius.
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If σp is in 1 or 3, then σp is in one of two classes in G(M |Q). One class has the

same order as the class in G(L|Q), while the other has twice the order. The former

occurs when γ is a square modulo a prime P of L lying over p, while the latter occurs

otherwise.

The same analysis cannot be used in the case that σp is in 4, as both of the

corresponding classes in G(M |Q) have order 8. Instead, we have to explicitly de-

termine the action of σp on
√
γ–namely, determining which sign holds in the equality

bσp = ±(
√
γ)σp−1. Checking this modulo a prime P of L lying over odd p amounts to

checking the congruence:

bσp ≡ ±γ
p−1
2 (mod P )

Letting τ = (123) ∈ S4, an explicit computation in the Clifford algebra gives the

equality ([9, p. 79]):

bσp = −1
2

+
γτ
−1 − γτ

2γ

The last difficulty in computing the trace at Frobenius is at the prime 2, over which

X4−X − 1 is irreducible and, hence, σ2 is in 4. However, since we know θ is modular,

we can consider both possibilities for the local factor at 2 and then determine which is

correct by seeing which candidate actually corresponds to a modular form.

Finally, we compute the conductor of θ using the formula in Appendix A. We com-

pute using MAGMA that, for a prime Q in M lying over 283, IQ is generated by a

2-cycle, while GQ,s is trivial for s ≥ 1. Furthermore, if V underlying vector space for θ,

V IQ has dimension 1, as a 2-cycle maps to a matrix with minimal polynomial X2 − 1;

and, clearly, V GQ,s = 0 for s ≥ 1. Thus the formula gives fQ(χθ) = 1 and f(χθ) = 283.

3.6 Modular Forms

As ρ is an odd octahedral representation of conductor 283 and character χ−283, it

corresponds to a newform f−283 ∈ S1(283, χ−283). Thus, if:

f =
∞∑
n=1

anq
n

we have:

χθ(σp) = ap
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And so we immediately obtain.

Corollary 3.6.1. There exists a newform f−283 ∈ S1(283, χ−283) with Fourier coef-

ficients an ∈ Z[
√
−2] such that for any prime p, the number of roots of X4 − X − 1

modulo p is equal to:

a2
p −

(
−283
p

)
+ 1

Serre gives an explicit expression for f−283 modulo 283 ([31, pp. 438–439]); we go

one step further and obtain a closed formula. We consider form f2
−283 ∈M2(283), which

has dimension 24 and is spanned by theta series coming from the quaternion algebra

(−1,−283) according to the Jacquet-Langlands correspondence. Using algorithms de-

veloped by Pizer and implemented in Pari-GP ([36]) by Rodriguez-Villegas and Pacetti

([40]), we find a maximal order B such that the theta series of the quadratic forms

corresponding to the 24 left ideal classes of B are linear independent. We can take B

to have Z-basis {1, 3i, 1
2 + 1

6 i+ 1
6j + 1

6k,
1
2 i−

1
2k}. We only need 19 of the ideal classes,

with representatives given by the Z-bases:

1. {−3,−17
6 i+ 1

6j + 1
6 ij + 1

2 ,−
2
3 i−

1
6j + 1

3 ij + 3
2 ,

37
6 i+ 1

6j + 1
6 ij + 1

2}

2. {17
6 i−

1
6j−

1
6 ij−

7
2 ,

17
6 i−

1
6j−

1
6 ij+ 11

2 ,−
41
6 i−

1
3j+ 1

6 ij− 2,−23
3 i+ 1

3j−
2
3 ij− 3}

3. {−2, 1
6 i+ 1

6j + 1
6 ij −

1
2 ,−

2
3 i−

1
6j + 1

3 ij −
1
2 , 6i}

4. {3,−1
6 i−

1
6j −

1
6 ij −

3
2 ,

13
6 i−

1
3j + 1

6 ij − 1,−20
3 i−

1
6j + 1

3 ij + 1
2}

5. {−4, 5
6 i+ 1

3j −
1
6 ij + 2, 35

6 i−
1
6j −

1
6 ij −

3
2 ,

37
6 i+ 1

6j + 1
6 ij + 3

2}

6. {−5, 17
6 i−

1
6j −

1
6 ij + 5

2 ,
7
3 i−

1
6j + 1

3 ij + 1
2 ,−7i− 1

2j + 1
2}

7. {−31
6 i+ 1

3j −
1
6 ij + 2,−1

2 i+ 1
2 ij + 3, 10,−7i− 1

2j + 1
2}

8. {−6, 6i,−1
2 i+ 1

2 ij + 1,−i− 1
2j + 5

2}

9. {−5
6 i−

1
3j + 1

6 ij − 3,−7, 37
6 i+ 1

6j + 1
6 ij + 3

2 ,
10
3 i−

1
6j −

2
3 ij −

3
2}

10. {−31
6 i+ 1

3j −
1
6 ij,−

7
2 i+ 1

2 ij + 4,−11, 7i+ 1
2j −

7
2}

11. {−3, 17
6 i−

1
6j −

1
6 ij + 1

2 ,
7
3 i−

1
6j + 1

3 ij −
1
2 ,−

37
6 i−

1
6j −

1
6 ij + 1

2}
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12. {−1
6 i−

1
6j −

1
6 ij + 1

2 , 4,−
2
3 i−

1
6j + 1

3 ij −
1
2 , 12i}

13. {−6,−2
3 i−

1
6j + 1

3 ij + 3
2 ,

37
6 i+ 1

6j + 1
6 ij −

5
2 ,−

17
3 i+ 1

3j + 1
3 ij + 1}

14. {−2
3 i−

1
6j + 1

3 ij −
9
2 ,

2
3 i+ 1

6j −
1
3 ij −

15
2 ,

7
6 i+ 2

3j + 1
6 ij + 3, 71

6 i−
1
6j −

1
6 ij −

7
2}

15. {−10
3 i−

1
3j −

1
3 ij − 1,−29

3 i−
1
6j + 1

3 ij + 3
2 ,−

3
2 i+ 1

2j −
1
2 ij −

5
2 , 15}

16. {−20
3 i−

1
6j + 1

3 ij −
1
2 ,

19
3 i+ 1

3j + 1
3 ij + 3,−9

2 i+ 1
2j −

1
2 ij + 5

2 , 14}

17. {17
6 i−

1
6j −

1
6 ij −

3
2 ,

17
6 i−

1
6j −

1
6 ij + 23

2 ,−
5
3 i+ 1

3j −
2
3 ij + 3,−13i− 1

2j −
9
2}

18. {6i+ 6,−5i+ 1
2j + 7

2 , 7i+ 1
2j −

5
2 ,−

3
2 i+ 3

2 ij + 3}

19. {−i− 1
2j + 1

2 ,
1
2 i−

1
2 ij + 1, 24,−139

6 i+ 1
3j −

1
6 ij}

Then f2
−283 is represented in terms of the corresponding theta series by the vector

[−3
2+i
√

2,−3
2−i
√

2,−3
2 , 4,

3
2 ,−

1
2 , 1+i

√
2,−1, 3

2 , 1−i
√

2,−1
2 ,−

3
2 ,−

1
2 ,−

1
2 , 2,−5, 2, 2,−1].

This data can also be found at http://math.rutgers.edu/~jbryk/4theta.txt.

Serre also asks what the coefficient of q283 is in f−283. Using the above representa-

tion, we find q283 has coefficient 1.

http://math.rutgers.edu/~jbryk/4theta.txt


29

Chapter 4

The Quintic Case: Factoring Augmentation

4.1 Introduction

We now consider the problem of finding the number of roots of the polynomial f(X) =

f5(X) = X5 − X − 1 modulo primes. We follow the same general strategy as in the

quartic case:

1. We “factor” augmentation α into projective representations of a Galois group.

2. We lift these to linear representations.

3. We explicitly construct the fixed field of the kernel of these representations to

compute traces at Frobenius.

4. We find the modular forms attached to these representations.

Although we have already stated in the exposition that the Galois group we will

consider is G(L|K) ' A5, where L is the splitting field of f over Q and K = Q(
√

2869)

is the quadratic subextension of L|Q, and, as such, we will attach the representations

to Hilbert modular forms, it is worth considering what other strategies we could have

taken. The main alternative to factoring augmentation to work with degree 2 represen-

tations and Hilbert modular forms is to use Siegel modular forms. The augmentation

representation α may correspond to a Siegel modular form of degree 2. However, algo-

rithms for computing Siegel forms are not as well-developed as those for Hilbert forms.

For example, MAGMA has a whole suite of commands related to Hilbert forms but

nothing devoted to Siegel forms.
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4.2 Notation and Basic Facts

Letting f be as above, we let:

• E be a root field of f over Q;

• L be the splitting field of f(X) over Q; and

• K = Q(
√

2869), where 2869 = 19 · 151 is the discriminant of f ;

• K has class number h = 1 and narrow class number h+ = 2 (or, equivalently,

there exists a totally positive fundamental unit of K); and

• L is unramified over K.

We note that:

• G(L|Q) ' S5;

• K is the fixed field of the image of A5 in G(L|Q).

4.3 Factoring Augmentation

As we cannot factor augmentation as a representation on GQ, we instead attempt to

factor it over GK . We start with the well-known double cover SL2(F5) →→ A5. The

simplest realization of such seems to be the action of SL2(F5) on the conjugacy class of

its 2-Sylow subgroups, which are isomorphic to the quaternion group Q8. Indeed, the

matrices:

i =

2 0

0 3

 , j =

0 2

2 0

 , k = ij

satisfy the usual quaternion identities and, thus, generate such a subgroup. As such,

we can consider augmentation to be a representation on SL2(F5).

A5 has five conjugacy classes. Three are determined by the disjoint cyclic decompo-

sition of a permutation–the identity, the disjoint products of 2-cycles, and the 3-cycles.

There are also two classes of 5-cycles. We denote these classes as 1 (1 element), 2 (15

elements), 3 (20 elements), and 5A and 5B (12 elements each).
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There are 9 conjugacy classes in SL2(F5). Letting:

z =

4 0

0 4

 , a =

2 0

0 3

 , b =

1 4

1 0

 , c =

1 1

0 1


then the conjugacy classes have representatives: 1 (1 elements, order 1); z (1 element,

order 2); a (30 elements, order 4); b (20 elements, order 6); b2 (20 elements, order 3); c

and c2 (12 elements each, order 5); and zc and zc2 (12 elements each, order 10). Under

the surjection SL2(F5)→→ A5: 1 and z map to 1; a to 2; b and b2 to 3; c and zc to 5A;

and c2 and zc2 to 5B.

Again, the representation theory of special linear groups of finite fields is well-known,

but we refer to MAGMA to find the character table for SL2(F5). We list the value of

three characters–augmentation α and two degree 2 irreducible representations ηi–in the

following table.

1 z a bm c c2

α 4 4 0 1 −1 −1

η1 2 −2 0 (−1)m+1 1
2(−1 +

√
5) 1

2(−1−
√

5)

η2 2 −2 0 (−1)m+1 1
2(−1−

√
5) 1

2(−1 +
√

5)

From the above table, it is immediate that α ' η1⊗η2. This is the desired factorization

of α into projective representations. Due to Tate’s result, we immediately know that

there are linear representations θi on GK such that θ̄i = η̄i as representations on

G(L|K). θ1 ⊗ θ2 gives the same projective representation as α, and so θ1 ⊗ θ2 = α⊗ χ

for some character χ on GK . Replacing θ1 by θ1 ⊗ χ̄, we see that there exist θi such

that θ1 ⊗ θ2 = α.

4.4 Lifting θ̄i

We follow the same approach as in the quartic case, and we first consider whether there

exists a quadratic extension M |L Galois over K such that G(M |K) ' SL2(F5). We

note that SL2(F5) has no nontrivial degree 1 representations. Thus the determinant

of the representation ηi must be identically 1. In particular, this implies that if ηi is

a Galois representation, it is not odd. Furthermore, the parity of any two liftings of
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a projective representation of GK must be the same. Thus, if we find a number field

M as above, we cannot express the trace at Frobenius of α in terms of holomorphic

Hilbert modular forms.

To determine whether such an M exists, we use Serre’s results on the solvability of

the Galois extension problem:

1→ C2 → Ã5 → G(L|K)→ 1

In the alternating case, Corollary 2.4.3 states we must determine whether w(QE) is

trivial, where QE is the trace form of E|K. Letting x be a root of f in E and using the

basis {1, x, x2, x3, x4}, the matrix associated to the trace form QE is:

5 0 0 0 4

0 0 0 4 5

0 0 4 5 0

0 4 5 0 0

4 5 0 0 4


We can diagonalize the form to have the diagonal matrix with entries {1, 1, 1,−1,−1},

whence w(QE) = (−1) ∪ (−1). This corresponds to the quaternion algebra (−1,−1)

over K. Since K is totally real, (−1,−1) ⊗K R = H, the Hamiltonian quaternions,

and so (−1,−1) is ramified at the infinite places and is, in particular, nontrivial in

H2(GK , C2). (We note that, since (−1,−1) ramifies at an even number of places, and

since 2 is inert in K, we must have that (−1,−1) as an algebra over K is split at 2, i.e.

it is only ramified at the real places.) This implies that the Galois extension problem:

1→ C2 → Ã5 → G(L|K)→ 1

is not solvable.

We now apply Proposition 2.4.4, which deals with higher order covers of An. We

would like to find a Galois extension K1|K such that K1∩L = K, G(K1|K) is cyclic of

order 2k for some k, and the cocycle c corresponding to the extension C2k+1 → G(K1|K)

is equal to (−1,−1) in H2(GK , C2). (The condition K1 ∩ L = K is automatic, since

K1 ∩ L|K is a strict Galois subextension of L|K, while simplicity of A5 ' G(L|K)
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implies that there are no Galois extension of K lying properly between K and L.) It

suffices to let k = 2.

The following lemma is well-known, but we give a shorter proof than we have found

in the literature (e.g., [7, pp. 625–626]).

Lemma 4.4.1. Let K be a number field, and let K1 = K(
√
a) for some a ∈ K× \K×2.

Let c ∈ H2(G(K1|K), C2) correspond to the extension C4 → G(K1|K). Then the image

of c in H2(GK , C2) is (−1, a).

Proof. Let x be the image of c in H2(GK , C2). Then x(σ, τ) 6= 1 iff σ, τ 6∈ GK1 . Since

(a) ∈ H1(GK , C2) can be represented by the projection GK → G(K1|K) ' C2, it is

clear that (a, a) = (a) ∪ (a) = x. Since (−a, a) = 1, we have:

x = (a, a) = (a, a) · (−a, a) = (−a2, a) = (−1, a)

Taking a = −1, the Lemma 4.4.1 and Proposition 2.4.4 immediately imply that

the Galois embedding problem is solvable for k = 2. However, we will not use the field

K1 = K(
√
−1) for our calculations. We wish to make the conductors of the liftings θi as

small as possible. We are already in good shape due to the fact that L|K is unramified,

but this choice of K1 introduces ramification at 2.

We consider another choice. K has a totally positive fundamental unit ε. Explicitly,

we have:

ε = 191619922383199 + 3577464936120
√

2869

Note that ε ≡ 3 (mod 4). Thus if we take K1 = K(
√
−ε), i.e. we adjoin the square root

of the totally negative fundamental unit −ε, we have K1|K is unramified at all finite

primes due to Lemma 3.5.5 and to the fact that −ε is a square modulo 4. It is also

clear that K1 has no real embeddings. This information, combined with the fact that

h+
K = 2, implies that K1 is the narrow Hilbert class field of K. It is sometimes useful

in our computations to note that K1 = K(
√
−19) = K(

√
−151): the latter two fields

are clearly equal, and so they must be unramified at all finite places, since they can be
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generated by roots of monic integral polynomials with relatively prime discriminants.

Thus they must be contained in K1 and, due to degree considerations, must be equal.

Now we show that (−1,−ε) = (−1,−1). We can use MAGMA to do the computa-

tions, but they are easy enough to do by hand that we proceed in this direction. Recall

from above that (−1,−1) is ramified only at the infinite place. We show the same holds

true for (−1,−ε). That (−1,−ε) is ramified at the real places is immediate because −ε

is totally negative and because an quaternion algebra (a, b) over the real numbers is

isomorphic to H precisely when a and b are both negative. To determine which other

primes can ramify, we construct an order in (−1,−ε) and compute its discriminant.

Let 1, i, j, ij be a basis for (−1,−ε) such that i2 = −1, j2 = −ε, and ij = −ji. Then

B = Z+iZ+jZ+ijZ is an order in (−1,−ε). The discriminant d of B can be calculated

as the ideal generated by the determinant of the matrix of traces of products of basis

elements for B. We have d = −16ε3oK = 16oK , and so the only finite prime at which

(−1,−ε) can ramify is 2. As before, the parity condition implies that 2 is unramified,

so (−1,−ε) = (−1,−1).

We summarize our findings:

Proposition 4.4.2. Let K = Q(
√

2869), K1 = K(
√
−19) be its narrow Hilbert class

field, and L the splitting field of the polynomial f(X) = X5 − X − 1 over K. Then

L ∩K1 = K, and there exists a Galois extension M of K such that:

1. G(M |K) ' 4A5; and

2. L1 = L ·K1 is the fixed field of C2 ⊂ 4A5 and is unramified over K.
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We find it useful to have a picture of the lattice of Galois subextensions of M |K:

K
QQ �

�
�

K1

�
�
�

L
QQ

L1

M

4.5 Formula for the Number of Roots of f(X) Modulo Primes

The irreducible representations of 2rAn can be readily deduced from those of 2An = Ãn.

Lemma 4.5.1. There is a one-to-one correspondence between the irreducible represen-

tations ρ of 2rAn and the pairs (ρ′, χ) of representations ρ′ of 2An and characters χ on

C2r satisfying ρ′(z) = χ(z)I2, where I2 is the 2× 2 identity matrix.

This statement is fairly obvious; we give a proof in Appendix B.3.

Notes. 1. For any irreducible representation ρ′ of 2A5, there are 2r−1 irreducible

representations of 2rA5 that restrict down to ρ′.

2. The projective representation attached to an irreducible representation ρ of 2rAn is

determined by the restriction ρ′ to 2An: any two representations restricting down to

ρ′ differ by a character of 2rAn (necessarily trivial on 2An). In fact, the image of ρ̄ in

PGL(m,C) is the same as that of ρ̄′.

3. In the case of n = 5, there is a nice description of 2rA5 in terms of matrices. We

now let ζ denote a 2r-th root of unity in F×5 . We can then realize 2rA5 as the subgroup

of GL2(F5) generated by the scalar matrix ζI2 and SL2(F5).

We now apply this to our case. The representations ηi : SL2(F5) ' 2A5 → GL2(C)

both satisfy ηi(z) = −I2. The characters χ : C4 → C× satisfying χ(z) = −1 must

satisfy χ(ζ) = ±i. Let χ1 satisfy χ1(ζ) = i and χ2 satisfy χ2(ζ) = −i, and let θi be

the irreducible representation of 4A5 determined by ηi and χi. It is then clear that

θ1 ⊗ θ2 ' α. We note that this gives us two choices for the θi, and so there are four

representations θ on 4A5 that restrict down to one of the ηi. Furthermore, given that the

ηi are conjugate over Q(
√

5), the four representations θ are conjugate over Q(
√

5,
√
−1).
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To determine the parity of the θi, we note that G(M |K1) corresponds to the

subgroup 2A5 in 4A5. Thus ζ is a representative of complex conjugation. Since

det(θi(ζ)) = χi(ζ)2 = −1, the θi are odd.

If we were trying to count the number of roots of f(X) modulo primes in K, we

would have our formula: given our discussions and calculations so far, we have the

number of roots of f(X) modulo a prime π of K is equal to:

χθ1(σπ)χθ2(σπ) + 1 (∗)

However, we are interested in what happens over Q. The rule giving the number of

roots modulo a prime p depends on whether p is inert or splits in K. One case is simple:

if p splits in K as π · π′, then Z/(p) ' oK/(π), so the number of roots is given by (∗).

Note that σp = σπ in this case.

However, if p is inert in K, then ok/(p) is a degree 2 extension of Z/(p). Let σp be

the Frobenius at p as a prime in Q and σ′p be the Frobenius at p as a prime in K. Then

σ′p = σ2
p. Since p is inert, σp is not in the kernel of the quadratic character modulo 2869

associated to K|Q. As K is the fixed field of the sign character on S5 ' G(L|Q), σp

is an odd permutation viewed as an element of S5. We further break things down and

consider a few cases:

1. If σp is a 2-cycle, then f(X) has 3 roots modulo p and σ′p = 1.

2. If σp is the disjoint product of a 2-cycle and a 3-cycle, then f(X) has no roots

modulo p and σ′p is a 3-cycle.

3. If σp is a 4-cycle, then f(X) has one root modulo p and σ′p is the product of two

disjoint 2-cycles.

Analyzing this information, we note that (∗) overcounts the number of roots for

cases σ′p in 1 and 2 while giving the correct value for σ′p in 3. If instead we modify the

formula to:

χθ1(σπ)χθ2(σπ) +
(

2869
p

)
(∗∗)
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where π is a prime of K lying over p, then (∗∗) gives the correct value for all cases

except for the third case when p is inert. In this case, the formula gives −1 while the

correct number of roots is 1. This is easy to surmount:

Proposition 4.5.2. Let f , K, and M be as in the previous proposition. There exist

two degree 2, odd representations θi of G(M |K) such that for any prime number p and

any prime π of K lying over p:

(#{x (mod p) : f(x) ≡ 0 (mod p)})2 =
(
χθ1(σπ)χθ2(σπ) +

(
2869
p

))2
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Chapter 5

The Quintic Case: Explicit Constructions

The methods we used in the quartic case to explicitly construct a representation and

the fixed field of its kernel readily extend to the quintic case. Crespo again provides us

with a method of explicitly computing an element (retaining the same notation as used

in the previous chapter) γ ∈ L1 such that L1(
√
γ) = M ([7]). As before, we will then

be able to determine the trace at Frobenius for many primes by determining whether

γ is a square at those primes. However, when we study the conjugacy classes of 4A5,

we will find that we run into the same problem as in the quartic case: there exist two

pairs of classes of the same order that map to the same class in G(L1|K) ' A5 × C2.

Distinguishing these class again requires that the 1-cocycle bσ be explicitly constructed.

However, this is much more difficult in the quintic case than in the quartic. We note that

Quer uses this approach in a computation of a twist of Buhler’s original icosahedral.

The results of the computation are given in [9], but the steps and, in particular, the

formula for bσ are unpublished.

On the other hand, Buhler ([4]) does not use an explicit global construction of the

fixed field of the kernel of the icosahedral representation corresponding to his form.

Instead, he develops techniques to determine the minimal conductor of a lifting of a

projective representation. This information combined with explicit local constructions

at the ramified primes gives enough information to determine the centric character of

the lifting, i.e. the restriction of the representation to the projective kernel. In the case

of icosahedral representations, the centric character is then enough to determine the

conjugacy class of Frobenius at any prime.

We take ideas from both of these approaches. We use Crespo’s formula to derive an

explicit construction of the field M = L1(
√
γ), γ ∈ L1, and we use this to determine the
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conductor of the θi. As L1|K is unramified, the possible structure of the localizations

of M are very simple to determine. Computing the centric character is then much more

straightforward than computing bσ.

It is worth noting that, in general, Crespo’s approach is superior, as it requires a

single formula for bσ that is independent of the fields in question. Buhler’s approach,

on the other hand, requires generating relations between idèles to compute the centric

character, and this process grows more difficult depending on the ramification of the

centric character and the class numbers of subextensions of L1|K.

5.1 Conjugacy Classes

5.1.1 Classes in G(L1|K)

Let p be a rational prime. K has class number 1, so for a rational prime p 6= 19, 151,

either p is prime in K or p = ππ′, where π, π′ are prime elements of oK of norm ±p. In

general, for any prime π ∈ K, and we let p be the rational prime over which π lies, so

that either π = p or NK|Q(π) = ±p. We let σπ (resp. σp) denote the Frobenius element

at π (resp. p) in whichever Galois group over K (resp. Q) we are considering at the

time.

If π is irrational, then to find the G(L|K) class of σπ, we factor f(X) modulo p, and

the degrees of the factors correspond to the lengths of the cycles in the disjoint cyclic

decomposition of σπ.

The only ambiguity is that there are two classes of 5-cycles. To distinguish between

the two, we fix a root x of f(X), and we compute:

∏
0≤i<j≤4

(xσπ
i − xσπj ) = ±

√
2869

One class corresponds to the positive sign, one to the negative. Explicitly, if y is a root

of g(X) = X2 −X − 717, then oK = Z[y], and we choose 2y − 1 to be the “positive”

square root of 2869. Then if π = a + by, we have y = −a/b and 2y − 1 = −2a/b − 1

(modulo π). So σπ is in, say, 5A if the above product is −2a/b− 1 and is in 5B if the

product is 2a/b+ 1.
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If π is rational, then to find the G(L|K) class of σπ, we factor f(X) modulo p,

and σπ is the square of the permutation that corresponds to the factorization of f(X)

modulo p. So if:

• f(X) splits into one quadratic factor and three linear factors, then σπ is in 1;

• f(X) splits into one quartic factor one linear factor, then σπ is in 2;

• f(X) splits into one cubic factor and one quadratic factor, then σπ is in 3.

Determining the class of σπ in G(K1|K) is simple.

Definition 5.1.1. ξ ∈ K× is definite if ξ is totally positive (i.e., both embeddings

of ξ in R are positive) or totally negative. Equivalently, ξ is definite if NK|Q(π) > 0.

Otherwise, ξ is indefinite.

A prime π splits in K1 if and only if it is definite. (Note that this implies all rational

primes p inert in K split in K1.) Indeed, let µ : CK → C× be the idèle class character

corresponding to K1|K. µ is unramified at all finite places of K, and so it must be

nontrivial for at least one of the real places. Evaluating µ at the principal idèle −1,

we see it must be nontrivial at both real places. Let µi be the real components of µ,

i = 1, 2. Then for x ∈ K×:

µ1(x)µ2(x) = sgn(NK|Q(x))

It follows that for a prime π, µπ(π) = sgn(NK|Q(π)). Together with the above analysis,

this determines the conjugacy class of σπ in G(L1|K).

5.1.2 Classes in G(M |K)

We now determine the conjugacy classes in G(M |K) ' 4A5. We find it useful to

represent 4A5 as the subgroup 2SL2(F5) of GL2(F5) generated by SL2(F5) and:

ζ =

2 0

0 2


If we let C = {1, z, a, b, b2, c, c2, zc, zc2} be the representatives of the classes of SL2(F5),

then a set of representatives of the classes of 2SL2(F5) is given by {x, ζx : x ∈ C}.
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Clearly, the size of the class of ζx is the size of the class of x. The order of the elements

is given by (writing ζz = ζ3):

class representative ζ ζ3 ζa ζb ζb2 ζc ζc2 ζ3c ζ3c2

order of members 4 4 2 12 12 20 20 20 20

In the surjection 2SL(2,F5) → A5, ζx maps to the same class as x. The necessity in

explicitly constructing bσ in Crespo’s method is now immediate: we cannot distinguish

the pairs of classes {ζ, ζ3}, {ζb, ζb2}, {ζc, ζ3c}, and {ζc2, ζ3c2}, as each pair has the

same image in G(L1|K) and has the same order in G(M |K).

However, Buhler provides us with a simpler way of accomplishing this. If P is a

prime of L lying over π, then σP is the smallest power of σπ lying in G(M |L); this

gives a map from classes in G(M |K) to elements of G(M |L). No two distinct classes in

G(M |K) lying over the same element in G(L|K) map to the same element of G(M |L).

Thus, determining σP determines the class of σπ ∈ G(M |K). As G(M |L) is cyclic, we

can use class field theory to determine σP .

5.2 Explicit Construction of M

We now find γ ∈ L1 such that M = L1(
√
γ) provides a solution to the embedding

problem 4A5 →→ G(L|K). The following proposition describes all of the possibilities for

γ. For the moment, we let K, E, and L represent arbitrary fields:

Proposition 5.2.1 (Crespo, [7, Thm. 2]). Let K be a number field, E an extension of

K of degree n ≥ 4, and L the Galois closure of K of E. Suppose that G(L|K) ' An

and, furthermore, that the Galois embedding problem 4An →→ G(L|K) is solvable. For

each a ∈ K× \ (L×)2 such that w(QE) = (−1, a), define the quadratic form:

Q̂a = TrE|K(X2) ⊥ TrK(
√
a)|K(X2) ⊥ TrK(

√
a)|K(X2)
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Letting uj be a K-basis for E and si be the n distinct embeddings of E in L:

Ma =


ME 0 0

0 M ′a 0

0 0 M ′a


ME = [usij ]1≤i,j≤n

M ′a =

 1
√
a

1 −
√
a


Suppose that Q̂a is equivalent over K to the form:

Qq = −(X2
1 + · · ·+X2

q ) +X2
q+1 + · · ·+X2

n+4

where q ≡ 0 (mod 4). Let [Q̂a] and [Qq] be the symmetric matrices corresponding to the

forms Q̂a and Qq, and let P ∈ GL(n+ 4,K) be such that P t[Q̂a]P = [Qq]. Then there

is an element γa ∈ L(
√
a) given as a function of the minors of MaP such that the fields

L(
√
a,
√
kγa), k ∈ K×, are the solutions to the embedding problem.

We apply the theorem with our usual choices of K and L. We will work with a = −19.

For an n× n matrix A and indices 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n, we

let:

A

 i1 . . . ik

j1 . . . jk


denote the minor of A omitting the i`th rows and j`th columns. Then letting A =

MaP + J , where:

J =

 0 0

0 I5


Crespo gives the formula ([8]):

γa = A

 1 2 3

1 2 3

−A
 1 2 4

1 2 4

+A

 1 3 4

1 3 4

−A
 2 3 4

2 3 4


−A

 1 2

3 4

−A
 1 3

2 4

−A
 1 4

2 3

−A
 2 3

1 4

−A
 2 4

1 3


−A

 3 4

1 2

+A

 1

1

−A
 2

2

+A

 3

3

−A
 4

4


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Applying this formula gives gives us an element γ. As in the quartic case, we multiply

γ by an element of K so as to make it integral and as an initial step in getting rid

of ramification. We give M , P , γ, and n = NL1|Q(γ), in addition to MAGMA code

computing γ, at http://math.rutgers.edu/~jbryk/.

5.3 Ramification

We now determine the ramification of M |L1. Using two methods, we will find that

M |L1 is either unramified or ramified at the primes lying a single K-prime. Although

we cannot specify where the ramification occurs using these methods, we can still go

through the motions of computing the θi for each case, one of which must give the

correct values.

5.3.1 Following the Quartic Case

We first use the tools developed in Chapter 3 to determine the ramification of M |L1.

Applying Lemma 3.5.5, we run into a problem when trying to determine NL1|Q(γ) is

divisible by N(π)120, 120 = [L1 : K], for any prime π 6= 2 of K. This would require

checking whether the norm is divisible by any rational primes p < dNL1|Q(γ)1/120e =

4,330,586,521,668,727,367,001, which is simply infeasible.

However, it is possible to check the condition for, say, p < dNL1|Q(γ)1/240e =

65,807,192,021. We find that the norm is divisible by only 2, 17, 1,973, and 79,193,

and with the valuation of the norm at these primes being 72, 6, 2, and 2, respectively.

Thus, M |L1 is unramified outside of primes lying over 2 and rational primes p less

than 65,807,192,021. Now if M |L1 is ramified at some prime of L1 lying over a rational

prime p greater than NL1|Q(γ)1/240, then p120 > NL1|Q(γ)1/2 divides NL1|Q(γ), whence

NL1|Q(γ)1/240 cannot be divisible by the 120th power of any other prime. Furthermore,

p must split in K, as otherwise p240 would divide the norm. The same argument indi-

cates that if p = π1 ·π2 in K, then ramification can only occur at primes lying over one

the πi. Thus, M |L1 is unramified outside of primes lying over 2 and possibly one other

prime of K.

http://math.rutgers.edu/~jbryk/
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Since 272 exactly divides the norm of γ, the only way ramification can occur at 2 is

if γ is not a square modulo primes P of L1 lying over 2. We construct a prime P of L1

lying over 2 by letting w be a root of X2 +X − 717, which has discriminant 2869. If z

is the root of X2 +X+ 5, which has discriminant −19, then we take z 7→ w+ 2 modulo

4. We find that, modulo 4:

X5 −X − 1 ≡ (X − w)(X + w)(X3 + 3X2 + 2X + 1)

Thus, if ui are the roots of X5−X − 1 in L1, and if u is a root of the irreducible cubic

factor of X5 −X − 1 over K2, we let:

u1 7→ w

u2 7→ −w

u3 7→ u

u4 7→ −u2 + 2

u5 7→ u2 − u− 1

Then the image of γ in L1 modulo P 2 is:

γ 7→ wu2 + 2u2 + 2wy + w + 2 ≡ (2wu2 + 2u2 + wu+ u− w + 1)2 (mod P 2)

Thus, M |L1 is unramified at all primes P lying over 2, and we conclude M |L1 is ramified

at primes lying over at most one prime of K.

Finally, we note that we can move all ramification to the primes lying over 2. Indeed,

if P in L1 ramifies in M , and if P lies over a prime π ∈ K, then M is ramified at all

primes of L1 lying over π. Since all primes P over π divide γ, then π itself must divide

γ. Replacing γ with γ/πk, where k is the minimum of the valuations of γ at the primes

P of L1 lying over π, we remove the ramification at primes over π. We note that k

must be odd; thus, if P2 is a prime lying over 2 and π is not a square modulo P 2
2 , our

new γ will not be a square modulo P 2
2 . This introduces ramification at 2. We may try

multiplying by units in K, but since the totally negative fundamental unit is a square

modulo 4, the only possibility is to replace γ by −γ, which is not guaranteed to give a

square modulo 4.
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5.3.2 Twisting by Characters

Let φ : GK → GLn(C) be an Artin representation, and let χ : GK → C× be a character.

Then the representations φ and χ ⊗ φ induce the same projective representation on

GK . This gives us considerable latitude in choosing a linear representation that gives a

particular projective representation. In particular, we can choose χ so as to make the

conductor of χ ⊗ φ as small as possible (e.g., so that few primes divide the conductor

or so that the norm of the conductor is small).

For a prime π of K, choose an embedding Gπ = GKπ ↪→ GK . Let Iπ be the image

of the inertia group under this embedding. Let φπ be the restriction of φ to Gπ. We

note that Iπ is in the kernel of φπ for almost all primes. At the primes where this is not

true, we can find a character χπ on Gπ such that χπ ⊗φπ has minimal local conductor.

If we can find a character χ on GK such that the local component of χ at π agrees

with χπ on Iπ, then χ ⊗ φ has minimal global conductor. However, this is not always

possible, as seen in the following result inspired by Theorem 5 in [4]:

Theorem 5.3.1. Let χπ : Iπ → C× be characters such that χπ is trivial for almost

all primes π of K, and let ε be the totally positive fundamental unit of K. Then there

exists a character χ : GK → C× such that the restriction of χ to Iπ is equal to χπ for

each π if and only if: ∏
π

χπ(ε) = 1

Furthermore, χ is unique up to multiplication by the nontrivial character of G(K1|K).

Proof. Let oπ be the ring of integers of the completion Kπ of K at π, let CK be the

idèle class group of K, and let∞i, i = 1, 2 be the real places of K. If χ exists satisfying

the above conditions, then we may view χ as a character on the CK , and we may view

the local components χπ as characters on the unit groups o×π . Since ε is totally positive,

if χ∞i is the local component at ∞i, then χ∞i(ε) = 1. Thus, since χ(ε) = 1, we have:

1 = χ(ε) =
∏
π

χπ(ε)
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Now suppose that the χπ satisfy:

∏
π

χπ(ε) = 1

Consider the idèle group:

J∞K =
2∏
i=1

K×∞i
×
∏
π

o×π

Since K has class number 1, we have:

CK = J∞K /o
∞
K

If: ∏
π

χπ(−1) = −1

then let χ∞1 be the sign character on K×∞1
, and let χ∞2 be trivial. Then, letting v run

over all places of K, we have:

∏
v

χv(−1) =
∏
v

χv(ε) = 1

which implies that for all u ∈ o×K :

∏
v

χv(u) = 1

Let χ =
∏
v χv. This defines a character of J∞K trivial on o×K and hence gives a character

on CK . Identifying CK with Gab
K and o×π with Iab

π as above, we have that χ : GK → C×

satisfies the desired properties.

The uniqueness statement follows from the fact that the ratio of two characters on

GK satisfying the above conditions is unramified at all finite places and hence factors

through G(K1|K).

We apply the theorem to our scenario. Let θ = θi be one of the representations we

are constructing. Since L1|K is unramified, the image of Iπ in G(M |K) = 2SL2(F5) is

contained in {±1} for all π. Thus, there is a real-valued character χπ on Iπ such that

θπ(σ) = χπ(σ)I2 for all σ ∈ Iπ. If:

∏
π

χπ(ε) = 1
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then we apply the theorem to find χ with local components χπ. Clearly, the local

restrictions of χ⊗ θ are all trivial, and so we can take θ to be unramified at all primes.

On the other hand, if: ∏
π

χπ(ε) = −1

then there exists some π0 such that χπ0(ε) = −1. Thus:∏
π 6=π0

χπ(ε) = 1

and we can find χ with local components χπ at all π 6= π0 and trivial at π0. The local

restrictions of χ⊗ θ are all trivial except at π0, so θ is ramified at exactly one prime.1

Note. We will only work through the unramified case, as this happens to be the correct

one. In Chapter 6, we succeed in constructing an icosahedral form of full level and with

a few specified eigenvalues. The only possible fixed field of the projective kernel for the

corresponding representation θ′ is L. The fixed field of the kernel of the determinant

must be an unramified cyclic extension of K, i.e. either K or K1. It cannot be K

since 2A5 →→ G(L|K) is not solvable, so it must be K1. If M is the fixed field of the

kernel of θ′, then we must have G(M |K) ' 4A5. Our construction below assumes the

existence of such an M , and the representations we construct are uniquely determined

up to conjugation over Q(
√

5,
√
−1). Thus, θ′ must be one of the representations we

construct.

If the argument seems circular, we remind the reader that the representations we

construct are only used to give us the Fourier coefficients of an object which is conjec-

tured to be a modular form. Once we construct the object with these coefficients, the

existence of the representations we construct is irrelevant.

5.4 The Centric Character

For the moment, let K, L, and M represent arbitrary fields. Consider an Artin repre-

sentation φ : G(M |K) → GLn(C), and let L be the fixed field of the projective kernel

1We note that, since there is a quadratic character χ4 modulo 4 such that χ4(ε) = −1, we can shift
the ramification to 2 by further twisting by a character with trivial local components except at 2 and
π0, where we take χ4 and χπ0 to be the local components.
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of φ. The elements of G(M |L) act by scalars under φ, and so there is a character

χ : G(M |L)→ C× such that φ(σ) = χ(σ)In for all σ ∈ G(M |L).

Definition 5.4.1. The character χ on G(M |L) such that φ(σ) = χ(σ)I is the centric

character of φ.

We identify χ with the corresponding character on CL.

Notes.

• Let φ̄ : G(L|K) → PGLn(C) be a projective Galois representation. We say that

χ is centric for φ̄ if there exists a lifting φ of φ̄ such that χ is the centric character

of φ.

• Since any two liftings of φ̄ differ by a character on GK , the ratio of any two centric

characters lifts to a character on GK .

• If φ is an Artin representation with centric character χ, then χ is G(L|K) invariant

in the sense that for all x ∈ CL and all σ ∈ G(L|K), χ(xσ) = χ(x).

We return to our specific scenario. Let π be a prime of K and P a prime of L lying

over K. We use the centric character as a means of determining σP ∈ G(M |L). As we

have noted, if we know the class of σπ as an element of G(L|K), then knowing what σP

is in G(M |L) immediately gives us the class of σπ in G(M |K), whence we can compute

χθi(σπ).

5.4.1 The Centric Characters of θi

Let χi be the centric character of θi, i = 1, 2. Note that, since θ1 ⊗ θ2 is a real-valued

character, we must have χ1 = χ̄2. Thus we let χ = χ1, and determining χ then

determines both characters. Let P be a prime of L, and, by abuse of notation, let

χ(P ) be the value of χ at an idèle which is 1 at all places except at P , where it is a

uniformizing element at P . Equivalently, χ(P ) is the value of the local component χP

at a uniformizing element at P .

We note that our explicit construction of γ allows us to compute centric character

at primes P lying over definite primes π. Let π be such a prime of K, P a prime of
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L lying over π, and Q a prime of M lying over P . Then π splits in K1, and hence P

splits in L1. Letting Q be a prime of M lying over P , we then have [MQ : LP ] = 1 or 2,

with the former holding when χ(P ) = 1 and the latter when χ(P ) = −1. This implies

that χ(P ) = 1 if and only if γ is a square modulo P or, equivalently, if and only if σπ

in G(M |K) has twice the order of the image of σπ in G(L|K). We thus have:

• χ(P ) = 1 for σπ in the class of 1, b2, c, c2, or ζa;

• χ(P ) = −1 for σπ in the class of z, b, zc, zc2, or a.

If π is indefinite, let f = 1, 3, 5 be the residue index of P over π. Then σP = σfπ as

elements of G(M |K), and have that σP = ζ or ζ3. We choose χ(ζ) = i. We obtain:

• χ(P ) = i for σπ in the class of ζ, ζb, ζc, or ζc2;

• χ(P ) = −i for σπ in the class of ζ3 ζb2, ζ3c, or ζ3c2.

However, the order of σπ in G(M |K) is always twice the order of σπ in G(L|K), and

so γ is not a square modulo P . This is where the explicit construction of the 1-cocycle

bσ, where γσ−1 = b2σ, or computation of the centric character becomes necessary.

On the surface, it seems that computing χ requires working with idèles in CL, a

degree 60 extension of K. To make the computation more manageable, we use Buhler’s

method of relating χ to an idèle character over a degree 6 extension of K:

Theorem 5.4.1 (Buhler, [4, Thm. 2]). Let K be a number field, and let φ̄ : GK →

PGLn(C) be a projective Galois representation with kernel GL. Let c be the cohomology

class in H2(G(L|K),C×) determined2 by φ̄, and let E′ be an intermediate extension.

Then there exists a quasicharacter ψ : CE′ → C× such that ψ ◦ NL|E′ is a centric

character for a lifting of φ̄ if and only if:

ResG(L|K)
G(L|E′)c = 0

Using the facts that A5 contains subgroups isomorphic to the dihedral group D5

and that H2(D5,C×) = 1, we have:

2The exact sequence 1 → C× → GLn(C) → PGLn(C) → 1 corresponds to a cocycle in
H2(PGLn(C),C×); c is the pullback of this class under φ̄.
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Corollary 5.4.2 (Buhler [4, p. 55]). Using the notation of the theorem, suppose G(L|K) '

A5. Let χ be centric for ρ̄ : G(L|K) ↪→ PGL2(C), and let E′ be the fixed field of an

embedding of D5 ↪→ G(L|K). Then there exists ψ : CE′ → C× such that χ = ψ ◦NL|E′.

We apply this corollary to our scenario. Let u1, . . . , u5 be the roots of f(X), and

consider the element of L:

v = (u1u2 + u2u3 + u3u4 + u4u5 + u5u1)− (u1u3 + u3u5 + u5u2 + u2u4 + u4u1)

Then v has degree 12 over Q. Its minimal polynomial over Q factors into two sextic

polynomials over K:

g(X) = X12 + 10X10 + 55X8 + 140X6 + 175X4 − 3019X2 + 25

= (X6 + 5X4 + 15X2 +
√

2869X − 5)(X6 + 5X4 + 15X2 −
√

2869X − 5)

Let E′ = K(v). Then it is immediate that G(L|E′) ' D5, since [L : E′] = 10 and D5 is

the unique (up to conjugation) subgroup of A5 of order 10. Thus, there exists an idèle

class character ψ : CE′ → C× such that χ = ψ ◦NL|E′ .

Let π be a prime of K, and let p be a prime of E′ lying over π. Following the same

abuse of notation as above, we want to find the value of ψ(p). Letting P be a prime of

L lying over p and f be the residue index of P over p, we then have χ(P ) = ψ(p)f .

Let ψ and ψ′ be two distinct characters on CE′ such that χ = ψ◦NL|E′ = ψ′ ◦NL|E′ .

Then the ratio ψψ′−1 is trivial on NL|E′CL. The maximal abelian quotient of G(L|E′) is

G(E′′|E′), where E′′ is the quadratic extension of E′ fixed by the subgroup of G(L|E′)

of order 5. Thus NL|E′CL = NE′′|E′CE′′ , and ψψ′−1 is character on CE′/NE′′|E′CE′ '

G(E′′|E′). Letting Θ be the nontrivial character on this group, we have ψ′ = Θψ.

Note that since [L : E′′] = 5 and L is totally complex, E′′ has only complex embed-

dings. Thus all real places of E′ split in E′′, and Θ must have nontrivial components

at all real places of E′.

5.4.2 Evaluating ψ

We first study ψ the real places of E′. Each ∞i, i = 1, 2, splits into two real paces and

two complex places. Let the real places above ∞1 be v1 and v2, and let the real places



51

above ∞2 be v3 and v4, and for each vi, let sgni denote the sign character on K×vi .

We evaluate ψ at the principal idèle −1. Since ψ is unramified at finite places, we

have that:
4∏
i=1

ψvi(−1) = 1

This implies that ψvi = sgni for an even number of i and is trivial for the other values

of i.

Now let π be a prime of K such that σπ is in the class of ζb in G(M |K). Then

µ(π) = −1, so that π is indefinite. Without loss of generality, π is negative at ∞1 and

positive at∞2. πoK factors as p1p2 for two primes pi in E. Let Pi be primes of L lying

over pi. Then for each i, since the residue degree of Pi over pi is 1:

ψ(pi) = χ(Pi) =
√
−1

Thus:

1 = ψ(π) = ψv1(π)ψv2(π)ψp1(π)ψp1(π)

And so:

ψv1(π)ψv2(π) = −1

Thus ψvi = sgni for precisely one of i = 1, 2. Since this identity holds for an even

number i = 1, 2, 3, 4, ψvi = sgni for precisely one of i = 3, 4. Without loss of generality,

assume that the identity holds for i = 1, 3. This determines the components of ψ at

the real places up to multiplication by Θ.3

To compute ψ(p), we note that E′ has class number 2. If p = ΠoE′ is principal,

then we have:

1 = ψ(Π) = sgn1(Π)sgn3(Π)ψ(p) ⇒ ψ(p) = sgn1(Π)sgn3(Π)

If p is not principal, then let q be a representative of the nontrivial ideal class, e.g.

a prime dividing 3. Then pq = ΠoE′ , and:

1 = ψ(Π) = sgn1(Π)sgn3(Π)ψ(p)ψ(q) ⇒ ψ(p) = sgn1(Π)sgn3(Π)ψ̄(q)

3In computations, we instead determine which real places have nontrivial components by looking at
the signs of the embeddings of an indefinite fundamental unit.
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For any prime Q of L lying over q, we have χ(Q) = ±i, so that ψ(q) = ±i. We choose

ψ(q) = i, so that:

ψ(p) = −i sgn1(Π)sgn3(Π)

We give code for computing χθi(σπ) and the results thereof at http://math.rutgers.

edu/~jbryk/.

http://math.rutgers.edu/~jbryk/
http://math.rutgers.edu/~jbryk/
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Chapter 6

Hilbert Modular Forms

6.1 Introduction

In this chapter, we consider any of the four representations θ constructed in chapter 4,

and then we construct a Hilbert modular form f to which it corresponds. Conjecturally,

there is a one-to-one correspondence between Hilbert eigenforms of parallel weight 1

over a totally real number field K and odd, degree 2 Galois representations of GK . The

Fourier coefficients of the form correspond to the traces at Frobenius of the representa-

tion. Furthermore, the level of the form is the conductor of the representation, and the

nebentypus of the form is given by the determinant of the representation. One direction

of this correspondence is known: for any cuspidal eigenform of positive integral weight,

there exists a system of compatible Galois representations, with parallel weight 1 forms

corresponding to complex representations. Jarvis ([15]) relates the sequence of results

leading to this general fact; of specific interest to us are the results for parallel weight

1 by Rogawski-Tunnell ([26]) and Ohta ([23]).

The converse is known for most cases: for any nonicosahdedral representation

φ : GK → GL2(C), there exists an Hilbert eigenform corresponding to φ. The cyclic

and dihedral cases are due to Hecke, while Langlands ([20]) and Tunnell ([37]) showed

the tetrahedral and octahedral cases, respectively.

The icosahedral case has been more elusive. Buhler ([4]) was the first to show the

existence of an icosahedral classical modular form, while Taylor improved upon this

by constructing infinite families of such forms in [35] and in joint work with Buzzard,

Dickinson, and Shepherd-Barron ([5]). The full conjecture over Q was recently obtained

as a corollary of Serre’s conjecture for modular representations of GQ, which was proved

by Khare-Wintenberger in 2009 ([17], [18]). Given these results, icosahedral Hilbert
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modular forms can be trivially constructed over totally real fields via base change.

However, our search through the literature indicates that the existence of icosahedral

forms not thus obtained is unknown. To our knowledge, we provide the first example

of such in constructing the form f .

We let fθ be the formal series whose coefficients are obtained from the Artin L-

function of θ. (We describe what sort of series we are considering in the sequel.) The

basic idea for showing that fθ is a weight 1 form is to:

1. compute “enough” coefficients of fθ;

2. find a basis of an “appropriate” space of modular forms;

3. using this basis, construct a weight 1 form f that agrees with fθ for the coefficients

we have computed; and

4. verify that fθ = f by showing the existence of a Hecke eigenvalue that must come

from an icosahedral form.

What makes this task nontrivial is that there are not effective methods for find-

ing bases for spaces of forms of weight 1. This necessitates working with spaces of

forms of weight at least 2, for which we do have effective algorithms. However, the

dimensions of these spaces become large fairly quickly, as do the degrees of the number

fields over which the coefficients of their Hecke eigenbases are defined. These factors

present computational challenges which require the careful application of theory and

the development of efficient algorithms.

6.2 Hilbert Modular Forms

We discuss the basic theory of Hilbert modular form from two perspectives. First,

we introduce the classical theory–that is, we will interpret Hilbert modular forms to

be functions on products of upper-half planes invariant under the action of discrete

groups of isometries. We favor this point of view, as it eases certain aspects of our

computation. However, we will tie the classical theory to the adèlic perspective, which

provides a more natural setting in which to introduce Hecke operators, eigenforms, and
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L-series. We largely follow the presentation given in [34], but we also use [12] and [39]

as references.

Let K be a totally real number field of degree n and let o be its ring of integers.

There are n distinct embeddings K ↪→ R, α 7→ α(i), 1 ≤ i ≤ n.

Definition 6.2.1. α ∈ K is totally positive if α(i) > 0 for all i. We denote this by

α� 0.

The notation introduced above is extended to all α, β ∈ K by defining α� β if and

only if α− β � 0.

The n embeddings K ↪→ R give an embedding:

GL+
2 (K) ↪→

n∏
i=1

GL+
2 (R)

where the superscript + indicates matrices of totally positive determinant. The action

of GL+
2 (R) on the upper half plane H by linear fractional transformations gives an

action of GL+
2 (K) on the n-fold product Hn.

Let k ∈ Zn and γ ∈ GL+
2 (K). For functions f : Hn → C, we introduce the slash

operator:

(f |γ)(z) =

(
n∏
i=1

(det(γ(i)))ki/2(c(i)zi + d(i))−ki
)
f(γz), γ =

 a b

c d


Let d be the different of K over Q. The maximal orders of M2(K) are given by: o (ad)−1

ad o


where a ranges over the fractional ideals of K. We define the group Γ = Γ(a) to be

the subset of matrices of determinant in o×+, the group of totally positive units of o.

Two such groups Γ(a) and Γ(b) are conjugate in GL+
2 (K) if and only if a and b lie in

the same narrow ideal class–i.e., if ab−1 is principally generated by a totally positive

element. Thus, the number of such groups up to conjugation is h+, the narrow class

number of K.

Note that the groups Γ are not congruence subgroups but, rather, a system of groups

of full level. We can define congruence subgroups for each Γ in analogy to the classical
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theory of modular forms, but as our representation is of trivial conductor, we opt not

to introduce this additional bit of structure.

We can now define Hilbert modular forms:

Definition 6.2.2. Let n > 1, and let k and Γ be as above. A holomorphic function

f : Hn → C is a Hilbert modular form of weight k on Γ if f |γ = f for all γ ∈ Γ.

We let Mk(Γ) denote the vector space of Hilbert modular forms of weight k on Γ.

If k is of parallel weight k–i.e., k = (k, . . . , k), we denote this space by Mk(Γ).

For any ε ∈ o×, consider the scalar matrix γ = ε1 ∈ Γ. For any f ∈ Mk(Γ), we

have:

f(z) = f |γ(z) =
n∏
i=1

(
|ε(i)|
ε(i)

)ki
f(z) =

n∏
i=1

sgn
(
ε(i)
)ki

f(z)

Thus, Mk(Γ) = 0 unless for all ε ∈ o×:

sgn(ε)k :=
n∏
i=1

sgn
(
ε(i)
)

= 1

As such, we assume this condition is always true.

Given a Hilbert modular form f on Γ(a), f is invariant under the translations

z 7→ z+α for precisely α ∈ (ad)−1, and so it has a Fourier series indexed by a, the dual

module to (ad)−1 with respect to the trace form:

f(z) =
∑
ν∈a

aν exp(2πiTr(νz)), Tr(νz) =
n∑
i=1

ν(i)zi

Note that the definition of Hilbert modular forms given above does not stipulate a

holomorphy condition for the cusps. This is due to the Gotzky principle ([13]), which

essentially states that holomorphy at the cusps is guaranteed. More specifically, for

n > 1 and any function satisfying the conditions of Definition 6.2.2, aν = 0 unless

ν = 0 or ν � 0. If the class number h of K is equal to 1, then a Hilbert modular form

f is a cusp form if a0 = 0; we denote the space of such forms by Sk(Γ). For h > 1, the

definition of cusp form is more restrictive, as there are h cusps, and Fourier expansions

at each of these must be considered.
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6.2.1 The Adèlic Perspective

Let AK be the ring of adèles over K, and consider the topological group GL2(AK). The

topology is determined by the fundamental system of open subgroups:

GL+
2 (R)n ×

∏
p

GL2(op)

where p runs over the (finite) primes of K. Let:

K∞ =


 x1 −y1

y1 x1

 , . . . ,

 xn −yn

yn xn

 ⊂ GL+
2 (R)n

and:

K0 =
∏
p

GL2(op)

We can put a complex structure on GL2(R)n/K∞ by identifying it with (H ∪ H)n

via the mapping g 7→ (g1i, . . . , gni). This gives a complex structure on the quotient:

GL2(AK)/K∞ = (GL2(R)n/K∞)×GL2(Af
K)

where Af
K is the ring of finite adèles. This, in turn, endows a complex structure on the

quotient:

GL2(K)\GL2(AK)/K∞K0

Let aj , j = 1, . . . , h+, be a system of representatives of the narrow ideal classes of

K, and let Γj = Γ(aj). We have:

Proposition 6.2.1 ([39, 7.2]). There is an identification of complex manifolds:

GL2(K)\GL2(AK)/K∞K0 =
h+⋃
j=1

Γj\Hn

Furthermore, there are gj ∈ GL2(Af
K) such that:

GL2(AK) =
h+⋃
j=1

GL2(K)gjGL+
2 (R)nK0

Γj = gjGL
+
2 (R)nK0g

−1
j ∩GL2(K)

The proposition gives us a roundabout means of defining modular forms onGL2(AK).
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Definition 6.2.3. Fix a weight k. A function f : GL2(AK)→ Ch+
is a modular form

of weight k on K0 if there is an h+-tuple of forms (f1, . . . , fh+), fj ∈Mk(Γj) such that

for each γ ∈ GL2(K) and g = g∞gf ∈ GL+
2 (R)n ×K0:

f(γgjg) = (fj |g∞)(i, . . . , i)

As such, we identify f with (f1, . . . , fh+). f is a cusp form precisely when each of the

fj is a cusp forms. We let Mk(K0) denote the space of modular forms, and we let

Sk(K0) denote the space of cusp forms. These spaces are identified with ⊕jMk(Γj) and

⊕jSk(Γj), respectively.

We can introduce nontrivial levels by modifying the group K0 to include congruence

subgroups at a finite number of places. Since each component of K0 is the full group

GL2(op), we also say that Hilbert modular forms on K0 are of full level.

6.2.2 Hecke Operators and L-Series

Hecke operators on Hilbert modular forms are best described in terms of adèles. For

each finite prime p of K, define:

Yp =

 op d−1
p

dp op


Wp = {y ∈ Yp : det(y) ∈ o×p }

and let:

Y = GL2(AK)
⋂(

GL+
2 (R)n ×

∏
p

Yp

)
W = GL+

2 (R)n ×
∏
p

Wp

For y ∈ Y , the double coset WyW decomposes into a finite union
⋃
jWyj with

yj ∈ GL2(Af
K). For f ∈Mk(K0), we define the action of the double coset by:

(f |WyW )(x) =
∑
j

f(xyιj)

where, for 2× 2 matrices x, ι is the main involution:

xι = det(x)x−1
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In terms of the representation Mk(K0) = ⊕jMk(Γj), the action of WyW maps Mk(Γj)

to Mk(Γi) if det(y)aja−1
i is in the trivial narrow ideal class.

Definition 6.2.4. Let m be an integral ideal of K. The mth Hecke operator is:

T (m) =
∑
y∈Y

det(y)o=m

WyW

We define additional operators S(m) = WaW , where a ∈ A×K is such that ao = m.

The operators T (m) and S(m) permute the spaces Mk(Γj) according to the same rule

as for the action by WyW , replacing det(y) with m and m2, respectively. The product

of Hecke operators is given by:

T (m)T (n) =
∑

m+n⊂a

N(a)S(a)T (a−2mn)

and this gives the formal Euler product:

∑
m

T (m)N(m)−s =
∏
p

(
1− T (p)N(p)−s + S(p)N(p)1−2s

)−1

We can decompose the space of modular forms into common eigenspaces for the S(p),

p prime. For each such subspace there is a Hecke character of finite order ψ on A×K so

that f(vx) = ψ(v)f(x) for each v ∈ A×K . Noting that we can take (f |S(p))(x) = f(πpx),

πp a uniformizer in op, we have that the eigenvalue of S(p) is ψ(πp). Each ψ must

satisfy the consistency condition:

ψ(v) = sgn(v)k, v ∈
n∏
j=1

R×

and must be trivial on
∏

p o×p . This corresponds to a character ψ∗ on the narrow ideal

group given by ψ∗(p) = ψ(πp).

For simplicity’s sake, we assume that k has parallel weight k. For each component

fj of a modular form f , we have a Fourier expansion:

fj(z) =
∑
ν∈aj

ν�0 or ν=0

aj,ν exp(2πiTr(νz))

Since fj(εz) = fj(εz)NK|Q(ε)k/2 = fj(z) for all ε ∈ o×+, we have that the value of

aj,ν = aj,ν′ if νo = ν ′o. Any integral ideal b of K can be written b = νa−1
j for a unique
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j and ideal νo. We then define:

C(b, f) = aj,νN(aj)−k/2

Renormalizing T ′(m) = N(m)k/2−1T (m), we have:

C(b, f |T ′(m)) =
∑

b+m⊂a

ψ∗(a)N(a)k−1C(a−2bm, f)

We attach an L-series to f :

L(s, f) =
∑

b

C(b, f)N(b)−s

This can be extended to a meromorphic function on the s-plane and is entire if f is

a cusp form. If f is a common eigenform of all the Hecke operators, where f |T ′(m) =

λ(m)f , then C(m, f) = λ(m)C(o, f). The formal Euler product for Hecke operators then

translates to the Euler product:

∑
b

λ(b)N(b)−s =
∏
p

(
1− λ(p)N(p)−s + ψ∗(p)N(p)k−1−2s

)−1

If C(o, f) = 1, then L(s, f) is equal to this Euler product, and we call f normalized.

6.2.3 Eisenstein Series

We now introduce Eisenstein series for the groups Γ(a), and we state formulas for their

Fourier coefficients. The presentation and formulas are due to Gundlach ([14, §4]). For

the sake of simplicity, we assume that h = 1. Thus, there is only one cusp, and we only

have to worry about one Fourier series for each Eisenstein series. We still assume that

we have parallel weight k.

There are convergence issues for Eisenstein series when k ≤ 2, so we introduce a

complex parameter s. We define:

Gk(z, s, a) =
∑

(µ1,µ2)∈(ad×o)/o×

(µ1,µ2)6=(0,0)

N(µ1z + µ2)−k|N(µ1z + µ2)|−s, k + <(s) > 2

It is immediate that this is automorphic under Γ(a). This series may be analytically

continued to the s-plane, and from this we recover the correct notion of Eisenstein series
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for k ≤ 2. Furthermore, we can use this to determine the Fourier coefficients of these

Eisenstein series. We define:

Gk(z, a) = Gk(z, s, a)|s=0

We have that Gk(z, a) ∈ Mk(Γ(a)). For totally positive ν ∈ a, ν 6= 0, the Fourier

coefficients of Gk(z, a) are given by:

ak(ν, a) =
(−2πi)nk

(k − 1)!
√
|D|

(N(ν))k−1
∑

ad|(µ)|νd

sgn(N(µ))k

|N(µ)|k−1

where D is the discriminant of K over Q. When k = 1, we have:

a1(ν, a) =
(−2πi)n√
|D|

∑
ad|(µ)|νd

sgn(N(µ))

For ν = 0, there are different formulas for k ≥ 2 and k = 1. We only need the

expression for k = 1, so we present only this case. Let χ be the character on the narrow

ideal class group given by χ(ξo) = sgn(N(ξ)). (This character and, hence, the series

exist if and only if there are no units of norm −1.) Write b ∼ c for integral ideals of K

lying in the same ideal class, and let:

L(s, c, χ) =
∑
b∼c

χ(b)N(b)−s

We then have:

a1(0, a) = L(1, o, χ) + χ̄(ad2)L(1, ad2, χ)

6.3 Constructing the Weight 1 Form

We fix K = Q(
√

2869), o = oK , and k = 1. We have d =
√

2868o, h = 1, and h+ = 2.

a1 = o and a2 = p3, a prime of norm 3 principally generated by an indefinite element,

are a system of representatives of the narrow ideal class group. There is a unique Hecke

character ψ satisfying the conditions above, and ψ∗ is then the nontrivial character,

i.e. ψ∗(ξo) = sgn(N(ξ)). We let χ(p) = χθ(σp). Then the L-function associated to θ is

given by the Euler product:

∏
p

(
1− χ(p)N(p)−s + ψ∗(p)N(p)−2s

)−1 =
∑

a

C(a, θ)N(a)−s
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From this, we compute the coefficients aj,ν of a pair of Fourier series fθ = (fθ,1, fθ,2):

aj,ν = C(νa−1
j , θ)N(aj)1/2

where aj,ν are the coefficients of fθ,j and ν runs over totally positive elements of aj .

Consider G1(z, ai), the weight 1 Eisenstein series associated to each narrow ideal

class. A quick computation shows that G1(z, p3) = 0. Thus, to follow the strategy

outlined above, we can only work with modular forms on the group Γ(o). To simplify

notation, we let Γ = Γ(o), fθ be the first component of fθ, and G(z) = G1(z, o). We are

then looking to find a form f ∈ M1(Γ) that agrees with fθ for “enough” coefficients,

and we obtain f as (f, λ−1f |T ′(p3)), where λ is an appropriate nonzero constant (which,

circularly defined, is the eigenvalue of T ′(p3) acting on f). However, first we need a

lemma and a proposition:

Lemma 6.3.1. Let L be an unramified extension of K. Then:

1. if L is a cyclic extension of K, then L = K1 = K(
√
−19), and G(L|K) ' C2;

2. if L is a dihedral extension of K, then L is the Hilbert class field of K1 and

G(L|K) ' D7; and

3. L is not a tetrahedral or octahedral extension of K.

Proof. We recall that K1 is the narrow Hilbert class field of K. This immediately proves

the first statement.

Suppose L is a dihedral extension of K, with G(L|K) ' Dn, n ≥ 2. Since Cn is

a subgroup of index 2 in Dn, there is a quadratic subextension of L|K. Since L|K is

unramified, the quadratic subextension must be K1. We have G(L|K1) ' Cn, and so L

is contained in the Hilbert class field of K1. Since K1 is totally complex and h(K1) = 7,

L must be the Hilbert class field of K1, and n = 7.

Suppose L is tetrahedral or octahedral. In the former case, G(L|K) ' A4 contains

a normal subgroup of index 3, and so K must have an abelian extension of degree

3, contradicting that h+(K) = 2. In the latter case, G(L|K) ' S4 contains A4 as a
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subgroup of index 2. Thus, as in the dihedral case, K1|K must be a subextension of

L|K, with G(L|K1) ' A4. However, this implies that K1 has an abelian extension of

degree 3, contradicting that h(K1) = 7.

We apply the lemma when studying eigenvalues of the weight 1 form we construct.

Let K2 denote the Hilbert class field of K1. Since H2(C2,C×) and H2(D7,C×) are

trivial, any projective representation on either group lifts to a linear representation.

Thus, any odd, unramified cyclic or dihedral representations of GK are twists of odd,

degree 2 representations of G(K1|K) or G(K2|K) by even, unramified characters on GK .

However, all unramified characters of GK factor through G(K1|K), and the nontrivial

character is odd. So the odd, unramified cyclic and dihedral representations of GK are

precisely the odd, degree 2 representations of G(K1|K) and G(K2|K). The possible

traces of Frobenius coming from these representations are 0, 2, and the roots of the

irreducible polynomial X3 + X2 − 2X − 1, which generates the cubic subextension of

the cyclotomic field Q(ζ7). If we show the existence of an eigenvalue which is not listed

here, it must come from an icosahedral representation.

The following result gives a simple condition to show that a representation is equal

to one of the representations we constructed. We note that we originally planned to

use an effective version of the Chebotarev Density Theorem ([1]), but that approach

did not take advantage of the specific structure of the number fields with which we

are working. As such, we would have had to compute traces at Frobenius for a very

large set of primes, while the proposition states that we need only check the traces at

two primes. Although we do not need the Chebotarev-inspired approach, we discuss in

Appendix A some results that tailor the effective theorem to our scenario and that are

interesting in their own right.

Proposition 6.3.2. Let θ′ be an icosahedral representation of GK with trivial conductor

such that C(p, θ′) = C(p, θ) for the primes p of K lying over 2 and 17, where θ is one

of the representations we have constructed. Then θ′ = θ.

Proof. First, suppose that the projective kernel L′ of θ′ is Galois over Q. Since L′ is

unramified over K, it must be the splitting field of a quintic polynomial of discriminant
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2869. However, tables of number fields computed by Klünews and Malle ([19]) show

that, up to isomorphism, there is only one degree 5 extension of Q of discriminant 2869,

namely a root field of X5 − X − 1. Thus, L′ = L, and so θ′ must be one of the four

representations we constructed.

We now assume that L′ is not Galois over Q. Let L′′ be the conjugate of L′ over Q,

i.e. the fixed field of the conjugate of GL′ in GQ. L′ ∩ L′′ is a Galois subextension of

L′|Q, and G(L′ ∩L′′|K) is a quotient of G(L′|K) ' A5. The quotient is either A5 or 1,

so either L′ ∩ L′′ = L′ or K. By assumption, L′ is not Galois over Q, so L′ ∩ L′′ = K.

This implies that M = L′L′′ has Galois group G(M |K) ' A5 ×A5.

M is Galois over Q, and G(M |Q) is a group of order 7,200 with normal subgroup

A5×A5. It is immediate from the definition of M that K|Q is the unique proper Galois

subextension of M |Q, and this implies that A5 × A5 is the unique nontrivial normal

subgroup of G(M |Q).

Consider the map c : G(M |Q) → Aut(G(M |K)) given by [c(σ)](τ) = στσ−1. For

σ 6∈ G(M |K), we obtain G(M |Q) as the homomorphic image of the semi direct product:

G(M |K) oc 〈σ〉

via the map (τ, σ) 7→ τσ. It is clear that σ has even order, and so we can conduct a

coarse search for the correct structure ofG(M |Q) by considering all semidirect products:

(A5 ×A5) oφ C2m, φ : C2m → Aut(A5 ×A5)

and finding all quotients of order 7,200. This is good enough to uniquely identify the

structure of G(M |Q), as only one such group has A5×A5 as its unique nontrivial normal

subgroup. This can be realized by letting m = 1 and [φ(g)](τ1, τ2) = (τ2, τ1), where g

is the generator of C2. We let S = (A5 ×A5) oφ C2, and we identify S with G(M |Q).

S has a unique (up to conjugation) maximal subgroup S0 of order 120 and isomorphic

to A5×C2. Let F be the fixed field of S0; F is a degree 60 extension of Q. By considering

the possible decomposition groups for 19 and 151 in S, namely particular subgroups of

S isomorphic to Cm × C2, m = 1, 2, 3, 5, we find that the maximum possible absolute

discriminant |dF |Q| is 286922. A similar analysis shows that F has 4 real embeddings
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and, thus, 28 (pairs of conjugate) complex embeddings. Given the assumption that χθ′

agrees with χθ at the primes over p = 2, 17, we can identify the conjugacy classes of σp

in S. This allows us to determine the splitting behavior of p:

• 2 splits into the product of 1 prime with residue degree f = 1, 1 prime with f = 2,

5 primes with f = 3, and 7 primes with f = 6; and

• 17 splits into the product of 3 primes with f = 1 and 19 primes with f = 3.

We can also show that 19 (and 151) must split in one of the following ways:

• 38 primes with f = 1 (22 ramified);

• 4 primes with f = 1 (all unramified) and 20 primes with f = 2 (2 ramified);

• 2 primes with f = 1 (one ramified) and 12 primes with f = 3 (7 ramified); or

• 3 primes with f = 1 (2 ramified) and 7 primes with f = 5 (4 ramified).

We now introduce a discriminant bound developed by Poitou ([24, 25]). Let H be

an extension of degree n over Q with r1 real embeddings, y be a real parameter, and:

L(y) = − 3
20y2

+
33
10y

+ 2 +
(

3
80y3

+
3

4y2

)
log(1 + 4y)−

(
3
y

+
12
5

)
1
√
y

arctan(2
√
y)

L1(y) =
∞∑
i=0

1
2i+ 1

L

(
y

(2i+ 1)2

)
+
r1

n

∞∑
i=1

(−1)i+1

i
L
( y
i2

)
f(x) =

(
3
x3

(sin(x)− x cos(x))
)2

Then we have a lower bound for the (log of the root) discriminant:

1
n

log |dH|Q| ≥ γ + log(4π) +
r1

n
− 12π

5n
√
y
− L1(y) +

4
n

∑
m; p

logNp

1 +Npm
f(
√
y logNpm)

where the sum is over all positive integers m and primes p of H. Ignoring the sum over

primes, the optimal choice of y is given by:

y =
(

3π
2(nλ3 + r1η2)

)2/3

for nλ3 + r1η2 ≥ 12π
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where:

λ3 =
7
8
ζ(3)

η2 =
1
2
ζ(2)

We let H = F , n = 60, and r1 = 4, and we maximize |dF |Q| by 286922. Subtracting

all terms except for the sum over primes to the left side, we have:

0.178879 . . . ≥ 4
n

∑
m; p

logNp

1 +Npm
f(
√
y logNpm)

Restricting the sum on the right to the primes over 2 and 17, we have:

4
n

∑
m; p|2,17

logNp

1 +Npm
f(
√
y logNpm) = 0.167052 . . .

while the sum over the primes dividing 19 is minimized when 19 splits into primes of

residue degree 1 and 2:

4
n

∑
m; p|19

logNp

1 +Npm
f(
√
y logNpm) ≥ 0.014807 . . .

Thus:
4
n

∑
m; p

logNp

1 +Npm
f(
√
y logNpm) ≥ 0.181859 . . .

which is the desired contradiction. Thus, L′ must be Galois over Q, and θ′ = θ.

The proof of the main result hinges on showing that two weight 4 forms on Γ

constructed from the representation and the Eisenstein series are equal. The mechanics

of the computation are simple: we need to be able to compute Fourier coefficients for

products of forms and for the eigenbasis of weight 2 forms. However, the sheer number

of coefficients that need to be computed to verify that the weight 4 forms are equal

makes the process very time-intensive.

We considered two ways of determining how many coefficients needed to be checked

to show equality. The first approach was the application of Sturm bounds for Hilbert

modular forms developed by Gil and Pacetti (work in progress; example in [11]). Pacetti

performed computations for us giving a set of indices such that two weight 4 on forms
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on Γ whose coefficients agree on these indices must be equal. This type of bound is

useful in that Hecke operators and eigenvalues do not need to be computed in order

to determine the set. However, the set contained millions of indices, presenting an

infeasible computation.

The second and successful approach was to find a set of primes of K such the Hecke

operators at these primes give a basis for the Hecke algebra on M4(K0). Although

this is an obvious approach, it is a time-consuming process for MAGMA to generate

matrices representing the action of Hecke operators on a basis of a space of Hilbert

modular forms. However, these computations are performed by considering matrices

of the Hecke operators acting on a larger, auxiliary vector space, and computing these

matrices is a much faster process. It then suffices to find a basis for the Hecke algebra on

this space. We can then check that the two weight 4 have the same Fourier coefficients

at these primes to show that they are equal. This approach required the computation

of only tens of thousands of Fourier coefficients, a process which took around 50 hours.

Proposition 6.3.3. The series fθ obtained from the representation θ is the Fourier

series of a weight 1 Hilbert modular form of full level.

Proof. Consider the series fθG and f2
θ . S2(K0) has dimension 319; find the Hecke

eigenbasis {f1, . . . , f319} and a set P = {p1, . . . , p319} of primes of K such that the

matrix:

(C(pj , fi))1≤i,j≤319

has full rank. Both can be computed in MAGMA. Let g and h be the forms in S2(K0)

that agree with (fθG, 0) and (f2
θ , 0), respectively, on C(p, ·) for p ∈ P. It is immediate

that g = (g, 0) and h = (h, 0) for forms g, h ∈M2(Γ).

Now consider the forms g2 and hG2 in S4(Γ), which has dimension 2,733. Let Q

be a set of primes such that the Hecke operators T ′(p), p ∈ Q, on S4(K0) that span

the full Hecke algebra on S4(K0). Then two forms on S4(K0) are equal if and only if

they agree on C(p, ·) for all p ∈ Q. Computations in MAGMA provide such a set Q

(http://math.rutgers.edu/~jbryk/5wt4code.txt) and verify that (g2, 0) = (hG2, 0)

in M4(K0). In particular, g2 = hG2 in S4(Γ).

http://math.rutgers.edu/~jbryk/5wt4code.txt
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Let:

f =
g

G

We claim that f ∈ S1(Γ). That f is holomorphic on H2 follows from the fact that:

f2 =
g2

G2
=
hG2

G2
= h

is holomorphic. That f is automorphic of weight 1 on Γ and vanishes at the cusp follows

from the fact that g ∈ S2(Γ) and G ∈M1(Γ). Thus, the claim is clear.

Now we claim that (f, 0) is an eigenform of T ′(p2
3). This is true if for all p ∈ P:

∑
p+p2

3⊂a

ψ∗(a)C(a−2pp2
3, (f, 0)) = C(p2

3, (f, 0))C(p, (f, 0))

This is trivially true for p in the nontrivial narrow ideal class: the summands and

C(p, (f, 0)) are equal to 0, as they are coefficients coming from the second component

of (f, 0). For p in the trivial narrow ideal class, p + p2
3 = o, so that we must show:

C(pp2
3, (f, 0)) = C(p2

3, (f, 0))C(p, (f, 0))

In showing that g2 = hG2, it is also shown that:

C(a, (f, 0)) = C(a, θ)

for all a in the trivial narrow ideal class with N(a) ≤ 60,000. The maximum of N(p)

for p ∈ P is 3,467, and so N(pp2
3) ≤ 31,203 for all p ∈ P. Thus, the identity we wish to

show is equivalent to showing for all p ∈ P:

C(pp2
3, θ) = C(p2

3, θ)C(p, θ)

This follows immediately from the fact that these coefficients are obtained from an

Euler product.

Letting λ = C(p3, θ), it is immediate that from the previous paragraph that:

f =
(
f, λ−1f |T ′(p3)

)
is an eigenform for T ′(p3) with eigenvalue λ. We note that λ is a root of the irreducible

polynomial X4 +3X2 +1, so it cannot correspond to a cyclic or dihedral representation.
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Thus, it must come from an icosahedral representation, and f must be in a space

spanned by icosahedral representations.

The same argument used to show that (f, 0) is an eigenform for T ′(p2
3) also shows

that f is an eigenform for T ′(p) for the primes p lying over 2 and 17. Again, the

common eigenspace for these operators (including the prime over 3) must be spanned

by icosahedral representations. But Proposition 6.3.2 implies there is only one repre-

sentation with these traces at Frobenius–namely, one of the representations θ we have

constructed. Thus, the dimension of the space is 1, f is a Hecke eigenform, and it is

equal to fθ.

We immediately have the two main results. Theorem 2.2.1 implies:

Corollary 6.3.4. There is an icosahedral Hilbert modular form that does not arise

from base change.

Replacing traces at Frobenius with Hecke eigenvalues in Proposition 4.5.2 gives:

Proposition 6.3.5. Let f(X) = X5 − X − 1. There exist two Hilbert new forms fi

over K of weight 1 and full level and with Hecke eigenvalues C(ν, i) = C(νoK , fi) such

that for any rational prime p and any prime π of K dividing p:

(#{x (mod p) : f(x) ≡ 0 (mod p)})2 =
(
C(π, 1)C(π, 2) +

(
2869
p

))2
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Appendix A

Bounding Degrees in Terms of Conductors

We originally considered using an effective version of the Chebotarev Density Theorem

in order to show that two representations are equal–one of those that we constructed

and the representation coming from the icosahedral form we produce. Although we

abandoned this approach, the techniques we developed to apply the theorem to our

scenario merit discussion. The effective Chebotarev theorem gives bounds depending

on the degree of the fixed field of the kernels of the representation. We develop methods

for bounding the degree of said field in terms of the conductors and degrees of the

representations with the aim of getting bounds for the effective Chebotarev theorem

that depend on the latter two pieces of information and not the former.

A.1 An Effective Chebotarev Density Theorem

Fix a number field K and an integer n ≥ 1, and let ρ, ρ′ : GK → GLn(C) be two Artin

representations. The Chebotarev Density Theorem suggests a method for showing

whether ρ ' ρ′. It suffices to show that the characters χ = χρ and χ′ = χρ′ are

equal. Fix a field M such that both representations factor through G(M |K), and let

c ⊂ G(M |K) be a conjugacy class. Then the Chebotrarev Density Theorem implies

that there exists a prime p of k such that c = Frobp. If χ(Frobp) = χ′(Frobp), where

p runs over a set of primes so that each conjugacy class is equal to some Frobp, then

χ = χ′.

In our situation, we know that the conductors of ρ and ρ′ divide some fixed ideal

f of K, and we can compute χ(Frobp) and χ′(Frobp) for any prime p of K, perhaps

lying outside some fixed finite subset of primes S. In order to make the above effective,

it seems necessary to be able to find some constant X = X(K,M,S) such that, for
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any conjugacy class c ⊂ G(M |K), there is a prime p 6∈ S such that N(p) ≤ X and

c = Frobp.

Indeed, such effective versions of the Chebotarev Density Theorem do exist. Fix an

integer N ≥ 1. Let dK|Q denote the discriminant of K over Q and, for a prime p of K,

let pp be the residue characteristic. Define:

∆∗(K,S,N) = |dK|Q|N
N ·∏

p∈S
p

1−1/N
p

N ·[K:Q]

BLO(K,S,N) = 70 · (log ∆∗(K,S,N))2

BBS(K,S,N) = (4 log ∆∗(K,S,N) + 2.5N · [K : Q] + 5)2

BGRH(K,S,N) = min{BLO(K,S,N), BBS(K,S,N)}

And, for an effective constant A given by Lagarias-Montgomery-Odlyzko, define:

BU(K,S,N) =

 ∆∗(K,S,N)A K 6= Q

2∆∗(K,S,N)A K = Q

Then we have:

Lemma A.1.1 (Achter, [1, Lemma 1.1]). Let K be a finite extension of Q, and let S

be a finite set of prime ideals of K. Let M |K be a Galois extension with [M : K] ≤ N

unramified outside S. For any class c ⊂ G(M |K), there exists a prime p 6∈ S of K

such that N(p) ≤ BU(K,S,N) and c = Frobp. If the Generalized Riemann Hypothesis

holds, we may then take N(p) ≤ BGRH(K,S,N).

The following immediately follows by our discussion above.

Corollary A.1.2. Let ρ, ρ′ : GK → GLn(C) be two representations that factor through

G(M |K). If χ(Frobp) = χ′(Frobp) for all primes p 6∈ S of K such that N(p) ≤

BU(K,S,N), then ρ ' ρ′. If the Generalized Riemann Hypothesis holds, we may then

take N(p) ≤ BGRH(K,S,N).

Our field M depends on the representations ρ and ρ′. We assume the only two

conditions on these representations are that they have degree n and have conductor

dividing f. In order to apply the above, we must be able to bound [M : K] in terms of
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n and f. We note here that if M is as small as possible, i.e. if M is the fixed field of

the kernels of ρ and ρ′, then M is only ramified at primes dividing f, so we may take S

to be the set of primes dividing f.

A.2 Ramification Groups and Conductors

We introduce the notation for and some basic results about ramification groups and

conductors of Artin representations. We follow the presentation given in [21]. Let L|K

be a Galois extension of number fields. Fix a prime p of K and a prime P of L such that

P|p. Let e be the ramification degree of P over p. If vp is the normalized valuation on

the completion Kp, there is a unique extension w to the completion LP; let vP = ew,

the associated normalized valuation on LP.

A.2.1 Ramification Groups

Definition A.2.1. For every real number s ≥ −1, the s-th ramification group of L|K

at P is:

Gs = Gs(L|K) = {σ ∈ G(LP|Kp) : vP(σa− a) ≥ s+ 1 for all a ∈ OP}

Note. Viewing G(LP|Kp) as the decomposition group DP in G(L|K), we have G−1 =

G(LP|Kp) = DP and G0 = IP, the inertia group.

Now let E be an intermediate Galois extension of L|K, and let P′ = P ∩E. There

is a natural relationship between the groups Gs(L|K) and Gs(L|E).

Proposition A.2.1 (Neukirch, Ch. II §10). For all s ≥ −1:

Gs(L|E) = Gs(L|K) ∩G(L|E)

The relationship between the ramification groups for L|K and E|K is more subtle.

Although the image of a ramification group of G(L|K) in G(E|K) is itself a ramification

group, the indices do not always match. Instead, we have an explicit formula due to

Herbrand. We introduce the function ηL|K : [−1,∞)→ [−1,∞), defined by:

t = ηL|K(s) =
∫ s

0

dx

[G0(L|K) : Gx(L|K)]
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By convention, we set [G0 : G−1] = [G−1 : G0]−1; note that Gx = G0 for −1 < x ≤ 0.

If we define the quantities:

gi(L|K) = |Gi(L|K)|

we can express the function as:

ηL|K(s) =
[s]∑
i=1

gi
g0

+
{s}g[s]+1

g0

where [s] is the greatest integer less than or equal to s and {s} = s− [s] is the fractional

part of s.

We then have:

Theorem A.2.2 (Herbrand). Let E|K be a Galois subextension of L|K. Then one

has for s ≥ −1 and t = ηL|E(s):

Gs(L|K)G(L|E)/G(L|E) = Gt(E|K)

Note. If we introduce the upper numbering for t = ηL|K(s):

Gt(L|K) = Gs(L|K)

Then the above theorem can be reformulated as:

Gt(L|K)G(L|E)/G(L|E) = Gt(E|K)

A.2.2 Artin Conductors

Now we define the Artin conductor of a representation and recall some basic facts. Let

L|K a Galois extension of number fields, and let (ρ, V ) be an Artin representation of

G(L|K) with character χ. For the time being, fix a prime p of K and a prime P of L

such that P|p.

Define:

f(χ) =
∑
i≥0

gi(L|K)
g0(L|K)

codimV Gi(L|K)

If χ is of degree 1, let j be the biggest integer such that χ|Gj is not the trivial character

(where we put j = −1 if χ is the trivial character). Then it can be shown that:

f(χ) = ηL|K(j) + 1
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A theorem due to Hasse and Arf implies that ηL|K(j) ≥ −1 is an integer, and so

f(χ) ≥ 0 is an integer. An application of Brauer’s theorem then shows that, for

arbitrary characters χ, f(χ) is a nonnegative integer. Thus the following definitions

make sense.

Definition A.2.2. The local Artin conductor of χ at p is the ideal:

fp(χ) = pf(χ)

The global Artin conductor of χ is the ideal:

f(χ) =
∏

p finite

fp(χ)

Note that if ρ is a faithful representation of G(L|K), then a prime p divides f(χ) if

and only if p ramifies in L. Indeed, that p does not ramify is equivalent to G0(L|K)

being trivial for p. Since ρ is faithful, this is equivalent to V G0(L|K) = V . Since

V G0(L|K) ⊂ V Gi(L|K) for all i ≥ 0, we have that V G0(L|K) = V if and only if V Gi(L|K) =

V for all i ≥ 0. The exponent f(χ) is 0 precisely when codimV Gi(L|K) = 0 for all i ≥ 0.

We only need two facts regarding the Artin conductor. First:

Proposition A.2.3 (Neukirch, Ch. VII §11). If E|K is a Galois subextension of L|K

and χ is a character of G(E|K), then:

f(L|K,χ) = f(E|K,χ)

For the second fact, we recall a few notions from class field theory. We follow the

conventions of Neukirch. Let f be an ideal of K, let J f be the group of fractional ideals

of K prime to f, and let P f be the group of principal ideals of K generated by a such

that a ≡ 1 mod f and a is positive at all real places of K. Then there exists a finite

abelian extension Kf of K called the ray class field modulo f such that:

J f/P f ' G(Kf|K)

where the isomorphism is given by the Artin symbol (K
f|K
· ).

For an arbitrary abelian extension L of K, we define the class field theoretic con-

ductor of L to be the smallest ideal f such that L ⊂ Kf. We then have:
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Proposition A.2.4. Let L|K be a Galois extension of number fields, χ a degree 1

character of G(L|K), Lχ the fixed field of ker(χ), and f the conductor of Lχ|K. Then:

f = f(χ)

A.3 Bounds on the Degree of the Fixed Field of an Artin Represen-

tation

We fix a number field K, an integer n, an ideal n of K, and a representation ρ : GK →

GLn(C) of conductor dividing n. We will develop some general methods for bounding

the degree of certain extensions of K fixed by the kernel of ρ. In the case n = 2, we will

further show that the degree of the fixed field of the kernel of ρ is bounded in terms of

K and n.

First, we fix notation:

• V , the vector space associated to ρ;

• χ = χρ;

• ε = det(ρ);

• M , the fixed field of ker(ρ);

• L, the fixed field of ker(ρ̄); and

• K1, the fixed field of ker(ε).

We are also interested in the field L1 = LK1, which is the fixed field of the group:

ker(ρ̄) ∩ ker(ε) = {σ ∈ Gk : ρ(σ) = ζIn, ζ
n = 1}

Now we describe the general strategy to bound the degree [M : K]. The extensions

M |L1 and K1|K are abelian. The former is easily shown to have degree at most n, while

we can use the conductor of ρ to bound the conductor of F |k and hence the degree,

too.

The most difficult part is bounding the degree of L1|K1. We note that G(L1|K1) is

a finite subgroup of PGLn(C). In certain cases, we have explicit descriptions of these
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subgroups. For example, for n = 2, such subgroups are either in one of two infinite

families of solvable groups, or they are isomorphic to one of three “exceptional” groups

(two of which are also solvable). For solvable groups, the techniques used to bound the

degree of K1|K can be modified to find bounds for the degree of L1|K1, namely we

break the extension up into a chain of abelian extensions and estimate the conductor

of each extension using the conductor of ρ.

We begin with the simple:

Lemma A.3.1. [M : L1] ≤ n.

Proof. G(M |L1) is isomorphic to the image of ker(ρ̄)∩ ker(ε) in GLn(C). The image is

contained inside the group {ζIn : ζn = 1}, which has order n.

We next bound the conductor of K1|K in terms of the conductor of f(χ). We prove

a more general lemma about cyclic subextensions E|K of M |K.

Lemma A.3.2. Let E|K be a cyclic subextension of M |K. Then f(E|K) divides

f(M |L, χ).

Proof. Proposition A.2.4 implies that f(E|K) = f(E|K,ψ), where ψ is any faithful

character of G(E|K). Proposition A.2.3 implies that f(M |K,ψ) = f(E|K,ψ), so we

need to show that f(M |K,ψ) divides f(M |K,χ).

Fix a prime p of K, and let f(ψ) = vp(f(M |K,ψ)) and f(χ) = vp(f(M |K,χ)). The

statement of the lemma is equivalent to showing that f(ψ) ≤ f(χ) for each prime p.

By definition:

f(ψ) =
∞∑
i=0

gi(M |K)
g0(M |K)

codim CGi(M |K)

If codim CGi(M |K) = 1 for some i, then Gi(M |K) is not contained in the kernel of ψ,

and so Gi(M |K) contains more than one element. Since ρ is a faithful representation

of G(M |K), this implies codimV Gi(M |K) ≥ 1. So:

f(ψ) =
∞∑
i=0

gi(M |K)
g0(M |K)

codim CGi(M |K) ≤
∞∑
i=0

gi(M |K)
g0(M |K)

codimV Gi(M |K) = f(χ)
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Corollary A.3.3. Let E|K be a cyclic subextension of M |K. Then [E : K] ≤ [Kf(χ) : K].

Proof. Since the conductor of E divides f(χ), E is contained in Kf(χ).

We note that it is easier to bound [K1 : K] if we have an explicit description of ε.

It is a more delicate matter to bound the degrees [L1 : K1] or [L : K]. Doing so

requires having a decent understanding of the structure of G(L|K), which is a finite

subgroups of PGLn(C). When n = 2, we know that the possibilities for G(L|K) are

the cyclic groups Cn, the dihedral groups Dn, and three “exceptional” groups A4, S4,

and A5. Thus the only trouble is bounding the order of the first two possibilities.

Corollary A.3.3 can be applied to the cyclic case. For the dihedral case (and for

more general solvable groups) we need the following lemma.

Lemma A.3.4. Let E|K be a subextension of M |K, and view χ as a character on

G(M |E). Then f(M |E,χ) divides f(M |K,χ), where we view both conductors as ideals

in E.

Proof. Fix a prime p of K and a prime P of E dividing p. Let e = e(P|p) be the

ramification degree of P over p, and let fp = vp(f(M |K,χ)) and fP = vP(f(M |E,χ)).

The statement of the lemma is equivalent to showing fP ≤ efp for each prime p of K

and each prime P of E lying over p.

Let s ≥ 0 be an integer, and let t = ηM |E(s). Then Theorem A.2.2 implies:

Gs(M |K)G(M |E)/G(M |E) = Gt(E|K)

which can be restated via Proposition A.2 as:

Gs(M |K)/Gs(M |E) = Gt(E|K)

This gives the equality:
gs(M |K)
gs(M |E)

= gt(E|K) (A.1)

In particular, when s = 0, it is clear from the definition of ηL|M that t = 0, so that:

g0(M |K)
g0(M |E)

= g0(E|K) (A.2)
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Dividing A.2 by A.1, we have:

g0(M |K)gs(M |E)
g0(M |E)gs(M |K)

=
g0(E|K)
gt(E|K)

⇒ gs(M |E)
g0(M |E)

=
gs(M |K)
g0(M |K)

· g0(E|K)
gt(E|K)

Finally, noting that g0(E|K) = e, we have:

gs(M |E)
g0(M |E)

=
gs(M |K)
g0(M |K)

· g0(E|K)
gt(E|K)

≤ gs(M |K)
g0(M |K)

· e

We apply the above to:

fP =
∑
i≥0

gi(M |E)
g0(M |E)

codimV Gi(M |E)

≤ e ·
∑
i≥0

gi(M |K)
g0(M |K)

codimV Gi(M |E)

We trivially have that codimV Gi(M |E) ≤ codimV Gi(M |K), and so we obtain the desired

inequality:

fP ≤ e ·
∑
i≥0

gi(M |K)
g0(M |K)

codimV Gi(M |E)

≤ e ·
∑
i≥0

gi(M |K)
g0(M |K)

codimV Gi(M |K)

= efp

We now restrict ourselves to the case n = 2. The method of proof for the dihedral

case should be easy to generalize to cases where G(M |K) is known to be solvable and

has a composition series of some bounded length.

Proposition A.3.5. Let:

Bf = max{[Ef : E] : E|K is a quadratic subextension of Kf|K}

Then:

[M : K] ≤ 2 max{Bf, 60}[Kf : K]
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Proof. We break our analysis into three cases depending on the structure of G(M |K).

We fix f = f(M |K,χ), and we recall that Lemma A.3.1 implies that [L1 : K1] ≤ 2.

i. G(L|K) cyclic: Lemma A.3.2 implies that L,K1 ⊂ Kf, whence [L1 : K] ≤ [Kf : K].

So:

[M : K] ≤ 2[Kf : K]

ii. G(K|k) dihedral: Let E|K be the subextension of L|K such that G(L|E) is the

cyclic subgroup of index 2 in G(L|K). [E : K] = 2 and E ⊂ Kf.

Lemma A.3.4 implies that f(M |E,χ) divides f. Since L|E is cyclic, Lemma A.3.2

implies that f(L|E) divides f(M |E,χ) and hence f. Thus L ⊂ Ef. Thus we have

[L : E] ≤ Bf.

Lemma A.3.2 also implies that E,K1 ⊂ Kf, and so [EK1 : K] ≤ [Kf : K], while

[L1 : EL1] ≤ [L : E] ≤ Bf. Combined with [M : L1] ≤ 2, we have:

[M : K] ≤ 2Bf[Kf : K]

iii. G(L|K) is “exceptional”: G(L|K) is one of three groups of order at most 60. Thus

[L1 : K1] ≤ [L : K] ≤ 60. Lemma A.3.2 implies K1 ⊂ Kf, and so [K1 : K] ≤ [Kf : K].

We thus have:

[M : K] ≤ 120[Kf : K]

If ρ, ρ′ are two representations of GK with M , M ′ the fixed fields of the ker-

nels, we can apply the effective Chebotarev theorem to the extension MM ′|k. If ρ,

ρ′ have conductors dividing some ideal f, then a crude estimate gives [MM ′ : k] ≤

4 max{Bf, 60}2[Kf : K]2. However, we can do better by mimicking the ideas of the

proof of Proposition A.3.5.
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Appendix B

Miscellaneous Proofs

B.1 Proof of Lemma 2.3.1

Lemma B.1.1. The Galois embedding problem:

1→ A→ G′ → G(L|K)→ 1

corresponding to the cocycle c ∈ H2(G(L|K), A) is solvable if and only if the image

π∗(c) of c in H2(GK , A) is trivial.

Proof. We let G = G(L|K). Suppose the image of c in H2(GK , A) is trivial. Then we

have the commutative diagram with exact rows:

1 → A → GK ×A → GK → 1

↓ ↓ ↓

1 → A → G′ → G → 1

The natural inclusion of GK into GK ×A composed with the map from GK ×A to G′

then gives the desired map ψ : GK → G′.

Conversely, suppose that the Galois embedding problem is solvable, so that there

exists ψ : GK → G′ such that φ ◦ ψ = π. Let s : G → G′ be a section of φ, so that

φ ◦ s = 1G. We may assume that for σ, τ ∈ G:

c(σ, τ) = s(σ)s(τ)s(στ)−1

Therefore the image of c in H2(GK , A) is given by the map for σ, τ ∈ GK :

π∗(c) = (s ◦ π)(σ)(s ◦ π)(τ)(s ◦ π)(στ)−1
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Now we compare the maps ψ and s◦π from GK to G′. Note that φ◦ (s◦π) = π = φ◦ψ

so that, for any σ ∈ GK , s ◦ π(σ) ≡ ψ(σ) (mod A). Define y : GK → A by y(σ) =

(s ◦ π(σ))ψ(σ)−1. Then:

π∗(c)(σ, τ) = (s ◦ π)(σ)(s ◦ π)(τ)(s ◦ π)(στ)−1

= ψ(σ)y(σ)ψ(τ)y(τ)ψ(στ)−1y(στ)−1

= y(σ)y(τ)y(στ)−1

Thus the π∗(c) is a coboundary.

B.2 Proof of Proposition 3.5.1

We prove a slightly more general fact:

Proposition B.2.1. Let L|K be a Galois extension, G(L|K) ' G a subgroup of Sn,

and G̃ the preimage of G in S̃n. Let γ ∈ L be such that M = L(
√
γ) is a solution to

the Galois embedding problem 1→ C2 → G̃→ G(L|K)→ 1. Then:

i. For any σ ∈ G(L|K), there exists bσ ∈ L× such that γσ−1 = b2σ, and the cocycle

corresponding to the embedding problem is c(σ, τ) = bτσbτ b
−1
στ .

ii. All solutions to the embedding problem are given by k`2γ, k ∈ K× and ` ∈ L×.

Proof. We identify G(L|K) with the group G and G(M |K) with the group G̃. We first

show that given γ providing a solution to the embedding problem and all σ ∈ G, we

have γσ−1 ∈ (L×)2. Indeed, if σ′ is a preimage of σ in G̃, then (
√
γ)σ

′
is a square root

of γσ. There exist a, b ∈ L such that:

(
√
γ)σ

′
= a+ b

√
γ

Squaring both sides, we have:

γσ = a2 + b2γ + 2ab
√
γ

which implies that 2ab = 0. If b = 0, then γσ = a2, which implies that γ = (aσ
−1

)2, a

contradiction to γ 6∈ (L×)2. So a = 0, and:

γσ−1 = b2
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For each σ ∈ G, write:

γσ−1 = b2σ, bσ ∈ L×1

If we define for σ, τ ∈ G:

c(σ, τ) = bτσbτ b
−1
στ

then c ∈ H2(G,C2) is a cocycle corresponding to the extension G̃ →→ G. Indeed, if

s : G→ G̃ is the section such that:

(
√
γ)s(σ) = bσ

√
γ

then by comparing (
√
γ)s(σ)s(τ) and (

√
γ)s(στ), it is clear that c(σ, τ) = s(σ)s(τ)s(στ)−1.

If γ′ is another element such that L(
√
γ′) provides a solution to the embedding

problem, and if:

γ′σ−1 = b′
2
σ

c′(σ, τ) = b′
τ
σb
′
τ b
′−1
στ

then c and c′ are in the same class in H2(G,C2), as they give the same group extension.

Consider the short exact sequence:

1→ C2 → L× → (L×)2 → 1

The corresponding long exact sequence on cohomology gives:

· · · → H1(G,L×)→ H1(G, (L×)2)→ H2(G,C2)→ H2(G,L×)→ · · ·

By definition, c and c′ are trivial in H2(G,L×), and so they are both in the image

of H1(G, (L×)2) in H2(G,C2); indeed if y(σ) = b2σ, y′(σ) = b′2σ ∈ H1(G, (L×1 )2), then

y 7→ c and y′ 7→ c′. Furthermore, Hilbert’s Theorem 90 implies H1(G,L×) = 1, and

so y and y′ must be in the same class in H1(G, (L×)2). We may deduce from the long

exact sequence on cohomology corresponding to:

1→ (L×)2 → L× → L×/(L×)2 → 1

that:

{x ∈ L× : xσ−1 ∈ (L×)2 for all σ ∈ G}/
(
K× · (L×)2

)
' H1(G, (L×)2)
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where the isomorphism is explicitly given by x 7→ {σ 7→ xσ−1}. Thus γ maps to y and

γ′ maps to y′. Since y and y′ are in the same class, γ/γ′ ∈ K× · (L×)2.

Conversely, suppose γ′ = k`2γ, k ∈ K, ` ∈ L. We may as well assume ` = 1, as

k`2γ and kγ give the same quadratic extension. Then we have:

γ′σ−1 = b2σ

Thus, γ and γ′ give the same element in H1(G, (L×1 )2), and they both have the same

image c in H2(G,C2). M ′ = L(
√
γ′) is Galois over K, since the conjugates of

√
γ are

equal to ±bσ
√
γ′ as σ runs over G. Thus G̃′ = G(M ′|K) is a central extension of G

by C2. We obtain a section s : G′ → G̃′ by defining s(σ) to be the element of G′′ such

that: √
γ′
s′(σ)

= bσ
√
γ′

Then it is clear that c corresponds to s′ and that G̃′ ' G̃.

B.3 Proof of Lemma 4.5.1

Lemma B.3.1. There is a one-to-one correspondence between the irreducible represen-

tations ρ of 2rAn and the pairs (ρ′, χ) of representations ρ′ of 2An and characters χ on

C2r satisfying ρ′(z) = χ(z)I2, where I2 is the 2× 2 identity matrix.

Proof. Let ζ be a generator of C2r ⊂ 2rAn. Then any element of 2rAn can be repre-

sented as ζk ·σ for some integer k and some σ ∈ 2An. Furthermore, this representation

is unique if 0 ≤ k < 2r−1.

Now let ρ be an irreducible representation of 2rAn. Let ρ′ be the restriction of ρ

to 2An. Since C2r is in the center of 2rAn, it acts by scalars through ρ, and thus any

invariant subspace of ρ′ must be invariant for ρ. Thus ρ′ must be irreducible. Since

C2r acts by scalars, there is a character χ : C2r → C× such that the restriction of ρ to

C2r is isomorphic to χ ⊕ χ. Thus ρ uniquely determines an irreducible representation

of 2An and a character on C2r . We note that, if z = ζ2r−1
, then z is the only nontrivial

element of 2An ∩ C2r , and we must have that ρ′(z) acts by the scalar χ(z).
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Conversely, let ρ′ be an irreducible representation of 2An, and let χ be a character

on C2r such that ρ′(z) acts by the scalar χ(z). Then one can easily check that, for

0 ≤ k < 2r−1 and σ ∈ 2An:

ρ(ζkσ) = χ(z)kρ′(σ)

defines a representation on 2rAn, and it is clearly irreducible.
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