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ABSTRACT OF THE DISSERTATION

Combining Information for Heterogeneous Studies and

Rare Events Studies: a Confidence Distribution

Approach

by Dungang Liu

Dissertation Director: Regina Liu and Minge Xie

This dissertation develops efficient statistical methodologies for combining informa-

tion from independent sources. The developments focus on two settings where the

studies are heterogeneous or the studies involve rare events. In these settings, the con-

ventional combining approaches often lead to inefficient or even invalid statistical in-

ference. In this dissertation, we propose effective and efficient combining approaches

using confidence distributions. The proposed approaches are justified both theoretical-

ly and numerically. They are also shown to be superior to the conventional approaches.

Combining information from multiple studies, often referred to as meta-analysis

in the literature, has been used extensively in many fields, including health sciences,

social sciences, and others. However, there remain many unresolved problems on how

to effectively and efficiently combine information. For example,

• Heterogeneous studies – When the effect of interest is not estimable in hetero-

geneous studies (e.g., indirect evidence), how can we utilize these studies to

ii



perform meta-analysis?

• Rare events studies – For clinical trials with rare events, how can we perform

meta-analysis and incorporate studies with zero events in the analysis without

using artificial continuity corrections or relying on large sample theory?

To address these challenging but recurrent problems, this dissertation develops new

meta-analysis approaches based on combining confidence distributions. Roughly s-

peaking, a confidence distribution refers to a sample-dependent distribution function on

the parameter space with desirable inferential properties in terms of repeated sampling

performance. It can be viewed as a frequentist counterpart to the posterior distribution

in Bayesian inference. In this dissertation, we show the combination of confidence dis-

tributions has desirable properties which are lacking in the conventional approaches.

Specifically, 1) in the presence of heterogeneous studies, the proposed approach inte-

grates direct and indirect evidence and achieves asymptotic efficiency; 2) for rare event

studies, the proposed approach yields exact inference and incorporates all the studies

in the analysis without using artificial continuity corrections for zero events. These

properties are demonstrated numerically in simulation studies and real data examples,

including flight landing safety data collected by the Federal Aviation Administration

and drug safety data collected in diabetes clinical trials.
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Chapter 1

Introduction

Meta-analysis provides a systematic methodology for combining information from in-

dependent scources. Most existing meta-analysis approaches make an overall inference

by combining study-specific point estimators (see, e.g., Normand, 1999). However,

these approaches are inefficient or even invalid in some recurrent settings, such as the

presence of heterogeneous studies and rare events studies. There is a strong demand for

efficient statistical methodologies for combining information. To this end, this disserta-

tion proposes meta-analysis approaches using the concept of confidence distributions,

and demonstrates their validity and usefulness with theories and real life applications.

In recent years, there has been increasing emphasis on evidence-based decision-

making in sciences and practices (Lin and Zeng, 2010). Therefore, meta-analysis, as

a methodology for evidence synthesis, is now used extensively in many fields, espe-

cially in medicine, epidemiology, sociology, and others. For example, for the research

project “Analysis and Modeling Aircraft Landing Performance” sponsored by the Fed-

eral Aviation Administration (FAA), we need to develop a general guideline for identi-

fying safe landing performance from the unsafe ones. This requires modeling the flight

landing performance data by combining the observed flight landing data from aircrafts

of different makes and models, e.g., Boeing 737, 757 or Airbus 320, 321, etc. We also

consider another example in randomized clinical trial studies, for which it is a common

practice to combine the data from different clinical centers in order to draw an overall

conclusion on the treatment effect, such as drug efficacy and safety (see, e.g., Nissen

and Wolski, 2007). In fact, there are numerous applications in many areas, from as-

tronomy to zoology, where the benefits of meta-analysis have been recognized (Sutton



2

and Higgins, 2008).

Traditionally, meta-analysis is performed by weighting study-specific point esti-

mators from relevant studies to form an overall inference for the parameter of interest.

Such a combining approach, however, is inadequate for solving the following impor-

tant problems that frequently arise in real life applications.

• Problem 1 (Heterogeneous Studies). In many occasions, the studies collected

for meta-analysis are often found to be heterogeneous. The heterogeneity can

arise from the differences among the studies in populations, designs, and out-

comes (Sutton and Higgins, 2008). In the presence of heterogeneous studies,

the parameter of interest may not be estimable in some of the studies, and thus

the corresponding point estimates are not available. As a result, such studies

are often excluded from the conventional meta-analysis. However, these studies

contain indirect but valuable information for the inference. The question here

is that: how can we incorporate in the analysis all the studies, including those

heterogeneous studies?

• Problem 2 (Rare Events Studies). In meta-analysis of clinical trials with rare

events, we are often confronted with a challenging situation, that is, the presence

of zero total event studies where both treatment and control arms observe zero

events. For such studies, the point estimates of some effect measures, such as

the odds ratio and risk ratio, are undefined. As a result, the conventional meta-

analysis approaches either exclude such studies from the analysis (e.g., Nissen

and Wolski, 2007), or apply artificial continuity corrections to zero events. Both

practices, however, are known to have undesirable consequences in inference

(Tian et al., 2009; Sweeting et al., 2004). The question here is that: how can

we utilize all available data without applying artificial continuity corrections for

zero events?

To address the challenging problems above, this dissertation uses the concept of
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confidence distribution to develop new approaches for combining information. Rough-

ly speaking, the confidence distribution uses a sample-dependent distribution function

on the parameter space to estimate an unknown parameter (see Appendix A for a brief

review on the notions of confidence distribution). One attractive aspect of the confi-

dence distribution is that it contains wealthy information for making frequentist infer-

ence. For example, let H(·) = H(·;X) denote a confidence distribution (obtained based

on the sample X) for the parameter θ , then the interval (H−1(α),∞) is a 100(1−α)%

level one-sided confidence interval for θ . In fact, the way we draw inference from a

confidence distribution is similar to the way we draw inference from a Bayesian poste-

rior distribution. But confidence distribution is a pure frequentist concept, and it does

not rely on any Bayesian reasoning. This concept subsumes a broad range of frequen-

tist concepts. For example, we can show that likelihood function (after normalization),

p-value function (or significance function; cf. Fraser, 1991) and bootstrap distribution

can all be viewed as confidence distributions, under some mild conditions. Readers

are referred to Xie and Singh (2012) for an in-depth review on recent developments of

confidence distribution and its applications.

Since a confidence distribution carries much more information than a point estima-

tor, it provides a useful device for combining information from multiple studies (Singh,

Xie, and Strawderman, 2005; Xie, Singh, and Strawderman, 2011). In this dissertation,

instead of combining point estimators, we propose to combine confidence distributions

to make an overall inference for the parameter of interest. Specifically,

• to address Problem 1 involving heterogeneous studies, we obtain confidence dis-

tributions from maximum likelihood procedures associated with each of the stud-

ies. We propose to combine the obtained confidence density functions (density

functions of confidence distributions). We show that the combining of confi-

dence density functions enable us to integrate indirect evidence. Consequently,

the proposed approach can incorporate in the analysis all the studies, including
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heterogeneous studies. Under a general likelihood inference setting, we theoret-

ically show that the proposed approach is asymptotically as efficient as the max-

imum likelihood approach using individual participant data (IPD) from all the

studies. But unlike the IPD analysis, the proposed approach only uses summa-

ry statistics and does not require individual-level data. In addition, we show that

our approach is robust in the sense that the resulting estimator remains consistent

even if the covariance estimates from the studies are misspecified. These desir-

able properties are confirmed numerically in the analysis of the data simulated

from the randomized clinical trials setting and the flight landing data collected

by the FAA. These developments are presented in Chapter 2.

• to address Problem 2 involving rare events studies, we obtain p-value functions

from the exact tests associated with each of the studies. These p-value functions

can be viewed as confidence distributions in asymptotic sense. We propose to

combine these p-value functions. This idea yields a new class of meta-analysis

methods for making exact inference on the common parameter in a series of s-

tudies. In rare events settings, the proposed approach can utilize all available

data without using any artificial corrections for zero events. For zero total event

studies, this approach can capture the appreciable difference between the effects

from large and small studies, distinguishing, for example, a zero total event study

with 1000 cases and 1000 controls from that with 10 cases and 10 controls. An

explicit formula is established for determining the type I error rate of the overall

test from the tests associated with individual studies. This allows us to evalu-

ate the performance of our approach and devise further adjustments to improve

the power of the overall inference. In addition to the previous desirable small

sample properties, our approach is also shown to be efficient in a large sample

setting. Numerical examples using simulated and real data on the inference of

odds ratio show that, in the setting of rare events, our approach is superior to the

Mantel-Haenszel, Peto and classical conditional methods. These developments
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are presented in Chapter 3.

The rest of this dissertation is organized as follows. In order to address Problem 1

that involves heterogeneous studies, we propose in Chapter 2 a new meta-analysis ap-

proach for combining summary statistics from independent studies. We show that the

proposed approach has the following properties: i) it can integrate indirect evidence; ii)

it does not have any asymptotic efficiency loss compared to the IPD analysis; iii) it is

robust to misspecification of covariance estimates. In order to address Problem 2 that

involves rare events studies, we propose in Chapter 3 a new meta-analysis approach for

combining studies with discrete data. We show that the proposed approach has the fol-

lowing properties: i) it enables us to make exact inference for the common parameter

across the studies; ii) in the rare events setting, it enables us to incorporate all available

data in the analysis without using artificial continuity corrections for zero events; iii) it

is efficient in a large sample setting, under some mild conditions. The dissertation is

concluded in Chapter 4 with some additional remarks on the role confidence distribu-

tions have played in our developments. Additionally, we include in Appendix A a brief

review on the notions of confidence distribution.
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Chapter 2

An Efficient Meta-Analysis Approach Using Summary
Statistics in the Presence of Heterogeneous Studies

2.1 Introduction

Traditionally, meta-analysis is performed by combining the summary statistics from

relevant studies, such as weighting study-specific point estimates for the parameter of

interest. On the other hand, collecting individual-level data from original studies is

widely regarded as the “gold standard” approach to meta-analysis (Sutton and Hig-

gins, 2008; Lin and Zeng, 2010). But retrieving individual-level data is formidable,

unaffordable, and even impossible in many situations. A nature question is whether or

not combining summary statistics has efficiency loss, compared to analyzing the orig-

inal data on individual participants. This question is of both practical and theoretical

importance, and it has been investigated in the literature in various settings. See, e.g.,

Olkin and Sampson (1998), Mathew and Nordstrom (1999), Simmonds and Higgins

(2007), and Lin and Zeng (2010), among others. In particular, Lin and Zeng (2010)

showed that, in general, there is no asymptotic efficiency loss by analyzing summary

statistics under certain conditions. But in the presence of heterogeneous studies, the

question on relative efficiency of analyzing summary statistics versus individual-level

data becomes more challenging and remains unanswered.

In many practical occasions, the studies collected for meta-analysis are often found

to be heterogeneous. As pointed out in Sutton and Higgins (2008), the heterogeneity

may arise from the differences among the studies in i) populations, such as study-

specific effects; ii) designs, such as missing covariate designs; or iii) outcomes, such
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as mixed response types. All these types of heterogeneity lead to parameter hetero-

geneity among the studies in the sense that the estimable parameters are different from

one study to another. In this situation, the parameter of meta-analytic interest may

not be estimable in some of the studies. Since such studies do not provide direct in-

ference information, such as point estimates, for the parameter of interest, they are

often excluded from the conventional meta-analysis. Clearly, this practice can lead to

non-negligible, or even substantial, loss of efficiency. To overcome this problem, we

propose in this chapter a meta-analysis approach that can incorporate in the analysis

all the studies, including heterogeneous studies. Under a general likelihood inference

framework, which adapts to parameter heterogeneity, we theoretically show that the

proposed approach is asymptotically as efficient as the maximum likelihood approach

using individual-level data from all the studies. But unlike the IPD analysis, our ap-

proach only needs summary statistics from relevant studies and does not require the

individual-level data.

To exemplify the problem discussed above, we consider the following fixed-effects

linear model for K independent studies:

Yi j = αi +β1Xi j +β2Zi j +β3Zi jXi j + εi j, i = 1, . . . ,K, j = 1, . . . ,ni, (2.1)

where Yi j is the response for the j-th subject in the i-th study, Xi j denotes the treatment

status (1/0 for treatment/control), Zi j is the covariate of interest (e.g., drug dosage),

and the noise variable εi j ∼ N(0,σ2
i ). Here, αi’s are the study-specific effects and

βββ = (β1,β2,β3)
T is the common effect. This model is often used in meta-analysis

of randomized clinical trials to examine the covariate effect, in addition to the treat-

ment effect (Simmonds and Higgins, 2007). Using this model, Simmonds and Hig-

gins (2007) investigated the power of different meta-analysis methods in detecting the

treatment-covariate interaction effect β3. They showed that the conventional meta-

analysis method, simply weighting the point estimates of β3 from each of the studies,
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suffers loss of power, or equivalently, efficiency. Lin and Zeng (2010) showed that this

loss of efficiency can be avoided if the point estimates of the vector parameter βββ are

combined using the inverse of the corresponding covariance matrix as the weight. But

both of these methods break down when heterogeneity is present among the studies, as

illustrated in the following examples.

Example 2.1 (study-specific effects). The heterogeneity in populations across the s-

tudies is often captured by study-specific parameters. These parameters are of interest

when the study-specific inference is part of the research goal. For example, in medical

research, it is often of interest to make inference for some subpopulations, in addition to

the whole population. In this case, the study-specific parameters, such as αi’s in model

(2.1), can represent different population characteristics, such as location, climate, race

and others. However, it is important to note that the parameter α1 is not estimable

in Study 2, · · · , Study K. Thus, these studies can not be utilized in the conventional

meta-analysis for making inference on α1.

Example 2.2 (missing covariate designs). Missing covariate designs can be encoun-

tered frequently since the studies from different sources may not have exactly the same

research goal. As a result, some studies may not design the covariate that is of current

meta-analytic interest, as noted in Simmonds and Higgins (2007). For example, if S-

tudy 1 is not aimed to examine the effect of the covariate Z1 j (e.g., drug dosage), then

the Z1 j values of all the subjects in this study are often controlled at a fixed level (e.g.,

same dosage), say Z1 j ≡ z1. In this situation, model (2.1) becomes

Y1 j = (α1 + z1β2)+(β1 + z1β3)X1 j + ε1 j, j = 1, . . . ,n1, (2.2)

for Study 1. As Simmonds and Higgins (2007) pointed out, the interaction effect β3 is

not estimable here, and Study 1 can not be utilized in the conventional meta-analysis

for making inference on β3.
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Example 2.3 (mixed response types). A challenging problem in meta-analysis is how

to combine studies with different response types. This problem arises when the studies

have different data report policies. For example, even when the underlying outcome of

interest is indeed continuous (e.g., blood loss in women labor), some studies may only

report binary outcomes (e.g., “severe” or “not severe”), depending on the underlying

continuous outcome exceeding a prefixed threshold or not (see, e.g., Whitehead, Bailey,

and Elbourne, 1999). Suppose that Study 1 only reports binary response d1 j in such a

way that d1 j = 1 if y1 j ≥ τ1 and d1 j = 0 otherwise, where τ1 is the prefixed threshold.

It is straightforward to show that model (2.1) reduces to the following probit model:

Pr(d1 j = 1) = Φ
(

α1 − τ1

σ1
+

β1

σ1
X1 j +

β2

σ1
Z1 j +

β3

σ1
Z1 jX1 j

)
, j = 1, . . . ,n1, (2.3)

for Study 1. Again, the interaction effect β3 is not estimable here, and Study 1 can not

be utilized in the conventional meta-analysis for making inference on β3.

Examples 2.1, 2.2 and 2.3 exemplify the situations when the parameter of interest

is not estimable in some of the studies, due to the heterogeneity in populations, design-

s, and outcomes, respectively. Such studies do not provide summary information, such

as point estimates, for the parameter of interest, and thus they are typically exclud-

ed from the conventional meta-analysis. But it is important to note that the problem

here involves multiple parameters, and, through the correlation, the information for

one parameter can potentially contribute to the inference for one another. In fact, het-

erogeneous studies contain indirect but valuable information, which can be absorbed

in the analysis if individual-level data are available for all the relevant studies. In this

situation, inference can be made based on multiplying individual-level likelihood func-

tions from all the studies. Although this so-called IPD method is regarded as the “gold

standard” for combining information in the literature, its implementation is difficult,

costly, and often impractical for various reasons, including data confidentiality issues

and reluctance of original researchers to release the full data.
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Now, an important question has been raised: can we retain full efficiency using

only summary statistics to perform meta-analysis in the presence of heterogeneous s-

tudies? The answer is affirmative. In this article, we propose a meta-analysis approach

that can incorporate all the studies in the analysis. This approach only needs summary

statistics, namely, the estimates of estimable parameters and the estimate of the corre-

sponding covariance matrix. Under a general likelihood inference setting, which adapts

to parameter heterogeneity, we theoretically show that the estimator derived from the

proposed approach is asymptotically as efficient as the IPD estimator. Hence, there is

no asymptotic efficiency loss by analyzing summary statistics. This theoretical con-

clusion is broader than those established in Olkin and Sampson (1998), Mathew and

Nordstrom (1999), and Lin and Zeng (2010), in the sense that the settings considered

in those papers are special cases of the broad setting considered in the present chapter.

The proposed approach combines confidence density functions from relevant stud-

ies. The concept of confidence density and its cumulative counterpart, confidence dis-

tribution, has been developed extensively in recent years. See, e.g., Efron (1993, 1998),

Schweder and Hjort (2002), Singh, Xie, and Strawderman (2005, 2007), and Xie, S-

ingh, and Strawderman (2011). A comprehensive review for the modern definition and

interpretation of this concept is provided in Xie and Singh (2012). Simply speaking, the

confidence distribution (density) uses a sample-dependent distribution (density) func-

tion to estimate the parameter of interest. It is a pure frequentist concept, and it can

be regarded as a frequentist counterpart to the posterior distribution in Bayesian infer-

ence. In the context of this chapter, we utilize a key feature of the confidence density

function, that is, it can preserve, carry and integrate the correlation information among

multiple effects. This advantage can also be seen in Tian et al. (2010), where the con-

fidence density is used to make joint inference about a set of constrained parameters in

survival analysis.
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This chapter also establishes an important robustness property of our proposed ap-

proach. Under mild conditions, we show that our approach is still valid if the covari-

ance matrices estimates obtained from the studies are misspecified. More specifically,

the resulting estimator remains consistent and asymptotically normal with a “sand-

wich” limiting covariance matrix. This asymptotic result in essence follows the theory

for generalized estimating equations, which is first proposed in Liang and Zeger (1986)

and further elaborated in Xie and Yang (2003) for different asymptotic settings. The

established robustness property ensures that heterogenous studies can still be analyzed

using our approach in the situation of misspecification of covariance matrices in sum-

mary statistics. Therefore, indirect evidence can remain in our analysis to improve the

efficiency of inference. The robustness property considerably broadens the applicabil-

ity of our approach. In particular, we show that it applies to the situation when only

estimates of the variances, rather than the full covariance matrices, of the parameter

estimates are available from the studies.

The rest of this chapter is organized as follows. In Section 2.2, we set up a general

likelihood inference framework that can adapt to parameter heterogeneity, propose a

meta-analysis approach that can incorporate heterogeneous studies, and theoretically

show that the proposed approach is asymptotically as efficient as the IPD approach. In

Section 2.3, we establish a robustness property of our approach and illustrate one of

its important applications. The theoretical results established in Section 2.2 and 2.3

are numerically confirmed in the analysis of i) the simulated data from a randomized

clinical trials setting, as presented in Section 2.4, and ii) the real data on flight landing

retrieved from FAA, as presented in Section 2.5. Finally, we provide a discussion in

Section 2.6 on methodological and practical implications of the development in this

chapter.
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2.2 Methodology

2.2.1 A general likelihood inference framework

Consider K independent studies, with ni participants in the i-th study. Under fixed-

effects models, we denote the effects of interest in the K studies by a p× 1 vector

parameter θθθ = (θ1, . . . ,θp)
T . For the i-th study, suppose that the likelihood function

Li(θθθ) depends on θθθ only through a pi×1 (pi ≤ p) vector parameter γγγ i = fff i(θθθ), namely

Li(θθθ) ≡ L∗
i ( fff i(θθθ)) ≡ L∗

i (γγγ i) for any value of θθθ . Here, fff i : Rp → Rpi is a smooth

function. We also assume that the likelihood function L∗
i (γγγ i) is identifiable with respect

to the parameter γγγ i in the sense that it can not be written in terms of a smaller set of γγγ i.

Typically, the function fff i is determined by the nature of the i-th study. For example,

in model (2.1), we can let θθθ = (α1, . . . ,αK,βββ )T , γγγ i = (αi,βββ )T , and the function fff i is

self-apparent.

Let γ̂γγ i = argmaxγγγ i L∗
i (γγγ i) be the maximum likelihood estimate of γγγ i obtained from

the i-th study. Denote the observed information matrix by Γi(γγγ i)=−∂ 2 logL∗
i (γγγ i)/∂γγγ i∂γγγT

i .

Let Σ̂i = Γ−1
i (γ̂γγ i) be the estimated covariance matrix for γ̂γγ i. We treat γ̂γγ i and Σ̂i as

summary statistics from the i-th study throughout this chapter, unless stated explicitly

otherwise. We consider the asymptotics when K is fixed and ni goes to infinity. Write

n = ∑K
i=1 ni, and assume that ni/n → ci ∈ (0,1) as n → ∞. Assume that the regularity

conditions in Chapter 6.5 of Lehmann and Casella (1998) hold. Then, Γi(γγγ i)/ni → Ii in

probability and n−1/2
i {∂ logL∗

i (γγγ i)/∂γγγ i}→ MN(000, Ii) in distribution, as ni → ∞. Here,

Ii is the pi× pi Fisher information matrix, and “MN” stands for multivariate normal dis-

tribution. When nuisance parameters are in presence, L∗
i (γγγ i) can be viewed as profile

likelihood function, and the regularity conditions can be replaced by those in Murphy

and van der Vaart (2000).

This likelihood inference framework enables us to investigate the relative efficien-

cy of analyzing summary statistics versus individual-level data to a broad extent. It

subsumes virtually all commonly used parametric and semiparametric models. It also
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allows different likelihood functions among the studies, and the likelihood functions

are not necessarily from regression models. More importantly, the framework here can

adapt to a large scope of heterogeneous studies, since fff i can be any complex function

satisfying some mild smoothness conditions. The key here is that we establish explic-

it connections between the estimable parameters γγγ i’s in different studies by using the

“link functions” fff i’s to link γγγ i’s to the same vector parameter θθθ . In fact, the setting

considered in Lin and Zeng (2010) can be viewed as a special case of this framework

when fff i’s are all identical transformations. Thus, our methodological and theoretical

development in the next section reaches far beyond the scope of Lin and Zeng (2010).

2.2.2 Combining confidence density functions

Based on the results in Chapter 5 of Singh et al. (2007), the density function of MN(γ̂γγ i, Σ̂i)

is a confidence density for the parameter γγγ i asymptotically. In other words, we use the

density function of MN(γ̂γγ i, Σ̂i) as an estimator for the parameter γγγ i. Denote this density

function by hi(γγγ i;SSSi), where SSSi represents the sample in the i-th study. Specifically,

hi(γγγ i;SSSi) =
1

(2π)pi/2|Σ̂i|1/2
exp
{

1
2
(γγγ i − γ̂γγ i)

T Σ̂−1
i (γγγ i − γ̂γγ i)

}
, i = 1, . . . ,K. (2.4)

Singh et al. (2007) showed that this sample-dependent density function contains wealthy

information for frequentist inference. For example, the “central region” of this density

function is a confidence region for γγγ i asymptotically, where the “central region” can

be defined using the notion of data depth (see, e.g., Liu, Parelius, and Singh, 1999).

Moreover, the marginal density function derived from hi(γγγ i;SSSi) can be used to obtain

confidence intervals for the corresponding component of γγγ i. It is important to note that

the confidence density function hi(γγγ i;SSSi) is constructed solely based on the summary

statistics γ̂γγ i and Σ̂i.

We propose to combine the confidence density functions hi(γγγ i;SSSi), i = 1, . . . ,K, in
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the same way as we combine likelihood functions for inference. Specifically, let

h(θθθ ;SSS1, . . . ,SSSK) =
K

∏
i=1

hi(γγγ i;SSSi) =
K

∏
i=1

hi( fff i(θθθ);SSSi). (2.5)

For notational ease, we suppress the samples SSS1, . . . ,SSSK in all confidence density func-

tions hereafter. For example, we write h(θθθ)≡ h(θθθ ;SSS1, . . . ,SSSK) and hi( fff i(θθθ))≡ hi( fff i(θθθ);SSSi).

Now, we obtain a point estimator by maximizing the multiplied confidence density

function h(θθθ), namely

θ̂θθCD = argmax
θθθ

h(θθθ). (2.6)

The asymptotic properties of θ̂θθCD are presented in the following theorem.

Theorem 2.1. Under some regularity conditions, the estimator θ̂θθCD obtained from

(2.6) satisfies that:

(a) The estimator θ̂θθCD is consistent and asymptotically normally distributed:

n1/2(θ̂θθCD −θθθ) d−→ MN

000,

{
K

∑
i=1

ciJi(θθθ)T IiJi(θθθ)

}−1
 . (2.7)

where Ji(θθθ) = ∂ fff i(θθθ)/∂θθθ T is the Jacobian of the function fff i with respect to θθθ .

(b) The covariance matrix of n1/2(θ̂θθCD − θθθ) can be consistently estimated by nΣ̂CD,

where

Σ̂CD =

{
− ∂ 2

∂θθθ∂θθθ T logh(θ̂θθCD)

}−1

. (2.8)

On the other hand, if individual-level data are available, the IPD estimator can be

obtained by maximizing the multiplied likelihood function L(θθθ) = ∏K
i=1 Li(θθθ), namely

θ̂θθ IPD = argmax
θθθ

L(θθθ). (2.9)

Under some regularity conditions, the IPD estimator θ̂θθ IPD is consistent and we show
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in Appendix that it is asymptotically normally distributed:

n1/2(θ̂θθ IPD −θθθ) d−→ MN

000,

{
K

∑
i=1

ciJi(θθθ)T IiJi(θθθ)

}−1
 . (2.10)

Moreover, the covariance matrix of n1/2(θ̂θθ IPD − θθθ) can be consistently estimated by

nΣ̂IPD, where

Σ̂IPD =

{
− ∂ 2

∂θθθ∂θθθ T logL(θ̂θθ IPD)

}−1

. (2.11)

The results in (2.7)and (2.10) show that the estimators θ̂θθCD and θ̂θθ IPD have the same

limiting covariance matrix. Hence, we have established the following theorem.

Theorem 2.2. The estimator θ̂θθCD is asymptotically as efficient as the IPD estimator

θ̂θθ IPD.

Theorem 2.2 states that, under the general likelihood inference framework intro-

duced in Section 2.2.1, analyzing summary statistics using our proposed approach has

no asymptotic efficiency loss compared to analyzing individual-level data using the

IPD approach.

In the literature, there is a great endeavor in examining the relative efficiency of

using summary statistics versus IPD in meta-analysis. For some special settings, Olkin

and Sampson (1998) and Mathew and Nordstrom (1999) theoretically showed that

there is no efficiency loss by analyzing summary statistics. Lin and Zeng (2010) made

the same conclusion under a general likelihood inference setting. But Lin and Zeng

(2010) focused on a common parameter that is estimable in all the studies, and the

meta-analysis approach under their investigation is essentially a linear weighting of

point estimators. The development in this chapter is broader. It does not require that

the parameter θθθ be estimable in each of the studies. This allows us to include a broad

class of heterogenous studies in the analysis. Moreover, the proposed approach of com-

bining confidence density functions is fundamentally different from linearly weighting

point estimators. It can process the summary statistics for γγγ i = fff i(θθθ) efficiently for any



16

complex function fff i satisfying mild smoothness conditions. In fact, the main result in

Section 2.1 of Lin and Zeng (2010) is a special case in this chapter by letting fff i be

identity transformations of θθθ , for all i = 1, . . . ,K.

In a special case when fff i’s are all linear functions of θθθ , the estimator θ̂θθCD in (2.6)

has an explicit solution:

θ̂θθCD =

(
K

∑
i=1

JT
i Σ̂−1

i Ji

)−1( K

∑
i=1

JT
i Σ̂−1

i γ̂γγ i

)
. (2.12)

Here Ji = Ji(θθθ), i = 1, . . . ,K, are deterministic matrices, not depending on θθθ . In this

case, the estimator θ̂θθCD in (2.12) is identical to the estimator derived using the multi-

variate generalized least squares approach proposed by Becker and Wu (2007). Hence,

the multivariate generalized least squares approach can also be considered as a special

case of our approach.

We have shown that θ̂θθCD has the same asymptotic properties as θ̂θθ IPD. Moreover,

the formulas (2.8) and (2.11) for estimating corresponding covariance matrices are

also similar. To close this section, we show that these similarities are not coincident. In

fact, they stem from an inherent connection between the confidence density function

hi(γγγ i) ≡ hi( fff i(θθθ)) and the likelihood function Li(θθθ), which is revealed in the next

lemma.

Lemma 2.1. The gradient of the log-confidence density function loghi(γγγ i)≡ loghi( fff i(θθθ)),

with respect to θθθ , is asymptotically equivalent to the score function sssi(θθθ)= ∂ logLi(θθθ)/∂θθθ .

More precisely,

∂ loghi( fff i(θθθ))
∂θθθ

= Ji(θθθ)T Σ̂−1
i (γ̂γγ i − fff i(θθθ)) = sssi(θθθ)+op(1), i = 1, . . . ,K. (2.13)

Lemma 2.1 has an important implication; that is, solving the estimating equation

K

∑
i=1

∂ loghi( fff i(θθθ))
∂θθθ

= 000 (2.14)
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is asymptotically equivalent to solving the estimating equation

K

∑
i=1

sssi(θθθ) = 000. (2.15)

Since θ̂θθCD is a solution to Equation (2.14) and θ̂θθ IPD is a solution to Equation (2.15),

these two estimators have the same asymptotic properties with no wonder.

2.2.3 Efficiency gain of utilizing indirect evidence

The proposed approach of combining summary statistics can integrate direct as well as

indirect evidence, whereas the conventional meta-analysis approach generally ignores

indirect evidence. In this section, we theoretically examine the relative efficiency of

our approach versus the conventional approach. We demonstrate that the utilization of

indirect evidence can achieve asymptotic efficiency gain. Without loss of generality,

we consider a setting where γγγ i = (αi,βββ ), for i = 1, . . . ,K. Here, αi’s are the study-

specific parameters and βββ is the common vector parameter. This setting is used widely

in parametric and semiparametric models. See, e.g., the examples in Simmonds and

Higgins (2007) and Lin and Zeng (2010). It also subsumes Model (2.1) in the intro-

duction section, and thus the results presented in this section apply to Example 2.1, 2.2

and 2.3.

First, suppose the study-specific parameters αi’s are of interest (see Example 2.1 for

instance). The following corollary shows that our proposed estimator α̂i,CD is asymp-

totically more efficient than the study-specific estimator α̂i. In the following, we in-

clude the IPD estimator as a benchmark in the comparison, and the notation “aVar”

stands for asymptotic variance.

Corollary 2.1. The asymptotic variances of the proposed estimator α̂i,CD, the IPD

estimator α̂i,IPD and the study-specific estimator α̂i satisfy that

aVar(α̂i,CD) = aVar(α̂i,IPD)≤ aVar(α̂i), i = 1, . . . ,K. (2.16)
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Corollary 2.1 clearly shows the efficiency gain of our proposed estimator α̂i,CD

over the study-specific estimator α̂i. This implies that, for estimating the study-specific

parameter αi, the j-th study ( j ̸= i) can also make contribution. This seems surprising

considering that the j-th study does not involve the parameter αi and it is independent

of the i-th study. However, it is important to realize that the i-th and j-th studies

share a common parameter βββ , and that the information for αi and βββ is often correlated

within the i-th study. When the estimation of βββ is improved in the combination of

multiple studies, the estimation of αi can also be improved through the correlation.

In other words, the common parameter βββ serves as a catalyst that enables borrowing

information from other studies for estimating the study-specific parameter αi in the

i-th study. This phenomenon of borrowing strength from indirect evidence is not well

appreciated in current meta-analysis practice, where the study-specific estimators α̂i’s

are often reported as the final estimators. Our simulation studies in Section 2.4 show

that this ignorance of indirect evidence leads to substantial loss of efficiency. On the

other hand, our proposed approach utilizes all the studies to estimate the study-specific

parameter αi in the i-th study, and Corollary 2.1 shows that the proposed estimator

α̂i,CD is asymptotically as efficient as the IPD estimator α̂i,IPD. This implies that our

approach fully integrates the correlation between the summary statistics for αi’s and

βββ . The simulation studies in Section 2.4 and real data analysis in Section 2.5 show that

α̂i,CD is numerically quite close to α̂i,IPD.

Now, we consider the estimation of a common scalar parameter η = g(βββ ), where

g is a scalar function of the common parameter vector βββ (see Example 2.2 and 2.3

for instance, where η = β3). The conventional meta-analysis approach combines the

study-specific estimators η̂i = g(β̂ββ i) using wi = 1/âVar(η̂i) as the weights, provided

the estimate η̂i is available from the i-th study. More specifically, the conventional

estimator η̂cvt = ∑K
i=1 wiη̂i/∑K

i=1 wi. The following corollary shows that our proposed

estimator is asymptotically more efficient than the conventional estimator η̂cvt .

Corollary 2.2. The asymptotic variances of the proposed estimator η̂CD = g(β̂ββCD), the
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IPD estimator η̂IPD = g(β̂ββ IPD) and the conventional estimator η̂cvt satisfy that

aVar(η̂CD) = aVar(η̂IPD)≤ aVar(η̂cvt). (2.17)

Corollary 2.2 shows the efficiency gain of our proposed estimator η̂CD over the

conventional estimator η̂cvt . The latter has efficiency loss because it does not fully u-

tilize the correlation between the components of β̂ββ i in the combination. This finding

is also confirmed in Simmonds and Higgins (2007) and Lin and Zeng (2010). Corol-

lary 2.2 also shows that our proposed estimator η̂CD is asymptotically as efficient as

the IPD estimator η̂IPD. This implies that our approach fully integrates the correlation

information.

2.3 Robustness to misspecification of covariance matrices

In this section, we show that our proposed approach is robust in the sense that it remains

valid even if the covariance matrices Σ̂i, i = 1, . . . ,K, are misspecified. The resulting

estimator of θθθ remains consistent with appropriately adjusted limiting covariance ma-

trix. Moreover, heterogeneous studies can still be analyzed using our approach, and

indirect information can be utilized to increase the efficiency of inference. The ro-

bustness property greatly enhances the flexibility of our approach in applications. In

particular, we show that the robustness property has an important application to the

situation when only the estimates of the variances, rather than the full covariance ma-

trices, of γ̂γγ i are reported.

Let Σ̂i,W denote a “working” covariance matrix of γ̂γγ i in the i-th study. Assume

that Σ̂i,W satisfies that i) it fulfills the requirement of being a covariance matrix; and ii)

(niΣ̂i,W )−1 → Ai in probability as ni → ∞, where Ai is a fixed matrix. In this section,

we use (γ̂γγ i, Σ̂i,W ) in place of (γ̂γγ i, Σ̂i) as summary statistics and justify that our proposed

approach remains valid. Specifically, denote by θ̂θθW the new estimator obtained from

(2.6) by replacing Σ̂i with Σ̂i,W in (2.5). The next theorem shows that θ̂θθW is consistent
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and asymptotically normally distributed with a “sandwich” covariance matrix.

Theorem 2.3. Under some regularity conditions, the estimator θ̂θθW is consistent and

asymptotically normally distributed:

n1/2(θ̂θθW −θθθ) d−→ MN(000,∆) , (2.18)

where

∆ =

{
K

∑
i=1

ciJi(θθθ)T AiJi(θθθ)

}−1{ K

∑
i=1

ciJi(θθθ)T AiI−1
i AiJi(θθθ)

}{
K

∑
i=1

ciJi(θθθ)T AiJi(θθθ)

}−1

.

(2.19)

The covariance of θ̂θθW given in Theorem 2.3 can be estimated by

{
K

∑
i=1

Ji(θ̂θθW )T Σ̂−1
i,wJi(θ̂θθW )

}−1{ K

∑
i=1

Ji(θ̂θθW )T Σ̂−1
i,wĈov(γ̂γγ i)Σ̂

−1
i,wJi(θ̂θθW )

}{
K

∑
i=1

Ji(θ̂θθW )T Σ̂−1
i,wJi(θ̂θθW )

}−1

,

where Ĉov(γ̂γγ i) = {γ̂γγ i − fff i(θ̂θθW )}{γ̂γγ i − fff i(θ̂θθW )}T .

The proof of Theorem 2.3 is straightforward if we notice that the estimating equa-

tion (2.14) changes to

K

∑
i=1

∂ loghi( fff i(θθθ))
∂θθθ

=
K

∑
i=1

Ji(θθθ)T Σ̂−1
i,W (γ̂γγ i − fff i(θθθ)) = 000. (2.20)

Since γ̂γγ i is an asymptotically unbiased estimator of fff i(θθθ), the solution to the above

estimating equation holds consistency and asymptotic normality even if Σ̂i,W ̸= Σ̂i.

This robustness essentially follows the asymptotic theory for generalized estimating

equations (GEE), that is, the solution to a GEE remains consistent and asymptotically

normal when the second moment (covariance matrix) of the response is misspecified,

provide only that the first moment (mean) of the response is correctly specified (see,

e.g., Liang and Zeger, 1986; Fahrmeir and Tutz, 2001, pp 119-129; Xie and Yang,

2003). Note that, different from Liang and Zeger (1986), the result in Theorem 2.3

is establish when ni → ∞ but K is fixed. This asymptotic setting is considered in Xie
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and Yang (2003). Similar to the GEE approach, although the specification of Σ̂i,W does

not alter the consistency, it determines the efficiency of the estimator θ̂θθW . Generally

speaking, θ̂θθW has higher efficiency when Σ̂i,W is closer to Σ̂i. If Σ̂i,W = Σ̂i, θ̂θθW = θ̂θθCD

and it is asymptotically as efficient as the IPD estimator θ̂θθ IPD.

The robustness of our approach has important applications. In many publications,

the authors report the estimates of the variances, rather than the full covariance matrix,

for the corresponding point estimates of relevant parameters. In the following, we show

that our approach can be applied given only the variance estimates, and furthermore,

it can achieve greater efficiency with suitably chosen working correlation matrices. To

see this more clearly, we let the working covariance matrix be

Σ̂i,W = V̂ 1/2
i Ri,W (ϕ)V̂ 1/2

i , (2.21)

where V̂i = diag{Σ̂i} is a pi × pi diagonal matrix whose diagonal entries are the esti-

mates of the variances of each component of γ̂γγ i, and Ri,W (ϕ) is a working correlation

matrix fully characterized by a (possibly vector-valued) parameter ϕ . This specification

of working covariance matrices is similar to that in Liang and Zeger (1986) proposed

for longitudinal data analysis. Note that V̂i is available from most publications. The-

orem 2.3 guarantees that the resulting estimator θ̂θθW is consistent with any choice of

Ri,W (ϕ̂), provided that ϕ̂ is a consistent estimator of ϕ given θθθ . Here, ϕ̂ only needs be

consistent for some ϕ , not the true ϕ0, which does not exist for a working correlation

matrix.

The working correlation matrix Ri,W (ϕ) can be chosen as a compromise between

simplicity and loss of efficiency due to incorrect specification. Liang and Zeger (1986)

provided several choices of Ri,W (ϕ) for longitudinal data analysis. In the context of

meta-analysis, we provide in the following some choices of Ri,W (ϕ). Note that more

elegant choice is possible based on the particular setting of the problem.
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Example 2.4. Let Ri,W (ϕ) = Ri,0, any given correlation matrix. For any Ri,0, the re-

sulting estimator θ̂θθW is consistent. Obviously, choosing Ri,0 closer to the true correla-

tion matrix of γ̂γγ i gives increased asymptotic efficiency. The simplest choice of Ri,0 is

the identity matrix (i.e., using a working independence assumption), and in this case

Σ̂i,W = V̂i. In our simulation studies, we show that the study designs, typically reported

in the publications, can provide useful information for choosing Ri,0 to achieve greater

efficiency.

Example 2.5. Let Ri,W (ϕ) be totally unspecified, that is, ϕ contains pi(pi − 1)/2 pa-

rameters. Then Ri,W can be estimated by

R̂i,W =
1

|κ(i)| ∑
j∈κ(i)

V̂−1/2
j {γ̂γγ j − fff j(θ̂θθW )}{γ̂γγ j − fff j(θ̂θθW )}TV̂−1/2

j , (2.22)

where κ(i) is the index set that contains all the indexes j such that γ̂γγ j has the same

correlation structure as γ̂γγ i, and |κ(i)| is the cardinality of the set κ(i). Obviously, R̂i,W

is not consistent unless |κ(i)| goes to infinity. This is also similar to the GEE approach

where the number of clusters must go to infinity to yield a consistent estimator of the

correlation (see, e.g., Liang and Zeger, 1986).

We stress that the robustness property ensures the utilization of heterogeneous stud-

ies in our analysis when correlation information is unavailable. Again, this is different

from the conventional meta-analysis method which exclude those studies. Apparently,

the utilization of all available information, including indirect evidence, can improve

the overall inference. Our simulation studies in the next section show that the simplest

independence working correlation matrices (i.e., identity matrices) yield unbiased esti-

mators for all parameters of interest, including those non-estimable in individual stud-

ies. Furthermore, our simulation studies also show that well chosen working correla-

tion matrices, such as those obtained from design-driven or data-driven methods, can

lead to highly efficient inference.
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To end this section, we point out that, when Σ̂i,W is not equivalent to Σ̂i asymp-

totically, the density function hi(γγγ i) in (2.4) with Σ̂i,W replacing Σ̂i is not a confidence

density for the parameter γγγ i asymptotically. When Σ̂i,W = V̂i, hi(γγγ i) can be regarded

as a pseudo confidence density for the parameter γγγ i in the same spirit of the pseudo

likelihood function (Cox and Reid, 2004).

2.4 Simulation studies

We conduct simulation studies to numerically examine the theoretical results estab-

lished in Section 2.2 and 2.3. We mimic meta-analysis of randomized clinical trials,

and simulate K = 3 independent studies using model (2.1) as described in the section

of introduction. For the i-th study, the treatment indicator Xi j is 1 with 50% probabil-

ity, the covariate Zi j (e.g., drug dosage) has three levels of 1, 2 and 5, and each level

is assigned to ni/3 subjects. In the following, we modify the design of Study 1 and

make it different from the other two studies. Then, we analyze the three studies us-

ing the conventional meta-analysis method, the IPD method and the proposed method.

The results are based on 1000 replicates when n1 = n2 = n3 = 150 and the parameters

α1 =−1,α2 = 0,α3 = 1,β1 = 1,β2 = 2,β3 =−1, σ1 = 3,σ2 = 4 and σ3 = 3.

For the first part of the simulation study, we let Study 1 have a missing covariate

design, as described in Example 1. Specifically, we set the covariate Z1 j at a fixed

level, say, Z1 j ≡ 1 for all j = 1, . . . ,n1. This mimics the situation where a clinical trial

is designed to solely examine the treatment effect and thus control the variable Z1 j to

eliminate the covariate effect. In this case, as shown in Example 1, the model for Study

1 reduces to model (2.2). The estimable parameter γγγ1 = (α1 +β1,β1 +β3)
T , and γγγ1

can be linked to θθθ = (α1,α2,α3,β1,β2,β3)
T through a self-apparent function fff 1. It is

clear that the situation here fits into the general likelihood inference setting in Section

2.2.1, and Study 1 can be included in the analysis using the proposed approach. The

analysis results are presented in Table 2.1.
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Table 2.1: Meta-analysis in the presence of a study with missing covariate design

Conventional Method IPD Method Proposed Method

Parameters Mean SE SEE Mean SE SEE Mean SE SEE

α1 NA NA NA -1.00 0.37 0.37 -1.00 0.37 0.37

α2 0.01 0.86 0.86 0.01 0.51 0.51 0.01 0.51 0.51

α3 1.01 0.64 0.65 1.01 0.46 0.46 1.01 0.46 0.47

β1 0.98 0.73 0.73 0.99 0.51 0.50 0.99 0.51 0.50

β2 2.00 0.17 0.16 2.00 0.16 0.15 2.00 0.16 0.15

β3 -1.00 0.23 0.23 -1.00 0.20 0.20 -1.00 0.20 0.20

Remark: Mean = mean parameter estimates; SE = standard error; SEE = mean standard

error estimates.

Table 2.1 shows that our proposed approach enables estimation of α1 that is not

estimable in Study 1. For all the slope parameters, our estimators are nearly unbiased,

and the estimated standard errors are almost identical to the empirical standard errors.

In comparison with the IPD method, our method yields virtually identical results in

terms of point estimation and standard error estimation. This confirms that our method

and the IPD method have similar numerical performance even when the sample sizes

are moderate. On the other hand, Table 2.1 shows that the conventional method is defi-

cient. It can not analyze Study 1 due to the heterogeneity, and it is not able to estimate

the associated parameter α1. The standard errors of the estimates for the study-specific

parameters α2 and α3 and the common parameter β1 are considerably larger than those

obtained from our proposed method. This indicates a great loss of efficiency, resulting

from the failure to fully utilize Study 1 and the correlation information.

As the second part of the simulation study, we let Study 1 have dichotomized re-

sponses, as described in Example 2.3. Specifically, we create binary responses d1 j
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in such a way that d1 j = 1 if the observation y1 j ≥ 4 and d1 j = 0 otherwise, for

j = 1, . . . ,n1. Then, we discard all original continuous responses y1 j and only keep

the binary responses d1 j for analysis. This mimics the situation where a clinical cen-

ter routinely reports “censored” outcomes instead of the original outcomes. In this

case, as shown in Example 2, the model for Study 1 reduces to model (2.3). The es-

timable parameter γγγ1 = ((α1 −4)/σ1,β1/σ1,β2/σ1,β3/σ1)
T , and γγγ1 can be linked to

θθθ = (α1,α2,α3,β1,β2,β3,σ1)
T through a self-apparent function fff 1. Note that fff 1 is a

non-linear function in this case. Again, the situation here fits into the general likelihood

inference setting in Section 2.2.1, and Study 1 can be included in the analysis using our

proposed approach. The analysis results are presented in Table 2.2.

Table 2.2: Meta-analysis in the presence of a study with dichotomized responses

Conventional Method IPD Method Proposed Method Dichotomization

Mean SE SEE Mean SE SEE Mean SE SEE Mean SE SEE

α1 NA NA NA -0.96 0.63 0.60 -0.99 0.63 0.62 -1.13 0.73 0.72

α2 -0.04 0.82 0.86 0.02 0.53 0.55 0.02 0.53 0.55 -0.11 0.76 0.76

α3 1.05 0.64 0.65 1.02 0.50 0.50 1.02 0.50 0.51 0.91 0.67 0.67

β1 0.99 0.72 0.73 1.00 0.63 0.64 0.98 0.63 0.65 1.05 0.84 0.84

β2 1.99 0.17 0.16 2.00 0.16 0.16 1.99 0.16 0.16 2.08 0.31 0.28

β3 -0.99 0.24 0.23 -1.00 0.21 0.21 -0.99 0.21 0.21 -1.05 0.36 0.33

Remark: Mean = mean parameter estimates; SE = standard error; SEE = mean standard error esti-

mates.

Table 2.2 shows that our proposed method yields estimates for all the slope pa-

rameters, including α1, and the numerical results are quite close to the IPD method.

On the other hand, the conventional method can not utilize Study 1 due to the het-

erogeneity, and it is not able to estimate the associated parameter α1. Moreover, it

suffers substantial loss of efficiency in estimating some parameters, such as α2,α3 and
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β1. Detailed comparison between the conventional method, the IPD method and the

proposed method can be summarized in a similar way to the first simulation study, and

will not be repeated here. We also include in Table 2.2 the analysis results yielded from

dichotomizing the continuous responses in Study 2 and 3. As discussed in Dominici

and Parmigiani (2000), when combined inference is desired in the presence of contin-

uous and dichotomous responses, a common practice is to dichotomize all continuous

responses and then proceed as if all responses were binary. However, Table 2.2 shows

that the dichotomization method has remarkably greater bias and standard error than

the proposed method and the IPD method. This clearly indicates that dichotomization

leads to substantial loss of information.

As the last part of the simulation study, we examine the performance of our pro-

posed approach in the situation when we are given only variances estimates, rather than

full covariance matrices estimates. For simplicity, we use the same setting as the first

part of our simulation study but only assume the availability of V̂i = diag{Σ̂i} instead of

Σ̂i. In the implementation of our approach, we follow Example 2.4 and 2.5 in Section

2.3 to specify working correlation matrices. In particular, we consider the following

three methods with a variety of implementation complexity: 1) independence method,

i.e., using identity matrices as working correlation matrices; 2) design-driven method,

i.e., using our “best guess” to set working correlation matrices based on the knowledge

of the study designs; 3) data-driven method, i.e., using correlation matrices estimated

from the observed data. More concretely, the design-driven method is implemented

as follows. For Study 1 with model (2.2), we set two n1 ×1 vectors 1110 = (1, . . . ,1)T

and xxx1,0 = (0,1, . . . ,0,1)T . Then we let the off-diagonal entries of the 2× 2 working

correlation matrix R1,0 be r12 = r21 = ⟨111⊥0 ,xxx⊥1,0⟩/(∥111⊥0 ∥∥xxx⊥1,0∥). Here, ⟨·, ·⟩ denotes the

inner product, ∥ · ∥ denotes the Euclidean norm, and 111⊥0 = 1110 −P(1110|L (xxx1,0)) is the

residual after projecting 1110 to the linear space L (xxx1,0) spanned by xxx1,0. Note that R1,0

is the true correlation matrix for γ̂γγ1 if (1110,xxx1,0) is the actual design matrix for model

(2.2). For Study 2 and 3 with model (2.1), the working correlation matrices R2,0 and
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R3,0 can be specified in a similar way. It is worth noting that this specification method

is based on the prefixed design of randomized clinical trials, not the data observed after

the experiment. Thus, Ri,0’s are considered as fixed as in Example 2.4. The data-driven

method is implemented following Example 2.5. This method requires multiple studies

that have the same correlation structure. For this method, we generate 10 independent

copies for each of Study 1, 2 and 3 and this yields K = 3× 10 = 30 studies in total.

The analysis results for all the three methods are presented in Table 2.3.

Table 2.3: Robust meta-analysis with a variety of working correlation matrices

Independence Design Driven Data Driven

Parameters Bias RE Bias RE Bias RE

α1 0.00 0.97 0.00 1.00 0.00 0.97

α2 -0.01 0.57 0.00 1.00 0.00 0.89

α3 -0.02 0.72 -0.02 0.98 0.00 0.94

β1 0.02 1.00 0.01 1.00 -0.01 0.98

β2 0.01 0.94 0.00 1.00 0.00 0.95

β3 -0.01 0.77 -0.01 1.00 0.00 0.95

Remark: RE = relative efficiency

Table 2.3 shows the bias and efficiency for θ̂θθW obtained using working correlation

matrices based on the independence method (K = 3), design-driven method (K = 3)

and data-driven method (K = 3× 10). All the methods yield estimates for all the s-

lope parameters, including α1 that is not estimable in Study 1. Moreover, θ̂θθW is un-

biased whichever method is used. This numerically confirms our theoretical finding

that the specification of working correlation matrices does not alter the consistency of

our proposed estimator. Table 2.3 also presents the efficiency of θ̂θθW relative to the

IPD estimator θ̂θθ IPD. The independence method leads to substantial loss of efficiency
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in estimating some parameters, such as α2,α3 and β3. On the other hand, both the

design-driven method and data-driven method are highly efficient. In particular, the

design-driven method virtually does not have any efficiency loss. This implies that, for

the self-designed studies, such as randomized clinical trials, the working correlation

matrices derived from the design-driven method can be remarkably close to the true

correlation matrices.

2.5 Real data example: flight landing data

Landing, as the last stage of a flight, is closely associated with both the safety and

capacity concerns of an airport. A landing accident not only risks the passenger safety,

but also disturbs the runway operation and reduces the airport capacity. According

to Van Es (2005), among the most frequently reported flight landing accidents is the

landing overrun, which occurs when a landing aircraft is unable to stop before the end

of the runway. Van Es (2005) also pointed out that there appears to be a significant

increase in overrun risk when an aircraft has long landing distance which refers to the

distance between the beginning of the runway and the touch down point. Hence, it is

of great importance to study how the landing distance can be impacted by the air-borne

operation of an aircraft.

In our study, we obtain two data sets from FAA. One is for Airbus 321 with n1 =

6565 observations and the other is for Boeing 737 with n2 = 15809 observations. Each

observation contains operational information of a flight during the landing period. To

investigate how the landing distance is associated with the air-borne operation, we

obtain the following linear model:

Yi j = αi +β1X1i j + · · ·+β5X5i j +β6X6i j +β7X5i jX6i j + εi j, i = 1,2, j = 1, . . . ,ni,

(2.23)

where Yi j is the logarithm of landing distance for the j-th observation in the i-th data

set (i = 1 for Airbus), X1i j, . . . ,X6i j are different measures of air-borne operation (e.g.,
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height and speed) when the aircraft is passing over the beginning of the runway, and the

noise variable εi j ∼ N(0,σ2
i ). The six measures included in model (2.23) are selected

based on both expert opinions and statistical variable selection procedures. In the Air-

bus data set, the measure “flaps”, i.e., the regressor X6 in model (2.23), has a constant

value, namely X61 j ≡ 24 for all j’s. Thus, this study has a missing covariate design,

and the estimable parameter γγγ1 = (α1 +24β6,β1, . . . ,β4,β5 +24β7)
T . The situation is

similar to Example 2.2.

Table 2.4 presents the analysis results for all intercept and slope parameters in mod-

el (2.23). Here, we include the results obtained from individual studies and different

meta-analysis methods. Table 2.4 shows that the Airbus study does not provide esti-

mates for the study-specific parameter α1 and the slope parameters β5,β6 and β7, due

to the missing covariate design. Consequently, the conventional method can not utilize

the Airbus study to improve the inference for those parameters. On the other hand,

Table 2.4 shows that our proposed method provides estimates for all the parameters,

including those that are not estimable in the Airbus study. Moreover, in comparison

with the IPD method, our method yields almost identical point estimates and standard

error estimates. This confirms once again that our method has similar numerical per-

formance to the IPD method in the large sample setting. In Table 2.4, we also include

under the column name “Robust” the analysis results obtained from our method given

only variances estimates. More specifically, we use independence method to generate

working correlation matrices. Table 2.4 shows that, in this situation, our method is still

able to utilize both studies and yield estimates for all the parameters. For β1, . . . ,β4, al-

though our robust method uses working independence assumption, the results are only

slightly different from the IPD method. The underlying reason is that the correspond-

ing regressors X1, . . . ,X4 are mildly correlated to others. But for α1,α2,β5, . . . ,β7, the

differences are more noticeable because the corresponding regressors have stronger

correlation with others.
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Table 2.4: Meta-analysis of flight landing data from FAA – Part 1

Individual Studies Meta-Analysis Methods

Parameters Airbus 321 Boeing 737 Conventional IPD Proposed Robust

α1 (Airbus) NA NA NA 4.10(0.15) 4.10(0.15) 3.83(0.20)

α2 (Boeing) NA 3.40(0.24) NA 3.95(0.15) 3.95(0.15) 3.40(0.24)

β1 (x1) -0.65(1.02) -2.87(0.89) -1.91(0.67) -1.98(0.67) -1.98(0.67) -1.91(0.67)

β2 (x2) 7.83(0.13) 8.70(0.10) 8.38(0.08) 8.37(0.08) 8.37(0.08) 8.36(0.08)

β3 (x3) 2.27(0.10) 2.21(0.06) 2.23(0.05) 2.20(0.05) 2.19(0.05) 2.22(0.05)

β4 (x4) -0.50(0.75) -1.51(0.42) -1.27(0.37) -1.34(0.37) -1.34(0.37) -1.27(0.37)

β5 (x5) NA 2.35(0.36) NA 1.61(0.23) 1.61(0.23) 2.19(0.20)

β6 (x6) NA 4.08(0.76) NA 2.50(0.52) 2.50(0.52) 4.08(0.76)

β7 (x5 : x6) NA -4.69(1.13) NA -2.40(0.76) -2.40(0.76) -5.08(0.83)

Remark: In the parentheses is the estimated standard error of the corresponding parameter estimate.

As a further study, we dichotomize the response variable in the Boeing study

to mimic a possible situation where we have only binary evaluation of the landing

distance, such as long-distance landing or not, rather than the actual landing dis-

tance. Specifically, we create binary responses d2 j in such a way that d2 j = 1 if

y2 j ≥ τ2 and d2 j = 0 otherwise, where τ2 is the 90% quantile of the landing dis-

tance of Boeing aircraft. The observation of d2 j = 1 indicates long-distance landing

of a flight. In our analysis, we suppose only the binary responses are available in

the Boeing study. This situation is similar to Example 2.3. The estimable parameter

γγγ2 = ((α2 − τ2)/σ2,β1/σ2, . . . ,β7/σ2)
T .

Table 2.5 presents the analysis results for individual studies and meta-analysis re-

sults obtained from different methods. For individual studies, Table 2.5 shows that

most of the slope parameters in model (2.23) are not estimable, due to the fact that

the Airbus study has missing covariate design and the Boeing study has dichotomous
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responses. In this situation, the conventional meta-analysis method is not able to com-

bine any information at all. On the other hand, Table 2.5 shows that our method still

provides estimates for all the intercept and slope parameters in model (2.23), including

those that are not estimable in either study. For comparison purpose, we also provide

the IPD estimates in Table 2.5. Clearly, both the point estimates and the correspond-

ing standard error estimates from our method are quite close to those obtained from

the IPD method. Moveover, given only variances estimates, our robust method is still

able to combine the two studies and make inference for all the parameters. Table 2.5

shows that the results obtained using working independence correlation matrices re-

mains close to the IPD estimates.

Table 2.5: Meta-analysis of flight landing data from FAA – Part 2

Individual Studies Meta-Analysis Methods

Parameters Airbus 321 Boeing 737 Conventional IPD Proposed Robust

α1 (Airbus) NA NA NA 4.62(0.27) 4.63(0.27) 4.35(0.50)

α2 (Boeing) NA NA NA 4.47(0.27) 4.48(0.27) 3.57(0.65)

β1 (x1) -0.65(1.02) NA NA -0.97(0.89) -0.93(0.89) -1.37(0.91)

β2 (x2) 7.83(0.13) NA NA 7.67(0.12) 7.65(0.12) 7.83(0.13)

β3 (x3) 2.27(0.10) NA NA 2.22(0.08) 2.22(0.08) 2.26(0.09)

β4 (x4) -0.50(0.75) NA NA -0.25(0.58) -0.18(0.58) -0.22(0.59)

β5 (x5) NA NA NA 1.12(0.38) 1.09(0.38) 1.81(0.49)

β6 (x6) NA NA NA 0.16(1.00) 0.14(1.00) 1.93(2.05)

β7 (x5 : x6) NA NA NA 0.28(1.42) 0.37(1.43) -3.52(2.06)

Remark: In the parentheses is the estimated standard error of the corresponding parameter estimate.

2.6 Discussion

In this chapter, we have proposed a meta-analysis approach based on combining con-

fidence density functions. This approach only needs summary statistics from relevant
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studies, but it is shown to be asymptotically as efficient as the IPD approach which re-

quires individual-level data from all the studies. We also have shown that our propose

approach adapts to a broad scope of heterogeneous studies. It enable us to incorporate

indirect evidence in the analysis and achieve efficiency gain in the overall inference.

Furthermore, we have established a robustness property of our proposed approach for

the situation when the covariance estimates are misspecified. This property greatly

enhances the potential of our approach in applications. All these methodological and

theoretical developments are numerically confirmed in the stimulation studies and real

data analysis.

The development in this chapter has important practical implications. Collect-

ing IPD from original studies is widely regarded as the gold standard approach to

meta-analysis. The IPD approach fully utilizes individual-level information, and it

is efficient if the underlying model is correctly specified. Moreover, by accessing o-

riginal data, one can enhance comparability among the studies with respect to inclu-

sion/exclusion criteria, creation of subgroups, adjustments of covariates, and others

(Lin and Zeng, 2010). Despite these obvious advantages, the majority of meta-analysis

is not performed using the IPD approach (Sutton and Higgins, 2008). One practical

limitation of carrying out an IPD analysis is that it requires individual-level data from

all the studies included in the meta-analysis. It is well known that this requiremen-

t can not be easily fulfilled in practice. Furthermore, there is an ongoing debate on

whether the benefits of using the IPD method can outweigh the tremendous cost of

retrieving IPD from all relevant studies (Sutton and Higgins, 2008). Our development

in this chapter clearly says that there is no need to retrieve IPD because the aforemen-

tioned benefits of the IPD approach can still be achieved using our proposed approach

to analyze summary statistics. First of all, our approach of analyzing summary s-

tatistics is asymptotically as efficient as the IPD approach under a general likelihood

inference framework. Second, since this framework adapts to a broad scope of het-

erogeneous studies, our results imply that, given only summary statistics, we can also
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relax study inclusion criteria, create subgroups, and make adjustments of covariates in

meta-analysis. These appealing properties of our approach have been seen numerically

in our simulation and real data analysis.

Our proposed approach of combining confidence density functions provides a uni-

fied treatment for combining summary statistics. If the functions fff i’s are all identical

transformations of θθθ , our approach reduces to the approach of weighting the study-

specific estimates using the inverse-covariance matrices as the weights. If the functions

fff i’s are all linear functions of θθθ , our approach is equivalent to the multivariate general-

ized least square approach proposed in Becker and Wu (2007). Clearly, Our approach

subsumes the existing approaches of combining summary statistics. Furthermore, our

approach is much broader in the sense that it allows the the functions fff i’s to be any

functions satisfying mild smoothness conditions. Even when fff i’s are complex or irreg-

ular, our approach can still incorporate the corresponding studies in the analysis, and

our theoretical results guarantee the asymptotic efficiency of our approach.

Clearly, our proposed approach provides a new alternative for complex evidence

synthesis, which involves models that “incorporate evidence on multiple parameters

and/or that specifically model data from different study designs” (Sutton and Higgins,

2008). In recent years, complex evidence synthesis has been gaining increasing in-

terest, and one important development in this field is mixed treatment comparisons

in randomized clinical trials. Most of the approaches developed in this field thus far

are within the Bayesian framework (see, e.g., Ades and Sutton, 2006). Our proposed

approach share the same accent as the Bayesian approaches in the sense that we also

combine density functions. However, from the viewpoint of recent development on

confidence distributions, confidence density functions use “sample-dependent densi-

ty functions” to estimate the unknown but fixed parameters. This chapter have show

that such “sample-dependent density functions” lead to desirable frequentist inference.

Moreover, different from Bayesian inference procedures, our approach does not require

specification of priors and Markov chain Monte Carlo procedures.
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2.7 Appendix

2.7.1 Proofs for the results in Section 2.2.2

In this following, we provide technical details for the theoretical results in Section

2.2.2. First, we prove the asymptotic property in (2.10) for the IPD estimator. Second,

we prove Lemma 2.1 which implies asymptotic equivalence between the IPD estimator

and our proposed estimator. Then, the asymptotic properties of our proposed estimator,

as shown in Theorem 2.1, hold automatically.

First, we prove (2.10) for the IPD estimator. Using Taylor expansion, we obtain

∂
∂θθθ

logL(θ̂θθ IPD) =
∂

∂θθθ
logL(θθθ)+

∂ 2

∂θθθ∂θθθ T logL(θθθ)(θ̂θθ IPD −θθθ)+Op(1). (2.24)

Notice that ∂ logL(θ̂θθ IPD)/∂θθθ = 0 and it is easy to verify that

∂
∂θθθ

logL(θθθ) =
K

∑
i=1

Ji(θθθ)T ∂
∂γγγ i

logL∗
i (γγγ i)

and

∂ 2

∂θθθ∂θθθ T logL(θθθ) =
K

∑
i=1

Ji(θθθ)T
{

∂ 2

∂γγγ i∂γγγT
i

logL∗
i (γγγ i)

}
Ji(θθθ) =−

K

∑
i=1

Ji(θθθ)T Γi(γγγ i)Ji(θθθ).

Plug the above results into Equation (2.24), and after some algebraic operations, we

derive

√
n(θ̂θθ IPD−θθθ)=

[
K

∑
i=1

Ji(θθθ)T
{

Γi(γγγ i)

ni
· ni

n

}
Ji(θθθ)

]−1[ K

∑
i=1

Ji(θθθ)T
{

n
− 1

2
i

∂
∂γγγ i

logL∗
i (γγγ i)

}(ni

n

) 1
2

]
+op(1).

Following the conditions specified in Section 2.2.1, we can conclude that the IPD

estimator θ̂θθ IPD is asymptotically normally distributed as in (2.10).

Now, we prove Lemma 2.1. The first equation in (2.13) can be straightforward-

ly obtained by differentiation. We only show how to establish the second equation

in (2.13). Since sssi(θθθ) = ∂ logLi(θθθ)/∂θθθ = Ji(θθθ)T{∂ logL∗
i (γγγ i)/∂γγγ i}, we use Taylor



35

series to expand ∂ logL∗
i (γγγ i)/∂γγγ i around the consistent estimate γ̂γγ i as follows

∂
∂γγγ i

logL∗
i (γγγ i) =

∂
∂γγγ i

logL∗
i (γ̂γγ i)+

∂ 2

∂γγγ i∂γγγT
i

logL∗
i (γ̂γγ i)(γγγ i − γ̂γγ i)+op(1) = Σ̂−1

i (γ̂γγ i − fff i(θθθ))+op(1).

Then, the second equation in (2.13) immediately follows. This completes the proof of

Lemma 2.1.

In light of Equation (2.13), (2.14) and (2.15), our proposed estimator θ̂θθCD have the

same asymptotic properties as the IPD estimator θ̂θθ IPD. Hence, the results in Theo-

rem 2.1 are implied by the established results.

2.7.2 Proofs for the results in Section 2.2.3

Without loss of generality, we assume K = 2. In this case, θθθ = (α1,α2,βββ T
l×1)

T , and

J1(θθθ) = J1 =

1 0 000T
l×1

0 0 111T
l×1

 , J2(θθθ) = J2 =

0 1 000T
l×1

0 0 111T
l×1

 .

From (2.7), the asymptotic covariance matrix of θ̂θθCD is

aVar(θ̂θθCD) =
(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
.

Denote the inverses of the (l +1)× (l +1) matrices c1I1 and c2I2 by

(c1I1)
−1 =

a1 bbbT
1

bbb1 D1

 , (c2I2)
−1 =

a2 bbbT
2

bbb2 D2

 ,

where D1 and D2 are l × l matrices. Under this setup, we prove Corollary 2.1 and

Corollary 2.2 as follows.

First, we show aVar(α̂i,CD) ≤ aVar(α̂i) as in Corollary 2.1 for i = 1. It is easy to
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see that aVar(α̂i) = a1, and

aVar(α̂1,CD) =
{(

c1JT
1 I1J1 + c2JT

2 I2J2
)−1
}
[1,1]

,

where M[1,1] stands for the submatrix of M crossed by row 1 and column 1. Thus, it

suffices to show that

{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[1,1]

≤ a1. (2.25)

By Lemma 2.2 in Appendix 2.7.3,

{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[1,1]

= (a1 −bbbT
1 D−1

1 bbb1)+bbbT
1 D−1

1 (D−1
1 +D−1

2 )−1D−1
1 bbb1.

Using the results in Lemma 2.3 in Appendix 2.7.3, we obtain

bbbT
1 D−1

1 (D−1
1 +D−1

2 )−1D−1
1 bbb1 ≤ bbbT

1 D−1
1 D1D−1

1 bbb1 = bbbT
1 D−1

1 bbb1,

which leads to the establishment of (2.25). This completes the proof of Corollary 2.1.

Next, we show aVar(η̂CD)≤ aVar(η̂cvt) as in Corollary 2.2 for η = g(βββ ). For sim-

plicity, we assume η = g(βββ )= λλλ T βββ , where λλλ is a l-dimensional vector. By Lemma 2.2

in Appendix 2.7.3,

{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[3:(l+2),3:(l+2)]

= (D−1
1 +D−1

2 )−1.

Thus, aVar(η̂CD) = λλλ T (D−1
1 +D−1

2 )−1λλλ . On the other hand,

aVar(η̂cvt) =
{
(λλλ T D1λλλ )−1 +(λλλ T D2λλλ )−1

}−1
.

It follows from Lemma 2.3 in Appendix 2.7.3 that aVar(η̂CD)≤ aVar(η̂cvt). This com-

pletes the proof of Corollary 2.2.
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2.7.3 Some useful matrix results

Lemma 2.2. Under the setup in Appendix 2.7.2, we have the following results:

{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[1,1]

= (a1 −bbbT
1 D−1

1 bbb1)+bbbT
1 D−1

1 (D−1
1 +D−1

2 )−1D−1
1 bbb1,

{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[3:(l+2),3:(l+2)]

= (D−1
1 +D−1

2 )−1.

Proof. Using the blockwise matrix inversion formula, we have

c1JT
1 I1J1 =


k1 0 −k1bbbT

1 D−1
1

0 0 000T

−k1D−1
1 bbb1 000 D−1

1 + k1D−1
1 bbb1bbbT

1 D−1
1

 ,

and similarly,

c2JT
2 I2J2 =


0 0 000T

0 k2 −k2bbbT
2 D−1

2

000 −k2D−1
2 bbb2 D−1

2 + k2D−1
2 bbb2bbbT

2 D−1
2

 ,

where k1 = 1/(a1 −bbbT
1 D−1

1 bbb1) and k2 = 1/(a2 −bbbT
2 D−1

2 bbb2). Therefore,

c1JT
1 I1J1 + c2JT

2 I2J2 =


k1 0 −k1bbbT

1 D−1
1

0 k2 −k2bbbT
2 D−1

2

−k1D−1
1 bbb1 −k2D−1

2 bbb2 D−1
1 + k1D−1

1 bbb1bbbT
1 D−1

1 +D−1
2 + k2D−1

2 bbb2bbbT
2

 .

Applying blockwise inversion formula to the upper-left block and the lower-right block

of this matrix leads to the two desired equations.

Lemma 2.3. Suppose W1 and W2 are q× q positive definite matrices. Then, for any

q-dimensional vector vvv,

(
vvvTW−1

1 vvv
)−1

+
(
vvvTW−1

2 vvv
)−1 ≤

{
vvvT (W1 +W2)

−1vvv
}−1

. (2.26)



38

This implies that vvvT (W1 +W2)
−1vvv ≤ vvvTW−1

1 vvv.

Proof. Since W1 > 0 and W2 > 0, we can find a nonsingular matrix P such that W1 =

Pdiag{r1, . . . ,rq}PT and W2 = Pdiag{u1, . . . ,uq}PT , where ri > 0 and ui > 0 for al-

l i = 1, . . . ,q. By redefining vvv as P−1vvv, it suffices to prove the lemma when W1 =

diag{r1, . . . ,rq} and W2 = diag{u1, . . . ,uq}. Denoting vvv = (v1, . . . ,vq)
T , the inequality

(2.26) becomes

(
q

∑
i=1

v2
i

ri

)−1

+

(
q

∑
i=1

v2
i

ui

)−1

≤

(
q

∑
i=1

v2
i

ri +ui

)−1

.

After rearrangement, the above inequality can be equivalently written as

q

∑
i=1

v2
i

ri

q

∑
j=1

v2
j

u j
≥

q

∑
i=1

v2
i

ri +ui

q

∑
j=1

v2
j(r j +u j)

r ju j
.

Thus, it suffices to show that, for any i and j,

v2
i

ri

v2
j

u j
+

v2
j

r j

v2
i

ui
≥ v2

i
ri +ui

v2
j(r j +u j)

r ju j
+

v2
j

r j +u j

v2
i (ri +ui)

riui
.

With some algebraic simplification, we can show that the above inequality is equivalent

to r2
i u2

j + r2
j u

2
i ≥ 2rir juiu j, which holds from the Cauchy-Schwartz inequality.
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Chapter 3

An Exact Meta-Analysis Approach and its Application
to 2×2 Tables with Rare Events

3.1 Introduction

Another challenging problem in meta-analysis is how to develop a general exact meta-

analysis approach for discrete data, especially when the events of interest are rare and

large sample theories do not apply. Rare events data, for example, observing zero

outcomes in binomial trials, may occur in either small-sample observational studies

(e.g., Gastwirth, 1984) or large-sample trials with very low event rates (e.g., Nissen

and Wolski, 2007). In the case of rare events, a single study is inadequate for drawing

a reliable conclusion, but the conclusion can often be strengthened by using meta-

analysis to synthesize results from a number of similar studies.

A challenging and recurrent situation in performing meta-analysis of rare event s-

tudies is that a non-negligible, sometimes even substantial, portion of the studies may

observe no events in both treatment and control arms. These studies are generally re-

ferred to as zero total event studies (Sweeting, Sutton, and Lambert, 2004; Rücker,

Schwarzer, Carpenter, and Olkin, 2009). For example, Nissen and Wolski (2007) per-

formed a meta-analysis of clinical trials to examine the association between the dia-

betes drug Avandia (rosiglitazone) and the adverse events of myocardial infarction or

cardiovascular death. Out of 48 studies included in their analysis, 10 studies do not

observe any event of myocardial infarction and 25 studies do not observe any event

of cardiovascular death. The conventional meta-analysis, including Mantel–Haenszel

and Peto methods, either simply excludes such studies from the analysis (which is the
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case in Nissen and Wolski, 2007), or applies continuity corrections to the 2×2 tables

of these studies, as seen in most literature. The exclusion of any study raises the con-

cern of possible loss of information, as noted in Tian et al. (2009) and Rücker et al.

(2009). Intuitively, a zero total event study with 1000 cases and 1000 controls pro-

vides stronger evidence against any hypothesized effect than that with 10 cases and

10 controls. Hence, zero total event studies may reveal useful information through

their sample sizes, and should not be discarded blindly. As for continuity corrections,

Sweeting et al. (2004) provided compelling evidence showing that imputing arbitrary

numbers to zero cells, depending on the numbers imputed, can result in very different

conclusions. A natural question here is how to utilize all available data in meta-analysis

without assigning arbitrary numbers to zero cells.

Recently, using the risk difference as the effect measure, Tian et al. (2009) de-

veloped an exact meta-analysis procedure that can utilize all available data without

artificial corrections for zero events. Their approach combines confidence intervals for

the risk difference obtained from each of the studies. But, for the odds ratio or risk

ratio, an exact meta-analysis procedure that can utilize all available data without artifi-

cial corrections remains unavailable thus far. The difficulty stems from the fact that, in

a zero total event study, the sample odds ratio or risk ratio is not well defined, and thus

its corresponding point estimate or interval estimate is not readily available. Instead of

working on point or interval estimates, this chapter develops a new meta-analysis ap-

proach by combining p-value functions (also known as significance functions; cf. Fras-

er, 1991) obtained from the exact tests associated with the individual studies. This is a

general approach that can yield exact inference for any parameter of interest, including

the odds ratio, risk ratio or risk difference. It uses all available studies, including zero

total event studies, without continuity corrections. To our knowledge, this is the first

successful attempt to have achieved this goal in the literature on exact meta-analysis

of the odds ratio and risk ratio under a general setting. Here, the term “exact” refers

to the use of exact distributions, rather than limiting distributions, in making inference
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through a meta-analysis procedure.

A p-value function, is formed by computing p-values for a one-sided test with vary-

ing boundaries of the null hypothesis (e.g., Fraser, 1991). More specifically, consider

a parameter of interest, say ψ . Let z denote the sample, and p = p(ψ∗;z) denote a p-

value computed based on a given test for the one-sided hypothesis testing H0 : ψ = ψ∗

versus H1 : ψ > ψ∗. The p-value p = p(ψ∗;z) depends on both the sample z and the

value of ψ∗. Given the sample z, as the value of ψ∗ varies, p(ψ∗) ≡ p(ψ∗;z) is a

function on the parameter space of ψ . This sample-dependent function p(·) is called a

p-value function. Under some mild conditions, a p-value function is typically a distri-

bution function on the parameter space. From the viewpoint of the recent developments

on the so-called confidence distributions, this p-value function can be viewed as a “dis-

tribution estimator” of the unknown parameter, in the sense that a sample-dependent

distribution function, rather than a point or an interval, is used to estimate the pa-

rameter. The “distribution estimator” carries much more information than a point or

an interval estimator, and it provides a useful device for combining information from

multiple studies, see the review article by Xie and Singh (2012) and the references

therein for recent developments on confidence distributions and their applications.

The proposed meta-analysis method in this chapter is fundamentally different from

the combining of point estimates used in the conventional meta-analysis. Specifically,

we combine the p-value functions using the combining framework developed in Xie

et al. (2011) for confidence distributions. But, in contrast to Xie et al. (2011) which

mainly focused on continuous data and large-sample studies, this chapter shows that

the idea of combining “functions” can lead to exact inference for discrete and small-

sample data as well. In fact, the idea of combining p-value functions yields a broad

class of exact meta-analysis methods, in the sense that the p-value functions associated

with each study are allowed to be obtained using any exact test. In the setting of rare

event data where the data are discrete and the event rate is very low, exact tests are

often conservative in the sense that the actual type I error rate is less than the nominal
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rate, say α . In our proposed exact meta-analysis procedure, we provide an explicit

formula for computing the actual type I error rate of the overall test based on those of

the individual tests, as shown in Theorem 3.1 in Section 3.3.1. This formula makes it

feasible to estimate the overall type I error rate directly from the observed data, and to

devise adjustments of the p-value functions to further increase the power of the overall

test.

To a certain extent, our approach may be viewed as a generalization of the classical

combining p-values approach (see, e.g., Fisher, 1932; Stouffer et al., 1949 and others).

However, unlike the classical approach which is to combine the observed p-values, our

approach is to combine the entire p-value functions. Moreover, the classical approach

uses only the equal weights in the combination, which is known to be inefficient in

terms of preserving Fisher information. In comparison, our approach can afford flex-

ible weights in the combination. In fact, we show in Section 3.5 that with suitably

chosen weights our approach can substantially improve the small sample performance

of combination, and, in the case when a large sample theory applies, the weighted

combined estimator is asymptotically efficient.

We show in Sections 3.7 and 3.8 that the proposed method compares favorably

with the existing methods in several aspects. First, most of the commonly used meta-

analysis methods, Mantel–Haenszel and Peto methods included, are developed based

on large sample theories. For rare event studies, these methods may lead to invalid

inference even with moderately large sample sizes, as noted in Tian et al. (2009). Sec-

ond, the proposed method involves only a simple explicit expression. Computationally,

it is straightforward, especially compared with the conventional conditional inference

approaches (e.g., Gart, 1970) in which the overall computational complexity increases

exponentially, as the number of the studies increases. Third, also most important, in

the presence of rare event studies, the proposed method can utilize all available data to

perform exact meta-analysis for any parameter of interest, without using artificial con-

tinuity corrections for zero events. The method can capture the appreciable difference
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between the effects from large and small studies, distinguishing, for example, a zero

total event study with 1000 cases and 1000 controls from that with 10 cases and 10

controls. This clearly is not the case for the conventional approaches.

The rest of this chapter is organized as follows. We describe the new meta-analysis

approach in Section 3.3.2, and study its small sample and large sample properties in

Section 3.3 and Section 3.4, respectively. We provide in Section 3.5 useful guidelines

for choosing appropriate weights to enhance the combination efficiency. In Section

3.6, we propose an adjustment of the p-value functions to increase the power of the

overall test. Numerical studies using simulation and real data in Section 3.7 and Sec-

tion 3.8, respectively, show that the proposed method outperforms the commonly used

methods. Finally, we provide a discussion in Section 3.9. We point out that the pro-

posed approach is applicable to general settings for exact inference on any common

parameter in a series of independent studies, even though the motivating and illustrat-

ing examples throughout the chapter are in 2×2 tables.

3.2 Methodology

3.2.1 Problem setup

Consider K independent 2×2 tables formed by pairs of independent binomial random

variables (Xi,Yi) with sample sizes (ni,mi) and event rates (π1i,π0i), for i = 1, . . . ,K.

Denote by xi and yi the observed numbers of events in the treatment and control arms

of the i-th study, respectively. There are various effect measures for comparing the

event rates π1i and π0i. Among the measures frequently used for comparing the event

rates π1i and π0i are the odds ratio, risk ratio, and risk difference:

ORi =
π1i/(1−π1i)

π0i/(1−π0i)
, RRi =

π1i

π0i
, RDi = π1i −π0i, i = 1, . . . ,K. (3.1)
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In meta-analysis and under a fixed effects setting, it is often assumed that an ef-

fect measure has a common value across all the studies, and it is of interest to make

inference on this common parameter, denoted by ψ throughout this chapter. For ex-

ample, Sweeting et al. (2004) reviewed meta-analysis methods for the common odds

ratio ψ = ORi, for all i = 1, . . . ,K, and Bradburn et al. (2007) compared meta-analysis

methods for the common risk difference ψ = RDi, for all i = 1, . . . ,K. Our goal is

to develop an exact meta-analysis procedure for making inference on a common pa-

rameter ψ , being the common odds ratio, the common risk ratio or the common risk

difference. Aside from the assumption of a common parameter ψ , we also assume that

the fixed but unknown events rates π1i and π0i satisfy 0 < π1i < 1 and 0 < π0i < 1, and

that they can be different from one study to another.

We are particularly interested in the setting where a significant portion of the sam-

ple entries (xi,yi) in the 2 × 2 tables are zeros. This occurs when the event rates

(π1i,π0i) are very low or the sample sizes (ni,mi) are small. For a zero total even-

t study where xi = yi = 0, the study-specific odds ratio estimate ÔRi = {xi/(ni −

xi)}/{yi/(mi − yi)} or risk ratio estimate R̂Ri = xi/yi is not well defined. Thus, ze-

ro total event studies can not be included in the conventional meta-analysis approaches

that combine point estimates from individual studies, unless artificial corrections are

applied to zero events. In Appendix, we briefly review some commonly used methods,

including Mantel-Haenszel, Peto and classical conditional inference methods, for the

odds ratio. From the formulas therein, it is easy to see that zero total event studies do

not contribute to the inference in those methods. The same observation holds for the

risk ratio.
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3.2.2 The proposed exact meta-analysis approach

To make inference on the common parameter ψ in K independent 2× 2 tables, we

consider the following hypothesis testing

H0 : ψ = ψ∗ versus H1 : ψ > ψ∗, (3.2)

where ψ∗ is an arbitrary but fixed value on the parameter space. Suppose a p-value

pi(ψ∗;xi,yi) is obtained based on an exact test from the i-th study. In the literature,

various exact tests have been developed for testing the association in a 2×2 table. For

example, Lydersen, Fagerland, and Laake (2009) recommended several exact tests,

including Suissa and Shuster test (Suissa and Shuster, 1985), Fisher-Boschloo’s test

(Boschloo, 1970), and the mid-p adaptation of Fisher’s exact test (Lancaster, 1961).

More recently, Agresti and Min (2002) and Reiczigel, Abonyi-Tóth, and Singer (2008)

proposed new exact tests for the odds ratio and risk ratio, respectively.

By varying the value of ψ∗, pi(ψ∗;xi,yi) becomes a p-value function. This p-value

function pi(ψ∗;xi,yi) is obtainable regardless of whether the entries xi and yi are zeros

or not. We propose to combine these p-value functions, denoted by pi(·)≡ pi(·;xi,yi),

using the following recipe:

p(c)(ψ)≡ F(c)
[
w1Φ−1{p1(ψ)}+ · · ·+wKΦ−1{pK(ψ)}

]
. (3.3)

Here, Φ(·) is the cumulative distribution function of the standard normal distribution,

F(c)(·) = Φ(·/w1)∗ · · · ∗Φ(·/wk) where ∗ stands for convolution, and wi’s are weights

subject to ∑K
i=1 wi = 1. As Xie et al. (2011) pointed out, the use of non-trivial weight-

s makes the recipe (3.3) advantageous over the traditional p-value combination ap-

proaches, such as Stouffer’s method (Stouffer et al., 1949). The latter is a special case

of (3.3) with wi ∝ 1 for all i = 1, . . . ,K. In this chapter, we show that, by using in-

formative weights, we can achieve asymptotic efficiency in the overall inference and
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enhance small sample efficiency as well. A detailed discussion of the choice of weights

is provided in Section 3.5.

We refer to p(c)(ψ) as the combined p-value function and use it for the overall

inference on ψ . Specifically, we can use Mn = p−1
(c)(1/2) as a point estimator for ψ ,

and the intervals (p−1
(c)(α),∞) and (p−1

(c)(α/2), p−1
(c)(1−α/2)) as a 100(1−α)% one-

sided and two-sided confidence intervals for ψ , respectively. Here p−1
(c)(·) is the inverse

function of p(c)(·). Also, we can use 1− p(c)(ψ∗) as the overall p-value for testing the

hypotheses H0 : ψ = ψ∗ versus H1 : ψ < ψ∗, and 2min{p(c)(ψ∗),1− p(c)(ψ∗)} the

overall p-value for testing the two-sided hypothesis H0 : ψ = ψ∗ versus H1 : ψ ̸= ψ∗.

Singh et al. (2005) and Xie et al. (2011) developed a general framework to combine

confidence distributions, and Xie et al. (2011) showed that this general framework can

unify the classical p-value combination approaches and modern model-based meta-

analysis approaches. In those developments, the elements for combining are required

to be confidence distributions (or at least asymptotically). In the context of this chap-

ter, this is equivalent to requiring that the statistic pi(ψ0) ≡ pi(ψ0;Xi,Yi) be U(0,1)

distributed (or asymptotically) when ψ0 is the true value of ψ . For some exact tests,

such as the mid-p adaptation of Fisher’s exact test, the statistic pi(ψ0) is indeed U(0,1)

distributed asymptotically as both ni → ∞ and mi → ∞. In this case, our approach can

be viewed as a special case of Xie et al. (2011) for large sample inference. However,

under the aforementioned asymptotic setting, the probability of having any zero entry

in a 2×2 table is zero, and thus the asymptotic theory is not suitable for analyzing rare

event data with zero events. Also, for small samples of discrete data, such as the case

of rare events in 2× 2 tables, the deviation of the distribution of pi(ψ0) from U(0,1)

distribution is not negligible. In fact, this deviation gauges precisely the loss of infer-

ence accuracy. In this chapter, we show that the general idea of combining “functions”

described in Singh et al. (2005) and Xie et al. (2011) can still be used in the small

sample setting, and we also justify the validity of using the combined function p(c)(ψ)

for exact inference. More specifically, i) we show that the overall type I error rate can
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be traced down to the the type I error rates associated with individual studies and it

can be estimated readily from the data; ii) we show that zero total event studies have

the effect of increasing uncertainty in the overall inference outcomes; iii) we provide

a useful guideline for choosing the weights to increase the combination efficiency in

finite sample settings; and finally iv) we propose an effective adjustment for individual

p-value functions pi(ψ)’s to reduce the conservatism of exact tests and thus increase

the power of the overall test.

3.3 Small sample properties

3.3.1 The type I error rate

In the setting of rare events where the data are discrete and the event rates are very low,

non-randomized test generally fails to achieve the nominal type I error rate. For exact

tests, the actual type I error rate is typically lower than the nominal rate, resulting in

some loss of test power. It is useful to investigate the actual type I error rate of the

overall test derived from a meta-analysis procedure. For our proposed approach, we

establish in this section an explicit formula for determining the actual type I error rate

of the overall test from those of individual tests. We show that this formula makes it

feasible to estimate the overall type I error rate directly from the observed data. We

also show in Section 3.6 that this formula devises further adjustments of the p-value

functions to increase the power of the overall test.

Let us define an overall type I error rate function for our proposed approach as

follows:

R(c)(s) = Pr{p(c)(ψ0)≤ s}, for 0 ≤ s ≤ 1,

which is the cumulative distribution function of the statistic p(c)(ψ0). At s=α , R(c)(α)

gives the overall type I error rate of the one-sided test H0 : ψ = ψ∗ versus H1 : ψ > ψ∗,

when H0 is true with ψ∗ = ψ0. The next theorem shows that the overall type I error rate
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function R(c)(s) can be expressed explicitly in terms of the individual type I error rate

functions Ri(s) = Pr{pi(ψ0)≤ s}, i = 1, . . . ,K. This is possible because the combining

formula in (3.3) is simple and explicit.

Theorem 3.1. The overall type I error rate function R(c)(s) can be expressed as

R(c)(s) = s+
K

∑
i=1

di(s)

where

di(s) = E

Di

Φ


(

1+∑
j ̸=i

w2
j

w2
i

)1/2

Φ−1(s)−∑
j ̸=i

w j

wi
Φ−1(Bi j)


 . (3.4)

Here, the functions Di(s) = Ri(s)−s, i = 1, . . . ,K, and the expectation E is with respect

to the random variables Bi j which are independent and of the following distributions:

for any 0 ≤ t ≤ 1, Pr(Bi j ≤ t) = t if j ≤ i, and Pr(Bi j ≤ t) = Ri(t) if j > i.

Theorem 3.1 immediately yields the following corollary which shows that the over-

all deviation of the type I error rate {R(c)(s)− s} can be bounded using the bounds of

individual deviations {Ri(s)− s}, i = 1, . . . ,K. Specifically, if the test of each study

has a deflated type I error rate, the overall test will have a deflated type I error rate.

Similarly, if the test of each study has an inflated type I error rate, the overall test will

also have an inflated type I error rate.

Corollary 3.1. Suppose there exists a set of fixed lower and upper bounds li and ui

such that

li ≤ Ri(s)− s ≤ ui, i = 1, . . . ,K,

for any 0 ≤ s ≤ 1. Then the overall type I error rate function R(c)(s) satisfies

K

∑
i=1

li ≤ R(c)(s)− s ≤
K

∑
i=1

ui,
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for any 0≤ s≤ 1. Specifically, if Ri(s)≤ s for 0≤ s≤ 1 and i= 1, . . . ,K, then R(c)(s)≤

s. Similarly, if Ri(s)≥ s for 0 ≤ s ≤ 1 and i = 1, . . . ,K, then R(c)(s)≥ s.

We can apply the results in Theorem 3.1 and Corollary 3.1 to evaluate the perfor-

mance of our proposed approach and make further adjustments to improve the power of

the overall inference. Theorem 3.1 shows that the overall type I error rate function can

be traced down to the individual ones. Hence, if we can estimate the functions Ri(s)’s,

then the estimate of R(c)(s) can be immediately derived from Theorem 3.1. In Section

3.5, we propose an empirical method for estimating π1i and π0i. This in turn allows us

to estimate Ri(s) and thus R(c)(s). If only the bounds for {Ri(s)− s}, i = 1, . . . ,K are

available, the bounds for {R(c)(s)−s} can be derived from Corollary 3.1. Furthermore,

we can use the results here to improve the power of the overall test by tuning up the

deflated type I error rates of the individual tests. More discussions on this point are

given in Section 3.6. To the best of our knowledge, theoretical results similar to Theo-

rem 3.1 are not known for Mantel–Haenszel, Peto or other conventional meta-analysis

methods.

For the two-sided hypothesis testing H0 : ψ = ψ∗ versus H1 : ψ ̸= ψ∗ where ψ∗ =

ψ0, the actual type I error rate is

Pr
[
2min{p(c)(ψ0),1− p(c)(ψ0)} ≤ α

]
= 1−R(c)(1−α/2)−+R(c)(α/2), (3.5)

where R(c)(1−α/2)− is the limit of R(c)(s) when s approaches (1−α/2) from below.

For the two-sided confidence interval (p−1
(c)(α/2), p−1

(c)(1−α/2)), the actual coverage

probability is

Pr
{

ψ0 ∈ (p−1
(c)(α/2), p−1

(c)(1−α/2))
}
= R(c)(1−α/2)−−R(c)(α/2). (3.6)

Clearly, we can estimate the actual type I error rate (3.5) and the actual coverage prob-

ability (3.6) since they are expressed in terms of R(c)(s).
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3.3.2 The effect of zero events

In this section, we discuss the general effect of including the studies with zero events

in the analysis. We show that such studies increase the uncertainty in overall inference

outcomes. This effect can be manifested using various exact tests for different effect

measures, including the odds ratio and risk ratio. For convenience, we illustrate this

effect using the mid-p adaptation of Fisher’s exact test for the odds ratio. This test is

advocated widely in the literature; see, e.g., Agresti (1992) (Section 8.1), Hwang and

Yang (2001), Lydersen et al. (2009) and the references therein. Using this exact test,

we can obtain the p-value function pi(ψ) for the odds ratio as follows:

pi(ψ)≡ pi(ψ;xi,yi) = Prψ(Xi > xi | Ti = ti)+
1
2

Prψ(Xi = xi | Ti = ti), i = 1, . . . ,K.

(3.7)

Here, conditional on Ti = Xi +Yi = ti, Xi follows the noncentral hypergeometric distri-

bution: Prψ(Xi = x | Ti = ti) =
(ni

x

)( mi
ti−x

)
ψx/∑Ui

v=Li

(ni
v

)( mi
ti−v

)
ψv, for Li ≤ x ≤Ui, where

Li = max(0, ti −mi) and Ui = min(ni, ti).

To facilitate the understanding of the combining effect, we first provide an intuitive

interpretation of the p-value function (3.7). Generally speaking, since pi(ψ∗) is the

p-value for right-tailed test H0 : ψ = ψ∗ versus H1 : ψ > ψ∗, a small value of pi(ψ∗)

indicates low “support” for the null H0 : ψ =ψ∗ but strong “support” for the alternative

H1 : ψ > ψ∗. Hence, the value of pi(ψ∗) indicates the “plausibility” that the true value

of ψ is on the left side of ψ∗. Similar arguments can be found in the literature on

inference using “distribution estimators”, including, for example, Bayesian inference

using a posterior distribution (see e.g. Gelman et al., 2004, Chapter 2), frequentist

inference using a confidence distribution (see e.g. Xie and Singh, 2012, Section 3) and

Fisher’s fiducial inference using a fiducial distribution (see e.g. Kendall and Stuart,

1973, Chapter 21).

Figure 3.1 plots, at the log odds ratio scale, the p-value functions (3.7) for four

representative types of studies: (a) both xi ̸= 0 and yi ̸= 0; (b) xi ̸= 0 and yi = 0;
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Figure 3.1: Individual p-value functions (upper row) and the combined p-value func-
tions (lower row). The individual p-value functions illustrated in the upper row are for
the cases: (a) xi = 2,yi = 1; (b) xi = 2,yi = 0; (c) xi = 0,yi = 2; and (d) xi = 0,yi = 0,
all with the same sample sizes ni = mi = 100. The combined p-value functions (dashed
curves) illustrated in the lower row are the resulting functions of combining an inde-
pendent copy of the p-value function (a) with each of the p-value functions (a), (b), (c)
and (d), using equal weights. The x-axes are in the logarithm scale.
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(c) xi = 0 and yi ̸= 0; and (d) both xi = 0 and yi = 0. In the case (a), the p-value

function (3.7) is strictly increasing and forms a cumulative distribution function on the

parameter space. For a given value ψ∗ on the parameter space, if pi(ψ∗) < α , we

reject the null H0 : ψ = ψ∗ and favor the alternative H1 : ψ > ψ∗. If pi(ψ∗) > 1−α ,

we reject the null H0 : ψ = ψ∗ and favor the alternative H1 : ψ < ψ∗. The (1−α)

confidence interval (ψ̂lo, ψ̂up) for the true odds ratio is found by solving the equations

pi(ψ̂lo) = α/2 and pi(ψ̂up) = 1−α/2. In the case (b) with zero event in the control

arm, the upper tail of the p-value function (3.7) degenerates to 1/2. Consequently, the

p-value function pi(ψ∗) is always less than 1/2. Hence, we can not reject the null

H0 : ψ = ψ∗ and favor the alternative H1 : ψ < ψ∗, for any ψ∗, and the upper end of

the corresponding (1−α) confidence interval is ψ̂up = ∞. These results are expected,

because the observation yi = 0 yields no information on how small the control event

rate π0i is, and thus how large the odds ratio ψ is. Similarly, in the case (c) with zero

event in the treatment arm, the study yields no information on how small the treatment

event rate π1i is and thus how small the odds ratio ψ is. In this case, the lower tail of the

p-value function (3.7) degenerates to 1/2; the p-value function pi(ψ∗) is always greater

than 1/2; we can not reject the null H0 : ψ = ψ∗ and favor the alternative H1 : ψ > ψ∗,

for any ψ∗; the lower end of the corresponding (1−α) confidence interval is ψ̂lo = 0.

In the case (d) with zero events in both control and treatment arms, the study yields no

information on either how small or how large the odds ratio ψ is, which is reflected by

a constant p-value function, namely pi(ψ∗)≡ 1/2, as shown in Figure 3.1(d).

In the remainder of this section, we show that the studies with zero events have

the effect of increasing uncertainty in the overall inference outcomes. Without loss of

generality, we consider combining K = 2 studies and illustrate the combining effects

in the second row of Figure 3.1. Each figure of Figure 3.1(a’) – (d’) contains two solid

curves: one is an identical copy of the solid curve shown in Figure 3.1(a) – (d), respec-

tively; the other is an independent copy of the solid curve shown in Figure 3.1(a). The

dashed curve in each figure plots the combined p-value function p(c)(ψ) resulting from
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the combining of two studies represented by the two solid curves. Figure 3.1(a’) shows

that the conclusion is strengthened if two identical but independent studies are com-

bined. This is reflected by the thinner tails of the combined p-value function on both

sides. As a result, confidence intervals derived from the combined p-value function are

tighter than those derived from each of the individual p-value functions. Figure 3.1(b’)

and (c’) show that, if a zero event is observed in one and only one arm of a study, the

tail of the combined p-value function p(c)(ψ) on the side corresponding to the non-zero

event is fattened. As a result, the bound of a confidence interval corresponding to that

side moves away from ψ = 1. Figure 3.1(d’) shows that, when a zero total event study

is included in the analysis, both tails of the combined p-value function p(c)(ψ) are

fattened. To demonstrate the result in Figure 3.1(d’) involving a zero total event study

more explicitly, consider two independent p-value functions p1(ψ) and p2(ψ)≡ 1/2.

Since Φ−1{p2(ψ)} ≡ Φ−1{1/2}= 0, the combined p-value function becomes

p(c)(ψ) = Φ
[

w1

(w2
1 +w2

2)
1/2 Φ−1{p1(ψ)}

]
. (3.8)

It is clear that p1(ψ)> p(c)(ψ)> 1/2 when p1(ψ)> 1/2, and p1(ψ)< p(c)(ψ)< 1/2

when p1(ψ) < 1/2. Hence, both tails of p(c)(ψ) are fatter than those of p1(ψ), and

confidence intervals derived from p(c)(ψ) are wider than those derived from p1(ψ).

Thus, zero total event studies increase uncertainty in the overall inference outcomes,

and subsequently any significant conclusion would be weakened if zero total event

studies are incorporated in the analysis. This effect is also seen in our numerical studies

in Section 3.8.

From the formula (3.8), the impact of a zero total event study on the overall infer-

ence is determined by its corresponding weight. In Section 3.5, we propose a weighting

scheme that incorporates the sample size of a study in the weight formula, which dis-

tinguishes the impact of a zero total study with 1000 cases and 1000 controls from that

with 10 cases and 10 controls.
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3.4 Large sample properties

Note that our approach also applies to the general meta-analysis setting of 2×2 tables

with no zero events. In this case, the large sample theory is often applicable. We now

proceed to study the large sample properties of our proposed approach, which provides

theoretical justification for our proposal in a large sample setting whenever it applies.

More importantly, for rare events data, the result can help develop useful guidelines for

choosing proper weights in finite sample settings, as shown in the next section.

Theorem 3.2 below states that, if the individual p-value functions pi(ψ), i= 1, . . . ,K,

lead to accurate inference asymptotically, then so does the combined p-value function

p(c)(ψ). In other words, the test derived from p(c)(ψ) achieves the nominal type I er-

ror rate asymptotically, and the confidence interval derived from p(c)(ψ) achieves the

nominal coverage probability asymptotically.

Theorem 3.2. If the individual type I error rate functions Ri(s) = Pr{pi(ψ0)≤ s}→ s

for any 0 ≤ s ≤ 1 and i = 1, . . . ,K, then the overall type I error rate function R(c)(s) =

Pr{p(c)(ψ0)≤ s}→ s for any 0 ≤ s ≤ 1.

Theorem 3.3 below states that, if the exact test associated with each study is e-

quivalent to Wald test asymptotically (see, e.g., Fraser, 1991), then our approach can

achieve asymptotic efficiency with suitably chosen weights.

Theorem 3.3. Suppose that the p-value function pi(ψ) obtained from the exact test

associated with the i-th study can be expressed as

pi(ψ) = Φ
[
(ψ − ψ̂i,MLE)

/{
̂aVar(ψ̂i,MLE)

}1/2
]
+op(1), i = 1, . . . ,K, (3.9)

where ψ̂i,MLE is the maximum likelihood estimate (MLE) of ψ based on the i-th study,

and ψ̂i,MLE has the limiting variance aVar(ψ̂i,MLE) with the corresponding estimate

̂aVar(ψ̂i,MLE) satisfying that the ratio ̂aVar(ψ̂i,MLE)/aVar(ψ̂i,MLE) converges to 1 in
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probability. Let the weights in the combining recipe (3.3) be

wi ∝ {aVar(ψ̂i,MLE)}−1/2, i = 1, . . . ,K. (3.10)

Then the median of the combined distribution function p(c)(ψ), namely ψ̂c = p−1
(c)(1/2),

is consistent and asymptotically normally distributed as follows:

{
K

∑
i=1

1
aVar(ψ̂i,MLE)

}1/2

(ψ̂c −ψ0)→ N(0,1). (3.11)

The result above implies that our approach with the weights in (3.10) is as efficient

as the maximum likelihood approach asymptotically. Specifically, the square of the

normalizing constant in (3.11) satisfies that

K

∑
i=1

1
aVar(ψ̂i,MLE)

=
1

aVar(ψ̂MLE)
,

where ψ̂MLE is the MLE obtained based on all the K studies (Lin and Zeng, 2010).

As an illustrative example for the statements in Theorems 3.2 and 3.3, we consider

the p-value function pi(ψ) obtained from the mid-p adaptation of Fisher exact test in

(3.7) for the odds ratio. We can show that pi(ψ0;Xi,Yi) converges to U(0,1) in distribu-

tion as both ni and mi → ∞, provided that ni/mi is bounded away from 0 and ∞. Hence,

under this condition, the combined p-value function p(c)(ψ) provides asymptotically

accurate inference for the odds ratio. In addition, under the same condition, Breslow

(1981) and Kou and Ying (1996) showed that the p-value function pi(ψ) can be ex-

pressed in the form of (3.9). Hence, the combined p-value function p(c)(ψ) with the

weights in (3.10) leads to asymptotically efficient inference.
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3.5 The choice of weights

In this section, we use the result in Theorem 3.3 to help develop proper weights for

the combination in the finite sample setting. Specifically, we use the explicit formu-

la of {aVar(ψ̂i,MLE)}−1/2 as the weights in the combining recipe (3.3). For exam-

ple, Breslow (1981) showed that, when ψ is the common odds ratio, aVar(ψ̂i,MLE) =

ψ2
0
[
{niπ1i(1−π1i)}−1 +{miπ0i(1−π0i)}−1]. Thus, we can use the weights

wi ∝
[
{niπ1i(1−π1i)}−1 +{miπ0i(1−π0i)}−1]−1/2

, i = 1, . . . ,K, (3.12)

to implement our approach for the odds ratio. This weighting scheme incorporates the

sample sizes and the event rates of the studies, both of which are important factors in

determining the amount of information contained in a study. For the risk difference,

Tian et al. (2009) suggested to weight the studies based on the corresponding sam-

ple sizes. For the odds ratio, our simulation study (not reported here) shows that the

weighting scheme in (3.12) substantially improves the efficiency over that solely based

on the sample sizes.

In the weighting scheme, such as (3.12), π1i and π0i need to be estimated from

the data. Clearly, the naive estimates of π1i and π0i, using the sample proportions, are

not reliable in the setting of rare events. In the following, we propose a method to

estimate π1i and π0i in the i-th study by borrowing information from the other studies.

The idea here is similar to that in Efron (1996) as well as the Bayesian approaches

using hierarchical models. Specifically, we make the working assumption that π0i is a

realization from a beta distribution beta(β1,β2), noting that the beta distribution family

is broad enough for capturing or approximating distributions of different shapes. The

estimates of the parameters (β1,β2,ψ) are then obtained using the maximum likelihood

method as follows:

(β̂1, β̂2, ψ̂) = arg max
(β1,β2,ψ)

K

∑
i=1

log
∫ 1

0
fψ(xi,yi | π0i) fβ1,β2(π0i)dπ0i, (3.13)
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where fβ1,β2(π0i) = πβ1−1
0i (1− π0i)

β2−1/
∫ 1

0 πβ1−1
0i (1− π0i)

β2−1dπ0i, fψ(xi,yi | π0i) =

c(xi,yi)πxi
1i(1 − π1i)

ni−xi πyi
0i(1 − π0i)

mi−yi , and π1i = (ψπ0i)/(1 − π0i + ψπ0i) in the

situation of a common odds ratio. We obtain the empirical conditional density of π0i,

namely fβ̂1,β̂2,ψ̂
(π0i | xi,yi) ∝ fψ̂(xi,yi | π0i) fβ̂1,β̂2

(π0i), by substituting the parameters

(β1,β2,ψ) with their estimates (β̂1, β̂2, ψ̂). We then use the mean of this distribution,

denoted by π̂0i, to estimate π0i and the estimate of π1i is π̂1i = (ψ̂π̂0i)/(1− π̂0i+ ψ̂π̂0i).

This estimation method can apply to the situations of other common parameters, such

as the risk ratio and others, with straightforward modification.

A particular difficult situation is when no events are observed in either one of the

arms across all the studies; i.e., the situation when all entries x1 = x2 = . . .= xK = 0 or

when all entries y1 = y2 = . . .= yK = 0. From the appendix in this chapter, we can see

that Mantel–Haenszel method can not be applied in this case, unless continuity correc-

tions for zero events are used. Our method does not have this problem, as the weight

(3.12) can adapt to the case. For example, when all xi = 0 (i = 1, . . . ,K), we can show

that ψ̂ → 0 and π̂1i → 0 (i = 1, . . . ,K). In this situation, we use the limiting weight-

s limψ→0(wi/∑K
j=1 w j)

2 = {niπ0i/(1− π0i)}/{∑K
j=1 n jπ0 j/(1− π0 j)} (i = 1, . . . ,K).

These limiting weights only depends on π0i (i = 1, . . . ,K), which can be estimated

from the control arm as long as the observations yi (i = 1, . . . ,K) are not all zeros. The

situation when all yi = 0 (i = 1, . . . ,K) can be handled similarly.

In our simulation studies in Section 3.7, we generate the event rate π0i from uni-

form distributions U(0, ξ ), where ξ is set to be some very small numbers. Clearly,

such uniform distributions do not belong to the beta distribution family. Nevertheless,

our simulation results show that the estimation method proposed above still performs

well. We can view the working beta distribution assumption simply as a catalyst for

borrowing strength from the other studies. In particular, if xi = yi = 0 in the i-th study,

our estimation method still yields positive estimates of π1i and π0i if the other studies

observe non-zero events. The magnitude of the non-zero estimates in a zero total even-

t study is determined jointly by 1) the information borrowed from the other studies,
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roughly speaking, the “average level” of the event rates in the other studies; and 2) the

information provided by the i-th study itself, namely the sample sizes ni and mi. Our

numerical results show that the estimates of π1i and π0i for a zero total event study with

1000 cases and 1000 controls are generally much smaller than those with 10 cases and

10 controls. This agrees with the fact that the true values of π1i and π0i for a zero total

event study with 1000 cases and 1000 controls are more likely to be closer to zero than

those with 10 cases and 10 controls.

3.6 Beta adjustment for individual p-value functions

It is well known that the exact test is often conservative for discrete data when the

event rates are very low or sample sizes are not sufficiently large. In our context,

this conservatism means that the actual type I error rate of the test associated with

each study, namely Pr{pi(ψ0) ≤ α}, can be far less than the nominal level α . This

phenomenon is illustrated in Figure 3.2, where the cumulative distribution function

of pi(ψ0) is plotted using the solid curve. It is clear that the left tail of this curve is

much lower than the 45 degree line, indicating that the actual type I error rate is much

smaller than the nominal one. The conservatism of the exact tests associated with

individual studies would inevitably pass on to the overall test, resulting in loss of the

overall testing power. As shown in Section 3.3.1, our combining approach enables us

to trace the overall type I error rate down to the type I error rates associated with each

individual studies. This suggests the idea of improving the power of the overall test by

reducing the conservatism of individual tests. In this section, we explore this idea and

propose a simple adjustment for the individual p-value functions in (3.7). The proposed

adjustment approach is quite general, as it is applicable to any exact tests as well as to

settings beyond 2×2 tables. Note that our adjustment is imposed on the entire p-value

function, which is different from that in Boschloo (1970) and Crans and Shuster (2008)

where the significance level α of Fisher exact test is raised to α +ε, ε ≥ 0 only for the
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Figure 3.2: The cumulative distribution function Pr{pi,λ (ψ0)≤ s} before (λ = 0; solid
curve) and after (λ = 0.4; dashed curve) the beta adjustment proposed in Section 3.6.
The illustration is for the case where ψ0 = 1 and π0i = 0.05, using one of the 10 studies
in Table 8 of Gastwirth (1984) with sample sizes ni = 17 and mi = 7. The corresponding
beta adjustment function Gi(s;λ = 0.4) (dotted) is illustrated as well.

fixed null value of the parameter.

As illustrated in Figure 3.2, the cumulative distribution function curve of pi(ψ0)

is roughly S-shaped. We propose to use two beta distribution functions to reduce

the deviation between the S-shaped curve and the 45 degree line. Specifically, let

Fbeta(x;β1,β2) be the cumulative distribution function of the beta distribution with the

parameters β1 and β2. We define beta adjustment functions as follows

Gi(x;λ )=

 Fbeta

{
x;1+ λ

miπ0i(1−π0i)
,1+ λ

miπ0i(1−π0i)

}
if x ≤ 1/2,

Fbeta

{
x;1+ λ

niπ1i(1−π1i)
,1+ λ

niπ1i(1−π1i)

}
if x > 1/2,

for i= 1, . . . ,K,

(3.14)

where λ ≥ 0 is a tuning parameter. Then, the p-value functions (3.7) can be adjusted



60

as

pi,λ (ψ) = Gi{pi(ψ);λ}, i = 1, . . . ,K. (3.15)

Figure 3.2 illustrates a Gi(x;λ ) function using a dotted curve and the p-value function

after adjustment using a dashed curve. We can see that the tail part of the dashed curve

is generally closer to the 45 degree line, in comparison with the solid curve. We can

also mathematically show that, for any 0 ≤ α ≤ 1,

Pr{pi,λ (ψ0)≤ α/2} ≥ Pr{pi(ψ0)≤ α/2}, i = 1, . . . ,K,

and

Pr{pi,λ (ψ0)≥ 1−α/2} ≥ Pr{pi(ψ0)≥ 1−α/2}, i = 1, . . . ,K.

As a result, the power of individual tests is increased, and so is the power of the overall

test. Note that the function Gi(x;λ ) in (3.14) converges to x as both ni →∞ and mi →∞.

In other words, asymptotically, Gi(x;λ ) becomes an identical transformation. Thus,

pi,λ (ψ) and pi(ψ) are equivalent asymptotically, and their difference is noticeable only

in small sample settings. The proposed adjustment involves a tuning parameter λ . In

our numerical studies in Section 3.7, we use λ = 0.4 by trial and error. It appears that

the choice of λ = 0.4 generally works well. We may also use a more formal cross

validation technique to help select appropriate value of λ .

Denote by p(c),λ (ψ) the combined p-value function obtained by combining the

adjusted p-value functions pi,λ (ψ), i = 1, . . . ,K, following the same combining recipe

(3.3). We can make inference from p(c),λ (ψ) in the same way as from p(c)(ψ). This

function p(c),λ (ψ) has all the desirable properties established for p(c)(ψ) in Section

3.3 and Section 3.4. Specifically, a formula for the overall type I error rate function

can be derived in a similar way to Theorem 3.1. This enables us to estimate the overall

type I error rate from the observed data, and monitor the adjustment effect for suitably

tuning the parameter λ to avoid over-adjustment. Moreover, p(c),λ (ψ) and p(c)(ψ)
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are asymptotically equivalent as ni → ∞ and mi → ∞, i = 1, . . . ,K, because of the

asymptotic equivalence of pi,λ (ψ) and pi(ψ). The large sample properties established

in Theorems 3.2 and 3.3 also hold for the inference using p(c),λ (ψ).

3.7 Simulation studies

To examine the performance of the proposed meta-analysis approach, we carry out

simulation studies in the setting of rare events. The simulated data structure follows

two real data sets: the Avandia data (Nissen and Wolski, 2007, Table 3) and the pro-

motion data (Gastwirth, 1984, Table 8). In our simulation studies we assume that the

common parameter of interest is the odds ratio, which is the effect measure used in the

original analysis by Nissen and Wolski (2007). For comparison purposes, we include

in the simulation studies Mantel–Haenszel and Peto methods, in view of their popular-

ity in applications and the recommendation in Bradburn et al. (2007). We also include

the classical conditional inference method (Gart, 1970) but using the likelihood ratio

chi-square test to ease the computational burden. To facilitate our comparison, the for-

mulas of these methods are provided in Appendix. In all, seven methods are included

in our numerical analysis. They are: (i) the proposed meta-analysis approach combin-

ing the p-value functions (3.7) (◦); (ii) the proposed meta-analysis approach combining

the beta-adjusted p-value functions (3.15) with the tuning parameter λ = 0.4 (△); (ii-

i) Mantel–Haenszel method without continuity corrections (+); (iv) Mantel–Haenszel

method with 0.5 imputation for the studies with zero events in either arm (×); (v) Peto

method without continuity corrections (⋄); (vi) Peto method with 0.5 imputation for

the studies with zero events in either arm (▽); (vii) the classical conditional inference

method (�).

In the first simulation study, we independently generate K = 48 studies using the

same sample sizes as those in the Avandia data. The median of the sample sizes

{n1, . . . ,nK} and {m1, . . . ,mK} are 222 and 142, respectively. For the i-th study, the
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event rate π0i in the control arm is generated from a uniform distribution U(0,ξ ). Here,

ξ is set to be a small number, such as 0.005, 0.01, 0.05 and 0.1, to ensure low event

rate. The event rate in the other arm is determined by logit(π1i) = log(ψ)+ logit(π0i)

for a fixed odds ratio ψ ranging from 1 to 10. The data (xi,yi) are generated using

the binomial model described in Section 3.2.1. Because of the low event rates, we can

observe a substantial portion of the studies with xi = yi = 0. This simulation setting is

similar to those in Bradburn et al. (2007) and Tian et al. (2009).

Figure 3.3(a) presents the empirical coverage probability of 95% confidence in-

tervals obtained from the aforementioned methods when ξ =0.01. It is clear in Fig-

ure 3.3(a) that the coverage probabilities of Mantel–Haenszel method (iv), Peto meth-

ods (v) and (vi) decrease quickly as the true odds ratio increases away from one. Only

the proposed methods (i) and (ii), Mantel–Haenszel method (iii) and the classical con-

ditional inference method (vii) can yield confidence intervals with adequate coverage

probability. These methods also achieve comparable power for testing the hypothesis

H0 : ψ = 1 versus H1 : ψ ̸= 1, as shown in Figure 3.3(b).

In the second simulation study, we repeat the same simulation procedure but use the

data structure of the promotion data. This data set consists of 10 studies, and the median

of the sample sizes {n1, . . . ,nK} and {m1, . . . ,mK} are 25 and 9, respectively. With this

data structure, there is a non-negligible chance that zero events are observed in one

arm for all the simulated studies, as seen in the real promotion data. In this situation,

Mantel–Haenszel method is not applicable unless continuity corrections are applied,

and thus Mantel–Haenszel method (iii) can not be applied in our second simulation

study.

The analysis results for our second simulation study are shown in Figure 3.3(c)–

(d) for π0i ∼ U(0,0.05). Figure 3.3(c) shows that Mantel–Haenszel method (iv) has

a severe coverage problem with very low coverage probability, and the classical con-

ditional inference method (vii), though improved over (iv), generally still has a lower
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Figure 3.3: Empirical coverage probability of 95% confidence intervals and empirical
power of testing H0 : ψ = 1 versus H1 : ψ ̸= 1, for the odds ratios between 1 and 10.
The empirical results are calculated based on 10000 data sets simulated from the struc-
tures of the Avandia data (a)-(b) and the promotion data (c)-(d). The baseline event rate
π0i, i = 1, . . . ,K, are generated from U(0, 0.01) and U(0, 0.05) for illustrations (a)-(b)
and (c)-(d), respectively. The methods illustrated are: (i) the proposed method com-
bining p-value functions (3.7) (◦); (ii) the proposed method combining beta adjusted
p-value functions with tuning parameter λ = 0.4 (△); (iii) Mantel–Haenszel method
without continuity corrections (+); (iv) Mantel–Haenszel method with 0.5 continuity
corrections for the studies with zero event in either arm (×); (v) Peto method without
continuity corrections (⋄); (vi) Peto method with 0.5 continuity corrections for the s-
tudies with zero event in either arm (▽); and (vii) the classical conditional inference
method (�).
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coverage than the nominal value. For Peto method (v), the coverage probability is ad-

equate when the true odds ratio ψ is less than or equal to 4, but falls below 90% when

ψ is greater than 5, and decreases further to about 80% when ψ = 6. Continuity cor-

rections make the coverage problems of Peto method much worse. These observations

are consistent with the findings in Bradburn et al. (2007). Based on their extensive

simulation studies, Bradburn et al. (2007) concluded that, when event rates are very

low, Peto method (v) has the best confidence interval coverage and is the most power-

ful method among the commonly used methods, provided the sample sizes of two arms

are not severely unbalanced and the true odds ratio is not very large. On the other hand,

Figure 3.3(c) shows that the proposed methods (i) and (ii) maintain adequate coverage

probability consistently for all the odds ratios in the range of the figure. We also see in

Figure 3.3(c) that the proposed method (i) is quite conservative, which is reflected by

its exceedingly high empirical coverage probability. As explained in Section 3.6, this

conservatism is largely due to the conservatism of individual exact tests. We note that

similar conservatism is also seen in the numerical studies for the exact meta-analysis

approach proposed for the risk difference in Tian et al. (2009). Figure 3.3(d) shows

that the conservatism is greatly reduced in our proposed methods (ii) by combining

the adjusted p-value functions. In fact, Figure 3.3(d) shows that the proposed method

(ii) is more powerful than Peto method (v). In summary, our proposed methods (ii)

completely outperforms Peto method (v) (which was recommended in Bradburn et al.

(2007)), and yields both higher coverage probability and higher power simultaneously.

Finally, we present in Table 3.1 the estimated coverage probability of the confi-

dence intervals obtained from the proposed methods (i) and (ii), all in the setting of our

first simulation study. As shown in Section 3.3.1, our proposed meta-analysis approach

enables us to estimate the actual coverage probability (3.6). To evaluate the accuracy of

such estimation, we compare the estimated coverage probability with the actual cover-

age probability for the 95% confidence intervals. In Table 3.1, the values of the actual

coverage probability listed in Part I and Part II correspond to the points in Figure 3.3(a)
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denoted by (◦) and (△), respectively. More specifically, the actual coverage probability

presented here is

∫ ξ

0
· · ·
∫ ξ

0
{R(c)(0.975)−−R(c)(0.025)} f1(π01) · · · fK(π0K) dπ01 · · ·dπ0K, (3.16)

where fi(π0i) = 1/ξ for 0 ≤ π0i ≤ ξ is the density function of the U(0,ξ ) distribution.

The estimated coverage probability is the counterpart of (3.16), with R(c)(·) replaced

by the estimate R̂(c)(·). Part I of Table 3.1 shows that, for the proposed method (i),

the absolute difference between the estimated and actual coverage probability is never

greater than 0.5% for the listed odds ratios. Part II of Table 3.1 shows that, for the

proposed method (ii), the difference is slightly higher, but no greater than 1.5%. This

suggests that perhaps the estimation is sufficiently accurate for practical uses.

Table 3.1: Estimated coverage probability of 95% confidence interval

Part I. The proposed method (i)

True odds ratio 1 2 3 4 5 6 7 8 9 10

Actual coverage (%) 97.5 97.0 96.7 96.6 96.7 96.6 96.5 96.0 96.6 96.5

Estimated coverage (%) 97.8 97.1 96.8 96.7 96.6 96.6 96.5 96.5 96.5 96.4

Absolute difference (%) 0.3 0.1 0.1 0.1 0.1 0.0 0.0 0.5 0.1 0.1

Part II. The proposed method (ii)

True odds ratio 1 2 3 4 5 6 7 8 9 10

Actual coverage (%) 94.8 94.5 94.4 94.1 94.1 94.0 94.5 94.3 94.1 94.4

Estimated coverage (%) 96.0 95.7 95.6 95.5 95.4 95.4 95.4 95.3 95.3 95.3

Absolute difference (%) 1.2 1.2 1.2 1.4 1.3 1.4 0.9 1.0 1.2 0.9



66

3.8 Real data examples

3.8.1 Avandia data

The Avandia data set (Nissen and Wolski, 2007) consists of 48 large randomized clin-

ical trials, and it is used to examine whether the diabetes drug Avandia is associated

with myocardial infarction or cardiovascular death. Out of the 48 studies, 10 studies

observe no event of myocardial infarction and 25 studies observe no event of cardio-

vascular death. Nissen and Wolski (2007) excluded these studies from the analysis.

Based on Peto method (Peto method (v) in our simulation study), they obtained for

the endpoint myocardial infarction a 95% confidence interval of (1.031, 1.979) and

a p-value of 0.032 for the odds ratio. Hence, Nissen and Wolski (2007) concluded

that Avandia is significantly associated with myocardial infarction. For the endpoint

cardiovascular death, they obtained a 95% confidence interval of (0.980, 2.744) and a

p-value of 0.060.

Table 3.2 summarizes the analysis results obtained from the seven methods con-

sidered in the previous section. For myocardial infarction, from the proposed method

(i), we obtain a 95% confidence interval of (0.972, 2.001) and a p-value of 0.071. The

estimated coverage probability (3.6) is 97.3%, indicating that the results here may be

conservative. From the proposed method (ii), we obtained a 95% confidence interval of

(1.037, 2.004) and a p-value of 0.029, and the estimated coverage probability is 96.1%.

For cardiovascular death, from the proposed method (i), we obtain a 95% confidence

interval of (0.765, 2.965) and a p-value of 0.252. The estimated coverage probability

(3.6) is 98.5%. From the proposed method (ii), we obtained a 95% confidence inter-

val of (0.956, 2.981) and a p-value of 0.073, and the estimated coverage probability is

96.5%. In our analysis, we have utilized all available data, including zero total event

studies.

Table 3.2 shows that Mantel–Haenszel method (iii) yields a p-value of 0.033 and

Peto method (v) yields a p-value of 0.032, both of which are significant at α = 0.05
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significance level, for myocardial infarction. But both methods exclude all zero total

event studies from the analysis. Table 3.2 also shows that, after applying continuity

corrections to zero events, Mantel–Haenszel method (iv) yields a p-value of 0.163

and Peto method (vi) yields a p-value of 0.158. Neither of the results is significant

even at α = 0.1 significance level. Clearly, for Mantel–Haenszel and Peto methods,

the exclusion or inclusion of zero total event studies lead to contradictory conclusions.

This contradiction has generated confusion in practice (see, e.g., Diamond et al., 2007).

The results are also consistent with the finding reported in Sweeting et al. (2004) that

imputation to zero events can result in very different conclusions, depending on the

numbers imputed.

Table 3.2: Analysis results of Avandia data and promotion data

Avandia data Promotion data

Myocardial infarction Cardiovascular death

95% CI P 95% CI P 95% CI P

Proposed method (i) (0.972, 2.001) 0.071 (0.765, 2.965) 0.252 (0.842, ∞) 0.080

Proposed method (ii) (1.037, 2.004) 0.029 (0.956, 2.981) 0.073 - -

Mantel–Haenszel (1.029, 1.978) 0.033 (0.984, 2.930) 0.057 - -

Mantel–Haenszel-CC (0.919, 1.647) 0.163 (0.760, 1.689) 0.541 (0.738, 5.396) 0.174

Peto (1.031, 1.979) 0.032 (0.980, 2.744) 0.060 (1.522, 12.86) 0.006

Peto-CC (0.921, 1.659) 0.158 (0.761, 1.690) 0.538 (0.776, 4.270) 0.168

Conditional inference (1.030, 1.979) 0.032 (0.984, 2.880) 0.058 (3.731, ∞) 0.000

Remark: CI = Confidence interval; P = p-value for hypothesis testing H0 : ψ = 1 versus H1 : ψ ̸= 1; CC =

Continuity corrections to zero events using 0.5 imputation.
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For the proposed approach, we have shown in Section 3.3.2 that zero total event

studies have the effect of increasing uncertainty in the overall inference outcomes. To

illustrate this effect numerically, we intentionally remove all zero total event studies

and analyze the Avandia data again. For myocardial infarction, we obtain 95% confi-

dence intervals of (0.978, 1.994) and (1.040, 1.996) from the proposed method (i) and

(ii), respectively. Both intervals are slightly narrower than those obtained by analyzing

the entire data.

3.8.2 Promotion data

The promotion data set (Gastwirth, 1984, Table 8) consists of 10 small observational

surveys, and it is used to examine the difference between white and black employees

in promotion rates. A special feature of this data set is that no event of promotion-

s is observed in the arm of black employees among all the studies. In this situation,

Mantel–Haenszel point estimate is undefined for the odds ratio. With 0.5 continuity

corrections, Mantel–Haenszel method (iv) yields a 95% confidence interval of (0.738,

5.396) and a p-value of 0.174. This is a statistically insignificant result even at α =0.1

significance level. Using the proposed method (i), we obtained a 95% confidence inter-

val of (0.842, ∞) and a p-value of 0.080. Analysis results of other methods are reported

in Table 3.2. Note that the proposed method (i) and the classical conditional inference

method yield infinity as the upper end of the confidence interval for the odds ratio. In

fact, the promotion data set, with no event in the arm of black employees across all the

studies, does not provide any evidence for rejecting the hypothesis H0 : ψ = ψ∗ and

favoring H1 : ψ < ψ∗, for any value of ψ∗. Thus, it is proper to use infinity as the upper

end of the confidence interval. In contrast, Table 3.2 shows that both Mantel–Haenszel

and Peto methods yield finite confidence intervals. This is because both methods obtain

Wald-type intervals by computing point estimates plus/minus a constant times estimat-

ed standard errors. But finite confidence intervals are inappropriate for the case of the

promotion data. Apparently, both Mantel–Haenszel and Peto methods have artificially
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placed an upper bounds on the odds ratio. Our proposed approach and the classical

conditional inference method do not have this problem.

3.9 Discussion

In this chapter, we have proposed an exact meta-analysis approach by combining the

p-value functions obtained from the exact tests associated with individual studies. This

approach is fundamentally different from conventional meta-analysis approaches. In

the setting of rare events, this approach can incorporate zero total event studies in

the analysis without applying artificial continuity corrections to zero events. We have

shown both theoretically and numerically that the proposed combined p-value function

can be used for making exact inference. In particular, the overall type I error rate can

be expressed explicitly in terms of the type I error rates associated with individual

studies. This enables us to estimate the overall type I error rate from the data, and also

to devise further adjustment of individual p-value functions to improve the power of the

overall test. We also use an asymptotic result to provide useful guidelines for choosing

appropriate weights to improve the combination efficiency. Through numerical studies

using simulated and real data, we show that our proposed meta-analysis approach is

superior to Mantel-Haenszel, Peto and the classical conditional inference methods in

the setting of rare events.

The proposed approach may be seen as a generalization of the classical approach

of combining p-values, but it combines p-value functions rather than point estimators

or the observed p-values. The idea of combining p-value functions can lead to a broad

class of exact meta-analysis approaches, in the sense that the individual p-value func-

tions in the combining recipe (3.3) can be obtained based on any exact test, including

those recommended by Lydersen et al. (2009), and those proposed by Agresti and Min

(2002) and Reiczigel et al. (2008). In fact, the p-value functions are allowed to be

derived from different exact test procedures among the studies. Moreover, the Φ(·)
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function in the combining recipe (3.3) can be replaced by any continuous monoton-

ic function, as seen in (Singh et al., 2005; Xie et al., 2011). This further broadens the

class of the proposed exact meta-analysis approaches. For the mid-p adaptation of Fish

exact test illustrated in this chapter, we have shown that the use of Φ(·) in (3.3) can

yield asymptotically efficient inference and good small sample performance. Note that

this asymptotic efficiency result (in terms of preserving Fisher information) does not

hold for other common choices of the continuous monotonic functions listed in Singh

et al. (2005) and Xie et al. (2011), including those used in the classical Fisher approach

of combining p-values.

We also observe that our proposed meta-analysis approach provides a computa-

tionally feasible way for extending an exact test for a single study to multiple studies.

The overall computational expense of our approach amounts to the summation of the

individual computational expense associated with each of the studies. In other words,

the overall computational complexity is at the order of O(K). Hence, the development

in this chapter provides a feasible solution to the computational question raised in A-

gresti and Min (2002). Specifically, Agresti and Min (2002) pointed out a challenging

problem in extending their proposed exact test for a single 2×2 table to multiple 2×2

tables. That is, the computational complexity increases exponentially as the number

of the studies increases, namely at the order of O(gK). Here g is the number of grid

values in a greed search. Consequently, it would be problematic to implement their

proposed test even when K is moderate. In fact, this computational problem prevails in

almost all exact test methods when they are extended to multiple 2×2 tables. To this

end, Mehta, Patel, and Gray (1985) proposed a computing algorithm that applies to a

conditional exact test for the common odds ratio. But their approach does not apply

to either unconditional exact tests or other effect measures, such as the risk ratio, risk

difference and others. Our proposed approach, on the other hand, clearly provides a

simple but unified framework for extending an exact test for a single study to multiple

studies. In fact, our approach can be implemented simply by compiling the existing
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computer programs for computing the p-values for a single study. For running our ap-

proach with the Avandia data with K = 48, including inverting the p-value functions,

it takes less than 30 seconds on a Dell PC using the R code which is available on the

first author’s website.

We stress that, although the presentation in this chapter focuses on the problems

in meta-analysis of 2×2 tables with zero events, our approach applies to any general

meta-analysis setting with discrete or/and continuous data.

3.10 Appendix

3.10.1 Review of traditional methods for meta-analysis of 2×2 ta-

bles

The Mantel-Haenszel method uses the following formula to estimate the common odds

ratio

ψ̂MH =
∑K

i=1 xi(mi − yi)/(ni +mi)

∑K
i=1 yi(ni − xi)/(ni +mi)

.

The variance estimate of log(ψ̂MH), proposed by Robins, Breslow, and Greenland

(1986), is

Var{log(ψ̂MH)}=
∑K

i=1 PiRi

2(∑K
i=1 Ri)2

+
∑K

i=1(PiSi +QiRi)

2(∑K
i=1 Ri)(∑K

i=1 Si)
+

∑K
i=1 QiSi

2(∑K
i=1 Si)2

,

where Pi = (xi+mi−yi)/(ni+mi),Qi = (ni−xi+yi)/(ni+mi),Ri = xi(mi−yi)/(ni+

mi), and Si = yi(ni − xi)/(ni +mi) (i = 1, . . . ,K).

The Peto method uses the following to make inference about the common odds

ratio

log(ψ̂Peto) =
∑K

i=1(Oi −Ei)

∑K
i=1Vi

and Var{log(ψ̂Peto)}=
1

∑K
i=1Vi

,

where Oi = xi,Ei = ni(xi+yi)/(ni+mi) and Vi = nimi(xi+yi)(ni+mi−xi−yi)/{(ni+

mi)
2(ni +mi −1)} (i = 1, . . . ,K).
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The classical conditional inference method is based on the multiplied conditional

likelihood function L(ψ) = ∏K
i=1 Prψ(Xi = xi | Ti = ti), which can yield an η-level

confidence interval {
ψ : 2 log

supψ L(ψ)

L(ψ)
≤ dη

}
.

Here dη is the η-th percentile of the χ2 distribution with one degree of freedom (An-

dersen, 1971).

3.10.2 Proofs

Proof of Theorem 3.1. Define random variables Bi j (i = 1, . . . ,K; j = 1, . . . ,K) as seen

in Theorem 3.1. By sequentially conditioning on pi(ψ0) (i= 1, . . . ,K), we can establish

that

Pr{p(c)(ψ0)≤ s}

= E

Pr

Φ

( K

∑
i=1

w2
i

)−1/2 K

∑
i=1

wiΦ−1{pi(ψ0)}

≤ s

∣∣∣∣∣∣ p2(ψ0), . . . , pk(ψ0)


= E

Pr

p1(ψ0)≤ Φ


(

1+ ∑
j ̸=1

w2
j

w2
1

)1/2

Φ−1(s)− ∑
j ̸=1

w j

w1
Φ−1(B1 j)


∣∣∣∣∣∣ p2(ψ0), . . . , pk(ψ0)


= E

Pr

U1 ≤ Φ


(

1+ ∑
j ̸=1

w2
j

w2
1

)1/2

Φ−1(s)− ∑
j ̸=1

w j

w1
Φ−1(B1 j)


∣∣∣∣∣∣ p2(ψ0), . . . , pk(ψ0)


+ E

D1

Φ


(

1+ ∑
j ̸=1

w2
j

w2
1

)1/2

Φ−1(s)− ∑
j ̸=1

w j

w1
Φ−1(B1 j)




= Pr

Φ


(

K

∑
i=1

w2
i

)−1/2 K

∑
i=1

wiΦ−1(B1i)

≤ s

+d1(s)

= Pr

Φ


(

K

∑
i=1

w2
i

)−1/2 K

∑
i=1

wiΦ−1(BKi)

≤ s

+ K

∑
i=1

di(s)

= s+
K

∑
i=1

di(s)

This completes the proof.

Proof of Theorem 3.2. This is a direct result of Theorem 3.1 and Corollary 3.1.
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Proof of Theorem 3.3. It is easy to show that

p(c)(ψ) = Φ

[
1{

∑K
i=1 w2

i

}1/2

K

∑
i=1

wiΦ−1{pi(ψ)}

]
= Φ

{ K

∑
i=1

1
̂aVar(ψ̂i,MLE)

}1/2

(ψ − ψ̂c)

+o(1),

where

ψ̂c =

{
K

∑
i=1

ψ̂i,MLE

̂aVar(ψ̂i,MLE)

}/{
K

∑
i=1

1
̂aVar(ψ̂i,MLE)

}
.

The result of Theorem 3.3 then follows.



74

Chapter 4

Concluding Remarks

In this dissertation, we have developed a new statistical methodology for combining

information from independent studies. Our development is based on the combination

of confidence distributions. This is fundamentally different from the combination of

point estimates in the conventional meta-analysis approaches. We have shown that the

proposed methodology has desirable inferential properties in two recurrent settings.

More specifically, 1) in the presence of heterogeneous studies, we have shown that the

proposed approach in Chapter 2 can integrate indirect evidence and achieves asymp-

totic efficiency; 2) for rare event studies, we have shown that the proposed approach

in Chapter 3 can yield exact inference and incorporate all available data in the analysis

without using artificial continuity corrections for zero events. The established proper-

ties have been demonstrated in our numerical studies.

The general idea of combining confidence distributions as a way to synthesize in-

formation was first proposed in Singh et al. (2005). This idea was further developed

in Xie et al. (2011). They showed that the combining of confidence distributions pro-

vides a unifying framework for meta-analysis and leads to the development of robust

meta-analysis methods. The developments in this dissertation further demonstrate that

confidence distribution is a useful inferential tool in meta-analysis. Here, we stress that

our developments utilize a key feature of confidence distribution, that is, it uses a distri-

bution function on the parameter space as an “information carrier”. Since a distribution

function can carry wealthy information, much more than a point or interval estimator,

the combining of confidence distribution can potentially preserve more information in

the process of evidence synthesis. More concretely, in Chapter 2, we have shown that
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the multiparameter confidence distribution can carry correlation information, and this

enables us to achieve asymptotically efficient inference for those parameters that are

not even estimable in some of the studies. In Chapter 3, we have shown that p-value

functions (which can be viewed as confidence distributions in asymptotic sense) can

inherit the “exact” properties of the tests that are based on the exact distributions of

the underlying test statistics, and this enables us to make an overall exact inference for

the common parameter of the studies. On the other hand, point estimates generally

can not preserve “distributional information”, such as correlation or exactness. Conse-

quently, the developments in Chapter 2 and Chapter 3 can not be easily achieved in the

conventional meta-analysis framework of combining point estimates.

To close this dissertation, we remark that the general idea of combining confidence

distributions can be potentially used to solve other open problems in meta-analysis.
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Appendix A

Notions of Confidence Distribution

A confidence distribution (CD) is a sample-dependent distribution function on the pa-

rameter space satisfying certain requirements in terms of repeated sampling perfor-

mance. It is a pure frequentist concept and can be used to estimate an unknown pa-

rameter. In the following, we list the formal definitions of CD for 1) single parameter

case (Schweder and Hjort, 2002; Singh et al., 2005); and 2) multiparameter case (Singh

et al., 2007). A comprehensive review for the modern interpretation and application of

this concept is provided in Xie and Singh (2012).

Definition 1 (Single-parameter CD). A function Hn(·) = Hn(XXXn, ·) on X ×Θ → [0,1]

is called a CD for a parameter θ if (i) For each given sample set XXXn in the sample space

X , Hn(·) is a continuous cumulative distribution function in the parameter space Θ;

(ii) At the true parameter value θ = θ0, Hn(θ0) = Hn(XXXn,θ0), as a function of the

sample set XXXn, has a uniform distribution U(0,1).

The function Hn(·) is called an asymptotic confidence distribution (aCD) if (ii) is

replaced by (ii)’: at θ = θ0, Hn(θ0)→U(0,1) as n → ∞ and the continuity requirement

on Hn(·) is dropped.

In other words, a CD is a function, defined on both the sample space and the pa-

rameter space, that satisfies two requirements. The requirement (i) is simply that, for a

given sample, it is a distribution function on the parameter space. The requirement (ii)

imposes a restriction to this sample-dependent distribution function so that inference

drawn from it has desirable frequentist properties.
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For the multiparameter case, the definition of CD is not unique due to the multi-

dimensionality. Singh et al. (2007) provided two definitions, namely l-CD and c-CD,

from different perspectives. The l-CD is defined as a sample-dependent multivariate

distribution satisfying certain requirement in terms of its marginal distributions. The

c-CD is defined as a sample-dependent multivariate distribution satisfying certain re-

quirement in terms of its “central region”.

Definition 2 (Multiparameter l-CD). A function Hn(·) = Hn(XXXn, ·) on the parameter

space Θ ⊆ Rp is a (asymptotic) CD for the p-dimensional vector parameter θθθ in the

linear sense if (i) it is a probability distribution function over the parameter space Θ

for any fixed sample XXXn; and (ii) for any p×1 vector λλλ , the conditional distribution of

λλλ ′ξξξ n given XXXn is a (asymptotic) CD for λλλ ′θθθ , where the p× 1 random vector ξξξ n has

the distribution Hn(·) given XXXn.

In other words, an l-CD for a multi-dimensional parameter is a sample-dependent

multivariate distribution on the parameter space such that its marginal distribution is a

CD for the corresponding (one-dimensional) component of the parameter.

Definition 3 (Multiparameter c-CD). A function Hn(·) = Hn(XXXn, ·) on the parameter

space Θ ⊆ Rp is a (asymptotic) CD for the p-dimensional vector parameter θθθ in the

circular sense if (i) it is a probability distribution function over the parameter space Θ

for any fixed sample XXXn; and (ii) for any 0 < α < 1, the 100(1−α)% central region of

Hn(·) is a confidence region for θθθ with (asymptotic) coverage probability 1−α .

In other words, an c-CD for a multi-dimensional parameter is a sample-dependent

multivariate distribution on the parameter space such that its “central region” is a con-

fidence region for the parameter. Such “central region” can be defined using the notion

of data depth (see, e.g., Liu et al., 1999).
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