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ABSTRACT OF THE DISSERTATION

On some nonlocal elliptic and parabolic equations

by Tianling Jin

Dissertation Director: YanYan Li

We prove some results on the existence and compactness of solutions of a fractional

Nirenberg problem involving nonlocal conformally invariant operators. Regularity prop-

erties for solutions of some degenerate elliptic equations as well as a Liouville type

theorem are established, and used in our blow up analysis. We also introduce a frac-

tional Yamabe flow and show that on the conformal spheres (Sn, [gSn ]) it converges to

the standard sphere up to a Möbius diffeomorphism. These arguments can be applied

to obtain extinction profiles of solutions of some fractional porous medium equations,

which are further used to improve a Sobolev inequality via a quantitative estimate of

the remainder term.
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Chapter 1

Introduction

The Nirenberg problem concerns the following: For which positive function K on the

standard sphere (Sn, gSn), n ≥ 2, there exists a function w on Sn such that the scalar

curvature (Gauss curvature in dimension n = 2) Rg of the conformal metric g = ewgSn

is equal to K on Sn? The problem is equivalent to solving

−∆gSnw + 1 = Ke2w, on S2,

and

−∆gSnv + c(n)R0v = c(n)Kv
n+2
n−2 , on Sn for n ≥ 3,

where c(n) = (n− 2)/(4(n− 1)), R0 = n(n− 1) is the scalar curvature of (Sn, gSn) and

v = e
n−2
4
w.

The first work on this problem is by Koutroufiotis [91], where the solvability on S2

is established when K is assumed to be an antipodally symmetric function which is

close to 1. Moser [112] established the solvability on S2 for all antipodally symmetric

functions K which are positive somewhere. Without any symmetry assumption on

K, sufficient conditions were given in dimension n = 2 by Chang and Yang [38] and

[39], and in dimension n = 3 by Bahri and Coron [8]. Compactness of all solutions

in dimensions n = 2, 3 can be found in work of Chang, Gursky and Yang [37], Han

[73] and Schoen and Zhang [119]. In these dimensions, a sequence of solutions can not

blow up at more than one point. Compactness and existence of solutions in higher

dimensions were studied by Li in [95] and [96]. The situation is very different, as far as

the compactness issues are concerned: In dimension n ≥ 4, a sequence of solutions can

blow up at more than one point, as shown in [96].

Attentions have been attracted to study similar questions for higher order curvatures
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such as the Q-curvatures, even on general Riemannian manifolds Mn. These involve the

Paneitz operator which is a fourth order differential operator, and the GJMS operators

(see [68]) P gk for all positive integers k if n is odd, and for k ∈ {1, · · · , n/2} if n is even.

Moreover, P g1 is the conformal Laplacian Lg := −∆g + c(n)Rg and P g2 is the Paneitz

operator. The construction in [68] is based on the ambient metric construction of [61].

Up to positive constants, P g1 (1) is the scalar curvature of g and P g2 (1) is the Q-curvature.

One feature of these operators is that they are conformally invariant. In these directions

of prescribing higher order curvatures, we refer to [52, 53, 54, 62, 131, 132] and references

therein.

Recently, there is work by Qing and Raske [116], González, Mazzeo and Sire [66],

González and Qing [67] about finding a conformal metric on certain given Riemannian

manifolds (M, g) whose so-called σ-curvature (or fractional Q-curvature in some con-

text) is constant, where σ is a fractional number and σ ∈ (0, n2 ) except at most finite

values. These σ-curvatures Rgσ can be defined by Rgσ := P gσ (1), where P gσ is a normalized

scattering operator (see Graham and Zworski [69], Chang and González [36]) on the

conformal infinity of asymptotically hyperbolic manifolds (see Mazzeo [105], Mazzeo

and Melrose [106]). Moreover, P gσ is conformally invariant. Chang and González in [36]

reconciled the way of Graham and Zworski to define P gσ and the localization method of

Caffarelli and Silvestre [29] for factional Laplacian (−∆)σ on the Euclidean space Rn.

We focus on the typical case, that is the standard conformal spheres (Sn, [gSn ]) which

are the conformal infinity of Poincaré disks (Bn+1, gBn+1). In this case, σ-curvature can

be expressed in the following explicit way. Let g be a representative in the conformal

class [gSn ] and write g = v
4

n−2σ gSn , where v is positive and smooth on Sn. Then we

have

P gσ (φ) = v−
n+2σ
n−2σP gSnσ (φv) for any φ ∈ C∞(Sn), (1.1)

and hence the σ-curvature for (Sn, g) can be computed as

Rgσ = v−
n+2σ
n−2σP gSnσ (v). (1.2)

P gS
n

σ , which is simply written as Pσ, is an intertwining operator and has the formula
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(see, e.g., [17])

Pσ =
Γ(B + 1

2 + σ)

Γ(B + 1
2 − σ)

, B =

√
−∆gSn +

(
n− 1

2

)2

, (1.3)

where Γ is the Gamma function and ∆gSn is the Laplace-Beltrami operator on (Sn, gSn).

Let Y (k) be a spherical harmonic of degree k ≥ 0. Since −∆gSnY
(k) = k(k+n− 1)Y (k),

B
(
Y (k)

)
=

(
k +

n− 1

2

)
Y (k) and Pσ

(
Y (k)

)
=

Γ(k + n
2 + σ)

Γ(k + n
2 − σ)

Y (k). (1.4)

The operator Pσ can be seen more concretely on Rn using stereographic projection.

The stereographic projection from Sn\{N} to Rn is the inverse of

F : Rn → Sn \ {N}, x 7→
(

2x

1 + |x|2
,
|x|2 − 1

|x|2 + 1

)
,

where N is the north pole of Sn. Then it follows from the conformal invariance of Pσ

that

(Pσ(φ)) ◦ F = |JF |−
n+2σ
2n (−∆)σ(|JF |

n−2σ
2n (φ ◦ F )), for φ ∈ C∞(Sn) (1.5)

where

|JF | =
(

2

1 + |x|2

)n
,

and (−∆)σ is the fractional Laplacian operator (see, e.g., page 117 of [125]). It is also

well-known (see, e.g., [111]) that Pσ is the inverse of the spherical Riesz potential

Kσ(f)(ξ) = cn,σ

∫
Sn

f(ζ)

|ξ − ζ|n−2σ
dvolgSn (ζ), f ∈ Lp(Sn) (1.6)

where cn,σ =
Γ(n−2σ

2
)

22σπn/2Γ(σ)
, 1 ≤ p <∞ and | · | is the Euclidean distance in Rn+1. On the

other hand, the inverses of spherical Riesz potentials have been constructed in terms

of singular integrals in [115]. When σ ∈ (0, 1), Pavlov and Samko [115] showed that if

v = Kσ(f) for some f ∈ Lp(Sn), then

Pσ(v)(ξ) = Pσ(1)v(ξ) + cn,−σ

∫
Sn

v(ξ)− v(ζ)

|ξ − ζ|n+2σ
dvolgSn (ζ), (1.7)

where cn,−σ =
22σσΓ(n+2σ

2
)

π
n
2 Γ(1−σ)

and
∫
Sn is understood as lim

ε→0

∫
|x−y|>ε in Lp(Sn) sense.

From (1.2), we consider

Pσ(v) = cn,σKv
n+2σ
n−2σ on Sn, (1.8)
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where cn,σ = Pσ(1) =
Γ(n

2
+σ)

Γ(n
2
−σ) , and K > 0 is a continuous function on Sn.

When K = 1, (1.8) is the Euler-Lagrange equation for a functional associated to

the following sharp Sobolev inequality (see [10])(
−
∫
Sn
|v|

2n
n−2σ dvolgSn

)n−2σ
n

≤
Γ(n2 − σ)

Γ(n2 + σ)
−
∫
Sn
vPσ(v) dvolgSn , v ∈ Hσ(Sn) (1.9)

where −
∫
Sn = 1

|Sn|
∫
Sn and Hσ(Sn) is the closure of C∞(Sn) under the norm∫

Sn
vPσ(v) dvolgSn .

The extremal functions of (1.9) follows from [101] and some classifications of solutions

of (1.8) with K ≡ 1 can be found in [41] and [97]. All positive solutions must be of the

form

vξ0,λ(ξ) =

(
2λ

2 + (λ2 − 1)(1− cos distgSn (ξ, ξ0))

)n−2σ
2

, ξ ∈ Sn (1.10)

for some ξ0 ∈ Sn and positive constant λ.

In general, (1.8) may have no positive solution, since if v is a positive solution of

(1.8) with K ∈ C1(Sn) then it has to satisfy the Kazdan-Warner type condition∫
Sn
〈∇gSnK,∇gSn ξ〉v

2n
n−2σ dξ = 0. (1.11)

Consequently, if K(ξ) = ξn+1 +2, (1.8) has no solutions. The proof of (1.11) is provided

in Appendix 4.5.

We study (1.8) with σ ∈ (0, 1), a fractional Nirenberg problem. Throughout the

thesis, we assume that σ ∈ (0, 1) without otherwise stated. The following is one of our

main existence results, which will be proved in Section 4.2.

Theorem 1.1. Let K ∈ C1,1(Sn) be an antipodally symmetric function, and be positive

somewhere on Sn. If there exists a maximum point x0 of K near which K(x) = K(x0)+

o(|x− x0|d) for some d ≥ n− 2σ, then (1.8) has at least one positive C2 solution.

When σ = 1, the above theorem was proved by Escobar and Schoen [59] for n ≥ 3.

On S2, the existence of solutions of −∆gSnv+1 = Ke2v for such K was proved by Moser

[112].

Our local analysis of solutions of (1.8) relies on a localization method introduced

by Caffarelli and Silvestre in [29] for the factional Laplacian (−∆)σ on the Euclidean
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space Rn, through which (1.8) is connected to a degenerate elliptic differential equation

in one dimension higher
div
(
t1−2σ∇U(x, t)

)
= 0, ∀ (x, t) ∈ Rn+1

+ ,

− lim
t→0

t1−2σ∂tU(x, t) = K(x)U(x, 0)p, ∀ x ∈ ∂Rn+1
+ ,

(1.12)

with p ≤ n+2σ
n−2σ . This leads us to establish regularity and isolated singularity properties

for solutions of such degenerate equations in Chapter 3 and a Liouville theorem in

Section 4.1, which are used to prove existence and compactness of solutions of (1.8) in

Chapter 4. These results are in the joint work [82, 83] with Yanyan Li and Jingang

Xiong.

We also study Pσ and σ-curvatures in the evolution equation point of view. Let us

recall the Yamabe flow first.

Let (M, g0) be a compact Riemannian manifold of dimension n ≥ 2. The following

evolution equation for the metric g

∂

∂t
g(t) = −(Rg(t) − rg(t))g(t), g(0) = g0 (1.13)

was introduced by Hamilton in [72], and is known as the Yamabe flow. Here, Rg(t) is

the scalar curvature of g(t) and rg(t) = volg(t)(M)−1
∫
M Rg(t)dvolg(t) is the average of

Rg(t). The existence and convergence of solutions of (1.13) were established through

[72], [43], [134], [120], [20] and [22]. Some higher integer order curvature flows involving

the Paneitz operator or the GJMS operators P gk , such as Q-curvature flow, have been

studied in [19, 104, 9, 21, 76] and so on. We study some flow of this fractional order

curvature Rgσ associated with P gσ on the standard conformal sphere (Sn, [gSn ]), which is

the conformal infinity of the Poincaré disk.

Consider the normalized total σ-curvature functional

S(g) = volg(Sn)
2σ−n
n

∫
Sn
Rgσ dvolg, g ∈ [gSn ].

The negative gradient flow of S takes the form

∂g

∂t
= −n− 2σ

2n
(volg(Sn))

2σ−n
n (Rgσ − rgσ)g,
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where rgσ is the average of Rgσ. It is easy to verify that this flow preserves the conformal

class and the volume of Sn. By a rescaling of the time variable, we obtain the following

evolution equation

∂g

∂t
= −(Rgσ − rgσ)g. (1.14)

If we write g(t) = v
4

n−2σ (·, t)gSn , then after rescaling the time variable, (1.14) can be

written in an equivalent form

∂vN

∂t
= −Pσ(v) + rgσv

N , on Sn, (1.15)

where N = (n+ 2σ)/(n− 2σ).

Let N be the north pole of Sn and F be the inverse of stereographic projection from

Sn\{N} to Rn. Then u(x, t) := |JF |
n−2σ
2n v(F (x), t) satisfies

∂uN

∂t
= −(−∆)σu+ rgσu

N , in Rn. (1.16)

We will call (1.14), (1.15) or (1.16) as a (normalized) fractional Yamabe flow when

σ ∈ (0, 1). The following is a long time existence and convergence result which will be

proved in Chapter 5.

Theorem 1.2. Let g(0) ∈ [gSn ] be a smooth metric on Sn for n ≥ 2. Then the fractional

Yamabe flow (1.14) with initial metric g(0) exists for all time 0 < t <∞. Furthermore,

there exists a smooth metric g∞ ∈ [gSn ] such that

Rg∞σ = rg∞σ and lim
t→∞
‖g(t)− g∞‖Cl(Sn) = 0

for all positive integers l.

As observed in [36] that the operator P g1/2 is related to the Yamabe problem on

manifolds with boundary (see, e.g., [42, 56, 57, 74]), this fractional Yamabe flow (1.14)

with σ = 1/2 is related to some generalization of Yamabe flow for manifolds with

boundary studied in [18].

We also consider the unnormalized fractional Yamabe flow

∂vN

∂t
= −Pσ(v) on Sn × (0,∞), or

∂uN

∂t
= −(−∆)σu in Rn × (0,∞).



7

The second one is a fractional porous medium equation studied, e.g., in [3, 48, 33, 49, 89],

where it is taken the form
ut = −(−∆)σ(|u|m−1u) in Rn × (0,∞),

u(x, 0) = u0(x) in Rn,
(1.17)

with m = n−2σ
n+2σ , σ ∈ (0, 1). Models of this kind of fractional diffusion equations arise,

e.g., in statistical mechanics [79, 80, 81] and heat control [3].

We are interested in analyzing the exact behavior of solutions of (1.17) near the

extinction time for fast decaying initial data. In the classical case σ = 1, the extinction

profiles of solutions of porous medium equations have been described in the results of

[63, 50, 46, 13, 14] and so on. We obtain the asymptotic behaviors of solutions of (1.17)

in Theorem 5.3 when t approaches the extinction time T .

An application of Theorem 5.3 is an improvement of some Sobolev inequality. A

sharp form of the standard Sobolev inequality in Rn (n ≥ 3) asserts that

Sn‖∇u‖L2(Rn) − ‖u‖
L

2n
n−2 (Rn)

≥ 0 (1.18)

for all u ∈ Ḣ1(Rn) = {u ∈ L
2n
n−2 (Rn) : ∇u ∈ L2(Rn)}, where Sn is the sharp constant

obtained in [4] and [127].

There have been many results on remainder terms of Sobolev inequalities (see, e.g.,

[26, 25, 12, 45, 35, 55]), which give various lower bounds of the left-handed side of

(1.18).

For any σ ∈ (0, 1), the Sobolev inequality (see, e.g., [125] or [51]) asserts that

‖u‖2
L2∗(σ) ≤ Sn,σ‖u‖2Ḣσ , ∀ u ∈ Ḣσ(Rn) (1.19)

where 2∗(σ) = 2n
n−2σ , Sn,σ is the optimal constant and Ḣσ(Rn) is the closure of C∞c (Rn)

under the norm

‖u‖Ḣσ = ‖(−∆)σ/2u‖L2(Rn). (1.20)

The optimal constant Sn,σ in the Sobolev inequality (1.19) is obtained by Lieb [101]

and is achieved by u(x) =
(
1 + |x|2

)−n−2σ
2 . The Hardy-Littlewood-Sobolev inequality

Sn,σ‖u‖2
L

2n
n+2σ

≥
∫
Rn
u(−∆)−σudx, ∀ u ∈ L

2n
n+2σ (Rn) (1.21)
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involves the same optimal constant Sn,σ, where (−∆)−σ is a Riesz potential defined by

(−∆)−σu(x) = cn,σ

∫
Rn

u(y)

|x− y|n−2σ
dy. (1.22)

We will improve (1.19) via a quantitative estimate of the remainder term, which is

stated in Theorem 5.6.

The operators Pσ and (−∆)σ are nonlocal, pseudo-differential operators. Generally

speaking, strong maximum principles and Harnack inequalities might fail for nonlocal

operators, see, e.g., a counterexample in [87]. The counterexample in [87] shows that

the local non-negativity of solutions of certain nonlocal equations is not enough to guar-

antee local strong maximum principles and Harnack inequalities. However, if solutions

are assumed to be globally nonnegative, then various strong maximum principles and

Harnack inequalities have been obtained in, e.g., [27], [128] and [82].

We establish a strong maximum principle and a Hopf lemma for odd solutions of

some linear nonlocal parabolic equations, which should be of independent interest. Our

proofs make use of the expression (5.1) of (−∆)σ. The odd function in Lemma 5.4 will

serve as a barrier function, which allows us to obtain a Hopf lemma.

These results on fractional Yamabe flows are in the joint work [85] with Jingang

Xiong.

My thesis also contains the next chapter on solutions of elliptic equations in di-

vergence form with continuous coefficients, the joint work [84] with Maz’ya and Van

Schaftingen, in which we solved some open problems posed by H. Brezis [1, 23].



9

Chapter 2

Elliptic problems in divergence form with continuous

coefficients

2.1 Regularity

Let Ω ⊂ Rn, n ≥ 2, be a domain, i.e., a bounded connected open set in Rn. Consider

the equation

−divA∇u = 0 in Ω, (2.1)

where A : Ω→ Rn×n is bounded, measurable and uniformly elliptic, i.e.,

λ|ξ|2 ≤ (A(x)ξ) · ξ ≤ Λ|ξ|2, ξ ∈ Rn,

with 0 < λ < Λ < ∞ for every x ∈ Ω. One can define a weak solution u ∈ W 1,1
loc (Ω) of

(2.1) by requiring that for every ϕ ∈ C1
c (Ω),∫

Ω
(A∇u) · ∇ϕ = 0.

We are interested in the regularity properties of u. A fundamental result of De

Giorgi [47] states that if u is a weak solution of (2.1) and moreover u ∈W 1,2
loc (Ω), then

u is locally Hölder continuous. In particular, u is then locally bounded. In the same

direction, Meyers [107] also proved that u ∈W 1,p
loc (Ω) for some p > 2.

Serrin [121] showed that the assumption u ∈ W 1,2
loc (Ω) is essential in De Giorgi’s

result by constructing for every p ∈ (1, 2) a function u ∈ W 1,p
loc (Ω) that solves such an

elliptic equation but which is not locally bounded. In these counterexamples, A is not

continuous. Serrin [121] conjectured that if A was Hölder continuous, then any weak

solution u ∈W 1,1
loc (Ω) is in W 1,2

loc (Ω), and one can then apply De Giorgi’s theory.

This conjecture was confirmed for u ∈W 1,p(Ω) with p > 1 by Hager and Ross [71],

and recently, solved completely by Brezis [1, 23] for u ∈ W 1,1(Ω). The proof of Brezis
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extends to the case where A is Dini continuous, i.e., the modulus of continuity of A

ωA(t,Ω) = sup
x,y∈Ω
|x−y|≤t

|A(x)−A(y)|, (2.2)

satisfies the Dini condition ∫ 1

0

ωA(s,Ω)

s
ds <∞. (2.3)

In the case where A ∈ C(Ω;Rn×n), which is merely continuous, Brezis obtained the

following result.

Theorem 2.1 (Brezis [1, 23]). Assume that A ∈ C(Ω;Rn×n) is uniformly elliptic. If

u ∈ W 1,p
loc (Ω) for some p > 1 is a weak solution of (2.1), then u ∈ W 1,q

loc (Ω) for every

q ∈ [p,+∞).

Brezis asked two questions: Does Theorem 2.1 hold in the two limiting cases: p = 1

and/or q = ∞? The answer to both questions was known to be positive if A is Dini

continuous. We answer both questions in the next section.

2.2 Some counterexamples

In the joint work [84] with Maz’ya and Van Schaftingen, we answered the above two

questions raised by Brezis. We denote Bτ as the ball in Rn of radius τ centered at the

origin. First we have

Proposition 2.1. There exists u ∈W 1,1
loc (B1) and a uniformly elliptic A ∈ C(B1;Rn×n)

such that u is a weak solution of (2.1), but u 6∈W 1,p
loc (B1) for every p > 1.

Proposition 2.1 shows that Theorem 2.1 does not hold in the limiting case p = 1.

As a byproduct, we obtain an answer to a further question (Open problem 3 in [1])

raised by Brezis.

Proposition 2.2. There exists A ∈ C(B1;Rn×n) such that the problem
−div(A∇u) = 0 in B1,

u = 0 on ∂B1

(2.4)

has a nontrivial solution.
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Brezis asked us the question whether those counterexamples could be improved by

taking Du that belongs to L logL or to the Hardy space H1. Our construction in

Proposition 2.1 answers the question.

Proposition 2.3. There exists u ∈W 1,1
loc (B1) and a uniformly elliptic A ∈ C(B1;Rn×n)

such that u is a weak solution of (2.1), Du ∈ (L logL)loc(B1) but u 6∈ W 1,p
loc (B1) for

every p > 1.

In particular, in this case, Du belongs locally to the Hardy space H1 (see [124]).

Concerning the possibility of Lipschitz estimates, we have

Proposition 2.4. There exists u ∈W 1,1
loc (B1) and a uniformly elliptic A ∈ C(B1;Rn×n)

such that u is a weak solution of (2.1), u ∈W 1,p
loc (B1) for every p > 1, Du ∈ BMOloc(B1)

but u 6∈W 1,∞
loc (B1).

Proposition 2.4 shows that Theorem 2.1 does not hold in the limiting case q = ∞.

Brezis asked whether Du ∈ BMOloc(B1) for any weak solution u of (2.1) as in Theorem

2.1. The answer is still negative.

Proposition 2.5. There exists u ∈W 1,1
loc (B1) and a uniformly elliptic A ∈ C(B1;Rn×n)

such that u is a weak solution of (2.1), u ∈ W 1,p
loc (B1) for every p ∈ (1,∞) but Du 6∈

BMOloc(B1).

The construction of the counterexamples are made by explicit formulas, inspired by

the construction of Serrin [121]. They can also be obtained from asymptotic formulas of

Kozlov and Maz’ya [92, 93]. Our counterexamples rely on the following computational

lemma.

Lemma 2.1. Let v ∈ C2((0, τ)) and α ∈ C1((0, τ)). Define A(x) = (aij(x))1≤i≤n
1≤j≤n

by

aij(x) = δij + α(|x|)
(
δij −

xixj
|x|2

)
.

Then for every x ∈ Bτ \ {0},

div
(
A(x)∇(x1v(|x|))

)
= x1

(
v′′(|x|) +

n+ 1

|x|
v′(|x|)− n− 1

|x|2
α(|x|)v(|x|)

)
. (2.5)
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Proof. One has,

div
(
A(x)∇(x1v(|x|))

)
= x1 div

(
A(x)∇v(|x|)

)
+ 2∇x1 ·

(
A(x)∇v(|x|)

)
+ v(|x|) div

(
A(x)∇x1

)
.

For the first two terms, one notices that A(x)∇v(|x|) = ∇v(|x|), and hence

x1 div
(
A(x)∇v(|x|)

)
+ 2∇x1 ·

(
A(x)∇v(|x|)

)
= x1

(
v′′(|x|) +

n+ 1

|x|
v′(|x|)

)
.

For the last term, one has

div
(
A(x)∇x1

)
= div

(
α(|x|)(e1 −

x1x

|x|2
)
)

= −(n− 1)x1

|x|2
α(|x|).

The desired formula follows by adding these two together.

Remark 2.1. If P is a homogeneous harmonic polynomial of degree k, the formula

generalizes to

div
(
A(x)∇(P (x)v(|x|))

)
= P (x)

(
v′′(|x|) +

n+ 2k − 1

|x|
v′(|x|)− k(n+ k − 2)

|x|2
α(|x|)v(|x|)

)
.

Proof of Proposition 2.1. Choose β > 1, and define for some r0 > 1, for r ∈ (0, 1),

v(r) =
1

rn(log r0
r )β

. (2.6)

One takes then

α(r) =
r2v′′(r) + (n+ 1)rv′(r)

(n− 1)v(r)
=

−βn
(n− 1) log r0

r

+
β(β + 1)

(n− 1)
(
log r0

r

)2 . (2.7)

One can take r0 large enough so that α ≥ −1
2 on (0, 1); the coefficient matrix A is then

uniformly elliptic. Define now u(x) = x1v(|x|). One checks that u ∈W 1,1(B1) and that

u is a weak solution of (2.1). Indeed, it is a classical solution on B1 \ {0} by Lemma

2.1. Taking, ϕ ∈ C1
c (B1) and ρ ∈ (0, 1), and integrating by parts we obtain∫

B1\Bρ
∇ϕ · (A∇u) = −

∫
∂Bρ

ϕ∇u · (Ax
ρ

)

= −
∫
∂Bρ

ϕ∇u · x
ρ

= −
∫
∂Bρ

ϕx1

(v(ρ)

ρ
+ v′(ρ)

)
= −

∫
∂Bρ

(ϕ(x)− ϕ(0))x1

(v(ρ)

ρ
+ v′(ρ)

)
.
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Since ϕ ∈ C1
c (B1), one has∣∣∣∫

B1\Bρ
∇ϕ · (A∇v)

∣∣∣ ≤ Cρn(|v(ρ)|+ ρ|v′(ρ)|).

Since the right-hand side goes to 0 as ρ→ 0, u is a weak solution.

Remark 2.2. The examples constructed in the case of merely measurable coefficients

by Serrin [121] to show that a solution u ∈ W 1,p
loc (Ω) need not be in W 1,2

loc (Ω) and by

Meyers [107] to show that for every p > 2, that a solution in W 1,2
loc (Ω) need not be

in W 1,p
loc (Ω) can be recovered with the same construction, by taking v(r) = rα. The

ellipticity condition requires α < n− 1 or α > 1. This covers all the cases when n = 2;

a descent argument finishes the construction in higher dimension.

Proof of Proposition 2.3. One checks that the counterexample constructed in the proof

of Proposition 2.1 satisfies Du ∈ (L logL)loc(B1) when β > 2.

Similar examples can be obtained following the results of Kozlov and Maz’ya [93].

By (4) therein, if A ∈ C(B1;Rn×n), A(Rx) = RA(x)R where R is the reflection with

respect to the x1 variable and A satisfies some regularity assumptions, then the equation

−div(A∇u) = 0 has a solution that is odd with respect to the x1 variable and that

behaves like

x1

|x|n
exp
(∫

B1\B|x|
R(y) dy

)
around 0, where R is defined following [93, (3)] (The reader should correct the misprint

in [93, (3)] and read |Sn−1
+ | instead of |Sn−1|.)

R(x)

=
(e1 · (A(x)−A(0))e1)(x ·A(0)−1x)− n(e1 · (A(x)−A(0))A(0)−1x)(e1 · x)

|∂B(0, 1)||detA(0)|
1
2 (x ·A(0)−1x)

n
2

+1
.

(2.8)

Taking A as in Lemma 2.1 with limr→0 α(r) = 0, one has R(x) = α(|x|)(|x|2 −

x1
2)/(|∂B1||x|n+2). Therefore, there is a solution that behaves like

x1

|x|n
exp
(n− 1

n

∫ 1

|x|
α(r)

dr

r

)
.
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In particular, if one takes α(r) = −βn/((n − 1) log r
r0

), one obtains a solution that

behaves like x1
|x|n (log r0

r )−β. One could also take aij(x) = δij + κ(|x|)(δij − nδi1δj1 x1
2

|x|2 )

and continue the computations with now R(x) = κ(|x|)(|x|2 − nx1
2)2/(|∂B1||x|n+2).

Proof of Proposition 2.2. Let u be given by the proof of Proposition 2.1. Notice that u

is smooth on ∂B1. Since A is bounded and elliptic, the problem
−div(A∇w) = 0 in B1,

w = u on ∂B1.

has a unique solution in w ∈ W 1,2(B1). Since u 6∈ W 1,2(B1), u 6= w. Hence, u − w ∈

W 1,1(B1) is a nontrivial solution of (2.4).

Proof of Proposition 2.4. Take for r ∈ (0, 1),

v(r) = log
r0

r
(2.9)

and

α(r) =
1− (n+ 1)

(n− 1) log r0
r

=
−n

(n− 1) log r0
r

, (2.10)

where r0 is chosen so that α(r) > −1
2 on (0, 1). Defining u(x) = x1v(|x|), one checks

that Du ∈W 1,p
loc (B1), Du ∈ BMO(B1), u 6∈W 1,∞(B1) and that u is a weak solution of

(2.1).

As for the previous singular pathological solutions, similar examples can be obtained

from results of Kozlov and Maz’ya for solutions [92]. By (4) therein if A ∈ C(B1;Rn×n),

A(Rx) = RA(x)R where R is the reflection with respect to the x1 variable and A

satisfies some regularity assumptions, then the equation −div(A∇u) = 0 has a solution

in W 1,2(B1) that is odd with respect to to the x1 variable and that behaves like

x1 exp
(
−
∫
B1\B|x|

R(y) dy
)

around 0, where R is given by (2.8). Taking A as in Lemma 2.1 with α(r) as in (2.10),

one recovers the counterexample presented above.
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Proof of Proposition 2.5. Define for r ∈ (0, 1),

v(r) =
(

log
r0

r

)2
.

and

α(r) =
−2n

(n− 1) log r0
r

+
2

(n− 1)(log r0
r )2

.

Defining u(x) = x1v(|x|), one checks that u ∈W 1,p(B1) for every p > 1 and that u is a

weak solution of (2.1). One checks that for every c > 0, exp(c|Du|) 6∈ L1(B1/2); hence

by the John–Nirenberg embedding theorem [86] (see also e.g. [126, Chapter 4, §1.3]),

Du 6∈ BMO(B1/2).
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Chapter 3

Degenerate elliptic equations in divergence form

3.1 A weighted Sobolev space

Let σ ∈ (0, 1), X = (x, t) ∈ Rn+1 where x ∈ Rn and t ∈ R. Then |t|1−2σ belongs to the

Muckenhoupt A2 class in Rn+1, namely, there exists a positive constant C, such that

for any ball B ⊂ Rn+1(
1

|B|

∫
B
|t|1−2σ dX

)(
1

|B|

∫
B
|t|2σ−1 dX

)
≤ C.

Let D be an open set in Rn+1. Denote L2(|t|1−2σ, D) as the Banach space of all

measurable functions U , defined on D, for which

‖U‖L2(|t|1−2σ ,D) :=

(∫
D
|t|1−2σU2 dX

) 1
2

<∞.

We say that U ∈ H(|t|1−2σ, D) if U ∈ L2(|t|1−2σ, D), and its weak derivatives ∇U exist

and belong to L2(|t|1−2σ, D). The norm of U in H(|t|1−2σ, D) is given by

‖U‖H(|t|1−2σ ,D) :=

(∫
D
|t|1−2σU2(X) dX +

∫
D
|t|1−2σ|∇U(X)|2 dX

) 1
2

.

It is clear that H(|t|1−2σ, D) is a Hilbert space with the inner product

〈U, V 〉 :=

∫
D
|t|1−2σ(UV +∇U∇V ) dX.

Note that the set of smooth functions C∞(D) is dense in H(|t|1−2σ, D). Moreover, if D

is a domain, i.e. a bounded connected open set, with Lipschitz boundary ∂D, then there

exists a linear, bounded extension operator from H(|t|1−2σ, D) to H(|t|1−2σ,Rn+1) (see,

e.g., [44]).

Let Ω be an open set in Rn. Recall that Hσ(Ω) is the fractional Sobolev space

defined as

Hσ(Ω) :=

{
u ∈ L2(Ω) :

|u(x)− u(y)|
|x− y|

n
2

+σ
∈ L2(Ω× Ω)

}
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with the norm

‖u‖Hσ(Ω) :=

(∫
Ω
u2 dx+

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2σ
dx dy

)1/2

.

The set of smooth functions C∞(Ω) is dense in Hσ(Ω). If Ω is a domain with Lips-

chitz boundary, then there exists a linear, bounded extension operator from Hσ(Ω) to

Hσ(Rn). Note that Hσ(Rn) with the norm ‖ · ‖Hσ(Rn) is equivalent to the following

space {
u ∈ L2(Rn) : |ξ|σF (u)(ξ) ∈ L2(Rn)

}
with the norm

‖ · ‖L2(Rn) + ‖|ξ|σF (·)(ξ)‖L2(Rn),

where F denotes the Fourier transform operator. It is known that (see, e.g., [102]) there

exists C > 0 depending only on n and σ such that for U ∈ H(t1−2σ,Rn+1
+ ) ∩ C(Rn+1

+ ),

‖U(·, 0)‖Hσ(Rn) ≤ C‖U‖H(t1−2σ ,Rn+1
+ ). Hence by a standard density argument, every

U ∈ H(t1−2σ,Rn+1
+ ) has a well-defined trace u := U(·, 0) ∈ Hσ(Rn).

We define Ḣσ(Rn) as the closure of the set C∞c (Rn) of compact supported smooth

functions under the norm

‖u‖Ḣσ(Rn) = ‖|ξ|σF (u)(ξ)‖L2(Rn).

Then there exists a constant C depending only on n and σ such that

‖u‖
L

2n
n−2σ (Rn)

≤ C‖u‖Ḣσ(Rn) for all u ∈ C∞c (Rn). (3.1)

For any u ∈ Ḣσ(Rn), set

U(x, t) = Pσ[u] :=

∫
Rn
Pσ(x− ξ, t)u(ξ) dξ, (x, t) ∈ Rn+1

+ := Rn × (0,+∞), (3.2)

where

Pσ(x, t) = β(n, σ)
t2σ

(|x|2 + t2)
n+2σ

2

with constant β(n, σ) such that
∫
Rn Pσ(x, 1) dx = 1. Then U ∈ L2(t1−2σ,K) for any

compact set K in Rn+1
+ , ∇U ∈ L2(t1−2σ,Rn+1

+ ) and U ∈ C∞(Rn+1
+ ). Moreover, U

satisfies (see [29])

div(t1−2σ∇U) = 0 in Rn+1
+ , (3.3)
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‖∇U‖L2(t1−2σ ,Rn+1
+ ) = Nσ‖u‖Ḣσ(Rn), (3.4)

and

− lim
t→0

t1−2σ∂tU(x, t) = Nσ(−∆)σu(x), in Rn (3.5)

in distribution sense, where Nσ = 21−2σΓ(1− σ)/Γ(σ). We refer U = Pσ[u] in (3.2) to

be the extension of u for any u ∈ Ḣσ(Rn).

For a domain D ⊂ Rn+1 with boundary ∂D, we denote ∂′D as the interior of

D ∩ ∂Rn+1
+ in Rn = ∂Rn+1

+ and ∂′′D = ∂D \ ∂′D. We denote QR = BR × (0, R) where

BR ⊂ Rn is the ball with radius R and centered at 0, BR(X) as the ball in Rn+1 with

radius R and center X, B+
R(X) as BR(X) ∩ Rn+1

+ . We also write BR(0),B+
R(0), BR(0)

as BR,B+
R , BR for short, respectively.

Lemma 3.1. Let u(x) ∈ C∞c (Rn) and V (·, t) = Pσ(·, t)∗u(·). For any U ∈ C∞c (Rn+1
+ ∪

∂Rn+1
+ ) with U(x, 0) = u(x),∫

Rn+1
+

t1−2σ|∇V |2 ≤
∫
Rn+1
+

t1−2σ|∇U |2.

Proof. Let 0 ≤ η(x, t) ≤ 1, Supp(η) ⊂ B+
2R, η = 1 in B+

R and |∇η| ≤ 2/R. In the

end we will let R → ∞ and hence we may assume that U is supported in B+
R/2. Since

div(t1−2σ∇V ) = 0, then

0 =

∫
Rn+1
+

t1−2σ∇V∇(η(U − V ))

=

∫
Rn+1
+

t1−2ση∇U∇V −
∫
Rn+1
+

t1−2ση|∇V |2 −
∫
B+2R\B

+
R

t1−2σV∇η∇V,

where we used η(U − V ) = 0 on the boundary of B+
2R in the first equality.

Note that for (x, t) ∈ B+
2R\B

+
R

|V (x, t)| = β(n, σ)

∣∣∣∣∣
∫
Rn

t2σ

(|x− ξ|2 + t2)
n+2σ

2

u(ξ) dξ

∣∣∣∣∣
≤ β(n, σ)

∫
Rn

(|x|2 + t2)σ

(|x|2/4 + t2)
n+2σ

2

|u(ξ)| dξ

≤ C(n, σ)(|x|2 + t2)−
n
2 ‖u‖L1 ,

where in the first inequality we have used that U is supported in B+
R/2.
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Direct computations yield∣∣∣∣∣
∫
B+2R\B

+
R

t1−2σV∇η∇V

∣∣∣∣∣
≤

(∫
B+2R\B

+
R

t1−2σ|∇V |2
)1/2(∫

B+2R\B
+
R

t1−2σV 2|∇η|2
)1/2

≤

(∫
B+2R\B

+
R

t1−2σ|∇V |2
)1/2

· C(n, σ)|u|L1(Rn)(R
n+2−2σ−2−2n)1/2 → 0 as R→∞,

where we used (3.4) that
∫
Rn+1
+

t1−2σ|∇V |2 <∞. Therefore, we have

∫
Rn+1
+

t1−2σ|∇V |2 ≤

∣∣∣∣∣
∫
Rn+1
+

t1−2σ∇U∇V

∣∣∣∣∣ .
Finally, by Hölder inequality,∫

Rn+1
+

t1−2σ|∇V |2 ≤
∫
Rn+1
+

t1−2σ|∇U |2.

Proposition 3.1. Let D = Ω× (0, R) ⊂ Rn × R+, R > 0 and ∂Ω be Lipschitz.

(i) If U ∈ H(t1−2σ, D) ∩ C(D ∪ ∂′D), then u := U(·, 0) ∈ Hσ(Ω), and

‖u‖Hσ(Ω) ≤ C‖U‖H(t1−2σ ,D),

where C is a positive constant depending only on n, σ,R and Ω. Hence every U ∈

H(t1−2σ, D) has a well-defined trace U(·, 0) ∈ Hσ(Ω) on ∂′D. Furthermore, there

exists C > 0 depending only on n and σ such that

‖U(·, 0)‖
L

2n
n−2σ (Ω)

≤ C‖∇U‖L2(t1−2σ ,D) for all U ∈ C∞c (D ∪ ∂′D). (3.6)

(ii) If u ∈ Hσ(Ω), then there exists U ∈ H(t1−2σ, D) such that the trace of U on Ω

equals to u and

‖U‖H(t1−2σ ,D) ≤ C‖u‖Hσ(Ω),

where C is a positive constant depending only on n, σ,R and Ω.
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Proof. The above results are well-known and here we just sketch the proofs. For

(i), by the previously mentioned result on the extension operator, there exists Ũ ∈

H(t1−2σ,Rn+1) such that Ũ = U in D and

‖Ũ‖H(t1−2σ ,Rn+1) ≤ C‖U‖H(t1−2σ ,D).

Hence by the previously mentioned result on the trace from H(t1−2σ,Rn+1
+ ) to Hσ(Rn),

we have

‖u‖Hσ(Ω) ≤ ‖Ũ(·, 0)‖Hσ(Rn) ≤ C‖Ũ‖H(t1−2σ ,Rn+1
+ ) ≤ C‖U‖H(t1−2σ ,D).

For (3.6), we extend U to be zero in the outside of D and let V be the extension of

U(·, 0) as in (3.2). The inequality (3.6) follows from (3.1), (3.4) and

‖∇V ‖L2(t1−2σ ,Rn+1
+ ) ≤ ‖∇U‖L2(t1−2σ ,Rn+1

+ ),

where Lemma 3.1 is used in the above inequality.

For (ii), since ∂Ω is Lipschitz, there exists ũ ∈ Hσ(Rn) such that ũ = u in Ω and

‖ũ‖Hσ(Rn) ≤ C‖u‖Hσ(Ω). Then U = Pσ[u], the extension of ũ, satisfies (ii).

3.2 Weak solutions of degenerate elliptic equations

3.2.1 Existence

Let D be a domain in Rn+1
+ with ∂′D 6= ∅. Let a ∈ L

2n
n+2σ

loc (∂′D) and b ∈ L1
loc(∂

′D).

Consider 
div(t1−2σ∇U(X)) = 0 in D,

− lim
t→0+

t1−2σ∂tU(x, t) = a(x)U(x, 0) + b(x) on ∂′D.

(3.7)

Definition 3.1. We say that U ∈ H(t1−2σ, D) is a weak solution (resp. supersolution,

subsolution) of (3.7) in D, if for every nonnegative Φ ∈ C∞c (D ∪ ∂′D)∫
D
t1−2σ∇U∇Φ = (resp. ≥,≤)

∫
∂′D

aUΦ + bΦ. (3.8)

Proposition 3.2. Suppose a(x) ∈ L
n
2σ (B1), b(x) ∈ L

2n
n+2σ (B1). Let U ∈ H(t1−2σ, Q1)

be a weak solution of (3.7) in Q1. There exists δ > 0 depending only on n and σ such
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that if ‖a+‖
L
n
2σ (B1)

< δ, then there exists a constant C depending only on n, σ and δ

such that

‖U‖H(t1−2σ ,Q1/2) ≤ C(‖U‖L2(t1−2σ ,Q1) + ‖b‖
L

2n
n+2σ (B1)

).

Consequently, if a ∈ Lp(B1) for p > n
2σ , then C depends only on n, σ, ‖a‖Lp(B1).

Proof. Let η ∈ C∞c (Q1 ∪ ∂′Q1) be a cut-off function which equals to 1 in Q1/2 and

supported in Q3/4. By a density argument, we can choose η2U as a test function in

(3.8). Then we have, by Cauchy-Schwarz inequality,∫
Q1

t1−2ση2|∇U |2 dX ≤ 4

∫
Q1

t1−2σ|∇η|2U2 dX + 2

∫
∂′Q1

a+(ηU)2 + bη2U dx.

By Hölder inequality and Proposition 3.1,∫
∂′Q1

a+(ηU)2 dx ≤ δ‖ηU‖2
L

2n
n−2σ (∂′Q1)

≤ δC(n, σ)‖∇(ηU)‖2L2(t1−2σ ,Q1).

By Young’s inequality ∀ ε > 0,∫
∂′Q1

bη2U(·, 0) dx ≤ ε‖ηU‖2
L

2n
n−2σ (∂′Q1)

+ C(ε)‖b‖2
L

2n
n+2σ (∂′Q1)

≤ εC(n, σ)‖∇(ηU)‖2L2(t1−2σ ,Q1) + C(ε)‖b‖2
L

2n
n+2σ (∂′Q1)

.

The first conclusion follows immediately if δ is sufficiently small.

If a ∈ Lp(B1), we can choose r small such that ‖a‖
L
n
2σ (Br(x0))

< δ for any ball

Br(x0) ⊂ B1. Then Û(x, t) = r
n−2σ

2 U(rx+ x0, rt) satisfies (3.7) with â(x) = r2σa(rx+

x0) and b̂(x, t) = r
n+2σ

2 b(rx + x0) in Q1. Since ‖â‖
L
n
2σ (B1)

< δ, applying the above

result to Û , we have

‖U‖H(t1−2σ ,B1/2×(0,r/2)) ≤ C(‖U‖L2(t1−2σ ,Q1) + ‖b‖
L

2n
n+2σ (B1)

),

where C depends only on n, σ, ‖a‖L∞(B1). This, together with the fact that (3.7) is

uniformly elliptic in B1 × (r/4, 1), finishes the proof.

Proposition 3.3. Suppose that a(x) ∈ L
n
2σ (B1). There exists δ > 0 which depends

only on n and σ such that if ‖a+‖
L
n
2σ (B1)

< δ, then for any b(x) ∈ L
2n

n+2σ (B1), there

exists a unique solution in H(t1−2σ, Q1) to (3.7) with U |∂′′Q1 = 0.
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Proof. We consider the bilinear form

B[U, V ] :=

∫
Q1

t1−2σ∇U∇V dX −
∫
∂′Q1

aUV dx, U, V ∈ A

where A := {U ∈ H(t1−2σ, Q1) : U |∂′′Q1 = 0 in trace sense}. By Proposition 3.1, it

is easy to verify that B[·, ·] is bounded and coercive provided δ is sufficiently small.

Therefore, the proposition follows from the Riesz representation theorem.

3.2.2 Maximum principles

Lemma 3.2. Suppose U ∈ H(t1−2σ, D) is a weak supersolution of (3.7) in D with

a ≡ b ≡ 0. If U(X) ≥ 0 on ∂′′D in trace sense, then U ≥ 0 in D.

Proof. Use U− as a test function to conclude that U− ≡ 0.

Lemma 3.3. There exists ε = ε(n, σ) such that for all |a(x)| ≤ ε|x|−2σ, if U ∈

H(t1−2σ, Q1), U ≥ 0 on ∂′′Q1, and is a supersolution of (3.7) in Q1 with b ≡ 0,

then

U ≥ 0 in Q1.

Proof. By a density argument, we can use U− as a test function. Hence we have∫
Q1

t1−2σ|∇U−|2 ≤
∫
B1

|a|(U−(·, 0))2. (3.9)

We extend U− to be zero outside of Q1 in Rn+1
+ and still denote it as U−. Then the

trace

U−(·, 0) ∈ Ḣσ(Rn).

Since

N2
σ‖U−(·, 0)‖2

Ḣσ(Rn)
=

∫
Rn+1
+

t1−2σ|∇Pσ ∗ U−(·, 0)|2 ≤
∫
Rn+1
+

t1−2σ|∇U−|2,

we have

N2
σ‖U−(·, 0)‖2

Ḣσ(Rn)
≤
∫
B1

|a|(U−(·, 0))2.

By Hardy’s inequality (see, e.g., [133])

C(n, σ)

∫
Rn
|x|−2σ(U−(·, 0))2 ≤ ‖U−(·, 0)‖2

Ḣσ(Rn)
,
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where C(n, σ) = 22σ Γ((n+2σ)/4)
Γ((n−2σ)/4) is the best constant. Hence if ε < N2

σC(n, σ), U−(·, 0) ≡

0 and hence by (3.9), U− ≡ 0 in Q1.

Lemma 3.4. Let a(x) ∈ L∞(B1). Let W ∈ C(Q1)∩C2(Q1) satisfying ∇xW ∈ C(Q1),

t1−2σ∂tW ∈ C(Q1), and
−div(t1−2σ∇W ) ≥ 0 in Q1,

− lim
t→0

t1−2σ∂tW (x, t) ≥ a(x)W (x, 0) on ∂′Q1,

W > 0 in Q1.

(3.10)

If U ∈ C(Q1) ∩ C2(Q1) satisfying ∇xU ∈ C(Q1), t1−2σ∂tU ∈ C(Q1), and
−div(t1−2σ∇U) ≥ 0 in Q1,

− lim
t→0

t1−2σ∂tU(x, t) ≥ a(x)U(x, 0) on ∂′Q1,

U ≥ 0 in ∂′′Q1,

(3.11)

then U ≥ 0 in Q1.

Proof. Let V = U/W . Then
−div(t1−2σ∇V )− 2t1−2σ∇V∇W

W − div(t1−2σ∇W )V
W ≥ 0 in Q1

− lim
t→0

t1−2σ∂tV + V
W

(
− lim
t→0

t1−2σ∂tW (x, t)− a(x)W (x, 0)
)
≥ 0 on ∂′Q1

V ≥ 0 in ∂′′Q1.

(3.12)

We are going to show that V ≥ 0 in Q1. If not, then we choose k such that infQ1 v <

k ≤ 0. Let

Vk = V − k and V −k = max(−Vk, 0).

Multiplying V −k to (3.12), we have∫
Q1

t1−2σ|∇V −k |
2 ≤ 2

∫
Q1

t1−2σW−1V −k ∇V
−
k ∇W. (3.13)

Case 1: Suppose 1 − 2σ ≤ 0. Denote Γk = Supp(∇V −k ). Then by the Hölder

inequality and the bounds of ∇xW , t1−2σ∂tW ,

2

∫
Q1

t1−2σW−1V −k ∇V
−
k ∇W ≤ C

(∫
Q1

t1−2σ|∇V −k |
2

) 1
2
(∫

Γk

t1−2σ|V −k |
2

) 1
2

.
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Hence it follows from (3.13) that∫
Q1

t1−2σ|∇V −k |
2 ≤ C

∫
Γk

t1−2σ|V −k |
2. (3.14)

Since V −k = 0 on ∂′′Q1, by Lemma 2.1 in [128],(∫
Q1

t1−2σ|V −k |
2(n+1)/n

) n
n+1

≤ C
∫
Q1

t1−2σ|∇V −k |
2. (3.15)

By (3.14), (3.15) and Hölder inequality,∫
Γk

t1−2σ ≥ C.

This yields a contradiction when k → infQ1 v, since ∇V = 0 on the set of V ≡ infQ1 V .

Case 2: Suppose 1 − 2σ > 0. Denote Γk = Supp(V −k ). Then by Hölder inequality

and the bounds of ∇xW , t1−2σ∂tW ,∫
Q1

t1−2σ|∇V −k |
2 ≤ 2

∫
Q1

t1−2σW−1V −k ∇V
−
k ∇W

≤ C
∫
Q1

V −k ∇V
−
k

≤ C(

∫
Q1

t1−2σ|∇V −k |
2)1/2(

∫
Q1

t2σ−1|V −k |
2)1/2.

Hence ∫
Q1

t1−2σ|∇V −k |
2

∫
Q1

t1−2σ|∇V −k |
2 ≤ C

∫
Q1

t1−2σ|∇V −k |
2

∫
Q1

t2σ−1|V −k |
2.

Since V −k = 0 on ∂′′Q1, by the proof of Lemma 2.3 in [128], for any β > −1,∫
Q1

tβ|V −k |
2 ≤ C(β)

∫
Q1

t1−2σ|∇V −k |
2.

In the following we choose β = σ − 1. Hence,∫
Q1

t1−2σ|∇V −k |
2

∫
Q1

tσ−1|V −k |
2 ≤ C

∫
Q1

t1−2σ|∇V −k |
2

∫
Q1

t2σ−1|V −k |
2,

i.e. ∫
Γk

t1−2σ|∇V −k |
2

∫
Γk

tσ−1|V −k |
2 ≤ C

∫
Γk

t1−2σ|∇V −k |
2

∫
Γk

t2σ−1|V −k |
2.

Fixed ε > 0 sufficiently small which will be chosen later. By the strong maximum

principle infQ1 V has to be attained only on ∂′Q1, then we can choose k sufficiently

closed to infQ1 V such that Γk ⊂ B1 × [0, ε]. Then

ε−σ
∫

Γk

t2σ−1|V −k |
2 ≤ C

∫
Γk

tσ−1|V −k |
2.
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Choose ε small enough such that ε−σ > C + 1. It follows that∫
Γk

t1−2σ|∇V −k |
2

∫
Γk

t2σ−1|V −k |
2 = 0.

Hence one of them has to be zero, which reaches a contradiction immediately.

3.3 Regularity

3.3.1 Harnack inequalities and Hölder estimates

The following result is a refined version of that in [128]. Such De Giorgi-Nash-Moser

type theorems for degenerated equations with Dirichlet boundary conditions have been

established in [60].

Proposition 3.4. Suppose a, b ∈ Lp(B1) for some p > n
2σ .

(i) Let U ∈ H(t1−2σ, Q1) be a weak subsolution of (3.7) in Q1. Then ∀ ν > 0

sup
Q1/2

U+ ≤ C(‖U+‖Lν(t1−2σ ,Q1) + ‖b+‖Lp(B1)),

where U+ = max(0, U), and C > 0 depends only on n, σ, p, ν and ‖a+‖Lp(B1).

(ii) Let U ∈ H(t1−2σ, Q1) be a nonnegative weak supersolution of (3.7) in Q1. Then

for any 0 < µ < τ < 1, 0 < ν ≤ n+1
n we have

inf
Qµ

U + ‖b−‖Lp(B1) ≥ C‖U‖Lν(t1−2σ ,Qτ ),

where C > 0 depends only on n, σ, p, ν, µ, τ and ‖a−‖Lp(B1).

(iii) Let U ∈ H(t1−2σ, Q1) be a nonnegative weak solution of (3.7) in Q1. Then we

have the following Harnack inequality

sup
Q1/2

U ≤ C( inf
Q1/2

U + ‖b‖Lp(B1)), (3.16)

where C > 0 depends only on n, σ, p, ‖a‖Lp(B1). Consequently, there exists α ∈ (0, 1)

depending only on n, σ, p, ‖a‖Lp(B1) such that any weak solution U(X) of (3.7) is of

Cα(Q1/2). Moreover,

‖U‖Cα(Q1/2) ≤ C(‖U‖L∞(Q1) + ‖b‖Lp(B1)),

where C > 0 depends only on n, σ, p, ‖a‖Lp(B1).
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Proof. The proofs are modifications of those in [128], where the method of Moser it-

eration is used. Here we only point out the changes. Let k = ‖b+‖Lp(B1) if b+ 6≡ 0,

otherwise let k > 0 be any number which is eventually sent to 0. Define U = U+ + k

and, for m > 0, let

Um =


U if U < m,

k +m if U ≥ m.

Consider the test function

φ = η2(U
β
mU − kβ+1) ∈ H(t1−2σ, Q1),

for some β ≥ 0 and some nonnegative function η ∈ C1
c (Q1∪∂′Q1). Direction calculations

yield that, with setting W = U
β
2
mU ,

1

1 + β

∫
Q1

t1−2σ|∇(ηW )|2 ≤ 16

∫
Q1

t1−2σ|∇η|2W 2 + 4

∫
∂′Q1

(a+ +
b+

k
)η2W 2. (3.17)

By Hölder’s inequality and the choice of k, we have∫
∂′Q1

(a+ +
b+

k
)η2W 2 ≤ (‖a+‖Lp(B1) + 1)‖η2W 2‖Lp′ (B1),

where p′ = p
p−1 < n

n−2σ . Choose 0 < θ < 1 such that 1
p′ = θ + (1−θ)(n−2σ)

n . The

interpolation inequality gives that, for any ε > 0,

‖η2W 2‖Lp′ (B1) ≤ ε‖ηW‖
2

L
2n

n−2σ (B1)
+ ε−

1−θ
θ ‖η2W 2‖L1(B1).

By the trace embedding inequality in Proposition 3.1, there exists C > 0 depending

only on n, σ such that

‖ηW‖2
L

2n
n−2σ (B1)

≤ C
∫
Q1

t1−2σ|∇(ηW )|2.

By Lemma 2.3 in [128], there exist δ > 0 and C > 0 both of which depend only on n, σ

such that

‖η2W 2‖L1(B1) ≤ ε
1
θ

∫
Q1

t1−2σ|∇(ηW )|2 + ε−
δ
θ

∫
Q1

t1−2ση2W 2.

By choosing ε small, the above inequalities give that∫
Q1

t1−2σ|∇(ηW )|2 ≤ C(1 + β)δ/θ
∫
Q1

t1−2σ(η2 + |∇η|2)W 2,
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where C depends only on n, σ and ‖a+‖Lp(B1). Then the proof of Proposition 3.1 in

[128] goes through without any change. This finishes the proof of (i) for ν = 2. Then (i)

also holds for any ν > 0 which follows from standard arguments. For part (ii) we choose

k = ‖b−‖Lp(B1) if b− 6≡ 0, otherwise let k > 0 be any number which is eventually sent

to 0. Then we can show that there exists some ν0 > 0 for which (ii) holds, by exactly

the same proof of Proposition 3.2 in [128]. Finally use the test function φ = U
−β
η2

with β ∈ (0, 1) to repeat the proof in (i) to conclude (ii) for 0 < ν ≤ n+1
n . Part (iii)

follows from (i), (ii) and standard elliptic equation theory.

Remark 3.1. Harnack inequality (3.16), without lower order term b, has been obtained

earlier in [27] using a different method.

The above proofs can be improved to yield the following result.

Lemma 3.5. Suppose a ∈ L
n
2σ (B1), b ∈ Lp(B1) with p > n

2σ and U ∈ H(t1−2σ, Q1) is

a weak subsolution of (3.7) in Q1. There exists δ > 0 which depends only on n and σ

such that if ‖a+‖
L
n
2σ (B1)

< δ, then

‖U+(·, 0)‖Lq(∂′Q1/2) ≤ C(‖U+‖H(t1−2σ ,Q1) + ‖b+‖Lp(B1)),

where C > 0 depends only on n, p, σ, δ, and q = min
(

2(n+1)
n−2σ ,

n(p−1)
(n−2σ)p ·

2n
n−2σ

)
.

Remark 3.2. Analog estimates were established for −∆u = a(x)u in [24] (see Theorem

2.3 there) and for −div(|∇u|p−2∇u) = a(x)|u|p−2u in [6] (see Lemma 3.1 there).

Proof of Lemma 3.5. We start from (3.17), where we choose β = min
(

2
n ,

2(2σp−n)
(n−2σ)p

)
.

By Hölder inequality and Proposition 3.1,∫
∂′Q1

(a+ +
b+

k
)η2W 2 ≤ δ‖η2W 2‖

L
n

n−2σ (B1)
+ ‖η2W 2‖Lp′ (B1)

≤ C(n, σ)δ

∫
Q1

t1−2σ|∇(ηW )|2 + Cn,σ,p‖U‖H(t1−2σ ,Q1).

By Poincare’s inequality in [60], we have∫
Q1

t1−2σ|∇η|2W 2 ≤ Cn,σ,p‖U‖H(t1−2σ ,Q1).
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If δ is sufficiently small, the the above together with (3.17) imply that∫
Q1

t1−2σ|∇(ηW )|2 ≤ Cn,σ,p‖U‖H(t1−2σ ,Q1).

Hence it follows from Hölder inequality and Proposition 3.1 that, by sending m→∞,

‖U(·, 0)‖Lq(∂′Q1/2) ≤ Cn,σ,p
∫
Q1

t1−2σ|∇(ηW )|2 ≤ Cn,σ,p‖U‖H(t1−2σ ,Q1).

This finishes the proof.

Corollary 3.1. Suppose that K ∈ L∞(B1), U ∈ H(t1−2σ, Q1) and U ≥ 0 in Q1

satisfies, for some 1 ≤ p ≤ (n+ 2σ)(n− 2σ),
div(t1−2σ∇U(X)) = 0 in Q1

− lim
t→0+

t1−2σ∂tU(x, t) = K(x)U(x, 0)p on ∂′Q1.

Then (i) U ∈ L∞loc(Q1 ∪ ∂′Q1), and hence U(·, 0) ∈ L∞loc(B1).

(ii) There exist C > 0 and α ∈ (0, 1) depending only on n, σ, p, ‖u‖L∞(B3/4) and

‖K‖L∞(B3/4) such that U ∈ Cα(Q1/2) and

‖U‖H(t1−2σ ,Q1/2) + ‖U‖Cα(Q1/2) ≤ C.

Note that the regularity of solution of −∆u = u
n+2
n−2 was proved by Trudinger in

[129].

Proof of Corollary 3.1. By Proposition 3.1, U(·, 0) ∈ Hσ(B1) ⊂ L
2n

n−2σ (B1). Thus

U(·, 0)p−1 ∈ L
n
2σ (B1). Then part (i) follows from Lemma 3.5 and Proposition 3.4.

Part (ii) follows from Proposition 3.2 and Proposition 3.4.

3.3.2 Schauder estimates

Let Ω be a domain in Rn, a ∈ L
2n

n+2σ

loc (Ω) and b ∈ L1
loc(Ω). We say u ∈ Ḣσ(Rn) is a weak

solution of

(−∆)σu = a(x)u+ b(x) in Ω

if for any φ ∈ C∞(Rn) supported in Ω,∫
Rn

(−∆)
σ
2 u(−∆)

σ
2 φ =

∫
Ω
a(x)uφ+ b(x)φ.



29

Then by (3.5), u ∈ Ḣσ(Rn) is a weak solution of

(−∆)σu =
1

Nσ

(
a(x)u+ b(x)

)
in B1

if and only if U = Pσ[u], the extension of u defined in (3.2), is a weak solution of (3.7)

in Q1.

For α ∈ (0, 1), Cα(Ω) denotes the standard Hölder space over domain Ω. For

simplicity, we use Cα(Ω) to denote C [α],α−[α](Ω) when 1 < α /∈ N (the set of positive

integers).

In this part, we shall prove the following local Schauder estimates for nonnegative

solutions of fractional Laplace equation.

Theorem 3.1. Suppose a(x), b(x) ∈ Cα(B1) with 0 < α 6∈ N. Let u ∈ Ḣσ(Rn) and

u ≥ 0 in Rn be a weak solution of

(−∆)σu = a(x)u+ b(x), in B1.

Suppose that 2σ + α is not an integer. Then u ∈ C2σ+α(B1/2). Moreover,

‖u‖C2σ+α(B1/2) ≤ C( inf
B3/4

u+ ‖b‖Cα(B3/4)) (3.18)

where C > 0 depends only on n, σ, α, ‖a‖Cα(B3/4).

Remark 3.3. Replacing the assumption u ≥ 0 in Rn by u ≥ 0 in B1, estimate (3.18)

may fail (see [87]). Without the sign assumption of u, (3.18) with infB3/4
u substituted

by ‖u‖L∞(Rn) holds, which is proved in [30], [31] and [32] in a much more general setting

of fully nonlinear nonlocal equations.

The following proposition will be used in the proof of Theorem 3.1.

Proposition 3.5. Let a(x), b(x) ∈ Ck(B1), U(X) ∈ H(t1−2σ, Q1) be a weak solution

of (3.7) in Q1, where k is a positive integer. Then we have

k∑
i=0

‖∇ixU‖L∞(Q1/2) ≤ C(‖U‖L2(t1−2σ ,Q1) + ‖b‖Ck(B1)),

where C > 0 depends only on n, σ, k, ‖a‖Ck(B1).
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Proof. We know from Proposition 3.4 that U is Hölder continuous in Q8/9. Let h ∈ Rn

with |h| sufficiently small. Denote Uh(x, t) = U(x+h,t)−U(x,t)
|h| . Then Uh is a weak

solution of
div(t1−2σ∇Uh(X)) = 0 in Q8/9,

− lim
t→0+

t1−2σ∂tU
h(x, t) = a(x+ h)Uh + ahU + bh on ∂′Q8/9.

(3.19)

By Proposition 3.2 and Proposition 3.4,

‖Uh‖H(t1−2σ ,Q2/3) + ‖Uh‖Cα(Q2/3) ≤ C(‖Uh‖L2(t1−2σ ,Q3/4) + ‖b‖C1(B1))

≤ C(‖∇U‖L2(t1−2σ ,Q4/5) + ‖b‖C1(B1))

≤ C(‖U‖L2(t1−2σ ,Q1) + ‖b‖C1(B1))

for some α ∈ (0, 1) and positive constant C > 0 depending only on n, σ, ‖a‖C1(B1).

Hence ∇xU ∈ H(t1−2σ, Q2/3) ∩ Cα(Q2/3), and it is a weak solution of
div(t1−2σ∇(∇xU) = 0 in Q2/3,

− lim
t→0+

t1−2σ∂t(∇xU) = a∇xU + U∇xa+∇xb on ∂′Q2/3.

Then this Proposition follows immediately from Proposition 3.2 and Proposition 3.4

for k = 1. We can continue this procedure for k = 2, 3, · · · (by induction).

To prove Theorem 3.1 we first obtain Schauder estimates for solutions of the equation
div(t1−2σ∇U(X)) = 0 in Q,

− lim
t→0+

t1−2σ∂tU(x, t) = g(x) on ∂′Q,

(3.20)

where Q = B2 × (0, 2).

Theorem 3.2. Let U(X) ∈ H(t1−2σ, Q) be a weak solution of (3.20) and g(x) ∈ Cα(B2)

for some 0 < α 6∈ N. If 2σ + α is not an integer, then U(·, 0) is of C2σ+α(B1/2).

Moreover, we have

‖U(·, 0)‖C2σ+α(B1/2) ≤ C(‖U‖L∞(Q2) + ‖g‖Cα(B2)),

where C > 0 depends only on n, σ, α.

Theorem 3.2 together with Proposition 3.4 implies the following



31

Theorem 3.3. Let U(X) ∈ H(t1−2σ, Q1) be a weak solution of (3.7) with D = Q1 and

a(x), b(x) ∈ Cα(B1) for some 0 < α 6∈ N. If 2σ + α is not an integer, then U(·, 0) is of

C2σ+α(B1/2). Moreover, we have

‖U(·, 0)‖C2σ+α(B1/2) ≤ C(‖U‖L∞(Q1) + ‖b‖Cα(B1)),

where C > 0 depends only on n, σ, α, ‖a‖Cα(B1).

Proof. From Proposition 3.4, U is Hölder continuous in Q3/4. Theorem 3.3 follows from

bootstrap arguments by applying Theorem 3.2 with g(x) := a(x)U(x, 0) + b(x).

Furthermore, we have the following regularity result for solutions of (3.20) in Q.

Theorem 3.4. Let g(x) ∈ L∞(∂′Q), and U(X) ∈ H(t1−2σ, Q) be a weak solution of

(3.20). Then U(·, 0) ∈ C2σ(∂′Q1) if σ 6= 1/2. Furthermore, if we assume that g(x) is

Dini continuous in ∂′Q then U ∈ C2σ(Q1).

Remark 3.4. C2σ regularity is optimal. For example, U = t2σ solves (3.20) with

g(x) ≡ −2σ.

Remark 3.5. If we only assume g(x) ∈ L∞(∂′Q) in the second part of Theorem 3.4,

then the same proof implies that U ∈ C2σ′(Q1) for any σ′ < σ.

For brevity, we denote ω(r) as ωg(r,Ω) if there is no ambiguity, where ωg(r,Ω) is as

in (2.2).

Theorem 3.5. Let g(x) ∈ L∞(∂′Q), and U(X) ∈ H(t1−2σ, Q) be a weak solution of

(3.20). Suppose that U(x, 0) ∈ C2(B). There exists a constant C which depends only

on n and σ such that for any y1, y2 ∈ B1/2 with d = |y1 − y2|,

|∇ixU(y1, 0)−∇ixU(y2, 0)|

≤ C
(
d|U |L∞(Q) + d

∫ 1

d
r2σ−2−iω(r)dr +

∫ d

0
r2σ−1−iω(r)dr

)
,

(3.21)

where i = 0, 1, 2.

Proof. Our arguments are in the spirit of those in [28] and [98]. We denote C as

various constants that depend only on n and σ. Let ρ = 1
2 , Qk = Qρk(0), ∂′Qk =
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Bk, k = 0, 1, 2, · · · . (Note that we have abused notations a little. Only in this proof we

refer Qk, Bk as Qρk , Bρk .)

Let Wk be the unique weak solution of
div(t1−2σ∇Wk(X)) = 0 in Qk

− lim
t→0+

t1−2σ∂tWk(x, t) = g(0)− g(x) on ∂′Qk

Wk(X) = 0 on ∂′′Qk,

(3.22)

which is guaranteed by Proposition 3.3. Let Uk = Wk +U in Qk and hk+1 = Uk+1−Uk

in Qk+1, then

‖Wk‖L∞(Qk) ≤ Cρ2σkω(ρk). (3.23)

Indeed, we can obtain the above estimate by applying the maximum principle to the

equation of ρ−2σkWk(ρ
kx) ± (t2σ − 3)ω(ρk) in Q0. Hence by the maximum principle

again we have

‖hk+1‖L∞(Qk) ≤ Cρ2σkω(ρk).

By Proposition 3.5, we have, for i = 0, 1, 2, 3,

‖∇ixhk+1‖L∞(Qk+2) ≤ Cρ(2σ−i)kω(ρk). (3.24)

Similarly, by applying Proposition 3.5 to U0, we have

‖∇ixU0‖L∞(Q2) ≤ C(‖U0‖L∞(Q1) + |g(0)|)

≤ C(‖U‖L∞(Q0) + ‖W0‖L∞(Q0) + |g(0)|).
(3.25)

We decompose U0 as U0 = U01 + g(0)U02, where
div(t1−2σ∇U01(X)) = 0 in Q0

− lim
t→0+

t1−2σ∂tU01(x, t) = 0 on ∂′Q0

U01(X) = U(X) on ∂′′Q0,

(3.26)

and 
div(t1−2σ∇U02(X)) = 0 in Q0

− lim
t→0+

t1−2σ∂tU02(x, t) = 1 on ∂′Q0

U02(X) = 0 on ∂′′Q0.

(3.27)
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By the maximum principles and a weak Harnack inequality in Proposition 3.4,

‖U02‖L∞(Q0) = 1/C > 0,

which implies that

|g(0)| ≤ C(‖U0‖L∞(Q0) + ‖U01‖L∞(Q0)) ≤ C(‖U‖L∞(Q0) + ‖W0‖L∞(Q0)).

Hence from (3.25),

‖∇ixU0‖L∞(Q2) ≤ C(‖U‖L∞(Q0) + ‖W0‖L∞(Q0)) ≤ C(‖U‖L∞(Q0) + ω(1)). (3.28)

For any given point z near 0, we have

|U(z, 0)− U(0, 0)|

≤ |Uk(0, 0)− U(0, 0)|+ |U(z, 0)− Uk(z, 0)|+ |Uk(z, 0)− Uk(0, 0)|

= I1 + I2 + I3.

Let k be such that ρk+4 ≤ |z| ≤ ρk+3. By (3.23),

I1 + I2 ≤ Cρ2σkω(ρk) ≤ C
∫ |z|

0
r2σ−1ω(r)dr.

For I3, by (3.24) and (3.28),

I3 ≤ |U0(z, 0)− U0(0, 0)|+
k∑
j=1

|hj(z, 0)− hj(0, 0)|

≤ C|z|
(
‖∇xU0‖L∞(Qk+3) +

k∑
j=1

‖∇xhj‖L∞(Qk+3)

)

≤ C|z|
(
‖U‖L∞(Q0) + ω(1) +

k∑
j=1

ρ(2σ−1)jω(ρj)
)

≤ C|z|
(
‖U‖L∞(Q0) +

∫ 1

|z|
r2σ−2ω(r)dr

)
.

Thus

|U(z, 0)− U(0, 0)| ≤ C|z|
(
‖U‖L∞(Q0) +

∫ 1

|z|
r2σ−2ω(r)dr

)
+ C

∫ |z|
0

r2σ−1ω(r)dr,

which shows (3.21) for i = 0. Moreover, the above estimate implies that

‖∇xU(·, 0)‖L∞(B1) ≤ C
(
‖U‖L∞(Q0) +

∫ 1

0
r2σ−2ω(r)dr

)
. (3.29)
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Next we will show that for i = 1. Applying (3.29) to the equation of Wk, we have,

together with (3.23),

‖∇xWk(·, 0)‖L∞(Bk+1) ≤ C
(
ρ(2σ−1)kω(ρk) +

∫ ρk

0
r2σ−2ω(r)dr

)
≤ C

∫ ρk

0
r2σ−2ω(r)dr.

By (3.24) and (3.28),

|∇xUk(z, 0)−∇xUk(0, 0)|

≤ |∇xU0(z, 0)−∇xU0(0, 0)|+
k∑
j=1

|∇xhj(z, 0)−∇xhj(0, 0)|

≤ C|z|
(
‖∇2

xU0‖L∞(Qk+3) +
k∑
j=1

‖∇2
xhj‖L∞(Qk+3)

)

≤ C|z|
(
‖U‖L∞(Q0) + ω(1) +

k∑
j=1

ρ(2σ−2)jω(ρj)
)

≤ C|z|
(
‖U‖L∞(Q0) +

∫ 1

|z|
r2σ−3ω(r)dr

)
.

Hence

|∇xU(z, 0)−∇xU(0, 0)|

≤ |∇xWk(0, 0)|+ |∇xWk(z, 0)|+ |∇xUk(z, 0)−∇xUk(0, 0)|

≤ C
∫ ρk

0
r2σ−2ω(r)dr + C|z|

(
‖U‖L∞(Q0) +

∫ 1

|z|
r2σ−3ω(r)dr

)
.

which shows (3.21) for i = 1. Moreover, the above estimate implies that

‖∇2
xU(·, 0)‖L∞(B1) ≤ C

(
‖U‖L∞(Q0) +

∫ 1

0
r2σ−3ω(r)dr

)
. (3.30)

Next we will show that for i = 2. Applying (3.30) to the equation of Wk, we have,

together with (3.23),

‖∇2
xWk(·, 0)‖L∞(Bk+1) ≤ C

(
ρ(2σ−2)kω(ρk) +

∫ ρk

0
r2σ−3ω(r)dr

)
≤ C

∫ ρk

0
r2σ−3ω(r)dr.



35

By (3.24) and (3.28),

|∇2
xUk(z, 0)−∇2

xUk(0, 0)|

≤ |∇2
xU0(z, 0)−∇2

xU0(0, 0)|+
k∑
j=1

|∇2
xhj(z, 0)−∇2

xhj(0, 0)|

≤ C|z|
(
‖∇3

xU0‖L∞(Qk+3) +
k∑
j=1

‖∇3
xhj‖L∞(Qk+3)

)

≤ C|z|
(
‖U‖L∞(Q0) + ω(1) +

k∑
j=1

ρ(2σ−3)jω(ρj)
)

≤ C|z|
(
‖U‖L∞(Q0) +

∫ 1

|z|
r2σ−4ω(r)dr

)
.

Hence

|∇2
xU(z, 0)−∇2

xU(0, 0)|

≤ |∇2
xWk(0, 0)|+ |∇2

xWk(z, 0)|+ |∇2
xUk(z, 0)−∇2

xUk(0, 0)|

≤ C
∫ ρk

0
r2σ−3ω(r)dr + C|z|

(
‖U‖L∞(Q0) +

∫ 1

|z|
r2σ−4ω(r)dr

)
,

which shows (3.21) for i = 2.

Theorem 3.6. Let g(x) ∈ L∞(∂′Q), and U(X) ∈ H(t1−2σ, Q) be a weak solution of

(3.20). There exists a constant C which depends only on n and σ such that for any

(z, t) ∈ Q1/2, d = |(z, t)|,

|U(z, t)− U(z, 0)|

≤ C
(
d2σ|U |L∞(Q) + d2σ

∫ 1

d
r−1ω(r)dr + d2σ−1

∫ d

0
ω(r)dr

)
.

(3.31)

Proof. Let ρ,Wk, Qk, hk as that in the proof of Theorem 3.5. Let (z, t) ∈ Qk+3 but

(z, t) /∈ Qk+4. By Proposition 3.5, Newton-Leibniz formula and (3.24),

|hk+1(z, t)− kk+1(z, 0)| ≤ Ct2σω(ρk).
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Hence

|U(z, t)− U(z, 0)|

≤ |Uk(z, 0)− U(z, 0)|+ |U(z, t)− Uk(z, t)|+ |Uk(z, t)− Uk(z, 0)|

≤ 2‖Wk‖L∞(Qk) + |U0(z, t)− U0(z, 0)|+
k∑
j=1

|hj(z, t)− hk(z, 0)|

≤ Cρ2σkω(ρk) + Ct2σ(‖U0‖L∞(Q0) + |g(0)|) + Ct2σ
k∑
j=1

ω(ρj)

≤ C
(
d2σ|U |L∞(Q) + d2σ

∫ 1

d
r−1ω(r)dr + d2σ−1

∫ d

0
ω(r)dr

)
.

Theorem 3.7. Let g(x) ∈ L∞(∂′Q), and U(X) ∈ H(t1−2σ, Q) be a weak solution of

(3.20). Suppose that 2σ ≤ 1. There exists a constant C which depends only on n and

σ such that for any (z1, t1) ∈ Q1/4, z2 ∈ ∂′Q1/4, d = |(z1 − z2, t1)|,

|U(z1, t1)− U(z2, 0)| ≤ Cd2σ

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
. (3.32)

Proof. It follows from Theorem 3.5 and Theorem 3.6.

The following is Lemma 4.5 in [27], which will be used in the proof of Theorem 3.4.

Lemma 3.6. (Lemma 4.5 in [27]) Let g ∈ Cα(B1) for some α ∈ (0, 1) and U ∈

L∞(Q1) ∩ H(t1−2σ, Q1) be a weak solution of (3.20). Then there exists β ∈ (0, 1)

depending only on n, σ, α such that t1−2σ∂tU ∈ Cβ(Q1/2). Moreover, there exists a

positive constant C > 0 depending only on n, σ and β such that

‖t1−2σ∂tU‖Cβ(Q1/2) ≤ C(‖U‖L∞(Q1) + ‖g‖Cα(B1)).

Proof of Theorem 3.4. For the first part that if σ 6= 1/2, then it follows from Theorem

3.5 that U(·, 0) ∈ C2σ(∂′Q1). To prove the second part, we adapt a method in [130].

Step 1: We first consider the case of 2σ < 1. For any fixed X1 = (x1, t1), X2 =

(x2, t2) ∈ Q1, with 0 < t1 ≤ t2 < 1, t1 < 1/2. Denote d = |(x1 − x2, t1 − t2)|.

(i) If t1 > 4d, then 4d < t1 ≤ t2 ≤ t1 +d ≤ 5t1/4. Let ε = t21 and Ũ(x, t) = U(εx, εt).

Hence

∆Ũ(x, t) + (1− 2σ)t−1Ũt(x, t) = 0, x ∈ Bε(0), 1 < t < 1/ε.
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By the gradient estimates for uniformly elliptic equations (see [65]),

max
BR(X1/ε)

|∇Ũ | ≤ C 1

R0
max

BR0
(X1/ε)

(Ũ − inf
BR0

(X1/ε)
Ũ)

where R = d
ε , R0 = t1

2ε and C is a constant depending only on n and σ. Hence, together

with Theorem 3.7,

|U(x1, t1)− U(x2, t2)| ≤ C d

t1
oscB t1

2
(X1)U

≤ C d

t1
t2σ1

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
≤ Cd2σ

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
.

(ii) If t1 ≤ 4d, then t2 ≤ t1 + d ≤ 5d. Hence (3.32) leads to

|U(x1, t1)− U(x2, t2)| ≤ |U(x1, t1)− U(x1, 0)|+ |U(x1, 0)− U(x2, t2)|

≤ C
(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
(t2σ1 + (6d)2σ)

≤ Cd2σ

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
.

From (i) and (ii), together with uniformly elliptic theory, we see that for any (x1, t1),

(x2, t2) ∈ Q1/4 with d = |(x1 − x2, t1 − t2)|,

|U(x1, t1)− U(x2, t2)| ≤ Cd2σ

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
. (3.33)

Step 2: We consider that 2σ = 1. This case is uniformly elliptic and hence the

result should be well-known. We include it here for completeness. Let (z, t) ∈ Qk+3 but

(z, t) /∈ Qk+4. Denote d = (z, t). Let Wk, hk, etc be those as in the proof of Theorem

3.5. Applying (3.33) to Wk, we have, for ∇ = ∇x,t,

‖∇Wk‖L∞(Qk+1) ≤ Cρ(2σ−1)k

∫ ρk

0

ω(r)

r
dr.

By Lemma 3.6(Lemma 4.5 in [27]), hj is Hölder continuous, i.e. there exists β ∈ (0, 1)

which depends only on n and σ such that

|∂thj(z, t)− ∂thj(0, 0)| = Cω(ρk)dβ,

and

|∂tU0(z, t)− ∂tU0(0, 0)| ≤ Cdβ(‖U0‖L∞(Q0) + |g(0)|).
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Hence, together with Proposition 3.5,

|∇hj(z, t)−∇hj(0, 0)| = Cω(ρk)dβ,

and

|∇U0(z, t)−∇U0(0, 0)| ≤ Cdβ(‖U0‖L∞(Q0) + |g(0)|).

Hence

|∇U(z, t)−∇U(0, 0)|

≤ |∇Uk(z, t)−∇U(z, t)|+ |∇U(0, 0)−∇Uk(0, 0)|+ |∇Uk(z, t)−∇Uk(0, 0)|

≤ 2‖∇Wk‖L∞(Qk) + |∇U0(z, t)−∇U0(0, 0)|+
k∑
j=1

|∇hj(z, t)−∇hj(0, 0)|

≤ C
∫ ρk

0

ω(r)

r
dr + Cdβ(‖U0‖L∞(Q0) + |g(0)|) + Cdβ

k∑
j=1

ω(ρj)

≤ C
(∫ d

0

ω(r)

r
dr + dβ|U |L∞(Q) + dβ

∫ 1

d
r−1ω(r)dr

)
.

The above estimate implies that for any (z1, t1), (z2, 0) ∈ Q1/4, d = |(z1 − z2, t1)|,

|∇U(z1, t1)−∇U(z2, 0)| ≤ C
(∫ d

0

ω(r)

r
dr + dβ|U |L∞(Q) + dβ

∫ 1

d
r−1ω(r)dr

)
. (3.34)

For any fixed X1 = (x1, t1), X2 = (x2, t2) ∈ Q1, with 0 < t1 ≤ t2 < 1, t1 < 1/2.

Denote d = |(x1 − x2, t1 − t2)|.

(i) If t1 > 4d, then 4d < t1 ≤ t2 ≤ t1 +d ≤ 5t1/4. Let ε = t21 and Ũ(x, t) = U(εx, εt).

Hence

∆∇Ũ(x, t) = 0, x ∈ Bε(0), 1 < t < 1/ε.

By the gradient estimates for uniformly elliptic equations (see [65]),

max
BR(X1/ε)

|∇(∇Ũ)| ≤ C 1

R0
max

BR0
(X1/ε)

(∇Ũ − inf
BR0

(X1/ε)
∇Ũ)

where R = d
ε , R0 = t1

2ε and C is a constant depending only on n and σ. Hence, together

with (3.34)

|∇U(x1, t1)−∇U(x2, t2)| ≤ C d

t1
oscB t1

2
(X1)∇U

≤ C d

t1

(∫ t1

0

ω(r)

r
dr + tβ1 |U |L∞(Q) + tβ1

∫ 1

t1

r−1ω(r)dr

)
≤ C

(∫ d

0

ω(r)

r
dr + dβ|U |L∞(Q) + dβ

∫ 1

d
r−1ω(r)dr

)
.
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(ii) If t1 ≤ 4d, then t2 ≤ t1 + d ≤ 5d. Hence (3.34) leads to

|∇U(x1, t1)−∇U(x2, t2)| ≤ |∇U(x1, t1)−∇U(x1, 0)|+ |∇U(x1, 0)−∇U(x2, t2)|

≤ C
(∫ d

0

ω(r)

r
dr + dβ|U |L∞(Q) + dβ

∫ 1

d
r−1ω(r)dr

)
.

The (i) and (ii) implies that ∇U ∈ C0(Q1).

Step 3: We consider 2σ > 1. By Lemma 4.5 in [27], hj is Hölder continuous, i.e.

there exists β ∈ (0, 1) which depends only on n and σ such that

|∂thj(z, t)| = Cω(ρk)t2σ−1.

and

|∂tU0(z, t)| ≤ Ct2σ−1(‖U0‖L∞(Q0) + |g(0)|).

Hence together with Proposition 3.5,

|∇tU(z, t)−∇tU(0, 0)|

≤ |∇tUk(z, t)−∇tU(z, t)|+ |∇tU(0, 0)−∇tUk(0, 0)|+ |∇tUk(z, t)−∇tUk(0, 0)|

≤ 2‖∇tWk‖L∞(Qk) + |∇tU0(z, t)|+
k∑
j=1

|∇thj(z, t)|

≤ Cρ(2σ−1)k

∫ ρk

0

ω(r)

r
dr + Cd2σ−1(‖U0‖L∞(Q0) + |g(0)|) + Cd2σ−1

k∑
j=1

ω(ρj)

≤ Cd2σ−1

(∫ d

0

ω(r)

r
dr + |U |L∞(Q) +

∫ 1

d
r−1ω(r)dr

)
≤ Cd2σ−1

(∫ 1

0

ω(r)

r
dr + |U |L∞(Q)

)
.

Similarly,

|∇xU(z, t)−∇xU(0, 0)|

≤ |∇xUk(z, t)−∇xU(z, t)|+ |∇xU(0, 0)−∇xUk(0, 0)|+ |∇xUk(z, t)−∇xUk(0, 0)|

≤ 2‖∇xWk‖L∞(Qk) + |∇xU0(z, t)−∇xU0(0, 0)|+
k∑
j=1

|∇xhj(z, t)−∇xhj(0, 0)|

≤ Cρ(2σ−1)k

∫ ρk

0

ω(r)

r
dr + Cd2σ−1(‖U0‖L∞(Q0) + |g(0)|) + Cd2σ−1

k∑
j=1

ω(ρj)

≤ Cd2σ−1

(∫ 1

0

ω(r)

r
dr + |U |L∞(Q)

)
.
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For any fixed X1 = (x1, t1), X2 = (x2, t2) ∈ Q1, with 0 < t1 ≤ t2 < 1, t1 < 1/2. Denote

d = |(x1 − x2, t1 − t2)|. Using exactly the same proof as that in step 1 (since ∇xU

satisfies the same equation as of U), we can show that

|∇xU(x1, t1)−∇xU(x2, t2)| ≤ Cd2σ−1

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
. (3.35)

As to Ut, we only need to consider the case of t1 > 4d. Then 4d < t1 ≤ t2 ≤ t1 + d ≤

5t1/4. Let ε = t21. Denote V = Ut and Ṽ (x, t) = V (εx, εt). Differentiating (3.20),

∆Ṽ (x, t) + (1− 2σ)t−1Ṽt(x, t)− (1− 2σ)t−2Ṽ = 0, x ∈ Bε(0), 1 < t < 1/ε.

By the gradient estimates for uniformly elliptic equations (see [65]),

max
BR(X1/ε)

|∇Ṽ | ≤ C 1

R0

(
max

BR0
(X1/ε)

(Ṽ − inf
BR0

(X1/ε)
Ṽ ) + | inf

BR0
(X1/ε)

Ṽ |

)

where R = d
ε , R0 = t1

2ε and C is a constant depending only on n and σ. Hence, together

with Theorem 3.7,

|V (x1, t1)− V (x2, t2)| ≤ C d

t1

(
oscB t1

2
(x1,t1)V + ‖V ‖L∞(B t1

2
(x1,t1))

)
. (3.36)

On the other hand, H = t1−2σUt satisfies (see [29] or [27])
div(t2σ−1∇H(X)) = 0 in Q

H = g(x) on ∂′Q.

(3.37)

Choose a cut-off function η which is supported in Q and equals to 1 in Q1. Let H1 be

the solution of 
div(t2σ−1∇H1(X)) = 0 in Rn+1

+

H1 = ηg(x) on ∂′Rn+1
+ .

(3.38)

Hence by Proposition 3.5 ,

‖H‖L∞(Q1/4) ≤ ‖H1‖L∞(Q1/4) + ‖H −H1‖L∞(Q1/4)

≤ ‖H1‖L∞(Q1/4) + C‖H −H1‖L2(t2σ−1,Q1)

≤ C(‖g(x)‖L∞(Q) + ‖U‖L∞(Q))

≤ C(‖g(0)‖+ ω(1) + ‖U‖L∞(Q))

≤ C(ω(1) + ‖U‖L∞(Q)),
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which leads to

|V (x, t)| ≤ Ct2σ−1(ω(1) + ‖U‖L∞(Q)), ∀ (x, t) ∈ Q1/4.

Together (3.36), we have

|V (x1, t1)− V (x2, t2)| ≤ C d

t1
t2σ−1
1

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
+ C

d

t1
t2σ−1
1 (ω(1) + ‖U‖L∞(Q))

≤ Cd2σ−1

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
.

This and (3.35) result in

|∇U(x1, t1)−∇U(x2, t2)| ≤ Cd2σ−1

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
. (3.39)

By the uniformly elliptic equation theory we see that for any (x1, t1), (x2, t2) ∈ Q1/4

with d = |(x1 − x2, t1 − t2)|,

|∇U(x1, t1)−∇U(x2, t2)| ≤ Cd2σ−1

(
|U |L∞(Q) +

∫ 1

0
r−1ω(r)dr

)
. (3.40)

This finishes the proof of Theorem 3.4.

Proof of Theorem 3.2. From Proposition 3.4 we have already known that U is Hölder

continuous in Q0. The case that α < 1 then follows from Theorem 3.5. For the case

that α ≥ 1, we may apply ∇x to (3.20) [α] times, as in the proof of Proposition 3.5,

and repeat the three steps. Theorem 3.2 is proved.

Proof of Theorem 3.1. Since u ∈ Ḣσ(Rn) is nonnegative, its extension U ≥ 0 in Rn+1
+

and U ∈ H(t1−2σ, Q1) is a weak solution of (3.7) in Q1. The theorem follows immedi-

ately from Theorem 3.3 and Proposition 3.4.

Remark 3.6. Another way to show Theorem 3.1 is the following. Let u ∈ Ḣσ(Rn) and

u ≥ 0 in Rn be a solution of

(−∆)σu = g(x), in B1,

where g ∈ Cα(B1). Let η be a nonnegative smooth cut-off function supported in B1 and

equal to 1 in B7/8. Let v ∈ Ḣσ(Rn) be the solution of

(−∆)σv = η(x)g(x), in Rn,
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where ηg is considered as a function defined in Rn and supported in B1, i.e., v is a

Riesz potential of ηg

v(x) =
Γ(n−2σ

2 )

22σπn/2Γ(σ)

∫
Rn

η(y)g(y)

|x− y|n−2σ
dy.

Then if 2σ + α and α are not integers, we have (see, e.g., [125])

‖v‖C2σ+α(B1/2) ≤ C(‖v‖L∞(Rn) + ‖ηg‖Cα(Rn)) ≤ C‖g‖Cα(B1).

Let w = u− v which belongs to Ḣσ(Rn) and satisfies

(−∆)σw = 0, in B7/8.

Let W = Pσ[w] be the extension of w, and W̃ = W + ‖v‖L∞(Rn) ≥ 0 in Rn+1
+ . Notice

that W̃ is a nonnegative weak solution of (3.7) with a ≡ b ≡ 0 and D = Q1. By

Proposition 3.5 and Proposition 3.4, we have

‖w + ‖v‖L∞(Rn)‖C2σ+α(B1/2)

≤ C‖W̃‖L2(t1−2σ ,Q7/8) ≤ C inf
Q3/4

W̃ ≤ C( inf
Q3/4

u+ ‖v‖L∞(Rn)).

Hence

‖u‖C2σ+α(B1/2) ≤ ‖v‖C2σ+α(B1/2) + ‖w‖C2σ+α(B1/2)

≤ C( inf
B3/4

u+ ‖g‖Cα(B1)).

Using bootstrap arguments as that in the proof of Theorem 3.3, we conclude Theorem

3.1.

Remark 3.7. Indeed, our proofs also lead to the following. If we only assume that

σ = 1
2 , a(x), b(x), g(x) ∈ L∞(B1), and let U , u be those in Theorem 3.4 and in Theorem

3.1 respectively, then we have the following log-Lipschitz property: for any y1, y2 ∈

B1/4, y1 6= y2,

|U(y1, 0)− U(y2, 0)|
|y1 − y2|

≤ C1(‖U‖L∞(Q1) − ‖g‖L∞(B1) log |y1 − y2|),

|u(y1)− u(y2)|
|y1 − y2|

≤ −C2 log |y1 − y2|( inf
B3/4

u+ ‖b‖L∞(B3/4)),

where C1 > 0 depends only on n, σ and C2 > 0 depends only on n, σ, ‖a‖L∞(B3/4).



43

Next we have

Proposition 3.6. Suppose that K ∈ C1(B1), U ∈ H(t1−2σ, Q1) and U ≥ 0 in Q1 is a

weak solution of 
div(t1−2σ∇U) = 0, in Q1

− lim
t→0

t1−2σ∂tU(x, t) = K(x)Up(x, 0), on ∂′Q1,

(3.41)

where 1 ≤ p ≤ n+2σ
n−2σ . Then there exist C > 0 and α ∈ (0, 1) both of which depend only

on n, σ, p, ‖U‖L∞(Q1), ‖K‖C1(Q1) such that

∇xU and t1−2σ∂tU are of Cα(Q1/2),

and

‖∇xU‖Cα(Q1/2) + ‖t1−2σ∂tU‖Cα(Q1/2) ≤ C.

Proof. We use C and α to denote various positive constants with dependence specified

as in the proposition, which may vary from line to line. By Corollary 3.1, U ∈ L∞loc(Q1∪

∂′Q1) and

‖U‖Cα(Q8/9) ≤ C.

With the above, we may apply Theorem 3.3 to obtain U(·, 0) ∈ C1,σ(B7/8) and

‖U(·, 0)‖C1,σ(B7/8) ≤ C.

Hence we may differentiate (3.41) with respect to x (which can be justified from the

proof of Proposition 3.5) and apply Proposition 3.4 to ∇xU to obtain

‖∇xU‖Cα(Q1/2) ≤ C.

Finally, we can apply Lemma 3.6 to obtain

‖t1−2σ∂tU‖Cα(Q1/2) ≤ C.
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3.4 Isolated singularities: a Bôcher type theorem

The classical Bôcher theorem in harmonic function theory states that a positive har-

monic function u in the punctured ball B1 \ {0} must be of the form

u(x) =


−a log |x|+ h(x), n = 2,

a|x|2−n + h(x), n ≥ 3,

where a is a nonnegative constant and h is a harmonic function in B1.

We are going to establish a similar result, Proposition 3.7, in our setting.

Proposition 3.7. Let n ≥ 2. Suppose that for all ε ∈ (0, 1), U ∈ H(t1−2σ,B+
1 \ B

+
ε )

and U > 0 in B+
1 \ B

+
ε be a weak solution of

div(t1−2σ∇U) = 0 in B+
1 \ B

+
ε ,

− lim
t→0

t1−2σ∂tU(x, t) = 0 on B1 \B+
ε .

(3.42)

Then

U(X) = A|X|2σ−n +W (X),

where A is a nonnegative constant and W (X) ∈ H(t1−2σ,B+
1 ) satisfies

div(t1−2σ∇W ) = 0 in B+
1 ,

− lim
t→0

t1−2σ∂tW (x, t) = 0 on B1.

(3.43)

Proof. We adapt the proof of the Bôcher theorem given in [7].

Define

A[U ](r) =

∫
∂′′B+r t

1−2σU(x, t)dSr∫
∂′′B+r t

1−2σdSr

where r = |(x, t)| > 0 and dSr is the volume element of ∂′′Br.

By direct computations we have

d

dr
A[U ](r) =

∫
∂′′B+r t

1−2σ∇U(x, t) · (x,t)
r dSr∫

∂′′B+r t
1−2σdSr

.

Let

f(r) =

∫
∂′′B+r

t1−2σ∇U(x, t) · (x, t)

r
dSr.
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Since U satisfies (3.42), by integration by parts we have

f(r1) = f(r2), ∀ 0 < r1, r2 < 1.

Notice that ∫
∂′′B+r

t1−2σdSr = rn+1−2σ

∫
∂′′B+1

t1−2σdS1.

Thus there exists a constant b such that

d

dr
A[U ](r) = br−n−1+2σ.

So there exist constants a and b such that

A[U ](r) = a+ br2σ−n.

Given Lemma 3.7 in the following, the rest of the arguments are rather similar to

those in [7] and are omitted here. We refer to [7] for details.

Lemma 3.7. There exists a constant C > 0 depending only on n and σ such that for

every positive function U which satisfies (3.42),

CU(x, t) < U(x̃, t̃)

whenever 0 < |(x, t)| = |(x̃, t̃)| < 1/2.

Proof. It follows from Proposition 3.4 and standard Harnack inequalities for uniformly

elliptic equations.
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Chapter 4

A fractional Nirenberg problem

4.1 A Liouville type theorem

We say that U ∈ L∞loc(R
n+1
+ ) if U ∈ L∞(QR) for any R > 0. Similarly, we say U ∈

Hloc(t
1−2σ,Rn+1

+ ) if U ∈ H(t1−2σ, QR) for any R > 0. We start with a Lemma, which

is a version of the strong maximum principle.

Proposition 4.1. Suppose U(X) ∈ H(t1−2σ, Dε) ∩ C(B+
1 ∪ B1 \ {0}) and U > 0 in

B+
1 ∪B1 \ {0} is a weak supersolution of (3.7) with a ≡ b ≡ 0 and D = Dε := B+

1 \ B
+
ε

for any 0 < ε < 1, then

lim inf
(x,t)→0

U(x, t) > 0.

Proof. For any δ > 0, let

Vδ = U +
δ

|(x, t)|n−2σ
− min
∂′′B+0.8

U.

Then V is also a weak supersolution in D
δ

2
n−2σ

. Applying Lemma 3.2 to Vδ in D
δ

2
n−2σ

for sufficiently small δ, we have Vδ ≥ 0 in D
δ

2
n−2σ

. For any (x, t) ∈ B+
0.8\{0}, we have

limδ→0 Vδ(x, t) ≥ 0, i.e., U(x, t) ≥ min∂′′B+0.8
U .

Theorem 4.1. Let U ∈ Hloc(t
1−2σ,Rn+1

+ ), U(X) ≥ 0 in Rn+1
+ and U 6≡ 0, be a weak

solution of 
div(t1−2σ∇U(x, t)) = 0 in Rn+1

+ ,

− lim
t→0

t1−2σ∂tU(x, t) = U
n+2σ
n−2σ (x, 0) x ∈ Rn.

(4.1)

Then U(x, 0) takes the form

(
Nσcn,σ22σ

)n−2σ
4σ

(
λ

1 + λ2|x− x0|2

)n−2σ
2
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where λ > 0, x0 ∈ Rn, cn,σ is the constant in (1.8) and Nσ is the constant in (3.4).

Moreover,

U(x, t) =

∫
Rn
Pσ(x− y, t)U(y, 0) dy

for (x, t) ∈ Rn+1
+ , where Pσ(x) is the kernel given in (3.2).

Remark 4.1. If we replace U
n+2σ
n−2σ (x, 0) by Up(x, 0) for 0 ≤ p < n+2σ

n−2σ in (4.1), then the

only nonnegative solution of (4.1) is U ≡ 0. Moreover, for p < 0, (4.1) has no positive

solution. These can be seen from the proof of Theorem 4.1 with a standard modification

(see, e.g., the proof of Theorem 1.2 in [34]). For σ ∈ (1/2, 1) and 1 < p < n+2σ
n−2σ , this

nonexistence result has been proved in [16] using a different method.

Remark 4.2. We do not make any assumption on the behavior of U near ∞. If we

assume that U ∈ H(t1−2σ,Rn+1
+ ), the theorem in the case of p = n+2σ

n−2σ follows from [41]

and [97]. When σ = 1
2 , the above theorem can be found in [77], [78], [100], [114] and

[99].

The proof of Theorem 4.1 uses the method of moving spheres and is inspired by

[100], [99] and [34]. For each x ∈ Rn and λ > 0, we define, X = (x, 0), and

UX,λ(ξ) :=

(
λ

|ξ −X|

)n−2σ

U

(
X +

λ2(ξ −X)

|ξ −X|2

)
, ξ ∈ Rn+1

+ \{X}, (4.2)

the Kelvin transformation of U with respect to the ball Bλ(X). We point out that if U

is a solution of (4.1), then Ux̄,λ is a solution of (4.1) in Rn+1
+ \B+

ε , for every x̄ ∈ ∂Rn+1
+ ,

λ > 0, and ε > 0.

By Corollary 3.1 any nonnegative weak solution U of (4.1) belongs to L∞loc(R
n+1
+ ),

and hence by Proposition 3.4, U is Hölder continuous and positive in Rn+1
+ . By Theorem

3.2, U(·, 0) is smooth in Rn. From classical elliptic equation theory, U is smooth in Rn+1
+ .

Lemma 4.1. For any x ∈ Rn, there exists a positive constant λ0(x) such that for any

0 < λ < λ0(x),

UX,λ(ξ) ≤ U(ξ), in Rn+1
+ \B+

λ (X). (4.3)

Proof. Without loss of generality we may assume that x = 0 and write Uλ = U0,λ.
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Step 1. We show that there exist 0 < λ1 < λ2 which may depend on x, such that

Uλ(ξ) ≤ U(ξ), ∀ 0 < λ < λ1, λ < |ξ| < λ2.

For every 0 < λ < λ1 < λ2, ξ ∈ ∂′′Bλ2 , we have λ2ξ
|ξ|2 ∈ B

+
λ2

. Thus we can choose

λ1 = λ1(λ2) small such that

Uλ(ξ) =

(
λ

|ξ|

)n−2σ

U

(
λ2ξ

|ξ|2

)
≤
(
λ1

λ2

)n−2σ

sup
B+λ2

U ≤ inf
∂′′B+λ2

U ≤ U(ξ).

Hence

Uλ ≤ U on ∂′′(B+
λ2
\B+

λ )

for all λ2 > 0 and 0 < λ < λ1(λ2).

We will show that Uλ ≤ U on (B+
λ2
\B+

λ ) if λ2 is small and 0 < λ < λ1(λ2). Since Uλ

satisfies (4.1) in B+
λ2
\ B+

λ1
, we have

div(t1−2σ∇(Uλ − U)) = 0 in B+
λ2
\B+

λ ,

lim
t→0

t1−2σ∂t(Uλ − U) = U
n+2σ
n−2σ (x, 0)− U

n+2σ
n−2σ

λ (x, 0) on ∂′(B+
λ2
\B+

λ ).

(4.4)

Let (Uλ−U)+ := max(0, Uλ−U) which equals to 0 on ∂′′(B+
λ2
\B+

λ ). Hence, by a density

argument, we can use (Uλ−U)+ as a test function in the definition of weak solution of

(4.4). We will make use of the narrow domain technique from [11]. With the help of

the mean value theorem, we have∫
B+λ2\B

+
λ

t1−2σ|∇(Uλ − U)+|2

=

∫
Bλ2\Bλ

(U
n+2σ
n−2σ

λ (x, 0)− U
n+2σ
n−2σ (x, 0))(Uλ − U)+

≤ C
∫
Bλ2\Bλ

((Uλ − U)+)2U
4σ

n−2σ

λ

≤ C

(∫
Bλ2\Bλ

((Uλ − U)+)
2n

n−2σ

)n−2σ
n
(∫

Bλ2\Bλ
U

2n
n−2σ

λ

) 2σ
n

≤ C

(∫
B+λ2\B

+
λ

t1−2σ|∇(Uλ − U)+|2
)(∫

Bλ2

U
2n

n−2σ

) 2σ
n

,
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where Proposition 3.1 is used in the last inequality and C is a positive constant de-

pending only on n and σ. We fix λ2 small such that

C

(∫
Bλ2

U
2n

n−2σ

) 2σ
n

< 1/2.

Then ∇(Uλ−U)+ = 0 in B+
λ2
\B+

λ . Since (Uλ−U)+ = 0 on ∂′′(B+
λ2
\B+

λ ), (Uλ−U)+ = 0

in B+
λ2
\B+

λ . We conclude that Uλ ≤ U on (B+
λ2
\B+

λ ) for 0 < λ < λ1 := λ1(λ2).

Step 2. We show that there exists λ0 ∈ (0, λ1) such that ∀ 0 < λ < λ0

Uλ(ξ) ≤ U(ξ), |ξ| > λ2, ξ ∈ Rn+1
+ .

Let φ(ξ) =
(
λ2
|ξ|

)n−2σ
inf

∂′′Bλ2
U , which satisfies


div(t1−2σ∇φ) = 0 in Rn+1

+ \ B+
λ2

− limt→0 t
1−2σ∂tφ(x, t) = 0 x ∈ Rn \Bλ2 ,

and φ(ξ) ≤ U(ξ) on ∂′′Bλ2 . By the weak maximum principle Lemma 3.2,

U(ξ) ≥
(
λ2

|ξ|

)n−2σ

inf
∂′′Bλ2

U, ∀ |ξ| > λ2, ξ ∈ Rn+1
+ .

Let λ0 = min(λ1, λ2( inf
∂′′Bλ2

U/ sup
Bλ2

U)
1

n−2σ ). Then for any 0 < λ < λ0, |ξ| ≥ λ2, we have

Uλ(ξ) ≤ (
λ

|ξ|
)n−2σU(

λ2ξ

|ξ|2
) ≤ (

λ0

|ξ|
)n−2σ sup

Bλ2
U ≤ (

λ2

|ξ|
)n−2σ inf

∂′′Bλ2
U ≤ U(ξ).

Lemma 4.1 is proved.

With Lemma 4.1, we can define for all x ∈ Rn,

λ̄(x) = sup{µ > 0 : UX,λ ≤ U in Rn+1
+ \B+

λ , ∀ 0 < λ < µ}.

By Lemma 4.1, λ̄(x) ≥ λ0(x).

Lemma 4.2. If λ̄(x) <∞ for some x ∈ Rn, then

UX,λ̄(x) ≡ U.
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Proof. Without loss of generality we assume that x = 0 and write Uλ = U0,λ and

λ̄ = λ̄(0). By the definition of λ̄,

Uλ̄ ≥ U in B+
λ̄
\{0},

and therefore, for all 0 < ε < λ̄,
div(t1−2σ∇(Uλ − U)) = 0 in B+

λ \B
+
ε ,

− lim
t→0

t1−2σ∂t(Uλ − U) ≥ 0 on ∂′(B+
λ \B

+
ε ).

(4.5)

We argue by contradiction. If Uλ̄ is not identically equal to U , applying the Harnack

inequality Proposition 3.4 to (4.5), we have

Uλ̄ > U in Bλ̄\{{0} ∪ ∂′′Bλ̄},

and in view of Proposition 4.1,

lim inf
ξ→0

(Uλ̄(ξ)− U(ξ)) > 0.

So there exist ε1 > 0 and c > 0 such that Uλ̄(ξ) > U(0) + c, ∀ 0 < |ξ| < ε1. Choose ε2

small such that (
λ̄

λ̄+ ε2

)n−2σ

(U(0) + c) > U(0) +
c

2
.

Thus for all 0 < |ξ| < ε1 and λ̄ < λ < λ̄+ ε2,

Uλ(ξ) =

(
λ̄

λ

)n−2σ

Uλ̄

(
λ̄2ξ

λ2

)
≥
(

λ̄

λ̄+ ε2

)n−2σ

(U(0) + c) ≥ U(0) + c/2.

Choose ε3 small such that for all 0 < |ξ| < ε3, U(0) > U(ξ) − c/4. Hence for all

0 < |ξ| < ε3 and λ̄ < λ < λ̄+ ε2,

Uλ(ξ) > U(ξ) + c/4.

For δ small, which will be fixed later, denote Kδ = {ξ ∈ Rn+1
+ : ε3 ≤ |ξ| ≤ λ̄− δ}. Then

there exists c2 = c2(δ) such that

Uλ̄(X)− U(X) > c2 in Kδ.

By the uniform continuous of U on compact sets, there exists ε4 ≤ ε2 such that for all

λ̄ < λ < λ̄+ ε4

Uλ − Uλ̄ > −c2/2 in Kδ.
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Hence

Uλ − U > c2/2 in Kδ.

Now let us focus on the region {ξ ∈ Rn+1
+ : λ̄− δ ≤ |ξ| ≤ λ}. Using the narrow domain

technique as that in Lemma 4.1, we can choose δ small (notice that we can choose ε4

as small as we want) such that

Uλ ≥ U in {ξ ∈ Rn+1
+ : λ̄− δ ≤ |ξ| ≤ λ}.

In conclusion, there exists ε4 such that for all λ̄ < λ < λ̄+ ε4

Uλ ≥ U in {ξ ∈ Rn+1
+ : 0 < |ξ| ≤ λ}

which contradicts with the definition of λ̄.

Proof of Theorem 4.1. It follows from Lemma 4.2 and similar arguments in [99] that:

(i) Either λ̄(x) =∞ for all x ∈ Rn or λ̄(x) <∞ for all x ∈ Rn; (Lemma 2.3 in [99]);

(ii) If λ̄(x) = ∞ for all x ∈ Rn, then U(x, t) = U(0, t), ∀ (x, t) ∈ Rn+1
+ ; (Lemma 11.3

in [99]);

(iii) If λ̄(x) <∞ for all x ∈ Rn, then by Lemma 11.1 in [99]

u(x) := U(x, 0) = a

(
λ

1 + λ2|x− x0|2

)n−2σ
2

, (4.6)

where λ > 0, a > 0 and x0 ∈ Rn.

We claim that (ii) never happens, since this would imply, using (4.1), that

U(x, t) = U(0)− U(0)
n+2σ
n−2σ

t2σ

2σ
,

which contradicts to the positivity of U . Then (iii) holds.

We are only left to show that V := U − Pσ[u] ≡ 0 where u(x) is given in (4.6) and

belongs to Ḣσ(Rn). Hence, V satisfies
div(t1−2σ∇V ) = 0 in Rn+1

+ ,

V = 0 on ∂Rn+1
+ .

By Lemma 4.2, we know that Vλ̄ can be extended to a Hölder continuous function

near 0. Multiplying the above equation by V and integrating by parts, it leads to∫
Rn+1
+

t1−2σ|∇V |2 = 0. Hence we have V ≡ 0.

Finally, a =
(
Nσcn,σ22σ

)n−2σ
4σ follows from (1.5) with φ = 1 and (3.5).
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4.2 An existence result

We have established local Schauder estimates for nonnegative solutions of fractional

Laplacian equations in Chapter 3 and a Liouville type theorem in Section 4.1. Now we

are ready to prove the following existence result, which has been stated in Theorem 1.1

in the introduction.

Definition 4.1. For d > 0, we say that K ∈ C(Sn) has flatness order greater than

d at ξ if, in some local coordinate system {y1, · · · , yn} centered at ξ, there exists a

neighborhood O of 0 such that K(y) = K(0) + o(|y|d) in O.

Theorem 4.2. Let n ≥ 2, and K ∈ C1,1(Sn) be an antipodally symmetric function, i.e.,

K(ξ) = K(−ξ) ∀ ξ ∈ Sn, and be positive somewhere on Sn. If there exists a maximum

point of K at which K has flatness order greater than n − 2σ, then (1.8) has at least

one positive C2 solution.

For 2 ≤ n < 2 + 2σ, K ∈ C1,1(Sn) has flatness order greater than n − 2σ at every

maximum point. As mentioned in the introduction, when σ = 1, the above theorem

was proved by Escobar and Schoen [59] for n ≥ 3. On S2, the existence of solutions of

−∆gSnv + 1 = Ke2v for such K was proved by Moser [112].

Denote Hσ
as be the set consisting of antipodally symmetric functions in Hσ(Sn). Let

λas(K) = inf
v∈Hσ

as

{∫
Sn
vPσ(v) :

∫
Sn
K|v|

2n
n−2σ = 1

}
.

We also denote ωn as the volume of Sn. The proof of Theorem 4.2 is divided into two

steps.

Proposition 4.2. Let K ∈ C1,1(Sn) be antipodally symmetric and positive somewhere.

If

λas(K) <
Pσ(1)ω

2σ
n
n 2

2σ
n

(maxSn K)
n−2σ
n

, (4.7)

then there exists a positive and antipodally symmetric C2(Sn) solution of (1.8).

Proposition 4.3. Let K ∈ C1,1(Sn) be antipodally symmetric and positive somewhere.

If there exists a maximum point of K at which K has flatness order greater than n−2σ,
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then

λas(K) <
Pσ(1)ω

2σ
n
n 2

2σ
n

(maxSn K)
n−2σ
n

. (4.8)

Proof of Theorem 4.2. It follows from Proposition 4.2 and Proposition 4.3.

The proof of Proposition 4.2 uses subcritical approximations. For 1 < p < n+2σ
n−2σ , we

define

λas,p(K) = inf
v∈Hσ

as

{∫
Sn
vPσ(v) :

∫
Sn
K|v|p+1 = 1

}
.

We begin with a lemma

Lemma 4.3. Let K ∈ C1,1(Sn) be antipodally symmetric and positive somewhere. Then

λas,p(K) is achieved by a positive and antipodally symmetric C2(Sn) function vp, which

satisfies

Pσ(vp) = λas,p(K)Kvpp and

∫
Sn
Kvp+1

p = 1. (4.9)

Proof. The existence of nonnegative minimizer vp follows from standard variation meth-

ods and the inequality
∫
Sn |v|Pσ(|v|) ≤

∫
Sn vPσ(v) for all v ∈ Hσ(Sn). Then vp is positive

everywhere by the Harnack inequality (see [27], [128] or Proposition 3.4 in the extension

point of view). The regularity of vp follows from Proposition 3.4 and Theorem 3.1.

Proof of Proposition 4.2. First of all, it is easy to see that

lim sup
p→n+2σ

n−2σ

λas,p(K) ≤ λas(K).

Indeed, for any ε > 0, there exists a nonnegative function v ∈ Hσ
as such that∫

Sn
vPσ(v) < λas + ε and

∫
Sn
Kv

2n
n−2σ = 1.

Let Vp :=
∫
Sn Kv

p+1. Since limp→n+2σ
n−2σ

Vp =
∫
Sn Kv

2n
n−2σ = 1, we have, for p closed to

n+2σ
n−2σ ,

λas,p(K) ≤
∫
Sn

v

V
1/(p+1)
p

Pσ

(
v

V
1/(p+1)
p

)
≤ λas(K) + 2ε.

Hence, we may assume that there exists a sequence {pi} → n+2σ
n−2σ such that λas,pi(K)→

λ for some λ ≤ λas(K). Since {vi}, which is a sequence of minimizers in Lemma 4.3 for

p = pi, is bounded in Hσ(Sn), then there exists v ∈ Hσ(Sn) such that vi ⇀ v weakly in
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Hσ(Sn) and v is nonnegative. If v 6≡ 0, it follows from (1.7) that v > 0 on Sn, and we are

done. Now we suppose that v ≡ 0. If {‖vi‖L∞(Sn)} is bounded, by the local estimates

established in Section 3.3 we have {‖vi‖C2(Sn)} is bounded, too. Therefore, vi → 0 in

C1(Sn) which leads to 1 =
∫
Sn K|vi|

pi+1 → 0. This is a contradiction. Thus we may

assume that vi(xi) := maxSn vi → ∞. Since Sn is compact, there exists a subsequence

of {xi}, which will be still denoted as {xi}, and x̄ such that xi → x̄. Without loss of

generality we assume that x̄ is the south pole. Via the stereographic projection F−1,

(4.9) becomes

(−∆)σui(y) = λas,pi(K)K ◦ F (y)

(
2

1 + |y|2

)εi
upii (y), y ∈ Rn (4.10)

where vi ◦ F (y) = (1+|y|2
2 )

n−2σ
2 ui(y) and εi = n+2σ−pi(n−2σ)

2 . Thus for any y ∈ Rn,

ui(y) ≤ 2
n−2σ

2 ui(yi) where yi := F−1(xi) → 0. For simplicity, we denote mi := ui(yi).

By our assumption on vi we have mi →∞. Define

ũi(y) = (mi)
−1ui

(
(mi)

1−pi
2σ y + yi

)
.

From (4.10) we see that ũi(y) satisfies, for any y ∈ Rn,

(−∆)σũi(y) =λas,pi(K)K ◦ F (m
1−pi
2σ
i y + yi)

·

(
2

1 + |(mi)
1−pi
2σ y + yi|2

)εi
ũii(y).

(4.11)

Since 0 < ũi ≤ 2
n−2σ

2 , by the local estimates in Section 3.3 {ũi} is bounded in C2
loc(Rn).

Note that since {vi} is bounded in Hσ(Sn), {ũi} is bounded in Ḣσ(Rn). Then there

exists u ∈ C2(Rn)∩Ḣσ(Rn) such that, by passing to a subsequence, ũi → u in C2
loc(Rn),

u(0) = 1, ũi ⇀ u weakly in Ḣσ(Rn) and u weakly satisfies

(−∆)σu = λK(x̄)u
n+2σ
n−2σ . (4.12)

Hence λ > 0, K(x̄) > 0, and the solutions of (4.12) are classified in [41] and [97] (see

also Theorem 4.1).

For x ∈ Sn and r > 0, we denote B(x, r) be the geodesic ball centered at x with

radius r on Sn, and for y ∈ Rn and R > 0, we denote B(y,R) be the Euclidean ball in
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Rn of center y and radius R. For any R > 0, let Ωi := F (B(yi,m
1−pi
2σ
i R)), we have∫

Ωi

Kvpi+1
i =

∫
B(yi,m

1−pi
2σ

i R)
K ◦ F (y)

(
2

1 + |y|2

)εi
upi+1
i

=

∫
B(0,R)

m
εi
2
i K ◦ F ((mi)

1−pi
2σ y + yi)

(
2

1 + |(mi)
1−pi
2σ y + yi|2

)εi
ũpii (y)

≥ K(x̄)

∫
B(0,R)

u
2n

n−2σ + o(1)

as pi → n+2σ
n−2σ , where we used that K is positive near x̄, εi → 0 and ũi → u in C2

loc(Rn).

Since K and vi are antipodally symmetric, we have, by taking δ small and R sufficiently

large,

1 =

∫
Sn
Kvpi+1

i ≥ 2

∫
B(x1,δ)

Kvpi+1
i +

∫
{K<0}

Kvpi+1
i

= 2K(x̄)

∫
Rn
u

2n
n−2σ +

∫
{K<0}

Kvpi+1
i + o(1).

(4.13)

We claim that ∫
{K<0}

Kvpi+1
i → 0

as pi → n+2σ
n−2σ . Indeed, for any ε > 0, it is not difficult to show, by blow up analysis,

that ‖vi‖L∞(Ωε/4) ≤ C(ε) where Ωε := {x ∈ Sn : K(x) < −ε} and C(ε) is independent

of pi. By the local estimates established in Section 3.3, we have ‖vi‖C2(Ωε/2) ≤ C(ε)

and hence vi → 0 in C1(Ωε) (recall that we assumed that vi ⇀ 0 weakly in Hσ(Sn)).

Thus when pi is sufficiently close to n+2σ
n−2σ ,∫

Ωε

|K|vpi+1
i < ε.

On the other hand, by Hölder inequality and Sobolev inequality,∫
−ε≤K<0

|K|vpi+1
i < C(n, σ)ε‖vi‖pi+1

L
2n

n−2σ
≤ C(n, σ, λas)ε,

which finishes the proof of our claim. Thus, (4.13) leads to

1 ≥ 2K(x̄)

∫
Rn
u

2n
n−2σ + o(1). (4.14)
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By the sharp Sobolev inequality (1.9), (4.12) and (4.14), we have

Pσ(1)ω
2σ
n
n ≤

∫
Rn u(−∆)σu(∫
Rn u

2n
n−2σ

)n−2σ
n

= λK(x̄)

(∫
Rn
u

2n
n−2σ

) 2σ
n

≤ λas(K)K(x̄)(2K(x̄))−2σ/n

≤ λas(K)2−2σ/n(max
Sn

K)1−2σ/n,

which contradicts with (4.7).

Next we shall prove Proposition 4.3. The test function we are going to construct is

inspired by [75, 117].

Proof of Proposition 4.3. Let ξ1 be a maximum point of K at which K has flatness

order greater than n − 2σ. Suppose ξ2 is the antipodal point of ξ1. For β > 1 and

i = 1, 2 we define

vi,β(x) =

( √
β2 − 1

β − cos ri

)n−2σ
2

(4.15)

where ri = d(x, ξi) is the geodesic distance between x and ξi on the sphere. It is clear

that

Pσ(vi,β) = Pσ(1)v
n+2σ
n−2σ

i,β ,

∫
Sn
v

2n
n−2β

i,β = ωn.

Let

vβ = v1,β + v2,β,

which is antipodally symmetric. Then∫
Sn
vβPσ(vβ) = Pσ(1)

∫
Sn

2∑
i=1

v
n+2σ
n−2σ

i,β

2∑
j=1

vj,β

= Pσ(1)

∫
Sn

2∑
i=1

v
2n

n−2σ

i,β + 2v
n+2σ
n−2σ

1,β v2,β

= Pσ(1)2ωn

(
1 + ω−1

n

∫
Sn
v
n+2σ
n−2σ

1,β v2,β

)
.

By direct computations with change of variables, we have∫
Sn
v
n+2σ
n−2σ

1,β v2,β = A(β − 1)
n−2σ

2 + o
(
(β − 1)

n−2σ
2
)
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for β close to 1, where

A = 2−
n−2σ

2 ωn−1

∫ +∞

0

2nrn−1

(1 + r2)
n+2σ

2

dr > 0.

Choose a sufficiently small neighborhood V1 of ξ1 and let V2 = {x ∈ Sn : −x ∈ V1}.

Then K is positive in V1 ∪ V2 and∫
Sn
Kv

2n
n−2σ

β =

∫
∪Vi

K (v1,β + v2,β)
2n

n−2σ +

∫
Sn\∪Vi

Kv
2n

n−2σ

β

= 2

∫
V1

K (v1,β + v2,β)
2n

n−2σ +

∫
Sn\∪Vi

Kv
2n

n−2σ

β

≥ 2

∫
V1

K

(
v

2n
n−2σ

1,β +
2n

n− 2σ
v
n+2σ
n−2σ

1,β v2,β

)
+

∫
Sn\∪Vi

Kv
2n

n−2σ

β .

Since K(x) is flat of order n− 2σ at ξ1, we have in V1 that,

K(x) = K(ξ1) + o(1)|x− ξ1|n−2σ.

Thus∫
Sn
Kv

2n
n−2σ

β ≥ 2K(ξ1)

∫
Sn
v

2n
n−2σ

1,β +
4nA

n− 2σ
K(ξ1)(β − 1)

n−2σ
2 + o

(
(β − 1)

n−2σ
2
)

= 2K(ξ1)ωn

(
1 +

2nA

n− 2σ
ω−1
n (β − 1)

n−2σ
2 + o

(
(β − 1)

n−2σ
2
))

for β close to 1. Hence∫
Sn vβPσ(vβ)(∫

Sn Kv
2n

n−2σ

β

)n−2σ
n

≤ Pσ(1)ω
2σ
n
n 2

2σ
n

K(ξ1)
n−2σ
n

(
1− A

ωn
(β − 1)

n−2σ
2 + o

(
(β − 1)

n−2σ
2
))

,

which implies (4.8) holds.

Theorem 4.2 can be extended to positive functions K which are invariant under some

isometry group acting without fixed points (see [75, 117]). Denote Isom(Sn) as the

isometry group of the standard sphere (Sn, gSn). Let G be a subgroup of Isom(Sn). We

say that G acts without fixed points if for each x ∈ Sn, the orbit OG(x) := {g(x)|g ∈ G}

has at least two elements. We denote |OG(x)| be the number of elements in OG(x). A

function K is called G-invariant if K ◦ g ≡ K for all g ∈ G.

Theorem 4.3. Let G be a finite subgroup of Isom(Sn) and act without fixed points.

Let K ∈ C1,1(Sn) be a positive and G-invariant function. If there exists ξ0 ∈ Sn such
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that K has flatness order greater than n− 2σ at ξ0, and for any x ∈ Sn

K(ξ0)

|OG(ξ0)|
2σ

n−2σ

≥ K(x)

|OG(x)|
2σ

n−2σ

, (4.16)

then (1.8) possesses a positive and G-invariant C2(Sn) solution.

Denote Hσ
G be the set consisting of G-invariant functions in Hσ(Sn). Let

λG(K) = inf
v∈Hσ

G

{∫
Sn
vPσ(v) :

∫
Sn
K|v|

2n
n−2σ = 1

}
.

Similar to Theorem 4.2, the proof of Theorem 4.3 is again divided into two steps.

Proposition 4.4. Let G be a finite subgroup of Isom(Sn). Let K ∈ C1,1(Sn) be a

positive and G-invariant function. If for all x ∈ Sn,

λG(K) <
Pσ(1)ω

2σ
n
n |OG(x)|

2σ
n

K(x)
n−2σ
n

, (4.17)

then there exists a positive G-invariant C2(Sn) solution of (1.8).

Proposition 4.5. Let G be a finite subgroup of Isom(Sn) and act without fixed points.

Let K ∈ C1,1(Sn) be a positive and G-invariant function. If K has flatness order greater

than n− 2σ at ξ1 for some ξ1 ∈ Sn, then

λG(K) <
Pσ(1)ω

2σ
n
n |OG(ξ1)|

2σ
n

K(ξ1)
n−2σ
n

. (4.18)

Theorem 4.3 follows from Proposition 4.4 and Proposition 4.5 immediately. The

proof of Proposition 4.4 uses subcritical approximations and blow up analysis, which

is similar to that of Proposition 4.2. Proposition 4.5 can be verified by the following

G-invariant test function

vβ =

m∑
i=1

vi,β,

where m = |OG(ξ1)|, OG(ξ1) = {ξ1, . . . , ξm}, ξi = gi(ξ1) for some gi ∈ G, g1 = Id,

vj,β := v1,β ◦ g−1
i and v1,β is as in (4.15). We omit the detailed proofs of Propositions

4.4 and 4.5, and leave them to the readers.
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4.3 Compactness of solutions

Given the regularity properties established in Chapter 3, and Theorem 4.1, we can

adapt the blow up analysis developed in [118], [119] and [95] to give accurate blow up

profiles for solutions of degenerate elliptic equations (1.12), which are further used to

obtain compactness of solutions. For σ = 1
2 , some related results have been proved in

[74] and [58], where equations are elliptic. Existence then follows from these a priori

estimates, a perturbation result and some degree arguments. The detailed proofs of the

following theorems can be found in [82, 83].

Theorem 4.4. Let n ≥ 2. Suppose that K ∈ C1,1(Sn) is a positive function satisfying

that for any critical point ξ0 of K, in some geodesic normal coordinates {y1, · · · , yn}

centered at ξ0, there exist some small neighborhood O of 0 and positive constants β =

β(ξ0) ∈ (n− 2σ, n), γ ∈ (n− 2σ, β] such that K ∈ C [γ],γ−[γ](O) (where [γ] is the integer

part of γ) and

K(y) = K(0) +

n∑
j=1

aj |yj |β +R(y), in O,

where aj = aj(ξ0) 6= 0,
∑n

j=1 aj 6= 0, R(y) ∈ C [β]−1,1(O) satisfies∑[β]
s=0 |∇sR(y)||y|−β+s → 0 as y → 0. If

∑
ξ∈Sn such that ∇gSnK(ξ)=0,

∑n
j=1 aj(ξ)<0

(−1)i(ξ) 6= (−1)n,

where

i(ξ) = #{aj(ξ) : ∇gSnK(ξ) = 0, aj(ξ) < 0, 1 ≤ j ≤ n},

then (1.8) has at least one C2 positive solution. Moreover, there exists a positive con-

stant C depending only on n, σ and K such that for all positive C2 solutions v of (1.8),

1/C ≤ v ≤ C and ‖v‖C2(Sn) ≤ C.

For n = 3, σ = 1, the existence part of the above theorem was established by Bahri

and Coron [8], and the compactness part were given in Chang, Gursky and Yang [37]

and Schoen and Zhang [119]. For n ≥ 4, σ = 1, the above theorem was proved by Li

[95].
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We now consider a class of functions K more general than that in Theorem 4.4,

which is modified from [95].

Definition 4.2. For any real number β ≥ 1, we say that a sequence of functions {Ki}

satisfies condition (∗)′β for some sequence of constants L(β, i) in some region Ωi, if

{Ki} ∈ C [β],β−[β](Ωi) satisfies

[∇[β]Ki]Cβ−[β](Ωi)
≤ L(β, i),

and, if β ≥ 2, that

|∇sKi(y)| ≤ L(β, i)|∇Ki(y)|(β−s)/(β−1),

for all 2 ≤ s ≤ [β], y ∈ Ωi, ∇Ki(y) 6= 0.

Note that the function K in Theorem 4.4 satisfies (∗)′β condition.

Remark 4.3. For 1 ≤ β1 ≤ β2, if {Ki} satisfies (∗)′β2 for some sequences of constants

{L(β2, i)} in some regions Ωi, then {Ki} satisfies (∗)′β1 for {L(β1, i)}, where

L(β1, i) =



L(β2, i) max
(

max
2≤s≤[β1]

‖∇Ki‖
β2−s
β2−1

− β1−s
β1−1

L∞(Ωi)
, diam(Ωi)

β2−β1
)
, if [β2] = [β1]

L(β2, i) max
(

max
2≤s≤[β1]

‖∇Ki‖
β2−s
β2−1

− β1−s
β1−1

L∞(Ωi)
, ‖∇Ki‖

β2−[β1]−1
β2−1

L∞(Ωi)
diam(Ωi)

1+[β1]−β1
)
,

if [β2] > [β1]

in the corresponding regions.

The following theorem gives a priori bounds of solutions in L
2n

n−2σ norm.

Theorem 4.5. Let n ≥ 2, and K ∈ C1,1(Sn) be a positive function. If there exists

some constant d > 0 such that K satisfies (∗)′(n−2σ) for some constant L > 0 in Ωd :=

{ξ ∈ Sn : |∇gSnK(ξ)| < d}, then for any positive solution v ∈ C2(Sn) of (1.8),

‖v‖
L

2n
n−2σ (Sn)

≤ C, (4.19)

where C depends only on n, σ, infSn K > 0, ‖K‖C1,1(Sn), L, and d.

For n = 3 and σ = 1, the above theorem was proved by Chang, Gursky and Yang

in [37] and by Schoen and Zhang in [119]. For n ≥ 4 and σ = 1, the above theorem was

proved by Li in [95].
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The estimate (4.19) for the solution v is equivalent to

‖v‖Hσ(Sn) ≤ C.

However, the estimate (4.19) is not sufficient to imply L∞ bound for v on Sn. For

instance, ∫
Sn
v

2n
n−2σ

ξ0,λ
(ξ) dvolgSn =

∫
Sn

dvolgSn ,

but vξ0,λ(ξ0) = λ
n−2σ

2 → ∞ as λ → ∞. Furthermore, a sequence of solutions vi

may blow up at more than one point, and it is the case when σ = 1 (see [96]). The

following theorem shows that the latter situation does not happen when K satisfies a

little stronger condition.

Theorem 4.6. Let n ≥ 2. Suppose that {Ki} ∈ C1,1(Sn) is a sequence of positive

functions with uniform C1,1 norm and 1/A1 ≤ Ki ≤ A1 on Sn for some A1 > 0

independent of i. Suppose also that {Ki} satisfying (∗)′β condition for some constants

β > n − 2σ, L, d > 0 in Ωd. Let {vi} ∈ C2(Sn) be a sequence of corresponding

positive solutions of (1.8) and vi(ξi) = maxSn vi for some ξi. Then, after passing to a

subsequence, {vi} is either bounded in L∞(Sn) or blows up at exactly one point in the

strong sense: There exists a sequence of Möbius diffeomorphisms {ϕi} from Sn to Sn

satisfying ϕi(ξi) = ξi and | det dϕi(ξi)|
n−2σ
2n = v−1

i (ξi) such that

‖Tϕivi − 1‖C0(Sn) → 0, as i→∞,

where Tϕivi := (v ◦ ϕi)|det dϕi|
n−2σ
2n .

For n = 3 and σ = 1, the above theorem was established by Chang, Gursky and

Yang in [37] and by Schoen and Zhang in [119]. For n ≥ 4 and σ = 1, the above

theorem was proved by Li in [95].

4.4 Improvement of the best Sobolev constant: an Aubin type in-

equality

Let

M p =

{
v ∈ Hσ(Sn) : −

∫
Sn
|v|p dvgSn = 1

}
,
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M p
0 =

{
v ∈M : −

∫
Sn
x|v|p dvgSn = 0

}
.

The Sobolev inequality (1.9) states that

min
v∈M

2n
n−2σ

−
∫
vPσ(v) ≥ Pσ(1).

We will show the following Aubin inequality

Proposition 4.6. For n ≥ 2, 2 < p ≤ n+2σ
n−2σ , given any ε > 0, there exists some

constant Cε such that

inf
v∈M p

0

{
2

2
p
−1

(1 + ε)−
∫
Sn
vPσ(v) + Cε−

∫
v2

}
≥ Pσ(1). (4.20)

When σ = 1, the above proposition was proved by Aubin [5]. See also [53] for such

inequalities in higher order Sobolev spaces. We will adapt the proof of Theorem 2 in

[5] to show (4.20).

Proof. First of all, by Hölder inequality, (1.9) and (1.7), we have for all v ∈ Hσ(Sn),(∫
Sn
vp
) 2
p

≤ K2

∫
Sn
vPσ(v)

= K2Pσ(1)

∫
Sn
v2 +

K2cn,−σ
2

∫∫
Sn×Sn

(v(x)− v(y))2

|x− y|n+2σ
,

(4.21)

where K2 := |Sn|
2
p
−1

(Pσ(1))−1. Let η ∈ (0, 1
2) to be chosen later. Let Λ be the

space of first spherical harmonics. Following [5], there exists {ξi}i=1,··· ,k such that

1 + η <
∑k

i=1 |ξi|
2
p < 1 + 2η with |ξi| < 2−p. Let hi ∈ C1(Sn) be such that hiξi ≥ 0 on

Sn and ∣∣|hi|2 − |ξi| 2p ∣∣ < (η
k

)p
.

Then

1 <
k∑
i=1

|hi|2 < 1 + 3η

and by mean value theorem

∣∣|hi|p − |ξ|∣∣ ≤ 2

p

(η
k

)p
.

For any nonnegative v ∈ Hσ(Sn), we have, by Hölder inequality,(∫
Sn
vp
) 2
p

≤
k∑
i=1

(∫
Sn
|hi|pvp

) 2
p

.
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For v ∈M p
0 , one has that ∫

Sn
ξi+v

p =

∫
Sn
ξi−v

p.

Hence for nonnegative function v ∈M p
0 , we have, noticing that hiξi ≥ 0,(∫

Sn
|hi|pvp

) 2
p

=

(∫
Sn
hpi+v

p +

∫
Sn
hpi−v

p

) 2
p

≤
(∫

Sn
ξi+v

p + εp0v
p +

∫
Sn
hpi−v

p

) 2
p

≤ 2
2
p

(∫
Sn
εp0v

p +

∫
Sn
hpi−v

p

) 2
p

≤ 2
2
p

(∫
Sn

(ε0 + hi−)pvp
) 2
p

≤ 2
2
p

(
K2Pσ(1)

∫
Sn

(hi− + va0)2v2) +
K2cn,−σ

2
I

)
,

where

I =

∫∫
Sn×Sn

((hi−(x) + ε0)v(x)− (hi−(y) + ε0)v(y))2

|x− y|n+2σ

≤
∫
Sn
v2(x)

∫
Sn

(hi−(x)− hi−(y))2

|x− y|n+2σ
+

∫
Sn

(hi−(y) + ε0)2

∫
Sn

(v(x)− v(y))2

|x− y|n+2σ

+ 2C

(∫∫
Sn×Sn

(v(x)− v(y))2

|x− y|n+2σ

) 1
2
(∫∫

Sn×Sn

v2(x)(hi−(x)− hi−(y))2

|x− y|n+2σ

) 1
2

≤ C
∫
Sn
v2 +

∫
Sn

(hi−(y) + ε0)2

∫
Sn

(v(x)− v(y))2

|x− y|n+2σ
+
η

k

∫∫
Sn×Sn

(v(x)− v(y))2

|x− y|n+2σ
.

Also we can do the same thing in terms of hi+. Hence

2

(∫
Sn
vp
) 2
p

≤ 2
2
p

k∑
i=1

K2cn,−σ
2

∫
Sn

(
(hi−(y) + ε0)2 + (hi+(y) + ε0)2

) ∫
Sn

(v(x)− v(y))2

|x− y|n+2σ

+ 2
2
p

k∑
i=1

(2
η

k
)

∫∫
Sn×Sn

(v(x)− v(y))2

|x− y|n+2σ
+ C

∫
Sn
v2.

Hence for any ε > 0, we can choose η sufficiently small such that(∫
Sn
vp
) 2
p

≤ 2
2
p
−2

(K2cn,−σ + ε)

∫∫
Sn×Sn

(v(x)− v(y))2

|x− y|n+2σ
+ C

∫
Sn
v2.

Then the proposition follows immediately from the above and that for v ∈ Hσ(Sn),∫
Sn
|v|P (|v|) ≤

∫
Sn
vP (v).
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Proposition 4.7. For n ≥ 2, there exist some constants a∗ < 1 and some p∗ < 2n
n−2σ

both of which depends only on n and σ, such that for all p∗ ≤ p ≤ 2n
n−2σ ,

inf
v∈M p

0

a∗−
∫
Sn
vPσ(v) + (1− a∗)Pσ(1)−

∫
Sn
v2 ≥ Pσ(1). (4.22)

When σ = 1, the above proposition was proved by Chang and Yang [40] (see [96]

for another proof). See also [53] for such inequalities in higher order Sobolev spaces.

Here we adapt the arguments in Section 5 of [96] to show (4.22).

Proof. For u ∈ Hσ(Sn), a > 0, set

Ia(v) = a−
∫
Sn
vPσ(v) + (1− a)Pσ(1)−

∫
Sn
v2

and

ma,p = inf
v∈M p

0

Ia(v).

By standard variational methods, ma,p is achieved for a > 0 and 2 ≤ p < 2n
n−2σ .

Moreover it is easy to see that (see, e.g., Lemma 5.5 in [40] or Lemma 5.2 in [96]).

ma,p ≤ Pσ(1) for all 0 ≤ a ≤ 1, 2 ≤ p ≤ 2n

n− 2σ
,

lim
a→1

ma,p = Pσ(1) uniformly for 2 ≤ p ≤ 2n

n− 2σ
.

(4.23)

We argue by contradiction. Suppose that (4.22) fails. Then there exist sequences {ak},

{pk} ⊂ R, {vk} ⊂M pk
0 , such that ak < 1, ak → 1, pk <

2n
n−2σ , pk →

2n
n−2σ , vk ≥ 0 and

Iak(vk) = mak,pk < Pσ(1). (4.24)

By (4.24) and (4.20), there exists some positive constant C(n, σ) independent of k such

that

‖vk‖Hσ(Sn) ≤ C(n, σ),

∫
Sn
v2
k ≥ 1/C(n, σ).

After passing to a subsequence, we have that vk → v̄ weakly in Hσ(Sn) for some

ū ∈ Hσ(Sn) \ {0}.

The Euler-Lagrange equation satisfied by vk is

akPσ(vk) + (1− ak)Pσ(1)vk = mkv
pk−1
k + Λk · xvpk−1

k , (4.25)
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where mk = mak,pk and λk ∈ Rn+1. Multiplying (4.25) by vk and integrating over Sn,

we have, by (4.23)

lim
k→∞

(
−
∫
Sn
vkPσ(vk)

)
= Pσ(1). (4.26)

We claim that |Λk| = O(1). Suppose the contrary, we let ξk = Λk/|Λk| and after

passing to a subsequence ξ = limk→∞ ξk ∈ Sn. Let η ∈ C∞(Sn) be any smooth test

function. Multiplying (4.25) by η/|Λk|, integrating it over Sn and sending k → ∞, we

have
∫
Sn ξ ·xv̄

n+2σ
n−2σ = 0. Hence v̄ = 0 which is a contradiction. It is clear that v̄ satisfies

Pσ(v̄) = Pσ(1)v̄
n+2σ
n−2σ + Λ · xv̄

n+2σ
n−2σ ,

where Λ = limk→∞ Λk. The Kazdan-Warner identity (see, e.g., [88] or (1.11)) gives us∫
Sn
∇(Pσ(1) + Λ · x)∇xv̄

2n
n−2σ = 0.

It follows that Λ = 0. Hence
∫
Sn v̄Pσ(v̄) = Pσ(1)

∫
Sn v̄

2n
n−2σ . This together with (1.9)

leads to −
∫
Sn v̄

2n
n−2σ ≥ 1. On the other hand, −

∫
Sn v̄

2n
n−2σ ≤ lim inf

k→∞
vpkk = 1. Hence

−
∫
Sn v̄

2n
n−2σ = 1,

−
∫
Sn v̄Pσ(v̄) = Pσ(1).

This together with (4.26) leads to vk → v̄ in Hσ(Sn). Clearly v̄ ∈ M
2n

n−2σ

0 and hence

v̄ ≡ 1. In the following we will expand Ia(v) for v ∈M p
0 near 1. Let T1M

p
0 denote the

tangent space of M p
0 at v = 1, then we have

T1M
p
0 = span{spherical harmonics of degree ≥ 2}.

The following lemma can be proved by the standard implicit function theorem.

Lemma 4.4. For w̃ ∈ T1M
p
0 , 2n−2σ

n−2σ ≤ p ≤ 2n
n−2σ , w̃ close to 0, there exist µ(w̃) ∈ R,

η(w̃) ∈ Rn+1 being C2 functions such that

−
∫
Sn
|1 + w̃ + µ+ η · x|p = 1 (4.27)

and ∫
Sn
|1 + w̃ + µ+ η · x|px = 0. (4.28)

Furthermore, µ(0) = 0, η(0) = 0, Dµ(0) = 0 and Dη(0) = 0, and µ, η have uniform

(with respect to p) C2 modulo of continuity near 0.
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As before we will use w̃ as local coordinates of v ∈M p
0 . Let

Ẽ(w̃) = Ia(v) = a−
∫
Sn
vPσ(v) + (1− a)Pσ(1)−

∫
Sn
v2

where w̃ ∈ T1M0 and v = 1 + w̃ + µ(w̃) + η(w̃) · x as in Lemma 4.4. Hence

Ẽ(w̃) = Pσ(1)(1 + 2µ(w̃)) + a−
∫
Sn
w̃Pσ(w̃) + (1− a)Pσ(1)−

∫
Sn
w̃2 + o(‖w̃‖2Hσ(Sn)).

Since

µ(w̃) = −p− 1

2
−
∫
Sn
w̃2 + o(‖w̃‖2Hσ(Sn)),

we have

Ẽ(w̃) = Pσ(1) + a−
∫
Sn
w̃Pσ(w̃)− (p− 2 + a)Pσ(1)−

∫
Sn
w̃2 + o(‖w̃‖2Hσ(Sn)).

It follows that there exists some positive constant C(n, σ) determined by the difference

of the first and the second eigenvalues of Pσ such that for a close to 1 and p close to

2n
n−2σ we have

a−
∫
Sn
w̃Pσ(w̃)− (p− 2 + a)Pσ(1)−

∫
Sn
w̃2 ≥ 1

C(n, σ)
−
∫
Sn
w̃Pσ(w̃),

which leads to that for k large we have Iak(vk) ≥ Pσ. This is a contradiction.

4.5 Appendix: A Kazdan-Warner identity

In this section we are going to show (1.11), which is a consequence of the following

Proposition 4.8. Let K > 0 be a C1 function on Sn, and let v be a positive function

in C2(Sn) satisfying

Pσ(v) = Kv
n+2σ
n−2σ on Sn. (4.29)

Then, for any conformal Killing vector field X on Sn, we have∫
Sn

(∇XK)v
2n

n−2σ dvolgSn = 0. (4.30)

Let ϕt : Sn → Sn be a one parameter family of conformal diffeomorphisms (in

this case they are Möbius transformations), depending on t smoothly, |t| < 1, and

ϕ0 = identity. Then

X :=
d

dt
(ϕt)

−1

∣∣∣∣
t=0

is a conformal Killing vector field on Sn. (4.31)
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Proof. The proof is standard (see, e.g., [15] for a Kazdan-Warner identity for prescribed

scalar curvature problems) and we include it here for completeness. Since Pσ is a self-

adjoint operator, (4.29) has a variational formulation:

I[v] :=
1

2

∫
Sn
vPσ(v) dvolgSn −

n− 2σ

2n

∫
Sn
Kv

2n
n−2σ dvolgSn .

Let X be a conformal Killing vector field, then there exists {ϕt} satisfying (4.31). Let

vt := (v ◦ ϕt)wt

where wt is given by

gt := ϕ∗t gSn = w
4

n−2σ

t gSn .

Then

I[vt] =
1

2

∫
Sn
vPσ(v) dvolgSn −

n− 2σ

2n

∫
Sn
K(ϕ−1

t (x))v
2n

n−2σ dvolgSn .

It follows from (4.29) that

0 = I ′[v]

(
d

dt

∣∣∣∣
t=0

vt

)
=

d

dt
I[vt]

∣∣∣∣
t=0

= −n− 2σ

2n

∫
Sn

(∇XK)v
2n

n−2σ dvolgSn .
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Chapter 5

A fractional Yamabe flow

5.1 A strong maximum principle and a Hopf lemma for nonlocal

parabolic equations

Let x = (x′, xn) ∈ Rn, Rn+ = {x : xn > 0, x ∈ Rn}. Recall (see, e.g., [122]) that for

σ ∈ (0, 1), if u is bounded in Rn and C2 near x, then(−∆)σu is continuous near x, and

(−∆)σu(x) = cn,−σP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2σ
dy. (5.1)

Here “P.V.” means the principal value and cn,−σ is the constant in (1.7).

For simplicity, throughout the paper we denote −(−∆)σ as ∆σ and will not keep

writing the constant cn,−σ and “P.V.” if there is no confusion.

Lemma 5.1. Let w(x, t) ∈ C2,1(Rn × R) and w(·, t) be bounded in Rn for any fixed t.

Suppose w(x, t) satisfies w(x′,−xn, t) = −w(x′, xn, t) for all (x, t) and

lim inf
xn≥0,|x|→∞

w(x, t) ≥ 0 for any fixed t.

If w satisfies

wt ≥ a(x, t)∆σw + b(x, t)w, (x, t) ∈ Rn+ × (0, T ] (5.2)

where a(x, t) is continuous and positive in Rn+× [0, T ], b(x, t) is continuous and bounded

in Rn+ × [0, T ], and w(x, 0) ≥ 0 for all x ∈ Rn+, then w(x, t) ≥ 0 in Rn+ × [0, T ].

Proof. Without loss of generality, we may assume b(x, t) ≤ 0. Indeed, if we let

w̃(x, t) = e−Ctw(x, t)

for some constant C, then

w̃t = a(x, t)∆σw̃ + (b(x, t)− C)w̃.
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Since b is bounded, we can choose C sufficiently large such that b(x, t) − C ≤ 0 in

Rn+ × (0, T ], and we only need to show that w̃(x, t) ≥ 0 for all (x, t) ∈ Rn+ × (0, T ].

Suppose the contrary that there exists a point (x0, t0) ∈ Rn+ × (0, T ] such that

0 > w(x0, t0).

By the assumptions on w, we may assume w(x0, t0) = minRn+×(0,T ]w. It follows that

wt(x0, t0) ≤ 0, b(x0, t0)w(x0, t0) ≥ 0. (5.3)

It is clear that

∆σw(x0, t0) =

∫
Rn

w(y, t0)− w(x0, t0)

|x0 − y|n+2σ
dy

=

∫
Rn+

w(y, t0)− w(x0, t0)

|x0 − y|n+2σ
dy +

∫
Rn\Rn+

w(y, t0)− w(x0, t0)

|x0 − y|n+2σ
dy.

By the change of variables y = (z′,−zn), we obtain∫
Rn\Rn+

w(y, t0)− w(x0, t0)

|x0 − y|n+2σ
dy

=

∫
Rn+

w(z′,−zn, t0)− w(x0, t0)

|x0 − (z′,−zn)|n+2σ
dz

= −
∫
Rn+

w(z′, zn, t0)− w(x0, t0)

|x0 − (z′,−zn)|n+2σ
dz − 2w(x0, t0)

∫
Rn+

1

|x0 − (z′,−zn)|n+2σ
dz

> −
∫
Rn+

w(z′, zn, t0)− w(x0, t0)

|x0 − (z′,−zn)|n+2σ
dz,

where we used w(z′,−zn, t0) = −w(z′, zn, t0) and w(x0, t0) < 0. Since (x0, t0) is a

minimum point of w in Rn+ × (0, T ], the simple inequality

1

|x0 − z|n+2σ
>

1

|x0 − (z′,−zn)|n+2σ
, ∀ x0, z ∈ Rn+

yields that

∆σw(x0, t0) > 0. (5.4)

Combining (5.3) and (5.4), we have a contradiction to (5.2).

Lemma 5.2. Let w(x, t) be as in Lemma 5.1. Then for any fixed t ∈ (0, T ], we have

w(x, t) > 0 or w(x, t) ≡ 0 in Rn+.
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Proof. As in the proof of Lemma 5.1, we may assume b ≤ 0. Suppose that at w(x0, t0) =

0 for some (x0, t0) ∈ Rn+ × (0, T ]. From the proof of Lemma 5.1 we see that

∆σw(x0, t0) ≥ 0

and equality holds if and only if w(x, t0) = w(x0, t0) for all x ∈ Rn+. Therefore, the

lemma follows immediately from a simple contradiction argument.

Lemma 5.3. Let w(x, t) be as in Lemma 5.1. Suppose w(x0, 0) > 0 for some x0 ∈ Rn+,

then for any fixed t ∈ (0, T ], we have w(x, t) > 0 in Rn+.

Proof. The proof follows from that of the parabolic strong maximum principle in [113],

with suitable modifications for nonlocal equations. As before, we assume b ≤ 0. Suppose

that for some t1 > 0, w(·, t1) is zero at some point. It follows from Lemma 5.2 that

w(x, t1) ≡ 0. By the assumption on w(·, 0) and Lemma 5.2, we may assume that

w(x, t) > 0 for all (x, t) ∈ Rn+ × (t2, t1) for some t2 > 0.

Let h(x, t) = (t1 − t∗)2 − |x − en|2 − (t − t∗)2 if 0 ≤ xn ≤ 2; and h = 0 if xn > 2,

where en = (0′, 1) and t∗ will be fixed later. Set

H(x, t) =

 h(x, t), x ∈ Rn+,

−h(x′,−xn, t), x ∈ Rn \ Rn+.

Let t̄ ∈ (t2, t1) be such that (t1 − t∗)
2 − (t − t∗)

2 ≤ 1
4 holds for t ≥ t̄. It is easy

to see that there exists a positive constant C1 independent of t∗ such that for any

(x, t) ∈ B1/2(en)× [t̄, t1],

(−∆)σH(x, t) ≤ C1.

Thus, we can choose t∗ so negative that for any (x, t) ∈ B1/2(en)× [t̄, t1],

Ht(x, t) = 2(t∗ − t) ≤ 2(t∗ − t2) < a(x, t)∆σH(x, t) + b(x, t)H(x, t). (5.5)

Let ε > 0 be a sufficiently small constant such that w(x, t̄) ≥ εH(x, t̄) for all x ∈ Rn+.

We claim that w(x, t) ≥ εH(x, t) in Rn+ × (t̄, t1).

If not, then the (negative) minimal value of w̄ := w − εH in Rn+ × (t̄, t1) must be

achieved in B1/2(en) × (t̄, t1), say at (x0, t0). Note that w̄(x′,−xn, t) = −w̄(x′, xn, t).
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Hence, by exactly the same argument in the proof of Lemma 5.1

∂tw̄(x0, t0) ≤ 0, ∆σw̄(x0, t0) > 0.

Together with (5.5) and b ≤ 0, we conclude that

wt(x0, t0) < a(x0, t0)∆σw(x0, t0) + b(x0, t0)w,

which contradicts (5.2).

Hence, it follows from the above claim that wt(t1, en) ≤ −2ε(t1 − t∗) < 0. But

w(x, t1) ≡ 0. These contradict (5.2).

Lemma 5.4. Let

h(x) =


xn(1− |x′|2), |xn| < 1, |x′| < 1,

0, otherwise.

Then there exists a positive constant c0 depending only n, σ such that

∆σh(x) ≥ −c0xn, (5.6)

for all x = (x′, xn) with |x′| < 1, 0 ≤ xn < 1/8.

Proof. The lemma follows from rather involved calculations. By rotating the first (n−1)

coordinates, we only need to show (5.6) at point a = (a1, 0, · · · , 0, an) with 0 ≤ a1 < 1,

0 ≤ an < 1/8.

Denote B′(x′, R) ⊂ Rn−1 be the ball centered at x′ with radius R, Ω = B′(0, 1) ×

(−1, 1). In the following C will be denoted as various positive constants which depend

only on dimension n and σ.

It follows from (5.1) that

∆σh(a) =

∫
Rn

h(x)− h(a)

|x− a|n+2σ
dx

=

∫
Ω

xn(1− |x′|2)− an(1− |a′|2)

|x− a|n+2σ
dx−

∫
Ωc

an(1− |a′|2)

|x− a|n+2σ
dx

=: I − anII.

(5.7)
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Since xn(1− |x′|2)− an(1− |a′|2) = (xn− an)(1− |x′|2) + an(|a′|2− |x′|2), we divide the

integral I into

I1 :=

∫
Ω

(xn − an)(1− |x′|2)

|x− a|n+2σ
dx

and

anI2 := an

∫
Ω

(|a′|2 − |x′|2)

|x− a|n+2σ
dx.

By symmetry and that 0 ≤ an < 1/8,

I1 =

∫ −1+2an

−1

∫
|x′|<1

(xn − an)(1− |x′|2)

|x− a|n+2σ
dx′dxn

≥ −Can.
(5.8)

Using |a′|2 − |x′|2 = −|x′ − a′|2 + 2a′(a′ − x′), we write

I2 =

∫
Ω

−|x′ − a′|2

|x− a|n+2σ
dx+

∫
Ω

2a′ · (a′ − x′)
|x− a|n+2σ

dx

=: I3 + I4.

Direct computations give

I3 ≥ −
∫ 2+an

−2+an

dxn

∫
|x′−a′|<2

−|x′ − a′|2

|x− a|n+2σ
dx′

= −2 lim
b→0+

∫ 2

b
dy

∫ 2

0

r2rn−2

(r2 + y2)
n+2σ

2

dr

= −2 lim
b→0+

∫ 2

b
y1−2σdy

∫ 2/y

0

rn

(1 + r2)
n+2σ

2

dr

= −2 lim
b→0+

∫ 2

b
y1−2σdy

(∫ 2/y

1

rn

(1 + r2)
n+2σ

2

dr +

∫ 1

0

rn

(1 + r2)
n+2σ

2

dr

)

≥ −2 lim
b→0+

∫ 2

b
y1−2σdy

(∫ 2/y

1
r−2σdr + 1

)

≥ −C.

(5.9)

Next, we are going to show

I4 − II ≥ −C. (5.10)

Let D0 = (B′(0, 1)∩B′(2a′, 1)). Since a′ = (a1, 0, · · · , 0), it follows from symmetry that∫
D0×(−1,1)

2a′ · (a′ − x′)
|x− a|n+2σ

dx′dxn = 0.
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Thus,

I4 =

∫
(B′(0,1)\D0)×(−1,1)

2a′ · (a′ − x′)
|x− a|n+2σ

> 0.

Now we have two cases:

Case 1. if |a′| ≤
√

2
2 , then it is easy to see that II < C (the denominator is uniformly

bounded). Hence, (5.10) holds.

Case 2. Suppose |a′| >
√

2
2 . We have

II =

∫
Ωc∩(B′(a′,|a′|)×(−1,1))

1− |a′|2

|x− a|n+2σ
+

∫
Ωc\(B′(a′,|a′|)×(−1,1))

1− |a′|2

|x− a|n+2σ

≤
∫

Ωc∩(B′(a′,|a′|)×(−1,1))

(1− |a′|2)

|x− a|n+2σ
+ C

=: II1 + C.

Denote D1 =
(
B′(a′,

√
1− |a′|2)∩{x1 < a1}

)
\D0, and D2 =

(
B′(a′,

√
1− |a′|2)∩

{x1 > a1}
)
\D0.

Note that for x ∈ D1, we have 2|a′|(|a′| − x1) ≥ 1− |a′|2 − |x′ − a′|2. Therefore,∫
D1×(−1,1)

2a′ · (a′ − x′)
|x− a|n+2σ

−
∫
D2×(−1,1))

1− |a′|2

|x− a|n+2σ
≥
∫
D1×(−1,1)

−|x′ − a′|2

|x− a|n+2σ
.

Observe that there exists a positive integer m, which depends only on n and σ, such

that

m

∫(
B′(0′,1)\B′(a′,

√
1−|a′|2)

)
×(−1,1)

1− |a′|2

|x− a|n+2σ

≥
∫(

B(a′,|a′|)\
(
B′(0′,1)∪B′(a′,

√
1−|a′|2)

))
×(−1,1)

1− |a′|2

|x− a|n+2σ
.

Also notice that for any x ∈ B′(0′, 1)\B′(a′,
√

1− |a′|2), we have

0 ≥ m(1− |a′|2 − |x′ − a′|2).

Hence,

m

∫(
B′(0′,1)\B′(a′,

√
1−|a′|2)

)
×(−1,1)

|x′ − a′|2

|x− a|n+2σ

≥
∫(

B(a′,|a′|)\
(
B′(0′,1)∪B′(a′,

√
1−|a′|2)

))
×(−1,1)

1− |a′|2

|x− a|n+2σ
.
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It follows that

I4 − II

≥ −C +

∫
D1×(−1,1)

2a′ · (a′ − x′)
|x− a|n+2σ

−
∫
D2×(−1,1)

1− |a′|2

|x− a|n+2σ

−
∫(

B(a′,|a′|)\
(
B′(0′,1)∪B′(a′,

√
1−|a′|2)

))
×(−1,1)

1− |a′|2

|x− a|n+2σ

≥ −C −m
∫

(B′(0′,1)\B′(a′,
√

1−|a′|2))×(−1,1)

|x′ − a′|2

|x− a|n+2σ
+

∫
D1×(−1,1)

−|x′ − a′|2

|x− a|n+2σ

≥ −C − (m+ 1)I3

≥ −C.

Therefore, (5.10) holds.

Finally, Lemma 5.4 follows from (5.7), (5.8), (5.9) and (5.10).

Lemma 5.5. Let w(x, t) be as in Lemma 5.1. Suppose w(x0, 0) > 0 for some x0 ∈ Rn+,

then for any fixed t ∈ (0, T ], we have ∂xnw(x′, 0, t) > 0.

Proof. Let

g(x) =


−1, in B′(0, 1)× (−2,−1),

1, in B′(0, 1)× (1, 2),

0, otherwise,

where B′(0, 1) denotes the n − 1 dimensional unit ball centered at 0. For any x ∈

B′(0, 1)× (0, 1/8), we have

∆σg(x) =

∫
Rn

g(y)− g(x)

|y − x|n+2σ
dy

=

∫
B′(0,1)×(1,2)

1

|y − x|n+2σ
dy −

∫
B′(0,1)×(−2,−1)

1

|y − x|n+2σ
dy

=

∫
B′(0,1)×(1,2)

1

|y − (x′, xn)|n+2σ
− 1

|y − (x′,−xn)|n+2σ
dy

=

∫
B′(0,1)×(1,2)

∫ 1

0
− d

ds

(
1

|y − x+ 2sxnen|n+2σ

)
ds dy

= (n+ 2σ)

∫
B′(0,1)×(1,2)

∫ 1

0

4(yn − xn)xn + 8sx2
n

|y − x+ 2sxnen|n+2+2σ
dsdy

≥ c1xn,

where c1 > 0 depends only on n and σ.
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For any fixed t0 ∈ (0, T ], define

H(x, t) = h(x)
( t20

1 + t20
− (t− t0)2

)
+ kg(x),

where h is as in Lemma 5.4. We can choose a sufficiently large constant k such that

Ht(x, t) ≤ a(x, t)∆σH + b(x, t)H(x, t),

for all x ∈ B′(0, 1)× (0, 1/8) and t ∈ (t0 − t0/
√

1 + t20, t0].

It follows from Lemma 5.3 that w(·, t) > 0 in Rn+ for any fixed t ∈ (0, T ]. Making

a similar argument to the poof of Lemma 5.3, we can show that there exists a small

positive constant ε such that w ≥ εH for all t ∈ (0, t0]. Therefore, ∂xnw(x′, 0, t0) > 0

and Lemma 5.5 follows immediately.

Now we apply the above strong maximum principle and Hopf lemma to fractional

Yamabe flow equations.

Suppose that v is a positive smooth solution of (1.15) in Sn × [0, T ]. Hence

u(x, t) =

(
2

1 + |x|2

)n−2σ
2

v(F (x), t)

satisfies (1.16). For a given real number λ, define

Σλ = {x = (x′, xn) : xn ≥ λ},

and let xλ = (x′, 2λ−xn) and uλ(x, t) = u(xλ, t). It is clear that uλ also satisfies (1.16).

Proposition 5.1. Suppose that u(x, 0) − uλ(x, 0) ≥ 0 in Σλ, then for any fixed t ∈

(0, T ], we have u(x, t)− uλ(x, t) ≥ 0 in Σλ.

Proof. Let w(x, t) = u(x, t)− uλ(x, t). Then w satisfies

wt = a(x, t)∆σw + b(x, t)w, (5.11)

where a(x, t) = 1
NuN−1 and b(x, t) = (1−N)(−∆)σuλ

N

∫ 1
0

1
(τu+(1−τ)uλ)N

dτ + rgσ
N is bounded.

Note that w(x′, xn + λ, t) satisfies all the conditions in Lemma 5.1. Thus Proposition

5.1 follows from Lemma 5.1.
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Proposition 5.2. Assume the conditions in Proposition 5.1, then for any fixed t ∈

(0, T ], we have u(x, t)− uλ(x, t) > 0 or u(x, t)− uλ(x, t) ≡ 0 in Σλ.

Proof. It follows from Proposition 5.1 and Lemma 5.2.

Proposition 5.3. Assume the conditions in Proposition 5.1. In addition, we suppose

that u(x0, 0) − uλ(x0, 0) > 0 for some x0 ∈ Σλ, then for any fixed t ∈ (0, T ], we have

u(x, t)− uλ(x, t) > 0 in Σλ and ∂xnu(x′, λ, t) > 0.

Proof. It follows from Proposition 5.1, Lemma 5.3 and Lemma 5.5.

5.2 Harnack inequality for a fractional Yamabe flow

Based on the results proved in the previous section, we are going to establish the

following Harnack inequality.

Theorem 5.1. Let v be a C3,1 positive function on Sn × [0, T ∗) and satisfy

∂vN

∂t
= −Pσ(v) + b(t)vN , on Sn × (0, T ∗),

where b(t) ∈ C([0, T ∗)). Then there exists a positive constant C > 0 depending only on

n, σ, infSn v(·, 0) and ‖v(·, 0)‖C3(Sn) such that

max
Sn

v(·, t) ≤ C min
Sn

v(·, t),

for any fixed t ∈ (0, T ∗).

Proof. As mentioned in the introduction, the idea of this proof is essentially due to Ye

[134]. We will show that

sup
Sn

|∇Snv|
|v|

≤ C for all s ∈ (0, T ∗).

Let q0 ∈ Sn. Without loss of generality, we may assume that q0 is the north pole.

Consider the inverse of the stereographic projection from the north pole F : Rn → Sn:

F (x1, · · · , xn) =

(
2x

1 + x2
,
x2 − 1

x2 + 1

)
.
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We also denote G : Rn → Sn as the inverse of the stereographic projection from the

south pole, namely G(x) = F (x/|x|2). Let

u(x, s) =

(
2

1 + |x|2

)n−2σ
2

v(F (x), s), ū(x, s) =

(
2

1 + |x|2

)n−2σ
2

v(G(x), s).

Then u, ū ∈ C3,1(Rn × [0, T ∗)) and both satisfy

∂uN

∂t
= ∆σu+ b(t)uN , on Rn × [0, T ∗). (5.12)

u(·, s) has a Taylor expansion “at infinity” of the form

u(x, s) =
2(n−2σ)/2

|x|n−2σ

(
a0 +

aixi
|x|2

+

(
aij −

n− 2σ

2
δij

)
xixj
|x|4

+O(|x|−3)

)
.

Similarly, the partial derivatives of u(·, t) have Taylor expansions “at infinity” of the

form

∂u

∂xi
(x, s) = 2

n−2σ
2

(
− n− 2σ

|x|n−2σ+2
xi

(
a0 +

ajxj
|x|2

)
+

ai
|x|n−2σ+2

− 2xiajxj
|x|n−2σ+4

)
+O(|x|−(n−2σ+3)).

Here

a0(s) = v(q0, s),

ai(s) =
∂(v(·, s) ◦G)

∂xi
(0),

aij(s) =
∂2(v(·, s) ◦G)

2∂xixj
(0).

Let yi(s) = (n− 2σ)−1ai(s)/a0(s), and y(s) = (y1(s), · · · , yn(s)). Then

u(x+ y, s) =
2
n−2σ

2

|x|n−2σ

(
a0 +

ãijxixj
|x|4

+ o(|x|−2)

)
(5.13)

and

∂u

∂xi
(x+ y, s) = −(n− 2σ)a0xi

|x|n−2σ+2
+O(|x|−(n−2σ+3)) (5.14)

where ãij = aij − n−2σ
2 δij − aiai

a0
. We only need to show that there exists a positive

constant C depending only on n, σ, infSn v(·, 0) and ‖v(·, 0)‖C3(Sn) such that

|y(s)| ≤ C for all 0 ≤ s < T ∗.

Fix T ∈ (0, T ∗). After a rotation and a reflection, we may assume that yn(T ) =

maxi |yi(T )|. From the Taylor expansions of u and ∇u for s = 0, we see that (e.g.,
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Lemma 4.2 in [64]) there exists a λ0 > 0, which depends only on n, σ, infSn v(·, 0) and

‖v(·, 0)‖C3(Sn), such that for any λ > λ0,

u(x, 0) > u(xλ, 0) for xn < λ,

where xλ = (x1, · · · , xn−1, 2λ − xn). Denote uλ(x, s) = u(xλ, s). By Proposition 5.3,

we have

u(x, s) > uλ(x, s) for all s ∈ [0, T ], xn < λ, λ ≥ λ0. (5.15)

We claim that

max
0≤s≤T

yn(s) < λ0.

If not, there exists s̄ ∈ (0, T ] such that yn(s̄) = max0≤s≤T yn(s) ≥ λ0. Thus, we can set

λ = yn(s̄) in (5.15), namely,

u(x, s) > uλ(x, s) for all s ∈ [0, T ], xn < λ = yn(s̄).

Let ũ(x, s) = u(x+ yn(s̄), s), then

ũ(x′, xn, s) > ũ(x′,−xn, s) for all s ∈ [0, T ], xn < 0.

Let ũ1(x, s) = 1
|x|n−2σ ũ( x

|x|2 , s). Then ũ1(x′, xn, s) and ũ1(x′,−xn, s) satisfy (5.12) and

ũ1(x′, xn, s) > ũ1(x′,−xn, s) for all s ∈ [0, T ], xn < 0.

By Proposition 5.3,

∂(ũ1(x′, xn, s)− ũ1(x′,−xn, s))
∂xn

∣∣∣∣
(x,s)=(0,s̄)

< 0,

i.e., (∂ũ1/∂xn)(0, s̄) < 0. This contradicts (5.13). Hence, max
0≤s≤T

yn(s) < λ0, which

implies yn(T ) < λ0. Since λ0 is independent of s, we have |y(s)| ≤ λ0 for all 0 ≤ s <

T ∗. Moreover, λ0 is independent of the choice of q0, and we conclude that

sup
Sn

|∇Snv|
|v|

≤ C for all s ∈ (0, T ∗).

For each t, integrating the above inequality along a shortest geodesic between a maxi-

mum point and a minimum point of v(·, t) yields

max
Sn

v(·, t) ≤ C min
Sn

v(·, t).

where C depends only on n, σ, infSn v(·, 0) and ‖v(·, 0)‖C3(Sn).
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5.3 Existence and convergence of a fractional Yamabe flow

5.3.1 Schauder estimates

For an open set Ω ⊂ Rn and γ ∈ (0, 1), Cγ(Ω) denotes the standard Hölder space over

Ω, with the norm

|v|γ;Ω := |v|0;Ω + [v]γ;Ω := sup
Ω
|v(·)|+ sup

x1 6=x2,x1,x2∈Ω

|u(x1)− u(x2)|
|x1 − x2|γ

.

For simplicity, we use Cγ(Ω) to denote C [γ],γ−[γ](Ω) when 1 < γ /∈ N (the set of positive

integers), where [γ] is the integer part of γ. Since the operator ∂t + (−∆)σ is invariant

under the scaling (x, t) → (cx, c2σt) with c > 0, we introduce the fractional parabolic

distance as

ρ(X1, X2) = (|x1 − x2|2 + |t1 − t2|1/σ)1/2,

where X1 = (x1, t2), X2 = (x2, t2) ∈ Rn+1. For a measurable function u defined in a

Borel set Q ⊂ Rn+1 and 0 < α < min(1, 2σ), we define

[u]α, α
2σ

;Q = sup
X1 6=X2,X1,X2∈Q

|u(X1)− u(X2)|
ρ(X1, X2)α

,

and

|u|α, α
2σ

;Q = |u|0;Q + [u]α, α
2σ

;Q,

where |u|0;Q = supX∈Q |u(X)|. We denote Cα,
α
2σ (Q) as the space of all measurable

functions u for which |u|α, α
2σ

;Q <∞. Let QT = Rn× (0, T ], T ∈ (0,∞). For 2σ+α /∈ N

and 0 < α < min(1, 2σ), we say u ∈ C2σ+α,1+ α
2σ (QT ) if

[u]2σ+α,1+ α
2σ

;QT := [ut]α, α
2σ

;QT + [(−∆)σu]α, α
2σ

;QT <∞

and

|u|2σ+α,1+ α
2σ

;QT := |u|0;QT + |ut|0,QT + |(−∆)σu|0;QT + [u]2σ+α,1+ α
2σ

;QT <∞.

Then C2σ+α,1+ α
2σ (QT ) is a Banach space equipped with the norm | · |2σ+α,1+ α

2σ
;QT .

Lemma 5.6. Suppose that 0 < α < min(1, 2σ) and 2σ + α is not an integer. There

exists a constant C > 0 depending only on n and σ such that for any ε > 0 and



80

u ∈ C2σ+α,1+ α
2σ (QT ), we have

|ut|0;QT ≤ ε[ut]α, α2σ ;QT + Cε−2σ/α|u|0;QT , (5.16)

|(−∆)σu|0;QT ≤ ε[u]2σ+α,1+ α
2σ

;QT + Cε−2σ/α|u|0;QT , (5.17)

[u]α, α
2σ

;QT ≤ ε[u]2σ+α,1+ α
2σ

;QT + Cε−α/(2σ)|u|0;QT . (5.18)

If σ > 1
2 , then

[∇xu]α, α
2σ

;QT ≤ ε[u]2σ+α,1+ α
2σ

;QT + Cε−(1+α)/(2σ−1)|u|0;QT . (5.19)

Proof. By the fractional parabolic dilations of the form u(x, t)→ u(Rx,R2σt), we only

need to show the case ε = 1 and T = 2. Take X = (x, t) ∈ QT and we have, for some

θ ∈ (−1, 1),

|ut(X)| ≤ |ut(X)−
(
u(x, t± 1)− u(x, t)

)
|+ 2|u|0;QT

= |ut(X)− ut(x, t+ θ)|+ 2|u|0;QT ≤ [ut]α, α
2σ

;QT + 2|u|0;QT .

This finishes the proof of (5.16). For (5.17) and (5.18), we first recall (see, e.g., [126])

that

|w|2σ+α;Rn ≤ C(|w|0;Rn + |(−∆)σw|α;Rn) for all w ∈ C2σ+α(Rn).

Hence,

|(−∆)σu(x, t)| ≤ C(|u(·, t)|0;Rn + |u(·, t)|C2σ+α(Rn))

≤ C(|u|0;QT + [(−∆)σu]α, α
2σ

;QT ) ≤ C([u]2σ+α,1+ α
2σ

;QT + |u|0;QT ),

and

[u]α, α
2σ

;QT ≤ sup
t1 6=t2,x

|u(x, t1)− u(x, t2)|
|t1 − t2|

α
2σ

+ sup
x1 6=x2,t

|u(x1, t)− u(x2, t)|
|x1 − x2|α

≤ C(|u|0;QT + |ut|0;QT + sup
t
|u(·, t)|2σ+α;Rn)

≤ C([u]2σ+α,1+ α
2σ

;QT + |u|0;QT ).

Finally, for σ > 1
2 we notice that by the same methods as above,

sup
t,x1 6=x2

|∇xu(x1, t)−∇xu(x2, t)|
|x1 − x2|α

≤ C([u]2σ+α,1+ α
2σ

;QT + |u|0;QT ).

Thus, to prove (5.19), we only need to show

sup
s 6=t,x

|∇xu(x, s)−∇xu(x, t)|
|s− t|

α
2σ

≤ C([u]2σ+α,1+ α
2σ

;QT + |u|0;QT ).
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Fix any x0 ∈ Rn. Let w(x, t) = (−∆)σu(x, t) and η(x) be a smooth cut-off function

supported in B2(x0) ∈ Rn and equal to 1 in B1(x0). Let

u0(x, t) = (−∆)−σ(ηw) =

∫
Rn

η(y)w(y, t)

|x− y|n−2σ
dy.

For convenience we have omitted some positive constant as in (1.22). Then

(−∆)σ(u0(x, t)− u(x, t)− u0(x, s) + u(x, s)) = 0 in B1(x0),

which implies, for 0 < |t− s| ≤ 1,

|∇xu0(x0, t)−∇xu(x0, t)−∇xu0(x0, s) +∇xu(x0, s)|

≤ C|u0(x, t)− u(x, t)− u0(x, s) + u(x, s)|L∞(Rn)

≤ C(|ut|0;QT + [u]2σ+α,1+ α
2σ

;QT )|t− s|
α
2σ .

Since σ > 1/2 and

∇xu0(x0, t) = (2σ − n)

∫
Rn

(x0 − y)η(y)w(y, t)

|x0 − y|n+2−2σ
dy,

we have

|∇xu0(x0, t)−∇xu0(x0, s)| ≤ C[u]2σ+α,1+ α
2σ

;QT |t− s|
α
2σ .

Together with (5.16), we have

sup
s 6=t,x

|∇xu(x, s)−∇xu(x, t)|
|s− t|

α
2σ

≤ C([u]2σ+α,1+ α
2σ

;QT + |u|0;QT ).

This finishes the proof of (5.19).

Lemma 5.7. Suppose that 0 < α < min(1, 2σ) and 2σ + α is not an integer. Let

u ∈ C2σ+α,1+ α
2σ (Q1) and η ∈ C2

c (Rn+1), then for any ε > 0, there exists C(ε) > 0

depending only on α, σ, n, ε and ‖η‖C2(Rn+1) such that

[〈u, η〉]α, α
2σ

;Q1
≤ ε[u]2σ+α,1+ α

2σ
;Q1

+ C(ε)|u|0,Q1 . (5.20)

Proof. We denote C as various constants depending only on n, σ, α, ‖η‖C2(Rn+1), and

C(ε) as various constants depending only on n, σ, α, ‖η‖C2(Rn+1) and ε. Recall that

〈u, η〉 is defined in (5.22). For any (x, t) ∈ Q1,

|〈u, η〉(x, t)| ≤ c(n, σ)

∫
Rn\B1(x)

|u(x, t)− u(y, t)||η(x, t)− η(y, t)|
|x− y|n+2σ

dy

+ c(n, σ)

∫
B1(x)

|u(x, t)− u(y, t)||η(x, t)− η(y, t)|
|x− y|n+2σ

dy

≤ C|u|0,Q1 + C[u(·, t)]σ,Rn ≤ ε[u]2σ+α,1+ α
2σ

;Q1
+ C(ε)|u|0,Q1 .
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Fix any X1 = (x1, t1), X2 = (x2, t2) ∈ Q1, X1 6= X2. For convenience, we write

ρ = ρ(X1, X2) and uz(x, t) = u(x, t)− u(x+ z, t). We may also suppose that ρ ≤ 1.

|〈u, η〉(x1, t1)− 〈u, η〉(x2, t2)|

≤

∣∣∣∣∣
∫
|z|≤ρ

(
uz(x1, t1)− uz(x2, t2)

)
ηz(x1, t1)

|z|n+2σ
dz

∣∣∣∣∣
+

∣∣∣∣∣
∫
|z|≤ρ

(
ηz(x1, t1)− ηz(x2, t2)

)
uz(x2, t2)

|z|n+2σ
dz

∣∣∣∣∣
+

∣∣∣∣∣
∫
|z|≥ρ

(
uz(x1, t1)− uz(x2, t2)

)
ηz(x1, t1)

|z|n+2σ
dz

∣∣∣∣∣
+

∣∣∣∣∣
∫
|z|≥ρ

(
ηz(x1, t1)− ηz(x2, t2)

)
uz(x2, t2)

|z|n+2σ
dz

∣∣∣∣∣
:= I1 + I2 + I3 + I4.

For I1 and I2, we first consider that 2σ + α < 1. Then by change of variable,

I1 + I2 ≤ C max
i=1,2

[u(·, ti)]α+σ;Rn

∫
|z|≤ρ

|z|α+σ+1−n−2σdz ≤ C max
i=1,2

[u(·, ti)]α+σ;Rnρ
1+α−σ.

If 1 < α+ 2σ < 2, we have

I1 + I2 ≤ C max
i=1,2

[u(·, ti)]α+2σ−1;Rn

∫
|z|≤ρ

|z|α+2σ−n−2σdz ≤ C max
i=1,2

[u(·, ti)]α+2σ−1;Rnρ
α.

If 2σ + α > 2, then

I1 ≤

∣∣∣∣∣
∫
|z|≤ρ

(
uz(x1, t1) +∇xu(x1, t1)z − uz(x2, t2)−∇xu(x2, t2)z

)
ηz(x1, t1)

|z|n+2σ
dz

∣∣∣∣∣
+

∣∣∣∣∣
∫
|z|≤ρ

(
∇xu(x1, t1)z −∇xu(x2, t2)z

)
ηz(x1, t1)

|z|n+2σ
dz

∣∣∣∣∣
≤ C sup

Q1

|∇2
xu|
∫
|z|≤ρ

|z|3−n−2σ dz + C[∇xu]α, α
2σ

;QT ρ
α

∫
|z|≤ρ

|z|2−n−2σ dz

≤ ρα(ε[u]2σ+α,1+ α
2σ

;QT + C(ε)|u|0;QT ).

Similarly,

I2 ≤ C|∇xu|0;Q1

∫
|z|≤ρ

|z|3−n−2σ dz + C|∇xu|0;Q1ρ
α

∫
|z|≤ρ

|z|2−n−2σ dz

≤ ρα(ε[u]2σ+α,1+ α
2σ

;QT + C(ε)|u|0;QT ).

For I3 and I4 we first consider that σ ≤ 1
2 . Choose an α′ > α but sufficiently close

to α such that α′ < min(1, 2σ), then

I3 ≤ [u]
α′, α

′
2σ

;Q1
ρα
′
C

∫
|z|≥ρ

|z|2σ+α−α′−n−2σ dz ≤ C[u]
α′, α

′
2σ

;Q1
ρα,
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I4 ≤ Cρα
′
[u(·, t2)]2σ+α−α′;Rn

∫
|z|≥ρ

|z|2σ+α−α′−n−2σ dz ≤ C[u(·, t2)]2σ+α−α′;Rnρ
α.

If σ > 1
2 and 2σ + α < 2, then

I3 ≤ [u]2σ+α−1, 2σ+α−1
2σ

;Q1
ρ2σ+α−1C

∫
|z|≥ρ

|z|1−n−2σ dz ≤ C[u]2σ+α−1, 2σ+α−1
2σ

;Q1
ρα,

I4 ≤ Cρ2σ+α−1|∇u(·, t2)|0;Rn

∫
|z|≥ρ

|z|1−n−2σ dz ≤ C|∇u(·, t2)|0;Rnρ
α.

If 2σ + α > 2, then for ρ ≤ |z| ≤ 1, we have

|uz(x1, t1)−uz(x2)| ≤ |∇2
xu|0;Q1 |x1−x2||z|+|ut|0;Q1 |t1−t2| ≤ |∇2

xu|0;Q1ρ|z|+|ut|0;Q1 |ρ2σ.

Hence,

I3 ≤

∣∣∣∣∣
∫

1≥|z|≥ρ

(
uz(x1, t1)− uz(x2, t2)

)
ηz(x1, t1)

|z|n+2σ
dz

∣∣∣∣∣
+

∣∣∣∣∣
∫
|z|≥1

(
uz(x1, t1)− uz(x2, t2)

)
ηz(x1, t1)

|z|n+2σ
dz

∣∣∣∣∣
≤ C|∇2

xu|0;Q1ρ

∫
1≥|z|≥ρ

|z|2−n−2σ dz + C|ut|0;Q1ρ
2σ

∫
1≥|z|≥ρ

|z|1−n−2σ

+ [u]α, α
2σ

;Q1
ρα
∫
|z|≥1

|z|−n−2σ dz

≤C(|∇2
xu|0;Q1 + |ut|0;Q1 + [u]α, α

2σ
;Q1

)ρα

Similarly, for I4 we have

I4 ≤ C|∇xu|0;Q1ρ
α.

Combining these and applying some interpolation inequalities in Lemma 5.6, we reach

(5.20).

Consider the following Cauchy problem
a(x, t)ut + (−∆)σu+ b(x, t)u = f(x, t), in QT ,

u(x, 0) = u0(x), in Rn,
(5.21)

where λ−1 ≤ a(x, t) ≤ λ for some constant λ ≥ 1.

Lemma 5.8. Suppose b(x, t) is bounded in Q1. Let u ∈ C2σ+α,1+ α
2σ (Q1) satisfy

a(x, t)ut + (−∆)σu+ b(x, t)u ≤ 0, in Q1,

u(x, 0) ≤ 0, in Rn,

then u ≤ 0 in Q1.
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Proof. Without loss of generality we may assume that b(x, t) ≥ 1 as before. Let η(x)

be a smooth cut-off function supported in B2 ⊂ Rn and equal to 1 in B1. Let ηR(·) =

η(·/R) and v = ηRu. Then

avt + (−∆)σv + b(x, t)v ≤ 〈u, ηR〉+ u(−∆)σηR,

where

〈u, η〉 = c(n, σ)

∫
Rn

(u(x, t)− u(y, t))(η(x, t)− η(y, t))

|x− y|n+2σ
dy. (5.22)

If u is positive somewhere in Q1, then we can choose R as large as we want such that

v attains its positive maximum value in Q1 at (x0, t0) ∈ BR × (0, 1]. It is clear that

a(x0, t0)vt(x0, t0) + (−∆)σv(x0, t0) ≥ 0. Since b ≥ 1, we have

sup
BR×(0,1]

u ≤ v(x0, t0) ≤ sup
Q1

|〈u, ηR〉+ u(−∆)σηR| → 0 as R→∞.

This finishes the proof of this Lemma.

Proposition 5.4. Let 0 < α < min(1, 2σ) such that 2σ + α is not an integer. Suppose

that a(x, t), b(x, t), f(x, t) ∈ Cα,
α
2σ (Q1) and u0(x) ∈ C2σ+α(Rn). Then there exists a

unique solution u ∈ C2σ+α,1+ α
2σ (Q1) of (5.21). Moreover, there exists a constant C > 0

depending only on n, σ, λ, α, |a|α, α
2σ

;Q1
and |b|α, α

2σ
;Q1

such that

|u|2σ+α,1+ α
2σ

;Q1
≤ C(|u0|2σ+α;Rn + |f |α, α

2σ
;Q1

). (5.23)

Proof. By Lemma 5.8, there exists C > 0 depending only on λ, |b|L∞(Q1) such that

|u|0;Q1 ≤ C(|u0|0;Rn + |f |0;Q1). (5.24)

Then the uniqueness of solutions of (5.21) follows immediately. In the following, we

will show a priori estimates (5.23). By (5.24) and some interpolation inequalities in

Lemma 5.6, we only need to show, instead of (5.23),

[u]2σ+α,1+ α
2σ

;Q1
≤ C(|u0|2σ+α;Rn + |f |α, α

2σ
;Q1

). (5.25)

First of all, (5.25) holds provided a = 1, b = 0 (see, e.g., [103]), and it can be easily

extended to the case that a is a positive constant. For the general case, we use the

“freezing coefficients” method (see, e.g., [94]).
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Fix a small δ > 0, which will be specified later. We can find two points X1, X2 ∈ Q1

such that

|ut(X1)− ut(X2)|
ρ(X1, X2)α

≥ 1

2
[ut]α, α

2σ
;Q1
.

If ρ(X1, X2) > δ, then

[ut]α, α
2σ

;Q1
≤ 4δ−α|ut|0;Q1 .

It follows from Lemma 5.6 that, for any small ε0 > 0,

[ut]α, α
2σ

;Q1
≤ ε0[u]2σ+α,1+ α

2σ
;Q1

+ C0|u|0;Q1 , (5.26)

where C0 > 0 depending on n, σ, α, ε0, δ.

If ρ(X1, X2) ≤ δ, take a cut-off function η(X) ∈ C∞(Rn+1) such that η(X) = 1 for

ρ(X,X1) ≤ δ, η(X) = 0 for ρ(X,X1) ≥ 2δ. By the estimates of solutions of (5.21) with

a being a positive constant and b ≡ 0, we have

[ut]α, α
2σ

;Q1
≤ 2
|ut(X1)− ut(X2)|

ρ(X1, X2)α
≤ 2[uη]2σ+α,1+ α

2σ
;Q1

≤ C1(|a(X1)(uη)t + (−∆)σ(uη)|α, α
2σ

;Q1
+ |u0η|2σ+α;Rn + |uη|0;Q1),

where C1 > 0 is independent of δ. Note that

a(X1)(uη)t + (−∆)σ(uη)

= η(a(X)ut + (−∆)σu) + η(a(X1)− a(X))ut + a(X1)uηt − 〈u, η〉+ u(−∆)ση

= η(f − bu) + η(a(X1)− a(X))ut + a(X1)uηt − 〈u, η〉+ u(−∆)ση,

where 〈u, η〉 is defined in (5.22). Since |η(X)(a(X1) − a(X))| ≤ [a]α, α
2σ

;Q1
δα, making

use of Lemma 5.6 again, we have

[ut]α, α
2σ

;Q1
≤ C1δ

α[u]2σ+α,1+ α
2σ

;Q1
+ C(δ)(|u|0;Q1 + |f |α, α

2σ
;Q1

)

+ C1|〈u, η〉|α, α
2σ

;Q1
+ C1|u0η|2σ+α;Rn .

(5.27)

Hence, from (5.20) in Lemma 5.7, (5.27) and (5.26), we can conclude that

[ut]α, α
2σ

;Q1
≤ (C1δ

α+ε0)[u]2σ+α,1+ α
2σ

;Q1
+C(δ)(|u|0,Q1+|f |α, α

2σ
;Q1

+|u0|2σ+α;Rn). (5.28)

Since

ut + (−∆)σu = (1− a)ut − bu+ f,
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we see that

[u]2σ+α,1+ α
2σ

;Q1
≤ C([ut]α, α

2σ
;Q1

+ |u|0;Q1 + |f |α, α
2σ

;Q1
+ |u0|2σ+α;Rn , ), (5.29)

where C > 0 depending only on n, σ, λ, α, ‖a‖α, α
2σ

;Q1
and ‖a, b‖α, α

2σ
;Q1

. Then (5.23)

follows from (5.24), (5.29) and (5.28) by choosing sufficiently small δ and ε0.

Finally, the existence of solutions of (5.21) follows from standard continuity method.

Remark 5.1. Cauchy problems for non-local operators and pseudo-differential opera-

tors in different spaces have been studied, e.g., in [90], [108], [109], [110] and references

therein.

Remark 5.2. Observe that in the proof of the above proposition the only place we use

the uniform lower and upper bounds of a(x) is that at X1, that is 1
λ ≤ a(X1) ≤ λ. This

observation will be used in the proof of Proposition 5.5.

Remark 5.3. One can also obtain the estimates in QT by considering the scaled func-

tion ũ(x, t) := u(T 1/2σx, T t).

For γ ∈ (0, 1), Cγ(Sn) denotes the standard Hölder space over Sn, with norm

|v|γ;Sn := |v|0;Sn + [v]γ;Sn := sup
Sn
|v(·)|+ sup

ξ1 6=ξ2,ξ1,ξ2∈Sn

|v(ξ1)− u(ξ2)|
|ξ1 − ξ2|γ

,

where |ξ1 − ξ2| is understood as the Euclidean distance from ξ1 to ξ2 in Rn+1. For

simplicity, we use Cγ(Sn) to denote C [γ],γ−[γ](Sn) when 1 < γ /∈ N, where [γ] is the

integer part of γ. For Y1 = (ξ1, t1), Y2 = (ξ2, t2) ∈ Sn × (0,∞) we denote

ρ(Y1, Y2) = (|ξ1 − ξ2|2 + |t1 − t2|1/σ)1/2.

We still assume that 0 < α < min(1, 2σ). Let QT = Sn × (0, T ] for T > 0 . We say

v ∈ Cα,
α
2σ (QT ) if

|v|α, α
2σ

;QT = |v|0;QT + [v]α, α
2σ

;QT := sup
Y ∈QT

v(Y ) + sup
Y1 6=Y2,Y1,Y2∈QT

|v(Y1)− u(Y2)|
ρ(Y1, Y2)α

<∞,

and v ∈ C2σ+α,1+ α
2σ (QT ) if

[v]2σ+α,1+ α
2σ

;QT := [vt]α, α
2σ

;QT + [Pσ(v)]α, α
2σ

;QT <∞
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and

|v|2σ+α,1+ α
2σ

;QT := |v|0;QT + |vt|0,QT + |Pσ(v)|0;QT + [v]2σ+α,1+ α
2σ

;QT <∞.

Then C2σ+α,1+ α
2σ (QT ) is a Banach space equipped with the norm | · |2σ+α,1+ α

2σ
;QT .

Lemma 5.9. Suppose that 0 < α < min(1, 2σ) and 2σ + α is not an integer. For any

small ε > 0, there exists a constant C(ε) > 0 depending only on n, σ and ε such that

for any v ∈ C2σ+α,1+ α
2σ (QT ), we have

|vt|0;QT ≤ ε[vt]α, α2σ ;QT + C(ε)|v|0;QT , (5.30)

|Pσv|0;QT ≤ ε[v]2σ+α,1+ α
2σ

;QT + C(ε)|v|0;QT , (5.31)

[v]α, α
2σ

;QT ≤ ε[v]2σ+α,1+ α
2σ

;QT + C(ε)|v|0;QT . (5.32)

Proof. Using stereographic projections, (1.5) and noticing that |x − y| ≥ Cn|F (x) −

F (y)|, the above inequalities follows from Lemma 5.6.

Proposition 5.5. Let 0 < α < min(1, 2σ) such that 2σ + α is not an integer. Let

a(ξ, t), b(ξ, t), f(ξ, t) ∈ Cα,
α
2σ (Q1), v0 ∈ C2σ+α(Sn) and λ−1 ≤ a(ξ, t) ≤ λ for some

λ ≥ 1. Then there exists a unique function v ∈ C2σ+α,1+ α
2σ (Q1) such that

avt + Pσ(v) + bv = f, in Q1,

v(y, 0) = v0(y).

(5.33)

Moreover, there exists a constant C depending only on n, σ, λ, α, |a|α, α
2σ

;Q1
and |b|α, α

2σ
;Q1

such that

|v|2σ+α,1+ α
2σ

;Q1
≤ C(|v0|2σ+α;Sn + |f |α, α

2σ
;Q1

). (5.34)

Proof. Uniqueness of solutions of (5.33) follows from maximum principles. We only

need to show a priori estimate (5.34), from which the existence of solution of (5.33)

follows by the standard continuity method.

Choose Y1 = (ξ1, t1), Y2 = (ξ2, t2) ∈ Sn × (0, T ) such that

|vt(Y1)− vt(Y2)|
ρ(Y1, Y2)α

≥ 1

2
[vt]α, α

2σ
;Q1
. (5.35)
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Without loss of generality we may assume that ξ1, ξ2 are on the south hemisphere. Let

F (x) be the inverse of stereographic projection from the north pole and

u(x, t) =

(
2

1 + |x|2

)n−2σ
2

v(F (x), t).

There exist x1, x2 ∈ B(0, 1) such that Y1 = (F (x1), t1), Y2 = (F (x2), t2). We denote

X1 = (x1, t1), X2 = (x2, t2). By (5.35) there exists a constant C depending only n, σ, α

such that

[ut]α, α
2σ

;Q1
≤ C|vt|0,Q1 + C|ut|0,Q1 + C

|ut(X1)− ut(X2)|
ρ(X1, X2)α

.

Note that u satisfies (5.21) with a, b, f replaced by(
2

1 + |x|2

)2σ

a(F (x), t),

(
2

1 + |x|2

)2σ

b(F (x), t),

(
2

1 + |x|2

)n+2σ
2

f(F (x), t).

In view of Remark 5.2 and the arguments in the proof of Proposition 5.4, we conclude

that

[u]2σ+α,1+ α
2σ

;Q1
≤ C(|v0|2σ+α;Sn + |v|0;Q1 + |vt|0;Q1 + |f |α, α

2σ
;Q1

).

Hence, together with (5.35) and interpolation inequalities in Lemma 5.9, we have

[vt]α, α
2σ

;Q1
≤ C(|v0|2σ+α;Sn + |v|0;Q1 + |f |α, α

2σ
;Q1

). (5.36)

It follows from the maximum principle that |v|0;Q1 ≤ C(|v0|2σ+α;Sn + |f |α, α
2σ

;Q1
). Hence

(5.34) follows from (5.36), (5.33) and some inequalities in Lemma 5.9.

Corollary 5.1. Let 0 < α < min(1, 2σ) such that 2σ + α is not an integer. Let

a(ξ, t), b(ξ, t), f(ξ, t) ∈ Cα,
α
2σ (Q3), λ−1 ≤ a(ξ, t) ≤ λ for some λ ≥ 1. Suppose that

v ∈ C2σ+α,1+ α
2σ (Q3) satisfies

avt + Pσ(v) + bv = f, in Q3.

Then there exists a positive constant C depending only on n, σ, λ, α, |a|α, α
2σ

;Sn×[1,3] and

|b|α, α
2σ

;Sn×[1,3] such that

|v|2σ+α,1+ α
2σ

;Sn×[2,3] ≤ C(|v|α, α
2σ

;Sn×[1,3] + |f |α, α
2σ

;Sn×[1,3]).
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Proof. Let η(t) be a smooth cut-off function defined on R such that η(t) = 0 when

t ≤ 4/3 and η(t) = 1 when t ≥ 5/3. Then ṽ := ηv satisfies
aṽt + Pσ(ṽ) + bṽ = fη + avηt, in Sn × [1, 3],

ṽ(·, 1) = 0.

The corollary follows immediately from Proposition 5.5.

5.3.2 Short time existence

Proposition 5.6. Let 0 < α < min(1, 2σ) such that 2σ+α is not an integer. Let v0 ∈

C2σ+α(Sn) and v0 > 0 in Sn. Then there exists a small positive constant T∗ depending

only on n, σ, α, infSn v0, |v0|2σ+α;Sn and a unique positive solution v ∈ C2σ+α,1+ α
2σ (Sn ×

[0, T∗]) of (1.15) in Sn×(0, T∗] with v(·, 0) = v0. Furthermore, v is smooth in Sn×(0, T∗).

Proof. By a scaling argument in the time variable, we only need to show the short time

existence of 
∂vN

∂t = −Pσ(v),

v(·, 0) = v0.

We shall use the Implicit Function Theorem. By Proposition 5.5, there exists a

function w ∈ C2σ+α,1+ α
2σ (Sn × (0, 1]) such that
NvN−1

0 wt = −Pσ(w), in Sn × (0, 1],

w(·, 0) = v0,

and for any small positive constant ε0, we have ‖w(·, t) − v0‖C2σ+α(Sn) ≤ ε0 provided

t ≤ Tε0 . Here Tε0 is a positive constant depending on ε0. Hence, we may assume that

w > 0 in Sn.

Denote

X = {ϕ ∈ C2σ+α,1+ α
2σ (Sn × (0, Tε0 ]) : ϕ(·, 0) = 0},

and

Y = Cα,
α
2σ (Sn × (0, Tε0 ]).
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Define F(v) := N |v|N−1 ∂v
∂t + Pσ(v) for v ∈ C2σ+α,1+ α

2σ (Sn × (0, Tε0 ]), and

L : X → Y , ϕ 7→ F(w + ϕ)−F(w).

Note that L(0) = 0,

L′(0)ϕ = NwN−1ϕt + Pσ(ϕ) +N(N − 1)wN−2wtϕ, ∀ ϕ ∈X .

It follows from Proposition 5.5 that L′(0) : X → Y is invertible, when ε0 is chosen

sufficiently small.

By the Implicit Function Theorem, there exists a positive constant δ > 0 such that

for any φ ∈ Y with ‖φ‖Y ≤ δ there exists a unique solution ϕ ∈X of the equation

L(ϕ) = φ.

Let T∗ > 0 be small. Pick a cut off function 0 ≤ η(t) ≤ 1 in R+ satisfying η(t) = 1 for

s ≤ T∗ and η(t) = 0 if s ≥ 2T∗. It is easy to see that

‖η(t)F(w)‖Y ≤ δ,

provided T∗ is sufficiently small. Therefore, there exists a function ϕ ∈X such that

L(ϕ) = −η(t)F(w).

Thus, v := w + ϕ satisfies v(·, 0) = v0 and

F(w + ϕ) = 0, in Sn × (0, T∗].

Moreover, v is positive if T∗ is small enough. The smoothness of v follows from Corollary

5.1 and bootstrap arguments.

5.3.3 Long time existence and convergence

Proposition 5.7. Let v be a positive smooth solution of (1.15) in Sn×(0, 3] and satisfy

Λ−1 ≤ v(y, t) ≤ Λ for all (y, t) ∈ Sn × (0, 3] with some positive constant Λ. Then for

any positive integer k,

‖v‖Ck(Sn×[2,3]) ≤ C, (5.37)

where C > 0 depends only on n, σ, k, Λ, and r
g(1)
σ .
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Proof. We first observe that r
g(t)
σ is decreasing in t, and is lower bounded away from 0

by Sobolev inequalities (see, e.g., [10]). Hence through a scaling argument in t, we may

assume that v satisfies the equation ∂vN

∂t = −Pσ(v) instead of (1.15). By the Hölder

estimates in [3] (see also Theorem 9.2 in [49]), there exists some β ∈ (0,min(1, 2σ))

such that

|v|
β, β

2σ
;Sn×[1,3]

≤ C(n, σ, β,Λ).

The Proposition follows from Corollary 5.1 and bootstrap arguments.

Now we are ready to prove the following smooth convergence of the fractional Yam-

abe flow, which has been stated in Theorem 1.2 in the introduction.

Theorem 5.2. Let g(0) ∈ [gSn ] be a smooth metric on Sn for n ≥ 2. Then the fractional

Yamabe flow (1.14) with initial metric g(0) exists for all time 0 < t <∞. Furthermore,

there exists a smooth metric g∞ ∈ [gSn ] such that

Rg∞σ = rg∞σ and lim
t→∞
‖g(t)− g∞‖Cl(Sn) = 0

for all positive integers l.

Remark 5.4. If we write g∞ = v
4

n−2σ
∞ gSn where v∞ is a smooth and positive function

on Sn, then Theorem 5.2 implies that v∞ satisfies

Pσ(v∞) = rg∞σ · v
n+2σ
n−2σ
∞ ,

whose solutions are classified in [41] and [97].

Proof of Theorem 5.2. By Proposition 5.6, we have a unique positive smooth solution

of (1.14) on a maximum time interval [0, T ∗). Since the flow preserves the volume

of the sphere, the Harnack inequality in Theorem 5.1 implies that v(x, t) is uniformly

bounded from above and away from zero. Proposition 5.7 yields smooth estimates for

v on Sn × [min(1, T ∗/2), T ∗). It follows that T ∗ = ∞, since otherwise by Proposition

5.6 we can extend v beyond T ∗. Moreover, there exists v∞ ∈ C∞(Sn) and a sequence

{v(tj)} such that v(tj) converges smoothly to v∞. By Theorem 5.11 in the Appendix,

v(t) converges smoothly to v∞, i.e. there exists a smooth metric g∞ on Sn such that



92

g(t) converges smoothly to g∞. The formula for the gradient of the total σ-curvature

gives

dS

dt
= −n− 2σ

2n
(volg(Sn))

2σ−n
n

∫
Sn

(Rgσ − rgσ)2dvolg.

Thus, ∫ ∞
0

∫
Sn

(Rgσ − rgσ)2dvolg <∞,

which implies that Rg∞σ is a positive constant.

5.4 Two applications

5.4.1 Extinction profile of a fractional porous medium equation

These fractional diffusion equations (1.17) have been systematically studied in [48] and

[49]. It is proved in [49] that if u0 ∈ L1(Rn) ∩ Lp(Rn) for p > 4n/(n+ 2σ), then there

exists a unique strong solution (see [49] for the definition) of (1.17), and the solution

will extinct in finite time. More precisely, if u0 is nonnegative but not identically equals

to zero, then there exists a T = T (u0) ∈ (0,∞) such that u(x, t) > 0 in Rn × (0, T ),

and u(x, T ) ≡ 0 in Rn.

Theorem 5.3 below describes the extinction profile of u(x, t), which extends the

result of del Pino and Saéz in [50] for σ = 1 to σ ∈ (0, 1).

Theorem 5.3. Assume that u0 ∈ C2(Rn) is positive in Rn for n ≥ 2. In addition,

we assume, for (um0 )0,1(x) := |x|2σ−num0 (x/|x|2), that (um0 )0,1(x) can be extended to a

positive and C2 function near the origin. There exist λ > 0 and x0 ∈ Rn such that if

T = T (u0) ∈ (0,∞) denotes the extinction time of the solution of (1.17), then

(T − t)−1/(1−m)u(x, t) = k(n, σ)

(
λ

λ2 + |x− x0|2

)n+2σ
2

+ θ(x, t)

with

sup
Rn

(1 + |x|n+2σ)θ(x, t)→ 0 as t→ T,

where k(n, σ) = 2
n−2
2

(
(1−m)Pσ(1)

)n−2σ
4σ and Pσ(1) is given in (1.4).

Some estimates of the extinction time T involving the sharp constant in Sobolev

inequalities are postponed to Lemma 5.12 in Section 5.4.2.
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Let u(x, t) be the solution of (1.17) and T > 0 be its extinction time. Since u0 is

not identically zero, it is proved in [49] that u(x, t) > 0 in Rn × (0, T ) and u(x, t) ∈

Cα(Rn × (0, T )) for some α ∈ (0, 1). We define v(F (x), s) for all x ∈ Rn and all s ≥ 0

as

v(F (x), s) :=

(
1 + |x|2

2

)n−2σ
2

(T − t)−m/(1−m)u(x, t)m|t=T (1−e−s), (5.38)

where F : Rn → Sn is the inverse of stereographic projection from the north pole

and m = n−2σ
n+2σ . By the assumption of u0, we have v(·, 0) ∈ C2(Sn). It follows from

Proposition 5.6 that, there exists an s∗ > 0 and a unique positive function ṽ ∈ C∞(Sn×

(0, s∗)) satisfies

∂ṽN

∂s
= −Pσ(ṽ) +

1

1−m
ṽN (5.39)

and ṽ0 = v(·, 0). On the other hand, ũ(x, t), which is defined by ṽ through (5.38),

satisfies (1.17). By the uniqueness theorem on the solution of (1.17) in [49], v ≡ ṽ in

Sn\{N} × (0, s∗), and hence v can be extended to a positive and smooth function in

Sn × (0, s∗).

Our first goal is that v defined by relation (5.38) is positive and smooth in Sn×(0,∞).

Secondly, we will show that v converges to a steady solution of (5.39). In summary, we

will show the following theorem in terms of v.

Theorem 5.4. Let v be defined by relation (5.38). Then v is positive and smooth in

Sn × (0,∞). Moreover, there is a unique positive solution v̄ of

−Pσ(v̄) +
1

1−m
v̄N = 0 (5.40)

such that

‖v(y, s)− v̄(y)‖C3(Sn) → 0 as s→∞.

Our proof of Theorem 5.4 is inspired by some arguments in [50]. To prove conver-

gence of v(·, t), we first establish the following universal estimates.

Proposition 5.8. Let v be defined by relation (5.38). There exist positive constants

β1, β2 such that

β1 ≤ v(y, s) ≤ β2

for all y ∈ Sn, s∗/2 ≤ s < +∞. Hence, v ∈ C∞(Sn × (s∗/2,∞)).
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Proof. Step1: We show that if s0 is such that v is positive and smooth in Sn×(s∗/2, s0),

then there is a positive constant κ1, independent of s0, such that for all s ∈ (s∗/2, s0)

max
Sn

v(·, s) > κ1. (5.41)

Let us argue by contradiction. If this is not true, then for every small ε > 0, there is

an sε such that s0 > sε > s∗/2 and v(y, sε) < ε for all y ∈ Sn. Given ε > 0, consider

U(x, t) = K1/m[(1 + sε − log T + log(T − t))(T − t)]
1

1−m
+

(
2

1 + |x|2

)n+2σ
2

,

where K will be chosen later. Direct computations yield that

Ut − (∆)σU
n−2σ
n+2σ

= K
1
m [(1 + sε − log T + log(T − t))(T − t)]

m
1−m
+

(
2

1 + |x|2

)n+2σ
2

·
(

log T − log(T − t)− 2− sε + Pσ(1)K1−1/m
)
,

where we used that (−∆)σ
(

2
1+|x|2

)n−2σ
2

= Pσ(1)
(

2
1+|x|2

)n+2σ
2

with Pσ(1) given in (1.4).

Let tε be that sε−log T+log(T−tε) = 0. We chooseK small such that Pσ(1)K
m−1
m >

2 and let ε = K. Since v(y, sε) < ε,

u(x, tε) < ε1/m(T − tε)
1

1−m

(
2

1 + |x|2

)n+2σ
2

= U(x, tε).

For t > tε, U(x, t) is a supersolution of (1.17). It follows from the comparison principle

(see the proof of Theorem 6.2 in [49]) that u(x, t) ≤ U(x, t). But U vanishes before T .

Hence, u vanishes before T , which contradicts the definition of the extinction time T .

Step 2: v is strictly positive and smooth for s∗/2 < s <∞.

To show this, we define

s0 = sup{s > 0 : v ∈ C3,1(Sn × (s∗/2, s))}.

Note that s0 ≥ s∗. We assume that s0 < ∞. Since v ∈ C3,1(Sn × (s∗/2, s0)) and v is

positive, by Theorem 5.1 and step 1 we have that v is uniformly lower bounded away

from 0. We define

U(x, t) = (M − t)1/(1−m)
+ k(n, σ)

(
1

1 + |x|2

)n+2σ
2

,
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where k(n, σ) is defined in Theorem 5.3. U(x, t) satisfies (1.17) and will be used as a

barrier function. By our assumptions on u0, we choose sufficiently large M > T such

that

u0(x) ≤M1/(1−m)k(n, σ)

(
1

1 + |x|2

)n+2σ
2

.

It follows from comparison principle (Theorem 6.2 in [49]) that for all 0 < t < T ,

u(x, t) ≤ (M − t)1/(1−m)k(n, σ)

(
1

1 + |x|2

)n+2σ
2

.

Hence, for all s∗/2 ≤ s ≤ s0

v(y, s) ≤
(
T + (M − T )es

T

) m
1−m

k(n, σ)m ≤
(
T + (M − T )es0

T

) m
1−m

k(n, σ)m.

It follows that v is uniformly bounded from above. Since v satisfies (5.39), Proposition

5.7 implies that v has a uniform limit as s → s0 which is also positive and smooth.

By Proposition 5.6 v can be extended in a smooth and positive way beyond s0, which

violates the definition of s0. We conclude that s0 = +∞.

Step 3: There is a constant κ2 = (1 + Pσ(1)(1 −m))m/(1−m) > 0 such that for all

s > 0

min
Sn

v(y, s) ≤ κ2.

We argue by contradiction. Suppose that there is a time s̄ <∞ for which

min
Sn

v(y, s̄) > κ2.

This implies

u(x, t̄) ≥ (T − t̄+ Pσ(1)(1−m)(T − t̄))1/(1−m)

(
1

1 + |x|2

)n+2σ
2

,

where t̄ = T (1− e−s̄) < T . We consider a barrier function

U(x, t) = (T − t̄+ Pσ(1)(1−m)(T − t))
1

1−m

(
1

1 + |x|2

)n+2σ
2

,

which satisfies (1.17). Since u(x, t̄) ≥ U(x, t̄), by the comparison principle

u(x, t̄) ≥ (T − t̄+ Pσ(1)(1−m)(T − t))
1

1−m

(
1

1 + |x|2

)n+2σ
2

.
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This contradicts the extinction time T of u.

From Steps 1, 2 and 3 we can conclude Proposition 5.8 by taking β2 = Cκ2 and

β1 = κ1/C where C is the constant in Theorem 5.1 for s0 =∞.

Now we are in the position to prove Theorem 5.4. Let J be the functional defined

as

J(z) =
1

2

∫
Sn
zPσ(z)− 1

(1−m)(N + 1)

∫
Sn
zN+1.

Direct computations yield

Lemma 5.10. Let v(x, s) satisfy (5.39). Then

d

ds
J(v(·, s)) = −N

∫
Sn
vN−1(vs)

2 ≤ 0.

The above Lemma indicates that the functional is decreasing in time. The next

Lemma states that this functional is always nonnegative, and hence lim
s→∞

J(v(·, s)) ex-

ists.

Lemma 5.11. J(v(·, s)) ≥ 0 for all s > 0.

Proof. The proof is similar to that of Lemma 6.1 in [50], which is included here for

completeness. We argue by contradiction. Assume that for certain 0 < s0 < ∞ one

has J(v(·, s0)) < 0. By Lemma 5.10 J(v(·, s)) < 0 for all s > s0. Let us consider the

quantity

F (s) =

∫
Sn
vN+1(y, s)dy ≥ 0, s ∈ (0,∞).

Then

N

N + 1

d

ds
F (s) =

∫
Sn

(vN )sv = −2J(v(·, s)) +
N − 1

(1−m)(N + 1)
F (s)

≥ N − 1

(1−m)(N + 1)
F (s)

for all s > s0. Note that F (s) 6= 0 for all s ≥ s0. Otherwise, v(·, s) ≡ 0 which

is impossible because J(v(·, s)) ≤ J(v(·, s0)) < 0. Integrating the above differential

inequality, we have

F (s) ≥ F (s0)es−s0 .

It follows that F (s)→∞ as s→∞. On the other hand, Proposition 5.8 implies that v

is uniformly bounded. Consequently, F (s) is bounded. We reach a contradiction.
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Proof of Theorem 5.4. It follows from Proposition 5.8 and Proposition 5.7 that for s >

s∗/2, v(·, s) is compact in Ck(Sn) for any k. Let v̄ be a limit point of v(·, s) as s→∞

in the C2 sense. We will show that v̄ is a solution of (5.40) and v̄ is the unique limit of

v(·, s) as s→∞.

Suppose that along a sequence sj →∞, v(·, sj)→ v̄ in C2(Sn). Since

d

ds
J(v(·, s)) = −N

∫
Sn
vN−1v2

s = − 4N

(N + 1)2

∫
Sn
|(v(N+1)/2(·, s))s|,

we have, by integrating from sj to sj + τ and using the Cauchy-Schwarz inequality,∫
Sn
|v

N+1
2 (·, sj + τ)− v

N+1
2 (·, sj)|2

≤ (N + 1)2τ

4N

(
J(v(·, sj))− J(v(·, sj + τ))

)
.

By Lemma 5.10 and Lemma 5.11, J(v(·, s)) has a limit as s → ∞. Hence for each

τ > 0, {v(·, sj + τ)}∞1 is Cauchy in LN+1. It follows that v(·, sj + τ) → v̄ in LN+1,

and in C2(Sn) uniformly in τ for τ in bounded intervals. Thus, for any φ ∈ C∞(Sn) we

have, ∫
Sn

(
vN (·, sj + 1)− vN (·, sj)

)
φ

=

∫ 1

0

∫
Sn

(
−Pσ

(
v(y, sj + τ)

)
+

1

1−m
vN (y, sj + τ)

)
φdydτ.

After sending j →∞, we obtain∫
Sn

(
−Pσ(v̄) +

1

1−m
v̄N
)
φ = 0,

i.e., v̄ solves (5.40). Finally, it follows from Theorem 5.9 that v(·, s) converges to v̄ in

C3(Sn).

Proof of Theorem 5.3. By the classification of solutions of (5.40) in [41] and [97], The-

orem 5.3 follows from Theorem 5.4 immediately.

From Theorem 5.3 we see that the extinction profile of u(x, t) is determined by the

pair of numbers (λ, x0) = (λ(u0), x0(u0)). The next theorem verifies the stability of

both the extinction time and the extinction profile.
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Theorem 5.5. T (u0), λ(u0) and x0(u0) continuously depend on u0 in the sense that if

u0, {u0;j} are positive C2 functions in Rn, (um0 )0,1, (u
m
0;j)0,1 can be extended to positive

C2 functions near the origin, and lim
j→∞

‖um0;j − um0 ‖b = 0 where ‖ · ‖b is defined by

‖ · ‖b = ‖ · ‖C2(B2) + ‖(·)0,1‖C2(B2),

then

lim
j→∞

(T (u0;j), λ(u0;j), x0(u0;j)) = (T (u0), λ(u0), x0(u0)).

Proof. Given Theorem 5.8, Lemma 5.13 and Theorem 5.9, the proof is identical to the

proof of Theorem 1.2 in [50]. We refer to [50] for details.

5.4.2 A Sobolev inequality and a Hardy-Littlewood-Sobolev inequal-

ity along a fractional diffusion equation

Recently, Carlen, Carrillo and Loss in [35] noticed that some Hardy-Littlewood-Sobolev

inequalities in dimension n ≥ 3 and some special Gagliardo-Nirenberg inequalities can

be related by a fast diffusion equation. In another recent paper [55], Dolbeault used a

fast diffusion flow to obtain an optimal integral remainder term which improves (1.18) in

dimension n ≥ 5. Inspired by [35] and [55], we consider some Sobolev inequality (1.19)

involving fractional Sobolev spaces of order σ ∈ (0, 1), compared to those mentioned

above corresponding to σ = 1.

We investigate the relation between (1.19) and (1.21) via the fractional diffusion

equation (1.17), i.e.

ut = −(−∆)σum

with m = 1/N = n−2σ
n+2σ . If we suppose that the initial data u0 satisfies the assumptions

in Theorem 5.3, then by Theorem 5.4 (which is used to prove Theorem 5.3) u(·, t) is

positive and smooth in Rn before its extinction time, and for any fixed t, u(x, t) =

O(|x|−n−2σ) as x→∞. We define

H(t) := Hn,σ(u(·, t)) =

∫
Rn
u(−∆)−σudx− Sn,σ‖u‖2

L
2n

n+2σ
. (5.42)

It follows from direct computations that d
dtH ≥ 0 (see Proposition 5.9).
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Consequently, one can prove (1.21), which is equivalent to H ≤ 0, by showing

lim sup
t→T

H(t) ≤ 0

where T is the extinction time of (1.17). This can be seen clearly from Theorem 5.4.

From this and Proposition 5.9 we also recover that um is an extremal of (1.19) if u is

an extremal of (1.21).

Along this fractional fast diffusion flow, we can improve the Sobolev inequality

(1.19), via a quantitative estimate of the remainder term. This improvement also holds

as σ → 1 and it extends some work of Dolbeault in [55].

Theorem 5.6. Assume that σ ∈ (0, 1) and n > 4σ. There exists a positive constant

C depending only on n and σ such that for any nonnegative function u ∈ Ḣσ(Rn) we

have

Sn,σ‖uN‖2
L

2n
n+2σ

−
∫
Rn
uN (−∆)−σuNdx

≤ C‖u‖
8σ

n−2σ

L2∗(σ)

(
Sn,σ‖u‖2Ḣσ − ‖u‖2L2∗(σ)

)
,

(5.43)

where N = n+2σ
n−2σ . Moreover, C can be taken as n+2σ

n (1− e−
n
2σ )Sn,σ.

We first have

Proposition 5.9. Assume that n ≥ 2. If u is a solution of (1.17) with positive initial

data u0 ∈ C2 in Rn satisfying that (um0 )0,1 can be extended to a positive C2 function

near the origin, then

1

2

d

dt
H =

(∫
Rn
um+1

) 2σ
n (

Sn,σ‖um‖2Ḣσ − ‖um‖2L2∗(σ)

)
≥ 0,

where H is given by (5.42).

Proof. It follows from (1.17) and (1.19) that

d

dt
H =

∫
Rn

2u(−∆)−σutdx− 2Sn,σ

(∫
Rn
um+1

) 2σ
n
∫
Rn
umut

= −2

∫
Rn
um+1 + 2Sn,σ

(∫
Rn
um+1

) 2σ
n
∫
Rn
um(−∆)σum

= 2

(∫
Rn
um+1

) 2σ
n (

Sn,σ‖um‖2Ḣσ − ‖um‖2L2∗(σ)

)
≥ 0.
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Note that the first part of Theorem 5.4, i.e., v defined by (5.38) is positive and smooth

in Sn × (0,∞), has been used in the justifications of these equalities.

The next lemma gives an estimate for the extinction time of solutions of (1.17).

Lemma 5.12. If u is a solution of (1.17) with positive initial data u0 ∈ C2 in Rn

satisfying that (um0 )0,1 can be extended to a positive C2 function near the origin, then

for any t ∈ (0, T ) we have(
4σ(T − t)

(n+ 2σ)Sn,σ

) n
2σ

≤
∫
Rn
um+1(t, x)dx ≤

∫
Rn
um+1

0 dx.

Consequently, the extinction time T is bounded by

T ≤ (n+ 2σ)Sn,σ
4σ

(∫
Rn
um+1

0 dx

) 2σ
n

.

If in addition n > 4σ, then

T ≥ (n+ 2σ)

2n

∫
Rn u

m+1
0 dx∫

Rn u
m
0 (−∆)σum0

and ∫
Rn
um(·, t)(−∆)σum(·, t) ≤

∫
Rn
um0 (−∆)σum0∫

Rn
um+1(·, t) ≥

∫
Rn
um+1

0 − 2n

n+ 2σ
t

∫
Rn
um0 (−∆)σum0 .

Proof. As in the proof of Lemma 5.11, we define

F (t) :=

∫
Rn
um+1(x, t)dx, (5.44)

which is positive in (0, T ) and F (T ) = 0. It follows that

F ′(t) = (m+ 1)

∫
Rn
um(·, t)ut(·, t)

= −(m+ 1)

∫
Rn
um(·, t)(−∆)σum(·, t) ≤ −m+ 1

Sn,σ
F (t)1− 2σ

n ,

where we have used the Sobolev inequality (1.19) in the last inequality. This shows the

first two inequalities by simple integrations. If in addition n > 4σ, then

F ′′(t) = m(m+ 1)

∫
Rn
um−1(·, t)

(
(−∆)σum(·, t)

)2
+m(m+ 1)

∫
Rn
um(·, t)(−∆σ)

(
um−1(−∆)σum(·, t)

)
= 2m(m+ 1)

∫
Rn
um−1(·, t)

(
(−∆)σum(·, t)

)2 ≥ 0,



101

where the condition n > 4σ is used to guarantee the L2 integrability of um(·, t) such

that we can use Plancherel’s theorem in the second equality. Thus, the lower bound of

T follows from that 0 = F (T ) ≥ F (t) + F ′(t)(T − t) with sending t→ 0. The last two

inequalities follows from the sign of F ′′ and simple integrations.

Let

Q := − 1

m+ 1
F ′F

2σ−n
n , E := − 1

m+ 1
F ′F−1, G(t1, t2) := exp

(
(m+ 1)

∫ t2

t1

E(s)ds

)
.

(5.45)

Theorem 5.7. Assume n > 4σ. For any u0 positive and C2 in Rn satisfying that

(um0 )0,1 can be extended to a positive C2 function near the origin, we have

Sn,σ‖u0‖2
L

2n
n+2σ

−
∫
Rn
u0(−∆)−σu0dx+ 4mSn,σ

∫ T

0
dt

∫ t

0
F (s)

2σ
n K(s)G(t, s)ds

= 2‖um0 ‖
4σ

n−2σ

L2∗(σ)

(
Sn,σ‖um0 ‖2Ḣσ − ‖um0 ‖2L2∗(σ)

)∫ T

0
G(t, 0)dt

where u(·, t) is the solution of (1.17) with initial data u(·, t) = u0, T is the extinction

time of u(·, t) and F,E,G,K are defined in (5.44), (5.45) and (5.46).

Proof. From the proof of Proposition 5.9 we know that

H ′(t) = 2F (t)
(
Sn,σQ(t)− 1

)
.

Hence

H ′′(t) = 2F ′(t)
(
Sn,σQ(t)− 1

)
+ 2F (t)Sn,σQ

′(t)

=
F ′(t)

F (t)
H ′(t) + 2F (t)Sn,σQ

′(t)

= −(m+ 1)E(t)H ′(t) + 2F (t)Sn,σQ
′(t).

On the other hand,

Q′(t) =
F ′′(t)− n−2σ

n F−1(t)
(
F ′(t)

)2
−(m+ 1)F (t)

n−2σ
n

= − 2m

F (t)
n−2σ
n

(∫
Rn
um−1(·, t)

(
(−∆)σum(·, t)

)2 − F−1

∫
Rn
um(·, t)(−∆)σum(·, t)

)
= − 2m

F (t)
n−2σ
n

∫
Rn
u(·, t)m−1| − (−∆)σu(·, t)m + E(t)u(·, t)|2.
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Denote

K(t) :=

∫
Rn
u(·, t)m−1| − (−∆)σu(·, t)m + E(t)u(·, t)|2. (5.46)

Then

H ′′(t) = −(m+ 1)E(t)H ′(t)− 4mF
2σ
n (t)Sn,σK(t).

Multiplying G(0, s) and integrating from 0 to t, we have

H ′(t)G(0, t)−H ′(0)G(0, 0) =

∫ t

0
(H ′G)′(s)ds = −4mSn,σ

∫ t

0
F (s)

2σ
n K(s)G(0, s)ds.

Dividing G(0, t) and integrating from 0 to T , we obtain

0−H(0) = H ′(0)

∫ T

0
G(t, 0)dt− 4mSn,σ

∫ T

0
dt

∫ t

0
F (s)

2σ
n K(s)G(t, s)ds,

which finishes the proof.

The drawback of the above Theorem is that the extra terms are not explicit. For-

tunately, we can use simple estimates to reach Theorem 5.6.

Proof of Theorem 5.6. We first assume that w = um0 where u0 ∈ C2(Rn) is positive

and satisfies that (um0 )0,1 can be extended to a positive C2 function near the origin. By

Lemma 5.12,

(m+1)E(s) ≥ (m+1)S−1
n,σ

(∫
Rn
u(·, s)m+1

)−2σ/n

≥ (m+1)S−1
n,σ

(∫
Rn
um+1

0

)−2σ/n

=: b.

By Lemma 5.12 again, we have bT ≤ n
2σ . Therefore,∫ T

0
G(t, 0)dt ≤

∫ T

0
e−btdt =

1− e−bT

b

≤ 1− e−
n
2σ

m+ 1
Sn,σ

(∫
Rn
um+1

0

)2σ/n

.

Hence (5.43) holds for w = um0 where u0 ∈ C2(Rn) is positive and satisfies that (um0 )0,1

can be extended to a positive C2 function near the origin.

For any nonnegative u ∈ C∞c (Rn), we consider wε = u + ε( 2
1+|x|2 )

n−2σ
2 with ε > 0.

Then (5.43) holds for wε. By sending ε → 0, we have (5.43) for u. Finally, Theorem

5.6 follows from a density argument.
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5.5 Appendix: A uniqueness theorem for negative gradient flows in-

volving nonlocal operators

In this appendix, we provide a uniqueness theorem for fractional Yamabe flows, which

is analog to L. Simon’s uniqueness Theorem in [123]. The proofs are essentially the

same and we will just sketch them in our setting. Denote Hσ(Sn) as the closure of

C∞(Sn) under the norm

‖v‖Hσ(Sn) =

∫
Sn
vPσ(v).

Let α ∈ (0, 1) such that 2σ + α is not an integer. Let J be the functional defined as

J(v) =
1

2

∫
Sn
vPσ(v)− 1

(1−m)(N + 1)

∫
Sn
vN+1, v ∈ Hσ(Sn).

Then

∇J(v) = Pσ(v)− 1

1−m
vN .

Let v̄ be such that ∇J(v̄) = 0.

Theorem 5.8. There exist θ ∈ (0, 1/2) and r0 > 0 such that for any v ∈ C2σ+α(Sn)

with ‖v − v̄‖C2σ+α < r0,

‖∇J(v)‖L2(Sn) ≥ |J(v)− J(v̄)|1−θ.

Proof. Since we have Schauder estimates (see, e.g., [82]) and L2 estimates (which is free

from equivalence of definitions of fractional Sobolev spaces on Sn ) for Pσ, the proof is

identical to that of Theorem 3 in [123].

Let v(x, s) and v̄ be as in Section 5.4.1. Then direction computations and uniform

bounds of v(x, s) yield the following lemma

Lemma 5.13. There exist two constant c0 and T0 such that for any t > T0 we have

− d

ds
J(v(·, s)) ≥ c0‖vs‖L2(Sn)‖∇J(v(·, s))‖L2(Sn).

Theorem 5.9.

lim
s→∞

‖v(·, s)− v̄‖Cl(Sn) = 0

for any positive integer l.
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Proof. First we can prove that v(·, t) converges to v̄ in C2σ+α(Sn), using the same

methods as the proof of Proposition 21 in [2] or the proof of Theorem 1 in [70]. Then

Theorem 5.9 follows from the uniform C l+1 bound of v(x, s).

Similarly if

S(z) =

∫
Sn zPσ(z)(∫

Sn z
N+1

) 2
N+1

, z ∈ Hσ(Sn),

then

∇S(z) = 2

(∫
Sn
zN+1

)− 2
N+1

(
Pσ(z)−

∫
Sn zPσ(z)∫
Sn z

N+1
zN
)
.

Let v(x, t) and v∞ be as in Theorem 5.2. Note that ∇S(v∞) = 0. The following

can be proved in the same way as above.

Theorem 5.10. There exist θ ∈ (0, 1/2) and r0 > 0 such that for any ‖v−v∞‖C2σ+α <

r0,

‖∇S(v)‖L2(Sn) ≥ |S(v)− S(v∞)|1−θ.

Lemma 5.14. There exist two constant c0 and T0 such that for any t > T0 we have

− d

dt
S(v(·, t)) ≥ c0‖vt‖L2(Sn)‖∇S(v(·, t))‖L2(Sn).

Theorem 5.11.

lim
t→∞
‖v(·, t)− v∞‖Cl(Sn) = 0

for any positive integer l.



105

References

[1] A. Ancona, Elliptic operators, conormal derivatives and positive parts of functions
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