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ABSTRACT OF THE DISSERTATION

Simultaneous Variable Selection and Outlier Detection

Using LASSO with Applications to Aircraft Landing Data

Analysis

by Wei Li

Dissertation Director: Regina Y. Liu, Minge Xie, and Cun-Hui Zhang

We propose a LASSO-type penalized regression method for simultaneous variable selec-

tion and outlier detection in high dimensional linear regression. We apply a mean-shift

model to incorporate the coefficients associated with the potential outliers by express-

ing them as different intercept terms. The sparsity assumption is imposed on both

X-covariates and the outlier indicator variables. With suitable penalty factors between

X-covaraites and the outlier indicators, we show that the proposed method selects a

model of the correct order of dimensionality, under the sparse Riesz condition on the

correlation of design variables and a joint sparse Reisz condition on the augmented

design matrix. We also show that the estimation/prediction of the selected model can

be controlled at a level determined by the sizes of the true model, the outliers and the

thresholding level. Moreover, the estimation has a positive breakdown point when both

the dimension p and the sample size n tend to infinity, and p >> n. We also provide

a generalized version for the estimator by adjusting the penalty weight factor. Finally,

we apply the proposed method to analyze an aircraft landing performance data set, for

identifying the precursors for undesirable landing performance and reducing the risk of

runway overruns.
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Chapter 1

Model Configuration and Sparsity Assumptions

1.1 Introduction

There have been a significant amount of methodologies developed for outlier detections

and robust estimation of linear regression models since decades ago. However, most of

the estimators require full rank for the design matrix, thus they can not adapt to high

dimensional data sets which are pervasive nowadays in various research areas. Even

though some robust estimation procedures are deployed to analyze large data sets, the

dimension of the data is generally restricted to be smaller than the sample size.

Meanwhile, despite the extensive development of model selection procedures, in

particular, for high/ultra-high dimensional data sets, such as the class of penalization

methods which possess many desirable statistical properties, those methods can be sen-

sitive to outliers and are not robust. For example, if there are a group of outliers which

are also leverage points, then the estimation and model selection could be problematic.

There also exist remedies for simultaneous model selection and outlier detection

in literatures, see, for example, Hoeting et al [26], Müller-Welsh[50], Gannaz[20], A

Khan, van Aelst and Zamar [30], She-Owen [66], and Maronna [44]. However, besides

the underlying limitation on the dimension of the data set, there have been also the

lacking of robustness properties such as the breakdown point and the loss bounds of

the proposed estimators.

In this dissertation, we use the following general linear regression model :

y =

p∑
i=1

βjxj +
√
nγ + ε = Xβ+

√
nγ + ε, ε ∼ N(0, σ2I). (1.1)

Here the parameter γi is nonzero when the i-th observation is an outlier, and p is the

dimension of the data and n is the sample size. This mean-shift model has been widely
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adopted in literature, such as in McCann–Welsch [45], and She-Owen [66]. Assume that

the column vectors of X are standardized to have equal length
√
n. Thus the factor

√
n before γ is to make the outlier indicator covariates being in the same scales as

the X-covariates. This setting follows the generalized setting of the mean shift outlier

model, as discussed in [3] and [54].

1.2 Model Settings and Assumptions

Alternatively, we can write the model above into a shorter form:

y =

p+n∑
i=1

θjzj + ε = Zθ+ ε, ε ∼ N(0, σ2I), (1.2)

where θ = (β, γ) and

Z =





x11 x12 · · · x1p

x21 x22 · · · x2p
...

... · · ·
...

xn1 xn2 · · · xnp





√
n 0 · · · 0

0
√
n · · · 0

...
... · · ·

...

0 0 · · ·
√
n




. (1.3)

Denote the size of β by p. The number of parameters in the new model includes

p+ n parameters. The first p of θj ’s come from the original βj ’s, j = 1, · · · , p, and the

other n coefficients represent the effects of the outliers. The model has p+n parameters

and n observations only. Assume the sparsity assumptions as follows:

‖β‖0 = #{j ≤ p : βj 6= 0} = d0, ‖γ‖0 = #{i ≤ n, γi 6= 0} = s0. (1.4)

The plan for variable selection is to use the regularization method. We propose a `1

penalty regression method for this mean shift model, with a tuning parameter λ. The

estimator θ̂ is the minimizer of the loss function

θ̂ ≡ (β̂(λ), γ̂(λ))

≡ arg min
β,γ

{
‖y −Xβ −

√
nγ‖2

2n
+ λ

√
log n

n
‖β‖1 + λ

√
log n

n log p
‖γ‖1

}
. (1.5)

Thus the goal of simultaneous outlier detection and variable selection boils down to

the identification of the non-zero set for θ’s which is a minimizer of the above formula.
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Denote the coefficients corresponding to X-covariates selected by LASSO by

Â ≡ Â(λ) ≡ {j ≤ p : β̂j 6= 0}. (1.6)

The outliers identified by the nonzero outlying coefficients are in the set

Ŝ ≡ Ŝ(λ) ≡ {i ≤ n : γ̂i 6= 0}. (1.7)

Thus the overall model selected is

Â ∪ {Ŝ + p} = {l : θ̂l 6= 0, l = 1, · · · p+ n} = {j, i+ p : β̂j 6= 0, γ̂i 6= 0}. (1.8)

We will write the selection set in the form of Â∪ Ŝ instead of Â∪{Ŝ+ p} for simplicity

unless there is further specification.

1.3 Questions and Goals

Note that the model in (1.2) is simply a weighted LASSO estimator for θ ∈ Rp+n, by pe-

nalizing differently on β’s and γ’s, where the thresholding level on γ’s is lower than that

of β’s, by dividing a factor of log p. There has been extensive discussion in literatures

regarding the good properties for LASSO typed estimators. Besides computational effi-

ciency, it is known that LASSO also possess theoretical advantages, such as estimation

accuracy, the normal convergence of the estimators, rate consistency, and selection con-

sistency with regularity conditions. As long as the corresponding regularity conditions

are satisfied, all the theoretical results from LASSO are inherited by θ̂. However, two

critical issues need to be addressed due to the characteristics of “simultaneity”.

Question 1. Since we may not have any information about the outliers, and by

the model setting, the outlying coefficient can be unique. An outlier only occurs in

one observation. This is different from X-covarites, where each non-zero coefficient

contributes to all the yi’s. Mathematically, this “one coefficient in only one equation”

fact leads to the special setting of our design matrix, Z. Is it likely that the augmented

new design matrix Z will miss the good properties due to the difficulty to meet the

regularity conditions?

Question 2. Sparsity constraints are assumed for both blocks of Z: the parsimony

of the underlying relationship between y and X, and the contamination size of the data
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set, i.e., the portion of the outliers, which could be a fixed fraction no matter how large

the size of n or p is. Thus the model dimension (greater than the size of outliers) could

have order up to O(n). Thus a natural question is, will this large model size breaks

down the classical LASSO results? Up to what fraction of contamination can we allow

in the data? This is equivalent to answering what the breakdown point of the proposed

estimator would be.

The goal of this dissertation is to address the two questions above. Specifically, we

1. first, show that the estimators in (1.5) for this mean shift model yields similar

properties on the new augmented design matrix Z, in terms of studying the risk

bounds for estimation/prediction and the rate of false discovered coefficients;

2. second, calculate its breakdown point of, i.e., the maximum contamination that

can be allowed given that the estimation will not go to infinity, or alternatively,

the maximum contamination can be allowed while the regularity conditions are

not violated and the desirable properties established for our proposed estimators

remain valid.

The organization of the dissertation is as follows: after a brief survey of literature

review in section 2 for both model selection part and robust estimation on linear re-

gression part, section 3 presents the main theorem regarding the rate consistency and

risk bounds. The regularity conditions for these results are discussed in section 4 .

Section 5 provides the breakdown point property and develop a generalized version for

the proposed method. The optimality of the proposed method is discussed. Section 6

briefly introduces an iterative algorithm for computing efficiency improvement. After a

simulation in section 7, we will apply our method to the aircraft landing data analysis in

section 8, to identify the precursors for undesirable landings and to detect the potential

runway overruns . The proof and lemmas are presented in section 9.
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Chapter 2

Literature Review

This section gives a brief literature review on the development of robust estimation

and outlier detection for linear regression model, the model selection in high dimension

setting, and the simultaneous model selection and outlier detection.

2.1 Robust Estimation and Outlier Detection in Linear Regression

In multivariate linear regression, a data point which deviates from the linear pattern is

called an outlier. Hampel et al. [22] write that 10% of outliers is quite common. Many

literatures typically adopt ε = 0.25n as an upper bound for contamination, such as

Hubert [27] and McCann–Welsh[45]. If the data is contaminated, then the multivariate

estimates for the regression model would differ from the true parameters, or the esti-

mates from the dataset without outliers. Meanwhile, the outlier detection diagnostics

based on the model fitting would be problematic. Both masking and swamping effects

would occur, where “masking” means the outliers would mask each other from being

undetected and “swamping” refers to mistakenly detected outliers which are in fact

regular observations.

A robust estimation method would help to raise the chance of detecting outliers

correctly, and the accuracy of outlier detection would improve the robustness of the es-

timations. For robust estimators for regression, we provide a brief list here, including M-

estimators [24] [25], generalized M-estimators [69], [10], R-esitmators[28], S-estimators

[62], [12], MM-estimators [77], τ -esitmators, [40], CM-esitmators [29], L-estimators [32],

least median of squares (LMS) in Rousseeuw [57], Rousseeuw and Hubert [59], least

trimmed squares (LTS) and related algorithms [59], Rousseeuw and Van Driessen [64].

LTS, LMS and MM estimators are one of the first high-breakdown regression methods.
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However, it has been shown that the convergence rate is slow and the asymptotic effi-

ciency is zero. In contrast, LTS is asymptotically normal and can be computed much

faster.

In multivariate data analysis, outlier detection techniques have also been greatly

progressed, starting from minimum covariance determinant estimator (MCD) proposed

by Rousseeuw [57] [58] with the efficient algorithm developed in Roussseeuw and Van

Driessen [63], and minimum volume ellipsoid (MVE) estimators via Mahalanobis dis-

tances in Rousseeuw [57] [58]. Efficient estimators for both MCD and MVE are gen-

erated by Lopuhaä–Rousseeuw [42] and Lopuhaä [41]. Butler, Davies and Jhun[6] and

Davies [?] study the asymptotic results for both MCD and MVE.

Nonparametric methods also plays an important role in outlier detection. An im-

portant example is data depth, the notion for the measurement of outlyingness of a

data cloud. To name a few, estimators based on different notions of depth are proposed

in Rousseeuw, Ruts,and Tukey [61], Liu [34] [38] [36] [39], Liu, Parelius and Singh [37],

and Zuo and Serfling [86] [87] etc. These methods work very well for low diminutional

datasets. The developed algorithm could also be time consuming when sample size is

too large.

Diagnostics methods such as Weisberg’s [75] leave-one-out approach is another pop-

ular way to determine the outlyingness for each datapoint in multivariate data analysis.

It calculates the difference of a specific statistic of interest after a single observation is

deleted. Atkinson and Riani [3], Atkinson et al., [4], and Riani, Atkinson and Cerioli

[56] proposed forward search and producing series of plots for diagnostics for outlier

identification. Similarly, a backward search is proposed by Menjoge and Welsch [47].

However, when there exists a group of outliers, the statistic of interests could be con-

taminated and this approach would fail.

A lot of methods mentioned above a robust initial start with high breakdown, and

then updates the estimators using iterations. There are two challenges here: first, the

breakdown point is not high many methods Typically the data used for simulation or

real study datasets are low ranked. Bootstrap or cross validation methods may also be

involved for updating stages, which is impractical for high dimension setting, due to
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the “curse of dimension”.

2.2 Variable Selection in High Dimension Datasets

Variable selection is fundamental in statistical research field. The earliest and methods

include such as Akaike information criterion(AIC) [2] , Mallows’ Cp [43], Bayesian

information criterion (BIC) [65] and data-driven methods. These methods aim to select

a best subset of the covariates which yields a minimized value for a pre- specified loss

function. For dataset with large dimension, best- subset methods are not feasible

due to computation efficiency. LASSO [67] is a successful penalized method for high

dimensional dataset with good computing efficiency [52] [53] [13]. Its `1 penalty function

can provide a continuous solution path and yield a sparse output model.

Under a strong irrepresentable condition proposed in [49] Meinshausen–Buhlmann,

Tropp [68], Zhao and Yu [82] and Wainwright [73] proved that the LASSO is variable

selection consistent. However, the strong irrepresentable condition is quite restrictive

for moderately large size of the true model. Under sparse Riesz condition (SRC) on the

`2 norm of sub-Gram matrices, Zhang–Huang [80] proved that the dimension for the

LASSO selection is of the same order as the size of the true model.

There have been a great number of LASSO-typed or similar estimators using convex

penalization functions, such as Elastic net [83], which is combination of `1 and `2

penalties, Adaptive LASSO which minimizes a weighted `1 loss function [84], Huang,

Ma and Zhang [23] and Zou and Li [85], and Dantzig selector, the [9], Efron, Hastie

and Tibshirani [14], and Meinshausen, Rocha and Yu [48].

Two of the main limitations of convex penalization functions are the estimation bias

and the restrictive assumptions on model selection consistency. Remedies using concave

penalized functions are proposed, such as SCAD [19], MCP [78], and capped `1 penalty

[79]. These non-convex methods can remove the bias of estimation and yields elegant

oracle inequalities Buhlmann and van deGeer [5], Kim, Choi and Oh [31] and Zhang

[78]. However, it is hard to answer the questions such as whether the solution is global,

and if not, then what would the relationship between the local and global solutions be.
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Meanwhile, the oracle inequalities for high dimensional settings may not be as optimal

as in lower dimension cases.

A lot of the LASSO-typed or LASSO-like estimators require `2 regularity conditions.

They may have been discussed into different forms in the literature. A most well known

example is the restricted isometry condition (RIP) introduced by Candés and Tao [8].

A related condition is the uniform uncertainty principle (UUP). Optimal error bounds

for ‖β̂ − β‖2 can be established with RIP and UUP [8] and Cai, Wang, Xu [11]. As

for the generalized sparsity assumption, SRC conditions are also studied in Zhang and

Huang [80] and Ye and Zhang [76].

A similar type of conditions include restricted eigenvalues as seen in Biskel, Ritov

and Tsybakov [7], and Koltchinskii [33], and compatibility factor in [70] [72] can be

viewed as a modified `2 regularity conditions. A weaker version RIFq, the restricted

invertibility factor [19] [76], [81], together with its sign restricted version [76] are found

to be able to generate optimal order [55] and sharpen previous results.

2.3 Simultaneous Model Selection and Outlier Detection

There is increasing but limited literatures on simultaneous model selection and outlier

detection in high dimensional setting. When the number of parameters are larger

than the sample size, many classical robustified procedures can not be applied directly.

Thus one possible remedy is to use multivariate robust estimator to replace the non-

robust estimator. One example is the robust LARS [13] proposed by A Khan, van

Aelst and Zamar [30]. At each selection step, a robust correlation matrix is calculated,

for example, using the bivariate Winsorization method to shrunk data points towards

the data bulk. Thus the correlation matrix is more robust against certain outliers.

However, this “robustness” is only for the correlation matrix needed for the algorithm.

The robustness for parameter estimation is not guaranteed.

Another direction of remedies is to modify the regression mold itself, incorporating

the coefficient of outlyingness. A wavelet thresholding model, but with no sparsity

assumptions on the X-covariates is adopted in Gannaz [20]. She–Owen [66] considered
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the outlier detection problem together with variable selection with setting of a mean-

shift model, in which observations may have different intercept terms. The sparsity for

both outlier indicator variables and the covariates are assumed. The method proposed

by She and Owen is to use a nonconvex penalty function, a hybrid of hard-thresholding

and ridge regression method, with two tuning parameters for each part. Besides `1

penalized regression methods, Robust ridge regression for high-dimensional dataset is

also studied in Maronna [44]. Wang and Li [74] also apply an Wilcoxon-typed smoothly

clipped absolute deviation method as a non convex remedy for simultaneous variable

selection and outlier detection. All these methods need data driven methods for the

selection of multiple tuning parameters. And a few common limitations includes the

unknown breakdown point, the lack of loss bound of estimation and/or the bound of

false discovery.
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Chapter 3

Loss bound in LASSO on Outlier Detection Model

3.1 Assumptions

In the setting of this dissertation, we assume the dataset X is drawn from random design

experiments. Suppose that the n rows of the random matrix Xn×p are i.i.d. copies of

a random vector drawn from multivariate Gaussian distributions with Σ being the

covariance. And suppose the sequence of covariates xj ’s satisfies the Reisz condition,

i.e., if there exist fixed 0 < ρ∗ < ρ∗ <∞ such that

ρ∗

p∑
j=1

b2j ≤ E

 p∑
j=1

bjξj

2

≤ ρ∗
p∑
j=1

b2j (3.1)

for all constants bj .

Recall that a design matrix X satisfies the sparse Riesz condition (SRC) with rank

q∗ and spectrum bounds 0 < c∗(q
∗) < c∗(q∗) <∞, if

c∗(q
∗) ≤
‖XAv‖2

n‖v‖2
≤ c∗(q∗), ∀A with |A| = q∗ and v ∈ Rq∗ (3.2)

Essentially SRC imposes `2 regularity conditions on the design matrix, which plays

a very important role to control the risk bound for LASSO and similar types of penal-

ized regression estimators. This has been discussed in many literatures, e.g., as seen in

[80] and [78]. And it has been shown to hold with large probability approaching to 1

when n is large, when the observed data is drawn from experiments of random matrices

with Reisz condition and Gaussian design. Similarly, in this section, we will introduce

a modified condition, so called joint SRC, which will hold with large probability as

well, with detailed configurations in section 5 and proof shown in the appendix. This

condition provides the spectral norm bound for the design matrix Z. Rather than ex-

tracting any q∗ columns in X, we turn to extract an arbitrary submatrix from X with
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q∗1 columns and extract an arbitrary sub-matrix from identify matrix multiplied by
√
n

with any q∗2 columns.

Definition 3.1.1. We say that the design matrix Z =
(
X|
√

nIn
)

satisfies the joint

sparse Riesz condition (SRC) with pair rank (d∗, s∗) and spectrum bounds 0 < c∗(d
∗, s∗) <

c∗(d∗, s∗) < ∞, if for any A ⊆ {1, · · · , p} with |A| = d∗, S ⊆ {1, · · · , n} with |S| = s∗

and v ∈ Rq∗,

c∗(d
∗, s∗) ≤

‖ZA∪S‖2

n‖v‖2
≤ c∗(d∗, s∗). (3.3)

Before stating the main results of this dissertation, we will present some definitions

and notations. Let

B ≡ {j : βj 6= 0, 1 ≤ j ≤ p}, T ≡ {i : γi 6= 0, 1 ≤ i ≤ n}.

For any v ∈ Rn, let

ζβ(v;m1,m2, B, T ) ≡ max
A,S

{
‖(PA∪S − PB∪S)y‖

(m1n)1/2
: B ⊆ A ⊆ {1, · · · , p},

|A| = m1 + |B|, T ⊆ S ⊆ {1, · · · , n}, |S| = m2 + |T |
}
, (3.4)

and

ζγ(v;m2, B, T ) ≡ max
S

{
‖(PB∪S − PB∪T )y‖

(m2n)1/2
: T ⊆ S ⊆ {1, · · · , n}, |S| = m2 + |T |

}
,

(3.5)

where the PM1∪M2 is the projection matrix from Rn to R|M1|+|M2|, the linear span gen-

erated by column vectors {xj , j ∈M1 ⊆ {1, · · · , p}} and {
√
nei, i ∈M2 ⊆ {1, · · · , n}}.

Here ei is the ith column vector of the n×n identity matrix. For example, the projection

matrix PB∪T is calculated by

PB∪T ≡ ZB∪T (Z ′B∪TZB∪T )−1Z ′B∪T . (3.6)

We denote β̂o is the oracle estimator for β, and β̂oB = {bj , j ∈ B}, and it is calculated

based on the formula below:

θ̂o = (β̂o, γ̂o) = arg min
β, γ

{
‖y −Xβ −

√
nγ‖2 : β̂j = γ̂i = 0, j ∈ B, i ∈ T

}
. (3.7)
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Thus

β̂oB = (X ′T c,BXT c,B)−1X ′T c,ByT c , (3.8)

γ̂oT = 0, γ̂oT c = yT c −XT c,Bβ̂
o
B. (3.9)

Let d0 = |B|, and s0 = |T |. Let p̃ε,β ≥
√
e be the solution of (3.11) and p̃ε,γ ≥

√
p

be the solution of

2 log p̃ε,β − 1− log(2 log p̃ε,β) (3.10)

= (2/m1)

{
log

(
p− d0

m1

)
+ log

(
n− so

m2

)
+ log (1/ε)

}
, (3.11)

and

2 log p̃ε,γ
log p

− 1− log

(
2 log p̃ε,γ

log p

)
= (2/m2)

{
log

(
n− so

m2

)
+ log (1/ε)

}
(3.12)

respectively, for nonnegative integers m1 ∈ [1, p − d0], m2 ∈ [1, n − s0] and a real

number ε ∈ (0, 1]. Define the following constants: p̃∗ε,β with m1 = m∗1, m2 = m∗2, p̃
1
ε,β

with m1 = 1 and m2 = m∗2, and p̃∗ε,γ with m2 = m∗2. Define

λε,β ≡
√
r∗

α
σ
(√

2 log p̃∗ε,β/log n ∨
√

2 log p̃ 1
ε,β/log n

)
, (3.13)

and

λε,γ ≡
√
r∗

α

(
σ
√

2 log p̃∗ε,γ

)
. (3.14)

3.2 Main Results

We now proceed to the main theorem with two assumptions in (3.2) and (3.3) as follows:

(1) Suppose SRC in (3.2) holds for X with certain d∗ and c∗ ≥ c∗ > 0. For any subset

A ⊂ {1, · · · , p} ,

c∗ ≤ min
|A|≤d∗

cmin(ΣA) ≤ max
|A|≤d∗

cmax(ΣA) ≤ c∗.

(2) Suppose joint SRC in (3.3) holds for Z with pair rank (d∗, s∗). For any subset

A ⊂ {1, · · · , p} and any subset S ⊂ {1, · · · , n}, we have

r∗ ≤ min
|A|≤d∗,|S|≤s∗

cmin(ΣA∪S) ≤ max
|A|≤d∗,|S|≤s∗

cmax(ΣA∪S) ≤ r∗,

where s∗ < n and lim
n→∞

s∗/n→ a0 < 1.
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The following is the main theorem of this dissertation.

Theorem 3.2.1. Let B be a deterministic set of {1, · · · , p} and T be a deterministic

set of {1, · · · , n}. Let θ̂ be the LASSO estimator in (1.5), and θ̂o = (β̂o, γ̂o) be the

oracle estimator as defined in (3.7). Let

m∗1 = d∗ − d0, m∗2 = s∗ − s0, 0 < α ≤ 2/3.

Define

K∗ ≡ min
w≥0

K∗,w = min
w≥0

((1− α)(1 + w) + wα)r∗/r∗ − (1− α)

(1− α)(2− 3α+ w − 2wα2)
. (3.15)

Assume |T | = s0 < s∗. Suppose

|B| = d0 ≤ d∗, |T | = s0 ≤ s∗, (K∗ + 1)(|B|+ |T |
log p

) ≤ d∗ ∧ s∗

log p
(3.16)

Let λε,β and λε,γ be as in (3.13) and (3.14), and let

λ0 ≡ λε,β ∨ λε,γ . (3.17)

Then for given constant ε < 1/
√

2 and for any λ ≥ λ0, with probability at least 1−
√

2ε,

one has

(
#{j /∈ B : β̂j 6= 0}

)
log p+ (#{i /∈ T : γ̂i 6= 0})

< 1 ∨
(
K∗(|B| log p+ |T |)

)
, (3.18)

and

r∗‖θ̂ − θ̂∗‖ ≤ ‖Z(θ̂ − θ̂o)‖/
√
n

≤ λ
√

(log n)/n
(
1 + α

√
2K∗r∗/r∗

)
(
√
|B|+

√
|T |/ log p). (3.19)

The first conclusion in the theorem provides the bound for the false selected variables

and outliers, and the weighted sum of both. The weights are log p for β and 1 for γ.

The bound is proportional to the weighted sum of the true sets , if the order of log p is

close to O(n), then |T |/ log p will be a small constant. Thus we know that the model

selected (the non-zero β̂′s) thus is in the correct order of dimension. Explanation with

more details on the estimation/prediction accuracy part will be given in next section.
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3.3 The Orders of Penalty Levels

The second conclusion (3.19) in the theorem gives the loss bound of LASSO estima-

tion/prediction in `2 format: ‖θ̂ − θ̂o‖ and ‖Zθ̂ − Zθ̂o‖/
√
n. Both terms are bounded

by λ
√

log n/n(
√
|B|+

√
|T |/ log p) up to a multiple. Thus we need to check the order

of λ
√

log n/n, which is also the penalty level for β. According to the assumption in the

theorem, λ is greater than λε,β and λε,γ . The orders for both thresholding values will

be checked:

• By definitions for λε,β, its order can be calculated by Sterling’s formula.

log p̃ε,β ≈
1

m1

(
log

(
p− d0

m1

)
+ log

(
n− s0

m2

))
(3.20)

thus we have for m1 = m∗1, log p̃∗ε,β � log p + n/m∗1. For m2 is a small integer,

log p̃ 1
ε,β � log p+ n. By (3.13),

λε,β = (
√

2r∗σ/α)
(√

log p/log n ∨
√
n/log n

)
.

Let C0 be a constant determined by r∗, σ, and α only. Thus the penalty levels in

the proposed model (1.5) are:

for β : λε,β
√

(log n)/n = C0(
√

log p/n) ∨ C0, (3.21)

for γ : λε,β
√

(log n)/(n log p) = C0(n
−1/2) ∨ C0

(
(log p)−1/2

)
(3.22)

• Similarly, for λε,γ , by (3.12) and (3.14), we have

log p̃∗ε,γ = C2
1 log p, λε,γ = C1

√
log p.

Therefore, the penalty levels are:

for β : λε,γ
√

(log n)/n = C1

√
(log n)(log p)/n, (3.23)

for γ : λε,γ
√

(log n)/(n log p) = C1

√
log n/n. (3.24)

To summarize, the penalty level for γi is at most in the order O(
√

(log n)/n). The

largest order of penalty level on the parameter βj is O(
√

(log n)(log p)/n). Recall the
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oracle properties, to name a few, such as [70] and [78]) in regular settings, where the out-

liers are not present. The corresponding loss has `2 norm in the order of
√

log p/n|B|1/2.

This implies the inflation factor of the loss here is
√

log n. In the worst case with

log p = αpn, the penalty level for β is O(
√

log n). This inflation ratio increases very

slowly when n → ∞. For example, when n = 1020,
√

log n < 7. This means that β’s

penalty level can stay low even when n is in millions or billions.

We will prove (3.3) after presenting the corollaries and lemmas. The proof of (3.19)

will be provided in Appendix, which uses the notations and proof for Lemma 3.3.2.

As a direct result from Theorem , we obtain Corollary 3.3.1 as follows:

Corollary 3.3.1. Assume the notations in Theorem 3.2.1. Assume that there exists a

constant c∗p > 0 such that |T |/(|B| log p) ≤ c∗p. Then for the same λ defined as above,

and any given constant ε < 1/
√

2, with probability at least 1−
√

2ε, one has(
#{j /∈ B : β̂j 6= 0}

)
< 1 ∨

(
K∗(1 + c∗p)|B|

)
, (3.25)

and

r∗‖θ̂ − θ̂∗‖ ≤ ‖Z(θ̂ − θ̂o)‖/
√
n

≤ λ
√

(log n)/n(1 + c∗p)
(
1 + α

√
2K∗r∗/r∗

)
|B|1/2. (3.26)

Lemma 3.3.2. Suppose SRC holds for X with certain d∗ and c∗ ≥ c∗ > 0, and suppose

joint SRC also holds for Z with subset A ⊂ {1, · · · , p} and subset S ⊂ {1, · · · , n},. Let

λ > 0 , α ∈ (0, 2/3], and let K∗ be defined as in (3.15). Suppose there exist two sets

B and T satistfying: B ⊂ {1, · · · , p} with |B| = d0 ≤ d∗, and T ⊂ {1, · · · , n} with

|T | = s0 ≤ s∗, and

(1 +K∗)(|B|+ |T |/ log p) ≤ d∗ + s∗/ log p.

Let m1 and m2 be fixed integers satisfying 1 ≤ m1 ≤ d∗ − |B|, 1 ≤ m2 ≤ s∗ − |T |, and

suppose y ∈ Rn with

(
√
c∗/α)ζβ(y;m1,m2, B, T ) ≤ λ

√
log n

n
, (3.27)

(
√
c∗/α)ζγ(y;m2, B, T ) ≤ λ

√
log n

n log p
, (3.28)
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where ζβ(y;m1, B, T ) and ζγ(y;m2, A, T ) are defined in (3.4) and (3.5) respectively.

Let β̂ and γ̂ be the solution with λ in (1.5). Let A1 and S1 be the sets satisfying

B ∪ {j : β̂j 6= 0} ⊆ A1 ⊆ B ∪

{
|x′j(y −Xβ̂ −

√
nγ̂)|/n = λ

√
log n

n

}
, (3.29)

T ∪ {i : γ̂j 6= 0} ⊆ S1 ⊆ T ∪

{
|yi − xiβ̂ −

√
nγ̂i|/

√
n = λ

√
log n

n log p

}
. (3.30)

If

|A1| = |B|+m1, |A1| ≤ d∗, |S1| = |T |+m2, |S1| ≤ s∗,

then

|A1| − |B|+
(|S1| − |T |)

log p
≤ K∗

(
|B|+ |T |

log p

)
, (3.31)

and

r∗‖θ̂ − θ̂∗‖ ≤ ‖Z(θ̂ − θ̂o)‖/
√
n ≤ λ

(
1 + α

√
2K∗r∗/r∗

)
(
√
|B|+

√
|T |/ log p), (3.32)

where θ̂o = (β̂o, γ̂o) is the oracle estimator as defined in (3.7).

Lemma 3.3.3. Let ζβ(v;m1,m2, B, T ) and ζγ(v;m2, B, T ) be as in (3.4) and (3.5) with

deterministic m1, m2, B and T . Let d0 = |B| and s0 = |T |. Suppose ε ∼ N(0, σ2In),

and log p̃ε,β and log p̃ε,γ are as in (3.11) and (3.12). We have

P

{
ζβ(ε;m1,m2, B, T ) ≥ σ

√
(2/n) log p̃ε,β or

ζγ(ε;m2, B, T ) ≥ σ

√
2 log p̃ε,γ
n log p

}
≤
√

2ε. (3.33)

Lemma 3.3.4. Assume the notations in Lemma 3.3.3, and that λε,β and λε,γ are as

in (3.13) and (3.14). If λ ≥ λε,β ∨ λε,γ , then

P

{√
log n

n
λ <

√
c∗

α

(
ζβ(y;m1,m2, B, T ) ∨

√
log p ζγ(y;m2, B, T )

)}
≤
√

2ε (3.34)

for any ε ∈ (0,
√

1/2), m1 ≤ m∗1 ≡ d∗ − d0 and m2 ≤ m∗2 ≡ s∗ − s0.
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3.4 Proof of Theorem 3.2.1.

Proof. Define two sets below and their sizes as

s
(λ)
1 ≡ #

{
T ∪ i /∈ T : |yi − xiβ̂ −

√
nγ̂i| = λ

√
(log n)/ log p

}
(3.35)

d
(λ)
1 ≡ #

{
B ∪ j /∈ B : |x′j(y −Xβ̂ −

√
nγ)|/n = λ

√
(log n)/n

}
. (3.36)

If we can show that

s
(λ)
1 ≤ s∗, d

(λ)
1 ≤ d∗ (3.37)

, then the statement of (3.3) and (3.19) is a direct result by applying Lemma 3.3.2,

Lemma 3.3.3 and Lemma 3.3.4.

When λ → ∞, both d
(λ)
1 and s

(λ)
1 are small, thus they are bounded by d∗ and s∗

respectively. When the λ increases, the both d
(λ)
1 and s

(λ)
1 increase as well. Then if for

some λ1 ≥ λ0, either d
(λ)
1 is greater than d∗ or s

(λ)
1 is greater than s∗, or both of them

are greater. Suppose we can add variables one at a time. This means that

d
(λ2)
1 + s

(λ2)
1 / log p ≥ d(λ2)1 ∧ s(λ2)1 / log p.

In case (3.37) is violated, then

d
(λ2)
1 + s

(λ2)
1 / log p ≥ d∗ ∧ s∗/ log p (3.38)

Thus there must exist a λ2 ≥ λ1, such that

d
(λ2)
1 + s

(λ2)
1 / log p ≈ d(λ2)1 ∧ s(λ2)1 / log p,

where the sign “≈” means either equal or slightly larger than, but with a small about

of difference up to 1.

This yields that d
(λ2)
1 ≤ d∗ and s

(λ2)
1 ≤ s∗. Let m1 = d

(λ2)
1 − d0 and m2 = s

(λ2)
1 − s0,

then m1 ≤ m∗1 and m2 ≤ m∗2. Therefore by applying lemma 3.3.2, lemma 3.3.4, and

(3.35) in step 1, it follows that

|A(λ2)
1 |+ |S(λ2)

1 |/ log p < (1 +K∗)(|B|+ |T |/ log p) ≤ d∗ ∧ s∗/ log p.

This leads to d∗+s∗ log p ≥ |A(λ2)
1 |+|S(λ2)

1 |/ log p < d∗∧s∗/ log p. Therefore, for λ ≥ λ0,

|Aλ1 | < d∗ and Sλ1 | < s∗.
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Now all the conditions for Lemma 3.3.2 are satisfied, so we can applying the results

in Lemma 3.3.2 to 3.3.3. With carefully chosen λ as described in the theorem, it follows

that

#{j /∈ B : β̂j 6= 0}+
(
#{i /∈ T : γ̂i 6= 0}

)
/ log p

< 1 ∨
(
K∗(|B|+ |T |/ log p)

)
,

and

r∗‖θ̂ − θ̂∗‖ ≤ ‖Z ′(θ̂ − θ̂o)‖/
√
n

≤ λ
(
1/
√
r∗ + α

√
2K∗/r∗

)√
|B|+ |T |/ log p.
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Chapter 4

Sufficient conditions on SRC/ Joint SRC for Design

Matrices in Mean Shift Model

Before stating the main results of this section, we will define the following quantities

which are determined by a constant a0 ∈ [0, 1) only. These quantities are relevant to

trimmed distribution of a standard normal variable, including trimmed means, trimmed

standard deviations, and quantities developed by previous two. These quantities are

used to derive the inequalities for spectrum bounds of design matrix Z in our model.

Denote

µa0,− ≡ 1

1− a0

∫ 1−a0

0
Q(x)dx, (4.1)

σ2a0,− ≡ 1

1− a0

∫ 1−a0

0
Q2(x)dx− (µa0,−)2, (4.2)

µa0,+ ≡ 1

1− a0

∫ 1

a0

Q(x)dx, (4.3)

σ2a0,+ ≡ 1

1− a0

∫ 1

a0

Q2(x)dx− (µa0,+)2, (4.4)

ta0 ≡ (σa0,+µa0,− + σa0,−µa0,+)(ρ∗ − ρ∗/σa0,+)

σa0,−(ρ∗σa0,+ + 3ρ∗σa0,−)
, (4.5)

c∗+(a0) ≡
σa0,+

(1− a0)(σa0,+µa0,− + σa0,−µa0,+)
, (4.6)

c∗−(a0) ≡
σa0,−

(1− a0)(σa0,+µa0,− + σa0,−µa0,+)
. (4.7)

Here Q(x) is the inverse function or quantile function of a random variable with χ2
1-

distribution, the chi-square distribution with degree of freedom 1. The rest of this

section is to formulate the sufficient conditions of joint SRC being hold on the design

matrix Z.

Proposition 4.0.1. Suppose there are infinitely many possible covariates {ξj , j =

1, 2, · · · , }, and the covariate sequence satisfies Reisz condition. Namely, there exist
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fixed constants 0 < ρ∗ < ρ∗ <∞ such that

ρ∗

∞∑
j=1

b2j ≤ E

 ∞∑
j=1

bjξj

2

≤ ρ∗
∞∑
j=1

b2j (4.8)

for all constants bj. Suppose the row vector of X is from a Gaussian distribution. Let

ε0, ε1, ε2, ε3, and a0 be positive constants in (0, 1) satisfying ε1 + ε2 < 1 and ε3 < ε22/2.

Then for any set S ⊂ {1, . . . , n} with size |S| = a0n, and for all (a0,m, n, p) satisfying

m ≤ min(p, ε21n), and log

(
p

m

)
≤ (ε3 ∧ c2a0)n,

we have

P

(
ρ∗τ∗ ≤ min

‖u‖2+‖v‖2S=1
min
Pm

f(u, v) ≤ max
‖u‖2+‖v‖2S=1

max
Pm

f(u, v) ≤ (2 ∨ ρ∗τ∗)

)
→ 1 (4.9)

as n→∞, where

τ∗ = (1 + ε1 + ε2)
2, τ∗ =

1

3c+(a0) + (
√

3c+(a0) +
√
ρ∗)2 + ε0

,

and

f(u, v) =
‖Xmu‖2

n
+ 2

v′Xmu√
n

+ ‖v‖2, (4.10)

with

u ∈ Rm, v ∈ Rn, Xm = XP ′m.

S = {i : vi 6= 0, 1 ≤ j ≤ n}, ‖u‖22 + ‖vS‖22 = 1.

Here ca0 is a constant determined by ρ∗, τ∗, a0 only, which is defined as follows. Denote

t∗1 =
1

3c+(a0)

((√
21/2(1− a0)ta0 + 1 +

√
1/(3c+(a0))

)2
+ 1/ρ∗

) . (4.11)

If ρ∗τ∗ ≥ t∗1, then

ca0 =
(1− a0)ta0√

2
=

(1− a0)(σa0,+µa0,− + σa0,−µa0,+)(ρ∗ − ρ∗/σa0,+)√
2σa0,−(ρ∗σa0,+ + 3ρ∗σa0,−)

. (4.12)

If ρ∗τ∗ < t∗1, then

ca0 =
1

2

(√ 1

3c+(a0)ρ∗τ∗
− 1

ρ∗
−

√
1

3c+(a0)

)2

− 1

 > 0. (4.13)
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Remark. The number t∗1 satisfies the equation,

1

2

(√ 1

3c+(α)t∗1
− 1

ρ∗
−

√
1

3c+(α)

)2

− 1

 = (1− α)tα/
√

2,

which means it corresponds to the turning point’s solution.

Remark. According to the theorem, the only constraint on a0 is a0 6= 1. Thus s∗ can

be take any integer value but smaller than n. The penalty level on outlying coefficients

are much smaller than that of covariates in X.

Remark. The upper bound of (c∗a0)2 is 1/2. Consider the special case when a0 → 0.

Then c∗a0 →
ρ∗ − ρ∗/2√
2(ρ∗ + 3ρ∗)

. When ρ∗/ρ∗ is large, (c∗a0)2 ≈ 1/2. This bound is comparable

to the bound of ε3, which is bounded by ε22/2 < 1/2 as well. This means the new

constraint on d∗ in joint SRC is similar to the constrain for q∗ in the original SRC.
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Chapter 5

Breakdown Point and Generalized Penalty Weight Factor

5.1 Breakdown Point

The concept of breakdown point is a measure of the degree of robustness of an estimate

in the presence of outlier [77]. It is equivalent to the maximum fraction of outliers

which a given sample may allow without generating an extremely bad output. For

example, the sample average, is not a robust estimator at all. It only has zero breakdown

point value. This is because it may be unbounded with contamination on a single

observation. As long as we change one value into a sufficiently large number, then the

sample mean will breaks down. Another example is the sample median, which can has

a high breakdown point value of 50%. A high breakdown point is a desired property

for a robust estimator. However, many of the traditional estimators do not have high

breakdown any more when the data dimension p is high. The sample size is not large

enough to remove the effects of the outliers.

We claim that our estimator in (1.5) holds a high breakdown point value. A mild suf-

ficient condition for positive breakdown point when both n and p are large is presented

in next section.

5.2 Sufficient Conditions for Positive Breakdown.

Proposition 5.2.1. Assume the notations and assumptions in Theorem 3.2.1. If there

exists constants M1 <∞ and M2 > 0 such that

(log p)(log n) ≤M1n,
d∗ log p

n
= M2, (5.1)
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then estimator θ̂ from (1.5) has the breakdown point value

α∗ =
a0 ∧M2

K∗ + 1
.

Proof. Assumption Proposition 5.2.1 indicates that for a positive breakdown: |T | = a∗n

with a∗ > 0, the order of d∗ has to be at least O(n/log p). If d∗ is at least of order

O(n/ log p), then the proposed estimator can allow a fixed fraction of outliers. Thus it

has a finite breakdown point.

Meanwhile, a necessary condition to control the rate consistency and/or estima-

tion loss is to control the thresholding level. In other words, the factor in the bound

λ
√

log n/n has to be finite. This requires (log p)(log n) = O(n).

Now we prove the result in the proposition: Since s0/n ≤ s∗/n = a0, combining

the assumption (3.16) and in Theorem 3.2.1 and assumption in (5.1), the results on

breakdown point’s value follows immediately.

Remark. In previous section we have provided the sufficient conditions for joint SRC

being hold. It is required that log
(
p
d∗

)
= O(n). It indicates that the probability that

joint SRC being hold when d∗ has order up to O(n)/ log p. This conclusion is similar to

that of the sufficient conditions for SRC, which is studied in [80]. Again, d∗ is allowed

to take order up to n/log p. Thus the conditions proposed (5.1) are mild and they do

not violate either of the two sufficient conditions.

5.3 Generalized Estimation Scheme by Varying Penalty Weight Fac-

tor

The proposed method in (1.5) can be viewed as a weighted `1 penalized regression.

The penalty weight factor for β and γ is
√

log p. Intuitively, using weight functions in

greater order will eliminate many of the β’s because it penalizes β much more heavily

than γ’s, while a not-so-low-order penalty weight factor is reluctant to identify the true

outliers, especially when the number of outliers grows as quickly as the sample size.

In general, one can always use their own penalty weight factor and to obtain similar
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statement as in Theorem 3.2.1. An estimator in such form is defined by:

θ̂ ≡ (β̂(λ), γ̂(λ))

≡ arg min
β,γ

{
‖y −Xβ −

√
nγ‖2

2n
+

λ√
n
‖β‖1 +

λ√
nFp,n

‖γ‖1

}
(5.2)

We claim that the weight function Fp,n = log p is optimistic in the order when there

is a fixed contamination portion when p >> n.

The first advantage it brings is the sufficiency for positive breakdown point. Let Fp,n

be the squared weight ratio for penalty levels. For example, in our original settings of

(1.5), Fp,n = log p. We have shown that a sufficient condition for positive breakdown,

when n → ∞, is: d∗Fp,n ∝ n. If we use another weight function f1(p, n), then the

corresponding sufficient condition becomes d∗f1(p, n) ≥ α2n.

Meanwhile, a guarantee for SRC/joint SRC being hold can allow d∗ being in the

order up to n log p. This implies that in order NOT to violate SRC/joint SRC, one

would consider the penalty weigh factor at least in the order of log p.

By replacing the log p by Fp,n, it is not hard to generate all the analogous results in

Section 3. The detailed formula and equations are omitted here, but we will highlight

a few results. First we generate the modified p̃ε,γ as follows and keep p̃ε,β or λε,β

unchanged.

2 log p̃ε,γ
Fp,n

− 1− log

(
2 log p̃ε,γ
Fp,n

)
= (2/m2)

{
log

(
n− so

m2

)
+ log (1/ε)

}
(5.3)

And then generate the corresponding λε,γ via log p̃ε,γ by the equation (3.14). Then

we obtain a generalized version of Theorem 3.2.1.

Theorem 5.3.1. Let B be a deterministic set of {1, · · · , p} and T be a deterministic

set of {1, · · · , n}. Let θ̂ be the LASSO estimator in (5.2), and θ̂o = (β̂o, γ̂o) be the

oracle estimator as defined in (3.7). Let

m∗1 = d∗ − d0, m∗2 = s∗ − s0, 0 < α ≤ 2/3.

And let K∗ be defined as before. Assume |T | = s0 < s∗. Suppose

(K∗ + 1)(|B|+ |T |
Fp,n

) ≤ d∗ ∧ s∗

Fp,n
(5.4)
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Let λε,β and λε,γ be as in (3.13) and (3.14), with updated log p̃ε,γ. Let

λ0 ≡ λε,β ∨ λε,γ . (5.5)

Then for given constant ε < 1/
√

2 and for any λ ≥ λ0, with probability at least 1−
√

2ε,

one has

(
#{j /∈ B : β̂j 6= 0}

)
Fp,n + (#{i /∈ T : γ̂i 6= 0}) < 1 ∨

(
K∗(|B|Fp,n + |T |)

)
, (5.6)

and

r∗‖θ̂ − θ̂∗‖ ≤ ‖Z(θ̂ − θ̂o)‖/
√
n

≤ λ/
√
n
(
1 + α

√
2K∗r∗/r∗

)
(
√
|B|+

√
|T |/Fp,n). (5.7)

Similarly, by replacing log p by Fp,n, one can obtain the analogue for all the corol-

laries and lemmas in Section 3. As for the order of the penalty levels, the thresholding

effects brought by the two λ’s: λε,β, and λε,γ , their maximum penalty levels on β’s are

summarized here:

• For λε,β

for β : λε,β/
√
n = C0

√
log p/n ∨ C0,

for γ : λε,β/
√
nFp,n = C0

√
log p

Fp,nn
∨ C0

(
F−1/2p,n

)
• For λε,γ ,

for β : λε,γ/
√
n = C1

√
(log n)(Fp,n)/n,

for γ : λε,γ/
√
nFp,n = C1

√
log n/n.

5.4 The Order of Penalty Weight for Generalized Estimator and the

Breakdown Point

Similarly, we can develop the sufficient conditions for positive breakdown property being

hold for the estimator in (5.2).



26

Proposition 5.4.1. Assume the notations and assumptions in Theorem 3.2.1. If there

exists constants M1 <∞ and M2 > 0 such that

(Fp,n)(log n) ≤M1n,
d∗Fp,n
n

= M2, (5.8)

then estimator θ̂ from (5.9) has the breakdown point value

α∗ =
a0 ∧M2

K∗ + 1
.

In order to bound the thresholding levels, which has order up toO
(√

(log n)Fp,n/n
)
∨

O(1), a necessary condition is that Fp,n log n = O(n). This implies that the maximum

order for Fp,n is n/ log n. Together with the discussion on positive breakdown in Sub-

section 5.2.1, a sufficient condition for non-zero breakdown is that d∗ is at least in the

order of O(n/Fp,n). Without breaking the sufficient condition for SRC and joint SRC,

a Fp,n with order at least O(log p) is recommended. In summary, a good candidate of

Fp,n is in the order between O(log p) and O(n/ log n), provided that Fp,n log n is up to

the order of n.

In summary, if the weight is lower than log p, then the positive breakdown point

may not be guaranteed. If the weight has order of O(n/ log n), the both loss bound of

estimation and the false selected rates are out of control.

5.5 Choice of Weight Function for Datasets with Small Contamination

As we have discussed in previous section, the penalty weight function
√

log p will not

breakdown for fixed contamination as n → ∞. In real data applications, it is likely

that only a few observations are outliers and the contamination is close to zero. Thus

this penalty weight of log p would be conservative. Consider the case that only few

observations, less than 1% , or rare events with fraction < 0.1%, one only expect a

small number of outliers. A modified version of (1.5) can be obtained by adjusting Fp,n

to a lower level, thus we will not select too many outliers in.

The weight adjustment is aimed to control the relative size ratio of the selected

variables. For example, if one has prior information on the relative order between the

number of nonzero β’s and γ’s, the squared root of that order ratio can be adopted. If
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one is only aware of the contamination close to zero, then a good candidate is to use

the penalty weight factor
√

log p/ log n. The penalized regression problem becomes:

θ̂ ≡ (β̂(λ), γ̂(λ))

≡ arg min
β,γ

{
‖y −Xβ −

√
nγ‖2

2n
+

λ√
n
‖β‖1 + λ

√
log n

n log p
‖γ‖1

}
(5.9)

An advantage of this weight is to make the two λ’s orders almost even:

λε,β = O(1) ∨O(
√

log p/n), λε,γ = O(
√

log p/n).

Therefore the rate consistancy and loss bound will still hold while the dimension of p

is up to the order of eα1n, where α1 is a small positive number.

5.6 Discussion

A most important goal of a robust model selection procedures is to avoid over fitting.

Suppose the signals of β’s and γ’s do not differ substantially. The larger the penalty

weight factor Fp,n is adopeted (at least O(1)), the faster the γ’s would be selected in

the selection sequence. Thus the noise is more likely to be absorbed by γ̂i’s. By slowing

down the selection speed of β’s, we can shrink the size of the set Â ≡ {j, β̂j 6= 0}

to prevent over fitting, and to achieve the goal of robustness. In case one knows the

contaminated sample size is large, one could use a larger penalty weight factor. In the

case that the contamination is rare and/or the total sample size is low, one can use a

smaller factor.

The weighting scheme here is different from the other weighted LASSO-typed meth-

ods in literature, such as adaptive LASSO [83]. The adapted weights essentially gener-

ated through data-driven methods, based on the individual signal strength. However,

the goal of the penalty weight factor adopted here is to adjust the selection speed for

the two groups of covariates, thus to balance the overall sizes and estimation errors

between the two groups.This is crucial in the setting when the number of parameters

are data dependent, such as the mean-shift model, where the number of outliers can

grows as quickly as the sample size.
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Meanwhile, suppose we do not incorporate a penalty weight factor. Consider a

simpler alternative estimator, using the original LASSO instead. It is true that as long

as the SRC/joint SRC conditions are satisfied, then the existed results from LASSO

can be all applied automatically. For example, we can easily obtain the bound of

|Â \ B|+ |Ŝ \ T |, which is proportional to the |B|+ |T |. However, the explanation for

this added-up result for β together with γ would be problematic, due to the cancellation

between the two sets of coefficients: β and γ. This result is not informative enough.

Though our proposed method is still in a joint fashion, by picking suitable weight factor,

the cancellation can be controlled. For example, if we let Fp,n = n/ log n. When n is

large, |T |/
√
Fp,n and |T |/

√
n will not differ much, where the latter is at most a small

fraction. Thus this cancellation can be greatly removed.
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Chapter 6

An Iterative Algorithm

In terms of the implementation procedures, one can always use LASSO or LARS algo-

rithms to obtain the estimators in (1.5) and (5.9) and a selection sequence along with

a series of tuning parameter λ. As for a fixed tuning parameter level, one may also

develop an iterative procedure so that less inverting matrix will be needed, thus the

computing time is reduced and the computing efficiency is improved. This will bring

more benefits when the model dimension, either p or n are very large.

Suppose the solution of this equation for a fixed λ is unique, then we can start from

an initial estimate of β̂, and do the following iterations:

Step 0. Obtain an initial estimate of β̂(0).

Step 0.1. Threshold the residuals ri = yi − xiβ̂(0), and obtain the initial estimate

of γ’s by the formula

γ̂
(0)
i = sgn(yi − xiβ̂)

(
|yi − xiβ̂|/

√
n− λ

)
+
.

Step 0.2. Obtain the sets T̂ (0) = {i : γ̂
(0)
i 6= 0} and T̂ c,(0) = {i : γ̂

(0)
i = 0}

Step 0.3 Use LASSO for the observations whose indices do not belong to T̂ (0) to

update β̂, i.e.,

β̂(1) = arg min
β

1

2n
‖y
T̂ c,(0)

−X
T̂ c,(0)

β‖2 + λ‖β‖1.

Step 1.1. Go to step 0.1 and replace β̂(0) by its updated version, β̂(0).

If the solution is unique then the algorithm is guaranteed to converge to its global

minimizer. This is because each step will decrease the value of the loss function, which
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is convex. However, if the solution is not unique, the convergence might yield a local

minimizer and the updating process is not stable. This iteration can be used for a

pre-selected tuning parameter λ.
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Chapter 7

Simulation

In this chapter, we apply our proposed method on simulated dataset.

7.1 Simulation Setting

• Design matrix X.

The design matrix, X, has dimension of 100 samples and 500 covariate. n =

100, p = 500. And they are randomly drawn from the multivariate normal dis-

tribution with covariance matrix follows an AR(1) structure. The correlation

coefficient of the AR(1) process is 0.5. This implies we assume moderate associ-

ation among covariates.

• Parameters

Suppose the true model only contains 5 nonzero β’s. And their indices are a

uniform random sample drawn between 1 and p = 500. Generate the true β’s

values from the uniform distribution [−10, 10].

• Outlying Coefficients

Suppose the contamination is α. And only a randomly selected αn γ’s are non

zeros. These non-zero γ’s are i.i.d samples generated Cauchy distribution with

scale coefficients 5.

• Repetitions

Let the noise follows N(0, σ2In), where σ = 1. Let y = Xβ+ γ + ε. Repeat the

experiments for α is taking the following values:

α = 0, 0.05, 0.1, 0.2, 0.3, · · · , 0.9.
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And repeat the whole set for 100 times.

• Estimator Candidates

Five estimators are applied: the original LASSO, LASSO for augmented design

matrix Z, estimator in (1.5), and estimator in (5.2) with Fp,n = log p/ log n, and

the last one is the estimator in (5.2) with Fp,n = log p/n.

7.2 Results Comparison

We calculate the square root of MSE for both ‖β̂ − β‖ and ‖Xβ̂ − Xβ‖. The first

quantity measures the estimation accuracy and the second one represents the prediction

accuracy.

The results are listed in the tables below:

Table 7.1: Square root of MSE for ‖β̂ − β‖
LASSO-X LASSO-Z Z-log p Z-log p/ log n Z-log (p/n) Contamination

0.04 0.04 0.06 0.04 0.04 0.00
0.60 0.05 0.07 0.05 0.05 0.05
0.50 0.05 0.08 0.05 0.05 0.10
1.22 0.06 0.10 0.06 0.06 0.20
6.59 0.10 0.13 0.09 0.08 0.30
2.70 0.13 0.15 0.11 0.10 0.40
4.87 0.17 0.19 0.15 0.14 0.50
4.31 0.21 0.23 0.18 0.17 0.60
8.98 0.25 0.26 0.21 0.20 0.70
5.19 0.30 0.29 0.26 0.24 0.80
6.69 0.33 0.31 0.29 0.28 0.90
7.31 0.38 0.35 0.34 0.31 0.95

The results indicate that indeed the best model among all is the one using factor

Fp,n = log p/n, since the size of p is not substantially larger than n. And the comparison

is as follows:

• If no outliers exist, then original LASSO is best among all. This is as expected

since the other models will impose larger model size by augmenting the design

matrix X.

• If the dataset is contaminated with outliers, then the original LASSO is worst,
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Table 7.2: Square root of MSE for ‖Xβ̂ −Xβ‖
LASSO-X LASSO-Z Z-log p Z-log p/ log n Z-log (p/n) Contamination

0.81 0.81 1.36 0.83 0.85 0.00
15.02 0.91 1.56 0.93 0.95 0.05
11.67 0.97 1.65 0.98 0.99 0.10
29.98 1.21 2.01 1.14 1.14 0.20
172.71 1.77 2.72 1.57 1.51 0.30
67.57 2.36 3.06 1.99 1.85 0.40
124.52 3.37 3.93 2.77 2.53 0.50
110.27 4.15 4.78 3.48 3.20 0.60
228.65 5.03 5.37 4.14 3.75 0.70
136.57 6.13 6.12 5.12 4.65 0.80
173.49 7.05 6.53 5.98 5.49 0.90
186.06 7.98 7.32 6.70 6.06 0.95

and Z-log (p/n) is best among all.

• The differences among the estimators are increasing when contamination in-

creases.

• Explanation is that small penalty allows outliers indicators being selected out

easily, which absorbs part of the noise. Thus the β’s is less likely to end up with

fitting the noise.

• One remark here is that: if we use too heavy penalty on outliers. Then a lot more

outliers will be selected, and it may end up with a small fraction of the data is

useful for β’s estimation. In other words, the samples that are used to capture

the signals by β’s is significantly decreased.
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Chapter 8

Application to Aircraft Landing Data Set

In this chapter, we apply our proposed penalized method to a project of analyzing an

aircraft landing data set. Before applying the penalized estimation scheme, we describe

the background of this project, the problem setting and the data set.

8.1 Motivating Example and Data Set

The Federal Aviation Administration (FAA) is responsible for regulating air trans-

portation and aviation safety. With the reported safety incidents in the terminal area

continuing to increase, U.S. Government Accountability Office (GAO) recommends that

the FAA (1) extend oversight of terminal area safety to include runway and ramp areas,

(2) develop risk-based measures for runway safety incidents, and (3) improve informa-

tion sharing about incidents, including runway overruns [21]. Runway overruns are

defined as situations when aircrafts on take-off or landing roll extend beyond the end of

the runway. To pursue these goals, the FAA has launched several research projects to

study aircraft landing performance and to develop strategies for reducing the runway

overrun rate.

A typical aircraft landing consists of a touchdown, deceleration to a maneuverable

speed to leave runway at an exit, or to make a full stop before the end of the runway. A

critical task in studying landing performance for improving runway safety is to identify

the contributing factors for predicting the touchdown distance and for reducing the risk

of runway overruns. Flight data from quick-access recorders may provide useful insight

to the study of runway safety.

The present study in this chapter uses a data set collected and simulated from some

collaborating airlines. All the flights contained in this data set were supposed to operate
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with a representative type of aircrafts on a typical airport. More than 200 performance

measures (also referred to as factors or variables) are recorded in the forms of time

series. To facilitate the analysis of all the flights under a suitable framework, the flight

data need to be properly organized. We choose to organize the flight data into time

series which are aligned by the touchdown time, with equal time lag. Specifically, we

extract the 1-Hz data set, and thus the time series all have the length of 600 seconds.

It should be stressed that our study of this data set is only preliminary and the findings

are subject to further examinations by aviation subject matter experts.

“Touchdown point” is the location where the main gear of an aircraft touches the

runway. In our data analysis, we are interested in the airborne distance which indicates

the distance between runway threshold and the touchdown point. An ideal landing

includes a smooth touchdown at the target point, which is generally defined as a touch-

down point at approximately 1,000 feet down the runway. If the touchdown point is too

close to threshold, there is a risk of runway undershoot. If the touchdown distance is far

beyond the maximum, the risk of overruns is greatly increased. In order to detect the

potentially undesired landings or the outliers, statistically speaking, reliable estimation

and prediction for airborne distance model is needed.

Since airborne distance is not recorded routinely in the flight data recorder, we use

the methods introduced in [51] and [46] to estimate the airborne distance for our study.

Clearly, not all the 200+ factors are of equal importance. There are often redundant

measurements, such as various forms of speeds or measuring the same factor by using

different machines or techniques. It is well known in statistical modeling literature,

such a model with redundant factors tends to cause over-fitting and thus yields large

estimation/prediction errors. We can apply model selection tool to reduce over-fitting

and provide a solution to the overall modeling of the landing data. The goal of this

project is to develop statistical models to i) identify key contributing factors for the

airborne distance using information observed from the whole landing time series data,

ii) detect undesired landings (or outliers in the context of statistical inference), and iii)

provide recommendations or guidelines for monitoring landings.
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8.2 Model Bank

We begin by applying model selection to each fixed time point (all aligned up with

touchdown point). At each time point, a subset of contributing factors are identified,

based on which a regression model is obtained, and, consequently, the parameters and

the airborne distance can both be estimated. We then “connect” the landing interval

which is considered safe/acceptable to form a tolerance band for the landing perfor-

mance measures. Finally, we draw the predictiontrajectory over the time and connect

all the tolerance bands over the time to form a tolerance tube/cone for monitoring each

landing trace. A flight with predicted airborne distance trajectory which falls within

the tolerance tube/cone would be considered as acceptable performance. On the other

hand, if a flight is predicted with a non-negligible probability to be out of the tolerance

tube, particularly during the time nearing touchdown, the landing would be considered

as undesired. In the context of statistical analysis, this amounts to detecting an outlier.

This study requires the additional effort on building a model “bank” that stores the

prediction model with each time index.

Using the time series data set which records information of the whole landing pro-

cess, we are able to identify the contributing factors via various statistical tools, such

as AIC, BIC, LASSO, MCPlus and other penalized regression methods.

Once the subset of contributing factors for airborne distances is determined, one

can store and estimate the parameters for these models, and thus a model bank over

time can be established. In order to identify the undesired landings, one can estimate

the airborne distance and update it at each subsequent time point. Draw a prediction

trajectory and compare it with the tolerance tube.

Our data show that, on average, all the flights have touchdown around 2500 ft, with

the minimum of 714 ft, the maximum of 5661 ft, and the standard deviation is 616 ft.

The model bank we stored is recorded by time index, from 1 second before touchdown

(TD) to 200 second before TD. The R2 value increases as the aircraft approaches the

runway threshold, and it can reach the level of 0.9 through the last 20 seconds period.

During the last 50 seconds, the selected model can yield R2 > 0.8.
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Note that the aforementioned time-based approach, however, has the following crit-

ical problem in implementation: the estimation and model selection in the approach

are based on the alignment with the time to touchdown, which means that the method

in fact utilizes information at touchdown. For an incoming flight, its real time to touch-

down during the landing procedure is clearly unknown. Thus it seems impossible to

predict touchdown since we do not observe the real touchdown time in advance. To

address this issue, a next step is to estimate the time index (when the aircraft will

touchdown).

8.3 Time Index Estimation

The time-based model selection process aligns all the data at the time of touchdown,

which in fact is unobservable for incoming flights before their touchdowns. Therefore,

we need to estimate the current time index, or the time to touchdown.

The key idea is to apply the K-nearest neighbor method to obtain the time index

when the aircraft is passing a fixed distance to ILS-antenna, say, 1000 ft away from

the runway ILS-antenna which is located under about 954 ft away from the runway

threshold.

We also split the data into two parts, training and testing, to check the accuracy

of the time-to-TD estimation. The testing data set comprises of 300 flights, which is a

random subset of roughly 10% of the data set. And the remaining 2840 flights are used

for fitting data set. Here is a simple illustration for time estimation procedures:

• First, we view a flight in testing data set as an approaching flight. Assume that

its ground distance to the ILS-antenna is approximately 800 ft (not touchdown

yet). Record the corresponding height at that time point, denoted by h∗. And

denote the unknown time index be t∗, which is the quantity we need to estimate.

• Look up the fitting data set which is comprised of 2840 flights (about 90%).

Record the time indices and height information, for each of the historical flight

as it passed say 800 ft before the ILS-antenna. Denote the time indices by

t1, · · · , t2840, and heights by h1, · · · , h2840.
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• Identify the k, say, k = 10 flights from the above 2840 flights which have the

most similar heights, that is, the 10 nearest neighbors of the value of h∗. Here

the distance is measured by the absolute difference between hi and h∗. Denote

the indices of the k flights by n1, · · · , n10.

• Collect the time indices of the k = 10 nearest neighbors tn1 , · · · , tn10 , and use the

average, t̂∗ = 1
10(tn1 + · · ·+ tn10), as the estimate for t∗.

The time estimation procedure turns out to have a high prediction accuracy. We test

on the following ground distances to ILS-antenna: 500ft, 800ft, 954ft, 1500ft, 1500ft,

3000ft, 8000ft, 10000ft, 15000ft, and 20000ft. The estimation error, measured in square

root of MSE, is around 0.5 second as far as 3000 ft away. And even at 20000 ft to

ILS-antenna, the time estimation error is about 1second.

8.4 Model Prediction and Outliers Detection

Once we obtain the time index for the incoming new flight, we can apply the model

selected accordingly from the model bank and predict the touchdown distances. Recall

that the R2 of the model in the fitted data set can reach at least 90% level during the

last 20 seconds, which is the average time when the aircrafts passing over 3000 ft before

ILS-antenna. The model prediction accuracy thus is guaranteed since the time index

estimation is accurate. The square root of MSE on prediction error is ranged between

150 and 230. Compared to the 614ft-standard deviation of touchdown distances, this

prediction error range is equivalent to R2 level of 94% and 86%, respectively. Even at

20000ft away from the ILS-antenna, the approximated R2 is more than 50%.

An interesting observation is that there are several flights which consistently hold

large prediction errors. More specifically, their prediction error is much larger than the

normal scale, and/or with unstable signs when different time index models are applied.

These are possible outliers in the dataset.

By checking the largest prediction errors, there are four flights consistently singled

out: flight A, with TD=3289 ft, flight B, with TD=1100 ft and flights C and D, both

of which have TD more than 5000 ft.
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On average, the whole population flights have TD 2500 ft and the typical range of

TD is from 1500ft to 3500ft. Further examinations indicate that flights B, C, and D

are indeed outlying, but flight A should not be viewed as an outlier. Note that flight A

was detected by the model bank as an outlier merely reflects the fact that the detection

method based on model bank is in the same spirit as the classical t-test on residuals,

which tends to be overly aggressive in selecting outliers.

We then apply the proposed estimators in (1.5) and (5.2) for simultaneous outlier

detection and variable selection. As for the data preparation, we can either organize the

testing flights in time aligned fashion by estimating the time indices first, or distance-

to-ILS-antenna aligned fashion, by just calculating the distance to ILS-antenna from

the raw data. A quick type of implementation is to use the second one. We collect the

covariates for all the testing flights passing over 800 ft to ILS-antenna and use “glmnet”

package of R for estimation.

The total number of parameters of the covariates is slightly over 200, and the sample

size is 300. According to the previous prediction error, the contamination here is too

low. This implies that the estimator in (5.9) is able to detect the right number of

outliers.

As expected, the estimator in (1.5), using penalty weight factor 1/
√

log p tends

to select more outliers than that in (5.9) where the factor is
√

log n/
√

log p. With a

certain stage of tuning parameter λ, the model selects flights B, C, and D as outliers,

all of which enter the selection sequence quickly. Meanwhile, another 8 variables from

the X-covariates are selected, including aircraft speed, wind speed, pitch angle and so

on. This subset of precursors are consistent with their high selection frequencies when

using the model bank. However, the outlying indicator variable for flight A enters the

selection sequence almost in the end, after more than 100 X-covariates and more than

100 outlying indicator variables. This suggests that flight A might not be an outlier.

The reason why the previous method yields a large prediction error could be due to the

non-robustness of the fitted models stored in the model bank.

Over all, our proposed approach appears to model well the given landing data set

and to identify effectively the outlying landing flights.
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Chapter 9

Appendix

9.1 Proof of Lemma 3.3.2

Proof. First of all, we introduce the following notations:

A2 ≡ {1, · · · , p} \A1, A3 ≡ B, A4 ≡ A1 \A3.

S2 ≡ {1, · · · , n} \ S1, S3 ≡ T, S4 ≡ S1 \ S3.

Denote the negative gradient

g ≡ Z ′(y − Zθ)/n. (9.1)

Since β̂A2 = 0, and γ̂S2 = 0, the A1∪S1-component of the negative gradient satisfies

gA1∪S1 =
1

n
Z ′A1∪S1

(y − ZA1∪S1 θ̂A1∪S1).

Let ε̃ ≡ y − Zθ̂o = (In −PB∪T )y be the residual from the oracle estimator. Then

gA1∪S1 = Z ′A1∪S1
ε̃/n+ ΣA1∪S1(θ̂oA1∪S1

− θ̂A1∪S1) (9.2)

⇐⇒ Σ−1A1∪S1
gA1∪S1 + (θ̂A1∪S1 − θ̂oA1∪S1

) = Σ−1A1∪S1
Z ′A1∪S1

ε̃/n, (9.3)

where the covariance matrix ΣA1∪S1 = Z ′A1∪S1
ZA1∪S1/n.

Let v1 ≡ Σ
−1/2
A1∪S1

gA1∪S1 and vk ≡ Σ
−1/2
A1∪S1

gAk∪Sk for k = 3, 4. Let Qk be the matrix

that selection of {Ak ∪ Sk} from {A1 ∪ S1}. Then

g′Ak∪SkQAk∪SkΣ−1A1∪S1
Z ′A1∪S1

ε̃/n ≤ ‖vk‖ · ‖PA1∪S1 ε̃‖/
√
n (9.4)

By the triangle inequality, we have

‖PA1∪S1 ε̃‖/
√
n

= ‖(PA1∪S1 − PB∪T )y‖/
√
n

≤ ‖(PB∪S1 − PB∪T )y‖/
√
n+ ‖(PA1∪S1 − PB∪S1)y‖/

√
n.
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Together with (3.27) and (3.28), we then have

‖PA1∪S1 ε̃‖/
√
n ≤

√
|S4|ζγ(y; |S4|, B, T ) +

√
|A4|ζβ(y; |A4|, |S4|, B, T )

≤ αλ√
r∗

(√
|S4|/ log p+

√
|A4|

)
. (9.5)

Thus for k = 3, 4,

g′Ak∪SkQAk∪SkΣ−1A1∪S1
Z ′A1∪S1

ε̃/n ≤ ‖vk‖
αλ√
r∗

(√
|A4|+

√
|S4|/ log p

)
≤ 2α‖vk‖2 +

αλ2

r∗
(|A4|+ |S4|/ log p). (9.6)

Since

Q4(θ̂oA1∪S1
− θ̂A1∪S1) = θ̂oA4∪S4

− θ̂A4∪S4 = −θ̂A4∪S4 ,

v3 = v1 − v4,

by (9.3) and (9.6), we have

‖v4‖2 − ‖v3‖2 + ‖v1‖2

= 2v′4v1 = 2g′A4∪S4
Q4Σ

−1
A1∪S1

gA1∪S1

= 2g′A4∪S4
Q4Σ

−1
A1∪S1

Z ′A1∪S1
ε̃/n− 2g′A4∪S4

θ̂A4∪S4 (9.7)

≤ 2α‖v4‖2 +
α(|A4|+ |S4|/ log p)λ2

r∗
. (9.8)

Thus

(1− 2α)‖v4‖2 + ‖v1‖2 + 2g′A4∪S4
θA4∪S4 ≤ ‖v3‖2 +

α(|A4|+ |S4|/ log p)λ2

r∗
. (9.9)

Similarly, we have the second inequality

‖v4‖2 + 2g′A4∪S4
θ̂A4∪S4 + ‖Σ1/2

A1∪S1
(θ̂A1∪S1 − θ̂oA1∪S1

)‖2

≤ ‖v3‖2 + 2‖v3‖
αλ√
r∗

(√
|A4|+

√
|S4|/ log p

)
+

2α2λ2

r∗
(|A4|+ |S4|/ log p).

Combine the two inequalities together by weighted sum. We obtain

LHS ≡ (1− 2α+ w)‖v4‖2 + ‖v1‖2 + 2(1 + w)g′4θ4

+w‖Σ1/2
A1∪S1

(θ̂1 − θ̂o1)‖2

≤ (1 + w)‖v3‖2 + (α+ 2wα2)λ2(|A4|+ |S4|/ log p)/r∗

+2w‖v3‖αλ
(√
|A4|+

√
|S4|/ log p

)
/
√
r∗. (9.10)
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By KKT conditions and (9.1),

‖gA4∪S4‖2 = ‖gA4‖2 + ‖gS4‖2 =
∑
j∈A4

λ2 +
∑
i∈S4

(λ2/ log p)

= λ2
(
|A4|+

|S4|
log p

)
,

(9.11)

‖gA3∪S3‖2 = ‖gA3‖2 + ‖gS3‖2 =
∑
j∈A3

λ2 +
∑
i∈S3

(λ2/ log p)

= λ2
(
|A3|+

|S3|
log p

)
= λ2

(
|B|+ |T |

log p

)
.

Meanwhile, KKT conditions in (??) yield θ̂oj = 0 and 0 ≤ θ̂′Aj∪Sjgj = |θ̂′Aj∪SjgAj∪Sj |

for j ∈ A4 ∪ S4. Thus we can bound LHS from both sides and obtain

LHS ≡ (1− 2α+ w)‖v4‖2 + ‖v1‖2 + 2(1 + w)g′A4∪S4
θA4∪S4

+w‖Σ1/2
A1∪S1

(θ̂1 − θ̂oA1∪S1
)‖2

≥ (1− 2α+ w)‖gA4∪S4‖2/r∗ + ‖gA1∪S1‖2/r∗ + 2(1 + w)|g′A4∪S4
θA4∪S4 |

+wr∗‖θ̂A1∪S1 − θ̂oA1∪S1
‖2

≥ (2− 2α+ w)‖gA4∪S4‖2/r∗ + ‖gA3∪S3‖2/r∗. (9.12)

Insert (9.12) into (9.10), we have

(2− 2α+ w)‖gA4∪S4‖2/r∗ + ‖gA3∪S3‖2/r∗

≤ (1 + w)‖v3‖2 + (α+ 2wα2)λ2(|A4|+ |S4|/ log p)/r∗

+2w‖v3‖αλ
(√
|A4|+

√
|S4|/ log p

)
/
√
r∗. (9.13)

It is easy to have

(2− 3α+ w − 2wα2)

r∗
‖g4‖2

≤
(

1 + w

r∗
− 1

r∗

)
‖g3‖2 + wα

(
‖v3‖2

(1− α)
+ 2(1− α)‖g4‖2/r∗

)
⇐⇒ 1

r∗

(
(2− 3α+ w − 2wα2 − 2wα(1− α)

)
‖gA4∪S4‖2

≤
(

1 + w

r∗
− 1

r∗

)
‖gA3∪S3‖2 +

wα

(1− α)r∗
‖gA3∪S3‖2. (9.14)

Here the last inequality is based on the fact that

‖vk‖2 = ‖Σ−1/2A1∪S1
gAk∪Sk‖

2 ≤ 1

r∗
‖gAk∪Sk‖

2.
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Inequality (9.14) is equivalent to

K∗,w‖gA4∪S4‖2 ≤ ‖gA3∪S3‖2, (9.15)

where

K∗,w =
((1− α)(1 + w) + wα)r∗/r∗ − (1− α)

(1− α)(2− 3α+ w − 2wα)
.

Let K∗ ≡ minw≥0K∗,w. Then

|A1| − |B|+
|S1| − |T |

log p
< K∗

(
|B|+ |T |

log p

)
.

K∗,w is a constant that is determined by α and w only. By taking suitable values of α

and w, the value of K∗ can be as small as possible, thus the bound can be optimal. For

example, take w = 1, α = 1/2, then K∗ ≤ 6r∗/r∗ − 2. We cam also use 6r∗/r∗ − 2 as a

rough estimation for the bound.

Notice that our conclusion is in strict inequality. By (9.12) we know if the equality

in (3.31) holds, then ‖gA4∪S4‖ = 0, which implies that |A4| = |S4| = m1 = m2 = 0,

which contradicts with the assumption for m1 and m2 being positive integers.

Next, we show the loss bound of θ̂ and Zθ̂ in (3.32). Since

|A1| = m1 + d0 ≤ (1 +K∗)|B| ≤ d∗, S1 = m2 + s0 ≤ (1 +K∗)|T | ≤ s∗,

the matrix ΣAk∪Sk is invertible for k = 1, 2, 3, 4. Then

1

n
‖Z(θ̂ − θ̂o)‖2 (9.16)

= (θ̂ − θ̂o)′
Z ′A1∪S1

ZA1∪S1

n
(θ̂ − θ̂o)

= (θ̂A1∪S1 − θ̂oA1∪S1
)′Z ′A1∪S1

ε̂/n− (θ̂A1∪S1 − θ̂oA1∪S1
)′gA1∪S1

≤ (θ̂A1∪S1 − θ̂oA1∪S1
)′Z ′A1∪S1

ε̂/n− (θ̂A3∪S3 − θ̂oA3∪S3
)′gA3∪S3 . (9.17)

The last inequality is due to

(θ̂A1∪S1 − θ̂oA1∪S1
)′gA1∪S1

= (θ̂A3∪S3 − θ̂oA3∪S3
)′gA3∪S3 + (θ̂A4∪S4 − θ̂oA4∪S4

)′gA4∪S4

= (θ̂A3∪S3 − θ̂oA3∪S3
)′gA3∪S3 + (θ̂′A4∪S4

gA4∪S4

≥ (θ̂A3∪S3 − θ̂oA3∪S3
)′gA3∪S3 .
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The first term in the formula in (9.17) above has norm:

‖(θ̂A1∪S1 − θ̂oA1∪S1
)′Z ′A1∪S1

ε̂/n‖ ≤ ‖Z ′A1∪S1
(θ̂A1∪S1 − θ̂oA1∪S1

)′P ′A1∪S1
ε̂/n‖

≤ ‖Σ1/2
A1∪S1

(θ̂A1∪S1 − θ̂oA1∪S1
)‖‖P ′A1∪S1

ε̂‖/
√
n

≤ ‖Σ1/2
A1∪S1

(θ̂A1∪S1 − θ̂oA1∪S1
)‖αλ/

√
r∗(
√
|A4|+

√
|S4|/ log p)

≤
√

2/r∗αλ‖Σ1/2
A1∪S1

(θ̂A1∪S1 − θ̂oA1∪S1
)‖
√
|A4|+ |S4|/ log p,

where the third inequality is derived from (9.5). By (3.31), we have

√
|A4|+ |S4|/ log p ≤

√
K∗(|B|+ |T |/ log p). (9.18)

The second term also has bounded norm by

‖(θ̂A3∪S3 − θ̂oA3∪S3
)′gA3∪S3‖ ≤

1
√
r∗
‖Σ1/2

A1∪S1
(θ̂A1∪S1 − θ̂oA1∪S1

)‖‖gA3∪S3‖

=
λ
√
r∗
‖Σ1/2

A1∪S1
(θ̂A1∪S1 − θ̂oA1∪S1

)‖
√
|B|+ |T |/ log p. (9.19)

Plug (9.18) and (9.19) in (9.17). We obtain

‖Σ1/2
A1∪S1

(θ̂A3∪S3 − θ̂oA3∪S3
)‖ ≤ λ

(
1/
√
r∗ + α

√
2K∗/r∗

)√
|B|+ |T |/ log p. (9.20)

Since

‖Σ1/2
A1∪S1

(θ̂ − θ̂o)‖ = Z ′(θ̂ − θ̂o)‖/
√
n, and

√
r∗‖u‖ ≤ ‖Σ1/2

A1∪S1
u‖ ≤

√
r∗‖u‖,

this leads to (3.32):

r∗‖θ̂ − θ̂∗‖ ≤ ‖Z ′(θ̂ − θ̂o)‖/
√
n ≤ λ

(
1/
√
r∗ + α

√
2K∗/r∗

)√
|B|+ |T |/ log p.

9.2 Proof of Lemma 3.3.3

Proof. The first step is to show that

P

{
ζγ(ε;m2, B, T ) ≥ σ

√
(2/(n log p)) log p̃ε,γ

}
≤ ε/
√

2. (9.21)
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Since m2, B and T are deterministic, the set S1 has

(
n− s0

m2

)
possibilities. Thus

{nm2ζ
2
γ(ε;m2, B, T )} is the maximum of

(
n− s0

m2

)
variables with the χ2

m2
distribution,

so

P

{√
log p ζγ(ε;m2, B, T ) ≥ σ

√
2

n
log p̃ε,γ

}

= P

{
ζγ(ε;m2, B, T ) ≥ σ

√
2 log p̃ε,γ
n log p

}

≤
(
n− s0
m2

)
P{χ2

m2
≥ m2(1 + x)}, (9.22)

where x = (2 log p̃ε,γ)/log p− 1 > 0.

Notice that χ2
m2
/(1 + x) has gamma distribution with parameters (m/2, (1 + x)/2).

Using the derivation and inequality as seen in Zhang (2010), we obtain

P{χ2
m2
≥ m2(1 + x)} ≤ e−m2x/2(1 + x)m2/2

2 log p̃ε,γ/ log p
. (9.23)

Therefore, take the logarithm and we can prove the inequality in (9.21) by

log

(
P
{
ζγ(ε;m2, B, T ) ≤ σ

√
2 log p̃ε,γ
n log p

})

≤ log

(
n− s0
m2

)
− m2x

2
+
m2 log(1 + x)

2
− log

2 log p̃ε,γ
log p

≤ log

(
n− s0
m2

)
− m2

2

(
2 log p̃ε,γ

log p
− 1− log (

2 log p̃ε,γ
log p

)

)
= log

(
ε√
2

)
.

By the Bonferroni inequality, it suffices to show that

P

{
ζβ(ε;m1,m2, B, T ) ≥ σ

√
(2/n) log p̃ε,β

}
≤ ε/
√

2. (9.24)

The proof is similar to the statement above. Notice that {nm1ζ
2
β(ε;m1,m2, B, T )} is

the maximum of

(
p− d0

m1

)(
n− s0

m2

)
variables with the χ2

m1
distribution, so

P

{
ζβ(ε;m1,m2, B, T ) ≥ σ

√
2 log p̃ε,β

n

}
≤
(
p− d0
m1

)(
n− s0
m2

)
P{χ2

m1
≥ m1(1 + x)},

(9.25)

with x = (2 log p̃ε,β)/log p− 1 > 0.
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9.3 Proof of Lemma 3.3.4

Proof. The outline of the proof is as follows. Step 1 shows

ζβ(y;m1,m2, B, T ) ≤ ζβ(ε;m1,m2, B, T )..

Step 2 looks for the range of log p̃ε,β and log p̃ε,γ while m1 and m2 vary. In the last step

, together with Lemma 3.3.3, we will prove (3.34) in the last step.

Step 1. By the triangle inequality, for any m1 ≤ m∗1 = d∗−d0, and any m2 ≤ s∗−s0,

ζβ(y;m1,m2, B, T ) ≤ ζβ(ε;m1,m2, B, T ) + ζβ(Zθ;m2, B, T ), (9.26)

where

ζβ(Zθ;m1,m2, B, T ) =
‖(PA∪S − PB∪T )Zθ‖

(m1n)1/2
. (9.27)

Since the linear span by column vectors from index set {B ∪ T} is a subspace of that

from index set {A∪S}, and Zθ = ZB∪T θ lies in the smaller linear span, we have (9.27)

equals 0 and

ζβ(y;m1,m2, B, T ) ≤ ζβ(ε;m1,m2, B, T ). (9.28)

Step 2. Recall that log p̃ε,β and log p̃ε,γ are solutions of (3.11) and (3.12). Thus for

deterministic m1 ≤ m∗1 and m2 ≤ m∗2, we have the approximation

log p̃ε,β ≈
1

m1

(
log

(
p− d0

m1

)
+ log

(
n− s0

m2

))
≈ log

p

m1
+
m2 log (n/m2)

m1
. (9.29)

Notice thatm2 log (n/m2) is in the order between O(log n) and O(n). Ifm2 = (n−s0)/2,

then it reaches the maximum value at (n log 2)/2. It reaches the minimum value of log n

when m1 = 1.

Therefore, with m1 = 1 and m2 = m∗2,

log p̃ 1
ε,β ≈ (log p) ∨ n,

and with m1 = m∗1, m2 = m∗2,

log p̃∗ε,β ≈ log (p/m∗1) ∨ (n/m∗1).

Then for any m1 ≤ m∗1 and m2 = m∗2,

log p̃ε,β ≤ log p̃ 1
ε,β ∨ log p̃∗ε,β.
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Similarly, by (3.12), for deterministic m2, we have

log p̃ε,γ
log p

≈ 2

m2
log

(
n− s0

m2

)
≈ log

n

m2
,

which is between O(1) and log n. Here the lower bound is obtained when m2 ∝ m∗2 ∝ n

and the maximum is obtained when m2 = 1. Therefore, for any m2 ≤ m∗2, we have

log p̃ε,γ ≤ log p̃∗ε,γ log n. (9.30)

Step 3. By Lemma 3.3.3, for any m1 ≤ m∗1 and m2 ≤ m∗2, we have

P

(
ζβ(ε;m1,m2, B, T ) ≥ σ

√
(2/n) log p̃ε,β

)
≤ ε/
√

2 (9.31)

Thus log p̃∗ε,β ≥ log p̃ε,β, and

P

(
ζβ(ε;m1,m2, B, T ) ≥ σ

√
2

n
(log p̃ 1

ε,β ∨ log p̃∗ε,β)

)
≤ ε/
√

2. (9.32)

By inequality (9.28) and the definition of λε,β in (3.13), we obtain for any determin-

istic m1 and m2,

P

{
ζβ(y;m1,m2, B, T ) ≥

√
log n

n
λε,β

}
(9.33)

≤ P

{
ζβ(ε;m1,m2, B, T ) ≥

√
log n

n
λε,β

}

≤ P

{
ζβ(ε;m1,m2, B, T ) ≥

√
r∗

α
(σ
√

(2/n) log p̃ε,β)

}
≤ ε/
√

2, (9.34)

with log p̃ε,β calculated from given m1 and m2.

Similarly, using Lemma 3.3.3, for any m2 ≤ m∗2, we have

P

(
ζγ(ε;m2, B, T ) ≥ σ

√
2 log p̃ε,γ
n log p

)
≤ ε/
√

2. (9.35)

Insert (9.30) into the definition of λε,γ , we obtain

λε,γ >

√
r∗

α

(
σ

√
2 log p̃ε,γ

log n

)
. (9.36)

With (9.28), (9.35), and (9.36), we have

P

(
ζγ(ε;m2, B, T ) ≥

√
log n

n log p
λε,γ

)
(9.37)

≤ P

(
ζγ(ε;m2, B, T ) ≥ σ

√
2 log p̃ε,γ
n log p

)
≤ ε/
√

2. (9.38)

Combine (9.34) and (9.38), and for any λ > λε,β ∨ λε,γ , (3.34) is proved.
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9.4 Proof of Proposition 4.0.1

Proof. We first will show the upper bound of (4.10). If max
u

max
Pm

‖Xmu‖2

n‖u‖2
≤ ρ∗τ∗,

max
‖u‖2+‖v‖2A=1

max
Pm

f(u, v) = max
‖u‖2+‖v‖2A=1

max
Pm

‖Xmu‖2

n
+ 2

v′Xmu√
n

+ ‖v‖2A∗

≤ max
u

max
Pm

2‖Xmu‖2

n
+ 2‖v‖2A∗

≤ (ρ∗τ∗ ∨ 2)(‖u‖2 + ‖v‖2A∗)

= (ρ∗τ∗ ∨ 2), (9.39)

Thus by Zhang’s theorem, let εk, k = 1, 2, 3, 4, be positive constants in (0, 1), satisfy-

ing m ≤ min(p, ε21n), ε1 + ε2 < 1, and ε3 + ε4 = ε22/2. Then for all (m,n, p) satisfying

log

(
p

m

)
≤ ε3n,

P{c∗(m) ≥ τ∗ρ∗} ≤ e−nε4 , (9.40)

where τ∗ = (1 + ε1 + ε2)
2.

Therefore

P{ max
‖u‖2+‖v‖2A=1

max
Pm

f(u, v) ≤ (ρ∗τ∗ ∨ 2)} (9.41)

≥ P

{
max
u

max
Pm

‖Xmu‖2

n‖u‖2
≤ ρ∗τ∗

}
(9.42)

≥ 1− e−ε4n (9.43)

9.4.1 Lower Bound

In this subsection, we are to look for the probability bound of

P{ min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ ρ∗τ∗}

for a fixed Pm, this is because

P{min
Pm

min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≥ τ∗ρ∗}

= 1− P{min
Pm

min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ ρ∗τ∗}

≥ 1−
(
p

m

)
P{ min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ τ∗ρ∗}.
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Let zi = Xi,·P
′
mu,then zi’s are i.i.d random variables with mean zero and variance

σ2z = u′Σmu, (9.44)

ρ∗‖u‖2 ≤ σ2z ≤ ρ∗‖u‖2. (9.45)

Thus

f(u, v) =

∑n
i=1 z

2
i

n
+ 2

∑
i∈A vizi√
n

+ ‖vA∗‖2

=
‖z(A∗)c‖2

n
+ ‖zA

∗
√
n

+ vA∗‖2

≥
‖z(A∗)c‖2

n
+ (
‖zA∗‖√

n
− ‖vA∗‖)2

=
‖z(A∗)c‖2

n
+ (
‖zA∗‖√

n
−
√

1− ‖u‖2)2 (9.46)

In (9.47), the lower bound could be dominated by either term, depending on the L2

norm of ‖u‖. We will discuss it in two cases: given Pm, ∀t1 with certain constraints,

P{ min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ t1} ≤ P{ min

u,v,‖u‖2≤c0
f(u, v) ≤ t1} ∨ P{ min

u,v,‖u‖2≥c0
f(u, v) ≤ t1}(9.47)

The structure of the derivation is given as below: first of all, we review the conceptions

of net and covering numbers which are common techniques applied in random matrices.

Then the properties for strict sub-Gaussian distributions are also summarized, together

with lemmas needed for deviations later on. All the lemma are also applicable to Gaus-

sian distributions. After that, we are to show the probabilities in the two components

as shown in (9.47) separately. In the end, we combine and discuss the two cases, and

look for a sharper bound for the probability in (9.47).

9.4.2 Net and Covering numbers

A typical and alternative way to derive the probability that the eigenvalue being

bounded is to use the nets and covering numbers. Let Sn+m−1ε ∈ Sn+m−1 to be an

ε net with radius ε, i.e., use the balls with radius ε to cover the Sn+m−1. We give an

upper bound of minimum balls needed for covering. If we are allowed to pack Nε/2 balls

of radius ε/2 into the sphere Sn+m−1. All of the balls have centers on the sphere and
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are thus contained by the (1 + ε/2) ball ∈ Rn+m. Then

Nε/2 × (ε/2)n+m ≤ (1 + ε/2)n+m

Nε/2 ≤ (
1 + ε/2

ε/2
)n+m = (1 + 2/ε)n+m

It is not hard to show that, if we replace the ε/2 radius balls by ε balls with the

same centers, then we are allow to cover the whole ball thus the whole unit sphere

St+m−1, and denote St+m−1ε = {w1, w2, · · · , w(1+2/ε)t+m} where wj ∈ St+m−1 and they

are centers of covering balls.

In Cai et al (2010), it has been shown that ∀m×m symmetric matrix M = X ′X/n,

where n is the number of the rows of X, we have

−‖u− ũ‖‖M‖‖u+ ũ‖ ≤ |u′Mu| − |ũ′Mũ| ≤ ‖u− ũ‖‖M‖‖u+ ũ‖

Let Sm−11/8 be a 1/8 net of the unit sphere Sm−1 in Euclidean distance in Rm. We have

‖M‖ ≤ sup
‖u‖∈Sm−1

|u′Mu| ≤ max
ũ∈Sm−1

1/8

|ũ′Mũ|+ 1

4
‖M‖ (9.48)

‖M‖ ≥ inf
‖u‖∈Sm−1

|u′Mu| ≥ min
ũ∈Sm−1

1/8

|ũ′Mũ| − 1

4
‖M‖, (9.49)

thus, sup
u∈Sm−1

|u′Mu| ≤ 4

3
max

ũ∈Sm−1
1/8

|ũ′Mũ|, (9.50)

inf
u∈Sm−1

|u′Mu| ≥ min
ũ∈Sm−1

1/8

|ũ′Mũ| − 1

4
sup

u∈Sm+1

|u′Mu| (9.51)

where d0 and ε1 are both constants determined by ρ∗ and ρ∗, and dm0 is the upper

bound of the cardinality of net Sm−1r0 ∈ Sm−1, the unit sphere. Thus,

P ( max
‖u‖2≤c0

‖XA,mu‖√
n

≥
√
τ∗ρ∗‖u‖) (9.52)

≤ P ( max
‖u‖2≤c0

‖Xmu‖√
n
≥
√
τ∗ρ∗‖u‖) (9.53)

≤ (1 +
2

1/8
)mP

(
‖Xmũ‖√
n‖ũ‖

≥
√
τ∗ρ∗

)
(9.54)

= 17mP

(
‖Xmũ‖2

n‖ũ‖2
≥ τ∗ρ∗

)
(9.55)

Since the rows of X are drawn from the sub-Gaussian/Gaussian distributions,
‖Xmũ‖2

n‖ũ‖2
is the average of n i.i.d random variables with finite mean and bounded variance.
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Lemma 9.4.1. Suppose a random variable x ∼ N(0, σ2), then the following large

deviation holds:

P (|x| > t) ≤ 2e−
t2

2σ2

Proof.

P (x > t) = P (λx > λt) ≤ e−λtE(eλx)

= e−λt+λ
2σ2/2 ≤ e

1
2
(λσ− t

σ
)2− t2

2σ2

Thus if we take λ such that λσ2 = t, then we have

P (x > t) ≤ e−
t2

2σ2 .

Similarly,

P (x < −t) = P (−λx > λt) ≤ e−λtE(e−λx) ≤ e−
t2

2σ2

Lemma 9.4.2. Assume x1, · · · , xn are n i.i.d normal random variable with mean zero

and variance σ2, then ∀0 < t < σ2,

P

(
1

n
|
n∑
i=1

x2i − σ2| > t

)
≤ 2e−

nt2

4σ4 .

Proof. Denote Y = X2, where X ∼ N(0, 1). Then µy = E(Y ) = 1. We can show the

tail probability of Y.

Next we will derive the large deviation inequality for squared normal random vari-

able with the use of moment generating function. For any 0 < t < 1, the tail probability

P (y > 1 + t) = P (λy > λt+ λ) ≤ E(eλy)

eλt+λ

By

E exp (λy) =
1√

1− 2λ
,

we have

P (y > 1 + t) ≤ e−λt−λ√
1− 2λ

= exp

{
−(λ(t+ 1) +

1

2
ln(1− 2λ))

}
(9.56)
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The inequality above holds for ∀λ, therefore

P (y > 1 + t) ≤ inf
λ

exp

{
−(λ(t+ 1) +

1

2
ln(1− 2λ))

}
Take the derivative in the exponential term with respect to λ, we have

λ =
1

2
− 1

2(t+ 1)
=

t

2(t+ 1)
.

Plug it into (9.56) and expand ln(1 + x) around x = 0 by Taylor expansion, we have

λ(t+ 1) +
1

2
ln(1− 2λ)

=
t

2
+

1

2
ln(1− 2λ) =

t

2
− 1

2
ln t+ 1

≈ t

2
− t

2
+
t2

4
=
t2

4

Thus

P (y > 1 + t) ≤ inf
λ

exp

{
−(λ(t+ 1) +

1

2
ln(1− 2λ))

}
= e−

t2

4

For i.i.d random samples y1, · · · , yn drawn from chi-square distribution, the large

deviation inequality for their average is as follows:

P

{
1

n
(y1 + · · ·+ yn)− 1 > t

}
= P (λ(y1 + · · ·+ yn) > λn(t+ 1))

≤ E(eλ(y1+···yn))

eλn(t+1)
≤

(
e−λ(t+1)

√
1− 2λ

)n
≤ e−

nt2

4

Therefore if x is a normal random variable with mean of 0 and variance of σ2, then

we have ∀ 0 < t < σ2,

P (
x21 + · · ·+ x2n

n
− σ2 > t) ≤ e−

nt2

4σ4

Similarly, we can also show that

P (
x21 + · · ·+ x2n

n
− σ2 < −t) ≤ e−

nt2

4σ4

Thus ∀ 0 < t < σ2,

P (|x
2
1 + · · ·+ x2n

n
− σ2| > t) ≤ 2e−

nt2

4σ4
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9.4.3 Case 1: ‖u‖2 < c0

Following (9.46), we know that

f(u, v) ≥
(√

1− ‖u‖2 − ‖zA
∗

√
n
‖
)2

(9.57)

Thus

P{ min
‖u‖2≤c0,v

f(u, v) ≤ t1} ≤ P

{
min
‖u‖2≤c0

(√
1− ‖u‖2 − ‖zA

∗
√
n
‖
)2

≤ t1

}
(9.58)

Now we will apply lemma 9.4.2 to (9.55). For any vector a ∈ Rm, the variance of

a′X
(i)
m is a′Σa.

Now consider

a′X ′mXma

n
=

∑n
i=1 a

′(X
(i)
m )′X

(i)
m a

n
,

which is the average of n i.i.d random variables. Each random variable is generated by

taking the square of a normal random variable. Thus the average has expectation of

the individual expectaion

E(a′(X(i)
m )′X(i)

m a) = a′Σa.

Since ũ′Σũ ≤ ρ∗, ∀τ∗ > 1, we turn to consider the probability on the right side of the

formula below

P

(
1

n
ũ′X ′mXmũ > τ∗ρ∗

)
≤ P

(
1

n
ũ′(X ′mXm − Σ)ũ > (τ∗ − 1)ũ′Σũ

)
By lemma 9.4.2, we have

P

(
1

n
ũ′(X ′mXm − Σ)ũ > (τ∗ − 1)ũ′Σũ

)
≤ exp

(
−n(τ∗ − 1)2(ũ′Σũ)2

4(ũ′Σũ)2

)
= exp

(
−n(τ∗ − 1)2

4

)
Now we have shown that, ∀ 1 < τ∗ < 2,

P

(
1

n
ũ′X ′mXmũ > τ∗ρ∗

)
≤ exp

(
−n(τ∗ − 1)2

4

)
. (9.59)

Thus for any u ∈ Sm−1,

P

(
1

n
u′X ′mXmu > τ∗ρ∗

)
≤ 17m exp

(
−n(τ∗ − 1)2

4

)
. (9.60)
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and for any u ∈ Rm. Specifically, for any ‖u‖ < c0 and u ∈ Sm−1,

P

(
u′X ′mXmu

n‖u‖2
> τ∗ρ∗

)
≤ exp

(
−n(τ∗ − 1)2

4

)
. (9.61)

Use the above large deviation inequality in (9.61), we can obtain the bound for

(9.58),

P

{
min

‖u‖2≤c0,v

(√
1− ‖u‖2 − ‖zA

∗
√
n
‖
)2

< t1

}
(9.62)

= P

{
min

‖u‖2≤c0,v

(√
1− ‖u‖2 − ‖zA

∗
√
n
‖
)2

< t1, max
‖u‖2≤c0

‖z‖√
n‖u‖

>
√
τ∗ρ∗

}

+P

{
min

‖u‖2≤c0,v

(√
1− ‖u‖2 − ‖zA

∗‖√
n

)2

< t1, max
‖u‖2≤c0

‖z‖√
n‖u‖

≤
√
τ∗ρ∗

}

≤ P

{
max
‖u‖2≤c0

‖z‖√
n‖u‖

>
√
τ∗ρ∗

}
+

P

{
min

‖u‖2≤c0,v

(√
1− ‖u‖2 − ‖zA

∗‖√
n

)2

< t1, max
‖u‖2≤c0

‖z‖√
n‖u‖

≤
√
τ∗ρ∗

}
(9.63)

By (9.61), the first term in (9.63) above is bounded by (17m) exp

(
−n(τ∗ − 1)2

4

)
. Next

will show that the second term vanishes when τ∗ takes suitable values.

In the event that ‖z‖/
√
n ≤
√
τ∗ρ∗‖u‖, and given that

‖u‖ ≤
√
c0 ≤ 1/

√
(1 + τ∗ρ∗), (9.64)

we have √
1− ‖u‖2 ≥

√
1− c0 ≥

√
τ∗ρ∗c0 ≥

‖z‖√
n
≥ ‖zA

∗‖√
n
.

Thus

min
‖u‖≤c0,v

(√
1− ‖u‖2 − ‖zA

∗‖√
n

)2

≥
(√

1− c0 −
√
τ∗ρ∗c0

)2
.

If the following equality holds:

√
1− c0 −

√
τ∗ρ∗c0 =

√
t1, (9.65)

i.e., we take τ∗ with the value

τ∗ =
(
√

1− c0 −
√
t1)

2

ρ∗c0
(9.66)
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Then the second term in (9.63) vanishes.

The probability in (9.58) now is bounded by

17m exp

(
−n(τ∗ − 1)2

4

)
= 17m exp

(
−n

4

(
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

)2
)
.

Remark 1. When c0 is large, the probability in the above formula is large. Thus

the worst case occurs when c0 is taken the largest value.

Remark 2. When ρ∗ < t1 < 1, algebra shows that ω2 < 1/(1 + ρ∗). When

ρ∗ >> 1 > t1, then ω2 > 1/(1 + ρ∗).

Remark 3. To summarize, in case 1, given Pm, we have shown the following

proposition:

Proposition 9.4.3. Need to revise!!!For any positive constant t1 < ρ∗/(1 + ρ∗), and

∀ c0 > 0 which satisfies:

c0 < (ω1 ∧
1

1 + ρ∗
) or ω2 < c0 <

1

1 + ρ∗
,

where

ω1 =
(
√
ρ∗ + 1− t1 −

√
ρ∗t1)

2

(ρ∗ − 1)2
, ω2 =

(
√
ρ∗ + 1− t1 +

√
ρ∗t1)

2

(ρ∗ − 1)2

We have

P

{
min

‖u‖2≤c0,v
f(u, v) ≤ t1

}
≤ 17m exp

(
−n

4

(
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

)2
)

(9.67)

Case 2: ‖u‖2 ≥ c0

If ‖u‖ ≥
√
c0, then for a fixed Pm, the target probability satisfies:

P

{
min

‖u‖2≥c0,v
f(u, v) ≤ t1

}
≤ P

{
min

‖u‖2≥c0,v
min
|A|=αn

‖z(A∗)c‖2

n
≤ t1

}
(9.68)

≤ P

{
min

‖u‖∈Sm−1
min
|A|=αn

‖X(A∗)c,mu‖2

n
≤ t1
c0

}
. (9.69)

For a given ũ ∈ Sm−11/8 , denote

z̃ = X(A∗)c ũ = (z1, · · · , zn)′.
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Order zi’s by absolute values

|z[1]| ≤ |z[2]| ≤ · · · ≤ |z[n]|

We now look for the bound in (9.69) based on the coverings and the 1/8 radius net.

Recall the two inequalities (9.50) and (9.51), ∀ m×m matrix M ,

sup
u∈Sm−1

|u′Mu| ≤ 4

3
max

ũ∈Sm−1
1/8

|ũ′Mũ|,

inf
u∈Sm−1

|u′Mu| ≥ min
ũ∈Sm−1

1/8

|ũ′Mũ| − 1

4
sup

u∈Sm+1

|u′Mu|

Denote m×m matrix M(A∗)c =
X ′(A∗)cX(A∗)c

(1− α)n
. For any two constants 0 < t∗/3 < t∗ < t∗,

P

{
min

|(A∗)c|=(1−α)n
min
‖u‖=1

‖X(A∗)c,mu‖2

(1− α)n
≤ t∗ − t∗/3

}

≤ P

{
min

|(A∗)c|=(1−α)n

(
min

ũ∈Sm−1
1/8

|ũ′M(A∗)c ũ| −
1

4
sup

u∈Sm−1

|u′M(A∗)cu|

)
≤ t∗ − t∗/3

}

≤ P

{
min

|(A∗)c|=(1−α)n

(
min

ũ∈Sm−1
1/8

|ũ′M(A∗)c ũ| −
1

3
max

ũ∈Sm−1
1/8

|ũ′M(A∗)c ũ|

)
≤ t∗ − t∗/3

}

≤ P

{
min

|(A∗)c|=(1−α)n
min

ũ∈Sm−1
1/8

|ũ′M(A∗)c ũ| −
1

3
max

|(A∗)c|=(1−α)n
max

ũ∈Sm−1
1/8

|ũ′M(A∗)c ũ| ≤ t∗ − t∗/3

}

≤ P

{
min

|(A∗)c|=(1−α)n
min

ũ∈Sm−1
1/8

|ũ′M(A∗)c ũ| ≤ t∗

}
+ P

{
max

|(A∗)c|=(1−α)n
max

ũ∈Sm−1
1/8

|ũ′M(A∗)c ũ| ≥ t∗
}

≤ P

 min
ũ∈Sm−1

1/8

∑(1−α)n
i=1 z2[i]

(1− α)n
≤ t∗

+ P

{
max

ũ∈Sm−1
1/8

∑n
i=αn+1 z

2
[i]

(1− α)n
≥ t∗

}

≤ |Sm−11/8 |

P

∑(1−α)n

i=1 z2[i]

(1− α)n
≤ t∗

+ P

{∑n
i=αn+1 z

2
[i]

(1− α)n
≥ t∗

} (9.70)

Denote

Tn,α,− =

∑(1−α)n
i=1 z2[i]

(1− α)nũ′Σmũ
,

Tn,α,+ =

∑n
i=αn+1 z

2
[i]

(1− α)nũ′Σmũ
.

Since zi = X
(i)
m ũ all has zero expectation and variance of ũ′Σũ. Thus Tn,α,− and

Tn,α,+ are both now standardized with mean zero and unit variance.
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Stigler’s theorem (Stigler, 1973)shows that

√
n(Tn,α,− − µα,−)

L−→ N(0,
σ2α,−
1− α

), (9.71)

√
n(Tn,α,+ − µα,+)

L−→ N(0,
σ2α,+
1− α

). (9.72)

Thus following convergence holds ,∀t ≥ 0, when n→∞,

P{
√

(1− α)n(
Tn,α,− − µα,−

σα,−
) < −t} → 1− Φ(t) (9.73)

P{
√

(1− α)n(
Tn,α,+ − µα,+

σα,+
) > t} → 1− Φ(t) (9.74)

where

µα,− =
1

1− α

∫ 1−α

0
Q(x)dx (9.75)

σ2α,− =
1

1− α

∫ 1−α

0
Q2(x)dx− (µα,−)2 (9.76)

µα,+ =
1

1− α

∫ 1

α
Q(x)dx (9.77)

σ2α,+ =
1

1− α

∫ 1

α
Q2(x)dx− (µα,+)2 (9.78)

Here Q(x) is its inverse function or quantile function of χ2
1, the chi-square distribu-

tion with degree of freedom 1.

Now going back to the two probabilities in (9.70),

P


∑(1−α)n

i=1 z2[i]

(1− α)n
≤ t∗

 ≤ P


∑(1−α)n
i=1 z2[i]

(1− α)nũ′Σmũ
≤ t∗
ρ∗


= P

{
Tn,α,− ≤

t∗
ρ∗

}
≤ (1 + o(1)) exp

{
−n(1− α)(µα,− − t∗/ρ∗)2

2σ2α,−

}
(9.79)

The first inequality is due to the assumption that Σ has eigen values bounded between

ρ∗ and ρ∗. Similarly, we have

P

{∑n
i=αn+1 z

2
[i]

(1− α)n
≥ t∗

}
≤ P

{ ∑n
i=αn+1 z

2
[i]

(1− α)nũ′Σmũ
≥ t∗
ρ∗

}

= P

{
Tn,α,+ ≥

t∗

ρ∗

}
≤ (1 + o(1)) exp

{
−n(1− α)(t∗/ρ∗ − µα,+)2

2σ2α,+

}
(9.80)

Let ε2 and ε3 be constants such that:

0 < ε2 < 1, ε3 > 1.
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For t∗ and t∗ satisfies that:

t∗ = ε2ρ∗µα,−, t
∗ = ε3ρ

∗µα,+,

(1− α)c0(t∗ − t∗/3) = t1. (9.81)

Together with (9.79) and (9.80), it follows that

P

{
min

‖u‖2≥c0,v
f(u, v) ≤ t1

}
≤ P

{
min

‖u‖∈Sm−1
min
|A|=αn

‖X(A∗)c,mu‖2

n
≤ t1
c0

}

= P

{
min

|(A∗)c|=(1−α)n
min
‖u‖=1

‖X(A∗)c,mu‖2

(1− α)n
≤ t∗ − t∗/3

}

≤ |Sm−1r0 |

P

∑(1−α)n

i=1 z2[i]

(1− α)n
≤ t∗

+ P

{∑n
i=αn+1 z

2
[i]

(1− α)n
≥ t∗

} (9.82)

≤ |Sm−1r0 |

(
exp

{
−n(1− α)2(µα,− − t∗/ρ∗)2

2σ2α,−

}
+ exp

{
−n(1− α)2(t∗/ρ∗ − µα,+)2

2σ2α,+

})

≤ 2× 17m exp

(
−n(1− α)2t2α

2

)
(9.83)

where

tα =
(µα,− − t∗/ρ∗)

σα,−
∧ (t∗/ρ∗ − µα,+)

σα,+

=
(1− ε2)µα,−

σα,−
∧ (ε3 − 1)µα,+

σα,+

When α is given, the sharpest bound in (9.83) is obtained when tα is achieved

its maximum. By (9.81), we know that ε2 and ε3 are collinear and the correlation is

positive. (1 − ε2)µα,−/σα,− is decreasing with ε2, and (ε3 − 1)µα,+/σα,+ is increasing

with ε3, equivalently, with ε2.

When ε3 is close to 1, ε2 is small, and tα = (ε3− 1)µα,+/σα,+, which is smaller than

(1− ε2)µα,−/σα,−. When ε2 and ε3 are both getting larger, tα = (ε3−1)µα,+/σα,+ until

(1− ε2)µα,−
σα,−

=
(ε3 − 1)µα,+

σα,+
.

If ε2 and ε3 continue to increase, (1 − ε2)µα,−/σα,− would be smaller than (ε3 −

1)µα,+/σα,+. Thus tα = (1 − ε2)µα,−/σα,−. The value tα then decreases when ε2 is

approaching 1.
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Therefore, we have shown that the maximum value of tα is achieved when

(µα,− − t∗/ρ∗)
σα,−

=
(t∗/ρ∗ − µα,+)

σα,+

Using a more generalized notation ε0 to replace the fraction 1/3 in (9.81)(see the

remark in the end of this subsection), we can solve

t∗ =
ε0ρ
∗ρ∗(σα,+µα,− + σα,−µα,+) + t1

c0
ρ∗σα,−/(1− α)

ε0ρ∗σα,+ + ρ∗σα,−
(9.84)

t∗ =
ρ∗ρ∗(σα,+µα,− + σα,−µα,+)− t1

c0
ρ∗σα,+/(1− α)

ε0ρ∗σα,+ + ρ∗σα,−
(9.85)

tα =
ε0ρ
∗(σα,+µα,− + σα,−µα,+)− t1

c0
σα,−/(1− α)

σα,−(ε0ρ∗σα,+ + ρ∗σα,−)
(9.86)

It is easy to check that t∗ − ε0t∗ > 0.

If σα,− < σα,+ holds, then a sufficient condition for t∗ < t∗ is:

⇐⇒ ε0 ≤ 1− 2t1
c0ρ∗

c∗+(α), (9.87)

where c∗+(α) =
σα,+

(1− α)(σα,+µα,− + σα,−µα,+)
. (9.88)

Lemma (??) shows ∀α > 0, σα,− < σα,+. Thus,

(ρ∗σα,+ + ρ∗σα,−)t1
(1− α)c0

<
2ρ∗σα,+t1
(1− α)c0

≤ (1− ε0)ρ∗ρ∗(σα,+µα,− + σα,−µσ,+)

Therefore we obtain

t∗ε0ρ
∗σα,+ = ε0ρ

∗ρ∗(σα,+µα,− + σα,−µα,+) +
t1ρ∗σα,−
c0(1− α)

< ρ∗ρ∗(σα,+µα,− + σα,−µα,+)− t1ρ
∗σα,+

(1− α)c0
= t∗ε0ρ

∗σα,+

⇐⇒ t∗ < t∗.

Remark 1.Here we take the net with radius 1/8 and we obtain the fractions 1/4 in

(9.51) and thus 1/3 in the first row in (9.70) and afterwards. If we choose another value

for radius, then this fraction would be changed accordingly. As for a generalization, we

use ε0 to replace the faction 1/3, and the radius and cardinality of the net now are

changed to

r0 =
ε0

2(ε0 + 1)
, |Sm−1r0 | ≤ (5 +

4

ε0
)m.
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This also shows the choice of r0 could be any real number lies in (0, 0.5). And ε0 could

be ant positive real number.

Remark 2. µα,− is a decreasing function of α, µα,+ is an increasing function of α.

Furthermore, ∀0 < α < 1,

0 = µ1,− < µα,− ≤ µ0,− = 1 = µ0,+ < µα,+ ≤ µ1,+ =∞

The two tails are obtained by using L’Hopital’s Rule.

The derivation is to take the derivative with respect to α:

∂µα,+
∂α

=
1

(1− α)2

(∫ 1

α
Q(x)dx− (1− α)Q(α)

)
> 0,

since Q(x) is increasing with x. Similarly

∂µα,−
∂α

=
1

(1− α)2

(∫ 1−α

0
Q(x)dx− (1− α)Q(1− α)

)
< 0.

To summarize, in this subsection, we have shown that: given projection Pm, ρ
∗, ρ∗, if

the design matrix has contamination portion α, then ∀t1 > 0 and ∀c0 and ε0, such that

0 < c0 < 1, and

0 < ε0 ≤ 1− 2t1
c0ρ∗

c∗+(α),

then

P

{
min

‖u‖2≥c0,v
f(u, v) ≤ t1

}
≤ 2(5 +

4

ε0
)m exp

(
−n(1− α)2t2α

2

)
,

where

tα =
ε0ρ
∗(σα,+µα,− + σα,−µα,+)− t1

c0
σα,−/(1− α)

σα,−(ε0ρ∗σα,+ + ρ∗σα,−)
. (9.89)

9.4.4 The value of parameters: c0 and ε0.

If we denote

Aα =
1

(1− α)(ε0ρ∗σα,+ + ρ∗σα,−)
(9.90)

Bα =
ε0ρ
∗(σα,+µα,− + σα,−µα,+)

σα,−(ε0ρ∗σα,+ + ρ∗σα,−)
(9.91)

tα = −Aα
t1
c0

+Bα > 0 (9.92)
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From (9.92), we have

c0 >
Aα
Bα

t1 =
σα,−

(1− α)ε0ρ∗(σα,+µα,− + σα,−µα,+)
t1 (9.93)

Denote

c∗−(α) =
σα,−

(1− α)(σα,+µα,− + σα,−µα,+)
.

Then

c0 >
c∗−(α)t1
ε0ρ∗

(9.94)

Together with (9.87), we obtain

c∗−(α)t1
ρ∗c0

< ε0 ≤ 1−
2c∗+(α)t1
ρ∗c0

, (9.95)

which requires that

t1
c0
<

(
c∗−(α)

ρ∗
+

2c∗+(α)

ρ∗

)−1
.

Thus, given t1, c0 can take any number that is greater than

(
c∗−(α)

ρ∗
+

2c∗+(α)

ρ∗

)
t1,

for example, let c0 = 3c∗+(α)t1/ρ∗.

Then we obtain that

ρ∗c
∗
−(α)

3ρ∗c∗+(α)
< ε0 ≤

1

3
,

Here we take the largest ε0 given t1/c0 is due to the fact that given α, t1 and c0, tα

is an increasing function with respect to ε0 in (9.89). The optimum bounded probabil-

ity(minimum) is obtained when tα and/or ε0 reaches its maximum.

Remark. The range of c∗−(α).

Figures ?? obtained from the simulation results shows how the value of c∗−(α) changes

along with α. The function c∗−(α) is a not strictly increasing function with α. The

order of c∗−(α) is between 10−1 and 102 if α ≤ 0.9999. It is not hard to derive that if

α→ 1, c∗−(α)→∞ using L’ Hopital’s Rule. The plot of c∗−(α) v.s. α shows that c∗−(α)

is decreasing slowly when α is ranged between 0 and 0.1, hitting the minimum 0.45

around α = 0.1 and then increasing afterwards. The value of c∗−(α) is between 0.45 and

0.51. When α < 0.1, it lies between 0.45 and 1 when α < 0.8.
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9.4.5 Combining the two cases

For the convenience of the calculation, we can use the same net and covering for calcu-

lations in both case 1 and case 2. To summarize the both cases, we have shown that,

for fixed Pm, if we take ε0 = 1/3, and subsequently let

r0 =
1

2/ε0 + 2
=

1

8
, and c0 =

3c∗+(α)t1
ρ∗

In this part, we combine the two cases and show the main theorem of this disserta-

tion:

Theorem 9.4.4. ∀t1 <
ρ∗

3c+(α) + (
√

3c+(α) +
√
ρ∗)2

, if
log
(
p
m

)
n

< C2
α, where Cα is de-

fined as follows:

if t1 < t∗1, Cα = tα =
(σα,+µα,− + σα,−µα,+)(ρ∗ − ρ∗/σα,+)

σα,−(ρ∗σα,+ + 3ρ∗σα,−)
(9.96)

else,

Cα =
1

2

(
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

)
=

1

2

(√ 1

3c+(α)t1
− 1

ρ∗
−

√
1

3c+(α)

)2

− 1


(9.97)

Here t∗1 is the t1 that satisfies the following:

1

2

(√ 1

3c+(α)t1
− 1

ρ∗
−

√
1

3c+(α)

)2

− 1

 = (1− α)tα/
√

2

then

P{min
Pm

min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ t1} ≤ 2

(
p

m

)
17m exp (−nC2

α)→ 0

(9.83) can be re-written as:

P

{
min

‖u‖2≥c0,v
f(u, v) ≤ t1

}
≤ 2× 17m exp

(
−n(1− α)2t2α

2

)
,

where

tα =
(σα,+µα,− + σα,−µα,+)(ρ∗ − ρ∗/σα,+)

σα,−(ρ∗σα,+ + 3ρ∗σα,−)
(9.98)

Lemma 9.4.5. σ2α,+ is an increasing function with α.
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Proof. Since Q(x) is an increasing function with α,∫ 1

α
Q2(x)dx > (1− α)Q2(α).

=⇒ ∂σα,+
∂α

=
1

(1− α)2

∫ 1

α
Q2(x)dx− 1

1− α
Q2(α)

+
2

(1− α)3

(∫ 1

α
Q(x)dx

)2

+
2Q(α)

(1− α)2

∫ 1

α
Q(x)dx > 0.

By Lemma 9.4.5, we have that σα,+ ≥ σ0,+ =
√

2, thus ρ∗ − ρ∗/σα,+ > 0,

tα ≥
(σα,+µα,− + σα,−µα,+)(1− 1/σα,+)

σα,−(ρ∗σα,+ + 3ρ∗σα,−)
ρ∗ (9.99)

Next, combining the two cases, ‖u‖2 ≤ c0 and ‖u‖2 > c0, we have

P{ min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ t1}

≤ P{ min
u,v,‖u‖2≤c0

f(u, v) ≤ t1} ∨ P{ min
u,v,‖u‖2≥c0

f(u, v) ≤ t1}

= 2 · 17m

[
exp

(
−n

4

[
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

]2)
∨ exp

(
−n(1− α)2t2α

2

)]

The above inequality is for fixed Pm. Thus for all the enumerations of Pm, we have

P{min
Pm

min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ t1} ≤ 2

(
p

m

)
17m exp (−nC2

α) (9.100)

where Cα =
1

2

(
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

)
∧ (1− α)tα/

√
2. (9.101)

Let t1 = ρ∗εt, as long as

εt =
t1
ρ∗

<
1

3c+(α) + (
√

3c+(α) +
√
ρ∗)2

,

then

τ∗ =
(
√

1− c0 −
√
t1)

2

ρ∗c0
> 1.

This is because
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(
√

1− c0 −
√
t1)

2

ρ∗c0
> 1⇐⇒

(√
1

c0
− 1−

√
t1
c0

)2

> ρ∗ (9.102)

⇐⇒ ρ∗
3c+(α)t1

> 1 +

(√
ρ∗ +

√
ρ∗

3c+(α)

)2

(9.103)

⇐⇒ t1 <
ρ∗

3c+(α) + (
√

3c+(α) +
√
ρ∗)2

(9.104)

Meanwhile, t1 has to satisfy the following condition:

√
t1 <

√
1− c0 ⇐⇒ t1 <

ρ∗

ρ∗ + 3c+(α)

If (9.104) holds, then the above inequality holds automatically.

Therefore, we have shown that ∀εt <
1

3c+(α) + (
√

3c+(α) +
√
ρ∗)2

, where

c∗+(α) =
σα,+

(1− α)(σα,+µα,− + σα,−µα,+)
, then

P{min
Pm

min
‖u‖2+‖v‖2

A∗=1
f(u, v) ≤ t1} ≤ 2

(
p

m

)
17m exp (−nC2

α)

where Cα =
1

2

(
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

)
∧ (1− α)tα/

√
2.

Since
1

2

(
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

)
is a decreasing function with c0 and/or t1, we know

that

if t1 < t∗1, Cα =
(1− α)tα√

2
=

(1− α)(σα,+µα,− + σα,−µα,+)(ρ∗ − ρ∗/σα,+)√
2σα,−(ρ∗σα,+ + 3ρ∗σα,−)

(9.105)

else,

Cα =
1

2

(
(
√

1− c0 −
√
t1)

2

ρ∗c0
− 1

)
=

1

2

(√ 1

3c+(α)t1
− 1

ρ∗
−

√
1

3c+(α)

)2

− 1


(9.106)

Here t∗1 is the t1 that satisfies the following:

1

2

(√ 1

3c+(α)t1
− 1

ρ∗
−

√
1

3c+(α)

)2

− 1

 = (1− α)tα/
√

2

Thus we can obtain the theorem in the beginning of the section.
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