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ABSTRACT OF THE DISSERTATION

FEATURE SELECTION WITH APPLICATIONS TO

TEXT CLASSIFICATION

by DAVID JOSEPH NEU

Dissertation Director: Endre Boros

Application of a feature selection algorithm to a textual data set can improve the

performance of some classifiers. Due to the characteristics, specifically the size, of

textual data sets researchers have traditionally relied on a family of simple heuristics

to perform feature selection. These heuristics, which in practice are quite effective, use

functions of individual feature statistics, that we refer to as feature ranking functions,

to order the feature set.

We are interested in identifying the most effective feature ranking functions. To

do this we begin by defining a feature set evaluation methodology. Traditionally the

performance of feature selection algorithms has been measured by comparing the per-

formance of classification algorithms before and after feature selection. Instead, we

measure various criteria of the selected feature set itself, including measures of sepa-

ration, noise, size, and robustness. We demonstrate that many of these criteria are

competing, and show how the tools of multicriteria optimization can be employed to

rank the performance of feature selection algorithms.

Using this methodology we evaluate the performance of a large set of feature rank-

ing functions, including a function that measures the rareness of a feature assuming

that relevant and irrelevant documents are generated by two independent stochastic
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processes. Motivated by the results, we identify the defining characteristics of the func-

tions that are most successful, noting that many of these can be written as ratios of

measures of separation to measures of noise.

Next we introduce a set of axioms which we believe that feature ranking functions

should satisfy, and study the set of these functions that can be represented as a lin-

ear combination of some finite set of basis functions. We demonstrate that many of

the functions or approximations to the functions that we studied are members of this

set. Next consider the set of coefficient vectors of this set and show that it is convex,

bounded, and not empty. We conclude by investigating the performance of other ap-

proaches to feature selection including greedy and ensemble algorithms that use feature

ranking functions.
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Chapter 1

Introduction

We begin this chapter with an overview of textual feature selection. Then, the models

that are used to represent documents and features are introduced. Next, selected ma-

terial related to Receiver Operating Characteristics (ROC) Curves, the Wilcoxon rank

sum statistical test and multicriteria optimization, that will be used in the sequel is

reviewed. We then provide a survey of other work related to textual feature selection,

and conclude the chapter with a overview of the material contained in the remainder

of this dissertation.

1.1 Textual Feature Selection

Consider a set of n-dimensional vectors, known as the collection, with each vector

representing a document which is labeled as either relevant or irrelevant for a given

topic, and the components of the vectors, known as features, corresponding to the terms

or some function of the terms in the documents. Feature selection is the identification

of the subset or subsets of features that best satisfy some specified criteria. Feature

selection has been studied extensively in the machine learning, pattern recognition, data

mining, information retrieval, and text categorization literature. A survey of the field

is provided in [43].

While much of the material in this dissertation is independent of the data set under

consideration, in this section we will discuss the unique characteristics of textual data,

the challenges presented by these characteristics and the feature selection algorithms

that they suggest. In addition, we shall introduce several concepts that will be central

to the discussion in the sequel.

High Dimensional. Textual data is inherently high dimensional with the number of
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features being potentially equal to the number of words in the English language. This

characteristic, combined with the fact that the number of feature subsets is equal to

2n, result in textual feature selection being a very large scale problem. Some of the

difficulties of working with such data sets include

• the curse of dimensionality – the volume of a space increases exponentially with

the number of dimensions and some methods need exponentially more data to

obtain comparable results,

• spurious correlations – since the data is not completely random, as the number of

dimensions increases, so do the number of correlations among variables with the

issue being how to determine which of these correlations are meaningful,

• the collapse of distance metrics – points tend to become equidistant as the number

of dimensions increases, thereby impacting the effectiveness of distance based

algorithms,

(see e.g. [20, 25, 28, 78]). Ironically, feature selection is one of the techniques used to

mitigate these issues.

Noise. Misspellings, the improper, or colloquial use of words, words such as stopwords

(e.g. “a”, “and”, “the”) that have low semantic content regardless of the topic, are all

examples of noise terms. These terms are virtually useless for distinguishing relevant

documents from irrelevant ones, but paradoxically, some noise terms such as stopwords

occur very frequently. As a result, documents typically have many of these terms in

common; a fact which serves to exacerbate the aforementioned tendency of documents

to be equidistant because of the high dimensional nature of the data. Due to the

prevalence of noise, it would perhaps be more accurate to refer to feature selection in

textual data as feature elimination.

Many different descriptions of textual noise features have been offered. In [60] it is

stated that a “noise feature is one that, when added to the document representation,

increases the classification error on new data.” In [12], it is suggested that what consti-

tutes noise includes a “perfectly random/irrelevant attribute”, an “(almost) constant
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attribute”, or “dependent attributes”. We shall consider a feature to be noise if neither

its presence in a document nor its absence from a document depends on the document’s

class, or equivalently, we shall consider a feature noise if its neither its presence in

a document nor its absence from a document provides evidence that the document is

relevant or irrelevant.

Distribution. The distribution of textual data tends to follows a power law known as

Zipf’s law or arguably more accurately, an extension of it known as Mandelbrot’s law.

Given a list of terms ordered by their frequency of occurrence in a collection, these laws

indicate that the frequency of occurrence of any given term is inversely proportional to

its rank in the list. The most common terms are, per our discussion above, “noise” fea-

tures; further, most features, even those not considered “noise” features, are not needed

to distinguish relevant documents from irrelevant documents. As a result, textual fea-

ture selection can be seen to involve identifying a very small subset of features from a

very large one. Quoting from, [61], p.29, “what makes frequency-based approaches to

language hard is that almost all words are rare.”

Positive and Negative Features. We now introduce the idea of positive and negative

features. A feature is said to be positive if its presence in a document provides evidence

that the document is relevant, and its absence from a document provides evidence

that the document is irrelevant. A feature is said to be negative if its presence in a

document provides evidence that the document is irrelevant, and its absence from a

document provides evidence that the document is relevant. We shall revisit positive

and negative features during our discussion of the next several topics.

Class Homogeneity. A set of documents is class homogeneous if all documents in

the set are labeled as relevant for exactly one topic. The set of relevant documents is

class homogeneous by definition. If both the sets of relevant and irrelevant documents

are class homogeneous, then the set complement operation applied to documents is

idempotent, that is, documents which are not relevant are irrelevant, and documents

which are not irrelevant are relevant.

In textual data sets, the set of irrelevant documents is typically not class homoge-

neous. For example, if the topic under consideration is “fuel” and the set of irrelevant
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documents is not class homogeneous, then the relevant documents are those that have

been labeled to be about “fuel”, but the irrelevant documents are not known to be

about some other specific topic; the only thing we can say is that they are not about

“fuel”. This situation results in an asymmetry in that the presence of a positive term

in a document provides affirmative evidence that the document is about “fuel”, but

the presence of a negative term does not provide evidence that the document is about

a specific topic. Rather, it only provides evidence that the document is not relevant.

Such a term can be thought of “blocking” the document from being relevant.

One of the issues with the set of irrelevant documents being class inhomogeneous

is related to negative features. Features that appear in many irrelevant documents,

and only a few relevant documents seem to meet the criteria for a negative feature. It

should be noted, however, that when the set of irrelevant documents is inhomogeneous

such features consistently appear in documents regardless of their topic, which means

they exactly coincide with the noise features.

Class Skew. Adapting the definition given in [35], the class skew is the ratio of

the number of relevant documents to the number of irrelevant documents in a collec-

tion. In textual data sets, typically there is significant class skew, with the number

of irrelevant documents for any given topic greatly exceeding the number of relevant

documents. Having a very small number of relevant documents can cause feature se-

lection algorithms to encounter the same sort of difficulties as classification algorithms

when presented with such data sets (see e.g. [40, 34, 35, 33]). Examples of these diffi-

culties include overfitting and the inability to reach an adequate level of confidence in

results. Further, in data sets with significant class skew it can be difficult for classifica-

tion algorithms to achieve better performance than the simple strategy of assigning all

documents to the majority class, that is, of classifying all documents as irrelevant (see

e.g. [40], p.1290). In feature selection the analogous problem is that algorithms may

have a tendency to select features that appear in many irrelevant documents, and only

a few relevant documents. While such features seem to meet the criteria for a negative

feature, since they appear in a very large number of documents, it should be mentioned

that they also coincide with our characterization of noise features.
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Relevant Centric. As discussed, the fact that in textual data sets, the set of irrelevant

documents is not class homogeneous and that there is significant class skew suggests

that some features that seem to meet the criteria for a negative feature, specifically,

features that appears in many irrelevant documents, and only a few relevant documents,

may also be noise features.

However, note that there can in fact be negative features that are not noise features.

Suppose that there exists a set of features that appear frequently in relevant documents

and also appear frequently in some relatively small subset of irrelevant documents but

rarely in irrelevant documents outside of this small subset. Such a feature set can be

considered to consist of positive features, and can be thought of as defining a cluster

of irrelevant documents that we can assume are all about some topic that is different

than the one which defines the set of relevant documents. A feature which appears in

many of the documents in this cluster of irrelevant documents, but in very few relevant

documents can be seen to separate the cluster from the relevant documents and is a

negative feature that is not a noise feature.

For example, suppose that the topic under consideration is “fuel” and that the

feature “oil” appears in many relevant documents as well as a small set of irrelevant

documents. Suppose that most of members of this small set of irrelevant documents

are relevant for the “veg-oil” topic, then if the feature “olive” separates the documents

that are relevant for the “fuel” topic from those that are relevant for the “veg-oil” topic,

it is a negative feature that is not a noise feature.

It is interesting that this feature being negative is dependent on the existence of

a set of positive features. We now argue that it is difficult to find a negative feature

that is independent of a set of positive features and is not a noise feature. There are

two situations to consider. First, consider a feature that appears in many irrelevant

documents and few relevant documents. Since the set of irrelevant documents contains

multiple topics, such features appear in documents regardless of their topic and therefore

are noise. Second, consider a feature that appears in few irrelevant documents and few

relevant documents. If such a feature is not associated with a set of positive features as

described above, then it does not separate the relevant and irrelevant documents well
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and is also a noise feature.

Given our assumptions about the characteristics of textual data sets, we claim that

all negative features that are not noise features are similarly dependent on a set of posi-

tive features. This claim virtually necessitates adoption of a relevant document centric

view of the feature selection problem in which we are more interested in the informa-

tion contained in relevant than irrelevant documents and are specifically interested in

positive features.

Algorithms. Textual feature selection problems can be naturally formulated as combi-

natorial optimization problems which are typically NP-hard. While it might be possible

to find optimal solutions to such problems using tools such as integer programming,

owing to the high dimensional nature of the data set, in this dissertation we shall study

two classes of heuristic algorithms to solve these problems. The classes of algorithms

we shall study are called ranking algorithms and greedy algorithms.

Ranking algorithms begin by applying some function to each feature that induces a

complete ordering on the feature set. The functions we will consider are real-valued and

will be referred to as feature ranking functions. These functions provide a measure of

the degree to which each feature satisfies some criteria. At each iteration, the ranking

algorithm iteratively selects the next highest ranked feature until some stopping con-

dition is met. A large proportion of the research on feature selection on textual data

sets has involved empirical studies that evaluate the performance of ranking algorithms

using different feature ranking functions (see e.g. [32], [40], [54], [3], and [81]).

Greedy algorithms work with a set of selected features and some specified objective

function defined on this set. At each iteration they select the feature whose inclusion in

the set of selected features most improves the value of the objective function until some

stopping condition is met. The use of greedy algorithms for textual feature selection is

much less studied than the use of ranking algorithms. There is however, a large body

of research on the use of greedy algorithms for feature selection in other domains. In

the Logical Analysis of Data (LAD), feature selection was formulated as a set-covering

problem (SCP) with the goal of finding minimal subsets of features that preserved the

ability to distinguish positive and negative examples (see e.g. [24]). In this context a
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greedy heuristic has typically been employed (see e.g. [19] and [11], as well as related

research in [58]). In [13], a set of efficient greedy heuristics, some having performance

guarantees were proposed. These heuristics were were based on optimization problems

defined in terms of measures of separation of the sets of positive and negative examples.

Greedy feature selection algorithms were also studied in [1], [2], and [16].

In this dissertation, both ranking and greedy algorithms will stop when a total of

K features, for some positive integer K, have been selected. The determination of K

will be discussed in §2.12.

We shall let ω(V,K, f) denote the sequence containing the first K features selected

from V by the feature selection algorithm f . Since feature ranking functions assign a

real value to each feature, and for some such functions, larger values indicate better

features, while for some functions the opposite is true; we extend this notation. We write

ω(V,K, f, ↓) to indicate that the features are in descending order and write ω(V,K, f, ↑)

to indicate that they are in ascending order.

It should be mentioned that the names of these algorithms are somewhat misleading

in that both ranking and greedy algorithms pursue a “greedy” strategy in that they

iteratively select the next best feature based their selection criteria, further, both rank-

ing and greedy algorithms return a ranked set of features. We also mention that while

anecdotal evidence suggests that the algorithms seem to retrieve features that describe

each topic, they do not utilize any semantic, part of speech, structure of language, or

similar information.

One important distinguishing characteristic of ranking and greedy algorithms is

their run time complexity. Assuming the use of a sorting algorithm such as quicksort,

with average runtime complexity of O(n log2 n), ranking algorithms are O(n log2 n)

since they sort the set of n features once. Greedy algorithms on the otherhand are

O(n2 log2 n). To see this note that such algorithms sort the set of n features on the

first iteration, n − 1 features on the second iteration, and so on, until K features have



8

been selected. Therefore, the runtime complexity is given as

n+1∑
i=n−K

i log2 i ≤
∫ n+1

n−K
i log2 i di

=
i2 ln i

2 ln 2
− i2

4 ln 2

∣∣∣∣n+1

i=n−K

= O(n2 log2 n).

Further, since we also have that

n+1∑
i=n−K

i log2 i ≥
∫ n

n−K−1
i log2 i di

=
i2 ln i

2 ln 2
− i2

4 ln 2

∣∣∣∣n
i=n−K+1

= Ω(n2 log2 n),

the greedy algorithms are actually Θ(n2 log2 n).

Classification. Given a set of documents labeled as either relevant or irrelevant for

a given topic, document classification involves “learning” a function called a classifier

that assigns documents a label of relevant or irrelevant. Feature selection algorithms

are frequently used with classification algorithms. In this context, the literature divides

feature selection algorithms into those that utilize the filter model and those that utilize

the wrapper model, (see e.g. [49], [43], and [82]). A feature selection algorithm which,

independent of the classification algorithm, selects a feature set which is then presented

to the classification algorithm is said to follow the filter model, while a feature selection

algorithm which selects its features in conjunction with the classification algorithm is

said to follow the wrapper model. We will only consider algorithms that follow the

filter model.

As mentioned, one obvious advantage of employing feature selection is that it reduces

the dimensionality of the model and since the time complexity of many classification

algorithms is highly dependent on the number of features in the data set, this reduction
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can result in dramatic decreases in their running time. The combination of overall di-

mensionality reduction and specifically noise reduction can improve the interpretability

of the output of classification algorithms. In addition, there is evidence that utilization

of feature selection can improve the accuracy of many classification algorithms (see e.g.

[1] and [60], p.251).

While document classification has some similarities to feature selection, it should be

mentioned that the nature of these problems is fundamentally different in that feature

selection problems have no set of features labeled as desirable or undesirable available as

a reference; instead we are left to decide what characteristics are desirable in a feature

set. An overview of the set of characteristics we have decided upon is now introduced.

Evaluation. Typically the evaluation of feature selection algorithms involves compar-

ison of the performance of one or more classification algorithms on a data set before

and after feature selection has been performed (see e.g. [40], [44]1, [32] and [81]). This

approach has the advantage of assessing feature sets upon one of the most common

reasons for utilizing feature selection, that is, to improve the accuracy and speed of

classification algorithms. The disadvantage of this approach is that the results obvi-

ously only apply to the classification algorithms that were included in the evaluation.

Further, some classification algorithms can only be run on data with limited size feature

sets and therefore cannot be included in such evaluations. Also, this approach does not

evaluate any inherent characteristics of the selected feature set that might be useful in

assessing its appropriateness for use in other tasks such as document summarization,

or which might simply be of interest in their own right.

The criteria that we shall use to evaluate feature sets includes measures of

• the amount of separation between the set of relevant and irrelevant document

sets,

• the amount of noise included in the feature set and,

• the size of the selected feature set.

1The reported results in this paper did include the “Fraction of features selected”, which is a measure
of the feature set size.
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The robustness of feature selection algorithms with respect to the separation and noise

measures is also assessed. In contrast, to the aforementioned approach, these criteria

are independent of any particular classification algorithm.

1.2 Document, Feature, and Collection Models

In this section we introduce the models that we use to represent documents, features,

and collections, as well as the notation associated with these models.

Document Model. As mentioned, we represent documents as vectors of features. It

it important to note that modeling documents as vectors results in a significant loss

of information. Specifically, it does not preserve information about the order in which

terms appear in the document, a fact that leads to it often being referred to as a bag-

of-words representation. In addition, while we do follow the vector space model in that

we represent documents as vectors in which each component corresponds to a term and

the values of the components are dependent on the number of times the corresponding

term appears in a document, we depart from one of the hallmarks of this model in that

we do not use the cosine of the angle between two document vectors as a measure of

their similarity or the distance between them.

Let B = {0, 1}, R be the set of real numbers, Z be the set of integers, Z+ be the set

of positive integers and Z+ be the set of nonnegative integers. We assume that we are

given a pair (T, F ), with T and F respectively being the set of relevant and irrelevant

documents for some topic. We shall associate an index in W = {1, 2, . . . ,m} with each

of these documents. WT = {1, 2, . . . , |T |} ⊆ W will denote the set of indices of the

relevant documents and WF = {|T | + 1, |T | + 2, . . . ,m} ⊆ W will denote the set of

indices of the irrelevant documents. We shall refer to the set T ∪ F as the collection,

will denote the total number of documents in the collection as m = |T | + |F | and will

assume that T ∩F = ∅, that is, there does not exist u ∈ T and v ∈ F such that u = v.

It should be mentioned that it is possible for two documents to contain very similar

text, but because of the sensitivity of the meaning of natural language to minor varia-

tions, one document could be considered relevant for a given topic, the other document
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could be considered irrelevant, and the vector space representation of the documents

could actually be identical. Factors that can affect the occurrence of such anomalous

situations are the length of documents, the specific steps used to prepare documents,

and the inevitable inconsistencies in the document labeling process given that human

judges are utilized. The issue is less likely to occur in longer documents since the terms

associated with the given topic are usually repeated, thereby differentiating documents

that are relevant for a topic from those that are not. Document preparation involv-

ing substantial exclusion or modification of terms, sometimes in an attempt to remove

noise, can increase the likelihood of the issue arising. The document preparation we use

is intentionally limited and is discussed in §2.3. A now popular example of this problem

is discussed in [75] where it is shown that even differences in punctuation can impact

meaning. Even in view of the possibility of a relevant and an irrelevant document being

identical in the vector space model we shall assume that T ∩ F = ∅.

Feature Models. As mentioned, we represent documents as vectors with each com-

ponent corresponding to one of the distinct terms in the document collection. A great

deal of research in information retrieval, text categorization and related fields has been

devoted to studying different term weighting functions that are used to specify the val-

ues of the components of each vector. We do not repeat the research investigating the

characteristics of these functions, but will for reasons mentioned in the sequel, simply

select from a well known family of such functions.

Researchers who worked on the SMART system studied a set of term weighting

functions that were the product of some function of the term frequency, some function

of the document frequency and some normalization factor. The term frequency of a

term for a given document is simply the number of times the term appears in the

document. The document frequency of a term is a collection based statistic and is the

number of documents in the collection in which the term appears. Normalization factors

attempt to mitigate the undesirable situation in which two documents that contain a

very “similar” set of terms, but have drastically different lengths are considered to have

very different content by some metrics (see e.g., [69], [15], [60] and [73]).

The SMART researchers denoted specific term weighting functions as tdn where t
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corresponded to a specific function of the term frequency, d corresponded to a specific

function of the document frequency, and n corresponded to a specific normalization

factor. We shall utilize two of these functions: the bnn which we shall refer to as the

Boolean model and the lnc which we shall refer to as the real-valued model.

The rationale for selecting the Boolean and lnc functions is that they are well studied

and commonly used, result in two substantially different feature sets to study, and

that they only use information local to each document, that is, they do not include a

document frequency factor such as the inverse document frequency (i.e. the idf) that

implicitly performs feature selection by decreasing the weight of frequently used terms

and increasing the weight of rare terms, and they both have the desirable property that

their range is the set [0, 1].

Before discussing the details of the Boolean and real-valued models we mention

that just as the set W indexes the set of documents, we shall associate an index in

V = {1, 2, . . . , n} with each of the features and that we assume that each feature

appears in at least one document.

Boolean Feature Model. For j ∈ V , let fj be the number of times a term j appears

in a document vector u, then in the Boolean model, the value of this component in the

document vector is

uj =

 1 if fj > 0,

0 otherwise.
(1.1)

So, in the Boolean model, the components of each vector take the value 1 if the cor-

responding term is present in the document, the value 0 if the term is absent from

the document and the set of relevant and irrelevant example vectors are T ⊆ Bn and

F ⊆ Bn respectively. In terms of the tdn notation, bnn uses the Boolean term frequency

factor and no, hence the n, document frequency or normalization factors.

The information associated with our Boolean formulation can be represented by

associating a 2 × 2 contingency table with each feature. If ZT = {0, 1, · · · , |T |} and

ZF = {0, 1, · · · , |F |}, then a 2 × 2 contingency table for a feature j ∈ V for a given

topic is a mapping

τ : ZT × ZF 7→ ZT × ZF × ZT × ZF
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such that for each aj ∈ ZT and bj ∈ ZF

τ(aj , bj) = (aj , bj , cj , dj)

where cj = |T | − aj and dj = |F | − bj . We shall denote the set of all 2× 2 contingency

tables by ¢ and will let ¢j ∈ ¢ represent the specific contingency table associated with

a feature j ∈ V .

For each feature j ∈ V , the four quantities aj , bj , cj and dj are defined as

aj , the number of relevant documents containing feature j

bj , the number of irrelevant documents containing feature j

cj , the number of relevant documents which do not contain feature j

dj , the number of irrelevant documents which do not contain feature j

and can be viewed as the number of true positives, false positives, false negatives and

true negatives, respectively.

For each feature j ∈ V , the relationship between aj , bj , cj and dj and the document

collection is given by the following 2 × 2 contingency table

u ∈ T u ∈ F

uj = 1 aj bj aj + bj

uj = 0 cj dj cj + dj

aj + cj = |T | bj + dj = |F | m

where u ∈ T ∪ F , marginals aj + bj and cj + dj represent the number of documents

that contain feature j and the number of documents which do not contain feature j

respectively. Obviously for a given topic, |T | and |F | are constant for all features while

aj + bj and cj + dj vary for each feature, j ∈ V . As mentioned, the total number of

documents in the collection is m = aj + bj + cj + dj which is obviously also a constant

for a given topic.

In computations involving contingency tables, a zero value for aj , bj , cj or dj can

result in modeling or computational problems such as division by zero errors. In order
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to avoid such issues, it is common practice to employ one of a set of techniques that

are referred to as smoothing. As explained in [65] the term “smoothing” follows from

the fact that in the context of probability theory, the technique involves “smoothing

over the parts of the probability distribution that would have been zero”. In all of the

experiments that are described in §2 we shall employ a technique commonly known as

add one smoothing or Laplace smoothing where rather than using the values aj , bj , cj

and dj , we use aj + 1, bj + 1, cj + 1 and dj + 1. This transformation has an obvious

impact on the row marginals which become aj + bj + 2 and cj + dj + 2, the column

marginals which become aj + cj + 2 and bj + dj + 2, and m which becomes m + 4.

It is important to emphasize that while it is often convenient to write the contingency

table for a Boolean feature j ∈ V for a given topic in terms of the four quantities aj ,

bj , cj and dj , since cj = |T | − aj and bj = |F | − dj , and |T | and |F | are constants, the

function τ is clearly only a function of the two quantities aj and bj . Motivated by this

fact, we let

xj =
aj

|T |
and yj =

bj

|F |

and will often find it convenient to apply the transformations

aj = xj |T | and bj = yj |F |, (1.2)

which will sometimes allow us to develop models that are independent of |T | and |F |.

Also note that we will omit the subscript on these quantities aj , bj , cj and dj when

there is no need to refer to a specific feature.

Real-valued Feature Model. In the real-valued model, the value corresponding to

feature j ∈ V in a document vector u is

uj =
tj√

t21 + t22 + · · · t2n
(1.3)

where

tj =

 log(fj) + 1 if fj > 0,

0 otherwise.
(1.4)
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The components of each vector are weighted by the logarithm and then normalized by

the resulting vector length so that 0 ≤ uj ≤ 1 and therefore the set of relevant and

irrelevant example vectors are T ⊆ [0, 1]n and F ⊆ [0, 1]n respectively. The logarithmic

weighting is based on the theory that the importance of a term does not grow linearly

with the number of times it appears in a document, but rather increases more slowly. In

terms of the tdn notation, lnc uses the logarithmic term frequency factor, no document

frequency factor and the cosine normalization factor. The information associated with

our real-valued formulation can be represented by associating two vectors with each

feature j ∈ V , namely the vector of the feature’s lnc values for all relevant documents

and the vector of the feature’s lnc values for all irrelevant documents.

Projections. Feature selection can be seen as the projection of a data set onto a

subspace of smaller dimension. Motivated by this fact we now introduce some notation

that will facilitate working with projections. Since we indexed the set of features by

the elements of V we can adopt a functional notation for representing the elements and

subsets of the set of vectors in the collection. In this notation, vectors are viewed as

functions. Specifically, BV is the set of all functions from V to B, and writing u ∈ BV is

equivalent to writing u ∈ Bn, with similar notation applying to the real-valued model.

This functional notation is, particularly convenient when working with projections onto

subspaces. For example, if S ⊆ V , and u ∈ BV , we shall let u[S] ∈ BS indicate the

projection of u onto S and for X ⊆ BV we shall write X[S] as the projection of X on

S, that is, X[S] = {u[S] | u ∈ X}. For a subset S ⊆ V let us denote by χS ∈ Bn its

characteristic vector, i.e.

χS
j =

 1 if j ∈ S,

0 otherwise.

In the sequel, the set S will usually correspond to a subset of the feature set V after

application of a feature selection algorithm.

Collection Models. We will employ a well known matrix representation of the col-

lection. A matrix in which the rows correspond to documents and columns correspond

to features will be referred to as a document-term matrix. The row indices of such a

matrix will be a set W ′ ⊆ W and the column indices will be a set V ′ ⊆ V . For a



16

document-term matrix A = [aij ] with i ∈ W ′ and j ∈ V ′ each entry will take on the

corresponding value of either the Boolean or the real-valued model for feature j ∈ V ′

as it appears in document i ∈ W ′. When W ′ = W and V ′ = V , the m× n matrix can

be seen to represent the relationship between each document and each feature in the

collection. If V ′ ⊆ V and W ′ ⊆ W , then we will let A[W ′, V ′] denote the projection

of the matrix A onto the rows in W ′ and the columns in V ′. If A is a document-term

matrix we will let A(T ) = A[WT , V ] and A(F ) = A[WF , V ] denote the matrices which

only contain the rows in WT and WF respectively.

Space Complexity. Clearly, the information used by the Boolean model can be stored

in less space than the information used by the real-valued model. Let us assume for the

sake of simplicity, that an integer and a floating point number each require δ units of

space. Storing a contingency table for each feature requires 4×n×δ units of space, while

storing an m × n real-valued document-term matrix requires m × n × δ units of space.

Therefore, storage of the real-valued document-term matrix takes m/4 times more space

than the storage of the contingency tables. For a large collection the difference in the

amount of required storage can obviously be substantial.

1.3 ROC Curves and the Wilcoxon Rank Sum Test

In this section we discuss Receiver Operating Characteristics (ROC) curves (see e.g.

[34] and [33]) and the closely related Wilcoxon rank sum statistics and tests2 (see e.g.

[64] and [72]) which will be used throughout the sequel.

Consider a real-valued classifier f+ : T ∪ F 7→ R, that for each document i ∈ W

assigns a score

f+(i) = λi (1.5)

which represents its estimate, with larger scores being considered indicative of relevant

documents, that the document is relevant. We will let λ ∈ Rm be the vector of these

scores, and Λ ⊆ R be the corresponding set of these scores. The classifier can be a

sophisticated classifier that for each document perhaps returns a probability as the

2The Wilcoxon rank sum test is equivalent to the Mann-Whitney test.
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score, or a simple classifier that for each document just returns a parameter such as the

Boolean model value or real-valued model value of some feature.

Given the vector of scores λ, since larger scores are considered to indicate a higher

estimate of relevance, for a given τ ∈ Λ we can construct a binary classifier g+
τ : T∪F 7→

B as

g+
τ (i) =

 1 if f+(i) = λi ≥ τ

0 otherwise,
(1.6)

where i ∈ W . Further, we can define a family of binary classifiers

G+ = {g+
τ : τ ∈ Λ} (1.7)

by considering all values of the threshold τ ∈ Λ.

Now consider λ[WT ], the vector of scores that f+ assigns to relevant documents and

λ[WF ], the vector of scores that f+ assigns to irrelevant documents. If λT and λF are

randomly selected scores from λ[WT ] and λ[WF ] respectively, then the probability that

λT and λF are ordered correctly,

P(λT > λF )

provides a measure of the ability of f+ to rank relevant documents with respect to

irrelevant documents, and a measure of the ability of classifiers in G+ to correctly

assign documents to T and F . A classifier, f+ with

P(λT > λF ) = 1

has perfect performance in that it ranks each relevant document above each irrelevant

document. In this case, there exists exactly one classifier g+
τ ∈ G+ which is always

correct, i.e. it correctly assigns each document to either T or F . A classifier, f+ with

P(λT > λF ) = 0
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has perfectly imperfect performance in that it ranks each irrelevant document above

each relevant document. In this case, there is exactly one classifier g+
τ ∈ G+ which is

always incorrect, i.e. for each document, its assignment to T or F is always wrong. The

performance of a classifier f+ with

P(λT > λF ) =
1
2

is the same as if it had randomly assigned scores to each document.

Since there are |T ||F | pairs in λ[WT ] × λ[WF ] to consider, if we assume that no

λT ∈ λ[WT ] and λF ∈ λ[WF ] are equal, clearly

P(λT > λF ) =
|{(λT , λF ) : (λT , λF ) ∈ λ[WT ] × λ[WF ] and λT > λF }|

|T ||F |
,

which to account for equality of λT ∈ λ[WT ] and λF ∈ λ[WF ], we can refine to be

P(λT > λF ) +
1
2

P(λT = λF ) =
U+

|T ||F |

where

U+ =
∣∣∣ {(λT , λF ) : (λT , λF ) ∈ λ[WT ] × λ[WF ] and λT > λF }

∣∣∣
+

1
2

∣∣∣ {(λT , λF ) : (λT , λF ) ∈ λ[WT ] × λ[WF ] and λT = λF }
∣∣∣. (1.8)

While the P(λT > λF ) provides a measure of the performance of an arbitrary real-

valued classifier f+, whenever f+ is such that |G+| = 1, it also provides a measure

the performance of the sole binary classifier contained in G+. To see this, note that

|G+| = 1 with G+ = {g+
τ } for some τ ∈ Λ implies that f+ and g+

τ are isomorphic,3

which in turn shows that P(λT > λF ) provides a measure of the performance of the

binary classifier g+
τ . Further, since whenever |G+| = 1, we have that f+ and g+

τ are

isomorphic, we can interpret P(λT > λF ) to be the probability that g+
τ will correctly

classify both a randomly selected relevant document and a randomly selected irrelevant

3That is, the score vector λ and the vector [g+
τ (i)] for i ∈ W are isomorphic.
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document.

A perhaps more commonly employed measure of the performance of a single binary

classifier g+
τ ∈ G+ for a given τ ∈ Λ is a measure called the accuracy which is defined

as

ACC(g+
τ ) =

|{i ∈ WT : g+
τ (i) = 1}| + |{i ∈ WF : g+

τ (i) = 0}|
|T | + |F |

,

that is, the ratio of the number of documents correctly classified to the total number

of documents. If i ∈ W is a randomly selected document, the accuracy can be seen to

be the

P({g+
τ (i) = 1, i ∈ WT } ∪ {g+

τ (i) = 0, i ∈ WF }).

that is, the accuracy of a classifier is the probability that it correctly classifies a ran-

domly selected document. For a given τ ∈ Λ, clearly, if ACC(g+
τ ) = 1 then g+

τ has

perfect performance, if ACC(g+
τ ) = 0 then g+

τ has perfectly imperfect performance, and

if ACC(g+
τ ) = 1/2 then the performance is of g+

τ is the same as randomly guessing

whether each document is relevant or irrelevant. In some contexts rather than seeking

a large value of the accuracy, it might be more natural to seek a small value for the

error rate which is equal to one minus the accuracy.

Now, suppose that P(λT > λF ) < 1/2, then clearly there are more pairs (λT , λF ) ∈

λ[WT ] × λ[WF ] with λF > λT than vice versa. Further,

Proposition 1.1. If λT and λF are randomly selected scores from λ[WT ] and λ[WF ]

respectively, then P(λT > λF ) = 1 − P(λF > λT ) and P(λT > λF ) < 1/2 if and only if

the P(λF > λT ) > 1/2.

Proof . Follows from the fact that the events {λT > λF } and {λF > λT } are comple-

mentary. ¥

This result motivates consideration of the real-valued complementary classifier to

f+ which we shall denote as f−. The classifier f− outputs the same score vector λ

and score set Λ as f+, but differs in that larger scores are considered indicative of

irrelevant documents. Since larger scores indicate a higher estimate of irrelevance, for

a given τ ∈ Λ, we can construct the binary complementary classifier to g+
τ ∈ G+,
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g−τ : T ∪ F× 7→ B as

g−τ (i) =

 1 if f−(i) = f+(i) = λi ≤ τ

0 otherwise,
(1.9)

or equivalently, it can be constructed from g+
τ as

g−τ (i) =

 1 if g+(i) = 0

0 otherwise,
(1.10)

where i ∈ W . Thus, g−τ ∈ G− can be constructed from g+
τ ∈ G+ or vice versa by

inverting all classifications, that is, by applying the transformation

g−τ (i) ← 1 − g+
τ (i)

for all i ∈ W (see e.g. [34] and [39]). Also, while we have not made use of it in this

section, there is a 2×2 contingency table associated with every binary classifier g+ ∈ G+

and g− ∈ G−. For example, the following table is the contingency table for the classifier

g+ ∈ G+ for an arbitrary τ ∈ Λ.

i ∈ WT i ∈ WF

λi ≥ τ aτ bτ aτ + bτ

λi < τ cτ dτ cτ + dτ

aτ + cτ = |T | bτ + dτ = |F | m

.

Since the first row of this table corresponds to documents that the classifier predicts are

relevant and the second row of this table corresponds to documents that the classifier

predicts are irrelevant, clearly an alternate way of viewing the construction of g− ∈ G−

from g+ ∈ G+ is that it involves interchanging the rows in this table. Further, we can

define a family of binary classifiers

G− = {g−τ : τ ∈ Λ} (1.11)

by considering all values of the threshold τ ∈ Λ.
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The performance of f− and the classifiers in G− is related to the P(λF > λT ), the

probability that a randomly selected pair from λ[WT ] × λ[WF ] is ordered correctly. If

we assume that no λT ∈ λ[WT ] and λF ∈ λ[WF ] are equal, clearly

P(λF > λT ) =
|{(λT , λF ) : (λT , λF ) ∈ λ[WT ] × λ[WF ] and λF > λT }|

|T ||F |
,

which to account for equality of λT ∈ λ[WT ] and λF ∈ λ[WF ], we can refine to be

P(λF > λT ) +
1
2

P(λT = λF ) =
U−

|T ||F |

where

U− =
∣∣∣ {(λT , λF ) : (λT , λF ) ∈ λ[WT ] × λ[WF ] and λF > λT }

∣∣∣
+

1
2

∣∣∣ {(λT , λF ) : (λT , λF ) ∈ λ[WT ] × λ[WF ] and λT = λF }
∣∣∣. (1.12)

From Proposition 1.1 and the construction of f− it can be seen that if the perfor-

mance of f+ is worse than random score assignment, that is, if P(λT > λF ) < 1/2, then

the performance of f− is better than random score assignment, that is P(λF > λT ) =

1 − P(λT > λF ) > 1/2 and vice versa. Similar remarks also clearly apply to the per-

formance of the binary classifiers g+
τ and g−τ for τ ∈ Λ as measured by the P(λT > λF )

and P(λF > λT ) respectively, when |G+| = |G−| = 1, G+ = {g+
τ } and G− = {g−τ }. In

addition, if ACC(g+
τ ) < 1/2, then ACC(g−τ ) = 1 − ACC(g+

τ ) > 1/2 and vice versa. To

see this, notice that

ACC(g+
τ ) =

aτ + dτ

|T | + |F |

and inverting all classifications made by g+
τ to get g−τ is accomplished by letting aτ → cτ

and dτ → bτ which yields

ACC(g−τ ) =
cτ + bτ

|T | + |F |
=

|T | − aτ + |F | − dτ

|T | + |F |
= 1 − aτ + dτ

|T | + |F |
.

Our discussion of the P(λT > λF ) and the P(λF > λT ) is based on the Wilcoxon
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rank sum statistical test (see e.g [64], [72], [46], [5], [79]). While this test can be applied

to any two sets of numbers that satisfy some simple conditions (see e.g. [??]), we shall

continue our discussion in terms of the sets of scores λ[WT ] and λ[WF ]. The quantity

U− is the statistic used in the one-sided Wilcoxon rank sum test

H0 : P(λT > λF ) =
1
2

Ha+ : P(λT > λF ) >
1
2

⇔

Ha+ : P(λF > λT ) <
1
2
. (1.13)

In this test the null hypothesis is that the performance of f+ is no better than if the

the classifier had randomly assigned scores to documents and the one-sided alternative

is that the performance of f+ is better than random score assignment. The quantity

U+ is the statistic used in the one-sided Wilcoxon rank sum test

H0 : P(λF > λT ) =
1
2

Ha− : P(λF > λT ) >
1
2

⇔

Ha− : P(λT > λF ) <
1
2
. (1.14)

In this test the null hypothesis is that the performance of f− is no better than if the

classifier had randomly assigned scores to documents and the one-sided alternative is

that the performance of f− is worse than random score assignment. The two-sided test

H0 : P(λT > λF ) =
1
2

Ha : P(λT > λF ) 6= 1
2
. (1.15)

uses min(U−, U+) as its statistic. In this test the null hypothesis is that the performance

of either f+ or f− is no better than if the classifier had randomly assigned scores to

documents and the alternative hypothesis is that the performance of either f+ or f−

is better than random score assignment. 4

4A statistic related to the Wilcoxon statistics, equal to
U+

|T ||F | , and denoted as ρ, not to be confused
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The somewhat counterintuitive reason that U− is used in the one-sided test in (1.13)

that includes the alternative hypothesis P(λT > λF ) is that the test rejects the null

hypothesis when U− is unusually small, and since U+ +U− = |T |F | is a constant, when

U− is unusually small, U+ is unusually large, which means that many scores in λ[WT ]

exceed the scores in λ[WF ] as desired. A similar comment can be made about why U+ is

used in the one side test in (1.14) that includes the alternative hypothesis P(λF > λT ).

Since the two-sided test uses the min(U−, U+) as its statistic, it is testing whether either

U+ or U− is unusually small and therefore either U+ or U− is unusually large.

ROC curves provide another tool for understanding the performance of classifiers.

Consider the family of classifiers G+ and notice that for each value of τ ∈ Λ we can

calculate the true positive rate

TPRτ =
| {i ∈ WT : g+

τ (i) = 1} |
|T |

and the false positive rate

FPRτ =
| {i ∈ WF : g+

τ (i) = 1} |
|F |

where g+
τ ∈ G+. That is, the TPRτ for classifier g+

τ ∈ G+ is the ratio of the number

of relevant documents that were classified correctly to the total number of relevant

documents and the FPRτ is the ratio of the number of irrelevant documents that were

classified incorrectly to the total number of irrelevant documents. It is natural to

envision these quantities being computed by first sorting λ into ascending order and

then considering the set of documents with λi ≥ τ for i ∈ W . The relevant documents

in this set define the numerator of the TPRτ and the irrelevant documents in this set

form the numerator of the FPRτ .

One way to understand the performance of such a family of classifiers is to study

how the TPR and FPR vary with τ . An ROC curve plots the TPR on the y-axis and

the FPR on the x-axis for various values of τ and thereby provides a framework for

with Spearman’s rank correlation coefficient, was introduced in [47]. See also [79].
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such studies. If Λ is the set of scores from a classifier, then the corresponding ROC

curve is constructed from the set of points

{
(FPRτ , TPRτ ) : τ ∈ Λ

}
and the resulting graph is a step function.

In terms of the classifiers we have been discussing, each point on an ROC curve

corresponds to a specific gτ ∈ G where G is a family of binary classifiers, Λ is the set

of scores of the associated real-valued classifier and τ ∈ Λ. We will use the notation

ROC(G) to refer to the ROC curve for a specific family of binary classifiers G and when

it will not cause any confusion we will simply write ROC. We will often adopt the short

hand notation ROC+ for ROC(G+) and ROC− for ROC(G−).

Now, if gτ , gτ ′ ∈ G where G is a family of binary classifiers, Λ is the set of scores

of the associated real-valued classifier and τ, τ ′ ∈ Λ, then if TPRτ > TPRτ ′ and

FPRτ < FPRτ ′ , the performance of gτ , as measured by both the AUC and the accuracy,

is clearly better than that of gτ ′ . In such cases we shall write gτ ′ 4ROC gτ and notice

that the set of all classifiers given as points in ROC space and the relation 4 form a

partial order.

The area under the ROC curve is the central performance measure in this framework.

We will use the notation AUC(G) to refer to the area under the curve for a specific family

of binary classifiers G and when it will not cause any confusion we will simply write

AUC. We will often adopt the short hand notation AUC+ for AUC(G+) and AUC−

for AUC(G−). The most important properties of the AUC are that for the family of

binary classifiers G+

AUC(G+) = P(λT > λF )

and for the family of binary classifiers G−

AUC(G−) = P(λF > λT )

where λT and λF are randomly selected scores from λ[WT ] and λ[WF ] respectively (see
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e.g [46] and [5]). In light of these properties, all of our earlier discussions related to

the P(λT > λF ) and the P(λF > λT ) in the context of the Wilcoxon rank sum tests

obviously apply to the AUC, and therefore these properties justify the statement that

the ROC curves and the Wilcoxon rank sum tests and statistics are closely related.

Table 1.1 states some of the relationships between the Wilcoxon rank sum statistics

and ROCs.

WILCOXON STATISTICS ROC CURVES

0 ≤ U+, U− ≤ |T |F | ⇔ 0 ≤ AUC+, AUC− ≤ 1

U+ + U− = |T ||F | ⇔ AUC+ + AUC− = 1

P(λT > λF ) =
U+

|T ||F |
⇔ P(λT > λF ) = AUC+

P(λF > λT ) =
U−

|T ||F |
⇔ P(λF > λT ) = AUC−

Table 1.1: Relationships Between Wilcoxon Rank Sum Statistics and ROCs

The obvious distinguishing property of the ROC curves when compared to the

Wilcoxon statistics is the geometric characterization they provide. We now state some

observations in terms of the geometry of the ROC.

In view of our comments above, the most obvious of these observations are related

to the AUC. For example, consider the family of binary classifiers G+. The associated

curve ROC+ will have AUC+ > 1/2 when P(λT > λF ) > 1/2, AUC− > 1/2 when

P(λT > λF ) < 1/2 and, AUC− = 1/2 when P(λT > λF ) = 1/2. Obviously, similar

comments can be made about the family of binary classifiers G−.

In order to consider these comments in more detail, we now focus on the relationship

between the performance of a single binary classifier and the AUC. To do this, we

again assume that |G+| = 1 and G+ = {g+
τ } for τ ∈ Λ and notice that other than

the points (0, 0) and (1, 1), ROC+ consists of exactly one point, namely the point

p = (FPRτ , TPRτ ). If TPRτ > FPRτ , then p lies above the line FPR = TPR, the

AUC+ > 1/2, the P(λT > λF ) > 1/2, and the performance of g+
τ is better than random

guessing. Similarly, if FPRτ > TPRτ , then p lies below the line FPR = TPR, the
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AUC+ < 1/2, the P(λT > λF ) < 1/2, and the performance of g+
τ is worse than random

guessing. Clearly, if TPRτ = FPRτ , then p is on the line FPR = TPR, the AUC+ = 1/2

and therefore the P(λT > λF ) = 1/2, so the performance of g+ ∈ G+ is no better than

random guessing. Similar comments can be made about the binary classifier g−τ ∈ G−

for a given τ ∈ Λ.

Following Proposition 1.1 we saw that for a given τ ∈ Λ, if the performance of

g+
τ ∈ G+ (or g−τ ∈ G−) was worse than random guessing, that the complementary

classifier g−τ ∈ G− (or g+
τ ∈ G+) would be better than random guessing. We now

continue that discussion, presenting it in terms of the geometry of the ROC. To do this,

we again assume that |G+| = 1 and G+ = {g+
τ } for τ ∈ Λ and consider the point on the

ROC+ that corresponds to g+
τ , namely the point p+ = (FPRτ , TPRτ ). If FPRτ > TPRτ

then as was just stated p+ lies below the line FPR = TPR, the AUC+ < 1/2, the

P(λT > λF ) < 1/2, and the performance of g+
τ is worse than random guessing. In this

case, the point p− = (1 − FPRτ , 1 − TPRτ ) corresponds to the classifier g−τ ∈ G− with

p− lying above the line FPR = TPR. The point p− along with (0, 0) and (1, 1) form

ROC− and we have that AUC− > 1/2, the P(λF > λT ) = 1 − P(λT > λF ) > 1/2, and

the performance of g−τ is better than random guessing.

Notice that this observation can be extended from the case where |G+| = 1 to

that where G+ is of arbitrary cardinality. Suppose we are given the curve ROC+, we

can construct ROC− by translating each point (FPRτ , TPRτ ) for τ ∈ Λ on ROC+ to

(1−FPRτ , 1−TPRτ ) and obviously, given the curve ROC−, ROC+ can be constructed

similarly. Now if the performance of g+
τ ∈ G+ for all τ ∈ Λ are such that AUC+ < 1/2,

then we can construct g−τ ∈ G− for all τ ∈ Λ and AUC− > 1/2.

Proposition 1.2. max(AUC+, 1 − AUC+) = max(AUC+,AUC−) = max(AUC−, 1 −

AUC−) ≥ 1/2 and equality holds if and only if AUC+ = AUC− = 1/2.

Proof . Follows immediately from the fact that AUC+ + AUC− = 1. ¥

Therefore, if AUC+ < 1/2 then 1 − AUC+ = AUC− > 1/2. Figure 1.1 provides an

example that demonstrates this result, which we will make use of in §3.8.
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We will now show how to construct new binary classifiers whose expected perfor-

mance can be stated in terms of the classifiers in G+.

Proposition 1.3. If g+
τ1,g

+
τ2 ∈ G+ are two binary classifiers with FPRτ1 < FPRτ2 and

TPRτ1 < TPRτ2 then for the random classifier

ḡ+
τ̄ (i) =


1 with probability γ if λi ≥ τ1

1 with probability 1 − γ if λi ≥ τ2

0 otherwise,

(1.16)

E(τ̄) = γτ1+(1−γ)τ2 and the expected performance is given by the fact that E(FPRτ̄ ) =

γFPRτ1 + (1 − γ)FPRτ2 and E(TPRτ̄ ) = γTPRτ1 + (1 − γ)TPRτ2.

Proof . For each document i ∈ W , ḡ+
τ̄ first randomly selects the threshold to be τ1

with probability γ and τ2 with probability 1 − γ and then predicts that i is relevant

when λi exceeds the selected threshold and otherwise predicts i to be irrelevant. Now,

notice that we can write ḡ+
τ̄ (i) as

ḡ+
τ̄ (i) =


1 with probability γ if g+

τ1(i) = 1

1 with probability 1 − γ if g+
τ2(i) = 1

0 otherwise

which we use define the random variables

TPRτ̄ = 1
|T |

∣∣{i ∈ WT : g+
τ̄ (i) = 1}

∣∣
FPRτ̄ = 1

|F |
∣∣{i ∈ WF : g+

τ̄ (i) = 1}
∣∣ .

Since the TPRτ̄ and FPRτ̄ are determined solely by the cases where ḡ+
τ̄ (i) = 1 for

i ∈ W , and that γ is the proportion of these cases that are determined by g+
τ1 and 1−γ

is the proportion of these cases that are determined by g+
τ2 we have

E(TPRτ̄ )= γ
∣∣{i ∈ WT : g+

τ1(i) = 1} + (1 − γ) # {i ∈ WT : g+
τ2(i) = 1}

∣∣
= γ TPRτ1 + (1 − γ) TPRτ2
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and

E(FPRτ̄ )= γ
∣∣{i ∈ WF : g+

τ1(i) = 1} + (1 − γ) # {i ∈ WF : g+
τ2(i) = 1}

∣∣
= γ FPRτ1 + (1 − γ) FPRτ2 .

¥

This result shows that even though G+ only contains a finite number of classifiers,

i.e. one for each element of Λ, that it is possible to construct a new binary classifier

ḡ+
τ̄ for any τ̄ ∈ [min(Λ), max(Λ)]. If g+

τ1 , g
+
τ2 ∈ G+ are as in Proposition 1.3 then

τ1 > τ̄ > τ2 and the point (E(TPRτ̄ ),E(TPRτ̄ )) lies on the convex combination of the

points (TPRτ1 FPRτ1) and (TPRτ2 FPRτ2) and therefore the expected performance of

ḡ+
τ̄ will, in terms of the partial order 4ROC, be no worse than that of classifiers g+

τ1 and

g+
τ2 . As an example, again consider the classifier family G+ in Figure 1.1 and suppose

that we would like to create a classifier ḡ+
τ where τ̄ = 10.25. To do this we use the

classifiers g+
τ1 with τ1 = 10.5 and g+

τ2 with τ2 = 10.1. Solving the equation

τ̄ = γ10.5 + (1 − γ)10.1 = 10.25

yields γ = 0.38 and therefore the desired convex combination of (FPRτ1 , TPRτ1) and

(FPRτ2 ,TPRτ2) is

0.38(0, 0.33) + (1 − 0.38)(0.25, 0.5) = (0.16, 0.44)

as shown in Figure 1.2a.

Further, if g+
τ1 , g

+
τ2 ∈ G+ are as in Proposition 1.3, τ1 > τ > τ2, and g+

τ ∈ G+,

then if the performance of g+
τ in terms of the partial order 4ROC is worse than g+

τ1

and g+
τ2 , replacing it by ḡ+

τ̄ will result in an increase in the AUC+. As an example,

again consider the classifier family G+ in Figure 1.1 and suppose that we would like to

replace the classifier g+
τ with τ = 10.1 and (TPRτ , FPRτ ) = (0.25, 0.33) with a better

performing classifier. We use the classifiers g+
τ1 and g+

τ2 with τ1 = 10.5 and τ2 = 9 which
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have (TPRτ1 , FPRτ1) = (0.0, 0.33) and (TPRτ2 , FPRτ2) = (0.5, 0.83) respectively. Each

point on the convex combination of these two points will satisfy

γ(0.0, 0.33) + (1 − γ)(0.5, 0.83) = (0.5 − 0.5γ, 0.83 − 0.5γ).

Solving

FPRτ = 0.5 − 0.5γ = 0.25

yields γ = 0.5 and therefore TPRτ̄ = 0.83 − (0.5)(0.5) = 0.58 as shown in Figure 1.2b.

The natural extension of this strategy is to replace ROC+ with its convex hull (see e.g

[34], [35] and [39]) and Proposition 1.3 shows that construction of the convex hull can

be accomplished by application of a set of appropriately chosen random classifiers ḡ+
τ̄ .

We close this section with a comment about the relationship between the AUC

and accuracy. It is important to note that the AUC and accuracy (or error rate) are

fundamentally different measures in that the former is applied to a ranking while the

later is applied to a set. In fact, consider a binary classifier g+
τ ∈ G+ with τ ∈ Λ and

notice that both sets of documents

{i ∈ W : λi ≥ τ} and {i ∈ W : λi < τ}

can be independently reordered without changing ACC(g+
τ ). Hence, a single binary

classifier which achieves some level of accuracy, actually corresponds to many different

real-valued classifiers and therefore many different values of the AUC (see e.g. [23]).

We will consider the AUC to be more appropriate than the accuracy when measuring

performance in ranking tasks.

1.4 Multicriteria Optimization

Consider a feasible set X and an objective function f : X 7→ R, then

max
x∈X

f(x)
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W χWT λ

- - -
1 1 12.0
2 1 10.5
3 0 10.4
4 1 10.1
5 1 9.0
6 1 9.0
7 0 9.0
8 0 5.1
9 1 4.0
10 0 3.7

(a) f+ / G+

FPR TPR
0.0 0.0
0.0 0.16
0.0 0.33

0.25 0.33
0.25 0.5

- -
- -

0.5 0.83
0.75 0.83
0.75 1.0
1.0 1.0
(b) ROC+

W χWT λ

- - -
10 0 3.7
9 1 4.0
8 0 5.1
7 0 9.0
6 1 9.0
5 1 9.0
4 1 10.1
3 0 10.4
2 1 10.5
1 1 12.0

(c) f− / G−

FPR TPR
0.0 0.0

0.25 0.0
0.25 0.16
0.5 0.16

- -
- -

0.75 0.5
0.75 0.66
1.0 0.66
1.0 0.83
1.0 1.0
(d) ROC−
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(e) Classifier family G+ with AUC+ = .708
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(f) Classifier family G− with AUC− = .292

Figure 1.1: ROC Examples
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(a) Creating a classifier
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(b) Replacing a suboptimal classifier

Figure 1.2: Examples of the random classifier ḡ+
τ̄
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is a scalar optimization problem. Since the objective function f is a real-valued function,

and the set R which we refer to as the objective space is a total order, an optimal solution

to such a problem is a vector x∗ ∈ X such that f(x∗) ≥ f(x) for all x ∈ X. Now consider

the problem

“max”
x∈X

(f1(x), f2(x), · · · , fp(x)) (1.17)

where again X is the feasible set, but now the objective function f is a vector valued

function

f : X 7→ Rp.

Such a problem is called a multicriteria optimization problem. There is a fair amount

of variation in the terminology used in the field of multicriteria optimization. We will

closely follow the development used in [27].

One of the defining characteristics of problems such as (1.17) is that the objective

functions fj , for j = 1, · · · , p are potentially conflicting or competing in that we cannot

assume that they are monotonic transformations of each other. If this were not the

case, then clearly utilizing only one of them would be sufficient, and we would have a

scalar optimization problem. Another defining characteristic is suggested by the fact

that we wrote “max” rather than max in (1.17). Since the objective space Rp is not a

total order, we must specify a set and an associated order upon which the problem will

be solved before we can describe an optimal solution.

In [27], a framework for classifying multicriteria optimization problems by specifying

the

1. data – the feasible set, the objective function vector and the objective space,

2. ordered set – a set and an ordering relation upon which the optimization problem

will be solved and,

3. model map – a function that maps each vector in the objective function space to

the ordered set

was presented. In this framework, a class of multicriteria optimization problems is

denoted as data/model map/ordered set. Using this notation we can see that a vector
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x∗ ∈ X is an optimal solution to a multicriteria optimization in the class

(X, f, Rp) / γ / (Y, 4)

if there is no x ∈ X such that x 6= x∗ and γ(f(x∗)) 4 γ(f(x)) where (Y, 4) is some set

and associated order relation and the model map γ is a function γ : X 7→ Y .

Multicriteria optimization problems can roughly be divided into scalarization meth-

ods and non-scalarization methods. We will discuss two cases of the former, namely

the weighted sum method and ε-constraint method, and three cases of the later, lex-

icographic optimality, max-min optimality and lex-max-min optimality. We will see

that each class has a different combination of model map and ordered set, thereby in-

troducing a different means of ranking the vectors in the objective space Rp, and as a

result, a different notion of optimality. As we describe these classes we do not specify

the feasible set X, but will assume that the objective function vector is given by

f = (f1(x), f2(x), · · · , fp(x))

where fj : X 7→ R for j = 1, 2, · · · , p and therefore the objective space is Rp.

While the classes we consider do not require it, in our discussion we will assume

that the feasible set X consists of finitely many vectors that are explicitly provided as

an m × p matrix in which the rows correspond to the elements of X and the columns

correspond to the criteria. Given this assumption, and the fact that each notion of

optimality corresponds to a different ordering of the vectors in X, the problems we

consider provide us not just with a means of finding the optimal vectors, but of ranking

the vectors in terms of the associated notion of optimality. We will make use of this fact

throughout the sequel. Figure 1.4 contains an example of such a matrix, and includes

the results ordered by four of the notions of optimality we consider.

Pareto Optimality. In the following fundamental class of multicriteria optimization

problems

(X, f, Rp) / id / (Rp,4E), (1.18)
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the model map is the the identity function and therefore the ordered set is simply the

objective space, Rp. The order relation 4E is the componentwise ordering of the vectors

in this space. Specifically, if x, y ∈ Rp, then x 4E y when xj ≤ yj for j = 1, 2, · · · , p

and xj < yj for some j ∈ {1, 2, · · · , p}, and similarly, x ≺E y when xj < yj for

j = 1, 2, · · · , p.

This ordering relation is the basis of one the most important concepts in multicriteria

optimization, namely Pareto optimality or what we shall refer to as efficiency. A vector

x∗ ∈ X is said to be efficient, and optimal for (1.18), if there does not exist an x ∈ X

such that x 6= x∗ and f(x∗) 4E f(x). The set of efficient points is therefore the set of

maximal points of the componentwise partial order, 4E . If a vector x∗ ∈ X is efficient,

then we shall refer to f(x∗) as a nondominated point. That is, each nondominated point

is a point in the objective space and is the result of applying the objective function to

an efficient point in the feasible set. Further, if x, y ∈ Rp and f(x) 4E f(y) then

we say that y dominates x and f(y) dominates f(x). Also, we shall say that a point

x∗ ∈ X is weakly efficient if there does not exist an x ∈ X such that x 6= x∗ and

f(x∗) ≺E f(x). The corresponding point f(x∗) in the objective space will be called

weakly nondominated. Figure 1.4 shows examples of efficient and points and dominance

relationships.

Even though the relation 4E is a partial, not a total order, and therefore a problem

may have multiple efficient and hence nondominated points, efficiency and dominance

do provide a means of ordering vectors in Rp. Intuitively, an efficient point should be

preferred to a non-efficient point since the former is better with respect to at least one

of the criteria, and no worse with respect to the other criteria than the later. Viewed

another way, an efficient point should be preferred to a non-efficient point since while

selection of the later may result in an increase with respect to one of the criteria, it will

definitely result in a decrease with respect to at least one of the other criteria.

Weighted Sum Method. While some algorithms do seek efficient solutions by op-

erating directly in the objective space (see e.g. Algorithm 2.1 in [27]), a large set of

algorithms choose to map each point in the objective space Rp to the ordered set R

and to pursue solutions there. The most prevalent of such algorithms is referred as the



35

Data
i f1 f2 f3

1 1 1 2
2 7 2 6
3 6 5 7
4 1 1 9

Weighted
i f1 f2 f3

3 6 5 7
2 7 2 6
4 1 1 9
1 1 1 2

Lex
i f1 f2 f3

2 7 2 6
3 6 5 7
4 1 1 9
1 1 1 2

Max-Min
i f1 f2 f3

3 6 5 7
2 7 2 6
1 1 1 2
4 1 1 9

Lex-Max-Min
i 1W 2W 3W
3 5 6 7
2 2 6 7
4 1 1 9
1 1 1 2

0 2 4 6 8 10

0
2

4
6

8
10

f1

f 2

1

2

3

4

Figure 1.3: Points 3 and 4 are efficient points. The arrows show the dominance partial
order, with point 1 being dominated by point 2, which in turn is dominated by points 3
and 4. In the lex-max-min example 1W, 2W, and 3W represent the “1rst worst”, “2nd

worst”, and “3rd worst” criteria.
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weighted sum method. It corresponds to the following class of multicriteria optimization

problems

(X, f, Rp) / 〈λ, ·〉 / (R,≤). (1.19)

The weighted sum method transforms the multicriteria objective function

f = (f1(x), f2(x), · · · , fp(x))

into a single criteria objective function

g =
p∑

j=1

λjfj(x)

and then proceeds to solve the problem

max
x∈X

g(x).

A vector x∗ ∈ X is optimal for (1.19) if there does not exist an x ∈ X such that x 6= x∗

and
p∑

j=1

λjfj(x∗) ≤
p∑

j=1

λjfj(x).

It can be shown that if X and fj for j = 1, 2, · · · , p are convex, this formulation can

be used to find weakly efficient points, another variant of efficiency known as properly

efficient points and in some cases even efficient points. (See e.g. [27], Theorem 4.1).

The example in Figure 1.4 utilizes the average weighting vector λ = (1
3 , 1

3 , 1
3). Another

method known as the ε-constraint method involves optimizing only one of the objective

functions fj ′ at a time, for j ′ ∈ {1, 2, · · · , p}, while the other objective functions are

converted into constraints of the form

fj(x) ≥ εj

for j = 1, 2, · · · , p with j 6= j ′ and used along with any constraints used in the definition

of X. This method can be used for non-convex problems.
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Lexicographic Optimality. In the following class of multicriteria optimization prob-

lems

(X, f, Rp) / id / (Rp, 4L), (1.20)

the model map is the identity function and the ordered set uses the lexicographic

ordering to rank vectors in Rp. Recall that if x, y ∈ X and there exists an index

j ′ ∈ {1, 2, · · · , p} such that xj = yj for j < j ′ and xj ′ < yj ′ , then y is said to be

lexicographically larger than x which we denote as x 4L y.

A vector x∗ ∈ X is said to be lexicographically optimal, and optimal for (1.20), if

there does not exist an x ∈ X such that x 6= x∗ and x∗ 4L x. Since the lexicographic

ordering is a total order, we can provide an affirmative definition of optimality and

equivalently say that a vector x∗ ∈ X to be lexicographically optimal, and optimal for

(1.20), if x 4L x∗ for each x ∈ X. The algorithm to find the optimal solutions to such

problems simply places the vectors in X in lexicographic order.

Use of lexicographic optimality is appropriate in applications where the criteria

adhere to a known ordering of “importance”. It ensures that the optimal solution

will have the maximum value for the most important criteria. The example shown

in Figure 1.4 assumes that j = 1 is the most important criteria, j = 2 is the next

most important and that j = 3 is the least important criteria. Notice that a large

value for f1 means that f2 and f3 will not be considered, even when as in the example,

f2(x2) > f2(x1) and f3(x2) > f3(x1). It can be shown that the optimal solutions to

(1.20) are efficient (see e.g. [27], Lemma 5.2).

Max-Min Optimality. In the following class of multicriteria optimization problems

(X, f, Rp) / max / (R,≤), (1.21)

the model map is the max function, and since it maps the objective space to R, vectors

in the ordered set are ranked via the canonical total order on R. If x, y ∈ X then we

say that x 4MM y if

max
{
f1(x), f2(x), · · · , fp(x)

}
≤ max

{
f1(y), f2(y), · · · , fp(y)

}
.



38

A vector x∗ ∈ X is said to be max-min optimal, and optimal for (1.21), if there does

not exist an x ∈ X such that x 6= x∗ and x∗ 4MM x.

Problems in this class are frequently formulated as

max
x∈X

min
j=1,2,··· ,p

fj(x)

and the algorithm to find optimal solutions to this problem places the elements of X in

decreasing order of their smallest (i.e. worst) fj(x) for j = 1, 2, · · · , p. The smallest (i.e

worst) fj(x) in the optimal solution will be the largest (i.e. best) among all the smallest

(i.e. worst) fj(x) for j = 1, 2, · · · , p. If the smallest elements of two vectors are equal,

then they are ranked by the vectors’ indices. In the example shown in Figure 1.4, this

rule is used to used to break the tie between x1 and x4. It can be shown that optimal

solutions to (1.21) are weakly efficient.

Lex-Max-Min Optimality. If x ∈ Rp, then the function sort↑(x) permutes the indices

of x so its components are sorted into ascending order. Now, if x, y ∈ Rp, then we say

that x 4LMM y if

sort↑(x) 4L sort↑(y).

Now, consider the following class of multicriteria optimization problems

(X, f, Rp) / sort↑ / (Rp, 4L). (1.22)

We say that a vector x∗ ∈ X is lex-max-min optimal, and optimal for (1.22) if there

does not exist an x ∈ X such that x 6= x∗ and x∗ 4LMM x. As was the case for

lexicographical optimality, since the lexicographic order is total, we can also provide

an affirmative definition of optimality and equivalently say that a vector x∗ ∈ X is

said to be lex-max-min optimal, and optimal for (1.22), if x 4LMM x∗ for each x ∈ X.

Obviously this hybrid definition of optimality draws from both (1.20) and (1.21).

Following (1.22), algorithms to find the optimal solutions to this problem first, per

the model map, sort the components of each vector x ∈ X into ascending order and

then, as dictated by the order set, place the resulting permuted vectors in decreasing
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lexicographic order. Arguably the most unique characteristic of this algorithm is the

permutation of the components of each vector x ∈ X. As a result of this permutation,

the step of lexicographic ordering of vectors x, y ∈ X may involve comparisons of fi(x)

and fj(y) for i, j ∈ {1, 2, · · · , p} and i 6= j. Therefore, lex-max-min optimality can be

considered an equitable notion of optimality since it considers each criterion to be of

equal importance (see e.g. [53], [66], and [27], p.147). For this reason it is appropriate

for use in applications in which no information about the relative importance of the

criteria is available and as such in [8] the lex-max-min criteria is referred to as a means

of making “optimal decisions under complete ignorance”. It is also interesting to note

that it has been shown that lex-max-min optimization problems can also be solved via

linear programming (see e.g. [53] and [66]). It can be shown that optimal solutions to

(1.22) are efficient.

To clarify some of these points consider an efficient ranking based on lex-max-min

that is based on 3 criteria, and that for each of these criteria, larger values are better

than smaller ones. Let us assume that this ranking includes two features i, j ∈ V with i

is ranked higher than j. We can be sure that the value of the smallest i.e. worst criteria

for i is larger than or equal to the value of the smallest i.e. worst criteria for j, and if

they are equal we can be sure that the value of the second smallest i.e. second worst

criteria for i is larger than or equal to the value of the second smallest i.e. second worst

criteria for j, and if they are equal we can be sure that the value of the third smallest

i.e. third worst criteria for i is larger than or equal to the value of the third smallest

i.e. third worst criteria for j. Note, however, in this example if the value of the worst

criteria of feature i is strictly greater than the value of the worst criteria of feature

j that we do not know whether the value of the second worst criteria for feature i is

greater than, less than, or equal to the value of the second worst criteria for feature j,

nor do we have any such information regarding the third worst criteria. For example,

consider the case where feature i is (10, 11, 14) and feature j is (9, 12, 13).
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1.5 Overview

In §2 we introduce the data set on which we will run various feature selection exper-

iments. The data set includes fifty different topics, and we present basic collection

statistics such as the number of relevant and irrelevant documents as well as the num-

ber of features for each topic. In addition, we describe the steps taken to prepare the

original data for use in our experiments. We continue by presenting the criteria we use

to assess the performance of feature selection algorithms, and explaining the method-

ology we adopt to rank the performance of different feature selection algorithms. In

§3 we present several models that provide the basis for many Boolean feature ranking

functions. We also introduce thirty two such functions and we will identify various

properties of these functions as well as several relationships between these functions.

We conclude the chapter with a brief discussion of the results of experiments which

assess the performance of these functions when used in a ranking algorithm. In §4 we

take a more detailed look at the result of the experiments that were discussed in §3,

as well as additional experiments that were designed to assess the relationship between

the separation achieved by a selected feature set and the amount of noise in the set. We

also develop formal models of noise, offer a principle that can be used to guide feature

selection algorithms, and provide some insight into why some Boolean feature ranking

functions work well while others select a substantial amount of noise. In §5 we present a

set axioms that we believe all Boolean feature ranking functions should satisfy and use

the tools of linear programming and convex analysis to identify characteristics of a spe-

cial subset of the functions that satisfy these axioms. In §6 present a natural extension

of the axioms for Boolean feature ranking functions to real-valued feature ranking func-

tions. In addition, we consider the results of experiments that study the performance

of greedy feature ranking algorithms, those based on the real-valued feature model, as

well as that utilize tools from multicriteria optimization.
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Chapter 2

Feature Set Evaluation

We begin this chapter by describing data set that we will used in all empirical studies of

feature selection algorithms. Next we present the methodology used to evaluate feature

selection algorithms and the feature sets they select. We then describe the set of criteria

upon which these feature sets will be evaluated. We conclude by showing how these

criteria can be used to order feature selection algorithms by the degree to which they

satisfy these criteria.

2.1 The Collection

The data used in this dissertation is the Reuters-21578 text categorization test col-

lection. The collection and supporting documentation are publicly available in SGML

format (see e.g. [55]) and in XML format (see e.g. [59]).

The 21,578 documents in the collection are Reuters newswire items that appeared in

1987. The documents include a variety of tags including tags that identify various parts

of the document, tags that indicate whether a document belongs to any of the several

subsets of documents that researchers have used in past studies, tags that indicate

which topics or other categories a human indexer assigned to a document and tags

related to various artifacts of the indexing process. The collection has been indexed on

135 economic topics, 120 of which have at least one relevant document and 57 of which

have 20 or more relevant documents.

We shall run experiments on 50 topics, with each topic defining a different feature

selection problem. The method of selecting the topics will be described below. For each

of these topics the available set of relevant documents will obviously be the documents
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the human indexers judged relevant for the topic. To identify a set of irrelevant doc-

uments we capitalize on the fact that the README LEWIS.txt file distributed with

the collection states that “a reasonable (though not certain) assumption is that for all

TOPICS=”YES” stories the indexer at least thought about whether the story belonged

to a valid TOPICS category. Thus, the TOPICS=”YES” stories with no topics can

reasonably be considered negative examples for all 135 valid TOPICS categories.” The

available set of irrelevant documents for all topics will consist of the 1975 documents

in this set, that is, |F | = 1975 for all topics.

2.2 Data Set Reduction

The size of the complete data set was too large to complete the empirical studies we

wished to perform in a reasonable period of time. For each topic we therefore sought to

create a reduced size data set that preserved the salient characteristics of the original

data set.

We noticed that the computationally challenging aspect of our studies was the cal-

culation of the measures of separation introduced in §2.7, since they require the cal-

culations of the Hamming distance between each u ∈ T and v ∈ F , and the product

|T ||F | in the original data set was quite large for many of the topics.

We therefore decided to construct a subset of the original data set in which we limit

the size of the product |T ||F | to be less than or equal to some p > 0 for each topic,

while maintaining the ratio of |T | to |F | for the topic. The new reduced size sets will

be denoted as T ∗ and F ∗ and the set of features appearing in T ∗ will be denoted as V ∗.

In the following, clearly |T ∗| |F ∗| does not necessarily equal p due to the constraint of

maintaining the ratio of |T | to |F | and |T ∗| |F ∗| being integral.

So we therefore wish to find |T ∗| ∈ Z+, |F ∗| ∈ Z+ such that |T ∗||F ∗| ≤ p for fixed

p ∈ Z+, while preserving the ratio of relevant to irrelevant documents, |T ∗|
|F ∗| ≈

|T |
|F | . The

constant p was selected so that the resulting computation time for our experiments was

manageable, while ensuring that the sets T ∗ and F ∗ included a sufficient number of
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data points as to be interesting. To achieve this |T ∗| and |F ∗| were selected using

|T ∗| ≤ min

{
|T |,

⌊√
p
|T |
|F |

⌋}
and |F ∗| =

⌊
|F |
|T |

|T ∗|
⌋

with p = 100, 000.

As will be discussed in §2.3, for each topic we construct T ∗ and F ∗ by randomly

selecting |T ∗| documents from T and |F ∗| from F .

2.3 Preparation

All data preparation and experiments are implemented in the R programming lan-

guage(see e.g. [67]) using its comprehensive collection of packages. We used R’s tm

(see e.g. [38] and [37]) package to

• Import the Reuters-21578 collection stored as XML into R.

• Perform certain preprocessing of the text including whitespace removal, transfor-

mation to lower case, punctuation removal and removal of numbers.

• Identify the set of relevant documents for each topic and the collective set of

irrelevant documents.

• Transform the data into a document term matrix representation of the collection.

• Remove rows corresponding to documents, in which there is no text within the

<BODY> tag.1

After these steps were completed, for each topic, |T ∗| from |T | and |F ∗| rows from

|F | are randomly selected from the aforementioned collection document term matrix

to create the document term matrices T ∗ and F ∗. At this point any all 0 columns in

the matrices T ∗ and F ∗ for the given topic, that is, columns corresponding to features

that do not appear in any documents in T ∗ and F ∗ are eliminated. The document

1Text in Reuters-21578 documents is organized with four optional tags AUTHOR, DATELINE, TITLE
and BODY. Per the README LEWIS.txt file distributed with the collection, the BODY tag contains the
“main text of the story”. There are 2535 documents in which there is no text within the BODY tag and
their removal reduces the total number of documents in the collection from 21578 to 19043.
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term matrices, T ∗ and F ∗ are stored and reused throughout the dissertation either in

R’s standard matrix data structure or using one of the sparse matrix data structures

available in R’s Matrix package (see e.g. [6]).

2.4 Fold Construction for Cross Validation

Unless otherwise noted, all of the experiments make use of 10-fold cross validation. For

each topic we created sets of relevant and irrelevant document folds which we shall

denote as T i, F i for 1 ≤ i ≤ 10 respectively. These folds are used in all experiments

that use cross validation. The procedure for constructing these folds is as follows

FOLD CONSTRUCTION

Input: T ∗ and F ∗.

Initialize: Let wT and wF respectively be vectors that contain the elements of

WT ∗ and WF ∗ randomly shuffled.

Step 1: Set nT := b 1
10 |T

∗|c, nF := b 1
10 |F

∗|c and i := 1.

Step 2: Set T i
test := {xT

j | nT (i − 1) + 1 ≤ j ≤ nT (i + 1)} and T i
train := T ∗ \ T i

test

Step 3: Set F i
test := {xF

j | nF (i − 1) + 1 ≤ j ≤ nF (i + 1)} and F i
train := F ∗ \ F i

test

Step 4: Any columns which are all 0 in T i
train and F i

train are deleted from T i
train,

F i
train, T i

test and F i
test. That is, columns corresponding to features that do

not appear in any training documents for the ith fold are eliminated from

all documents in this fold. Additionally, in specified experiments terms that

appear in Cornell’s SMART list of 571 stopwords [57] are removed.

Step 5: Set U i :=
(
T i

train, F i
train, T i

test, F
i
test

)
Step 6: If i < 10 then set i := i + 1 and goto Step 2, otherwise goto Output.

Output: U i for 1 ≤ i ≤ 10.
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The fact that the ratio of relevant to irrelevant documents is approximately the

same in each T i
train ∪ F i

train, and in each T i
test ∪ F i

test, as in the original data set, is

referred to as stratified 10-fold validation (see e.g. [22]).

2.5 Topics

The first step in selecting the topics to be used in this dissertation was to rank them in

decreasing order of |T ∗|, that is in decreasing order of the number of relevant documents

in the reduced data set. Next, the two most highly ranked topics were eliminated since

after the data reduction process they had more relevant documents than irrelevant

documents which is not characteristic of text classification problems. Since we use 10-

fold cross-validation and we were are interested in calculating our separation measures

between T and F as well as between T and T , we then decided to only utilize topics

that had at least 25 relevant documents after the data reduction process so that each

test fold would have at least 5 relevant test documents. Inspection of the remaining

topics showed that only the top 52 topics had 25 or more relevant documents and so

as to have a round number, we decided to select the top 50 topics.

These topics as well as the number of relevant and irrelevant documents and the

number of features after the processing described in §2.3 are shown in Table 2.1. Note

that the actual number of features in each fold after Step 4 in the fold construction

process described in §2.4 will obviously be less than the total number in T ∗.

Topic |T ∗| |F ∗| |V ∗|

money-fx 186 536 7983

grain 170 584 8371

crude 169 589 8793

trade 161 617 8827

interest 146 680 8245

ship 122 816 9570

wheat 120 825 9031

corn 106 938 9779
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Topic |T ∗| |F ∗| |V ∗|

oilseed 95 1030 9897

sugar 94 1060 9952

dlr 92 1081 9775

gnp 88 1135 10226

coffee 85 1173 10238

gold 82 1217 10403

veg-oil 82 1190 10216

money-supply 79 1238 9958

nat-gas 79 1238 10592

livestock 75 1322 11075

soybean 74 1316 10958

bop 71 1388 10930

cpi 71 1388 10812

copper 62 1590 11542

carcass 61 1606 11922

reserves 60 1623 11404

cocoa 58 1684 11906

jobs 58 1684 11753

rice 58 1709 12026

iron-steel 57 1731 12049

cotton 56 1783 12282

alum 54 1838 12167

yen 54 1838 12206

ipi 53 1836 12038

gas 52 1867 12411

meal-feed 50 1975 12672

rubber 49 1975 12663

barley 48 1975 12584
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Topic |T ∗| |F ∗| |V ∗|

zinc 43 1975 12538

palm-oil 42 1975 12616

pet-chem 41 1975 12688

silver 36 1975 12540

lead 35 1975 12514

rapeseed 35 1975 12485

sorghum 34 1975 12628

tin 33 1975 12597

strategic-metal 32 1975 12506

wpi 29 1974 12391

fuel 28 1975 12501

hog 26 1975 12469

soy-meal 26 1975 12548

heat 25 1975 12454

Table 2.1: Topics

After experimentation had begun it was noticed that in topic “money-fx”, follow-

ing Booleanization, the relevant document with NEWID= “13530” and the irrelevant

document with NEWID=“13416” were were identical. Similarly, it was noticed that in

topic “trade”, following Booleanization, the relevant document with NEWID=“5973”

and the irrelevant document with NEWID=“06099” were identical. So that the as-

sumption that T ∩ F = ∅ would be satisfied we removed the irrelevant document

with NEWID=“13416” from the “money-fx” topic resulting in a reduction in the num-

ber of irrelevant documents from 537 to 536. Similarly, the irrelevant document with

NEWID=“06099” from the “trade” topic was removed resulting in a reduction in the

number of irrelevant documents from 618 to 617.
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2.6 Methodology

Evaluation of a feature selection algorithm and the set of features S it selects begins

by using the algorithm to select a set of K features. The set of criteria, C used for

evaluation includes criteria that are direct measures of the

• the separation between the projected sets T [S] and F [S],

• the amount of noise in S, and

• the robustness of the algorithm when presented with small variations in T and F ,

as well as criteria that are indirect measures of

• the quality of the features in S, and

• the size of S.

In the sections that follow, we will discuss these criteria and the measures on which they

are based; for now we simply mention that some of the criteria are based on measures

that are known to be monotonically non-decreasing with k = 1, . . . ,K, while other

criteria are based on measures for which no such statement can be made.

Since each of the algorithms we study return an ordered set of features, we can view

the selected features either as the set S or as the sequence (sk). For monotonically non-

decreasing measures we will adopt the former view and will compute the value of the

measure for each subset Sk =
⋃ k

i=1(si) with si ∈ S and will use these values to compute

the area under the curve for the graph of each measure as a function of k and will use

this area as the criteria. There are several advantages to utilizing the area under the

curve as the criteria with such measures. Since these criteria reward algorithms that

select superior features early in the sequence (sk) and penalize algorithms that instead

select inferior features early in the sequence (sk), they allow us to study how a measure

varies as k increases. In addition, since they provide a single number that captures the

values for a measure over the range of all values of k, the comparison of algorithms is

greatly simplified. For measures that are not monotonically non-decreasing with k we

will view the selected features as a set, will compute the value of the measure at each
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element of S, and will then use the average of these values as the criteria. We will see

in §2.11 that in both cases our approach can be naturally extended to assess the impact

of noise on a feature set.

2.7 Separation Measures

If u, v ∈ Bn then we shall let

u4v = {j ∈ S : uj 6= vj}

denote the set containing the components where the vectors u and v differ. The number

of components in which two vectors differ is known as the Hamming distance between

them. If y = χS , then

dy(u, v) = d(u[S], v[S]) =
∑

j∈u4v

yj

can be seen to be the Hamming distance between the vectors u, v ∈ BV projected onto

the set S. Clearly, for u[S], v[S] ∈ BS we have 0 ≤ dy(u, v) ≤ |S|. We say that a pair

of vectors u[S], v[S] ∈ BS is separated if u[S] 6= v[S], that is, if there exists a j ∈ S

such that j ∈ u4v, or equivalently if dy(u, v) > 0 and say they are well separated when

dy(u, v) > 0 is in some sense large.

A set S ⊆ V is said to be a support set for (T, F ) if it has the property that

T [S] ∩ F [S] = ∅. That is, S is a support set for (T, F ), if the projection of each u ∈ T

onto S is separated from the projection of each v ∈ F onto S. Clearly, selecting a feature

set which is a support set is desirable since by definition the original assumption that

T ∩ F = ∅ is preserved in the projected space, however, finding minimal size support

sets is computational challenging. In [24] it was shown that the problem of finding

minimal size support sets can be formulated as the NP-complete set-covering problem
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(SCP)

minimize
∑
j∈V

yj

subject to
∑

j∈u4v

yj ≥ 1 , for all u ∈ T, v ∈ F,

yj ∈ B , for all j ∈ V,

and therefore the problem of finding minimal size support sets is NP-hard. Each con-

straint in this problem corresponds to a pair of u ∈ T and v ∈ F and requires that the

pair be separated in the resulting projection. Clearly, S ⊆ V is a support set for (T, F )

if and only if d(u[S], v[S]) > 0 for each u ∈ T and v ∈ F .

Letting S ⊆ V , we now consider four measures of the separation between the pro-

jected sets T [S] and F [S]. The first three of these measures are based directly on the

Hamming distance and are given as

ρ(y) = min
u∈T,v∈F

dy(u, v) (2.1)

σ(y) =
1

|T ||F |
∑

u∈T,v∈F

dy(u, v) (2.2)

θ(y) =
∑

u∈T,v∈F

min{dy(u, v), 1} (2.3)

where y = χS for some S ⊆ V . These measures respectively represent the minimum

Hamming distance between the elements in T [S] and those in F [S], the mean or average

Hamming distance between the elements in T [S] and those in F [S], and the number of

pairs in T [S] and F [S] that are separated. Clearly, S is a support set for (T, F ) if and

only if ρ(y) > 0. We now mention that while we would like to measure the number of

features each algorithm needs to achieve a support set, the fact that an algorithm may

not achieve a support set in K or less features, prevents us from doing so. However, it

can be seen that S is a support set for (T, F ) if and only if θ(y) = |T ||F |, and therefore

θ provides an indication of how close S is to being a support set, which we will consider

to be a good alternative measure.
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In order to define the fifth measure we now introduce the vector

h(y) = [ho(y), h1(y), · · · , hn(y)]

where y = χS for some S ⊆ V and

hk(y) =
∣∣ {(u, v) ∈ T × F : dy(u, v) = k}

∣∣
for k = 0, 1, . . . , n. The components hk(y) are the number of pairs in T [S] × F [S] that

are exactly at Hamming distance k with hk(y) = 0 for any k > |S|. Note that it can

be shown that h0(y) + h1(y) + · · · + hn(y) = |T ||F |.

Let S, S ′ ⊆ V and y = χS , y ′ = χS ′
, then we write

h(y) 4L h(y ′)

and say that h(y) is lexicographically smaller than h(y ′) if there exists an integer i with

0 ≤ i ≤ n such that hk(y) = hk(y ′) for k < i and hi(y) < hi(y ′). If h(y) 4L h(y ′),

then the set S will be said to lexicographically separate T and F better than the set S ′.

The motivation for this definition is that the vector h(y) has more of the pairs in T ×F

distributed in the components hk(y) for k > i which correspond to larger Hamming

distances, than the vector h(y ′). The condition h(y) 4L h(y ′) is equivalent to

n∑
k=0

hk(y) αk <

n∑
k=0

hk(y ′) αk

or
n∑

k=0

hk(y) (1 − αk) >
n∑

k=0

hk(y ′) (1 − αk)

if α ≥ 0 is small enough. A result similar to the following was given in [13].

Proposition 2.1. Suppose α ∈
[
0, 1/|T ||F |

]
then,

h(y) 4L h(y ′) if and only if
n∑

k=0

hk(y) αk <

n∑
k=0

hk(y ′) αk.
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Therefore, the fifth measure of separation between projections of the set T and F

onto some set of features S ⊆ V is the lexicographic Hamming distance

φα(y) =
n∑

k=0

hk(y)(1 − αk) =
∑

u∈T,v∈F

(
1 − αdy(u,v)

)
(2.4)

where y = χS and α ≥ 0. The measure φα is a weighted sum in which larger weights

(1 − αk) correspond to larger Hamming distances k = dy(u, v) between elements of

u ∈ T and v ∈ F in the projected space. Note that using α < 1/|T |F | when |T ||F | is

large can cause the computation of φα to encounter numerical difficulties. Specifically,

as k increases, αk quickly approaches 0 and as a result, most terms in (2.4) receive a

weight of 1. However, since using larger values of α avoids this issue while preserving

φα’s valuable property of assigning larger weights to larger Hamming distances, we use

α = 0.99 when using φα in the evaluation of feature sets and try several different values

of α in experiments described in §6.3 where φα is used as an objective function. The

functions in (2.1), (2.2), (2.3) and (2.4), as well as weighted variants of (2.3) and (2.4)

were studied in [13], where they were used as objective functions in the problem of

finding minimal size support sets that are well separated.

2.8 Noise Measures

We are interested in the number of features selected by a feature selection algorithm

that are noise features. Unfortunately, there is no agreed upon definition of a noise

feature or set of features that are considered to be noise. In order to count the number

of noise features selected in the empirical studies that we conduct, we therefore consider

any feature that is in the set of stopwords, as specified in Cornell’s SMART list of 571

stopwords (see e.g. [57]) to be a noise feature, and all other features to be non-noise

features. The complete list of these stopwords is provided in Appendix G. We will

denote the set of stopwords as J ⊂ V , and the number of stopwords in the set of

selected features S will be denoted as ν. The obvious shortcomings of this approach

are that the set of selected features may contain features that might reasonably be

considered noise features, that and for some topics, some stopwords may actually not
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be noise features.

In an effort to understand the how noise contributes to σ for a feature selection

algorithm f , we use the algorithm NOISE GROWTH RATE to compute the growth

rate of σ and σK , which we denote as σ̇[J ] and σK [J ], when f is presented with only noise

features. At each of 50 iterations we run f on a different randomly generated variant

of (T, F ) which has been projected onto the set of stopwords J , and for k = 1, . . . ,K

compute the value of σk for the first k selected features. For k = 1, . . . ,K, we then

compute the median of the 50 values of σk, and fit a regression line to the resulting

K values. Examples of the noise growth data and the associated regression line for a

single topic are shown in Figure K.1 and Figure O.1.

NOISE GROWTH RATE

Input: (T, F ) and feature selection algorithm f .

Initialize: Set i := 1 and let G be a 50 × K matrix.

Step 1: Set γ := a random number in [0.25, 1].

Step 2: Set nT := max{bγ|T |c, 2} and nF := max{bγ|F |c, 2}.

Step 3: Set W ′
T := nT randomly selected documents from WT and

W ′
F := nF randomly selected documents from WF .

Step 5: Set (sk) := ω(J,K, f, ·) using (T [W ′
T ], F [W ′

F ]).

Step 6: Set gi,k := σ(sk) for k = 1, . . . ,K, where sk ∈ V .

Step 7: If i := 50 then goto Output, otherwise set i := i + 1 and goto Step 1.

Output: Compute the median of each column in G, fit a regression line σk[J ] =

σ0[J ] + σ̇k[J ] k to the K median values, use the regression line to compute

σK [J ], and output the intercept σ0[J ], the slope σ̇k[J ], and σK [J ] for this

topic.
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2.9 Semantic Measures

Inherent in our discussion so far is the tenet that a set of selected features S is in some

sense “good”, if it does not include any noise features and if T [S] and F [S] are well

separated. While we certainly do subscribe to this tenet, one might argue that it is

possible for S to satisfy these criteria, but for the individual features it contains to

have little or no semantic relationship to the topic under consideration. While there

is no agreed upon method of assessing the semantic relationship that a set of features

has to a topic, we will assume that the performance of a simple classifier using only

the features in S provides one reasonable measure. Specifically, we shall consider the F

measure, which will be discussed in §3.5, of a Bernoulli Naive Bayes classifier using on

the K features in S as a measure of the semantic quality of S (see e.g. [60], [62]), [56]

and [31]. The Bernoulli Naive Bayes classifier, as opposed to to other classifiers such

as the Multinomial Naive Bayes classifier, can reasonably be considered an appropriate

choice for this task since it known to be very sensitive to the set features presented to

it (see e.g. p.243, [60]). We shall denote the F measure as ϕ.

A naive Bayes classifier gβ : T∪F 7→ {0, 1} predicts the class of a document u ∈ T∪F

based on the following rule

gβ(u) =

 1 if P(u ∈ T | u) > P(u ∈ F | u),

0 otherwise.
(2.5)

Thus, it predicts the document to be relevant when, given that it contains a certain set

of features, the probability that it is relevant is larger than the probability that it is

irrelevant. Estimates for P(u ∈ T | u) and P(u ∈ F | u) are based on Bayes rule and

are given as

P(u ∈ T | u) = log(P(u ∈ T )) +
∑
j∈S

log(P(uj = 1 | u ∈ T ))uj +

(1 − log(P(uj = 1 | u ∈ T )))(1 − uj)
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and

P(u ∈ F | u) = log(P(u ∈ F )) +
∑
j∈S

log(P(uj = 1 | u ∈ F ))uj +

(1 − log(P(uj = 1 | u ∈ F )))(1 − uj)

which can be rewritten as

P(u ∈ T | u) = log(P(u ∈ T )) +
∑
j∈S

log(P(uj = 1 | u ∈ T ))uj +

log(P(uj = 0 | u ∈ T ))(1 − uj)

P(u ∈ F | u) = log(P(u ∈ F )) +
∑
j∈S

log(P(uj = 1 | u ∈ F ))uj +

log(P(uj = 0 | u ∈ F ))(1 − uj).

(2.6)

Now, for j ∈ V , we will see in (3.1) and (3.2) that

P(u ∈ T ) =
|T |

|T | + |F |
and P(u ∈ F ) =

|F |
|T | + |F |

,

and in (3.5) we will see that

P(uj = 1 | u ∈ T ) =
aj

|T |
,

and therefore

P(uj = 0 | u ∈ T ) = 1 − P(uj = 1 | u ∈ T ) = 1 − aj

|T |
=

cj

|T |
,

and similarly, in (3.6) we will see that

P(uj = 1 | u ∈ F ) =
bj

|F |
,

and therefore

P(uj = 0 | u ∈ F ) = 1 − P(uj = 1 | u ∈ F ) = 1 − bj

|F |
=

dj

|F |
.
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Substituting back into (2.6) yields

P(u ∈ T | u) = log
[

|T |
|T | + |F |

]
+

∑
j∈S

log
[ aj

|T |

]
uj + log

[ cj

|T |

]
(1 − uj)

P(u ∈ F | u) = log
[

|F |
|T | + |F |

]
+

∑
j∈S

log
[ bj

|F |

]
uj + log

[ dj

|F |

]
(1 − uj).

(2.7)

As we discussed in §1.2, we will perform Laplace smoothing, since doing so avoids

estimates being void when a feature does not appear in any documents. Therefore (2.7)

is actually equivalent to

P(u ∈ T | u) = log
[

|T |
|T | + |F |

]
+

∑
j∈S

log
[ a ′

j + 1
|T | + 2

]
uj + log

[ c ′
j + 1

|T | + 2

]
(1 − uj)

P(u ∈ F | u) = log
[

|F |
|T | + |F |

]
+

∑
j∈S

log
[ b ′

j + 1
|F | + 2

]
uj + log

[ d ′
j + 1

|F | + 2

]
(1 − uj).

(2.8)

where a ′, b ′, c ′, and d ′ are the values prior to performing Laplace smoothing.

2.10 Robustness Measures

A robust feature selection algorithm is one in which the set of selected features S as well

as the order in which the features appear in the the sequence (si) is relatively unaffected

by small changes in T and F . To measure the robustness of a feature selection algorithm

we apply the ROBUSTNESS algorithm.

ROBUSTNESS

Input: (T, F ) and feature selection algorithm f .

Initialize: Set i := 1 and rj = 0 for j = 1, . . . , |V |.

Step 1: Set γ := a random number in [0.25, 1].

Step 2: Set nT := max{bγ|T |c, 2} and nF := max{bγ|F |c, 2}.

Step 3: Set W ′
T := nT randomly selected documents from WT and

W ′
F := nF randomly selected documents from WF .
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Step 5: Set (sk) := ω(V,K, f, ·) using (T [W ′
T ], F [W ′

F ]).

Step 6: Set rsk
:= rsk

+ 1 for k = 1, . . . ,K where sk ∈ V .

Step 7: If i := 50 then goto Output, otherwise set i := i + 1 and goto Step 1.

Output: Set R := {rj : rj > 0 and j ∈ V } and ξ := average of R and output ξ

for this topic.

We use this algorithm to compute the robustness, denoted as ξ, of a feature selection

algorithm which is the average number of times that features appear in the top K

features averaged over 50 runs of the algorithm on randomly constructed subsets of |T |

and |F |, averaged over all topics. Notice that in each iteration we construct and run f

on a new randomly generated variant of (T, F ). These variants will likely have different

values of parameters, such as a,b,c and d, that are used in feature selection algorithms.

We consider feature selections algorithms with larger values of ξ to be more robust

than those with smaller values since larger values indicate that the same set of features

appear frequently in (sk) even though the algorithm is run on variants of (T, F ). Note

that this measure obviously does not use cross validation as is described in §2.13 but

does average its results over all topics.

2.11 The Set of Evaluation Criteria

As mentioned in §2.6, for monotonically non-decreasing measures we will compute the

value of the measure for each subset Sk =
⋃ k

i=1(si) and will use these values to compute

the area under the curve for the graph of each measure as a function of k = 1, . . . ,K.

We therefore begin this section by stating the following simple result.

Proposition 2.2. The measure functions ρ, σ, ν, θ and φα are monotonically non-

decreasing in the size of the projection space, k = 1, . . . ,K.

Rather than using the actual values of the area under the curve for the measures

listed in Proposition 2.2, we choose to normalize them so their values are in [0, 1].
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We will denote these normalized area under the curve values as ρ̂, σ̂, ν̂, θ̂ and φ̂α

respectively. The measure ϕ is not monotonically non-decreasing in the size of the

projection space and therefore we will use the mean of its values over all k = 1, . . . ,K,

which we will denote as ϕ̄.2 The measure ξ is not a function of k = 1, . . . ,K and we do

not normalize its values. Table 2.11 summarizes the criteria that comprise the set C.

ρ̂ AUC of the Minimum Hamming Distance

σ̂ AUC of the Average Hamming Distance

ϑ̄ Mean of the Coefficient of Variation of the Hamming Distance

ν̂ AUC of the Number of Stopwords

θ̂ AUC of the Number Pairs Separated

φ̂α AUC of the Lexicographic Hamming Distance

ϕ̄ Mean of the F Measure

ξ The Robustness

Table 2.2: Set C of Feature Set Evaluation Criteria

Normalization of measures requires that we know the maximum possible value of

the area under the curve for each measure, which is calculated by computing the sum

over k = 1, . . . ,K of the maximum possible value of each measure at k. Table 2.3

provides the information required to perform the desired normalization.

Measure Minimum Maximum Maximum at k Maximum AUC
ρ 0 K k K(K + 1)/2
σ 0 K k K(K + 1)/2
ν 0 K k K(K + 1)/2
θ 0 |T |F | |T |F | K|T ||F |
φα for 0 ≤ α < 1 0 |T |F | |T |F | K|T ||F |

Table 2.3: Monotonically Non-Decreasing Measures

Since selection of noise features is undesirable, we are interested in learning what

impact such features have on the criteria in C. To this end we define a set of discounted

criteria C ′ = {ρ̂ ′, σ̂ ′, θ̂ ′, φ̂ ′
α, ϕ̄, ξ}. Before discussing these criteria we mention that

2The measure ϕ does not need to be normalized since it already is in [0, 1].
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clearly there is no discounted version of ν̂. Similarly, there is no discounted version of

ϕ̄; that is, we simply use ϕ̄ because inclusion of noise in a feature set already reduces

its semantic content and the removal of noise features can reasonably be expected to

improve the F measure. We also do not use a discounted variant of ξ.

The definition of the discounted criteria is motivated by the idea that while the value

of the criteria that are based on monotonically non-decreasing measures clearly increase

with each selected feature, we would like to discount the amount of this increase when a

noise feature is selected. While there are certainly many ways to define such discounted

criteria, our approach is illustrated by the definition of σ̂ ′(y) which is defined to be the

area under the curve for the graph of σ ′(y) as a function of k = 1, . . . ,K where

σ ′
k(y) =

 σk−1(y) if sk ∈ J,

σk(y) otherwise,
(2.9)

and σk(y) is the value of σ(y) at k ∈ {1, . . . ,K}. Clearly this definition penalizes

algorithms that select noise features, with the severity of the penalty being larger when

such features are selected early in (sk). Discounted variants of the other criteria that are

based on monotonically non-decreasing measures are defined similarly as are measures

that are not monotonically non-decreasing measures. For example, ϕ̄ ′(y) is the mean

of the set

ϕ ′
k(y) =

 ϕk−1(y) if sk ∈ J,

ϕk(y) otherwise,
(2.10)

for all k = 1, . . . ,K. Figure 4.1 provides an example of the non-discounted and dis-

counted variants of σ.

2.12 Feature Set Size

Since C includes criteria that are the area under the curve of monotonically non-

decreasing measures, we we must specify the number of features K that are to be

retrieved in our experiments by all feature selection algorithms. That is, while ρ, σ,

ν, θ, and φα are all bounded above, Proposition 2.2 states that in the absence of any
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Statistic 95% 98% 100%
Minimum of K 1.00 1.00 1.00
First Quartile of K 2.00 4.00 19.00
Median of K 4.00 7.00 33.00
Mean of K 9.41 16.57 117.10
Third Quartile of K 7.00 12.00 66.00
Maximum of K 310.00 370.00 9023.00

Table 2.4: K Required for Support Set in 95%, 98% and 100% of All (µ, topic) Combi-
nations

constraints, the obviously undesirable strategy of simply selecting of all n features in

V will guarantee that each of these measures attains its maximum value.

Assuming that feature selection algorithms try to order the features in (sk) by the

degree to which they satisfy the criteria in C, we would like to specify a K so that

the feature set selected by “most” algorithms exceeds some threshold for each of these

criteria and for all topics. Admitting that any such decision will be somewhat arbitrary

we decided adopt a somewhat simplified version of this strategy and to base the value

of K on the number of features that are required to obtain a support set.

Since this value varies greatly depending on the topic and the feature selection

algorithm, we ran a simple empirical study in order to determine reasonable values.

Specifically, we ran the ranking algorithm without cross validation for a subset of the

feature ranking functions in §3.8 and for each of the topics listed in §2.5. A summary of

results averaged across all topics and all feature ranking functions is listed in Table 2.4.

In addition, we found that for K ≤ 25

• 93.38% of the (µ, topic) combinations separated 95% of the (T, F ) pairs,

• 86.38% of the (µ, topic) combinations separated 98% of the (T, F ) pairs, and

• 37.19% of the (µ, topic) combinations separated 100% of the (T, F ) pairs.

and based on these results we decided to utilize K = 25 in our experiments.
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2.13 Cross Topic / Cross Validation

Unless stated otherwise all experiments employ 10-fold cross validation using the sets

U i for i = 1, . . . , 10 discussed in §2.4 as input and essentially proceed as follows

CROSS TOPIC / CROSS VALIDATION

Input: U i for i = 1, . . . , 10 and all topics q ∈ Q where the set Q = {1, . . . , 50}

indexes set of topics.

Initialize: Set q := 1 and i := 1.

Step 1: Set
(
T i

train, F i
train, T i

test, F
i
test

)
:= U i for topic q ∈ Q.

Step 2: Set (sk) := ω(V,K, f, ·) using (T i
train, F i

train).

Step 3: Calculate the values of C using the projections (T i
train[(sk)], F i

train[(sk)]),

(T i
test[(sk)], F i

test[(sk)]), and (T i
∆[(sk)], F i

∆[(sk)]) where the last pair contains

the percent change between training and testing, and store the results in

Ci
train, Ci

test and Ci
∆ respectively.

Step 4: If i := 10 then set Cq
train and Cq

test respectively to be the average of criteria

Ci
train and Ci

test for i = 1, . . . , 10, and set q := q + 1, i := i + 1 and goto Step

1, otherwise set i := i + 1 and goto Step 1.

Output Set Ctrain := Cq
train and Ctest := Cq

test the mean of the criteria for q ∈ Q

and output Ctrain and Ctest.

The reason for normalizing the elements of C should now be clear. There may be

substantial variation in the value of measures for the same feature selection algorithm

between different topics. For example, larger or smaller values of |T | and |F | could

clearly result in larger or smaller values of θ. Normalizing the elements of C, for example

we divide the area under the curve of θ by |T ||F |, is a means of mitigating the influence

of individual topics.
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2.14 Result Comparison

For a given experiment, the output of the cross topic/cross validation method described

in §2.13, can be viewed as a two dimensional table in which each row corresponds to

a feature selection algorithm and each column corresponds to one of the criteria in C.

Presented with these results we would like to order the feature selection algorithms

on the basis of some combination of the criteria. In the absence of any information

indicating that any of these potentially competing criteria is more important than

another, we can create an efficient ordering of feature ranking algorithms by treating

the problem as an multicriteria optimization problem and solving it using the lex-max-

min algorithm introduced in §1.4. Unless otherwise stated we shall use the set

C∗ = {ν̂, θ̂, σ̂, ϕ̄} (2.11)

as well as the discounted variant

C∗ ′ = {ν̂, θ̂ ′, σ̂ ′, ϕ̄} (2.12)

of criteria to this end. The reason that ρ̂ and φα are not included in C∗ is that they did

not differ significantly in preliminary runs of the experiments in §3.10. We also order

the feature ranking algorithms by the lex algorithm in which order of importance of

the criteria is 〈ν̂, θ̂, σ̂, ϕ̄〉, and by the result of simply averaging the four criteria. Since

smaller values of ν̂ are better, we use 1− ν̂ rather than ν̂. Also, we round the values of

the criteria to two significant digits.

One refinement of the lex-max-min algorithm that we utilize in this application is

that, before rounding, we scale each column of criteria in the aforementioned table by

adding the difference between 1 and the maximum value of the column, to each entry in

the column, resulting in the maximum value being 1 and others being less than 1. The

reason we do this is to prevent a criteria whose values are relatively less than the other

criteria from having undo influence in the ordering of the feature selection algorithms.

While we will not use this information in the lex-max-min, lex, and average ranking
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of algorithms, we also compute the values at K, for each measure in C∗, i.e.

C∗
K = {νK , θK , σK , ϕK}

and

C∗ ′
K = {ν ′

K , θ ′
K , σ ′

K , ϕ ′
K}.

Also, for each measure c ∈ C∗, we will consider the stability of an algorithm with respect

to c, to be the difference between the value of c on the training and test sets, and will

denote this value as ∆(c). The stability of the measures in C∗ ′, C∗
K , and C∗ ′

K will also

be computed.

In closing this section we remark that while at times it may be difficult to resist the

temptation to do so, our purpose in creating these orderings of feature selection algo-

rithms is not to identify the single “best” algorithm, but to identify the characteristics

of the family of algorithms that exhibit the best (and the worst) performance in terms

of the criteria in C∗.

2.15 Computational Considerations

Calculation of the measures discussed in §2.7 require that the Hamming distance be-

tween all pairs of projected vectors in (T [S], F [S]) be calculated. In this section we shall

discuss some simple observations that can be used to perform these computations effi-

ciently. We begin by stating two following properties of the Hamming distance without

proof.

Proposition 2.3. If S, S ′ ⊆ V , S ⊆ S ′ and u, v ∈ Bn then d(u[S], v[S]) ≤ d(u[S ′], v[S ′]).

Proposition 2.3 states that the Hamming distance is a non-decreasing function of

the size of the projection space.

Proposition 2.4. If 1 < k ≤ n, S = {1, 2, . . . , k}, S ′ = {k + 1, k + 2, . . . , n} and

u, v ∈ Bn then d(u, v) = d(u[S], v[S]) + d(u[S ′], v[S ′]).

Proposition 2.4 shows that the calculation of the Hamming distance between two

vectors can be decomposed into calculations of the Hamming distance of projections of



64

the vectors onto a subspace. The following algorithm, which is based on Proposition 2.4,

efficiently computes the Hamming distance between two vectors at each of p projections

onto a nested subspace when projected onto each element of a collection of subsets that

partition V .

HAMMING DISTANCE

Input: u, v ∈ Bn, 1 ≤ p ≤ n and k0 = 0 < k1 < k2 · · · < kp = n.

Initialize: i ← 0 and w ← [0, 0, · · · , 0] ∈ Zp
+.

Step 1: If i = p goto Output, otherwise

set Si ← V \ {ki, ki + 1, · · · , ki+1}, yi ← χSi , wi+1 ← dyi(u, v) + wi and goto

Step 1.

Output: Output w and stop.

Note that

wi = d(u[S1 ∪ S2 ∪ · · · ∪ Si], v[S1 ∪ S2 ∪ · · · ∪ Si])

for each 1 ≤ i ≤ p. A naive algorithm would recompute d(u[Si], v[Si]) when computing

d(u[Si+1], v[Si+1]) resulting in O(n2) summations over the components of u and v.

Proposition 2.4 implies that using the fact that by

d
(
u
[ n⋃

i=1

Si

]
, v

[ n⋃
i=1

Si

])
=

n∑
i=1

d(u[Si], v[Si])

the algorithm can be improved to make only O(n) summations.

Finally, the following result shows that it is possible to efficiently compute the

average Hamming distance between all pairs of projected vectors in (T [S], F [S]).

Proposition 2.5.

σ(y) =
1

|T ||F |
∑
j∈S

ajdj + bjcj
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Proof . If y = χS , then we recall that average Hamming distance was given in (2.2) as

σ(y) =
1

|T ||F |
∑

u∈T,v∈F

dy(u, v),

which can be written as

σ(y) =
1

|T ||F |
∑

u∈T,v∈F

∑
j∈S

|uj − vj |

which after interchanging the summation is equal to

σ(y) =
1

|T ||F |
∑
j∈S

∑
u∈T,v∈F

|uj − vj |.

For a given j ∈ S, the inner summation can be written as

∑
u∈T,v∈F

|uj − vj | = ajdj + bjcj

which is the number of differences between pairs for feature j, and allows us to write

σ(y) =
1

|T ||F |
∑
j∈S

|uj − vj |.

¥

Therefore, using the precomputed information contained in ¢j ∈ ¢ for each j ∈ S

we can efficiently compute σ(y).
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Chapter 3

Boolean Feature Ranking Functions

We begin this chapter by formally defining Boolean feature ranking functions and rank-

ing algorithms. We then introduce some common feature ranking functions from the

literature, and identify some of their properties and some relationships between them.

We conclude by reviewing the results of an empirical study of the relative performance

of ranking algorithms based on each of these feature ranking functions.

3.1 Ranking Functions and Algorithms

A Boolean feature ranking function is a function

µ : ¢ 7→ R

that for each feature j ∈ V maps the values aj , bj , cj and dj to the set of real numbers.

The notation µ will be used for a generic Boolean feature ranking function and specific

Boolean feature ranking functions will be denoted as µi for some integer i. We shall

denote the set of Boolean feature ranking functions as M. Since the elements of M

can be written as a function of xj and yj , of aj and bj , or of aj , bj , cj and dj , we will

write µ(xj , yj), µ(aj , bj) or µ(aj , bj , cj , dj) when we wish to highlight the fact that a

particular µ is written as a function of two or four variables respectively, and will write

µ(¢j) and sometimes µ(j) when this distinction is not important.

Ranking algorithms are based on feature ranking functions and in fact each µ ∈ M

defines a different ranking algorithm, and therefore the set M defines an entire class

of ranking algorithms. We denote the ranking algorithm for a particular µ ∈ M as

µ-RANKING and provide the definition of this algorithm below.
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µ-RANKING

Input: The set V , a function µ ∈ M, a sort order l∈ {↓, ↑} and an integer K.

Step 1: Set sequence (sk) to the set V , sorted by function µ, in l order.

Step 2: Set (sk) ← s1, s2, · · · , sK .

Output: Output (sk)

While there are obviously myriad feature ranking functions, since the performance

of µ-RANKING is related to how well the given µ measures the degree to which each

feature satisfies the criteria in C, commonly used functions tend to be based on a few

key ideas for achieving this goal, and these ideas are implemented using a small set

of core models of ¢. Five of the core models of ¢ used to implement feature ranking

functions are discussed in §3.2, §3.3, §3.4, §3.5 and §3.6.

3.2 Probabilistic Model

In this section we assume that the probability of certain events related to the occurrence

of feature j ∈ V in the collection can be approximated using the frequencies aj , bj , cj

and dj , and list the probabilities and odds of these events.

1. Consider a document u ∈ T∪F , then the probability that the document is relevant

is

P(u ∈ T ) =
|T |

|T | + |F |
(3.1)

and the probability that the document is irrelevant is

P(u ∈ F ) =
|F |

|T | + |F |
. (3.2)

2. Consider a document u ∈ T ∪ F and a feature j ∈ V , then the probability that
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the feature appears in the document and the document is relevant is

P(uj = 1, u ∈ T ) =
aj

|T | + |F |
(3.3)

and the probability that the feature appears in the document and the document

is irrelevant is

P(uj = 1, u ∈ F ) =
bj

|T | + |F |
. (3.4)

3. Consider a document u ∈ T ∪ F and a feature j ∈ V , then the probability that

the feature appears in the document given that document is relevant is

P(uj = 1 | u ∈ T ) =
P(uj = 1, u ∈ T )

P(u ∈ T )
=

aj

|T |+|F |
|T |

|T |+|F |

=
aj

|T |
(3.5)

and the probability that the feature appears in the document given that document

is irrelevant is

P(uj = 1 | u ∈ F ) =
P(uj = 1, u ∈ F )

P(u ∈ F )
=

bj

|T |+|F |
|F |

|T |+|F |

=
bj

|F |
. (3.6)

As discussed in §1.3, (3.5) and (3.6) are the TPR and FPR respectively.

4. Consider a document u ∈ T ∪ F and a feature j ∈ V , then

P(uj = 1 | u ∈ T )
P(uj = 1 | u ∈ F )

=
aj

|T |
bj

|F |

(3.7)

which is the ratio of the TPR to the FPR is the positive likelihood ratio. It can

also be seen to be the slope of an ROC curve as can be seen in Figure 3.29 (see

e.g [17]).

5. Consider a document u ∈ T ∪F and a feature j ∈ V , then the probability that the

feature appears in the document, regardless of whether the document is relevant
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or irrelevant, is

P(uj = 1) = P({uj = 1 | u ∈ T} ∪ { uj = 1 | u ∈ F})

= P(u ∈ T ) P(uj = 1 | u ∈ T ) + P(u ∈ F ) P(uj = 1 | u ∈ F )

=
|T |

|T | + |F |
aj

|T |
+

|F |
|T | + |F |

bj

|F |
=

aj + bj

|T | + |F |
. (3.8)

6. Consider documents u ∈ T and v ∈ F and a feature j ∈ V , then the probability

that the feature appears in both u and v is

P(uj = 1 | u ∈ T ∩ vj = 1 | v ∈ F )

= P(uj = 1 | u ∈ T ) P(vj = 1 | v ∈ F )

=
ajbj

|T ||F |
. (3.9)

7. Consider a document u ∈ T ∪ F and a feature j ∈ V , then the probability that

the document is relevant given that the feature appears in the document is

P(u ∈ T | uj = 1) =
P(uj = 1, u ∈ T )

P(uj = 1)
=

aj

|T |+|F |
aj+bj

|T |+|F |

=
aj

aj + bj
(3.10)

and the probability that the document is irrelevant given that the feature appears

in the document is

P(u ∈ F | uj = 1) =
P(uj = 1, u ∈ F )

P(uj = 1)
=

bj

|T |+|F |
aj+bj

|T |+|F |

=
bj

aj + bj
. (3.11)

8. We will also make use of the odds that a document is relevant which is the proba-

bility that the document is relevant divided by the probability that the document

is irrelevant. Specifically, we are interested in the odds that a document that con-

tains a feature is relevant. It is the probability that a document that contains the

feature is relevant divided by the probability that a document contains a feature

is irrelevant. Formally, consider a document u ∈ T ∪F and a feature j ∈ V , then
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given that uj = 1, the odds that u ∈ T are

P(u ∈ T | uj = 1)
P(u ∈ F | uj = 1)

=
aj

aj+bj

bj

aj+bj

=
aj

bj
. (3.12)

9. Similarly, the odds that a document that does not contain a feature is relevant

is the probability that a document that does not contain the feature is relevant

divided by the probability that a document does not contain the feature is irrel-

evant. Formally, consider a document v ∈ T ∪ F and a feature j ∈ V , then given

that vj = 0, the odds that v ∈ T are

P(v ∈ T | vj = 0)
P(v ∈ F | vj = 0)

=
cj

cj+dj

dj

cj+dj

=
cj

dj
, (3.13)

10. The odds in (3.12) and (3.13) allow us to compute the odds ratio which compares

the odds of a document that contains a feature being relevant with the odds of a

document that does not contain the feature being relevant. It is defined as

P(u∈T | uj=1)

P(u∈F | uj=1)

P(v∈T | vj=0)

P(v∈F | vj=0)

=
aj

bj

cj

dj

=
ajdj

bjcj
. (3.14)

If the odds ratio is 1, then odds of relevance are the same for both documents

that contain the feature and those that do not. If the odds ratio is greater than

1, then the odds of relevance is greater for documents that contain the feature. If

the odds ratio is less than 1, then the odds of relevance is greater for documents

that do not contain the feature.

The probabilities and odds discussed in this section form the basis of many of the

probabilistic models that are used in information retrieval and are used to construct

many of the Boolean feature ranking functions that we will consider.
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3.3 Term Frequency Model

The calculations in §3.2 employed the traditional interpretation of the quantities aj ,

bj , cj and dj in which the occurrence of a feature j ∈ V in a document is modeled as

a Boolean variable, and aj and bj are viewed as integer frequencies or counts of the

number of times the feature appeared in relevant documents and irrelevant documents

respectively, with cj and dj being viewed as counts of the number of times the feature

did not appear in relevant documents and irrelevant documents respectively.

It is possible to develop an alternate interpretation of these quantities in which the

occurrence of the feature j in a document is modeled as a real variable and aj , bj , cj

and dj are viewed as values that can be interpreted to mean that feature j occurred1 1

time in aj relevant documents, 1 time in bj irrelevant documents, 0 times in cj relevant

documents and 0 times in dj irrelevant documents. We could then envision the existence

of hypothetical vectors

xj = (1, 1, 1, 1, . . . , 0, 0)

and

yj = (1, 1, 1, . . . , 0, 0, 0, 0, 0),

with xj having aj 1s and cj 0s and yj having bj 1s and dj 0s. Following this interpre-

tation we could calculate that the expected value of the term frequency for feature j in

relevant documents as

1
aj

|T |
+ 0

cj

|T |
=

aj

|T |

and the expected value of the term frequency for feature j in irrelevant documents as

1
bj

|F |
+ 0

dj

|F |
=

bj

|F |
.

We will not make use of this interpretation in this chapter but will refer to it in §6.1

1The specific meaning of “occurred”, that is, whether it means a simple term frequency or some
function of the term frequency, is not important to this discussion – we will simply refer to the value
as the term frequency.
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when it will allow us to draw some parallels between Boolean and real-valued feature

ranking functions.

3.4 Separation Model

In this section we discuss how functions of the quantities aj , bj , cj and dj relate to the

amount of separation provided by a feature j ∈ V .

Consider a feature j ∈ V , then

ajdj = | {(u, v) ∈ T × F : uj = 1 and vj = 0} |

is the number of pairs (u, v) in which uj = 1 and vj = 0. For a feature j ∈ V , ajdj is

the number of relevant–irrelevant document pairs which are separated by the presence

of the feature in relevant documents and the absence of the feature from irrelevant

documents.

Similarly, a feature j ∈ V , then

bjcj = | {(u, v) ∈ T × F : uj = 0 and vj = 1} |

is the number of pairs (u, v) in which uj = 0 and vj = 1. For a feature j ∈ V , bjcj is

the number of relevant–irrelevant document pairs which are separated by the absence

of the feature from relevant documents and the presence of the feature in irrelevant

documents.

Therefore, for j ∈ V , the quantity ajbj + cjdj is the total number of relevant–

irrelevant document pairs separated by feature j. For instance, consider the example

shown in Table 3.1.

The sets

{(4, 6), (4, 7), (5, 6), (5, 7)} (3.15)

and

{(1, 8), (2, 8), (3, 8)} (3.16)
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Feature
Document j

1 0
2 0

T 3 0
4 1
5 1
6 0

F 7 0
8 1

Table 3.1: Separation Model Example

are the sets of relevant–irrelevant documents pairs which are separated by feature j and

have cardinality ajdj and bjcj respectively. The sets

{(4, 8), (5, 8)} (3.17)

and

{(1, 6), (1, 7), (2, 6), (2, 7), (3, 6), (3, 7)} (3.18)

are the sets of relevant–irrelevant documents pairs which are not separated by feature j.

In practice, for a feature j ∈ V , we would like the quantities ajdj , bjcj and ajdj + bjcj

being normalized by the total number of relevant–irrelevant document pairs and will

utilize

σ+
j =

ajdj

|T ||F |
(3.19)

σ−
j =

bjcj

|T ||F |
(3.20)

σj =
ajdj + bjcj

|T ||F |
(3.21)

which we shall refer to as the positive incremental average Hamming distance, negative

incremental average Hamming distance and incremental average Hamming distance,

respectively.
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3.5 Information Retrieval Model

In this section we present a model of the quantities aj , bj , cj and dj for j ∈ V that is

motivated by the field information retrieval.

Assume that for each feature j ∈ V , there exists an information retrieval algorithm

IR(j) which simply retrieves all documents from the collection T ∪ F that contain this

feature. In this section we adopt the following interpretations

aj , the number of relevant documents documents retrieved by IR(j)

bj , the number of irrelevant documents retrieved by IR(j)

cj , the number of relevant documents not retrieved by IR(j)

dj , the number of irrelevant documents not retrieved by IR(j)

for feature j ∈ V .

Two fundamental performance metrics in information retrieval that we now present

using the notation above are

P =
aj

aj + bj
(3.22)

which is referred to as the precision and

R =
aj

aj + cj
(3.23)

is referred to as the recall. As seen in (3.10), the precision can be seen to correspond

to the P(u ∈ T | uj = 1), and as seen in (3.5), the recall can be seen to correspond to

the P(uj = 1 | u ∈ T ).

There are many information retrieval metrics that are based on the precision and

recall. One commonly used family of such metrics are the Fα metrics which are defined

as

Fα =
1

α
P + 1−α

R

,

which are the harmonic means of the precision and the recall weighted by parameter α

(see e.g. [60], p.144), with F1/2 being commonly referred to simply as the F measure.
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Use of the harmonic mean of the precision and recall as opposed to their arithmetic

mean has the advantage of not rewarding the strategy of simply retrieving all documents

in order to ensure a perfect recall score (see e.g. p.144, [60]).

3.6 Single Feature Classifier Model

In this section we show that each feature can be used to create two simple classifiers

and present a model of the quantities aj , bj , cj and dj for j ∈ V that is based on these

classifiers.

Consider the classifier fj : T ∪ F 7→ R defined as

fj(u) =

 1 if uj = 1

0 otherwise
(3.24)

where u ∈ T ∪ F and j ∈ V . For each document u ∈ T ∪ F it assigns a score of 1 if u

contains feature j ∈ V and a score of 0 if it does not. This classifier is a special case

of the classifier given in (1.5) and as in that section we shall let λ ∈ Rm be the vector

of the scores generated by fj and will assume that each score represents the classifier’s

estimate that the document is relevant.

In §1.3 we saw that the score vector from a classifier such as fj can be used to define

two complementary Boolean classifiers. Following this approach we define the classifier

g+
j : T ∪ F 7→ B as

g+
j (i) =

 0 if λi ≥ 1

1 otherwise,
(3.25)

and define the classifier g−j : T ∪ F 7→ B as

g−j (i) =

 0 if λi ≤ 1

1 otherwise.
(3.26)

where j ∈ V and i ∈ W . The classifier g+
j assumes that larger scores represent a higher

estimate of relevance and classify each document that contains the feature j ∈ V as

relevant, while the classifier g−j assumes that larger scores represent a higher estimate
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of irrelevance and classify each document that contains the feature j ∈ V as irrelevant.

Now for j ∈ V we can see that

aj = | {i ∈ WT : g+(i) = 1} |

bj = | {i ∈ WF : g+(i) = 1} |

cj = | {i ∈ WT : g+(i) = 0} |

dj = | {i ∈ WF : g+(i) = 0} |

and that

aj = | {i ∈ WT : g−(i) = 0} |

bj = | {i ∈ WF : g−(i) = 0} |

cj = | {i ∈ WT : g−(i) = 1} |

dj = | {i ∈ WF : g−(i) = 1} |.

So, for example we have that aj is the number of relevant documents that g+
j classified

as relevant and it is the number of relevant documents that g−j classified as irrelevant.

Similarly, bj is the number of irrelevant documents that g+
j classified as relevant and it

is the number of irrelevant documents that g−j classified as irrelevant.

Notice that for both classifiers g+
j and g−j , the values aj , bj , cj , and dj correspond to

a contingency table ¢j ∈ ¢ as was discussed in §1.2. There are a few interesting cases

that will play an important role in future discussions. When bj = cj = 0, we say that

the corresponding contingency table ¢j ∈ ¢ contains perfect information and the clas-

sifier g+
j classifies all documents correctly and therefore has perfect performance. When

aj = dj = 0, we also say that the corresponding contingency table ¢j ∈ ¢ contains

perfect information and the classifier g−j classifies all documents correctly and therefore

has perfect performance. When cj = dj = 0, the feature is present in every document

regardless of whether its relevant or irrelevant and we say that the corresponding con-

tingency table ¢j ∈ ¢ contains no information. When aj = bj = 0, the feature is absent

from every document regardless of whether its relevant or irrelevant and we say again
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that the corresponding contingency table ¢j ∈ ¢ contains no information. Although

not a degenerate case like the two no information cases just mentioned, in the case when

aj/(aj + cj) = bj/(bj + dj), i.e. when the feature j is present in the same proportion

of relevant and irrelevant documents, the corresponding contingency table ¢j ∈ ¢ can

also be considered to contain no information.

While the classifiers given in (1.11) and (1.10) each define a different Boolean classi-

fier for each unique threshold τ and therefore actually correspond to a family of Boolean

classifiers for a given j ∈ V , the classifiers g+
j and g−j defined in (3.25) and (3.26) effec-

tively have the threshold τ fixed at 1 and hence each only defines a single classifier. As

a result, the ROC curves for g+
j and g−j only consist of only one point other than (0, 0)

and (1, 1).

Considering the classifier g+
j , we see that other than the points (0, 0) and (1, 1), the

ROC curve consists of the single point with TPR given as

| {i ∈ WT : g+(i) = 1} |
|T |

=
aj

aj + cj

and the FPR given as

| {i ∈ WF : g+(i) = 1} |
|T |

=
bj

bj + dj
.

Therefore, the ROC curve for the classifier g+
j for j ∈ V , is a piecewise linear curve

constructed from the points

{
(0, 0) ,

(
b

b + d
,

a

a + c

)
, (1, 1)

}
(3.27)

as shown in Figure 3.1 and Figure 3.2.

The AUC for these curves simply consists of the sum areas of the regions labeled,

1, 2 and 3, which is given as

AUC+ =
1
2

(
b

b + d

)(
a

a + c

)
+

(
1 − b

b + d

)(
a

a + c

)
+

1
2

(
1 − b

b + d

)(
1 − a

a + c

)
,
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Figure 3.1: A Boolean ROC Curve for g+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

a

a
+

c

b

b + d

1
2

3
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which simplifies to

AUC+ =
ab + 2ad + cd

2(a + c)(b + d)
. (3.28)

Proceeding similarly for the classifier g−j we see that other than the points (0, 0) and

(1, 1), the ROC consists of the single point with TPR given as

| {i ∈ WT : g−(i) = 1} |
|T |

=
cj

aj + cj

and FPR given as
| {i ∈ WF : g−(i) = 1} |

|T |
=

dj

bj + dj
.

Therefore, in the Boolean case, the ROC curve for the classifier g−j for j ∈ V , is a

piecewise linear curve constructed from the points

{
(0, 0) ,

(
a

a + c
,

b

b + d

)
, (1, 1)

}
(3.29)

as shown in Figure 3.3 and Figure 3.4.

Notice that the point ( a
a+c ,

b
b+d) in (3.4) is the reflection over the line TPR = FPR

of the point ( b
b+d , a

a+c) in (3.1) and that the point ( a
a+c ,

b
b+d) in (3.3) is the reflection

over the line TPR = FPR of the point ( b
b+d , a

a+c) in (3.2). The AUC for these curves

simply consists of the sum areas of the regions labeled, 1, 2 and 3, which is given as

AUC− =
1
2

(
a

a + c

) (
b

b + d

)
+

(
1 − a

a + c

)(
b

b + d

)
+

1
2

(
1 − a

a + c

)(
1 − b

b + d

)
,

which simplifies to

AUC− =
ab + 2bc + cd

2(a + c)(b + d)
. (3.30)

In view of (3.28) and (3.30) we now state the following result.

Proposition 3.1. If j ∈ V , λ is the vector of scores generated by classifier f defined in

(3.24) and λT and λF are randomly selected scores from λ[WT ] and λ[WF ] respectively,
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then corresponding to the Boolean classifier g+
j defined in (3.25) we have

P(λT > λF ) =
U+

|T ||F |
= AUC+ =

ab + 2ad + cd

2|T ||F |

and corresponding to the Boolean classifier g−j defined in (3.26) we have

P(λF > λT ) =
U−

|T ||F |
= AUC− =

ab + 2bc + cd

2|T ||F |
.

Proof . Follows from (3.28) and (3.30) and the relationships listed in Table 1.1. Rather

than using (3.28) and (3.30), this can also be shown by noting that the set λ[WT ]

contains a 1s and c 0s, and the set λ[WF ] contains b 1s and d 0s. Therefore, ad is the

number of pairs in T × F with the score for the relevant document exceeding that of

the irrelevant document and ab + cd is the number of pairs in T × F with equal scores

which yields

U+ = ad +
1
2

(ab + cd) .

Following a similar approach we get

U− = bc +
1
2

(ab + cd)

and the result follows by using the relationships listed in Table 1.1. ¥

3.7 Positive and Negative Features

In §1.1 we informally defined a positive feature as a feature whose presence in a doc-

ument is evidence that the document is relevant, and defined a negative feature as a

feature whose presence in a document is evidence that the document is irrelevant.

In terms of the probabilistic model discussed in §3.2, we shall call a Boolean feature

j ∈ V positive separating or simply positive if

aj

|T |
>

bj

|F |
(3.31)
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and will call a feature negative separating or simply negative if

aj

|T |
<

bj

|F |
. (3.32)

In terms of the separation model discussed in §3.4 we shall call a Boolean feature

j ∈ V positive if
ajdj

|T |
>

bjcj

|F |
(3.33)

and will call the feature negative if

ajdj

|T |
<

bjcj

|F |
. (3.34)

In terms of the single feature classifier model discussed in §3.6, we shall call a

Boolean feature j ∈ V positive if, as shown in Figure 3.5,

AUC+ > AUC− (3.35)

or equivalently if

AUC+ >
1
2

and will call the feature negative if, as shown in Figure 3.6,

AUC− > AUC+ (3.36)

or equivalently if

AUC− >
1
2

where AUC+ is the AUC for the classifier g+ given in (3.25) and AUC− is the AUC for

the classifier g− given in (3.26).

The following result shows that these definitions coincide.

Proposition 3.2. The characterizations of positive and negative Boolean features in

terms of the probabilistic, separation and single feature classifier models are all equiva-

lent.
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Proof . Noting that for j ∈ V , (3.31) can be written as

aj

|T |
>

bj

|F |
⇔ aj

|T |
− bj

|F |
> 0,

(3.33) can be written as

ajdj

|T ||F |
>

bjcj

|T ||F |
⇔ ajdj − bjcj

|T ||F |
> 0 ⇔ aj

|T |
− bj

|F |
> 0,

(3.35) can be written as

AUC+ − AUC− > 0 ⇔ ab + 2ad + cd

2|T ||F |
− ab + 2bc + cd

2|T ||F |
> 0

⇔ 2ad − 2bd

2|T |F |
> 0

⇔ aj

|T |
− bj

|F |
> 0

and that similar statements hold for (3.32), (3.34) and (3.36) shows the claim. ¥

Corollary 3.1. Consider a feature j ∈ V . If

aj

|T |
− bj

|F |
> 0

then j is a positive feature and if

aj

|T |
− bj

|F |
< 0

then j is a negative feature.

Given features i, j ∈ V , Corollary 3.1 motivates us to consider feature i to be “more

positive” than feature j when

ai

|T |
− bi

|F |
>

aj

|T |
− bj

|F |
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and “more negative” than feature j when

ai

|T |
− bi

|F |
<

aj

|T |
− bj

|F |
.

Clearly, when considering only positive features, the most positive features will be the

best at separating T and F . Likewise, when considering only negative features, the

most negative features will be the best at separating T and F .

In view of our objective of identifying features that separate T and F , and the

relevant document centric strategy discussed in §1.1, we will be interested in feature

ranking functions that give a high rank to features that are very positive and give a low

rank to features that are very negative. Such feature ranking functions can informally

be thought of as acting like one-sided statistical tests and we shall refer to them as

one-sided feature ranking functions.

However, since the amount of separation provided by a feature is independent of

whether the feature is positive or negative, we shall also be interested in feature ranking

functions that give a high rank to features that are either very positive or very negative.

Such feature ranking functions can informally be thought of as acting like two-sided

statistical tests and we shall refer to them as two-sided feature ranking functions.

While some feature ranking functions are two-sided by construction, Corollary 3.1

suggests that some one-sided feature ranking functions that are dependent on

a

|T |
− b

|F |

can be transformed to be two-sided by application of an appropriate function, such as

the absolute value or the square, that maps the range of the function from R to R+. In

our studies of feature ranking functions we extend this idea to a larger set of functions.

If µ ∈ M such that

a

|T |
>

b

|F |
⇒ µ(a, b) > 0 and

a

|T |
<

b

|F |
⇒ µ(a, b) < 0, (3.37)

that is, if a feature ranking function is positive when a
|T | > b

|F | and negative when
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a
|T | < b

|F | , then we shall use both the feature ranking function and its absolute value.

3.8 Ranking Functions

In this section we shall consider thirty two Boolean feature ranking functions. Since

the set C contains multiple, potentially conflicting criteria, it is not a priori obvious

how to identify a single µ ∈ M that will perform well. While the collection of functions

we study is not intended to be exhaustive, in order to hopefully increase the chance

of finding a function that does actually perform well, we have chosen functions from

a variety of fields including information retrieval, information theory, logical analysis

of data, machine learning, probability theory, ROC curves, statistics and text catego-

rization. One restriction we did impose on the functions we study is, that with the

exception of one function that uses of the factorial and one that uses the logarithm, we

only consider algebraic functions of a, b, c and d.

If µi, µj ∈ M and µi = f(µj) for some monotonic function f , then clearly

ω(V,K, µi-RANKING, ·) = ω(V,K, µj-RANKING, ·).

That is, if two feature ranking functions only differ in a monotonic transformation,

then the sequence returned by µi-RANKING and µj-RANKING are identical. When

we identify such relationships between feature ranking functions we will consider one of

the functions to be superfluous and will not consider it in the sequel. We will see that

eight of the original thirty two functions are superfluous.

Some feature ranking functions we study only take on non-negative values, while

others take on both positive and negative values. In the later case we will study the

function and its absolute value. We will study the absolute value of eight of the original

functions, which restores the total number of functions that will be considered in the

sequel to thirty two.

To simplify the presentation, we drop the subscripts on aj , bj , cj , dj , in the remainder

of this section, however, the resulting a, b, c, d will still be considered to be associated

with a single feature j ∈ V .
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µ0. The function, µ0 simply returns a random number sampled from the continuous

uniform distribution U(0,1). It is included as a baseline for comparison with other

functions.

µ1. The functions, µ̂1, µ1, µ2 and µ3, either directly correspond to, or are motivated

by the term weighting functions F12, F2, F3 and F4 that were introduced in [68]. The

function F1 is defined as

F1(a, b, c, d) =
a

a+c
a+b

a+b+c+d

=
a
|T |
a+b

|T |+|F |
=

|T | + |F |
|T |

a

a + b
(3.38)

and quoting from [68] “represents the ratio of the proportion of relevant documents in

which t occurs to the proportion of the entire collection in which it occurs”. Since for a

given topic,
(
|T |+ |F |

)
/|T | is constant and therefore monotonically transforms a/a+ b,

rather than using F1 directly we shall use

µ1(a, b, c, d) = µ1(a, b) =
a

a + b
(3.39)

µ1(x, y) =
|T |x

|T |x + |F |y
(3.40)

since per (3.10) it has the theoretically desirable interpretation of being equal to the

P(u ∈ T | uj = 1). It is also the precision as discussed in (3.22).

µ̂1. The function µ̂1 is the term weighting function F2. It is defined as

µ̂1(a, b, c, d) = µ̂1(a, b) =
a

a+c
b

b+d

=
a
|T |
b
|F |

=
|F |
|T |

a

b
(3.41)

µ̂1(x, y) =
x

y
. (3.42)

Quoting from [68], it “represents the ratio of the proportion of relevant documents to

that of non-relevant documents”. As discussed in §3.2, it can also be seen to be the

ratio of the TPR to the FPR, as given in (3.5) and (3.6) which is the positive likelihood

ratio as given in (3.7).

2It should be noted that µ1 is not the F1 function that is the harmonic mean of the precision and
the recall, from information retrieval. This function, appears later in this chapter as µ16.
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µ2. The function µ2 is the term weighting function F3. It is defined as

µ2(a, b, c, d) =
a
c

a+b
c+d

=
a (c + d)
c (a + b)

(3.43)

µ2(a, b) =
a(|T | + |F | − (a + b))

(|T | − a)(a + b)
(3.44)

µ2(x, y) =
x
(
|T |(1 − x) + |F |(1 − y)

)
(1 − x)(|T |x + |F |y)

. (3.45)

Quoting from [68], it “represents the ratio between the ’relevance odds’ for the feature

(i.e. the ratio between the number of relevant documents in which it does occur and

the number in which it does not occur) and the ’collection odds’ for t”.

µ3. The function µ3 is the term weighting function F4. It is defined as

µ3(a, b, c, d) =
a
c
b
d

=
ad

bc
(3.46)

µ3(a, b) =
a(|F | − b)
b(|T | − a)

(3.47)

µ3(a, b) =
x(1 − y)
y(1 − x)

. (3.48)

Quoting from [68], it “represents the ratio between the feature’s relevance odds and its

’non-relevance’ odds”. As discussed in §3.2, it can also be seen to be the odds ratio, as

given in (3.14).

µ̂4. The functions µ̂4, µ4, µ5 and µ6 are defined as the difference between the numerator

and denominator of the functions F1, F2, F3 and F4. The function µ̂4, is the difference

between F1’s numerator and denominator. It is defined as

µ̂4(a, b, c, d) =
a

|T |
− a + b

|T | + |F |
=

ad − bc

|T | (|T | + |F |)
(3.49)

µ̂4(a, b) =
a|F | − b|T |

|T | (|T | + |F |)
(3.50)

µ̂4(x, y) =
|F | (x − y)
|T | + |F |

(3.51)

Since µ̂4 satisfies (3.37), we shall study both µ̂4 and |µ̂4|.

µ4. The function µ4 is the difference between F2’s numerator and denominator. It is
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defined as

µ4(a, b, c, d) =
a

|T |
− b

|F |
=

ad − bc

|T ||F |
(3.52)

µ4(a, b) =
a|F | − b|T |

|T ||F |
(3.53)

µ4(x, y) = x − y (3.54)

It can be written as the difference between the TPR and the FPR or as the difference

between positive incremental average Hamming distance and negative incremental av-

erage Hamming distance, and motivated by the later expression, we shall refer to it as

the Hamming difference3. Since µ4 satisfies (3.37), we shall study both µ4 and |µ4|.

µ̃4. The function is defined as

µ̃4(a, b, c, d) =
ab + 2ad + cd

2|T ||F |
(3.55)

µ̃4(a, b) =
a|F | − b|T | + |T ||F |

2|T ||F |
(3.56)

µ̃4(x, y) =
x − y + 1

2
. (3.57)

It is the AUC+ for the Boolean classifier g+
j defined in (3.25). The reader is referred to

§3.6 for the definition of this classifier and the derivation of this function.

µ ′
4. The function µ ′

4 is defined as

µ ′
4(a, b, c, d) = max{AUC+, AUC−}

= max
{

ab + 2ad + cd

2|T ||F |
,
ab + 2bc + cd

2|T ||F |

}
(3.58)

µ ′
4(a, b) = max

{
a|F | − b|T | + |T ||F |

2|T ||F |
,
−a|F | + b|T | + |T ||F |

2|T ||F |

}
(3.59)

µ ′
4(x, y) = max

{
x − y + 1

2
,
−x + y + 1|

2

}
(3.60)

where AUC+ and AUC− are the AUC for the Boolean classifiers g+
j and g−j defined in

3Note that there does not seem to be a commonly agreed upon name for this function, e.g. in [40],
after taking the absolute value it is referred to as the balanced accuracy, while in [42], it is referred to
as percent difference.
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(3.25) and (3.26) respectively. It is the two-sided variant of µ̂4 since by the definition of

the max it clearly gives high ranks to features that are very positive or very negative.

µ5. Function µ5 is the difference between F3’s numerator and denominator. It is

defined as

µ5(a, b, c, d) =
a

c
− a + b

c + d
=

ad − bc

c(c + d)
(3.61)

µ5(a, b) =
a|F | − b|T |

(|T | − a)(|T | + |F | − (a + b))
(3.62)

µ5(x, y) =
|F |(x − y)

(1 − x)
(
|T |(1 − x) + |F |(1 − y)

) . (3.63)

Since µ5 satisfies (3.37), we shall study both µ5 and |µ5|.

µ6. Function µ6 is the difference between F4’s numerator and denominator. It is

defined as

µ6(a, b, c, d) =
a

c
− b

d
=

ad − bc

cd
(3.64)

µ6(a, b) =
a|F | − b|T |

(|T | − a)(|F | − b))
(3.65)

µ6(x, y) =
x − y

(1 − x)(1 − y)
(3.66)

Since µ6 satisfies (3.37), we shall study both µ6 and |µ6|.

µ7. Function µ7 is defined as

µ7(a, b, c, d) =
a + d

|T | + |F |
(3.67)

µ7(a, b) =
a − b

|T | + |F |
+

|F |
|T | + |F |

(3.68)

µ7(x, y) =
|T |x + |F |(1 − y)

|T | + |F |
= %x + (1 − %)(1 − y) (3.69)

it is the accuracy of the classifier g+ defined in (3.25). Since µ̂7 satisfies (3.37), we shall

study both µ̂7 and |µ̂7|.

µ̂7. Function µ̂7 is defined as

µ̂7(a, b, c, d) =
(a + d) − (b + c)

|T | + |F |
(3.70)
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µ̂7(a, b) =
2a − 2b

|T | + |F |
− |T | − |F |

|T | + |F |
(3.71)

µ̂7(x, y) =
|T |(2x − 1) − |F |(2y − 1)

|T | + |F |
. (3.72)

The function µ̂7 is the difference between the number of documents that are correctly

classified by the classifier g+ defined in (3.25) and the number of documents which were

correctly classified by the classifier g− defined in (3.26), normalized by the total number

of documents. Since µ̂7 satisfies (3.37), we shall study both µ̂7 and |µ̂7|.

µ8. The function µ8 is defined as

µ8(a, b, c, d) =
ad + bc

(a + c)(b + d)
=

ad + bc

|T ||F |
(3.73)

µ8(a, b) =
a|F | + b|T | − 2ab

|T |F |
(3.74)

µ8(x, y) = x + y − 2xy (3.75)

and is the incremental average Hamming distance.

µ9. For a document u ∈ V , let X to be the indicator random variable defined by

X =

 1 if uj = 1,

0 otherwise

and Y be the indicator random variable defined by

Y =

 1 if u ∈ T,

0 otherwise.

The function µ9 is the Pearson Product Moment Correlation coefficient or simply the

correlation coefficient and is defined as

µ9(a, b, c, d) =
ad − bc√

(a + b)(c + d)(a + c)(b + d)
(3.76)

µ9(a, b) =
a|F | − b|T |√

(a + b)(|T | + |F | − (a + b))|T ||F |
(3.77)

µ9(x, y) =

√
(|T ||F |)(x − y)√

(x|T | + y|F |)(|T | + |F | − (x|T | + y|F |))
. (3.78)
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It measures the degree to which variables X and Y have a linear relationship. The

reader is referred to the Appendix A for its derivation. Since µ9 satisfies (3.37), we

shall study both µ9 and |µ9|.

µ̂9. The function µ̂9 is defined as

µ̂9(a, b, c, d) =
(|T | + |F |) (ad − bc)2

|T ||F |(a + b)(c + d)
(3.79)

µ̂9(a, b) =
(|T | + |F |)(a|F | − b|T |)2

|T ||F |(a + b)(|T | + |F | − (a + b))
. (3.80)

It is the χ2 statistic for the variables X and Y as defined in the description of µ9. It is

a statistical measure of the association of X and Y .

µ10. The function µ10, is defined as

µ10(a, b, c, d) =
(|T | + |F |)(|ad − bc| − 1

2(|T | + |F |))2

|T ||F |(a + b)(c + d)
(3.81)

µ10(a, b) =
(|T | + |F |)(|T | + |F | − 2|a|F | − b|T ||)2

4(a + b)(|T | + |F | − (a + b))|T ||F |
(3.82)

It is Yate’s continuity correction of the χ2 statistic for the variables X and Y as defined

in the description of µ9 and the χ2 statistic (see e.g. [29]).

µ11. The function µ11 is the Gini split criterion. It is defined as

µ11(a, b, c, d) =
2
m

[
ab

a + b
+

cd

c + d

]
(3.83)

µ11(a, b) =
2

(|T | + |F |)
(|T ||F |a + |T ||F |b − b2|T | − a2|F |)

(a + b)(|T | + |F | − (a + b))
(3.84)

µ11(x, y) =
2|T ||F |

(|T | + |F |)
|T |x(1 − x) + |F |y(1 − y)

(x|T | + y|F |)(|T | + |F | − (x|T | + y|F |))
(3.85)

It is based on the Gini impurity and has been used as a split criterion in tree-based

classification methods (see e.g. [14]). It is one of only two feature ranking functions

(the other being µ21) that we study for which smaller values are better. The reader is

referred to Appendix B for its derivation.
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µ12. The function µ12 is the information gain and it is defined as follows

µ12(a, b, c, d) = H(a, b, c, d)−
(

a + b

|T | + |F |
Hθ(a, b, c, d) +

c + d

|T | + |F |
Hθ(a, b, c, d)

)
(3.86)

where

H(a, b, c, d) = −
(

|T |
|T | + |F |

)
log2

(
|T |

|T | + |F |

)
−

(
|F |

|T | + |F |

)
log2

(
|F |

|T | + |F |

)
,

Hθ(a, b, c, d) = −
(

a

a + b

)
log2

(
a

a + b

)
−

(
b

a + b

)
log2

(
b

a + b

)
,

and

Hθ(a, b, c, d) = −
(

c

c + d

)
log2

(
c

c + d

)
−

(
d

c + d

)
log2

(
d

c + d

)
.

It is an entropy-based measure and has been used as a split criterion in tree-based

classification methods (see e.g. [14]). The reader is referred to Appendix C for its

derivation.

µ13. The function µ13 is defined as

µ13(a, b, c, d) =
ad

|T ||F |
(3.87)

µ13(a, b) =
a(|F | − b)
|T ||F |

(3.88)

µ13(x, y) = x(1 − y) (3.89)

and is the positive incremental average Hamming distance.

µ14. The function µ14 is defined as

µ14(a, b, c, d) =
bc

|T ||F |
(3.90)

µ14(a, b) =
b(|T | − a)
|T ||F |

(3.91)

µ14(x, y) = y(1 − x) (3.92)

and is the negative incremental Hamming distance.
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µ15. The function µ15 is defined as

µ15(a, b, c, d) =
4a

4a + b + 3c
(3.93)

µ15(a, b) =
4a

a + b + 3|T |
(3.94)

µ15(x, y) =
4|T |x

x|T | + y|F | + 3|T |
. (3.95)

As discussed in §3.5, it is the information retrieval metric Fα with parameter α = 1
4 .

µ16. The function µ16 is defined as

µ16(a, b, c, d) =
2a

2a + b + c
(3.96)

µ16(a, b) =
2a

a + b + |T |
(3.97)

µ16(x, y) =
2|T |x

|T |x + |F |y + |T |
(3.98)

As discussed in §3.5, it is the information retrieval metric Fα with parameter α = 1
2 .

µ17. The function µ17 is defined as

µ17(a, b, c, d) =
4a

4a + 3b + c
(3.99)

µ17(a, b) =
4a

3a + 3b + |T |
(3.100)

µ17(x, y) =
4|T |x

3|T |x + 3|F |y + |T |
(3.101)

As discussed in §3.5, it is the information retrieval metric Fα with parameter α = 3
4 .

µ18. The function µ18 is defined as

µ18(a, b, c, d) = µ18(a, b) =
a

|T |
(3.102)

µ18(x, y) = x (3.103)

and is the true positive rate as discussed in §1.3, the P(uj = 1 | u ∈ T ) as given in

(3.5), and the recall as given in (3.23).
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µ̂18. The function µ̂18 is defined as

µ̂18(a, b, c, d) = µ̂18(a, b) = a (3.104)

µ̂18(x, y) = |T |x (3.105)

and is simply the number of relevant documents containing the given feature.

µ19. The function µ19 is defined as

µ19(a, b, c, d) = µ19(a, b) =
b

|F |
(3.106)

µ19(x, y) = y (3.107)

and is the false positive rate as discussed in §1.3 and the P(uj = 1 | u ∈ F ) as given in

(3.6).

µ̂19. The function µ̂19 is defined as

µ̂19(a, b, c, d) = µ̂19(a, b) = b (3.108)

µ̂19(a, b, c, d) = |F |y (3.109)

and is simply the number of irrelevant documents containing the given feature.

µ20. The function, µ20 is another measure of association and is referred to as Yule’s

Q and is defined as

µ20(a, b, c, d) =
ad − bc

ad + bc
(3.110)

µ20(a, b) =
a|F | − b|T |

a|F | + b|T | − 2ab
(3.111)

µ20(x, y) =
x − y

x + y − 2xy
. (3.112)

Note that it is the ratio of µ4 to µ8. Since µ20 satisfies (3.37), we shall study both µ20

and |µ20|.

µ21. The function, µ21 is a new measure that we introduce and refer to as the rareness.
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It is defined as

µ21(a, b, c, d) =
|T |! |F |!
a! b! c! d!

(
a + b

|T | + |F |

)a+b (
c + d

|T | + |F |

)c+d

(3.113)

µ21(a, b) =
|T |! |F |!

a! b! (|T | − a)! (|F | − b)!

(
a + b

|T | + |F |

)a+b (
|T | + |F | − (a + b)

|T | + |F |

)m−(a+b)

.

(3.114)

Based on the assumption that relevant and irrelevant documents are “generated” by

two independent stochastic processes, it provides a measure of how unlikely a feature is

to occur. The reader is referred to Appendix D for its derivation. It is one of only two

feature ranking functions (the other being µ11) that we study for which smaller values

are better.

µ22. The function, µ22 is defined as

µ22(a, b, c, d) =
a
|T | −

b
|F |

a
|T | + b

|F |
=

ad − bc

ad + bc + 2ab
(3.115)

µ22(a, b) =
a|F | − b|T |
a|F | + b|T |

(3.116)

µ22(x, y) =
x − y

x + y
. (3.117)

Since µ22 satisfies (3.37), we shall study both µ22 and |µ22|.

µ23. The function, µ23 is Fisher’s linear discriminant. It is defined as

µ23(a, b, c, d) =

(
a
|T | −

b
|F |

)2

a
|T |

(
1 − a

|T |
)

+ b
|F |

(
1 − b

|F |
) (3.118)

µ23(x, y) =
(x − y)2

x(1 − x) + y(1 − y)
. (3.119)

The reader is referred to Appendix E for its derivation.

µ24. The function, is similar to Fisher’s linear discriminant. It is defined as

µ24(a, b, c, d) =
a
|T | −

b
|F |√

a
|T |

(
1 − a

|T |
)

+
√

b
|F |

(
1 − b

|F |
) (3.120)

µ24(x, y) =
x − y√

x(1 − x) +
√

y(1 − y)
. (3.121)
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The reader is referred to Appendix E for its derivation. Since µ24 satisfies (3.37), we

shall study both µ24 and |µ24|.

3.9 Properties of and Relationships Between Ranking Functions

In this section we state some observations about the feature ranking functions intro-

duced in §3.8.

The following lemma shows that the functions µ1, µ̂1, µ2 and µ3 all involve a ratio

of ad to bc or similarly a ratio of a|F | to b|T |.

Proposition 3.3. Each of the functions |F |
|T |µ1, µ̂1, µ2 and µ3 can be written in the

form
ad + γ

bc + γ

where γ is a function of a,b,c and d and in the form

a|F | − ab + δ

b|T | − ab + δ

where δ is a function of a and b.

Proof . Let γ1 be the function for |F |
|T |µ1, γ̂1 be the function for µ̂1, and γ2 and γ3 be

the functions for µ2 and µ3 respectively. By elementary calculations it can be shown

that

γ1 = a2 + ab + ac

γ̂1 = ab

γ2 = ac

γ3 = 0.

Let δ1 be the function for |F |
|T |µ1, δ̂1 be the function for µ̂1, and δ2 and δ3 be the functions
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for µ2 and µ3 respectively. By elementary calculations it can be shown that

δ1 = a|T | + ab

δ̂1 = ab

δ2 = a|T | − a2

δ3 = 0.

¥

The following lemma shows that the functions µ4, µ̂4, µ̃4, µ ′
4, µ5 and µ6 all include

the difference of ad and bc or similarly the difference of a|F | and b|T |.

Proposition 3.4. Each of the functions µ4, µ̂4, µ̃4, µ ′
4, µ5 and µ6 can be written in

the form
ad − bc

γ

where γ is a function of a,b,c and d and in the form

a|F | − b|T |
δ

where δ is a function of a and b.

Proof . Let γ̂4 be the function γ for µ̂4, γ̃4 be the function γ for µ̃4, and γi be the

function γ for µi for i ∈ {4, 5, 6}. By elementary calculations it can be shown that

γ̂4 = (a + c)(a + b + c + d) = m|T |

γ4 = (a + c)(b + d) = |T ||F |

γ̃4 = 2(a + c)(b + d) = 2|T ||F |

γ5 = c(c + d)

γ6 = cd

Let δ̂4 be the function δ for µ̂4, δ̃4 be the function δ for µ̃4, and δi be the function δ for
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µi for i ∈ {4, 5, 6}. By elementary calculations it can be shown that

δ̂4 = m|T |

δ4 = |T ||F |

δ̃4 = 2|T ||F |

δ5 = (|T | − a)2 + (|T | − a)(|F | − b)

δ6 = (|T | − a)(|F | − b)

¥

The following result shows that all but two of the feature ranking functions intro-

duced in §3.8 can be written in a common form.

Proposition 3.5. Each of the feature ranking functions introduced in §3.8, with the

exception of the information gain, µ12 and the rareness, µ21, can be written as, or only

differs in a monotonic transformation from, a quadratic rational function of a and b.

The fact that feature ranking functions can be written as the ratio of two quadratic

degree two polynomials in a and b will be used extensively in the sequel.

We now state several lemmas that show which feature ranking functions are related

by a monotonic transformation.

Proposition 3.6. The functions µ1 and µ̂1 differ only in a monotonic transformation.

Proof . The factor |F |
|T | in µ̂1 is a constant and can therefore be eliminated, leaving

µ1(a, b) =
a

a + b
and µ̂1(a, b) ∼ a

b
. (3.122)

Next we recall (see [7]) that for any w, x, y, z ∈ R ≥ 0, with not both w and x being

zero, and not both y and z being zero

w

x
≤ y

z
⇔ w

w + x
≤ y

y + z
. (3.123)
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That µ1 and µ̂1 only differ in a monotonic transformation now follows from (3.123) and

the fact that it is not possible to have both a = 0 and b = 0 since we assume that each

feature appears in at least one document. ¥

Proposition 3.7. The functions µ̂4, µ4 and µ̃4 differ only in a monotonic transforma-

tion.

Proof . Since m and |F | are constants we have

µ̂4(a, b) =
|F |
m

µ4(a, b)

and by writing µ̃4 as

µ̃4(a, b) =
a|F | − b|T |

2|T ||F |
+

|T |F |
2|T ||F |

we see that

µ̃4(a, b) =
1
2
µ4(a, b) +

1
2
. (3.124)

¥

Proposition 3.8. The functions |µ4| and µ ′
4 only differ in a monotonic transformation.

Proof . Recall the following relationship between the maximum and the absolute value

(see [26]). For any x, y ∈ R

max(x, y) =
x + y + |x − y|

2
. (3.125)

Using (3.125), we can write µ ′
4 as

max(AUC+, AUC−) = max
(

ab + 2ad + cd

2|T ||F |
,
ab + 2bc + cd

2|T ||F |

)
=

1
2

(
ab + 2ad + cd

2|T ||F |
+

ab + 2bc + cd

2|T ||F |

+
∣∣∣∣ab + 2ad + cd

2|T ||F |
− ab + 2bc + cd

2|T ||F |

∣∣∣∣)
=

1
2

(
2(a + c)(b + d)

2|T ||F |
+

∣∣∣∣2(ad − bc)
2|T ||F |

∣∣∣∣)
=

1
2

+
1
2
|µ4| . (3.126)
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¥

In view of (3.124) and (3.126), we can interpret 1
2 |µ4|, as shown in Figure 3.7, to be

the probability above or below random guessing (i.e. above or below 1
2), that the score

the classifier g+
j defined in (3.25) or the classifier g−j defined (3.26) for j ∈ V , assigns

to a randomly selected relevant document will be larger than the score it assigns to a

randomly selected irrelevant document.
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Figure 3.7: Boolean ROC Curve and µ4

Proposition 3.9. The functions µ7 and µ̂7 differ only in a monotonic transformation.

Proof . Follows from the fact that after eliminating the last terms in (3.68) and (3.71),

which are constants, µ7 and µ̂7 only differ by a factor of 2. ¥

Proposition 3.10. The functions µ9 and µ̂9 differ only in a monotonic transformation.

Proof . Follows from the fact that µ̂9 = mµ2
9. ¥

Proposition 3.11. The functions µ18 and µ̂18 differ only in a monotonic transforma-

tion.
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Proof . Follows from the fact that µ̂18 = µ18|T |. ¥

Proposition 3.12. The functions µ19 and µ̂19 differ only in a monotonic transforma-

tion.

Proof . Follows from the fact that µ̂19 = µ19|F |. ¥

As a result of Proposition 3.6, Proposition 3.7, Proposition 3.8, Proposition 3.9,

Proposition 3.10, Proposition 3.11, and Proposition 3.12 we will not refer to µ̂1, µ̂4, µ̃4,

µ ′
4, µ̂7, µ̂9, µ̂18, or µ̂19 in the sequel.

We now state several results related to the feature ranking function µ4.

Proposition 3.13. AUC+ − AUC− = U+

|T ||F | −
U−

|T ||F | = µ4.

Proof . Follows from elementary calculations used in the proof of Proposition 3.2. ¥

Proposition 3.14. max(AUC+,AUC−) = AUC+ if and only if a
|T | −

b
|F | = µ4 > 0.

Proof . Assume that max(AUC+, AUC−) = AUC+. This is equivalent to

AUC+ − AUC− > 0,

from which we have

ab + 2ad + cd

2|T ||F |
− ab + 2bc + cd

2|T ||F |
> 0 ⇔ 2(ad − bc)

2|T ||F
> 0 ⇔ µ4 > 0.

Now assume that a
|T | −

b
|F | > 0. Then we have

a

|T |
− b

|F |
=

∣∣∣∣ a

|T |
− b

|F |

∣∣∣∣ = |µ4| > 0.

Therefore, it is also the case that 1
2 + 1

2 |µ4| > 0 and the result follows from Proposi-

tion 3.8. ¥

Corollary 3.2. Consider a feature j ∈ V . If

max(AUC+,AUC−) = AUC+
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then j is a positive feature and if

max(AUC+,AUC−) = AUC−

then j is a negative feature.

This result shows the equivalence of two characterizations of negative and positive

features, namely that based on µ4 given by Corollary 3.1 and that given by µ ′
4 .

3.10 Boolean Feature Ranking Results

In this section, we use the methodology presented in §2 to evaluate the relative per-

formance of µ-RANKING for each of the feature ranking functions discussed in §3.8.

The detailed results are provided in Appendix H. Table 3.2 summarizes the results by

listing seven orderings of the feature ranking functions based on the non-discounted

measures in C∗. Based on the data in this table we make the following observations

• The top of the lex-max-min and avg multicriteria rankings included many of the

classic feature ranking functions such as the correlation coefficient, the entropy,

Fα, Fisher’s linear discriminant and its variants, and the Gini criteria.

• The new rareness measure µ21, also appeared near the top of the lex-max-min

and avg multicriteria rankings.

• The feature ranking functions appearing at the very top of the lex multicriteria

ranking, in which ν̂ was the most important criteria, included functions that

generally did not perform well with respect to σ̂ and θ̂.

• The performance of feature ranking functions and their absolute values was not

substantially different.

• The feature ranking functions ranked highest in terms of σ̂, notably µ8, the in-

cremental average Hamming distance, were among the worst performing features

ranking functions as measured by ν̂.
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We reiterate that our goal is not to determine which feature ranking functions

exhibit the best or worst performance with µ-RANKING, but rather to identify the

characteristics of feature ranking functions that exhibit good as well as bad performance

when used in this algorithm and we will pursue this goal further in §4.
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Lex-Max-Min Lex Avg ν̂ θ̂ σ̂ ϕ̄

µ23 µ2 µ23 µ1 0.00 µ8 0.99 µ8 0.54 µ2 0.90
|µ4| µ3 µ12 µ2 0.00 |µ4| 0.98 µ13 0.49 µ7 0.90
µ15 µ20 |µ24| µ3 0.00 µ13 0.98 |µ4| 0.46 |µ7| 0.90
|µ24| |µ20| µ21 µ20 0.00 µ23 0.98 µ5 0.45 µ3 0.89
µ4 µ1 µ24 |µ20| 0.00 µ4 0.97 µ6 0.45 µ9 0.89
µ21 µ22 µ10 µ22 0.00 µ12 0.97 µ4 0.43 |µ9| 0.89
µ24 |µ22| |µ4| |µ22| 0.00 µ15 0.97 µ23 0.43 µ10 0.89
µ12 µ12 µ9 µ7 0.01 µ16 0.97 |µ5| 0.41 µ11 0.89
µ16 µ10 |µ9| |µ7| 0.01 µ21 0.97 |µ6| 0.41 µ12 0.89
µ10 µ9 µ11 µ9 0.01 µ24 0.97 µ15 0.41 µ17 0.89
µ9 |µ9| µ16 |µ9| 0.01 |µ24| 0.97 µ18 0.41 µ20 0.89
|µ9| µ11 µ17 µ10 0.01 µ5 0.96 µ14 0.40 |µ20| 0.89
µ11 µ17 µ2 µ11 0.01 µ6 0.96 |µ24| 0.40 µ16 0.88
µ17 µ7 µ7 µ12 0.01 µ9 0.96 µ21 0.38 µ21 0.88
µ2 |µ7| |µ7| µ17 0.01 |µ9| 0.96 µ24 0.38 µ23 0.88
µ7 µ21 µ15 µ21 0.02 µ10 0.96 µ12 0.37 |µ24| 0.88
|µ7| µ24 µ4 µ24 0.02 µ11 0.96 µ16 0.37 µ1 0.87
µ3 |µ24| µ3 |µ24| 0.03 µ14 0.96 µ19 0.36 µ22 0.87
µ20 µ0 µ20 µ0 0.04 µ17 0.96 µ10 0.35 |µ22| 0.87
|µ20| µ23 |µ20| µ16 0.05 µ2 0.95 µ9 0.34 µ24 0.87
µ1 µ16 µ1 µ23 0.05 µ7 0.95 |µ9| 0.34 |µ4| 0.86
µ22 |µ4| µ22 |µ4| 0.12 |µ7| 0.95 µ11 0.34 µ15 0.86
|µ22| µ15 |µ22| µ15 0.13 µ3 0.92 µ17 0.33 µ4 0.84
µ13 µ4 µ13 µ4 0.14 µ20 0.92 µ2 0.29 µ13 0.79
µ5 µ14 µ8 µ14 0.32 |µ20| 0.92 µ7 0.29 µ8 0.78
µ6 µ13 µ5 µ13 0.37 |µ5| 0.89 |µ7| 0.29 µ5 0.77
|µ5| µ5 µ6 µ5 0.38 |µ6| 0.89 µ3 0.24 µ6 0.77
|µ6| µ6 |µ5| µ6 0.38 µ18 0.88 µ20 0.24 |µ5| 0.74
µ8 |µ5| |µ6| |µ5| 0.41 µ1 0.84 |µ20| 0.24 |µ6| 0.73
µ14 |µ6| µ14 |µ6| 0.41 µ19 0.84 µ1 0.20 µ18 0.68
µ18 µ8 µ18 µ8 0.50 µ22 0.84 µ22 0.20 µ14 0.35
µ19 µ18 µ19 µ18 0.59 |µ22| 0.84 |µ22| 0.20 µ19 0.27
µ0 µ19 µ0 µ19 0.59 µ0 0.15 µ0 0.01 µ0 0.06

Table 3.2: µ-RANKING Not Discounted Stopwords Included
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Chapter 4

Separation and Noise

Notable in our discussion of the µ-RANKING experimental results in §3.10 was the

fact that the feature ranking function, namely µ8, whose selected feature sets achieved

the best separation, was also among those that contained the most noise. In this

chapter we will use this characteristic of µ8 to study the relationship between separation

and noise and the impact it has on feature selection algorithms. These studies will

involve consideration of several assertions which we support by reviewing the results of

experiments that employ the feature set evaluation methodology from §2. In addition, so

that we can consider specific feature sets, we will also offer anecdotal evidence associated

with the fuel topic to support various assertions. When considering such evidence, it

should be mentioned that the associated results will be computed using all documents

associated with this topic and will not employ cross fold validation.

4.1 Noise Separates

In this section we assert that the reason that the feature sets selected by µ8 achieve

the best separation is because they include stopwords. To support this assertion, we

will use the discounted variants of the measures in C∗ to assess the performance of

µ-RANKING for each feature ranking function. These results are listed in detail in

Appendix I, and are summarized in Table 4.1.

For the training folds, we note that σ̂ = 0.54 and σK = 12.43 drop to σ̂ ′ = 0.29 and

σ ′
K = 5.71 which represent declines of 46% and 54% respectively. Further, the value

of σ ′
K is actually below the corresponding mean and median of this measure which are

6.25 and 6.62 respectively. These observations support the assertion that the reason

that the feature sets selected by µ8 achieve the best separation is because they include
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Lex-Max-Min Lex Avg ν̂ θ̂ ′ σ̂ ′ ϕ̄

µ21 µ2 µ12 µ1 0.00 |µ4| 0.98 |µ4| 0.41 µ2 0.90
µ24 µ3 µ23 µ2 0.00 µ23 0.98 µ23 0.40 µ7 0.90
|µ24| µ20 |µ24| µ3 0.00 µ4 0.97 |µ24| 0.39 |µ7| 0.90
µ12 |µ20| µ21 µ20 0.00 µ8 0.97 µ4 0.37 µ3 0.89
µ23 µ1 µ24 |µ20| 0.00 µ12 0.97 µ12 0.37 µ9 0.89
µ16 µ22 µ9 µ22 0.00 µ21 0.97 µ21 0.37 |µ9| 0.89
µ10 |µ22| |µ9| |µ22| 0.00 µ24 0.97 µ24 0.37 µ10 0.89
µ9 µ12 µ10 µ7 0.01 |µ24| 0.97 µ15 0.35 µ11 0.89
µ11 µ9 µ11 |µ7| 0.01 µ9 0.96 µ16 0.35 µ12 0.89
|µ9| |µ9| µ17 µ9 0.01 |µ9| 0.96 µ9 0.34 µ17 0.89
µ17 µ10 µ2 |µ9| 0.01 µ10 0.96 |µ9| 0.34 µ20 0.89
µ2 µ11 µ16 µ10 0.01 µ11 0.96 µ10 0.34 |µ20| 0.89
µ7 µ17 |µ4| µ11 0.01 µ13 0.96 µ11 0.34 µ16 0.88
|µ7| µ7 µ7 µ12 0.01 µ15 0.96 µ17 0.33 µ21 0.88
|µ4| |µ7| |µ7| µ17 0.01 µ16 0.96 µ13 0.31 µ23 0.88
µ15 µ21 µ3 µ21 0.02 µ17 0.96 µ5 0.30 µ24 0.88
µ4 µ24 µ20 µ24 0.02 µ2 0.95 µ6 0.30 |µ24| 0.88
µ3 |µ24| |µ20| |µ24| 0.03 µ7 0.95 µ2 0.29 µ1 0.87
µ20 µ0 µ4 µ0 0.04 |µ7| 0.95 µ7 0.29 |µ4| 0.87
|µ20| µ23 µ15 µ16 0.05 µ5 0.93 |µ7| 0.29 µ15 0.87
|µ22| µ16 µ1 µ23 0.05 µ6 0.93 µ8 0.29 µ22 0.87
µ1 |µ4| µ22 |µ4| 0.12 µ14 0.93 |µ5| 0.28 |µ22| 0.87
µ22 µ15 |µ22| µ15 0.13 µ3 0.92 |µ6| 0.28 µ4 0.86
µ13 µ4 µ13 µ4 0.14 µ20 0.92 µ14 0.26 µ13 0.85
µ5 µ14 µ5 µ14 0.32 |µ20| 0.92 µ3 0.24 µ5 0.82
µ6 µ13 µ6 µ13 0.37 |µ5| 0.87 µ20 0.24 µ6 0.82
|µ5| µ5 µ8 µ5 0.38 |µ6| 0.87 |µ20| 0.24 µ8 0.81
|µ6| µ6 |µ5| µ6 0.38 µ1 0.84 µ1 0.20 |µ5| 0.75
µ8 |µ5| |µ6| |µ5| 0.41 µ22 0.84 µ18 0.20 |µ6| 0.74
µ14 |µ6| µ14 |µ6| 0.41 |µ22| 0.84 µ22 0.20 µ18 0.71
µ18 µ8 µ18 µ8 0.50 µ18 0.82 |µ22| 0.20 µ14 0.29
µ19 µ18 µ19 µ18 0.59 µ19 0.75 µ19 0.15 µ19 0.17
µ0 µ19 µ0 µ19 0.59 µ0 0.12 µ0 0.01 µ0 0.05

Table 4.1: µ-RANKING Discounted Stopwords Included
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stopwords.

In Proposition 2.5 we saw that the average Hamming distance of the set of selected

features, S can be computed as the sum of the incremental average Hamming distance,

µ8, of each feature in S. Therefore, we can compute, the proportion of the average

Hamming distance of S attributed to the set of selected non-stopwords, V \ J ∩ S,

and the proportion of average Hamming distance of S attributed to the set of selected

stopwords, J ∩ S. We can also compute the maximum possible average Hamming

distance that can be achieved by any set of K features simply by ranking V by the

incremental average Hamming distance and summing its value for the K top ranked

features. Similarly, we can compute the maximum possible average Hamming distance

that can be achieved by any set of K features that does not include any stopwords.

As an example of the impact of stopwords on separation we now consider the fuel

topic. The set of features corresponding to ω(V,K, µ8-RANKING, ↑) is listed in Ta-

ble 4.2 and Figure 4.1 shows a plot of σ and σ ′ as a function of k. Using this information

we see that the maximum possible value of σK when stopwords are included is 12.24,

5.85 or 47.76% of which was contributed by non-stopwords, and 6.40 or 52.24% of which

was contributed by stopwords. These observations also support the assertion that the

reason that the feature sets selected by µ8 achieve the best separation is because they

include stopwords. It also indicates that separation and noise are competing criteria.

4.2 The Impact of Noise

Having seen the impact of the selection of noise on the separation achieved by ω(V \

J,K, µ8-RANKING, ↑), we are now interested in understanding how noise affects the

separation achieved by the other Boolean feature ranking functions we studied. To do

this we again consider the summary of the results of the experiments from §3.10 which

can be found in Table 3.2. Using these results we created Figure 4.21 which shows that

σK increases with νK for all of the Boolean feature ranking functions that we studied.

1Each integer i in the plots of evaluation measures versus νK corresponds to the feature ranking
function µi. Also, the position of some labels in this these plots and the plot shown in Figure 4.8 have
been slightly adjusted to avoid overlap of labels for feature ranking functions with similar performance.
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Rank Feature Stopword µ8

1 fuel No 0.83
2 oil No 0.65
3 prices No 0.59
4 mln No 0.56
5 petroleum No 0.53
6 from Yes 0.51
7 will Yes 0.51
8 with Yes 0.50
9 its Yes 0.49
10 dlrs No 0.49
11 pct No 0.49
12 one Yes 0.48
13 was Yes 0.47
14 corp No 0.46
15 were Yes 0.45
16 two Yes 0.44
17 are Yes 0.44
18 has Yes 0.43
19 new Yes 0.43
20 that Yes 0.42
21 company No 0.42
22 for Yes 0.42
23 year No 0.42
24 would Yes 0.41
25 barrel No 0.40
σ
(
ω(V,K, µ8-RANKING, ↑)

)
12.24

Table 4.2: ω(V,K, µ8-RANKING, ↑) for the Fuel Topic
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Figure 4.1: ω(V,K, µ8-RANKING, ↑) for the Fuel Topic

When only using σK and νK as evaluation criteria, the functions with relatively low

values of νK and relatively large values of σK are clearly the most desirable and the

plot depicts what might informally be considered an efficient frontier which identifies

the best function for a given value of νK . While Figure 4.2 plotted the mean of σK

for all topics, Figure H.3 shows the values of σK and νK for all topics and therefore

depicts the differences in variation between the feature ranking functions. As would be

expected, the results showed a similar relationship between σ̂ and ν̂.

Continuing our discussion of the results shown in Table 3.2, we see that σK is not the

only one of our measures from C that increases with νK . In fact, as seen in Figure 4.3

and Figure 4.4 that similar statements can be made about θK and ξ.2 In addition, as

can be seen in Figure 4.5 and Figure 4.6, ∆(σK) and ∆(θK) also increase with νK . As

one might expect, similar statements can be made about θ̂, ∆(σ̂), and ∆(θ̂). Similar

2As an interesting aside, note that the robustness of µ9 and µ24 was significantly better than that
of their absolute value variants |µ9| and |µ24|. The detailed robustness data for µ-RANKING is in
Table L.1.
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to the conclusion we reached about separation and noise at the end of §4.1, we now

conclude that noise and size (as measured by θ), and noise and robustness are also

competing criteria.

Since the selection of noise features, and specifically stopwords, does in fact result

in an increase in σ̂, ∆(σ̂), σK , and ∆(σK), as well as in θ̂, ∆(θ̂), θK , and ∆(θK), as

well as in ξ, it seems reasonable to ask why we we would like to identify the feature

selection algorithms that yield feature sets that do not include them. The answer to this

question is two fold. First, the semantic content of a feature set, as measured by ϕK ,

decreases with the number of stopwords it includes, as can be seen in Figure 4.7, with

a similar statement holding for ϕ̄. Second, if stopwords were the only noise features

present in textual data sets, we could simply delete them prior to feature selection and

they would not be a concern. As we shall see in the next section, however, the presence

of stopwords in a selected feature set indicates that the feature selection algorithm has

likely selected other non-stopword noise terms with relatively low semantic content.

4.3 Non-Stopword Noise

A natural question to ask at this point is whether there is a flaw in our use of stopwords

as a measure of the noise in a feature set, and whether or not we could eliminate the

problem of noise selection by simply a priori deleting all stopwords from the feature set.

We claim that simply deleting all stopwords from the feature set will not adequately

address the issue of noise selection by feature selection algorithms. To support this

claim we removed the stopwords from V and then reran the µ-RANKING experiments

that were discussed in §3.10. The detailed results of these experiments are listed in

Appendix J and they are summarized in Table 4.3.

Comparison of these results with those in Table H.1 shows that for µ8, not unex-

pectedly, there was a decrease in both σ̂ and σK . However, given the substantial 46%

difference between σ̂ and σ̂ ′, and the 54% difference between σK and σ ′
K shown in

Table H.1 and Table I.1, what was arguably more interesting was the fact that the 11%

decrease in σ̂ from 0.54 to 0.48 and the 15.37% decrease in σK from 12.43 to 10.52,
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resulting from the removal of stopwords, was so small by comparison.

We now offer another assertion as a possible explanation for these results. We

claim that stopwords are not the only noise features, and when µ8 is applied to V

it selects these other noise features, and when it is applied to V \ J it selects even

more of them. Further, the relatively small decreases in σ̂ and σK can be explained

by the fact that these other noise features have relatively large average incremental

Hamming distance values that are comparable to the values associated with the stop-

words in ω(V,K, µ8-RANKING, ↑). To support this claim, we now consider the set of

features corresponding to ω(V \ J,K, µ8-RANKING, ↑) which are listed in Table 4.4.

Using this information we see that the maximum possible value of σK when stop-

words are excluded is 10.78. However, nine of the features (listed in italic font) in

ω(V \ J,K, µ8-RANKING, ↑), namely mln, dlrs, pct, corp, bank, dlr, billion, due, and

debt, are also in ω(V \J,K, a+ b-RANKING, ↑). While it seems clear that the frequent

occurrence of these features is due to the fact that the Reuters-21578 collection con-

tains articles from a financial publication, we submit that per our discussion in §1.1

they are noise features, and the fact that they account for 4.33 or 40% of 10.78, serves

to support our assertion that, the strategy of deleting stopwords from the feature set

prior to performing feature selection will not eliminate the issue of noise selection.

4.4 Monotone Feature Principle

In an attempt to identify the characteristics that distinguish noise features from non-

noise features we now turn our attention to ω(V,K, x-RANKING, ↑), the set of most

frequently occurring features in relevant documents, and ω(V,K, y-RANKING, ↑), the

set of most frequently occurring features in irrelevant documents. We shall let

fK = ω(V,K, x-RANKING, ↑) ∪ ω(V,K, y-RANKING, ↑)

and

ΩK = ω(V,K, x-RANKING, ↑) ∩ ω(V,K, y-RANKING, ↑).

3The notation r(·) will be used in this chapter to indicate the rank of a feature in a sequence.
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Lex-Max-Min Lex Avg ν̂ θ̂ σ̂ ϕ̄

|µ4| µ8 µ8 µ0 0.00 |µ4| 0.98 µ8 0.48 µ2 0.90
µ8 |µ4| |µ4| µ1 0.00 µ8 0.98 |µ4| 0.44 µ7 0.90
µ23 µ23 µ23 µ2 0.00 µ13 0.98 |µ5| 0.43 |µ7| 0.90
µ13 µ13 |µ24| µ3 0.00 µ23 0.98 |µ6| 0.43 µ3 0.89
µ5 µ5 µ13 µ4 0.00 µ4 0.97 µ13 0.42 µ9 0.89
µ6 µ6 µ4 |µ4| 0.00 µ5 0.97 µ18 0.42 |µ9| 0.89
|µ24| |µ24| µ12 µ5 0.00 µ6 0.97 µ23 0.42 µ10 0.89
µ4 µ4 µ15 |µ5| 0.00 µ12 0.97 µ5 0.41 µ11 0.89
|µ5| µ15 µ21 µ6 0.00 µ15 0.97 µ6 0.41 µ12 0.89
|µ6| µ21 µ24 |µ6| 0.00 µ21 0.97 µ4 0.40 µ17 0.89
µ15 µ24 µ5 µ7 0.00 µ24 0.97 |µ24| 0.40 µ20 0.89
µ18 µ12 µ6 |µ7| 0.00 |µ24| 0.97 µ15 0.39 |µ20| 0.89
µ21 µ16 µ16 µ8 0.00 µ9 0.96 µ21 0.38 |µ24| 0.89
µ12 µ10 µ10 µ9 0.00 |µ9| 0.96 µ24 0.38 µ16 0.88
µ24 µ9 |µ5| |µ9| 0.00 µ10 0.96 µ12 0.37 µ21 0.88
µ16 |µ9| |µ6| µ10 0.00 µ11 0.96 µ16 0.37 µ23 0.88
µ10 µ11 µ9 µ11 0.00 µ16 0.96 µ10 0.35 µ24 0.88
µ9 µ17 |µ9| µ12 0.00 µ17 0.96 µ9 0.34 µ1 0.87
|µ9| µ14 µ11 µ13 0.00 µ2 0.95 |µ9| 0.34 |µ4| 0.87
µ11 µ2 µ17 µ14 0.00 µ7 0.95 µ11 0.34 µ15 0.87
µ17 µ7 µ18 µ15 0.00 |µ7| 0.95 µ14 0.34 µ22 0.87
µ2 |µ7| µ2 µ16 0.00 µ14 0.95 µ19 0.34 |µ22| 0.87
µ7 |µ5| µ7 µ17 0.00 |µ5| 0.94 µ17 0.33 µ4 0.86
|µ7| |µ6| |µ7| µ18 0.00 |µ6| 0.94 µ2 0.29 µ13 0.85
µ3 µ18 µ3 µ19 0.00 µ18 0.94 µ7 0.29 µ5 0.84
µ20 µ19 µ20 µ20 0.00 µ3 0.92 |µ7| 0.29 µ6 0.84
|µ20| µ3 |µ20| |µ20| 0.00 µ19 0.92 µ3 0.24 µ8 0.84
µ1 µ20 µ1 µ21 0.00 µ20 0.92 µ20 0.24 |µ5| 0.82
µ22 |µ20| µ22 µ22 0.00 |µ20| 0.92 |µ20| 0.24 |µ6| 0.82
|µ22| µ1 |µ22| |µ22| 0.00 µ1 0.84 µ1 0.20 µ18 0.80
µ19 µ22 µ14 µ23 0.00 µ22 0.84 µ22 0.20 µ19 0.33
µ14 |µ22| µ19 µ24 0.00 |µ22| 0.84 |µ22| 0.20 µ14 0.32
µ0 µ0 µ0 |µ24| 0.00 µ0 0.13 µ0 0.01 µ0 0.06

Table 4.3: µ-RANKING Not Discounted Stopwords Excluded
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Rank Feature µ8 r(a + b)3

1 fuel 0.83 892
2 oil 0.65 267
3 prices 0.59 232
4 mln 0.56 5
5 petroleum 0.53 766
6 dlrs 0.51 7
7 pct 0.51 9
8 corp 0.5 16
9 company 0.49 37
10 year 0.49 26
11 barrel 0.49 1407
12 bank 0.48 13
13 dlr 0.47 25
14 effective 0.46 516
15 billion 0.45 21
16 crude 0.44 1156
17 gasoline 0.44 1988
18 today 0.43 128
19 due 0.43 15
20 products 0.42 583
21 cts 0.42 890
22 price 0.42 69
23 debt 0.42 19
24 april 0.41 40
25 international 0.4 43
σ
(
ω(V \ J,K, µ8-RANKING, ↑)

)
10.78

Table 4.4: ω(V \ J,K, µ8-RANKING, ↑) for the Fuel Topic
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The features in fK are shown in Table 4.5 and we begin by noticing that

fK ∩ ω(V,K, a + b-RANKING, ↑) =

{reuter, said, the, and, for, pct, dlrs, from, its, will, was, corp,

mln,with, bank, due, has, that, are, debt, issue, billion, inc, which, dlr}

and per §1.1, these 25 features are noise features. However, what seems potentially

more interesting is that 12 of these features (those shown in italic font in Table 4.5) are

also in

ΩK = {reuter, said, the, and, for, pct, dlrs, from, its, will, was, corp}.

If we continue this investigation, we see that a total of 30 (the additional 18 features

are shown in normal font in Table 4.5) of the 38 features in fK appear in ω(V, 2K, a +

b-RANKING, ↑), and so are noise features, and 23 of these features also appear in Ω2K .

These observations motivate the following characterization of noise features.

Observation 4.1. If j ∈ V and j ∈ ΩK for some small K ∈ Z+, then j is a noise

feature.

Returning to Table 4.5 we also notice that each of the 12 features in ΩK and each

of the 23 features in Ω2K have relatively small values of |x − y|. These observations

motivate the following characterization of noise features.

Observation 4.2. If j ∈ V , j ∈ fK , and |xj − yj | < ε for some small ε > 0, then j is

a noise feature.

In §1 we mentioned that feature frequency in textual data tends to follow a power

law. Let P be a set of real numbers, and (pk) be the corresponding sequence in decreas-

ing order. If (pk) = α(γ + k)−β , then we say that P follows the Zipf-Mandelbrot law

with parameters α, β and γ, which we will denote as P ∼ ZM(α, β, γ). When γ = 0,

we have (pk) = αk−β, and we say that P follows Zipf’s law, which we will denote as

P ∼ Z(α, β). Classically, it has been stated with β = 1. If, for a set of real numbers
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Feature r(x) x r(y) y r(x − y) x − y r(µ8) µ8

reuter 1 0.97 1 0.99 12396 -0.03 2132 0.04
said 2 0.97 3 0.97 12291 0.00 1203 0.06
the 3 0.93 2 0.98 12424 -0.04 539 0.09
fuel 4 0.83 3132 0.00 1 0.83 1 0.83
and 5 0.77 4 0.88 12482 -0.11 60 0.30
for 6 0.77 6 0.65 89 0.12 22 0.42
oil 7 0.67 349 0.04 2 0.63 2 0.65
pct 8 0.67 9 0.53 59 0.14 11 0.49
prices 9 0.60 271 0.05 3 0.55 3 0.59
dlrs 10 0.53 7 0.59 12447 -0.06 10 0.49
from 11 0.53 12 0.40 63 0.14 6 0.51
petroleum 12 0.53 1155 0.01 4 0.52 5 0.53
its 13 0.47 11 0.41 673 0.06 9 0.49
one 14 0.47 27 0.23 20 0.23 12 0.48
will 15 0.47 8 0.59 12486 -0.12 7 0.51
was 16 0.43 21 0.29 55 0.15 13 0.47
barrel 17 0.40 2993 0.00 5 0.40 25 0.40
corp 18 0.40 16 0.32 208 0.08 14 0.46
two 19 0.40 47 0.19 23 0.21 16 0.44
were 20 0.40 28 0.23 35 0.17 15 0.45
company 21 0.37 37 0.21 50 0.16 21 0.42
crude 22 0.37 1806 0.01 7 0.36 32 0.37
effective 23 0.37 621 0.02 8 0.34 30 0.37
gasoline 24 0.37 12398 0.00 6 0.37 33 0.37
new 25 0.37 31 0.23 60 0.14 19 0.43
mln 26 0.33 5 0.67 12501 -0.33 4 0.56
are 27 0.33 18 0.31 11163 0.03 17 0.44
with 28 0.30 10 0.51 12496 -0.21 8 0.50
has 29 0.30 15 0.33 12414 -0.03 18 0.43
that 30 0.30 17 0.31 12355 -0.01 20 0.42
which 31 0.27 24 0.28 12359 -0.01 27 0.40
dlr 32 0.23 25 0.26 12402 -0.03 29 0.37
billion 33 0.20 22 0.29 12466 -0.09 31 0.37
inc 34 0.17 23 0.28 12485 -0.12 37 0.35
bank 35 0.07 13 0.36 12499 -0.30 28 0.38
debt 36 0.07 19 0.30 12497 -0.24 46 0.33
due 37 0.03 14 0.34 12500 -0.30 38 0.35
issue 38 0.03 20 0.29 12498 -0.25 55 0.30

Table 4.5: fK = ω(V,K, x-RANKING, ↑) ∪ ω(V,K, y-RANKING, ↑)
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P , it is assumed that P ∼ Z(α, β) (pk) = αk−β , the values of the parameters α and β

have historically been identified by fitting a regression line to

log(pk) = log(α) − βk.

Alternatively, fitting to “binned” data or to the CDF has been shown to provide better

results. More sophisticated methods for fitting data to a power law are studied in

[21] and fitting data to the Zipf-Mandelbrot law is considered in [30]. Whether or not

feature frequency in textual data tends to follow Zipf’s law or the Zipf-Mandelbrot law

has been discussed extensively (see e.g. [61]). In the following result we assume Zipf’s

law holds.

Proposition 4.1. Let j ∈ V , with j ∈ fK for some small K ∈ Z+, and assume

that ω(V,K, x-RANKING, ↑) ∼ Z(α, β) and ω(V,K, y-RANKING, ↑) ∼ Z(α, β) where

α > 0 and β > 1. Then, j ∈ ΩK if and only if

|xj − yj | ≤ α

(
Kβ − 1

Kβ

)
.

Proof . We show the “if” part first. Let kx,j and ky,j be the rank of feature j in

ω(V, |V |, x-RANKING, ↑) and ω(V, |V |, y-RANKING, ↑) respectively. Since ω(V,K,

x-RANKING, ↑) ∼ Z(α, β) and ω(V,K, y-RANKING, ↑) ∼ Z(α, β) we have

|xj − yj | =

∣∣∣∣∣ α

kβ
x,j

− α

kβ
y,j

∣∣∣∣∣ .

The assumption that j ∈ fK only tells us that 1 ≤ kx,j ≤ K, or 1 ≤ ky,j ≤ K, or both.

However, because we also assumed that j ∈ ΩK , we know that both 1 ≤ kx,j ≤ K and

1 ≤ ky,j ≤ K. Therefore,

0 ≤

∣∣∣∣∣ α

kβ
x,j

− α

kβ
y,j

∣∣∣∣∣ ≤ α

(
Kβ − 1

Kβ

)

with the lower bound occurring when kx,j = ky,j , and the upper bound occurring when
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kx,j = 1 (or ky,j = 1) and ky,j = K (or kx,j = K). For the “only if” part we are given

|xj − yj | ≤ α

(
Kβ − 1

Kβ

)

and because ω(V,K, x-RANKING, ↑) ∼ Z(α, β) and ω(V,K, y-RANKING, ↑) ∼ Z(α, β),

we have ∣∣∣∣∣ α

kβ
x,j

− α

kβ
y,j

∣∣∣∣∣ ≤ α

(
Kβ − 1

Kβ

)
.

As before, the assumption that j ∈ fK tells us that 1 ≤ kx,j ≤ K, or 1 ≤ ky,j ≤ K, or

both. To prove that j ∈ Ω, we must show that both 1 ≤ kx,j ≤ K and 1 ≤ ky,j ≤ K.

Assuming to the contrary, gives us that 1 ≤ kx,j ≤ K (or 1 ≤ ky,j ≤ K) and ky,j > K

(or kx,j > K). WLOG, consider kx,j = 1 and ky,j = K + 1, so

∣∣∣∣∣ α

kβ
x,j

− α

kβ
y,j

∣∣∣∣∣ = α

(
(K + 1)β − 1

(K + 1)β

)
� α

(
Kβ − 1

Kβ

)
.

¥

Corollary 4.1. Let j ∈ V , assume that ω(V, |V |, x-RANKING, ↑) ∼ Z(α, β) and

ω(V, |V |, y-RANKING, ↑) ∼ Z(α, β) where α > 0 and β > 1, and let |xj − yj | ≤ ε for

some given 0 < ε ≤ α. Then, j ∈ ΩK if and only if K ≥
⌈(

α
α−ε

) 1
β
⌉
.

The result shows that the two characterizations of noise given by Observation 4.1 and

Observation 4.2 are equivalent. It should be mentioned that finding such a connection

is only possible because of the relationship that Zipf’s laws provides between feature

frequencies and the rank of these frequencies when placed in decreasing order.

Notice that if we follow the original formulation of Zipf’s law in which it was assumed

that β = 1, our bound becomes

|xj − yj | ≤ α

(
1 − 1

K

)
.

Also, note that following the notation used in the proof, that if for a given j ∈ V , we
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know the values of kx,j and ky,j , we can improve the bound to be

|xj − yj | ≤ α

(
K̂β − 1

K̂β

)

where K̂ = max{kx,j , ky,j} ≤ K.

One might reasonably question the assumption that both ω(V,K, x-RANKING, ↑)

and ω(V,K, y-RANKING, ↑) follow Zipf’s law with the same parameters (α, β), and

in fact when all documents in |T | and |F | are used for the fuel topic, this does not

seem to be the case. However, when all of the documents in T are used, and when |T |

documents are randomly sampled from F , the assumption does seem to hold.

Now, if features that occur frequently in both relevant documents and irrelevant

documents are noise features, then we must conclude that of the frequently occurring

features, those that are non-noise features must either occur frequently in relevant

documents, or in irrelevant documents, but not both. However, since we consider

features that appear frequently in irrelevant documents to be noise features, we must

instead conclude that those that are non-noise features must only occur frequently

in relevant documents. In fact, we can see that the 8 features (those shown in bold

font), in Table 4.5 which we have not yet concluded are noise features, do in fact

meet this criteria for non-noise features. These features, fuel, oil, prices, petroleum,

barrel, crude, effective,4 and gasoline, are in ω(V,K, x-RANKING, ↑) and are not in

ω(V,K, y-RANKING, ↑). In addition, these features appear in ω(V,K, µ8-RANKING,

↑) with ranks 1, 2, 3, 5, 25, 32, 30, and 33, respectively, and therefore each makes a

relatively large contribution to the separation. Recalling that we refer to those features

with x−y > 0 as positive features and those with x−y < 0 as negative features provides

us with an alternative way to state our observations about non-noise features.

Observation 4.3. (Monotone Feature Principle) Non-noise features in textual

data sets, that provide substantial separation, are highly ranked positive features.

4While the feature “effective” does not have the intuitively obvious association with the “fuel” topic
that the other seven features do, a search of the data set shows that, phrases such as “effective crude
prices” are common.
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Figure 4.8: ω(V,K, x-RANKING, ↑) ∪ ω(V,K, y-RANKING, ↑)

As expected, we see that the features in Table 4.5 that we identified as non-noise

features have relatively large positive values of x−y, while those features with relatively

small values of |x−y| have been previously identified as noise features. Figure 4.8 depicts

this situation with features with relatively large values of x and small values of y being

non-noise features, and those features falling in the region where |x − y| is relatively

small being noise features.

Observation 4.3 states that non-noise features in textual data sets, are features with

a high frequency in relevant documents and a low frequency in irrelevant documents.

It should be mentioned that for a textual data set in which F is class homogeneous

and |T | ≈ |F |, it is revised to read, “Non-noise features in textual data sets, that

provide substantial separation, are either highly ranked positive features, or highly ranked

negative features, but not both.”

While the advantages of identifying variables in two class classification problems on

binary data sets as being monotone have been studied, (see e.g. page 295, [11]), it is
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interesting to note that Observation 4.3 lies in contrast to the situation for many non-

textual data sets (see e.g. [45]) in which machine learning algorithms generate rules

that contain negated variables.

4.5 Characterizing Separation and Noise

In this section, motivated by the experimental results and discussions earlier in this

chapter, we identify the common characteristics of the µ ∈ M which select relatively

few stopwords while achieving relatively high separation. We will use this information to

provide characterizations of separation and noise features which will motivate definitions

of what we shall refer to as separation functions and noise functions. We will make

use of Proposition 3.5, noting that after applying the transformations in (1.2), with the

exception of the non-algebraic µ12 and µ21, all of the µ ∈ M presented in 3.8 can be

written as

µ(x, y) =
ψ(x, y)
η(x, y)

,

where ψ and η are quadratic functions of x and y. In addition, for j ∈ V , we will make

use of the fact that xj = P(uj = 1 | u ∈ T ) and yj = P(uj = 1 | u ∈ F ) and, since xj

is the TPR and yj is the FPR, we will present some of this discussion in terms of the

ROC framework.

4.5.1 Class Separation and Noise

We begin by considering the elementary function x − y which we denoted as µ4. This

function is distinguished by the fact that in the experiments in §3.10 it selected relatively

few stopwords and achieved relatively high separation.

As discussed in §3.7, x − y provides a measure of the separation associated with

a given feature. Following (3.37), it takes on positive values for positive features and

negative values for negative features. For a positive feature, the larger the value of

x−y, the more separation the feature provides and the best separating positive features

correspond to the point argmax x−y = (1, 0) where x−y = 1. Similarly, for a negative

feature, the smaller the value of x−y, the more separation the feature provides and the
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best separating negative features correspond to the point argminx − y = (0, 1) where

x− y = −1. If j ∈ V , notice that argmaxx− y = (1, 0) has the nice interpretation that

P(uj = 1 | u ∈ T ) = 1 and P(uj = 1 | u ∈ F ) = 0 and that argmin x−y = (0, 1) has the

nice interpretation that P(uj = 1 | u ∈ T ) = 0 and P(uj = 1 | u ∈ F ) = 1. Further, in

the ROC framework these points correspond to the case where the Boolean classifiers

g+
j and g−j defined in (3.25) and (3.26) respectively have perfect performance.

While large values of x − y are indicative of separating features, as the following

result shows, small values are indicative of a certain type of noise feature.

Proposition 4.2. Let j ∈ V , then if xj − yj = 0, j is a noise feature.

Proof . Since xj = P(uj = 1 | u ∈ T ) and yj = P(uj = 1 | u ∈ F ), we have that

P(uj = 1 | u ∈ F ) = P(uj = 1 | u ∈ T ). Since,

P(uj = 1) = P(u ∈ T )P(uj = 1 | u ∈ T ) + P(u ∈ F )P(uj = 1 | u ∈ F )

= P(u ∈ T )P(uj = 1 | u ∈ T ) + P(u ∈ F )P(uj = 1 | u ∈ T )

= (P(u ∈ T ) + P(u ∈ F ))(P(uj = 1 | u ∈ T ))

and since P(u ∈ T ) + P(u ∈ F ) = 1, we have P(uj = 1) = P(uj = 1 | u ∈ T ). Since

P(uj = 1 | u ∈ T ) = P(uj = 1 | u ∈ F ), the probability of the feature j appearing

in a document, i.e. P(uj = 1), is independent of the document’s class; which exactly

coincides with j being a noise feature. ¥

Let j ∈ V be a positive feature, when xj −yj = 0 we shall say that j is a class noise

feature and when xj − yj = ε for small ε > 0 we shall say that j is an ε-class noise

feature. These definitions have a geometric interpretation in ROC space. The set of all

ε-class noise features corresponds to the line x−y = ε and the set of class noise features

corresponds to the line x − y = 0. The L2 distance from a point (x, y) to the line of

class noise features is δ = (x − y)/
√

2 = ε/
√

2, (see Figure 4.9a), and because x − y is

proportional to δ, it provides a measure of how close a feature is to being a class noise

feature.

Note that x − y provides a dual measure of class noise and separation. In the



129

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

(x,y)

δ
ε

(a) Measure of Separation and Noise

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

(x,y)

∆

ε
∆ − π 4

(b) Another Measure of Separation and Noise

Figure 4.9: Measures of Separation and Class Noise

context of separation we refer to a feature j ∈ V with xj − yj = τ for large τ > 0 as

a τ -separating feature and in the specific case when xj − yj = 0 we will refer to it as

a zero-separating feature. Similar comments can be made when j ∈ V is a negative

feature. In summary, a feature that does not separate the document classes is a class

noise feature.

It is interesting to note that x/y which we denoted as µ̂1 similarly provides a measure

of the separation associated with a given feature. Let (x, y) be a point in ROC space

and the let the angle ∆ be as shown in Figure 4.9b. Positive features are those with

1 < x/y < ∞, π/4 < ∆ ≤ π/2, and 0 < ∆−π/4 ≤ π/4, and negative features are those

with 0 ≤ x/y < 1, 0 ≤ ∆ < π/4 and −π/4 ≤ ∆ − π/4 < 0.

For positive features, the larger the value of x/y, ∆, and ∆ − π/4, the more sepa-

ration the feature provides and the best separating features correspond to the point

argmaxx/y = (1, 0) where x/y = ∞, i.e. the point argmax tan(∆ − π/4) = π/2

where tan(∆ − π/4) = 1. Similarly, for negative features, the smaller the value of

x/y, ∆, ∆ − π/4, the more separation the feature provides and the best separating

negative features correspond to the point argmax x/y = (0, 1) where x/y = 0, i.e. the

point argmax tan(∆ − π/4) = 0 where tan(∆ − π/4) = −1. If j ∈ V , notice that
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argmaxxj/yj = (1, 0) and argminxj/yj = (0, 1) correspond to the points where the

likelihood ratio takes its maximum and minimum values respectively.

The following result provides a characterization of noise features in terms of x/y

and ∆.

Proposition 4.3. If j ∈ V , then if xj/yj = 1 or equivalently if ∆ = π/4, j is a noise

feature.

Proof . Follows immediately from the fact that xj/yj = 1 and ∆ = π/4 if and only if

xj − yj = 0, which by Proposition 4.2 implies that j is a noise feature. ¥

Our discussion of x/y and ∆ suggests consideration of the function

tan(∆ − π

4
) =

tan(∆) − 1
tan(∆) + 1

, (4.1)

which since tan(∆) = x/y is a function of x/y. Since (4.1) is increasing in ∆ and x/y,

and | tan(0 − π
4 )| = 1, | tan(π

4 − π
4 )| = 0, and | tan(π

2 − π
4 )| = 1, the function

∣∣tan(∆ − π

4
)
∣∣ =

∣∣∣∣tan(∆) − 1
tan(∆) + 1

∣∣∣∣ =
∣∣∣∣x/y − 1
x/y + 1

∣∣∣∣
provides a measure of the distance from a point (x, y) to the line of class noise x−y = 0.

It is interesting to note that (4.1) can be written as a

∣∣∣∣x/y − 1
x/y + 1

∣∣∣∣ =
∣∣∣∣x − y

x + y

∣∣∣∣ ,

which is |µ22| and offers another example of a Boolean feature ranking function which

selected relatively few stopwords, achieved relatively high separation, and is an increas-

ing function of x − y. Other examples of such functions include µ9, µ23, and µ24.

Whether viewed as a measure of separation or as a measure of noise, the value of

x−y is obviously the same for all points on the x−y = τ . Therefore, each such line can

be viewed as an isocurve that defines a family of features, each having the same value of

the measure x−y. In §4.5.2 and §4.5.3 we consider den(µ9) and den(µ23) which provide

two additional definitions of noise which suggest that for any such feature family, some
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of the features should be considered more desirable than others.

4.5.2 Collection Noise

The feature ranking functions µ9 and µ11 selected relatively few stopwords and achieved

relatively high separation in experiments in §3.10. Both of these functions have denom-

inators that are proportional to

(
|T |x + |F |y

)(
|T | + |F | − |T |x − |F |y

)
. (4.2)

Letting

% =
|T |

|T | + |F |
,

we have

(1 − %) =
|F |

|T | + |F |
,

and we see that (4.2) is proportional to

η1(x, y) =
(
%x + (1 − %)y

)(
%(1 − x) + (1 − %)(1 − y)

)
. (4.3)

We begin our study of η1 by noting that

∇η1(x, y) =

 %(1 − 2%x − 2y + 2%y)

(1 − %)(1 − 2%x − 2y + 2%y)

T

and that the system ∇η1(x, y) = 0 has only one linearly independent equation, i.e.

1 − 2%x − 2y + 2%y = 0. (4.4)

The solutions of (4.4) correspond to the points on the line

%x + (1 − %)y =
1
2

(4.5)
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which is where η1 takes its maximum value. The first factor in (4.3) is 0 at (0, 0) and

the second factor in (4.3) is 0 at (1, 1) since 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ % ≤ 1. Since

η1(x, y) is clearly non-negative over the range of x and y, we therefore have that

argmin η1(x, y) =
{
(0, 0), (1, 1)

}
for all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (see Figure 4.10).
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Figure 4.10: η1 with % = 0.25

The function η1(x, y) decreases monotonically as the L2 distance from the line in

(4.5) increases. This fact suggests the following result.

Proposition 4.4. If µ ∈ M, µ(x, y) = ψ(x, y)/η1(x, y), and ψ(x, y) = ψ(x ′, y ′), then

|%x + (1 − %)y − 1
2
| ≥ |%x ′ + (1 − %)y ′ − 1

2
| ⇒ µ(x, y) ≥ µ(x ′, y ′). (4.6)

Proof . Since the function η1 decreases monotonically as the L2 distance from the line

in (4.5) increases, when ψ is constant, µ increases monotonically as the L2 distance
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from the line in (4.5) increases, i.e.

|%x + (1 − %)y − 1
2 |√

%2 + (1 − %)2
≥

|%x ′ + (1 − %)y ′ − 1
2 |√

%2 + (1 − %)2
⇒ µ(x, y) ≥ µ(x ′, y ′),

and the result follows immediately. ¥

If µ(x, y) = (x−y)/η1(x, y), and points (x, y) and (x ′, y ′) appear on the line x−y =

τ , the following two examples show how the presence of η1 affects the relative ranking

of these points. First, consider the case of a balanced collection when |T | = |F |. In this

case, % = 1/2, (1 − %) = 1/2, η1(x, y) is proportional to

η̂1(x, y) = (x + y)(2 − x − y), (4.7)

and the line in (4.5) becomes x + y = 1, the distance from a point (x, y) to the line is

δ = |x + y − 1|/
√

2, and

|x + y − 1| ≥ |x ′ + y ′ − 1| ⇒ µ(x, y) ≥ µ(x ′, y ′).

The “pure” solution (τ, 0) and the point (1, 1 − τ) will be ranked the highest, and

the point, ((1 + τ)/2, (1 − τ)/2) which is on the line, will be ranked the lowest (see

Figure 4.11a).

Next, consider the case of a very skewed collection where, lim%→0 η1(x, y) is

η̃1(x, y) = y(1 − y), (4.8)

lim
%→0

%x + (1 − %)y − 1
2

= y − 1
2

so we have the line y = 1
2 , the distance from a point (x, y) to the line is |y − 1/2|, and

∣∣∣y − 1
2

∣∣∣ ≥ ∣∣∣y ′ − 1
2

∣∣∣ ⇒ µ(x, y) ≥ µ(x ′, y ′).

The pure solution (τ, 0) will be the highest ranked point and the lowest ranked point

will be (1, 1 − τ) (see Figure 4.11b).
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Figure 4.11: Distance to Collection Noise Line

The following result justifies the behavior of µ ∈ M as in Proposition 4.4.

Proposition 4.5. Let j ∈ V , then if (xj , yj) is on the line %xj + (1 − %)yj = 1
2 , j is a

noise feature.

Proof . Since

%xj+(1−%)yj = P(u ∈ T ) P(uj = 1 | u ∈ T )+P(u ∈ F ) P(uj = 1 | u ∈ F ) = P(uj = 1),

P(uj = 1) = 1
2 and so P(uj = 0) = 1

2 . Therefore, the feature is equally likely to be

present as it is to be absent from any document, regardless of whether it is relevant or

irrelevant, which exactly coincides with j being a noise feature. ¥

We will refer to the line in (4.5) as the line of collection noise and will refer to

features that appear on this line as collection noise features. It is interesting to note

that, as was alluded to in §1.1, for a highly skewed collection, collection noise is only

measured using the proportion of irrelevant documents in which a feature appears.
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4.5.3 Strong Collection Noise

The feature ranking functions µ23 and µ24 selected relatively few stopwords and achieved

relatively high separation in experiments in §3.10. The denominators of these functions

are

den(µ23(x, y)) = x(1 − x) + y(1 − y) (4.9)

and

den(µ24(x, y)) =
√

x(1 − x) +
√

y(1 − y).

In ROC space, these functions only differ in a monotonic transformation and therefore

in this section, we will only consider den(µ23(x, y)) which we will denote as η2(x, y).

We begin by noting that ∇η2(x, y) = [1 − 2x, 1 − 2y] and that ∇η2(x, y) = 0 has

unique solution (1
2 , 1

2). Next, since

∇2η2(x, y) =

 −2 0

0 −2


and [

x y

]  −2 0

0 −2

 x

y

 = −2x2 − 2y2 < 0

for all x,y, ∇2η2(x, y) is negative definite. Therefore, η2(x, y) is strictly concave and

(1
2 , 1

2) is its global maximum. It can also be seen that

argmin η2(x, y) =
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
for all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (see Figure 4.12a).

The function η2(x, y) decreases monotonically as the L2-distance from point (1
2 , 1

2)

increases. This fact suggests the following result.

Proposition 4.6. If µ ∈ M, µ(x, y) = ψ(x, y)/η2(x, y), and ψ(x, y) = ψ(x ′, y ′), then

√(
x − 1

2
)2 +

(
y − 1

2
)2 ≥

√(
x ′ − 1

2
)2 +

(
y ′ − 1

2
)2 ⇒ µ(x, y) ≥ µ(x ′, y ′). (4.10)
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Proof . Since the function η2 decreases monotonically as the L2 distance from the point

(1
2 , 1

2) increases, when ψ is constant, µ increases monotonically as the L2 distance from

the point (1
2 , 1

2) increases. ¥

Suppose, µ(x, y) = (x − y)/η2(x, y), the points (x, y), (x ′, y ′) appear on the line

x− y = τ , and (x, y) is further from the point (1
2 , 1

2), than (x ′, y ′). In this case, η2 will

result in (x, y) being ranked higher than (x ′, y ′). Of the points on the line x − y = τ

the “pure” solution (τ, 0) and the point (1, 1 − τ) will be ranked the highest and the

point closest to the point (1
2 , 1

2) the will be ranked the lowest. (see Figure 4.12b). Note

that Proposition 4.6 could have been stated in terms of the L1 distance, i.e.

∣∣∣x − 1
2

∣∣∣ +
∣∣∣y − 1

2

∣∣∣ ≥ ∣∣∣x ′ − 1
2

∣∣∣ +
∣∣∣y ′ − 1

2

∣∣∣ ⇒ µ(x, y) ≥ µ(x ′, y ′).

The following result justifies the behavior of µ ∈ M as in Proposition 4.6.

Proposition 4.7. Let j ∈ V , then if xj = 1
2 and yj = 1

2 , j is a noise feature.

Proof . Since xj = P(uj = 1 | u ∈ T ) and yj = P(uj = 1 | u ∈ F ), we have

P(uj = 1 | u ∈ T ) = P(uj = 0 | u ∈ T ) = P(uj = 1 | u ∈ F ) = P(uj = 0 | u ∈ F ) =
1
2
,

so that there is equal probability that the feature will appear in any document in the

collection, which exactly coincides with j being a noise feature. ¥

We shall call a feature as in the result a strong collection noise feature.

4.5.4 Collection Noise and Strong Collection Noise

In this short section we discuss the relationship between collection noise and strong

collection noise. Let us consider a feature family defined by the line x − y = τ and a

point (x̂, ŷ) that corresponds to a specific feature and is on that line. Let δ denote the

distance from the line, x− y = τ to the line of class noise, x− y. The strong collection

noise is proportional to the distance from the point (1/2, 1/2) to the point (x̂, ŷ) which

we denote as ds.
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We begin by considering a balanced collection with |T | = |F | and % = 1
2 . In this case

η1 becomes η̂1 (see (4.7)) which is proportional to the distance from the line x + y = 1

to the point (x̂, ŷ). The relationship between the collection noise and strong collection

noise is depicted in Figure 4.13a. For a fixed δ, since ds =
√

d2
c + δ2, ds clearly varies

monotonically with dc. Since sin(x) is close to linear on [0, π/2], this can also be seen

by noticing that dc = ds sin(θ).

Next we consider the case of a skewed collection when % → 0. In this case η1

becomes η̃1 (see (4.8)) which is proportional to the distance from the line y = 1/2 to

the point (x̂, ŷ). The relationship between the collection noise and strong collection

noise is depicted in Figure 4.13b. Again, since sin(x) is close to linear on [0, π/2], and

dc = ds sin(θ), ds clearly varies monotonically with dc.
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Figure 4.13: Collection Noise versus Strong Collection Noise

4.6 “Noisy” Functions

Using the information developed in the earlier sections, we now take one last look at µ8.

We begin by considering some simple statistics regarding the performance of µ8 on the

fuel topic. This topic has 28 relevant documents, 1975 irrelevant documents, a total of
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12501 features, of which 3835 are stopwords and 12118 are non-stopwords. As shown in

§4.1, ω(V,K, µ8-RANKING, ↑) contained 14 stopwords. Even without considering the

fact that an additional four of the selected features were in ω(V,K, a+ b-RANKING, ↑)

and therefore could also reasonably be assumed to be noise features, this performance,

which is summarized in Table 4.6 strongly suggests that the amount of selected noise

Stopword Non-stopword
j ∈ S 14 11 K = 25
j /∈ S 369 12107 12476

383 12118 12501

Table 4.6: Stopwords vs Non-stopwords for ω(V,K, µ8-RANKING, ↑)

is not a random phenomenon, but due to some inherent characteristic of µ8. Further

support for this suggestion is offered by the data in Appendix K where in Table K.1

and Figure K.2 we see that µ8 had the largest value of σK [J ], and along with µ19 had

the second largest value of σ̇[J ].

One explanation for this situation is offered by the Feature Monotonicity Principle,

which says, “Non-noise features in textual data sets, that provide substantial separation,

are highly ranked positive features.”. However, notice that

µ8(x, y) = x(1 − y) + y(1 − x)

= P(({uj = 1 | u ∈ T} ∩ {uj = 0 | u ∈ F}) ∪

({uj = 0 | u ∈ T} ∩ {uj = 1 | u ∈ F})).

which corresponds to the XOR (i.e. the exclusive OR) function, which will include

highly ranked positive feature as well as highly ranked negative features in the set

of features it ranks highly, and it is these negative features that are ostensibly noise

features. It should, however, be mentioned that the use of µ8 is perfectly in concert

with alternate form of the Feature Monotonicity Principle which applies when F is class

homogeneous and |T | ≈ |F |.

5Not all 571 stopwords on the SMART list appear in for the fuel topic.
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Now, notice that µ8(1/2, 1/2) = 1/2, so given the Zipfian distribution of textual

data, it assigns a relatively large value to the point of strong collection noise. Further,

∇µ8(x, y) = [1 − 2y, 1 − 2x]T ,

∇2µ8(x, y) =

 0 −2

−2 0

 ,

det(∇2) = −4, and therefore as can be seen in Figure 4.14, (1/2, 1/2) is a saddle point.

Therefore, not only does µ8 specifically assign a relatively large value to the point of
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Figure 4.14: µ8

strong collection noise, it also assigns relatively large values to all points in a non-trivial

neighborhood of the point of strong collection noise.
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4.7 Separation to Noise Ratios

In this section, motivated by our discussion in §4.5.1, §4.5.2 and §4.5.3, we characterize

a subset of the feature ranking functions that selected relatively few stopwords and

achieved relatively high separation in experiments in §3.10. We will refer to any finite,

positive function f : [0, 1]2 → R whose value increases with the distance from a noise

feature as a separating function. Similarly, we will refer to any finite, positive function

f : [0, 1]2 → R whose value decreases with the distance from a noise feature or set of

noise features as a noise function. Clearly, if f is a separating function then −f is a

noise function and vice versa.

We shall specifically refer to a finite, positive function as a class separating function

(e.g. |x − y|) or class noise function if it increases or decreases respectively with the

distance from the line of class noise. We shall refer to a finite, positive function as a

collection separating function or collection noise function (e.g. η1, or in the case of a

balanced collection η̂1, or in the case of a skewed collection η̃1) if it increases or decreases

respectively with the distance from the line of collection noise. Finally, we shall refer to

a finite, positive function as a strong collection separating function or strong collection

noise function (e.g. η2) if it increases or decreases respectively with the distance from

the point of strong collection noise. We shall denote the set of all separating functions

as Ψ and the set of all noise functions as ℵ.

Using this terminology, several of the feature ranking functions, e.g. |µ9|, µ23 and

|µ24|, that selected relatively few stopwords and achieved relatively high separation in

experiments in §3.10, can be seen to be as the ratio of two distance functions, and more

specifically as the ratios of separating functions to noise functions. We shall denote the

set of all such functions as MΨ/ℵ.

It is interesting to note that the situation is similar with µ11. Consider the case of

a balanced collection with T = F , in which µ11 becomes

µ̂11(x, y) =
x(1 − x) + y(1 − y)
(x + y)(2 − x − y)

=
η2(x, y)
η̂1(x, y)

.

That is, num(µ̂11) = η2 and so num(µ̂11) ∈ ℵ, and den(µ̂11) = η̂1 and so den(µ̂11) ∈ ℵ.
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Therefore, µ̂11 is the ratio of a strong collection noise function to a collection noise

function. However, we claim that this is a bit of a ruse and that µ̂11 is actually in MΨ/ℵ.

To see this, first note that since features with smaller values of µ̂11 are considered better

than those with larger values, we could equivalently consider

µ̃11(x, y) =
−η2(x, y)
η̂1(x, y)

=
x(x − 1) + y(y − 1)
(x + y)(2 − x − y)

for which features with larger values would be considered better than those with smaller

values. Next, we note that −η2 is a separating function which shows the claim.

As can be seen in Figure 4.15a, Figure 4.15b, Figure 4.15c, the functions in MΨ/ℵ

are characterized by the fact that

1. They take their minimum value along the line x = y.

2. They take their maximum value at (x, y) = (1, 0) and (x, y) = (0, 1).

3. They are monotonically non-decreasing from the line x = y to the points (x, y) =

(1, 0) and (x, y) = (0, 1).

While µ12 and µ21 are not in MΨ/ℵ they do share the characteristics of these functions.

We now address the fact that the terminology we have just introduced does not

accommodate functions such as µ9 and µ24 whose numerator x − y is 0 at the line of

class noise, and when x > y, i.e when the feature is positive, it takes progressively

larger positive values as the distance from the line of class noise increases, and when

y > x, i.e. when the feature is negative, it takes progressively larger positive values as

the distance from the line of class noise increases. If ψ is a separating function then,

we say that ψ ′ is a signed class separating function if

ψ ′(x, y) =

 ψ(x, y) if x ≥ y,

−ψ(x, y) otherwise.

So for example, if ψ(x, y) = |x−y|, then ψ ′(x, y) = x−y. When k is even, then (x−y)k

is a class separating function and when k is odd it is a signed class separating function.

Note, that if ψ ′ is a signed class separating function, then ψ ′(x, y) = −ψ ′(y, x), that is
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Figure 4.15: Examples of functions in MΨ/ℵ
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the value of a feature is negated when its corresponding point is reflected over the line

x = y. We will let Ψ± represent the set of all signed separating functions. Using this

terminology, we note that µ9 and µ24 are ratios of signed separating functions to noise

functions. We will denote the set of all such functions as MΨ±/ℵ.

As can be seen in Figure 4.16a and Figure 4.16b, the functions in MΨ±/ℵ are

characterized by the fact that

1. They take their maximum value at (x, y) = (1, 0).

2. They take their minimum value at (x, y) = (0, 1).

3. They take the value of 0 along the line x = y.

4. They are monotonically non-decreasing from the point (x, y) = (0, 1) to the point

(x, y) = (0, 1).

We close this section by remarking that it is interesting to note the even though the

foundations of these functions are quite varied, that most of the Boolean feature ranking

functions that selected relatively few stopwords and achieved relatively high separation

in experiments in §3.10 can be written as the ratios of separating functions to noise

functions. Since separation and noise are competing criteria, we cannot reasonably

expect to find a single feature ranking function whose value increases as the separation

increases and the noise decreases for all (x, y) ∈ [0, 1]2. For example, let (xi, yi) =

(0.25, 0) and (xj , yj) = (0.5, 0). Clearly (xj , yj) provides an improvement in separation

over (xi, yi), but it is also closer to the point of strong collection noise. The functions

in MΨ/ℵ and MΨ±/ℵ represent an approach for addressing this situation which we will

discuss further in §6.4.
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Chapter 5

The Space of Boolean Feature Ranking Functions

In this chapter we will characterize the space of desirable Boolean feature ranking

functions. Motivated by our discussions in previous chapters we identify a set of axioms

which we believe that all feature ranking functions should satisfy. We then consider a

very general subset of the set of functions which satisfy these axioms, namely the set

of all such functions that can be represented as a linear combination of the elements

of some finite basis set of real-valued functions on [0, 1]. Next we consider a specific

basis set and state some results which facilitate the study, through the use of linear

programming theory and tools, of the space of all desirable functions it generates.

5.1 Axioms

In this section we present a set of axioms that we believe feature ranking functions

should satisfy. Our goal in selecting these axioms was to a set of conditions that is

• minimal – removal of any axiom will yield a class of feature ranking functions

which are in some sense not desirable,

• incontrovertible – each axiom should clearly represent a desirable property of a

feature ranking function,

• relatively weak – the set of axioms should not be so specific as to define an overly

restricted class of feature ranking functions, and

• linear – the axioms should be linear in x and y.

Our intent is that these axioms will not to only allow us to generate the feature ranking

functions that performed well in the experiments in §3.10, but that they will identify
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a larger family of functions whose characteristics would result in similar or better per-

formance. We shall assume that all desirable feature ranking functions, µ : [0, 1]2 → R,

satisfy the following axioms

µ(1, 0) = 1 (A1)

µ(0, 1) = −1 (A2)

x = y ⇒ µ(x, y) = 0 (A3)

x ≥ x ′ and y ≤ y ′ ⇒ µ(x, y) ≥ µ(x ′, y ′) (A4)

where (x, y) ∈ [0, 1]2 and will denote the set of all such functions as M∗. Additionally,

we will consider it desirable for feature ranking functions to satisfy

µ(x, y) = −µ(y, x) (A5)

µ(x, y) = µ(1 − y, 1 − x) (A6)

and will denote functions that satisfy (A1)–(A5) as M̂∗ and those that satisfy (A1)–

(A6) as M̃∗.

The points (1, 0) and (0, 1) correspond to the most positive and most negative

features as well as those that achieve the largest separation of T and F and (A1)

and (A2) simply require that these features be assigned positive and negative values

respectively. It should be noted that the specific choices of 1 and −1 are not important

and that any positive and negative values would suffice. The following result shows

that a feature ranking function which satisfies these axioms is scaled between −1 and

1 and that its maximum and minimum values occur at (1, 0) and (0, 1) respectively.

Proposition 5.1. If µ : [0, 1]2 → R satisfies (A1), (A2) and (A4) then

µ(x, y) ≤ 1 (5.1)

argmax µ(x, y) = (1, 0) (5.2)

µ(x, y) ≥ −1 (5.3)

argminµ(x, y) = (0, 1) (5.4)
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for all (x, y) ∈ [0, 1]2.

Proof . (5.1) and (5.2) follow immediately from the fact that from (A1) and (A4) we

have that

µ(1 − ∆x, 0 + ∆y) ≤ µ(1, 0) = 1

for ∆x,∆y ≥ 0, and (5.3) and (5.4) follow similarly. ¥

(A3) requires that features which appear with the same relative frequency in T and

F be assigned a value of 0. This coincides with the results in §4.5.1 that showed that

such features are class noise features that do not separate T and F . The following

result shows that a feature which either appears in no documents or in all documents

should be assigned a value of 0.

Proposition 5.2. If µ : [0, 1]2 → R satisfies (A3) then

µ(0, 0) = 0 (5.5)

µ(1, 1) = 0. (5.6)

Proof . Follows immediately from the fact that (0, 0) and (1, 1) satisfy x = y. ¥

(A4) can be written as

µ(x, y) ≤ µ(x + ∆x, y − ∆y)

where ∆x,∆y ≥ 0 and therefore it requires that a feature which appears in relatively

more documents in T and relatively fewer documents in F than another feature, should

be assigned values that are at least as large as those assigned to the other feature. (A4)

can also be written as

µ(x, y) ≥ µ(x − ∆x, y + ∆y)

where ∆x,∆y ≥ 0 and therefore it also requires that features which appear in relatively

fewer documents in T and relatively more documents in F than other features, should

be assigned values that are no larger than those assigned to the other feature.
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If (α, β) is some direction with α, β ≥ 0 and if ε > 0, then (A4) can be written as

µ(x, y) ≤ µ(x + αε, y − βε),

or equivalently as

µ(x, y) ≥ µ(x − αε, y + βε).

By writing

lim
ε→0

µ(x + αε, y − βε) − µ(x, y)
ε

≥ 0

or equivalently

lim
ε→0

µ(x − αε, y + βε) − µ(x, y)
ε

≤ 0,

we see that (A4) says that the directional derivative in the direction (α,−β) is non-

negative and is non-positive in the direction (−α, β).

Geometrically, (A4) requires that a feature corresponding to a point (x, y) be as-

signed a value at least as large a feature corresponding to the point (x ′, y ′) when (x, y)

lies to the northwest of (x ′, y ′). Similarly, it requires that a feature corresponding to a

point (x ′, y ′) be assigned a value at no larger than a feature corresponding to the point

(x, y) when (x ′, y ′) lies to the southwest of (x, y). It is also interesting to note that if

(A4) were strengthened to be

x ≥ x ′ and y ≤ y ′ and (x, y) 6= (x ′, y ′) ⇒ µ(x, y) ≥ µ(x ′, y ′)

or equivalently,

x > x ′ and y ≤ y ′ or x ≥ x ′ and y < y ′ ⇒ µ(x, y) ≥ µ(x ′, y ′)

that, following §1.4, the antecedent would be equivalent to requiring that (x, y) domi-

nated (x ′, y ′).

While restricting ourselves to linear axioms obviously limits the characteristics that

we can require of feature ranking functions, the functions that satisfy (A4), which we

will denote as M(A4), can be seen to share properties of some of the classes of functions
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we discussed in §4. For example, the following result shows that Ψ± ⊆ M(A4).

Proposition 5.3. If µ : [0, 1]2 → R satisfies (A4), then µ is a signed separating func-

tion.

Proof . It is enough to show that if x ≥ x ′ and y ≤ y ′ then x − y ≥ x ′ − y ′. Writing

the antecedent of (A4) as x − x ′ ≥ 0 and y ′ − y ≥ 0 and adding the inequalities yields

x − x ′ + y ′ − y ≥ 0, which can be rewritten as x − y ≥ x ′ − y ′. ¥

In order to provide another example of a class of functions that M(A4) includes we

now remark that

ψ(x, y) ≥ ψ(x ′, y ′) and η(x, y) ≤ η(x ′, y ′) ⇒ µ(x, y) ≥ µ(x ′, y ′) (5.7)

and

ψ(x, y) ≤ ψ(x ′, y ′) and η(x, y) ≤ η(x ′, y ′) ⇒ µ(x, y) ≤ µ(x ′, y ′) (5.8)

are necessary conditions for µ ∈ MΨ±/ℵ, and therefore the sets of functions that satisfy

these conditions are important subsets of MΨ±/ℵ. On certain subsets of [0, 1]2, the set

of functions which satisfy (A4) and (5.7) are identical. For example, suppose we are

given a skewed collection, the feature ranking function

µ(x, y) =
x − y

η̃1(x, y)
=

x − y√
y(1 − y)

and let

X1 = {(x, y) : x ≥ y and y ≤ 1/2},

and

X2 = {(x, y) : x ≤ y and y ≥ 1/2},

then clearly the set of functions which satisfy (A4) and (5.7) on X1 are identical as are

the set of functions that satisfy (A4) and (5.8) on X2. As another example, suppose
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we are given the feature ranking function

µ(x, y) =
x − y

η̃2(x, y)
=

x − y√
x(1 − x) +

√
y(1 − y)

and let

Y1 = {(x, y) : x ≥ 1/2 and y ≤ 1/2},

and

Y2 = {(x, y) : x ≤ 1/2 and y ≥ 1/2},

then clearly the set of functions which satisfy (A4) and (5.7) on Y1 are identical as are

the set of functions which satisfy (A4) and (5.8) on Y2. So, on certain subsets of [0, 1]2,

(A4) captures an important characteristic of functions in MΨ±/ℵ; the value assigned

to features should increase as the separation increases and the noise decreases.

The following shows that if µ ∈ M∗, when (x, y) corresponds to a negative feature,

then µ(x, y) < 0 and when (x, y) corresponds to a positive feature, then µ(x, y) > 0.

Proposition 5.4. If µ : [0, 1]2 → R satisfies A3 and A4 then µ(x, y) ≤ 0 when x < y

and µ(x, y) ≥ 0 when x > y with equality in both cases occurring when x = y.

Proof . Let (x ′, y ′) be any point in [0, 1] such that x ′ > y ′. Clearly there exist

x,∆x, ∆y ∈ [0, 1] so that any such (x ′, y ′) can be written as (x + ∆x, x − ∆y). Now

from A4 and A3 we have µ(x ′, y ′) = µ(x + ∆x, x−∆y) ≥ µ(x, x) = 0. The case where

x < y follows similarly. ¥

(A5) says that µ must be an alternating polynomial. It strengthens Proposition 5.4

and requires that a positive feature reflected over the line of class noise, i.e. a negative

feature, have the same value but the opposite sign and vice versa. It can also be consid-

ered to generalize (A1) and (A2). Additional examples that motivate this axiom include

µ(1, x) = −µ(x, 1) and µ(0, x) = −µ(x, 0) for x ∈ [0, 1]. The first example corresponds

to a feature which appears in all relevant documents and some proportion x of the ir-

relevant documents, and a feature which appears in all of the irrelevant documents and

some proportion x of the relevant documents. The second example corresponds to a
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feature which appears in none of the relevant documents and some proportion x of the

irrelevant documents, and a feature which appears in some proportion x of the relevant

documents and none of the irrelevant documents. Note that to support “discounting”

negative features, this axiom could be generalized to

µ(x, y) = −λµ(y, x)

where y > x and 0 ≤ λ ≤ 1.

(A6) requires that features whose corresponding points are reflections over the line

of collection noise have same value. As discussed in 4.5.2, when considering a family of

features, x− y = τ , the value of some of the best performing feature ranking functions,

increased with the distance from the line of collection noise. Such functions (e.g. µ23 and

µ9 when |T | = |F |) are independent of the class skew, that is, they are not dependent on

|T | and |F |. Motivated by this fact, this axiom requires that this increase be symmetric

about the line of collection noise. In contrast, (A6) does not hold for µ9 with arbitrary

|T | and |F |.

5.2 Linearization

Having defined the set of functions M∗ in §5.1, in this section we will construct and

begin to study a rich subset of M∗. Consider a finite set

F = {f : f : [0, 1]2 → R}

and let

M[F ] = {µc : µc(x, y) =
∑
f∈F

cff(x, y) and c ∈ R|F|}.

That is, F is some finite set of real-valued functions on [0, 1]2, M[F ] ⊆ M is the set all

functions in M which can be written as a linear combination of the elements of F , and

the set F forms a basis of M[F ]. In this section we will consider M∗[F ] = M∗∩M[F ],

the set of all functions which can be represented as a linear combination of the elements

of F and which that satisfy the axioms presented in §5.1. We will also study the set
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M̂∗[F ] = M∗ ∩ M̂∗[F ] and the set M̃∗[F ] = M∗ ∩ M̃∗[F ].

We now notice that the axioms presented in §5.1 can be written as a system of

linear equations and inequalities in c ∈ R|F|. Specifically, (A1) and (A2) can both

be written as a linear equation, (A3), (A5), and (A6), can be written as an infinite

set of inequalities, one for each x ∈ [0, 1], and (A4) can be written as a infinite set

of inequalities, one for each combination of (x, y) ∈ [0, 1]2 and (x ′, y ′) ∈ [0, 1]2 that

satisfies its antecedent.

Clearly there is a one-to-one correspondence between the functions in M[F ] and

the set of vectors

M [F ] = {c : c ∈ R|F|},

so in addition to being interested in the algebraic properties of the sets of functions

M∗[F ], M̂∗[F ], and M̃∗[F ], we are also interested in the geometric properties of the

corresponding sets of vectors, i.e. we are also interested in the sets

M∗[F ] = {c ∈ R|F| : µc ∈ M∗},

M̂∗[F ] = {c ∈ R|F| : µc ∈ M̂∗},

and

M̃∗[F ] = {c ∈ R|F| : µc ∈ M̃∗}

respectively, which are defined as the intersection of the linear inequalities corresponding

to the associated axioms. We now state a basic result that demonstrates the relationship

between a geometric property of the sets of vectors and an algebraic property of the

sets of functions that we have just introduced.

Proposition 5.5. The sets of vectors M∗[F ], M̂∗[F ], and M̃∗[F ] are convex.

Proof . Follows immediately from the fact that these sets are defined as the intersection

of a set of linear inequalities. ¥

Corollary 5.1. The sets of functions M∗[F ], M̂∗[F ], and M̃∗[F ] are closed under

convex combination.
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While Corollary 5.1 follows immediately from Proposition 5.5 and the fact that there

is a one-to-one correspondence between the functions in M∗[F ], M̂∗[F ], and M̃∗[F ]

and the vectors in M∗[F ], M̂∗[F ], and M̃∗[F ], the result can be shown directly, and

a proof is included in Appendix F. These results provide some justification for our

constructive approach. Upon deciding to study the sets of functions M∗[F ], M̂∗[F ],

and M̃∗[F ], we did not know (and still do not know) how many functions in M∗ would

be in M∗[F ]. However, closure under convex combination indicates that the space is

in some sense of a non-trivial size, since once a set of functions in one of these spaces

has been identified, we can generate an infinite number of other functions that are also

in the space.

As will be seen, we are interested in identifying the extremal points in the sets

M∗[F ], M̂∗[F ], and M̃∗[F ], however, the fact that these sets are defined in terms of

infinite sets of equations and inequalities precludes using linear programming theory

and tools to explore their structure. For a given q ∈ Z+, we will therefore approximate

the interval [0, 1] by the set

Qq =
{p

q
: 0 ≤ p ≤ q

}
,

and will approximate the set [0, 1]2 by the the rational grid formed by Qq ×Qq. We will

let M∗[F , Qq

]
, M̂∗[F , Qq

]
and M̃∗[F , Qq

]
denote approximations of the sets M∗[F ],

M̂∗[F ], and M̃∗[F ] in which (A3), (A5), and (A6) are written as finite sets of inequali-

ties, one for each x ∈ Qq, and (A4) is written as a finite set of inequalities, one for each

combination of (x, y) ∈ Qq × Qq that satisfies its antecedent.

5.3 Power Series Representation

The definitions of the various sets of functions and vectors we discussed in §5.2 were

dependent on the basis set F which was given to be an arbitrary finite set of real-valued
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functions on [0, 1]2. In this section we consider the case in which the basis set is

P(k)
η =


(
x − 1

2

)i(
y − 1

2

)j

η(x, y)
: 0 ≤ i, j ≤ k, i + j ≤ k

 ,

where following §4.7, η : [0, 1]2 → R is a given (i.e. fixed) polynomial with 0 < η(x, y) <

∞ for all (x, y) ∈ [0, 1]2, and the generated set of functions is

M[P(k)
η ] =

{
µc : µc(x, y) =

∑
0≤i,j≤k
i+j≤k

(x − 1
2)i (y − 1

2)j

η(x, y)
cij and c ∈ R|P(k)

η |
}

.

The set M[P(k)
η ] ⊆ M, which contains all linear combinations of the functions in the

basis set P(k)
η , is the set of two-dimensional rational functions where the numerator is

a two dimensional power series of degree k about the point (1/2, 1/2), and the denom-

inator is some fixed, finite, positive polynomial.

Justifying our choice of basis set is the fact that clearly, Proposition 5.5 holds for

M∗[P(k)
η ], M̂∗[P(k)

η ], and M̃∗[P(k)
η ], and Corollary 5.1 holds for M∗[P(k)

η ], M̂∗[P(k)
η ], and

M̃∗[P(k)
η ]. Further justification is provided by the fact that per Proposition 3.5, all but

two of the feature ranking functions we have studied can be exactly written as a linear

combination of the elements of the basis set. Finally, motivation for this choice is given

by the fact that good approximations of many real-valued functions can be written as a

linear combination of the elements of the basis set. For example, any function which is

k differentiable at the point (1/2, 1/2) can be approximated at this point by its degree-k

Taylor polynomial. Therefore, using η(x, y) = 1, allows us to view the functions that we

identify in M∗[P(k)
1 ], M̂∗[P(k)

1 ], and M̃∗[P(k)
1 ] as Taylor polynomials, and to compare

these functions with the actual Taylor polynomials of classic functions. This approach

may assist in our understanding of the set of functions that satisfy the axioms listed in

§5.1.

The following result shows a fundamental property of the set M∗[P(k)
η ].

Proposition 5.6. The set M∗[P(k)
η ] is bounded and not empty.
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Proof . Assume to the contrary that M∗[P(k)
η ] is unbounded and therefore contains a

line, i.e. assume there is a vector d and a direction v 6= 0 such that d + vt ∈ M∗[P(k)
η ]

for all −∞ < t < ∞. Then, because of the one-to-one relationship between the vectors

in M∗[P(k)
η ] and the functions in M∗[P(k)

η ], we equivalently have that

µd+vt(x, y) =
∑

0≤i,j≤k
i+j≤k

(x − 1
2)i (y − 1

2)j

η(x, y)
[
di,j + vi,jt

]
∈ M∗[P(k)

η ].

From Proposition 5.1 we know that µd+vt is bounded with −1 ≤ µd+vt(x, y) ≤ 1, i.e.,

−η(x, y) ≤
∑

0≤i,j≤k
i+j≤k

(x− 1
2
)i (y − 1

2
)jdi,j +

∑
0≤i,j≤k
i+j≤k

(x− 1
2
)i (y − 1

2
)jvi,jt ≤ η(x, y) (5.9)

for each (x, y) ∈ [0, 1]2 and each −∞ < t < ∞. Therefore, we must have

∑
0≤i,j≤k
i+j≤k

(x − 1
2
)i (y − 1

2
)jvi,j = 0 (5.10)

for all (x, y) ∈ [0, 1]2, since otherwise the second sum in (5.9) would be unbounded.

Now, suppose that in (5.10) we fix x to be some arbitrary value in [0, 1]. Then we

have a polynomial in y, which from the Fundamental Theorem of Algebra, either is the

zero polynomial, or has a finite number of zeroes, and since (5.10) must hold for all

y ∈ [0, 1], it must be the zero polynomial. If we write (5.10) as

(
y − 1

2
)k

[ (
x − 1

2
)0

v0,k

]
+

(
y − 1

2
)k−1

[ (
x − 1

2
)0 v0,k + (x − 1

2
)1

v1,k−1

]
+

...(
y − 1

2
)0

[ (
x − 1

2
)0 v0,k + (x − 1

2
)1

v1,k−1 + · · · + (x − 1
2
)k

vk,0

]
= 0,

then since each factor (y− 1
2)k is itself a polynomial in y and as such has a finite number
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of zeroes, we must have

(
x − 1

2
)0

v0,k = 0(
x − 1

2
)0 v0,k + (x − 1

2
)1

v1,k−1 = 0(
x − 1

2
)0 v0,k + (x − 1

2
)1

v1,k−1 + (x − 1
2
)2

v2,k−2 = 0 (5.11)

...(
x − 1

2
)0 v0,k + (x − 1

2
)1

v1,k−1 + (x − 1
2
)2

v2,k−2 + · · · + (x − 1
2
)k

vk,0 = 0.

Now, (5.11) can be written as the system Av = 0 where the rows of the matrix A are

the vectors

[(
x − 1

2
)0,

(
x − 1

2
)1

,
(
x − 1

2
)2

, · · · , (x − 1
2
)j

, 0, 0, · · · , 0
]
, (5.12)

for j = 0, . . . , k. Since the set of vectors in (5.12) is linearly independent, the only

solution to Av = 0 is v = 0, i.e. there does not exist a direction v 6= 0 which satisfies

(5.11) and this yields the desired contradiction showing that M∗[P(k)
η ] is bounded.

Finally, to show that it is not empty, we refer the reader to Proposition 5.12.

¥

Obviously, the conclusions of this result also apply to M̂∗[P(k)
η ] and M̃∗[P(k)

η ]. In

addition, is important to note that this result relies on the fact that the sets M∗[P(k)
η ],

M̂∗[P(k)
η ], and M̃∗[P(k)

η ] are constructed using infinite sets of equations and inequalities

that correspond to the axioms specified in §5.1 and therefore the conclusions may not

hold for the approximations M∗[P(k)
η , Qq

]
, M̂∗[P(k)

η , Qq

]
, and M̃∗[P(k)

η , Qq

]
with finite

q ∈ Z+.

Given basis P(k)
η , the axioms from §5.1 become

∑
0≤i,j≤k
i+j≤k

1
η(1, 0)

−1j

2i+j
ci,j = 1 (A1-P(k)

η )

∑
0≤i,j≤k
i+j≤k

1
η(0, 1)

−1i

2i+j
ci,j = −1 (A2-P(k)

η )
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∑
0≤i,j≤k
i+j≤k

(x − 1
2)i(x − 1

2)j

η(x, x)
cij = 0 for each x ∈ [0, 1] (A3-P(k)

η )

∑
0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(x, y)
cij ≥

∑
0≤i,j≤k
i+j≤k

(x − 1
2 − ∆x)i(y − 1

2 + ∆y)j

η(x − ∆x, y + ∆y)
cij

for each (x, y) ∈ [0, 1]2 and ∆x,∆y ≥ 0 (A4-P(k)
η )∑

0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(x, y)
cij = −

∑
0≤i,j≤k
i+j≤k

(y − 1
2)i(x − 1

2)j

η(y, x)
cij

for each (x, y) ∈ [0, 1]2 (A5-P(k)
η )∑

0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(x, y)
cij = −

∑
0≤i,j≤k
i+j≤k

(1 − y − 1
2)i(1 − x − 1

2)j

η(1 − y, 1 − x)
cij

for each (x, y) ∈ [0, 1]2 (A6-P(k)
η )

Notice that, while (A3-P(k)
η ) is written using infinitely many inequalities, the following

result shows that only a finite number of them are actually required and therefore in

the approximations based on Qq that were discussed in §5.2, this axiom can be written

in a manner that is independent of the choice of q ∈ Z+.

Proposition 5.7. µc(x, x) = 0 for each x ∈ [0, 1] if and only if

∑
0≤i,j
i+j=l

cij = 0.

Proof . First note that (A3-P(k)
η ) can be written as

µc(x, x) =
∑

0≤i,j≤k
i+j≤k

(x − 1
2)i+j

η(x, x)
cij

=
k∑

l=0

(x − 1
2)l

η(x, x)

∑
0≤i,j
i+j=l

cij

=
1

η(x, x)

k∑
l=0

(
x − 1

2

)l ∑
0≤i,j
i+j=l

cij = 0. (5.13)
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Clearly, (5.13) shows that

∑
0≤i,j
i+j=l

cij = 0 ⇒ µc(x, x) = 0 for each x ∈ [0, 1].

To show that

µc(x, x) = 0 for each x ∈ [0, 1] ⇒
∑
0≤i,j
i+j=l

cij = 0

notice that since we assumed that η(x, x) < ∞, the RHS of (5.13) can only be 0 when

at least one of the other two factors is 0. Since each

∑
0≤i,j
i+j=l

(
x − 1

2

)l

for l = 0, 1, . . . , k is a polynomial in x of degree at most k, and can therefore have at

most k roots, (5.13) can only be 0 at all x ∈ [0, 1] when

∑
0≤i,j
i+j=l

cij = 0.

¥

Proposition 5.7 shows that (A3-P(k)
η ) can be written as

c00 = 0

c10 + c01 = 0

c20 + c11 + c02 = 0

c30 + c21 + c12 + c03 = 0

· · ·

ck,0 + ck−1,1 + · · · + c1,k−1 + c0,k = 0

which is a system of k+1 equations which when combined with (A1-P(k)
η ) and (A2-P(k)

η )

yields a set of k+3 linear equations, whose solution set correspond to the µc ∈ M[P(k)
η ]
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which satisfy these three axioms and do not involve an approximation based on Qq and

a choice of q ∈ Z+.

The following result shows that for an important choice of η(x, y) that (A4-P(k)
η )

can be simplified.

Proposition 5.8. If η(x, y) = 1, then for each (x, y) ∈ [0, 1]2

µc(x, y) ≥ µc(x − ∆x, y + ∆y)

where ∆x,∆y ≥ 0, if and only if

∂µc

∂x
≥ 0 and

∂µc

∂y
≤ 0. (5.14)

Proof . To show that (A4-P(k)
η ) implies (5.14) we note (A4-P(k)

η ) can be written as

∑
0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(x, y)
cij ≥

∑
0≤i,j≤k
i+j≤k

(x − 1
2 − αε)i(y − 1

2 + βε)j

η(x − αε, y + βε)
cij

for each (x, y) ∈ [0, 1]2, where (α, β) is some direction with α, β ≥ 0, and ε > 0. Since

we assumed η(x, y) = 1, this can be simplified to be

∑
0≤i,j≤k
i+j≤k

(x − 1
2
)i(y − 1

2
)j cij ≥

∑
0≤i,j≤k
i+j≤k

(x − 1
2
− αε)i(y − 1

2
+ βε)j cij

and rearranging yields

∑
0≤i,j≤k
i+j≤k

(x − 1
2
− αε)i(y − 1

2
+ βε)j cij −

∑
0≤i,j≤k
i+j≤k

(x − 1
2
)i(y − 1

2
)j cij ≤ 0.
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By use of the Binomial Theorem we have

∑
0≤i,j≤k
i+j≤k

cij

[
i∑

q=0

(
i

q

)(
x − 1

2

)i−q
(−αε)q

][
j∑

r=0

(
j

r

)(
x − 1

2

)j−r
(βε)r

]

−
∑

0≤i,j≤k
i+j≤k

cij(x − 1
2
)i(y − 1

2
)j ≤ 0,

and expanding yields

∑
0≤i,j≤k
i+j≤k

cij

[(
x − 1

2

)i
+ i

(
x − 1

2

)i−1
(−αε) +

(
i

2

)(
x − 1

2

)i−2
(−αε)2 + · · ·

]

×

[(
y − 1

2

)j
+ j

(
y − 1

2

)j−1
(βε) +

(
j

2

)(
y − 1

2

)j−2
(βε)2 + · · ·

]
(5.15)

−
∑

0≤i,j≤k
i+j≤k

cij(x − 1
2
)i(y − 1

2
)j ≤ 0.

By dividing (5.15) by ε and computing the limit as ε → 0 we have

∑
0≤i,j≤k
i+j≤k

cij

[
i
(
x − 1

2

)i−1(
y − 1

2

)j
(−α) + j

(
y − 1

2

)j−1(
x − 1

2

)i
(β)

]
≤ 0, (5.16)

and if we also assume that (α, β) are such that
√

α2 + β2 = 1, then (5.16) is the

directional derivative of µc in direction (α, β). Considering (α = 1, β = 0) yields the

partial derivative of µc in the x direction

∂µc

∂x
=

∑
0≤i,j≤k
i+j≤k

cij

[
i
(
x − 1

2

)i−1(
y − 1

2

)j
]
≥ 0, (5.17)

and considering (α = 0, β = 1) yields the partial derivative of µc in the y direction

∂µc

∂y
=

∑
0≤i,j≤k
i+j≤k

cij

[
j
(
y − 1

2

)j−1(
x − 1

2

)i
]
≤ 0. (5.18)

To show the converse, we assume that (5.17) and (5.18) hold and note that a linear
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combination of these two inequalities weighted by α and β respectively, with α, β ≥ 0

and
√

α2 + β2 = 1, is equivalent to the directional derivative (5.16) which was shown

to be equivalent to (A4-P(k)
η ). ¥

As a follow up to Proposition 5.8 it is interesting to note that when η(x, y) = 1, that

(A4-P(k)
η ) which involves changes in both x and y, can be written as two conditions

in which the changes in x and y are separated. An important consequence of this fact

is that in approximations based on Qq, (A4-P(k)
η ) can be written in terms of 2|Qq|2

inequalities by writing (5.17) and (5.18) for each (x, y) ∈ Qq ×Qq. By contrast, directly

writing (A4-P(k)
η ) requires O(|Qq|4) inequalities. We now recall that a subset of Rd

for some d > 0 is said to be polyhedral if it is the intersection of a finite number of

halfspaces. Such sets have a finite number of vertices and a finite number of facets.

The following related result follows from Proposition 5.8.

Proposition 5.9. If k > 2 then M∗[P(k)
η ] is not polyhedral.

As a consequence of Proposition 5.9, it follows that neither M̂∗[P(k)
η ], nor M̃∗[P(k)

η ]

are polyhedral.

Similar to Proposition 5.7, the following result shows that while (A5-P(k)
η ) is written

using infinitely many inequalities, only a finite number of them are actually required.

Proposition 5.10. µc(x, y) = −µc(y, x) for each (x, y) ∈ [0, 1]2 if and only if η(x, y) =

1 and cij = −cji for each 0 ≤ i, j ≤ k, i + j ≤ k.

Proof . If µc(x, y) = −µc(y, x) then we have

∑
0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(x, y)
cij = −

∑
0≤i,j≤k
i+j≤k

(y − 1
2)i(x − 1

2)j

η(y, x)
cij

∑
0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(x, y)
cij = −

∑
0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(y, x)
cji

∑
0≤i,j≤k
i+j≤k

(x − 1
2)i(y − 1

2)j

η(x, y)
cij +

(x − 1
2)i(y − 1

2)j

η(y, x)
cji = 0

∑
0≤i,j≤k
i+j≤k

(
x − 1

2

)i(
y − 1

2

)j
[

cij

η(x, y)
+

cji

η(y, x)

]
= 0 (5.19)
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for each (x, y) ∈ [0, 1]2. In the proof of Proposition 5.6 we showed that (5.10) cannot

hold for all (x, y) ∈ [0, 1]2. Therefore, (5.19) can only hold when cijη(y, x) = −cjiη(x, y)

for each 0 ≤ i, j ≤ k, i + j ≤ k and for all (x, y) ∈ [0, 1]2. Since we assumed that

η(x, y) = 1 this implies that cij = −cij for each 0 ≤ i, j ≤ k, i + j ≤ k. The other

direction follows immediately after noticing that when η(x, y) = 1 and cij = −cji for

each 0 ≤ i, j ≤ k, i + j ≤ k, that for each 0 ≤ i, j ≤ k, i + j ≤ k

(
x − 1

2
)i(

y − 1
2
)j

cij = −
(
x − 1

2
)i(

y − 1
2
)j

cji.

¥

Corollary 5.2. cii = 0 for each 2i ≤ k.

Proposition 5.11. (A5-P(k)
η ) can be written as a system of O(k2) equations.

Proof . Proposition 5.10 and Corollary 5.2 show that (A5-P(k)
η ) can be written as

2c00 = 0

c10 + c01 = 0

c20 + c02 = 0

2c11 = 0

c30 + c03 = 0

c21 + c12 = 0

· · ·

which is a system of

f(k) =
k∑

i=0

⌈
i + 1

2

⌉
(5.20)

equations. Note that (5.20) is the sum of the partition numbers of size 2 for the integers

i = 0, 1, . . . , k. For example, it is (1+1) + (2+2) + 3, . . . , for even k, and it is (1+1)

+ (2+2) + (3+3), . . . , for odd k. To find a closed form solution to (5.20) we note that

for both even and odd k, the recurrence relation, f(k +2) = f(k)+ k + 3, holds. When
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k is even, its solution can be seen to be

f(k) =
(k

2
+ 1

)2
.

Next we notice that when k is odd that f(k) = f(k − 1) +
√

f(k − 1) and therefore

f(k) =
(k − 1

2
+ 1

)2
+

(k − 1
2

+ 1
)
.

when k is odd. ¥

The system of equations corresponding to (A1-P(k)
η ), (A2-P(k)

η ), (A3-P(k)
η ), and

(A5-P(k)
η ) contains (k

2
+ 1

)2
+ k + 3 =

1
4
(
k2 + 8k + 16

)
equations when k is even, and

(k − 1
2

+ 1
)2

+
(k − 1

2
+ 1

)
+ k + 3 =

1
4
(
k2 + 8k + 15

)
equations when k is odd.

5.4 Equality Based Characterizations of M∗[P(k)
η=1

]
If we let k = 1, η(x, y) = 1, and only assume (A1-P(k)

η ), (A2-P(k)
η ), and (A3-P(k)

η ), the

equations corresponding to these axioms yield the following 4 × 3 system

c0,0 c1,0 c0,1

1 1
2 −1

2 = 1

1 −1
2

1
2 = −1

1 0 0 = 0

0 1 1 = 0

which has a rank of 3. The unique solution of this system is c = [0, 1,−1] which

corresponds to µc(x, y) = x − y and gives us the following result.
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Proposition 5.12. M∗[P(1)
η=1

]
= {[0, 1,−1]} and M∗[P(1)

η=1

]
= {x − y}.

If we let k = 2, η(x, y) = 1, and only assume (A1-P(k)
η ), (A2-P(k)

η ), and (A3-P(k)
η ),

the equations corresponding to these axioms yields the following 5 × 6 system

c0,0 c1,0 c0,1 c2,0 c1,1 c0,2

1 1
2 −1

2
1
4 −1

4
1
4 = 1

1 −1
2

1
2

1
4 −1

4
1
4 = −1

1 0 0 0 0 0 = 0

0 1 1 0 0 0 = 0

0 0 0 1 1 1 = 0

which has a rank of 5 and the solution set

c0,0 = 0

c1,0 = 1

c0,1 = −1

c2,0 = c2,0

c1,1 = 0

c0,2 = −c2,0

which corresponds to

µc(x, y) =
(
x − 1

2

)
−

(
y − 1

2

)
+ λ

(
x − 1

2

)2
− λ

(
y − 1

2

)2

with the free parameter λ ∈ R. Note that additionally assuming (A5-P(k)
η ) does not

change the solution.

It should be mentioned that for arbitrary values of λ that (A4-P(k)
η ) and the con-

clusions of Proposition 5.1 may not be satisfied, however, by Proposition 5.8 we have

that
∂µc(x, y)

∂x
= 1 + 2λ

(
x − 1

2
)
≥ 0
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from which we can conclude that when −1 ≤ λ ≤ 1, the axiom and therefore the

proposition are satisfied. This allows to write the following result.

Proposition 5.13. M∗[P(2)
η=1

]
=

{
[0, 1 − λ, λ − 1, λ, 0,−λ] : − 1 ≤ λ ≤ 1

}
and

M∗[P(2)
η=1

]
=

{
(1 − λ)(x − y) + λ(x2 − y2) : − 1 ≤ λ ≤ 1

}
.

If we let k = 3, η(x, y) = 1, and only assume (A1-P(k)
η ), (A2-P(k)

η ), and (A3-P(k)
η ),

the equations corresponding to these axioms yields the following 6 × 10 system

c0,0 c1,0 c0,1 c2,0 c1,1 c0,2 c3,0 c2,1 c1,2 c0,3

1 1
2 −1

2
1
4 −1

4
1
4

1
8 −1

8
1
8 −1

8 = 1

1 −1
2

1
2

1
4 −1

4
1
4 −1

8
1
8 −1

8
1
8 = −1

1 0 0 0 0 0 0 0 0 0 = 0

0 1 1 0 0 0 0 0 0 0 = 0

0 0 0 1 1 1 0 0 0 0 = 0

0 0 0 0 0 0 1 1 1 1 = 0

which has a rank of 6 and therefore 4 free parameters. Rather than pursuing this case

we also assume (A5-P(k)
η ). Adding the corresponding equations yields

c0,0 c1,0 c0,1 c2,0 c1,1 c0,2 c3,0 c2,1 c1,2 c0,3

1 1
2 −1

2
1
4 −1

4
1
4

1
8 −1

8
1
8 −1

8 = 1

1 −1
2

1
2

1
4 −1

4
1
4 −1

8
1
8 −1

8
1
8 = −1

1 0 0 0 0 0 0 0 0 0 = 0

0 1 1 0 0 0 0 0 0 0 = 0

0 0 0 1 1 1 0 0 0 0 = 0

0 0 0 0 0 0 1 1 1 1 = 0

2 0 0 0 0 0 0 0 0 0 = 0

0 1 1 0 0 0 0 0 0 0 = 0

0 0 0 1 0 1 0 0 0 0 = 0

0 0 0 0 2 0 0 0 0 0 = 0

0 0 0 0 0 0 1 0 0 1 = 0

0 0 0 0 0 0 0 1 1 0 = 0
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which is a 12 × 10 system with a rank of 7 and therefore has 3 free parameters. It has

the solution set

c0,0 = 0

c1,0 = c1,0

c0,1 = −c1,0

c2,0 = c2,0

c1,1 = 0

c0,2 = −c2,0

c3,0 = c3,0

c2,1 = 4 + 4c1,0 + c3,0

c1,2 = −c2,1

c0,3 = −c3,0

which corresponds to

µ(x, y) = λ1

((
x − 1

2
)
−

(
y − 1

2
))

+ λ2

((
x − 1

2
)2 −

(
y − 1

2
)2

)
+ λ3

((
x − 1

2
)3 −

(
y − 1

2
)3

)
+ (4 + 4λ1 + λ3)

((
x − 1

2
)2(

y − 1
2
)
−

(
x − 1

2
)(

y − 1
2
)2

)

with the free parameters λ1, λ2, λ3 ∈ R. As for k = 2, for arbitrary values of λ1, λ2, λ3

the conclusions of Proposition 5.1 may not be satisfied.

5.5 Experiments

To explore the sets M∗[P(k)
1 , Qq

]
, M̂∗[P(k)

1 , Qq

]
, and M̃∗[P(k)

1 , Qq

]
we will use the lrs

software tools [4]. Given a set of equations and inequalities representing a polyhe-

dron, lrs uses a revised version of the reverse search vertex enumeration algorithm to

find its vertices. It uses exact rational arithmetic for all computations. We will let

V∗[P(k)
1 , Qq

]
, V̂∗[P(k)

1 , Qq

]
, and Ṽ∗[P(k)

1 , Qq

]
denote the matrix of vertices identified

by lrs that correspond to the sets M∗[P(k)
1 , Qq

]
, M̂∗[P(k)

1 , Qq

]
, and M̃∗[P(k)

1 , Qq

]
. We
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will let R∗[P(k)
1 , Qq

]
, R̂∗[P(k)

1 , Qq

]
, and R̃∗[P(k)

1 , Qq

]
denote the reduced row echelon

form of these matrices.

We now offer a few comments about the tables of results presented in this section.

Using the notation presented earlier, the Class column indicates the approximation

under consideration. As we mentioned, Proposition 5.6 only addresses the question of

boundedness for M∗[P(k)
η ], M̂∗[P(k)

η ], and M̃∗[P(k)
η ] and this question remains open for

the approximations M∗[P(k)
1 , Qq

]
, M̂∗[P(k)

1 , Qq

]
, and M̃∗[P(k)

1 , Qq

]
. For each of these

approximations we will only list results for the smallest q ∈ Z+ that is bounded, so it can

be assumed that any approximation that utilizes a smaller q than is listed is unbounded.

In §5.4 we showed that when k = 1, µc(x) = x − y was the unique member of each of

the three approximation sets and therefore we will not discuss these sets further in this

section. The value of the Variables is (k+1)(k+2)/2. The All Equations & Inequalities

column contains the total number of equations and inequalities that were presented to

the redund program which is part of lrs. This program identifies and removes redundant

equations and inequalities thereby reducing the size of the problem to that listed in the

Non-redundant Equations and the Non-redundant Inequalities columns. We also include

the ranks of vertex matrices associated with the corresponding approximation sets and

have made the following related observation.

Observation 5.1. For a given approximation set M∗[P(k)
1 , Qq

]
and a given k the

corresponding reduced row echelon matrix R∗[P(k)
1 , Qq

]
is identical for all q ∈ Z+ that

were considered, and therefore the rank of the vertex matrix V∗[P(k)
1 , Qq

]
is identical for

all q ∈ Z+ that were considered. Further, this rank is less than the number of variables.

Corresponding observations were made for the approximation sets M̂∗[P(k)
1 , Qq

]
and

M̃∗[P(k)
1 , Qq

]
. These observations will allow us to map the original problems to a lower

dimensional subspace thereby reducing size of the problems that are presented to lrs.

We will see that there are two reasons for the reduction in the number of dimensions.

First, some of the basis variables in the original space are identically zero. Second,

the basis variables in the reduced subspace are not simply a subset of the non-zero

basis variables in the original space, but rather are linear combinations of those in the
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original space; a fact that will aid us in our study of the structure of M∗[P(k)
1 , Qq

]
M̂∗[P(k)

1 , Qq

]
, and M̃∗[P(k)

1 , Qq

]
.

When possible, we will try to compare the approximations we identify to selected

feature ranking functions that we studied in previous chapters. To accomplish this, for

several such functions µ, we will compute the degree k Taylor polynomial in x and y

about the point (1/2, 1/2) as given by

τk(µ(x, y)) = µ
(1
2
,
1
2
)

+
(
x − 1

2
)
µx

(1
2
,
1
2
)

+
(
y − 1

2
)
µy

(1
2
,
1
2
)

+
1
2!

[(
x − 1

2
)2

µxx
(1
2
,
1
2
)

+ 2
(
x − 1

2
)(

y − 1
2
)
µxy

(1
2
,
1
2
)

+
(
y − 1

2
)2

µyy
(1
2
,
1
2
)]

+
1
3!

[(
x − 1

2
)3

µxxx
(1
2
,
1
2
)

+ 3
(
x − 1

2
)2(

y − 1
2
)
µxxy

(1
2
,
1
2
)

+ 3
(
x − 1

2
)(

y − 1
2
)2

µyyx
(1
2
,
1
2
)

+
(
y − 1

2
)3

µyyy
(1
2
,
1
2
)]

· · ·

where

µx =
∂µ

∂x
, µy =

∂µ

∂y
, µxx =

∂µ

∂x∂x
, µxy =

∂µ

∂x∂y
, µyy =

∂µ

∂y∂y
, · · · .

We will let vk(µ) denote the vector in M
[
P(k)

1 , Qq

]
that corresponds to τk(µ(x, y)).

The feature ranking functions we shall use for comparison are

µ9,%=1/2(x, y) =
x − y√

(x + y)(2 − x − y)

µ9,lim %→0(x, y) =
x − y√
y(1 − y)

µ22(x, y) =
x − y

x + y

µ24(x, y) =
x − y√

x(1 − x) +
√

y(1 − y)

As justification for using the Taylor polynomials for comparison we note that they

provide a reasonable approximation of these four feature ranking functions. To see this

we compute
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|| µ9,%=1/2(x, y), τ5(µ9,%=1/2(x, y)) ||2 = 0.005

|| µ9,lim %→0(x, y), τ5(µ9,lim %→0(x, y)) ||2 = 0.002

|| µ22(x, y), τ5(µ22(x, y)) ||2 = 0.015

|| µ24(x, y), τ5(µ24(x, y)) ||2 = 0.035

where

|| µ(x, y), τk(µ(x, y)) ||2 =
∫ 1−ε

0+ε

∫ 1−ε

0+ε
(µ(x, y) − τk(µ(x, y)))2dxdy

and ε = 0.05. As expected the quality of the approximation decreases as the distance

from the point (1/2, 1/2) increases.

The corresponding degree 3 Taylor polynomials after simplification are

τ3(µ9,%=1/2(x, y)) =
3
2
(x − y) − (x2 − y2) +

1
2
(x3 − y3) +

1
2
(x2y − xy2)

(1/3)τ3(µ9,lim %→0(x, y)) = (x − y) − 4
3
xy +

4
3
y2 +

4
3
xy2 − 4

3
y3

τ3(µ22(x, y)) = 3(x − y) − 3(x2 − y2) + (x3 − y3) + (x2y − xy2)

(2/3)τ3(µ24(x, y)) = (x − y) − 2
3
(x2 − y2) +

2
3
(x3 − y3) − 2

3
(x2y − xy2)

and Table 5.2 contains the coefficients for the corresponding Taylor polynomials.

Noting that when necessary we multiply by an appropriate constant to scale the

Taylor polynomials to [0, 1], it can be seen that all of these functions satisfy (A1-

P(k)
η ), (A2-P(k)

η ), (A3-P(k)
η ), and (A4-P(k)

η ). Table 5.5 shows which functions satisfy the

τk(µ) (A5-P(k)
η ) (A6-P(k)

η )
τ3(µ9,%=1/2) X X
(1/3)τ3(µ9,lim %→0)
τ3(µ22) X
(2/3)τ3(µ24) X X

Table 5.1: Axioms Satisfied by the Sample Taylor Polynomials

remaining two axioms.
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5.5.1 M∗[P(k)
1 , Qq

]
A summary of the results for M∗[P(k)

1 , Qq

]
are shown in Table 5.3. In experiments

related to M∗[P(2)
1 , Qq

]
the following two matrices were identified

V∗[P(2)
1 , Q∗

]
=


c0,0 c1,0 c0,1 c2,0 c1,1 c0,2

0 1 −1 1 0 −1

0 1 −1 −1 0 1


and

R∗[P(2)
1 , Q∗

]
=


c0,0 c1,0 c0,1 c2,0 c1,1 c0,2

0 1 −1 0 0 0

0 0 0 1 0 −1


for q ∈ {1, 10, 20, 30, 40, 50}. These experimental results match the analytical results in

§5.4. Specifically, in Proposition 5.13 it was shown that M∗[P(2)
η=1

]
is a particular set of

linear combinations of the functions corresponding to the vectors in R∗[P(2)
1 , Q∗

]
, and

it can be shown that the set of convex combinations of the functions corresponding to

the vectors in V∗[P(2)
1 , Q∗

]
is equivalent to the set identified in Proposition 5.13. It is

interesting to note that the function corresponding to the “center” of the set defined

by the convex combination of the two vertices in V∗[P(2)
1 , Q∗

]
is x − y. Plots of the

feature ranking functions corresponding to these vertices are shown in Figure 5.1.

As shown in Table 5.3 in experiments related to M∗[P(3)
1 , Qq

]
, the number of vertices

in V∗[P(3)
1 , Qq

]
, as was expected, increased with q and therefore did not suggest a

vertex set that defines M∗[P(3)
1 ]. However, in these experiments the following matrix

was identified

R∗[P(3)
1 , Q∗

]
=



c0,0 c1,0 c0,1 c2,0 c1,1 c0,2 c3,0 c2,1 c1,2 c0,3

0 1 −1 0 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 0 −1

0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 0 1 −1
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Class Variables Non-redundant Non-redundant All Vertices Rank of
Equations Inequalities Equations & Vertex

Inequalities Matrix

M∗[P(1)
1 , Q1

]
3 3 0 12 1 1

M∗[P(2)
1 , Q1

]
6 5 2 13 2 2

M∗[P(3)
1 , Q2

]
10 6 13 24 10 5

M∗[P(3)
1 , Q3

]
10 6 22 38 15 5

M∗[P(3)
1 , Q4

]
10 6 31 56 35 5

M∗[P(3)
1 , Q5

]
10 6 54 78 62 5

M∗[P(3)
1 , Q6

]
10 6 63 104 92 5

M∗[P(3)
1 , Q7

]
10 6 88 134 119 5

M∗[P(3)
1 , Q8

]
10 6 103 168 173 5

M∗[P(3)
1 , Q9

]
10 6 132 206 208 5

M∗[P(3)
1 , Q10

]
10 6 149 248 284 5

M∗[P(3)
1 , Q20

]
10 6 527 888 1315 5

M∗[P(3)
1 , Q30

]
10 6 1127 1928 3352 5

M∗[P(3)
1 , Q40

]
10 6 1951 3368 6513 5

M∗[P(3)
1 , Q50

]
10 6 3009 5208 11042 5

M∗[P(4)
1 , Q3

]
15 7 28 39 1338 9

M∗[P(4)
1 , Q4

]
15 7 45 57 6820 9

M∗[P(4)
1 , Q5

]
15 7 66 79 21716 9

M∗[P(4)
1 , Q6

]
15 7 91 105 48896 9

M∗[P(4)
1 , Q10

]
15 7 231 249 460924 9

M∗[P(4)
1 , Q15

]
15 7 496 519 2486284 9

M∗[P(5)
1 , Q4

]
21 8 45 58 525213 14

Table 5.3: M∗[P(∗)
1 , Q∗

]



174

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

−1.0

−0.5

0.0

0.5

1.0

(a) x − y + (x − 1/2)2 − (y − 1/2)2

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

−1.0

−0.5

0.0

0.5

1.0

(b) x − y − (x − 1/2)2 + (y − 1/2)2

Figure 5.1: V∗[P(2)
1 , Q∗

]
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and based on this matrix we state the following conjecture, in which the supposed func-

tions in M∗[P(3)
1 ] are described as linear combinations of the functions corresponding

to the vectors in R∗[P(3)
1 , Q∗].

Conjecture 5.1. There exist λi ∈ R for i = 1, · · · , 5 such that if

µc(x, y) = λ1

(
(x − 1/2) − (y − 1/2)

)
+

λ2

(
(x − 1/2)2 − (y − 1/2)2

)
+

λ3

(
(x − 1/2)3 − (y − 1/2)3

)
+

λ4

(
(x − 1/2)2(y − 1/2) − (y − 1/2)3

)
+

λ5

(
(x − 1/2)(y − 1/2)2 − (y − 1/2)3

)
,

then µc ∈ M∗[P(3)
1 ].

We now assume this representation of µc ∈ M∗[P(3)
1 ] and rewrite the axioms in this

5-dimensional subspace rather than in the original 10-dimensional space. For a given

q ∈ Z+ and for each (x, y) ∈ Qq, we have

λ1 +
1
4
λ3 +

1
4
λ5 = 1 (5.21)

λ1 + 2(x − 1
2
)λ2 + 3(x − 1

2
)2λ3 + 2(x − 1

2
)(y − 1

2
)λ4 + (y − 1

2
)2λ5 ≥ 0 (5.22)

−λ1 − 2(y − 1
2
)λ2 − 3(y − 1

2
)2λ3 + ((x − 1

2
)2 − 3(y − 1

2
)2)λ4

+
(
2(x − 1

2
)(y − 1

2
) − 3(y − 1

2
)2

)
λ5 ≤ 0 (5.23)

with (5.21) corresponding to (A1-P(k)
η ), and (5.22) and (5.23) corresponding to (A4-

P(k)
η ) implemented as

∂µc

∂x
≥ 0 and

∂µc

∂y
≤ 0

respectively. Continuing to write µc as in Conjecture 5.4, we note that µc(0, 1) =

−λ1 − 1
4λ3 − 1

4λ5 = −1 which is redundant given (5.21), and therefore no equation

corresponding to (A2-P(k)
η ) is required. In addition, µc(x, x) = 0 for every x ∈ Qq, and

therefore no equations corresponding to (A3-P(k)
η ) are required.
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The results for computations with lrs in the 5-dimensional subspace were similar to

those for M∗[P(3)
1 , Q∗

]
in the 10-dimensional subspace that are shown in Table 5.3. The

differences are that for the 5-dimensional subspace, Variables is obviously 5 rather than

10, Non-redundant Inequalities is 1 rather than 6, and All Equations & Inequalities is 5

less than that for the 10-dimensional subspace problem. We also note that the non-zero

rows in the matrix R∗[P(3)
1 , Q∗

]
in the 5-dimensional subspace correspond to the 5× 5

identity matrix. Since the number of vertices in V∗[P(3)
1 , Qq

]
again increased with q, as

was expected, these results did not directly suggest a vertex set that defines M∗[P(3)
1

]
.

We conclude our discussion of M∗[P(3)
1

]
with a few observations about the set

V∗[P(3)
1 , Q50

]
. We first see that (5.21) requires that all vertices lie on the plane

λ1 +
1
4
λ3 +

1
4
λ5 = 1.

Second, we note that the “center” M∗[P(3)
1 , Q50

]
approximately corresponds to the

vector

λ1 =
1
4
, λ2 = 0, λ3 =

3
2
, λ4 = −3

2
, λ5 =

3
2

in the 5-dimensional subspace, and the associated function is shown in Figure 5.2. Next,

in an effort to explore the geometry of this non-polyhedral set we used the GGobi data

visualization system (see e.g. [74]), which provides a variety of tools for visualizing high

dimensional data. An interesting subset of V∗[P(3)
1

]
that was identified using this tool

is the set of vertices which satisfy

λ1 = λ2 = 0

λ3 + λ5 = 4

λ4 < 0.

This set is shown in Figure 5.3 and contains nearly half of the 11042 vertices in

V∗[P(3)
1 , Q50

]
.

As shown in Table 5.3 in experiments related to M∗[P(4)
1 , Qq

]
and M∗[P(5)

1 , Qq

]
,

the number of vertices in V∗[P(4)
1 , Qq

]
and V∗[P(5)

1 , Qq

]
respectively, as was expected,
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Figure 5.2: Center of M∗[P(3)
1 , Q50

]
increased with q and therefore did not suggest a vertex set that defines M∗[P(4)

1 ] or

M∗[P(5)
1 ]. However, in these experiments the matrices R∗[P(4)

1 , Q∗
]

and R∗[P(5)
1 , Q∗

]
shown in Table 5.4 and Table 5.5 were identified. These results could be used to perform

analyses similar to the one done for M∗[P(3)
1 ], but we will not pursue this.
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5.5.2 M̂∗[P(k)
1 , Qq

]
A summary of the results for M̂∗[P(k)

1 , Qq

]
are shown in Table 5.6. Notable differences

in comparison to the results for M∗[P(k)
1 , Qq

]
include the reduction in All Equalities &

Inequalities which is due to the fact that constraints corresponding to (A4-P(k)
η ) are only

generated for x ≥ y for (x, y) ∈ [0, 1]2, as well as the substantial decrease in Vertices.

In experiments related to M̂∗[P(2)
1 , Qq

]
we found that V̂∗[P(2)

1 , Q∗
]

= V∗[P(2)
1 , Q∗

]
and

R̂∗[P(2)
1 , Q∗

]
= R∗[P(2)

1 , Q∗
]

and therefore conclude that M̂∗[P(2)
1 ] = M∗[P(2)

1 ].

As shown in Table 5.6 in experiments related to M̂∗[P(3)
1 , Qq

]
, the number of vertices

in V̂∗[P(3)
1 , Qq

]
, as was expected, increased with q and therefore did not suggest a

vertex set that defines M̂∗[P(3)
1 ]. However, in these experiments the following matrix

was identified

R̂∗[P(3)
1 , Q∗

]
=



c0,0 c1,0 c0,1 c2,0 c1,1 c0,2 c3,0 c2,1 c1,2 c0,3

0 1 −1 0 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 0 −1

0 0 0 0 0 0 0 1 −1 0


and based on this matrix we state the following conjecture, in which the supposed func-

tions in M∗[P(3)
1 ] are described as linear combinations of the functions corresponding

to the vectors in R̂∗[P(3)
1 , Q∗].

Conjecture 5.2. There exist λi ∈ R for i = 1, · · · , 4 such that if

µc(x, y) = λ1

(
(x − 1/2) − (y − 1/2)

)
+

λ2

(
(x − 1/2)2 − (y − 1/2)2

)
+

λ3

(
(x − 1/2)3 − (y − 1/2)3

)
+

λ4

(
(x − 1/2)2(y − 1/2) − (x − 1/2)(y − 1/2)2

)
then µc ∈ M̂∗[P(3)

1 ].

Following the same approach used in the analysis of M∗[P(3)
1 ], we now assume this
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Class Variables Non-redundant Non-redundant All Vertices Rank of
Equations Inequalities Equations & Vertex

Inequalities Matrix

M̂∗[P(1)
1 , Q1

]
3 3 0 12 1 1

M̂∗[P(2)
1 , Q1

]
6 5 2 15 2 2

M̂∗[P(3)
1 , Q2

]
10 7 6 24 5 4

M̂∗[P(3)
1 , Q3

]
10 7 8 32 6 4

M̂∗[P(3)
1 , Q4

]
10 7 10 42 8 4

M̂∗[P(3)
1 , Q5

]
10 7 12 54 9 4

M̂∗[P(3)
1 , Q6

]
10 7 14 68 11 4

M̂∗[P(3)
1 , Q7

]
10 7 16 84 12 4

M̂∗[P(3)
1 , Q8

]
10 7 18 102 14 4

M̂∗[P(3)
1 , Q9

]
10 7 20 122 15 4

M̂∗[P(3)
1 , Q10

]
10 7 22 144 17 4

M̂∗[P(3)
1 , Q20

]
10 7 42 474 32 4

M̂∗[P(3)
1 , Q30

]
10 7 62 1004 47 4

M̂∗[P(3)
1 , Q40

]
10 7 82 1734 62 4

M̂∗[P(3)
1 , Q50

]
10 7 102 2664 77 4

M̂∗[P(4)
1 , Q3

]
15 10 14 36 16 6

M̂∗[P(4)
1 , Q10

]
15 10 73 148 398 6

M̂∗[P(4)
1 , Q20

]
15 10 213 478 1988 6

M̂∗[P(4)
1 , Q30

]
15 10 419 1008 4792 6

M̂∗[P(4)
1 , Q40

]
15 10 693 1738 8980 6

M̂∗[P(4)
1 , Q50

]
15 10 1033 2668 14490 6

M̂∗[P(5)
1 , Q4

]
21 13 25 50 284 9

M̂∗[P(5)
1 , Q10

]
21 13 121 152 92430 9

Table 5.6: M̂∗[P(∗)
1 , Q∗

]
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representation of µc ∈ M̂∗[P(3)
1 ] and rewrite the axioms in this 4-dimensional subspace

rather than in the original 10-dimensional space. For a given q ∈ Z+ and for each

(x, y) ∈ Qq, we have

λ1 +
1
4
λ3 −

1
4
λ4 = 1

λ1 + 2(x − 1
2
)λ2 + 3(x − 1

2
)2λ3 +

(
2(x − 1

2
)(y − 1

2
) − (y − 1

2
)2

)
λ4 ≥ 0

−λ1 − 2(y − 1
2
)λ2 − 3(y − 1

2
)2λ3 +

(
(x − 1

2
)2 − 2(x − 1

2
)(y − 1

2
)
)
λ4 ≤ 0.

As was the case with our analysis of M∗[P(3)
1 , Q∗

]
, the results of computations

for M̂∗[P(3)
1 , Q∗

]
with lrs in the 4-dimensional subspace were similar to those for

M̂∗[P(3)
1 , Q∗

]
in the 10-dimensional subspace that are shown in Table 5.6. Working

in the 4-dimensional subspace facilitated the visualization of V̂∗[P(3)
1 , Q∗

]
and substan-

tially reduced the time required by lrs thereby allowing us to utilize larger values of

q.

Figure 5.4 shows two projections of the set V̂∗[P(3)
1 , Q100

]
, which contains 152 ver-

tices, onto three dimensions, with Figure 5.4a depicting the fact that all vertices lie in

the plane

λ1 +
1
4
λ3 −

1
4
λ4 = 1.

The values, after some minor rounding, of the labeled vertices are provided in Table 5.7

and the corresponding functions are shown in Figures 5.5 and Figure 5.6. In the reduced

subspace we can write the following convex combinations

v5(µ9,%=1/2(x, y)) =
1
2

A +
1
3

C +
1
6

D,

v3(µ22(x, y)) =
1
3

D +
2
3

E, and

(2/3)v3(µ24(x, y)) =
4
9

A +
2
9

B +
1
3

C,

however, we note that (1/3)τ3(µ9,lim %→0) cannot be represented as a convex combination

in this subspace. It is interesting to note that the vectors AB and AD as well as the

vectors CB and CD are orthogonal.
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Vertex λ1 λ2 λ3 λ4 µ

A 3/2 0 -2 0 3(x2 − y2) − 2(x3 − y3)

B 0 0 1 -3 (x3 − y3) − 3(x2y − y2x)

C 0 0 4 0 3(x − y) − 6(x2 − y2) + 4(x3 − y3)

D 3/2 0 1 3 3(x − y) − 3(x2 − y2) + (x3 − y3) + 3(x2y − y2x)

E 3/4 -3/2 1 0 3(x − y) − 3(x2 − y2) + (x3 − y3)

F 3/4 3/2 1 0 (x3 − y3)

Table 5.7: Selected elements of V̂∗[P(3)
1 , Q∗

]
and functions from M̂∗[P(3)

1 , Q∗
]

As shown in Table 5.6 in experiments related to M̂∗[P(4)
1 , Qq

]
and M̂∗[P(5)

1 , Qq

]
,

the number of vertices in V̂∗[P(4)
1 , Qq

]
and V̂∗[P(5)

1 , Qq

]
respectively, as was expected,

increased with q and therefore did not suggest a vertex set that defines M̂∗[P(4)
1 ] or

M̂∗[P(5)
1 ]. However, in these experiments the matrices R̂∗[P(4)

1 , Q∗
]

and R̂∗[P(5)
1 , Q∗

]
shown in Table 5.8 and Table 5.9 were identified. These results could be used to perform

analyses similar to the one done for M̂∗[P(3)
1 ], but we will not pursue this.
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5.5.3 M̃∗[P(k)
1 , Qq

]
A summary of the results for M̃∗[P(k)

1 , Qq

]
are shown in Table 5.10. Notable differences

in comparison to the results for M∗[P(k)
1 , Qq

]
include the reduction in All Equalities &

Inequalities which is due to the fact that constraints corresponding to (A4-P(k)
η ) are only

generated for x ≥ y and x ≤ 1− y for (x, y) ∈ [0, 1]2, as well as the substantial decrease

in Vertices. In experiments related to M̃∗[P(2)
1 , Qq

]
we found that Ṽ∗[P(2)

1 , Q1

]
=

V∗[P(2)
1 , Q∗

]
and R̃∗[P(2)

1 , Q1

]
= R∗[P(2)

1 , Q∗
]
, but that for q > 1

Ṽ∗[P(2)
1 , Qq

]
= R̃∗[P(2)

1 , Qq

]
=

 c0,0 c1,0 c0,1 c2,0 c1,1 c0,2

0 1 −1 0 0 0


which motivates the following conjecture.

Conjecture 5.3. M̃∗[P(2)
1

]
=

{
[0, 1,−1, 0, 0, 0]

}
and M

[
P(2)

1

]
=

{
x − y

}
.

As shown in Table 5.10 in experiments related to M̃∗[P(3)
1 , Qq

]
, the number of

vertices in Ṽ∗[P(3)
1 , Qq

]
, as was expected, increased with q and therefore did not suggest

a vertex set that defines M̃∗[P(3)
1 ]. However, in these experiments the following matrix

was identified

R̃∗[P(3)
1 , Q∗

]
=



c0,0 c1,0 c0,1 c2,0 c1,1 c0,2 c3,0 c2,1 c1,2 c0,3

0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 −1

0 0 0 0 0 0 0 1 −1 0


and based on this matrix we state the following conjecture, in which the supposed func-

tions in M̃∗[P(3)
1 ] are described as linear combinations of the functions corresponding

to the vectors in R̃∗[P(3)
1 , Q∗].
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Class Variables Non-redundant Non-redundant All Vertices Rank of
Equations Inequalities Equations & Vertex

Inequalities Matrix

M̃∗[P(1)
1 , Q1

]
3 3 0 12 1 1

M̃∗[P(2)
1 , Q1

]
6 5 2 17 2 2

M̃∗[P(2)
1 , Q2

]
6 6 0 26 1 1

M̃∗[P(3)
1 , Q2

]
10 8 4 29 4 3

M̃∗[P(3)
1 , Q3

]
10 8 4 40 4 3

M̃∗[P(3)
1 , Q4

]
10 8 5 55 5 3

M̃∗[P(3)
1 , Q5

]
10 8 5 72 5 3

M̃∗[P(3)
1 , Q6

]
10 8 6 93 6 3

M̃∗[P(3)
1 , Q7

]
10 8 6 116 6 3

M̃∗[P(3)
1 , Q8

]
10 8 7 143 7 3

M̃∗[P(3)
1 , Q9

]
10 8 7 157 7 3

M̃∗[P(3)
1 , Q10

]
10 8 8 205 8 3

M̃∗[P(3)
1 , Q20

]
10 8 13 695 13 3

M̃∗[P(3)
1 , Q30

]
10 8 18 1485 18 3

M̃∗[P(3)
1 , Q40

]
10 8 23 2575 23 3

M̃∗[P(3)
1 , Q50

]
10 8 28 3965 28 3

M̃∗[P(4)
1 , Q3

]
15 12 7 44 8 4

M̃∗[P(4)
1 , Q10

]
15 13 8 209 8 3

M̃∗[P(4)
1 , Q20

]
15 13 13 699 13 3

M̃∗[P(4)
1 , Q30

]
15 13 18 1489 18 3

M̃∗[P(4)
1 , Q40

]
15 13 23 2579 23 3

M̃∗[P(4)
1 , Q50

]
15 13 28 3969 28 3

M̃∗[P(5)
1 , Q4

]
21 16 13 63 34 6

M̃∗[P(5)
1 , Q10

]
21 16 61 213 529 6

M̃∗[P(5)
1 , Q20

]
21 16 221 703 4336 6

Table 5.10: M̃∗[P(∗)
1 , Q∗

]
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Conjecture 5.4. There exist λi ∈ R for i = 1, · · · , 3 such that if

µc(x, y) = λ1

(
(x − 1/2) − (y − 1/2)

)
+

λ2

(
(x − 1/2)3 − (y − 1/2)3

)
+

λ3

(
(x − 1/2)2(y − 1/2) − (x − 1/2)(y − 1/2)2

)
then µc ∈ M̃∗[P(3)

1 ].

Following the same approach used is the analysis of M∗[P(3)
1 ], we now assume this

representation of µc ∈ M̃∗[P(3)
1 ] and rewrite the axioms in this 3-dimensional subspace

rather than in the original 10-dimensional space. For a given q ∈ Z+ and for each

(x, y) ∈ Qq, we have

λ1 +
λ2

4
− λ3

4
= 1

λ1 + 3
(
x − 1

2
)2

λ2 +
(
2(x − 1

2
)(y − 1

2
) − (y − 1

2
)2

)
λ3 ≥ 0

−λ1 − 3
(
y − 1

2
)2

λ2 +
(
(x − 1

2
)2 − 2(x − 1

2
)(y − 1

2
)
)
λ3 ≤ 0.

As was the case with our analysis of M∗[P(3)
1 , Q∗

]
, the results of computations

for M̃∗[P(3)
1 , Q∗

]
with lrs in the 3-dimensional subspace were similar to those for

M̃∗[P(3)
1 , Q∗

]
in the 10-dimensional subspace that are shown in Table 5.10. Work-

ing in the 3-dimensional rather than the 10-dimensional subspace, again facilitated

visualization and reduced the time required by lrs thereby allowing us to utilize larger

values of q.

Figure 5.7 shows the set Ṽ∗[P(3)
1 , Q100

]
which has 53 vertices, with Figure 5.7a

depicting the fact that all vertices in Ṽ∗[P(3)
1 , Q100

]
lie in the plane

λ1 +
λ2

4
− λ3

4
= 1,

and Figure 5.7b providing a hypothesized depiction of M̃∗[P(3)
1

]
assuming it is the

convex hull of Ṽ∗[P(3)
1 , Q100

]
. A comparison of Figure 5.4 and Figure 5.7 shows the

relationship between the basis functions of the sets M̂∗[P(3)
1

]
and M̃∗[P(3)

1

]
, and we
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note the absence of
(
(x − 1

2)2 − (y − 1
2)2

)
from the basis set of M̃∗[P(3)

1

]
.

The values, after some minor rounding, of the labeled vertices are provided in Ta-

ble 5.11 which can be seen to correspond to the vertices in Table 5.7 where λ2 = 0

and the corresponding functions are shown as µA, µB, µC , and µD in Figures 5.5 and

Vertex λ1 λ2 λ3 µ

A 3/2 -2 0 3(x2 − y2) − 2(x3 − y3)
B 0 1 -3 (x3 − y3) − 3(x2y − y2x)
C 0 4 0 3(x − y) − 6(x2 − y2) + 4(x3 − y3)
D 3/2 1 3 3(x − y) − 3(x2 − y2) + (x3 − y3) + 3(x2y − y2x)

Table 5.11: Selected elements of Ṽ∗[P(3)
1 , Q∗

]
and functions in M̃∗[P(3)

1 , Q∗
]

Figure 5.6. Similar to V̂∗[P(3)
1 , Q100

]
we note that the vectors AB and AD as well as

the vectors CB and CD are orthogonal.

As shown in Table 5.10 in experiments related to M̃∗[P(4)
1 , Qq

]
and M̃∗[P(5)

1 , Qq

]
,

the number of vertices in Ṽ∗[P(4)
1 , Qq

]
and Ṽ∗[P(5)

1 , Qq

]
respectively, as was expected,

increased with q and therefore did not suggest a vertex set that defines M̃∗[P(4)
1 ] or

M̃∗[P(5)
1 ]. However, in these experiments the matrices R̃∗[P(4)

1 , Q∗
]

and R̃∗[P(5)
1 , Q∗

]
shown in Table 5.12 and Table 5.13 were identified. These results could be used to

perform analyses similar to the one done for M̃∗[P(3)
1 ], but we will not pursue this.
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Chapter 6

Extensions

In this chapter we consider extensions of several of the ideas which we discussed in

earlier chapters.

6.1 Real-Valued Feature Ranking Functions

We begin this section by introducing real-valued feature ranking functions. We then

present some functions from the literature, and draw comparisons with some Boolean

feature ranking functions. We conclude with a discussion of the results of an empirical

study of the performance of real-valued ranking algorithms based on the functions we

discussed.

6.1.1 Ranking Functions and Algorithms

If the vector λ ∈ Rm is the column of a real-valued document-term matrix A, then

a real-valued feature ranking function is a function π : R|T | × R|F | 7→ R that for each

j ∈ V maps the vectors λ[WT ], λ[WF ] to the set of real numbers. The notation π will be

used for a generic real-valued feature ranking function and specific real-valued feature

ranking functions will be denoted as πi for some integer i. When there is an obvious

relationship between a Boolean and a real-valued feature ranking function, we will use

the same value of i. We shall denote the set of all real-valued feature ranking functions

as Π.

Just as with ranking algorithms based on Boolean feature ranking functions, each

π ∈ Π defines a different ranking algorithm and the set Π defines an entire class of

ranking algorithms. We denote the ranking algorithm for a particular π ∈ Π as π-

RANKING, with the definition of this algorithm following that provided in §3.1.
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We now present fourteen real-valued feature ranking functions. Again, let λ ∈ Rm

be the column of a real-valued document-term matrix that corresponds to some feature

in V . We will refer to λ[WT ] and λ[WF ] respectively as the relevant and irrelevant score

vectors, and will let λ̄T and λ̄F denote the mean of λ[WT ] and λ[WF ] . We have added

1 to the denominator of several of the functions in order to avoid division by zero errors.

π0. The function, π0 simply returns a random number sampled from the continuous

uniform distribution U(0,1). It is included as a baseline for comparison with other

functions.

π1. The function, π1 is the ratio of the mean of the relevant score vector to the mean

of irrelevant score vector. It is defined as

π1(λ[WT ], λ[WF ]) =
λ̄T

λ̄F + 1
(6.1)

π4. The function, π4 is the difference of the mean of the relevant score vector and the

mean of irrelevant score vector. It is defined as

π4(λ[WT ], λ[WF ]) = λ̄T − λ̄F (6.2)

We will also consider |π4|.

π8. The function, π8 it is defined as

π8(λ[WT ], λ[WF ]) =
|T |∑
i=1

|F |∑
j=1

∣∣∣ λ[WT ]i − λ[WF ]j
∣∣∣. (6.3)

It is the L1 distance between the relevant score vector and the irrelevant score vector.

π9. The function π9 is the point biserial correlation coefficient. It is the Pearson

Product Moment Correlation between a real-valued and a Boolean vector. In this case

the real-valued vector is λ and the Boolean vector is the vector [1|T |, 0|F |] that indicates

relevance or irrelevance of each document. It is defined as

π9(λ[WT ], λ[WF ]) =
λ̄T − λ̄F

sλ

√
|T ||F |

(|T | + |F |)2
(6.4)
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where sλ is the standard deviation of the vector λ. We will also consider the function

|π9|.

π18. The function, π18 is defined as

π18(λ[WT ], λ[WF ]) = λ̄T . (6.5)

It is the mean of the relevant score vector.

π22. The function, π22 is the ratio of the difference of the relevant score and irrelevant

score vectors, to the sum of the relevant score and irrelevant score vectors. It is defined

as

π22(λ[WT ], λ[WF ]) =
λ̄T − λ̄F

λ̄T + λ̄F + 1
. (6.6)

We will also consider the function |π22|.

π23. The function, π23 is Fisher’s Linear Discriminant. It is defined as

π23(λ[WT ], λ[WF ]) =
(λ̄T − λ̄F )2

vλ[WT ] + vλ[WT ]
(6.7)

where vλ[WT ] and vλ[WF ] are the variances of the vectors λ[WT ] and λ[WF ] respectively.

π24. The function, π24 is a variant of Fisher’s Linear Discriminant. It is defined as

π24(λ[WT ], λ[WF ]) =
λ̄T − λ̄F

sλ[WT ] + sλ[WT ]
(6.8)

where sλ[WT ] and sλ[WF ] are the standard deviations of the vectors λ[WT ] and λ[WF ]

respectively. We will also consider the function |π24|.

π25. The function, π25 is the max{AUC, 1 − AUC} where AUC is the area under the

ROC curve for the vector λ.

π26. The function, π26 is the max{AUC, 1−AUC} where conv. hull(AUC) is the area

under the convex hull of the ROC curve for the vector λ.
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6.1.2 Real-Valued Feature Ranking Function Properties

In this section we will show how many of the concepts we covered in our discussions of

Boolean features and Boolean feature ranking functions translate to real-valued features

and real-values ranking functions. We will continue to utilize the notation from §6.1.1,

however, we will now assume that λ was generated by a real-valued classifier such as f+

in §1.3 for which larger scores are considered indicative of relevant documents, or f−

in §1.3 for which larger scores are considered indicative of irrelevant documents. This

assumption will allow us to closely follow §1.3, and as such we will consider AUC+,

AUC−, U+, and U− and related notation to be as defined there. Many of the parallels

that we discuss are based on the observation that AUC+ and AUC−, and U+ and U−,

as well as λ̄T and λ̄F , in the real-valued model play a role similar to that of x = a/|T |

and y = b/|F | in the Boolean model. That λ̄T and λ̄F are included here is justified

by the fact that while actually a test of the more general hypothesis that λ[WT ] and

λ[WF ] come from the same population, the Wilcoxon test, which is frequently referred

to as a non-parametric version of the two-sample t-test, can be viewed as testing that

the means of two independent samples are different. (see e.g. [36] and [64], p.132-134).

Single Feature Classifier Model. Let λT and λF be randomly selected scores from

λ[WT ] and λ[WF ] respectively. If P(λT > λF ) = 1, or equivalently if AUC+ = 1, or

equivalently if U+ = |T ||F |, or equivalently if λ̄T > 0 and λ̄F = 0 then there exists a

binary classifier that correctly classifies all documents and λ can be viewed as containing

“perfect information”. Similarly, if P(λF > λT ) = 1, or equivalently if AUC− = 1, or

equivalently if U− = |T ||F |, or equivalently if λ̄T = 0 and λ̄F > 0 then also there exists

a binary classifier that correctly classifies all documents and λ can again be viewed as

containing “perfect information”. Note that when λ̄F = 0 the corresponding feature

only appears in relevant documents and when λ̄T = 0 the corresponding feature only

appears in irrelevant documents.

Positive and Negative Features. Let λT and λF be randomly selected scores from

λ[WT ] and λ[WF ] respectively, then if P(λT > λF )−P(λF > λT ) > 0, or equivalently if

AUC+−AUC− > 0, or equivalently if U+−U− > 0, or equivalently if λ̄T − λ̄F > 0, then
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the presence of the corresponding feature in a document is evidence that the document

is relevant and the feature is positive. Similarly, if P(λT > λF ) − P(λF > λT ) < 0, or

equivalently if AUC+ − AUC− < 0, or equivalently if U+ − U− < 0, or equivalently if

λ̄T − λ̄F < 0, then the presence of the corresponding feature in a document is evidence

that the document is irrelevant and the feature is negative.

Monotone Feature Principle. We shall refer to a feature that appears in ω(V,K,

λ̄T -RANKING, ↑), ω(V,K, AUC+-RANKING, ↑), ω(V,K,U+-RANKING, ↑), or ω(V,K,

λ̄T − λ̄F -RANKING, ↑) as a highly ranked positive feature, and a feature that appears

in ω(V,K, λ̄F -RANKING, ↑), ω(V,K, AUC−-RANKING, ↑), ω(V,K,U−-RANKING,

↑), or ω(V,K, λ̄F − λ̄T -RANKING, ↑) as a a highly ranked negative feature. Just as in

the Boolean model, The Monotone Feature Principle for real-valued features says that,

non-noise features in textual data sets, that provide substantial separation, are highly

ranked positive features.

Class Separation and Noise. Let λT and λF be randomly selected scores from λ[WT ]

and λ[WF ] respectively, then if P(λT > λF ) = P(λF > λT ) = 1/2, or equivalently if

AUC+ = AUC− = 1/2, or equivalently if U+/|T ||F | = U−/|T ||F | = 1/2, or equivalently

if λ̄T − λ̄F = 0, then the corresponding feature is a class noise feature. In this case,

the performance of the associated classifier is the same as if it had randomly assigned

scores to documents. Similar to the Boolean case, in the distance of the point (λ̄T , λ̄F )

from the line of class noise x = y in ROC space, provides a measure of separation.

Collection Noise. The variance and standard deviations are classic measures of noise,

with smaller values considered to indicate less noise and larger values considered to

indicate more noise. The denominator of π9 is the standard deviation of λ, but since

it only differs in a monotonic transformation from the variance, we will now consider

the later. Since the variance of λ can be written as Var(λ) = E(λ2)−E(λ)2 and noting

that

E(λ) =
1

|T | + |F |

(
|T |λ̄T + |F |λ̄F

)
we have

Var(λ) =
1

|T | + |F |

m∑
i=1

λ2
i −

1(
|T | + |F |

)2

(
|T |λ̄T + |F |λ̄F

)2
. (6.9)
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Considering Var(λ) as a quadratic function of λ̄T and λ̄F it can be shown that

argmaxVar(λ)(λ̄T ,λ̄F ) =
{
(λ̄T , λ̄F ) : %λ̄T + (1 − %)λ̄F = 0

}
.

So similar to the Boolean case in (4.5), Var(λ) takes its maximum along the line

%λ̄T + (1 − %)λ̄F = 0 (6.10)

and we shall refer to this line of collection noise and to features that appear on this

line as collection noise features.

Strong Collection Noise. Motivated by the fact that the denominator of den(π23) =

Var(λ[WT ])+Var(λ[WF ]) and the denominator of den(π24) = Std(λ[WT ])+Std(λ[WF ]),

we now consider den(π23). The variance of λ[WT ] can be written as

Var(λ[WT ]) = E(λ[WT ]2) + E(λ[WF ])2 =
1
|T |

∑
i∈WT

λ[WT ]2i − λ̄2
T .

After proceeding similarly for Var(λ[WF ]) we can write

den(π23) =
1
|T |

m∑
i∈WT

λ[WT ]2i +
1
|F |

∑
i∈WF

λ[WF ]2i −
(
λ̄2

T + λ̄2
F

)
.

Considering den(π23) to be a quadratic function of λ̄T and λ̄F it can be shown that

den(π23) takes its maximum when λ̄T = λ̄F = 0. So similar to the Boolean case in

Proposition 4.7, den(π23) and den(π24) take their maximum at the point (λ̄T , λ̄F ) =

(0, 0) and we shall refer to this point as the point of strong collection noise.

Separation to Noise Ratios. We now remark that three of the real-valued ranking

functions introduced in §6.1.1, namely π9, π23 and π24 can be viewed as ratios of

separation functions to noise functions.

Real-Valued Feature Ranking Function Axioms. We now state a set of axioms for

real-valued feature ranking function that are similar to those introduced for Boolean

feature ranking functions §5.1. We consider a real-valued feature ranking function,
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π : R|T | × R|F | 7→ R to be desirable if it satisfies the following axioms

λ̄T > 0 and λ̄F = 0 ⇒ π(λ[WT ], λ[WF ]) = 1 (A1)

λ̄T = 0 and λ̄F > 0 ⇒ π(λ[WT ], λ[WF ]) = −1 (A2)

λ̄T − λ̄F = 1/2 ⇒ π(λ[WT ], λ[WF ]) = 0 (A3)

λ̄T ≥ λ̄ ′
T and λ̄F ≤ λ̄ ′

F ⇒ π(λ[WT ], λ[WF ]) ≥ π(λ ′[WT ], λ ′[WF ]) (A4)

Obviously, based on our discussions earlier in this section, these axioms could have been

stated in terms of the AUC, the Wilcoxon statistics, or the P(λT > λF ) where λT and

λF are randomly selected scores from λ[WT ] and λ[WF ] respectively.

6.1.3 Real-valued Feature Ranking Results

In this section, we use the methodology presented in §2 to evaluate the relative perfor-

mance of π-RANKING for each of the feature ranking functions discussed in §6.1.1. The

detailed non-discounted results are provided in Appendix P and the detailed discounted

results are provided in Appendix Q. The non-discounted results are summarized in Ta-

ble 6.1 and the discounted results are summarized in Table 6.2. In addition, Figure 6.1,

Figure 6.2, and Figure 6.3 depict the relationship between σK , θK and ϕK , and νK .

Based on this data we make the following observations.

• The top of the lex-max-min, lex, avg and ϕ̄ rankings, for both the non-discounted

and discounted experiments included the classic feature ranking functions, i.e.

the correlation coefficient and Fisher’s linear discriminant and its variant.

• There seems to be a relatively strong correlation between the rankings of the

feature ranking functions by ν̂ and by ϕ̄

• The feature ranking functions ranked highest in terms of σ̂, notably π8, the L1

distance, were among the worst performing features ranking functions as measured

by ν̂.

• The performance of feature ranking functions and their absolute values was not



203

substantially different.

• Both σK and θK increased with νK , while ϕK decreased with νK .

It is interesting to note that there are obviously quite a few similarities between these

results and the results of the experiments using Boolean feature ranking functions. We

will discuss this observation further in §7.

Lex-Max-Min Lex Avg ν̂ θ̂ σ̂ ϕ̄

π23 |π9| |π24| π9 0.01 |π4| 0.98 π8 0.51 |π9| 0.89
|π24| π9 π23 |π9| 0.01 π8 0.98 |π4| 0.47 π9 0.88
|π22| π24 π24 π24 0.02 |π22| 0.98 |π22| 0.46 |π24| 0.88
π22 |π24| |π9| π0 0.04 π23 0.98 π25 0.46 π23 0.87
π24 π0 |π22| |π24| 0.04 |π24| 0.98 π26 0.45 π24 0.87
|π4| π23 |π4| π23 0.07 π25 0.98 π4 0.43 |π4| 0.86
π4 |π22| π9 |π22| 0.12 π26 0.98 π22 0.43 |π22| 0.86
π25 |π4| π25 |π4| 0.13 π4 0.97 π23 0.43 π25 0.86
π9 π22 π22 π22 0.13 π22 0.97 π1 0.41 π4 0.84
|π9| π4 π4 π4 0.14 π24 0.97 π18 0.40 π22 0.84
π26 π25 π26 π25 0.15 π9 0.96 |π24| 0.40 π26 0.83
π8 π26 π8 π26 0.20 |π9| 0.96 π24 0.38 π8 0.78
π1 π8 π1 π8 0.48 π1 0.92 π9 0.35 π1 0.72
π18 π1 π18 π1 0.53 π18 0.90 |π9| 0.35 π18 0.69
π0 π18 π0 π18 0.54 π0 0.16 π0 0.01 π0 0.06

Table 6.1: π-RANKING Not Discounted Stopwords Included

6.2 Boolean Greedy Algorithms

Given a Boolean feature ranking function µ ∈ M, a Boolean document-term matrix A,

two features i, j ∈ V , and a Boolean function f : B × B 7→ B we can compute

µ
(
f(i, j)

)
= µ(af(i,j), bf(i,j), cf(i,j), df(i,j))
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Lex-Max-Min Lex Avg ν̂ θ̂ ′ σ̂ ′ ϕ̄

|π24| |π9| |π24| π9 0.01 |π4| 0.98 |π22| 0.41 |π9| 0.89
π24 π9 |π9| |π9| 0.01 |π22| 0.98 |π4| 0.40 π9 0.88
π23 π24 π24 π24 0.02 π23 0.98 π23 0.40 |π24| 0.88
π9 |π24| π23 π0 0.04 π25 0.98 |π24| 0.39 π23 0.87
|π9| π0 π9 |π24| 0.04 π4 0.97 π25 0.39 π24 0.87
|π22| π23 |π22| π23 0.07 π8 0.97 π22 0.37 |π4| 0.86
π22 |π22| |π4| |π22| 0.12 π22 0.97 π24 0.37 π22 0.86
|π4| |π4| π25 |π4| 0.13 π24 0.97 π4 0.36 |π22| 0.86
π4 π22 π22 π22 0.13 |π24| 0.97 π9 0.35 π25 0.86
π25 π4 π4 π4 0.14 π26 0.97 |π9| 0.35 π4 0.85
π26 π25 π26 π25 0.15 π9 0.96 π26 0.35 π26 0.85
π8 π26 π8 π26 0.20 |π9| 0.96 π8 0.30 π8 0.80
π1 π8 π1 π8 0.48 π1 0.86 π1 0.23 π1 0.74
π18 π1 π18 π1 0.53 π18 0.84 π18 0.22 π18 0.72
π0 π18 π0 π18 0.54 π0 0.13 π0 0.01 π0 0.06

Table 6.2: π-RANKING Discounted Stopwords Included

where

af(i,j) , the number of relevant documents for which f(i, j) = 1

bf(i,j) , the number of irrelevant documents for which f(i, j) = 1

cf(i,j) , the number of relevant documents for which f(i, j) = 0

df(i,j) , the number of irrelevant documents for which f(i, j) = 0

and µ
(
f(i, j)

)
can be viewed as the value of µ for the “feature” f(i, j). For example, if f

is the AND function, the “feature” f(i, j) is the composite feature iAND j, and af(i,j) is

the number of relevant documents that contain feature i and feature j. Returning to the

fuel topic we discussed in §4 one might imagine that the feature “crude” AND “prices”

might be an interesting feature. Notice that, the information in the contingency tables

¢j for all j ∈ V is not sufficient to compute µ
(
f(i, j)

)
. In order to calculate af(i,j) for

any f , we must know which relevant documents contain feature i and which relevant

documents contain feature j. The vectors A[WT , i] and A[WT , j] contain exactly this

information, whereas the contingency tables ¢i and ¢j only tell us how many relevant



208

documents contain each feature. For example to compute af(i,j) where f is the AND

function, simply compute the vector

fWT
(i, j) = A[WT , {i}] AND A[WT , {j}]

and then count the number of 1s that it contains. Clearly, the calculation of the

vector fWT
(i, j) can be consider an intermediate step for subsequent computations. For

example, we could use it to compute µ
(
f(f(i, j), k)

)
for i, j, k ∈ V .

The ability to compute the value of a feature ranking function µ ∈ M for a composite

feature can be used to implement a greedy feature selection algorithm as shown below.

µ-GREEDY

Input: The set V , a Boolean document-term matrix A, a Boolean function f , a

function µ ∈ M, a sort order l∈ {↓, ↑} and an integer K.

Step 1: Set k := 0, λ = 0|T |+|F |, z = 0.

Step 2: Set sk := j∗, z := µ
(
f(λ, j∗)

)
, and λ := f(λ, j∗), where j∗ :=

argmax j∈V \S µ
(
f(λ, {j})

)
.

Step 3: If k := K then set (sk) := s1, s2, · · · , sK and goto Output, otherwise set

k := k + 1 and goto Step 2.

Output: Output (sk).

At each iteration a typical greedy algorithm selects the feature which will result in

the largest increase in the objective function, which in this case is the feature ranking

function µ, and it terminates when the objective function cannot be increased. It should

be mentioned that µ-GREEDY differs in that at each iteration, it adds the feature that

results in the largest value of z, even if that value is does not represent an increase in

z, until K features have been selected. The reason for this algorithmic design is that

our feature set evaluation methodology requires each set to contain exactly K features.
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While µ-GREEDY can be implemented for any Boolean function f , we only used the

Boolean OR in the experiments discussed in §6.2.1.

6.2.1 µ-GREEDY Results

In this section, we use the methodology presented in §2 to evaluate the relative per-

formance of µ-GREEDY for each of the Boolean feature ranking functions discussed

in §3.8. The detailed non-discounted results are provided in Appendix M and the de-

tailed discounted results are provided in Appendix N. The non-discounted results are

summarized in Table 6.3 and the discounted results are summarized in Table 6.4. In

addition, Figure 6.4, Figure 6.5, and Figure 6.6 depict the relationship between σK , θK

and ϕK , and νK . Based on this data we make the following observations.

• The feature ranking functions ranked highest in terms of σ̂, were among the worst

performing features ranking functions as measured by ν̂.

• Interestingly, µ8 selected relatively little noise but achieved the best separation of

those functions that selected relatively little noise. However, other feature ranking

functions such as µ18 and µ19 that selected a large amount of noise when used in

µ-RANKING, continued to do so in µ-GREEDY.

• Further details related to this observation are provided in Appendix O where in

Table O.1 and Figure O.2 where we note the relatively low values of σK [J ] and

σ̇[J ] associated with µ8, and the continued high values associated with µ18 and

µ19.

• The value of σ̂ achieved by functions that selected relatively little noise was lower

than in the µ-RANKING results.

• Except for the functions that selected a relatively large number of noise features,

there was little variation in the values of ϕK .

Further support for this suggestion is offered by the data in Appendix O where in

Table O.1 and Figure O.2 we see that µ8 had the largest value of σK [J ], and along with

µ19 had the second largest value of σ̇[J ].
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Lex-Max-Min Lex Avg ν̂ θ̂ σ̂ ϕ̄

µ8 µ4 µ2 µ1 0.00 µ2 0.98 |µ5| 0.41 µ2 0.91
µ5 µ15 µ4 µ3 0.00 µ4 0.98 µ18 0.41 µ7 0.91
µ6 µ24 µ13 µ4 0.00 |µ4| 0.98 |µ6| 0.40 |µ7| 0.91
µ13 µ23 µ15 µ9 0.00 µ8 0.98 µ19 0.36 µ17 0.91
|µ4| µ12 µ24 µ10 0.00 µ12 0.98 µ5 0.28 µ3 0.90
µ15 µ21 µ12 µ11 0.00 µ13 0.98 µ6 0.28 µ9 0.90
µ4 µ10 µ21 µ12 0.00 µ15 0.98 µ8 0.27 |µ9| 0.90
µ23 µ16 µ23 µ15 0.00 µ21 0.98 µ13 0.23 µ10 0.90
µ2 µ9 |µ24| µ16 0.00 µ23 0.98 µ4 0.22 µ11 0.90
µ12 µ11 |µ4| µ20 0.00 µ24 0.98 |µ4| 0.22 µ12 0.90
µ21 µ3 µ8 |µ20| 0.00 |µ24| 0.98 µ2 0.21 µ15 0.90
µ24 µ20 µ10 µ21 0.00 µ7 0.97 µ14 0.21 µ16 0.90
|µ24| |µ20| µ16 µ22 0.00 |µ7| 0.97 µ15 0.21 µ20 0.90
µ9 µ1 µ7 |µ22| 0.00 µ9 0.97 µ23 0.21 |µ20| 0.90
µ10 µ22 |µ7| µ23 0.00 |µ9| 0.97 µ24 0.21 µ21 0.90
µ11 |µ22| µ9 µ24 0.00 µ10 0.97 |µ24| 0.21 µ24 0.90
µ16 µ13 µ11 µ2 0.01 µ11 0.97 µ10 0.20 |µ24| 0.90
|µ9| |µ4| |µ9| |µ4| 0.01 µ16 0.97 µ12 0.20 µ1 0.89
µ7 µ2 µ17 µ7 0.01 µ17 0.96 µ16 0.20 µ4 0.89
|µ7| |µ24| µ3 |µ7| 0.01 µ5 0.95 µ21 0.20 µ13 0.89
µ17 µ7 µ20 |µ9| 0.01 µ6 0.95 µ7 0.19 µ22 0.89
µ3 |µ7| |µ20| µ13 0.01 µ3 0.92 |µ7| 0.19 µ23 0.89
µ20 |µ9| µ5 µ17 0.01 µ14 0.92 µ9 0.19 |µ4| 0.88
|µ20| µ17 µ6 |µ24| 0.01 µ20 0.92 |µ9| 0.19 |µ22| 0.88
µ1 µ8 µ1 µ8 0.02 |µ20| 0.92 µ11 0.19 µ5 0.84
µ22 µ0 µ22 µ0 0.04 |µ6| 0.89 µ17 0.19 µ6 0.84
|µ22| µ5 |µ22| µ5 0.09 |µ5| 0.88 µ3 0.18 µ8 0.84
|µ6| µ6 |µ5| µ6 0.09 µ18 0.88 µ20 0.18 |µ5| 0.73
|µ5| µ14 |µ6| µ14 0.12 µ1 0.86 |µ20| 0.18 |µ6| 0.70
µ14 |µ6| µ14 |µ6| 0.40 µ22 0.86 µ1 0.15 µ18 0.67
µ18 |µ5| µ18 |µ5| 0.41 |µ22| 0.85 µ22 0.15 µ14 0.40
µ19 µ18 µ19 µ18 0.59 µ19 0.84 |µ22| 0.15 µ19 0.27
µ0 µ19 µ0 µ19 0.59 µ0 0.15 µ0 0.01 µ0 0.06

Table 6.3: µ-GREEDY Not Discounted Stopwords Included
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Lex-Max-Min Lex Avg ν̂ θ̂ ′ σ̂ ′ ϕ̄

µ4 µ4 µ2 µ1 0.00 µ2 0.98 |µ5| 0.27 µ2 0.91
µ13 µ15 µ4 µ3 0.00 µ4 0.98 |µ6| 0.27 µ7 0.91
|µ4| µ24 µ15 µ4 0.00 |µ4| 0.98 µ8 0.27 |µ7| 0.91
µ2 µ23 µ24 µ9 0.00 µ12 0.98 µ5 0.25 µ17 0.91
µ15 µ12 µ12 µ10 0.00 µ13 0.98 µ6 0.25 µ3 0.90
µ24 µ21 µ13 µ11 0.00 µ15 0.98 µ4 0.22 µ9 0.90
|µ24| µ10 µ21 µ12 0.00 µ21 0.98 |µ4| 0.22 |µ9| 0.90
µ23 µ16 µ23 µ15 0.00 µ23 0.98 µ13 0.22 µ10 0.90
µ12 µ9 |µ24| µ16 0.00 µ24 0.98 µ2 0.21 µ11 0.90
µ21 µ11 |µ4| µ20 0.00 |µ24| 0.98 µ15 0.21 µ12 0.90
µ10 µ3 µ10 |µ20| 0.00 µ7 0.97 µ23 0.21 µ15 0.90
µ16 µ20 µ16 µ21 0.00 |µ7| 0.97 µ24 0.21 µ16 0.90
µ8 |µ20| µ7 µ22 0.00 µ8 0.97 |µ24| 0.21 µ20 0.90
µ7 µ1 |µ7| |µ22| 0.00 µ9 0.97 µ10 0.20 |µ20| 0.90
|µ7| µ22 µ8 µ23 0.00 |µ9| 0.97 µ12 0.20 µ21 0.90
µ9 |µ22| µ9 µ24 0.00 µ10 0.97 µ16 0.20 µ24 0.90
µ11 µ13 µ11 µ2 0.01 µ11 0.97 µ18 0.20 |µ24| 0.90
|µ9| |µ4| |µ9| |µ4| 0.01 µ16 0.97 µ21 0.20 µ1 0.89
µ17 µ2 µ17 µ7 0.01 µ17 0.96 µ7 0.19 µ4 0.89
µ3 |µ24| µ3 |µ7| 0.01 µ5 0.94 |µ7| 0.19 µ13 0.89
µ20 µ7 µ20 |µ9| 0.01 µ6 0.94 µ9 0.19 µ22 0.89
|µ20| |µ7| |µ20| µ13 0.01 µ3 0.92 |µ9| 0.19 µ23 0.89
µ5 |µ9| µ5 µ17 0.01 µ20 0.92 µ11 0.19 |µ4| 0.88
µ6 µ17 µ6 |µ24| 0.01 |µ20| 0.91 µ17 0.19 |µ22| 0.88
µ1 µ8 µ1 µ8 0.02 µ14 0.89 µ3 0.18 µ5 0.85
µ22 µ0 µ22 µ0 0.04 µ1 0.86 µ14 0.18 µ6 0.85
|µ22| µ5 |µ22| µ5 0.09 |µ5| 0.86 µ20 0.18 µ8 0.83
|µ6| µ6 |µ5| µ6 0.09 µ22 0.86 |µ20| 0.18 |µ5| 0.74
|µ5| µ14 |µ6| µ14 0.12 |µ6| 0.85 µ1 0.15 |µ6| 0.71
µ14 |µ6| µ14 |µ6| 0.40 |µ22| 0.85 µ19 0.15 µ18 0.71
µ18 |µ5| µ18 |µ5| 0.41 µ18 0.82 µ22 0.15 µ14 0.32
µ19 µ18 µ19 µ18 0.59 µ19 0.75 |µ22| 0.15 µ19 0.17
µ0 µ19 µ0 µ19 0.59 µ0 0.13 µ0 0.01 µ0 0.05

Table 6.4: µ-GREEDY Discounted Stopwords Included
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6.3 Lexicographic Greedy Algorithms

We have seen that while using µ8 in µ-RANKING in selects the feature set with the

maximum average Hamming distance, it also selects a large number of noise features.

By contrast, the use of µ4 with µ-RANKING is in concert with the Feature Monotonicity

Principle, and does not have this problem. In this section we investigate an approach

for using this observation to develop a set of extensions the lexicographic Hamming

distance φα and then using these extensions to implement a class of greedy algorithms.

If u, v ∈ Bn then we shall let

d̂y(u, v) = d̂y(u[S], v[S]) =
∑
j∈S

uj − vj

where y = χS for some S ⊆ V . While we will view d̂y(u, v) as a measure of the

“distance” between the vectors u and v, it clearly is not a metric, e.g. it may be

negative, and owing to this fact will refer it as the Hamming difference. Just as the

feature ranking function µ8 is based on the Hamming distance, the feature ranking

function µ4 can be seen to be based on the Hamming difference. Now, recalling that

the vector h(y) is based on the Hamming distance, and that the lexicographic Hamming

distance, φα(y) is a function of h(y), we now show how to define a variant of h(y) that

is based on the Hamming difference, and show how it can be used to define a variant

of φα(y).

If again y = χS for some S ⊆ V , then we define the vector ĥ(y) =
[
ĥ+(y), ĥ−(y)

]
where

ĥ+(y) =
[
ĥ+

o (y), ĥ+
1 (y), · · · , ĥ+

n (y)
]

and

ĥ+
k (y) =

∣∣∣ {
(u, v) ∈ T × F : d̂y(u, v) = k

} ∣∣∣
for k = 0, 1, . . . , n, and

ĥ−(y) =
[
ĥ−

1 (y), · · · , ĥ−
n (y)

]
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and

ĥ−
k (y) =

∣∣∣ {
(u, v) ∈ T × F : d̂−y (u, v) = −k

} ∣∣∣
for k = 1, . . . , n. The components ĥ+

k (y) for k = 0, 1, . . . , n are the number of pairs in

T [S] × F [S] that are exactly at Hamming difference k with ĥ+
k (y) = 0 for any k > |S|,

and the components ĥ−
k (y) for k = 1, . . . , n are the number of pairs in T [S]×F [S] that

are exactly at Hamming difference −k. Now, using ĥ we define

φ∆
α (y) =

n∑
k=0

(
ĥ+

k (y) − ĥ−
k (y)

)(
1 − αk

)
.

Just as φα(y) can be viewed as a weighted version of the average Hamming distance,

φ∆
α (y) can be viewed as a weighted version of the average Hamming difference. It is also

possible to develop variants to the function θ and ρ. Noting that h0(y) is the number

of relevant-irrelevant pairs that are not separated by a set S ⊆ V we can write

θ(y) =
n∑

k=1

hk(y)

and will define

θ∆(y) =
n∑

k=1

ĥ+
k (y) +

n∑
k=1

ĥ−
k (y).

We note that we can write

ρ(y) = min{k : 1 ≤ k ≤ K and hk(y) > 0}

and will define

ρ∆(y) = min{k : 1 ≤ k ≤ K and h+
k (y) > 0}.

In order to use φ∆
α (y) or other functions based on h(y) or ĥ(y) in a greedy algorithm

we now introduce two matrices. Following [13], we shall let A(T,F ) = [arj ] denote the

|T ||F | × n matrix in which arj = |uj − vj | where u = A[rT , ·] and v = A[rF , ·] for all

r = (rT , rF ) ∈ WT × WF and all j ∈ V . That is, the rows of A(T,F ) are constructed by

computing the absolute value of the difference of each u ∈ T and v ∈ F . We will refer
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to this matrix as the Hamming distance matrix.

In addition, we will let Â(T,F ) = [arj ] denote the |T ||F | × n matrix in which arj =

uj − vj where u = A[rT , ·] and v = A[rF , ·] for all r = (rT , rF ) ∈ WT × WF and all

j ∈ V , i.e.

ârj =


1 if uj = 1 and vj = 0,

0 if uj = vj , and

−1 if uj = 0 and vj = 1,

and A(T,F ) = |Â(T,F )|. We will refer to this matrix as the Hamming difference matrix.

Informally, A(T,F ) supports a model of the differences between relevant and irrelevant

documents that is based on µ8, while the model employed by Â(T,F ) is based on µ4. In

fact, if j ∈ V , aj is a column in A(T,F ), âj is a column in Â(T,F ), and ¢j ∈ ¢ then

µ8(¢j) =
1

|T ||F |

|T ||F |∑
i=1

ai,j and µ4(¢j) =
1

|T ||F |

|T ||F |∑
i=1

âi,j .

However, since both A(T,F ) and Â(T,F ) contain the distance between each relevant-

irrelevant document pair, they can be used to calculate much more sophisticated dis-

tance measures φα(y) and φ∆
α (y) that are based the vector h(y) and ĥ(y) respectively

and can be used to update these vectors as the set S changes.

If j ∈ V and S = {j}, and y = χS , then the column vectors A(T,F )[·, {j}] and

Â(T,F )[·, {j}] respectively contain all of the information required to compute h(y) and

ĥ(y). Further, if S ′ = {j, j ′} and y ′ = χS ′
for j ′ ∈ V , then the column vectors

A(T,F )[·, {j}] + A(T,F )[·, {j ′}] and Â(T,F )[·, {j}] + Â(T,F )[·, {j ′}] contain all of the in-

formation required to compute h(y ′) and ĥ(y ′). This observation can be used in an

obvious way to implement a class of greedy feature selection algorithms as shown below.

hk-GREEDY

Input: The set V , a Hamming distance matrix A, a function φα, and an integer

K.
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Step 1: Set k := 0, λ = 0|T |+|F |, z = 0.

Step 2: Set sk := j∗, and z := φα(λ + a∗j ), and λ := λ + a∗j , where j∗ :=

argmax j∈V \S φα

(
λ + aj

)
, and aj , aj∗ are columns in A.

Step 3: If k := K then set (sk) := s1, s2, · · · , sK and goto Output, otherwise set

k := k + 1 and goto Step 2.

Output: Output (sk).

Notice there is a slight abuse of notation in our definition of hk-GREEDY in that

we write φα as function of a column vector rather than a subset of V . Also notice that

hk-GREEDY can clearly be adapted to the situation where A is a Hamming difference

matrix and a function such as φ∆
α , θ∆, or ρ∆ is used. It should also be mentioned that

the remarks regarding the stopping criteria of µ-GREEDY also apply to hk-GREEDY,

i.e. hk-GREEDY always selects K features regardless of the value of the objective

function.

6.3.1 hk-GREEDY Results

In this section, we use the methodology presented in §2 to evaluate the relative perfor-

mance of hk-GREEDY for each of the feature ranking functions discussed in §6.3. The

detailed non-discounted results are provided in Appendix R and the detailed discounted

results are provided in Appendix S. The non-discounted results are summarized in Ta-

ble 6.5 and the discounted results are summarized in Table 6.6. In addition, Figure 6.7,

Figure 6.8, and Figure 6.9 depict the relationship between σK , θK and ϕK , and νK .

Based on this data we make the following observations.

• The algorithms based on ĥ(y) were superior to those based on h(y) on all criteria

and all rankings except for θ̂ and σ̂.

• The superiority of the algorithms based on h(y) on the θ̂ and σ̂ involved the

retrieval of a large number of noise features.
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• It is interesting to note that the number of noise features selected as well as the

separation increased with α for both algorithms based on h(y) and those based

on ĥ(y).

• In φ∆
α -GREEDY, varying α provides a means of selecting points on the σK vs νK

or σ̂ vs ν̂ “efficient frontier”.

These results serve to validate the approach of extending the use of Hamming difference

based functions from their use in ranking algorithms to greedy algorithms based on ĥ(y).
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6.4 Ensemble Methods

In §4.1 and §4.2 we concluded that noise and separation, noise and size (as measured

by θ), and noise and robustness are all pairs of competing criteria. This conclusion

suggests that any optimization problem constructed to perform feature selection on

textual data, should be formulated as a multicriteria optimization problem. In §4.7, we

observed that many Boolean feature ranking functions are ratios of separating functions

to noise functions and therefore are implicitly pursuing a strategy to address this issue.

The following result shows, however, that this strategy may yield a solution that is not

Pareto optimal.

Proposition 6.1. If ψ ∈ Ψ, η ∈ ℵ, and j ∈ V , then

(
V, 〈ψ(xj , yj), η(xj , yj)〉, R2

)
/

ψ(xj , yj)
η(xj , yj)

/
(
R,≤

)
(6.11)

is not efficient.

Proof . Note that since (6.11) creates a total order, it identifies a unique optimum

feature which we denote by j ∈ V . If ψ(xj , yj) ≥ ψ(xi, yi) (or η(xj , yj) ≤ η(xi, yi))

and η(xj , yj) < η(xi, yi) (or ψ(xj , yj) > ψ(xi, yi)) for each i ∈ V , i 6= j, then by

definition feature j is efficient and is correctly identified by (6.11). However, it is

possible for j ∈ V to be the unique optimum for (6.11), but for there to exist an

i ∈ V such that ψ(xj , yj) ≥ ψ(xi, yi) (or η(xj , yj) ≤ η(xi, yi)) and η(xi, yi) ≤ η(xj , yj)

(or ψ(xi, yi) ≥ η(xi, yi)), in which case the set of efficient features contains both i

and j. ¥

As an example of the case where the efficient set contains multiple features, let

V = {1, 2, 3} with
(
ψ(x1, y1), η(x1, y1)

)
= (0.8, 0.1),

(
ψ(x2, y2), η(x2, y2)

)
= (0.9, 0.2),

and
(
ψ(x3, y3), η(x3, y3)

)
= (0.7, 0.3). Since 0.8/0.1 > 0.9/0.2 > 0.7/0.3, feature 1 will

be the unique optimum found by (6.11), but the efficient set contains both feature 1

and feature 2. So, if there is a unique efficient feature, then (6.11) will identify it, but

if there are multiple efficient features, then it “artificially” ranks one above the other.
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By contrast lex-max-min1, as shown in Table 6.7, finds that the efficient set consists of

both feature 1 and feature 2.

Feature ψ 1 − η 1rst Worst 2nd Worst
1 0.8 0.9 0.8 0.9
2 0.9 0.8 0.8 0.9
3 0.7 0.7 0.7 0.7

Table 6.7: Lex-Max-Min Solution

In order to address the fact that feature selection involves multiple competing crite-

ria we will consider two families of feature selection algorithms; one based on lex-max-

min and the other based on the weighted sum method. Let εi ⊆ M∪ Ψ ∪ ℵ for some

index i. The feature selection algorithm `i-ENSEMBLE uses a similar implementation

of lex-max-min to that defined in §2.14, with the criteria in εi, to rank V . The feature

selection algorithm αi-ENSEMBLE ranks V by the average of the criteria in εi. Since

each subset of εi ⊆ M∪Ψ∪ℵ defines a different ranking algorithm we have defined two

classes of ranking algorithms, and owing to the relationship between the sets of criteria

and the Boolean feature ranking functions, we will collectively refer to these algorithms

as µ-ENSEMBLE algorithms.

We will limit ourselves to considering the performance of implementations of µ-

ENSEMBLE algorithms based on the following sets of criteria.

• ε1 =
{

µ4, η1 }

• ε2 =
{

µ4, η2 }

• ε3 =
{

µ4, η1, η
(%)
2 }

• ε4 =
{

µ9, µ11, µ12, µ16, µ17, µ24 }

• ε5 =
{

µ9, |µ9|, µ10, µ11, µ12, µ16, µ17, µ21, µ23, µ24 , |µ24| }

1Note that we use 1 − η since smaller values are preferred and all values of η are in [0,1].
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We recall that η1 was given in (4.3) and corresponds to den(µ9), η2 was given in (4.9)

and corresponds to den(µ23). We now introduce

η
(%)
2 = %x(1 − x) + (1 − %)y(1 − y)

which is a variant of η2 weighted by the collection weight factors % and 1−%. The sets `1,

`2, and `3, combine the prototypical separating function µ4 with a different collection

of noise functions. These sets will allow us to compare the traditional approach of using

the ratio of a separating function to a noise function to rank features with the use of

ensemble algorithms where the criteria include separating functions and noise functions

and ranking is accomplished either using lex-max-min or the weighted sum method.

6.4.1 µ-ENSEMBLE Results

In this section, we use the methodology presented in §2 to evaluate the relative per-

formance of each variant of µ-ENSEMBLE that was introduced in §6.4. The detailed

non-discounted results are provided in Appendix T and the detailed discounted results

are provided in Appendix U. The non-discounted results are summarized in Table 6.8

and the discounted results are summarized in Table 6.9. In addition, Figure 6.10, Fig-

ure 6.11, and Figure 6.12 depict the relationship between σK , θK and ϕK , and νK .

Based on this data we make the following observations.

• The performance of µ9-RANKING and α1-ENSEMBLE was similar on both

the non-discounted and discounted measures, with µ9-RANKING having slightly

lower values of ν̂ and slightly larger values of ϕ, and α1-ENSEMBLE having

slightly larger values of θ̂ and σ̂.

• The performance of µ24-RANKING and α2-ENSEMBLE was also similar, as was

the performance of µ9-RANKING, µ24-RANKING, and α3-ENSEMBLE.

• These observations about αi-ENSEMBLE are interesting in that they suggest

that if ψ ∈ Ψ and η ∈ ℵ, it is possible for an implementation of µ-RANKING
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using a polynomial function such as (1/2)
(
1 − η(x, y) + ψ(x, y)

)
to achieve per-

formance similar an implementation of µ-RANKING using the rational function

ψ(x, y)/η(x, y).

• As shown in the plots in Appendix T and Appendix U, the `i-ENSEMBLE algo-

rithms, with the exception of `4-ENSEMBLE had noticeably higher variance on

all measures than the corresponding αi-ENSEMBLE algorithms.

• Of the ensembles ε4 and ε5 which contained feature ranking functions from M, the

performance of `4-ENSEMBLE was clearly better than that of `5-ENSEMBLE,

while the performance of α4-ENSEMBLE and α5-ENSEMBLE was similar.

Lex-Max-Min Lex Avg ν̂ θ̂ σ̂ ϕ̄

α1 α2 `4 α2 0.01 `1 0.97 `1 0.43 α5 0.89
`4 α3 α1 α3 0.01 `3 0.97 `3 0.43 `4 0.88
α2 α4 α2 α4 0.01 `4 0.97 `2 0.42 α4 0.88
α3 α5 α3 α5 0.01 α1 0.97 α1 0.39 α1 0.87
α4 α1 α4 `4 0.02 α2 0.97 `4 0.38 α2 0.87
α5 `4 α5 α1 0.02 α3 0.97 α2 0.37 α3 0.87
`2 `5 `2 `5 0.05 `2 0.96 α3 0.37 `2 0.85
`5 `2 `1 `2 0.11 α4 0.96 α4 0.36 `5 0.85
`1 `1 `3 `1 0.13 α5 0.96 α5 0.35 `1 0.84
`3 `3 `5 `3 0.13 `5 0.95 `5 0.31 `3 0.84

Table 6.8: µ-ENSEMBLE Not Discounted Stopwords Included

Lex-Max-Min Lex Avg ν̂ θ̂ ′ σ̂ ′ ϕ̄

`4 α2 `4 α2 0.01 `1 0.97 α1 0.38 α5 0.89
α2 α3 α1 α3 0.01 `3 0.97 `1 0.37 `4 0.88
α3 α5 α2 α4 0.01 `4 0.97 `2 0.37 α2 0.88
α1 α4 α3 α5 0.01 α1 0.97 `3 0.37 α4 0.88
α5 α1 α5 `4 0.02 α2 0.97 `4 0.37 α1 0.87
α4 `4 α4 α1 0.02 α3 0.97 α2 0.37 α3 0.87
`5 `5 `2 `5 0.05 `2 0.96 α3 0.37 `1 0.86
`2 `2 `1 `2 0.11 α4 0.96 α4 0.35 `2 0.86
`1 `1 `3 `1 0.13 α5 0.96 α5 0.35 `3 0.86
`3 `3 `5 `3 0.13 `5 0.95 `5 0.29 `5 0.85

Table 6.9: µ-ENSEMBLE Discounted Stopwords Included
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Chapter 7

Conclusions

In this dissertation we used a combination of empirical and theoretical tools to analyze

feature selection selection algorithms. We now present an overview of the material.

• Typically the evaluation of feature selection algorithms involves comparison of the

performance of one or more classification algorithms on a data set before and after

feature selection has been performed. By contrast, to evaluate the performance of

feature selection algorithms we introduced a set of criteria that measure properties

of the feature set itself. Included in this set of criteria are direct measures of

separation and noise as well as indirect measures of size and quality. When a

measure is monotonically non-decreasing in the number of features selected, we

used the AUC of the measure as a function of the number of features selected,

and when this was not the case we simply computed the measure for different

size feature sets and used the average of these values. In order to understand the

performance of algorithms as a function of these multiple criteria we ranked them

using the lex-max-min ordering.

• We described five models which form the basis of many Boolean feature ranking

functions. Specifically, we described the probabilistic model, the term frequency

model, the separation model, the information retrieval model, and the single

feature classifier model, and presented a review of thirty-two functions in terms

of these models. Typically such functions are viewed as mapping the four elements

of a 2 × 2 contingency table to the set of real numbers, but we found it useful to

view them to be functions in ROC space. Most of these functions were from the

literature, but we also introduced a new function which we called the rareness.

From the single feature classifier model and ROC curves we also developed a



233

definition of positive and negative features. Following this review we showed that

several classic feature ranking functions are actually monotonic transformations

of each other.

• Using the Reuters-21578 text categorization test collection, we ran a series of ex-

periments and used our feature set evaluation methodology to assess the perfor-

mance of the Boolean feature ranking functions that we studied. Not surprisingly,

many of the classic feature ranking functions such as the correlation coefficient,

the entropy, Fα, Fisher’s linear discriminant and its variants, and the Gini criteria,

exhibited some of the best performance. However, the results of these experiments

also showed that paradoxically the functions which had the largest separation also

selected the most noise, i.e. they indicated that noise separates.

• Motivated by the idea that noise separates, we performed several additional exper-

iments to better understand this phenomenon. We used variants of our measures

that were discounted when noise features were selected. Using these discounted

measures we were able to confirm that stopwords, which are known noise features,

are strong separators. We also noted with interest that the new rareness function

performed especially well on the discounted measures. In addition, in experiments

in which stopwords were eliminated a priori, we were able to conclude that there

are many noise features that are not stopwords. We also noticed in plots of sepa-

ration versus noise that many of the functions which appeared on what we loosely

considered to be the “efficient frontier”, and especially those which selected very

little noise, and achieved moderate separation, were rational functions in which

the numerator and denominator were each members of a small set of functions.

• Viewed in ROC space, both the numerators and denominators of these rational

functions measured the distance from an arbitrary feature to either a special

feature, or a special set of features. The numerators measure the distance from

what we refer to as the line of class noise, provide a measure of separation, and

are either the difference of the positive and negative feature frequencies or the

square of this difference. The denominators measure the distance from what we
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refer to as the line of collection noise or from the point of strong collection noise

and provide a measure of noise. By assuming that textual data follows a Zipf

distribution, we were also able to show the equivalence of two characterizations

of a noise feature. We also observed what we refer to as the monotone feature

principle, which states that in contrast to many non-textual data sets, in textual

data sets, non-noise features that provide substantial separation are highly ranked

positive features.

• In an effort to broaden our understanding of the set of desirable Boolean feature

ranking functions we defined a set of linear axioms which we believe that such

functions should satisfy. Then we considered the set of all functions that satisfy

these axioms and can be represented as a linear combination of a set of finite

basis functions. The basis we used allowed us to consider functions that are finite

degree two-dimensional power series about the point (1/2, 1/2) in ROC space. We

were able to establish several properties of the set of functions which satisfy these

axioms, including that it is convex, that it has an infinite number of vertices, and

that it included functions from the literature. We also used the lrs software tools

to identify the vertex sets for several low dimensional representations, and the

GGobi software tools to visualize these vertex sets.

• We presented a natural extension of the axioms for Boolean feature ranking func-

tions to real-valued feature ranking functions. In addition to those based on

real-valued feature ranking functions, we also considered several other feature

ranking algorithms including two greedy algorithms and one that employs an en-

semble of ranking functions. By repeating many of our experiments with these

new algorithms we were able to see that the conclusion that separation should

be measured by the difference of the positive and negative feature frequencies

extends beyond the Boolean model.

Future work related to this dissertation could include investigating the performance

of new feature ranking functions that were identified as satisfying our axioms. In

addition, we note that the approach we took to study of set of functions satisfying our
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axioms is very general, and many variants could be pursued using a different set of

axioms and different basis functions.
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Appendix A

Correlation Coefficient

This appendix contains the derivation of the correlation coefficient which is denoted µ9

and introduced in (3.79). For a given feature t and a given document, let X and Y be

random variables with

X =

 1 if feature t appears in the document,

0 if feature t appears in the document.

and

Y =

 1 if the document is relevant,

0 if the document is irrelevant.

The formula for the correlation coefficient is

r(X,Y ) =
E[XY ] − E[X]E[Y ]√

(E[X2] − E[X]2)(E[Y 2] − E[Y ]2)
(A.1)

Using the notation introduced in §1.2 and

ρ , encoding for a relevant document

ρ , encoding for an irrelevant document

τ , encoding that a feature is present

τ , encoding that a feature is not present

we have

E[X] = τ
a + b

a + b + c + d
+ τ

c + d

a + b + c + d
(A.2)

E[X2] = τ2 a + b

a + b + c + d
+ τ2 c + d

a + b + c + d
(A.3)
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E[Y ] = ρ
a + c

a + b + c + d
+ ρ

b + d

a + b + c + d
(A.4)

E[Y 2] = ρ2 a + c

a + b + c + d
+ ρ2 b + d

a + b + c + d
(A.5)

E[XY ] = τρ
a

a + b + c + d
+ τρ

b

a + b + c + d
(A.6)

+ τρ
c

a + b + c + d
+ τρ

d

a + b + c + d
(A.7)

r(X,Y ) =
τρ(ad − bc) + τρ(ad − bc) − τρ(ad − bc) − τρ(ad − bc)

(τ − τ)(ρ − ρ)
√

(a + b)(c + d)(a + c)(b + d)
(A.8)

Now we remark that the correlation coefficient is invariant under any linear transfor-

mation of X and Y , that is,

r(X,Y ) = r(α1X + β, α2Y + β).

This observation follows easily from the fact that for any random variable Z

E[αZ + β] = αE[Z] + β

and

V [αZ + β] = α2V [Z]

Therefore, the correlation is independent under a linear transformation of the encoding

(τ, τ , ρ, ρ).

For example, the linear transformation 2X−1 maps (0, 1) to (−1, 1). For (τ, τ , ρ, ρ) =

(1, 0, 1, 0) and any linear transformation of (τ, τ , ρ, ρ), for example (−1, 1,−1, 1) we have

r(X,Y ) =
ad − bc√

(a + b)(c + d)(a + c)(b + d)
(A.9)
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In general, any pair of integers (u, v) can be mapped to the pair (0, 1) using the linear

transformation 1
v−u (x − u) where x ∈ {u, v}.
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Appendix B

Gini Split Criterion

This appendix contains the derivation of the Gini split criterion which is denoted µ11

and introduced in (3.83). The Gini split criterion, which is based on the Gini impurity,

is commonly utilized as a “split criterion” in the construction of decision trees in the

context of classification problems. In a classification problem with n classes the Gini

impurity on a training set (or subset of a training set) S with |S| = N is defined as

gini(S) = 1 −
n∑

j=1

p2
j

where pj is the probability that an arbitrary s ∈ S is a member of class j. That is, pj

is the relative frequency of class j in S. The information retrieval problem discussed

in this paper can be viewed as a two class classification problem with class 1 being the

set of relevant documents and class 2 being the set of irrelevant documents. The Gini

impurity therefore becomes

gini(S) = 1 − p2
1 − p2

2.

When constructing a decision tree on a data set with binary (or binarized) features,

S is recursively split into two subsets, based on the value of one feature. The subset

S1 contains all points in which the feature takes the value 1 and the subset S2 other

contains all points in which the feature takes the value 0. When the Gini impurity is

utilized as the basis for a split criterion, the feature which has the smallest ginisplit(S)

is used to create the split, where

ginisplit(S) =
|S1|
N

gini(S1) +
|S2|
N

gini(S2).
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To utilize the Gini split criterion for feature selection we rank features in increasing

order of ginisplit(S). To compute ginisplit(S) for a feature t we let S1 be the set of all

documents which contain t and S2 be the set of all documents which do not contain t

and write

ginisplit(S) =
a + b

m
gini(S1) +

c + d

m
gini(S2).

We have

gini(S1) = 1 − P (R|S1) − P (I|S1) = 1 −
(

a

a + b

)2

−
(

b

a + b

)2

where P (R|S1) is the probability that a document is relevant given that it is in S1,

that is, that it contains feature t, and P (I|S1) is the probability that a document is

irrelevant given that it is in S1, that is, that it contains feature t. Similarly,

gini(S2) = 1 − P (R|S2) − P (I|S2) = 1 −
(

c

c + d

)2

−
(

d

c + d

)2

where P (R|S2) is the probability that a document is relevant given that it is in S2, that

is, that it does not contain feature t, and P (I|S2) is the probability that a document is

irrelevant given that it is in S2, that is, that it does not contain feature t. Substituting

gini(S1) and gini(S2) into ginisplit(S) yields

ginisplit(S) =
a + b

m

(
1 −

(
a

a + b

)2

−
(

b

a + b

)2
)

+
c + d

m

(
1 −

(
c

c + d

)2

−
(

d

c + d

)2
)

=
a + b

m

(
1 − a2 + b2

(a + b)2

)
+

c + d

m

(
1 − c2 + d2

(c + d)2

)
=

a + b

m

(
(a + b)2

(a + b)2
− a2 + b2

(a + b)2

)
+

c + d

m

(
(c + d)2

(c + d)2
− c2 + d2

(c + d)2

)
=

a + b

m

(
a2 + 2ab + b2

(a + b)2
− a2 + b2

(a + b)2

)
+

c + d

m

(
c2 + 2cd + d2

(c + d)2
− c2 + d2

(c + d)2

)
=

a + b

m

(
2ab

(a + b)2

)
+

c + d

m

(
2cd

(c + d)2

)
=

2
m

(
ab

a + b
+

cd

c + d

)
.
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Writing the Gini split criterion as

ginisplit(S) =
2
m

[
ad(b + c) + bc(a + d)

(a + b)(c + d)

]
(B.1)

exposes the factors ad and bc. It now becomes clear that ginisplit(S) takes on its smallest

(i.e. best) value of 0, in the “perfect information” cases mentioned in §3.6, when either

a = d = 0 and b and c are large, specifically b = |F | and c = |T |, or when b = c = 0

and a and d are large, specifically, a = |T | and d = |F |. Further, ginisplit(S) takes

on its largest (i.e. worst) value of 1
2 when ad = bc which given that a + c and b + d

are constants occurs if and only if a = b and c = d. Since the feature appears in the

same number of relevant as irrelevant documents and is absent from the same number

of relevant as irrelevant documents, it appears in the same fraction of relevant and

irrelevant documents and therefore can be viewed as providing “no information” as was

mentioned in §3.6.
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Appendix C

Information Gain

This appendix contains the derivation of the information gain which is denoted µ12 and

introduced in (3.86). Suppose we are given a classification problem, with class variable

Y having k values, a decision variable X having n values, and a training set (or subset

of a training set) S. The entropy of Y in S is defined as

H(Y ) =
k∑

j=1

−P (Y = yj) log2 P (Y = yj)

where P (Y = yj) is the probability that an arbitrary s ∈ S is a member of class yj .

That is, P (Y = yj) is the relative frequency of class yj in S.

Since the information retrieval problem discussed in this paper can be viewed as a

two class classification problem with class y1 being the set of relevant documents and

class y2 being the set of irrelevant documents, we have

P (Y = y1) =
a + c

m
and P (Y = y2) =

b + d

m

and for the entropy we have

H(Y ) = −a + c

m
log2

a + c

m
− b + d

m
log2

b + d

m
.

Entropy can be seen to provide a measure of the homogeneity of the set S. A set

S in which all elements are from one class is completely homogeneous, and H(Y ) will

have the entropy function’s minimal value of 0, while a set S in which the elements are

equally distributed among the classes, H(Y ) will have the entropy function’s maximum

value of 1.
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Many decision tree construction algorithms utilize this notion of homogeneity. At

each iteration they select a variable on which to partition the set S, with the goal of

increasing the homogeneity of the subsets resulting from the partition. For example,

the ID3 algorithm selects the variable X with the largest value of information gain,

which is defined as

I(Y |X) = H(Y ) − H(Y |X)

where the conditional entropy of Y given X is

H(Y |X) =
n∑

i=1

P (X = xi)H(Y |X = xi)

and H(Y |X = xi) is the entropy function computed on the subset of S where X = xi.

Since the entropy, H(Y ) is the same for all variables, the variable with the largest

information gain, can be seen to have the smallest conditional entropy. That is, rather

than splitting on the variable with the largest value of information gain, ID3 could

equivalently split on the variable with the smallest conditional entropy.

For our information retrieval problem, letting x1 correspond to the case where a

feature is present in a document, and x2 correspond to the case where a feature is

absent from a document yields

P (X = x1) =
a + b

m
and P (X = x2) =

c + d

m

which yields

H(Y |X = x1) = − a

a + b
log2

a

a + b
− b

a + b
log2

b

a + b

H(Y |X = x2) = − c

c + d
log2

c

c + d
− d

c + d
log2

d

c + d

H(Y |X) =
a + b

m
H(Y |X = x1) +

c + d

m
H(Y |X = x2)
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and finally

I(Y |X) = −a + c

m
log2

a + c

m
− b + d

m
log2

b + d

m

−
[
a + b

m

(
− a

a + b
log2

a

a + b
− b

a + b
log2

b

a + b

)
+

c + d

m

(
− c

c + d
log2

c

c + d
− d

c + d
log2

d

c + d

)]
.

In the “perfect information” cases mentioned in §3.6, that is, where b = c = 0 and where

a = d = 0, elementary calculations show that H(Y |X) = 0 and therefore I(Y |X) =

H(Y ), i.e. the maximal value. In the “no information” cases mentioned in §3.6, that is,

where a = b = 0 (using c + d = m) and where c = d = 0 (using a + b = m) elementary

calculations show that we have I(Y |X) = 0, i.e. the minimal value.
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Appendix D

Rareness

In [13] it was shown that for a given K, that unless |T | and |F | exceed some determined

threshold which is a function of K, that many support sets exist. It was then reasoned

that for a given T and F that if K does exceed this threshold that the support sets

that exist are just those that randomly exist in the data set, but when K lies below

the threshold, the support sets are those (desirable ones that are) associated with the

underlying phenomenon of the data set. While our problem formulation differs from the

assumptions used to prove this result, we are nevertheless motivated by the idea that

sets of features that are in someway unusual or rare are desirable. In [13] it was the size

of a support set that determined its rareness. In this section we introduce a measure of

the rareness of a feature that is based on the probability of a feature occurring, given

an assumption about the manner in which the collection is generated.

Assume that relevant and irrelevant documents are generated by two independent

stochastic processes that choose features from V . The process that generates relevant

documents chooses |T | features while the process that generates irrelevant documents

chooses |F | features. For a given feature j ∈ V we can consider the relevant document

generating process as performing |T | Bernoulli trials in which success is choosing feature

j, failure is choosing any feature other than feature j, the probability of success is

pj =
aj + bj

m

and the probability of failure is

qj =
cj + dj

m
.

Similarly, for the feature j ∈ V we can consider the irrelevant document generating
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process as performing |F | Bernoulli trials with the same definitions of success, failure

and their associated probabilities. Let the random variable XT
j be the number of

relevant documents containing feature j and let the random variable XF
j be the number

of irrelevant documents containing feature j. Clearly XT
j and XF

j follow a binomial

distribution with

P(XT
j = aj) =

(
|T |
aj

)(
aj + bj

m

)aj
(

cj + dj

m

)|T |−aj

=
|T |!

aj !(|T | − aj)!

(
aj + bj

m

)aj
(

cj + dj

m

)|T |−aj

=
|T |!

aj ! cj !

(
aj + bj

m

)aj
(

cj + dj

m

)cj

and

P(XF
j = bj) =

(
|F |
bj

)(
aj + bj

m

)bj
(

cj + dj

m

)|F |−bj

=
|F |!

bj ! (|F | − bj)!

(
aj + bj

m

)bj
(

cj + dj

m

)|F |−bj

=
|F |!

bj ! dj !

(
aj + bj

m

)bj
(

cj + dj

m

)dj

.

Given this model of document generation, a natural definition of the rareness of

a feature is the probability that the feature will occur in a relevant documents and

in b irrelevant documents, with features having lower values of this probability being

“rarer” and therefore more desirable. The rareness of a feature therefore is a function

ζ : ¢ 7→ [0, 1] given by

ζ(aj , bj , cj , dj) = P(XT
j = aj , XF

j = bj)

and since XT
j and XF

j are independent random variables we have

ζ(aj , bj , cj , dj) = P(XT
j = aj) P(XF

j = bj)

=
|T |! |F |!

aj ! bj ! cj ! dj !

(
aj + bj

m

)aj+bj
(

cj + dj

m

)cj+dj

.
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Since lower values are considered more desirable, when rareness is used as a feature

ranking function, features are ranked in ascending order.
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Appendix E

Fisher’s Linear Discriminant

This appendix contains the derivation of Fisher’s linear discriminant. For a given

feature t and a relevant document, let X be a random variable with

X =

 1 if feature t appears in the document,

0 if feature t does not appear in the document,

and for an irrelevant document, let Y be a random variable with

Y =

 1 if feature t appears in the document,

0 if feature t does not appear in the document.

The formula for Fisher’s linear discriminant is

L(X,Y ) =
[E(X) − E(Y )]2

Var(X) + Var(Y )

Using the notation introduced in §1.2 we have

E(X) = 1
a

|T |
+ 0

c

|T |
=

a

|T |
,

E(Y ) = 1
b

|F |
+ 0

d

|F |
=

b

|F |
,

Var(X) = E(X2) − E(X)2 = 12 a

|T |
+ 02 c

|T |
−

(
a

|T |

)2

=
a

|T |
−

(
a

|T |

)2

,

and

Var(Y ) = E(Y 2) − E(Y )2 = 12 b

|F |
+ 02 d

|F |
−

(
b

|F |

)2

=
b

|F |
−

(
b

|F |

)2

.
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Alternatively, we could have noted that X and Y are Bernoulli random variables with

probability of occurrence a/|T | and b/|F | respectively, and recalled that any Bernoulli

random variable, with probability of occurrence p has expected value equal to p and

variance equal to p(1 − p).

Therefore,

L(X,Y ) =

(
a
|T | −

b
|F |

)2

a
|T | −

(
a
|T |

)2 + b
|F | −

(
b
|F |

)2 ,

=
( a
|T | −

b
|F |)

2

a
|T |

(
1 − a

|T |
)

+ b
|F |

(
1 − b

|F |
) .

Fisher’s linear discriminant for Boolean text data was discussed in [77] and here we offer

a closed form formula for it. We shall also use a variant of Fisher’s linear discriminant,

that is defined as

LG(X,Y ) =
|E(X) − E(Y )|√

Var(X) +
√

Var(Y )

=

∣∣ a
|T | −

b
|F |

∣∣√
a
|T |

(
1 − a

|T |
)

+
√

b
|F |

(
1 − b

|F |
)

as well as a version of it, in which the absolute value is not applied

L̃G(X,Y ) =
E(X) − E(Y )√

Var(X) +
√

Var(Y )

=
a
|T | −

b
|F |√

a
|T |

(
1 − a

|T |
)

+
√

b
|F |

(
1 − b

|F |
)

(see e.g. [63]).
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Appendix F

Proof that Function Sets are Closed

Corollary F.1. The sets of functions M∗[F ], M̂∗[F ], and M̃∗[F ] are closed under

convex combination.

Proof . Given µc, µd ∈ M̃∗[F ], i.e. both vectors satisfy axioms (A1)–(A6), it is RTP

that each convex combination of these two vectors also satisfies these axioms. For each

axiom we will show that if µc and µd satisfy the axiom, then (µc + µd)/2 satisfies the

axiom.

Since µc, µd ∈ M̃∗[F ], they satisfy (A1), i.e.

∑
f∈F

cff(1, 0) = 1

and ∑
f∈F

dff(1, 0) = 1.

Since these equations are linear, adding them and dividing the result by 2 yields

∑
f∈F

(cf + df )f(1, 0)
2

= 1

and we see that the convex combination of µc and µd also satisfies (A1). That the

convex combination of µc and µd also satisfies (A2) and A3 follows similarly.

Since µc, µd ∈ M̃∗[F ], they satisfy (A4), i.e.

∑
f∈F

cff(x, y) ≥
∑
f∈F

cff(x ′, y ′)
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and ∑
f∈F

dff(x, y) ≥
∑
f∈F

dff(x ′, y ′).

Since these inequalities are linear, adding them and dividing the result by 2 yields

∑
f∈F

(cf + df )f(x, y)
2

≥
∑
f∈F

(cf + df )f(x ′, y ′)
2

and we see that the convex combination of µc and µd also satisfies (A4).

Since µc, µd ∈ M̃∗[F ], they satisfy (A5), i.e.

∑
f∈F

cff(x, y) = −
∑
f∈F

cff(y, x)

and ∑
f∈F

dff(x, y) = −
∑
f∈F

dff(y, x).

Since these inequalities are linear, adding them and dividing the result by 2 yields

∑
f∈F

(cf + df )f(x, y)
2

= −
∑
f∈F

(cf + df )f(y, x)
2

and we see that the convex combination of µc and µd also satisfies (A5).

Since µc, µd ∈ M̃∗[F ], they satisfy (A6), i.e.

∑
f∈F

cff(x, y) =
∑
f∈F

cff(1 − y, 1 − x)

and ∑
f∈F

dff(x, y) =
∑
f∈F

dff(1 − y, 1 − x).

Since these inequalities are linear, adding them and dividing the result by 2 yields

∑
f∈F

(cf + df )f(x, y)
2

=
∑
f∈F

(cf + df )f(1 − y, 1 − x)
2

and we see that the convex combination of µc and µd also satisfies (A6). ¥
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Appendix G

SMART Stopword List

a a’s able about above according

accordingly across actually after afterwards again

against ain’t all allow allows almost

alone along already also although always

am among amongst an and another

any anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate appropriate

are aren’t around as aside ask

asking associated at available away awfully

b be became because become becomes

becoming been before beforehand behind being

believe below beside besides best better

between beyond both brief but by

c c’mon c’s came can can’t

cannot cant cause causes certain certainly

changes clearly co com come comes

concerning consequently consider considering contain containing

contains corresponding could couldn’t course currently

d definitely described despite did didn’t

different do does doesn’t doing don’t

done down downwards during e each

edu eg eight either else elsewhere

enough entirely especially et etc even
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ever every everybody everyone everything everywhere

ex exactly example except f far

few fifth first five followed following

follows for former formerly forth four

from further furthermore g get gets

getting given gives go goes going

gone got gotten greetings h had

hadn’t happens hardly has hasn’t have

haven’t having he he’s hello help

hence her here here’s hereafter hereby

herein hereupon hers herself hi him

himself his hither hopefully how howbeit

however i i’d i’ll i’m i’ve

ie if ignored immediate in inasmuch

inc indeed indicate indicated indicates inner

insofar instead into inward is isn’t

it it’d it’ll it’s its itself

j just k keep keeps kept

know knows known l last lately

later latter latterly least less lest

let let’s like liked likely little

look looking looks ltd m mainly

many may maybe me mean meanwhile

merely might more moreover most mostly

much must my myself n name

namely nd near nearly necessary need

needs neither never nevertheless new next

nine no nobody non none noone

nor normally not nothing novel now

nowhere o obviously of off often
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oh ok okay old on once

one ones only onto or other

others otherwise ought our ours ourselves

out outside over overall own p

particular particularly per perhaps placed please

plus possible presumably probably provides q

que quite qv r rather rd

re really reasonably regarding regardless regards

relatively respectively right s said same

saw say saying says second secondly

see seeing seem seemed seeming seems

seen self selves sensible sent serious

seriously seven several shall she should

shouldn’t since six so some somebody

somehow someone something sometime sometimes somewhat

somewhere soon sorry specified specify specifying

still sub such sup sure t

t’s take taken tell tends th

than thank thanks thanx that that’s

thats the their theirs them themselves

then thence there there’s thereafter thereby

therefore therein theres thereupon these they

they’d they’ll they’re they’ve think third

this thorough thoroughly those though three

through throughout thru thus to together

too took toward towards tried tries

truly try trying twice two u

un under unfortunately unless unlikely until

unto up upon us use used

useful uses using usually uucp v
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value various very via viz vs

w want wants was wasn’t way

we we’d we’ll we’re we’ve welcome

well went were weren’t what what’s

whatever when whence whenever where where’s

whereafter whereas whereby wherein whereupon wherever

whether which while whither who who’s

whoever whole whom whose why will

willing wish with within without won’t

wonder would would wouldn’t x y

yes yet you you’d you’ll you’re

you’ve your yours yourself yourselves z

zero
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Appendix H

µ-RANKING Results Stopwords Included Not Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

µ0 Train 0.15 0.28 0.01 0.34 0.04 0.91 0.06 0.10
µ0 Test 0.14 0.26 0.01 0.32 0.04 0.91 0.03 0.06
µ0 ∆% -6.21 -5.37 -7.01 -6.53 0.00 0.00 -41.81 -39.86
µ1 Train 0.84 0.93 0.20 3.93 0.00 0.13 0.87 0.90
µ1 Test 0.81 0.89 0.18 3.29 0.00 0.13 0.81 0.83
µ1 ∆% -3.22 -3.89 -12.08 -16.31 0.00 0.00 -6.59 -8.46
µ2 Train 0.95 0.98 0.29 5.55 0.00 0.09 0.90 0.92
µ2 Test 0.94 0.97 0.27 4.94 0.00 0.09 0.87 0.88
µ2 ∆% -0.88 -1.23 -8.31 -10.94 0.00 0.00 -3.23 -4.33
µ3 Train 0.92 0.97 0.24 4.62 0.00 0.11 0.89 0.92
µ3 Test 0.91 0.95 0.21 3.98 0.00 0.11 0.85 0.87
µ3 ∆% -1.18 -1.62 -10.29 -13.85 0.00 0.00 -4.21 -5.58
µ4 Train 0.97 1.00 0.43 9.58 0.14 4.42 0.84 0.82
µ4 Test 0.97 1.00 0.41 8.90 0.14 4.42 0.81 0.79
µ4 ∆% -0.32 -0.10 -6.22 -7.07 0.00 0.00 -3.08 -3.16
|µ4| Train 0.98 1.00 0.46 10.37 0.12 3.97 0.86 0.87
|µ4| Test 0.98 1.00 0.44 9.87 0.12 3.97 0.84 0.84
|µ4| ∆% -0.21 -0.01 -4.78 -4.89 0.00 0.00 -2.57 -2.93
µ5 Train 0.96 1.00 0.45 10.38 0.38 8.98 0.77 0.77
µ5 Test 0.96 1.00 0.43 9.84 0.38 8.98 0.75 0.74
µ5 ∆% -0.05 -0.01 -4.71 -5.28 0.00 0.00 -2.97 -3.76
|µ5| Train 0.89 1.00 0.41 10.48 0.41 9.48 0.74 0.84
|µ5| Test 0.89 1.00 0.39 10.08 0.41 9.48 0.72 0.81
|µ5| ∆% -0.14 0.00 -3.26 -3.74 0.00 0.00 -2.95 -2.81
µ6 Train 0.96 1.00 0.45 10.39 0.38 9.00 0.77 0.77
µ6 Test 0.96 1.00 0.43 9.84 0.38 9.00 0.75 0.74
µ6 ∆% -0.04 -0.01 -4.71 -5.28 0.00 0.00 -2.98 -3.78
|µ6| Train 0.89 1.00 0.41 10.48 0.41 9.46 0.73 0.84
|µ6| Test 0.89 1.00 0.40 10.09 0.41 9.46 0.71 0.82
|µ6| ∆% -0.14 0.00 -3.23 -3.68 0.00 0.00 -2.91 -2.79
µ7 Train 0.95 0.98 0.29 5.55 0.01 0.13 0.90 0.92
µ7 Test 0.94 0.97 0.26 4.93 0.01 0.13 0.86 0.87
µ7 ∆% -1.03 -1.01 -8.45 -11.26 0.00 0.00 -3.71 -4.92
|µ7| Train 0.95 0.98 0.29 5.55 0.01 0.13 0.90 0.92
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ7| Test 0.94 0.97 0.26 4.93 0.01 0.13 0.86 0.87
|µ7| ∆% -1.03 -1.01 -8.45 -11.26 0.00 0.00 -3.71 -4.92
µ8 Train 0.99 1.00 0.54 12.43 0.50 14.41 0.78 0.74
µ8 Test 0.98 1.00 0.53 12.14 0.50 14.41 0.76 0.72
µ8 ∆% -0.12 0.00 -2.36 -2.31 0.00 0.00 -2.66 -3.12
µ9 Train 0.96 0.99 0.34 6.93 0.01 0.23 0.89 0.91
µ9 Test 0.95 0.98 0.32 6.30 0.01 0.23 0.87 0.88
µ9 ∆% -0.61 -0.65 -7.10 -9.07 0.00 0.00 -2.69 -3.33
|µ9| Train 0.96 0.99 0.34 7.01 0.01 0.27 0.89 0.91
|µ9| Test 0.95 0.98 0.32 6.38 0.01 0.27 0.87 0.88
|µ9| ∆% -0.61 -0.64 -7.12 -8.97 0.00 0.00 -2.68 -3.18
µ10 Train 0.96 0.99 0.35 7.11 0.01 0.29 0.89 0.91
µ10 Test 0.96 0.98 0.32 6.49 0.01 0.29 0.87 0.88
µ10 ∆% -0.60 -0.59 -7.00 -8.78 0.00 0.00 -2.71 -3.24
µ11 Train 0.96 0.99 0.34 7.01 0.01 0.26 0.89 0.91
µ11 Test 0.95 0.98 0.32 6.38 0.01 0.26 0.87 0.88
µ11 ∆% -0.61 -0.64 -7.11 -8.92 0.00 0.00 -2.68 -3.18
µ12 Train 0.97 0.99 0.37 7.90 0.01 0.52 0.89 0.90
µ12 Test 0.96 0.99 0.35 7.29 0.01 0.52 0.86 0.88
µ12 ∆% -0.50 -0.20 -6.32 -7.69 0.00 0.00 -2.58 -2.59
µ13 Train 0.98 1.00 0.49 11.11 0.37 10.65 0.79 0.74
µ13 Test 0.98 1.00 0.46 10.57 0.37 10.65 0.77 0.71
µ13 ∆% -0.21 -0.01 -4.89 -4.86 0.00 0.00 -2.95 -4.04
µ14 Train 0.96 1.00 0.40 9.02 0.32 9.22 0.35 0.43
µ14 Test 0.96 1.00 0.40 9.08 0.32 9.22 0.31 0.39
µ14 ∆% -0.08 -0.00 0.20 0.61 0.00 0.00 -8.88 -9.61
µ15 Train 0.97 1.00 0.41 9.00 0.13 4.22 0.86 0.84
µ15 Test 0.96 1.00 0.38 8.34 0.13 4.22 0.83 0.82
µ15 ∆% -0.44 0.02 -6.15 -7.30 0.00 0.00 -2.56 -2.50
µ16 Train 0.97 0.99 0.37 7.94 0.05 1.64 0.88 0.88
µ16 Test 0.96 0.99 0.35 7.32 0.05 1.64 0.85 0.86
µ16 ∆% -0.52 -0.12 -6.52 -7.79 0.00 0.00 -2.71 -2.73
µ17 Train 0.96 0.99 0.33 6.88 0.01 0.51 0.89 0.90
µ17 Test 0.95 0.98 0.31 6.26 0.01 0.51 0.87 0.87
µ17 ∆% -0.60 -0.61 -7.05 -9.06 0.00 0.00 -2.65 -3.40
µ18 Train 0.88 1.00 0.41 10.78 0.59 14.48 0.68 0.74
µ18 Test 0.88 1.00 0.40 10.48 0.59 14.48 0.66 0.72
µ18 ∆% 0.07 0.02 -2.33 -2.82 0.00 0.00 -2.57 -2.58
µ19 Train 0.84 1.00 0.36 9.46 0.59 14.00 0.27 0.47
µ19 Test 0.84 1.00 0.36 9.47 0.59 14.00 0.23 0.42
µ19 ∆% 0.03 0.00 0.02 0.05 0.00 0.00 -13.43 -10.88
µ20 Train 0.92 0.97 0.24 4.62 0.00 0.11 0.89 0.92
µ20 Test 0.91 0.95 0.21 3.98 0.00 0.11 0.85 0.87
µ20 ∆% -1.18 -1.62 -10.29 -13.85 0.00 0.00 -4.21 -5.58
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ20| Train 0.92 0.97 0.24 4.64 0.00 0.11 0.89 0.92
|µ20| Test 0.91 0.96 0.22 4.00 0.00 0.11 0.85 0.87
|µ20| ∆% -1.15 -1.59 -10.26 -13.80 0.00 0.00 -4.22 -5.68
µ21 Train 0.97 0.99 0.38 8.10 0.02 0.64 0.88 0.90
µ21 Test 0.96 0.99 0.36 7.49 0.02 0.64 0.86 0.87
µ21 ∆% -0.44 -0.16 -6.22 -7.48 0.00 0.00 -2.63 -2.82
µ22 Train 0.84 0.93 0.20 3.93 0.00 0.13 0.87 0.90
µ22 Test 0.81 0.89 0.18 3.29 0.00 0.13 0.81 0.83
µ22 ∆% -3.21 -3.79 -12.03 -16.22 0.00 0.00 -6.57 -8.31
|µ22| Train 0.84 0.93 0.20 3.94 0.00 0.14 0.87 0.90
|µ22| Test 0.82 0.89 0.18 3.30 0.00 0.14 0.81 0.83
|µ22| ∆% -3.21 -3.77 -12.02 -16.18 0.00 0.00 -6.58 -8.40
µ23 Train 0.98 1.00 0.43 9.37 0.05 1.81 0.88 0.89
µ23 Test 0.97 1.00 0.40 8.84 0.05 1.81 0.85 0.87
µ23 ∆% -0.22 -0.03 -5.12 -5.59 0.00 0.00 -2.57 -2.18
µ24 Train 0.97 0.99 0.38 8.04 0.02 0.89 0.87 0.88
µ24 Test 0.96 0.99 0.36 7.41 0.02 0.89 0.85 0.86
µ24 ∆% -0.48 -0.20 -6.45 -7.83 0.00 0.00 -2.65 -2.67
|µ24| Train 0.97 1.00 0.40 8.72 0.03 1.12 0.88 0.90
|µ24| Test 0.97 1.00 0.38 8.17 0.03 1.12 0.86 0.88
|µ24| ∆% -0.33 -0.06 -5.51 -6.27 0.00 0.00 -2.54 -2.39

Table H.1: µ-RANKING Stopwords Included Not Discounted
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Appendix I

µ-RANKING Results Stopwords Included Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

µ0 Train 0.12 0.22 0.01 0.26 0.04 0.91 0.05 0.09
µ0 Test 0.11 0.21 0.01 0.24 0.04 0.91 0.03 0.05
µ0 ∆% -7.89 -7.07 -9.00 -8.56 0.00 0.00 -43.60 -42.58
µ1 Train 0.84 0.92 0.20 3.92 0.00 0.13 0.87 0.90
µ1 Test 0.81 0.89 0.18 3.28 0.00 0.13 0.81 0.83
µ1 ∆% -3.21 -3.97 -12.02 -16.28 0.00 0.00 -6.57 -8.35
µ2 Train 0.95 0.98 0.29 5.54 0.00 0.09 0.90 0.92
µ2 Test 0.94 0.97 0.27 4.93 0.00 0.09 0.87 0.88
µ2 ∆% -0.89 -1.23 -8.27 -10.89 0.00 0.00 -3.22 -4.31
µ3 Train 0.92 0.97 0.24 4.62 0.00 0.11 0.89 0.92
µ3 Test 0.91 0.95 0.21 3.98 0.00 0.11 0.85 0.87
µ3 ∆% -1.18 -1.62 -10.24 -13.77 0.00 0.00 -4.19 -5.56
µ4 Train 0.97 0.99 0.37 7.54 0.14 4.42 0.86 0.86
µ4 Test 0.96 0.99 0.34 7.01 0.14 4.42 0.83 0.84
µ4 ∆% -0.53 -0.35 -6.00 -7.04 0.00 0.00 -2.80 -2.88
|µ4| Train 0.98 1.00 0.41 8.52 0.12 3.97 0.87 0.89
|µ4| Test 0.98 1.00 0.39 8.11 0.12 3.97 0.85 0.86
|µ4| ∆% -0.22 -0.04 -4.55 -4.75 0.00 0.00 -2.41 -2.49
µ5 Train 0.93 0.99 0.30 6.55 0.38 8.98 0.82 0.86
µ5 Test 0.93 0.99 0.28 6.16 0.38 8.98 0.80 0.83
µ5 ∆% -0.48 -0.36 -5.06 -6.09 0.00 0.00 -2.48 -3.11
|µ5| Train 0.87 1.00 0.28 6.89 0.41 9.48 0.75 0.87
|µ5| Test 0.87 1.00 0.27 6.64 0.41 9.48 0.73 0.85
|µ5| ∆% -0.21 -0.03 -3.42 -3.69 0.00 0.00 -2.35 -2.04
µ6 Train 0.93 0.99 0.30 6.55 0.38 9.00 0.82 0.86
µ6 Test 0.93 0.99 0.28 6.15 0.38 9.00 0.80 0.83
µ6 ∆% -0.48 -0.36 -5.06 -6.10 0.00 0.00 -2.48 -3.12
|µ6| Train 0.87 1.00 0.28 6.90 0.41 9.46 0.74 0.87
|µ6| Test 0.86 1.00 0.27 6.65 0.41 9.46 0.73 0.85
|µ6| ∆% -0.21 -0.03 -3.39 -3.60 0.00 0.00 -2.30 -2.06
µ7 Train 0.95 0.98 0.29 5.52 0.01 0.13 0.90 0.92
µ7 Test 0.94 0.97 0.26 4.90 0.01 0.13 0.86 0.87
µ7 ∆% -1.03 -1.01 -8.44 -11.24 0.00 0.00 -3.68 -4.89
|µ7| Train 0.95 0.98 0.29 5.52 0.01 0.13 0.90 0.92



272

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ7| Test 0.94 0.97 0.26 4.90 0.01 0.13 0.86 0.87
|µ7| ∆% -1.03 -1.01 -8.44 -11.24 0.00 0.00 -3.68 -4.89
µ8 Train 0.97 1.00 0.29 5.71 0.50 14.41 0.81 0.85
µ8 Test 0.97 1.00 0.29 5.55 0.50 14.41 0.80 0.82
µ8 ∆% -0.18 -0.04 -2.58 -2.74 0.00 0.00 -2.12 -2.62
µ9 Train 0.96 0.99 0.34 6.84 0.01 0.23 0.89 0.91
µ9 Test 0.95 0.98 0.31 6.22 0.01 0.23 0.87 0.88
µ9 ∆% -0.61 -0.65 -7.09 -9.04 0.00 0.00 -2.66 -3.34
|µ9| Train 0.96 0.99 0.34 6.90 0.01 0.27 0.89 0.91
|µ9| Test 0.95 0.98 0.32 6.28 0.01 0.27 0.87 0.88
|µ9| ∆% -0.61 -0.64 -7.06 -8.93 0.00 0.00 -2.66 -3.21
µ10 Train 0.96 0.99 0.34 6.99 0.01 0.29 0.89 0.91
µ10 Test 0.95 0.98 0.32 6.37 0.01 0.29 0.87 0.88
µ10 ∆% -0.60 -0.59 -6.95 -8.79 0.00 0.00 -2.68 -3.28
µ11 Train 0.96 0.99 0.34 6.90 0.01 0.26 0.89 0.91
µ11 Test 0.95 0.98 0.32 6.29 0.01 0.26 0.87 0.88
µ11 ∆% -0.61 -0.64 -7.05 -8.87 0.00 0.00 -2.65 -3.21
µ12 Train 0.97 0.99 0.37 7.66 0.01 0.52 0.89 0.90
µ12 Test 0.96 0.99 0.35 7.08 0.01 0.52 0.86 0.88
µ12 ∆% -0.50 -0.20 -6.28 -7.60 0.00 0.00 -2.54 -2.72
µ13 Train 0.96 0.99 0.31 6.27 0.37 10.65 0.85 0.85
µ13 Test 0.96 0.99 0.30 5.92 0.37 10.65 0.83 0.83
µ13 ∆% -0.48 -0.30 -5.10 -5.69 0.00 0.00 -2.36 -2.95
µ14 Train 0.93 0.99 0.26 5.25 0.32 9.22 0.29 0.40
µ14 Test 0.93 0.99 0.26 5.25 0.32 9.22 0.27 0.37
µ14 ∆% -0.02 0.02 -0.09 -0.02 0.00 0.00 -7.21 -8.29
µ15 Train 0.96 0.99 0.35 7.24 0.13 4.22 0.87 0.87
µ15 Test 0.96 0.99 0.33 6.65 0.13 4.22 0.85 0.85
µ15 ∆% -0.51 -0.02 -6.57 -8.16 0.00 0.00 -2.42 -2.42
µ16 Train 0.96 0.99 0.35 7.27 0.05 1.64 0.88 0.89
µ16 Test 0.96 0.99 0.33 6.68 0.05 1.64 0.86 0.86
µ16 ∆% -0.55 -0.14 -6.69 -8.15 0.00 0.00 -2.61 -2.71
µ17 Train 0.96 0.99 0.33 6.68 0.01 0.51 0.89 0.91
µ17 Test 0.95 0.98 0.31 6.07 0.01 0.51 0.87 0.88
µ17 ∆% -0.60 -0.60 -7.07 -9.16 0.00 0.00 -2.63 -3.30
µ18 Train 0.82 0.99 0.20 4.97 0.59 14.48 0.71 0.85
µ18 Test 0.82 0.99 0.19 4.80 0.59 14.48 0.69 0.83
µ18 ∆% -0.31 -0.09 -2.92 -3.46 0.00 0.00 -2.09 -2.44
µ19 Train 0.75 0.99 0.15 4.03 0.59 14.00 0.17 0.39
µ19 Test 0.75 0.99 0.15 4.03 0.59 14.00 0.15 0.36
µ19 ∆% 0.00 0.03 -0.12 -0.01 0.00 0.00 -8.25 -7.82
µ20 Train 0.92 0.97 0.24 4.62 0.00 0.11 0.89 0.92
µ20 Test 0.91 0.95 0.21 3.98 0.00 0.11 0.85 0.87
µ20 ∆% -1.18 -1.62 -10.24 -13.77 0.00 0.00 -4.19 -5.56
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ20| Train 0.92 0.97 0.24 4.64 0.00 0.11 0.89 0.92
|µ20| Test 0.91 0.96 0.22 4.00 0.00 0.11 0.85 0.87
|µ20| ∆% -1.15 -1.59 -10.23 -13.74 0.00 0.00 -4.21 -5.65
µ21 Train 0.97 0.99 0.37 7.79 0.02 0.64 0.88 0.90
µ21 Test 0.96 0.99 0.35 7.21 0.02 0.64 0.86 0.88
µ21 ∆% -0.43 -0.15 -6.18 -7.45 0.00 0.00 -2.58 -2.83
µ22 Train 0.84 0.93 0.20 3.92 0.00 0.13 0.87 0.90
µ22 Test 0.81 0.89 0.18 3.29 0.00 0.13 0.81 0.83
µ22 ∆% -3.20 -3.88 -11.97 -16.19 0.00 0.00 -6.55 -8.22
|µ22| Train 0.84 0.93 0.20 3.94 0.00 0.14 0.87 0.90
|µ22| Test 0.82 0.89 0.18 3.30 0.00 0.14 0.81 0.83
|µ22| ∆% -3.20 -3.85 -11.98 -16.16 0.00 0.00 -6.57 -8.30
µ23 Train 0.98 1.00 0.40 8.56 0.05 1.81 0.88 0.90
µ23 Test 0.97 1.00 0.38 8.09 0.05 1.81 0.86 0.88
µ23 ∆% -0.22 -0.03 -5.02 -5.52 0.00 0.00 -2.47 -2.52
µ24 Train 0.97 0.99 0.37 7.60 0.02 0.89 0.88 0.89
µ24 Test 0.96 0.99 0.35 7.00 0.02 0.89 0.85 0.86
µ24 ∆% -0.47 -0.20 -6.42 -7.89 0.00 0.00 -2.62 -2.65
|µ24| Train 0.97 1.00 0.39 8.23 0.03 1.12 0.88 0.91
|µ24| Test 0.97 1.00 0.37 7.71 0.03 1.12 0.86 0.88
|µ24| ∆% -0.32 -0.05 -5.49 -6.38 0.00 0.00 -2.47 -2.45

Table I.1: µ-RANKING Stopwords Included Discounted
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Appendix J

µ-RANKING Results Stopwords Excluded Not

Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

µ0 Train 0.13 0.24 0.01 0.28 0 0 0.06 0.09
µ0 Test 0.12 0.22 0.01 0.25 0 0 0.03 0.06
µ0 ∆% -10.51 -8.33 -11.80 -10.08 -39.56 -39.55
µ1 Train 0.84 0.93 0.20 3.93 0 0 0.87 0.90
µ1 Test 0.81 0.89 0.18 3.29 0 0 0.81 0.83
µ1 ∆% -3.20 -3.99 -12.04 -16.34 -6.55 -8.36
µ2 Train 0.95 0.98 0.29 5.54 0 0 0.90 0.92
µ2 Test 0.94 0.97 0.27 4.94 0 0 0.87 0.88
µ2 ∆% -0.88 -1.22 -8.28 -10.89 -3.22 -4.32
µ3 Train 0.92 0.97 0.24 4.62 0 0 0.89 0.92
µ3 Test 0.91 0.95 0.21 3.99 0 0 0.85 0.87
µ3 ∆% -1.18 -1.62 -10.25 -13.82 -4.19 -5.62
µ4 Train 0.97 1.00 0.40 8.60 0 0 0.86 0.86
µ4 Test 0.97 1.00 0.38 7.93 0 0 0.83 0.84
µ4 ∆% -0.47 -0.10 -6.35 -7.75 -2.80 -2.55
|µ4| Train 0.98 1.00 0.44 9.63 0 0 0.87 0.89
|µ4| Test 0.98 1.00 0.42 9.17 0 0 0.85 0.87
|µ4| ∆% -0.20 -0.03 -4.58 -4.86 -2.46 -2.39
µ5 Train 0.97 1.00 0.41 8.80 0 0 0.84 0.85
µ5 Test 0.97 1.00 0.39 8.18 0 0 0.82 0.83
µ5 ∆% -0.39 -0.09 -6.05 -7.07 -2.87 -2.92
|µ5| Train 0.94 1.00 0.43 9.81 0 0 0.82 0.88
|µ5| Test 0.94 1.00 0.42 9.38 0 0 0.80 0.86
|µ5| ∆% -0.13 -0.01 -3.89 -4.34 -2.46 -2.68
µ6 Train 0.97 1.00 0.41 8.81 0 0 0.84 0.85
µ6 Test 0.97 1.00 0.39 8.18 0 0 0.82 0.83
µ6 ∆% -0.39 -0.09 -6.04 -7.07 -2.87 -2.93
|µ6| Train 0.94 1.00 0.43 9.81 0 0 0.82 0.88
|µ6| Test 0.94 1.00 0.42 9.39 0 0 0.80 0.86
|µ6| ∆% -0.13 -0.01 -3.85 -4.28 -2.42 -2.51
µ7 Train 0.95 0.98 0.29 5.54 0 0 0.90 0.92
µ7 Test 0.94 0.97 0.26 4.92 0 0 0.86 0.87
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

µ7 ∆% -1.03 -1.01 -8.44 -11.22 -3.69 -4.92
|µ7| Train 0.95 0.98 0.29 5.54 0 0 0.90 0.92
|µ7| Test 0.94 0.97 0.26 4.92 0 0 0.86 0.87
|µ7| ∆% -1.03 -1.01 -8.44 -11.22 -3.69 -4.92
µ8 Train 0.98 1.00 0.48 10.52 0 0 0.84 0.87
µ8 Test 0.98 1.00 0.46 10.13 0 0 0.82 0.85
µ8 ∆% -0.12 -0.00 -3.32 -3.67 -2.25 -2.02
µ9 Train 0.96 0.99 0.34 6.88 0 0 0.89 0.91
µ9 Test 0.95 0.98 0.32 6.26 0 0 0.87 0.88
µ9 ∆% -0.61 -0.64 -7.08 -9.05 -2.67 -3.30
|µ9| Train 0.96 0.99 0.34 6.94 0 0 0.89 0.91
|µ9| Test 0.95 0.98 0.32 6.32 0 0 0.87 0.88
|µ9| ∆% -0.61 -0.63 -7.04 -8.94 -2.65 -3.20
µ10 Train 0.96 0.99 0.35 7.04 0 0 0.89 0.91
µ10 Test 0.96 0.98 0.32 6.42 0 0 0.87 0.88
µ10 ∆% -0.60 -0.59 -6.93 -8.89 -2.68 -3.28
µ11 Train 0.96 0.99 0.34 6.94 0 0 0.89 0.91
µ11 Test 0.95 0.98 0.32 6.33 0 0 0.87 0.88
µ11 ∆% -0.61 -0.63 -7.03 -8.89 -2.65 -3.20
µ12 Train 0.97 0.99 0.37 7.78 0 0 0.89 0.90
µ12 Test 0.96 0.99 0.35 7.18 0 0 0.86 0.88
µ12 ∆% -0.50 -0.20 -6.27 -7.60 -2.54 -2.79
µ13 Train 0.98 1.00 0.42 9.10 0 0 0.85 0.84
µ13 Test 0.97 1.00 0.40 8.45 0 0 0.82 0.82
µ13 ∆% -0.38 -0.05 -6.01 -7.18 -2.94 -3.32
µ14 Train 0.95 1.00 0.34 7.28 0 0 0.32 0.40
µ14 Test 0.95 1.00 0.34 7.29 0 0 0.29 0.37
µ14 ∆% -0.01 0.01 0.05 0.08 -7.35 -7.70
µ15 Train 0.97 0.99 0.39 8.34 0 0 0.87 0.87
µ15 Test 0.96 0.99 0.37 7.68 0 0 0.85 0.85
µ15 ∆% -0.47 -0.05 -6.37 -7.85 -2.45 -2.20
µ16 Train 0.96 0.99 0.37 7.67 0 0 0.88 0.89
µ16 Test 0.96 0.99 0.34 7.05 0 0 0.86 0.86
µ16 ∆% -0.53 -0.11 -6.65 -8.07 -2.63 -2.72
µ17 Train 0.96 0.99 0.33 6.80 0 0 0.89 0.91
µ17 Test 0.95 0.98 0.31 6.17 0 0 0.87 0.87
µ17 ∆% -0.60 -0.61 -7.06 -9.19 -2.64 -3.42
µ18 Train 0.94 1.00 0.42 9.55 0 0 0.80 0.85
µ18 Test 0.94 1.00 0.40 9.01 0 0 0.78 0.82
µ18 ∆% -0.13 -0.06 -4.58 -5.66 -2.77 -3.68
µ19 Train 0.92 1.00 0.34 7.66 0 0 0.33 0.45
µ19 Test 0.92 1.00 0.34 7.63 0 0 0.31 0.42
µ19 ∆% 0.00 -0.00 -0.19 -0.30 -7.25 -6.92
µ20 Train 0.92 0.97 0.24 4.62 0 0 0.89 0.92
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

µ20 Test 0.91 0.95 0.21 3.99 0 0 0.85 0.87
µ20 ∆% -1.18 -1.62 -10.25 -13.82 -4.19 -5.62
|µ20| Train 0.92 0.97 0.24 4.64 0 0 0.89 0.92
|µ20| Test 0.91 0.96 0.22 4.00 0 0 0.85 0.87
|µ20| ∆% -1.15 -1.60 -10.24 -13.80 -4.21 -5.72
µ21 Train 0.97 0.99 0.38 7.95 0 0 0.88 0.90
µ21 Test 0.96 0.99 0.35 7.36 0 0 0.86 0.88
µ21 ∆% -0.44 -0.16 -6.14 -7.44 -2.58 -2.94
µ22 Train 0.84 0.93 0.20 3.93 0 0 0.87 0.90
µ22 Test 0.81 0.89 0.18 3.29 0 0 0.81 0.83
µ22 ∆% -3.19 -3.90 -11.98 -16.24 -6.54 -8.21
|µ22| Train 0.84 0.93 0.20 3.94 0 0 0.87 0.90
|µ22| Test 0.82 0.89 0.18 3.30 0 0 0.81 0.83
|µ22| ∆% -3.19 -3.87 -11.99 -16.23 -6.55 -8.30
µ23 Train 0.98 1.00 0.42 9.04 0 0 0.88 0.90
µ23 Test 0.97 1.00 0.40 8.51 0 0 0.86 0.88
µ23 ∆% -0.22 -0.02 -5.02 -5.83 -2.48 -2.24
µ24 Train 0.97 0.99 0.38 7.80 0 0 0.88 0.89
µ24 Test 0.96 0.99 0.35 7.18 0 0 0.85 0.86
µ24 ∆% -0.47 -0.19 -6.40 -7.86 -2.62 -2.65
|µ24| Train 0.97 1.00 0.40 8.52 0 0 0.89 0.91
|µ24| Test 0.97 1.00 0.38 7.98 0 0 0.86 0.89
|µ24| ∆% -0.33 -0.04 -5.49 -6.40 -2.45 -2.12

Table J.1: µ-RANKING Stopwords Excluded Not Discounted
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Appendix K

µ-RANKING Results Noise Growth Rate
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(a) Noise Growth Rate for µ8 on Topic Fuel
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(b) Noise Growth Rate for µ9 on Topic Fuel

Figure K.1: µ-RANKING Noise Growth Rate Examples
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Parameter Median Intercept Median Slope σK

µ0 -0.04 0.11 2.65
µ1 0.03 0.05 1.18
µ2 0.05 0.05 1.35
µ3 0.04 0.05 1.28
µ4 0.65 0.32 8.57
|µ4| 0.61 0.34 9.09
µ5 0.45 0.35 9.27
|µ5| -0.30 0.40 9.58
µ6 0.44 0.35 9.27
|µ6| -0.30 0.39 9.57
µ7 0.09 0.04 1.18
|µ7| 0.10 0.04 1.16
µ8 0.53 0.42 11.00
µ9 0.20 0.15 4.06
|µ9| 0.22 0.16 4.31
µ10 0.20 0.21 5.41
µ11 0.24 0.16 4.31
µ12 0.49 0.22 6.08
µ13 0.50 0.39 10.32
µ14 0.33 0.37 9.67
µ15 0.25 0.32 8.13
µ16 0.18 0.24 6.09
µ17 0.12 0.16 4.06
µ18 -0.53 0.43 10.20
µ19 -0.49 0.42 9.93
µ20 0.03 0.05 1.28
|µ20| 0.05 0.05 1.41
µ21 0.42 0.28 7.48
µ22 0.03 0.05 1.19
|µ22| 0.04 0.05 1.23
µ23 0.62 0.27 7.39
µ24 0.58 0.23 6.28
|µ24| 0.56 0.25 6.86

Table K.1: µ-RANKING Noise Growth Rate



292

Appendix L

µ-RANKING Results Robustness

Parameter Mean Median SD IQR CV νK

µ0 1.06 1.00 0.24 0.00 0.22 0.81
µ1 10.26 3.23 13.66 13.00 1.35 0.16
µ2 11.76 3.35 15.42 16.45 1.33 0.13
µ3 10.74 3.31 14.31 14.03 1.36 0.14
µ4 15.34 5.84 17.73 27.02 1.19 4.56
|µ4| 13.85 4.40 17.50 23.35 1.31 4.12
µ5 16.68 6.70 18.27 31.33 1.12 8.84
|µ5| 17.10 6.96 19.28 33.84 1.17 9.61
µ6 16.70 6.90 18.27 31.38 1.12 8.86
|µ6| 17.24 7.45 19.29 33.91 1.16 9.58
µ7 12.33 3.50 15.87 18.37 1.31 0.18
|µ7| 12.33 3.50 15.87 18.37 1.31 0.18
µ8 26.17 26.75 21.01 43.67 0.83 14.17
µ9 13.69 3.87 17.12 22.44 1.27 0.30
|µ9| 11.90 2.62 16.34 16.72 1.40 0.36
µ10 13.88 3.74 17.34 23.01 1.26 0.38
µ11 13.64 3.77 17.11 22.41 1.27 0.32
µ12 14.23 3.91 17.62 24.70 1.26 0.61
µ13 17.86 8.18 18.79 33.53 1.09 10.16
µ14 30.39 39.88 20.61 42.00 0.68 9.34
µ15 16.14 7.86 17.95 27.50 1.18 4.10
µ16 14.76 4.90 17.75 25.75 1.23 1.66
µ17 13.58 3.84 17.07 22.27 1.28 0.54
µ18 24.10 21.79 20.68 42.76 0.89 14.28
µ19 44.15 50.00 14.04 2.92 0.33 13.99
µ20 10.74 3.31 14.31 14.03 1.36 0.14
|µ20| 9.64 2.51 13.71 10.95 1.45 0.19
µ21 14.48 4.31 17.69 25.09 1.24 0.80
µ22 10.42 3.38 13.78 13.54 1.35 0.15
|µ22| 9.42 2.63 13.26 11.05 1.44 0.20
µ23 15.45 5.22 18.00 27.91 1.20 1.94
µ24 14.86 4.44 17.89 26.68 1.23 0.98
|µ24| 12.88 2.91 17.05 20.32 1.36 1.18

Table L.1: µ-RANKING Stopwords Included Robustness
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Appendix M

µ-GREEDY Results Stopwords Included Not Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

µ0 Train 0.15 0.28 0.01 0.34 0.04 0.90 0.06 0.10
µ0 Test 0.14 0.26 0.01 0.30 0.04 0.90 0.03 0.05
µ0 ∆% -8.32 -7.40 -9.40 -9.55 0.00 0.00 -46.25 -46.72
µ1 Train 0.86 0.96 0.15 2.85 0.00 0.11 0.89 0.91
µ1 Test 0.75 0.82 0.13 2.27 0.00 0.11 0.77 0.78
µ1 ∆% -12.64 -14.47 -15.24 -20.15 0.00 0.00 -13.03 -14.50
µ2 Train 0.98 1.00 0.21 3.82 0.01 0.15 0.91 0.92
µ2 Test 0.95 0.97 0.19 3.22 0.01 0.15 0.87 0.86
µ2 ∆% -3.04 -2.52 -11.06 -15.75 0.00 0.00 -4.45 -6.27
µ3 Train 0.92 0.98 0.18 3.32 0.00 0.11 0.90 0.92
µ3 Test 0.86 0.90 0.16 2.73 0.00 0.11 0.83 0.83
µ3 ∆% -6.81 -7.56 -12.63 -17.58 0.00 0.00 -8.10 -10.13
µ4 Train 0.98 1.00 0.22 4.04 0.00 0.12 0.89 0.91
µ4 Test 0.96 0.98 0.19 3.45 0.00 0.12 0.86 0.86
µ4 ∆% -2.49 -1.77 -10.64 -14.60 0.00 0.00 -3.70 -5.31
|µ4| Train 0.98 1.00 0.22 4.21 0.01 0.18 0.88 0.90
|µ4| Test 0.96 0.98 0.20 3.61 0.01 0.18 0.85 0.86
|µ4| ∆% -2.34 -1.62 -10.35 -14.15 0.00 0.00 -3.77 -5.22
µ5 Train 0.95 0.99 0.28 5.67 0.09 1.94 0.84 0.88
µ5 Test 0.94 0.99 0.26 5.04 0.09 1.94 0.81 0.83
µ5 ∆% -0.79 -0.63 -8.39 -11.17 0.00 0.00 -3.56 -4.89
|µ5| Train 0.88 1.00 0.41 10.47 0.41 9.48 0.73 0.84
|µ5| Test 0.88 1.00 0.39 10.08 0.41 9.48 0.71 0.81
|µ5| ∆% -0.13 0.00 -3.27 -3.75 0.00 0.00 -2.96 -2.82
µ6 Train 0.95 0.99 0.28 5.68 0.09 1.95 0.84 0.88
µ6 Test 0.94 0.99 0.26 5.05 0.09 1.95 0.81 0.83
µ6 ∆% -0.79 -0.63 -8.35 -11.12 0.00 0.00 -3.56 -4.88
|µ6| Train 0.89 1.00 0.40 10.26 0.40 9.22 0.70 0.82
|µ6| Test 0.88 1.00 0.39 9.86 0.40 9.22 0.68 0.80
|µ6| ∆% -0.14 -0.00 -3.38 -3.86 0.00 0.00 -3.48 -3.28
µ7 Train 0.97 0.99 0.19 3.51 0.01 0.15 0.91 0.91
µ7 Test 0.92 0.95 0.17 2.92 0.01 0.15 0.86 0.84
µ7 ∆% -4.79 -4.58 -11.88 -16.75 0.00 0.00 -5.32 -7.67
|µ7| Train 0.97 0.99 0.19 3.51 0.01 0.15 0.91 0.91
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ7| Test 0.92 0.95 0.17 2.92 0.01 0.15 0.86 0.84
|µ7| ∆% -4.79 -4.58 -11.88 -16.75 0.00 0.00 -5.32 -7.67
µ8 Train 0.98 0.99 0.27 5.95 0.02 0.76 0.84 0.85
µ8 Test 0.96 0.99 0.25 5.35 0.02 0.76 0.81 0.83
µ8 ∆% -1.25 -0.48 -8.10 -10.03 0.00 0.00 -3.32 -3.17
µ9 Train 0.97 1.00 0.19 3.58 0.00 0.15 0.90 0.91
µ9 Test 0.93 0.96 0.17 2.98 0.00 0.15 0.86 0.84
µ9 ∆% -4.34 -3.83 -12.02 -16.77 0.00 0.00 -5.10 -7.65
|µ9| Train 0.97 0.99 0.19 3.57 0.01 0.15 0.90 0.90
|µ9| Test 0.92 0.95 0.17 2.96 0.01 0.15 0.85 0.84
|µ9| ∆% -4.33 -3.79 -12.29 -17.11 0.00 0.00 -5.10 -7.63
µ10 Train 0.97 1.00 0.20 3.60 0.00 0.14 0.90 0.91
µ10 Test 0.93 0.96 0.17 3.00 0.00 0.14 0.86 0.84
µ10 ∆% -4.25 -3.69 -11.96 -16.69 0.00 0.00 -5.01 -7.44
µ11 Train 0.97 1.00 0.19 3.59 0.00 0.15 0.90 0.91
µ11 Test 0.93 0.96 0.17 2.98 0.00 0.15 0.86 0.84
µ11 ∆% -4.36 -3.85 -12.02 -16.79 0.00 0.00 -5.10 -7.65
µ12 Train 0.98 1.00 0.20 3.72 0.00 0.14 0.90 0.91
µ12 Test 0.94 0.97 0.18 3.12 0.00 0.14 0.86 0.86
µ12 ∆% -3.54 -2.96 -11.45 -16.15 0.00 0.00 -4.30 -6.02
µ13 Train 0.98 1.00 0.23 4.40 0.01 0.20 0.89 0.91
µ13 Test 0.96 0.98 0.20 3.77 0.01 0.20 0.86 0.86
µ13 ∆% -2.40 -1.55 -10.61 -14.25 0.00 0.00 -3.74 -5.39
µ14 Train 0.92 0.98 0.21 4.29 0.12 2.84 0.40 0.53
µ14 Test 0.91 0.98 0.22 4.45 0.12 2.84 0.33 0.44
µ14 ∆% -0.52 -0.44 2.60 3.76 0.00 0.00 -17.68 -15.71
µ15 Train 0.98 1.00 0.21 4.09 0.00 0.13 0.90 0.92
µ15 Test 0.95 0.98 0.19 3.48 0.00 0.13 0.87 0.87
µ15 ∆% -2.80 -2.00 -10.97 -14.85 0.00 0.00 -3.99 -5.16
µ16 Train 0.97 0.99 0.20 3.79 0.00 0.16 0.90 0.91
µ16 Test 0.93 0.96 0.18 3.18 0.00 0.16 0.86 0.85
µ16 ∆% -3.66 -2.97 -11.81 -16.09 0.00 0.00 -4.78 -6.39
µ17 Train 0.96 0.98 0.19 3.55 0.01 0.19 0.91 0.91
µ17 Test 0.92 0.95 0.17 2.96 0.01 0.19 0.86 0.85
µ17 ∆% -3.98 -3.58 -11.80 -16.73 0.00 0.00 -5.13 -7.09
µ18 Train 0.88 1.00 0.41 10.78 0.59 14.48 0.67 0.74
µ18 Test 0.88 1.00 0.40 10.48 0.59 14.48 0.66 0.72
µ18 ∆% 0.07 0.02 -2.33 -2.82 0.00 0.00 -2.57 -2.58
µ19 Train 0.84 1.00 0.36 9.46 0.59 14.00 0.27 0.47
µ19 Test 0.84 1.00 0.36 9.47 0.59 14.00 0.23 0.42
µ19 ∆% 0.03 0.00 0.02 0.05 0.00 0.00 -13.42 -10.88
µ20 Train 0.92 0.98 0.18 3.32 0.00 0.11 0.90 0.92
µ20 Test 0.86 0.90 0.16 2.73 0.00 0.11 0.83 0.83
µ20 ∆% -6.81 -7.56 -12.63 -17.58 0.00 0.00 -8.10 -10.13
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ20| Train 0.92 0.97 0.18 3.29 0.00 0.11 0.90 0.92
|µ20| Test 0.85 0.90 0.15 2.70 0.00 0.11 0.82 0.82
|µ20| ∆% -6.84 -7.57 -12.91 -17.93 0.00 0.00 -8.15 -10.12
µ21 Train 0.98 1.00 0.20 3.74 0.00 0.14 0.90 0.92
µ21 Test 0.95 0.97 0.18 3.14 0.00 0.14 0.86 0.86
µ21 ∆% -3.32 -2.73 -11.40 -16.02 0.00 0.00 -4.25 -5.79
µ22 Train 0.86 0.96 0.15 2.85 0.00 0.11 0.89 0.91
µ22 Test 0.75 0.82 0.13 2.27 0.00 0.11 0.77 0.78
µ22 ∆% -12.64 -14.47 -15.24 -20.15 0.00 0.00 -13.03 -14.50
|µ22| Train 0.85 0.95 0.15 2.83 0.00 0.11 0.88 0.90
|µ22| Test 0.75 0.81 0.12 2.24 0.00 0.11 0.76 0.77
|µ22| ∆% -12.71 -14.47 -15.63 -20.58 0.00 0.00 -13.14 -14.46
µ23 Train 0.98 1.00 0.21 3.93 0.00 0.14 0.89 0.91
µ23 Test 0.96 0.98 0.19 3.32 0.00 0.14 0.86 0.86
µ23 ∆% -2.58 -1.96 -11.05 -15.42 0.00 0.00 -3.82 -5.53
µ24 Train 0.98 1.00 0.21 3.81 0.00 0.15 0.90 0.91
µ24 Test 0.95 0.98 0.19 3.21 0.00 0.15 0.87 0.86
µ24 ∆% -2.80 -2.18 -11.16 -15.73 0.00 0.00 -3.73 -5.24
|µ24| Train 0.98 1.00 0.21 3.83 0.01 0.16 0.90 0.91
|µ24| Test 0.95 0.98 0.19 3.22 0.01 0.16 0.86 0.87
|µ24| ∆% -2.78 -2.17 -11.36 -15.82 0.00 0.00 -3.65 -5.13

Table M.1: µ-GREEDY Stopwords Included Not Discounted
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Appendix N

µ-GREEDY Results Stopwords Included Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

µ0 Train 0.13 0.23 0.01 0.27 0.04 0.90 0.05 0.10
µ0 Test 0.11 0.21 0.01 0.24 0.04 0.90 0.03 0.05
µ0 ∆% -9.80 -9.49 -11.27 -11.62 0.00 0.00 -45.54 -46.24
µ1 Train 0.86 0.96 0.15 2.84 0.00 0.11 0.89 0.91
µ1 Test 0.75 0.82 0.13 2.27 0.00 0.11 0.77 0.78
µ1 ∆% -12.58 -14.52 -15.17 -20.15 0.00 0.00 -12.98 -14.44
µ2 Train 0.98 1.00 0.21 3.81 0.01 0.15 0.91 0.92
µ2 Test 0.95 0.97 0.19 3.21 0.01 0.15 0.87 0.86
µ2 ∆% -3.04 -2.60 -11.00 -15.75 0.00 0.00 -4.44 -6.29
µ3 Train 0.92 0.98 0.18 3.31 0.00 0.11 0.90 0.92
µ3 Test 0.86 0.90 0.16 2.73 0.00 0.11 0.83 0.83
µ3 ∆% -6.77 -7.61 -12.57 -17.58 0.00 0.00 -8.06 -10.05
µ4 Train 0.98 1.00 0.22 4.03 0.00 0.12 0.89 0.91
µ4 Test 0.96 0.98 0.19 3.44 0.00 0.12 0.86 0.86
µ4 ∆% -2.48 -1.76 -10.60 -14.55 0.00 0.00 -3.68 -5.28
|µ4| Train 0.98 1.00 0.22 4.19 0.01 0.18 0.88 0.90
|µ4| Test 0.96 0.98 0.20 3.59 0.01 0.18 0.85 0.85
|µ4| ∆% -2.32 -1.60 -10.34 -14.15 0.00 0.00 -3.76 -5.15
µ5 Train 0.94 0.99 0.25 5.08 0.09 1.94 0.85 0.88
µ5 Test 0.93 0.98 0.23 4.47 0.09 1.94 0.82 0.84
µ5 ∆% -1.14 -0.78 -9.07 -12.02 0.00 0.00 -3.46 -4.84
|µ5| Train 0.86 1.00 0.27 6.89 0.41 9.48 0.74 0.87
|µ5| Test 0.86 1.00 0.26 6.64 0.41 9.48 0.72 0.85
|µ5| ∆% -0.22 -0.03 -3.43 -3.70 0.00 0.00 -2.40 -2.04
µ6 Train 0.94 0.99 0.25 5.08 0.09 1.95 0.85 0.88
µ6 Test 0.93 0.98 0.23 4.47 0.09 1.95 0.82 0.84
µ6 ∆% -1.13 -0.78 -9.04 -11.97 0.00 0.00 -3.46 -4.83
|µ6| Train 0.85 1.00 0.27 6.72 0.40 9.22 0.71 0.86
|µ6| Test 0.85 1.00 0.26 6.46 0.40 9.22 0.69 0.83
|µ6| ∆% -0.26 -0.03 -3.57 -3.86 0.00 0.00 -2.86 -2.62
µ7 Train 0.97 0.99 0.19 3.51 0.01 0.15 0.91 0.91
µ7 Test 0.92 0.95 0.17 2.92 0.01 0.15 0.86 0.84
µ7 ∆% -4.74 -4.63 -11.80 -16.72 0.00 0.00 -5.29 -7.58
|µ7| Train 0.97 0.99 0.19 3.51 0.01 0.15 0.91 0.91
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ7| Test 0.92 0.95 0.17 2.92 0.01 0.15 0.86 0.84
|µ7| ∆% -4.74 -4.63 -11.80 -16.72 0.00 0.00 -5.29 -7.58
µ8 Train 0.97 0.99 0.27 5.82 0.02 0.76 0.83 0.85
µ8 Test 0.96 0.99 0.25 5.23 0.02 0.76 0.80 0.82
µ8 ∆% -1.23 -0.42 -8.14 -10.02 0.00 0.00 -3.24 -3.19
µ9 Train 0.97 1.00 0.19 3.57 0.00 0.15 0.90 0.91
µ9 Test 0.93 0.96 0.17 2.98 0.00 0.15 0.86 0.84
µ9 ∆% -4.31 -3.91 -11.95 -16.74 0.00 0.00 -5.04 -7.59
|µ9| Train 0.97 0.99 0.19 3.56 0.01 0.15 0.90 0.90
|µ9| Test 0.92 0.95 0.17 2.95 0.01 0.15 0.85 0.84
|µ9| ∆% -4.32 -3.87 -12.24 -17.09 0.00 0.00 -5.06 -7.58
µ10 Train 0.97 0.99 0.20 3.59 0.00 0.14 0.90 0.91
µ10 Test 0.93 0.96 0.17 2.99 0.00 0.14 0.86 0.84
µ10 ∆% -4.21 -3.77 -11.89 -16.67 0.00 0.00 -4.98 -7.41
µ11 Train 0.97 1.00 0.19 3.58 0.00 0.15 0.90 0.91
µ11 Test 0.93 0.96 0.17 2.98 0.00 0.15 0.86 0.84
µ11 ∆% -4.33 -3.92 -11.96 -16.76 0.00 0.00 -5.06 -7.60
µ12 Train 0.98 1.00 0.20 3.71 0.00 0.14 0.90 0.91
µ12 Test 0.94 0.97 0.18 3.11 0.00 0.14 0.86 0.86
µ12 ∆% -3.55 -3.06 -11.39 -16.12 0.00 0.00 -4.29 -6.03
µ13 Train 0.98 1.00 0.22 4.37 0.01 0.20 0.89 0.91
µ13 Test 0.95 0.98 0.20 3.74 0.01 0.20 0.86 0.86
µ13 ∆% -2.38 -1.59 -10.55 -14.23 0.00 0.00 -3.78 -5.56
µ14 Train 0.89 0.97 0.18 3.72 0.12 2.84 0.32 0.49
µ14 Test 0.88 0.96 0.19 3.83 0.12 2.84 0.27 0.41
µ14 ∆% -0.34 -0.25 2.12 2.85 0.00 0.00 -16.72 -16.30
µ15 Train 0.98 1.00 0.21 4.07 0.00 0.13 0.90 0.92
µ15 Test 0.95 0.97 0.19 3.47 0.00 0.13 0.87 0.87
µ15 ∆% -2.79 -2.10 -10.93 -14.87 0.00 0.00 -3.97 -5.14
µ16 Train 0.97 0.99 0.20 3.77 0.00 0.16 0.90 0.91
µ16 Test 0.93 0.96 0.18 3.17 0.00 0.16 0.86 0.85
µ16 ∆% -3.64 -3.06 -11.78 -16.07 0.00 0.00 -4.79 -6.34
µ17 Train 0.96 0.98 0.19 3.54 0.01 0.19 0.91 0.91
µ17 Test 0.92 0.95 0.17 2.95 0.01 0.19 0.86 0.84
µ17 ∆% -3.94 -3.65 -11.72 -16.69 0.00 0.00 -5.11 -7.16
µ18 Train 0.82 0.99 0.20 4.97 0.59 14.48 0.71 0.85
µ18 Test 0.82 0.99 0.19 4.80 0.59 14.48 0.69 0.83
µ18 ∆% -0.31 -0.09 -2.92 -3.46 0.00 0.00 -2.09 -2.44
µ19 Train 0.75 0.99 0.15 4.03 0.59 14.00 0.17 0.39
µ19 Test 0.75 0.99 0.15 4.03 0.59 14.00 0.15 0.36
µ19 ∆% 0.00 0.03 -0.12 -0.01 0.00 0.00 -8.25 -7.82
µ20 Train 0.92 0.98 0.18 3.31 0.00 0.11 0.90 0.92
µ20 Test 0.86 0.90 0.16 2.73 0.00 0.11 0.83 0.83
µ20 ∆% -6.77 -7.61 -12.57 -17.58 0.00 0.00 -8.06 -10.05
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

|µ20| Train 0.91 0.97 0.18 3.28 0.00 0.11 0.90 0.91
|µ20| Test 0.85 0.90 0.15 2.69 0.00 0.11 0.82 0.82
|µ20| ∆% -6.83 -7.62 -12.88 -17.95 0.00 0.00 -8.11 -10.04
µ21 Train 0.98 1.00 0.20 3.73 0.00 0.14 0.90 0.92
µ21 Test 0.95 0.97 0.18 3.13 0.00 0.14 0.86 0.86
µ21 ∆% -3.33 -2.83 -11.34 -15.98 0.00 0.00 -4.24 -5.79
µ22 Train 0.86 0.96 0.15 2.84 0.00 0.11 0.89 0.91
µ22 Test 0.75 0.82 0.13 2.27 0.00 0.11 0.77 0.78
µ22 ∆% -12.58 -14.52 -15.17 -20.15 0.00 0.00 -12.98 -14.44
|µ22| Train 0.85 0.95 0.15 2.82 0.00 0.11 0.88 0.90
|µ22| Test 0.74 0.81 0.12 2.24 0.00 0.11 0.76 0.77
|µ22| ∆% -12.67 -14.53 -15.58 -20.60 0.00 0.00 -13.09 -14.41
µ23 Train 0.98 1.00 0.21 3.92 0.00 0.14 0.89 0.91
µ23 Test 0.96 0.98 0.19 3.31 0.00 0.14 0.86 0.86
µ23 ∆% -2.57 -1.95 -11.01 -15.37 0.00 0.00 -3.79 -5.51
µ24 Train 0.98 1.00 0.21 3.80 0.00 0.15 0.90 0.91
µ24 Test 0.95 0.98 0.19 3.20 0.00 0.15 0.87 0.86
µ24 ∆% -2.80 -2.27 -11.11 -15.70 0.00 0.00 -3.72 -5.28
|µ24| Train 0.98 1.00 0.21 3.81 0.01 0.16 0.90 0.91
|µ24| Test 0.95 0.98 0.19 3.21 0.01 0.16 0.86 0.87
|µ24| ∆% -2.79 -2.26 -11.32 -15.77 0.00 0.00 -3.65 -5.16

Table N.1: µ-GREEDY Stopwords Included Discounted
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Appendix O

µ-GREEDY Results Noise Growth Rate
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Figure O.1: µ-GREEDY Noise Growth Rate Examples
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Parameter Median Intercept Median Slope σK

µ0 -0.04 0.11 2.67
µ1 0.03 0.04 1.01
µ2 0.00 0.05 1.35
µ3 0.01 0.04 1.09
µ4 0.88 0.08 2.85
|µ4| 0.85 0.10 3.23
µ5 0.74 0.14 4.19
|µ5| -0.31 0.40 9.57
µ6 0.74 0.14 4.19
|µ6| -0.27 0.39 9.48
µ7 0.09 0.04 1.05
|µ7| 0.10 0.04 1.06
µ8 0.79 0.09 3.06
µ9 0.30 0.06 1.71
|µ9| 0.39 0.06 1.94
µ10 0.46 0.07 2.23
µ11 0.41 0.06 1.97
µ12 0.68 0.09 2.85
µ13 0.88 0.08 2.79
µ14 0.78 0.12 3.72
µ15 0.60 0.08 2.70
µ16 0.44 0.06 1.83
µ17 0.26 0.04 1.38
µ18 -0.53 0.43 10.20
µ19 -0.49 0.42 9.92
µ20 0.01 0.04 1.11
|µ20| 0.01 0.05 1.16
µ21 0.70 0.10 3.12
µ22 0.03 0.04 1.01
|µ22| 0.03 0.04 1.04
µ23 0.82 0.09 2.97
µ24 0.76 0.08 2.86
|µ24| 0.76 0.09 2.90

Table O.1: µ-GREEDY Noise Growth Rate
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Appendix P

π-RANKING Results Stopwords Included Not Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

π0 Train 0.16 0.28 0.01 0.35 0.04 0.88 0.06 0.10
π0 Test 0.15 0.26 0.01 0.32 0.04 0.88 0.04 0.07
π0 ∆% -8.59 -7.91 -8.22 -8.19 0.00 0.00 -34.94 -32.81
π1 Train 0.92 1.00 0.41 10.59 0.53 12.76 0.72 0.78
π1 Test 0.92 1.00 0.40 10.31 0.53 12.76 0.70 0.76
π1 ∆% 0.01 0.02 -2.36 -2.68 0.00 0.00 -2.46 -2.80
π4 Train 0.97 1.00 0.43 9.50 0.14 4.40 0.84 0.83
π4 Test 0.97 1.00 0.41 8.88 0.14 4.40 0.81 0.80
π4 ∆% -0.39 -0.06 -5.53 -6.61 0.00 0.00 -2.78 -2.73
|π4| Train 0.98 1.00 0.47 10.37 0.13 4.16 0.86 0.88
|π4| Test 0.98 1.00 0.45 10.03 0.13 4.16 0.84 0.85
|π4| ∆% -0.14 -0.00 -3.04 -3.28 0.00 0.00 -2.30 -2.49
π8 Train 0.98 1.00 0.51 11.75 0.48 13.07 0.78 0.81
π8 Test 0.98 1.00 0.50 11.50 0.48 13.07 0.76 0.78
π8 ∆% -0.08 0.00 -1.62 -2.18 0.00 0.00 -2.39 -2.89
π9 Train 0.96 0.99 0.35 7.05 0.01 0.27 0.88 0.90
π9 Test 0.95 0.98 0.32 6.45 0.01 0.27 0.86 0.87
π9 ∆% -0.63 -0.59 -6.74 -8.50 0.00 0.00 -2.87 -3.28
|π9| Train 0.96 0.99 0.35 7.12 0.01 0.27 0.89 0.90
|π9| Test 0.95 0.98 0.33 6.52 0.01 0.27 0.86 0.87
|π9| ∆% -0.63 -0.59 -6.70 -8.40 0.00 0.00 -2.85 -3.13
π18 Train 0.90 1.00 0.40 10.65 0.54 12.88 0.69 0.78
π18 Test 0.90 1.00 0.40 10.37 0.54 12.88 0.68 0.76
π18 ∆% 0.04 0.02 -2.20 -2.58 0.00 0.00 -2.49 -2.74
π22 Train 0.97 1.00 0.43 9.41 0.13 4.11 0.84 0.83
π22 Test 0.97 1.00 0.40 8.78 0.13 4.11 0.82 0.81
π22 ∆% -0.41 -0.07 -5.65 -6.68 0.00 0.00 -2.78 -2.63
|π22| Train 0.98 1.00 0.46 10.29 0.12 3.72 0.86 0.88
|π22| Test 0.98 1.00 0.45 9.94 0.12 3.72 0.84 0.86
|π22| ∆% -0.16 -0.00 -3.14 -3.35 0.00 0.00 -2.32 -2.21
π23 Train 0.98 1.00 0.43 9.53 0.07 2.18 0.87 0.88
π23 Test 0.98 1.00 0.42 9.12 0.07 2.18 0.85 0.86
π23 ∆% -0.23 -0.02 -4.06 -4.25 0.00 0.00 -2.38 -2.34
π24 Train 0.97 0.99 0.38 8.00 0.02 0.88 0.87 0.88
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

π24 Test 0.96 0.99 0.36 7.40 0.02 0.88 0.85 0.86
π24 ∆% -0.41 -0.21 -6.36 -7.49 0.00 0.00 -2.59 -2.31
|π24| Train 0.98 1.00 0.40 8.67 0.04 1.43 0.88 0.90
|π24| Test 0.97 1.00 0.39 8.32 0.04 1.43 0.86 0.88
|π24| ∆% -0.14 -0.04 -3.97 -4.01 0.00 0.00 -2.15 -1.95
π25 Train 0.98 1.00 0.46 10.29 0.15 4.77 0.86 0.87
π25 Test 0.98 1.00 0.44 9.84 0.15 4.77 0.84 0.85
π25 ∆% -0.21 0.00 -4.16 -4.32 0.00 0.00 -2.59 -2.93
π26 Train 0.98 1.00 0.45 9.94 0.20 6.12 0.83 0.80
π26 Test 0.97 1.00 0.42 9.30 0.20 6.12 0.80 0.77
π26 ∆% -0.30 -0.05 -5.86 -6.47 0.00 0.00 -3.02 -4.17

Table P.1: π-RANKING Stopwords Included Not Discounted
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Appendix Q

π-RANKING Results Stopwords Included Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

π0 Train 0.13 0.23 0.01 0.27 0.04 0.88 0.06 0.10
π0 Test 0.11 0.21 0.01 0.24 0.04 0.88 0.04 0.07
π0 ∆% -11.16 -10.01 -11.87 -11.11 0.00 0.00 -36.03 -33.34
π1 Train 0.86 0.99 0.23 5.54 0.53 12.76 0.74 0.86
π1 Test 0.86 0.99 0.22 5.37 0.53 12.76 0.73 0.84
π1 ∆% -0.29 -0.11 -3.00 -3.16 0.00 0.00 -2.14 -2.28
π4 Train 0.97 0.99 0.36 7.49 0.14 4.40 0.85 0.87
π4 Test 0.96 0.99 0.34 6.98 0.14 4.40 0.83 0.85
π4 ∆% -0.53 -0.29 -5.49 -6.79 0.00 0.00 -2.64 -2.31
|π4| Train 0.98 1.00 0.40 8.55 0.13 4.16 0.86 0.89
|π4| Test 0.98 1.00 0.39 8.26 0.13 4.16 0.84 0.87
|π4| ∆% -0.11 -0.02 -3.03 -3.36 0.00 0.00 -2.18 -2.23
π8 Train 0.97 1.00 0.30 6.13 0.48 13.07 0.80 0.86
π8 Test 0.97 1.00 0.29 5.97 0.48 13.07 0.78 0.84
π8 ∆% -0.11 -0.04 -1.86 -2.70 0.00 0.00 -2.06 -2.04
π9 Train 0.96 0.99 0.35 6.95 0.01 0.27 0.88 0.90
π9 Test 0.95 0.98 0.32 6.36 0.01 0.27 0.86 0.87
π9 ∆% -0.63 -0.59 -6.70 -8.44 0.00 0.00 -2.85 -3.36
|π9| Train 0.96 0.99 0.35 7.01 0.01 0.27 0.89 0.90
|π9| Test 0.95 0.98 0.32 6.43 0.01 0.27 0.86 0.87
|π9| ∆% -0.63 -0.59 -6.66 -8.35 0.00 0.00 -2.84 -3.24
π18 Train 0.84 0.99 0.22 5.54 0.54 12.88 0.72 0.86
π18 Test 0.84 0.99 0.22 5.37 0.54 12.88 0.70 0.84
π18 ∆% -0.24 -0.04 -2.81 -2.98 0.00 0.00 -2.09 -2.25
π22 Train 0.97 0.99 0.37 7.53 0.13 4.11 0.86 0.87
π22 Test 0.96 0.99 0.34 7.01 0.13 4.11 0.83 0.85
π22 ∆% -0.54 -0.30 -5.58 -6.83 0.00 0.00 -2.60 -2.12
|π22| Train 0.98 1.00 0.41 8.63 0.12 3.72 0.86 0.89
|π22| Test 0.98 1.00 0.39 8.35 0.12 3.72 0.84 0.87
|π22| ∆% -0.13 -0.03 -3.10 -3.34 0.00 0.00 -2.17 -1.89
π23 Train 0.98 1.00 0.40 8.61 0.07 2.18 0.87 0.89
π23 Test 0.98 1.00 0.39 8.24 0.07 2.18 0.85 0.87
π23 ∆% -0.19 -0.03 -4.10 -4.31 0.00 0.00 -2.23 -2.13
π24 Train 0.97 0.99 0.37 7.57 0.02 0.88 0.87 0.89
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

π24 Test 0.96 0.99 0.35 7.00 0.02 0.88 0.85 0.87
π24 ∆% -0.41 -0.26 -6.33 -7.52 0.00 0.00 -2.54 -2.19
|π24| Train 0.97 1.00 0.39 8.14 0.04 1.43 0.88 0.90
|π24| Test 0.97 1.00 0.37 7.80 0.04 1.43 0.86 0.88
|π24| ∆% -0.13 -0.04 -3.98 -4.14 0.00 0.00 -2.03 -1.76
π25 Train 0.98 1.00 0.39 8.29 0.15 4.77 0.86 0.88
π25 Test 0.98 1.00 0.38 7.94 0.15 4.77 0.84 0.86
π25 ∆% -0.19 -0.01 -4.06 -4.23 0.00 0.00 -2.37 -2.32
π26 Train 0.97 0.99 0.35 7.24 0.20 6.12 0.85 0.86
π26 Test 0.96 0.99 0.33 6.77 0.20 6.12 0.83 0.83
π26 ∆% -0.53 -0.46 -5.75 -6.52 0.00 0.00 -2.79 -3.64

Table Q.1: π-RANKING Stopwords Included Discounted



324

π−
R

A
N

K
IN

G
 S

to
pw

or
ds

 In
cl

ud
ed

 D
is

co
un

te
d

ν̂

θ̂′

0.
4

0.
6

0.
8

1.
0

π 1

0.
0

0.
2

0.
4

0.
6

0.
8

π 4
π 4

0.
0

0.
2

0.
4

0.
6

0.
8

π 8
π 9

0.
0

0.
2

0.
4

0.
6

0.
8

π 9
π 1

8

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
2

π 2
2

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
3

π 2
4

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
4

π 2
5

0.
0

0.
2

0.
4

0.
6

0.
8

0.
4

0.
6

0.
8

1.
0

π 2
6

Figure Q.1



325

π−
R

A
N

K
IN

G
 S

to
pw

or
ds

 In
cl

ud
ed

 D
is

co
un

te
d

ν K

θK′

0.
80

0.
85

0.
90

0.
95

1.
00

π 1

0
5

10
15

20

π 4
π 4

0
5

10
15

20

π 8
π 9

0
5

10
15

20

π 9
π 1

8

0
5

10
15

20

π 2
2

π 2
2

0
5

10
15

20

π 2
3

π 2
4

0
5

10
15

20

π 2
4

π 2
5

0
5

10
15

20

0.
80

0.
85

0.
90

0.
95

1.
00

π 2
6

Figure Q.2



326

π−
R

A
N

K
IN

G
 S

to
pw

or
ds

 In
cl

ud
ed

 D
is

co
un

te
d

ν̂

σ̂′

0.
1

0.
2

0.
3

0.
4

0.
5

π 1

0.
0

0.
2

0.
4

0.
6

0.
8

π 4
π 4

0.
0

0.
2

0.
4

0.
6

0.
8

π 8
π 9

0.
0

0.
2

0.
4

0.
6

0.
8

π 9
π 1

8

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
2

π 2
2

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
3

π 2
4

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
4

π 2
5

0.
0

0.
2

0.
4

0.
6

0.
8

0.
1

0.
2

0.
3

0.
4

0.
5

π 2
6

Figure Q.3



327

π−
R

A
N

K
IN

G
 S

to
pw

or
ds

 In
cl

ud
ed

 D
is

co
un

te
d

ν K

σK′

24681012

π 1

0
5

10
15

20

π 4
π 4

0
5

10
15

20

π 8
π 9

0
5

10
15

20

π 9
π 1

8

0
5

10
15

20

π 2
2

π 2
2

0
5

10
15

20

π 2
3

π 2
4

0
5

10
15

20

π 2
4

π 2
5

0
5

10
15

20

24681012

π 2
6

Figure Q.4



328

π−
R

A
N

K
IN

G
 S

to
pw

or
ds

 In
cl

ud
ed

 D
is

co
un

te
d

ν̂

ϕ′

0.
2

0.
4

0.
6

0.
8

1.
0

π 1

0.
0

0.
2

0.
4

0.
6

0.
8

π 4
π 4

0.
0

0.
2

0.
4

0.
6

0.
8

π 8
π 9

0.
0

0.
2

0.
4

0.
6

0.
8

π 9
π 1

8

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
2

π 2
2

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
3

π 2
4

0.
0

0.
2

0.
4

0.
6

0.
8

π 2
4

π 2
5

0.
0

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

1.
0

π 2
6

Figure Q.5



329

π−
R

A
N

K
IN

G
 S

to
pw

or
ds

 In
cl

ud
ed

 D
is

co
un

te
d

ν K

ϕK′

0.
4

0.
6

0.
8

1.
0

π 1

0
5

10
15

20

π 4
π 4

0
5

10
15

20

π 8
π 9

0
5

10
15

20

π 9
π 1

8

0
5

10
15

20

π 2
2

π 2
2

0
5

10
15

20

π 2
3

π 2
4

0
5

10
15

20

π 2
4

π 2
5

0
5

10
15

20

0.
4

0.
6

0.
8

1.
0

π 2
6

Figure Q.6



330

Appendix R

hk-GREEDY Results Stopwords Included Not Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

φα=ε Train 0.99 1.00 0.47 11.32 0.43 12.00 0.83 0.83
φα=ε Test 0.98 1.00 0.46 11.00 0.43 12.00 0.80 0.80
φα=ε ∆% -0.40 -0.00 -2.79 -2.82 0.00 0.00 -3.37 -3.14
φα=0.25 Train 0.99 1.00 0.52 11.67 0.48 12.75 0.82 0.83
φα=0.25 Test 0.99 1.00 0.50 11.39 0.48 12.75 0.80 0.80
φα=0.25 ∆% -0.21 0.00 -2.23 -2.40 0.00 0.00 -2.85 -3.09
φα=0.5 Train 0.99 1.00 0.53 12.00 0.48 12.97 0.81 0.83
φα=0.5 Test 0.99 1.00 0.52 11.73 0.48 12.97 0.79 0.80
φα=0.5 ∆% -0.19 0.00 -2.12 -2.23 0.00 0.00 -2.81 -3.29
φα=0.75 Train 0.99 1.00 0.53 12.25 0.49 13.49 0.79 0.80
φα=0.75 Test 0.98 1.00 0.52 11.97 0.49 13.49 0.77 0.78
φα=0.75 ∆% -0.15 0.00 -2.16 -2.29 0.00 0.00 -2.67 -2.91
φα=0.99 Train 0.99 1.00 0.54 12.43 0.50 14.38 0.78 0.75
φα=0.99 Test 0.98 1.00 0.53 12.14 0.50 14.38 0.76 0.72
φα=0.99 ∆% -0.13 0.00 -2.33 -2.26 0.00 0.00 -2.64 -3.13
φ∆

α=ε Train 0.86 0.97 0.19 4.28 0.01 0.35 0.88 0.94
φ∆

α=ε Test 0.82 0.94 0.17 3.68 0.01 0.35 0.80 0.86
φ∆

α=ε ∆% -5.58 -2.75 -12.10 -14.11 0.00 0.00 -9.23 -8.31
φ∆

α=0.25 Train 0.98 1.00 0.31 6.10 0.02 0.60 0.91 0.94
φ∆

α=0.25 Test 0.97 0.99 0.29 5.44 0.02 0.60 0.87 0.88
φ∆

α=0.25 ∆% -1.22 -0.61 -8.17 -10.76 0.00 0.00 -4.57 -6.47
φ∆

α=0.5 Train 0.98 1.00 0.35 7.05 0.03 0.85 0.90 0.92
φ∆

α=0.5 Test 0.97 1.00 0.32 6.41 0.03 0.85 0.86 0.88
φ∆

α=0.5 ∆% -0.97 -0.33 -7.37 -9.09 0.00 0.00 -3.64 -4.88
φ∆

α=0.75 Train 0.98 1.00 0.39 8.13 0.06 1.69 0.88 0.89
φ∆

α=0.75 Test 0.97 1.00 0.36 7.43 0.06 1.69 0.85 0.86
φ∆

α=0.75 ∆% -0.64 -0.19 -7.12 -8.61 0.00 0.00 -3.10 -3.94
φ∆

α=0.99 Train 0.98 1.00 0.44 9.62 0.14 4.56 0.84 0.82
φ∆

α=0.99 Test 0.97 1.00 0.41 8.94 0.14 4.56 0.81 0.79
φ∆

α=0.99 ∆% -0.33 -0.08 -6.15 -7.03 0.00 0.00 -3.02 -3.17
θ Train 0.99 1.00 0.51 12.13 0.46 13.70 0.81 0.77
θ Test 0.98 1.00 0.49 11.84 0.46 13.70 0.79 0.75
θ ∆% -0.39 -0.00 -2.56 -2.40 0.00 0.00 -3.10 -2.93
θ∆ Train 0.82 0.95 0.22 4.89 0.02 0.60 0.85 0.92
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

θ∆ Test 0.78 0.92 0.20 4.26 0.02 0.60 0.77 0.83
θ∆ ∆% -4.35 -3.21 -11.37 -12.98 0.00 0.00 -8.76 -9.12
ρ Train 0.99 1.00 0.53 12.26 0.49 14.05 0.78 0.76
ρ Test 0.98 1.00 0.52 11.97 0.49 14.05 0.76 0.74
ρ ∆% -0.13 0.00 -2.39 -2.31 0.00 0.00 -2.68 -2.72
ρ∆ Train 0.98 1.00 0.41 9.05 0.13 4.16 0.84 0.83
ρ∆ Test 0.97 1.00 0.39 8.39 0.13 4.16 0.82 0.80
ρ∆ ∆% -0.40 -0.18 -6.35 -7.28 0.00 0.00 -3.20 -3.34

Table R.1: hk-GREEDY Stopwords Included Not Discounted
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Appendix S

hk-GREEDY Results Stopwords Included Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

φα=ε Train 0.98 1.00 0.28 5.99 0.43 12.00 0.84 0.88
φα=ε Test 0.97 1.00 0.27 5.80 0.43 12.00 0.82 0.85
φα=ε ∆% -0.76 -0.10 -3.16 -3.20 0.00 0.00 -3.04 -2.63
φα=0.25 Train 0.98 1.00 0.29 5.94 0.48 12.75 0.83 0.87
φα=0.25 Test 0.97 1.00 0.28 5.77 0.48 12.75 0.81 0.85
φα=0.25 ∆% -0.38 -0.06 -2.48 -2.92 0.00 0.00 -2.43 -2.36
φα=0.5 Train 0.98 1.00 0.29 6.05 0.48 12.97 0.83 0.87
φα=0.5 Test 0.97 1.00 0.29 5.89 0.48 12.97 0.81 0.85
φα=0.5 ∆% -0.31 -0.06 -2.33 -2.60 0.00 0.00 -2.34 -2.13
φα=0.75 Train 0.98 1.00 0.29 5.95 0.49 13.49 0.82 0.86
φα=0.75 Test 0.97 1.00 0.29 5.78 0.49 13.49 0.80 0.85
φα=0.75 ∆% -0.23 -0.04 -2.37 -2.84 0.00 0.00 -2.05 -1.70
φα=0.99 Train 0.98 1.00 0.29 5.71 0.50 14.38 0.81 0.85
φα=0.99 Test 0.97 1.00 0.29 5.56 0.50 14.38 0.80 0.83
φα=0.99 ∆% -0.19 -0.05 -2.54 -2.66 0.00 0.00 -2.17 -2.89
φ∆

α=ε Train 0.86 0.97 0.19 4.20 0.01 0.35 0.88 0.94
φ∆

α=ε Test 0.81 0.94 0.17 3.60 0.01 0.35 0.80 0.86
φ∆

α=ε ∆% -5.73 -2.98 -12.17 -14.21 0.00 0.00 -9.19 -8.17
φ∆

α=0.25 Train 0.98 1.00 0.31 5.99 0.02 0.60 0.91 0.94
φ∆

α=0.25 Test 0.97 0.99 0.28 5.35 0.02 0.60 0.87 0.88
φ∆

α=0.25 ∆% -1.22 -0.62 -8.05 -10.60 0.00 0.00 -4.54 -6.44
φ∆

α=0.5 Train 0.98 1.00 0.34 6.81 0.03 0.85 0.90 0.92
φ∆

α=0.5 Test 0.97 1.00 0.32 6.21 0.03 0.85 0.87 0.88
φ∆

α=0.5 ∆% -0.97 -0.36 -7.16 -8.86 0.00 0.00 -3.50 -4.54
φ∆

α=0.75 Train 0.98 1.00 0.36 7.41 0.06 1.69 0.88 0.90
φ∆

α=0.75 Test 0.97 1.00 0.34 6.79 0.06 1.69 0.86 0.87
φ∆

α=0.75 ∆% -0.78 -0.33 -6.84 -8.40 0.00 0.00 -2.88 -3.60
φ∆

α=0.99 Train 0.97 1.00 0.37 7.52 0.14 4.56 0.86 0.87
φ∆

α=0.99 Test 0.96 0.99 0.34 6.98 0.14 4.56 0.83 0.84
φ∆

α=0.99 ∆% -0.56 -0.34 -5.93 -7.11 0.00 0.00 -2.72 -2.90
θ Train 0.98 1.00 0.29 5.77 0.46 13.70 0.83 0.86
θ Test 0.97 1.00 0.28 5.60 0.46 13.70 0.81 0.83
θ ∆% -0.64 -0.09 -3.00 -2.97 0.00 0.00 -2.86 -3.23
θ∆ Train 0.82 0.95 0.22 4.68 0.02 0.60 0.85 0.91
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Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

θ∆ Test 0.78 0.92 0.19 4.06 0.02 0.60 0.77 0.83
θ∆ ∆% -4.36 -3.20 -11.40 -13.13 0.00 0.00 -8.57 -9.09
ρ Train 0.98 1.00 0.29 5.73 0.49 14.05 0.82 0.85
ρ Test 0.97 1.00 0.29 5.57 0.49 14.05 0.80 0.83
ρ ∆% -0.21 -0.06 -2.63 -2.77 0.00 0.00 -2.24 -2.65
ρ∆ Train 0.97 0.99 0.35 7.13 0.13 4.16 0.86 0.87
ρ∆ Test 0.96 0.99 0.33 6.61 0.13 4.16 0.84 0.84
ρ∆ ∆% -0.62 -0.46 -6.22 -7.34 0.00 0.00 -2.93 -3.04

Table S.1: hk-GREEDY Stopwords Included Discounted
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Appendix T

Ensemble Results Stopwords Included Not Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

`1 Train 0.97 1.00 0.43 9.49 0.13 4.15 0.84 0.83
`1 Test 0.97 1.00 0.40 8.80 0.13 4.15 0.82 0.80
`1 ∆% -0.43 -0.14 -6.28 -7.27 0.00 0.00 -3.16 -3.40
`2 Train 0.96 1.00 0.42 9.28 0.11 3.70 0.85 0.83
`2 Test 0.96 1.00 0.39 8.59 0.11 3.70 0.82 0.80
`2 ∆% -0.63 -0.09 -6.46 -7.38 0.00 0.00 -3.06 -3.02
`3 Train 0.97 1.00 0.43 9.49 0.13 4.15 0.84 0.83
`3 Test 0.97 1.00 0.40 8.80 0.13 4.15 0.82 0.80
`3 ∆% -0.42 -0.14 -6.27 -7.24 0.00 0.00 -3.16 -3.42
`4 Train 0.97 0.99 0.38 8.01 0.02 0.92 0.88 0.88
`4 Test 0.96 0.99 0.35 7.39 0.02 0.92 0.85 0.86
`4 ∆% -0.55 -0.32 -6.44 -7.70 0.00 0.00 -2.60 -2.72
`5 Train 0.95 0.99 0.31 6.58 0.05 1.40 0.85 0.85
`5 Test 0.94 0.98 0.28 5.92 0.05 1.40 0.82 0.82
`5 ∆% -1.18 -0.68 -9.15 -10.12 0.00 0.00 -3.81 -4.01
α1 Train 0.97 1.00 0.39 8.27 0.02 0.97 0.87 0.87
α1 Test 0.97 0.99 0.36 7.58 0.02 0.97 0.84 0.85
α1 ∆% -0.49 -0.12 -6.67 -8.32 0.00 0.00 -2.68 -2.45
α2 Train 0.97 0.99 0.37 7.53 0.01 0.38 0.87 0.89
α2 Test 0.96 0.99 0.35 6.91 0.01 0.38 0.85 0.86
α2 ∆% -0.50 -0.25 -6.48 -8.24 0.00 0.00 -2.76 -3.23
α3 Train 0.97 0.99 0.37 7.70 0.01 0.34 0.87 0.89
α3 Test 0.96 0.99 0.35 7.04 0.01 0.34 0.85 0.86
α3 ∆% -0.49 -0.03 -6.68 -8.49 0.00 0.00 -2.60 -2.54
α4 Train 0.96 0.99 0.36 7.45 0.01 0.59 0.88 0.90
α4 Test 0.96 0.99 0.33 6.82 0.01 0.59 0.86 0.87
α4 ∆% -0.60 -0.16 -6.75 -8.40 0.00 0.00 -2.68 -3.24
α5 Train 0.96 0.99 0.35 7.23 0.01 0.32 0.89 0.91
α5 Test 0.96 0.99 0.33 6.61 0.01 0.32 0.87 0.87
α5 ∆% -0.61 -0.52 -6.91 -8.54 0.00 0.00 -2.68 -3.52

Table T.1: µ-ENSEMBLE Stopwords Included Not Discounted
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Appendix U

Ensemble Results Stopwords Included Discounted

Parameter Type θ̂ θK σ̂ σK ν̂ νK ϕ̄ ϕK

`1 Train 0.97 1.00 0.37 7.58 0.13 4.15 0.86 0.87
`1 Test 0.96 0.99 0.35 7.03 0.13 4.15 0.84 0.84
`1 ∆% -0.60 -0.33 -6.07 -7.27 0.00 0.00 -2.83 -2.88
`2 Train 0.96 0.99 0.37 7.59 0.11 3.70 0.86 0.87
`2 Test 0.95 0.99 0.34 7.03 0.11 3.70 0.84 0.84
`2 ∆% -0.68 -0.16 -6.26 -7.37 0.00 0.00 -2.77 -2.54
`3 Train 0.97 1.00 0.37 7.58 0.13 4.15 0.86 0.87
`3 Test 0.96 0.99 0.35 7.03 0.13 4.15 0.84 0.84
`3 ∆% -0.59 -0.33 -6.06 -7.24 0.00 0.00 -2.83 -2.87
`4 Train 0.97 0.99 0.37 7.56 0.02 0.92 0.88 0.89
`4 Test 0.96 0.99 0.34 6.97 0.02 0.92 0.86 0.87
`4 ∆% -0.55 -0.32 -6.40 -7.79 0.00 0.00 -2.55 -2.55
`5 Train 0.95 0.98 0.29 6.06 0.05 1.40 0.85 0.86
`5 Test 0.94 0.98 0.27 5.45 0.05 1.40 0.82 0.83
`5 ∆% -1.32 -0.84 -9.17 -10.17 0.00 0.00 -3.80 -4.11
α1 Train 0.97 0.99 0.38 7.84 0.02 0.97 0.87 0.88
α1 Test 0.96 0.99 0.35 7.20 0.02 0.97 0.85 0.86
α1 ∆% -0.50 -0.12 -6.53 -8.07 0.00 0.00 -2.60 -2.38
α2 Train 0.97 0.99 0.37 7.35 0.01 0.38 0.88 0.89
α2 Test 0.96 0.99 0.34 6.74 0.01 0.38 0.85 0.87
α2 ∆% -0.50 -0.26 -6.44 -8.26 0.00 0.00 -2.70 -3.08
α3 Train 0.97 0.99 0.37 7.57 0.01 0.34 0.87 0.89
α3 Test 0.96 0.99 0.35 6.94 0.01 0.34 0.85 0.86
α3 ∆% -0.49 -0.03 -6.62 -8.38 0.00 0.00 -2.59 -2.48
α4 Train 0.96 0.99 0.35 7.20 0.01 0.59 0.88 0.90
α4 Test 0.96 0.99 0.33 6.58 0.01 0.59 0.86 0.87
α4 ∆% -0.60 -0.15 -6.75 -8.53 0.00 0.00 -2.64 -3.16
α5 Train 0.96 0.99 0.35 7.10 0.01 0.32 0.89 0.91
α5 Test 0.96 0.99 0.32 6.49 0.01 0.32 0.87 0.87
α5 ∆% -0.61 -0.52 -6.88 -8.56 0.00 0.00 -2.66 -3.53

Table U.1: µ-ENSEMBLE Stopwords Included Discounted
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