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ABSTRACT OF THE DISSERTATION

Making SOA-Based Systems Coherent and Trustworthy

by TIN LAM

Dissertation Director: Naftaly H. Minsky

Under Service Oriented Architecture (SOA), a software system - such as one that supports

an enterprise-consists of multiple heterogeneous servers. These servers may be distributed over

the internet, and may be managed under different administrative domains. SOA has become

hugely popular, particularly as the architecture of large and complex distributed systems such as

enterprise systems, grids, virtual enterprises, and supply chains. Unfortunately, this architecture

as it is currently defined and being used, suffers from serious problems as outlined below.

First, there is no means to ensure that a fragmented and open system like a SOA-based

system satisfies desired global constraints, or can establish any regularity over the system.

Second, service providers can make their own commitments to clients. However, the SOA

methodology provides no guarantee to clients that the commitment made by a given server

will be satisfied. Note that although service providers should have the freedom to specify

their own commitments, they must conform to the global constraints imposed at large, and

such conformity must be enforced. Third, when using a composite service, clients indirectly

communicate with services via an orchestrator. Such indirect interaction may cause concerns

for both clients and services, but no formal mechanism has been designed to address those

concerns. Finally, it is not possible to ensure that coordination between disparate servers—

called ”choreography” under SOA— is carried out safely and correctly.

The overarching goal of my dissertation is to design a regulatory mechanism to address
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all these problems in a scalable manner. The mechanism is an extension of Law Governed

Interaction (LGI) - a decentralized coordination and control mechanism for distributed systems.

We call this mechanism ”LG-SOA”, for Law-Governed-SOA, which enables high expressive

power, efficient enforcement, as well as good scalability. We will also present how LG-SOA

can be applied to legacy systems. Case studies in the context of enterprise systems demonstrate

the flexibility and applicability of this mechanism. Experiments show the overhead introduced

by LG-SOA is relatively small, especially in the context of geographically distributed systems

like SOA-based systems. In sum, LGI-SOA is effective and versatile in making SOA-based

systems more coherent and trustworthy.
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Chapter 1

Introduction

1.1 The Concept of SOA, and its difficulties

In the modern age, people increasingly depend on advanced computing applications for per-

forming day-to-day activities and for satisfying their communication needs. This brings about

the creation of such new applications as enterprise systems, grids, virtual enterprises, and sup-

ply chains. Those applications often consist of great numbers of components, heterogeneous

in nature and distributed on a large scale across the Internet. Along with the rise of new appli-

cations, a new model of software development, called Service Oriented Architecture (SOA), is

emerging.

Under SOA, a system is divided into distributed services that are made available to clients

(or service consumers) over the Internet. A service is a piece of software that implements

some well-defined functionality that can be consumed by clients (e.g., other services). Services

communicate with each other by means of message exchanges. Note that services may be

designed, constructed, and maintained under different administrative domains. They may be

written in different languages and may run on different platforms. Moreover, services may be

changed or removed dynamically while new ones may be added into a system an unpredictable

manner. The fragmentation and openness of SOA-based systems present serious obstacle to

their manageability and reliability.

First of all, because of the heterogeneity, there is a need to impose global constraints on

all servers in SOA-based systems. The enforcement of such constraints guarantees uniformity

in certain activities of servers. For example, it is necessary to provide system authorities (e.g.,

system administrators or accountants) with the capabilities to monitor or audit servers’ per-

formance and to control certain servers’ activities. Equipped with such capabilities, system

authorities can steer servers to achieve a system’s goal.
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Furthermore, individual servers typically make commitments to their clients regarding the

services they provide. Such commitments are specified in the server policies, and may include

such things as privacy policies, and Service Level Agreements (SLAs) as well as run-time

promises to reserve certain merchandise for a specified time period. Yet the SOA methodology

provides no guarantees to clients that the commitment made by a given server will actually be

satisfied. Note that although service providers should have the freedom to specify commitments

to clients in their policies, their policies must conform to the global constraints imposed at large,

and such conformity must be enforced.

Under orchestration scheme, an orchestrator can orchestrate existing services to create com-

posite services. In other words, a client which uses those composite ones indirectly interact with

orchestrated services, but the client and those servers may not be aware of each other. Such in-

direct interaction may cause concerns for both clients and the orchestrated servers. On the

clients’ side, for example, they are afraid that the orchestrator may to abuse the privilege to act

on their behalf, or that the orchestrator does not complete certain important things for them, etc.

On the side of orchestrated servers, they may choose to consider an orchestrator as a special

client, which brings about benefits for all of them. Therefore, the orchestrated services want

the orchestrator to fulfill its commitments such as fair treatment among equivalent services, or

sincere cooperation in handling client request, etc.

Under choreography scheme, services interact for a common goal. They share responsibil-

ity, and none takes the lead as an orchestrator during the interaction. The problem is that leading

proposals for choreography modelling is too obtrusive, focusing on the procedural aspects of

the collaboration in choreography. We believe choreography model should focus on specifying

constraints to make all services interact correctly, allowing them to operate freely as long as

they satisfy the choreography constraints. One big challenge is that a service may participate

in multiple choreographies after other policies (e.g., global constraints and server policies) are

deployed. Moreover, there is no mechanism to enforce choreography descriptions as they are

currently modelled. Finally, since a service is not able to determine whether its collaborating

services comply with all choreography constraints, effective collaboration cannot be achieved.
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1.2 The conventional approach for addressing these difficulties

As discussed in previous section, a typical enterprise is governed by multiple policies which

can be defined by different law makers. For example, global constraints, server commitments,

choreography constraints are defined by system managers, service providers, and choreography

modelers, respectively. Note that there is a conformance relationship between those policies

(e.g, policies defined by service provider must conforms to global constraint). Therefore, we

need a mechanism that helps (1) organize and classify a set of enterprise policies and (2) de-

scribe the conformance of a policy to another. Moreover, in order to capture the semantics and

the details of various interactions, stateful policies–policies that are sensitive to the history of

interaction– are needed.

But specification of the policy that is to govern a given community is only the first step

toward its implementation–the second, and also more critical step is to ensure that all members

of the community actually conform to the specified policy. While centralized coordination

mechanisms (CCM) can be employed to enforce stateful policies, it is not easily scalable to

support large systems. The conventional approach to the implementation of a policy is to build

it into all members of the community subject to it. To do this would require good software

engineering, human governance, etc. Even though all of the above is useful and necessary, it

is not sufficient. If the community in question is large and heterogeneous, then such ”manual”

implementation of the policy would be too laborious and error-prone to be practical. That

happens because system managers-who are responsible for implementing policies-have little,

if any, sway over server programs, which may be dispersed all over the Internet. Moreover, it

is also possible that codes of server programs may not be available to the managers for privacy

reason; and if they are available, the managers may not completely understood them because

they may consist of a large number of lines of codes.

Such policy implementation is very specific to the codes of components in the system.

In addition, a policy implemented in this manner would be very unstable with respect to the

evolution of the system, because it can be violated by a change in the code of any member

of the community. Finally, since even a simple modification may result in many inter-related

changes to a variety of software artifacts, people are not willing to adopt intrusive approaches.
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Current approaches to security requirements of composite services concentrates only on

the concern from clients. While addressing the client concern, a number of projects only focus

on monitoring quality of services, which mainly measure technical aspect of services, e.g.

response time, availability; on workflow adaption, e.g. by switching to orchestrated services

which provide the same functionality to improve the availability of composite services; and on

enforcement constraints only on the client-orchestrator interaction. We believe in the context of

service composition, besides addressing the client-orchestrator interactions, there is a need to

deal with client concerns about the interaction between orchestrators and orchestrated services.

Finally, we are not aware of any project which considers concerns of orchestrated servers.

For choreography scheme, while the technologies for implementing and interconnecting

services under SOA are reaching a good level of maturity, modelling choreographies is still

a big challenge. The problem is that, current choreography model specify choreographies by

focusing on procedural aspects, leading to over-constrained solutions. It is important to note

that the implicit assumption behind procedural models is that anything that is not explicitly

defined is not allowed to occur. Thus, a choreography modeler must list all allowed executions

when using those choreography specifications. Finally, there is no enforcement mechanism for

choreography as they are currently modelled.

1.3 Our main approach and Dissertation Goal

It is our thesis that these difficulties can be alleviated by a suitable governance of the interaction

between the disparate actors of a system, and without assuming any knowledge of, or control

over, the structure or internal behavior of the interacting actors themselves. The thesis is based

on the observation that much of the information that a system relies on involves the exchange

of messages between the distributed components of the system.

One may doubt the usefulness of the governance that regulates only the interactions be-

tween the actors (or components) of the system being governed. But the critical role that

essentially such governance plays in societal systems, suggests that it could be similarly useful

when applied to software systems as well. The transportation system, for example, is governed

by traffic laws that regulate such things as: to whom should one give the right of way, and
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how should one react to the changing traffic lights. Such laws are oblivious of the intentions

of individual drivers, yet they enable drivers to coordinate harmoniously with each other and

negotiate their passage through intersections with relative safety. This, despite the fact that the

drivers themselves are heterogeneous actors, with little if any knowledge of each other.

The overarching goal of my dissertation is to design a regulatory mechanism to address

all these problems in a scalable manner. The mechanism is an extension of Law Governed

Interaction (LGI) - a decentralized coordination and control mechanism for distributed systems.

We call this mechanism ”LG-SOA”, for Law-Governed-SOA, which enables high expressive

power, efficient enforcement, as well as good scalability. Our case studies demonstrate the

flexibility and applicability of the mechanism. We did a series of experiments to show the

overhead introduced by LG-SOA is relatively small, especially in the context of geographically

distributed systems like SOA-based systems.

1.4 Thesis Plan

This thesis includes 10 chapters. In chapter 2, we present an overview of standard LGI. In chap-

ter 3, we discuss the limitations of SOA-based systems. In chapter 4, we present a mechanism

to address those limitations and discuss how it can be applied to legacy systems. In chapter 5,

we describe an example of global constraints and its implementation. In chapter 6, we present

server laws and their implementations. In chapter 7, we introduce orchestration scheme. In

chapter 8, we discuss in more detailed problems of current choreography specifications, our

approach to model choreography, and how we extend LGI to support choreography scheme.

In chapter 9, we present a performance evaluation of our mechanism. Finally, we conclude in

chapter 10.
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Chapter 2

An Overview of LGI

In this chapter, we provide an overview of Law-Governed Interaction (LGI). This chapter is

adapted based on LGI manual [8].

2.1 The Concept of LGI

LGI is a mode of interaction that allows an open group of distributed heterogeneous agents to

interact with each other with confidence that the explicitly specified policies, called the law of

the open group, is complied with by everyone in the group [3][5]. The messages exchanged

under a given lawL are calledL-messages, and the group of agents interacting viaL-messages

is called a community C, or more specifically, an L-community CL.

The concept of ”open group” has the following semantic: (a) the membership of this group

can be very large, and can change dynamically; and (b) the members of a given community

can be heterogeneous. Such open groups are often encountered in business applications, as

advocated by service-oriented architectures [33] [37][51]. LGI does not assume any knowledge

about the structure and behavior of the members of a given L-community. All such members

are treated as black boxes by LGI. LGI only deals with the interaction between these agents.

Members of a community are not prohibited from non-LGI communication across the Internet,

or from participation in other LGI-communities.

For each agent x in a given L-community, LGI maintains the control state CSx of this

agent. These control states, which can change dynamically, subject to law L, enable the law to

make distinctions between agents, and to be sensitive to dynamic changes in their states. The

semantics of the control state for a given community is defined by its law, and could represent

such things as the role of an agent in this community, its privileges and reputation. The CSx is

a bag of objects called Terms. For instance, a Term with the value role(manager) in the
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Main regulated events
sent(x,m,y) takes place at x when x sends a

message to y;
arrived(x,m,y) takes place at y when a message

from x arrives;

Other regulated events
adopted(x,[a]) is the event that marks the fact that x

started to operate under this law;
certified(x,cert(I,S,A)) is associated with the submission of a certificate.

I is the issuer (the Certifying Authority);
S is the subject;A are the attributes of the certificate.

Figure 2.1: Regulated events in LGI

control state of an agent might denote that the agent has been authenticated to be a manager of

a given organization. The middleware implementing LGI, its supporting documentation, and

an online infrastructure for public access are available for free on its website at [7].

2.2 The Law and Its Enforcement

Generally speaking, the law of a community C is defined over certain types of events occurring

at members of C, mandating the effect that any such event should have; this mandate is called

the ruling of the law for a given event. The events subject to laws, called regulated events

include, among others: the sending and the arrival of an L-message; the coming due of an

obligation previously imposed on a given object; and the submission of a digital certificate.

The operations that can be included in the ruling of the law for a given regulated event are

called primitive operations. They include: operations on the control state of the agent where

the event occurred (called, the ”home agent”); operations on messages, such as forward and

deliver; and the imposition of an obligation on the home agent.

Note that the ruling of the law is not limited to accepting or rejecting a message, but can

mandate any number of operations, like the modifications of existing messages, and the ini-

tiation of new messages and of new events, thus providing the laws with a strong degree of

flexibility. More concretely, LGI laws are formulated using an event-condition-action pattern.

Throughout this thesis we will depict a law using the following pseudo-code notation:
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upon 〈event〉 if 〈condition〉 do 〈action〉

Where the 〈event〉 represents one of the regulated events, the 〈condition〉 is a general ex-

pression formulated on the event and control state, and the 〈action〉 is one or more operations

mandated by the law. This definition of the law is abstract in that it is independent of the lan-

guage used for specifying laws. The language used for expressing laws in LGI are Prolog and

Java. But despite the pragmatic importance of a particular language being used for specifying

laws, the semantics of LGI is basically independent of that language.

A law L can regulate the exchange of messages between members of an L-community,

based on the control state of the participants; and it can mandate various side effects of the

message exchange, such as modification of the control states of the sender and/or receiver of a

message, and emission of extra messages.

2.2.1 The Local Nature of Laws

Although the law L of a community C is global in that it governs the interaction between all

members of C, it is enforced locally at each member of C. This is accomplished by the following

properties of LGI laws:

• L only regulates local events at individual agents.

• The ruling of L for an event e at agent x depends only on e and the local control state

CSx of x.

The ruling of L at x can mandate only local operations to be carried out at x, such as an

update of CSx, the forwarding of a message from x to some other agent y, and the imposition

of an obligation on x. The fact that the same law is enforced at all agents of a community gives

LGI its necessary global scope, establishing a common set of ground rules for the members of

C and providing them with the ability to trust each other, in spite of the heterogeneity of the

community. Furthermore, the locality of law enforcement enables LGI to scale with the size of

the community.
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2.2.2 Distributed Law-Enforcement

Broadly speaking, the law L of community CL is enforced by a set of trusted agents, called

controllers, that mediate the exchange of L-messages between members of CL. Every member

x of C has a controller Tx assigned to it (T here stands for trusted agent) which maintains

the control state CSx of its client x. All these controllers, which are logically placed between

the members of C and the communication medium, carry the same law L. Every exchange

between a pair of agents x and y is thus mediated by their controllers Tx and Ty, so that this

enforcement is inherently decentralized. However, several agents can share a single controller,

if such sharing is desired. The efficiency of this mechanism, and its scalability, are discussed

in [29].

Controllers are generic, and can interpret and enforce any well-formed law. A controller

operates as an independent process, and it may be placed on any machine, anywhere in the

network. We have implemented a controller-service, which maintains a set of active controllers.

To be effective in a widely distributed enterprise, this set of controllers need to be well dispersed

geographically, so that it would be possible to find controllers that are reasonably close to their

prospective clients.

2.2.3 The basis of trust between members of a community

For members of an L-community to trust its interlocutors to observe the same law, one needs

the following assurances: (a) Messages are securely transmitted over the network; (b) The

exchange of L-messages is mediated by controllers interpreting the same law L; and (c) All

these controllers are correctly implemented. If these conditions are satisfied, then it follows

that if agent y receives an L-message from agent x, this message must have been sent as an

L-message; in other words, that L-messages cannot be forged.

Secure transmission is carried out via traditional cryptographic techniques. To ensure that a

message forwarded by a controller Tx under law L would be handled by another controller Ty

operating under the same law, Tx appends the one-way hash [18] H of law L to the message it

forwards to Ty. Ty would accept this as a valid L-message if and only if H is identical to the

hash of its own law.
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As to the correctness of controllers, we assume here that every L-community is willing

to trust the controllers certified by a given certification authority (CA), which is specified by

the law L. In addition, every pair of interacting controllers must first authenticate each other

by means of certificates signed by this CA. This requires the existence of a trusted set of

controllers, maintained by what we call a controller-service, or CoS, to be discussed below.

2.2.4 Engaging in an L-Community

For an agent x to be able to exchange L-messages with other members of an L-community, it

must: (a) find an LGI controller, and (b) notify this controller that it wants to use it, under law

L. As mentioned before, a controller can be located by contacting a controller-service, which

represents a set of active controllers that are available for intermediating the interaction with

a given agent. The controllers can be dispersed geographically over the Internet or distributed

enterprise, so one agent can select a controller reasonably close to it.

Upon selecting a controller T , x would contact it by providing two parameters: a law and

an id. The law parameter represents the law x wants to operate under, and id is the name that

it wants to be known by within this community. Upon receiving such a request, the controller

T checks the supplied law for syntactic validity, and the chosen id for uniqueness among the

identifiers of all current agents handled by T . If these two conditions are satisfied, and if T is

not already loaded to capacity, it will set up a control state structure for agent x, allowing it to

start operating under this law1.

2.3 Some Advanced Features of LGI

We introduce here briefly some of the advanced features of LGI, in particular those employed

in this thesis. For additional information about these features, and for a study of their use, the

reader is referred to the LGI manual [2].

1If any one of these conditions is not satisfied, then x would receive an appropriate diagnostic, and will be able
to try again.
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2.3.1 The Treatment of Certificates

The conventional usage of certificates includes: authentication of the identity of an agent; au-

thentication of the role a given agent plays in a certain community; and testimonial of certain

rights that a given agent obtained from another via delegation [24][30] [51].

Certificates may be required by a given law L to certify the controllers used to interpret

this law. Certificates may also be submitted by an actor Ax to its controller Tx. The effect

of such certificates is subject to the law in question. Typically, such submitted certificates are

used to authenticate the identity of the actor, or the role it plays in the environment in which

the community in question operates [28].

2.3.2 Enforced Obligation

Informally speaking, an obligation under LGI is a kind of motive force. Once an obligation

is imposed on an agent - generally, as part of the ruling of the law for some event at it - it

ensures that a certain action (called sanction) is carried out at this agent, at a specified time

in the future, when the obligation is said to come due, and provided that certain conditions on

the control-state of the agent are satisfied at that time. Note that a pending obligation incurred

by agent x can be repealed before its due time. The circumstances under which an agent may

incur an obligation, the treatment of pending obligations, and the nature of the sanctions, are

all governed by the law of the community.

Specifically, an obligation can be imposed on a given agent x at time t0 by the execution at x

of a primitive operation imposeObligation(oType,dt), where dt is the time period,

after which the obligation is to come due, and oType—the obligation type—is a term that iden-

tifies this obligation (not necessarily in a unique way). The main effect of this operation is that

unless the specified obligation is repealed before its due time t = t0 + dt, the regulated event

obligationDue(oType) would occur at agent x at time t. The occurrence of this event

would cause the controller to carry out the ruling of the law for this event; this ruling is, thus, the

sanction for this obligation. Note that a pending obligation incurred by agent x can be repealed

before its due time by means of the primitive operation repealObligation(oType) car-

ried out at x, as part of a ruling of some event. (This operation actually repeals all pending
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obligations of type oType.)

2.3.3 Interoperability Between Communities

LGI also supports the interoperability between different communities. By interoperability we

mean, the ability of an agent x operating under lawLx to exchange messages with agent y oper-

ating under different law Ly, such that the following properties are satisfied: (a)consensus:

An exchange between a pair of laws is possible only if it is authorized by both laws. (b)auto-nomy:

The effect that an exchange initiated by x operating under law Lx may have on the structure

and behavior of y operating under law Ly, is subject to law Ly. (c)transparency: Inter-

operating parties need not to be aware of the details of each other’s law.

To support such an interoperability between communities, LGI uses slightly different prim-

itive operations and events than those used for communication within the same community:

• forward(x,m,[y,Ly]): invoked by agent x under law Lx, initiates an exchange be-

tween x and agent y operating under law Ly. When the message carrying this exchange

arrives at y it would invoke at it an arrived event under Ly.

• arrived([x,Lx],m,y): occurs when a message m exported by x under law Lx

arrives at agent y operating under law Ly.

Exactly what laws one can interoperate with is defined by a Portal clause in the preamble

of each law, thus there is a precise definition of each such exchange between communities.

2.3.4 The Treatment of Exceptions

Primitive operations that initiate messages, like deliver and forward, may end up not being

able to fulfill their intended function. For example, the destination agent of a forward opera-

tion may fail by the time the forwarded message arrives at it. Such failures can be detected

and handled via a regulated event called an exception, which is triggered when a primitive op-

eration that initiates communication cannot be completed successfully. It is up to the law to

prescribe what should be done to recover from such an exception. The syntax of an exception

event is: exception(op, diagnostic), where op is the primitive operation that could



13

not be completed, and diagnostic is a string describing the nature of the failure. The home of

the exception event is the home of the event that attempted to carry out the failed operation. For

instance, if a message m, forwarded by an agent x to an agent y operating under law L cannot

reach its destination, then an event exception(forward(x,m,[y,L]),‘‘destination

not responding’’) would be triggered at x. Commonly, exceptions are triggered by the

forward and deliver primitive operation, as well as other communication primitives. More de-

tails about the exception mechanism are given in the LGI manual [2].

2.3.5 The Hierarchical Organization of Laws

LGI provides a mechanism to organize the laws into hierarchies [19][28]. Each such hierarchy,

or tree, of laws t(L0), is rooted in some law L0. Each law in t(L0) is said to be (transitively)

subordinate to its parent, and (transitively) superior to its descendents. Generally speaking,

each law L’ in a hierarchy L0 is created by refining a law L, the parent of L’, via a ∆L’, where

a ∆ is a collection of rules defined as a refinement of an existing law. The root L0 of a hierarchy

is a normal LGI law, except that it is created to be open for refinements, using a consulting

function. This function allows the root law to suggest (pseudo) events to its subordinate ∆,

and to receive, and possibly interpret a proposed ruling. The final decision about the ruling of

law L’ is made by its superior law L, leaving its ∆ only an advisory role. Thus, the process

of refinement is defined in a manner that guarantees that every law in a hierarchy conforms

(transitively) to its superior law.

2.4 The Controller Infrastructure

For LGI to be scalable enough to support a large and geographically distributed community, it

needs to employ a reliable and secure set of controllers, which collectively constitute the trusted

computing base (TCB) of LGI. Such an infrastructure of controllers is called the controller

service, or CoS.

For use within an enterprise, such a CoS can be maintained and managed by the enterprise

administration, and can thus be trusted by all enterprise computations. But for the CoS to

support a truly open community, to be used by people and servers distributed all over the
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Internet, and not belonging to any single administrative domain, the CoS needs to function

as a public utility. There are no serious technical impediments to the construction of a CoS

public service. But it needs to be done by a large financial or governmental organization that

can serve as a trusted third party, with no financial interest in the computing activities regulated

by its controllers. This organization must assume certain liabilities for various failures of the

controllers provided to its customers. It also needs to provide audit trail of its controllers’

activities, which are secure enough to be accepted in a court of law, in case of a dispute.

The Controller Manager

Given the importance of such a trusted infrastructure of controllers for the functionality of

LGI, we have designed and constructed a tool, called controller manager, responsible for the

management of such an infrastructure. The controller manager serves a double purpose:

• name server: lists a number of available controllers; provides lookup services to prospec-

tive agents, who want to operate under LGI.

• manager: maintains a controller service infrastructure ; it helps to start, monitor, and

stop the controllers that make up such an infrastructure.

User Interface

The main function of the controller manager is to provide controller lookup information for all

the users, either humans or software. Users can access the controller directory by consulting

the Controller Manager using an http-based interface. The information is displayed separately

for managed controllers and for registered controllers. Among the information displayed are

such things as: the address of the controller, the supported language for the laws, the usage,

and the status.

Administrative Interface

Administrators can connect to the controller manager and perform managing jobs through a

specific administrative interface. There are four types of activities a manager can perform: a)

start/create a controller, b) stop/destroy a controller, c) test the status of a controller or of the
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entire controller service, d) configure the controller manager. While the starting and stopping of

the controllers are on-demand activities, the testing can be performed both on demand, or auto-

matically. The automatic procedure tests the entire infrastructure periodically by both querying

the status of the controllers and by using a special testing law that validates the behavior of the

controllers for specific scenarios.

2.5 Summary

In this chapter, we have provided an overview of LGI. LGI represents a decentralized coordi-

nation and control mechanism for distributed systems. At the core of LGI is the concept of

law, representing an explicitly stated and strictly enforced set of rules governing the behavior

of each agent. The law is enforced by a set of generic components, called controllers. The

most prominent features of LGI are: its support for sophisticated and powerful policies; state-

ful character, due to maintaining a control state on behalf of each agent; and inherent scalability

enabled by a local formulation of the laws.
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Chapter 3

The Limitations of SOA

3.1 Global constraints

SOA-based systems are heterogenous in the sense that services may be written in different pro-

gramming languages, may run on different platforms, and may be maintained under different

administrative domains. Moreover, services may be changed dynamically, or removed, while

new services may be added in an unpredictable manner.

The heterogeneity of services in SOA-based systems calls for a means to impose global

constraints on all service providers (servers). Global constraints may include properties such

as the number of messages that can be sent by any given services; and operations such as stop,

which would stop the service from servicing requests from its clients. There are diverse reasons

for the existence of global constraints, including: (1) monitor/audit ability of the system, (2)

control capability of certain behaviors of servers, (3) software engineering principles, (4) gov-

ernment regulations, etc. One of the objectives of this work is to enable the system as a whole

to impose global constraints on the interactive behavior of the various heterogeneous servers.

This would provide a certain level of uniformity across heterogeneous servers, despite different

and specific functionality provided by those servers.

In particular, we will address two critical elements of management of global constraints:

monitor/audit and control. Specifically, we provide system authorities, e.g system adminis-

trators or accountants, the capability to monitor/audit servers’ performance and the power to

control certain servers’ activities. Such monitor/audit/control processes must be enforced be-

cause of two reasons. First, the data collected from the monitor/audit process must be accurate

because system authorities make decisions based on them. Second, since servers obey control

commands issued by system authorities, the system authorities can steer servers towards a goal

of their choice.
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3.2 Client-Server Interaction

Besides global constraints, a server may specify its own policies in which the server makes spe-

cific requirements and/or commitments regarding the services it is providing. There are several

well-known incidents in which servers have violated their stated privacy policies. For example,

in August 1998, the website Geocities released its users’ personal data to advertisers [4]. An-

other example, in August 2006, the search queries of around 650,000 users were disclosed [5]

with the intention of being used by third-party researchers [6]. There are possibly many more

violations that are still not known by the public.

However, it is not just a matter of privacy. The interaction between a server and a client

may involve a sequence of messages exchanged in a predefined order, called a conversation [3].

In this paper, we consider two types of server commitments. The first type is announced before

the client-server interaction occurs. Privacy assurance is one commitment which belongs to this

type. The second type of server commitments is made by the server during a conversation. For

example, a service provider promises to sell a ticket to a client at price p if the client pays within

an agreeable period g, say 3 days after the client reserves the ticket. Since the terms (e.g., p

and g in the example just mentioned) exchanged between the server and the client are unknown

before their conversation starts, there is a need to record those commitments and enforce them.

Note that even though a service provider has the freedom to specify its own commitments

with clients in its server policy, the server policy must conform to the global constraints. Such

conformance must be strictly enforced to ensure the imposition of global constraints across all

servers in the system. We will present how we enforce this conformance in chapter 6.

It is hard or even impossible for clients to determine whether commitments made by servers

will be satisfied. Therefore, clients need verifiable confidence that servers will abide by their

commitments, provided that these commitments conform to the global constraints imposed by

the system at large. However, clients cannot assume that service providers always abide by

their policies because servers may sometimes choose to act against their commitments to gain

more benefits. In other words, these global constraints and commitments must be enforced out

of the control of servers.
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There are a number of research projects attempting to enforce policies on interactions be-

tween components in a system. Unfortunately, they require the modification of existing appli-

cations. Such approaches are not widely adopted because of two reasons. First, even a simple

modification may result in many inter-related changes to a variety of software artifacts. Conse-

quently, re-implementation and retest of servers program are required, thus it would take long

time to deploy these approaches. Second, system managers–who are responsible for imple-

menting policies–have little, if any, sway over server programs, which may be dispersed all

over the Internet, and whose often heterogeneous code may not be available, or even known, to

the managers.

A server in SOA systems may not only interact with clients but also with other servers.

In particular, the server can also interact with its peer servers under orchestration or chore-

ography scheme. Orchestration describes how services can interact with each other from the

private perspective and under control of a single service, which plays the role of an orches-

trator. Choreography is associated with the public global visible message exchanges, rules of

interactions and agreements that occur between multiple services. Such interactions may also

pose certain problems regarding the integrity of the SOA systems, as we shall see below.

3.3 Interaction under orchestration scheme

Under orchestration scheme, a server, called orchestrator, orchestrates several servers to satisfy

requests received from its clients. All interactions in the orchestration are conducted via the

orchestrator. That means, the orchestrator can intercept, analyze and control the flow of mes-

sages exchanged between clients and orchestrated servers. As a result, clients and orchestrated

servers may not know each other even though clients use services provided by these servers.

Such indirect interaction may result in concerns for both clients and orchestrated servers.

There are four types of concerns coming from a client. First, when an orchestrator receives

a request from a client, it can be considered as the client representative, and starts acting on

the client behalf. Therefore, the client would want the orchestrator not to abuse that privilege.

Second, typically a client has no knowledge about how/when an orchestrator interacts with

its orchestrated servers to serve the client request. It is hard or even impossible for clients
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to determine whether an action has been completed by the orchestrator or not. The client

can eventually find out the orchestrator’s misbehavior, but the consequence has been made.

Therefore, the client would want to make sure that the orchestrator has actually completed

certain things for the client, as stated by the orchestrator.

Third, the execution of a composite service depends on those of orchestrated servers. It

may be possible that a client of a composite service expects the orchestrator only use service

that comply with certain predefined requirements. Indeed, this expectation is just similar to that

coming from clients in real life. For example, when a client buys a car, he/she would want that

the car company only utilizes safe and standard-compliance components provided by certified

providers. Fourth, clients may also need to know certain information regarding the actual inter-

action between the orchestrator and orchestrated servers. For example, assume an orchestrator

receives commission proportioned to the total amount of money paid to all orchestrated servers.

Consequently, the client would want the orchestrator to inform the client about the actual val-

ues of all purchases between the orchestrator and orchestrated servers required for the client

request.

We would also consider two types of concerns from orchestrated servers. First, servers

may choose to consider orchestrators as a special type of clients, and both the orchestrators and

servers can receive benefits from that relationship. In particular, there is possibly a competition

between equal servers in the sense that they provide same services as well as benefit to the

orchestrator. How an orchestrator determines equal servers depends on business goal of the

orchestrator, and is not discussed here. If this is the case, they would want the orchestrator to

not favor some servers, and ignore other servers. Second, orchestrated servers do not directly

interact with clients, and have to rely on data forwarded from orchestrators to process a re-

quest. Therefore, they need the cooperation of orchestrators in providing correct and necessary

information about the clients.

3.4 Interaction under choreography scheme

While the technologies for implementing and interconnecting basic services under SOA are

reaching a good level of maturity, modeling choreographies is still a big challenge. The problem
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is that, current choreography models specify choreographies by focusing on procedural aspects,

leading to over-constrained choreographies. Moreover, a choreography description in those

models is not executable, i.e., there is no enforcement mechanism. Since a single misbehavior

of an individual service may destroy the collaboration in a choreography, enforcement is a must

to ensure safe and correct coordination between interacting services.

To overcome these limits, we propose that choreography models should focus on specifying

the constraints required to make all services collaborate correctly, without stating how such

a collaboration is concretely carried out. We believe that services should have the freedom

to operate as well as they can, but they must satisfy the choreography constraints through

enforcement. Thus, we also presente a mechanism to enforce choreography constraints.
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Chapter 4

A Model for LG-SOA

In this chapter, we will present how we design a regulatory mechanism to address all problems

discussed in chapter 3. The mechanism is an extension of Law Governed Interaction (LGI). We

call this mechanism LG-SOA, for Law-Governed-SOA, which enables high expressive power,

efficient enforcement, as well as good scalability.

Broadly speaking, an LG-SOA system S is defined as a triple (B, LE, T ), where B-the

base system-is the set of actors that constitute the system to be governed; LE-the law ensemble-

is the conformance hierarchy of laws that collectively govern the interactive activities by the

components of B; and T is a set of generic LGI controllers that serve as the middleware that

mediates the interactive activities of the components of B, subject to the various laws in LE.

We assume no knowledge of the structure and behavior of the actors of B. But for speci-

ficity we will assume that all these actors are software components- although, in fact, some of

them may, for example, be people communicating via their smart phones. The only substantial

assumption we make in this section about the components of B, is that they all communicate

via the LGI middleware, subject to laws in LE. But, as we will show later, even this assumption

can, and should, be relaxed somewhat.

4.1 The Anatomy of LG-SOA based systems

Figure 4.1 describes a system schematically consisting of two levels: (a) the lower level, which

consists of the set of components of the base system B; and (b) the upper level, which consists

of the set T of LGI-controllers that mediates the interactive activities of the components of

B, thus enforcing the various laws that belong to the law-ensemble LE. Above these two

levels, this figure depicts some actors that do not belong to the system at hand, but interact with

components in B by exchanging messages with them, as shown in the cases of u and v.
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Figure 4.1: A Model for Law-Governed Service Oriented Architecture (LG-SOA)

The controllers in T belong to what we have called the controller service, or CoS, and

constitute the distributed trusted computing base (DTCB) of this architecture. Every component

x in B is paired with a controller TLX , that mediates all messages sent or received by x, subject

to the law L under which x operates. Here Lmay be what we call the component law designed

specifically for x, as in the case of component b in figure 4.1, which is associated with controller

TLb
b that operates under law Lb. But x may also operate under one of the division laws of the

hierarchy, or even under its root law. Specifically, it is possible that a server does not specify

its own law and chooses to operate under global law while several others servers are regulated

by the same server law.

Note that a message exchanged between a pair of components of the base system B, say

b and c, is mediated by a pair of controllers TLb
b and TLc

c (assuming that both components

operate under their own laws)-a case of the dual mediation under LGI. On the other hand, the
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interaction of a component, say c, of B with external actors, such as v, may be mediated by

controller TLc
c alone, because external actors may not operate under LGI. For example, client-

server interaction is only regulated by the controller of the server.

4.2 Seamless Interoperation

The term ”interoperation” means the exchange of messages between actors operating under

different laws (or policies - Note that this subject has been studied extensively under access

control, that uses the term ”policy” for what we call here ”laws”.), say L and L′. This model

require massive interoperation, because it is very common for a pair of interacting components,

such as b and c in figure 4.1, to operate under different laws, although all these laws belong to

the same hierarchy.

The conventional treatment–under access-control–of interoperation [47, 48, 49, 50, 51]

calls for formation of a composition of the two policies, which is consistent with both of them,

and then mediates the interaction under this composite law, by means of a single mediator.

Unfortunately, as shown in [49], such compositions tend to be computationally hard, even for

the simple types of policies used for access control–and it is often the case that no composition

exists because the laws to be composed are not compatible. Moreover, if a system has N

interacting components, each operating under its own law, one may have to create O(N2) such

compositions–quite an impractical proposition.

Fortunately, as we have shown in [1], when the laws under which the interacting compo-

nents operate belong to the same conformance hierarchy, and if they are ”willing” to interact

if both conform to a common law (such as the global law LG in our case) then the interopera-

tion between them may be completely seamless, requiring no composition. This is due to two

factors. The first is the dual control over every message exchange between components in B,

where the law of each interlocutor is enforced by its own mediator. This is different from tradi-

tional policy-mechanisms, under which interaction between a pair of actors is always mediated

by a single mediator. The second factor that allows seamless interoperability is the nature of

conformance hierarchy, which provide the assurance to the two interlocutors, that both operate

under the same superior root law. In our case, for example, component c can be confident that
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the message it get from b contains the correct identification of it-because such identification is

required by law LG .

4.3 The Sense in which Laws are Enforced Under LG-SOA

A given hierarchical law-ensemble LE is clearly enforced under LG-SOA, if all the compo-

nents of a given system exchange their messages via LGI controllers, under laws belonging to

the LE of that system, as described above. But how can one be sure that this condition is satis-

fied? The problem is that it is quite impossible to force a set of disparate components, dispersed

throughout the Internet, to conform to any given constraint on their communication, beyond the

constraints implicit in the standard Internet protocols. (It is worth pointing out, however, that it

is possible to do so over an Intranet. In particular, as has been demonstrated in [46], this can be

done by having the collection of firewalls that mediate all Intranet communication, rerouting

messages to appropriate LGI-controllers.)

Nevertheless, one may often be virtually compelled to operate under a particular law L, or

under some law belonging to a specific hierarchical law ensemble. Broadly, this is the case

when one wishes to communicate with others that require their interlocutors to operate under a

given law L, or under any subordinate law to LG .

For client-server interaction, global law and server law are enforced only if clients send

requests to server’s controller. But, why do clients choose to do this? That happens because

of two reasons. First, only registered services are maintained in a system registry, which is

responsible for maintaining information of all servers in the system. Since the registry provides

clients with location of server’s controller, clients may not know the real physical address of

a server and have to send requests to server’s controller. Second, even if client know the real

address of the server, the client may still send request to the server’s controller because clients

may want assurance that server commitments are enforced. Note that if server commitments

are enforced, global constraints are enforced.

At the server’s side, it is possible that servers require clients send requests via their con-

trollers, and would not process requests sent directly from clients. Servers impose this require-

ment because it gain benefits by doing so. For example, some servers may want to prove its
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usefulness, e.g., serving many requests, to system managers. However, since the managers trust

controllers but not those servers, only performance reports from controllers are accepted.

If no one has interest in forcing clients to send requests via server controllers, we face a

common problem: we cannot force someone to do something if they do not get benefit by

doing this.

For server-server interaction, this is so because a given LGI-agent can detect if its inter-

locutor is an LGI-agent as well, and can identify the law under which it operates. For a more

concrete demonstration, consider our case study whose root law LG contains-among others-the

provision of service invocation. And suppose that the budget office does its communication

subject to law LG , including assigning budgets to various components, and obtaining income

reports from servers.

Now, assuming that servers get a substantial credit for the income they report to the budget

office, they will have to do the reporting under law LG (or under a subordinate law), given that

this office accept such reports only subject to this law. This, in turns, means that servers would

insist to receive service request only under LG , because this would allow them to accumulate

their income in the state of their controller operating under LG , which can then be sent to the

budget office. And this, finally, means that service requests must be sent via a controller that

operates under law LG , and maintains its budget assigned to it by the budget office. So, in

conclusion, if the budget office operates under LG (or under a subordinate law), then both the

servers and their clients would be effectively forced to operate under LG , or under a subordinate

law–at least for participating in the service ordering activity.

Due to such needs to operate under certain laws, one is reasonably justified to claim that the

laws of a given LE are enforced under LG-SOA. And it is worth pointing out that such, some-

what loose, usage of the term “enforcement” is quite common in the access-control literature.

For example, the XACML mechanism [19] relies for its “enforcement” on each server within

its purview to voluntarily operate via a policy enforcement point (PEP). This PEP is expected

to consult a policy decision point (PDP) regarding every request sent to it, and then to carry

out the decision of the PDP. But no means are provided for actually forcing servers to operate

via such PEPs, and no such enforcement is possible in an open system, as explained above. In

fact, the trustworthiness of enforcement under the LG-SOA mechanism is stronger than under
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conventional access control, due to the inherent trustworthiness of the generic controllers, and

because they can recognize each other across the Internet.

More scenarios in which one may often be virtually compelled to operate under a particular

law L are presented in chapters 7 and 8.

Strict Enforcement Of Lenient Laws:

Note that LGI laws are enforced strictly, in that a system governed by a given law is prevented

from violating it—subject to the qualification made above. However, the law itself may be

lenient. For example, instead of having a law that restricts certain kind of messages—which

would block them if they are sent—one can write a law that does not block such undesirable

message, but only logs them, so they can be reported later to those that can change the code that

sent these messages. Such lenient laws are important for subjecting legacy system to LG-SOA.

4.4 A concrete setting of SOA-based system

Let us take a closer look at a setting of SOA-based system.

Figure 4.2 gives an overview of a system which consists of a set of servers SP1, SP2, ...,

SPm, a set of controller T1, T2, ..., Tm, a set of clients C1, C2, ..., C1, one service registry,

CA, and one law server. The CA, certification authority, is responsible for issuing certificates.

The registry is used by service consumers to find services that match certain criteria. If the

registry has such a service, it provides the consumer with a location address for that service.

Each server SPi is assigned a controller, called Ti, which is responsible for enforcing server

law Li.

It is possible that a server does not specify its own law, and chooses to operate under global

law, as in the case of SPk. It is also possible that several servers are subject to the same server

laws, as in the case of SP1 and SP2, both of them are subject to law Li.

We employ 2-level law hierarchy: the first level of the hierarchy is for the global law, and

the second is for server laws, orchestration laws and choreography laws. As shown in figure

4.2: L1 ... Lm are server laws, LO1 ... LOt are orchestration laws, and LC1 ... LCZ
are

choreography laws. They are direct subordinates of the global law LG.
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Figure 4.2: SOA-based system - A concrete setting

LGI hierarchy provides service providers with the freedom to specify their own laws, while

it still enforces the conformance of server/orchestration/choreography laws to global law. The

enforcement process is shown in figure 4.3.

In figure 4.3, L is directly subordinate to LG, so law evaluation starts in LG. This way, the

constraints imposed by LG are included in the ruling of L. In other words, the conformance of

L to LG is enforced.

If a delegate statement is met in LG, L is consulted and a refinement is proposed by L.

In essence, this mechanism provides L’s law maker with an opportunity to specify additional

rulings. We will see how SPi refines global constraints in chapter 6. Finally, LG can rewrite

L’s refinement if it sees fit.
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Figure 4.3: Law Conformance Enforcement

4.5 Controller management interfaces

Controllers are generic in the sense that they are capable of enforcing any law. Initially,

a generic controller T operates under a generic law called Lgen. Generally speaking, the

”generic” law defines who can use the set of management interfaces to manage controllers.

How system authorities decide the constraints in Lgen varies depends on specific scenarios.

We, however, will present an example of the generic law shortly later for demonstration pur-

poses.

Below we consider two important interfaces in set of management interfaces.

1. grant(SPname, endPoint, lawURL): upon receiving a ”grant” message, the generic con-

troller T verifies if this message is issued by a right system authority as defined in Lgen. If

this is the case, then T becomes Ti to enforce the law of the server whose name is ”SPname”

and physical address is ”endPoint”. The law text will be retrieved from the law server based on

lawURL.

2. revoke(): similarly, if Ti receives a ”revoke” message from SA, Ti is back as a generic

controller operating under Lgen.

Note that Li, in turn, defines how the management interfaces can be invoked. Since Li con-

forms to Lg, we can prevent the management interfaces from being misused in Li by specifying

in Lg who can invoke what interfaces under which conditions. For now, we only implemented

these two interfaces (grant/revoke). Other interfaces can be added if necessary in the future.
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Having the capability to manage the controller through management interfaces, system author-

ities have the power to manage all servers in the system.

4.6 The implementation of Laws Lgen

Law Lgen shown in figure 4.4 is just for demonstration purpose. It can be more complex in real

scenarios.

Preamble:
law Lgen

authority(CA, keyHash)

R1. UPON arrived( ,[reqID, s, reqcnt],self) DO
cert = SearchST("Cert", reqcnt)
IF(cert[issuer(CA),subject(SA)])DO
IF (s=="grant")
{
SPName = SearchST("SPName", reqcnt)
EP = SearchST("EndPoint", reqcnt)
lawURL = SearchST("lawURL", reqcnt)
grant(SPName, EP, lawURL)

}

Figure 4.4: Law Lgen - Generic Law

Law Lgen’s ”preamble” specifies that Lgen accepts certificates from CA represented by

keyHash. Lgen is very simple, and it has only one rule. This rule specifies that a generic

controller T has to stop working under the generic law Lgen if T receives a grant command

from SA. The ”grant(SPName,EP,lawURL) signifies that the controller should be ready to

enforce the law of a server whose name is SPName, endpoint is EP , and law text is available

at lawURL.

4.7 Grant/Revoke Server Privilege

To join the system, first SPi requests that SA do two things: (1) appoint an available generic

controller T to become Ti, i.e. to enforce Li, and (2) publish SPi’s service description to the

UDDI server using Ti’s address as the service’s endpoint. This way, a client who wants to

invoke SPi’s services sends its requests to Ti, and gets a corresponding response from Ti.

In the SPi’s service description published to the UDDI server, SA also records the URL
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Figure 4.5: A server joins the system

of Li (i.e. SPi’s law URL). Currently, we have this value saved in the optional field named

description of SPi’s businessEntity structure. In fact, we can save the URL ofLi in any optional

element of SPi’s service description.

A client can query the UDDI server about SPi’s law URL, based on which it can examine

the law text (maintained by the law server). Moreover, since Ti is out of the control of SPi,

the client can be confident that Li will be strictly enforced (i.e. SPi’s commitments will be

satisfied).

4.8 Ti handles a client’s request

Figure 4.6: Ti handles a client’s request

The interaction between a client c, Ti, and SPi is presented in figure 4.6. In step 0, c

contacts the UDDI server to get SPi’s service description. c only needs to query the UDDI

server once to get SPi’s service description the first time it wants to use SPi’s services.
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In step 1, based on SPi’s service description, c creates a SOAP message to invoke a desired

service. It establishes a connection, conn1, to send a request to Ti. Ti accepts and maintains

conn1 through which Ti can return the response back to c. Ti generates a unique identifier,

reqID, to identify the request. The arrival of m to Ti leads to the firing of an arrived event at

Ti. Ti evaluates the ruling of the law Li for the arrived event, and produces a list of operations

to be carried out. If that list contains an operation forwardRequest(m), Ti will forward m to

SPi. Note that m may be c’s original request, or a modified version of the original message, or

a newly-created one.

In step 2, Ti acts as a client of SPi. It initiates a connection, conn2, to send m to SPi.

SPi processes the request m, and returns the response through conn2 in step 3. As soon

as Ti receives the response, a sent event is fired at Ti. Similar to step 1, the sent event is

evaluated, and a list of operations to be carried out is generated. If this list contains an operation

forwardResponse(m), m will be returned to c through conn1 in step 4.

Since Ti associates conn1 with conn2 using the same reqID mentioned above, and since

conn1 is kept until c receives the response, our mechanism supports asynchronous service

invocations. Finally, since c’s request is not sent directly from c, SPi cannot locate c from

conn2. Therefore, c’s location (host, port, etc.) is inherently hidden from SPi.

The security infrastructure is comprised of SA, CA, Acct, law server, UDDI server, and

controllers. One important note to make is that the process of appointing a controller to enforce

a server’s law does not require any change to the applications of the server, the client, and the

UDDI server - three main components in SOA systems. Moreover, their normal behaviors are

preserved: (1) the UDDI server allows authorized entities (SA, as assumed here) to update

server descriptions, (2) the client queries the UDDI server to get the server descriptions, (3) the

controller plays the role of the server when interacting with the client, (4) the controller acts

as a client of the server. Therefore, we believe that our approach is easily integrated into any

existing SOA system.
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Figure 4.7: Dual mediation

4.9 Dual mediation

Figure 4.7 explains how a request sent from a server SPj to another server SPi is treated, as

well as how the response from SPi is sent back to SPj .

Each time a server SPj needs to invoke a service provided by SPi, SPj creates a SOAP

message according to SPi’s service description retrieved from the UDDI server. SPj also

updates the header of the SOAP message to indicate that the final receiver of the SOAP message

is Ti. Here, we use the SOAP intermediary feature described in the SOAP message header. In

step 1, SPj sends the SOAP request to its controller Tj which in turn decides if SPj is allowed

to send such a message according to Lj . If this is the case, in step 2, Tj removes the SOAP

intermediary field from the header of the SOAP request, and forwards it to Ti. Finally, Ti

forwards the request to SPi after evaluating the message according to Li in step 3. The SOAP

response is sent back to SPj using the same path but in reverse order. The SOAP response is

also mediated by Li, and then Lj , respectively.

In this interaction, a SOAP request or response is regulated by both Tj and Ti, hence the

terminology dual-mediation. This technique can be used for an orchestrator to invoke a service

provided by orchestrated servers.
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Chapter 5

Global Law

In this section, we will present an example of global constraints, and its implementation.

5.1 Description of Global Constraints

Suppose we want to impose the following global constraints on a specific system consisting of

multiple servers:

1. Performance Monitor: each server must report its performance to Acct periodically.

For example, a server must report its average response time (ART) every 60 minutes.

2. Interaction Audit: Each server must provide audit information about interactions with

its clients if requested by Acct. This constraint provides a way for Acct to examine a server’s

activities in more detail, if necessary. An example of this constraint is:

a. Upon receiving an ”initAudit” message from Acct, a server must immediately start

reporting any requests it receives toAcct. The audit information of a request includes the name

of the service to be invoked, the time the request is received, and the time the corresponding

result is returned.

b. Upon receiving an ”endAudit” message from Acct, the server stops reporting audit

information to Acct.

3. Control Ability: Each server must obey control commands issued by SA. This provides

a way for SA to control certain server activities. Below is an example of this constraint:

a. Upon receiving a command ”stop” from SA, a server must respond to any client’s

request with the message ”Server is stopped”.

b. Upon receiving a command ”resume”, the server resumes its normal operation.

These global constrains are specified in a policy called Pg (for Global Policy). Even though
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Pg has been deliberately made simple for ease of presentation, it still demonstrates various

important aspects inside the system. First, Pg imposes global constraints on all servers. Specif-

ically, SA and Acct together can monitor/audit/control certain server activities. Second, Pg

implies that a history of interactions between a server and its clients can be maintained. For

example, ART is a value reflecting one aspect of previous interactions. Below we will further

investigate stateful policies illustrated in the form of server policies. Finally, Pg does not med-

dle with any specific server-client interaction, leaving them for the individual server to specify.

5.2 Implementation

Services that utilize Web services standards (e.g., Web Service Description Language (WSDL),

Simple Object Access Protocol (SOAP)) are the most popular type of services available today.

A server and its clients communicate via messages that are formatted according to the Sim-

ple Object Access Protocol (SOAP). Before the server is deployed and starts interacting with

its clients, the server’s manager decides the structures of the SOAP requests and responses

in its WSDL file. Therefore, typically the server can take the specific format of the SOAP

request/response into account when it specifies its law, as we will see in L2 and L3.

There is an implicit constraint in Lg. That is, for each command in the set {initAudit,

endAudit, stop, resume} sent to Ti, the SOAP request has a field Cert whose value contains

the certificate of the one who sends the command. Ti verifies that certificate to determine if the

command has been issued by the right authority.

Law Lg is shown in figure 5.1. Its preamble specifies that Lg is a root law, and accepts

certificates from CA represented by keyHash. The control state has four protected terms

’inv(req(reqID), act(s), T(t))’, ’numOfInv(num)’ ’totalPT(pt)’, and ’Acct(host(h), port(p))’. They

are used to record the time t the controller Ti receives a request reqID to invoke a service s

of SPi, the number of requests processed by SPi so far, the total processing time, and the

(host/port) of Acct’s application, respectively.

In arrived/sent events, the parameters reqcnt/respcnt are the original client’s SOAP re-

quest and SPi’s SOAP response, respectively. The parameter reqID is used to identify a par-

ticular client’s request and its associated response. The client’s certificate cert, and the name
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Preamble:
law Lg

authority(CA, keyHash)
protected(Inv(req( ),ser( ),t( )))
protected(numOfInv( ))
protected(totalPT( ))
protected(Acct(host( ), port( )))

R1. UPON adopted() DO
imposeObligation("reportART", 60 x 60)
add(Acct(host(host), port(port)))

R2. UPON arrived( , [reqID, s, reqcnt], ) DO
IF (s @ (command set of Lg)) DO
{
cert = SearchST("Cert", reqcnt)
IF (cert[issuer(CA),subject(Acct)]) DO
{
IF (s =="initAudit") DO add(audit)
IF (s =="endAudit") DO remove(audit)

}
ELSE IF (cert[issuer(CA),subject(SA)]) DO
{
IF (s =="stop") DO add(stop)
IF (s =="resume") DO remove(stop)

}
}
ELSE DO // a normal client’s request
{
IF ("stop"@CS) DO forwardResponse("Server is stopped")
ELSE DO
{
add(Inv(req(reqID),act(s),T(curTime)))
delegate(arrivedCont,[reqID,s,reqcnt])
}
}

R3. UPON sent( , [reqID, respcnt], )) DO
inv(req(reqID),act(s),T(t)) @ CS
t1=curTime,
inc(totalPT,t1-t)
inc(numOfInv,1)
remove(inv(req(reqID),act(s),T(t)))
IF ("audit"@CS) DO
{

Acct(host(h), port(p))@ CS
release(Self, [s, t, t1], h, p)

}
delegate(sentCont)

R4. UPON obligationDue(obl) DO
IF (obl == "ReportART") DO
{

Acct(host(h), port(p)) @ CS
numOfInv(num)@CS
totalPT(time)@CS
release(Self, num/time, h, p)
imposeObligation("ReportART",60x60)

}
delegate(obligationCont, obl)

Figure 5.1: Law Lg Global constraints
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of the service s the client wants to invoke are extracted from reqcnt. s’s parameters and their

corresponding values are in reqcnt.

Rule R1 is the specification of Lg’s adopted event, the first event in the life of Ti. R1

imposes an obligation to have Ti report SPi’s ART to Acct every hour. The (host, port) of

Acct’s application is also added to Ti’s control state CSi.

Rule R2, Lg’s arrived event, is fired upon the arrival of a request to Ti. Ti first checks

the request’s type. If this is a command from SA or Acct, Ti updates CSi accordingly, and

the updated CSi will affect Ti’s behavior. If this is a client’s request, and (1) if there is a term

”stop” in CSi, Ti returns a message ”Server is stopped” back to the client; (2) otherwise, Ti

records the request’s information by adding a 3-tuple (reqID, act, t) to CSi, and this arrived

event is delegated to a law refinement Li for further rulings. Specifically, the delegate statement

indicates that the goal arrivedCont is open for refinements.

Rule R3, Lg’s sent event, occurs when the response of a request is sent back from SPi.

Based on reqID and the term inv(req(reqID),ser(a),T(t)) in CSi, Ti calculates the request’s

processing time, and updates CSi. If SPi is under an audit, i.e. there is a term ”audit” in

CSi, Ti will report the request’s auditing information to Acct. Like R2, R3 has a goal named

sentCont which can be refined by an Lg’s subordinate.

RuleR4 is discharged when ”ReportART” comes due. This obligation requires Ti to report

SPi’s ART to Acct every 60 minutes. Then, ”ReportART” is set to fire again in the next 60

minutes.
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Chapter 6

Server Law

6.1 Server’s law

A server’s law can be considered as the server’s contract with its clients. In that contract, the

server makes specific requirements and/or commitments regarding the services it is providing.

Below we will consider three types of useful server policies.

6.1.1 Law L1: Service Level Agreement (SLA)

Our first example is a simple case of SLA: If the time difference between the arrival of a

request to the server and the return of the corresponding response from the server is greater

than a predefined threshold, say 10 seconds, then the server will notify the accountant Acct of

the actual difference, and a copy of this notification will be sent to the client.

6.1.2 Law L2: Server promises during a conversation

The interaction between a server and a client may involve a sequence of messages exchanged

in a predefined order, called conversation [3]. During their conversation, the server may make

promises to the client, and must be accountable for them.

Suppose SP2 is a travel agent which supports a ”ticket selling” conversation. During such

a conversation, a client c may request to reserve the right to buy a ticket at a particular price p

with a grace period g. If SP2 agrees, it is obliged to sell this ticket to c for p, if c pays for the

ticket within period g. Moreover, SP2 commits itself to not sell the reserved ticket to anybody

else before the end of the grace period.
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6.1.3 Law L3: Assurances of Privacy

Given a client’s request, a server can determine the client’s sensitive data which include (1)

IP address of the client’s application and (2) the client’s identity extracted from the request’s

content. As soon as the server receives the client’s request, the client no longer has control

over its sensitive data. To assure clients that their sensitive data are not misused, the server

announces its privacy policy, and must adhere to this policy.

Suppose that SP3 also needs to link messages belonging to the same conversation as in the

”travel agent” scenario above. Below is an example of SP3’s privacy law L3.

a. Client Identification: A client has to submit its certificate signed by CA to identify

itself when it requests for SP3’s services.

b. Privacy Assurance: SP3 will not release the client’s certificate and IP address to other

third parties.

6.1.4 Relationship between Li and Lg:

SPi has the freedom to specify Li, but Li must conform to Lg. For example, it is not possible

for SPi to write Li to not report its ART periodically to Acct, or to not obey SA’s commands.

Such provisions imposed by Lg on Li are expressed through LGI law hierarchy which are

strictly enforced by our mechanism, as explained in section 4.4.

For the sake of simplicity, we only present L2 and L3 in following sections. The imple-

mentation of L1 is straightforward.

6.2 Server Law L2

A conversation between SP2 and its client involves three services: ”asks”, ”reserves”, and

”pays”. The client c invokes the ”asks” service to query SP2 about available tickets (uniquely

identified by tkIDs) and their corresponding prices. We view SP2’s response for the ”asks”

service as just for the client’s reference. c can use service ”reserves(tkID, pp)” to propose to

buy the ticket tkID from SP2 at an exact price pp if it makes a payment within a period of 20

minutes. Note that pp can be different from the ticket’s price returned from the ”asks” service.

The controller T2 does not influence SP2 regarding how to deal with c’s proposal. Therefore,
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Preamble:
law L refines Lg

authority(CA, keyHash)

R1. UPON arrivedcont([reqID, s, reqcnt]) DO
add(Inv(req(reqID),act(s),T(curTime)))
IF (s=="asks") DO forwardRequest(reqcnt)
ELSE DO
{
id = searchST("TicketID", reqcnt)
cert = searchST("Cert", reqcnt)
IF (rs(tID(id),cl( ),tP( ),T(t))@CS) DO
{
-- cancel expired reservation of "id"
IF (curTime - t > 20 x 60) DO
remove(rs(tID(id),cl( ),tP( ),T(t)))

}
IF (s == "reserves") DO
{
IF (rs(tID(id),cl( ),tP( ),T( ))@CS) DO

deliverResponse("Somebody else has
reserved this ticket.")

ELSE IF (cert[issuer(CA),subject(c)]) DO
{
p=searchST("ProposedPrice",reqcnt)
add(pr(req(reqID),tID(tkID),

cl(c),tP(p)))
// create or find in CS c’s nickname
n=findNick(c);
reqcnt1=replaceST(n,"Cert",reqcnt)
forwardRequest(reqcnt1)

}
}
ELSE IF (act == "pays") DO
IF (cert[issuer(CA), Subject(c)]) DO
{
IF !(rs(tID(id),cl(c),tP(p),T())@CS) DO
deliverResponse("Cannot pay for

a non-reserved ticket.")
ELSE DO
{
t1 = curTime
add(paid(tID(id),cl(c),tP(p),T(t1)))
Acct(host(h), port(p))@ CS
release(Self, [paid], h, p)
// create or find in CS c’s nickname
n=findNick(c);
reqcnt1=replaceST(n,"Cert",reqcnt)
forwardRequest(reqcnt1)
}
}
}

Figure 6.1: Refinement L2
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R2. UPON sentcont([reqID, respcnt]) DO
inv(req(reqID),act(s),T( ))@CS
IF (act == "reserves") DO
{
ans=searchST("ReservesResult",respcnt)
IF (ans == "Reservation Accepted.") DO
{
pr(req(reqID),tID(tkID),cl(c),tP(p))@CS
t= curTime
add(rs(tID(tkID),cl(c),tP(p),T(t)))
remove(pr(req(reqID),tID(tkID),

cl(c),tP(p)))
}
}
deliverResponse(respcnt)

Figure 6.2: Refinement L (con’t)

if SP2 agrees, SP2 must be accountable for its decision. c uses service ”pays(tkID)” to pay

for its reserved ticket.

L2 is shown in figure 8. L2’s preamble states it is a law refinement of Lg. To record that

client c successfully reserves ticket tkID for a price p at time t, T2 saves a term rs(tID(tkID),cl(c),tP(p),T(t))

in CS. Rule R1 refines the goal arrivedCont delegated from Lg’s arrived event. When c

”asks” SP2 for available tickets, T2 simply forwards c’s inquiry to SP2. In both ”reserves”

and ”pays” cases, T2 first cancels expired reservation of the involved ticket, if any. It does so

by calling the function searchST (”TicketID”, reqcnt) to extract the value tkID of the field

TicketID in the SOAP request reqcnt. Then, T2 removes any 4-tuple rs(tkID, client, price, time)

of which the elapsed time (curTime-time) is greater than 20 minutes.

Consider the case when c uses ”reserves(tkID,pp)”. If there is a valid reservation for

tkID, T2 returns to c the message ”Somebody else has reserved this ticket” and drops c’s

request. This way, T2 prevents a ticket from being reserved by more than one client at the

same time. If there is no reservation for tkID and if c presents a valid certificate, T2 calls

the function searchST (”ProposedPrice”, reqcnt) to extract the value pp of the field Pro-

posedPrice in c’s SOAP request reqcnt. T2 saves c’s proposal by adding into CS the term

pr(req(reqID), tID(tkID), cl(c), tP (pp) (which will be used in rule R2 of L2), and for-

wards c’s request to SP2.

Consider the case when c invokes ”pays(tkID)”. If c’s certificate is valid and its reservation

is still effective, T2 will sell the ticket to the client on SP2’s behalf. Specifically, T2 adds the
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term paid(tID(tkID), cl(c), tP (p), T (t1)) into CS. This term serves as a receipt stating that

c buys the ticket tkID at price p at time t1. Next, T2 reports c’s receipt to Acct. Finally, T2

forwards the request to SP2. Note that T2 cannot control what SP2 would actually do with the

forwarded request ”pays(tkID)”, but T2 can confidently confirm that the ticket tkID has been

sold to c. The receipt paid(tID(tkID), cl(c), tP (p), T (t1)) kept by both T2 and Acct will

support c if any dispute arises.

Rule R2 of L2 refines the goal sentCont delegated from Lg’s sent event. If this is the

response for a ”reserves” request, T2 extracts SP2’s decision ans which is kept in the field Re-

servesResult of respcnt. If SP2 agrees, based on the term pr(req(reqID), tID(tkID), cl(c), tP (p)

in CS, T2 records c’s reservation rs(tID(tkID), cl(c), tP (p), T (t)). Finally, T2 forwards

SP2’s response to c.

6.3 Law L3: SP3’s law

Preamble:
law L3 refines Lg.

R1. UPON arrivedCont([reqID, s, reqcnt]) DO
cert = SearchST("Cert", reqcnt)
IF (cert[issuer(CA), Subject(c)]) DO
{
IF (nick[cl(c), ni(n)])@CS) DO
{

reqcnt1=replaceST(n,"Cert",reqcnt)
forwardRequest(reqcnt1)

}
ELSE DO
{

n = generate nick()
add(nick(cl(c), ni(n)))
reqcnt1=replaceST(n,"Cert",reqcnt)
forwardRequest(reqcnt1)

}
}
ELSE DO
deliverResponse("invalid certificate")

R2. UPON sentCont([reqID, respcnt]) DO
deliverResponse(respcnt)

Figure 6.3: Refinement L3

The main idea is to generate a unique nickname for each client and keep a pair(client, nick)

in CS. Each time T3 receives a request, it checks whether there is a nickname nick associated
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with client by looking for the pair(client, nick) in CS. If this is the case, T3 replaces the

client’s certificate in the SOAP request by nick and forwards the modified request to SP3;

otherwise, T3 generates a unique nickname nick for the client, adds term ”(client, nick)” into

CS, replaces the client’s certificate (in the SOAP request) by nick, and forwards the modified

request to SP3. This way, even though SP3 does not receive the client’s certificate, SP3 is still

able to determine if the request is from a returned client based on the client’s nickname. InR1

of L3, we uses the function ”findNick” to deal with the searching/creating a nickname for a

given client.

L3 is shown in figure 5. L3’s preamble states that L3 is a law refinement of Lg. As in L2,

R1 andR2 of L3 refine the goals arrivedCont and sentCont of Lg, respectively.

InR1, T3 first verifies the certificate of client c. If it is invalid, then T3 returns the message

”invalid certificate” to c. Otherwise, T3 checks whether there is a nickname n associated with

c. If this is the case, T3 replaces c’s certificate by n and forwards the modified request to SP3;

otherwise, T3 generates a unique nickname n for c, adds term ”nick(cl(c),ni(n))” into CS3,

replaces c’s certificate (in the SOAP request) by n, and forwards the modified request to SP3.

This way, even though SP3 does not get c’s certificate, SP3 is still able to determine if the

request is from a returned client based on the client’s nickname. InR2, T3 simply forwards the

server’s response to c.

6.4 Related work

6.4.1 Trust based on Reputation

The trust issue has been actively investigated for a long time. There are a number of approaches

that are built upon reputation for applications in e-commerce, Peer-to-Peer networks (P2P), and

SOA. In e-commerce environment, eBay [24] employs one of the earliest reputation system in

practice. Ebay buyers can rate seller’s service quality after making purchases. The rating can

be ”positive”, ”neutral” or ”negative”. The seller’s reputation is the value P −N , where P and

N are the number of positive and negative ratings, respectively.

In P2P networks, each peer can concurrently be a client or a server which would provide

some files to the community. Examples of reputation systems in P2p are [26, 27, 28, 29]. In
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[26], Marti et al. proposed a mechanism to collect feedbacks from other peers on a given peer.

The reputation of the peer reflects the responses from responding peers and the experience of

the requesting peer with the given peer. In [27, 28] a peer is binary rated (i.e. a feedback is

either negative or positive), while in [29] a peer is judged based on various criteria such as the

quality of products the peer sends, the expected delivery time, etc.

Several examples of reputation system for SOA are [30, 32, 33]. In [30, 32] reputation

are calculated based on client feedbacks about quality of service. The server reputation are

published to a central QoS registry, and made available to potential clients. In [33] Griffiths

addresses the decay of trust values over time by proposing a trust decay function. This function

takes into account the fact that the experience contributing to the trust values may no longer be

relevant. Consequently, the trust values may be outdated and need to be updated.

Approaches based solely on reputation cannot assure the trustworthiness of SOA-based

system. In particular, server reputation which is calculated from client feedbacks is not always

a good indicator of server trustworthiness because clients may be biased, thus giving inaccurate

feedbacks. Moreover, even though reputation can be objectively measured at the client side, say

by say installing tamper-resistant devices at client side to measure service quality, having good

reputation does not guarantee servers always abide by predefined policies, because servers may

sometimes misbehave to gain more benefits.

6.4.2 Service Level Agreement (SLA)

There are many approaches that have been proposed to verify whether service implementation

conforms to its service level agreement. They vary in the methods to do the probe (i.e. intrusive

or non intrusive), the application phase (test, run-time or posteriori), and the range of verified

properties.

In two projects [34, 35], the verification is done by inserting assertions into the code of

the server program. Although both projects employ a Trusted Platform Module architecture,

clients interacting with a server cannot be really sure that the correct verification has been

done, because this verification is very specific to the code of the server. Under SOA, servers

may be distributed across multiple administrative domains; and their code of servers may be

heterogeneous, may not be available or known to the managers. Therefore such approaches are
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not appropriate to provide trustworthiness for SOA-based systems. In our mechanism, policies

are explicitly stated in laws providing a clean separation between policies and server programs,

and are enforced by LGI controllers out of the control of servers.

There are several research projects which address the testing phase of services, such as [14,

15]. In these works services are assumed to be honest, but their implementation may not be

correct. These frameworks provide useful tools for web service developers. Such tools are also

useful for clients who want to verify the correctness of the service before using the services.

However, these works do not address one of our main concerns: would servers behave as

promised?. Note that passing the test phase does not mean a server would always operate as it

committed.

Other projects focus on verifying the service behavioral contracts which are defined by the

visible interface of services, e.g., [11, 12, 13]. However, they only focus on validating func-

tional requirements of web services, and non-functional requirements like server laws presented

in this chapter are not addressed.

Several projects only focus on monitoring services, e.g., [36, 37, 38]. In [36], interceptors

calculates such properties of services as response time, availability and update those properties

to a central registry; clients can inquire the registry to know about server real time performance.

In [37], interceptors are responsible for recording certain events, say a server returns a response

at 8PM, regarding the client-server interaction in order to provide undeniable of server misbe-

havior. The project [38] attempts to provide a complete framework for monitoring individual

services. In particular, the authors propose both intrusive and non-intrusive probing to monitor

5 system events: client request, service response, application (internal events and states of the

service), resource consumption, management (i.e. services reconfiguration, component updat-

ing, resource adjusting, message blocking, etc). However, they mainly focus on monitoring

functional requirements.
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Chapter 7

Orchestration

Under orchestration scheme, a server, called orchestrator, orchestrates several servers to sat-

isfy requests received from its clients. All interactions in the orchestration are conducted via

the orchestrator. That means, the orchestrator can intercept, analyze and control flow of mes-

sages exchanged between clients and orchestrated servers. As a result, clients and orchestrated

servers may not know each other even though clients use services provided by servers. Such

indirect interaction may cause concerns from both clients and orchestrated servers.

There are two scenarios for an orchestrator O to send a request to a server, as shown in figure

7.1. In the first scenario, O plays the role of an orchestrator and SPi is one of its orchestrated

servers. In the second scenario, O acts as a typical client of SPk and SPk does not know that it

receives a request from an orchestrator.

Figure 7.1: Two ways for an orchestrator to invoke a service

If O acts as an orchestrator, the interaction between O and an orchestrated server is gov-

erned by the controllers of O and the server. For example, interaction between O and SPi is

regulated by TO and Ti. If O plays the role of a client when interacting with SPi, their inter-

action is only regulated by the server law. In this example, the interaction is governed by Tk
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according to Lk. The tradeoff between the two scenarios is that typically response time of a

request in the first scenario is longer than that of a request in the second scenario. In the second

scenario, exchanged messages are mediated according to only orchestration law Lk. To provide

flexibility, our mechanism supports both these scenarios. The second scenario is addressed in

chapter 6, hence we would not discuss it further.

Figure 7.2: Interaction under orchestration scheme

Figure 7.2 shows interaction under orchestration scheme. In step 1, a client C sends a re-

quest to invoke a composite service provided by an orchestrator O. The controller T0 forwards

the request to O in step 2. O processes the request and knows that it needs to invoke a service

of SPk in order to satisfy the client request. Therefore, in step 3 O sends a request to TO which

then forwards it to Tk in step 4. Next, Tk forwards the request to SPk. In step 6, SPk processes

the request, and returns a response to Tk which forwards the response back to TO in step 7. In

step 8, TO forwards the response to 0. In step 9, O processes SPk’s response and returns the

final response to TO. Finally, TO delivers the response to C in step 10.

Why does an orchestrator voluntarily send requests via its controller?

In our mechanism, an orchestrator is free to decide how its requests should be treated. Why does

O decide to send request as in the first scenario given that it would take longer for its request

to reach the orchestrated server and for a response to get back to O? Despite the freedom in

deciding how to request a service, an orchestrator may often be forced to send a service request

via its controller, and thus subject to its orchestration law LO, if it wants to receive benefit

provided under LO.
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We will present below a list of orchestrator commitments that can be strictly enforced by

our mechanism. We then show why orchestrators are effectively compelled to send requests via

their own controllers when invoking services.

7.1 Motivating Example

Consider a scenario in which a ”travel agent”, called an orchestrator under orchestration scheme,

orchestrates several ”airline” servers to buy a set of tickets for clients. The orchestrator may

announce a policy, referred as orchestration policy Po, to provide certain assurances to clients

and orchestrated servers, as follows.

Client concern

Orchestrator acts on client behalf:

When an orchestrator receives a request from a client, it can be considered as the client repre-

sentative, and starts acting on the client’s behalf. Therefore, the client would want the orches-

trator not to abuse that privilege. Below is an example to illustrate the need of this assurance.

D1. The client gives its credit card to the travel agent, which will invoke services provided

by the airlines to satisfy the client request. The travel agent promises that it only uses the card

to pay the airlines, and the total money paid cannot exceed the amount of money the client

agrees to pay. Moreover, the travel agent commits that it will not release the credit card data to

the airlines, and will delete it right after the client request has been served.

Orchestrator actually completed certain important things for client:

Typically a client has no knowledge about how/when an orchestrator interact with its orches-

trated servers to serve the client request. It is hard or even impossible for clients to determine

whether an action has been completed by the orchestrator or not. Even if later the client can

find out the misbehavior of the orchestrator, but the consequence has been made. Therefore,

the client would want to make sure that the orchestrator has actually completed certain things

for the client, as stated by the orchestrator.

An example of this assurance is:
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D2. The client needs assurance that the travel agent has checked with 3 airlines, and chosen

the lowest price available before purchasing a ticket for him/her.

Selection of orchestrated servers:

The execution of a composite service depends on those of orchestrated servers. It may be

possible that a client of a composite service expects the orchestrator only use service that

comply with certain predefined requirements. Indeed, this expectation is just similar to that

coming from clients in real life. For example, when a client buy a car, he/she would want that

the car company only utilizes safe and standard-compliance components provided by certified

providers.

Below is an example of this assurance.

D3. The travel agent commits to purchase tickets only from airline services that are regis-

tered in the directory.

Report truthfully:

Clients may also need to know certain information regarding the actual interaction between the

orchestrator and orchestrated servers. Below is an example illustrating the need as well as the

assurance made by the orchestrator.

D4. Assume the travel agent purchases airline tickets for the client and receives commission

based on the effort it spends. In particular, travel agent receives one dollar for any time it checks

with an airline to satisfy the client request. Therefore, the travel agent commits to inform the

client about the actual number of inquiries it has done on the client behalf.

Orchestrated server’s concern

Fairness among orchestrated servers:

Servers may choose to consider orchestrators as a special type of clients, and both the or-

chestrators and servers can receive benefits from that relationship. For example, servers can

reach more clients with the help of an orchestrator, while the orchestrator receives commission

for each successful transaction between clients and servers. There is possibly a competition
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between equal servers in the sense that they provide same services as well as benefit to the

orchestrator. How an orchestrator determines equal servers depends on business goal of the

orchestrator, and is out of the scope of this paper. If this is the case, they would want the

orchestrator to not favor some servers, and ignore other servers.

Below is an example of this assurance.

D5. The travel agent promises to treat equal airline servers in a fair manner. Specifically,

they are placed in a ring, and the travel agent will move along the ring and pick one airline at a

time.

Cooperation from orchestrators:

Orchestrated servers do not directly interact with clients, and have to rely on data forwarded

from orchestrators to process a request. Therefore, they need the cooperation of orchestrators

in providing correct and necessary information about the clients. If full cooperation is met, the

orchestrated servers would not waste resource to process invalid requests.

An example of this assurance is shown below.

D6. A client request is defined as valid if the client has sufficient funds in his/her credit

card account to pay for the ticket(s). The travel agent commits to forward only valid requests

to airlines.

7.2 Case Study

In this section, we will present the ideas behind the enforcement of orchestration commitments,

as well as the law texts. For each orchestration commitment, we will also show why orchestra-

tor is compelled to send requests via its controller.

All rules in the law texts below are refinements of either goal ”sendCont” or goal ”arrived-

Cont” defined in the global law Lg.

7.2.1 Commitment D1

The client gives its credit card to the travel agent, which will invoke services provided by the

airlines to satisfy the client request. The travel agent promises that it only uses the card to pay
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the airlines, and the total money paid cannot exceed the amount of money the client agreed

to pay. Moreover, the travel agent commits that it will not release the credit card data to the

airlines, and will delete it right after the client request has been served.

When O needs to purchase a ticket for a client, it has to send a request via its controller

because the orchestrator’s controller TO is keeping credit card of clients.

The idea to implement the constraint (D1) is having the controller of the orchestrator main-

tain the client’s credit card, the amount of money the client agrees to pay, and the amount that

has been paid. When the orchestrator needs to use the client’s credit card, it needs to send

a request via its controller because the controller is keeping the credit card. Upon receiving

a request to pay an airline on behalf of the client, the controller makes sure that the amount

paid plus the amount being requested do not exceed the amount that the client agreed to pay

before letting the request go through. The orchestrator’s controller also removes the credit card

information from its state when the orchestrator returns a final response to the client about the

transaction.

Preamble:
law LO1 refines Lg.

R1. UPON sentCont(-,tkPurchase(clientID, tkID, amnt),-) DO
-- retrieve client’s credit card information --
card(ccInfo, clientID)
-- retrieve money paid on client behalf, and the amount of
money agreed --
finance(amntPaid, amntAgreed, clientID)
IF (amntPaid + mnt <= amntAgreed)
{

newAmntPaid = amntPaid + mnt
remove(finance(amntPaid, amntAgreed, clientID))
add(finance(newAmntPaid, amntAgreed, clientID))
forwardRequest(-, tkPurchase[clientID, tkID, amnt], -)

}
ELSE DO
- inform travel agent, and drop request
forwardResponse("Money requested exceeds money agreed!")

R2. UPON sentCont(-,tkConfirmation(clientID, -),-) DO
remove(card(-, clientID))
deliverResponse(-, tkPurchase(clientID), -)

Figure 7.3: Refinement LO1

In rule R1, TO determines this is a purchase request based on the header of the request
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tkPurchase. It then retrieves the credit card data for for client whose identity is clientID. More-

over, the amount of money paid amntPaid using the client’s credit card as well as the amount of

money the client agrees to pay amntAgreed are also retrieved from the control state. If the ticket

value amnt plus the amntPaid do not exceed amntAgreed, TO updates amntPaid and forwards

the orchestrator’s request to the controller of the orchestrated server. As shown, O must send

request via its controller in order to use the client’s credit card.

In rule R2, based on the header of the request tkConfirmation, TO knows this is the con-

firmation of a purchase sent by O to the client clientID. The orchestrator is not allowed to use

the client credit card any more, thus TO removes the client credit card. Finally, TO delivers the

confirmation to the client.

7.2.2 Commitment D2

The travel agent commits that it has checked with 3 airline and chosen the lowest price before

purchasing a ticket for a client.

In order to use the client credit card, the orchestrator must send purchase request to airlines

via its controller TO. However, TO will not let a purchase request get through if (1) previously

O has not sent three inquiries and (2) the amount of money in the purchase request is the

lowest among three prices returned in three inquiries. This constraint, in turn, forces O to send

inquiries via TO. In summary, the orchestrator is effectively compelled to send request through

its controller.

In ruleR1, TO determines if this is the response of an inquiry based on the message header

tkInquireResponse. If this is the case, TO records the number of inquiries O has sent as well as

the lowest price of the desired ticket.

In rule R2, TO makes sure that the purchase request matches with the responses of three

inquiries before forwarding it to corresponding airline.

7.2.3 Commitment D3

The travel agent commits to purchase tickets only from airline services that are registered in

the directory.
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Preamble:
law LO2 refines Lg.

R1. UPON arrivedCont(-,tkInquireResponse(clientID, price, itinary),-) DO
-- this is a response for an inquiry, increase inquiry number--
inc(inquiryNumber)
-- retrieve the lowest price from CS --
lowestPrice(min, clientID)
IF (min > price)
{

-- update the lowest price if necessary --
remove(lowestPrice(min, clientID))
add(lowestPrice(min, clientID))

}
-- forward the response of an inquiry to travel agent --
forwardResponse(tkInquireResponse(clientID, price, itinary))

Figure 7.4: Refinement LO2

R2. UPON sentCont(-,tkPurchase(clientID, tkID, amnt),-) DO
-- retrieve the number of inquiries, lowest price from CS --
inquiryNumber(num)
lowestPrice(min, clientID)
IF (num < 3)
{
-- number of inquiries is less than 3 --
-- drop request, tell travel agent about its violation --
forwardResponse("Need 3 inquiries before making a purchase")
return;
}

IF (min > amnt)
{
-- travel agent pays more than recorded lowest price --
-- drop request, tell travel agent about its violation --
forwardResponse("Client only agreed to pay lowest price")
return;
}

-- forward valid purchase request to airline --
forwardRequest(tkPurchase(clientID, tkID, amnt))

Figure 7.5: Refinement LO2 (continued)
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Similar to the cases of commitments (D1) and (D3), orchestrator needs to send purchase

request to its controller for approval because the controller maintains the client credit card.

To implement this constraint, the orchestrator’s controller needs to get a list of server reg-

istered in the service registry. Recall that the service registry is maintaining data about servers

that are participate in the system. When the controller receives a request to use a service pro-

vided by a server, it will check to see whether the server is in the list. If it is the case, the

controller lets the request go through.

It is possible that the list of registered servers the controller maintained is not updated.

That happens because servers can leave or join the system in an unpredictable manner, thus

only the service registry has the most updated list. A possible approach is to have the registry

broadcast the list to orchestrator’s controllers when there is a change. However, it may face

additional issues. For example, a server joins and then leaves the system; for some reasons,

the ’leave’ message sent by the registry to a controller is lost; thus, the controller consider

the server to be in the system. Alternatively, if a controller does not see a server in its list, it

needs to check the server with the registry. Similarly, this would bring about several issues

such as either the controller’s inquiry or the registry’s response is lost. It is quite necessary to

consider synchronization issues when applying to real systems. However, for the purpose of

demonstration, we do not consider them when implementing this constraint.

Preamble:
law LO3 refines Lg.

R1. UPON sentCont(-,tkPurchase(clientID, tkID, amnt),addr) DO
-- retrieve regList stored in CS --
regList(list)
IF (addr in list) DO

forwardRequest(-, tkPurchase(clientID, tkID, amnt),addr)
IF !(addr in list) DO

deliverResponse("Server is not registered in the
directory")

Figure 7.6: Refinement LO3

Rule R1 checks if the destination addr of a request is in the register list. The controller

TO retrieves the list of registered servers in the control state. If addr belongs to that list, the

controller TO will forward the request further. Otherwise, it will drop the request and inform
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the orchestrator.

7.2.4 Commitment D4

Assume the travel agent purchases airline tickets for the client and receives commission based

on the effort it spends. In particular, travel agent receives commission, say one dollar, for any

time it inquires an airline to satisfy the client request. Therefore, the travel agent commits to

inform the client about the actual number of inquiries it has done on the client behalf.

The idea to implement this constraint is to have the controller record all inquiries the con-

troller makes to satisfy a client request. When the orchestrator return a final response to the

client, the controller attaches the number of inquiries made.

The orchestrator must sends inquiries via its controller TO so that it can receive commission

at the end of the transaction, so that TO can calculate the exact the number of inquiries made.

Note that an orchestrator is also a server, and it directly interacts with client via its controller,

as presented in chapter 6. In other words, the inquiry report sent by the orchestrator to client

will be intercepted by TO. Therefore, TO is able attach the correct number of inquiry into

that report. In sum, the orchestrator is forced to send inquiry as well as inquiry report via its

controller in order to get paid.

Preamble:
law LO4 refines Lg.

R1. UPON arrivedCont(-,tkInquireResposne(clientID, price, itinerary),-) DO
-- this is a response for an inquiry, increase inquiry number--
inc(inquiryNumber)
add(inquiry(inquiryNumber, price, itinerary))

R2. UPON sentCont(-,inquiryReport(clientID,-),-) DO
inquiryNumber(num)
report = ""
(for i=0; i<num; i++)

strcat(report, inquiry(i, price, itinerary))
deliver(report)

Figure 7.7: Refinement LO4
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7.2.5 Commitment D5

The travel agent promises to treat equal airline servers in a fair manner. Specifically, they are

placed in a ring, and the travel agent will move along the ring and pick one airline at a time.

Servers in a ring are assumed to provide equivalent services to serve a client request. We

would not discuss further how to determine equivalent services because it depends on business

scenarios. For the sake of simplicity, we assume that a manager provides the orchestrator’s

controller a list of equivalent ones.

Preamble:
law LO5 refines Lg.

R1. UPON sentCont(-,tkPurchase(clientID, tkID, amnt),-) DO
-- retrieve ringList stored in CS --
ringList(list)
-- retrieve position of the last airline picked --
curPosition(cur)
n=list.length()
pick = (cur + 1) addr = list(pick)
-- update current position of ringList in CS --
remove(curPosition(cur))
add(curPosition(pick))
-- send purchase request to the chosen server --
forwardRequest(tkPurchase(clientID, tkID, amnt), addr)

Figure 7.8: Refinement LO5

To implement this constraint, the controller places all airlines into a ring, picks one airline

to serve a client request, and moves to the next position.

Orchestrator is also forced to send request via its controller. That happens because the

orchestrator needs to prove to orchestrated servers that they are treated fairly by sending a

service request to TO, and having TO fairly choose a server from the ring. Since the service

request is forwarded by TO, orchestrated servers are assured that TO has fairly picked a server

from the ring.

In ruleR1, TO retrieves the ring as well as the position of last airline from the control state.

Based on these, TO picks the airline for this service invocation, updates control state. Finally,

it forwards request to the chosen airline.
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7.2.6 Commitment D6

A client request is defined as valid if the client has sufficient fund in his/her credit card account

to pay for the ticket(s). The travel agent commits to forward only valid requests to airlines.

Similar to commitment (D5), orchestrated servers can be sure that a client has money to pay

for a ticket only if the credit card has been checked by TO. Therefore, the orchestrator must

also send request via TO.

Preamble:
law LO6 refines Lg.

R1. UPON sentCont(-,tkPurchase(clientID, tkID, amnt),-) DO
-- check whether there is client’s card --
IF (card(ccInfo, clientID) AND sufficient(ccInfo, amnt)) DO

forwardRequest(tkPurchase(clientID, tkID, amnt))
ELSE DO

deliverResponse("credit card problem")

Figure 7.9: Refinement LO6

In rule R1, TO checks if the client has a credit card. It then verifies if the available money

in the credit account is greater than the ticket price amnt by calling sufficient(ccInfo, amnt).

For demonstration purpose, we create a file for storing fictional credit card data. The function

sufficient simply checks the file. If the available fund is greater than amnt, it returns ’true’;

otherwise, return ’false’. TO only forwards the request if the client has sufficient fund in his/her

credit card account to pay for the ticket.

7.3 Related Work

All projects discussed in related work section of chapter 6 do not differentiate composite ser-

vices with individual services. Treating an orchestrator like a normal client brings about flexi-

bility because a servers do not need to distinguish them. Note that our mechanism does not ex-

clude this possibility. Not to mention about the quite limited range of client concerns addressed

in those projects compared to those addressed by our mechanism as discussed in chapter 6

(e.g., commitments D1, D2, D3, and D4), we believe they are missing one important part when

addressing client concerns: the interaction between orchestrators and orchestrated servers.

In the context of building trustworthy service composition, we are not aware of any project
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which considers concerns of orchestrated servers. When the orchestrated servers choose to pro-

vide some of their services to an orchestrators in order to receive certain benefits as committed

by the orchestrators, they need assurance that the orchestrators will fulfill their promises. And,

our mechanism provide this assurance by enforcing the orchestrators’ commitments.
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Chapter 8

Choreography

While the technologies for implementing and interconnecting basic services under SOA are

reaching a good level of maturity, modeling choreographies is still a big challenge. The problem

is that, current choreography model specify choreographies by focusing on procedural aspects,

leading to over-constrained solutions. Moreover, a choreography description in those models

is not executable, i.e., there is no enforcement mechanism. Since a single misbehavior of an

individual service may destroy the collaboration in a choreography, enforcement is a must to

ensure safe and correct coordination between interacting services.

To overcome these limits, we propose that choreography models should focus on specifying

the constraints required to make all services collaborate correctly, without stating how such

a collaboration is concretely carried out. We believe that services should have the freedom

to operate as well as they can, but they must satisfy the choreography constraints through

enforcement. Thus, we also present how our mechanism enforces choreography constraints.

8.1 Problems of current choreography model: Procedural approach, no enforce-

ment mechanism

The leading specifications for modeling service choreography e.g., WS-CDL [45], are not ca-

pable to to model choreographies, thus failing to solve their objective. The main problem is that

they models choreographies by focusing on procedural aspects, e.g. by specifying control and

message flow of the interacting services. This forces the choreography modeler to capture it at a

procedural level. It is important to note that the implicit assumption behind procedural models

is that anything that is not explicitly defined is not allowed to occur. Therefore, a choreography

modeler must list all allowed executions when using those choreography specifications.

We have discussed the deficiencies of procedural approach in [42]. One apt criticism of the
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approach is pointed out in [43], ”Business processes are highly dynamic and unpredictable–it

is difficult to give a complete a priori specification of all the activities that need to be per-

formed and how they should be ordered. Any detailed time plans which are produced are often

disrupted by unavoidable delays or unanticipated events.”

As an alternative for procedural specification, these authors propose the following: ”the

most natural way to view the business process is as a collection of autonomous problem solving

agents, which interact when they have interdependencies.”

We too believe in the importance of autonomy for the participants in choreographies, for the

above mentioned reason, and for others. In particular, a participant can take ”opportunity-based

initiatives” [44], based on his/her intimate familiarity with the operating environment, which

may not be available to the manager. An attempt to communicate such information to some

manager(s) could be impractical when fast response is required, particularly in a distributed

setup, when the agent in question is geographically separated from his manager(s).

We argue that a choreography model should provide both compliance and flexibility: on

the one hand, all interacting services must strictly follow the constraints defined in the chore-

ography; on the other hand, each of them should have the autonomy to execute the business

processes which cover its own contribution to the choreography. In other words, we believe

that a service choreography need to focus on the rules of engagement required to make all the

interacting parties collaborate correctly, without stating how such a collaboration is concretely

carried out.

Last but not least, there is no enforcement mechanism provided for current choreography.

And, it will be impossible to come up with one for enforcing choreography descriptions as

they are currently modelled. Instead, currently choreography descriptions can only be used for

describing the rules of engagement for making all the interacting services collaborate correctly,

and for verification purposes (such as conformance checking and interoperability). It is up to

the interacting services to implement the choreography rules, and there is no guarantee that all

services abide by the choreography rules because some services may misbehave to get some

benefits. We believe that this is unacceptable because even a single violation, either intention-

ally or unintentionally, would destroy the reliability of the system, thus preventing effective

collaboration under choreography scheme.
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8.2 Our Approach

To overcome the limits of procedural approaches, we propose that choreography models should

focus on specifying the constraints required to make all services collaborate correctly, without

stating how such a collaboration is concretely carried out. Our proposed mechanism allows

modelers to define choreographies through a set of policies or business rules referred to as

constraints, which will be strictly complied by interacting services. In our mechanism, despite

the communal nature of choreography constraints, they are locally enforced at each service

based on the service’s state, and without having any direct knowledge of the coincidental state

of other services. This locality enhances the efficiency and scalability of law-enforcement,

without reducing the expressive power of the choreography constraints.

As we saw in chapter 6, a service may be associated with a law which would specify con-

straints about the behavior of the service. That law may take into account the various functions

provided by the service, as well as the information about the domain in which the service is

being deployed. In other words, that law - referred as server law - addresses specific features

regarding one particular service of the system. Note that server law is optional, i.e., not all

services have their own laws.

Moreover, in SOA-based systems a single service may concurrently participate in several

choreographies, each of which is subject to a choreography law. Note that this service may also

be subject to its server law. The behavior of the service in one choreography is subject to both

the server law as well as the choreography law imposed on all members of the choreography.

That is just similar to what happens in real life. For example, a Rutgers professor may

specify his own law LP in which he define his specific expertise and commitments with his

students/department. Note that the professor’s law conform to his Rutgers university law, which

is viewed as a global law. He may choose to join his department admission committee, a labor

union, and the committee of a conference in his field. Assume that the laws that regulate the

department admission committee, the labor union and the conference committee are called LA,

LL and LC , respectively. In this scenario, the LA, LL and LC are considered as choreography

laws.

There are two scenarios that need to be addressed.
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1. Server law is defined before the choreography law

How can a server law allow its service to join a choreography given that the server law is

defined before the choreography law? For example, LP is defined before LC . In this scenario,

the server law is not aware of the choreography law.

The joining time:

At the server’s side, we note that even though server law does not know any specific choreogra-

phy law defined after it, it knows that its service is requesting to join a choreography, so it still

can control the participation of the service in the choreography. For example, the server law

states that its service cannot join more than two choreographies at any moment, while another

server law states that its service can join a new choreography if the request is sent between

8AM and 6PM.

At the choreography’s side, the law maker of a choreography can control what servers are

allowed to participate in the choreography. For example, a labor union of a company may state

that only employees of the company can join the union.

The interaction time

If choreography law is aware of server law, it may treat the service differently from others. For

example, when the professor joins the labor union, LL’s law makers may place more confidence

on him because they know that the professor’s behavior is also subject to Rutgers university

law. Even if the text of the Rutgers law is not known, it may be enough to know that this is the

official law of Rutgers, and thus worthy of certain trust.

The behavior of a service in a choreography is governed by both the server law and the

choreography law. For example, the behavior of the professor in a committee is governed by

the professor law and the committee law. In particular, the professor is subject to LP and LA

when he is a member of the admission committee, and is subject to LP and LC when he is

serve the conference committee.

2. Server law is defined after the choreography law

The joining time:

The server law can be aware of the choreography law. Therefore, it can explicitly allow or disal-

low the service to join the choreography. However, it can also choose to treat the choreography

as it does not know this specific choreography law.
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The interaction time:

Since the choreography law is not aware of the server law, it cannot have a specific treatment

for this particular server law. Instead, it can provide a standard treatment for all server laws it

does not know. For example, the choreography law state that any agent that is operating under

a server law can join the choreography. Finally, the behavior of a service in a choreography is

subject to both the server law and the choreography law, as in the previous scenario.

How LG-SOA mechanism supports these two scenarios will be presented in detailed shortly

later.

Discussion:

There is no requirement about the order in which laws are specified. More specifically for this

scenario, the professor’s lawLP is not required to be defined before the conference committee’s

law LC , or vice versa. And, the same thing occurs for the case of LP and LA. Otherwise, the

flexibility and applicability of the system would be hindered. For example, if the professor’s

law LP is required before the conference committee’s law LC , then any professors whose laws

are defined after LC are not allowed to join the conference committee.

8.3 A need to extend LGI

Consider a choreography C involving one unconstrained software actor called Z, two serversX

and Y operating under laws LX and LY which are subordinate to Lg, thus we have LX -agent,

and LY -agent. The actor Z is not governed by a law, so we called it an unconstrained actor.

Let the constraints on C be defined by law LC . For the simplicity of discussion, we only

present two server lawsLX ,LY and one choreography lawLC . Our discussion below, however,

is applicable to any scenario which consists of a large number of server/choreography laws.

Recall that LGI does not coerce any actor to exchange L-messages, under any specific law

L, or to engage in LGI-regulated interaction in any other way. Such an engagement is purely

voluntary. LGI can nevertheless be said to enforce its laws in the following sense: if an LGI-

agent X interacts with a process Y claimed to be an LGI-agent operating under law LX , then

X can be confident that Y conforms to law L. It is this confidence that allows the members of a

given L-community to trust each other. Despite this voluntary engagement in an LGI-regulated
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activity, an agent may often be forced to operate under a particular law LX , if he/she wishes to

use services provided only under this law.

In chapters 5 and 6, global law and server law are enforced only if clients send request to

server’s controller. But, why do clients do that? In fact, clients choose to sent their requests to

the controller of the server because of the following reasons:

1. Clients may not know the real address of a server. Recall that only registered services

are maintained in the registry. And, the registry provides clients with location of the server’s

controller.

2. Even if a client knows the real address of the server, the client may still send request

to the server’s controller because clients want assurance that server commitments are enforced.

And, if this is the case, global constraints are also enforced.

3. Besides, servers may require clients send requests via their controllers, and would not

process requests sent directly from clients. One scenario that shows a server chooses to do so

is that it wants to show their usefulness, e.g., serving many requests, to a manager. However,

the manager does not trust the servers in reporting correctly the number of client requests and

only accepts the report sent by the server’s controller; consequently, servers require their clients

send requests to their controllers.

If no one has interest in forcing clients to send requests via controllers, we face a common

problem on the Internet: we cannot force someone to do something if they do not get benefit

by doing this.

In chapter 7, under orchestration scheme an orchestrator can act as a client or an orchestrator

when it needs to invoke a service. Even though the orchestrator is free to decide which role to

play, in some scenarios it voluntarily chooses to act as an orchestrator by being an orchestrator.

The same principle applies here. It is our view that actors participate in a choreography because

they would like to receive benefits as a choreography member.

Consider the interactions in the choreography. For ease of discussion, we will discuss

interactions that involve X; similar things happen for other choreography members such as Y

and Z–a software actor that is not being regulated by a law. The first type of interaction is

between X and its clients, and is only regulated by LX . The second one is between X and
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other LC choreography members. This type of interaction is subject to LC , LX , and the law of

the actor which is interacting with X . For example, the interaction between X and Y is subject

to LX , LY , and LC . The interactions as well as laws that govern them are represented in figure

8.1.

Figure 8.1: Interaction types and Laws that govern them

Take a closer look at X . To enforce laws on two types of interactions of X , we need two

type of agents. The first type is regulated only by a law–LX in this scenario, while the second

type is regulated by both two laws–LC and LX in this case.

The standard LGI model does not support the second type of agents because it does not

allow an LGI-agent to join a LGI community. In this scenario, the LX -agent cannot participate

in LC-choreography under the standard model. Therefore, we have extended LGI to enable the

possibility that the LX -agent can join LC-choreography. We will present in detailed the LGI

extension in section 8.4.

Now, we will discuss how laws are organized in LGI hierarchy.

We cannot place it above LX and LY as in figure 8.2.a because of two reasons.

First, this would make them subordinate to LC . That means, the interaction between X

and its client is governed by both LC and LX , and the interaction between Y and its client is

governed by both LC and LY . That is not what we want because as shown in figure 8.1 the

interactions between X and its clients, between Y and its clients are supposed to be governed

only by LX and LY , respectively.

Second, it is possible that LX (or LY ) is defined before LC , thus LC cannot be a superior
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Figure 8.2: Law Organization

of LX (or LY ). Recall that in LGI-hierarchy, a superior of a law must be defined before that

law. For example, Lg must be defined before LX and LY .

Besides, we cannot place LC as in figure 8.2.b because a law has at most one superior in

the law hierarchy.

We choose to place laws as in figure (8.2.c) because there is no order in which server laws

and choreography laws are defined.

To enforce choreography constraints we need a mechanism that has the following five prop-

erties:

Figure 8.3: (LC-LX )-agent

First, it allows a software actorX which is currently governed byLX to join a choreography

regulated by LC . That means the mechanism needs to support the possibility that an LGI-agent

to be regulated by another law. As shown in the figure below: Actor X operates under LX ,

and we have LX -agent; the LX -agent joins LC-choreography. So we have two agents LX -

agent and (LC-LX )-agent as shown in figure 8.3. The notation (LC-LX )-agent indicates that

an LX -agent adopts a controller to participate in LC-choreography.
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Figure 8.4: LX -agent join LX and LX choreographies

Second, it is possible that an LX -agent joins more than one choreography. For example,

figure 8.4 shows that an LX -agent joins L1-choreography and L2-choreography, so we have

two newly created agents: (L1 - LX )-agent) and (L2 - LX )-agent.

Figure 8.5: A law can allow/disallow its agents to join a choreography

Third, it is possible that a choreography law LC is defined after server laws. Therefore, a

server law L may not be aware of any specific choreography law. However, our mechanism

allows L to decide whether an L-agent is allowed to join a new choreography LC and under

what conditions. For example, as shown in figure 8.5, LX allows LX -agent to join any chore-

ography if a join request is sent from 8AM-10PM while Lk-agent is not allowed to join a new

choreography because it has joined two other choreographies.

Fourth, our mechansim provides the choreography managers the capability to distinguish

the type of the actor requesting to join the choreography, and decide to allow the actor to join

the choreography or not. For example, the managers can write LC in a way which can control

what types of actor are allowed to join LC-choreography. As shown in figure 8.6, all agents

except LV -agent can join LC-community.

Note that this scenario is different from the one presented in figure 8.5 in term of what law



67

Figure 8.6: 2 cases in which an agent is not allowed to join a choreography

prevents the participation of an actor in a choreography (even though results are the same: Lk-

agent cannot join LC-choreography). Specifically, in figure 8.5 Lk does not allow Lk-agent to

join LC-choreography, while in figure 8.6 LV allows LV -agent to join new choreographies but

LC does not.

Figure 8.7: Different types of actors are treated differently

Finally, as there may be different types of actors in LC-choreography, it is possible that LC

managers choose to treat them differently. As shown in figure 8.7, an unconstrained actor like

Z can only invoke 100 services per hour provided by other LC-choreography members while

LX -agent and LY -agent can invoke as many services as they wish.

Discussion:

Several observations about the participation of LX -agent in LC-choreography are in order.

- First, the LX -agent can participate in LC-choreography only if both laws LX and LC
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approve.

- Second, the conditions under which a ”join LC-choreography” request of LX -agent can

be accepted, and the effects of such an action are determined by two laws.

- Third, why would LC want to know the types of members that join LC-choreography?

There can be several reasons for this. First of all, familiarity with the law that govern a mem-

ber’s behavior gives one some needed confidence. For example, assume that X is a professor at

Rutgers which would have to obey a Rutgers policy for professor; when X joins a labor union

LC as a Rutgers professor, LC managers may place more confidence on X because she knows

that X is also subject to Rutgers policy. Second, even if the text of actor law LX is not known,

it may be enough to know that this is the official law of Rutgers, and thus worthy of certain

trust.

8.4 Activities under choreography scheme

In this section, we will present the process for an L-agent to join a new choreography. Then,

we describe what laws and events that govern the interaction between any two choreography

members.

8.4.1 An LGI-agent joins a choreography

Consider a scenario in which an actor X operates under LX . Assume that X wants to join

LC-choreography.

Figure 8.8: newAdopted Event

Figure 8.8 shows the process in which an LX -agent adopt a controller to become a new

member of LC choreography.
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In step 1, X sends a message of the form joinCommunity(contHost, commLaw, shortName)

to TX where:

- conHost is the name of the controller that X wants to adopt in order to join the choreogra-

phy.

- commLaw is the law governing the choreography

- shortName is the desired short name of X in the commLaw-choreography (i.e., the full

name of the new agent would be shortName@conHost).

For this figure, conHost is TX
C , commLaw is LC , and shortName is X.

In step 2, the joinCommunity message arrives at TX and an event joinRequest(String con-

tHost, String commLaw, String shortName) is fired. Because the joinRequest event is fired,

even though LX may not be aware of any specific choreography law defined after the birth of

LX , it is possible to write LX in a way that enable the controller enforcing LX to know there

is a request to join a choreography from X.

TX evaluates the joinRequest event according to the law LX . If LX does not allow X to

join a new choreography, then TX drops the request. This is the capability we provide a law to

control the participation in a new choreography of its agents.

If LX allows X to join a new choreography, it forwards the joinCommunity message to the

controller conHost, thus an event newAdopted(preLaw, preHost, shortName) is fired at conHost

in step 3 where:

- preLaw is the law of the LGI agent requesting to join the choreography.

- preHost is the name of the controller of the LGI agent.

For this figure, preLaw is LX and preHost is TX .

In step 3, TX
C evaluates the newAdopted event according to commLaw. Note that the event

newAdopted is defined in the law commLaw. If commLaw does not allow X to join the chore-

ography, there will be an operation ”doQuit” in the newAdopted event. This operation will not

allow the agent shortName@conHost to exist. For more information about ”doQuit” operation,

the reader is referred to the LGI manual.

As shown, a choreography law can decide what types of actors can join the choreography

and under what condition.
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If commLaw does allow X to join the choreography, a new agent shortName@conHost is

created:

- The hash of preLaw is added to the control state of shortName@conHost to indicate that

its actor is an LGI agent and governed by preLaw.

- preHost is also recorded in the control state so that messages sent to shortName@conHost

will be forwarded to preHost for evaluation according to preLaw before being delivered to

X. How incoming/outgoing messages of this agent are regulated is presented in the following

section.

After this process, we have a newly created (LC-LX )-agent. The notation (LC-LX )-agent

means that an LX -agent adopts another controller to be a member of LC-choreography.

In summary, LGI-agent can only join a choreography only if both the law that is governing

it and the choreography law allow the LGI-agent to join the choreography.

8.4.2 Interaction between members of a choreography

There are two types of members in the LC-choreography:

- normal members are software actors whose behaviors are regulated only by LC . An

example is the unconstrained actor Z shown in figure 8.7.

- LGI-agent members whose behaviors are regulated by LC as well as their laws. For

example, we can have (LC-LX )-agent, and (LC-LY )-agent.

Consider an example LC-choreography consisting of three members: one (LC-LX )-agent,

one (LC-LY )-agent, and two normal members Z and V, i.e, Z and V are LC-agents.

There are many interactions between members in a choreography. However, these interac-

tions can be categorized into four types of message exchanges. We will describe each type and

present an example of it for clarification.

1. the sending of a message from an LGI-agent member to another LGI-agent member. For

example, X sends a message to Y.

2. Second, the sending of a message from an LGI-agent member to a normal member. For

example: X sends message to Z.

3. Third, the sending of a message from a normal member to an LGI-agent member. For
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example: Z sends message to Y.

4. Fourth, the sending of a message from a normal member to another normal member. For

example: Z sends message to V. This interaction is similar to that in standard LGI mechanism,

so we will not discuss it further.

Interaction between two LGI-agent members

Figure 8.9: (L1-LX )-agent sends a message to (L1-LY )-agent

The interaction between LX -agent member and LY -agent one in L1-choreography is pre-

sented in figure 8.9.

In step 1, X sends to TX a message in the format of newSendLG(controller List, String

message, String destination) where:

- destination is the LGI name of receiver

- message is the message the sender wants to send to the receiver

- controller List is the set of controllers that the message will be passed through before

reaching the destination.

For the example in this figure, controller list is TX , TX
1 , and destination is Y@T Y

1 .

In step 2, the arrival of the newSendLG message at TX leads to the firing of an event

sendRequest(controller list, String message, String destination). TX evaluates the event ac-

cording toLX , removes its address (i.e., TX ) from the controller list and forwards the newSendLG

message to TX
1 , which is the next controller in the controller list. For this figure, at this step

the controller list is TX
1 .

In step 3, when the newSendLG message reaches TX
1 , another sendRequest(controller list,

String message, String destination) event is fired. Similarly, TX
1 evaluates the event according

to L1, and removes TX
1 from the controller list. As the result, the controller list is empty,

and TX
1 knows that it is the sender’s last controller which is responsible for regulating the
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newSendLG message. Thus, it is time for TX
1 to forward message to destination running on

T Y
1 .

In step 4, when message arrives at T Y
1 , an newArrived(String source, String message, String

destination) is fired. Based on its control state and the parameter destination, which is Y@T Y
1 ,

T Y
1 knows that it needs to deliver the message to T Y .

Finally, in step 5, another newArrived(String source, String message, String destination) is

fired at T Y which will deliver message to Y.

LGI-agent members send messages to normal members

Figure 8.10: (L1-LX )-agent sends a message to L1-agent

Step 1, 2, and 3 in figure 8.10 are similar to those in figure 8.9. In step 4, newArrived(String

source, String message, String destination) event is fired at TZ
1 which will evaluate the event

according to law L1, and finally deliver the message to Z. This step is similar to step 5 in

figurefig-89.

Normal members send messages to LGI-agent member

In step 1 of figure 8.11, Z sends to TZ
1 a message in the format of newSendLG(controller List,

Figure 8.11: L1-agent sends a message to (L1-LY )-agent

String message, String destination) where destination is the LGI name of the expected receiver

of message, and controller List is the set of controllers that the message will be passed through

before reaching the destination. In this figure, controller list is TZ
1 , and destination is Y@T Y

1 .
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In step 2, when the newSendLG message arrives at TZ
1 , a sendRequest(controller list, String

message, String destination) event is fired. TZ
1 evaluates the event according toL1, and removes

TZ
1 from the controller list. Because the controller list is empty now, TZ

1 knows that it is the

sender’s last controller. Therefore, it will forward the message to destination running on T Y
1 .

Step 3 and 4 are similar to step 4 and 5 respectively in figure 8.9, so we will not discuss

them further.

8.5 Case Study

Consider a company that has multiple departments, each of which consists of many employees.

An employee working for a department d is subject to Ld, the department’s law. For example,

an employee in the Transport and Storage Department is subject to law LTS while an employee

working in the Marketing Department is governed by law LM .

Figure 8.12: Motivating example

Later, the company deploys a team of employees, each of whom is working in a department.

In this example, the team members are from Transport Storage Department, and from Financial

Department. The responsibility of the team is to supply the company with the merchandise it

needs.

The team consists of a manager, and a set of employees authorized as buyers, via a purchasing-

budget provided to them. The buyers are supposed to operate autonomously in deciding what

to buy, at which price, and from whom-but they are limited by their purchasing budget, which
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they can obtain from the manager, or from fellow buyers.

The manager needs to be able to monitor the purchasing activities of the various buyers, and

to steer these activities by adjusting their budgets, as it sees fit. Such monitoring and steering

are carried out even if the set of active buyers, and the manager itself, change dynamically,

during the purchasing activity. The proper operation of this buying team would be ensured if

all its members comply with the law called LBT . The buying team have been discussed used

in several LGI-related projects. We will presented an adapted version of LBT later shortly to

demonstration the usage of our mechanism.

Similarly, we can have a public relation team whose members are from Operation Depart-

ment, Marketing Department, and Financial Department. The PR team is regulated by the law

LPR. In this example, choreography constraints are be defined after all other policies are de-

ployed. Specifically, LBT and LPR are defined after LTS , LO, LF , LM , are defined. Also,

an employee may concurrently join several choreographies, as in the case of those in Financial

Department.

Because the laws LTS , LF are defined before LBT , it is possible that the law manager of

LBT is aware of them. It is also possible that the law manager would take that awareness into

account when defining LBT . Specifically, the he/she may choose to treat them differently if

he/she wants. Below is an adapted version of LBT :

1. The assignment of actors to roles: To hold the role of a manager or of an auditor one

needs to be authenticated by a certificate signed by a specified certification authority (CA). And

to hold the role of a buyer, one needs to be appointed to it by the manager.

2. A manager can provide each buyer in her team with a purchasing budget, and can later

change it at will. The initial budget of a team member from financial department and transport-

storage department is 1,000 and 800 currency units, respectively. Team members from other

departments only receive an initial budget of 500 currency units.

3. Buyers are allowed to issue purchase orders (POs) for an amount not to exceed their

budget which would be decremented by this amount. A copy of each such PO is to be sent to

the manager.

4. Buying team members who come from the financial department can make as many POs

as they wish, while buying team members who come from the transport-storage department are
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only allowed to make at most 10 POs per day. Other team members are limited to three POs

per day.

Assume that law of financial department LF is simply described as follows:

1. The head of the department is not allowed to participate in any cross-department team.

Also, assume that LTS , the law of transport-storage department, is below:

1. An employee is not allowed to join more than one cross-department team.

For demonstration purpose, we have intentionally simplified the three laws LF , LTS , and

LBT . Moreover, for the sake of simplicity, we do not provide a company law which, if exists,

would serve as a global law to assure certain uniformity across the company. However, our

mechanism works well if a company law is needed.

Even though LF , LTS and LBT are simple, they still demonstrate several important points:

First, the department laws (LF , LTS) and the team law (or choreography law LBT ) have

the capability to control the participation of an employee in the team. And, an employee can

join a team only if he/she has been approved by both the department law and the team law.

Second, the team law (or choreography law) is able to distinguish team members and to

treat them differently if necessary.

Third, the choreography law can be defined after the department law as shown. Another

interesting thing is that LBT ) can accommodate team members from a newly established de-

partment (i.e., the law of the new department law is written after the birth of LBT ) without the

need to made any change because it can provide a standard treatment for members who are

not from financial or transport-storage departments. Specifically, the constraints ”Team mem-

bers from other departments only receive an initial budget of 500 currency units”, ”other team

members are limited to one PO per day” are example of standard treatment.

8.5.1 Law LF

In rule R1, the employee’s certificate is verified. Based on the attribute att of the certificate, a

corresponding role is added to control state.

In ruleR2, the controller retrieves from the control state the role the employee plays. If the

employee’s role is head of the department, then the controller drops the joinCommunity request
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Preamble:
law LF refines Lg.

R1. UPON adopted(-, cert[issuer, subject, att]) DO
-- verifying certificate, skipped ---
-- add employee’s role to control state ---
-- role is either "employee" or "Head" ---
add(role(att))

R2. UPON joinRequest(conHost,commLaw, shortName) DO
-- retrieve role of this employee --
role(r)
IF (r != "Head") DO

forward(joinCommunity(-,commLaw, shortName),conHost)
ELSE DO

deliver("Head of department cannot join any team)

Figure 8.13: LF Financial Department Law

and informs the employee that he/she is not allowed to join any choreography. Otherwise, the

controller forward the request to conHost, which would be the controller enforcing commLaw

when the employee joins commLaw-choreography.

8.5.2 Law LTS

In ruleR1, the employee’s certificate is verified. The the team number value is initialized with

zero, indicating that the employee does not participate in any team.

In rule R2, the controller retrieves team number value from the control state. If that value

equals zero, the employee is allowed to join the team: the team number value is increased by

one, and the joinCommunity request is forwarded to conHost. Otherwise, the controller drops

the joinCommunity request and informs the employee.

8.5.3 Law LBT

For law LBT , the control state has three protected terms LawHashOne, LawHashTwo, Man-

ager. They are used to record the law hashes of Financial Department, Transport and Storage

Department, and the address of Manager computer, respectively.

Rule R1 is the implementation of newAdopted event. Based on the hash of the law gov-

erning the actor, initial budget of a team member is assigned correspondingly. Moreover, the
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Preamble:
law LTS refines Lg.

R1. UPON adopted(cert[issuer, subject, att]) DO
-- verifying certificate, skipped ---
-- initialize number of teams the employee joins ---
add(teamNum(0))

R2. UPON joinRequest(conHost,commLaw, shortName) DO
-- retrieve number of teams this employee has joined --
teamNum(n)
IF (n == 0) DO
{

-- allow the employee to join new team --
-- adjust team number value in CS --
forward(joinCommunity(-,commLaw, shortName),conHost)
inc(teamNum)

}
ELSE DO

deliver("You have joined one team")

Figure 8.14: LTS Transport and Storage Department Law

number of purchase order is zero. Finally, a obligation named PONumAdjustment is imposed

to re-initialize the value of the purchase number every 24 hours.

Rule R2 describes the obligationDue event dealing with the re-assignment of number of

purchase orders (POs). Rule R3 is for the sending of a PO. The controller retrieves the budget

as well as the law hash from the control state. The controller first check if the budget is enough

to pay for the PO value amt. It also check if the number of POs made is still in range based on

law hash. If everything is good, then the controller forwards the PO and reports to the manager.

Otherwise, the controller drops the PO and informs the employee.

8.6 Related Work

The leading specifications for modeling service choreography, e.g., WS-CDL, BPMN [39][21],

cannot be used to model choreographies, thus failing to solve their objective. The main problem

is that they models choreographies by focusing on procedural aspects, e.g. by specifying control

and message flow of the interacting services. Moreover, a choreography description in those

models is not enforceable. Since a single misbehavior of an individual service may destroy the

collaboration in a choreography, enforcement is a must to ensure safe and correct coordination
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Preamble:
law LBT

authority(CA, keyHash)

– law hash one is hash of Financial Department Law –
protected(LawHashOne(hash1))

– law hash two is hash of Transport and Storage Department Law –
protected(LawHashTwo(hash2))

– record the address of Manager –
protected(Manager(host(redwine.rutgers.edu), port(3355)))

R1. UPON newAdopted(lh, arg[name]) DO
IF (lh!="") DO
-- actor is an LGI agent --
{

LawHashOne(lh1)
LawHashTwo(lhTwo)
-- initial budget of employee in Financial Dept --
IF (lh == lh1) DO add(budget(1000))
-- initial budget of employee in Transport Storage Dept --
IF (lh == lh2) DO add(budget(800))

}
ELSE DO

-- actor is a normal actor, i.e., parameter lh is "null" --
add(budget(500))

-- record the hash of law governing the actor --
add(actor lhash(lh))

-- initial num of POs is zero --
add(POperDay(0))

-- re-initialize number of POs after 24 hours --
imposeObligation("PONumAdjustment",60x60x24)

R2. UPON obligationDue(obl) DO
IF (obl == "PONumAdjustment") DO
{

-- re-initialize number of POs made every day --
remove(POperDay)
add(POperDay(0))

-- impose obligation to re-initialize number of POs --
imposeObligation("PONumAdjustment",60x60x24)

}

Figure 8.15: Law LBT Buying Team Law
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R3. UPON sent( ,PO(description, amt), dest) DO
budget(bgt)
LawHashOne(lh1)
LawHashTwo(lh2)
Manager(mgrAddress)
POperDay(numPO)
actor lhash(lh)
-- check if number of POs is in range based on employee’s
department --
IF ((lh==lh1) AND (amt <= bgt)) OR
((lh==lh2) AND (amt <= bgt) AND (numPO < 10)) OR
((lh=="NULL") AND (amt <= bgt) AND (numPO < 3)) DO
{

dec(budget(bgt),amt)
-- increase number of PO made --
inc(POperDay(numPO))
forward( , PO(decsription, amt), dest)
forward( , PO(decsription, amt), mgrAddress)

}
ELSE DO

deliver("Cannot place PO")

Figure 8.16: Law LBT Buying Team Law (con’t)

between interacting services.

To overcome these limits, we propose that choreography models should focus on specifying

the constraints required to make all services collaborate correctly, without stating how such a

collaboration is concretely carried out. We believe that services should have the autonomy to

operate as well as they can, but they must satisfy the choreography constraints through enforce-

ment. We extended the standard LGI mechanism for modelling and enforcing choreography

constraints.
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Chapter 9

Evaluation

In this section, we will present a number of results we have obtained in evaluating LG-SOA.

This section addresses two issues: (a) processing time of events and operations which are

supported by LG-SOA; and (b) a comparison between overhead incurred by LG-SOA and that

incurred centralized coordination mechanisms (CCM).

9.1 Processing time of events and operations

We have employed a client and a server which host one service. The client and the server are

located on the same LAN because we do not focus on communication time at this moment. To

measure the number of requests the server can process without producing error, we gradually

increase the rate the client sends request to the server. The maximum number of requests this

particular server can handle is 125 requests per second. In a similar manner, we use the same

server to host 9 other services, one at a time, and record the maximum number of requests

each of them can handle per second with causing error. Note that even though we use the same

server to host a single service, the maximum requests per second are different because they are

different services providing different functionalities. Those data are presented in figure 9.1.

Now we place a controller in front of the server. For each service, the client sends requests

at the corresponding rate determined in figure 9.1. We do this because we want the server to

operate as if there is no controller between it and the client. When this request reaches the

controller, an arrived event is fired and the controller forwards the request to the service. The

service processes the request, and returns a response to the controller. This will triggers a sent

event at the controller, and then the controller delivers the response to the client. At the client

side, we record the time the client sends the request and the time it receives the response. The

measured time reflects a roundtrip communication time between the client and the service, plus
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Figure 9.1: Request processing rate

the time to evaluate arrived and sent events.

The event evaluation time depends on the event itself. For example, if we have a simple

event say just record the time the request arrives at controller, the evaluate time is very small

around 0.05 ms because there is no need to go through the content of the request. However,

when we have a complex event like the one for processing ”ticket reservation” in chapter 6, the

controller will have to check the request content and act accordingly, the evaluation time can

go up to 1.5 ms. Generally speaking, the evaluation depends on the number of operations as

well as the type of operations conducted. In this section, we only present the processing time

for new operations/events that are only supported in LG-SOA. Other operations/events which

are supported by both LG-SOA and standard LGI are presented in [8]. Figure 9.2 shows times

to process them.

The above measurement has been conducted with client, Ti, and SPi located on the follow-

ing machines:

Generally speaking, the performance of a server SPi depends on that of its controller Ti.

Note that Ti has to process two events arrived and sent, while SPi only processes one re-

quest. Therefore, to maximize the performance of both SPi and Ti, they should be given the

same amount workload. In other words, best performance can be achieved if the time for SPi

to process a request is equal to the time Ti processes two corresponding events arrived and sent
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Figure 9.2: New Operation/Event for Client-Server Interaction under LG-SOA

Figure 9.3: Experiment Setting for Client-Server Interaction

for the request. We have verify this observation by placing the client, Ti and SPi on three more

settings, where each setting consists of three different machines that belong to in the Instruc-

tional Lab (I-Lab) domain at Rutgers University. Note that the processing time are different

for different settings because machine configurations (CPU type, speed, memory, operating

system) are different.

For the orchestration scheme, we need to consider 2 types of interactions: the first is be-

tween client and orchestrator, and the second is between an orchestrator and an orchestrated

server. The first type is essentially the one we just presented. The second type only involves

operations and events which are supported in standard LGI, so will not discussed further. The

reader is referred to [8] for a detailed performance report of standard LGI.

For the choreography scheme, we employ two small programs which serve as two software

actors. Each actor adopts a controller forming an agent which then adopts another controller

in order to join a choreography. As shown in figure 9.4, we need 6 machines for this setup:

two machines for two software actors, and each actor adopts two controllers running on two

different machines.



83

Figure 9.4: Experiment Setting for Interaction under Choreography scheme

We have these two actors send messages to each other in a large number of times (10000).

We then record the processing time of new operations/events that involve in this process in each

time, and take the average. The data are presented in figure 9.5 below.

Figure 9.5: New Operation/Event for Choreography under LG-SOA

In Figure 9.5, for the case of an event the processing time is measured when the event is

empty, i.e., there is no operation specified in the event. If there are operations defined in an

event, then the total processing time is the sum of those of all operations plus that of the (empty)

event itself.

We also do experiments on three more settings, each of which consists of 6 machines be-

longing to the Instructional Lab (I-Lab) domain at Rutgers University, but we do not present
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the data here. The processing times are different for different settings because machine con-

figurations (CPU type, speed, memory, operating system) are different. We do experiment on

various settings to show that processing times for events and operations are negligible when

comparing them with communication time.

9.2 Relative Overhead Under Various Conditions

We employ a model of overhead presented in [8] to show that overhead incurred by LGI is

comparable to the overhead incurred by centralized coordination mechanisms (CCM) which

use a conventional reference-monitor (like in Tivoli). To get a rough approximation for the

behavior of the overhead of LG-SOA, comparing it to the overhead under CCM, we will use

typical values for the quantities involved in them, ignoring many of the factors which may

effect the overhead.

Typical communication times: These times depend on many factors, including the length of

message, the communication protocol being used, the hosts involved, and the distance between

the communicating parties. In [8]: the TCP/IP communication time within a LAN is measured

as 5,000µs, the TCP/IP communication time within a WAN is 100,000µs, and the event evalu-

ation time approximately is 50µs. Using a similar method we have the HTTP communication

time within a LAN is 50,000µs and the HTTP communication time across WAN is 100,000µs.

9.2.1 Client-server interaction

Figure 9.6: Client-Server Interaction under LG-SOA

For the client-server interaction shown in Figure 9.6, the time details for client C to send

request to SPi and receive a response are presented in figure 9.7

(Eq.1) Total Time = 4 * Tcom + 2 ∗ Teval
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Figure 9.7: Time Details for Client-Server Interaction under LG-SOA

Where Tn,com is the communication time in step n, Tn,eval is the event evaluation time in

step n; Tcom is the communication time and Teval is the event evaluation time in general.

The client-server interaction under centralized coordination (CCM) is shown in figure 9.8.

Figure 9.8: Client-Server Interaction under CCM

And, its time details are presented in figure 9.9.

Figure 9.9: Time Details for Client-Server Interaction under CCM

(Eq.2) Total time = 4 * Tcom + 2 ∗ Teval

Discussion:
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- If SPi is mediated by a controller in its own LAN, LG-SOA is better than CCM because:

(Eq.1) becomes (Eq.1’) Total time = 2 * TLAN + 2 ∗ TWAN + 2 ∗ Teval

From (Eq.1’) and (Eq.2), we can see that client-server interaction under LG-SOA is much

more efficient than under CCM because TWAN is about 20 times of TLAN .

- If client, controller, and server communicate with each other only via LAN (or WAN),

LG-SOA and CCM have the same overhead.

9.2.2 Orchestration

Figure 9.10 shows interaction in orchestration, and time details are shown in figure 9.11

Figure 9.10: Orchestration under LG-SOA

Figure 9.11: Time Details for Orchestration under LG-SOA

(Eq.3) Total Time = 10 * Tcom + 6 ∗ Teval
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Under CCM, orchestration interaction is shown in figure 9.12 and time details are presented

in figure 9.13

Figure 9.12: Orchestration under CCM

Figure 9.13: Time Details for Orchestration under CCM

(Eq.4) Total Time = 8 * Tcom + 4 ∗ Teval

Discussion:

- If O and SPk are mediated by controllers in their own LANs and the two controllers To

and Tk communicate via WAN, LG-SOA is better than CCM because

(Eq.3) becomes (Eq.3’) Total time = 4 * TWAN + 6 ∗ TLAN + 6 ∗ Teval

From (Eq.3’) and (Eq.4), we can see that interaction under LG-SOA is more efficient than

under CCM because TWAN is about 20 times of TLAN .

- If client, controllers, and servers communicate with each other only via LAN (or WAN),

overhead incurred by CCM is less than that incurred by LG-SOA.
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9.2.3 Choreography

Figure 9.14 shows an actor X sends a message to actor Y under LG-SOA, and its time details

are shown in figure 9.15

Figure 9.14: X sends a message to Y under LG-SOA

Figure 9.15: Time Details for Choreography under LG-SOA

(Eq.5) Total time = 5 * Tcom + 4 ∗ Teval

Figure 9.16 shows interaction under CCM, and figure 9.17 shows time details accordingly.

Figure 9.16: X sends a message to Y under CCM

(Eq.6) Total time = 2 * Tcom + Teval

Discussion:

- If X and Y are mediated by 2 controllers in their own LANs and the two controllers TX
1

and TX
1 communicate via WAN, LG-SOA is better than CCM because:
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Figure 9.17: Time Details for Choreography under CCM

(Eq.5) becomes (Eq.5’) Total time = TWAN + 4 ∗ TLAN + 4 ∗ Teval

From (Eq.5’) and (Eq.6), we can see that LG-SOA is more efficient than CCM.

- If X , Y , and their controllers communicate only via LAN (or WAN), overhead incurred

under CCM is less than that incurred under LG-SOA.
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Chapter 10

Conclusion

Under service oriented architecture (SOA), a software system consists of multiple heteroge-

neous servers, which may be distributed over the Internet, and may be managed under different

administrative domains. SOA is an important realization of open systems in which software

components may be added to or removed from the systems in an unpredictable manner. SOA

has become hugely popular as the architecture of large and complex distributed systems, such

as enterprise systems, grids, virtual enterprises, and supply chains. Unfortunately this architec-

ture, as it is currently defined and being used, suffers from serious problems. In particular, it is

not possible to ensure that a given system satisfies a desired global property, or to establish any

regularity over a system. It is also not possible to ensure that commitments made by a given

server to its clients are honored. It does not provide any methodology to address the concern of

clients and orchestrated servers when they indirectly interact via an orchestrator. And, it is not

possible to ensure that coordination between disparate servers—called ”choreography” under

SOA— is carried out correctly.

LG-SOA –an extension of LGI– is a mechanism that addresses all these problems in a scal-

able manner. The most notable characteristics of LG-SOA are: (a) equip system managers with

the capability to impose global constraints over a system, (b) give service providers the free-

dom to specify their commitments with clients while still enforcing global constraints across all

services in the system, (c) address concerns from clients and orchestrated server when they in-

directly interact with each other under orchestration scheme, (d) design a choreography model

that focus on specifying the constraints required to make all services collaborate correctly, with-

out stating how such a collaboration is concretely carried out; this model allows a service to

join any choreography with no requirement about the order in which policies are specified.

We also presented how LG-SOA can be applied to legacy systems. Case studies in the
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context of enterprise systems demonstrate the flexibility and applicability of this mechanism.

Experiments show the overhead introduced by LG-SOA is relatively small, especially in the

context of geographically distributed systems like SOA-based systems. In conclusion, LGI-

SOA is effective and versatile in making SOA-based systems more coherent and trustworthy.
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