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Dissertation Director:  

Norman Rasmus Swanson 

 

This dissertation comprises two essays in macroeconomic forecasting. The first essay 

empirically examines approaches to combining factor models and robust estimation, 

and presents the results of a "horse-race" in which mean-square-forecast-error (MSFE) 

"best" models are selected, in the context of a variety of forecast horizons, estimation 

window schemes and sample periods. For the majority of the target variables that we 

forecast, it is found that variety of these shrinkage methods, when combined with 

simple factors formed using principal component analysis (e.g. component-wise 

boosting), perform better than all other models. It is also found that model averaging 

methods perform surprisingly poorly, given our prior that they would "win" in most 

cases. The second essays outlines and discusses a number of interesting new 

forecasting methods that have recently been developed in the statistics and 

econometrics literature. It focuses in particular on the examination of a variety of 

factor modeling methods, including principal components, independent component 
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analysis (ICA) and sparse principal component analysis (SPCA). Further, it outlines 

a number of approaches for creating hybrid forecasting models that use these factor 

modeling approaches in conjunction with various type of shrinkage methods. The 

results show that pure factor modeling approaches alone are not enough to lead to 

our overall finding that simple linear econometric models as well as models based on 

various forecast combination strategies are dominated by more complicated 

(factor/shrinkage) type models. 
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Chapter 1

Introduction

This dissertation considers the forecasting performance of various macroeconomic time series

models using di¤usion index models and shrinkage methods. The second chapter empirically

assesses the predictive accuracy of a large group of models based on the use of principle

components and other shrinkage methods, including Bayesian model averaging and various

bagging, boosting, least angle regression and related methods. Results suggest that model

averaging does not dominate other well designed prediction model speci�cation methods,

and that using a combination of factor and other shrinkage methods often yields superior

predictions. For example, when using recursive estimation windows, which dominate other

�windowing" approaches in our experiments, prediction models constructed using pure prin-

cipal component type models combined with shrinkage methods yield mean square forecast

error �best�models around 70% of the time, when used to predict 11 key macroeconomic in-

dicators at various forecast horizons. Baseline linear models (which �win�around 5% of the

time) and model averaging methods (which win around 25% of the time) fare substantially

worse than our sophisticated nonlinear models. Ancillary �ndings based on our forecasting

experiments underscore the advantages of using recursive estimation strategies, and provide

new evidence of the usefulness of yield and yield-spread variables in nonlinear prediction

speci�cation.

The third chapter begins by summarizing a number of recent studies in the econometrics

literature which have focused on the usefulness of factor models in the context of prediction

(see Bai and Ng (2008), Dufour and Stevanovic (2010), Forni et al. (2000, 2005), Kim and

Swanson (2010), Stock and Watson (2002b, 2005a, 2006), and the references cited therein).
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This chapter adds to the literature by examining a number of novel factor estimation meth-

ods within the framework of di¤usion index forecasting. In particular, it is considered the use

of independent component analysis (ICA) and sparse principal component analysis (SPCA),

coupled with a variety of other factor estimation as well as data shrinkage methods, including

bagging, boosting, and the elastic net, among others. A number of forecasting experiments

are carried out, involving the estimation of 28 di¤erent baseline model types, each con-

structed using a variety of speci�cation approaches, estimation approaches, and benchmark

econometric models; and all used in the prediction of 11 key macroeconomic variables rel-

evant for monetary policy assessment. It is found that various our benchmarks, including

autoregressive (AR) models, AR models with exogenous variables, and (Bayesian) model av-

eraging, do not dominate more complicated nonlinear methods, and that using a combination

of factor and other shrinkage methods often yields superior predictions. For example, SPCA

yields mean square forecast error �best�(MSFE-best) prediction models in most cases, in the

context of short forecast horizons. Indeed, benchmark econometric models in this chapter

are never found to be MSFE-best, regardless of the target variable being forecast, and the

forecast horizon. This is somewhat contrary to the oft reported �nding that model averaging

usually yields superior predictions when forecasting the types of aggregate macroeconomic

variables that we examine. Additionally, pure shrinkage type prediction models and stan-

dard (linear) regression models, never MSFE-dominate models based on the use of factors

constructed using either principal component analysis, independent component analysis or

sparse component analysis. This result provides strong new evidence of the usefulness of

factor based forecasting, although it should be stressed that principal component analysis

alone does not yield this clear-cut result. Rather, it is usually ICA and SPCA type factor

estimation approaches, often coupled with shrinkage, that yield the "best" models. Ancil-

lary �ndings include the following: (i) Recursive estimation window strategies only dominate

rolling strategies at the 1-step ahead forecast horizon. (ii) Including lags in factor model
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approaches does not generally yield improved predictions.
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Chapter 2

Forecasting Financial and Macroeconomic Variables

Using Data Reduction Methods: New Empirical

Evidence

2.1 Introduction

Technological advances over the last �ve decades have led to impressive gains in not only

computational power, but also in the quantity of available �nancial and macroeconomic data.

Indeed, there has been something of a race going on in recent years, as technology, both

computational and theoretical, has been hard pressed to keep up with the ever increasing

mountain of data available for empirical use. From a computational perspective, this has

helped spur the development of data shrinkage techniques, for example. In economics, one of

the most widely applied of these is di¤usion index methodology. Di¤usion index techniques

o¤er a simple and sensible approach for extracting common factors that underlie the dynamic

evolution of large numbers of variables. To be more speci�c, let Y be a time series vector of

dimension (T � 1) and let X be a time-series predictor matrix of dimension (T �N) ; and

de�ne the following factor model, where Ft denotes a 1 � r vector of unobserved common

factors that can be extracted from Xt: Namely, let Xt = Ft�
0+et; where et is an 1�N vector
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of disturbances and � is an N � r coe¢ cient matrix. Using common factors extracted from

the above model, Stock and Watson (2002a,b) as well as Bai and Ng (2006a) examine linear

autoregressive type forecasting models augmented by the inclusion of common factors.

In this paper, use the forecasting models of Stock andWatson (2002a,b) as a starting point

in an analysis of di¤usion index and other shrinkage methods. In particular, we �rst estimate

the unobserved factors, Ft; and then forecast Yt+h using observed variables and F̂t; where

F̂t is an estimator of Ft: However, even though factor models are now widely used, many

issues remain outstanding, such as the determination of the number of factors to be used

in subsequent prediction model speci�cation (see e.g. Bai and Ng (2002, 2006b, 2008)). In

light of this, and in order to add functional �exibility, we additionally implement prediction

models where the numbers and functions of factors to be used is subsequently selected

using a variety of additional shrinkage methods. Various other related methods, including

targeted regressor selection based on shrinkage, are also implemented. In this sense, we add

to the recent work of Stock and Watson (2005a) as well as Bai and Ng (2008, 2009), who

survey several methods for shrinkage that are based on factor augmented autoregression

models. Shrinkage methods considered in this paper include bagging, boosting, Bayesian

model averaging, simple model averaging, ridge regression, least angle regression, elastic net

and the non-negative garotte. We also evaluate various linear models, and hence add to the

recent work of Pesaran et al. (2011), who carry out a broad examination of factor-augmented

vector autoregression models.

In summary, the purpose of this paper is to empirically assess the predictive accuracy of

various linear models; pure principal component type models; principal components models

constructed using subsets of variables selected based on the elastic net and other shrink-

age techniques; principle components models where the factors to be used in prediction are

directly selected using shrinkage methods such as ridge regression and bagging; models con-

structed by directly applying shrinkage methods (other than principle components) to the
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data; and a number of model averaging methods. The horse-race that we carry out using

all of the above approaches allows us to provide new evidence on the usefulness of factors

in general as well as on various related issues such as whether model averaging still �wins�

rather ubiquitously.

The variables that we predict include a variety of macroeconomic variables that are use-

ful for evaluating the state of the economy. More speci�cally, forecasts are constructed for

eleven series, including: the unemployment rate, personal income less transfer payments, the

10 year Treasury-bond yield, the consumer price index, the producer price index, non-farm

payroll employment, housing starts, industrial production, M2, the S&P 500 index, and

gross domestic product. These variables constitute 11 of the 14 variables (for which long

data samples are available) that the Federal Reserve takes into account, when formulating

the nation�s monetary policy. In particular, as noted in Armah and Swanson (2011) and

on the Federal Reserve Bank of New York�s website: �In formulating the nation�s monetary

policy, the Federal Reserve considers a number of factors, including the economic and �nan-

cial indicators which follow, as well as the anecdotal reports compiled in the Beige Book.

Real Gross Domestic Product (GDP); Consumer Price Index (CPI); Nonfarm Payroll Em-

ployment Housing Starts; Industrial Production/Capacity Utilization; Retail Sales; Business

Sales and Inventories; Advance Durable Goods Shipments, New Orders and Un�lled Orders;

Lightweight Vehicle Sales; Yield on 10-year Treasury Bond; S&P 500 Stock Index; M2.�

Our �nding can be summarized as follows. First, as might be expected, for a number

of our target variables, we �nd that various sophisticated models, such as component-wise

boosting, have lower mean square forecast errors (MSFEs) than benchmark linear autoregres-

sive forecasting models constructed using only observable variables, hence suggesting that

models that incorporate common factors constructed using di¤usion index methodology of-

fer a convenient way to �lter the information contained in large-scale economic datasets.

More speci�cally, models constructed using pure principal component type models combined
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with shrinkage methods yield MSFE-�best�models around 70% of the time, across multiple

forecast horizons, and for various prediction periods. Moreover, a small subset of combined

factor/shrinkage type models �win�approximately 50% of the time, including c-boosting,

ridge regression, least angle regression, elastic net and the non-negative garotte, with c-

boosting the clear overall �winner�. Baseline linear models (which �win�around 5% of the

time) and model averaging methods (which �win�around 25% of the time) fare substantially

worse than our sophisticated nonlinear models. Ancillary �ndings based on our forecasting

experiments underscore the advantages of using recursive estimation windowing strategies1,

and provide new evidence of the usefulness of yield and yield-spread variables in nonlinear

prediction speci�cation.

Although we leave many important issues to future research, such as the prevalence of

structural breaks other than level shifts, and the use of even more general nonlinear methods

for describing the data series that we examine, we believe that results presented in this

paper add not only to the di¤usion index literature, but also to the extraordinary collection

of papers on forecasting that Clive W.J. Granger wrote during his decades long research

career. Indeed, as we and others have said many times, we believe that Clive W.J. Granger

is in many respects the father of time series forecasting, and we salute his innumerable

contributions in areas from predictive accuracy testing, model selection analysis, and forecast

combination, to forecast loss function analysis, forecasting using nonstationary data, and

nonlinear forecasting model speci�cation.

The rest of the paper is organized as follows. In the next section we provide a brief survey

of factor models. In Section 3, we survey the robust shrinkage estimation methods used in

our prediction experiments. Data, forecasting methods, and benchmark forecasting models

are discussed in Section 4, and empirical results are presented in Section 5. Concluding

1For further discussion of estimation windows and the related issue of structural breaks, see Pesaran et al.
(2011).
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remarks are given in Section 6.

2.2 Di¤usion Index Models

Recent forecasting studies using large-scale datasets and pseudo out-of-sample forecasting

include: Artis et al. (2002), Boivin and Ng (2005, 2006), Forni et al. (2005), and Stock and

Watson (1999, 2002a, 2005a,b, 2006). Stock and Watson (2006) discuss in some detail the

literature on the use of di¤usion indices for forecasting. In the following brief discussion of

di¤usion index methodology, we follow Stock and Watson (2002a).

Let Xtj be the observed datum for the j�th cross-sectional unit at time t, for t = 1; :::; T

and j = 1; :::; N: We begin with the following model:

Xtj = Ft�
0
j + etj; (2.1)

where Ft is a 1 � r vector of common factors, �j is an 1 �r vector of factor loadings

associated with Ft, and etj is the idiosyncratic component of Xtj. The product Ft�0j is called

the common component of Xtj. This is a useful dimension reducing factor representation of

the data, particularly when r << N , as is usually assumed to be the case in the empirical

literature. Following Bai and Ng (2002), the whole panel of data X = (X1; :::; XN) can be

represented as (2.1). Connor and Korajczyk (1986, 1988, 1993) note that the factors can

be consistently estimated by principal components as N ! 1; even if etj is weakly cross-

sectionally correlated. Similarly, Forni et al. (2005) and Stock and Watson (2002a) discuss

consistent estimation of the factors when N; T !1:We work with high-dimensional factor

models that allow both N and T to tend to in�nity, and in which etj may be serially and

cross-sectionally correlated, so that the covariance matrix of et = (et1; :::; etN) does not have

to be a diagonal matrix. We will also assume fFtg and fetjg are two groups of mutually
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independent stochastic variables. Furthermore, it is well known that if � = (�1; :::;�N)
0 for

Ft�
0 = FtQQ

�1�0 , a normalization is needed in order to uniquely de�ne the factors, where

Q is a nonsingular matrix. Assuming that (�0�=N)! Ir, we restrict Q to be orthonormal.

This assumption, together with others noted in Stock and Watson (2002a) and Bai and Ng

(2002), enables us to identify the factors up to a change of sign and consistently estimate

them up to an orthonormal transformation.

With regard to choice of r, note that Bai and Ng (2002) provide one solution to the

problem of choosing the number of factors. They establish convergence rates for factor

estimates under consistent estimation of the number of factors, r; and propose panel criterion

to consistently estimate the number of factors. Bai and Ng (2002) de�ne selection criteria

of the form PC (r) = V
�
r; F̂

�
+ rh (N; T ) ; where h (�) is a penalty function. In this paper,

the following version is used (for discussion, see Bai and Ng (2002) and Armah and Swanson

(2010b)):

SIC(r) = V
�
r; F̂

�
+ r�̂2

�
(N + T � r) ln (NT )

NT

�
: (2.2)

A consistent estimate of the true number of factors is r̂ = arg min
0�r�rmax

SIC(r): In a number

of our models, we use this criteria for choosing the number of factors. However, as discussed

above, we also use a variety of shrinkage methods to specify numbers and functions of factors

to be used alternative prediction models. These shrinkage models, including bagging and

other methods outlined in the introduction are also directly applied to our panel of data,

without constructing factors.

The basic structure of the forecasting models examined in this paper is the same as that

examined in Artis et al. (2002), Bai and Ng (2002, 2006a,b, 2008, 2009), Boivin and Ng

(2005) and Stock and Watson (2002a, 2005a,b, 2006). In particular, we consider models of

the following generic form:
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Yt+h = Wt�W + Ft�F + "t+h; (2.3)

where h is the forecast horizon, Yt is the scalar valued �target�variable to be forecasted,

Wt is a 1 � s vector of observable variables, including lags of Yt, "t is a disturbance term,

and the ��s are parameters estimated using least squares. In a predictive context, Ding and

Hwang (1999) analyze the properties of forecasts constructed from principal components

when N and T are large. They perform their analysis under the assumption that the error

processes fetj; "t+hg are cross-sectionally and serially iid: Forecasts of Yt+h based on (2.3)

involve a two step procedure because both the regressors and coe¢ cients in the forecasting

equations are unknown. The data Xt are �rst used to estimate the factors, F̂t; by means

of principal components. With the estimated factors in hand, we obtain the estimators �̂F

and �̂W by regressing Yt+h on F̂t and Wt. Of note is that if
p
T=N ! 0, then the generated

regressor problem does not arise, in the sense that least squares estimates of �̂F and �̂W

are
p
T consistent and asymptotically normal (see Bai and Ng (2008)). In this paper, we

try di¤erent methods for estimating �̂F and then compare the predictive accuracy of the

resultant forecasting models.2.

2.3 Robust Estimation Techniques

We consider a variety of �robust�estimation techniques including statistical learning algo-

rithms (bagging and boosting), as well as various penalized regression methods including

ridge regression, least angle regression, elastic net, and the non-negative garotte. We also

consider forecast combination in the form of Bayesian model averaging.

The following sub-sections provide summary details on implementation of the above

2We refer the reader to Stock and Watson (1999, 2002a, 2005a,b) and Bai and Ng (2002, 2008, 2009) for a
detailed explanation of this procedure, and to Connor and Korajczyk (1986, 1988, 1993), Forni et al. (2005)
and Armah and Swanson (2010b) for further detailed discussion of generic di¤usion models.



11

methods in contexts where in a �rst step we estimate factors using the principal components

analysis, while in a second step we select factor weights using shrinkage. Approaches in

which we �rst directly implement shrinkage to select an �informative�set of variables for:

(i) direct use in prediction model construction; or (ii) use in a second step where factors are

constructed for subsequent use in prediction model construction, follow immediately. Note

that all variables are assumed to be standardized in the sequel. Algorithms for the methods

outlined below are given in the originating papers cited as well as discussed in some detail

in Kim and Swanson (2011).

2.3.1 Statistical Learning (Bagging and Boosting)

2.3.1.1 Bagging

Bagging, which is a short for �bootstrap aggregation�, was introduced by Breiman (1996).

Bagging involves �rst drawing bootstrap samples from in-sample "training" data, and then

constructing predictions, which are later combined. Thus, if a bootstrap sample based

predictor is de�ned as Ŷ �
b = �̂

�
bX

�
b ; where b = 1; :::; B denotes the b-th bootstrap sample

drawn from the original dataset, then the bagging predictor is Ŷ Bagging = 1
B

B

�
b=1
Ŷ �
b . In this

paper, we follow Bühlmann and Yu (2002) and Stock and Watson (2005a) who note that

that, asymptotically, the bagging estimator can be represented in shrinkage form. Namely:

Ŷ Bagging
t+h = Wt�̂W +

r

�
j=1
 (tj) �̂FjF̂t;j (2.4)

where Ŷ Bagging
t+h is the forecast of Yt+h made using data through time t; and �̂W is the least

squares (LS) estimator from a regression of Yt+h on Wt; where Wt is a vector of lags of Yt as

in (2.3) including a vector of ones, �̂Fj is a LS estimator from a regression of residuals, Zt =

Yt+h �Wt�̂W on F̂T�h;j, and tj is the t-statistic associated with �̂Fj, de�ned as
p
T �̂Fj=se;
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where se, is a Newey-West standard error, and  is a function speci�c to the forecasting

method. In the current context we set:

 (t) = 1� � (t+ c) + � (t� c) + t�1[� (t� c)� � (t+ c)]; (2.5)

where c is the pretest critical value, � is the standard normal density and � is the standard

normal CDF. In this paper, we follow Stock and Watson (2005a), and set the pretest critical

value for bagging, c to be 1:96.

2.3.1.2 Boosting

Boosting (see Freund and Schapire (1997)) is a procedure that builds on a user-determined set

of functions (e.g. least square estimators), often called �learners�and uses the set repeatedly

on �ltered data which are typically outputs from previous iterations of the learning algorithm.

The output of a boosting algorithm generally takes the form:

Ŷ M =
M

�
m=1

�mf (X; �m) ;

where the �m can be interpreted as weights, and f (X; �m) are function of the panel dataset,

X: Friedman (2001) introduce �L2Boosting�, which takes the simple approach of re�tting

�base learners�to residuals from previous iterations.3 Bühlmann and Yu (2003) a boosting

algorithm �tting �learners�using one predictor at a, in contexts where a large numbers of

predictors are available, in the context of iid data. Bai and Ng (2009) modify this algorithm

to handle time-series. We use their �Component-Wise L2Boosting�algorithm in the sequel,

with least squares �learners�.

As an example, consider the case where boosting is done on the original Wt data as well

3Other extensions of the original boosting problem discussed by Friedman (2001) are given in Ridgeway
et al. (1999) and Shrestha and Solomatine (2006).
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as factors, F̂t; constructed using principal components analysis; and denote the output of

the boosting algorithm as �̂M
�
F̂t

�
: Then, predictions are constructed using the following

model:

Ŷ Boosting
t+h = Wt�̂W + �̂M

�
F̂t

�
: (2.6)

Evidently, when shrinkage is done directly on Xt, then F̂t in the above expression is suitably

replaced with Xt.

2.3.2 Penalized Regression (Least Angle Regression, Elastic Net,

and Non-Negative Garotte)

Ridge regression, which was introduced by Hoerl and Kennard (1970), is likely the most well

known penalized regression method (see Kim and Swanson (2011)) for further discussion.

Recent advances in penalized regression have centered to some extent on the penalty func-

tion. Ridge regression is characterized by an L2 penalty function. More recently, there has

been much research examining the properties of L1 penalty functions, using the so called

Lasso (least absolute shrinkage and selection operator) regression method, as introduced by

Tibshirani (1996), and various hybrids and generalizations thereof. Examples of these in-

clude least angle regression , the elastic net, and the non-negative garotte, all of which are

implemented in our prediction experiments.

2.3.2.1 Least Angle Regression (LAR)

Least Angle Regression (LAR), as introduced by Efron et al. (2004), is based on a model-

selection approach known as forward stage-wise regression, which has been extensively used

to examine cross-sectional data (for further details, see Efron et al. (2004) and Bai and Ng

(2008)). Gelper and Croux (2008) extend Bai and Ng (2008) to time series forecasting with

many predictors. We implement the algorithm of Gelper and Croux (2008) when constructing
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the LAR estimator.

Like many other stagewise regression approaches, start with �̂0 = �Y ; the mean of the

target variable, use the residuals after �tting Wt to the target variable, and construct a �rst

estimate, �̂ = Xt�̂; in stepwise fashion, using standardized data, and in M iterations, say.

Possible explanatory variables are incrementally examined, and their added to the estimator

function, b�; according to their explanatory power. Following the same notation as used
above, in the case where shrinkage is done solely on common factors, the objective is to

construct predictions,

Ŷ LAR
t+h = Wt�̂W + �̂M(F̂t):

2.3.2.2 Elastic Net (EN)

Zou and Hastie (2005) point out that the lasso has undesirable properties when T is greater

than N or when there is a group of variables amongst which all pairwise correlations are

very high. They develop a new regularization method that they claim remedies the above

problems. The so-called elastic net (EN) simultaneously carries out automatic variable

selection and continuous shrinkage. Its name comes from the notion that it is similar in

structure to a stretchable �shing net that retains �all the big �sh�. Zou and Hastie (2005)

In this paper, we use the algorithm of Bai and Ng (2008), who modify the naive EN to use

time series rather than cross sectional data. To �x ideas, assume again that we are interested

in X and Y; and that variables are standardized. For any �xed non-negative �1 and �2, the

elastic net criterion is de�ned as:

L (�1; �2; �) = jY �X�j2 + �2 j�j
2 + �1 j�j1 ; (2.7)

where j�j2 =
NP
j

(�j)
2 and j�j1 =

NP
j

���j��. The solution to this problem is the so-called naive
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elastic net, given as:

�̂
NEN

=

�����̂LS���� �1=2
�
pos

1 + �2
sign

n
�̂
LS
o
: (2.8)

where �̂
LS
is the least square estimator of � and sign (�) equals �1: Here, \pos" denotes the

positive part of the term in parentheses. Zou and Hastie (2005), in the context of above

naive elastic net, point out that there is double shrinkage in this criterion, which does not

help to reduce the variance and may lead to additional bias so that they propose a version

of the elastic net in which this double shrinkage is corrected. In this context, the elastic net

estimator, �̂
EN
; is de�ned as:

�̂
EN

= (1 + �2) �̂
NEN

; (2.9)

where �2 is a constant, usually "optimized" via cross validation methods. Zou and Hastie

(2005) propose an algorithm called �LAR-EN�to estimate �̂
EN

using the LAR algorithm

implemented in this paper.4 In the current context, �̂
EN

is either the coe¢ cient vector

associated with the F̂t in a forecasting model of the variety given in (2.3), assuming that

 (�) = 1, or is a coe¢ cient vector associated directly with the panel dataset, Xt:

2.3.2.3 NON-NEGATIVE GAROTTE (NNG)

The non-negative garotte (NNG), was introduced by Breiman (1995). This method is a

scaled version of the least square estimator with shrinkage factors, and is closely related to

the EN and LAR. Yuan and Lin (2007) develop an e¢ cient garrotte algorithm and prove

consistency in variable selection. As far as we know, this method has previously not been

used in the econometrics literature. We follow Yuan and Lin (2007) and apply it to time

series forecasting. As usual, we begin by considering standardized X and Y . Assume that

the following shrinkage factor is given: q (�) = (q1 (�) ; q2 (�) ; :::; qN (�))
0 ; where � > 0 is a

4We use their algorithm, which is discussed in more detail in Kim and Swanson (2011).
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tuning parameter: The objective is to choose the shrinkage factor in order to minimize:

1

2
kY �Gqk2 + T�

NP
j=1

qj; subject to qj > 0; j = 1; ::; N; (2.10)

where G = (G1; ::; GN)
0, Gj = Xj

b�LSj ; and b�LS is the least squares estimator. The NNG
estimator of the regression coe¢ cient vector is de�ned as �̂

NNG

j = qj (�) �̂
LS

j ; and the estimate

of Y is de�ned as b� = X�̂
NNG

(�), so that predictions can be formed in a manner that is

analogous to that discussed in the previous subsections. Assuming, for example, that X 0X =

I, the minimizer of expression (2.10) has the following explicit form: qj (�) =
�
1� �

(�̂
LS
j )2

�
+

;

j = 1; :::; N: This ensures that the shrinking factor may be identically zero for redundant

predictors. The disadvantage of the NNG is its dependence on the ordinary least squares

estimator, which can be especially problematic in small samples. However, Zou (2006) shows

that the NNG with ordinary least squares is also consistent, if N is �xed, as T ! 1: Our

approach is to start the algorithm with the least squares estimator, as in Yuan (2007), who

outline a simple algorithm for the non-negative garotte that we use in the sequel.

2.3.3 Bayesian Model Averaging

In recent years, Bayesian Model Averaging (BMA) has been applied to many forecasting

problems, and has been frequently shown to yield improved predictive accuracy, relative to

approaches based on the use of individual models. For this reason, we include BMA in our

prediction experiments; and we view it as one of our benchmark modeling approaches. For

further discussion of BMA in a forecasting context, see Koop and Potter (2004), Wright

(2008, 2009), and Kim and Swanson (2011)

In addition, for a concise discussion of general BMA methodology, see Hoeting et al.

(1999) and Chipman et al. (2001). The basic idea of BMA starts with supposing interest

focuses on Q possible models, denoted by M1; :::;MQ, say: In forecasting contexts, BMA
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involves averaging target predictions, Yt+h from the candidate models, with weights appro-

priately chosen. In a very real sense, thus, it resembles bagging. The key di¤erence is that

BMA puts little weight on implausible models, as opposed to other varieties of shrinkage

discussed above that operate directly on regressors. The algorithm that we use for imple-

mentation of BMA follows closely Chipman et al. (2001), Fernandez et al. (2001a), and Koop

and Potter (2004). For complete details, the reader is referred to Kim and Swanson (2011).

2.4 Data

Following a long tradition in the di¤usion index literature, we examine monthly data ob-

servations on 144 U.S. macroeconomic time series for the period 1960:01 - 2009:5 (N =

144; T = 593)5. Forecasts are constructed for eleven variables, including: the unemployment

rate, personal income less transfer payments, the 10 year Treasury-bond yield, the consumer

price index, the producer price index, non-farm payroll employment, housing starts, indus-

trial production, M2, the S&P 500 index, and gross domestic product.6. These variables

constitute 11 of the 14 variables (for which long data samples are available) that the Fed-

eral Reserve takes into account, when formulating the nation�s monetary policy, as noted in

Armah and Swanson (2011), Kim and Swanson (2011), and on the Federal Reserve Bank of

New York�s website. Table 1 lists the eleven variables. The third row of the table gives the

transformation of the variable used in order to induce stationarity. In general, logarithms

were taken for all nonnegative series that were not already in rates (see Stock and Watson

(2002a, 2005a) for complete details). Note that a full list of predictor variables is provided

in the appendix to an earlier working paper version which is available upon request from the

authors.
5This is an updated and expanded version of the Stock and Watson (2005a,b) dataset.
6Note that gross domestic product is reported quaterly. We interpolate these data to a monthly frequency

following Chow and Lin (1971),
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2.5 Forecasting Methodology

Using the transformed dataset, denoted above by X, factors are estimated by the method

of principal component analysis discussed in Section 2. In Kim and Swanson (2011), factors

are additionally estimated using independent component analysis and sparse principal com-

ponent analysis. After estimating factors, the alternative methods outlined in the previous

sections are used to form forecasting models and predictions. In particular, we consider three

speci�cation types when constructing shrinkage based prediction models: Speci�cation Type

1 : Principal components are �rst constructed, and then prediction models are formed using

the shrinkage methods of Section 3 to select functions of and weights for the factors to be

used in our prediction models of the type given in (2.3). Speci�cation Type 2: Principal com-

ponent models of the type given in (2.3) are constructed using subsets of variables from the

largescale dataset that are �rst selected via application of the shrinkage methods of Section

3. This is di¤erent from the above approach of estimating factors using all of the variables.

Speci�cation Type 3: Prediction models are constructed using only the shrinkage methods

discussed in Section 3, without use of factor analysis at any stage.

In our prediction experiments, pseudo out-of-sample forecasts are calculated for each

variable and method, for prediction horizons h = 1; 3; and 12. All estimation, including lag

selection, shrinkage, and factor construction is done anew, at each point in time, prior to the

construction of each new prediction, using both recursive and rolling estimation windows.

Note that at each estimation period, the number of factors included will be di¤erent, following

the testing approach discussed in Section 2. Note also that lags of the target predictor

variables are also included in the set of explanatory variables, in all cases. Selection of the

number of lags to include is done using the SIC. Out-of-sample forecasts begin after 13 years

(e.g. the initial in-sample estimation period is R =156 observations, and the out-of-sample

period consists of P = T � R = 593 � 156 = 437 observations, for h = 1). Moreover,
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the initial in-sample estimation period is adjusted so that the ex ante prediction sample

length, P , remains �xed, regardless of the forecast horizon. For example, when forecasting

the unemployment rate, when h = 1, the �rst forecast will be Ŷ h=1
157 = �̂WW156 + �̂F ~F156;

while in the case where h = 12, the �rst forecast will be Ŷ h=12
157 = �̂WW145 + �̂F ~F145 In our

rolling estimation scheme, the in-sample estimation period used to calibrate our prediction

models is �xed at length 12 years. The recursive estimation scheme begins with the same

in-sample period of 12 years (when h = 12), but a new observation is added to this sample

prior to the re-estimation and construction of each new forecast, as we iterate through the

ex-ante prediction period. Note, thus, that the actual observations being predicted as well

as the number of predictions in our ex-ante prediction period remains �xed, regardless of

forecast horizon, in order to facilitate comparison across forecast horizons as well as models.

Forecast performance is evaluated using mean square forecast error (MSFE), de�ned as:

MSFEi;h =
T�h+1P
t=R�h+2

�
Yt+h � Ŷi;t+h

�2
; (2.11)

where bYi;t+h is the forecast for horizon h for the i�th model. Forecast accuracy is evaluated
using point MSFEs as well as the predictive accuracy test of Diebold and Mariano (DM:

1995), which is implemented using quadratic loss, and which has a null hypothesis that

the two models being compared have equal predictive accuracy. DM test statistics have

asymptotic N(0; 1) limiting distributions, under the assumption that parameter estimation

error vanishes as T; P;R ! 1, and assuming that each pair of models being compared is

nonnested: Namely, the null hypothesis of the test is H0 : E
h
l
�
"1t+hjt

�i
� E

h
l
�
"2t+hjt

�i
=

0;where "it+hjt is i�th model�s prediction error and l (�) is the quadratic loss function. The

actual statistic in this case is constructed as: DM = P�1
PP

i=1 dt=�̂d; where dt =
�
["1t+hjt

�2
��

["2t+hjt
�2
; d is the mean of dt, �̂d is a heteroskedasticity and autocorrelation robust estimator

of the standard deviation of d, and ["1t+hjtand ["2t+hjt are estimates of the true prediction errors



20

"1t+hjtand "
2
t+hjt. Thus, if the statistic is negative and signi�cantly di¤erent from zero, then

Model 2 is preferred over Model 1.

In concert with the various forecast model speci�cation approaches discussed above, we

form predictions using the following benchmark models, all of which are estimated using

least squares.

Univariate Autoregression: Forecasts from a univariate AR(p) model are computed

as Ŷ AR
t+h = �̂+ �̂ (L)Yt; with lags , p, selected using the SIC.

Multivariate Autoregression: Forecasts from an ARX(p) model are computed as

Y ARX
t+h = �̂+ �̂Zt+ �̂ (L)Yt; where Zt is a set of lagged predictor variables selected using the

SIC. Dependent variable lags are also selected using the SIC. Selection of the exogenous pre-

dictors includes choosing up to six variables prior to the construction of each new prediction

model, as the recursive or rolling samples iterate forward over time.

Principal Component Regression: Forecasts from principal component regression

are computed as Ŷ PCR
t+h = �̂ + ̂F̂t; where F̂t is estimated via principal components using

fXtgTt=1 ; as in equation (2.3).

Factor Augmented Autoregression: Based on equations (2.3), forecasts are com-

puted as Y h
t+h = �̂ + �̂F F̂t + �̂W (L)Yt: This model combines an AR(p) model, with lags

selected using the SIC, with the above principal component regression model.

Combined Bivariate ADL Model: As in Stock and Watson (2005a), we implement a

combined bivariate autoregressive distributed lag (ADL) model. Forecasts are constructed by

combining individual forecasts computed from bivariate ADL models. The i-th ADL model

includes pi;x lags ofXi;t; and pi;y lags of Yt; and has the form Ŷ ADL
t+h = �̂+�̂i (L)Xi;t+�̂i (L)Yt:

The combined forecast is Ŷ Comb;h
T+hjT =

n

�
t=1
wiŶ

ADL;h
T+hjT . Here, we set (wi = 1=n) ; where n = 146.

There are a number of studies that compare the performance of combining methods in

controlled experiments, including: Clemen (1989), Diebold and Lopez (1996), Newbold and

Harvey (2002), and Timmermann (2005); and in the literature on factor models, Stock and
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Watson (2004, 2005a, 2006), and the references cited therein. In this literature, combination

methods typically outperform individual forecasts. This stylized fact is sometimes called the

�forecast combining puzzle.�

Mean Forecast Combination: To further examine the issue of forecast combination,

we form forecasts as the simple average of the thirteen forecasting models summarized in

Table 2.

2.6 Empirical Results

In this section, we discuss the results of our prediction experiments. For the case where

models are estimated using recursive data windows, our results are gathered in Tables 3 to

6. Detailed results based on rolling estimation are omitted for the sake of brevity, although

they are available upon request from the authors. Summary statistics based upon both

estimation window types are contained in Tables 7 and 8.

Tables 3-6 report MSFEs and the results of DM predictive accuracy tests for all alterna-

tive forecasting models, using Speci�cation Type 1 without lags (Table 3), Speci�cation Type

1 with lags (Table 4), Speci�cation Type 2 (Table 5), and Speci�cation Type 3 (Table 6).

Panels A-C contain results for h =1, 3 and 12 month ahead prediction horizons, respectively.

In each panel, the �rst row of entries reports the MSFE of our AR(SIC) model, and all other

rows report MSFEs relative to the AR(SIC) value. Thus, entries greater than unity imply

point MSFEs greater than those of our AR(SIC) model. Entries in bold denote MSFE-�best�

models for a given variable,forecast horizon, and speci�cation type. For example, in Panel C

of Table 3, the MSFE-best model for unemployment (UR), when h=12, is ridge regression,

with a MSFE of 0.939. Recalling that all reported entries in Tables 3-6 are for recursively

estimated models, note that in each table, dot-circled entries denote cases for which the

MSFE-best model yields a lower MSFE than that based on using rolling estimation, under
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the same speci�cation type. For example, the ridge regression MSFE of 0.939 discussed

above (i.e. see Table 3, UR, h = 12) is not dot-circled because one of the models, under

rolling window estimation, yields a lower MSFE, under Speci�cation Type 1 without lags.

However, the MSFE value for UR of 0.780 in Table 3, under h = 1 is dot-circled, denoting

that no model yields a lower MSFE under rolling window estimation, for Speci�cation Type

1 with no lags. This method of reporting allows us to compare rolling window estimation

results without having to actually report rolling type MSFEs in our tables. Boxed entries

denote cases where models are MSFE �winners� across all speci�cation types (i.e. across

Tables 3-6), when only viewing recursively estimated models. For example, in Panel A of

Table 3, the MSFE-best value for HS is ARX(SIC), and the value is boxed, denoting the

fact that this MSFE value is the lowest across all 4 tables (i.e. across all speci�cation types),

under recursive estimation. Note that we do not draw a box around ARX(SIC) in other

speci�cation since it is redundant, as the ARX(SIC) in each speci�cation type is identical

(only factor methods change across speci�cations types; benchmark linear models remain

the same). However, the fact that the entry is not also dot-circled indicates that a lower

MSFE arises for one of the models when estimated using rolling windows of data, for the

speci�cation reported on in this particular table. Finally, circled entries denote models that

are MSFE-best across all speci�cation and estimation window types. For example, in Panel

A of Table 3 it is apparent that FAAR in the �universal�MSFE-best model for UR, at

horizon h = 1:That is, if one method in recursive estimation "wins", we circle it and do not

put a box around it, as this would be redundant information.

Results from DM predictive accuracy tests, for which the null hypothesis is that of equal

predictive accuracy between the benchmark model (de�ned to be the AR(SIC) model), and

the model listed in the �rst column of the tables, are reported with single starred entries

denoting rejection at the 10% level, and double starred entries denoting rejection at the 5%

level.
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Various results are apparent, upon inspection of tables. For example, for Speci�cation

Type 1, notice that in Panel A of Table 3, every forecast model yields a lower MSFE than the

AR(SIC) model except bagging, when predicting the unemployment rate (UR), regardless of

forecast horizon, with one exception (i.e. for h = 12, the ARX(SIC) model also has higher

MSFE than the AR(SIC) model). Indeed, for most variables, there are various models that

have lower point MSFEs than the AR(SIC) model, regardless of forecast horizon. However,

there are exceptions. For example, for TB10Y, there are few models that yield lower MSFEs

that the AR(SIC) model, other than when h = 1, regardless of speci�cation type (compare

Table 3-6): Still, even in this case, there are some models that outperform the AR(SIC)

model, even for horizons other than h = 1; including the Combined-ADL model under Spec-

i�cations 1 and 2 (see Tables 3-5, Panels B and C), and LAR or EN under Speci�cation 3 (see

Table 6, Panels B and C). Additionally, comparison of the results in Tables 3 and 4 suggests

that there is little advantage to using lags of factors when constructing predictions in our

context. Instead, it appears that the more important determinant of model performance is

the type of combination factor/shrinkage type model employed when constructing forecasts.

Evidence of this will is discussed in some detail below.

There are no models that uniformly yield lowest MSFEs, across both forecast horizon

and variable. However, various models perform quite well, including in particular FAAR and

PCR models. This supports the oft reported result that models that incorporate common

factors o¤er a convenient way to �lter the information contained in large-scale economic

datasets.

Turning to Table 7, notice that the results reported in Panel A summarize �ndings of

Tables 1-3. In particular, �wins" are reported across all speci�cation types, so that each row

of entries in the panel sum to 11, the number of target variables in our experiments. When

comparing results for h = 1; 3; and 12, we see that forecasts constructed using our model

averaging speci�cations (Combined-ADL, BMA, and Mean) yield MSFE-best predictions for
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1/11 (h = 1), 5/11 (h = 3), and 3/11 (h = 12) variables when using only recursive estimation,

and for 0/11 (h = 1), 5/11 (h = 3), and 3/11 (h = 12) variables, when using both recursive

and rolling estimation windows. This result is quite interesting, given the plethora of recent

evidence indicating the superiority of model averaging methods in a variety of forecasting

contexts; and is accounted for in part by our use of various relatively complicated combined

factor/shrinkage models. In particular, when combining �wins� across all three forecast

horizons in the right hand section of Panel A in Table 7, note that C-Boosting, Ridge, LAR,

EN, and NNG �win�in 15/33 cases. Moreover, the majority of these �wins�are accounted

for by Speci�cations 1 and 2, suggesting that our shrinkage type methods perform best when

coupled with factor analysis. In contrast, pure factor models (FAAR and PCR) yield �wins�

in 8/33 cases, model averaging methods yield �wins�in 8/33 cases, and our non-factor and

non-shrinkage based models �win� in 2/33 cases. Thus, the dominant model type is the

combination factor/shrinkage type model. Finally, models that involve factors, in aggregate,

�win�in 23/33 cases; model averaging fares quite poorly; and pure linear models are almost

never MSFE-best.

As evidenced in Panel B of Table 7, MSFE-best recursively estimated models dominate

MSFE-best models estimated using rolling windows around 70% of the time, regardless of

forecast horizon. This is perhaps not surprising, given the number of times that our more

complicated combination factor/shrinkage type models are MSFE-best across all speci�cation

and estimation types; and suggests that structural breaks play a secondary role to parameter

estimation error in determining the MSFE-�best�models.7

It should also be noted that DM test statistics yield ample evidence that a variety of

models are statistically superior to our simple linear benchmark model, including many of

7In lieu of this �nding, the experiments carried out in this paper were replicated using the approach
proposed by Clements and Hendry for addressing level shifts in the underlying data generating processes
of our target variables (for details, refer to Clements and Hendry (1994, 1995, 2008)). Adjusting for level
shifts by using di¤erences of di¤erences did not lead to notably improved prediction performance, however.
(Complete results are available upon request from the authors.)
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our more sophisticated shrinkage based models. Such models are denoted as starred entries

in the tables (see Section 4.2 for further details).

Finally, turning to the results in Table 8, notice that for a single forecast horizon, h = 1,

results have been re-calculated for sub-samples corresponding to all of the NBER-dated

expansionary periods in our sample, and to the combination of all recessionary and all

expansionary periods. Although results drawn from inspection of this table are largely in

accord with those reported above, one additional noteworthy �nding is worth stressing.

Namely, in Panel A of the table, note that, when MSFE-best models are tabulated by

speci�cation type, our model averaging speci�cations perform quite well, particularly for

Speci�cation Types 2 and 3. This conforms to the results that can be observed by individually

looking at each of Tables 3-6 (i.e. compare the bolded MSFE-best models in each individual

table). However, notice that when results are summarized across all speci�cation types

(see Panel B of the table), then the model averaging type speci�cations yield MSFE-best

predictions in far fewer cases. This is because Speci�cation Type 1, where model averaging

clearly �wins�the least, is the predominant winner when comparing the three speci�cation

types, as mentioned previously. Namely, the model building approach whereby we �rst

construct factors and thereafter use shrinkage methods to estimate functions of and weights

for factors to be used in our prediction models is the dominant speci�cation type. This

result serves to further stress that when more complicated speci�cation methods are used,

model averaging methods fare worse, and combination factor/shrinkage based approaches

fare better. Put di¤erently, we have evidence that when simpler linear models are speci�ed,

model averaging does worse than when more sophisticated nonlinear models are speci�ed.

Additionally, pure factor type models also perform well, particularly for the long expansion

period from 1982-1990.

Given the importance of factors in our forecasting experiments, it would seem worthwhile

to examine which variables contribute to the estimated factors used in our MSFE-best mod-
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els, across all speci�cation and estimation window types. This is done in Figure 1, where

we report the ten most frequently selected variables for a variety of MSFE-best models and

forecast horizons. Keeping in mind that factors are re-estimated at each point in time, prior

to each new prediction being constructed, a 45 degree line denotes cases for which a partic-

ular variables is selected every time. For example, in Panels A and B, the BAA Bond Yield

- Federal Funds Rate spread is the most frequently selected predictor when constructing

factors to forecast the Producer Price Index and Housing Starts, respectively. For Speci�-

cation Type 1, variables are selected based on the A(j) and M(j) statistics following Bai

and Ng (2006a) and Armah and Swanson (2010b), and for Speci�cation Type 2, we directly

observe variables which are selected by shrinkage methods and then used to construct fac-

tors, prior to the construction of each new forecast. The list of selected variables does not

vary much, for Speci�cation Type 1. On the other hand, in Panels D and F, we see that

the most frequently selected variables are not selected all the time. For example, in Panel

D, CPI:Apparel is selected over all periods and the 3 month Treasury bill yield is selected

continuously, after 1979. Of further note is that interest-rate related variables (i.e. Trea-

sury bills rates, Treasury bond rates, and spreads with Federal Funds Rate) are frequently

selected, across all speci�cation type, estimation window types, and forecast horizons. This

con�rms that in addition to their well established usefulness in linear models, yields and

spreads remain important in nonlinear modelling contexts.

2.7 Concluding Remarks

This paper empirically examines approaches to combining factor models and robust estima-

tion, and presents the results of a �horse-race�in which mean-square-forecast-error (MSFE)

�best�models are selected, in the context of a variety of forecast horizons, estimation win-

dow schemes and sample periods. In addition to pure common factor prediction models, the
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forecast model speci�cation methods that we analyze include bagging, boosting, Bayesian

model averaging, ridge regression, least angle regression, the elastic net and the non-negative

garotte; as well as univariate autoregressive and autoregressive plus exogenous variables mod-

els. For the majority of the target variables that we forecast, we �nd that various of these

shrinkage methods, when combined with simple factors formed using principal component

analysis (e.g. component-wise boosting), perform better than all other models. This suggests

that di¤usion index methodology is particularly useful when combined with other shrinkage

methods, thus adding to the extant evidence of this �nding (see Bai and Ng (2008, 2009),

and Stock and Watson (2005a)).

We also �nd that model averaging methods perform surprisingly poorly, given our prior

that they would �win�in most cases. Given the rather extensive empirical evidence suggest-

ing the usefulness of model averaging when specifying linear prediction models, this is taken

as further evidence of the usefulness of more sophisticated nonlinear modelling approaches.
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Series Abbreviation Yt+h

Unemployment Rate UR Zt+1-Zt

Personal Income Less Transfer Payments PI ln(Zt+1-Zt)
10 Year Treasury Bond Yield TB10Y Zt+1-Zt

Consumer Price Index CPI ln(Zt+1-Zt)
Producer Price Index PPI ln(Zt+1-Zt)
Nonfarm Payroll Employment NNE ln(Zt+1-Zt)
Housing Starts HS ln(Zt)
Industrial Production IPX ln(Zt+1-Zt)
M2 M2 ln(Zt+1-Zt)
S&P 500 Index SNP ln(Zt+1-Zt)
Gross Domestic Product GNP ln(Zt+1-Zt)

Method
AR(SIC)
ARX
Combined-ADL
FAAR
PCR
Bagging
Boosting
BMA(1/T)
BMA(1/N2)
Ridge
LARS
EN
NNG
Mean

Bayesian model averaging with g -prior = 1/T

Table 1: Target Variables For Which Forecasts Are Constructed*

* Notes : Data used in model estimation and prediction construction are monthly U.S. figures for the period 
1960:1-2009:5. The transformation used in forecast model specification and forecast construction is given in the 
last column of the table. See Section 4.1 for complete details. 

Table 2: Models and Methods Used In Real-Time Forecasting Experiments*

Description
Autoregressive model with lags selected by the SIC
Autoregressive model with exogenous regressors
Combined autoregressive distributed lag model
Factor augmented autoregressive model
Principal components regression
Bagging with shrinkage, c = 1.96
Component boosting, M = 50

* Notes: This table summarizes the model specification methods used in the construction of prediction models. 
In addition to the above pure linear, factor and shrinkage based methods, three different combined factor and 
shrinkage type prediction model specification methods are used in our forecasting experiments, including: 
Specification Type1 - Principal components are first constructed, and then prediction models are formed using 
the above shrinkage methods (ranging from bagging to NNG) to select functions of and weights for the factors 
to be used in our prediction moels. Specification Type 2 - Principal component models are constructed using 
subsets of variables from the large-scale dataset that are first selected via application of the above shrinkage 
methods (ranging from bagging to NNG). This is different from the above approach of estimating factors using 
all of the variables. Specification  Type 3 - Prediction models are constructed using only the above shrinkage 
methods (ranging from bagging to NNG), without use of factor analysis at any stage. See Sections 3 and 4.3 for 
complete details. 

Bayesian model averaging with g -prior = 1/N2

Ridge regression
Least angle regression
Elastic net
Non-negative garotte
Arithmetic mean
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Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 40.975 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

ARX(SIC) 0.897 0.974 1.038 0.939 1.031 0.989 0.900 0.874 1.120 1.104 0.916
Combined-ADL 0.957** 1.052 0.987 1.030 1.019 0.938 0.977** 0.944 1.101* 1.002 1.093**

FAAR 0.780** 0.902 0.950 0.916 0.969 0.811* 0.961 0.804** 0.953 1.023 0.965 
PCR 0.830** 0.870 1.019 0.875 0.943 0.922 1.764** 0.800** 1.43** 1.018 0.973 

Bagging 1.025 1.062 0.977 1.341* 1.167** 0.913 1.084 1.080 0.985 1.019 0.958 
C-Boosting 0.902* 0.969 0.953 0.963 0.989 0.875** 0.949 0.848** 0.958 0.978 1.006 
BMA(1/T) 0.899 0.965 0.954 0.954 0.991 0.873** 0.960 0.851** 0.972 0.989 1.018 
BMA(1/N2) 0.892* 0.969 0.947 0.954 0.991 0.866** 0.949 0.839** 0.969 0.987 1.012 

Ridge 0.887** 0.964 0.940 0.963 1.000 0.885* 0.938 0.816** 0.969 1.006 0.996 
LARS 0.913* 0.968 0.972** 0.977 0.984 0.954** 0.981 0.949** 0.977 0.982 0.995 
EN 0.913* 0.969 0.972** 0.977 0.984 0.954** 0.981 0.95** 0.977 0.982 0.995 

NNG 0.966** 0.98** 0.994 0.979* 0.984 0.95** 0.989 0.984* 0.989** 0.985 0.991 
Mean 0.859** 0.933** 0.942** **0.910 0.953 0.841** 0.910** 0.845** 0.939** 0.976 0.940**

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.620 0.009

ARX(SIC) 0.988 0.902 1.016* 0.981 0.945 0.940 1.000 0.895 1.000 1.028 1.032
Combined-ADL 0.977** 1.058 0.998 1.059* 1.045 0.948 0.955** 0.948 1.233** 1.010 1.109

FAAR 0.915 0.867** 1.026 0.929 0.936 0.818** 0.895 0.866 1.006 1.052 1.058
PCR 0.912 0.865** 1.004 0.930 0.909 0.835* 1.447** 0.859 1.164* 1.043 1.020

Bagging 1.062 1.071 1.013 1.168** 1.096 1.016 0.899 0.938 1.017 1.004 1.025
C-Boosting 0.935 0.924* 1.004 0.977 0.984 0.883* 0.852* 0.880 0.988 1.005 0.983
BMA(1/T) 0.946 0.935 1.006 0.992 0.983 0.868* 0.852* 0.888 0.996 1.006 0.994
BMA(1/N2) 0.932 0.920 1.008 0.988 0.984 0.861* 0.854* 0.881 0.994 1.011 0.996

Ridge 0.919 0.893** 1.012 0.982 0.991 0.866* 0.891 0.865 0.993 1.017 0.994
LARS 0.977 0.977** 1.003 0.992 0.993 0.984 0.926* 0.963 0.997 0.994 0.974
EN 0.977 0.977** 1.003 0.992 0.993 0.984 0.926* 0.963 0.996 0.993 0.974

NNG 0.980* 0.992* 1.005 0.990 0.990 0.989 0.984** 0.987* 0.996 1.003 0.985*
Mean 0.920* 0.898** 1.000 0.947 0.938** 0.858** 0.862** 0.849** 0.977 0.998 0.955

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.620 0.009

ARX(SIC) 1.014 0.993 1.001 1.004 1.006 0.991 1.000 0.995 1.000 1.046 1.000
Combined-ADL 0.980** 1.064 0.996 1.043 1.037 0.966 0.952** 0.952 1.212** 1.010 1.172**

FAAR 0.956 1.009 1.032 0.886** 0.939 0.874 0.818** 0.972 0.989 1.022 1.045
PCR 0.958 1.003 1.021 0.929 0.948 0.887 0.956 0.962 1.061 1.023 1.034

Bagging 1.072** 0.968 1.035 0.895** 0.993 1.178** 0.932 1.052* 0.982 1.003 1.008
C-Boosting 0.950 0.986 1.005 0.901** 0.955* 0.909 0.85** 0.954 0.989 1.007 1.010
BMA(1/T) 0.960 1.000 1.002 0.901* 0.955 0.922 0.852** 0.956 0.994 1.003 1.015
BMA(1/N2) 0.959 0.997 1.004 0.903* 0.955 0.908 0.854** 0.955 0.995 1.005 1.020

Ridge 0.939 0.988 1.007 0.896** 0.954 0.892 0.875** 0.949 0.991 1.007 1.021
LARS 0.959 0.981 1.005 0.983** 0.985** 0.932 0.909** 0.936 0.993 1.008 1.001
EN 0.960 0.980 1.004 0.983** 0.985** 0.932 0.909** 0.936 0.992 1.008 1.001

NNG 0.975** 0.988* 1.010 0.992** 0.991** 0.975** 0.981** 0.967** 0.992 1.011 1.000
Mean 0.942 0.955 1.005 0.894** 0.939** 0.875** 0.853** 0.918 0.957** 1.001 0.999

Table 3: Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 1 (no lags)*
Panel A: Recursive, h = 1

Panel B: Recursive, h = 3

Panel C: Recursive, h = 12

*Notes: See notes to Tables 1 and 2. Numerical entries in this table are mean square forecast errors (MSFEs) based on the use of various 
recursively estimated prediction models. Forecasts are monthly, for the period 1974:3-2009:5. Models and target variables are predicted in 
Tables 1 and 2. Forecast horizons reported on include h=1,3 and 12. Entries in the first row, corresponding to our benchmark AR(SIC) 
model, are actual MSFEs, while all other entries are relative MSFEs, such that numerical values less than unity constitute cases for which the 
alternative model has lower point MSFE than the AR(SIC) model. Entries in bold denote point-MSFE "best" models for a given variable and 
forecast horizon. Dot-circled entries denote cases for which the Specification Type 1 (no lags) MSFE-best model using recursive estimation 
yields a lower MSFE than that based on using rolling estimation. Circled entries denote models that are MSFE-best across all specification 
types and estimation types (i.e. rolling and recursive). Boxed entries denote cases where models are "winners" across all specification types, 
when only viewing recursively estimated models. The results from Diebold and Mariano (1995) predictive accuracy tests, for which the null 
hypothesis is that of equal predictive accuracy between the benchmark model (defined to be the AR(SIC) model), and the model listed in the 
first column of the table, are reported with single starred entries denoting rejection at the 10% level, and double starred entries denoting 
rejection at the 5% level. See Sections 4 and 5 for complete details.
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Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 40.975 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

ARX(SIC) 0.897 0.974 1.038 0.939 1.031 0.989 0.900 0.874 1.120 1.104 0.916
Combined-ADL 0.957** 1.052 0.987 1.030 1.019 0.938 0.977** 0.944 1.101* 1.002 1.093**

FAAR 0.850* 0.926 1.044 0.888 1.008 1.005 1.079 0.851 0.968 1.095 1.050
PCR 0.908 0.888 1.058 0.864 1.002 0.999 1.646** 0.855 1.292** 1.091 1.076

Bagging 1.287** 1.017 1.069* 2.566** 1.545** 2.160** 1.851** 1.304** 1.028 1.131** 0.962
C-Boosting 0.903 0.968 0.961 0.951 1.002 0.910 0.945 0.827** 0.963 0.975 1.005
BMA(1/T) 0.910 0.972 0.988 0.942 1.018 0.904 0.956 0.804** 0.959 1.012 1.019
BMA(1/N2) 0.907 0.962 0.996 0.955 1.023 0.904 0.954 0.816** 0.947 1.002 1.022

Ridge 0.911 0.959 0.988 0.919 1.014 0.944 0.992 0.821** 0.977 1.048 1.040
LARS 0.975** 0.977* 0.981 0.988 0.988 0.967* 0.974 0.948** 0.972* 0.989 0.995
EN 0.977** 0.978** 0.982 0.988 0.988 0.969* 0.975 0.949** *0.970 0.989 0.992

NNG 0.972** 0.990 0.994 0.984 0.996 0.975 0.989 0.964** 0.993 0.993 0.994
Mean 0.867** 0.922** 0.955 0.889** 0.944 0.879** 0.922* 0.821** **0.930 0.977 0.948*

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.620 0.009

ARX(SIC) 0.988 0.902 1.016* 0.981 0.945 0.940 1.000 0.895 1.000 1.028 1.032
Combined-ADL 0.977** 1.058 0.998 1.059* 1.045 0.948 0.955** 0.948 1.233** 1.010 1.109

FAAR 1.014 0.931 1.106 0.907 0.992 0.886 0.898 0.925 1.069 1.117* 1.144
PCR 0.999 0.928 1.092 0.906 0.975 0.898 1.404** 0.921 1.249** 1.107 1.115

Bagging 1.174** 1.017 1.141** 1.339** 1.204* 1.295** 1.050 1.010 0.995 1.007 1.087**
C-Boosting 0.951 0.914* 1.010 0.946 0.969 0.832** 0.879 0.868 1.006 1.007 0.967
BMA(1/T) 0.944 0.932 1.020 0.943 0.982 0.818** 0.903 0.851 1.027 1.030 0.990
BMA(1/N2) 0.954 0.942 1.011 0.953 0.981 0.836* 0.889 0.862 1.020 1.011 0.979

Ridge 0.944 0.917 1.047 0.933 0.992 0.844 0.891 0.869 1.046 1.064 1.033
LARS 0.979 0.973** 0.992 0.984 0.982 0.968 0.951** 0.962 0.996 1.000 0.969
EN 0.973* 0.975** 0.991 0.983 0.986 0.963 0.965** 0.962 0.996 1.000 0.969**

NNG 0.980 0.986* 1.001 0.991 0.995 0.963** 0.977** 0.967** 0.993 0.993 *0.970
Mean 0.924 0.891** 0.988 0.901** 0.928** 0.84** 0.851** 0.838** 0.977 0.997 0.962

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.621 0.009

ARX(SIC) 1.014 0.993 1.001 1.004 1.006 0.991 1.000 0.995 1.000 1.046 1.000
Combined-ADL 0.980** 1.064 0.997 1.043 1.037 0.966 0.952** 0.952 1.212** 1.010 1.172**

FAAR 0.985 1.070 1.087 0.938 0.951 0.932 0.841* 1.082 1.049 1.081* 1.145**
PCR 0.983 1.069 1.081 0.932 0.942 0.924 1.020 1.071 1.116* 1.081* 1.132**

Bagging 1.003 **1.050 1.053 1.137* 1.078 1.174** 0.900 1.104** 0.971 1.034 1.001
C-Boosting 0.913 0.985 0.988 0.89** 0.947 0.896 0.846** 0.947 0.941 0.999 1.031
BMA(1/T) 0.930 1.007 1.002 0.908 0.935* 0.888 0.853** 0.975 0.981 1.006 1.031
BMA(1/N2) 0.936 0.997 0.999 0.909* 0.952 0.907 0.833** 0.964 0.982 1.002 1.019

Ridge 0.926 1.005 1.029 0.897 0.931 0.867 0.887* 1.006 1.001 1.029 1.067
LARS 0.968** 0.973 0.992 0.974** 0.988 0.974* 0.923** 0.963* 0.973** 0.995 1.004
EN 0.969** 0.971 0.992 0.972** 0.989 0.963** 0.929** 0.965* 0.975** 0.994 1.003

NNG 0.979** 0.985 1.002 0.993 1.007 0.975** 0.967** 0.978* 0.994 0.998 0.999
Mean 0.902** 0.956 0.995 0.888** 0.927** **0.860 0.829** 0.925 0.943** 0.999 1.010

Table 4: Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 1 (with lags)*
Panel A: Recursive, h = 1

Panel B: Recursive, h = 3

Panel C: Recursive, h = 12

*Notes: See notes to Table 3. Dot-circled entries denote cases for which the Specification Type 1 (lags) MSFE-best model using recursive 
estimation yields lower MSFE than using rolling estimation. Circled entries denote models that are MSFE-best across all specification types and 
estimation types (i.e. rolling and recursive). Boxed entries denote cases where models are "winners" across all specification types, when only 
viewing recursively estimated models.
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Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 40.975 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

C-Boosting 0.891* 0.962 0.971 0.961 1.024 0.887 0.961 0.906 1.047 1.011 0.865**

BMA(1/T) 0.896* 0.956 1.005 0.968 0.989 0.870** 0.990 0.864** 0.960 0.995 1.013

BMA(1/N2) 0.900* 0.962 0.986 0.945 0.983 0.899* 0.942 0.893** 0.926 1.019 1.012
LARS 0.914** 0.994 0.972** 0.998 1.008 0.916** 0.978 0.996 0.982** 0.983 0.876**
EN 1.149* 1.217 1.118 3.646** 1.464** 2.804** 11.041** 1.186** 4.340** 1.092** 1.308**

NNG 0.993** 0.996* 0.997 0.999 1.000 0.991** 1.001* 0.997* 1.000 1.001 1.000
Mean 0.907** 0.963** 0.968 0.960 0.979 0.886** 0.953** 0.902** 0.951* 0.984 0.93**

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.620 0.009

C-Boosting 0.934 0.902 1.028 0.946 1.020 0.847** 0.780 0.819* 1.016 1.017 0.985

BMA(1/T) 0.959 0.920 1.011 0.996 1.023 0.903 0.882 0.902 0.994 1.009 0.991

BMA(1/N2) 0.946 0.937 1.006 1.005 1.011 0.912 0.871 0.890** 1.001 1.010 1.027
LARS 0.983 0.982** 1.000 0.996 1.005 0.968** 0.937 0.960* 0.990 0.998 0.994
EN 1.136** 1.206** 0.961 2.678** 1.280** 2.166** 5.287** 1.103* 3.488** 1.010 **1.240

NNG 0.997** 0.996** 1.000 0.997 0.998 0.995** 1.000 0.999 0.999 1.001 0.998**
Mean 0.943 0.922** 1.005 0.966 0.994 0.887** 0.827** 0.871** 0.976 0.997 0.966

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.620 0.009

C-Boosting 0.936 0.976 1.031 0.907 0.972 0.845* 0.786** 0.940 0.962 1.016 1.006

BMA(1/T) 0.947 1.000 1.003 0.902** 0.991 0.930 0.887* 0.959 0.997 1.004 1.011

BMA(1/N2) 0.938 1.007 1.003 0.917* 0.975 0.920 0.881** 0.993 0.981 1.007 1.024
LARS 0.957 0.979 1.002 0.970** 0.979** 0.966** 0.910** 0.912** 0.959** 1.006 0.981
EN 0.977 1.19** 0.979 2.497** 1.251** 1.242** 1.307** 0.977 3.206** 1.010 1.226**

NNG 0.997** 0.999 1.001 0.997** 0.997** 0.995** 0.997** 0.995** 0.999 1.002 0.999
Mean 0.933 0.965 1.004 0.913** 0.966** 0.892** 0.846** 0.925* 0.961* 1.004 0.994

Table 5: Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 2*

Panel A: Recursive, h = 1

Panel B: Recursive, h = 3

Panel C: Recursive, h = 12

*Notes: See notes to Table 3. Dot-circled entries denote cases for which the Specification Type 2 MSFE-best model using recursive 
estimation yields lower MSFE than using rolling estimation. Circled entries denote models that are MSFE-best across all specification types 
and estimation types (i.e. rolling and recursive). Boxed entries denote cases where models are "winners" across all specification types, when 
only viewing recursively estimated models.
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Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.713 0.009 0.000 0.003 0.012 0.001 2.477 0.021 0.004 0.573 0.008

ARX(SIC) 0.897 0.974 1.038 0.939 1.031 0.989 0.900 0.873 1.120 1.104 0.916
Combined-ADL 0.957** 1.052 0.987 1.030 1.019 0.938 0.977** 0.944 1.101* 1.002 1.093**

C-Boosting 0.944 0.965* 0.992 0.962 0.975 0.910 0.924* 0.936 1.010 0.988 0.915**
BMA(1/T) 1.012 1.137 1.059 1.541 1.223** 1.685** 1.250 0.980 1.193 1.231** 0.933

BMA(1/N2) 0.933 0.985 1.028 1.018 1.089 1.042 1.066 0.891 1.131 1.077 0.911
Ridge 1.668** 1.575** 1.424** 1.547** 1.643** 1.743** 1.795** 1.789** 1.430** 1.688** 1.388**
LARS 1.952** 0.993 1.797** 0.998 1.008 0.914** 2.02** 1.008 0.978** 1.975** 0.875**
EN 1.057 0.994 1.116 0.998 1.008 0.916** 1.082 0.996 0.982** 1.258** 0.876**

NNG 0.993** 0.996* 0.997 0.999 1.000 0.991** 1.001* 0.997* 1.000 1.001 1.000
Mean 0.924 0.943* 0.995 0.933 0.956 0.826** 0.910 0.875** 0.977 1.045 0.873**

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 12.857 0.009 47.642 0.004 0.014 0.001 5.173 0.023 0.005 0.62 0.009

ARX(SIC) 0.988 0.902 1.016* 0.981 0.945 0.940 1.000 0.895 1.000 1.028 1.032
Combined-ADL 0.977** 1.058 0.998 1.059* 1.045 0.948 0.955** 0.948 1.233** 1.010 1.109

C-Boosting 0.943 0.951* 1.010 0.999 1.016 0.899** 0.820** 0.886** 0.980 1.014 0.974
BMA(1/T) 1.154 1.022 1.241** 1.092 1.094 1.109 1.041 1.076 1.089 1.158* 1.168**

BMA(1/N2) 0.969 0.922 1.025 1.047 1.034 0.877 0.941 0.881 1.063 1.034 1.011
Ridge 1.873** 1.517** 1.743** 1.362** 1.479** 1.675** 1.133 1.811** 1.447** 1.813** 1.95**
LARS 2.183** 0.977** 1.923** 0.997 1.006 0.962** 1.299 0.958** 0.989 2.099** 1.255**
EN 1.169 0.982** 1.319** 0.996 1.005 0.968** 0.828 0.96** 0.990 1.243** 0.994

NNG 0.997** 0.996** 1.000 0.997 0.998 0.995** 1.001 0.999 0.999 1.000 0.998**
Mean 0.991 0.911** 1.070 0.926* 0.953 0.859** 0.723** 0.881** 0.938* 1.033 0.992

Method UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
AR(SIC) 14.951 0.009 46.773 0.004 0.014 0.002 20.916 0.026 0.006 0.62 0.009

ARX(SIC) 1.014 0.993 1.001 1.004 1.006 0.991 1.000 0.995 1.000 1.046 1.000
Combined-ADL 0.980** 1.064 0.996 1.043 1.037 0.966 0.952** 0.952 1.212** 1.010 1.172**

C-Boosting 0.926 0.961 1.015 0.934* 0.971 0.862** 0.874** 0.934 0.969 1.007 0.995
BMA(1/T) 1.233 1.073 1.152** 1.298** 1.199 1.760 **1.760 1.164 1.366** 1.082 1.254**

BMA(1/N2) 1.019 1.009 1.039 1.127 1.106 1.447 1.618** 0.958 1.163* 1.017 1.074
Ridge 1.555** 1.807** 1.752** 1.382** 1.677* 1.859* 1.087 1.936** 1.316** 1.794** 1.925**
LARS 1.858** 0.979 1.983** 0.975* 0.979* 1.123 1.312 2.212** 0.957** 2.226** 0.983
EN 1.207 0.978 1.327** 0.97** 0.979** 0.966** 0.803** 0.889 0.959** 1.283** 0.981

NNG 0.997** 0.999 1.001 0.997** 0.997** 0.995** 0.997** 0.995** 0.999 1.002 0.999
Mean 0.960 0.966 1.076* 0.899** 0.953 0.885 0.840** 0.925 **0.910 1.047 1.011

Table 6: Relative Mean Square Forecast Errors: Recursive Estimation, Specification Type 3*

Panel A: Recursive, h = 1

Panel B: Recursive, h = 3

Panel C: Recursive, h = 12

*Notes: See notes to Table 3. Dot-circled entries denote cases for which the Specification Type 3 MSFE-best model using recursive estimation 
yields lower MSFE than using rolling estimation. Circled entries denote models that are MSFE-best across all specification types and 
estimation types (i.e. rolling and recursive). Boxed entries denote cases where models are "winners" across all specification types, when only 
viewing recursively estimated models.
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h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
AR(SIC) 0 0 0 1 0 0

ARX(SIC) 1 0 0 1 0 0
Combined-ADL 0 0 0 0 0 0

FAAR 2 0 1 2 0 1
PCR 4 3 0 3 2 0

Bagging 0 0 0 0 0 0
C-Boosting 2 1 2 3 2 3
BMA(1/T) 0 1 0 0 0 0
BMA(1/N2) 0 0 0 0 2 0

Ridge 1 0 0 1 0 0
LARS 0 0 1 0 0 1
EN 0 1 3 0 1 3

NNG 0 1 1 0 1 0
Mean 1 4 3 0 3 3

h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
Specification Type 1
       Rolling 2 2 3
       Recursive 9 9 8
Specification Type 2
       Rolling 5 9 4
       Recursive 6 2 7
Specification Type 3
       Rolling 3 2 2
       Recursive 8 9 9

Winners by Estimaton Window Type Winners by Specification Type

Table 7: Forecast Experiment Summary Results*

Panel A: Summary of MSFE-"best" Models Across All Specification Types

Recursive Estimation Window
Recursive and Rolling 
Estimation Windows

Panel B: Summary of MSFE-"best" Models 

0 1 1

*Notes: See notes to Table 3. Specification types are defined as follows. Specification Type1 - Principal 
components are first constructed, and then prediction models are formed using the above shrinkage methods 
(ranging from bagging to NNG) to select functions of and weights for the factors to be used in our prediction 
model. Specification Type 2 - Principal component models are constructed using subsets of variables from the 
largescale dataset that are first selected via application of the above shrinkage methods (ranging from bagging to 
NNG). This is different from the above approach of estimatiing factors using all of the variables. Specification  
Type 3 - Prediction models are constructed using only the above shrinkage methods (ranging from bagging to 
NNG), without use of factor analysis at any stage.

7 4 5

4 6 5
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Subsample Mean
Linear 
Factor

Nonlinear
Factor

Other Mean
Linear 
Factor

Nonlinear
Factor

Other Mean
Linear 
Factor

Nonlinear
Factor

Other

75:03 ~ 79:12 3 1 5 2 4 0 6 1 3 0 5 3
80:07 ~ 81:06 1 4 2 4 5 0 5 1 6 0 2 3
82:11 ~ 90:06 1 8 2 0 8 0 3 0 4 0 4 3
91:03 ~ 01:02 5 2 2 2 6 0 5 0 8 0 1 2
01:11 ~ 07:11 5 0 4 2 6 0 5 0 5 0 2 4
Non Recession 1 6 2 2 8 0 3 0 7 0 3 1

Recession 3 5 1 2 5 0 6 0 7 0 2 2

Subsample Mean
Linear 
Factor

Nonlinear
Factor

Other Mean
Linear 
Factor

Nonlinear
Factor

Other Mean
Linear 
Factor

Nonlinear
Factor

Other

75:03 ~ 79:12 2 1 3 1 0 0 2 0 1 0 1 0
80:07 ~ 81:06 0 4 0 2 1 0 3 0 1 0 0 0
82:11 ~ 90:06 1 8 0 0 1 0 0 0 1 0 0 0
91:03 ~ 01:02 3 1 2 0 0 0 0 0 4 0 0 1
01:11 ~ 07:11 0 4 3 1 1 0 0 0 2 0 0 0
Non Recession 1 5 2 0 0 0 1 0 2 0 0 0

Recession 1 3 0 1 0 0 1 0 4 0 1 0

Specification Type 1 Specification Type 2 Specification Type 3

*Notes: See notes to Tables 3 and 7. In the above table, "Mean" includes the following models: BMA, Combined-ADL and Mean. "Linear Factor" 
includes the following models: FAAR and PCR. "Nonlinear Factor" includes the following models: all shrinkage/factor combination models (i.e. 
Specification Types 1 and 2). Finally, "Other" includes our linear AR(SIC) and ARX(SIC) models. See Section 4.3 for further details.

Table 8: Forecast Experiment Summary Results: Various Subsamples*

Panel A: Wins by Specification Type
h = 1, Recursive Estimation

Specification Type 1 Specification Type 2 Specification Type 3

Panel B: Wins Across All Specification Types
h = 1, Recursive Estimation
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*Notes: Panels in this figure depict the 10 most commonly selected variables for use in factor construction, across the entire prediction period from 1974:3-2009:5, where factors are re-estimated 
at each point in time, prior to each new prediction being constructed. 45 degree lines denote cases for which a particular variables is selected every time.  All models reported on are MSFE-best 
models, across Specification Types 1 and 2, and estimation window types. For example, in Panels A and B, the BAA Bond Yield - Federal Funds Rate spread is the most frequently selected 
predictor when constructing factors to forecast the Producer Price Index and Housing Starts, respectively. Note that in Panel E, the 10 most commonly selected variables by EN are picked at 

Figure 1: Most Frequently Selected Variables by Various Specification Types*
Panel A: Specification Type 1 :  Producer Price Index, PCR model, h = 1 Panel B: Specification Type 1 :  Housing Starts, PCR model, h = 3

Panel C. Specification Type 1 : Consumer Price Index, FAAR model, h = 12 Panel D. Specification Type 2 : Gross Domestic Product, C-boosting model, h = 1

Panel E: Specification Type 2 : 10 Year Treasury Bill Yield , EN model, h = 3 Panel F: Specification Type 2 : Nonfarm Payroll Employment, C-boosting model, h = 12
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Chapter 3

Forecasting Using Parsimonious Factor and Shrinkage

Methods

3.1 Introduction

In macroeconomics and �nancial economics, researchers bene�t greatly from a wealth of avail-

able information. However, available datasets are sometimes so large as to make dimension

reduction an important consideration, both theoretical as well as empirical contexts. One

dimension reduction technique, involving the construction of di¤usion indices, has received

consideration attention in the recent econometrics literature, particularly in the context of

forecasting (see e.g. Armah and Swanson (2010a,b), Artis et al. (2002), Bai and Ng (2002,

2006b, 2008), Boivin and Ng (2005, 2006), Ding and Hwang (1999), Stock and Watson

(2002a, 2005a,b, 2006)). Other recent important papers which extend the discussion in the

above papers to vector and error-correction type models include Banerjee and Marcellino

(2008), Dufour and Stevanovic (2010).

In this paper, we add to the extant literature on di¤usion index forecasting by examining

a number of novel factor estimation methods within the framework of di¤usion index fore-

casting. In particular, we consider the use of independent component analysis (ICA) and

sparse principal component analysis (SPCA), coupled with a variety of other factor estima-

tion as well as data shrinkage methods, including bagging, boosting, least angle regression,
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the elastic net, and the nonnegative garotte. Our primary objective is the evaluation of

the above estimation and shrinkage methods in the context of a large number of real-time

out-of-sample forecasting experiments; and our venue for this "horse-race" is the prediction

of 11 key macroeconomic variables relevant for monetary policy assessment. These variables

include the unemployment, personal income, the 10 year Treasury-bond yield, the consumer

price index, the producer price index, non-farm payroll employment, housing starts, indus-

trial production, M2, the S&P 500 index, and gross domestic product; and as noted in Kim

and Swanson (2010) are discussed on the Federal Reserve Bank of New York�s website, where

it is stated that �In formulating the nation�s monetary policy, the Federal Reserve considers

a number of factors, including the economic and �nancial indicators <above>, as well as the

anecdotal reports compiled in the Beige Book.�

The notion of a di¤usion index is to use appropriately �distilled�latent common factors

extracted from a large number of variables in subsequent parsimonious models. More speci�-

cally, letX be an T�N -dimensional matrix of observations, and de�ne an T�r-dimensional

matrix of dynamic factors, F . Namely, let

X = F�0 + e (3.12)

where e is a disturbance matrix and � is anN�r coe¢ cient matrix. Once F is extracted using

one of the estimation methods examined in this paper, construct the following forecasting

model based on Stock and Watson (2002a,b), Bai and Ng (2006a) and Kim and Swanson

(2010). Namely, let Yt+h; be an h-step ahead target variable to be predicted, and specify:

Yt+h = Wt�W + Ft�F + "t+h; (3.13)

where Wt is a 1 � s vector and Ft is a 1 � r vector of factors, extracted from F: The para-
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meters, �W and �F are de�ned conformably, and "t+h is a disturbance term. In empirical

contexts such as that considered herein, we �rst extract r unobserved factors, F̂ , from the

N observable predictors, X. To achieve dimension reduction, r is assumed to be lower than

N: (i.e. r � N) Then, parameter estimates, �̂W and �̂F are constructed using and in-

sample dataset with Yt+h; Wt, and F̂t: Finally, ex-ante forecasts based on rolling or recursive

estimation schemes are formed. Although our approach is to consider various di¤erent spec-

i�cations of the above model, the two issues that we primarily focus on include: (i) Which

method is most useful for estimating the factors in the above model. In Kim and Swanson

(2010), for example, principal component analysis (PCA) is used in obtaining estimates of

the latent factors. PCA yields "uncorrelated" latent principal components via the use of

data projection in the direction of the maximum variance; and principal components (PCs)

are naturally ordered in terms of their variance contribution. The �rst PC de�nes the di-

rection that captures the maximum variance possible, the second PC de�nes the direction

of maximum variance in the remaining orthogonal subspace, and so forth. Perhaps because

derivation of PCs is easily done via use of singular value decompositions, it is the most

frequently used method in factor analysis (see e.g. Bai and Ng (2002, 2006b) and Stock and

Watson (2002a) for details). In this paper, we additionally adopt two nonlinear methods

for deriving latent factors, including ICA and SPCA. These nonlinear methods are used in

the statistics research in a variety of contexts, although econometricians have yet to explore

their usefulness in forecasting contexts, to the best of our knowledge.

ICA (see e.g. Comon (1994), Lee (1998)) uses a measure of entropy, so-called "negen-

tropy" to construct independent factors. SPCA is designed to uncover uncorrelated compo-

nents and ultimately factors, just like PCA. However, the method also searches for compo-

nents whose factor loading coe¢ cient matrices are "sparse" (i.e., the matrices can contain

zeros). Since PCA yields nonzero loadings for entire set of variables, practical interpretation

thereof is di¢ cult, and estimation e¢ ciency may become an issue. SPCA addresses these
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issues, yielding more parsimonious factors models. For further discussion, see Vines (2000),

Jolli¤e et al. (2003), and Zou et al. (2006), whose approach we follow in this paper. Further

modi�cations of the approach in Zou et al. (2006) are discussed in Leng and Wang (2009)

and Croux et al. (2011).

In order to add functional �exibility to our forecasting models, we additionally imple-

ment versions of (3.13) where the numbers and functions of factors used are speci�ed via

implementation of a variety of shrinkage methods, including those methods mentioned above.

The key feature of our shrinkage methods is that they are used for targeted regressor and

factor selection. Related research that focuses on shrinkage and related forecast combina-

tion methods is discussed in Stock and Watson (2005a), Aiol� and Timmermann (2006),

and Bai and Ng (2008). Moreover, our discussion and examination of shrinkage adds to the

recent work of Stock and Watson (2005a) and Kim and Swanson (2010) who survey sev-

eral methods for shrinkage that are based on factor augmented autoregression models like

(3.13). In our experiments, we also consider various linear benchmark forecasting models

including autoregressive (AR) models, AR models with exogenous variables, and combined

autoregressive distributed lag models. Finally, we consider predictions at various di¤erent

forecast horizons.

Our �nding can be summarized as follows. Simple benchmark approaches based on the

use of various AR type models, including Bayesian model averaging, do not dominate more

complicated nonlinear methods that involve the use of factors, particularly when the factors

are constructed using nonlinear estimation methods including ICA and SPCA. Moreover,

in many cases, these nonlinear methods, when coupled with various shrinkage strategies

yield overall mean square forecast error �best�(MSFE-best) prediction models. For exam-

ple, SPCA yields mean square forecast error �best�(MSFE-best) prediction models in most

cases, in the context of short forecast horizons. Indeed, our benchmark econometric models

are never found to be MSFE-best, regardless of the target variable being forecast, and the
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forecast horizon. Recalling that Bayesian model averaging is one of our benchmarks, this

�nding is somewhat contrary to the oft reported �nding that model averaging usually yields

superior predictions when forecasting the types of aggregate macroeconomic variables that

we examine. It is also noteworthy that pure shrinkage-based prediction models never MSFE-

dominate models based on the use of factors constructed using either principal component

analysis, independent component analysis or sparse component analysis. This result pro-

vides strong new evidence of the usefulness of factor based forecasting, although it should be

stressed that principal component analysis alone does not yield this clear-cut result. Rather,

it is usually ICA and SPCA type factor estimation approaches, often coupled with shrinkage,

that yield the "best" models. Ancillary �ndings include the following: (i) Recursive estima-

tion window strategies only dominate rolling strategies at the 1-step ahead forecast horizon.

(ii) Including lags in factor model approaches does not generally yield improved predictions.

The rest of the paper is organized as follows. In the next section we provide a survey of

dynamic factor models with independent component analysis and sparse component analysis.

In Section 3, we survey the robust shrinkage estimation methods used in our prediction

experiments. Data, forecasting methods, and baseline forecasting models are discussed in

Section 4, and empirical results are presented in Section 5. Concluding remarks are given in

Section 6.

3.2 Di¤usion Index Models

Recent forecasting studies using large-scale datasets and pseudo out-of-sample forecasting

include: Armah and Swanson (2010a,b), Artis et al. (2002), Boivin and Ng (2005, 2006),

Forni et al. (2005), and Stock and Watson (1999, 2002a, 2005a,b, 2006). Stock and Watson

(2006) discuss in some detail the literature on the use of di¤usion indices for forecasting.

In this section, we begin by outlining the basic factor model framework which we use (see
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e.g. Stock and Watson (2002a,b) and Kim and Swanson (2010)). Thereafter we discuss

independent component analysis and sparse principal component analysis.

3.2.1 Factor Models: Basic Framework

Let Xtj be the observed datum for the j�th cross-sectional unit at time t, for t = 1; :::; T

and j = 1; :::; N: Recall that we shall consider the following model:

Xtj = �
0
jFt + etj; (3.14)

where Ft is a r � 1 vector of common factors, �j is an r �1 vector of factor loadings

associated with Ft, and etj is the idiosyncratic component of Xtj. The product �0jFt is called

the common component of Xtj. This is the dimension reducing factor representation of the

data. More speci�cally, With r < N , a factor analysis model has the form

X1 = �11F1 + � � �+ �1rFr + e1 (3.15)

X2 = �21F1 + � � �+ �2rFr + e2

...

XN = �N1F1 + � � �+ �NrFr + eN

Here F is a vector of r < N underlying latent variables or factors, �ij is a element of

N � r matrix, � of factor loadings, and the " are uncorrelated zero-mean disturbances.

Many economic analyses �t naturally into the above framework. For example, Stock and

Watson (1999) consider in�ation forecasting with di¤usion indices constructed from a large
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number of macroeconomic variables. Recall also that our generic forecasting equation is:

Yt+h = Wt�W + Ft�F + "t+h; (3.16)

where h is the forecast horizon, Wt is a 1 � s vector (possibly including lags of Y ); and

Ft is a 1 � r vector of factors, extracted from F: The parameters, �W and �F are de�ned

conformably, and "t+h is a disturbance term. Following Bai and Ng (2002, 2006b, 2008, 2009),

the whole panel of data X = (X1; :::; XN) can be represented as (3.14). We then estimate the

factors, Ft, via principal components analysis, independent component analysis and sparse

principal component analysis. In particular, forecasts of Yt+h based on (3.16) involve a two

step procedure because both the regressors and the coe¢ cients in the forecasting equation

are unknown. The data, Xt; are �rst used to estimate the factors, yielding F̂t. With the

estimated factors in hand, we obtain the estimators �̂F and �̂W by regressing Yt+h on F̂t and

Wt. Of note is that if
p
T=N ! 0, then the usual generated regressor problem does not arise,

in the sense that least squares estimates of �̂F and �̂W are
p
T consistent and asymptotically

normal (see Bai and Ng (2008)). In this paper, we try di¤erent methods for estimating �̂F

and then compare the predictive accuracy of the resultant forecasting models.8

In following sections, we introduce ICA and SPCA and underscore the di¤erence between

these methods and PCA. We omit detailed discussion of principal component analysis, given

the extensive discussion thereof in the literature (see e.g. Stock and Watson (1999, 2002a,

2005a,b), Bai and Ng (2002, 2008, 2009), and Kim and Swanson (2010)).9

8We refer the reader to Stock and Watson (1999, 2002a, 2005a,b) and Bai and Ng (2002, 2008, 2009) for a
detailed explanation of this procedure, and to Connor and Korajczyk (1986, 1988, 1993), Forni et al. (2005)
and Armah and Swanson (2010b) for further detailed discussion of generic di¤usion index models.

9In the sequel, we assume that all variables are standardized, as is customary in this literature.
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3.2.2 Independent Component Analysis

Independent Component Analysis (ICA) is of relevance in a variety of disciplines, since it is

predicated on the idea of "opening" the black box in which principal components are often

reside. A few uses of ICA include mobile phone signal processing, brain imaging, voice signal

extraction and stock price modeling. In all cases, there is a large set of observed individual

signals, and it is assumed that each signal depends on several factors, which are unobserved.

The starting point for ICA is the very simple assumptions that the components, F; are

statistically independent in equation (3.14). The key is the measurement of this independence

between components. The method can be graphically depicted as follows:

Figure 1: Schematic representation of ICA

More speci�cally, ICA begins with statistical independent source data, S, which are mixed

according to 
; and X which is observed, is a mixture of S weighted by 
: For simplicity,

we assume that the unknown mixing matrix, 
; is square, although this assumption can be

relaxed (see Hyvärinen and Oja (2000)). Using matrix notation, we have that

X = S
 (3.17)
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We can rewrite (3.17) as follows,

X1 = !11S1 + � � �+ !1NSN (3.18)

X2 = !21S1 + � � �+ !2NSN

...

XN = !1NS1 + � � �+ !NNSN

where !ij is the (i; j) element of 
: Since 
 and S are unobserved, we have to estimate the

demixing matrix 	 which transforms the observed X into the independent components F .

That is,

F = X	

or

F = S
	

Since we assume that mixing matrix, 
 is square, 	 is also square, and 	 = 
�1, so that F

is exactly same as S, and perfect separation occurs. In general, it is only possible to �nd 	

such that 
	 = PD where P is a permutation matrix and D is a diagonal scaling matrix

(see Tong et al. (1991)).

The independent components, F are latent variables, just the same as principal compo-

nents, meaning that they cannot be directly observed. Also, the mixing matrix, 
 is assumed

to be unknown. All we observe is data, X, and we must estimate both 
 and S using it.

Only then can we estimate the demixing matrix 	; and the independent components, F:

However (3.18) are not identi�ed unless several assumptions are made. The �rst assump-

tion is that the sources, S; are statistically independent. Since various sources (for example,

consumer�s behavior, political decisions, etc.) may impact macroeconomic variables, this

assumption is not strong. The second assumption is that the signals are stationary. For
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further details, see Tong et al. (1991).

ICA under (3.18) assumes that N components of F exist. However, we can simply

construct factors using only up to r (< N) components, without loss of generality. In practice,

we can construct r independent components by preprocessing with r principal components.

See chapter 6 and 10 of Stone (2004) for further details. In general, the above model would

be more realistic that there were noise terms added. For simplicity, however, noise terms

are omitted; and indeed the estimation of the noise-free model is already computationally

di¢ cult (see Hyvärinen and Oja (2000) for a discussion of the noise-free model, and Hyvärinen

(1998, 1999a) for a discussion of the model with noise added).

3.2.2.1 Comparison with Principal Component Analysis

As is evident from Figure 1, ICA is exactly the same as PCA, if we let demixing matrix

be the factor loading coe¢ cients associated with principal components analysis. The key

di¤erence between independent component analysis ICA and principal component analysis

PCA is in the properties of the factors obtained. Principal components are uncorrelated

and have descending variance so that they can easily be ordered in terms of their variances.

Moreover, those components explaining the largest share of the variance are often assumed

to be the �relevant�ones for subsequent use in di¤usion index forecasting. In particular, the

�rst principal component captures the maximum variance possible, the second component

also capture the maximum variance but in an orthogonal subspace, and is thus uncorrelated

with the �rst component.

For simplicity, consider two observables, X = (X1; X2) : PCA �nds a matrix which trans-

forms X into uncorrelated components F = (F1; F2) ; such that the uncorrelated components

have a joint probability density function, pF (F ) with

E (F1F2) = E (F1)E (F2) : (3.19)
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On the other hand, ICA �nds a demixing matrix which transforms the observedX = (X1; X2)

into independent components F � = (F �1 ; F
�
2 ) ; such that the independent components have a

joint pdf pF � (F �) with

E [F �p1 F
�q
2 ] = E [F �p1 ]E [F

�q
2 ] ; (3.20)

for every positive integer value of p and q. That is, it works for any moments.

Evidently, PCA estimation is much simpler than ICA, since it just involves �nding a linear

transformation of components which are uncorrelated. Moreover, PCA ranks components

using their variances or correlation so that components associated with higher variance or

correlation are considered more explanation power than those with lower variance or correla-

tion. On the other hand, ICA is unable to �nd the variance associated with each independent

component since both S and 
 in (3.17) are unknown so that any scalar multiplier in one

of the source, Sj could be cancelled by dividing the corresponding mixing vector, !j by the

same scalar. Therefore, we change randomly the order of X; in (3.17) so that we cannot

determine the order of the independent components. From the perspective of forecasting,

this is probably a good thing, since there is no a prior reason to believe that �largest vari-

ance�PCA components are the most relevant for predicting any particular target variable.

Moreover, this feature of ICA is the reason that PCA for pre-processing in ICA algorithms.

For further details about preprocessing, see Appendix F of Stone (2004).

3.2.2.2 Estimation of ICA

Estimation of independent components is done by estimating the demixing matrix iteratively,

systematically increasing the degree of independence of the components. As noted above,

uncorrelated components are not independent (except under Gaussianity). However, there

is no direct measure for independence. The standard approach is instead to use so-called

�nongaussianity� as a measure of independence. In contrast, Gaussian variables cannot
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produce independent components. This is straightforward since the distribution of any

orthogonal transformation of two independent and Gaussian random variables, say X1 and

X2; has the same distribution as that of X1 and X2; in turn implying that the mixing matrix,


 cannot be identi�ed.

For simplicity, let all independent components the same distribution. For the �rst inde-

pendent component, consider a linear combination of Xj; j = 1; :::; N so that Fj = X	j,

where 	j is a vector to be estimated. If 	j were one of the rows of the inverse of 
, this

linear combination would equal one of the independent components. In practice, it is not

possible to obtain such a 	j exactly since matrix 
 is not observed. Instead let � = 	
:

Then, we can express Fj as a linear combination of the unobserved source S because

Fj = X	j = S
	j = S�j

and weights of combination are given by �j . Note also that a sum of two independent

random variables is in a concrete sense more Gaussian than the original variables, given a

central limit theorem. Therefore, S�j is more Gaussian than any of the S 0s: In practice, the

objective is to extract 	j as a vector maximizing the nongaussianity of X	j. This in turn

implies that X	j = S�j is an independent component.

Measuring Nongaussianity In this section we discuss how we measure nongaussianity.

The easiest way is via use of kurtosis.

1. Kurtosis: kurt(F ) = E [F 4] � 3 (E [F 2])2 ; which is zero under Gaussianity. However,

this measure is very sensitive to outliers, and so is not particularly useful for measuring

nongaussianity.

2. Entropy�Negentropy: Another way of measuring nongaussianity or independence is
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entropy. The di¤erential entropy H of a random variable F with pdf, pF is de�ned as

H (F ) = �
Z
pF (f) ln pF (f) dF (3.21)

Note that a moment of a pdf can be expressed as an expectation, and (3.21) can thus

be expressed as

H (F ) = �E [ln pF (f)] : (3.22)

A fundamental result of information theory is that a Gaussian variable has the largest

entropy among all random variables of equal variance. This supports the use of entropy

as a measure of nongaussianity. Moreover, entropy tends to be smaller when the

distribution is dense around a certain value. Based on these results, one often uses a

modi�ed version of entropy, so called negentropy, N;where:

N (F ) = H (Fgauss)�H (F ) ; (3.23)

where Fgauss is a Gaussian random variable with the same covariance matrix as F: This

negentropy, N (�), as a measure of nongaussianity, is zero for a Gaussian variable and

always nonnegative. Comon (1994), Hyvärinen (1999b) and Hyvärinen and Oja (2000)

note that negentropy has additional interesting properties, including noting that it is

invariant for invertible linear transformations.

3. Mutual Information: This measure is of the amount of information each variable con-

tains about each other variable. Namely, it is the di¤erence between the sum of indi-

vidual entropies and the joint entropy of two variables, and is de�ned as follows:

I (F ) =

nX
i=1

H (Fi)�H (F ) ; (3.24)
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for n random variables. The quantity I (F ) is equivalent to the Kullback-Leiber dis-

tance between density g (F ) of F and its independence version
nY
i=1

gi (Fi) ; where gi (Fi)

is the marginal density of Fi: The mutual information becomes zero if the variables

are statistically independent. This is somewhat similar to negentropy. If we have an

invertible linear transformation F = X	, then

I (F ) =
nX
i=1

H (Fi)�H (X)� ln jdet	j (3.25)

becomes

I (F ) =
nX
i=1

H (Fi)�H (X) : (3.26)

Finding 	 to minimize I (F ) = I (X	) involves looking for the orthogonal transforma-

tion that leads to the most independence between its components; and this is equivalent

to minimizing the sum of the entropies of the separate components of F: That is, min-

imizing of mutual information is equivalent to �nding directions where negentropy is

maximized.

Estimation of Entropy Negentropy is well known and understood in statistics literature,

and is the optimal estimator of nongaussianity in contexts such as that considered here. A

classical approximation of negentropy using higher-order moments is the following:

N (F ) t
1

12
E
�
F 3
�2
+
1

48
kurt (F )2 : (3.27)

Another approximation from Hyvärinen (1998) is based on the maximum-entropy principle,

does not explicitly include a measure of kurtosis, and is de�ned as follows:

N (F ) t �
j
kj [E fGj (F )g � E fGj (Z)g]2 ; (3.28)
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where ki are positive constants, Z is a standardized Gaussian variable, F is standardized, and

the functions Gi are some nonquadratic functions. Note that (3.28) can be used consistently,

in the sense that it is always non-negative, and equals zero if F has a Gaussian distribution.

Simple version of this approximation use only one nonquadratic function, G; leading to:

N (F ) / [E fG (F )g � E fG (�)g]2 : (3.29)

This equation is a generalization of (3.27), when F is symmetric. If one sets G as the quartic,

(3.29) becomes (3.27). Therefore, choosing an appropriate G function is important. If we

pick non-fast growing G, we may have more robust estimators. Hyvärinen and Oja (2000)

suggest two Gs, and they show that these functions yield good approximations. They are:

G1 (y) =
1

a1
log cosh a1y (3.30)

and

G2 (y) = � exp
�
�u2=2

�
; (3.31)

where 1� a1 � 2 is some suitable constant.

3.2.2.3 ICA Algorithm: FastICA

ICA implementation involves �nding a direction for a unit vector, 	j; such that the com-

ponent projection matrix, X	j; maximized nongaussianity. In this paper, we estimate ne-

gentropy to measure nongaussianity via the �FastICA�algorithm which e¢ ciently minimize

negentropy. The FastICA is a popular ICA algorithm which is based on a �xed-point scheme

for tracking maximal nongaussianity of the projection matrix, X	 = fX	1; :::;X	ng where

	j is the column vectors of 	, which are not correlated with each other. Simply put, the

algorithm �nds a unit vector 	j such that X	j maximizes nongaussianity which is measured
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by negentropy, as given by (3.29). Note that the variance of X	j is constrained to be unity,

so that the norm of 	j is constrained to be unity, since we use standardized data.

Let g be the derivative of the nonquadratic function G used in (3.30) and (3.31). FastICA

is the �xed-point algorithm which maximizes (3.29), and maxima are obtained at optima

E fG (F )g = E fG (X	)g : Let us explain with one unit for simplicity. Using Kuhn-Tucker

conditions, the optima of E fG (X	j)g under the constraint E
�
G (X	j)

2	 = k	jk = 1 can
be obtained at E fG (X	j)g � �	j = 0: One can solve this equation using the Newton-

Rhapson method. See Hyvärinen and Oja (2000) for computational details. Thus, we have

the following iterative procedure:

	� = 	� [E fXg (X	j)g � �	j]

[E fg (X	j)g � �]
(3.32)

Multiplying both sides by �� E fg0 (X	j)g yields

	� = E fXg (X	j)g � E fg0 (X	j)g	j (3.33)

Here is the basic form of FastICA algorithm.

1. Choose an initial weight vector 	:

2. For j = 1; :::; r; �nd mixing vectors yielding components with minimized negentropy.

Let 	�j = E fXg (X	j)g � E fg0 (X	j)g	j:

3. Set 	+j = 	
�
j=
	�j : If convergence is not achieved, go back to Step 2.

4. To decorrelate j independent components, for j � 2; set (a) 	+j = 	+j ��
j�1
h=1	

+0
j 	h	h

and then (b) 	+j = 	
+
j =
q	+0j 	+j :

The initial vector 	 is given from the loading of the r ordinary principal components

(Penny et al. (2001), Stone (2004)) Once the �nal 	 is estimated, X	 are the independent
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components. In this paper, we choose G as in (3.30) and accordingly g is de�ned as tanh (u)

if we set a1 = 1:

3.2.3 Sparse Principal Component Analysis

As was explained in the previous section, principal components are linear combinations of

variables that are ordered by covariance contributions, and selection is of a small number

of components which maximize the variance that is explained. However, factor loading

coe¢ cients are all typically nonzero, making interpretation of estimated components di¢ cult.

SPCA aids in the interpretation of principal components by placing (zero) restrictions on

various factor loading coe¢ cients.

For example, Jolli¤e (1995) modi�es loadings to be a values such as 1, -1 or 0, for example.

Another approach is setting thresholds for the absolute value of the loadings, below which

loadings are set to zero. Jolli¤e et al. (2003) suggests using so-called �SCoTLASS� to

construct modi�ed principal components with possible zero loadings, �; by solving

max�0(X 0X)�; subject to
NX
j=1

j�jj � '; �0� = 1;

for some tuning parameter '. The absolute value threshold results in (various) zero loadings,

hence inducing sparseness. However, the SCoTLASS constraint does not ensure convexity,

and therefore the approach may be computationally expensive. As an alternative, Zou et al.

(2006) develop a regression optimization framework. Namely, they considerX as a dependent

variables, F as explanatory variables, and the loadings as coe¢ cients. They then use of the

lasso (and elastic net) to derive a sparse loading matrix. Other recent approaches include

those discussed in Leng and Wang (2009), Guo et al. (2010), all of which are based on Zou

et al. (2006). We follow the approach of Zou et al. (2006), and readers are referred to Section

3.3-3.5 of the paper for complete details. As an introduction to the method, the following
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paragraphs draw on some of the key methods of the paper.

3.2.3.1 Estimation of Sparse Principal Components

Suppose we derive principle components (PCs), F via ordinary PCA. In particular, our

standardized data matrix, X is identical to UDV 0 by the singular value decomposition. The

PCs, F; are de�ned as UD, and V are the factor coe¢ cient loadings. Then, let the estimated

j-th principal component ; Fj be the dependent variable and X be the independent variables.

Suppose that �̂
Ridge

j is the ridge estimator10 of the loading for j-th principal component, we

have to solve a following problem to get the ridge estimator,

�̂
Ridge

j = argmin
�j
kFj �X�jk2 + � k�jk2 (3.34)

Note that after normalization, the coe¢ cients are independent of �; therefore the ridge

penalty term, � k�jk2, is not used to penalize the regression coe¢ cients but rather in the

construction of the principal components. Add an L1 penalty to (3.34) and solve the following

optimization problem; namely, solve the so-called naïve elastic net (NEN) (see Section 3.4

for details on the NEN), as follows:

�̂
NEN

j = argmin
�j
kFj �X�jk2 + � k�jk+ �1 k�jk1 ; (3.35)

where k�jk1 =
N

�
i=1
j�ijj : Thus, X�̂j is the j-th principal component. In this problem, large

enough �1 guarantees a sparse �; and hence a sparse loading matrix. With a �xed value

of �, the problem (3.35) can be solved using the LAR-EN algorithm11 proposed by Zou

and Hastie (2005). Zou et al. (2006) modify this idea to a more general lasso regression

type problem. In particular, they use a two-stage analysis in which they �rst estimate the

10See Section 3.3 for further details about the ridge estimator.
11See Section 3.5 for details about the LAR-EN algorithm.
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principal components by the ordinary PCA, and thereafter �nd the sparse loadings using

(3.35). This type of SPCA is predicated on the fact that PCA can be written as a penalized

regression problem12, and thus the lasso, or the elastic net, can be directly integrated into

the regression criterion such that the resulting modi�ed PCA produces sparse loadings.

Continuing the above discussion, note that Zou et al. (2006) suggest using the following

penalized regression type criterion. Let Xt denote the t-th row vector of the matrix X: For

any positive value of �; let

�
�̂j; �̂j

�
= argmin

�j ;�j

T

�
t=1

Xt � �j�
0
jXt

2 + � k�jk2 : (3.36)

subject to k�jk2 = 1

Then, �̂j becomes the approximation to the j-th factor loadings, �j: If we let � equal �, then
T

�
t=1

Xt � �j�
0
jXt

2 = T

�
t=1

Xt � �j�
0
jXt

2 . Therefore, �̂(= �̂) becomes the j-th ordinary

principal component�s loading. (See Hastie et al. (2009) for details.) (3.36) can be easily

extended to derive the whole sequence of PCs. Let there be r components. Set � and � to

be N � r matrices. For any positive value of �; let

�
�̂; �̂

�
= argmin

�;�

T

�
t=1
kXt ���0Xtk2 + �

r

�
j=1
k�jk2 (3.37)

subject to �0� = Ir:

Here, � is an N�r matrix with column �j and � is also an N�r orthonormal constraint, so

that �̂j is the approximation to the j-th factor loadings, �j; for j = 1; :::; r. As we see in the

above expression, by setting � and � to be equal, �̂ becomes the exact r factor loadings of

ordinary principal components. (3.37) is the generalized derivation of principal components

and enables us to obtain sparse loadings by modifying the original PCA problem. The

12See Section 3.2 of Kim and Swanson (2010) for penalized regression
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penalty parameter in the above expression is applied for all variables, and so we do not yet

have sparse loadings, however. To construct sparsity, add the lasso penalty into the problem

(3.37), and consider the following penalized regression problem,

�
�̂; �̂

�
= argmin

�;�

T

�
t=1
kXt ���0Xtk2 + �

r

�
j=1
k�jk2 +

r

�
j=1
�1;j k�jk1 (3.38)

subject to �0� = Ir:

Here, �̂ is the approximation to the factor loadings. This problem has two penalties; the

�rst term, � is applied to all possible r components, and the second term, �1;j is applied to

individual components to penalize their loadings. As in the estimation of a single component

in (3.36), if we set � = �, then we have
T

�
t=1
kXt ���0Xtk2 =

T

�
t=1
kXt ���0Xtk2, and so

�̂(= �̂) becomes the ordinary principal component�s loading. Since (3.38) is not jointly

convex for � and �, two steps to solve this problem are apparent. The �rst one involves

�xing � then minimizing over �;which leads to a problem involving r elastic nets. In

particular, since � is orthonormal, let �y be any orthonormal matrix such that
�
�;�y� is

r � r orthonormal matrix. Then we have

T

�
t=1
kXt ���0Xtk2 = kX �X��0k2

=
X�y2 + kX��X�k2

=
X�y2 + r

�
j=1
kX�j �X�jk2

That is, let � be given; and the optimal solution for � is based on minimizing

argmin
�

r

�
j=1

�
kX�j �X�jk2 + � k�jk2 + �1;j k�jk1

�
: (3.39)

This is equivalent to r independent elastic net problems. If we rewrite (3.39) for a single
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loading, we have

�̂j = argmin
�j

F �j �X�j
2 + � k�jk2 + �1;j k�jk1 ; (3.40)

where F �j = X�j: And (3.40) is identical to

(�j � �j)
0X 0X (�j � �j) + � k�jk2 + �1;j k�jk1 : (3.41)

Here, we only need to calculate the correlation matrix, since we already standardized X. In

the end, we solve these elastic nets e¢ ciently via the LAR-EN algorithm discussed below.

The next step involves minimizing (3.38) over �; with �xed �: Then penalty term in this

problem is now meaningless, and so the problem to be solved by minimizing

T

�
t=1
kXt ���0Xtk2 (3.42)

subject to �0� = Ir:

This problem can be solved by the so called Procrustes transformation. (see Chapter 14.5

of Hastie et al. (2009) for details). Since
T

�
t=1
kXt ���0Xtk2 = kX �X��0k2 ; using an

appropriate transformation, we have the following singular value decomposition

X 0X� = UDV 0

where �̂ = UV 0: In practice, we let� be the factor loading of ordinary PCs, then we estimate

� as a sparse factor loading. In this variant of the problem, the LAR-EN algorithm discussed

below delivers a whole sequence of sparse approximations for each PC and the corresponding

values of �1;j:
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3.2.3.2 SPCA algorithm

The numerical solution for the SPCA criterion to obtain sparse principal components is given

as the following:

1. Let � be the loadings of the �rst r ordinary principal components.

2. Given �; solve the following problem for j = 1; 2; :::; r.

�j = argmin
�
(�j � �)0X 0X (�j � �) + � k�k2 + �1;j k�k1 :

3. For each �xed � = [�1; :::; �r]; do the singular vector decomposition onX 0X� = UDV 0,

then update �� = UV 0:

4. Repeat steps 2-3, until convergence.

In practice, the choice of � does not change the result much. Especially, in the case of full

rank matrix of X, where zero is a reasonable value to use. Moreover, one may try to pick �1

via cross-validation, or a related method. However, the LAR-EN algorithm e¢ ciently solves

this problem for all possible values of �1: See Zou and Hastie (2005) or Kim and Swanson

(2010) for computation details. Since the tuning parameter, �1; a¤ects the sparsity and

variance of the components simultaneously, the algorithm is designed to give more weight to

variance.

Note that if F̂ ; are factors estimated by ordinary PCA, then they are uncorrelated so that

we can compute the total variance explained by F̂ as tr
�
F̂ 0F̂

�
. However, two conditions

for principal components, uncorrelatedness and orthogonality, are not guaranteed in the

case of sparse principal components. Still, it is necessary to derive the total variance in

order to explain how much the components explain, even when the above two conditions are

not satis�ed. Zou et al. (2006) proposes a new way to compute the variance explained by



58

the components, accounting for any correlation among the components. Since variance is

given as tr
�
F̂ 0F̂

�
for total variance if sparse principal components are already uncorrelated,

this formula can be used more generally to compute the total variance of sparse principal

components. Let ~F =
h
~F1; :::; ~Fr

i
be the r components constructed via sparse principal

component analysis. Denote r̂j as the residual after regressing ~Fj on ~F1; :::; ~Fj�1; so that

r̂j = ~Fj �P1;:::;j�1 ~Fj;

where P1;:::;j�1 is the projection matrix on ~F1; :::; ~Fj�1: Then, the adjusted variance of a single

component is kr̂jk2 and the total variance is
r

�
j=1
kr̂jk2 : In practice, computation is easily done

by QR factorization. If we let ~F = QR; then kr̂jk2 = R2jj; so that total variance is
r

�
j=1
R2jj:

Since the above computation is sequential, the order of components matters. However, in

the current paper, we derive sparse PCs based on ordinary PCs, which are in turn already

ordered by the size of the variance.

3.3 Robust Estimation Techniques

We consider a variety of �robust�estimation techniques in our forecasting experiments. The

methods considered include bagging, boosting, ridge regression, least angle regression, the

elastic net, the non-negative garotte and Bayesian model averaging. In Kim and Swanson

(2010), we surveyed these methods, whereas in the current paper we implement them in the

context of the factor model methodology discussed above. Here, we brie�y summarize the

shrinkage methods, and provide relevant citations to detailed discussions thereof.

Bagging, which was introduced by Breiman (1996), is a machine based learning algorithm

whereby outputs from di¤erent predictors of bootstrap samples are combined in order to im-

prove overall forecasting accuracy. Bühlmann and Yu (2002) use bagging in order to improve
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forecast accuracy when data are iid:. Inoue and Kilian (2005) and Stock and Watson (2005a)

extend bagging to time series models. Stock and Watson (2005a) consider �bagging�as a

form of shrinkage, when constructing prediction models. In this paper, we use the same

algorithm that they do when constructing bagging estimators. This allows us to avoid time

intensive bootstrap computation done elsewhere in the bagging literature. Boosting, a close

relative of bagging, is another statistical learning algorithm, and was originally designed for

classi�cation problems in the context of Probability Approximate Correct (PAC) learning

(see Schapire (1990)) and is implemented in Freund and Schapire (1997) using the algorithm

called �AdaBoost.M1�. Hastie et al. (2009) apply it to classi�cation, and argue that �boost-

ing� is one of the most powerful learning algorithms currently available. The method has

been extended to regression problems in Ridgeway et al. (1999) and Shrestha and Soloma-

tine (2006). In the economics literature, Bai and Ng (2009) use a boosting for selecting the

predictors in factor augmented autoregressions. We implement a boosting algorithm that

mirrors that used by these authors.

The following methods are basically regression with regression coe¢ cient penalization.

First, consider ridge regression, which is a well known linear regression shrinkage method

which modi�es sum of square residual computations to include a penalty for inclusion of

larger numbers of parameters. Conveniently, ridge regression uses a quadratic penalty term,

and has a closed form solution. Second, the �least absolute shrinkage and selection operator�

(lasso) was introduced by Tibshirani (1996), and is another attractive technique for variable

selection using high-dimensional datasets, especially when N is greater than T . This method

doesn�t yield a closed form solution, and it needs to be estimated numerically. Third, �Least

Angle Regression�(LAR), which is introduced in Efron et al. (2004), is a method for choosing

a linear model using the same set of data as that used to evaluate and implement the model,

and can be interpreted as the algorithm which �nds a solution path for the lasso. LAR is

based on a well known model-selection approach known as �forward-selection�, which has
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been extensively used to examine cross-sectional data (for further details, see Efron et al.

(2004)). Bai and Ng (2008) show how to apply the LAR and lasso in the context of time

series data, and Gelper and Croux (2008) extend Bai and Ng (2008)�s work to time series

forecasting with many predictors. We implement Gelper and Croux (2008)�s algorithm when

constructing the LAR estimator. Fourth, is a related method called the �Elastic Net�, which

is proposed by Zou and Hastie (2005), which is also similar to the lasso, as it simultaneously

carries out automatic variable selection and continuous shrinkage. Its name comes from the

notion that it is similar in structure to a stretchable �shing net that retains �all the big

�sh�. LAR-Elastic Net (LAR-EN) is proposed by Zou and Hastie (2005) for computing

entire elastic net regularization paths using only a single least squares model, for the case

where the number of variables is greater than the number of observations. Bai and Ng (2008)

apply the elastic net method to time series using the approach of Zou and Hastie (2005).

We also follow their approach when implementing the elastic net. Finally, we consider the

so-called, �non-negative garotte�, originally introduced by Breiman (1995). This method is

a scaled version of the least square estimator with shrinkage factors. Yuan and Lin (2007)

develop an e¢ cient garrotte algorithm and prove consistency in variable selection. We follow

Yuan and Lin (2007) in the sequel.

In addition to the above shrinkage methods, we consider Bayesian model averaging

(henceforth, BMA), as it is one of the most attractive methods of model selection cur-

rently available (see Fernandez et al. (2001b), Koop and Potter (2004) and Ravazzolo et al.

(2008)). The concept of Bayesian model averaging can be described with simple probability

rules. If we consider R di¤erent models, each model has a parameter vector and is rep-

resented by its prior probability, likelihood function and posterior probability. Given this

information, using Bayesian inference, we can obtain model averaging weights based on the

posterior probabilities of the alternative models. Koop and Potter (2004) consider BMA in

the context of many predictors and evaluate its performance. We follow their approach.
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In the following subsections, we explain the intuition behind the above methods, and how

they are used in our forecasting framework.

3.3.1 Bagging

Bagging, which is short for �bootstrap aggregation�, was introduced by Breiman (1996)

as a device for reducing prediction error in learning algorithms. Bagging involves drawing

bootstrap samples from the training sample (i.e. in-sample), applying a learning algorithm

(prediction model) to each bootstrap sample, and averaging the predicted values. Consider

the regression problem with the training sample fY;Xg : Generate B bootstrap samples

from the dataset and form predictions, Ŷ �
b (X

�
b ) ; say, using each bootstrap sample, b =

1; :::; B. Bagging averages these predictions across bootstrap samples in order to reduce

prediction variation. In particular, for each bootstrap sample, fY �
b ; X

�
b g ; regress Y �

b on X
�
b

and construct the �tted value Ŷ �
b (X

�
b ). The bagging predictor is de�ned as follows:

Ŷ Bagging =
1

B

BX
b=1

Ŷ �
b (X

�
b ) (3.43)

Inoue and Kilian (2005) apply this bagging predictor in a time series context. Bühlmann

and Yu (2002) consider bagging with a �xed number of strictly exogenous regressors and iid

errors, and show that, asymptotically, the bagging estimator can be represented in shrinkage

form. Namely:

Ŷ Bagging
T+h =

N

�
j=1
 (!j) �̂jXTj + op (1) ; (3.44)

where Ŷ Bagging
T+h is the forecast of Yt+h made using data through time T; �̂j is the least

squares estimator of �j under Y = X� and !j =
p
T �̂j=se; with s

2
e = �

T
t=1(Yt+h�Xt�̂

0
)2=(T�
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N); where �̂ =
�
�̂1; :::; �̂N

�0
: Also,  is

 (!) = 1� � (! + c) + � (! � c) + !�1[� (! � c)� � (! + c)]; (3.45)

where c is the pre-test critical value, � is the standard normal density and � is the standard

normal CDF.

Now, following Stock and Watson (2005a) de�ne the forecasting model using bagging as

follows:

Ŷ Bagging
T+h = WT �̂W +

r

�
j=1
 (!j) �̂FjF̂Tj; (3.46)

where �̂W is the LS estimator of �W ; Wt is a vector of observed variables (e.g. lags of Y )

as in (3.16), and �̂Fj is estimated using residuals, YT+h �WT �̂W : The t-statistics used for

shrinkage (i.e. the !j) are computed using least squares and Newey-West standard errors.

Further, the pretest critical value for bagging in this paper is set at c = 1:96.

3.3.2 Boosting

Boosting (see Freund and Schapire (1997)) is a procedure that combines the outputs of

many �weak learners�(models) to produce a �committee�(prediction). In this sense, boost-

ing bears a resemblance to bagging and other �committee-based� shrinkage approaches.

Conceptually, the boosting method builds on a user-determined set of many weak learners

(for example, least square estimators) and uses the set repeatedly on modi�ed data which

are typically outputs from previous iterations of the algorithm. Typically this output comes

from minimizing a loss function averaged over training data. In this sense, boosting has

something in common with forward stagewise regression. The �nal boosted procedure takes

the form of linear combinations of weak learners. Freund and Schapire (1997), proposed the

so-called �adaBoost�algorithm. AdaBoost and other boosting algorithms have attracted a
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lot of attention due to their success in data modeling.

Friedman et al. (2000) extend AdaBoost to �Real AdaBoost�, which focuses on the

construction of real-valued predictions. Suppose that we have a training sample of data,

(Y;X), and let �̂ (X) be a function (learner) de�ned on Rn: Also, let L (Yt; � (Xt)) be the

loss function that penalizes deviations of �̂ (X) from Y; at time t: The objective is to estimate

� (�) that minimizes expected loss, E [L (Yt; �̂ (Xt))] : Popular �learners�include smoothing

splines, kernel regressions and least squares. Additionally, in AdaBoost, an exponential loss

function is used.

Friedman (2001) introduces �L2Boosting�, which takes the simple approach of re�tting

base learners to residuals from previous iterations under quadratic loss. Bühlmann and Yu

(2003) suggest another boosting algorithm, �tting learners using one predictor at one time

when large numbers of predictors exist. Bai and Ng (2009) modify this algorithm to handle

time-series. We use their �Component-Wise L2Boosting�algorithm in the sequel.

Boosting Algorithm Let Z = Y � Ŷ W ; which is obtained in a �rst step by �tting an

autoregressive model to response variable using Wt as regressors. Then, using estimated

factors:

1. Initialize : �̂0 (Ft) =
_

Z, for each t.

2. For i = 1; :::;M iterations, carry out the following procedure. For t = 1; :::; T; let

ut = Zt� �̂i�1 (Dt) be the �current residual�. For each j = 1; ::; r; regress the current

T � 1 residuals, u on F̂j (the j-th factor) to obtain �̂j:

3. Compute d̂j = u � F̂j�̂j for j = 1; ::; r; and the sum of squared residuals, SSRj =

d̂0j d̂j: Let j
i
� denote the column selected at the i

th iteration, say, such that SSRji� =

minj2[1;:::;r] SSRj; and let ĝi�(F ) = F̂ji� �̂ji� :

4. For t = 1; :::; T; update �̂i = �̂i�1 + �ĝi�; where 0 � � � 1 is the step length.
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Over-�tting may arise if this algorithm is iterated too many times. Therefore, selecting

the number of iterations, M is crucial. Bai and Ng (2009) de�ne the stopping parameter M

using an information criterion of the form:

IC (i) = log
h
�̂
i2
i
+
AT � df i
T

(3.47)

where �̂
i2

= �Tt=1

�
Yt � �̂i

�
F̂t

��2
and AT = log(T ): Evidently,

M = argmin
i
IC (i) : (3.48)

Here, the degrees of freedom is de�ned as df i = trace (Bi) ; whereBi = Bi�1�P(i) (IT �Bi�1) =

IT � �ih=0
�
IT � �P(h)

�
; with P(i) = F̂ji�

�
F̂ 0ji�F̂ji�

��1
F̂ji� : Starting values for B

i are given as

B0 = 1
�
P (0) = 10T1T=T; where 1T is a T � 1 vector of 1�s. Our boosting estimation uses this

criterion. Finally, we have:

Ŷ Boosting
t+h = Wt�̂W + �̂M

�
F̂t

�
; (3.49)

where �̂W is de�ned above.

3.3.3 Ridge Regression

In the following three subsections, we discuss penalized regression approaches, including

ridge regression, least angle regression, the elastic net and the nonnegative garotte. These

methods shrink regression coe¢ cients by retaining a only a subset of potential predictor

variables. Ridge regression, as introduced by Hoerl and Kennard (1970), is the classical

penalized regression method, and is introduced here in order to place the methods discussed

thereafter in context. Consider explanatory variables that are stacked in an T �N matrix,
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and a univariate response or target variable, Y . Coe¢ cients are estimated by minimizing a

penalized residual sum of squares criterion. Namely, de�ne:

�̂
Ridge

= argmin
�

24 TX
t=1

 
Yt �

NX
i=1

Xti�i

!2
+ �

NX
i=1

�2i

35 (3.50)

where � is a positive penalty parameter. The larger is �; the more we penalize coe¢ cients,

and the smaller the eventual subset of possible predictors that is used. The ridge regression

estimator of (3.50) can be restated in the context of constrained regression, as follows:

�̂
Ridge

= argmin
�

24 TX
t=1

 
Yt �

NX
i=1

Xti�i

!235 ; (3.51)

subject to
NX
i=1

�2i � m;

wherem is a positive number which corresponds to �: (Note that all observable predictors are

standardized here, as elsewhere in this paper.). The ridge criterion (3.50) picks coe¢ cients

to minimize the residual sum of squares, and can conveniently be written in matrix form, as

follows:

RSS (�) = (Y �X�)0 (Y �X�) + ��0�; (3.52)

where RSS denotes the residual sum of squares. Thus,

�̂
Ridge

= (X 0X + �I)
�1
X 0Y; (3.53)

where I is the N � N identity matrix. In our experiments, we use the following model for

forecasting:

Ŷ Ridge
t+h = Wt�̂W + F̂t�̂

Ridge

F : (3.54)



66

Note that there is another penalized regression method that is similar to ridge regression,

which is called the lasso (i.e. least absolute shrinkage selection operator). The key di¤erence

between two methods is the penalty function. The lasso estimator is de�ned as follows:

�̂
Lasso

= argmin
�

24 TX
t=1

 
Yt �

NX
i=1

Xti�i

!235 ; (3.55)

subject to
NX
i=1

j�ij � m

That is, the L2 ridge penalty is replaced by an L1 lasso penalty. Accordingly, the lasso does

not have a closed form solution like the ridge estimator. Although we report �ndings based

upon ridge regression type models, we no not estimate the lasso, as it can be interpreted as

a special case of least angle regression, which is discussed in the next sub section.

3.3.4 Least Angle Regression (LAR)

Least Angle Regression (LAR) is proposed in Efron et al. (2004), and can be viewed as an

application of forward stagewise regression. In forward stagewise regression, predictor sets

are constructed by adding one new predictor at a time, based upon the explanatory context of

each new candidate predictor in the context of a continually updated least squares estimator.

For details, see Efron et al. (2004).

Like many other stagewise regression approaches, start with �̂0 = �Y ; the mean of the

target variable, use the residuals after �tting Wt to the target variable, and construct a �rst

estimate, �̂ = Xt�̂; in stepwise fashion, using standardized data. De�ne �̂G to be the current

LAR estimator, where G is a set of variables that is incrementally increased according to

the relevance of each variable examined. De�ne c (�̂G) = ĉ = X 0 (Y � �̂G) ; where X is the

�current�set of regressors, to be the �current correlation�vector of length N . In particular,
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de�ne the set G to be the set including covariates with the largest absolute correlations; so

that we can de�ne Ĉ = max
j
fĉjg and G =

n
j : jĉjj =

���Ĉ���o ; by letting sj = sign (ĉj) (i.e.

�1); for j 2 G; and de�ning the active matrix corresponding to G as XG = (:::sjXj:::)j2G :

the objective is to �nd the predictor, Xj; that is most highly correlated with the residual.

Let

DG = X 0
GXG and AG =

�
10GD�1G 1G

�� 1
2 ; (3.56)

where 1G is a vector of ones equal in length to the rank of G. A unit equiangular vector with

columns of XG can be de�ned as uG = XGwG; where wG = AGD�1G 1G so that X 0
GuG = AG1G:

LAR then updates �̂ as

�̂G+ = �̂G + ̂uG (3.57)

where

̂ = min
j2Gc

+

 
Ĉ � ĉj
AG � aj

! 
Ĉ + ĉj
AG + aj

!
; (3.58)

with aj = X 0wj for j 2 Gc: Efron et al. (2004) show that the lasso is in fact a special case

of LAR that imposes speci�c sign restrictions. In summary, LAR is a procedure that simply

seeks new predictors that have the highest correlation with the current residual.

In order to apply LAR to time series data, Gelper and Croux (2008) revise the basic

algorithm described here. They start by �tting an autoregressive model to the target vari-

able, excluding predictor variables, using least squares. The corresponding residual series is

retained and its standardized version is denoted by Z. The time-series LAR (henceforth, TS-

LAR) procedure ranks the predictors according to how much they contribute to improving

upon autoregressive �t. Using estimated factors as regressors, the following is the �LAR�

algorithm of Gelper and Croux (2008):

LAR Algorithm
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1. Fit an autoregressive model to the dependent variable without factors and retain the

corresponding residuals. The objective is to forecast these residuals. Begin by setting

�̂0 = �̂0
�
F̂
�
= �Z; as done in the boosting algorithm above, and using standardized

data.

2. For i = 1; 2; :::; r :

(a) Pick ji� from j = 1; 2; :::; r (� N) which has the highest R2 value, R2
�
�̂i�1 � F̂j

�
;

where R2 is a measure of least square regression �t, and where �v " denotes horizontal

concatenation. The predictor with highest R2 is denoted F̂(i) = F̂ji� ; and this predictor

will be included in the active set Gi: That is, F̂(i) denotes the ith ranked predictor, the

active set Gi will contain F̂(1); F̂(2); :::; F̂(i); and ji� is excluded in next iteration.

(b) Denote the matrix corresponding to the ith ranked active predictor by H(i); which

is the projection matrix on the space spanned by the columns of F̂(i): That is, H(i) =

F̂(i)

�
F̂ 0(i)F̂

�1
(i)

�
F̂ 0(i):

(c) Let ~F(i) = H(i)�̂
i�1 be the T�1 standardized vector of values, F̂ ; at the ith iteration:

Then, �nd the equiangular vector ui; where ui =
�
~F(1); ~F(2); :::; ~F(i)

�
wi; wi =

D�1
Gi
1iq

10iD
�1
Gi
1i
;

DGi = F 0
GiFGi , FGi =

�
:::sjF̂

j:::
�
j2Gi

, sj = sign (ĉj) ; and ĉ = F̂ 0
�
�Z � �̂i

�
.

3. (iii) Update the response �̂i = �̂i�1�̂iui; where ̂i is the smallest positive solution for a

predictor F̂j which is not already in the active set, and is de�ned in (3.58):Then go back

to Step 2, where F̂(i+1) is added to the active set and the new response is standardized

and denoted by �̂i+1 (see Gelper and Croux (2008) for further computational details).

After ranking the predictors, F̂ , the highest ranked will be included in the �nal model.

Now, the only choice remaining is how many predictors to include in the model. Finally,

construct
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Ŷ LAR+

t+h = Wt�̂W + �̂LAR(F̂t) (3.59)

where �̂LAR(F̂t) is the optimal value of the LAR estimator: The �nal predictor of Y is formed

by adding back the mean to Ŷ LAR+

t+h :

3.3.5 Elastic Net (EN)

The elastic net (EN) is proposed by Zou and Hastie (2005), who point out various limitations

of the lasso. Since it is a modi�cation of the lasso, it can be viewed as a type of LAR, and

indeed, their algorithm is sometimes called �LAR-EN�. In order to motivate the LAR-EN

algorithm, we begin with a generic discussion of the �naïve elastic net� (NEN). Assume

again that we are interested in X and Y; and that the variables in X are standardized. For

any �xed non-negative �1 and �2, the naive elastic net criterion is de�ned as:

L (�1; �2; �) = jY �X�j2 + �2 j�j
2 + �1 j�j1 ; (3.60)

where j�j2 =
NP
j

(�j)
2 and j�j1 =

NP
j

���j��. The naïve elastic net estimator is �̂
NEN

=

argmin
�
fL (�1; �2; �)g : This problem is equivalent to the optimization problem:

�̂
NEN

= argmin
�
jY �X�j2 ; subject to (1� �) j�j1 + � j�j2 ; (3.61)

where � = �2
�1+�2

: The term (1� �) j�j1 + � j�j2 is called the elastic net penalty, and leads

to the lasso or ridge estimator, depending on the value of �: (If � = 1; it becomes ridge

regression; if � = 0; it is the lasso, and if � 2 (0; 1); it has properties of both methods.) The

solution to the naïve elastic involves de�ning a new dataset (X+; Y +) ; where
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X+
(T+N)�N = (1 + �2)

�1=2

0B@ X

p
�2IN

1CA ; Y +
(T+N)�1 =

0B@ Y

0N

1CA : (3.62)

Then, we can rewrite the naive elastic criterion as:

L

�
�1p
1 + �2

; �

�
= L

�
�1p
1 + �2

; �+
�
=
��Y + �D+�+

��2 + �1p
1 + �2

���+��
1
: (3.63)

If we let

�̂
+
= argmin

�+
L

�
�1p
1 + �2

; �+
�
; (3.64)

then the NEN estimator �̂
NEN

is:

�̂
NEN

=
1p
1 + �2

�̂
+
: (3.65)

In this orthogonal setting, the naïve elastic net can be represented as combination of ordinary

least squares and the parameters (�1; �2). Namely:

�̂
NEN

=

�����̂LS���� �1=2
�
pos

1 + �2
sign

n
�̂
LS
o
; (3.66)

where �̂
LS
is the least squares estimator of � and sign (�) equals �1: Here, \pos" denotes

the positive part of the term in parentheses. Using these expressions, the ridge estimator

can be written as

�̂
Ridge

=
�̂
LS

1 + �2
(3.67)

and the lasso estimator is

�̂
Lasso

=
�����̂LS���� �1=2

�
pos
sign

n
�̂
LS
o
: (3.68)
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Zou and Hastie (2005), in the context of the above naive elastic net, point out that there

is double shrinkage, which does not help to reduce the variance and may lead to unnecessary

bias, and they propose the elastic net, in which this double shrinkage is corrected. Given

equation (3.62), the naive elastic net solves the regularization problem of the type:

�̂
+
= argmin

�+

��Y + �X+�+
��2 + �1p

1 + �2

���+��
1
: (3.69)

In this context, the elastic net estimator, �̂
EN
; is de�ned as:

�̂
EN

=
p
1 + �2�̂

+
: (3.70)

Thus ,

�̂
EN

= (1 + �2) �̂
NEN

: (3.71)

Via this rescaling, the estimator preserves the properties of naive elastic net. Moreover, by

Theorem 2 in Zou and Hastie (2005), is can be seen that the elastic net is a stabilized version

of lasso. Namely,

�̂
EN

= argmin
�
�0
�
X 0X + �2IN
1 + �2

�
� � 2Y 0X� + �1 j�j1 ; (3.72)

which is the estimator that we use in the forecasting model given as (3.16) when carrying

out our prediction experiments.

Zou and Hastie (2005) propose an algorithm called the LAR-EN to estimate �̂
EN

us-

ing LAR, as discussed above. With �xed �2; the elastic net problem is equivalent to

the lasso problem on the augmented dataset (X+; Y +) ; where DG in (3.56) is equal to
1

1+�2

�
X 0
GXG + �2IG

�
for any active set G: Then the LAR-EN algorithm updates the elastic

net estimator sequentially.
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Choosing tuning parameters, �1 and �2; is a critical issue in the current context. Hastie

et al. (2009) discuss some popular ways to choose tuning parameters, and Zou and Hastie

(2005) use tenfold cross-validation (CV). Since there are two tuning parameters, it is neces-

sary to cross-validate on two dimensions. We do this by picking a small grid of values for �2

value, say (0; 0:01; 0:1; 1; 10; 100). LAR-EN selects the �2 value that yields the smallest CV

error. We follow this approach when implementing LAR-EN.

3.3.6 Non-Negative Garotte (NNG)

The NNG estimator of Breiman (1995) is a scaled version of the least squares estimator.

As in the previous section, we begin by considering generic X and Y . Assume that the

following shrinkage factors are given: q (�) = (q1 (�) ; q2 (�) ; :::; qN (�))
0 : The objective is to

choose shrinkage factors in order to minimize:

1

2
kY �Gqk2 + T�

NP
j=1

qj; subject to qj > 0; j = 1; ::; N; (3.73)

where G = (G1; ::; GN)
0, Gj = Xj

b�LSj ; and b�LS is the least squares estimator. Here � > 0

is the tuning parameter. The NNG estimator of the regression coe¢ cient vector is de�ned

as �̂
NNG

j (�) = qj (�) �̂
LS

j ; and the estimate of Y is de�ned as b� = X�̂
NNG

(�). Assuming,

for example, that X 0X = I, the minimizer of expression (3.73) has the following explicit

form: qj (�) =
�
1� �

(�̂
LS
j )2

�
+

; j = 1; :::; N: This ensures that the shrinking factor may be

identically zero for redundant predictors. The disadvantage of the NNG is its dependence on

the ordinary least squares estimator, which can be especially problematic in small samples.

Accordingly, Yuan and Lin (2007) consider lasso, ridge regression, and the elastic net as

alternatives for providing an initial estimate for use in the NNG; and they prove that if

the initial estimate is consistent, the non-negative garotte is a consistent estimator, given

that the tuning parameter, �; is chosen appropriately. Zou (2006) shows that the original
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non-negative garotte with ordinary least squares is also consistent, if N is �xed, as T !1:

Our approach is to start the algorithm with the least squares estimator, as in Yuan (2007),

who outline the following algorithm for the non-negative garotte that we use in the sequel:

Non-Negative Garotte Algorithm

1. First, set i = 1; q0 = 0; �̂0 = �Z: Then compute the current active set

Gi = argmax
j

�
G0j�̂

i�1� ;
where Gj = F̂j�̂j, is the j

th element of the T �r matrix G; and the initial �̂ is obtained

by regressing F̂ on Z; using least squares.

2. Compute the current direction ; which is an r dimensional vector de�ned by (Gi)c = 0

and


Gi
=
�
G0GiG

0
Gi
��1

G0Gi�̂
i�1:

3. For every j0 =2 Gi; compute how far the non-negative garotte will progress in direction

 before F̂j enters the active set. This can be measured by a �j such that

G0j0
�
�̂i�1 � �jG

0
�
= G0j

�
�̂i�1 � �jG

0
�

where j is arbitrarily chosen from Gi: Now, for every j 2 Gi; compute �j = min
�
�j; 1

�
;

where �j = �qi�1j =j; if nonnegative, measures how far the group non-negative garotte

will �progress�before qj becomes zero.

4. If �j � 0, 8j or min
j;�j>0

f�jg > 1; set � = 1: Otherwise, denote � = min
j;�j>0

f�jg � �j� Set

qi = qi�1+�0: If j� =2 Gi; update Gi+1 by adding j� to the set Gi; else update Gi+1 by

taking out j� from the set Gi:
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5. Set �̂i = Y � G0qi and i = i + 1: Go back to Step 1 repeat until � = 1; yielding

�̂final = �̂NNG: Finally, form

Ŷ NNG+

t+h = Wt�̂W + �̂NNG; (3.74)

and construct the prediction Ŷ NNG
t+h by adding back the mean to Ŷ NNG+

t+h :

3.3.7 Bayesian Model Averaging (BMA)

Bayesian Model Averaging (BMA) has received considerable attention in recent years in fore-

casting literature (see e.g. Koop and Potter (2004), and Wright (2008, 2009)) For consise

discussion of BMA implementation, see Hoeting et al. (1999) and Chipman et al. (2001).

The basic idea of BMA starts with supposing interest focuses on Q possible models, denoted

byM1; :::;MQ, say: In forecasting contexts, BMA involves averaging target predictions, Yt+h

from the candidate models, with weights appropriately chosen. In a very real sense, thus,

it resembles bagging. One might also selecting one model by choosing Mq� which maxi-

mizes p (MqjData) ; but model averaging is generally preferred. If we denote ! as particular

parameter vector, then BMA begins by noting that:

p (!jData) =
QX
q=1

p (!jData;Mq) p (MqjData) : (3.75)

If g (!) is a function of !; then without loss of generality, the conditional expectation is given

as:

E [g (!) jData] =
QX
q=1

E [g (!) jData;Mq] p (MqjData) : (3.76)

This mean that we can compute the variance of the parameter for quadratic g: Accordingly,

BMA involves obtaining results for all candidate models and averaging them with weights

determined by the posterior model probabilities. That is, BMA, puts little weight on im-
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plausible models, as opposed to other varieties of shrinkage discussed above that operate

directly on regressors. As we have 144 variables in our empirical work, we have 2144 possible

models. This means that we must estimate OVER 1043 models at every forecasting horizon,

and prior to the construction of each new prediction in this paper. Though there has been

a quantum leap in computing technology in recent years, it would take several years to do

this. Koop and Potter (2004) use Clyde (1999) approach to dealing with this problem, and

take posterior draws of the parameters and associated variance using Gibbs sampling. This

algorithm they use is somewhat di¤erent from the popular Markov Chain Monte Carlo al-

gorithm in that draws are taken directly from the conditional probability of the parameters

given the data and the variance. In this paper, we use the algorithm given in Koop and

Potter (2004).

To implement Bayesian model averaging, we require a slightly di¤erent setup for that

discussed above, in order to handle observable variables, Wt in (3.13). Chipman et al. (2001)

suggest integrating them out using non-informative priors. Speci�cally, we transform our

forecasting framework to be:

Y �
t+h = ��F �t + "�t ; (3.77)

where Y �
t+h = [IT �Wt (W

0
tWt)W

0
t ]Yt+h, F

�
t = [IT �Wt (W

0
tWt)W

0
t ] F̂t; Wt; F̂t is de�ned in

(3.16), and "t+h � N (0; �2) : This assumption leads a natural conjugate prior (i.e. ��j��2 �

N
�
��; �2V

�
) and ��2 � G (s�2; $) ; where G (s�2; $) denotes the gamma distribution with

mean s�2 and degrees of freedom $.

Each candidate model is described with U; which is an r� 1 vector which shows whether

each column of explanatory variables is included in current model, with a one or a zero. In

this sense, U is similar to the current set in penalized regression. Moreover, U gives the prior

model probability, p (Mq) ; as the prior for U is equivalent to p (Mq) : According to Koop and

Potter (2004), p (U jY �) is drawn directly, since our explanatory variables are orthogonal.
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We set p (Y �jU; �2) to be the marginal likelihood for the normal regression model de�ned by

U; and derive P (U jY �; �2), given a prior, p (U) and p (�2jY �; U) takes the inverted-Gamma

form as usual. The next step involves specifying the prior model probability, p (Mq) or

equivalently, a prior for p (U) :

p (U) =
RQ
j=1

�
Uj
j (1� �j)

Uj ; (3.78)

where �j is the prior probability that each potential factor enters the model. A common

benchmark case sets �j = 1
2
; equivalently, P (Mq) =

1
Q
for q = 1; :::; Q: Other choices are also

possible. For example, we could allow �j to depend on the j-th largest eigenvalue of F̂ 0F̂ :

Using the strategy described in Fernandez et al. (2001a) and Kass and Raftery (1995),

we use a noninformative improper prior over parameters for lagged variables in all models;

and in particular we follow Koop and Potter (2004), who suggest a noninformative prior for

��2: Namely, if $ = 0; s�2 does not enter the marginal likelihood or posterior. Following

Fernandez et al. (2001a), we set �� = 0R and use a g-prior form for V by setting

V r = [grF
�0
r F

�
r ]
�1 (3.79)

(see Fernandez et al. (2001a) and Zellner (1986) for more details on the use of g-priors).

Finally, we are left with the issue of speci�cation of g. Fernandez et al. (2001a) examine

the properties of many possible choices for g and Koop and Potter (2004), in an objective

Bayesian spirit, focus on values for g including g = 1
T
and g = 1

Q2
: We speci�y the same

functions for g: Using the above approach, we form:

Ŷ �;BMA
t+h = �̂FF

�
t (3.80)

and our forecast, Ŷ BMA
t+h is de�ned as [IT �Wt (W

0
tWt)W

0
t ]
�1 Ŷ �;BMA

t+h :
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3.4 Data, Forecasting Methods, and Baseline Forecast-

ing Models

3.4.1 Data

The data that we use are monthly observations on 144 U.S. macroeconomic time series for

the period 1960:01 - 2009:5 (N = 144; T = 593)13. Forecasts are constructed for eleven

variables, including: the unemployment rate, personal income less transfer payments, the

10 year Treasury-bond yield, the consumer price index, the producer price index, non-farm

payroll employment, housing starts, industrial production, M2, the S&P 500 index, and gross

domestic product.14 Table 1 lists the eleven variables. The third row of the table gives the

transformation of the variable used in order to induce stationarity. In general, logarithmic

di¤erences were taken for all nonnegative series that were not already in rates (see Stock

and Watson (2002a, 2005a) for complete details). Note that a full list of the 144 predictor

variables is provided in an appendix to an earlier version of this paper which is available

upon request from the authors.

3.4.2 Forecasting Methods

Using the transformed dataset, denoted by X, factors are estimated using linear and non-

linear principal components methods, as discussed above. Thereafter,the robust estimation

methods outlined in the previous sections are used to form forecasting models and predic-

tions. In particular, we consider three speci�cation types, as follows.

Speci�cation Type 1: Linear and nonlinear principal components are �rst constructed

using the large-scale dataset; and then prediction models are formed using the shrinkage

13This is an updated and expanded version of the Stock and Watson (2005a,b) dataset.
14Note that gross domestic product is reported quaterly. We interpolate these data to a monthly frequency

following Chow and Lin (1971),
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methods of Section 3 to select functions of and weights for the factors to be used in prediction

models of the variety given in (3.16). This speci�cation type is estimated with and without

lags of factors.

Speci�cation Type 2: Linear and nonlinear principal components are �rst constructed

using subsets of variables from the large-scale dataset that are pre-selected via application

of the robust shrinkage methods discussed in Section 3. Thereafter, prediction models of

the variety given in (3.16) are estimated. This is di¤erent from the above approach of

estimating factors using all of the variables. Note that forecasting models are estimated

with and without lags of factors.

Speci�cation Type 3: Prediction models are constructed using only the shrinkage

methods discussed in Section 3, without use of factor analysis at any stage.

Speci�cation Type 4: Prediction models are constructed using only shrinkage methods,

and only with variables which have nonzero coe¢ cients, as speci�ed via pre-selection using

SPCA.

In Speci�cation Types 3 and 4, factor augmented autoregressions (FAAR) and pure factor

based models (such as principal component regression - see next subsection for complete

details) are not used as candidate forecasting models, since models with these speci�cation

types are not based on principal or independent components.

In our prediction experiments, pseudo out-of-sample forecasts are calculated for each

variable, model variety, and speci�cation type, for prediction horizons h = 1; 3; and 12.

All estimation, including lag selection, shrinkage method application, and factor selection is

done anew, at each point in time, prior to the construction of each new prediction, using

both recursive and rolling data window strategies. Note that at each estimation period,

the number of factors included will be di¤erent, following the testing approach discussed

in Section 2. Note also that lags of the target predictor variables are also included in the

set of explanatory variables, in all cases. Selection of the number of lagged variable to
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include is done using the SIC. Out-of-sample forecasts begin after 13 years (e.g. the initial

in-sample estimation period is R =156 observations, and the out-of-sample period consists

of P = T � R = 593 � 156 = 437 observations, for h = 1). Moreover, the initial in-sample

estimation period is adjusted so that the ex ante prediction sample length, P , remains �xed,

regardless of the forecast horizon. For example, when forecasting the unemployment rate,

when h = 1, the �rst forecast will be Ŷ h=1
157 = �̂WW156 + �̂F ~F156; while in the case where

h = 12, the �rst forecast will be Ŷ h=12
157 = �̂WW145+ �̂F ~F145 In our rolling estimation scheme,

the in-sample estimation period used to calibrate our prediction models is �xed at length 12

years. The recursive estimation scheme begins with the same in-sample period of 12 years

(when h = 12), but a new observation is added to this sample prior to the re-estimation and

construction of each new forecast, as we iterate through the ex-ante prediction period. Note,

thus, that the actual observations being predicted as well as the number of predictions in our

ex-ante prediction period remains �xed, regardless of forecast horizon, in order to facillitate

comparison across forecast horizons as well as models.

Forecast performance is evaluated using mean square forecast error (MSFE), de�ned as:

MSFEi;h =
T�h+1P
t=R�h+2

�
Yt+h � Ŷi;t+h

�2
(3.81)

where bYi;t+h is the forecast for horizon h. Forecast accuracy is evaluated using the above point
MSFE measure as well as the predictive accuracy test of Diebold and Mariano (1995), which

is implemented using quadratic loss, and which has a null hypothesis that the two models

being compared have equal predictive accuracy. See Kim and Swanson (2010) for details.

DM test statistics have asymptotic N(0; 1) limiting distributions, under the assumption that

parameter estimation error vanishes as T; P;R!1, and assuming that each pair of models

being compared is nonnested: Namely, the null hypothesis of the test is H0 : E
h
l
�
"1t+hjt

�i
�

E
h
l
�
"2t+hjt

�i
= 0;where "it+hjt is i�th model�s prediction error and l (�) is the quadratic loss
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function. The actual statistic in this case is constructed as: DM = P�1
PP

i=1 dt=�̂d; where

dt =
�
["1t+hjt

�2
�
�
["2t+hjt

�2
; d is the mean of dt, �̂d is a heteroskedasticity and autocorrelation

robust estimator of the standard deviation of d, and ["1t+hjtand ["2t+hjt are estimates of the true

prediction errors "1t+hjtand "
2
t+hjt. Thus, if the statistic is negative and signi�cantly di¤erent

from zero, then Model 2 is preferred over Model 1.

3.4.3 Baseline Forecasting Models

In conjunction with the various forecast model speci�cation approaches discussed above, we

form predictions using the following benchmark models, all of which are estimated using

least squares.

Univariate Autoregression: Forecasts from a univariate AR(p) model are computed

as Ŷ AR
t+h = �̂+ �̂ (L)Yt; with lags , p, selected using of the SIC.

Multivariate Autoregression: Forecasts from an ARX(p) model are computed as

Y ARX
t+h = �̂+ �̂Zt+ �̂ (L)Yt; where Zt is a set of lagged predictor variables selected using the

SIC. Dependent variable lags are also selected using the SIC. Selection of the exogenous pre-

dictors includes choosing up to six variables prior to the construction of each new prediction

model, as the recursive or rolling samples iterate forward over time.

Principal Component Regression: Forecasts from principal component regression

are computed as Ŷ PCR
t+h = �̂+ ̂F̂t; where F̂t is estimated via principal components using X;

as in equation (3.16).

Factor Augmented Autoregression: Based on equations (3.16), forecasts are com-

puted as Y h
t+h = �̂ + �̂F F̂t + �̂W (L)Yt: This model combines an AR(p) model, with lags

selected using the SIC, with the above principal component regression (PCR) model. PCR

and factor augmented autoregressive (FAAR) models are estimated using ordinary least

square. Factors in the above models are constructed using PCA, ICA and SPCA.
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Combined Bivariate ADL Model: As in Stock and Watson (2005a), we implement a

combined bivariate autoregressive distributed lag (ADL) model. Forecasts are constructed by

combining individual forecasts computed from bivariate ADL models. The i-th ADL model

includes pi;x lags ofXi;t; and pi;y lags of Yt; and has the form Ŷ ADL
t+h = �̂+�̂i (L)Xi;t+�̂i (L)Yt:

The combined forecast is Ŷ Comb;h
T+hjT =

N

�
t=1
wiŶ

ADL;h
T+hjT . Here, we set (wi = 1=N) ; where N = 144.

There are a number of studies that compare the performance of combining methods in

controlled experiments, including: Clemen (1989), Diebold and Lopez (1996), Newbold and

Harvey (2002), and Timmermann (2005); and in the literature on factor models, Stock and

Watson (2004, 2005a, 2006), and the references cited therein. In this literature, combination

methods typically outperform individual forecasts. This stylized fact is sometimes called the

�forecast combining puzzle.�

Mean Forecast Combination: To further examine the issue of forecast combination,

and in addition to the Bayesian model averaging methods discussed in the previous section,

we form forecasts as the simple average of the thirteen forecasting models summarized in

Table 2.

3.5 Empirical Results

In this section, we summarize the results of our prediction experiments. Target variable

mnemonics are given in Table 1, and forecasting models used are summarized in Panel A of

Table 2. There are 6 di¤erent speci�cations types. Speci�cation Types 1 and 2 (estimated

with and without lags) are estimated via PCA, ICA and SPCA, so that there 4 � 3 = 12

permutations of these two types. Adding Speci�cation Types 3 and 4, and multiplying by two

(for recursive and rolling windowing strategies) yields a total of (12+2)�2 = 28 speci�cation

types for each target variable and each forecast horizon. Forecast modelling methods are

summarized in Panel B of Table 2. For the sake of brevity, we eschew reporting the entirety
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of our experimental �ndings, instead focusing on key �ndings and results. Complete details

are available upon request from the authors.

Table 3 summarizes point MSFEs for the �best�models, relative to the AR(SIC) model,

where the AR(SIC) MSFE is normalized to unity. Results are reported in two panels, with

the �rst panel summarizing �ndings across recursively estimated prediction models, and the

second panel likewise reporting �ndings based on models estimated using rolling windows of

data. Entries in bold denote point-MSFE "best" models among three principal component

methods, for a given speci�cations, estimation window and forecast horizon. Entries in bold

denote point-MSFE "best" models among three principal component methods, for a given

speci�cations, estimation window and forecast horizon. Dot-circled entries denote cases for

which each speci�cation�s MSFE-best model using recursive window estimation yields a lower

MSFE than that based on using rolling window estimation. Boxed entries denote cases where

models are "winners" across all principal component methods, when only viewing models

estimated using both recursive and rolling data windows, for a given forecasting horizon and

speci�cation type. Thus, there is only one �boxed�entry for each target variable / forecast

horizon permutation, across both panels of the table. Since the benchmark models, including

AR(SIC), ARX, etc. are included as candidate models in each speci�cation type / principal

component method permutation, there are some cases where the lowest relative MSFEs are

same across principal component (PC) methods, for a given speci�cation type. For example,

in the case of Speci�cation Type 1 and h = 1, GDP MSFEs are 0.916 for all three PC

methods. This is because ARX, one of benchmark models, yields a lower MSFE than any

other model used in conjunction with any of the PC methods. Moreover, since Speci�cation

Types 3 and 4 do not involve use of a principal component method, there are no bold entries

in rows corresponding to these speci�cation types.

Although there are a limited number of exceptions, most of the entries in Table 3 are less

than unity, indicating that our factor based forecasting models dominate the autoregressive
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model. For example, note that the relative MSFE value for IPX when using SP1 and h = 1,

is 0.268. Other bold entries can be seen to range from the low 0.80s to the mid 0.90s.

Almost all of these entries are associated with models in which the DM null hypothesis of

equal predictive accuracy is rejected.

Entries in the Table 4 show which forecast modelling method from Panel A of Table 2 has

the lowest relative MSFE for each target variable, and for each speci�cation type, principal

component method, and forecast horizon, by estimation window (Panel A summarizes results

for recursive window estimation, and Panel B does the same for rolling window estimation).

These entries, thus, report the forecast modelling methods associated with each MSFE value

given in Table 3. For example, in the leftmost three entries of Panel A of Table 3, we see

that for unemployment, the FAAR, ARX, and FAAR methods resulted in the least MSFE

predictions, under SP1 and for each of PCA, ICA, and SPCA, respectively, where these

MSFEs, as reported in Table 3, are 0.780, 0.897 and 0.827, respectively. Bold entries in

Panels A and B of the table denote forecasting method yielding the MSFE-best predictions,

for a given speci�cation type, forecast horizon, and target variable. Panel C of Table 4

summarizes the number of forecast method �wins� across 6 main speci�cation types for

the 11 target variables, by forecast horizon (i.e. reports the number of bold entries by

forecast modelling method in Panels A and B). Note that FAAR and PCR are methods

that are not used in Speci�cation Types 3 and 4, since these speci�cations have no forecast

modelling methods based on the principal component methods. Accordingly, mean forecasts

in Speci�cation Types 3 and 4 are constructed using the arithmetic mean of all forecast

modelling methods except these two.

Notice also, in Table 4, that ARX appears in multiple entries. For example, for HS and

h = 1, ARX appears as the �winner" in numerous cases. The reason for this is that each

speci�cation type has the same ARX model as one of the baseline models, and so correct

interpretation of this �nding is that the same ARX model dominates for a couple of variables
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(i.e. HS and GDP), when h = 1, regardless of PC method used for speci�cation of factor

models. However, note that for HS, the FAAR model that �wins�under SP1 and SPCA for

h = 1, and has a relative MSFE (from Table 3) of 0.542, which is substantially lower than

the value of 0.901 that applies to all of the cases where ARX �wins�. Thus, care must be

taken when interpreting the results of Table 4; inasmuch as the ARX model is much less

dominant than may appear to be the case upon cursory inspection of entries.

Interestingly, boosting and LAR perform well in several speci�cations and forecast hori-

zons. This is particularly true for higher forecast horizons, where the only method to �win�

more frequently involves simply using the arithmetic mean.

Entries in Panel A of Table 5 report which principal component method yields the lowest

MSFE for each speci�cation type, forecast horizon and target variable, when models are

estimated using recursive data windows. (Since Speci�cation Types 3 and 4 do not involve

principal components, they are excluded in this table.) Panel B is the same as Panel A,

except that results are for models estimated using rolling windows of data. Panel C of the

table summarizes the result in Panel A across target variables, thus reporting counts of the

number of times each principal component method �wins� by speci�cation type, forecast

horizon, and estimation window method. For example, upon inspection of Panel C, we see

that for Speci�cation Type 2 without lags, PCA, ICA and SPCA win 7, 2 and 1 times,

respectively, for h = 1. Notice that SPCA performs very well under Speci�cation 1, when

h = 1; although PCA �wins� the most across all other speci�cation types, regardless of

forecast horizon. Moreover, ICA performs much worse than either other principal compo-

nent estimation method. However, this result does not directly imply that PCA is a better

method for factor analysis, since these results are based on complex hybrid forecasting mod-

elling strategies coupling principal component methods with shrinkage and other regression

modelling strategies.

Entries in Panel A of Table 6 report which estimation window method yields the lowest
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MSFE for each speci�cation type, principal component method, forecast horizon and target

variable. Since Speci�cation Types 3 and 4 do not involve principal components, they are

excluded in this table. Panel B of Table 5 summarizes the result in Panel A across principal

component methods and target variables. Evidently, the entries in this table correspond

to the dot-circled entries in Panels A and B of Table 3. Here, �Recur�stands for recursive

window estimation and �Roll�for rolling window estimation. Recursive window estimation

�wins�in 93 out of 154 cases, when h = 1. On the other hand, it is interesting to note that

rolling window estimation dominates at the h = 12 horizon, winning in 119 of 154 cases.

Thus, the trade-o¤ between using less data (and hence increasing parameter uncertainty

while adjusting more quickly to structural breaks) and using more data (and hence failing

to account for breaks), appears to depend on forecast horizon. For further discussion of data

windowing, including a discussion of window combination, see Clark and McCracken (2009).

Panels A, B, and C of Table 7 summarize the results reported in Table 3 and 4. Entries

in Panel A correspond to the dot-circled MSFEs in Table 3. and are the �best�MSFEs for

each target variable, by speci�cation type and forecast horizon. Bold entries in this panel are

the �best�MSFEs for each target variable and forecast horizon, but across all speci�cation

types. Further, the window estimation scheme / principal component method / winning

model combinations associated with each bold entry in Panel A are given in Panel B of the

table. Finally, the speci�cation type / window estimation scheme / principal component

method / winning model combinations associated with each bold MSFE entry in Panel A

are given in Panel C of the table.

In Panel A, note that SP1 and SP1L yields the MSFE-best prediction models in 15 of

33 possible cases, across forecast horizon (i.e. count up the bold entries in the table), with

more than one half of these �wins�arising for the case where h = 1: Thus, just as estimation

window selection seems to require di¤erentiating across forecast horizon, so to does forecast

horizon make a di¤erence when ranking our speci�cation types. However, recall from the
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results reported in Table 5 that although PCA �wins�quite frequently, the �wins�accorded

to ICA and SPCA arise rather uniformly across forecast horizon.

Upon inspection of Panel B, the following conclusions emerge. First, of the window es-

timation scheme / principal component method / winning model combinations, recursive

windowing �wins�17 of 33 times. Thus, over all permutations and variables, the evidence

suggests that there is little to choose between the two schemes. This points to even fur-

ther evidence of the potential usefulness of the methods discussed in Clark and McCracken

(2009). Second, the PCA principal components methods actually only �wins� in 14 of 33

possible cases, overall. This suggests that although PCA �wins�in many more cases when

disaggreagting our �ndings, as reported earlier, when we actually summarize across the very

best models, it wins less than one half of the time. Given the clear dominance of prin-

cipal component methods in general, though (note that Speci�cations 3 and 4 �win�very

infrequently), we have strong evidence that ICA and SPCA are very useful factor modelling

tools; and in particular, we have seen from earlier discussion that SPCA is the clear winner

from amongst non-PCA factor methods. Thus, as discussed in numerous papers, imposing

parsimony on our factor modelling methods is quite useful. This in turn points to the fact

that there is much remaining to be done in the area of parsimonious di¤usion index mod-

elling, given the novel nature and relative youth of these methods in the literature. Third, we

see that the arithmetic mean forecasting model �wins�in only 9 of 33 cases. This is rather

surprising new evidence that simple model averaging does not necessarily yield MSFE-best

predictions. However, in order to �beat�model averaging methods, including arithmetic

mean and Bayesian averaging approaches, we have needed to introduce into our horse-race

numerous complex new models. Indeed, we see from further inspection of this table that

most of the winning models involve combining complicated principal component methods

with interesting new forms of shrinkage. It is really the combination of factor models and

shrinkage that is delivering our results that model averaging does not always �win�.
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Finally, turning to Panel C of Table 7, note that hybrid methods including factor method-

ology with shrinkage �win�in 9 of 33 cases, while simpler factor modelling approaches that

do not additionally use shrinkage �win� in 10 of 33 cases. Pure shrinkage methods (i.e.

SP3 and SP4 with shrinkage) �win� in 3 cases, while Bayesian model averaging and sim-

pler arithmetic mean combination methods �win� the remaining 11 cases. Finally, simple

linear autoregressive type models never win. We take these �nal results as further evidence

of the usefulness of new methods in factor modelling and shrinkage, when the objective is

prediction of macroeconomic time series variables.

3.6 Concluding Remarks

In this paper we outline and discuss a number of interesting new forecasting methods that

have recently been developed in the statistics and econometrics literature. We focus in

particular on the examination of a variety of factor modelling methods, including principal

components as discussed by Stock and Watson (2002a,b) and others, independent compo-

nent analysis (ICA) and sparse principal component analysis (SPCA). Further, we outline a

number of approaches for creating hybrid forecasting models that use these factor modelling

approaches in conjunction with various type of shrinkage, including boosting, bagging, and

other methods. Finally, we carry out a series of real-time prediction experiments evaluating

all of these methods against a number of benchmark linear models and forecast combination

approaches. Our experiments are carried out in the context of predicting 11 key macroeco-

nomic indicators at various forecast horizons.

We �nd that the simplest principal components type models �win�around 40% of the

time. Interestingly, ICA and SPCA type models also �win�around 40% of the time. Thus,

non factor modelling approaches only �win� around 20% of the time. Moreover, hybrid

methods including factor approaches coupled with shrinkage �win�around 1/3 of the time,



88

so that pure factor modelling approaches alone are not enough to lead to our overall �nding

that simple linear econometric models as well as models based on various forecast combina-

tion strategies are dominated by more complicated (factor/shrinkage) type models. Indeed,

simple linear autoregressive type models never �win� in our experiments. We take these

results as evidence of the usefulness of new methods in factor modelling and shrinkage, when

the objective is prediction of macroeconomic time series variables.
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Series Abbreviation Yt+h

Unemployment Rate UR Zt+1-Zt

Personal Income Less Transfer Payments PI ln(Zt+1-Zt)
10 Year Treasury Bond Yield TB10Y Zt+1-Zt

Consumer Price Index CPI ln(Zt+1-Zt)
Producer Price Index PPI ln(Zt+1-Zt)
Nonfarm Payroll Employment NNE ln(Zt+1-Zt)
Housing Starts HS ln(Zt)
Industrial Production IPX ln(Zt+1-Zt)
M2 M2 ln(Zt+1-Zt)
S&P 500 Index SNP ln(Zt+1-Zt)
Gross Domestic Product GNP ln(Zt+1-Zt)

Method
AR(SIC)
ARX
CADL
FAAR
PCR
Bagg
Boost
BMA1
BMA2
Ridge
LAR
EN
NNG
Mean

Table 1: Target Variables For Which Forecasts Are Constructed*

Table 2: Models and Methods Used In Real-Time Forecasting Experiments and 
Specification Type*

Panel A: Models and Methods Used in Real-Time Forecasting

* Notes : Data used in model estimation and prediction construction are monthly U.S. figures for the period 1960:1-2009:5. 
The transformation used in prediction model specification and prediction construction is given in the last column of the 
table. See Section 4.1 for complete details. 

Arithmetic mean of the above forecasting method

Bayesian model averaging with g -prior = 1/T

Description
Autoregressive model with lags selected by the SIC
Autoregressive model with exogenous regressors
Combined autoregressive distributed lag model
Factor augmented autoregressive model
Principal components regression
Bagging with shrinkage, c = 1.96
Component boosting, M = 50

Bayesian model averaging with g -prior = 1/N2

Ridge regression
Least angle regression
Elastic net
Non-negative garotte
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Estimation Window Specification Type Lags  Included Abbreviation

3 No   SP3
4 No   SP4

Recursive/
Rolling

No

ICA
SPCA
PCA

SPCA
PCA
ICA

SPCA

Yes

No

Yes

Panel B: Specification Details

* Notes: This table summarizes the model specification methods used in the construction of prediction models. In addition 
to the above pure linear, factor and shrinkage based methods, four different combined factor and shrinkage type prediction 
model estimation methods are used in our forecasting experiments, including: Specification Type1 - Principal components 
are first constructed, and then prediction models are formed using the above shrinkage methods (ranging from bagging to 
NNG) to select functions of and weights for the factors to be used in our prediction moels. Specification Type 2 - Principal 
component models are constructed using subsets of variables from the large-scale dataset that are first selected via 
application of the above shrinkage methods (ranging from bagging to NNG). This is different from the above approach of 
estimating factors using all of the variables. Specification  Type 3 - Prediction models are constructed using only the 
above shrinkage methods (ranging from bagging to NNG), without use of factor analysis at any stage. Specification Type 
4 - Prediction models are constructed using subsets of variables from the large-scale dataset that are first selected via 
application of the sparse princinpal component method. Then prediction models are estimated using shrinkage methods 
(ranging from bagging to NNG), without use of factor analysis at any stage. See Sections 3 and 4.3 for complete details. 

Principal Component 
PCA
ICA

SPCA
PCA1

2

Not Applicable
Not Applicable

  SP1

  SP1L

  SP2

  SP2L

ICA
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Forecast
Horizon

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

PCA 0.780 0.870 0.940 0.875 0.943 0.811 0.900 0.800 0.939 0.976 0.916
ICA 0.897 0.920 0.931 0.840 0.843 0.802 0.901 0.574 0.965 0.920 0.916
SPCA 0.827 0.789 0.409 0.870 0.858 0.706 0.542 0.268 0.969 0.897 0.916
PCA 0.850 0.889 0.955 0.865 0.945 0.879 0.901 0.804 0.930 0.976 0.916
ICA 0.897 0.966 0.978 0.939 0.960 0.918 0.901 0.861 0.991 1.002 0.916
SPCA 0.897 0.954 0.987 0.939 0.972 0.881 0.901 0.826 0.954 0.998 0.916
PCA 0.861 0.950 0.965 0.933 0.968 0.854 0.901 0.833 0.942 0.985 0.871
ICA 0.897 0.959 0.971 0.939 0.965 0.861 0.901 0.874 0.959 0.991 0.867
SPCA 0.897 0.959 0.976 0.939 0.966 0.860 0.901 0.873 0.940 0.986 0.873
PCA 0.861 0.950 0.965 0.933 0.968 0.854 0.901 0.833 0.942 0.985 0.871
ICA 0.864 0.957 0.975 0.923 0.967 0.862 0.901 0.840 0.961 0.993 0.871
SPCA 0.868 0.961 0.974 0.939 0.963 0.859 0.901 0.874 0.950 0.991 0.879

0.897 0.944 0.987 0.933 0.956 0.826 0.901 0.874 0.977 0.989 0.873
0.897 0.964 0.979 0.939 0.962 0.865 0.901 0.829 0.971 0.986 0.916

PCA 0.913 0.866 0.998 0.929 0.910 0.819 0.852 0.850 0.977 0.994 0.956
ICA 0.914 0.902 0.975 0.922 0.945 0.819 0.917 0.834 0.969 1.002 0.976
SPCA 0.916 0.892 0.988 0.895 0.940 0.775 0.862 0.816 0.942 0.997 0.944
PCA 0.925 0.892 0.988 0.901 0.929 0.818 0.852 0.838 0.978 0.993 0.963
ICA 0.963 0.902 0.998 0.967 0.945 0.927 0.948 0.895 0.997 1.007 0.979
SPCA 0.951 0.902 0.984 0.968 0.945 0.924 0.912 0.887 0.990 0.997 0.988
PCA 0.916 0.895 0.992 0.888 0.945 0.827 0.783 0.809 0.967 0.995 0.954
ICA 0.941 0.902 0.995 0.959 0.945 0.859 0.824 0.821 0.980 0.997 0.963
SPCA 0.943 0.902 0.998 0.975 0.945 0.894 0.793 0.873 0.964 0.993 0.963
PCA 0.916 0.895 0.992 0.888 0.945 0.827 0.783 0.809 0.967 0.995 0.954
ICA 0.916 0.902 0.998 0.903 0.945 0.827 0.854 0.812 0.979 0.997 0.967
SPCA 0.950 0.902 0.994 0.972 0.945 0.889 0.803 0.812 0.974 0.993 0.962

0.943 0.902 0.998 0.926 0.945 0.860 0.723 0.881 0.939 1.001 0.975
0.950 0.902 0.986 0.979 0.945 0.898 0.937 0.872 0.990 0.988 0.978

PCA 0.939 0.956 0.997 0.886 0.939 0.874 0.818 0.919 0.958 1.002 0.999
ICA 0.948 0.944 0.997 0.960 0.977 0.907 0.844 0.952 0.960 1.001 0.986
SPCA 0.933 0.940 0.992 0.928 0.950 0.845 0.841 0.932 0.950 0.996 0.993
PCA 0.903 0.956 0.988 0.888 0.927 0.860 0.829 0.926 0.942 0.995 1.000
ICA 0.943 0.969 0.997 0.961 0.981 0.912 0.912 0.939 0.964 1.002 0.981
SPCA 0.912 0.977 0.997 0.945 0.970 0.879 0.832 0.937 0.981 1.001 0.997
PCA 0.926 0.949 0.992 0.891 0.950 0.816 0.749 0.916 0.930 0.995 0.982
ICA 0.941 0.949 0.997 0.909 0.960 0.843 0.901 0.942 0.933 0.999 0.991
SPCA 0.916 0.948 0.997 0.935 0.957 0.843 0.910 0.919 0.916 0.997 0.992
PCA 0.926 0.949 0.992 0.891 0.950 0.816 0.749 0.916 0.930 0.995 0.982
ICA 0.933 0.953 0.992 0.894 0.964 0.853 0.883 0.944 0.942 0.998 0.985
SPCA 0.914 0.950 0.996 0.958 0.968 0.872 0.880 0.938 0.961 0.994 0.989

0.926 0.961 0.997 0.899 0.953 0.862 0.804 0.890 0.910 1.002 0.982
0.926 0.963 0.997 0.943 0.962 0.855 0.886 0.927 0.976 1.001 0.990

Table 3: Point MSFEs Summarized By Principal Component Methods and Specification Type*
Panel A: Recursive Window Estimation

  SP1L

  SP2

  SP2L

  SP3
  SP4

h = 12

  SP1

Specification
Method

h = 3

  SP1

  SP1L

  SP2

  SP2L

  SP3
  SP4

  SP1

  SP1L

  SP2

  SP2L

h = 1

  SP3
  SP4



92

Forecast
Horizon

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

PCA 0.787 0.909 0.944 0.843 0.971 0.831 0.841 0.803 0.863 0.998 0.940
ICA 0.871 1.014 0.977 0.876 0.973 0.918 0.841 0.910 0.918 0.998 0.948
SPCA 0.871 1.023 0.977 0.883 0.996 0.877 0.841 0.875 0.869 1.007 0.945
PCA 0.852 0.989 0.954 0.850 0.973 0.871 0.841 0.845 0.845 1.002 0.943
ICA 0.871 1.004 0.982 0.883 0.985 0.924 0.841 0.877 0.908 1.008 0.941
SPCA 0.871 1.081 0.992 0.883 1.003 0.911 0.841 0.851 0.880 1.008 0.989
PCA 0.871 1.085 0.963 0.849 0.936 0.869 0.841 0.858 0.889 0.998 0.915
ICA 0.871 1.114 0.977 0.849 0.941 0.884 0.841 0.858 0.908 1.006 0.915
SPCA 0.871 1.087 0.979 0.844 0.949 0.877 0.841 0.892 0.888 1.007 0.927
PCA 0.871 1.088 0.964 0.850 0.948 0.865 0.841 0.833 0.886 0.997 0.905
ICA 0.871 1.100 0.977 0.843 0.953 0.880 0.841 0.841 0.909 1.004 0.905
SPCA 0.871 1.095 0.979 0.840 0.957 0.879 0.841 0.864 0.910 1.004 0.915

0.871 1.114 0.992 0.858 1.000 0.924 0.841 0.841 0.916 1.008 0.930
0.871 1.091 0.977 0.828 0.946 0.872 0.841 0.867 0.899 1.008 0.945

PCA 0.882 0.872 1.002 0.861 0.937 0.786 0.769 0.835 0.914 0.997 0.937
ICA 0.923 0.925 0.996 0.890 0.941 0.833 0.839 0.854 0.978 1.004 0.957
SPCA 0.926 0.913 0.993 0.870 0.944 0.847 0.807 0.869 0.941 1.003 0.969
PCA 0.904 0.889 0.981 0.848 0.920 0.807 0.744 0.820 0.908 0.988 0.953
ICA 0.936 0.925 1.001 0.900 0.951 0.876 0.854 0.877 0.976 1.008 0.957
SPCA 0.957 0.903 1.002 0.905 0.945 0.905 0.840 0.884 0.981 1.001 0.972
PCA 0.895 0.883 0.998 0.875 0.941 0.814 0.740 0.833 0.912 0.989 0.929
ICA 0.912 0.899 0.995 0.875 0.939 0.838 0.743 0.850 0.915 0.989 0.950
SPCA 0.919 0.914 0.997 0.863 0.941 0.846 0.785 0.857 0.927 0.989 0.947
PCA 0.889 0.886 0.988 0.864 0.942 0.792 0.738 0.823 0.911 0.985 0.938
ICA 0.888 0.901 0.998 0.865 0.941 0.792 0.806 0.838 0.921 0.985 0.947
SPCA 0.927 0.919 1.002 0.861 0.936 0.843 0.772 0.858 0.929 0.985 0.943

0.911 0.903 1.002 0.906 0.960 0.839 0.683 0.844 0.950 1.002 0.970
0.930 0.903 1.002 0.842 0.925 0.831 0.806 0.858 0.942 0.994 0.960

PCA 0.897 0.935 0.997 0.812 0.891 0.729 0.723 0.884 0.896 1.007 1.010
ICA 0.930 0.944 0.997 0.863 0.949 0.779 0.741 0.909 0.937 0.996 0.999
SPCA 0.879 0.953 0.997 0.781 0.920 0.720 0.715 0.890 0.904 1.006 0.997
PCA 0.864 0.946 0.997 0.819 0.902 0.737 0.726 0.898 0.899 1.000 0.996
ICA 0.908 0.951 0.997 0.872 0.962 0.730 0.773 0.902 0.942 1.003 0.987
SPCA 0.869 0.983 0.992 0.816 0.938 0.759 0.712 0.943 0.960 1.002 0.984
PCA 0.893 0.929 0.997 0.818 0.912 0.692 0.637 0.880 0.884 0.994 0.994
ICA 0.911 0.932 0.997 0.833 0.915 0.691 0.726 0.902 0.888 0.994 0.993
SPCA 0.901 0.935 0.997 0.819 0.921 0.692 0.693 0.896 0.879 0.991 0.991
PCA 0.883 0.927 0.997 0.816 0.903 0.714 0.624 0.888 0.880 0.993 0.996
ICA 0.895 0.929 0.997 0.835 0.917 0.719 0.695 0.898 0.897 0.994 0.993
SPCA 0.888 0.935 0.997 0.836 0.910 0.722 0.768 0.897 0.905 0.994 0.991

0.903 0.971 0.997 0.799 0.947 0.690 0.551 0.940 0.891 1.001 0.998
0.882 0.937 0.997 0.804 0.912 0.702 0.616 0.886 0.902 0.997 0.985

Specification
Method

*Notes: See notes to Tables 1 and 2. Numerical entries in this table are the lowest mean square forecast errors (MSFEs) based on 
the use of various recursively estimated (Panel A) and rolling estimated (Panel B) prediction models using three different types of  
pricinpal component methods (PCA, ICA and SPCA) for six different specification types. Prediction models and target variables are 
described in Tables 1 and 2. See Section 3.2 for factor discussion. Forecasts are monthly, for the period 1974:3-2009:5.  Forecast 
horizons reported on include h=1,3 and 12. Entries are relative MSFEs, such that numerical values less than unity constitute cases 
for which the alternative model has lower point MSFE than the AR(SIC) model. Entries in bold denote point-MSFE "best" models 
among three principal component methods, for a given specifications, estimation window and forecast horizon. Dot-circled entries 
denote cases for which each specification's MSFE-best model using recursive window estimation yields a lower MSFE than that 
based on using rolling window estimation. Boxed entries denote cases where models are "winners" across all principal component 
methods, when only viewing models estimated using both recursive and rolling data windows, for a given forecasting horizon and 
specification type. 

h = 12

  SP1

  SP1L

  SP2

  SP2L

  SP3
  SP4

h = 3

  SP1

  SP1L

  SP2

  SP2L

  SP3
  SP4

  SP3
  SP4

Panel B. Rolling Window Estimation

h = 1

  SP1

  SP1L

  SP2

  SP2L
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Forecast
Horizon

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

PCA FAAR PCR Ridge PCR PCR FAAR ARX PCR Mean Mean ARX
ICA ARX FAAR FAAR FAAR FAAR Ridge ARX FAAR Mean Boost ARX
SPCA FAAR PCR PCR BMA1 BMA2 Mean FAAR FAAR Mean Boost ARX
PCA FAAR PCR Mean PCR Mean Mean ARX BMA1 Mean Boost ARX
ICA ARX Mean Mean ARX Mean Mean ARX Mean Mean AR ARX
SPCA ARX Mean CADL ARX Mean Boost ARX Mean Mean Mean ARX
PCA Boost Mean Mean Boost Mean Mean ARX BMA1 BMA2 Mean Boost
ICA ARX Mean Mean ARX Mean Mean ARX ARX EN Mean Boost
SPCA ARX Mean Mean ARX Mean Mean ARX BMA1 Boost Mean Boost
PCA Boost Mean Mean Boost Mean Mean ARX BMA1 BMA2 Mean Boost
ICA Boost Mean Mean Boost Mean Mean ARX Boost EN Mean Boost
SPCA Boost Mean Mean ARX Mean Mean ARX ARX Boost Mean Boost

ARX Mean CADL Mean Mean Mean ARX ARX Mean Boost Mean
ARX Mean Mean ARX Mean Mean ARX BMA1 Mean Mean ARX

PCA PCR PCR CADL FAAR PCR FAAR Boost Mean Mean LAR Mean
ICA FAAR ARX PCR FAAR ARX FAAR LAR Mean Bagg AR Mean
SPCA Mean PCR Mean FAAR Mean Ridge Mean FAAR Mean NNG Mean
PCA Mean Mean Mean Mean Mean BMA1 Mean Mean Mean NNG Mean
ICA Mean ARX CADL Mean ARX Mean LAR ARX NNG AR Mean
SPCA Mean ARX Mean Mean ARX BMA2 Mean Mean NNG NNG NNG
PCA Boost Mean EN Boost ARX Boost Boost Mean Mean Mean Mean
ICA Mean ARX LAR Boost ARX Boost Boost Boost Mean Mean Mean
SPCA Mean ARX CADL Mean ARX Mean Boost Mean Boost LAR Mean
PCA Boost Mean EN Boost ARX Boost Boost Mean Mean Mean Mean
ICA Boost ARX CADL Boost ARX Boost Boost LAR Mean Mean Mean
SPCA Mean ARX BMA2 Mean ARX Mean Boost LAR Boost Mean Mean

Boost ARX CADL Mean ARX Mean Mean BMA2 Mean AR Boost
Mean ARX Mean Mean ARX Mean Mean Mean NNG Mean Mean

PCA Ridge Mean CADL FAAR FAAR FAAR FAAR Mean Mean AR Mean
ICA Mean Mean CADL Mean Mean Mean FAAR CADL Mean AR Bagg
SPCA Mean Mean NNG Mean Mean Mean Mean Mean Mean LAR Mean
PCA Mean Mean Boost Mean Mean Mean Mean Mean Boost LAR AR
ICA Mean Bagg CADL Mean Mean Mean FAAR Bagg Mean AR Bagg
SPCA Mean Mean CADL Mean BMA2 Mean Mean Mean Mean AR Mean
PCA Mean Mean Mean BMA1 Mean Boost Boost Mean Mean LAR LAR
ICA Mean Mean CADL Boost Mean EN Boost Mean Mean LAR Mean
SPCA Boost Mean CADL Mean Mean EN Boost Mean Mean LAR Mean
PCA Mean Mean Mean BMA1 Mean Boost Boost Mean Mean LAR LAR
ICA Mean Mean BMA2 Boost Mean Boost Boost Mean Mean Mean LAR
SPCA Boost Mean Mean Mean Mean Mean Boost Mean Mean BMA2 LAR

Boost Boost CADL Mean Mean Boost EN EN Mean AR EN
Mean Mean CADL Mean Mean Mean Boost Mean Mean AR Mean

Specification
Method

  SP4

h = 3

  SP1

  SP1L

  SP2

  SP1

  SP1L

  SP2

  SP2L

  SP3

Table 4: Summary of MSFE-"Best" Models*

Panel A: Recursive Window Estimation

h = 1

  SP1

  SP1L

  SP2

  SP2L

  SP3
  SP4

  SP2L

  SP3
  SP4

h = 12
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Forecast
Horizon

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

PCA FAAR PCR Mean FAAR Mean FAAR ARX PCR FAAR LAR Mean
ICA ARX AR Mean Mean Mean Mean ARX ARX Mean NNG Mean
SPCA ARX AR Mean ARX LAR Mean ARX Mean Mean AR Mean
PCA Mean PCR Mean Mean Mean Mean ARX Mean Mean AR Mean
ICA ARX AR Mean ARX Mean Mean ARX Mean Mean AR Mean
SPCA ARX AR CADL ARX AR Mean ARX Mean Mean AR LAR
PCA ARX AR Mean Mean LAR Mean ARX Boost Mean EN EN
ICA ARX AR Mean Mean LAR Mean ARX Boost Mean AR EN
SPCA ARX AR Mean Boost LAR Mean ARX Mean Mean AR LAR
PCA ARX AR Mean Mean EN Mean ARX BMA2 Mean LAR LAR
ICA ARX AR Mean Mean EN Mean ARX Boost Mean AR LAR
SPCA ARX AR Mean Mean Mean Mean ARX Boost Mean AR LAR

ARX AR CADL Boost AR Boost ARX Boost LAR AR EN
ARX AR Boost BMA2 Mean Mean ARX Mean Boost AR Mean

PCA Mean PCR AR Mean Mean PCR Boost Mean FAAR LAR Boost
ICA Mean Mean PCR Mean Mean Mean Bagg Mean Bagg AR Mean
SPCA Mean Mean BMA2 BMA1 Mean Mean Mean Mean Mean AR Mean
PCA Mean Mean LAR Mean Mean Mean Boost Mean Mean Mean Mean
ICA Mean Mean AR BMA2 Boost Mean Boost Mean Mean AR Mean
SPCA Mean Mean AR BMA2 NNG Mean Mean Mean Mean AR LAR
PCA Mean Mean NNG Mean Mean BMA2 Boost Mean EN NNG LAR
ICA Mean Mean BMA2 Mean Mean Mean Boost Mean EN NNG Mean
SPCA Boost Mean BMA1 BMA2 Mean Mean Boost Mean Mean NNG Mean
PCA Boost Mean BMA1 Mean Mean Boost BMA2 Mean Mean NNG Mean
ICA Boost Mean BMA2 Mean Mean Boost Boost Boost Boost NNG Mean
SPCA Mean Mean AR Mean Mean Mean Boost Mean Boost NNG Mean

Boost Boost AR Boost NNG Boost Boost Boost Boost AR Boost
Mean Mean AR Mean Mean Boost Mean Boost Boost Mean LAR

PCA Mean Mean CADL Mean PCR FAAR Boost Mean Mean AR AR
ICA Mean Mean CADL Ridge Mean Mean FAAR Mean Mean Bagg Mean
SPCA Mean Mean CADL BMA2 Mean Mean Mean Mean Mean AR Mean
PCA Mean Mean CADL Mean Mean Mean Mean Mean Mean AR NNG
ICA Mean Mean CADL Mean Mean Mean Mean Mean Mean AR Bagg
SPCA Mean NNG NNG BMA2 Boost Mean Mean LAR LAR AR LAR
PCA Mean Mean CADL Mean Mean EN Boost Mean Boost NNG Mean
ICA Mean Mean CADL Mean Mean EN Boost Mean Boost NNG Mean
SPCA Mean Mean CADL Mean Mean EN Boost Mean Boost LAR Mean
PCA Mean Mean CADL Mean Mean Boost Boost Mean Mean BMA2 Mean
ICA Mean Mean CADL Mean Mean Boost Boost Mean Boost NNG Mean
SPCA Mean Mean CADL Mean LAR Boost Boost Mean Boost NNG Mean

Boost Boost CADL EN EN Boost Boost Boost Boost AR NNG
Mean Mean CADL Boost Mean Mean Boost Mean Mean NNG EN

Specification
Method

h = 12

  SP1

  SP1L

  SP2

  SP2L

  SP3
  SP4

h = 3

  SP1

  SP1L

  SP2

  SP2L

  SP3
  SP4

Panel B. Rolling Window Estimation

h = 1

  SP1

  SP1L

  SP2

  SP2L

  SP3
  SP4
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SP1 SP1L SP2 SP2L SP3 SP4 Total SP1 SP1L SP2 SP2L SP3 SP4 Total
AR 0 1 0 0 0 0 1 3 6 5 5 3 2 24
ARX 6 10 8 5 3 4 36 7 7 6 6 2 2 30
CADL 0 1 0 0 1 0 2 0 1 0 0 1 0 2
FAAR 10 1 0 0 0 0 11 4 0 0 0 0 0 4
PCR 6 2 0 0 0 0 8 2 1 0 0 0 0 3
Bagg 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Boost 2 2 6 10 1 0 21 0 0 3 2 3 2 10
BMA1 1 1 2 1 0 1 6 0 0 0 0 0 0 0
BMA2 1 0 1 1 0 0 3 0 0 0 1 0 1 2
Ridge 2 0 0 0 0 0 2 0 0 0 0 0 0 0
LAR 0 0 0 0 0 0 0 2 1 4 4 1 0 12
EN 0 0 1 1 0 0 2 0 0 3 2 1 0 6
NNG 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Mean 5 15 15 15 6 6 62 14 17 12 13 0 4 60

SP1 SP1L SP2 SP2L SP3 SP4 Total SP1 SP1L SP2 SP2L SP3 SP4 Total
AR 1 1 0 0 1 0 3 3 4 0 1 2 1 11
ARX 2 5 5 5 2 2 21 0 0 0 0 0 0 0
CADL 1 1 1 1 1 0 5 0 0 0 0 0 0 0
FAAR 7 0 0 0 0 0 7 1 0 0 0 0 0 1
PCR 5 0 0 0 0 0 5 3 0 0 0 0 0 3
Bagg 1 0 0 0 0 0 1 2 0 0 0 0 0 2
Boost 1 0 10 10 2 0 23 2 3 4 9 8 3 29
BMA1 0 1 0 0 0 0 1 1 0 1 1 0 0 3
BMA2 0 1 0 1 1 0 3 1 2 3 2 0 0 8
Ridge 1 0 0 0 0 0 1 0 0 0 0 0 0 0
LAR 2 1 2 2 0 0 7 1 2 1 0 0 1 5
EN 0 0 1 1 0 0 2 0 0 2 0 0 0 2
NNG 1 5 0 0 0 1 7 0 1 4 3 1 0 9
Mean 11 18 14 13 4 8 68 19 21 18 17 0 6 81

SP1 SP1L SP2 SP2L SP3 SP4 Total SP1 SP1L SP2 SP2L SP3 SP4 Total
AR 2 3 0 0 1 1 7 3 3 0 0 1 0 7
ARX 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CADL 3 2 2 0 1 1 9 3 2 3 3 1 1 13
FAAR 5 1 0 0 0 0 6 2 0 0 0 0 0 2
PCR 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Bagg 1 3 0 0 0 0 4 1 1 0 0 0 0 2
Boost 0 2 6 7 3 1 19 1 1 6 8 6 2 24
BMA1 0 0 1 1 0 0 2 0 0 0 0 0 0 0
BMA2 0 1 0 2 0 0 3 1 1 0 1 0 0 3
Ridge 1 0 0 0 0 0 1 1 0 0 0 0 0 1
LAR 1 1 4 4 0 0 10 0 3 1 1 0 0 5
EN 0 0 2 0 3 0 5 0 0 3 0 2 1 6
NNG 1 0 0 0 0 0 1 0 3 2 2 1 1 9
Mean 19 20 18 19 3 8 87 20 19 18 18 0 6 81

*Notes: See notes to Tables 1, 2 and 3. Entries in Panels A and B are the forecasting method yielding the lowest MSFEs, 
corresponding to the entries in Table 3. Entries in Panel C denote the number of MSFE "wins" by forecasting method across 
all entries in Panel A and B. Forecasting methods are described in Table 2. 

Panel C: Summary of Panel A and B

Recursive Window Estimation Rolling Window Estimation

h=12

h=3

h=1
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PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA

2 2 6 5 1 5 4 1 6 10 0 0 10 0 1 5 1 5

10 0 0 10 0 1 10 1 0 9 1 0 11 0 0 6 1 4

7 2 1 8 0 2 8 0 3 9 0 2 8 2 1 7 1 3

7 2 1 7 1 2 9 0 2 10 0 1 8 1 2 10 0 1

Rolling Window Estimation

h=1 h=3 h=12

h=3
h=12
h=1
h=3
h=12

Recursive Window Estimation

h=1 h=3 h=12

PCA
PCA
SPCA

h=12

PCA SPCA PCA SPCA SPCA

PCA PCA

* Notes: Entries in Panels A and B of this table show which principal component method yields the lowest  MSFE predictions.  If 
a benchmark model (AR,ARX and CADL) is MSFE-"better" than PCA, ICA and SPCA in Table 4, the entry is the "ALL", 
otherwise, entries correspond to MSFE-best principal component methods reported in Table 4. In Panel C, entries are counts of 
each pricipal component method "wins" from  first two panels of the table. Since there is no column for ALL, sum of counts across 
one row of entries in a box doesn't need to be eleven, equallying the number of target variables.  

SP1

SP1L

SP2

SP2L

SP2L

SP1

PCA
PCA
PCA
PCA
ICA
PCA

PCA
PCA
SPCA

h=1
h=3

SP1L

SP2

PCA
PCA
PCA

h=1
h=3
h=12
h=1
h=3
h=12

Table 5: Numerical Summary of MSFE-"Best" Principal Component Method*

Horizon
h=1

h=1
h=3
h=12

Specification

SP1

SP1L

SP2

UR
PCA
PCA
SPCA
PCA
PCA
PCA
PCA
PCA
SPCA

PCA ICA SPCA

TB10Y

h=1
h=3
h=12

h=1
h=3
h=12

GDP
SPCA SPCA ICA ICA SPCA SPCA SPCA PCA SPCA

PPI NPE HS IPX M2 SNP
ALL

PI CPI

PCA SPCA
SPCA SPCA PCA PCA SPCA PCA PCA SPCA SPCA ICA

PCA PCA PCA ALL PCA PCA PCA PCA
PCA SPCA PCA PCA PCA PCA PCA PCA PCA PCA

ICA
PCA PCA PCA ICA PCA ALL PCA SPCA PCA ICA
PCA PCA PCA PCA PCA PCA PCA PCA PCA

PCA
SPCA PCA PCA PCA PCA PCA PCA SPCA PCA PCA
PCA PCA PCA ALL PCA PCA PCA SPCA SPCA

PCA SPCA

ICA
PCA PCA PCA ALL ICA PCA SPCA PCA SPCA PCA
PCA PCA ICA SPCA PCA ALL PCA PCA PCA

PCA

PCA

Panel B: Rolling Window Estimation

PPI NPE HS IPX M2 SNP

PCA PCA PCA PCA PCA PCA

PCA PCA PCA PCA PCA ALL PCA PCA PCA

PCA

PCA
PCA PCA SPCA PCA SPCA SPCA PCA PCA ICA SPCA
PCA SPCA PCA PCA PCA PCA PCA PCA PCA

ICA
PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA
PCA PCA PCA PCA PCA ALL PCA PCA PCA

SPCA
PCA PCA SPCA PCA PCA PCA PCA SPCA PCA PCA
PCA SPCA SPCA PCA ICA SPCA PCA PCA PCA

PCA
PCA PCA PCA PCA ICA PCA PCA SPCA SPCA
PCA ICA SPCA ICA PCA PCA PCA PCA PCA

Panel A:  Recursive Window Estimation

Specification Horizon UR PI TB10Y CPI

PCA
PCA

PCA PCA SPCA SPCA PCA PCA PCA PCA PCA

SPCA
PCA PCA SPCA PCA

GDP

PCA PCA PCA PCA PCA

SPCA

Panel C: Summary of MSFE-best by PC method

PCA PCA PCA PCA PCA PCA PCA PCA PCA
SP2L
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Specification
Type

Forecast
Horizon

PC
Method

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

PCA Recur Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur
ICA Roll Recur Recur Recur Recur Recur Roll Recur Roll Recur Recur
SPCA Recur Recur Recur Recur Recur Recur Recur Recur Roll Recur Recur
PCA Roll Recur Recur Roll Recur Roll Roll Roll Roll Recur Roll
ICA Recur Recur Recur Roll Roll Recur Roll Recur Recur Recur Roll
SPCA Recur Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur
ICA Roll Recur Recur Roll Roll Roll Roll Roll Roll Roll Recur
SPCA Roll Recur Recur Roll Roll Roll Roll Roll Roll Recur Recur
PCA Recur Recur Roll Roll Recur Roll Roll Recur Roll Recur Recur
ICA Roll Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur
SPCA Roll Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur
PCA Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll
ICA Roll Recur Recur Roll Recur Roll Roll Roll Roll Recur Roll
SPCA Recur Recur Recur Roll Recur Roll Roll Roll Roll Recur Roll
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Roll
ICA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur
SPCA Roll Recur Roll Roll Roll Roll Roll Recur Roll Recur Roll
PCA Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
ICA Roll Recur Recur Roll Roll Recur Roll Roll Roll Recur Recur
SPCA Roll Recur Recur Roll Roll Recur Roll Recur Roll Recur Recur
PCA Roll Roll Recur Roll Roll Roll Roll Recur Roll Roll Roll
ICA Roll Roll Recur Roll Roll Roll Roll Recur Roll Roll Roll
SPCA Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll Roll
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
ICA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
SPCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll
PCA Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
ICA Recur Recur Recur Roll Roll Recur Roll Recur Roll Recur Recur
SPCA Recur Recur Recur Roll Roll Recur Roll Roll Roll Recur Recur
PCA Roll Roll Roll Roll Roll Roll Roll Recur Roll Roll Roll
ICA Roll Roll Roll Roll Roll Roll Roll Recur Roll Roll Roll
SPCA Roll Recur Recur Roll Roll Roll Roll Recur Roll Roll Roll
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
ICA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
SPCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur

Roll Recur Recur Roll Recur Recur Roll Roll Roll Recur Recur
Roll Recur Recur Roll Recur Roll Roll Roll Recur Recur Roll
Roll Recur Recur Roll Roll Roll Roll Recur Roll Roll Recur
Roll Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
Roll Recur Recur Roll Roll Roll Roll Roll Roll Recur Roll
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll

Recur Roll Recur Roll Recur Roll
26 7 19 14 10 23
20 13 9 24 8 25
17 16 5 28 5 28
19 14 5 28 7 26
6 5 5 6 4 7
5 6 3 8 1 10
93 61 46 108 35 119

SP1

h=1

h=3

h=12

SP1L

h=1

h=3

h=12

SP2

h=1

h=3

h=12

h=1
h=3
h=12

SP2L

h=1

h=3

h=12

SP3
h=1
h=3
h=12

Total

* Note: See notes to Tables 1,2 and 3. Entries in Panel A show which estimation type yields the MSFE-best model. "Recur" refers 
recursive window estimation and "Roll" refers to rolling window esimation. Entries correspond to dot-circled entries in Panels A and 
B in Table 3. Panel B is a summary of "wins" by specification type and forecasting horizon. 

Table 6: Numerical Summary of MSFE-"Best" Estimation Windows

Panel B: MSFE-Best Models By Estimation Window and Specification Type

Panel A. MSFE-'best' Models by Estimation Scheme Across Specification

h=12h=3h = 1 

SP4

SP1
SP1L
SP2
SP2L
SP3

SP4
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Forecast
Horizon

Specification
Type

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1 0.780 0.789 0.409 0.840 0.843 0.706 0.542 0.268 0.863 0.897 0.916
SP1L 0.850 0.889 0.954 0.850 0.945 0.871 0.841 0.804 0.845 0.976 0.916
SP2 0.861 0.950 0.963 0.844 0.936 0.854 0.841 0.833 0.888 0.985 0.867
SP2L 0.861 0.950 0.964 0.840 0.948 0.854 0.841 0.833 0.886 0.985 0.871
SP3 0.871 0.944 0.987 0.858 0.956 0.826 0.841 0.841 0.916 0.989 0.873
SP4 0.871 0.964 0.977 0.828 0.946 0.865 0.841 0.829 0.899 0.986 0.916
SP1 0.882 0.866 0.975 0.861 0.910 0.775 0.769 0.816 0.914 0.994 0.937
SP1L 0.904 0.889 0.981 0.848 0.920 0.807 0.744 0.820 0.908 0.988 0.953
SP2 0.895 0.883 0.992 0.863 0.939 0.814 0.740 0.809 0.912 0.989 0.929
SP2L 0.888 0.886 0.988 0.861 0.936 0.792 0.738 0.809 0.911 0.985 0.938
SP3 0.911 0.902 0.998 0.906 0.945 0.839 0.683 0.844 0.939 1.001 0.970
SP4 0.930 0.902 0.986 0.842 0.925 0.831 0.806 0.858 0.942 0.988 0.960
SP1 0.879 0.935 0.992 0.781 0.891 0.720 0.715 0.884 0.896 0.996 0.986
SP1L 0.864 0.946 0.988 0.816 0.902 0.730 0.712 0.898 0.899 0.995 0.981
SP2 0.893 0.929 0.992 0.818 0.912 0.691 0.637 0.880 0.879 0.991 0.982
SP2L 0.883 0.927 0.992 0.816 0.903 0.714 0.624 0.888 0.880 0.993 0.982
SP3 0.903 0.961 0.997 0.799 0.947 0.690 0.551 0.890 0.891 1.001 0.982
SP4 0.882 0.937 0.997 0.804 0.912 0.702 0.616 0.886 0.902 0.997 0.985

Table 7: Best MSFEs By Specification Type and Forecasting Horizon

Panel A: Lowes MSFEs By Specification Type

h = 3

h = 12

h = 1
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Forecast
Horizon

Specification
Type

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Recur Recur Recur Recur Recur Recur Recur Recur Roll Recur Recur
PCA SPCA SPCA ICA ICA SPCA SPCA SPCA PCA SPCA PCA

FAAR PCR PCR FAAR FAAR Mean FAAR FAAR FAAR Boost ARX
Recur Recur Roll Roll Recur Roll Roll Recur Roll Recur Recur
PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA

FAAR PCR Mean Mean Mean Mean ARX BMA1 Mean Boost ARX
Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
PCA PCA PCA SPCA PCA PCA PCA PCA SPCA PCA ICA
Boost Mean Mean Boost LAR Mean ARX BMA1 Mean Mean Boost
Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
PCA PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA
Boost Mean Mean Mean EN Mean ARX BMA1 Mean Mean Boost
Roll Recur Recur Roll Recur Recur Roll Roll Roll Recur Recur
ARX Mean CADL Boost Mean Mean ARX Boost LAR Boost Mean
Roll Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
ARX Mean Boost BMA2 Mean Mean ARX BMA1 Boost Mean ARX
Roll Recur Recur Roll Recur Recur Roll Recur Roll Recur Roll
PCA PCA ICA PCA PCA SPCA PCA SPCA PCA PCA PCA
Mean PCR PCR Mean PCR Ridge Boost FAAR FAAR LAR Boost
Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll
PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA
Mean Mean LAR Mean Mean Mean Boost Mean Mean Mean Mean
Roll Roll Recur Roll Roll Roll Roll Recur Roll Roll Roll
PCA PCA PCA SPCA ICA PCA PCA PCA PCA PCA PCA
Mean Mean EN BMA2 Mean BMA2 Boost Mean EN NNG LAR
Roll Roll Roll Roll Roll Roll Roll Recur Roll Roll Roll
ICA PCA PCA SPCA SPCA PCA PCA PCA PCA PCA PCA
Boost Mean BMA1 Mean Mean Boost BMA2 Mean Mean NNG Mean
Roll Recur Recur Roll Recur Roll Roll Roll Recur Recur Roll

Boost ARX CADL Boost ARX Boost Boost Boost Mean AR Boost
Roll Recur Recur Roll Roll Roll Roll Roll Roll Recur Roll
Mean ARX Mean Mean Mean Boost Mean Boost Boost Mean LAR
Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur

SPCA PCA SPCA SPCA PCA SPCA SPCA PCA PCA SPCA ICA
Mean Mean NNG BMA2 PCR Mean Mean Mean Mean LAR Bagg
Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur
PCA PCA PCA SPCA PCA ICA SPCA PCA PCA PCA ICA
Mean Mean Boost BMA2 Mean Mean Mean Mean Mean LAR Bagg
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
PCA PCA PCA PCA PCA ICA PCA PCA SPCA SPCA PCA
Mean Mean Mean Mean Mean EN Boost Mean Boost LAR LAR
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA
Mean Mean Mean Mean Mean Boost Boost Mean Mean BMA2 LAR
Roll Recur Recur Roll Roll Roll Roll Recur Roll Roll Recur

Boost Boost CADL EN EN Boost Boost EN Boost AR EN
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll
Mean Mean CADL Boost Mean Mean Boost Mean Mean NNG EN

SP3

SP4

SP1

SP1L

* Notes: See notes to Table 1, 2, 3 and 4. Entries in Panel A of this table report lowest relative MSFE model types 
across principal component method and estimation type. Thus, entries resort and report on the dot-circled entries in 
Panels A and B of Table 3, sorted by forecasting horizon. Bold entries in Panel A are lowest relative  MSFEs by 
forecasting horizon. These are the final "winners", by forecasting horizon. For Specification Type 1 without (SP1) and 
with lags (SP1L), and Specification Type 2 without (SP2) and with lags (SP2L), each three rows of entries for each 
forecasting horizon in Panel B are the corresonding estimation type, principal component method and forecasting 
methods corresponding to the entries in Panel A. For Specification Types 3 and 4, each two rows of entries for each 
forecasting horizon in Panel B are the corresonding estimation type and forecasting methods corresponding to the entries 
in Panel A.

SP2

SP2L

SP3

SP4

h=1

h=3

h=12

SP3

SP4

SP1

SP1L

SP1L

SP2

SP1

SP2L

Panel B: MSFE-Best Window/PC/Model Combination By Forecasting Horizon and Sepcification 

SP2

SP2L
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Forecast
Horizon

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1 SP1 SP1 SP4 SP1 SP1 SP1 SP1 SP1L SP1 SP2

Recur Recur Recur Roll Recur Recur Recur Recur Roll Recur Recur

PCA SPCA SPCA N/A ICA SPCA SPCA SPCA PCA SPCA ICA

FAAR PCR PCR BMA2 FAAR Mean FAAR FAAR Mean Boost Boost

SP1 SP1 SP1 SP4 SP1 SP1 SP3 SP2 SP1L SP2L SP2

Roll Recur Recur Roll Recur Recur Roll Recur Roll Roll Roll

PCA PCA ICA N/A PCA SPCA N/A PCA PCA PCA PCA

Mean PCR PCR Mean PCR Ridge Boost Mean Mean NNG LAR

SP1L SP2L SP1L SP1 SP1 SP3 SP3 SP2 SP2 SP2 SP1L

Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur

PCA PCA PCA SPCA PCA N/A N/A PCA SPCA SPCA ICA

Mean Mean Boost BMA2 PCR Boost Boost Mean Boost LAR Bagg

Panel C: Summary of MSFE-"Best" Specification Type/Window/PC/Model Combination By 
Forecast Horizon*

* Notes: See notes to Table 1,2,3,4, and 6. Entries in this table show the lowest relative MSFE model across all 
specification type, estimation type, principal method, and forecasting method, corresponding to the bold entries in 
Table 6. Each Four rows of entries for each forecasting horizon include specification type, estimation type, principal 
component method and forecasting method. Since Specification Type 3 and 4 are not carried out using factors, the 
third rows of entries are reported as "N/A" when either of these two specifcation types win, overall.  Benchmark 
models such as AR and ARX models are never MSFE-best across all specification types, for a given forecasting 
horizon and variables. 

h=1

h=3

h=12
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