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ABSTRACT OF THE DISSERTATION

Degenerate Partial Differential Equations and

Applications to Probability Theory and Foundations of

Mathematical Finance

by Camelia Alexandra Pop

Dissertation Director: Professor Paul M. N. Feehan

In the first part of our thesis, we prove existence, uniqueness and regularity of solutions

for a certain class of degenerate parabolic partial differential equations on the half space

which are a generalization of the Heston operator. We use these results to show that

the martingale problem associated with the differential operator is well-posed and we

build generalized Heston-like processes which match the one-dimensional probability

distributions of a certain class of Itô processes.

The second part of our thesis is concerned with the study of regularity of solutions

to the variational equation associated to the elliptic Heston operator. With the aid of

weighted Sobolev spaces, we prove supremum bounds, a Harnack inequality, and Hölder

continuity near the boundary for solutions to elliptic variational equations defined by

the Heston partial differential operator.

Finally, we establish stochastic representations of solutions to elliptic and parabolic

boundary value problems and obstacle problems associated to the Heston generator.

In mathematical finance, solutions to parabolic obstacle problems correspond to value

functions for American-style options.
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3.5.2. Hölder continuity on neighborhoods of corner points . . . . . . . 122

3.6. Harnack inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4. Stochastic representation of solutions . . . . . . . . . . . . . . . . . . . 130

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.1.1. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.1.2. Summary of main results . . . . . . . . . . . . . . . . . . . . . . 133

Existence and uniqueness of solutions to elliptic boundary value

problems . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Uniqueness of solutions to elliptic obstacle problems . . . . . . . 137

Existence and uniqueness of solutions to parabolic terminal/boundary

value problems . . . . . . . . . . . . . . . . . . . . . . . 138

Uniqueness of solutions to parabolic obstacle problems . . . . . . 141

4.1.3. Survey of previous results on stochastic representations of solu-

tions to boundary value or obstacle problems . . . . . . . . . . . 142

Elliptic boundary value problems . . . . . . . . . . . . . . . . . . 143

Elliptic obstacle problems . . . . . . . . . . . . . . . . . . . . . . 144

Parabolic boundary value problems . . . . . . . . . . . . . . . . . 144

Parabolic obstacle problems . . . . . . . . . . . . . . . . . . . . . 146

4.1.4. Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2. Properties of the Heston stochastic volatility process . . . . . . . . . . . 147

4.3. Elliptic boundary value problem . . . . . . . . . . . . . . . . . . . . . . 161

4.4. Elliptic obstacle problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.5. Parabolic terminal/boundary value problem . . . . . . . . . . . . . . . . 176

4.6. Parabolic obstacle problem . . . . . . . . . . . . . . . . . . . . . . . . . 182

Appendix A. Auxiliary results for Chapter 2 . . . . . . . . . . . . . . . . . 188

vii



A.1. Existence and uniqueness of solutions for a degenerate parabolic operator

with constant coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.2. Proof of Proposition 2.3.13 . . . . . . . . . . . . . . . . . . . . . . . . . 191

Appendix B. Auxiliary results for Chapter 3 . . . . . . . . . . . . . . . . . 197

B.1. An extension lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.2. Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.3. Weighted Sobolev norms and uniform bounds . . . . . . . . . . . . . . . 208

Appendix C. Auxiliary results for Chapter 4 . . . . . . . . . . . . . . . . . 211

C.1. Local a priori boundary estimates . . . . . . . . . . . . . . . . . . . . . . 211
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Chapter 1

Introduction

We study existence, uniqueness and regularity of solutions to degenerate elliptic and

parabolic partial differential equations (PDEs) which arise as generators of Markov

processes. This research is motivated in part by applications to mathematical finance,

especially in option pricing.

In Chapter 2, we solve four intertwined problems concerning degenerate-parabolic

partial differential operators and degenerate diffusion processes. First, we consider a

parabolic partial differential equation on a half-space whose coefficients are suitably

Hölder continuous and allowed to grow linearly in the spatial variable and which be-

comes degenerate along the boundary of the half-space. We establish existence and

uniqueness of solutions in weighted Hölder spaces which incorporate both the degener-

acy at the boundary and the unboundedness of the coefficients. Second, we show that

the martingale problem associated with a degenerate elliptic differential operator with

unbounded, locally Hölder continuous coefficients on a half-space is well-posed in the

sense of Stroock and Varadhan. Third, we prove existence, uniqueness, and the strong

Markov property for weak solutions to a stochastic differential equation with degenerate

diffusion and unbounded coefficients with suitable Hölder continuity properties. Fourth,

for an Itô process with degenerate diffusion and unbounded but appropriately regular

coefficients, we prove existence of a strong Markov process, unique in the sense of prob-

ability law, whose one-dimensional marginal probability distributions match (mimic)

those of the given Itô process.

Mimicking theorems are useful in pricing European options in mathematical finance.

Often, stock prices follow complex dynamics, which are difficult to simulate in practice,

so it is desirable to be able to select a unique Markov stochastic process which has the
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same one-dimensional probability distributions as the original asset price process, and

which can serve as an input to the pricing equation. In our framework, we achieve this

goal.

The Heston stochastic volatility process, which is widely used as an asset price model

in mathematical finance, is a paradigm for a degenerate diffusion process where the

degeneracy in the diffusion coefficient is proportional to the square root of the distance

to the boundary of the half-plane. The generator of this process with killing, called

the elliptic Heston operator, is a second-order degenerate elliptic partial differential

operator whose coefficients have linear growth in the spatial variables and where the

degeneracy in the operator symbol is proportional to the distance to the boundary of

the half-plane. With the aid of weighted Sobolev spaces, in the second part of our thesis,

Chapter 3, we prove supremum bounds, a Harnack inequality, and Hölder continuity

near the boundary for solutions to elliptic variational equations defined by the Heston

partial differential operator. The difficulty in studying these properties is in adapting

the method of Moser iterations, Poincaré inequality and John-Nirenberg inequality to

our weighted spaces. We use these results to prove Hölder continuity of weak solutions

to the Heston obstacle problem, which combined with additional regularity results (in

particular, the C1,1
s regularity due to Daskalopoulos and Feehan), enables us to show

that the weak solutions admit stochastic representations [32]. This result is of particular

interest to practitioners because it shows for the Heston model, that prices of perpetual

American options, with regular enough payoffs, are solutions to stationary variational

inequalities.

Finally, in Chapter 4, we establish stochastic representations of solutions to elliptic

and parabolic boundary value problems and obstacle problems associated to the Heston

generator.

1.1 Notation and conventions

We adopt the convention that a condition labeled as an Assumption is considered to be

universal and in effect throughout the chapter where it is stated and so not referenced
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explicitly in theorem and similar statements; a condition labeled as a Hypothesis is only

considered to be in effect when explicitly referenced.

We let N := {1, 2, . . .} denote the set of positive integers. For x, y ∈ R, we let

x ∧ y := min{x, y}, x ∨ y := max{x, y} and x+ := x ∨ 0. For any open set O in

a topological space, we denote by Ō its closure. Let Sd ⊂ Rd×d denote the closed,

convex subset of non-negative definite, symmetric matrices. Let S+
d ⊂ Rd×d denote the

convex subset of positive definite, symmetric matrices. We denote by O(d) ⊂ Rd×d the

orthogonal group.

A positive integer d ≥ 2 denotes the dimension of the Euclidean space, Rd. We

denote R+ := (0,∞) and H := Rd−1×R+. We write points in H as x := (x′, xd), where

x′ := (x1, x2, . . . , xd−1) ∈ Rd−1, when d ≥ 2, or z = (x, y), x ∈ R and y > 0, when

d = 2.

In Chapters 3 and 4, we denote by O ⊂ H a possibly unbounded domain in the

open upper half-plane H, Γ1 = ∂O ∩H is the portion of the boundary ∂O of O which

lies in H, and Γ0 is the (non-empty) interior of ∂H∩∂O, where ∂H = Rd−1×{0} is the

boundary of H̄ := Rd−1 × [0,∞). We write ∂O = Γ0 ∪ Γ̄1 = Γ̄0 ∪ Γ1 and note that the

boundary portions Γ0 and Γ1 are relatively open in ∂O.

1.1.1 Function spaces

In the definition and naming of function spaces, including spaces of continuous func-

tions, Hölder spaces, or Sobolev spaces, we follow Adams [2] and alert the reader to

occasional differences in definitions between [2] and standard references such as Gilbarg

and Trudinger [41] or Krylov [51, 52].

Elliptic Hölder spaces

Let O ⊂ Rd be an open, connected set (domain). For an integer k ≥ 0, we let Ck(O)

denote the vector space of functions whose derivatives up to order k are continuous on

O and let Ck(Ō) denote the Banach space of functions whose derivatives up to order k

are uniformly continuous and bounded on O [2, §1.25 & §1.26]. If T $ ∂O is a relatively

open set, we let Ckloc(O ∪ T ) denote the vector space of functions, u, such that, for any
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precompact open subset U b O ∪ T , we have u ∈ Ck(Ū).

For α ∈ (0, 1), we let Ck+α(O) denote the subspace of Ck(O) consisting of functions

whose derivatives up to order k are locally α-Hölder continuous on O (in the sense

of [41, p. 52]) and let Ck+α(Ō) denote the subspace of Ck(Ō) consisting of functions

whose derivatives up to order k are uniformly α-Hölder continuous on O [41, p. 52],

[2, §1.27]. If T $ ∂O is a relatively open set, we let Ck+α
loc (O ∪ T ) denote the vector

space of functions, u, such that, for any precompact open subset U b O ∪ T , we have

u ∈ Ck+α(Ū).

Parabolic Hölder spaces

The definitions of the parabolic Hölder spaces are analogous to those of the elliptic

Hölder spaces, with the only adjustment that we replace the Euclidean distance between

two points by the parabolic distance given by

ρ(P1, P2) :=
d∑
i=1

|x1
i − x2

i |+
√
|t1 − t2|, (1.1.1)

where Pi = (ti, x
i
1, . . . , x

i
d), i = 1, 2.

Let Q ⊂ (0, T ) × Rd be a domain and α ∈ (0, 1). We denote by C(Q̄) the space of

bounded, continuous functions on Q̄, and by C∞0 (Q̄) the space of smooth functions with

compact support in Q̄. If T $ ∂Q is a relatively open set, we let Cloc(Q ∪ T ) denote

the vector space of functions, u, such that, for any precompact open subset V b Q∪T ,

we have u ∈ C(V̄ ).

For a function u : Q̄→ R, we consider the following norms and seminorms

‖u‖C(Q̄) = sup
P∈Q̄
|u(P )|, (1.1.2)

[u]Cαρ (Q̄) = sup
P1,P2∈Q̄,
P1 6=P2

|u(P1)− u(P2)|
ρ(P1, P2)α

. (1.1.3)

We say that u ∈ Cαρ (Q̄) if u ∈ C(Q̄) and

‖u‖Cαρ (Q̄) = ‖u‖C(Q̄) + [u]Cαρ (Q̄) <∞.

We say that u ∈ C2+α
ρ (Q̄) if

‖u‖C2+α
ρ (Q̄) = ‖u‖Cαρ (Q̄) + ‖ut‖Cαρ (Q̄) + max

1≤i≤d
‖uxi‖Cαρ (Q̄) + max

1≤i,j≤d
‖uxixj‖Cαρ (Q̄) <∞.
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We denote by Cαρ,loc(Q̄) the space of functions u with the property that for any compact

set K ⊆ Q̄, we have u ∈ Cαρ (K). Analogously, we define the space C2+α
ρ,loc(Q̄). For

T $ ∂Q a relatively open subset, we let C2+α
ρ,loc(Q ∪ T ) denote the subspace of C2+α

ρ (Q)

such that, for any precompact open set U b Q ∪ T , we have u ∈ C2+α
ρ (Ū).

Sometimes, we omit the subscript ρ from the definition of the parabolic Hölder

spaces (in Chapter 4), but we keep it when we want to emphasize the different metrics

that we use (in Chapter 2).

1.1.2 Probability spaces and filtrations

Let E be a metric space and let B(E) be the Borel σ-algebra generated by this topology.

We denote by Cloc([0,∞);E) the set of continuous paths ω : [0,∞) → E. We endow

Cloc([0,∞);E) with the topology of uniform convergence on compact sets. If (E, r)

is a complete, separable metric space, then Cloc([0,∞);E) is a complete, separable,

metrizable space.

Let B(Cloc([0,∞);E)) denote the σ-algebra generated by the cylinder sets

{ω ∈ Cloc([0,∞);E) : ω(ti) ∈ Bi, i = 1, . . . ,m} , (1.1.4)

where 0 ≤ t1 < . . . < tm, Bi ∈ B(E), i = 1, . . . ,m, and m ∈ N. For t ≥ 0, let

Bt(Cloc([0,∞);E)), denote the σ-algebra generated by cylinder sets of the form (1.1.4)

such that 0 ≤ t1 < . . . < tm ≤ t.

We specialize (E, r) to be (Rd, | · |) ([70, p. 138], [47, Definition 5.4.5 & 5.4.10]),

(Rd+, | · |) ([6, §1]) and (H̄, | · |) in Definition 2.1.8.

Definition 1.1.1 (Usual conditions). [47, Definition 1.2.25] A filtration {Ft}t≥0 on a

probability space (Ω,F ,P) is said to satisfy the usual conditions if it is right-continuous,

that is, Ft = ∩s>tFs, and F0 contains all events in F with P-null probability.

Definition 1.1.2 (Augmentation of a filtration). [47, Definition 2.7.2] Let (Ω,F ,P),

{Ft}t≥0, be a filtered probability space and let N denote

N := {F ⊂ Ω : ∃G ∈ F such that F ⊆ G,P(G) = 0} .
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Let FN
t denote the σ-algebra generated by Ft ∪N . Then,

{
FN
t

}
t≥0

is the augmen-

tation of the initial filtration {Ft}t≥0.
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Chapter 2

Degenerate PDEs and martingale and mimicking

problems

2.1 Introduction

Consider a time-dependent, elliptic differential operator defined by unbounded coeffi-

cients (a, b) on the half-space H := Rd−1 × (0,∞) with d ≥ 2,

Atv(x) :=
1

2

d∑
i,j=1

xdaij(t, x)vxixj (x) +
d∑
i=1

bi(t, x)vxi(x), (t, x) ∈ [0,∞)×H, (2.1.1)

where a = (aij), b = (bi), and v ∈ C2(H̄). The operator At becomes degenerate

along the boundary ∂H = {xd = 0} of the half-space. In this chapter, motivated by

applications to mathematical finance [4, 22, 63], we solve four intertwined problems

concerning degenerate-parabolic partial differential operators and degenerate diffusion

processes related to (2.1.1).

First, as explained more fully in §2.1.1, we prove existence, uniqueness, and regular-

ity of solutions to a degenerate-parabolic partial differential equation with unbounded,

locally Hölder-continuous coefficients, (a, b, c), generalizing both the Heston equation

[44] and the linearization of the porous medium equation [20, 21, 50],
Lu = f on HT ,

u(0, ·) = g on H̄,
(2.1.2)

where

−Lu = −ut +

d∑
i,j=1

xdaijuxixj +

d∑
i=1

biuxi + cu, ∀u ∈ C1,2(HT ), (2.1.3)

and HT := (0, T ) × H. In particular, unlike the linearization of the porous medium

equation considered in [20, 21, 50], the coefficients of (2.1.3) are permitted to grow
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linearly with x as x → ∞ and, even when the coefficients bi are constant, we do not

require that bi = 0 when i = 1, . . . , d− 1.

Second, we show that the martingale problem §2.1.1 for the degenerate-elliptic op-

erator with unbounded coefficients, At, in (2.1.1) is well-posed in the sense of Stroock

and Varadhan [70].

Third, as discussed in more detail in §2.1.1, we prove existence, uniqueness, and the

strong Markov property for weak solutions, X̂, to a degenerate stochastic differential

equation with unbounded coefficients,

dX̂(t) = b(t, X̂(t))dt+ σ(t, X̂(t))dŴ (t), t ≥ s,

X̂(s) = x.

(2.1.4)

when the coefficient σ is a square root of the coefficient matrix xda in At in (2.1.1),

that is, when σσ∗ = xda on HT .

Lastly, suppose we are given a degenerate Itô process, X, with unbounded coeffi-

cients,

dX(t) = β(t)dt+ ξ(t)dW (t), t ≥ 0,

X(0) = x,

(2.1.5)

whose coefficients (ξ, β) are related to those of (2.1.4) as explained in §2.1.1. When

the coefficients (b, σ) in (2.1.4) are determined by the coefficients (ξ, β) in (2.1.5) as de-

scribed in §2.1.1, we show that the weak solution X̂ to (2.1.4) “mimics” the Itô process

(2.1.5) in the sense that X̂(t) has the same one-dimensional marginal probability distri-

butions as X(t), for all t ≥ 0 if X̂(0) = X(0) ∈ H̄. Our mimicking theorem complements

that of Gyöngy [43], who assumes that (2.1.4) is non-degenerate with bounded, measur-

able coefficients, that of Brunick and Shreve [12, 14], who allow (2.1.4) to be degenerate

with unbounded, measurable coefficients, and those of Bentata and Cont [9] and Shi

and Wang [66, 72] who prove mimicking theorems for a discontinuous semimartingale

process with a non-degenerate diffusion component and bounded coefficients.

2.1.1 Summary of main results

We describe our results outlined in the preamble to §2.1.
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Existence and uniqueness of solutions to a degenerate-parabolic partial dif-

ferential equation with unbounded coefficients

We shall seek a solution, u, to (2.1.2) in a certain weighted Hölder space C 2+α
p (H̄T ),

given a source function, f , in a weighted Hölder space C α
p (H̄T ) and initial data, g,

in a weighted Hölder space C 2+α
p (H̄). These weighted Hölder spaces generalize both

the standard Hölder spaces as defined, for example, in [51, 54] and the Hölder spaces

defined with the cycloidal metric and introduced, independently, by Daskalopoulos and

Hamilton [20] and Koch [50]. We defer a detailed description of these Hölder spaces

to §2.2.1. However, the essential features of our Hölder spaces are that (i) near the

boundary, xd = 0, of the half-space cylinder HT , our Hölder spaces are equivalent to

those of Daskalopoulos, Hamilton, and Koch and account for the degeneracy of the

operator L, (ii) polynomial weights in the definition of our Hölder spaces allow for

coefficients (a, b, c) in (2.1.3) with up to linear growth near x = ∞ in the half-space

cylinder HT , and (iii) on compact subsets of the half-space cylinder HT , our Hölder

spaces are equivalent to standard Hölder spaces. We defer a detailed description of the

conditions on the coefficients (a, b, c) defining L in (2.1.3) to §2.2.2 — see Assumption

2.2.2 on the properties of the coefficients of the parabolic differential operator. However,

the essential features of the conditions on (a, b, c) in Assumption 2.2.2 are that (i) the

matrix a = (aij) is uniformly elliptic, so the degeneracy in (2.1.3) is captured by the

common factor xd appearing in the uxixj terms, (ii) the coefficients (a, b, c) have at most

linear growth with respect to x ∈ H as x → ∞, (iii) the coefficients (a, b, c) are locally

Hölder continuous on H̄T with exponent α ∈ (0, 1), (iv) the coefficient c is bounded

above on HT by a constant, and (v) the coefficient bd is positive when xd = 0. We can

now state our first main result.

Theorem 2.1.1 (Existence and uniqueness). Assume that the coefficients (a, b, c) in

(2.1.3) obey the conditions in Assumption 2.2.2. Then there is a positive constant p,

depending only on the Hölder exponent α ∈ (0, 1), such that for any T > 0, f ∈ C α
p (H̄T )

and g ∈ C 2+α
p (H̄), there exists a unique solution u ∈ C 2+α(H̄T ) to (2.1.2). Moreover,
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u satisfies the a priori estimate

‖u‖C 2+α(H̄T ) ≤ C
(
‖f‖Cαp (H̄T ) + ‖g‖C 2+α

p (H̄)

)
, (2.1.6)

where C is a positive constant, depending only on K, ν, δ, d, α and T .

One of the difficulties in establishing Theorem 2.1.1 is that the coefficient, xda(t, x),

becomes degenerate when xd = 0 and is allowed to have linear growth in x, instead of

being uniformly elliptic and bounded as in [53, Hypothesis 2.1]. To address the degen-

eracy of xda(t, x) as xd ↓ 0, we build on the results on [20, Theorem I.1.1] by employing

a localization procedure. To address the linear growth of the coefficients (xda, b, c) of

the parabolic operator L in (2.1.3), we augment previous definitions of weighted Hölder

spaces [20, 50], by introducing a weight (1+|x|)p, where p is a positive constant depend-

ing only on the dimension d of the half-space H and on the Hölder exponent α ∈ (0, 1).

The proof of existence does not follow by standard methods, for example, the method

of continuity, because L : C 2+α(H̄T ) → C α
p (H̄T ) is not a well-defined operator. In

general, the domain of definition of L is a subspace of C 2+α(H̄T ) which depends on

the nature of the coefficients of L, a feature which is not encountered in the case of

parabolic operators with bounded coefficients . To circumvent this difficulty, we first

consider the case of similar degenerate operators with bounded coefficients and then use

an approximation procedure to obtain our solution. To obtain convergence of sequences

to a solution of our parabolic differential equation (2.1.2), we prove a priori estimates

in the weighted Hölder spaces C α
p and C 2+α

p .

The conditions in Assumption 2.2.2 on the coefficients (a, b, c) in (2.1.3) are mild

enough that they allow for many examples of interest in mathematical finance.

Example 2.1.2 (Parabolic Heston partial differential equation). The conditions in As-

sumption 2.2.2 are obeyed by the coefficients of the parabolic Heston partial differential

operator,

−Lu = −ut +
y

2

(
uxx + 2%σuxy + σ2uyy

)
+ (r− q− y/2)ux + κ(ϑ− y)uy − ru, (2.1.7)

where q ≥ 0, r ≥ 0, κ > 0, ϑ > 0, σ > 0, and % ∈ (−1, 1) are constants.
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Naturally, the conditions in Assumption 2.2.2 on the coefficients (a, b, c) in (2.1.3)

also allow for the linearization of the generalized porous medium equation.

Example 2.1.3 (Linearization of the porous medium equation). In their landmark

article, Daskalopoulos and Hamilton [20] proved existence and uniqueness of C∞ solu-

tions, u, to the Cauchy problem for the porous medium equation [20, p. 899] (when

d = 2),

− ut +

d∑
i=1

(um)xixi = 0 on (0, T )× Rd, u(·, 0) = g on Rd, (2.1.8)

where m > 1 and g ∈ L1(Rd) with g ≥ 0 compactly supported on Rd, together with

C∞-regularity of its free boundary, ∂{u > 0}. Their analysis is based on an extensive

development of existence, uniqueness, and regularity results for the linearization of the

porous medium equation near the free boundary and, in particular, their model linear

degenerate operator [20, p. 901] (generalized from d = 2 in their article),

− Lu = −ut + xd

d∑
i=1

uxixi + νuxd , (2.1.9)

where ν is a positive constant. The same model linear degenerate operator (for d ≥ 2),

was studied independently by Koch [50, Equation (4.43)] and, in a remarkable Habil-

itation thesis, he obtained existence, uniqueness, and regularity results for solutions

to (2.1.8) which complement those of Daskalopoulos and Hamilton [20]. Even when

the coefficients in (2.1.3) are constant, our operator cannot be transformed by simple

coordinate changes to one of the form (2.1.9), but rather one of the form (A.1.6). Sim-

ilarly, the operator (2.1.7) cannot be transformed by simple coordinate changes to one

of the form (2.1.9), even when the factor y in the coefficients of ux and uy in (2.1.7) is

(artificially) replaced by zero.

Existence and uniqueness of solutions to the martingale problem for a

degenerate-parabolic operator with unbounded coefficients

We review the formulation of the classical martingale problem of Stroock and Varadhan

[70].
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Definition 2.1.4 (Classical martingale problem on the whole space). [70, p. 138], [47,

Definition 5.4.5 & 5.4.10] Suppose we are given a differential operator,

Ãtv(t, x) :=
1

2

d∑
i,j=1

ãij(t, x)vxixj (x) +

d∑
i=1

b̃i(t, x)vxi(x), (t, x) ∈ [0,∞)×Rd, (2.1.10)

with v ∈ C2(Rd) and measurable coefficients,

ã : [0,∞)× Rd → Sd,

b̃ : [0,∞)× Rd → Rd.
(2.1.11)

A probability measure Ps,x on the canonical space,
(
Cloc([0,∞);Rd),B(Cloc([0,∞);Rd))

)
,

is called a solution to the martingale problem associated to Ãt with initial condition at

(s, x) ∈ [0,∞)× Rd if

Ps,x
(
ω ∈ Cloc([0,∞);Rd) : ω(t) = x, 0 ≤ t ≤ s

)
= 1,

and, for any v ∈ C∞0 (Rd),

v(ω(t))− v(ω(s))−
∫ t

s
Ãuv(ω(u))du, ∀ω ∈ Cloc([0,∞);Rd), t ≥ s,

is a Ps,x-martingale with respect to the filtration {Bt(Cloc([0,∞);Rd))}t≥s.

Remark 2.1.5 (Well-posedness of the classical martingale problem (Definition 2.1.4)).

Standard results which ensure existence of solutions to the classical martingale problem

require that the coefficients (ã, b̃) in (2.1.11) be bounded and continuous [47, Theorem

5.4.22], [70, Theorem 6.1.7]. Standard results which ensure uniqueness of solutions

require, in addition, that the coefficients (ã, b̃) are Hölder continuous and that the

matrix a is uniformly elliptic (see [47, Theorem 5.4.28, Corollary 5.4.29, and Remark

5.4.29] for the time-homogeneous martingale problem).

Remark 2.1.6 (Approaches to proving uniqueness in the classical martingale problem).

Uniqueness of solutions to the classical martingale problem is often shown [47, §5.4] by

proving existence of solutions in C([0, T ]×Rd)∩C1,2((0, T )×Rd) to the terminal value

problem for the parabolic partial differential equation,
ut + Ãtu = 0 on (0, T )× Rd,

u(T, ·) = g on Rd,

where g ∈ C∞0 (Rd) and Ãt is given by (2.1.10).
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For a differential operator which is defined on a subdomain, it is natural to consider a

modification of Definition 2.1.4. To illustrate such a formulation, we have the following

example due to Bass and Lavrentiev [6].

Example 2.1.7 (A time-homogeneous, degenerate submartingale problem on a subdo-

main). [6, §1] Consider the differential operator,

A ′v(x) :=
1

2

d∑
i=1

ai(x)xαii vxixi(x) +
d∑
i=1

bi(x)vxi(x), ∀x ∈ Rd+, (2.1.12)

where v ∈ C2(Rd+), the coefficients bi are bounded, the coefficients ai are continuous

and bounded from above and below by positive constants, and αi ∈ (0, 1). Let x ∈ R̄d+.

Then, a probability measure Px on
(
Cloc([0,∞); R̄d+),B(Cloc([0,∞); R̄d+))

)
is a solution

to the submartingale problem associated to A ′ if

Px
(
ω ∈ Cloc([0,∞); R̄d+) : ω(0) = x

)
= 1,

and, for any v ∈ C2
b (Rd+) ∩ C1(R̄d+) such that vxi ≥ 0 along {xi = 0},

v(ω(t))− v(ω(0))−
∫ t

0
A ′v(ω(u))du, ∀ω ∈ Cloc([0,∞);Rd+), t ≥ 0,

is a Px-submartingale with respect to the filtration {Bt(Cloc([0,∞);Rd+))}t≥0.

Bass and Lavrentiev [6, Theorem 1.1] prove that there is a unique solution to this

submartingale problem which spends zero time on the boundary of Rd+.

We now define an analogue of the usual martingale problem (Definition 2.1.4) when

Rd is replaced by the half-space H.

Definition 2.1.8 (Solution to a martingale problem for an operator on a half-space).

Given (s, x) ∈ [0,∞)× H̄, a probability measure P̂s,x on

(Cloc([0,∞); H̄),B(Cloc([0,∞); H̄))

is a solution to the martingale problem associated to At in (2.1.1) starting from (s, x) if

Mv
t (ω) := v(ω(t))− v(ω(s))−

∫ t

s
Auv(ω(u)) du, t ≥ s, ω ∈ Cloc([0,∞); H̄),
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is a continuous P̂s,x-martingale, for every v ∈ C2
0 (H̄), with respect to the filtration F̂t =

Gt+, where Gt is the augmentation under P̂s,x of the filtration {Bt(Cloc([0,∞); H̄)}t≥0,

and

P̂s,x
(
ω ∈ Cloc([0,∞); H̄) : ω(t) = x, 0 ≤ t ≤ s

)
= 1. (2.1.13)

Remark 2.1.9 (Reduction to usual filtration). By modifying the statement and so-

lution to [47, Problem 5.4.13] (that is, replacing Rd by H), we see that if Mv
t is a

martingale with respect to the filtration {Bt(Cloc([0,∞); H̄)}t≥0, then it is a martin-

gale with respect to the enlarged filtration F̂t.

Theorem 2.1.10 (Existence and uniqueness of solutions to the martingale problem

for a degenerate-elliptic operator with unbounded coefficients). Suppose the coefficients

(a, b) in (2.1.1) obey the conditions in Assumption 2.2.2. Then, for any (s, x) ∈ [0,∞)×

H̄, there is a unique solution, P̂s,x, to the martingale problem associated to At in (2.1.1)

starting from (s, x).

Remark 2.1.11 (Comments on uniqueness). While [47, Remark 5.4.31] might appear

to provide a simple solution to the uniqueness property asserted by Theorem 2.1.10

when the nonnegative definite matrix-valued function xda is in C2(H;Sd), that is not the

case. Although we might extend the coefficient, xda, as a nonnegative definite matrix-

valued function x+
d a or |xd|a in C0,1(Rd; Sd), such extensions are not in C2(Rd; Sd), as

required by [47, Remark 5.4.31].

Existence and uniqueness of weak solutions to a degenerate stochastic dif-

ferential equation with unbounded coefficients

Given a function,

ā : [0,∞)× H̄→ Sd,

then ā(t, x) is a non-negative definite, symmetric, real matrix for each (t, x) ∈ [0,∞)×H̄,

and so there is a function

σ : [0,∞)× H̄→ Rd×d, (2.1.14)
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such that

ā(t, x) = σ(t, x)σ∗(t, x), ∀(t, x) ∈ [0,∞)× H̄. (2.1.15)

By [40, Lemma 6.1.1], we may choose σ ∈ Cloc([0,∞)×H̄;Rd×d) when ā ∈ Cloc([0,∞)×

H̄;Sd); this continuity property is guaranteed by the conditions on ā in (2.2.11) and

(2.2.13) implied through (2.1.16).

Remark 2.1.12 (Non-uniqueness of the square root and the martingale problem).

Naturally, the function σ is not unique. For any function, U : [0,∞)×Rd → O(d), σU

is also a square root of ā. However, as noted by Stroock and Varadhan [70, Remark

5.1.7 & §5.3], the solution to the martingale problem is independent of the choice of

square root.

The coefficient functions (σ, b) define a degenerate stochastic differential equation

(2.1.4). Unless other conditions are explicitly substituted, we require in this chapter

that the coefficients (σ, b) satisfy

Assumption 2.1.13 (Properties of the coefficients of the stochastic differential equa-

tion). The coefficient functions (σ, b) in (2.1.4) obey the following conditions.

1. There is a function a : [0,∞)× H̄→ Sd+ such that

ā(t, x) = x+
d a(t, x), ∀(t, x) ∈ [0,∞)× H̄. (2.1.16)

2. The coefficient functions (a, b) obey the conditions in Assumption 2.2.2.

Remark 2.1.14 (Absence of killing term). The coefficient c in Assumption 2.2.2 plays

no role in Theorems 2.1.16 and 2.1.19 since it does not appear in the stochastic differ-

ential equation (2.1.4).

The constraints on the coefficients (σ, b) in Assumption 2.1.13 are mild enough that

they include many examples of interest in mathematical finance.

Example 2.1.15 (Heston stochastic differential equation). The conditions in Assump-

tion 2.1.13 are obeyed by the coefficients of the R2-valued log-Heston process [44] with

killing defined by (4.1.15). See also Example 2.1.2.
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Theorem 2.1.16 (Existence, uniqueness, and strong Markov property of weak so-

lutions to a degenerate stochastic differential equation with unbounded coefficients).

Suppose that the coefficients (σ, b) in (2.1.4) obey the conditions in Assumption 2.1.13.

Let (s, x) ∈ [0,∞)× H̄. Then,

1. There is a weak solution, (X̂, Ŵ ), (Ω,F ,P), {Ft}t≥s, to the stochastic differential

equation (2.1.4) such that X̂(s) = x, P-a.s.

2. The weak solution is unique in the sense of probability law, that is, if

(X̂i, Ŵ i), (Ωi,F i,Pi), (F i
t )t≥s, i = 1, 2,

are two weak solutions to the stochastic differential equation (2.1.4) started at x

at time s, then the two processes X1 and X2 have the same law.

3. The unique weak solution, (X̂, Ŵ ), (Ω,F ,P), {Ft}t≥s, has the strong Markov

property.

The following example of Stroock and Varadhan [70, Exercise 6.7.7] shows that

solutions to degenerate martingale problems can easily fail to be unique.

Example 2.1.17 (Non-uniqueness of solutions to certain degenerate martingale prob-

lems). [70, Exercise 6.7.7] Consider a generator, A , in Definition 2.1.4 which is time-

homogeneous with d = 1, b(x) = 0, and a(x) = |x|α ∧ 1 with 0 < α < 1, where x ∈ R.

The operator A is degenerate at x = 0 and uniqueness in law for solutions to the

martingale problem for A fails.

The preceding example has been explored in detail by Engelbert and Schmidt:

Example 2.1.18 (Non-uniqueness of weak solutions to certain degenerate stochastic

differential equations). Choose α ∈ (0, 1/2) and consider

dX(t) = |X(t)|αdW (t), ∀t ≥ 0, (2.1.17)

Engelbert and Schmidt [26] show that the stochastic differential equation (2.1.17) ad-

mits weak solutions if and only if I(σ) ⊆ Z(σ), and uniqueness in law holds if and only
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if I(σ) = Z(σ), where

Z(σ) = {x ∈ R : σ(x) = 0} ,

I(σ) =
{
x ∈ R : 1/σ2 is not locally integrable at x

}
.

It is straightforward to verify that when α is chosen in the range (0, 1/2), equation

(2.1.17) admits weak solutions, but uniqueness in law does not hold.

Mimicking one-dimensional marginal probability distributions of a degener-

ate Itô process with unbounded coefficients

Let X be an Rd-valued Itô process as in (2.1.5), where W is an Rr-valued Brownian mo-

tion on a filtered probability space, (Ω,F ,P, {Ft}t≥0), satisfying the usual conditions

[47, Definition 1.2.25], β is an Rd-valued, adapted process, and that ξ is a Rd×r-valued,

adapted process satisfying the integrability condition,

E
[∫ t

0
(|β(s)|+ |ξ(s)ξ∗(s)|) ds

]
<∞, ∀t ≥ 0. (2.1.18)

Assume x ∈ H̄ and that for all t ≥ 0 we have

X(t) ∈ H̄, P-a.s. (2.1.19)

By [12, Corollary 4.5], there are (Borel) B([0,∞)×H̄)-measurable (deterministic) func-

tions,

b : [0,∞)× H̄→ Rd,

ā : [0,∞)× H̄→ Sd,
(2.1.20)

such that, for Lebesgue a.e. t ≥ 0,

b(t,X(t)) = E [β(t)|X(t)] P-a.s.,

ā(t,X(t)) = E [ξ(t)ξ∗(t)|X(t)] P-a.s.

(2.1.21)

We can now state the main result of this chapter.

Theorem 2.1.19 (Mimicking theorem for degenerate Itô processes with unbounded

coefficients). Suppose the coefficient ā in (2.1.21) satisfies (2.1.16) and the pair (a, b)

obeys Assumption 2.2.2, where b is given by (2.1.21). Let σ ∈ Cloc([0,∞) × H̄;Rd×d)

be a choice of square root,

ā(t, x) = σ(t, x)σ∗(t, x), ∀(t, x) ∈ [0,∞)× H̄. (2.1.22)
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Let X̂ be the unique, strong Markov weak solution to the stochastic differential equation

(2.1.4) started at x when t = 0. Then X and X̂ have the same one-dimensional marginal

probability distributions.

Remark 2.1.20 (Mimicking stochastic differential equation). We call (2.1.4) the mim-

icking stochastic differential equation defined by the Itô process (2.1.5) when its coeffi-

cients are defined as in (2.1.15) and (2.1.20).

Remark 2.1.21 (Sufficient and necessary condition to ensure that the Itô process

remains in the upper half-space). In general, the coefficients σ and bd defined by (2.1.21)

and (2.1.22) are Borel measurable functions defined on [0,∞) × Rd. Our assumption

(2.1.19) implies that we may choose the coefficients σ and bd such that they satisfy

conditions (2.4.1) and (2.4.2) on [0,∞) × Rd−1 × (−∞, 0). Conversely, if we are given

bd and σ satisfying conditions (2.4.1) and (2.4.2), Proposition 2.4.8 shows that (2.1.19)

holds.

2.1.2 Survey of previous research

Gyöngy [43, Theorem 4.6] proves existence of a mimicking process as in Theorem 2.1.19

— although not the uniqueness or strong Markov properties — with conditions on the

coefficients (σ, b) which are both partly weaker than those of Theorem 2.1.19, because

the functions b : [0,∞) × Rd → Rd and σ : [0,∞) × Rd → Rd×d are only required to

be Borel-measurable, but also partly stronger than those of Theorem 2.1.19, because

the functions (σ, b) are required to be uniformly bounded on [0,∞) × Rd and σσ∗ is

required to be uniformly positive definite on [0,∞)× Rd.

Since Gyöngy only requires that the coefficients (σ, b) of the corresponding mimick-

ing stochastic differential equation (2.1.4) are Borel measurable functions, he uses an

auxiliary regularizing procedure to construct a weak solution X̂ to (2.1.4). He shows

that the Green measure of the mimicking process X̂ coincides with the Green measure

of the Itô process X, that is

E
[∫ ∞

0
e−tf(t, X̂(t))dt

]
= E

[∫ ∞
0

e−tf(t,X(t))dt

]
,



19

holds for all bounded, non-negative, Borel measurable functions, f : [0,∞)× Rd → R.

Uniqueness of the weak solution is not proved under the hypotheses of [43, Theorem

4.6] and the main obstacle here is the lack of regularity of the coefficients (ā, b).

The hypotheses of [43, Theorem 4.6] are quite restrictive, as we can see that they

would exclude a process, X, such as that in Example 2.1.15, even though the coefficients

of its mimicking processes, X̂, can be found by explicit calculation [5] (see also [4]).

Moreover, Nadirashvili shows [60] that uniqueness of stochastic differential equations

with measurable coefficients satisfying the assumptions of non-degeneracy and bound-

edness in [43, Theorem 4.6] does not hold in general when d ≥ 3. Nadirashvili considers

a sequence of smooth coefficients converging to the given measurable coefficients and

shows that there are two different solutions to the corresponding partial differential

equation.

Brunick and Shreve [12, Corollary 2.16], [14] prove an extension of [43, Theorem 4.6]

which relaxes the requirements that σσ∗ is uniformly positive definite on [0,∞) × Rd

and that the functions σ and b are bounded on [0,∞)×Rd. Moreover, they significantly

extend Gyöngy’s theorem [43] by replacing the non-degeneracy and boundedness condi-

tions on the coefficients of the Itô process, X, by a mild integrability condition (2.1.18).

Using purely probabilistic methods, they show existence of weak solutions to stochas-

tic differential equations of diffusion type which preserve not only the one-dimensional

marginal distributions of the Itô process, but also certain statistics, such as the running

maximum or average of one of the components. More recently, Brunick [13] establishes

weak uniqueness for a degenerate stochastic differential equation with applications to

pricing Asian options.

Bentata and Cont [9] and Shi and Wang [66, 72] extend Gyöngy’s mimicking theorem

to discontinuous, non-degenerate semimartingales. Under assumptions of continuity

and boundedness on the coefficients of the process and non-degeneracy condition of

the diffusion matrix or of the Levý operator, they prove uniqueness of solutions to the

forward Kolmogorov equation associated with the generator of the mimicking process.

In this setting, they show that weak uniqueness to the mimicking stochastic differential

equation holds and that the mimicking process satisfies the Markov property.
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2.1.3 Brief outline of the chapter

In §2.2, we define the Hölder spaces required to prove Theorem 2.1.1 (existence and

uniqueness of solutions to a degenerate-parabolic partial differential equation on a half-

space with unbounded coefficients) and provide a detailed description of the conditions

required of the coefficients (a, b, c) in the statement of Theorem 2.1.1, which we then

proceed to prove in §2.3. Section 2.4 contains the proofs of Theorems 2.1.10, 2.1.16,

and 2.1.19. In §2.4.1, we prove existence of solutions to the degenerate martingale

problem and degenerate stochastic differential equation specified in Theorems 2.1.10

and 2.1.16, while in §2.4.2, we prove uniqueness and the strong Markov property in

Theorems 2.1.10 and 2.1.16. Lastly, in §2.4.3, we prove our mimicking theorem for a

degenerate Itô process, namely, Theorem 2.1.19.

2.2 Weighted Hölder spaces and coefficients of the differential opera-

tors

In §2.2.1, we introduce the Hölder spaces required for the statement and proof of The-

orem 2.1.1, while in §2.2.2, we describe the regularity and growth conditions required

of the coefficients (a, b, c) in Theorem 2.1.1.

2.2.1 Weighted Hölder spaces

For a > 0 and T > 0, we denote

Ha,T := (0, T )× Rd−1 × (0, a),

and, when T =∞, we denote H∞ = (0,∞)×H and Ha,∞ = (0,∞)×Rd−1× (0, a). For

x0 ∈ H̄ and R > 0, we let

BR(x0) :=
{
x ∈ H : |x− x0| < R

}
and QR,T (x0) := (0, T )×BR(x0).

We write BR or QR,T when the center, x0, is clear from the context or unimportant.

A parabolic partial differential equation with a degeneracy similar to that considered

in this chapter arises in the study of the porous medium equation [20, 21, 50]. The
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existence, uniqueness, and regularity theory for such equations is facilitated by the use

of Hölder spaces defined by the cycloidal metric on H introduced by Daskalopoulos and

Hamilton [20] and, independently, by Koch [50]. Following [20, p. 901], we define the

cycloidal distance between two points, P1 = (t1, x
1), P2 = (t2, x

2) ∈ [0,∞)× H̄, by

s(P1, P2) :=

∑d
i=1 |x1

i − x2
i |√

x1
d +

√
x2
d +

√∑d−1
i=1 |x1

i − x2
i |

+
√
|t1 − t2|. (2.2.1)

Remark 2.2.1 (Equivalence of the cycloidal and Euclidean distance functions on suit-

able subsets of [0,∞) × H). The cycloidal and Euclidean distance functions, s and ρ,

are equivalent on sets of the form [0,∞)× Rd−1 × [y0, y1], for any 0 < y0 < y1.

Let Ω ⊂ (0, T ) × H be an open set and α ∈ (0, 1). For a function u : Ω̄ → R, we

consider the following seminorms

[u]Cαs (Ω̄) = sup
P1,P2∈Ω̄,

P1 6=P2

|u(P1)− u(P2)|
s(P1, P2)α

, (2.2.2)

and we say that u ∈ Cαs (Ω̄) if u ∈ C(Ω̄) and

‖u‖Cαs (Ω̄) = ‖u‖C(Ω̄) + [u]Cαs (Ω̄) <∞.

We say that u ∈ C2+α
s (Ω̄) if

‖u‖C2+α
s (Ω̄) := ‖u‖Cαs (Ω̄) + ‖ut‖Cαs (Ω̄) + max

1≤i≤d
‖uxi‖Cαs (Ω̄) + max

1≤i,j≤d
‖xduxixj‖Cαs (Ω̄) <∞.

We denote by Cαs,loc(Ω̄) the space of functions u with the property that for any compact

set K ⊆ Ω̄, we have u ∈ Cαs (K). Analogously, we define the space C2+α
s,loc(Ω̄). We make

use of the following hybrid Hölder spaces

C α(H̄T ) :=
{
u : u ∈ Cαs (H̄1,T ) ∩ Cαρ (H̄T \H1,T )

}
,

C 2+α(H̄T ) :=
{
u : u ∈ C2+α

s (H̄1,T ) ∩ C2+α
ρ (H̄T \H1,T )

}
.

We define C α(H̄) and C 2+α(H̄) in the analogous manner.

The coefficient functions xdaij(t, x), bi(t, x) and c(t, x) of the parabolic operator

(2.1.3) are allowed to have linear growth in |x|. To account for the unboundedness of

the coefficients, we augment our definition of Hölder spaces by introducing weights of
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the form (1 + |x|)q, where q ≥ 0 will be suitably chosen in the sequel. For q ≥ 0, we

define

‖u‖C 0
q (H̄) := sup

x∈H̄
(1 + |x|)q |u(x)|, (2.2.3)

and, given T > 0, we define

‖u‖C 0
q (H̄T ) := sup

(t,x)∈HT
(1 + |x|)q |u(t, x)|. (2.2.4)

Moreover, given α ∈ (0, 1), we define

‖u‖Cαq (HT ) := ‖u‖C 0
q (HT ) + [(1 + |x|)qu]Cαs (H̄1,T ) + [(1 + |x|)qu]Cαρ (H̄T \H1,T ), (2.2.5)

‖u‖C 2+α
q (H̄T ) := ‖u‖Cαq (H̄T ) + ‖ut‖Cαq (H̄T ) + ‖uxi‖Cαq (H̄T ) + ‖xduxixj‖Cαq (H̄T ). (2.2.6)

The vector spaces

C 0
q (H̄T ) :=

{
u ∈ C(H̄T ) : ‖u‖C 0

q (H̄T ) <∞
}
,

C α
q (H̄T ) :=

{
u ∈ C α(H̄T ) : ‖u‖Cαq (H̄T ) <∞

}
,

C 2+α
q (H̄T ) :=

{
u ∈ C 2+α(H̄T ) : ‖u‖C 2+α

q (H̄T ) <∞
}
,

can be shown to be Banach spaces with respect to the norms (2.2.4), (2.2.5) and (2.2.6),

respectively. The vector spaces C 0
q (H̄), C α

q (H̄), and C 2+α
q (H̄), defined similarly, can be

shown to be Banach spaces when equipped with the corresponding norms.

We let C 2+α
q,loc (H̄T ) denote the vector space of functions u such that for any compact

set K ⊂ H̄T , we have u ∈ C 2+α
q (K), for all q ≥ 0.

When q = 0, the subscript q is omitted in the preceding definitions.

2.2.2 Coefficients of the differential operators

Unless other conditions are explicitly substituted, we require in this chapter that the co-

efficients (a, b, c) of the parabolic differential operator L in (2.1.3) satisfy the conditions

in the following

Assumption 2.2.2 (Properties of the coefficients of the parabolic differential operator).

There are constants δ > 0, K > 0, ν > 0 and α ∈ (0, 1) such that the following hold.
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1. The coefficients c and bd obey

c(t, x) ≤ K, ∀(t, x) ∈ H̄∞, (2.2.7)

bd(t, x
′, 0) ≥ ν, ∀(t, x′) ∈ [0,∞)× Rd−1. (2.2.8)

2. On H̄2,∞ (that is, near xd = 0), we require that

d∑
i,j=1

aij(t, x)ηiηj ≥ δ|η|2, ∀η ∈ Rd, ∀(t, x) ∈ H̄2,∞, (2.2.9)

max
1≤i,j≤d

‖aij‖C(H̄2,∞) + max
1≤i≤d

‖bi‖C(H̄2,∞) + ‖c‖C(H̄2,∞) ≤ K, (2.2.10)

and, for all P1, P2 ∈ H̄2,∞ such that P1 6= P2 and s(P1, P2) ≤ 1,

max
1≤i,j≤d

|aij(P1)− aij(P2)|
s(P1, P2)α

≤ K,

max
1≤i≤d

|bi(P1)− bi(P2)|
s(P1, P2)α

≤ K,

|c(P1)− c(P2)|
s(P1, P2)α

≤ K.

(2.2.11)

3. On H̄∞ \H2,∞ (that is, farther away from xd = 0), we require that

d∑
i,j=1

xdaij(t, x)ηiηj ≥ δ|η|2, ∀η ∈ Rd, ∀(t, x) ∈ H̄∞ \H2,∞, (2.2.12)

and, for all P1, P2 ∈ H̄∞ \H2,∞ such that P1 6= P2 and ρ(P1, P2) ≤ 1,

max
1≤i,j≤d

|x1
daij(P1)− x2

daij(P2)|
ρ(P1, P2)α

≤ K,

max
1≤i≤d

|bi(P1)− bi(P2)|
ρ(P1, P2)α

≤ K,

|c(P1)− c(P2)|
ρ(P1, P2)α

≤ K.

(2.2.13)

Remark 2.2.3 (Local Hölder conditions on the coefficients). The local Hölder condi-

tions (2.2.11) and (2.2.13) are similar to those in [53, Hypothesis 2.1].

Remark 2.2.4 (Linear growth of the coefficients of the parabolic differential operator).

Conditions (2.2.10) and (2.2.13) imply that the coefficients xdaij(t, x), bi(t, x) and c(t, x)

can have at most linear growth in x. In particular, we may choose the constant K large

enough such that

d∑
i,j=1

|xdaij(t, x)|+
d∑
i=1

|bi(t, x)|+ |c(t, x)| ≤ K(1 + |x|), ∀(t, x) ∈ H̄∞. (2.2.14)
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2.3 Existence, uniqueness and regularity of the inhomogeneous initial

value problem

In this section, we prove Theorem 2.1.1. We begin by reviewing the boundary properties

and establishing the interpolation inequalities (Lemma 2.3.2) suitable of functions in

C2+α
s (H̄T ). Then, we prove two versions of the maximum principle (Proposition 2.3.7)

which combined with the a priori local Hölder estimates at the boundary (Theorem

2.3.8) and in the interior (Proposition 2.3.15) allow us to obtain Theorem 2.1.1.

2.3.1 Boundary properties of functions in Daskalopoulos-Hamilton-

Koch Hölder spaces

We first review a result established in [20, Proposition I.12.1] when d = 2. Because we

will frequently appeal to that result and as the proof of [20, Proposition I.12.1] is not

given in detail for all cases relevant to d ≥ 2, we include the proof here for completeness.

Lemma 2.3.1 (Boundary properties of functions in Daskalopoulos-Hamilton-Koch

Hölder spaces). Let u ∈ C2+α
s,loc(H̄T ). Then, for all P̄ = (t̄, x̄′, 0) ∈ [0, T ]× ∂H,

lim
H̄T3P→P̄

xduxixj (P ) = 0, ∀i, j = 1, . . . , d. (2.3.1)

Proof. First, we consider the case 1 ≤ i, j ≤ d−1. Because the seminorm [xduxixj ]Cαs,loc(H̄T )

is finite, the function xduxixj is uniformly continuous on compact subsets of H̄T , and

so, the limit in (2.3.1) exists. We assume, to obtain a contradiction, that

lim
H̄T3P→P̄

xduxixj (P ) = a 6= 0, (2.3.2)

and we can further assume, without loss of generality, that this limit is positive. Then,

there is a constant, ε > 0, such that for all P = (t, x′, xd) ∈ H̄T satisfying

0 < xd < ε, |t− t̄| < ε, |x′ − x̄′| < ε, (2.3.3)

we have

a

2xd
≤ uxixj (t, x′, xd). (2.3.4)
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Let P1 = (t, x1) and P2 = (t, x2) be points satisfying (2.3.3) and such that all except

the xi-coordinates are identical. Then, by integrating (2.3.4) with respect to xi, we

obtain

a(x2
i − x1

i )

2xd
≤ uxj (P2)− uxj (P1),

and thus,

a(x2
i − x1

i )

2xds(P1, P2)α
≤
uxj (P2)− uxj (P1)

s(P1, P2)α
. (2.3.5)

We can choose P1, P2 such that x2
i − x1

i = ε/2, for all 0 < xd < ε/2. Then, by taking

limit as xd goes to zero, the left hand side of (2.3.5) diverges, while the right hand side

is finite since [uxj ]Cαs (HT ) is bounded. This contradicts (2.3.2) and so (2.3.1) holds.

The case where i = d or j = d can be treated as in the proof of [20, Proposition

I.12.1].

Next, we establish the analogue of [51, Theorem 8.8.1] for the Hölder space C2+α
s (H̄T ).

Lemma 2.3.2 (Interpolation inequalities for Daskalopoulos-Hamilton-Koch Hölder

spaces). Let R > 0. Then there are positive constants m = m(d, α) and C = C(T,R, d, α)

such that for any u ∈ C2+α
s (H̄T ) with compact support in [0,∞) × B̄R(x0), for some

x0 ∈ ∂H, and any ε ∈ (0, 1), we have

‖u‖Cαs (H̄T ) ≤ ε‖u‖C2+α
s (H̄T ) + Cε−m‖u‖C(H̄T ), (2.3.6)

‖uxi‖C(H̄T ) ≤ ε‖u‖C2+α
s (H̄T ) + Cε−m‖u‖C(H̄T ), (2.3.7)

‖xduxi‖Cαs (H̄T ) ≤ ε‖u‖C2+α
s (H̄T ) + Cε−m‖u‖C(H̄T ), (2.3.8)

‖xduxixj‖C(H̄T ) ≤ ε‖u‖C2+α
s (H̄T ) + Cε−m‖u‖C(H̄T ). (2.3.9)

Remark 2.3.3. Notice that Lemma 2.3.2 does not establish the analogue of [51, In-

equality (8.8.4)], that is,

[uxi ]Cαρ (H̄T ) ≤ ε‖u‖C2+α
ρ (H̄T ) + Cε−m‖u‖C(H̄T ).

This is replaced by the weighted inequality (2.3.8).

Proof of Lemma 2.3.2. We consider η ∈ (0, 1), to be suitably chosen during the proofs

of each of the desired inequalities.
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Step 1 (Proof of inequality (2.3.6)). We only need to show that the first inequality

(2.3.6) holds for the seminorm [u]Cαs (H̄T ). It is enough to consider differences, u(P1)−

u(P2), where all except one of the coordinates of the points P1, P2 ∈ H̄T are identical.

We outline the proof when the xi-coordinates of P1 and P2 differ, but the case of the t-

coordinates can be treated in a similar manner. We consider two situations: |x1
i−x2

i | ≤ η

and |x1
i − x2

i | > η.

Case 1 (Points with xi-coordinates close together). Assume |x1
i − x2

i | ≤ η. We have

|u(P1)− u(P2)| ≤ |x1
i − x2

i |‖uxi‖C(H̄T )

≤ η |x
1
i − x2

i |
η

‖u‖C2+α
s (H̄T )

≤ η
(
|x1
i − x2

i |
η

)α
‖u‖C2+α

s (H̄T )

≤ η1−α
(

2
√
xd +

√
|x1
i − x2

i |
)α

s(P1, P2)α‖u‖C2+α
s (H̄T ),

(2.3.10)

where in the last line we used the fact that, by (2.2.1),

s(P1, P2) =
|x1
i − x2

i |

2
√
xd +

√
|x1
i − x2

i |
. (2.3.11)

Because u has compact support in the spatial variable, we obtain in (2.3.10) that there

exists a positive constant C = C(α,R) such that

|u(P1)− u(P2)|
s(P1, P2)α

≤ Cη1−α‖u‖C2+α
s (H̄T ), (2.3.12)

which concludes this case.

Case 2 (Points with xi-coordinates further apart). Assume |x1
i −x2

i | > η. By (2.3.11),

we have

1 <

(
|x1
i − x2

i |
η

)α
= η−α

(
2
√
xd +

√
|x1
i − x2

i |
)α

s(P1, P2)α.

Because it suffices to consider points P1 and P2 in the support of u, there is a positive

constant C, depending at most on α and R, such that

1 ≤ Cη−αs(P1, P2)α.

Therefore,

|u(P1)− u(P2)| ≤ 2‖u‖C(H̄T ) ≤ Cη−αs(P1, P2)α‖u‖C(H̄T ),
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which is equivalent to

|u(P1)− u(P2)|
s(P1, P2)α

≤ Cη−α‖u‖C0(H̄T ), (2.3.13)

which concludes this case.

By combining (2.3.12) and (2.3.13), we obtain

[u]Cαs (H̄T ) ≤ Cη1−α‖u‖C2+α
s (H̄T ) + Cη−α‖u‖C)(H̄T ).

Since ε ∈ (0, 1), we may choose η ∈ (0, 1) such that ε = Cη1−α. The preceding

inequality then gives (2.3.6).

Step 2 (Proof of inequality (2.3.7)). Let P ∈ H̄T . Then, for any η > 0, we have

|uxi(P )| ≤
∣∣uxi(P )− η−1 (u(P + ηei)− u(P ))

∣∣+ 2η−1‖u‖C(H̄T )

= |uxi(P )− uxi(P + ηθei)|+ 2η−1‖u‖C(H̄T )

=
|uxi(P )− uxi(P + ηθei)|

s(P, P + ηθei)α
s(P, P + ηθei)

α + 2η−1‖u‖C(H̄T ),

for some constant θ ∈ [0, 1]. Using

s(P, P + ηθei) ≤ η1/2, ∀P ∈ H̄T , (2.3.14)

we have

|uxi(P )| ≤ ηα[uxi ]Cαs (H̄T ) + 2η−1‖u‖C(H̄T ), ∀P ∈ H̄T . (2.3.15)

Since ε ∈ (0, 1), we may choose η ∈ (0, 1) such that ε = ηα. Then (2.3.7) follows from

(2.3.15).

Step 3 (Proof of inequality (2.3.8)). Because u has compact support in the spatial

variable, then (2.3.7) gives, for some positive constant C = C(α,R),

‖xduxi‖C(H̄T ) ≤ Cε‖u‖C2+α
s (H̄T ) + Cε−m‖u‖C(H̄T ). (2.3.16)

This gives the desired bound in (2.3.8) for the term ‖xduxi‖C(H̄T ). It remains to prove

the estimate (2.3.8) for the Hölder seminorm [xduxi ]Cαs (H̄T ). As in the proof of (2.3.6),

it suffices to consider the differences x1
duxi(P1)− x2

duxi(P2), where all except one of the

coordinates of the points P1, P2 ∈ H̄T are identical.

First, we consider the case when only the xd-coordinates of the points P1 and P2

differ. We denote Pk = (t, x′, xkd), k = 1, 2.
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Case 1 (Points with xd-coordinates close together). Assume |x1
d − x2

d| ≤ η. Using

(xduxi)xd = xduxixd + uxi

and the mean value theorem, there is a point P ∗ on the line segment connecting P1 and

P2 such that,

x1
duxi(P1)− x2

duxi(P2) = (x∗duxixd(P
∗) + uxi(P

∗)) (x1
d − x2

d),

and so,

|x1
duxi(P1)− x2

duxi(P2)| ≤ η
(
|x1
d − x2

d|
η

)α
‖u‖C2+α

s (H̄T )

≤ η1−α
(√

x1
d +

√
x2
d +

√
|x1
d − x2

d|
)α

s(P1, P2)α‖u‖C2+α
s (H̄T ).

Because u has compact support in the spatial variable, there is a positive constant

C = C(α,R) such that

|x1
duxi(P1)− x2

duxi(P2)|
s(P1, P2)α

≤ Cη1−α‖u‖C2+α
s (H̄T ), (2.3.17)

which concludes this case.

Case 2 (Points with xd-coordinates further apart). Assume |x1
d − x2

d| > η. We have

|x1
duxi(P1)− x2

duxi(P2)|
s(P1, P2)α

≤ 2
‖xduxi‖C(H̄T )

|x1
d − x2

d|α

(√
x1
d +

√
x2
d +

√
|x1
d − x2

d|
)α

≤ Cη−α‖xduxi‖C(H̄T ).

Since ε ∈ (0, 1), we may choose η such that ε = ηα+1 in (2.3.16). We obtain

|x1
duxi(P1)− x2

duxi(P2)|
s(P1, P2)α

≤ Cη‖u‖C2+α
s (H̄T ) + Cη−m(1+α)−α‖u‖C(H̄T ), (2.3.18)

which concludes this case.

Combining (2.3.17) and (2.3.18) gives

|x1
duxi(P1)− x2

duxi(P2)|
s(P1, P2)α

≤ Cη1−α‖u‖C2+α
s (H̄T ) + Cη−m(1+α)−α‖u‖C(H̄T ). (2.3.19)

A similar argument, when only the xi-coordinates of the points P1 and P2 differ, 1 ≤

i ≤ d− 1, also yields (2.3.19).
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Next, we consider the case when only the t-coordinates of the points P1 and P2 differ.

We denote Pk = (x, tk), k = 1, 2. We shall only describe the proof of the interpolation

inequality for uxi when i 6= d, as the case i = d follows by a similar argument. We

denote δ =
√
|t1 − t2|.

Case 1 (Points with t-coordinates close together). Assume |t1 − t2| < η. We have

|uxi(P1)− uxi(P2)| ≤
∣∣∣∣uxi(x, t1)− 1

δ
(u(x+ δei, t1)− u(x, t1))

∣∣∣∣
+

∣∣∣∣uxi(x, t2)− 1

δ
(u(x+ δei, t2)− u(x, t2))

∣∣∣∣
+

1

δ
|u(x+ δei, t1)− u(x+ δei, t2)|+ 1

δ
|u(x, t1)− u(x, t2)|.

By the mean value theorem, there are points P ∗k ∈ H̄T , k = 1, 2, such that

|uxi(P1)− uxi(P2)| = |uxi(x, t1)− uxi(x+ θ1δei, t1)|+ |uxi(x, t2)− uxi(x+ θ2δei, t2)|

+
|t1 − t2|

δ
|ut(x+ δei, t

∗
1)|+ |t1 − t2|

δ
|ut(x, t∗2)|

≤ |uxixi(P ∗1 , t1)|δ + |uxixi(P ∗2 , t2)|δ

+
|t1 − t2|

δ
|ut(x+ δei, t

∗
1)|+ |t1 − t2|

δ
|ut(x, t∗2)|.

Notice that s(P1, P2) =
√
|t1 − t2| = δ and so, by multiplying the preceding inequality

by xd and using the fact that u has compact support, we obtain

|xduxi(P1)− xduxi(P2)|
s(P1, P2)α

≤ 2‖xduxixi‖C0(H̄T )|t1 − t2|
1−α

2 + 2|t1 − t2|1−
1+α

2 ‖xdut‖C0(H̄T ),

and thus

|xduxi(P1)− xduxi(P2)|
s(P1, P2)α

≤ Cη
1−α

2 ‖u‖C2+α
s (H̄T ), (2.3.20)

where C is a positive constant depending only on R.

Case 2 (Points with t-coordinates further apart). Assume |t1 − t2| ≥ η. This case is

easier, as usual, because

|xduxi(P1)− xduxi(P2)|
s(P1, P2)α

≤ 2η−
α
2 ‖xduxi‖C(H̄T ), (2.3.21)

which concludes this case.



30

By combining inequalities (2.3.20) and (2.3.21), we obtain

|xduxi(P1)− xduxi(P2)|
s(P1, P2)α

≤ Cη
1−α

2 ‖u‖C2+α
s (H̄T ) + 2η−

α
2 ‖xduxi‖C(H̄T ). (2.3.22)

By (2.3.19) and (2.3.22), we have

[xduxi ]Cαs (H̄T ) ≤ Cη
α0‖u‖C2+α

s (H̄T ) + 2η−m0‖xduxi‖C(H̄T ),

where α0 := min{α, 1− α, (1− α)/2} and m0 := 4 + α. Without loss of generality, we

may assume C ≥ 1. Since ε ∈ (0, 1), we may choose η ∈ (0, 1) such that ε = Cηα0 in

the preceding inequality, and so we obtain the estimate (2.3.8) for [xduxd ]Cαs (HT ). This

concludes the proof of (2.3.8).

Step 4 (Proof of inequality (2.3.9)). For any P = (t, x) ∈ H̄T , we can find θ ∈ [0, 1]

such that

|xduxixj (P )| ≤
∣∣xduxixj (P )− (xduxi(P + ηej)− xduxi(P ))

∣∣+ 2‖xduxi‖C(H̄T ),

and thus

|xduxixj (P )| ≤
∣∣xduxixj (P )− xduxixj (P + θηej)

∣∣+ 2‖xduxi‖C(H̄T ), (2.3.23)

where 1 ≤ i, j ≤ d. If j 6= d, we have

|xduxixj (P )| ≤
|xduxixj (P )− xduxixj (P + θηej)|

s(P, P + θεej)α
s(P, P + θηej)

α + 2‖xduxi‖C(H̄T )

≤ Cηα/2[xduxixj ]Cαs (H̄T ) + 2‖xduxi‖C(H̄T ), (by (2.3.14)).

Because ε ∈ (0, 1), we may choose η ∈ (0, 1) such that ε = Cηα/2 in the preceding

inequality and combining the resulting inequality with (2.3.8), we see that the estimate

(2.3.9) for ‖xduxixj‖C(H̄T ) holds for all j 6= d.

Next, we consider the case j = d. For brevity, we denote P ′ = P + θηed = (t, x′, x′d)

and P
′′

= (t, x′, 0). We consider two distinct cases depending on whether η < x′d/2 or

η ≥ x′d/2.

Case 1 (Points with xd-coordinates further apart). Assume η < x′d/2. By (2.3.23), we

obtain

|xduxixd(P )| ≤
|xduxixd(P )− x′duxixd(P ′)|

s(P, P ′)α
s(P, P ′)α

+ |(x′d − xd)uxixd(P
′)|+ 2‖xduxi‖C(H̄T ),

(2.3.24)
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and so, using (2.3.14) and the fact that |x′d − xd| ≤ η, by definitions of points P and

P ′,,

|xduxixd(P )| ≤ ηα/2[xduxixd ]Cαs (H̄T ) +
η

x′d
|x′duxixd(P

′)|+ 2‖xduxi‖C(H̄T ),

which gives, by our assumption that η < x′d/2,

|xduxixd(P )| ≤ ηα/2[xduxixd ]Cαs (H̄T ) +
1

2
‖xduxixd‖C(H̄T ) + 2‖xduxi‖C(H̄T ). (2.3.25)

As (2.3.25) holds for all P ∈ H̄T , we have

‖xduxixd‖C(H̄T ) ≤
1

2
‖xduxixd‖C(H̄T ) + ηα/2[xduxixd ]Cαs (H̄T ) + 2‖xduxi‖C(H̄T ),

or

‖xduxixd‖C(H̄T ) ≤ 2ηα/2[xduxixd ]Cαs (H̄T ) + 4‖xduxi‖C(H̄T ), (2.3.26)

which concludes this case.

Case 2 (Points with xd-coordinates close together). Assume η ≥ x′d/2. Recall that

x′d = xd + θη, for some θ ∈ [0, 1], so that |x′d − xd| ≤ x′d. From Lemma 2.3.1, we have

xduxixd → 0, as xd → 0.

Therefore, we obtain

|(x′d − xd)uxixd(P
′)| ≤ |x′duxixd(P

′)| =
|x′duxixd(P ′)− 0|

s(P ′, P ′′)α
s(P ′, P

′′
)α

≤ [xduxixd ]Cαs (H̄T )(2η)α/2,

where the second inequality follows from the fact that

s(P ′, P
′′
) ≤

√
x′d ≤

√
2η.

By a calculation similar to that which led to (2.3.24), we obtain

|xduxixd(P )| ≤
|xduxixd(P )− x′duxixd(P ′)|

s(P, P ′)α
s(P, P ′)α

+ |(x′d − xd)uxixd(P
′)|+ 2‖xduxi‖C(H̄T ),

and hence

|xduxixd(P )| ≤ Cηα/2[xduxixd ]Cαs (H̄T )

+ (2η)α/2[xduxixd ]Cαs (H̄T ) + 2‖xduxi‖C(H̄T ),

(2.3.27)

which concludes this case.
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By combining inequalities (2.3.25) and (2.3.27), we obtain, for all P ∈ H̄T ,

|xduxixd(P )| ≤ 1

2
‖xduxixd‖C(H̄T ) + Cηα/2[xduxixd ]Cαs (H̄T ) + 2‖xduxi‖C(H̄T ),

which is equivalent to

‖xduxixd‖C(H̄T ) ≤
1

2
‖xduxixd‖C(H̄T ) + Cηα/2[xduxixd ]Cαs (H̄T ) + 2‖xduxi‖C(H̄T ).

Rearranging terms yields

‖xduxixd‖C(H̄T ) ≤ 2Cηα/2[xduxixd ]Cαs (H̄T ) + 4‖xduxi‖C(H̄T ). (2.3.28)

Since ε ∈ (0, 1), we may choose η ∈ (0, 1) in (2.3.26) and (2.3.28) such that ε =

4(C + 1)ηα/2 and so we obtain

‖xduxixd‖C(H̄T ) ≤ ε/2[xduxixd ]Cαs (H̄T ) + 4‖xduxi‖C(H̄T ).

Combining the preceding inequality with (2.3.8) applied with ε replaced by ε/8, we

conclude that (2.3.9) holds.

This completes the proof of Lemma 2.3.2.

2.3.2 Maximum principle and its applications

In this subsection, we prove a variant of the classical maximum principle (see [51,

Section 8.1] and [20, Theorem I.3.1]) for parabolic operators, L, of the form (2.1.3).

Lemma 2.3.4 (Maximum principle). We relax the requirements stated in Assumption

2.2.2 on the coefficients a = (aij), b = (bi), c of the operator L in (2.1.3) to those stated

here. Require that the coefficients xdaij, bi, c be in Cloc((0, T ] × H̄), that bd ≥ 0 when

xd = 0, that c obeys (2.2.7), and

tr(xda(t, x)) + x · b(t, x) ≤ K(1 + |x|2), ∀(t, x) ∈ H̄T , (2.3.29)

where K > 0. Suppose u ∈ C1,2(HT ) ∩ C(H̄T ) obeys

ut, uxi , xduxixj ∈ Cloc((0, T ]× H̄), 1 ≤ i, j ≤ d, (2.3.30)
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and

xduxixj = 0 on (0, T ]× ∂H, 1 ≤ i, j ≤ d. (2.3.31)

If

Lu ≤ 0 on (0, T )×H, (2.3.32)

u(0, ·) ≤ 0 on H̄, (2.3.33)

then

u ≤ 0 on [0, T ]× H̄. (2.3.34)

Proof. We apply an argument similar to that used in the proofs of [51, Theorem 2.9.2,

Exercises 2.9.4 & 2.9.5] (maximum principle for elliptic equations on unbounded do-

mains) and [51, Theorems 8.1.2 & 8.1.4] (maximum principle for parabolic equations

on unbounded domains); see also [20, Theorem I.3.1].

We consider the transformation

u(t, x) = eλtũ(t, x) on [0, T ]× H̄, (2.3.35)

where the constant λ > 0 will be suitably chosen below. The conclusion of the lemma

follows if and only if (2.3.34) holds for ũ. By (2.3.32) and definition (2.3.35) we have

eλt (L+ λ) ũ = Lu ≤ 0 on (0, T )×H.

Therefore, by (2.3.32) and (2.3.33), the function ũ satisfies

(L+ λ) ũ ≤ 0 on (0, T )×H, (2.3.36)

ũ(0, ·) ≤ 0 on H̄. (2.3.37)

We may suppose without loss of generality that

m := sup
HT

ũ ≥ 0, (2.3.38)

as if m < 0 we are done; we shall show that m = 0. Define an auxiliary function,

h(t, x) := 1 + |x|2, ∀(t, x) ∈ H̄T . (2.3.39)
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By direct calculation,

− (L+ λ)h =
d∑

i,j=1

xdaijhxixj +
d∑
i=1

bihxi + (c− λ)h− ht

= 2xd

d∑
i=1

aii + 2
d∑
i=1

bixi + (c− λ)(1 + |x|2)

≤ (2K + c− λ) (1 + |x|2) on (0, T )×H, (by (2.3.29))

By choosing

λ ≥ 3K, (2.3.40)

we notice that condition (2.2.7), gives

2K + c(t, x)− λ ≤ 0 ∀(t, x) ∈ H̄T , (2.3.41)

and so, we have

(L+ λ)h ≥ 0 on (0, T )×H. (2.3.42)

Fix δ ∈ (0, 1) and define another auxiliary function

w := ũ− δmh. (2.3.43)

From (2.3.36) and (2.3.42), we have (L+ λ)w ≤ 0 on (0, T )×H and thus

(L+ λ)w ≤ 0 on (0, T )× H̄, (2.3.44)

since wt, wxi , xdwxixj extend continuously from (0, T ) × H to (0, T ] × H̄ because these

continuity properties are true of u by hypothesis (2.3.30) (and trivially true for h) and

thus also true for w.

Claim 2.3.5. There is a constant, R0 = R0(δ) > 0, such that

w ≤ 0 on [0, T ]× B̄R, ∀R ≥ R0(δ). (2.3.45)

Proof. Since w ∈ C([0, T ] × B̄R), the function w attains its maximum at some point

P ∈ [0, T ]× B̄R. If P ∈ (0, T ]×BR, then

wt(P ) ≥ 0, wxi(P ) = 0, (wxixj (P )) ≤ 0.
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Therefore,

− (L+ λ)w(P ) =
d∑

i,j=1

xdaij(P )wxixj (P ) +
d∑
i=1

bi(P )wxi(P ) + (c(P )− λ)w(P )− wt(P )

≤ (c(P )− λ)w(P ).

If P ∈ (0, T ]× (B̄R ∩ {xd = 0}), then

wt(P ) ≥ 0, wxd(P ) ≤ 0, wxi(P ) = 0 (i 6= d), xdwxixj (P ) = 0,

where we use the fact that u, and thus w, obey (2.3.30) and (2.3.31). Therefore,

− (L+ λ)w(P ) =
d∑

i,j=1

xdaij(P )wxixj (P ) +
d∑
i=1

bi(P )wxi(P ) + c(P )w(P )− wt(P )

≤ bd(P )wxd(P ) + (c(P )− λ)w(P )

≤ (c(P )− λ)w(P ) (by hypothesis that bd ≥ 0 on {xd = 0}).

Hence, for P ∈ (0, T ]×BR or (0, T ]× (B̄R ∩ {xd = 0}), we obtain

−(c(P )− λ)w(P ) ≤ Lw(P ).

But Lw(P ) ≤ 0 by (2.3.44) and therefore, w(P ) ≤ 0 since c ≤ K by (2.2.7) and λ ≥ 3K

by (2.3.40) .

Now suppose P lies in one of the remaining two components of the boundary of

(0, T )×BR,

B0
R := {0} × B̄R or B1

R := (0, T ]× ({xd > 0} ∩ ∂BR) .

The definition (2.3.39) of h, definition (2.3.43) of w, and (2.3.37) yield

w(0, ·) ≤ 0 on B̄R, ∀R > 0, (2.3.46)

and thus, w(P ) ≤ 0 if P ∈ B0
R, for R > 0. If P ∈ B1

R, then |x| = R and we see that

(2.3.38), (2.3.39), and (2.3.43) give

w(P ) = ũ(P )− δmh(P )

≤ m− δm(1 +R2)

= m(1− δ(1 +R2)).



36

But 1− δ(1 +R2) ≤ 0 provided R ≥ R0(δ) := (δ−1 − 1)1/2 > 0 and so w(P ) ≤ 0 for all

R ≥ R0(δ). This completes the proof of Claim 2.3.5.

By (2.3.45), we see that

w = ũ− δmh ≤ 0 on H̄T ,

for all δ ∈ (0, 1) and thus, letting δ ↓ 0, we obtain (2.3.34).

Lemma 2.3.4 immediately leads to the following comparison principle.

Corollary 2.3.6 (Comparison principle). Assume that the coefficients of L in (2.1.3)

obey the hypotheses of Lemma 2.3.4. If u, v ∈ C1,2(HT )∩C(H̄T ) obey (2.3.30), (2.3.31),

and

Lu ≤ Lv on (0, T )×H, (2.3.47)

u(0, ·) ≤ v(0, ·) on H̄, (2.3.48)

then

u ≤ v on [0, T ]× H̄. (2.3.49)

Note that if (2.3.47) and (2.3.48) are strengthened to

|Lu| ≤ Lv on (0, T )×H and |u(0, ·)| ≤ v(0, ·) on H̄, (2.3.50)

then Corollary 2.3.6 yields

|u| ≤ v on [0, T ]× H̄. (2.3.51)

We can now turn our attention to the

Proposition 2.3.7 (Application of the maximum principle). Assume that the coef-

ficients of L in (2.1.3) obey the hypotheses of Lemma 2.3.4, except that (2.3.29) is

replaced by the stronger condition

d∑
i,j=1

xd|aij(t, x)|+ |x · b(t, x)| ≤ K(1 + |x|2), ∀(t, x) ∈ H̄T . (2.3.52)

Suppose that u ∈ C1,2(HT ) ∩ C(H̄T ) solves (2.1.2) and obeys (2.3.30) and (2.3.31).
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(a) If f ∈ C(H̄T ) and g ∈ C(H̄), then

‖u‖C(H̄T ) ≤ eKT
(
T‖f‖C(H̄T ) + ‖g‖C(H̄)

)
. (2.3.53)

(b) If q > 0, f ∈ C 0
q (H̄T ), and g ∈ C 0

q (H̄), then

‖u‖C 0
q (H̄T ) ≤ e(1+q(q+4)K)T

(
‖f‖C 0

q (H̄T ) + ‖g‖C 0
q (H̄)

)
. (2.3.54)

Proof. To obtain (2.3.53) and (2.3.54), we make specific choices of the function v in

Corollary 2.3.6. To establish (2.3.53), we choose

v1(t, x) := eKt
(
t‖f‖C(H̄T ) + ‖g‖C(H̄)

)
, ∀(t, x) ∈ H̄T ,

Direct calculation gives

Lv1 = (−c+K)v1 + eKt‖f‖C(H̄T )

≥ ‖f‖C(H̄T ) on (0, T )×H (by (2.2.7)).

Therefore, since Lu = f on (0, T )×H by (2.1.2),

|Lu| ≤ Lv1 on (0, T )×H,

and so v1 satisfies conditions (2.3.50). Thus, by (2.3.51), we obtain (2.3.53).

Next, we prove (2.3.54). For this purpose, we choose

v2(t, x) := eλt

(
‖f‖C 0

q (H̄T ) + ‖g‖C 0
q (H̄)

)
(1 + |x|2)q/2

, ∀(t, x) ∈ H̄T , (2.3.55)

where λ > 0 will be suitably chosen below. First, we verify that v2 satisfies the first

inequality in (2.3.50). Direct calculation gives

Lv2 = v2×−c(t, x) + λ+ q
d∑
i=1

bi(t, x)xi
1 + |x|2

− q(q + 2)
d∑

i,j=1

aij(t, x)xixjxd
(1 + |x|2)2

+ q
d∑
i=1

aii(t, x)xd
1 + |x|2

 .
Conditions (2.3.52) and (2.2.7), imply that

Lv2 ≥ v2 (K + λ− qK − q(q + 2)K − qK) .
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By choosing

λ = 1 + q(q + 4)K > 0,

we obtain

Lv2 ≥ v2 ≥
‖f‖C 0

q (H̄T )

(1 + |x|2)q/2
on (0, T )×H.

By the definition (2.2.4) of the norm ‖ · ‖C 0
q (H̄T ), we have(

1 + |x|2
)q/2 |f(t, x)| ≤ ‖f‖C 0

q (H̄T ), ∀(t, x) ∈ [0, T ]× H̄,

and so, using Lu = f on HT by (2.1.2), we obtain the first inequality in (2.3.50), that

is,

|Lu| ≤ Lv2 on (0, T )×H. (2.3.56)

Similarly, by the definition (2.2.3) of the norm ‖ · ‖C 0
q (H̄), we have(

1 + |x|2
)q/2 |g(x)| ≤ ‖g‖C 0

q (H̄), ∀x ∈ H̄.

Since u(0, ·) = g on H̄, it is immediate that

|u(0, ·)| ≤ v2(0, ·) on H̄. (2.3.57)

Therefore, by (2.3.56) and (2.3.57), v2 obeys conditions (2.3.50), and so we obtain

(2.3.54) from the definition (2.3.55) of v2.

2.3.3 Local a priori boundary estimates

We have the following analogue of [51, Theorem 8.11.1].

Theorem 2.3.8 (A priori boundary estimates). There is constant R∗ = R∗(d, α,K, δ, ν),

such that for any 0 < R ≤ R∗, we can find a positive constant C = C(d, α,K, δ, ν,R),

such that for any x0 ∈ ∂H, T ∈ (0, R] and u ∈ C2+α
s (Q̄3R/2,T (x0)) that satisfies

Lu = f on Q3R/2,T (x0),

u(0, ·) = g on B̄3R/2(x0),

(2.3.58)

the following estimate holds

‖u‖C2+α
s (Q̄R,T (x0)) ≤ C

(
‖f‖Cαs (Q̄3R/2,T (x0))

+‖g‖C2+α
s (B̄3R/2(x0)) + ‖u‖C(Q̄3R/2,T (x0))

)
.

(2.3.59)
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Proof. The proof is a blend of the localizing technique used in [51, Theorem 8.11.1] and

the method of freezing the coefficients. Fix R > 0 and T ∈ (0, R]. Let ϕ : R→ [0, 1] be

a smooth function such that ϕ(t) = 0 for t < 0, and ϕ(t) = 1 for t > 1. Let

Rn = R
n∑
k=0

1

3−k
,

and consider the sequence of smooth cutoff functions {ϕn}n≥1 ⊂ C∞(R̄d) defined by

ϕn(x) := ϕ

(
Rn+1 − |x|
Rn+1 −Rn

)
, ∀x ∈ H̄,

so that 0 ≤ ϕn ≤ 1 and ϕn|BRn ≡ 1 and ϕn|BcRn+1
≡ 0, where Bc

Rn+1
denotes the

complement of BRn+1 in Rd. Also, by direct calculation, we can find a positive constant

c, independent of n and R, such that

‖ϕn‖Cαs (H̄), ‖(ϕn)xi‖Cαs (H̄), ‖xd(ϕn)xixj‖Cαs (H̄), ‖(ϕn)xixj‖Cαs (H̄) ≤ c33nR−3. (2.3.60)

We denote r := 3−3 < 1 and set

αn := ‖uϕn‖C2+α
s (H̄T ). (2.3.61)

We denote by L0 the operator with constant coefficients obtained by freezing the co-

efficients of L at (0, x0). Proposition A.1.1 shows there exists a positive constant C,

depending only on K, δ and ν, such that

αn = ‖uϕn‖C2+α
s (H̄T ) ≤ C

(
‖L0(uϕn)‖Cαs (H̄T ) + ‖gϕn‖C2+α

s (H̄)

)
, (2.3.62)

and so

αn ≤ C
(
‖L(uϕn)‖Cαs (H̄T ) + ‖(L− L0)(uϕn)‖Cαs (H̄T ) + ‖gϕn‖C2+α

s (H̄)

)
. (2.3.63)

We have L(uϕn) = ϕnLu− [L,ϕn]u, where, by direct calculation,

[L,ϕn]u =

d∑
i,j=1

2xdaij(t, x)uxi(ϕn)xj

+

d∑
i=1

bi(t, x)u(ϕn)xi +

d∑
i,j=1

xdaij(t, x)u(ϕn)xixj .

(2.3.64)

By the analogue of the [41, Inequality (4.7)] for standard Hölder norms, we have

‖ϕnLu‖Cαs (H̄T ) ≤ c‖Lu‖Cαs (Q̄Rn+1,T
)‖ϕn‖Cαs (H̄),
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and by (2.3.60), there is a positive constant c such that

‖ϕnLu‖Cαs (H̄T ) ≤ cr−nR−3‖f‖Cαs (Q̄3R/2,T ). (2.3.65)

From properties (2.2.10) and (2.2.11) of the coefficients aij , bi and c on H̄2,T , we can

find a positive constant C, depending only on K and d, such that

‖[L,ϕn]u‖Cαs (H̄T ) ≤ Cr−nR−3
(
‖xd(uϕn+1)xi‖Cαs (H̄T ) + ‖uϕn+1‖Cαs (H̄T )

)
. (2.3.66)

The interpolation inequality (2.3.8) in Lemma 2.3.2 gives us, for any ε ∈ (0, 1),

‖xd(uϕn+1)xi‖Cαs (H̄T ) + ‖uϕn+1‖Cαs (H̄T )

≤ ε‖uϕn+1‖C2+α
s (H̄T ) + Cε−m‖uϕn+1‖C(H̄T ).

(2.3.67)

Hence, the preceding inequality together with (2.3.65) and (2.3.66), give us

‖L(uϕn)‖Cαs (H̄T ) ≤ Cr−nR−3
(
‖f‖Cαs (Q̄3R/2,T ) + ε‖uϕn+1‖C2+α

s (H̄T )

+ ε−m‖uϕn+1‖C(H̄T )

)
.

(2.3.68)

Next, we estimate the term (L− L0)(uϕn) in (2.3.63), that is,

−(L− L0)(uϕn) =

d∑
i,j=1

xd
(
aij(t, x)− aij(0, x0)

)
(uϕn)xixj

+

d∑
i=1

(
bi(t, x)− bi(0, x0)

)
(uϕn)xi

+
(
c(t, x)− c(0, x0)

)
(uϕn).

(2.3.69)

We have:

Claim 2.3.9. There is a constant C = C(K,R∗, d, α) such that, for any ε ∈ (0, 1), we

have

‖(L− L0)(uϕn)‖Cαs (H̄T ) ≤ C
(
Rα/2 + r−nR−3ε

)
‖uϕn+1‖C2+α

s (H̄T )

+ Cr−nR−3ε−m‖uϕn+1‖C(H̄T ).

(2.3.70)

where m is the constant appearing in Lemma 2.3.2.

Proof of Claim 2.3.9. From the Hölder continuity (2.2.11) and boundedness (2.2.10) of

the coefficients aij on H̄2,T , we can find a positive constant C, depending only on K
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and d, such that

‖xd
(
aij(t, x)− aij(0, x0)

)
(uϕn)xixj‖Cαs (H̄T )

≤ CRα/2‖xd(uϕn)xixj‖Cαs (H̄T ) + C‖xd(uϕn)xixj‖C(H̄T ).

(2.3.71)

Using the following calculation in the preceding inequality

‖xd(uϕn)xixj‖Cαs (H̄T ) ≤ ‖xduxixjϕn‖Cαs (H̄T )

+ ‖xduxi(ϕn)xj‖Cαs (H̄T ) + ‖xdu(ϕn)xixj‖Cαs (H̄T )

≤ [xd(uϕn+1)xixj ]Cαs (H̄T ) + cr−nR−3
(
‖xd(uϕn+1)xixj‖C(H̄T )

+‖xd(uϕn+1)xi‖Cαs (H̄T ) + ‖xduϕn+1‖Cαs (H̄T )

)
,

together with the interpolation inequality (2.3.9) in Lemma 2.3.2 applied to uϕn+1,

‖xd(uϕn+1)xixj‖C(H̄T ) + ‖xd(uϕn+1)xi‖Cαs (H̄T ) + ‖uϕn+1‖Cαs (H̄T )

≤ ε‖uϕn+1‖C2+α
s (H̄T ) + Cε−m‖uϕn+1‖C(H̄T ),

we obtain in (2.3.71)

‖xd
(
aij(t, x)− aij(0, x0)

)
(uϕn)xixj‖Cαs (H̄T )

≤ CRα/2[xd(uϕn+1)]Cαs (H̄T ) + Cr−nR−3ε‖uϕn+1‖C2+α
s (H̄T )

+ Cr−nR−3ε−m‖uϕn+1‖C(H̄T )

≤ C
(
Rα/2 + r−nR−3ε

)
‖uϕn+1‖C2+α

s (H̄T ) + Cr−nR−3ε−m‖uϕn+1‖C(H̄T ).

A similar argument gives us

‖
(
bi(t, x)− bi(0, x0)

)
(uϕn)xi‖Cαs (H̄T ) + ‖

(
c(t, x)− c(0, x0)

)
(uϕn)‖Cαs (H̄T )

≤ Cr−nR−3ε‖uϕn+1‖C2+α
s (H̄T ) + Cr−nR−3ε−m‖uϕn+1‖C(H̄T ),

and so, using the preceding inequalities in (2.3.69), we obtain the estimate (2.3.70).

Combining (2.3.68), (2.3.70) and (2.3.63), we obtain

αn ≤ Cr−nR−3
(
‖f‖Cαs (Q̄3R/2,T ) + ‖g‖C2+α

s (B̄3R/2)

)
+ C

(
Rα/2 + r−nR−3ε

)
αn+1 + Cr−nR−3ε−m‖u‖C(Q̄3R/2,T ).

(2.3.72)

We multiply the inequality (2.3.72) by δn, where δ > 0 is chosen such that

r−(m+1)δ ≤ 1/2. (2.3.73)
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Next, we choose R∗ > 0 such that CR∗α/2 = δ/2. For R ∈ (0, R∗], we choose ε =

ε(n,R) ∈ (0, 1) such that Cr−nR−3ε = δ/2. With this choice of δ, R∗ and ε, inequality

(2.3.72) yields, for all 0 < R ≤ R∗,

δnαn ≤ CR−3(r−1δ)n
(
‖f‖Cαs (Q̄3R/2,T ) + ‖g‖C2+α

s (B̄3R/2)

)
+ δn+1αn+1 + (2C)m+1R−3(m+1)δ−m(r−(m+1)δ)n‖u‖C(B̄3R/2,T ).

By (2.3.73), we also have r−1δ ≤ 1/2. Then, by choosing

C1 := max
{
CR−3, (2C)m+1R−3(m+1)δ−m

}
,

we obtain

δnαn ≤ C1
1

2n

(
‖f‖Cαs (Q̄3R/2,T ) + ‖g‖C2+α

s (B̄3R/2)

)
+ δn+1αn+1 + C1

1

2n
‖u‖C(Q̄3R/2,T ).

(2.3.74)

Summing inequality (2.3.74) yields

∞∑
n=0

δnαn ≤ C1

(
‖f‖Cαs (Q̄3R/2,T ) + ‖g‖C2+α

s (B̄3R/2)

) ∞∑
n=0

1

2n

+

∞∑
n=0

δn+1αn+1 + C1‖u‖C(Q̄3R/2,T )

∞∑
n=0

1

2n
.

The sum
∑∞

n=0 δ
nαn is well-defined because we assumed u ∈ C2+α

s (Q̄3R/2,T ), for all

R ∈ (0, R∗] and T ∈ (0, R], while δ ∈ (0, 1). By subtracting the term
∑∞

n=1 δ
nαn from

both sides of the preceding inequality, we obtain the desired inequality (2.3.59).

2.3.4 Local a priori interior estimates

In order to establish the local interior estimates, we need to track the dependency of

the constant N appearing in [51, Lemma 9.2.1 & Theorem 9.2.2] on the constant of

uniform ellipticity and on the supremum and Hölder norms of the coefficients. Lemma

2.3.11 and Proposition 2.3.13 apply to a parabolic operator

−L̄u := −ut +

d∑
i,j=1

āijuxixj +
d∑
i=1

b̄iuxi + c̄u, (2.3.75)

whose coefficients obey

Hypothesis 2.3.10. There are positive constants δ1, K1 and λ1 such that
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1. (āij(t, x)) is a symmetric, positive definite matrix, for all t ∈ [0, T ] and x ∈ Rd.

2. The diffusion matrix ā is non-degenerate

d∑
i,j=1

āij(t, x)ξiξj ≥ δ1|ξ|2, ∀ξ ∈ Rd, t ∈ [0, T ], x ∈ Rd. (2.3.76)

3. The coefficients āij , b̄i and c̄ are uniformly Hölder continuous on [0, T ]× Rd,

‖āij‖Cαρ ([0,T ]×Rd) + ‖b̄i‖Cαρ ([0,T ]×Rd) + ‖c̄‖Cαρ ([0,T ]×Rd) ≤ K1. (2.3.77)

4. The zeroth order coefficient, c̄, is bounded from above,

c̄(t, x) ≤ λ1 ∀t ∈ [0, T ], x ∈ Rd. (2.3.78)

Lemma 2.3.11 (A priori estimate for a simple parabolic operator with constant coef-

ficients). Assume that (āij) in (2.3.75) is a constant matrix obeying (2.3.76), b̄i = 0,

and c̄ = 0. Then there are positive constants,

N1 = N1(d, α, T ), (2.3.79)

N2 = N1 max{1, δ−1
1 }max{1,K1}(1 + δ

−α/2
1 )(1 +K

α/2
1 ), (2.3.80)

such that, for any solution u ∈ C2+α
ρ ([0, T ]× Rd) to

L̄u = f on (0, T ]× Rd,

u(0, ·) = g on Rd,
(2.3.81)

with f ∈ Cαρ ([0, T ]× Rd) and g ∈ C2+α
ρ (Rd), we have

‖u‖C2+α
ρ ([0,T ]×Rd) ≤ N2

(
‖f‖Cαρ ([0,T ]×Rd) + ‖g‖C2+α

ρ (Rd)

)
. (2.3.82)

Proof. We follow the proof of [51, Lemmas 9.2.1 & 8.9.1]. Let U be an orthogonal

matrix such that A = Udiag(λi)U
T , where λi ∈ [δ1,K1] are the eigenvalues of the

symmetric, positive definite matrix, (aij). We denote B = Udiag(
√
λi)U

∗ and v(t, x) =

u(t, Bx), f̄(t, x) = f(t, Bx), and ḡ(x) = g(Bx). Then, v ∈ C2+α
ρ ([0, T ]×Rd) solves the

inhomogeneous heat equation,
vt −∆v = f̄ on (0, T ]× Rd,

u(0, ·) = ḡ on Rd.
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By applying [51, Theorem 9.2.3] to v, we obtain a constant N1 = N1(d, α, T ) such that

‖v‖C2+α
ρ ([0,T ]×Rd) ≤ N1

(
‖f̄‖Cαρ ([0,T ]×Rd) + ‖ḡ‖C2+α

ρ (Rd)

)
. (2.3.83)

To obtain (2.3.82) from (2.3.83), we need the following

Claim 2.3.12. There is a positive constant C = C(d), such that for any w1 ∈ Cαρ ([0, T ]×

Rd) and any symmetric, positive-definite d×d-matrix, M, with eigenvalues in [λmin, λmax],

where λmax > λmin > 0, we have

‖w1‖Cαρ ([0,T ]×Rd) ≤ C(1 + λ−αmin)‖w2‖Cαρ ([0,T ]×Rd), (2.3.84)

‖w2‖Cαρ ([0,T ]×Rd) ≤ C(1 + λαmax)‖w1‖Cαρ ([0,T ]×Rd), (2.3.85)

where w2(t, x) := w1(t,Mx).

Proof of Claim 2.3.12. We first prove (2.3.84). Obviously, we have

‖w1‖C([0,T ]×Rd) = ‖w2‖C([0,T ]×Rd). (2.3.86)

Next, it suffices to consider |w1(P 1) − w1(P 2)|/ρ(P 1, P 2)α, for points Pi = (ti, xi) ∈

[0, T ]×Rd, i = 1, 2, where only one of the coordinates differs. Notice that when x1 = x2,

then

|w1(P 1)− w1(P 2)|
ρ(P 1, P 2)α

=
|w2(P 1)− w2(P 2)|

ρ(P 1, P 2)α
,

because the transformation w2(t, x) := w1(t,Mx) acts only on the spatial variables.

Therefore, we have

|w1(P 1)− w1(P 2)|
ρ(P 1, P 2)α

≤ [w2]Cαρ ([0,T ]×Rd), (2.3.87)

Next, we consider the case t1 = t2 = t. Then, we have by writing w1(t, x) = w2(t,M−1x),

|w1(P 1)− w1(P 2)|
ρ(P 1, P 2)α

=
|w2(t,M−1x1)− w2(t,M−1x2)|
|M(M−1x1 −M−1x2)|α

Using the fact that M is a symmetric, positive-definite matrix with eigenvalues in the

range [λmin, λmax], it follows

|M(M−1x1 −M−1x2)| ≥ λmin|M−1x1 −M−1x2|, ∀x1, x2 ∈ Rd,

and so, by the preceding two inequalities, we have

|w1(P 1)− w1(P 2)|
ρ(P 1, P 2)α

≤ λ−αmin[w2]Cαρ ([0,T ]×Rd). (2.3.88)
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Combining inequalities (2.3.86), (2.3.87) and (2.3.88), we obtain (2.3.84).

To obtain (2.3.85), we apply (2.3.84) to w2 in place of w1. Then, the matrix M is re-

placed by the symmetric, positive-definite matrix M−1 with eigenvalues in [λ−1
max, λ

−1
min].

Therefore, λ−1
min in (2.3.84) is replaced by λmax, and thus, we obtain (2.3.85).

Notice thatB is a symmetric, positive-definite matrix with eigenvalues in [
√
δ1,
√
K1].

Since v(t, x) = u(t, Bx), we may apply (2.3.84) with w1 = u and w2 = v and M = B

to obtain

‖u‖Cαρ ([0,T ]×Rd) ≤ C(1 + δ
−α/2
1 )‖v‖Cαρ ([0,T ]×Rd). (2.3.89)

Because vt(t, x) = ut(t, Bx), we have as above

‖ut‖Cαρ ([0,T ]×Rd) ≤ C(1 + δ
−α/2
1 )‖vt‖Cαρ ([0,T ]×Rd). (2.3.90)

To evaluate uxi , we denote by Li the i-th row of the matrix B−1. Then, we have

uxi = Li∇v,

and so,

‖uxi‖C([0,T ]×Rd) ≤ δ
−1/2
1 ‖∇v‖C([0,T ]×Rd).

where we have use the fact that B−1 is a symmetric, positive-definite matrix and the

eigenvalues of B−1 are in
[
K
−1/2
1 , δ

−1/2
1

]
. Applying inequality 2.3.84 to uxi , we obtain

as above

‖uxi‖Cαρ ([0,T ]×Rd) ≤ Cδ
−1/2
1 (1 + δ

−α/2
1 )‖vxi‖Cαρ ([0,T ]×Rd), (2.3.91)

and similarly, it follows for uxixj

‖uxixj‖Cαρ ([0,T ]×Rd) ≤ δ−1
1 (1 + δ

−α/2
1 )‖vxixj‖Cαρ ([0,T ]×Rd). (2.3.92)

Applying (2.3.85) for f̄(t, x) = f(t, Bx) with w1 = f and w2 = f̄ and M = B, we have

‖f̄‖Cαρ ([0,T ]×Rd) ≤ (1 +K
α/2
1 )‖f‖Cαρ ([0,T ]×Rd), (2.3.93)

Similarly, for ḡ(x) = g(Bx), we obtain

‖ḡ‖Cαρ (Rd) ≤ (1 +K
α/2
1 )‖g‖Cαρ ([0,T ]×Rd),

‖ḡxi‖Cαρ (Rd) ≤ K
1/2
1 (1 +K

α/2
1 )‖gxi‖Cαρ (Rd),

‖ḡxixj‖Cαρ (Rd) ≤ K1(1 +K
α/2
1 )‖gxixj‖Cαρ (Rd).

(2.3.94)



46

By combining the inequalities (2.3.89), (2.3.90), (2.3.91), (2.3.92), (2.3.93) and (2.3.94)

in (2.3.83), we obtain (2.3.82) .

Proposition 2.3.13 (A priori estimate for a parabolic operator with variable coeffi-

cients). Assume Hypothesis 2.3.10. Then there are positive constants

p = p(α) ≥ 1, (2.3.95)

N3 = N3(d, α, T ), (2.3.96)

N4 = N3e
λ1T

(
1 + δ−p1 +Kp

1

)
, (2.3.97)

such that, for any solution u ∈ C2+α
ρ ([0, T ]× Rd) to

L̄u = f on (0, T ]× Rd,

u(0, ·) = g on Rd,

we have

‖u‖C2+α
ρ ([0,T ]×Rd) ≤ N4

(
‖f‖Cαρ ([0,T ]×Rd) + ‖g‖C2+α

ρ (Rd)

)
. (2.3.98)

The proof of Proposition 2.3.13 can be found in the appendix.

Proposition 2.3.14 (Local estimates for parabolic operators with variable coeffi-

cients). Assume Hypothesis 2.3.10 and that R > 0. Then there are positive constants

p = p(α) ≥ 1, (2.3.99)

N3 = N3(d, α, T,R), (2.3.100)

N4 = N3e
λ1T

(
1 + δ−p1 +Kp

1

)
, (2.3.101)

such that for any x0 ∈ Rd and any solution u ∈ C2+α
ρ (Q̄2R,T (x0)) to

L̄u = f on Q2R,T (x0),

u(0, ·) = g on B̄2R(x0),

we have

‖u‖C2+α
ρ (Q̄R,T (x0)) ≤ N4

(
‖f‖Cαρ (Q̄2R,T (x0)) + ‖g‖C2+α

ρ (B̄2R(x0))

+‖u‖C(Q̄2R,T (x0))

)
.

(2.3.102)
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Proof. The proof follows by the same argument as in Theorem 2.3.8 with the following

modifications:

• In inequality (2.3.62), instead of applying Proposition A.1.1, we apply Proposition

2.3.13.

• We use the interpolation inequalities for classical Hölder spaces C2+α
ρ ([51, Theo-

rem 8.8.1]), instead of the interpolation inequalities suitable for the Hölder spaces

C2+α
s (Lemma 2.3.2).

This completes the proof.

We now consider estimates for the operator L in (2.1.3).

Proposition 2.3.15 (Interior local estimates). There is a positive constant p = p(α),

and for any 0 < R ≤ R∗, with R∗ given as in Theorem 2.3.8, there is a positive constant

C = C(d, α, T,K, δ,R∗, R), such that for any x0 ∈ H satisfying x0
d − 2R ≥ R∗/2, and

for any solution u ∈ C2+α
ρ (Q̄2R,T (x0)) to the inhomogeneous initial value problem

Lu = f on Q2R,T (x0),

u(0, ·) = g on B̄2R(x0),

we have

‖u‖C2+α
ρ (Q̄R,T (x0)) ≤ C

(
‖f‖Cαp (Q̄2R,T (x0)) + ‖g‖C 2+α

p (B̄2R(x0))

+ ‖u‖C 0
p (Q̄2R,T (x0))

)
.

(2.3.103)

Proof. From Proposition 2.3.14, the linear growth estimate (2.2.14), and the fact that

the matrix (xdaij(t, x)) is uniformly elliptic on H̄T \HR∗/2,T by (2.2.9) and (2.2.12), we

obtain

‖u‖C2+α
ρ (Q̄R,T (x0)) ≤ C1(1 + |x0|)p

(
‖f‖Cαρ (Q̄2R,T (x0)) + ‖g‖C2+α

ρ (B̄2R(x0))

+‖u‖C(Q̄2R,T (x0))

)
,

(2.3.104)

where C1 is a positive constant depending only on T , K, δ, R∗ and R.

Claim 2.3.16. Given a function v ∈ C2+α
ρ (Q̄2R,T (x0)), there is a positive constant C2,

depending only in R∗, p and α, such that for all R ∈ (0, R∗] and x0 ∈ HT , we have

(1 + |x0|)p‖v‖Cαρ (Q̄2R,T (x0)) ≤ C2‖v‖Cαp (Q̄2R,T (x0)). (2.3.105)
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Proof of Claim 2.3.16. Recall that, by definition (2.2.5),

‖(1 + |x|)pv‖Cαρ (Q̄2R,T (x0)) = ‖v‖Cαp (Q̄2R,T (x0)).

We may write

(1 + |x0|)p|v(t, x)| =
(

1 + |x0|
1 + |x|

)p
(1 + |x|)p|v(t, x)|, ∀(t, x) ∈ Q̄2R,T (x0).

We can find a constant C2 = C2(R∗, p) such that(
1 + |x0|
1 + |x|

)p
≤ C2, ∀x ∈ B̄2R(x0), ∀0 < R < R∗, (2.3.106)

which implies

(1 + |x0|)p‖v‖C(Q̄2R,T (x0)) ≤ C2‖(1 + |x|)pv‖C(Q̄2R,T (x0)). (2.3.107)

Next, we have

(1 + |x0|)p[v]Cαρ (Q̄2R,T (x0)) = (1 + |x0|)p
[

1

(1 + |x|)p
(1 + |x|)pv

]
Cαρ (Q̄2R,T (x0))

≤ (1 + |x0|)p
[

1

(1 + |x|)p

]
Cαρ (B̄2R(x0))

‖(1 + |x|)pv‖C(Q̄2R,T (x0))

+ (1 + |x0|)p
∥∥∥∥ 1

(1 + |x|)p

∥∥∥∥
C(B̄2R(x0))

[(1 + |x|)pv]Cαρ (Q̄2R,T (x0)).

As in (2.3.106), there is a (possibly larger) constant C2 = C2(R∗, p, α) such that

(1 + |x0|)p
[

1

(1 + |x|)p

]
Cαρ (B̄2R(x0))

≤ C2.

Therefore, we obtain

(1 + |x0|)p[v]Cαρ (Q̄2R,T (x0))

≤ C2‖(1 + |x|)pv‖C(Q̄2R,T (x0)) + C2[(1 + |x|)pv]Cαρ (Q̄2R,T (x0)).

(2.3.108)

Combining inequalities (2.3.107) and (2.3.108) yields the desired inequality (2.3.105).

Claim 2.3.16 implies that

(1 + |x0|)p‖f‖Cαρ (Q̄2R,T (x0)) ≤ C2‖f‖Cαp (Q̄2R,T (x0)),

(1 + |x0|)p‖g‖C2+α
ρ (B̄2R(x0)) ≤ C2‖g‖C 2+α

p (B̄2R(x0)),

(1 + |x0|)p‖u‖C(Q̄2R,T (x0)) ≤ C2‖u‖C 0
p (Q̄2R,T (x0)).

From the preceding inequalities and (2.3.104), we obtain the interior local estimate

(2.3.103).
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2.3.5 Global a priori estimates and existence of solutions

The goal of this subsection is to establish Theorem 2.1.1. For this purpose, we need to

first prove the analogue of Theorem 2.1.1 when the coefficients are uniformly Hölder

continuous on HT \H2,T = (0, T )× Rd−1 × [2,∞).

Hypothesis 2.3.17. In addition to the conditions in Assumption 2.2.2, assume that

there is a positive constant K2 such that the coefficients of L obey

‖xdaij‖Cαρ ( ¯HT \H2,T ) + ‖bi‖Cαρ ( ¯HT \H2,T ) + ‖c‖Cαρ ( ¯HT \H2,T ) ≤ K2. (2.3.109)

We first derive global a priori estimates of solutions in the case of bounded coeffi-

cients.

Lemma 2.3.18 (Global estimates in the case of parabolic operators with bounded

coefficients). Suppose Hypothesis 2.3.17 is satisfied. There exists a positive constant

C = C(T, α, d,K2, δ, ν) such that for any solution u ∈ C 2+α
loc (H̄T ) to (2.1.2), such that

Lu ∈ C α(H̄T ) and u(0, ·) ∈ C 2+α(H̄), we have u ∈ C 2+α(H̄T ) and satisfies the global

estimate

‖u‖C 2+α(H̄T ) ≤ C
(
‖Lu‖Cα(H̄T ) + ‖u(0, ·)‖C 2+α(H̄)

)
. (2.3.110)

Proof. It is enough to prove the statement for T > 0 small. Let R∗ > 0 be defined as

in Theorem 2.3.8 and choose T ∈ (0, R∗]. Let {zk : k ≥ 1} be a sequence of points in

∂H such that

HR∗/2,T ⊂
⋃
k≥1

QR∗,T (zk), (2.3.111)

and let {wl : l ≥ 1} be a sequence of points in HT \HR∗/2,T such that

HT \HR∗/2,T ⊂
⋃
l≥1

QR∗/8,T (wl), (2.3.112)

and assume

QR∗/4,T (wl) ∩HR∗/4,T = ∅, ∀l ≥ 1. (2.3.113)

We apply the a priori boundary estimate (2.3.59) to u with R = R∗, f = Lu and

g = u(0, ·) on QR∗,T (zk). Then, we can find a positive constant C1, depending at most
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on R∗, K2, δ, ν, such that

‖u‖C2+α
s (Q̄R∗,T (zk)) ≤ C1

(
‖Lu‖Cαs (Q̄3R∗/2,T (zk)) + ‖u(0, ·)‖C2+α

s (Q̄3R∗/2,T (zk))

+ ‖u‖C(Q̄3R∗/2,T (zk))

)
.

Using definitions (2.2.5) of C α(H̄T ), and (2.2.6) of C 2+α(H̄), with q = 0, Remark 2.2.1

and the hypotheses that Lu ∈ C α(H̄T ) and u(0, ·) ∈ C 2+α(H̄), we obtain

‖u‖C2+α
s (Q̄R∗,T (zk)) ≤ C1

(
‖Lu‖Cα(H̄T ) + ‖u(0, ·)‖C 2+α(H̄) + ‖u‖C(H̄T )

)
,

and inequality (2.3.53) ensures

‖u‖C2+α
s (Q̄R∗,T (zk)) ≤ C1

(
‖Lu‖Cα(H̄T ) + ‖u(0, ·)‖C 2+α(H̄)

)
, ∀k ≥ 1. (2.3.114)

From our Hypothesis 2.3.17, the coefficients xdaij , bi and c are in Cαρ ( ¯HT \H2,T ). By

Assumption 2.2.2, we have that xdaij , bi and c are in Cαs ( ¯H2,T \HR∗/4,T ). Since the

metrics s and ρ are equivalent on R × [R∗/4, 2], by Remark 2.2.1, there is a positive

constant K1, depending on K2 and R∗, such that

‖xdaij‖Cαρ ( ¯HT \HR∗/4,T ) + ‖bi‖Cαρ ( ¯HT \HR∗/4,T ) + ‖c‖Cαρ ( ¯HT \HR∗/4,T ) ≤ K1,

and so the conditions of Hypothesis 2.3.10 are obeyed on ¯HT \HR∗/4,T . This is enough

to ensure we may apply Proposition 2.3.14 to u with f = Lu and g = u(0, ·) on

QR∗/8,T (wl) and so there is a positive constant C2, depending at most on R∗, K1, δ, ν,

giving

‖u‖C2+α
ρ (Q̄R∗/8,T (wl)) ≤ C2

(
‖Lu‖Cαρ (Q̄R∗/4,T (wl)) + ‖u(0, ·)‖C2+α

ρ (Q̄R∗/4,T (wl))

+ ‖u‖C(Q̄R∗/4,T (wl))

)
, ∀l ≥ 1.

By (2.3.113) and Remark 2.2.1, we obtain

‖u‖C2+α
ρ (Q̄R∗/8,T (wl)) ≤ C2

(
‖Lu‖Cα(H̄) + ‖u(0, ·)‖C 2+α(H̄T )

+ ‖u‖C(Q̄R∗/4,T (wl))

)
, ∀l ≥ 1,

and, by inequality (2.3.53) applied to ‖u‖C(Q̄R∗/4,T (wl)), it follows

‖u‖C2+α
ρ (Q̄R∗/8,T (wl)) ≤ C2

(
‖Lu‖Cα(H̄) + ‖u(0, ·)‖C 2+α(H̄T )

)
, ∀l ≥ 1. (2.3.115)

Combining inequalities (2.3.114) and (2.3.115) and making use of the inclusions (2.3.111)

and (2.3.112), we obtain the global estimate (2.3.110).
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Next, we establish the a priori global estimates in the case of coefficients with at

most linear growth.

Lemma 2.3.19 (Global estimates for coefficients with linear growth). There exists a

positive constant C = C(T, α, d,K, δ, ν) such that for any solution u ∈ C 2+α
loc (H̄T ) to

(2.1.2), such that Lu ∈ C α
p (H̄T ) and u(0, ·) ∈ C 2+α

p (H̄), we have

‖u‖C 2+α(H̄T ) ≤ C
(
‖Lu‖Cαp (H̄T ) + ‖u(0, ·)‖C 2+α

p (H̄)

)
, (2.3.116)

where p = p(α) is the constant appearing in Proposition 2.3.15.

Proof. As in the proof of Lemma 2.3.18, we may assume without loss of generality

that 0 < T ≤ R∗, where R∗ > 0 is defined as in Theorem 2.3.8. Let zk and wl be

the sequences of points considered in the proof of Lemma 2.3.18. Then, by applying

Theorem 2.3.8 to u with f = Lu and g = u(0, ·) on Q̄R∗,T (zk), we obtain, for all k ≥ 1,

‖u‖C2+α
s (Q̄R∗,T (zk)) ≤ C

(
‖Lu‖Cαs (Q̄3R∗/2,T (zk)) + ‖u(0, ·)‖C2+α

s (B̄3R∗/2(zk))

+‖u‖C(Q̄3R∗/2,T (zk))

)
.

We notice that

‖Lu‖Cαs (Q̄3R∗/2,T (zk)) ≤ C1‖(1 + |x|)pLu‖Cαs (Q̄3R∗/2,T (zk))

= C1‖Lu‖Cαp (Q̄3R∗/2,T (zk)),

‖u(0, ·)‖C2+α
ρ (B̄3R∗/2(zk)) ≤ C1‖(1 + |x|)pu(0, ·)‖C2+α

s (B̄3R∗/2(zk))

= C1‖u(0, ·)‖C 2+α
p (B̄3R∗/2(zk)),

‖u‖C(Q̄3R∗/2,T (zk)) ≤ C1‖(1 + |x|)pu‖C(Q̄3R∗/2,T (zk))

= C1‖u‖C 0
p (Q̄3R∗/2,T (zk)),

where the positive constant C1 depends on R∗ and p, but not on zk. Therefore, we

obtain, for all k ≥ 1,

‖u‖C2+α
s (Q̄R∗,T (zk)) ≤ C2

(
‖Lu‖Cαp (H̄T ) + ‖u(0, ·)‖C 2+α

p (H̄) + ‖u‖C 0
p (H̄T )

)
,

for a positive constant C2 depending at most on R∗, K, δ, ν, α, d. Because the collection

of balls {QR∗,T (zk) : k ≥ 1} covers HR∗/2,T and as we may apply (2.3.54) to u with
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f = Lu and g = u(0, ·) with q = p, there is a positive constant C3, satisfying the same

dependency on constants as C2, such that

‖u‖C 2+α(H̄R∗/2,T ) ≤ C3

(
‖Lu‖Cαp (H̄T ) + ‖u(0, ·)‖C 2+α

p (H̄)

)
. (2.3.117)

By applying Proposition 2.3.15 to u with f = Lu and g = u(0, ·) on Q̄R∗/8,T (wl) , we

obtain, for all l ≥ 1,

‖u‖C2+α
ρ (Q̄R∗/8,T (wl)) ≤ C4

(
‖Lu‖Cαp (Q̄R∗/4,T (wl)) + ‖u(0, ·)‖C 2+α

p (B̄R∗/4(wl))

+ ‖u‖C 0
p (Q̄R∗/4,T (wl))

)
.

(2.3.118)

Because the collection of balls {QR∗/8,T (wl) : l ≥ 1} covers HT \ HR∗/2,T and we may

apply (2.3.54) to u with f = Lu and g = u(0, ·) with q = p, we obtain

‖u‖C 2+α( ¯HT \HR∗/2,T ) ≤ C5

(
‖Lu‖Cαp (H̄T ) + ‖u(0, ·)‖C 2+α

p (H̄)

)
. (2.3.119)

By combining inequalities (2.3.117) and (2.3.119), we obtain the desired estimate (2.3.116).

Next, we prove Theorem 2.1.1 in the case of bounded coefficients.

Proposition 2.3.20 (Existence and uniqueness for bounded coefficients). Suppose Hy-

pothesis 2.3.17 is satisfied. Let f ∈ C α(H̄T ) and g ∈ C 2+α(H̄). Then there exists a

unique solution u ∈ C 2+α(H̄T ) to (2.1.2) and u satisfies estimate (2.3.110).

Proof. The proof employs the method used in proving existence of solutions to parabolic

partial differential equations outlined in [51, §10.2] or [20, Theorem II.1.1]. We let

Ĉ 2+α(H̄T ) denote the Banach space of functions u ∈ C 2+α(H̄T ) such that u(0, x) = 0,

for all x ∈ H̄. The spaces Ĉ2+α
s (H̄T ) and Ĉ2+α

ρ ([0, T ]×Rd) are defined similarly. With-

out loss of generality, we may assume g = 0 because Lg ∈ C α(H̄T ), when Hypothesis

2.3.17 holds, and so

L : Ĉ 2+α(H̄T )→ C α(H̄T )

is a well-defined operator. Our goal is to show that L is invertible and we accomplish

this by constructing a bounded linear operator M : C α(H̄T )→ Ĉ 2+α(H̄T ) such that∥∥∥LM − ICα(H̄T )

∥∥∥ < 1. (2.3.120)
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For this purpose, we fix r > 0 and choose a sequence of points {xn : n = 1, 2, . . .} such

that the collection of balls {Br(xn) : n = 1, 2, . . .} covers the strip {x = (x′, xd) ∈ H :

0 < xd < r/2}. We may assume without loss of generality, there exists a positive

constant N , depending only on the dimension d, such that at most N balls of the

covering have non-empty intersection. Let {ϕn : n = 0, 1, . . .} be a partition of unity

subordinate to the open cover

(H \ {0 < xd ≤ r/4}) ∪
∞⋃
n=1

Br(x
n) = H,

such that

suppϕ0 ⊂ H \ {0 < xd < r/4} and suppϕn ⊂ B̄r(xn), ∀n ≥ 1.

Without loss of generality, we may choose {ϕn}n≥0 such that there is a positive constant

c, independent of r and n, such that

‖ϕn‖C2+α
ρ (Rd) ≤ cr

−3, ∀n ≥ 0. (2.3.121)

We choose a sequence of non-negative, smooth cutoff functions, {ψn}n≥0 ⊂ C∞(H̄)

such that 0 ≤ ψn ≤ 1 on H, for all n ≥ 0, and

ψ0(x) =


0, for 0 < xd < r/8,

1, for xd > r/4,

while for all n ≥ 1,

ψn(x) =


1, for 0 < xd < 1/2,

0, for xd > 1.

Then, we notice that ψ0 satisfies (2.3.121). For r small enough, we have

ψnϕn = ϕn, for all n ≥ 0. (2.3.122)

For n = 0, let L0 be a uniformly elliptic parabolic operator on Rd with bounded,

Cαρ (HT )-Hölder continuous coefficients, such that L0 agrees with L on the support of

ψ0. Define the operator

M0 : Cαρ ([0, T ]× Rd)→ Ĉ2+α
ρ ([0, T ]× Rd),
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be the inverse of L0, as given by [51, Theorem 8.9.2]. For n = 1, 2, . . ., let Ln be the

degenerate-parabolic operator obtained by freezing the variable coefficients aij(t, x),

bi(t, x) and c(t, x) at (0, xn). Define the operator

Mn : Cαs (H̄T )→ Ĉ2+α
s (H̄T ),

be the inverse of Ln, as given by Proposition A.1.1. Define the operator

M : C α(H̄T )→ Ĉ 2+α(H̄T )

by setting

Mf :=

∞∑
n=0

ϕnMnψnf, for f ∈ C α(H̄T ).

Our goal is to show that (2.3.120) holds, for small enough r and T . We have

LMf − f =
∞∑
n=0

LϕnMnψnf − f

=
∞∑
n=0

ϕnLMnψnf +
∞∑
n=0

[L,ϕn]Mnψnf − f,

where [L,ϕn] is given by (2.3.64). Denoting

un := Mnψnf, for n = 0, 1, 2, . . . , (2.3.123)

we have

LMnψnf = (L− Ln)un + LnMnψnf

= (L− Ln)un + ψnf,

since LnMn = I, for all n ≥ 0. This implies, by the identities (2.3.122) and
∑∞

n=0 ϕnψnf =

f , that

LMf − f =

∞∑
n=0

ϕn(L− Ln)un +

∞∑
n=0

[L,ϕn]un. (2.3.124)

First, we estimate the terms in the preceding equality indexed by n = 0. Because

L0 = L on the support of ψ0, obviously we have ψ0(L − L0)u0 = 0. Next, using the

identity (2.3.64), there is a positive constant C, depending only on K2 in (2.3.109),

such that

‖[L,ϕ0]u0‖Cαρ ([0,T ]×Rd) ≤ C‖u0‖C1+α
ρ ([0,T ]×Rd)‖ψ0‖C2+α

ρ ([0,T ]×Rd)

≤ Cr−3‖u0‖C1+α
ρ ([0,T ]×Rd) (by (2.3.121)).
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From the interpolation inequalities for standard Hölder spaces [51, Theorem 8.8.1],

there is a positive constant m such that, for all ε > 0, we have

‖[L,ϕ0]u0‖Cαρ ([0,T ]×Rd) ≤ Cr
−3
(
ε‖u0‖C1+α

ρ ([0,T ]×Rd) + ε−m‖u0‖C([0,T ]×Rd)

)
.

(2.3.125)

By [51, Theorem 8.9.2], the identity (2.3.122), and the definition (2.3.123) of u0, we

have

‖u0‖C1+α
ρ ([0,T ]×Rd) ≤ C1(r)‖ψ0f‖Cαρ ([0,T ]×Rd)

≤ C1(r)‖f‖Cα(HT ),

for some positive constant C1(r). From [51, Corollary 8.1.5], there is a constant C,

depending only on K2, T and d, such that

‖u0‖C([0,T ]×Rd) ≤ CT‖f‖C([0,T ]×Rd).

Therefore, we obtain in (2.3.125), for possibly a different constant C1(r),

‖[L,ϕ0]u0‖Cαρ ([0,T ]×Rd) ≤ C1(r)
(
ε‖f‖Cα(H̄T ) + ε−mT‖f‖C(H̄T )

)
. (2.3.126)

Next, we estimate the terms in (2.3.124) indexed by n ≥ 1. We closely follow the

argument used to prove Theorem 2.3.8. First, we have

‖ϕn(L− Ln)un‖Cαs (H̄T ) ≤ [ϕn]Cαs (H̄T )‖(L− Ln)un‖C([0,T ]× supp ϕn)

+ ‖(L− Ln)un‖Cαs ([0,T ]× supp ϕn).

(2.3.127)

Using (2.3.121) and Lemma 2.3.2, there are positive constants m and C1(r) such that

[ϕn]Cαs (H̄T ) ‖(L− Ln)un‖C([0,T ]× supp ϕn) ≤ C1(r)
(
ε‖un‖C2+α

s (H̄T ) + ε−m‖un‖C(H̄T )

)
.

By Proposition A.1.1, (2.3.53) and the preceding inequality, we obtain

[ϕn]Cαs (H̄T ) ‖(L− Ln)un‖C([0,T ]× supp ϕn) ≤ C1(r)
(
ε‖ψnf‖Cαs (H̄T ) + ε−mT‖ψnf‖C(H̄T )

)
,

and thus,

[ϕn]Cαs (H̄T ) ‖(L− Ln)un‖C([0,T ]× supp ϕn)

≤ C1(r)
(
ε‖f‖Cα(H̄T ) + ε−mT‖f‖C(H̄T )

)
.

(2.3.128)
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By applying the same argument used to prove Claim 2.3.9, we find that there are

positive constants C, independent of r, and C1(r), such that

‖(L− Ln)un‖Cαs ([0,T ]× supp ϕn) ≤ Crα/2‖un‖Cαs (H̄T ) + C1(r)‖un‖C(H̄T ).

By Proposition A.1.1, (2.3.53) and the definition (2.3.123) of un, it follows that

‖(L− Ln)un‖Cαs ([0,T ]× supp ϕn) ≤ Crα/2‖f‖Cα(H̄T ) + C1(r)T‖f‖C(H̄T ). (2.3.129)

With the aid of inequalities (2.3.128) and (2.3.129), the estimate (2.3.127) becomes

‖ϕn(L− Ln)un‖Cαs (H̄T ) ≤ Crα/2‖f‖Cα(H̄T )

+ C1(r)
(
ε‖f‖Cα(H̄T ) + ε−mT‖f‖C(H̄T )

)
.

(2.3.130)

Next, we estimate [L,ϕn]un, for n ≥ 1, by employing a method similar to that used to

estimate the term [L,ϕ0]u0. Using the identity (2.3.64) there is a positive constant C,

depending only on K appearing in (2.2.10) and (2.2.11), such that

‖[L,ϕn]un‖Cαs ([0,T ]×H) ≤ Cr
−3‖un‖C1+α

s ([0,T ]×H) (by (2.3.121)).

From Lemma 2.3.2, there is a positive constant m such that, for all ε ∈ (0, 1), we have

‖[L,ϕn]un‖Cαs ([0,T ]×H) ≤ Cr
−3
(
ε‖un‖C1+α

s ([0,T ]×H) + ε−m‖un‖C([0,T ]×H)

)
.

According to Proposition A.1.1 and (2.3.53), there is a constant C1(r) so that

‖[L,ϕn]un‖Cαs ([0,T ]×H) ≤ C1(r)
(
ε‖f‖Cα(H̄T ) + ε−mT‖f‖C(H̄T )

)
. (2.3.131)

Combining inequalities (2.3.126), (2.3.130) and (2.3.131), and using the fact that at

most N balls in the covering have non-empty intersection, the identity (2.3.124) yields

‖LMf − f‖C 2+α(H̄T ) ≤ Crα/2‖f‖Cα(H̄T ) + C1(r)
(
ε‖f‖Cα(H̄T ) + ε−mT‖f‖C(H̄T )

)
,

where C is a positive constant independent of r, while C1(r) may depend on r. By

choosing small enough r, then small enough ε, and then small enough T , in that order,

we find a positive constant C0 < 1 such that

‖LMf − f‖Cα(H̄T ) ≤ C0‖f‖Cα(H̄T ), ∀f ∈ C α(H̄T ),

and this gives (2.3.120).
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Proof of Theorem 2.1.1. Uniqueness of solutions follows from Proposition 2.3.7.

We notice that C α
p (H̄T ) ⊂ C α(H̄T ) and C 2+α

p (H̄) ⊂ C 2+α(H̄). Let L̃ be any operator

satisfying Hypothesis 2.3.17. Let {ϕn}n≥1 be a sequence of non-negative, smooth cut-off

functions such that

0 ≤ ϕn ≤ 1, ϕn|Bn = 1, and ϕn|Bc2n = 0.

We define

Ln := ϕnL+ (1− ϕn)L̃, ∀n ≥ 1.

Then, each Ln satisfies Hypothesis 2.3.17 and, by Proposition 2.3.20, there exists a

unique solution un ∈ C 2+α(H̄T ) to (2.1.2) with L = Ln. By Lemma 2.3.19, each

solution un satisfies the global estimate

‖un‖C 2+α(H̄T ) ≤ C
(
‖f‖Cαp (H̄T ) + ‖g‖C 2+α

p (H̄)

)
. (2.3.132)

For any bounded subdomain U ⊂ H and denoting UT = (0, T ) × U , the parabolic

analogue, C2+α
ρ (ŪT ) ↪→ C2

ρ(ŪT ) ≡ C1,2(ŪT ), of the compact embedding [2, Theorem

1.31 (4)] of standard Hölder spaces, C2+α(Ū) ↪→ C2(Ū), implies that the sequence

{un}n≥1 converges strongly in C1,2(ŪT ) to the limit u ∈ C1,2(UT ), that is, un → u in

C1,2(UT ), as n → ∞ for every bounded subdomain U ⊂ H. It is now easily seen that

u solves (2.1.2). By the Arzelà-Ascoli Theorem, we obtain that u ∈ C 2+α(HT ) and

satisfies (2.1.6).

2.4 Martingale problem and the mimicking theorem

In this section, we prove Theorem 2.1.16 concerning the degenerate stochastic dif-

ferential equation with unbounded coefficients (2.1.4), and establish the main result,

Theorem 2.1.19. Our method of proof combines ideas from the martingale problem for-

mulation of Stroock and Varadhan [70] and the existence of solutions in suitable Hölder

spaces, C 2+α(H̄T ), to the homogeneous version of the initial value problem established

in Theorem 2.1.1. In §2.4.1, we prove existence of weak solutions to the mimicking

stochastic differential equation (2.1.4) and the existence of solutions to the martin-

gale problem associated to At. In §2.4.2, we establish uniqueness in law of solutions
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to (2.1.4) and to the martingale problem for At, thus proving Theorems 2.1.16 and

2.1.10; in §2.4.3, we establish the matching property for the one-dimensional probabil-

ity distributions for solutions to (2.1.4) and of an Itô process, thus proving Theorem

2.1.19.

2.4.1 Existence of solutions to the martingale problem and of weak

solutions to the stochastic differential equation

In this subsection, we show that (2.1.4) has weak solutions (X̂, Ŵ ) on some filtered

probability space (Ω,F ,P), {Ft}t≥0 [47, Definition 5.3.1], for any initial point x ∈ H̄,

by proving existence of solutions to the martingale problem associated to At (Definition

2.1.8).

We begin with an intuitive property of solutions to (2.1.4) defined by an initial

condition in H̄. For this purpose, we consider coefficients defined on [0,∞) × Rd,

instead of [0,∞)× H̄.

Proposition 2.4.1 (Solutions started in a half-space remain in a half-space). Let

σ̃ : [0,∞)× Rd → Rd×d,

b̃ : [0,∞)× Rd → Rd,

be Borel measurable functions. Assume that

σ̃(t, x) = 0 when xd < 0, (2.4.1)

and b satisfies

0 ≤ b̃d(t, x) ≤ K when xd < 0, (2.4.2)

where K is a positive constant. Let X̂ be a weak solution of

dX̂ = b̃(t, X̂(t))dt+ σ̃(t, X̂(t))dŴ (t), t ≥ s,

such that X̂(s) ∈ H̄. Then

P
(
X̂(t) ∈ H̄

)
= 1, ∀t ≥ s. (2.4.3)



59

Proof. It is sufficient to show that for any ε > 0, we have

P
(
X̂d(t) ∈ (−∞,−ε)

)
= 0, ∀t ≥ s. (2.4.4)

Let ϕ : R→ [0, 1] be a smooth, non-negative cutoff function such that

ϕ|(−∞,−ε) ≡ 1, ϕ|(0,∞) ≡ 0, and ϕ′ ≤ 0. (2.4.5)

Then, by Itô’s rule [47, Theorem 3.3.3], we obtain

ϕ(X̂d(t)) = ϕ(X̂d(s)) +

∫ t

s

d∑
i=0

σ̃di(v, X̂(v))ϕ′(X̂d(v))dŴi(v)

+

∫ t

s

[
b̃d(v, X̂(v))ϕ′(X̂d(v)) +

1

2
(σ̃σ̃∗)dd(v, X̂(v))ϕ′′(X̂d(v))

]
dv,

and so, because suppϕ ⊂ (−∞, 0] and (2.4.1) is satisfied, we have

ϕ(X̂d(t)) = ϕ(X̂d(s)) +

∫ t

s
b̃d(v, X̂(v))ϕ′(X̂d(v))dv.

By (2.4.2) and (2.4.5), the integral term in the preceding identity is non-positive. There-

fore, we must have ϕ(X̂d(t)) ≤ 0 and hence ϕ(X̂d(t)) = 0, for any choice of ε > 0, from

where (2.4.4) and then (2.4.3) follow.

Remark 2.4.2 (Weak solutions are independent of choice of extension of coefficients

to lower half-space). Let

b̃i : [0,∞)× Rd → Rd, i = 1, 2,

be measurable functions which satisfy condition (2.4.2), and assume

b̃1 = b̃2 on [0,∞)× H̄. (2.4.6)

Let σ̃ be a measurable function as in the hypotheses of Proposition 2.4.1. Let X̂ be a

weak solution to

dX̂(t) = b̃1(t, X̂(t))dt+ σ̃(t, X̂(t))dŴ (t), ∀t ≥ s, (2.4.7)

such that

P
(
X̂(s) ∈ H̄

)
= 1.
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Then, Proposition 2.4.1 shows that X̂(t) remains supported in H̄, for all t ≥ s. By

(2.4.6), it follows that X̂ is a weak solution to

dX̂(t) = b̃2(t, X̂(t))dt+ σ̃(t, X̂(t))dŴ (t), ∀t ≥ s. (2.4.8)

This simple observation shows that, under the hypotheses of Proposition 2.4.1, any

weak solution started in H̄ to (2.4.7) is a weak solution to (2.4.8), and vice versa.

Theorem 2.4.3 (Existence). Assume that the coefficients σ and b in (2.1.4) are con-

tinuous on [0,∞) × H̄, that ā obeys condition (2.1.16) on [0,∞) × H̄, and that ā and

b have at most linear growth in the spatial variable, that is, condition (2.2.14) holds.

Then,

1. For any (s, x) ∈ [0,∞)×H̄, there exist weak solutions (X̂, Ŵ ), (Ω,F ,P), (Ft)t≥s,

to (2.1.4) such that X̂(s) = x.

2. For any (s, x) ∈ [0,∞) × H̄, there is a solution, P̂s,x, to the martingale problem

associated to At such that (2.1.13) holds.

Proof. We organize the proof in several steps. Without loss of generality, we may

assume s = 0.

Step 1 (Solution to a classical martingale problem). The argument of this step is

similar to the one used in the proof of [47, Theorem 5.4.22].

Because ā ∈ Cloc([0,∞) × H̄) satisfies condition (2.1.16), we may extend σ as a

continuous function to [0,∞)×Rd such that (2.4.1) is satisfied. We denote this extension

by σ̃ ∈ Cloc([0,∞) × Rd). Similarly, we consider an extension, b̃ ∈ Cloc([0,∞) × Rd),

of the coefficient b in (2.1.21), such that (2.4.2) is satisfied. By defining ã := σ̃σ̃∗, we

obtain a continuous extension of ā from [0,∞)× H̄ to [0,∞)× Rd.

Our goal in this step is to show that the classical martingale problem [47, Definition

5.4.10] associated with the operator,

Ãtf(x) :=

d∑
i=1

b̃i(t, x)fxi(x) +

d∑
i,j=1

1

2
ãij(t, x)fxixj (x), ∀(t, x) ∈ [0,∞)× Rd,

(2.4.9)
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where f ∈ C2(Rd), has a solution P on the canonical space with filtration defined by

the cylinder sets,(
Cloc([0,∞);Rd),B(Cloc([0,∞);Rd))

)
,
{

Bt(Cloc([0,∞);Rd))
}
t≥0

, (2.4.10)

such that

P
(
ω ∈ Cloc([0,∞);Rd) : ω(0) = x

)
= 1. (2.4.11)

By [47, Problem 5.4.13 (A.2)′], it is enough to show that, for any f ∈ C2
0 (Rd),

Mf (t, ω) := f(ω(t))− f(ω(0))−
∫ t

0
Ãsf(ω(s)) ds, ω ∈ Cloc([0,∞);Rd), (2.4.12)

is a {Bt(Cloc([0,∞);Rd))}t≥0-martingale, and (2.4.11) holds.

Let n ≥ 1 and define

b̃ni (t, x) :=


b̃i(t, x), if |x| ≤ n,

b̃i(t, x) ∧ n, if |x| > n,

σ̃nij(t, x) :=


σ̃ij(t, x), if |x| ≤ n,

σ̃ij(t, x) ∧ n, if |x| > n,

(2.4.13)

for all 1 ≤ i, j ≤ d and all (t, x) ∈ [0,∞)× Rd. Let

ãn(t, x) := σ̃n(t, x)(σ̃n)∗(t, x), ∀(t, x) ∈ [0,∞)× Rd.

The coefficients b̃n and σ̃n are continuous, bounded functions on [0,∞) × Rd. By [47,

Theorem 5.4.22], there is a solution Pn to the classical martingale problem associated

to the operator,

Ã n
t u(x) :=

d∑
i=1

b̃ni (t, x)uxi(x) +

d∑
i,j=1

1

2
ãnij(t, x)uxixj (x), ∀(t, x) ∈ [0,∞)× Rd,

(2.4.14)

for all u ∈ C2(Rd). The solution Pn satisfies

Pn
(
ω ∈ Cloc([0,∞);Rd) : ω(0) = x

)
= 1. (2.4.15)

and, an inspection of the proof of [47, Theorem 5.4.22] shows that Pn exists such that

Mn,f (t, ω) := f(ω(t))− f(ω(0))−
∫ t

0
Ã n
s f(ω(s)) ds, ω ∈ Cloc([0,∞);Rd),

(2.4.16)
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is a {Bt(Cloc([0,∞);Rd))}t≥0-martingale, for all n ≥ 1, and for all f ∈ C2
0 (Rd).

By Proposition [47, Proposition 5.4.11 & 5.4.6], the stochastic differential equations

dXn(t) = b̃n(t,Xn(t))dt+ σ̃(t,Xn(t))dWn(t), t ≥ 0,

Xn(0) = x,

(2.4.17)

have weak solutions (Xn,Wn), for any initial point x ∈ H̄, on an extension (Ωn,Fn,Qn),

{Fn
t }t≥0 of the canonical space (2.4.10) endowed with the probability measure Pn. Let

P̃n = Qn(Xn)−1, ∀n ≥ 1, (2.4.18)

be the probability measures induced by these processes on the canonical space. By

[47, Remark 3.4.1] (definition of an extension of a probability space) and [47, Corollary

5.4.8], it follows that P̃n and Pn agree on B(Cloc([0,∞);Rd)).

We wish to prove that the collection of probability measures, {Pn}n≥1, forms a tight

sequence [47, Definition 2.4.6], so there exists a weakly convergent subsequence to a

probability measure P which we show is a solution to the martingale problem for Ãt.

By (2.2.14), (2.4.2) and (2.4.1), coefficients b̃n and σ̃n satisfy

|b̃n(t, x)|+ |σ̃n(t, x)| ≤ K(1 + |x|), ∀n ≥ 1, ∀(t, x) ∈ [0,∞)× Rd.

From [47, Problem 5.3.15], it follows that for any T > 0 and m ≥ 1, there is a positive

constant C = C(m,T,K, d) such that, for all n ≥ 1 and all x ∈ H̄, we have

EQn

[
max

0≤t≤T
|Xn(t)|2m

]
≤ C

(
1 + |x|2m

)
, (2.4.19)

EQn
[
|Xn(t)−Xn(s)|2m

]
≤ C

(
1 + |x|2m

)
|t− s|m, ∀t, s ∈ [0, T ]. (2.4.20)

It follows by the Kolmogorov-Čentsov theorem [47, Theorem 2.2.8] and [47, Problem

2.4.11] that the sequence of probability measures on the canonical space, {Pn}n≥1,

is tight. Therefore, by Prohorov’s theorem [47, Theorem 2.4.7], we may extract a

subsequence which converges weakly to a probability measure P on the canonical space.

Next, we show that P solves the martingale problem associated to Ãt. Obviously,

condition (2.4.11) follows from (2.4.15). It remains to show that
(
Mf (t)

)
t≥0

, given
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in (2.4.12), is a {Bt(Cloc([0,∞) × Rd))}t≥0-martingale. Recall that each σ-algebra

Bs(Cloc([0,∞);Rd)) is given by at most countable unions of sets of the form

{
ω ∈ Cloc([0,∞); H̄) : ω(si) ∈ Bi, i = 1, . . . ,m

}
,

where m ≥ 1, 0 ≤ s1 ≤ . . . ≤ sm ≤ s, Bi ∈ B(Rd), i = 1, . . . ,m. Therefore, it is

sufficient to show that for any choice of t ≥ s ≥ 0, m ≥ 1, 0 ≤ s1 ≤ . . . ≤ sm ≤ s,

Bi ∈ B(Rd), i = 1, . . . ,m, we have

E

[(
Mf (t)−Mf (s)

) m∏
i=1

1{ω(si)∈Bi}

]
= 0. (2.4.21)

By [27, Proposition 3.4.2], there is a sequence of Bs(Cloc([0,∞);Rd))-measurable, con-

tinuous, bounded functions Hn : Cloc([0,∞);Rd)→ R such that

Hn(ω)→
m∏
i=1

1{ω(si)∈Bi}, as n→∞, ∀ω ∈ C([0,∞);Rd).

Since f ∈ C2
0 (Rd) and the coefficients of Ãt are bounded on compact sets, the sequence

of functions
{(
Mf (t)−Mf (s)

)
Hn

}
n≥1

is uniformly bounded, so the Dominated Con-

vergence Theorem yields

E

[(
Mf (t)−Mf (s)

) m∏
i=1

Hn

]
→ E

[(
Mf (t)−Mf (s)

) m∏
i=1

1{ω(si)∈Bi}

]
as n→∞.

Therefore, (2.4.21) follows if for any s, t ∈ [0,∞], s < t, and any bounded, continuous,

Bs(C([0,∞);Rd))-measurable function H : C([0,∞);Rd)→ R, we have

EP

[(
Mf (t)−Mf (s)

)
H
]

= 0. (2.4.22)

In the sequel, we fix f ∈ C2
0 (Rd) and, for brevity, omit the superscript f in the definition

of Mf and Mn,f , for n ≥ 1. From (2.4.16), we know that (2.4.22) holds with Mn

replacing M , that is,

EPn [(Mn(t)−Mn(s))H] = 0, ∀n ≥ 1. (2.4.23)

Because f has compact support in the spatial variable, it follows from (2.4.13), (2.4.9)

and (2.4.14) that

Mn(t)−Mn(s) = M(t)−M(s)

= f(ω(t))− f(ω(s))−
∫ t

s
Ãvf(ω(v)) dv,

(2.4.24)
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for all n large enough such that the support of f is contained in the Euclidean ball of

radius 2n centered at the origin. The function F : Cloc([0,∞);Rd)→ R defined by

F (ω) := f(ω(t))− f(ω(s))−
∫ t

s
Ãvf(ω(v)) dv, ∀ω ∈ Cloc([0,∞);Rd), (2.4.25)

is bounded and continuous because f has compact support and, on any compact subset

of [0,∞)×Rd, the coefficients of Ãt are uniformly continuous. Therefore, the function

FH : Cloc([0,∞);Rd)→ R is bounded and continuous. Since Pn converges weakly to P

as n→∞, we see that

EPn [FH]→ EP[FH], as n→∞. (2.4.26)

By (2.4.23), (2.4.24) and (2.4.25), the limit of the sequence {EPn [FH]}n≥1 is zero, and

so we obtain the desired identity (2.4.22).

Therefore, we have shows that (2.4.27) admits weak solutions for any initial condi-

tion x ∈ H̄.

Step 2 (Existence of weak solutions). By [47, Proposition 5.4.6], we obtain that the

stochastic differential equation

dX̂(t) = b̃(t, X̂(t))dt+ σ̃(t, X̂(t))dŴ (t), ∀t ≥ 0,

X̂(0) = x,

(2.4.27)

has at least one weak solution (X̂, Ŵ ) on an extension of the canonical space (2.4.10).

Proposition 2.4.1 and Remark 2.4.2 show X̂(t) ∈ H̄, for all t ≥ 0, so that (X̂, Ŵ ) is a

weak solution to the stochastic differential equation (2.1.4), as well, since the coefficients

b̃ and σ̃ are extensions of b and σ, respectively, from [0,∞)× H̄ to [0,∞)× Rd.

Step 3 (Solution to the martingale problem). Let X̂ be the weak solution obtained in

the previous step. Since X̂(t) ∈ H̄, for all t ≥ 0, then we may define P̂0,x to be the proba-

bility measure induced by the weak solution X̂ on (Cloc([0,∞); H̄),B(Cloc([0,∞); H̄))).

Then, similarly to [47, Problem 5.4.3], it follows that P̂0,x is a solution to the martingale

problem associated to At and satisfies (2.1.13).

This concludes the proof of the theorem.
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2.4.2 Uniqueness of solutions to the martingale problem and of weak

solutions to the stochastic differential equation

We show that uniqueness in the sense of probability law holds for the weak solutions

of the stochastic differential equation (2.1.4), with initial condition x ∈ H̄, and we

establish the well-posedness of the martingale problem associated to (2.1.4). First, we

prove that uniqueness of the one-dimensional marginal distributions holds for weak

solutions to (2.1.4), and then the analogue of [47, Proposition 5.4.27] is used to show

that uniqueness in law of solutions also holds.

We begin with the following version of Itô’s rule (compare [47, Theorem 3.3.6])

which applies to Itô processes which are solutions to (2.1.4).

Proposition 2.4.4 (Itô’s rule). Assume that the coefficients σ and b of (2.1.4) are

Borel measurable functions, ā obeys condition (2.1.16) on [0,∞)× H̄, and ā and b have

at most linear growth in the spatial variable, that is, condition (2.2.14) holds. Assume

there is a positive constant K such that

|aij(t, x)| ≤ K ∀(t, x) ∈ [0, T ]× Rd−1 × [0, 1]. (2.4.28)

Let v ∈ Cloc([0,∞)× H̄) be such that it satisfies, for all 1 ≤ i, j ≤ d,

vt, vxi , xdvxixj ∈ Cloc([0,∞)× H̄), (2.4.29)

xdvxixj = 0 on [0, T ]× ∂H. (2.4.30)

Let (X̂, Ŵ ) be a weak solution to (2.1.4) on a filtered probability space (Ω,P,F ),

{Ft}t≥0, such that X̂(0) ∈ H̄, P-a.s. Then, the following holds P-a.s., for all 0 ≤ t ≤ T ,

v(t, X̂(t)) = v(0, X̂(0)) +

∫ t

0

d∑
i,j=1

σij(u, X̂(u))vxj (u, X̂(u))dŴj(u)

+

∫ t

0

(
d∑
i=1

bi(u, X̂(u))vxi(u, X̂(u))

+
d∑

i,j=1

1

2
X̂d(u)aij(u, X̂(u))vxixj (u, X̂(u))

 du.

(2.4.31)
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Proof. We choose ε > 0 and let

xε := (x1, . . . , xd−1, xd + ε),

X̂ε(u) :=
(
X̂1(u), . . . , X̂d−1(u), X̂d(u) + ε

)
, ∀u ≥ 0.

Consider the stopping times

τn := inf
{
u ≥ 0 : |X̂(u)| ≥ n

}
∀n ≥ 1.

Since the coefficients ā and b have at most linear growth in the spatial variable (condition

(2.2.14) holds), we obtain by [47, Problem 5.3.15], that for all m ≥ 1 and t ≥ 0, there

is a positive constant C = C(m, t,K, d) such that

E
[

max
0≤u≤t

|X̂(u)|2m
]
≤ C

(
1 + |x|2m

)
. (2.4.32)

Then, it follows by (2.4.32) that the non-decreasing sequence of stopping times {τn}n≥1

satisfies

lim
n→∞

τn = +∞ P-a.s. (2.4.33)

If this were not the case, then there is t > 0 such that

lim
n→∞

P (τn ≤ t) > 0. (2.4.34)

But, P (τn ≤ t) = P
(

sup0≤u≤t |X̂(u)| ≥ n
)

and we have

P
(

sup
0≤u≤t

|X̂(u)| ≥ n
)
≤ 1

n2
E
[

max
0≤u≤t

|X̂(u)|2
]

≤ C(1 + |x|2)

n2
, (by (2.4.32)).

Since the preceding expression converges to zero, as n goes to ∞, we obtain a contra-

diction in (2.4.34), and so (2.4.33) holds. By (2.4.33), it suffices to prove (2.4.31) for

the stopped process, that is

v(t ∧ τn, X̂(t ∧ τn)) = v(0, X̂(0)) +

∫ t∧τn

0

d∑
i,j=1

σij(u, X̂(u))vxj (u, X̂(u))dŴj(u)

+

∫ t∧τn

0

(
d∑
i=1

bi(u, X̂(u))vxi(u, X̂(u))

+

d∑
i,j=1

1

2
X̂d(u)aij(u, X̂(u))vxixj (u, X̂(u))

 du.

(2.4.35)
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By Proposition 2.4.1, we have

X̂(u) ∈ H̄ P-a.s. ∀u ∈ [0, T ]. (2.4.36)

Since v ∈ C1,2
loc ([0, T ] × Rd−1 × [ε/2,∞)), we may extend v to be a C1,2

loc function on

[0, T ]×Rd. Then we can apply the standard Itô’s rule, [47, Theorem 3.3.6] and, taking

into account that X̂(t) + ε ≥ ε, P-a.s., for all t ≥ 0, we obtain

v(t ∧ τn, X̂ε(t ∧ τn)) = v(0, X̂ε(0)) +

∫ t∧τn

0

d∑
i,j=1

σij(u, X̂(u))vxj (u, X̂
ε(u)) dŴj(u)

+

∫ t∧τn

0

(
vt(u, X̂

ε(u)) +

d∑
i=1

bi(u, X̂(u))vxi(u, X̂
ε(u))

+

d∑
i,j=1

1

2
X̂d(u)aij(u, X̂(u))vxixj (u, X̂

ε(u))

 du.

(2.4.37)

Our goal is to show that, by taking the limit as ε ↓ 0 in the preceding equation, we

obtain (2.4.35).

Since v ∈ Cloc(H̄T ), we have for all 0 ≤ u ≤ T ,

v(u ∧ τn, X̂ε(u ∧ τn))→ v(u ∧ τn, X̂(u ∧ τn)) P-a.s. when ε ↓ 0. (2.4.38)

The terms in (2.4.37) containing the pure Itô integrals can be evaluated in the following

way. As usual, we have

E
[∣∣∣∣∫ t∧τn

0
σij(u, X̂(u))vxj (u, X̂

ε(u)) dŴj(u)−
∫ t∧τn

0
σij(u, X̂(u))vxj (u, X̂(u)) dŴj(u)

∣∣∣∣]

≤ E

[∣∣∣∣∫ t∧τn

0
σij(u, X̂(u))

(
vxj (u, X̂

ε(u))− vxj (u, X̂(u))
)
dŴj(u)

∣∣∣∣2
]1/2

,

and so,

E
[∣∣∣∣∫ t∧τn

0
σij(u, X̂(u))vxj (u, X̂

ε(u)) dŴj(u)−
∫ t∧τn

0
σij(u, X̂(u))vxj (u, X̂(u)) dŴj(u)

∣∣∣∣]
≤ E

[∫ t∧τn

0
|σij(u, X̂(u))|2|vxj (u, X̂ε(u))− vxj (u, X̂(u))|2du

]1/2

(2.4.39)

Since vxj ∈ Cloc(H̄T ), we have P-a.s., for all 0 ≤ u ≤ T ,

|σij(u, X̂(u))||vxj (u, X̂ε(u))− vxj (u, X̂(u))| → 0 as ε ↓ 0.
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By the continuity of paths of X̂ and the fact that σij satisfy the growth condition

(2.2.14), the Lebesgue Dominated Convergence Theorem implies P-a.s.∫ t∧τn

0
|σij(u, X̂(u))|2|vxj (u, X̂ε(u))− vxj (u, X̂(u))|2du→ 0 as ε ↓ 0. (2.4.40)

On the closed ball of radius n in H̄ centered at the origin, the coefficients σij and vxj

are bounded, so it follows

E
[∫ t∧τn

0
|σij(u, X̂(u))|2|vxj (u, X̂ε(u))− vxj (u, X̂(u))|2du

]1/2

→ 0, as ε ↓ 0.

Thus, by (2.4.39), we obtain the L1-convergence, and also the P-a.s convergence of a

subsequence which we label the same as the given sequence, as ε ↓ 0,∫ t∧τn

0
σij(u, X̂(u))vxj (u, X̂

ε(u)) dŴj(u)→
∫ t∧τn

0
σij(u, X̂(u))vxj (u, X̂(u)) dŴj(u).

(2.4.41)

We write the du-integrand in (2.4.37) as the sum of (∂t+At)v(u, X̂ε(u)) and Rv(u, X̂ε(u)),

where

Atv(u, xε) =
d∑
i=1

bi(u, x)vxi(u, x
ε) +

d∑
i,j=1

1

2
aij(u, x)xεdvxixj (u, x

ε), (2.4.42)

Rv(u, xε) = −ε
2

d∑
i,j=1

aij(u, x)vxixj (u, x
ε), (2.4.43)

for all (u, x) ∈ [0, T ] × H̄. An argument similar to the one which gave us (2.4.41) can

be used to obtain the P-a.s convergence, as ε ↓ 0,∫ t∧τn

0
(∂t + At)v(u, X̂ε(u))) du→

∫ t∧τn

0
(∂t + At)v(u, X̂(u)) du, (2.4.44)

This requires that vt, vxi , xdvxixj ∈ Cloc(H̄T ), the coefficients bi and xdaij satisfy the

linear growth assumption (2.2.14), and coefficients aij obey (2.4.28). Therefore, it

remains to show

E
[∫ t∧τn

0

∣∣∣Rv(u, X̂ε(u))
∣∣∣ du]→ 0, as ε ↓ 0. (2.4.45)

Notice that the proof of (2.4.45) completes the proof of Itô’s rule because (2.4.38),

(2.4.41), (2.4.44) and (2.4.45) yields (2.4.35) by taking limit as ε ↓ 0 in (2.4.37).
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Now, we return to the proof of (2.4.45). We can write the term in (2.4.43) in the

following way

εaij(u, x)vxixj (u, x
ε) =

ε

xεd
aij(u, x)xεdvxixj (u, x

ε)1{0≤xd≤
√
ε}

+
ε

xεd
aij(u, x)xεdvxixj (u, x

ε)1{
√
ε<xd}, ∀(u, x) ∈ H̄T ,

(2.4.46)

We use the preceding identity to show the pointwise convergence, for all (u, x) ∈ H̄T ,

εaij(u, x)vxixj (u, x
ε)→ 0 as ε ↓ 0. (2.4.47)

Because of the fact that aij are locally bounded on H̄T by (2.4.28) and the xdvxixj ∈

Cloc(H̄T ) obey xdvxixj (u, x) = 0, when xd = 0, we obtain

ε

xεd
aij(u, x)xεdvxixj (u, x

ε)1{0≤xd≤
√
ε} → 0, as ε ↓ 0. (2.4.48)

for all (u, x) ∈ H̄T . In the case
√
ε < xd, obviously we have

ε/xεd ≤
√
ε,

and so, using xdvxixj ∈ Cloc(H̄T ) and the local boundedness of aij on H̄T by (2.4.28)

and (2.2.14), we obtain

ε

xεd
aij(u, x)xεdvxixj (u, x

ε)1{
√
ε<xd} → 0, as ε ↓ 0. (2.4.49)

for all (u, x) ∈ H̄T . By combining (2.4.48) and (2.4.49), we obtain (2.4.47). Using the

continuity of the paths of X̂, (2.4.47) and (2.4.43), we obtain P-a.s., for all 0 ≤ u ≤ T ,∣∣∣Rv(u, X̂ε(u))
∣∣∣→ 0, as ε ↓ 0,

and also, the following holds P-a.s.∫ t∧τn

0

∣∣∣Rv(u, X̂ε(u))
∣∣∣ du→ 0, as ε ↓ 0. (2.4.50)

The Lebesgue Dominated Convergence Theorem, conditions (2.4.28) and (2.2.14) sat-

isfied by aij on H̄T , and xdvxixj ∈ Cloc(H̄T ) now imply (2.4.45). This concludes the

proof of the proposition.

The next result is based on the existence of a solution in C 2+α(H̄T ) to the homoge-

neous initial value problem considered in Theorem 2.1.1.
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Proposition 2.4.5 (Uniqueness of the one-dimensional marginal distributions). As-

sume the hypotheses of Theorem 2.1.16 hold. Let (X̂k, Ŵ k), defined on filtered prob-

ability spaces (Ωk,Pk,F k), {F k
t }t≥0, k = 1, 2, be two weak solutions to (2.1.4) with

initial condition (s, x) ∈ [0,∞) × H̄. Then the one-dimensional marginal probability

distributions of X̂1(t) and X̂2(t) agree for each t ≥ s.

Proof. Without loss of generality, we may assume that s = 0. By Proposition 2.4.1, it

is enough to show that for any T > 0 and g ∈ C∞0 (H̄), we have

EP1

[
g(X̂1(T ))

]
= EP2

[
g(X̂2(T ))

]
, (2.4.51)

where each expectation is taken under the law of the corresponding process. For this

purpose, we consider the parabolic differential operator,

− Ľw(t, x) := −wt(t, x) +

d∑
i=1

bi(T − t, x)wxi(t, x) +

d∑
i,j=1

1

2
xdaij(T − t, x)wxixj (t, x),

(2.4.52)

for all (t, x) ∈ HT and w ∈ C1,2(HT ). Let u ∈ C 2+α(H̄T ) be the unique solution given

by Theorem 2.1.1 to the homogeneous initial value problem,
Ľu(t, x) = 0, for (t, x) ∈ (0, T )×H,

u(0, x) = g(x), for x ∈ H̄.
(2.4.53)

Define

v(t, x) := u(T − t, x), ∀(t, x) ∈ [0, T ]× H̄. (2.4.54)

Then, v ∈ C 2+α(H̄T ) solves the terminal value problem,
vt(t, x) + Atv(t, x) = 0, for (t, x) ∈ (0, T )×H,

v(T, x) = g(x), for x ∈ H̄,
(2.4.55)

where the differential operator At is given by (2.1.1). Proposition 2.4.4 gives us, for

k = 1, 2,

EPk
[
v(T, X̂k(T ))

]
= v(0, x) + EPk

[∫ T

0
(vt + At) v(t, X̂k(t))dt

]

+ EPk

∫ T

0

d∑
i,j=1

σij(t, X̂
k(t))vxj (t, X̂

k(t))dŴ k
j (t)

 . (2.4.56)
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Recall that vxi ∈ C(H̄T ) and the coefficients σij satisfy (2.2.14). Inequality (2.4.32)

applied with m = 1, gives

EPk

[∫ T

0

∣∣∣σij(t, X̂k(t))vxj (t, X̂
k(t))

∣∣∣2 dt] ≤ C(1 + |x|2)‖vxi‖2C(H̄T ),

and so, the Itô integrals in (2.4.56) are square-integrable, continuous martingales, which

implies

EPk

[∫ T

0
σij(t, X̂

k(t))vxj (t, X̂
k(t))dŴ k

j (t)

]
= 0.

Using the preceding inequality and (2.4.55), we see that (2.4.56) yields

EPk
[
g(X̂k(T ))

]
= v(0, x), k = 1, 2, (2.4.57)

and so, (2.4.51) follows.

Next, we recall

Proposition 2.4.6 (Uniqueness of solutions to the classical martingale problem). [47,

Proposition 5.4.27] Let

b̃ : [0,∞)× Rd → Rd,

σ̃ : [0,∞)× Rd → Rd×d,

be Borel measurable functions such that they are bounded on each compact subset in Rd

and define a differential operator by

G u(x) :=
d∑
i=1

b̃i(x)uxi +
d∑

i,j=1

1

2
ãij(x)uxixj , ∀x ∈ Rd,

where ã := σ̃σ̃∗ and u ∈ C2(Rd). Suppose that for every x ∈ Rd, any two solutions Px

and Qx to the time-homogeneous martingale problem associated with G have the same

one-dimensional marginal distributions. Then, for every initial condition x ∈ Rd, there

exists at most one solution to the time-homogeneous martingale problem associated to

G .

We have the following consequence of Propositions 2.4.5 and 2.4.6.
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Corollary 2.4.7 (Uniqueness of solutions to the martingale problem associated to

At). Suppose that for every x ∈ H̄ and s ≥ 0, any two solutions Ps,x and Qs,x to the

martingale problem in Definition 2.1.8 associated to At in (2.1.1) with initial condition

(s, x) have the same one-dimensional marginal distributions. Then, for every initial

condition (s, x) ∈ [0,∞)×H̄, there exists at most one solution to the martingale problem

associated to At.

Proof. As (2.1.4) is time-inhomogeneous with initial condition (s, x) ∈ [0,∞) × H̄,

rather than time-homogeneous with initial condition x ∈ Rd, as assumed by Proposition

2.4.6, we first extend the coefficients, σ(t, x) and b(t, x) with (t, x) ∈ [0,∞) × H̄ to

(t, x) ∈ R× Rd−1 × (−∞, 0) and (t, x) ∈ (−∞, 0)× H̄, so

σ̃ij(t, x) = 0, b̃i(t, x) = 0, ∀(t, x) ∈ R× Rd−1 × (−∞, 0) and (t, x) ∈ (−∞, 0)× H̄.

(2.4.58)

To obtain a time-homogeneous differential operator, as in Proposition 2.4.6, we increase

the space dimension by adding the time coordinate, that is, we consider the following

(d+ 1)-dimensional process

dY0(t) = dt, ∀t ≥ 0,

dYi(t) = b̃i(Y (t))dt+
d∑
j=1

σ̃ij(Y (t))dWj(t), i = 1, . . . , d, ∀t ≥ 0.
(2.4.59)

Now, let G denote the time-homogeneous differential operator

G u(y) :=

d∑
i=1

b̃i(y)uyi +
d∑

i,j=1

1

2
ãij(y)uyiyj , ∀y ∈ Rd+1,

and u ∈ C2(Rd+1).

For x ∈ H̄ and s ≥ 0, let Ps,x and Qs,x be two solutions to the martingale problem

associated to At with initial condition (s, x). We extend these probability measures

from the measurable space Cloc([0,∞); H̄) to the canonical space Cloc([0,∞);Rd) in the

following way

P̃s,x
(
ω̃ ∈ Cloc([0,∞);Rd+1),∃t ≥ 0, ω̃0(t) 6= t+ s

)
= 0,

P̃s,x
(
ω̃ ∈ Cloc([0,∞);Rd+1), (ω̃1(ti), . . . , ω̃d(ti)) ∈ Bi, i = 1, . . . ,m

)
= Ps,x

(
ω ∈ Cloc([0,∞); H̄), (ω1(ti), . . . , ωd(ti)) ∈ Bi, i = 1, . . . ,m

)
,
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for all m ≥ 1, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm, Bi ∈ B(Rd), i = 1, . . . ,m. Above, we used the

notation

ω̃ := (ω̃0, ω̃1, . . . , ω̃d) , ∀ω̃ ∈ Cloc([0,∞);Rd+1),

ω := (ω1, . . . , ωd) , ∀ω ∈ Cloc([0,∞); H̄).

Similarly, we build Q̃s,x the extension of Qs,x from Cloc([0,∞); H̄) to Cloc([0,∞);Rd).

Notice that P̃s,x and Q̃s,x are two solutions to the classical time-homogeneous martin-

gale problem associated to G , with initial condition (s, x). Therefore, the probability

measures Ps,x and Qs,x coincide if their extensions P̃s,x and Q̃s,x coincide. By Proposi-

tion 2.4.6, uniqueness in law holds for P̃s,x and Q̃s,x if, for any y = (y0, . . . , yd) ∈ Rd+1

and any two solutions P̃yi , i = 1, 2, to the classical martingale problem associated to

G with initial condition y, their one-dimensional marginal distribution coincide. For

i = 1, 2, let Y i be the weak solution to (2.4.59) with initial condition Y i(0) = y such that

the law of Y i is given by P̃yi (see [47, Proposition 5.4.6 & Corollary 5.4.8]). Then, the

one-dimensional marginal distributions agree for the probability measure P̃yi , i = 1, 2,

if and only if they agree for the stochastic processes Y i, i = 1, 2. Next, we show that

uniqueness of the one-dimensional marginal distributions of Y i, i = 1, 2, holds. For this

purpose, we consider two cases.

Case 1 (yd < 0 or y0 < 0). In this case, the coefficients b̃ and σ̃ are identically zero on

a neighborhood of y, and so the unique solution, Y , to (2.4.59) is given by Y (t) = y,

for all t ≥ 0. It is obvious that the one-dimensional marginal distributions of solutions

Y i, i = 1, 2, to (2.4.59) are uniquely determined in this situation.

Therefore, by Proposition 2.4.6, uniqueness in law holds for solutions to (2.4.59)

if the one-dimensional marginal distributions are uniquely determined for any initial

condition y ∈ Rd+1 with yd ≥ 0 and y0 ≥ 0.

Case 2 (yd ≥ 0 and y0 ≥ 0). Note that any weak solution, (Y (t))t≥0, to (2.4.59) with

initial condition Y (0) = y, satisfies the property that

Yd(t) ≥ 0 P-a.s., ∀t ≥ 0. (2.4.60)
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If this were not so, then there would be an ε > 0 such that Yd reached the level −ε with

non-zero probability. By the preceding case, we observe that the Yd would remain at the

level −ε for any subsequent time. By the continuity of paths, Yd would have hit −ε/2

at a preceding time, and again, the preceding case would imply that Yd remained at

−ε/2 for all subsequent times. But this would contradict our assumption and therefore,

(2.4.60) holds.

Any weak solution, (Y (t))t≥0, to (2.4.59) with initial condition Y (0) = y gives a

solution, (X̂(t))t≥y0 ,

X̂(t) = (Y1(t− y0), Y2(t− y0), . . . , Yd(t− y0)) ∀t ≥ y0, (2.4.61)

to the stochastic differential equation

dX̂i(t) = b̃i(t, X̂(t))dt+

d∑
j=1

σ̃ij(t, X̂(t))dWj(t), i = 1, . . . , d, ∀t ≥ y0,

with initial condition

X̂(y0) = (Y1(0), . . . , Yd(0)) = (y1, . . . , yd) ∈ H̄.

Moreover, X remains in H̄, for all t ≥ y0, by (2.4.60).

Therefore, the one-dimensional marginal distributions of Y are uniquely determined

if the marginal distributions of X̂ are uniquely determined. But, the last statement

is implied if the one-dimensional marginal distributions of any solution Ps,x to the

martingale problem associated to At, with initial condition (s, x) ∈ [0,∞) × H̄, are

uniquely determined.

Combining the conclusions of the preceding two cases completes the proof of the

corollary.

Finally, we have

Proof of Theorem 2.1.10. The result follows from Theorem 2.4.3 which asserts the ex-

istence of solutions to the martingale problem associated to At, while Proposition 2.4.5

and Corollary 2.4.7 show that the solution is unique. Therefore, the martingale problem

associated to At is well-posed, for any initial condition (s, x) ∈ [0,∞)× H̄.
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Proof of Theorem 2.1.16. By Theorem 2.4.3, we obtain existence of weak solutions to

(2.1.4). Since each weak solution induces a probability measure on Cloc([0,∞); H̄) which

solves the martingale problem associated to At, we obtain by Theorem 2.1.10 that the

probability law of the weak solutions to (2.1.4) is uniquely determined.

To prove the strong Markov property of weak solutions to (2.1.4), we consider again

the time-homogeneous SDE (2.4.59) from the proof of Corollary 2.4.7. The same ar-

gument as the one used to conclude that the martingale problem associated to At is

well-posed can be used to conclude that the classical martingale problem associated

to the SDE (2.4.59) is well-posed. Therefore, by [47, Theorem 5.4.20], we obtain that

for any y ∈ Rd+1, the weak solution Y y to (2.4.59) started at y possesses the strong

Markov property, that is for any stopping time T of {Bt(Cloc([0,∞);Rd+1))}t≥0, any

Borel measurable set B ∈ B(Rd+1) and u ≥ 0, we have

P̃y(Y (T + u) ∈ B|BT (Cloc([0,∞);Rd+1)) = P̃y(Y (T + u) ∈ B|Y (T )), (2.4.62)

where P̃y denotes the probability law of the process Y started at y. Let (s, x) ∈

[0,∞) × H̄ and let X̂s,x be the unique weak solution of (2.1.4) with initial condition

X̂s,x(s) = x. Let Ps,x denote the probability law of X̂s,x. Then, by analogy with

(2.4.61), we notice that

Y s,x(t) :=
(
t+ s, X̂1(t+ s), . . . , X̂d(t+ s)

)
t ≥ 0,

is a solution to (2.4.59) with initial condition (s, x). Therefore, (2.4.62) can be rewritten

in terms of the probability law of X̂s,x, Ps,x, as follows

Ps,x(X̂(T + u) ∈ B|BT (Cloc([0,∞); H̄)) = Ps,x(X̂(T + u) ∈ B|X(T )), (2.4.63)

for any stopping time T of (Bt(Cloc([0,∞); H̄)))t≥0, any Borel measurable set B ∈

B(H̄)) and u ≥ s. Thus, X̂s,x satisfies the strong Markov property.

2.4.3 Matching one-dimensional marginal probability distributions

We can now complete the proof of Theorem 2.1.19. For simplicity, we denote

α(t) := ξ(t)ξ∗(t), ∀t ≥ 0.



76

First, we prove the analogue of Proposition 2.4.1 for the Itô process (2.1.5).

Proposition 2.4.8. Let X be the Itô process (2.1.5), such that X(0) ∈ H̄. Assume

the coefficients σ and bd defined by (2.1.21) and (2.1.22) (now defined on [0,∞)× Rd)

satisfy (2.4.1) and (2.4.2), respectively. Then

P
(
X(t) ∈ H̄|X(0)

)
= 1, ∀t ≥ 0. (2.4.64)

Proof. The argument is similar to the proof of Proposition 2.4.1. We include it for

completeness. It suffices to show that, for any ε > 0, we have

P(Xd(t) ∈ (−∞,−ε)) = 0. (2.4.65)

Let ϕ : R→ [0, 1] be the smooth cut-off function defined in the proof Proposition 2.4.1.

Itô’s rule gives

ϕ(Xd(t)) = ϕ(Xd(0)) +

∫ t

0

[
βd(s)ϕ

′(Xd(s)) +
1

2
αdd(s)ϕ

′′(Xd(s))

]
ds

+

∫ t

0
σd,i(s)ϕ

′(Xd(s))dWi(s).

By taking conditional expectations in the preceding expression and using the fact that

the last term in that expression is a martingale by (2.1.18), we obtain

E [ϕ(Xd(t))] = E [ϕ(Xd(0))] + E
[∫ t

0

(
βd(s)ϕ

′(Xd(s)) +
1

2
αdd(s)ϕ

′′(Xd(s))

)
ds

]
= E [ϕ(Xd(0))] +

∫ t

0
E
[
E [βd(s)|X(s)]ϕ′(Xd(s))

+
1

2
E [αdd(s)|X(s)]ϕ′′(Xd(s))

]
ds

= E [ϕ(Xd(0))] + E
[∫ t

0

(
bd(s,X(s))ϕ′(Xd(s))

+
1

2
X+
d (s)add(s,X(s))ϕ′′(Xd(s))

)
ds

]
.

We have bd(s,X(s))ϕ′(X(s)) ≤ 0 and ϕ(Xd(0)) = 0, while ϕ(Xd(t)) ≥ 0. Therefore,

E [ϕ(Xd(t))] ≤ 0 and thus E [ϕ(Xd(t))] = 0, which yields (2.4.65).

Next, we have
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Proof of Theorem 2.1.19. Let X̂ be the unique weak solution to the mimicking stochas-

tic differential equation (2.1.4) with initial condition X̂(0) = X(0) = x. As in the proof

of Proposition 2.4.5, we need to show that for any T ≥ 0 and g ∈ C∞0 (H̄), we have

E
[
g(X̂(T ))

]
= E [g(X(T ))] . (2.4.66)

Let v ∈ C 2+α(H̄T ) be defined by (2.4.52), (2.4.53) and (2.4.54). Then, (2.4.57) gives

E
[
g(X̂(T ))

]
= v(0, x). (2.4.67)

We wish to prove that (2.4.67) holds with X(T ) in place of X̂(T ). We proceed as in

the proof of Proposition 2.4.5. By applying Itô’s rule to v(t,Xε(t)), we obtain

dv(t,Xε(t)) =

vt(t,Xε(t)) +
d∑
i=1

βi(t)vxi(t,X
ε(t)) +

d∑
i,j=1

1

2
αij(t)vxixj (t,X

ε(t))

 dt

+

d∑
i,j=1

ξij(t)vxi(t,X
ε(t))dWj(t).

The dWj(t)-terms in the preceding identity are square-integrable, continuous martin-

gales, because

[0, T ] 3 t 7→ vxi(t,X
ε(t))

are bounded processes since vxi ∈ C([0, T ]×H̄), and ξ(t) is a square-integrable, adapted

process by (2.1.18). Therefore,

E [v(T,Xε(T ))] = v(0, xε)

+ E

∫ T

0

vt(t,Xε(t)) +

d∑
i=1

βi(t)vxi(t,X
ε(t)) +

d∑
i,j=1

1

2
αij(t)vxixj (t,X

ε(t))

 dt

 .
Using conditional expectations, we may rewrite the preceding identity as

E [v(T,Xε(T ))] = v(0, xε) +

∫ T

0
E

[(
vt(t,X

ε(t)) +
d∑
i=1

βi(t)vxi(t,X
ε(t))

+
d∑

i,j=1

1

2
αij(t)vxixj (t,X

ε(t))

∣∣∣∣∣∣Xε(t)

 dt
= v(0, xε) + E

[∫ T

0
(vt(t,X

ε(t)) + Atv(t,Xε(t))) dt

]
.
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Since vt(t, x) + Atv(t, x) = 0, for all (t, x) ∈ HT , by letting ε ↓ 0 in the preceding

identity, we obtain

E [g(X(T ))] = v(0, x),

and this concludes the proof by (2.4.67).
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Chapter 3

Hölder continuity for solutions to variational equations

defined by degenerate elliptic operators

3.1 Introduction

The Heston stochastic volatility process, which is widely used as an asset price model

in mathematical finance, is a paradigm for a degenerate diffusion process where the

degeneracy in the diffusion coefficient is proportional to the square root of the distance

to the boundary of the half-plane. The generator of this process with killing, called

the elliptic Heston operator, is a second-order degenerate elliptic partial differential

operator whose coefficients have linear growth in the spatial variables and where the

degeneracy in the operator symbol is proportional to the distance to the boundary of

the half-plane. With the aid of weighted Sobolev spaces, we prove supremum bounds,

a Harnack inequality, and Hölder continuity near the boundary for solutions to elliptic

variational equations defined by the Heston partial differential operator.

We require the portion of the boundary Γ0 to be non-empty and consider a second-

order, linear elliptic differential operator, A, on O which is degenerate along Γ0. Sup-

pose f : O → R is a source function. In this chapter, we prove local supremum bounds

near the boundary portion, Γ̄0, and Hölder continuity up to Γ̄0, for suitably defined

weak solutions, u : O → R, to the elliptic boundary value problem,

Au = f a.e. on O, u = 0 on Γ1, (3.1.1)

together with a boundary Harnack inequality (near Γ0) for non-negative, weak solutions

to (3.1.1) when f = 0. Because A is degenerate along Γ0 and weighted Sobolev spaces

are required to establish existence of weak solutions to (3.1.1), these results do not follow

from the standard theory for non-degenerate elliptic differential operators [41, 51].
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No boundary condition is prescribed in problem (3.1.1) along Γ0. Indeed, we recall

from [18] that the problem (3.1.1) is well-posed when we seek solutions in suitable

function spaces which describe their qualitative behavior near the boundary portion

Γ0: for example, continuity of derivatives up to Γ0 via suitable weighted Hölder spaces

(by analogy with [20]) or integrability of derivatives in a neighborhood of Γ0 via suitable

weighted Sobolev spaces (by analogy with [50]).

Similar results were obtained by Koch in the parabolic case [50, Proposition 4.5.1,

Theorems 4.5.3 & 4.5.5]. While he used potential theory to obtain the Hölder continuity

of solutions and the Harnack inequality, our method of proof is based on the Moser

iteration technique. This is not a straightforward adaptation of results [41, Theorems

8.15, 8.20, 8.22 & 8.27], due to the fact that our Sobolev spaces are weighted, so the

standard Sobolev inequality, Poincaré inequality and the John-Nirenberg inequality do

not apply. The most difficult step in making the Moser iteration technique work involves

a suitable application of the John-Nirenberg inequality. For this purpose, we use the so-

called abstract John-Nirenberg inequality, due to Bombieri and Giusti [11, Theorem 4],

which can be applied to any topological spaces endowed with a regular Borel measure

satisfying some natural requirements. In order to verify the hypotheses of the abstract

John-Nirenberg inequality, we prove a local version of the Poincaré inequality, Corollary

3.2.5, suitable for our weighted spaces.

In this chapter, we set d = 2 and choose A to be the generator of the two-dimensional

Heston stochastic volatility process with killing [44], a degenerate diffusion process well

known in mathematical finance and a paradigm for a broad class of degenerate Markov

processes, driven by d-dimensional Brownian motion, and corresponding generators

which are degenerate elliptic integro-differential operators:

Av := −y
2

(
vxx + 2ρσvxy + σ2vyy

)
− (r − q − y/2)vx − κ(θ − y)vy + rv, v ∈ C∞(H).

(3.1.2)

Throughout this chapter, the coefficients of A are required to obey

Assumption 3.1.1 (Ellipticity condition for the coefficients of the Heston operator).
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The coefficients defining A in (3.1.2) are constants obeying

σ 6= 0,−1 < ρ < 1, (3.1.3)

and κ > 0, ϑ > 0, r ≥ 0, and q ≥ 0.

For clarity of exposition in this chapter, we only consider the homogeneous Dirichlet

boundary condition u = 0 on Γ1 in (3.1.1), as the modifications of our main results

to include the case of a inhomogeneous Dirichlet boundary condition, u = g on Γ1 for

some g : O ∪ Γ1 → R, are straightforward and similar modifications are described in

[18].

3.1.1 Summary of main results

We shall state a selection of our main results here and then refer the reader to our guide

to this chapter in §3.1.3. We commence with some mathematical preliminaries. As in

[18, §2], we shall assume that the spatial domain has the following structure throughout

this chapter:

Assumption 3.1.2 (Property of the domain near Γ0). For O as in §1.1, there is a

positive constant, δ0, such that for all 0 < δ ≤ δ0,

O0
δ := O ∩ (R× (0, δ)) = Γ0 × (0, δ),

Γ1 ∩ (R× (0, δ)) = ∂Γ0 × (0, δ),

where Γ0 j R is a finite union of open intervals.

Remark 3.1.3 (Need for the assumption on the domain near Γ0). If our setting had

allowed for elliptic operators with variable coefficients, aij , bi, c, with suitable regularity

and growth properties, then we could replace Assumption 3.1.2 with the more geometric

requirement that Γ̄1 t {y = 0} (Ck-transverse intersection, k ≥ 1) by making use of

Ck-diffeomorphisms of H̄ to “straighten” the boundary, Γ1, near where it meets Γ0.

We shall consider weak solutions to (3.1.1), so we introduce our weighted Sobolev
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spaces. For 1 ≤ q <∞, let

Lq(O,w) := {u ∈ L1
loc(O) : ‖u‖Lq(O,w) <∞}, (3.1.4)

H1(O,w) := {u ∈ L2(O,w) : (1 + y)1/2u, y1/2|Du| ∈ L2(O,w)}, (3.1.5)

H2(O,w) := {u ∈ L2(O,w) : (1 + y)1/2u, (1 + y)|Du|, y|D2u| ∈ L2(O,w)}, (3.1.6)

where Du = (ux, uy), D
2u = (uxx, uxy, uyx, uyy), all derivatives of u are defined in the

sense of distributions, and

‖u‖qLq(O,w) :=

∫
O
|u|qw dxdy, (3.1.7)

‖u‖2H1(O,w) :=

∫
O

(
y|Du|2 + (1 + y)u2

)
w dxdy, (3.1.8)

‖u‖2H2(O,w) :=

∫
O

(
y2|D2u|2 + (1 + y)2|Du|2 + (1 + y)u2

)
w dxdy, (3.1.9)

with weight function w : H→ (0,∞) given by

w(x, y) := yβ−1e−γ|x|−µy, (x, y) ∈ H, (3.1.10)

where the Feller parameters, β and µ, are defined by

β :=
2κϑ

σ2
and µ :=

2κ

σ2
, (3.1.11)

and 0 < γ < γ0(A), where γ0 depends only on the constant coefficients of A in (3.1.2).

We call

a(u, v) :=
1

2

∫
O

(
uxvx + ρσuyvx + ρσuxvy + σ2uyvy

)
yw dxdy

− γ

2

∫
O

(ux + ρσuy) v sign(x)yw dxdy

−
∫

O
(a1y + b1)uxvw dxdy +

∫
O
ruvw dxdy, ∀u, v ∈ H1(O,w),

(3.1.12)

the bilinear form associated with the Heston operator, A, in (3.1.2), noting that

a1 :=
κρ

σ
− 1

2
and b1 := r − q − κϑρ

σ
. (3.1.13)

We shall also avail of the

Assumption 3.1.4 (Condition on the coefficients of the Heston operator). The coef-

ficients defining A in (3.1.2) have the property that b1 = 0 in (3.1.13).
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Assumption 3.1.4 involves no significant loss of generality because, using a simple

affine changes of variables on R2 which maps (H, ∂H) onto (H, ∂H) (see [18]), we can

arrange that b1 = 0.

The conditions (3.1.3) ensure that y−1A is uniformly elliptic on H. Indeed,

y

2
(ξ2

1 + 2ρσξ1ξ2 + σ2ξ2
2) ≥ ν0y(ξ2

1 + ξ2
2), ∀(ξ1, ξ2) ∈ R2, (3.1.14)

where

ν0 := min{1, (1− ρ2)σ2}, (3.1.15)

and ν0 > 0 by Assumption 3.1.1.

Given T ⊂ ∂O, a relatively open subset, we let H1
0 (O ∪ T,w) be the closure in

H1(O,w) of C∞0 (O ∪ T ). Given a source function f ∈ L2(O,w), we call a function

u ∈ H1
0 (O ∪ Γ0,w) a solution to the variational equation for the Heston operator with

homogeneous Dirichlet boundary condition on Γ1 if

a(u, v) = (f, v)L2(O,w), ∀v ∈ H1
0 (O ∪ Γ0,w). (3.1.16)

If u ∈ H2(O,w), we recall from [18] that u is a solution to (3.1.1) if and only if

u ∈ H1
0 (O ∪ Γ0,w) and u is a solution to (3.1.16).

We recall definition of the Koch metric, d, on H introduced by Koch in [50, p. 11],

d((z1, z2) :=
|z1 − z2|√

y1 + y2 + |z1 − z2|
, ∀zi = (xi, yi) ∈ H̄, i = 1, 2. (3.1.17)

The metric d is equivalent to the cycloidal metric, s, introduced by Daskalopoulos and

Hamilton. Away from z ∈ H̄ the function d(·, z) is smooth, while this is not true for

s(·, z) even away from z. For this reason, it will be convenient to use the metric d,

instead of s, in Chapter 3. For R > 0 and z0 ∈ Ō, we denote

BR(z0) = {z ∈ O : d(z, z0) < R} , (3.1.18)

BR(z0) = {z ∈ H : d(z, z0) < R} . (3.1.19)

Notation 3.1.5. Let R̄ =
√
δ0/2. Then, the following inclusions hold

BR(z0) ⊆ Γ0 × (0, δ0) ⊆ O,

for any 0 < R ≤ R̄ and z0 ∈ Γ̄0. In the sequel, we assume without loss of generality

that R̄ ≤ 1.
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Remark 3.1.6. As in [20, Theorem I.1.1], the assumption that κ, ϑ > 0, i.e. that the

coefficient multiplying vy in the definition (3.1.2) of −A, is strictly positive is of crucial

importance. We can notice from (3.1.11) that β > 0 and so, the weight w ∈ L1(H).

Therefore, the volume of balls BR(z0) centered at points z0 ∈ Γ0 is finite with respect

to the weight w, a fact that we use repeatedly in the arguments we employ. Clearly, if

β were negative, then w ∈ L1
loc(H), but not in L1(H).

We have the following analogue of [50, Proposition 4.5.1] and [41, Theorem 8.15].

Theorem 3.1.7 (Supremum estimates at points in Γ̄0). Let s > d+ β. Then there is

a positive constant C, depending at most on the coefficients of A, δ0 and s, such that

for any u ∈ H1
0 (O ∪ Γ0,w) obeying (3.1.16) with source function f ∈ Ls(BR̄(z0),w),

we have

ess sup
BR(z0)

|u| ≤ C
(
|B2R(z0)|−1/2

β−1 ‖u‖L2(B2R(z0),yβ−1)

+‖f‖Ls(B2R(z0),yβ−1)

)
,

(3.1.20)

for all z0 ∈ Γ̄0 and all R ∈ (0, R̄/2].

For z0 ∈ Ō and R > 0, we denote

MR := ess sup
BR(z0)

u(z), mR := ess inf
BR(z0)

u(z),

and we let

osc
BR(z0)

u := MR −mR

denote the oscillation of u over the ball BR(z0). From Theorem 3.1.7, we know that

MR and mR are finite quantities and oscBR(z0) is well-defined for weak solutions u as

in Theorem 3.1.7.

We have the following analogue of [41, Theorem 8.27 & 8.29] and [50, Theorem 4.5.5

& 4.5.6] for the boundary portion Γ0.

Theorem 3.1.8 (Hölder continuity up to Γ̄0 for solutions to the variational equation).

Let u ∈ H1
0 (O ∪Γ0,w) obey (3.1.16) and let f ∈ Ls(BR̄(z0),w), where s > max{2d, d+

β}. Then there is a positive constant C, depending at most on the coefficients of A, s,
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δ0, ‖f‖Ls(BR̄(z0),w) and ‖u‖L∞(BR̄(z0)), and there is a constant α0 ∈ (0, 1), depending at

most on s and β, such that for z0 ∈ Γ̄0 and 0 < 4R ≤ R̄, we have

osc
BR(z0)

u ≤ CRα0 . (3.1.21)

Moreover, u is Cα0
s -Hölder continuous in B̄R̄(z0) and satisfies

|u(z1)− u(z2)| ≤ Cd(z1, z2)α0 , ∀z1, z2 ∈ B̄R̄(z0). (3.1.22)

Remark 3.1.9 (Comparison with the case of the boundary portion where the op-

erator is non-degenerate). The term σ(
√
RR0), where σ(R) := osc∂O∩B̄R(z0)u, which

appears in [41, Equation (8.72)] in the statement of [41, Theorem 8.27] does not appear

in the statement of our Theorem 3.1.8. The reason is that unlike in [41, Equation

(8.71)], the test functions defined in the proof of Theorem 3.1.8 do not need to involve

sup∂O∩B̄R(z0) u or inf∂O∩B̄R(z0) u since no boundary condition is imposed on v along

Γ0, in contrast to the Dirichlet boundary condition assumed for v in the proofs of [41,

Theorem 8.18 & 8.26].

We also have the following analogue of [41, Theorem 8.20] and [50, Theorem 4.5.3].

Theorem 3.1.10 (Boundary Harnack inequality near Γ0). Then there is a positive

constant C, depending at most on the coefficients of A and δ0, such that for any non-

negative u ∈ H1(O,w) obeying (3.1.16) with f = 0 on BR̄(z0), we have

sup
BR(z0)

u ≤ C inf
BR(z0)

u, (3.1.23)

for all z0 ∈ Γ0 and 0 < 4R ≤ max{R̄, dist(z0,Γ1)}.

Previous results ([58, 59], [15], [28, 29], [36], [65]) on supremum bounds, Hölder

continuity and Harnack continuity for solutions to degenerate elliptic partial differen-

tial equations do not apply in our setting, mainly because of differences between the

following principal features in the previous results and those in this chapter:

1. Structure of the differential operators, including the nature of the degeneracy and

presence of lower-order terms;
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2. Boundary conditions, where no boundary condition is specified on Γ0 (the “de-

generate” portion of the boundary ∂O) and a Dirichlet condition is prescribed

along Γ1 (the “non-degenerate” portion of the boundary ∂O);

3. Weights used to define weighted Sobolev spaces and weak solutions;

4. Dependency of the constants in estimates, with those appearing in our estimates

depending at most on the Lq(B ∩O,w) norm (q > 2) of f on neighborhoods B of

boundary points, the L2(O,w) norm of u, the geometry of Γ1, and the constant

coefficients of A.

Furthermore, near Γ0, the weights yw and w used in our definition of H1(O,w) are

yβe−γ|x|−µy and yβ−1e−γ|x|−µy, respectively, with constants 0 < β, µ <∞ depending on

the coefficients of uyy and uy when our differential operator A is expressed in standard

divergence form and so the weight w depends on both the second and first-order parts

of A and not just on the second-order part of the differential operator, unlike in the

cited references. Note also that w is zero along Γ0, where A is degenerate, but positive

along Γ1, where A is non-degenerate.

Koch [50] considers certain linear elliptic and parabolic degenerate model partial dif-

ferential equations in divergence form, with a degeneracy similar to ours, and which arise

as linearizations of the porous medium equation. However, while Koch uses Sobolev

weights which are comparable to ours, his methods (which use pointwise estimates for

fundamental solutions and Moser iteration) are different from ours (which use Moser

iteration and the abstract John-Nirenberg inequality). Moreover, he does not consider

the case where ∂O = Γ0∪ Γ̄1, where A is degenerate along Γ0 but non-degenerate along

Γ1.

3.1.2 Extensions to degenerate operators in higher dimensions

The Heston stochastic volatility process and its associated generator serve as paradigms

for degenerate Markov processes and their degenerate elliptic generators which appear

widely in mathematical finance.
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Generalizations of the Heston process to higher-dimensional, degenerate diffusion

processes may be accommodated by extending the framework developed in this chap-

ter and we shall describe extensions in a sequel. First, the two-dimensional Heston

process has natural d-dimensional analogues [35] defined, for example, by coupling

non-degenerate (d − 1)-diffusion processes with degenerate one-dimensional processes

[16, 57, 76]. Elliptic differential operators arising in this way have time-independent,

affine coefficients but, as one can see from standard theory [41, 51, 52, 54] and previous

work of Daskalopoulos and her collaborators [20, 21] on the porous medium equation,

we would not expect significant new difficulties to arise when extending the methods

and results of this chapter to the case of elliptic and parabolic operators in higher

dimensions and variable coefficients, depending on both spatial variables or time and

possessing suitable regularity and growth properties.

3.1.3 Brief outline of the chapter

We begin in §3.2 by describing a Sobolev inequality due to H. Koch [50] and prove

a Poincaré inequality for our weighted Sobolev spaces. In §3.3, we recall the ab-

stract John-Nirenberg inequality (Theorem 3.3.1) due to E. Bombieri and E. Giusti

[11] and justify its application (via Proposition 3.3.2) in the setting of our weighted

Sobolev spaces. The supremum estimate near Γ̄0 for solutions to the variational equa-

tion (3.1.16) (Theorem 3.1.7) is proved in §3.4 by adapting the Moser iteration technique

employed in the proof of [41, Theorem 8.15] to the setting of our degenerate elliptic

operators and weighted Sobolev spaces. Section 3.5 contains our proof of local Hölder

continuity along Γ̄0 of solutions to the variational equation (3.1.16) (Theorem 3.1.8).

The essential difference between the proof of Theorem 3.1.8 and the proof of its classical

analogue for weak solutions to non-degenerate elliptic equations [41, Theorems 8.27 &

8.29] consists in a modification of the methods of [41, §8.6, §8.9, & §8.10] when deriving

our energy estimates (3.5.11), where we adapt the application of the John-Nirenberg

inequality and Poincaré inequality to our framework of weighted Sobolev spaces. Fi-

nally, in §3.6 we prove the Harnack inequality (Theorem 3.1.10) for solutions to the
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variational equation (3.1.16). Appendix B contains the proofs of auxiliary results em-

ployed throughout the chapter whose proofs are sufficiently technical that they would

have otherwise interrupted the logical flow of the chapter.

3.1.4 Notation and conventions

Throughout Chapter 3, we fix d = 2 and set

p :=
2(d+ β)

d+ β − 1
, (3.1.24)

for any β > 0, as used in Lemma 3.2.1 and the sequel. We keep track of the dependency

of many of our estimates on the dimension, d, of H = Rd−1 × (0,∞) in our analysis,

even though d = 2 in this chapter, as this will make it easier to extend our results to

partial differential equations on domains in H which preserve the key features of (3.1.1).

If S ⊂ H̄ is a Borel measurable subset, we let |S|β denote the volume of S with

respect to the measure yβ dz, and |S|w denote the volume of S with respect to the

measure w dz.

In many of our proofs, we will make use of a sequence of cutoff functions (ηN )N∈N.

Let ϕ : R → [0, 1] be a smooth function such that ϕ(x) ≡ 1 for x < 0, and ϕ ≡ 0 for

x > 1. Let z0 ∈ H and let (RN )N∈N be an non-increasing sequence of positive numbers.

We define

ηN (z) := ϕ

(
1

R2
N−1 −R2

N

(d2(z0, z)−R2
N )

)
, ∀z ∈ H̄,∀N ∈ N, (3.1.25)

Then, the sequence (ηN )N≥1 satisfies the following properties

ηN |BRN (z0) ≡ 1, ηN |Bc
RN−1(z0)

≡ 0, (3.1.26)

|∇ηN | ≤
C

R2
N−1 −R2

N

, (3.1.27)

where Bc
RN−1(z0) := H \ B̄RN−1

(z0) and C is a positive constant independent of N and

the sequence (RN )N∈N. The bound in (3.1.27) can be deduced from the calculation,

∇ηN = ϕ′

(
1

R2
N−1 −R2

N

(d2(z0, z)−R2
N )

)
1

R2
N−1 −R2

N

∇d2(z0, z).

Also, we have that |∇d2(z0, z)| ≤ 5, for all z0, z ∈ H. Since ϕ′ is also uniformly bounded,

we obtain (3.3.7).
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Similarly, we can construct a sequence of cutoff functions (ηN )N∈N, when (RN )N∈N

is a non-decreasing sequence of positive numbers.

3.2 Sobolev and Poincaré inequalities for weighted Sobolev spaces

We review a Sobolev inequality (Lemma 3.2.1) due to H. Koch [50] and prove a Poincaré

inequality (Lemma 3.2.4) for weighted Sobolev spaces.

Recall from [50, Corollary 4.3.4] that the weight yβ−1 defines a doubling measure,

yβ−1 dz on H for any β > 0 (see, for example, [71, Definition 1.2.6]), where dz = dxdy

is Lebesgue measure on H.

Lemma 3.2.1 (Weighted Sobolev inequality). [50, Lemma 4.2.4] Let p be as in (3.1.24).

Then there is a positive constant C = C(d, p) such that∫
H
|u|pyβ−1 dx dy ≤ c

(∫
H
|u|2yβ−1 dx dy

) p−2
2
∫
H
|∇u|2yβ dx dy, (3.2.1)

for any u ∈ L2
(
H, yβ−1

)
such that ∇u ∈ L2

(
H, yβ

)
.

Lemma 3.2.2. [50, Lemma 4.3.3] There is a positive constant c, depending only on d

and β, such that, for any R > 0 and z0 ∈ H̄,

c−1Rn(R+
√
y0)d+2β ≤ |BR(z0)|β ≤ cRn(R+

√
y0)d+2β. (3.2.2)

Moreover, the following inclusions hold,

BR1(z0) ⊆ BR(z0) ⊆ BR2(z0), (3.2.3)

where R1 = R
(
R+
√
y0

)
/2000 and R2 = R

(
R+ 2

√
y0

)
.

Remark 3.2.3. The technical assumption, 0 < R ≤ R̄, in the hypotheses of Lemmas

3.2.4, 3.2.6 and Corollary 3.2.5, is used to ensure

BR(z0) ⊆ Γ0 × (0, δ0), ∀z0 ∈ Γ̄0.

This property is used in the construction of the extension operator E in Lemma 3.2.6,

and therefore it is implicitly used in Lemma 3.2.4 and Corollary 3.2.5.



90

Lemma 3.2.4 (Poincaré inequality). Let z0 ∈ Γ̄0 and 0 < R ≤ R̄. Then there is a

positive constant C, depending on β and R, such that for any u ∈ H1(BR(z0),w), we

have

inf
c∈R

(∫
BR(z0)

|u(z)− c|2yβ−1 dz

)1/2

≤ C

(∫
BR(z0)

|∇u(z)|2yβ dz

)1/2

. (3.2.4)

Corollary 3.2.5 (Poincaré inequality with scaling). There is a positive constant C,

depending only on β and R̄, such that for any u ∈ H1(BR̄(z0),w) and z0 ∈ Γ̄0, with

0 < R ≤ R̄, we have

inf
c∈R

(
1

|BR(z0)|β−1

∫
BR(z0)

|u(z)− c|2yβ−1 dz

)1/2

≤ CR2

(
1

|BR(z0)|β

∫
BR(z0)

|∇u(z)|2yβ dz

)1/2

.

(3.2.5)

To prove Lemma 3.2.4 and Corollary 3.2.5, we make use of the following extension

property

Lemma 3.2.6 (Extension operator). Let z0 ∈ Γ̄0 and 0 < R ≤ R̄. Let D = (a, b)×(0, c)

be a rectangle such that BR(z0) ⊆ D. Then, there exists a continuous extension

E : H1(BR(z0),w)→ H1(D,w),

and there exists a positive constant C, depending on D, R and β, such that for any

u ∈ H1(BR(z0),w) we have

‖Eu‖L2(D,yβ−1) ≤ C‖u‖L2(BR(z0),yβ−1),

‖∇Eu‖L2(D,yβ) ≤ C‖∇u‖L2(BR(z0),yβ).

(3.2.6)

Remark 3.2.7. Without loss of generality, in the proofs of Lemmas 3.2.4, 3.2.6 and

Corollary 3.2.5, we may assume z0 = (0, 0) and

BR(z0) ∩ {(x, y) ∈ H : x > 0} ⊆ BR(z0).

Proof of Lemma 3.2.4. Let u ∈ H1(BR(z0),w) and choose a, b ∈ R and δ > 0, depend-

ing only on R, such that BR(z0) ⊆ (a, b)× (0, δ). Let k > 1 be such that

2k−β =
1

2
, (3.2.7)
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and denote by D = (a, b) × (0, kδ). Let û = Eu be the extension of u to D given by

Lemma 3.2.6. Assuming that (3.2.4) holds for û, we obtain that it holds for u also in

the following way,

inf
c∈R

(∫
BR(z0)

|u(z)− c|2yβ−1 dz

)1/2

≤ inf
c∈R

(∫
D
|û(z)− c|2yβ−1 dz

)1/2

≤ C
(∫

D
|∇û(z)|2yβ dz

)1/2

≤ C

(∫
BR(z0)

|∇u(z)|2yβ dz

)1/2

.

In the first and last inequalities above, we made use of (3.2.6).

Therefore, we may assume u ∈ H1(D,w). Our goal is to prove that (3.2.4) holds

for u ∈ H1(D,w). By [18, Corollary A.14], we may assume without loss of generality

that u ∈ C1(D̄). Let c ∈ R and let v = u − c. Then, by the mean value theorem, we

have for any y ∈ (0, δ) and x ∈ (a, b)

v(x, y) = v(x, ky) +

∫ y

ky
vy(x, t)dt.

Squaring both sides of the preceding equation and integrating in y with respect to

yβ−1 dy, we obtain∫ δ

0
|v(x, y)|2yβ−1 dy ≤ 2

∫ δ

0
|v(x, ky)|2yβ−1 dy + 2

∫ δ

0

∣∣∣∣∫ y

ky
vy(x, t)dt

∣∣∣∣2 yβ−1 dy. (3.2.8)

By applying the change of variable y′ = ky, we see that∫ δ

0
|v(x, ky)|2yβ−1 dy = k−β

∫ kδ

0
|v(x, y′)|2y′β−1 dy′. (3.2.9)

Also, we have for β 6= 1,∫ δ

0

∣∣∣∣∫ y

ky
vy(x, t)dt

∣∣∣∣2 yβ−1 dy =

∫ δ

0

∣∣∣∣∫ y

ky
vy(x, t)t

β/2t−β/2dt

∣∣∣∣2 yβ−1 dy

≤ 1

|1− β|

∫ δ

0

∫ ky

y
|vy(x, t)|2tβdt

∣∣∣y−β+1 − (ky)−β+1
∣∣∣ yβ−1 dy

≤ δ1 + k−β+1

|1− β|

∫ kδ

0
|vy(x, y)|2yβ dy.

(3.2.10)
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For β = 1, we have∫ δ

0

∣∣∣∣∫ y

ky
vy(x, t)dt

∣∣∣∣2 dy =

∫ δ

0

∣∣∣∣∫ y

ky
vy(x, t)t

1/2t−1/2dt

∣∣∣∣2 dy
≤
∫ δ

0

∫ ky

y
|vy(x, t)|2tdt log

ky

y
dy

≤ δ log k

∫ kδ

0
|vy(x, y)|2y dy.

(3.2.11)

Define a positive constant C0 ≡ C0(β, δ) by C0 = 2δ 1+k−β+1

|1−β| when β 6= 1, and C0 =

2δ log k when β = 1. By combining equations (3.2.8), (3.2.9), (3.2.10) and (3.2.11), we

obtain∫ δ

0
|v(x, y)|2yβ−1 dy ≤ 2k−β

∫ kδ

0
|v(x, y)|2yβ−1 dy + C0

∫ kδ

0
|vy(x, y)|2yβ dy

≤ 2k−β
∫ δ

0
|v(x, y)|2yβ−1 dy + 2k−β

∫ kδ

δ
|v(x, y)|2yβ−1 dy

+ C0

∫ kδ

0
|vy(x, y)|2yβ dy.

Recall that k > 1 was chosen such that (3.2.7) is satisfied. Therefore, by integrating

also in x, there exists C = C(β, δ) such that∫ b

a

∫ kδ

0
|v(x, y)|2yβ−1 dy dx

≤ C
∫ b

a

∫ kδ

δ
|v(x, y)|2yβ−1 dy dx+ C

∫ b

a

∫ kδ

0
|vy(x, y)|2yβ dy dx.

Since v = u− c, we have

inf
c∈R

∫
D
|u(x, y)− c|2yβ−1 dy dx

≤ C inf
c∈R

∫ b

a

∫ kδ

δ
|u(x, y)− c|2yβ−1 dy dx+ C

∫
D
|uy(x, y)|2yβ dy dx.

The rectangle D′ := [a, b] × [δ, kδ] is contained in {y > 0}, so the weighted measure

yβ−1 dy dx is equivalent to the Lebesgue measure dydx. The rectangle D′ is a convex

domain and so we may apply the classical Poincaré inequality [41, Equation (7.45)] to

give

inf
c∈R

∫ b

a

∫ kδ

δ
|u(x, y)− c|2yβ−1 dy dx ≤ C

∫ b

a

∫ kδ

δ
|∇u(x, y)|2yβ dy dx.

Combining the last two inequalities yields (3.2.4).
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Remark 3.2.8. Koch states a weighted Poincaré inequality on the half-space [50,

Lemma 4.4.4], with weight yβ−1e−κρ(z,z0), where κ is a positive constant, z0 is a fixed

point in H̄, and ρ(z, z0) is equivalent to d2(z, z0), in the sense that there exists a constant

c > 0 such that

cd2(z, z0) ≤ ρ(z, z0) ≤ 1

c
d2(z, z0),∀z ∈ H.

The proof of this result is long and technical. So, rather than use this result to prove

a weighted Poincaré inequality on a ball using an extension principle, we give a much

simpler proof for balls and weights yβ−1 and yβ.

Remark 3.2.9. When β ≥ 1, from [18, Lemma A.1 & A.4] we have that H1
0 (O,w) =

H1
0 (O∪Γ0,w). Then, as in [2, Theorem 6.30], it might be true that the stronger version

of (3.2.4) holds(∫
BR(z0)

|u(z)|2yβ−1 dz

)1/2

≤ C

(∫
BR(z0)

|∇u(z)|2yβ dz

)1/2

. (3.2.12)

Remark 3.2.10 (Scaling under Koch metric). We have the following scaling property

BR1(z0) =

(
R1

R2

)2

BR2(z0), ∀R1, R2 > 0. (3.2.13)

This property follows from the observation that, for any z ∈ H, using the fact that

z0 = (0, 0), we have

d(z, z0) =
|z|√
y + |z|

.

Therefore, for any z ∈ H,

d

((
R1

R2

)2

z, z0

)
=
R1

R2
d(z, z0),

and so, d(z, z0) < R2 if and only if d
(

(R1/R2)2 z, z0

)
< R1, from which (3.2.13)

follows.

Notice that (3.2.13) does not hold if z0 = (y0, z0) with y0 > 0.

Proof of Corollary 3.2.5. Let 0 < R ≤ R̄ and define v by rescaling

u(z) = v

((
R̄

R

)2

z

)
, ∀z ∈ BR(z0).
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The rescaling map ψ defined by

z 7→
(
R̄

R

)2

z,

maps O into a domain Õ satisfying the same assumptions as O in Assumption 3.1.2.

Then, using (3.2.13), ψ maps BR(z0) into B̃R̄(z0), where

B̃R̄(z0) = {z ∈ Õ : d(z, z0) < R̄}.

By applying Lemma 3.2.4 to v on B̃R̄(z0), there is a positive constant C, depending

only on R̄ and β, such that (3.2.4) holds. By changing variables, we obtain

inf
c∈R

(
R̄

R

)2(β−1) ∫
BR(z0)

|u− c|2yβ−1dxdy ≤
(
R

R̄

)4(R̄
R

)2β ∫
BR(z0)

|∇u|2yβdxdy.

(3.2.14)

By Assumption 3.1.2, we have

1

2
|BR(z0)|β ≤ |BR(z0)|β ≤ |BR(z0)|β, ∀0 < R ≤ R̄,

and using Lemma 3.2.2, we rewrite (3.2.14) in the following form

inf
c∈R

|BR̄(z0)|β−1

|BR(z0)|β−1

∫
BR(z0)

|u− c|2yβ−1dxdy ≤
(
R

R̄

)4 |BR̄(z0)|β
|BR(z0)|β

∫
BR(z0)

|∇u|2yβdxdy,

from which (3.2.5) follows immediately.

3.3 John-Nirenberg inequality

In this section we recall the abstract John-Nirenberg inequality (Theorem 3.3.1) due

to E. Bombieri and E. Giusti [11] and, in particular, provide a justification — via

Proposition 3.3.2 — that its hypotheses hold in the setting of the problems described

in §3.1.

We restrict the statement of [11, Theorem 4] to the framework of our problems, so

in [11, Theorem 4] we choose H to be the topological space and dµ = yβ−1dxdy to be

the regular positive Borel measure on H. Let Sr, 0 ≤ r ≤ 1 be a family of non-empty

open sets in H such that

Ss ⊆ Sr, ∀0 ≤ s ≤ r ≤ 1,

0 < |Sr|β−1 <∞, ∀0 ≤ r ≤ 1.

(3.3.1)
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Let w be a measurable positive function on S1. For t 6= 0 and 0 ≤ r ≤ 1, we denote by

|w|t,r =

(
1

|Sr|β−1

∫
Sr

|w|tyβ−1dxdy

)1/t

,

|w|∞,r = sup
Sr

w,

|w|−∞,r = inf
Sr
w.

We now recall the

Theorem 3.3.1 (Abstract John-Nirenberg Inequality). [11, Theorem 4] Let 0 < ϑ0, ϑ1 ≤

∞ and w be a measurable positive function on S1 such that

|w|ϑ0,1 <∞ and |w|ϑ1,1 > 0.

Suppose there exist constants γ > 0, 0 < t∗ ≤ 1
2 min{ϑ0, ϑ1} and Q > 0 such that for

all 0 ≤ s < r ≤ 1 and 0 < t ≤ t∗,

|w|ϑ0,s ≤ [Q(r − s)γ ]1/ϑ0−1/t |w|t,r,

|w|−ϑ1,s ≥ [Q(r − s)γ ]1/t−1/ϑ1 |w|−t,r.
(3.3.2)

Assume further that

A := sup
0≤r≤1

inf
c∈R

1

|Sr|β−1

∫
Sr

| logw − c|yβ−1dxdy <∞. (3.3.3)

Then, we have

|w|ϑ0,0 ≤
(
|S1|β−1

|S0|β−1

)1/ϑ0+1/ϑ1

exp
{
c2Q

−2 (A+ 1/t∗)
}
|w|−ϑ1,1, (3.3.4)

where c2 is a constant depending only on γ, but not on Q,ϑ0, ϑ1, t
∗, A and β.

We now provide a justification that the hypotheses of Theorem 3.3.1 hold in the

setting of the problems discussed in this chapter.

Proposition 3.3.2 (Application of Theorem 3.3.1). Let z0 ∈ Γ̄0 and 0 < 4R ≤ R̄.

Let Sr = B(2+r)R(z0), for all 0 ≤ r ≤ 1. Let ϑ0, ϑ1 be as in Theorem 3.3.1 and set

t∗ = 1
2 min{ϑ0, ϑ1}. Then, there exist positive constants Q and γ, independent of R and

z0, such that (3.3.2) holds for any bounded positive function w on S1 which satisfies the

energy estimate (3.5.11) or (3.6.3)
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Proof of Proposition 3.3.2. We begin by proving the first inequality in (3.3.2) by ap-

plying Moser iteration finitely many times. The second inequality in (3.3.2) can be

proved by a similar technique. We outline the proof when w satisfies the energy esti-

mate (3.5.11), but the proof applies as well to positive bounded functions w satisfying

the energy estimate (3.6.3).

First, we consider the special case when ϑ0 and t satisfy the requirement: There

exists an integer N∗ ≥ 1 such that ϑ0 can be written as

ϑ0 = t
(p

2

)N∗
. (3.3.5)

Let 0 ≤ s < r ≤ 1 and set R0 = (2 + r)R. We denote

c :=

∞∑
k=1

1

k2

and we let

R2
N :=

(
(2 + r)2 − (r − s)2

N∑
k=1

1

ck2

)
R2, ∀N = 1, . . . , N∗. (3.3.6)

We observe that (2 + s)R < RN < RN−1 ≤ (2 + r)R. Let (ηN )N∈N be a sequence

of non-negative, smooth cutoff functions as constructed in §1.5, by choosing RN as in

(3.3.6). Then, (3.1.27) becomes

|∇ηN | ≤
CN2

R2(r − s)2
. (3.3.7)

Let PN := t (p/2)N , for N = 1, . . . , N∗, and αN = pN −1, for all N = 0, . . . , N∗−1.

We set

I(N) :=

(∫
BN

|w|pN yβ−1dxdy

)1/pN

, (3.3.8)

where we denote for simplicity BN = BRN (z0). From our hypothesis, w satisfies

(3.5.11), that is,

‖ηw(α+1)/2‖Lp(H,yβ−1) ≤ C0(R,α)‖w(α+1)/2‖L2(supp η,yβ−1),
(3.3.9)

where

C0(R,α) := [C|1 + α|](ξ+1)/p
(

1 + ‖√y∇η‖2L∞(H)

)1/p
, (3.3.10)
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and ξ and C are positive constants, independent of u, α and η. We choose α = αN−1

and η = ηN in (3.3.9), so the definition (3.3.8) gives us, for all N ≥ 1,

I(N) ≤ C1(R, r, s,N)I(N − 1), (3.3.11)

where

C1(R, r, s,N) := (C|pN−1|)(ξ+1)/pN
(

1 + ‖√y∇ηN‖2L∞(H)

)1/pN
.

From Lemma 3.2.2, we have y ≤ CR2 on BN , where C is a positive constant indepen-

dent of R and N . Using the bound (3.3.7), we obtain

C1(R, r, s,N) := (C|pN−1|)(ξ+1)/pN

(
CN4

R2(r − s)4

)1/pN

.

By iterating inequality (3.3.11), we obtain

I(N∗) ≤ C2(R, r, s)I(0), (3.3.12)

where

C2(R, r, s) :=

N∗∏
N=1

[
Cpξ+1

N−1N
4R−2(r − s)−4

]1/pN
. (3.3.13)

Next, we prove the

Claim 3.3.3. There are positive constants Q and γ, independent of N∗, R, r and s,

such that

C2(R, r, s) ≤ (Q(r − s)γ)1/ϑ0−1/tR
4
p−2

(1/ϑ0−1/t)
. (3.3.14)

Proof of Claim 3.3.3. We can rewrite the expression (3.3.13) for C2(R, r, s) to obtain

C2(R, r, s) =

N∗∏
N=1

[
Ctξ+1R−2(r − s)−4

]1/pN
[(p

2

)N−1
N4

]1/pN

≤
[
Ctξ+1R−2(r − s)−4

]∑N∗
N=1 1/pN

(
C
p

2

)∑N∗
N=1N/pN

,

where we used in the last line that N4 ≤ C(p/2)N , for some positive constant C

depending only on p. Thus,

C2(R, r, s) ≤
[
Ctξ+1R−2(r − s)−4

]∑N∗
N=1 1/pN

(
C
p

2

)∑N∗
N=1 N/pN

. (3.3.15)

Recall that
N∗∑
N=1

xN = x
1− xN∗

1− x
and

N∗∑
N=1

NxN = x2 1− xN∗

1− x
.
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Hence, (3.3.5) leads to the identities

N∗∑
N=1

1

pN
=

2

p− 2

(
1

t
− 1

ϑ0

)
and

N∗∑
N=1

N

pN
=

4

p(p− 2)

(
1

t
− 1

ϑ0

)
.

Therefore, inequality (3.3.14) becomes

C2(R, r, s) ≤
[
R−2(r − s)−4

] 2
p−2

(
1
t
− 1
ϑ0

) (
Cϑξ+1

0

p

2

) 4
p(p−2)

(
1
t
− 1
ϑ0

)
, (3.3.16)

which is equivalent to (3.3.14) with the choice of the constants Q =
(
Cϑξ+1

0 p/2
)−1

and

γ = 8/(p− 2). This completes the proof of Claim 3.3.3.

By Assumption 3.1.2, we have

1

2
|B(2+a)R|β−1 ≤ |B(2+a)R|β−1 ≤ |B(2+a)R|β−1,

where the constant, a, can be either r or s. Using the fact that 4/(p−2) = 2(d+β−1),

Lemma 3.2.2 yields

|B(2+s)R|
1/ϑ0

β−1

|B(2+r)R|
1/t
β−1

≥ C1/ϑ0+1/tR4/(p−2)(1/ϑ0−1/t),

for some positive constant C < 1. Therefore, inequality (3.3.16) becomes

C2(R, r, s) ≤ C−1/ϑ0−1/t (Q(r − s)γ)1/ϑ0−1/t
|B(2+s)R|

1/ϑ0

β−1

|B(2+r)R|
1/t
β−1

. (3.3.17)

From our hypothesis, t ≤ t∗ ≤ ϑ0/2, we have

3(1/ϑ0 − 1/t) ≤ −1/ϑ0 − 1/t ≤ 1/ϑ0 − 1/t,

and so, for a new positive constant Q, the inequality (3.3.17) leads to

C2(R, r, s) ≤ (Q(r − s)γ)1/ϑ0−1/t
|B(2+s)R|

1/ϑ0

β−1

|B(2+r)R|
1/t
β−1

. (3.3.18)

By employing the inequalities (3.3.18) and (3.3.12) and the definition (3.3.8) of I(N),

we obtain(∫
B(2+s)R

|w|ϑ0yβ−1dxdy

)1/ϑ0

≤ I(N∗)

≤ (Q(r − s)γ)1/ϑ0−1/t
|B(2+s)R|

1/ϑ0

β−1

|B(2+r)R|
1/t
β−1

I(0)

= (Q(r − s)γ)1/ϑ0−1/t
|B(2+s)R|

1/ϑ0

β−1

|B(2+r)R|
1/t
β−1

(∫
B(2+r)R

|w|tyβ−1dxdy

)1/t

,
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from which we readily obtain the first inequality in (3.3.2), in the special case where t

and ϑ0 satisfy (3.3.5) for some integer N∗ ≥ 1.

Next, we show that the first inequality in (3.3.2) holds for any t ∈ (0, t∗). For this

purpose, we choose an integer N∗ ≥ 1 such that

t
(p

2

)N∗−1
< ϑ0 < t

(p
2

)N∗
.

We denote ϑ∗0 = t (p/2)N
∗

and we apply the previous analysis to t and ϑ∗0, which now

satisfy (3.3.5), to give

|w|ϑ∗0,s ≤ (Q(r − s)γ)1/ϑ∗0−1/t |w|t,r.

Using Hölder’s inequality with p = ϑ∗0/ϑ0 > 1, we find that

|w|ϑ0,s ≤ |w|ϑ∗0,s,

and so

|w|ϑ0,s ≤ (Q(r − s)γ)1/ϑ∗0−1/t |w|t,r

≤ (Q(r − s)γ)
1/ϑ∗0−1/t

1/ϑ0−1/t
(1/ϑ0−1/t) |w|t,r.

Notice that 2ϑ∗0/p ≤ ϑ0 ≤ ϑ∗0 and 0 < t < ϑ0/2. Then,

1 ≤ 1/ϑ∗0 − 1/t

1/ϑ0 − 1/t
≤ 1/ϑ∗0 − 1/t

p/2ϑ∗0 − 1/t
≤ (2/p)N

∗ − 1

(2/p)N∗+1 − 1
≤ p

p− 2
.

Consequently, we define Q̃ to be Qp/(p−2) if Q < 1, and we leave Q unchanged if Q ≥ 1

and, setting γ̃ := γp/(p− 2), the preceding estimate for |w|ϑ0,s becomes

|w|ϑ0,s ≤
(
Q̃(r − s)γ̃

)1/ϑ0−1/t
|w|t,r,

which is precisely the first inequality in (3.3.2).

3.4 Supremum estimates near the boundary portion where the oper-

ator is degenerate

In this section, we prove Theorem 3.1.7, that is, local boundedness up to Γ̄0 for solutions,

u, to the variational equation (3.1.16). Our choice of test functions when applying

Moser iteration follows that employed in the proof of [41, Theorem 8.15]. However, the
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choice of test functions used in the proof of the classical local supremum estimates [41,

Theorem 8.17] is not suitable in our case because the test functions in (3.1.16) are not

required to satisfy a homogeneous Dirichlet boundary condition along Γ̄0. In addition,

the method of deriving the energy estimate (3.4.3) is slightly different from [41, Theorem

8.18] because, instead of using the classical Sobolev inequalities [41, Theorem 7.10], we

use Lemma 3.2.1.

Proof of Theorem 3.1.7. We organize the proof in several steps.

Step 1 (Energy estimates). Let α ≥ 1 and let η ∈ C1
0 (H̄) be a non-negative cutoff

function with support in B̄2R(z0). We define

A := ‖f‖Ls(supp η,yβ−1). (3.4.1)

We will apply the following calculations in Steps 1 and 2 to two choices of w, namely,

w := u+ +A and w := u− +A. (3.4.2)

For concreteness, we will illustrate our calculations with the choice

w = u+ +A,

but they apply equally well to the choice w = u−+A. Our goal is to prove the following

Claim 3.4.1 (Energy estimate). There is a positive constant C, depending only on the

coefficients of the Heston operator (3.1.2) and δ0, and there is a positive constant ξ,

depending only on d, β and s, such that(∫
O
|ηwα|pyβ−1dxdy

)1/p

≤ (Cα)ξ+1
(
‖√y∇η‖2/pL∞(H) + | supp η|1/p−1/2

β−1

)(∫
supp η

w2αyβ−1dxdy

)1/2

.

(3.4.3)

Proof of Claim 3.4.1. We fix k ∈ N. Similarly to the proof of [41, Theorem 8.15], we

consider the functions Hk : R→ [0,∞),

Hk(t) :=


0, t < A,

tα −Aα, A ≤ t ≤ k,

αkα−1(t− k) +Hk(k), t > k.

(3.4.4)
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and

Gk(t) =

∫ t

0
|H ′k(s)|2ds. (3.4.5)

Then,

v = Gk(w)η2 (3.4.6)

is a valid test function in H1
0 (O ∪ Γ0,w) in (3.1.12), by Lemma B.2.1. Because u ∈

H1
0 (O ∪ Γ0,w) obeys (3.1.16) for all v ∈ H1

0 (O ∪ Γ0,w) with support in B̄2R(z0), then

the expression (3.1.12) for a(u, v) yields

0 = a(u, v)− (f, v)L2(O,m)

=
1

2

∫
O

(
uxvx + ρσuxvy + ρσuyvx + σ2uyvy

)
yw dxdy

−
∫

O

(
a1ux +

γ

2
(ux + ρσuy) sign(x)

)
vyw dxdy +

∫
O

(ru− f) vw dxdy.

Since ∇v = G′k(w)η2∇w+ 2Gk(w)η∇η and the fact that Gk(w) = 0 when w ≤ A, that

is, u+ = 0, the preceding identity becomes

1

2

∫
O

(
w2
x + 2ρσwxwy + σ2w2

y

)
G′k(w)η2yw dxdy

= −
∫

O

(
wxηx + ρσwxηy + ρσwyηx + σ2wyηy

)
Gk(w)ηyw dxdy

+

∫
O

[
a1wx +

γ

2
(wx + ρσwy) sign(x)

]
Gk(w)η2yw dxdy

−
∫

O

(
ru+ − f

)
Gk(w)η2w dxdy.

For convenience, we write the identity as I1 = I2 + I3 + I4. From the uniform ellipticity

(3.1.14), we obtain for I1 that

C

∫
O
|∇w|2η2G′k(w)yw dxdy ≤ I1,

where C is a positive constant depending only on the coefficients of the Heston operator.

We notice that 0 ≤ Gk(w) ≤ wG′k(w) because G′k(w) = |H ′k(w)|2 is a non-decreasing

function. Using this fact and that w ≥ A, we obtain for the integrals I2, I3, I4 that
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there exists a positive constant C, depending only on the Heston coefficients, such that

|I2| ≤
1

2

∫
O

(
|wxη||wηx|+ ρσ|wxη||wηy|+ ρσ|wyη||wηx|+ σ2|wyη||wηy|

)
G′k(w)yw dxdy

≤ ε
∫

O
|∇w|2η2G′k(w)yw dxdy +

C

ε

∫
O
|w|2|∇η|2G′k(w)yw dxdy,

|I3| ≤ ε
∫

O
|∇w|2η2G′k(w)yw dxdy +

C

ε

∫
O
|w|2|η|2G′k(w)yw dxdy,

|I4| ≤ r
∫

O
w2G′k(w)η2w dxdy +

∫
O
|f |wG′k(w)η2w dxdy

≤ C
∫

O

(
1 +
|f |
A

)
w2G′k(w)η2w dxdy,

where ε > 0. Choosing ε small enough, we obtain for a positive constant C, depending

on the coefficients of the Heston operator and δ0, that∫
O
|∇w|2η2G′k(w)yβdxdy ≤ C

[∫
O
η2 |f |
A
w2G′k(w)yβ−1dxdy

+

∫
O

(
η2 + y|∇η|2

)
w2G′k(w)yβ−1dxdy

]
.

(3.4.7)

Hölder’s inequality applied to the conjugate pair (s, s∗) gives∫
O
η2 |f |
A
w2G′k(w)yβ−1dxdy

≤

(∫
supp η

|f |s

As
yβ−1dxdy

)1/s(∫
O
|η2w2G′k(w)|s∗yβ−1dxdy

)1/s∗

,

and thus, by definition (3.4.1) of A,∫
O
η2 |f |
A
w2G′k(w)yβ−1dxdy ≤

(∫
O
|η2w2G′k(w)|s∗yβ−1dxdy

)1/s∗

. (3.4.8)

We need to justify first that the right hand side in (3.4.8) is finite. First, we notice that

the following identities hold

|∇Hk(w)|2 = |∇w|2|H ′k(w)|2 = |∇w|2G′k(w),

|wH ′k(w)|2 = |w|2G′k(w),

(3.4.9)

From the hypothesis s > d + β in Theorem 3.1.7, we observe that 2 < 2s∗ < p, so we

may apply the interpolation inequality [41, Inequality (7.10)]. For any ε ∈ (0, 1), we

have

‖ηwH ′k(w)‖L2s∗ (H,yβ−1) ≤ ε‖ηwH
′
k(w)‖Lp(H,yβ−1) + ε−ξ‖ηwH ′k(w)‖L2(H,yβ−1), (3.4.10)
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where

ξ ≡ ξ(p, s) :=
p(s∗ − 1)

p− 2s∗
. (3.4.11)

We notice that |H ′k(w)| ≤ αkα−1 and ηw ∈ H1(O,w) has compact support in B̄2R(z0).

Therefore, we may apply Lemma 3.2.6 to build an extension ŵ of ηw to a rectangle D

containing B̄2R(z0). Lemma 3.2.1, shows that ŵ ∈ Lp(D, yβ−1), which implies that

‖ηwH ′k(w)‖Lp(H,yβ−1) <∞,

and so, the right hand side of (3.4.8) is finite.

Inequalities (3.4.7) and (3.4.8), together with the identities (3.4.9) yield∫
O
η2|∇Hk(w)|2yβdxdy ≤ C

[(∫
O
|ηwH ′k(w)|2s∗yβ−1dxdy

)1/s∗

+

∫
O

(
η2 + y|∇η|2

)
|wH ′k(w)|2yβ−1dxdy

]
.

(3.4.12)

From Lemma 3.2.1, we obtain∫
O
|ηHk(w)|pyβ−1dxdy ≤

(∫
O
η2|Hk(w)|2yβ−1dxdy

)(p−2)/2 ∫
O
|∇(ηHk(w))|2yβdxdy

≤ 2

(∫
O
η2|Hk(w)|2yβ−1dxdy

)(p−2)/2

×
(∫

O
|∇η|2|Hk(w)|2yβdxdy + η2|∇Hk(w)|2yβdxdy

)
.

(3.4.13)

Using Hk(w) ≤ wH ′k(w) and inequality (3.4.12) in (3.4.13), we see that∫
O
|ηHk(w)|pyβ−1dxdy

≤ C

[(
1 + ‖√y∇η‖2L∞(H)

)(∫
supp η

|wH ′k(w)|2yβ−1dxdy

)p/2
+

(∫
O
|ηwH ′k(w)|2yβ−1dxdy

)(p−2)/2(∫
O
|ηwH ′k(w)|2s∗yβ−1dxdy

)1/s∗
]
,

(3.4.14)

where C is a positive constant depending on the Heston coefficients and δ0. We rewrite

the estimate for ηwH ′k(w) in (3.4.10) in the form(∫
O
|ηwH ′k(w)|2s∗yβ−1dxdy

)1/s∗

= ‖ηwH ′k(w)‖2
L2s∗ (H,yβ−1)

≤ 2ε2‖ηwH ′k(w)‖2Lp(H,yβ−1) + 2ε−2ξ‖ηwH ′k(w)‖2L2(H,yβ−1).
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Applying the preceding inequality in (3.4.14), we obtain

‖ηHk(w)‖p
Lp(H,yβ−1)

≤ C
(

1 + ‖√y∇η‖2L∞(H)

)
‖wH ′k(w)‖p

L2(supp η,yβ−1)

+ C‖ηwH ′k(w)‖p−2
L2(supp η,yβ−1)

×(
ε2‖ηwH ′k(w)‖2Lp(H,yβ−1) + ε−2ξ‖ηwH ′k(w)‖2L2(H,yβ−1)

)
.

By recombining terms in the preceding inequality, we find that

‖ηHk(w)‖p
Lp(H,yβ−1)

≤ C(1 + ε−2ξ)
(

1 + ‖√y∇η‖2L∞(H)

)
‖wH ′k(w)‖p

L2(supp η,yβ−1)

+ Cε2‖ηwH ′k(w)‖p−2
L2(H,yβ−1)

‖ηwH ′k(w)‖2Lp(H,yβ−1).

To estimate the last term in the preceding inequality, we apply Young’s inequality with

the conjugate pair of exponents, (p/2, p/(p− 2)), to give

‖ηwH ′k(w)‖2Lp(H,yβ−1)‖ηwH
′
k(w)‖p−2

L2(H,yβ−1)

≤ 2

p
‖ηwH ′k(w)‖p

Lp(H,yβ−1)
+
p− 2

p
‖ηwH ′k(w)‖p

L2(H,yβ−1)
.

Combining the previous two inequalities yields

‖ηHk(w)‖p
Lp(H,yβ−1)

≤ Cε2‖ηwH ′k(w)‖p
Lp(H,yβ−1)

+ C
(

1 + (ε2 + ε−2ξ)
)
×(

1 + ‖√y∇η‖2L∞(H)

)
‖wH ′k(w)‖p

L2(supp η,yβ−1)
,

(3.4.15)

Employing the definition (3.4.4) of Hk(w) gives 0 ≤ wH ′k(w) ≤ αHk(w) + αAα, and so∫
O
|ηwH ′k(w)|pyβ−1dxdy ≤ |2α|p

[∫
O
|ηHk(w)|pyβ−1dxdy +

∫
O
|ηAα|pyβ−1dxdy

]
≤ |2α|p

[∫
O
|ηHk(w)|pyβ−1dxdy + | supp η|β−1A

αp

]
,

and thus, applying inequality (3.4.15) yields∫
O
|ηHk(w)|pyβ−1dxdy ≤ C|2α|pε2

(
‖ηHk(w)‖p

Lp(yH,β−1)
+ | supp η|β−1A

αp
)

+ C
(

1 +
(
ε2 + ε−2ξ

))(
1 + ‖√y∇η‖2L∞(H)

)
‖wH ′k(w)‖p

L2(supp η,yβ−1)
.

By choosing ε = 1/(2
√
C(2α)p) and taking p-th order roots, we obtain(∫

O
|ηHk(w)|pyβ−1dxdy

)1/p

≤ (Cα)ξ ×
(
| supp η|1/pβ−1A

α

+
(

1 + ‖√y∇η‖2L∞(H)

)1/p
(∫

supp η
|wH ′k(w)|2yβ−1dxdy

)1/2
)
.
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Because the positive constants C and ξ are independent of k, we may take limit as k

goes to ∞, in the preceding inequality, and we obtain(∫
O
|η (wα −Aα)|p yβ−1dxdy

)1/p

≤ (Cα)ξ+1 ×
(
| supp η|1/pβ−1A

α

+
(

1 + ‖√y∇η‖2L∞(H)

)1/p
(∫

supp η
|wα|2yβ−1dxdy

)1/2
)
,

which yields(∫
O
|ηwα|pyβ−1dxdy

)1/p

≤ (Cα)ξ+1 ×
(
| supp η|1/pβ−1A

α

+
(

1 + ‖√y∇η‖2L∞(H)

)1/p
(∫

supp η
|w|2αyβ−1dxdy

)1/2
)
,

We also have

Aα =

(
1

| supp η|β−1

∫
supp η

A2αyβ−1dxdy

)1/2

≤
(

1

| supp η|β−1

∫
supp η

w2αyβ−1dxdy

)1/2

.

Combining the last two inequalities gives (3.4.3). This completes the proof of Claim

3.4.1.

Step 2 (Moser iteration). Let (ηN )N∈N be a sequence of non-negative, smooth cutoff

functions as constructed in §1.5, by choosing RN := R (1 + 1/(N + 1)). Then, we have

ηN |BN ≡ 1, ηN |BcRN−1
≡ 0, |∇ηN | ≤

cN3

R2
, (3.4.16)

where c is a positive constant independent of R and N . For each N ≥ 0, we set

pN := 2(p/2)N and αN := (p/2)N . Let AN := ‖f‖Ls(supp ηN ,yβ−1) and wN := u+ + AN

or wN := u− +AN . Define

I(N) :=

(∫
BRN

|wN |pN yβ−1dxdy

)1/pN

.

Applying the energy estimate (3.4.3) with w = wN , α = αN−1, and η = ηN , we obtain

for all N ≥ 1 that

I(N) ≤ C0(R,N)I(N − 1), (3.4.17)

where we denote

C0(R,N) := [C|αN−1|]2(ξ+1)/pN−1

(
‖√y∇ηN‖2/pL∞(H) + | supp ηN |1/p−1/2

β−1

)2/pN−1

.

(3.4.18)
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In the preceding equality, C is a positive constant depending only on the Heston coef-

ficients and δ0. By Assumption 3.1.2 and Lemma 3.2.2, there is a constant c > 0 such

that

c−1R4/(p−2) ≤ |B2R|β−1 ≤ cR4/(p−2), (3.4.19)

where we used the fact that 2(d+ β− 1) = 4/(p− 2) by (3.1.24). Moreover, by Lemma

3.2.2, there is a positive constants c such that 0 ≤ y ≤ cR2 on BR(z0), for all R ≥ 0.

Consequently, we have

‖√y∇ηN‖2/pL∞(H) + | supp ηN |1/p−1/2
β−1 ≤ cN6/pR−2/p,

and so,

C0(R,N) ≤
[
C|αN−1|N6

]p(ξ+1)/pN R−2/pN .

Therefore, ∏
N≥1

C0(R,N) ≤
∏
N≥1

[
C|αN−1|N6

]p(ξ+1)/pN R−2/pN

≤ C1R
−2
∑∞
N=1 1/pN = C1R

−2/(p−2)

≤ C1|B2R|−1/2
β−1 , (by (3.4.19)),

where C1 is a positive constant depending only on the Heston coefficients, δ0 and s. By

iterating (3.4.17), we obtain

I(+∞) ≤ I(0)
∏
N≥1

C0(R,N),

which gives us

ess sup
BR

w = I(+∞) ≤ C1

(
1

|B2R|β−1

∫
B2R

|w|2yβ−1dxdy

)1/2

. (3.4.20)

Applying (3.4.20) to both choices of w in (3.4.2) yields

ess sup
BR

u+ ≤ C1

[(
1

|B2R|β−1

∫
B2R

|u|2yβ−1dxdy

)1/2

+ ‖f‖Ls(B2R,yβ−1)

]
,

ess sup
BR

u− ≤ C1

[(
1

|B2R|β−1

∫
B2R

|u|2yβ−1dxdy

)1/2

+ ‖f‖Ls(B2R,yβ−1)

]
.

Adding the two estimates gives us the supremum estimate (3.1.20) .
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Remark 3.4.2 (Relaxation of the Assumption 3.1.2 on O near Γ0). We notice that the

conditions on O embodied in Assumption 3.1.2, which are used in obtaining (3.4.19),

can be relaxed to the following weaker condition. For z0 ∈ Γ̄0, there exist positive

constants c0 and R0 such that for all 0 < R < R0 we have

c−1
0 |BR(z0)|β−1 ≤ |BR(z0)|β−1 ≤ c0|BR(z0)|β−1. (3.4.21)

In this case, the constant C appearing in the supremum estimate (3.1.20) will depend

in addition on c0 and R0.

Example 3.4.3 (A domain O which does not satisfy condition (3.4.21)). This con-

struction is in the spirit of [47, Example 4.2.17] (Lebesgue’s thorn). Let z0 = (0, 0),

RN = 1/N and aN = N−2/β. We set

CN = {(x, y) ∈ BN (z0) : 0 < y < aNx} ,

C ′N = {(x, y) ∈ BN+1(z0) : 0 < y < aNx} ,

and define O by

O =

∞⋃
N=1

CN\C ′N .

From Lemma 3.2.2, there exist positive constants c1 < c2, independent of R and N ,

such that

CN\C ′N ⊆
{

(x, y) ∈ H : c1R
2
N+1 < x < c2R

2
N , 0 < y < aNx

}
,

which give us

|CN\C ′N |β−1 ≤
∫ c2R2

N

c1R2
N+1

∫ aNx

0
yβ−1dydx

= aβN
cβ+1

2 − cβ+1
1

β(β + 1)

(
R

2(1+β)
N −R2(1+β)

N+1

)
≤ C

N2
R

2(1+β)
N

≤ C

N2
|BN (z0)|β−1, ( by Lemma 3.2.2.)

Recall BN (z0) = O ∩ BN (z0). Then, we obtain

|BN (z0)|β−1 =
∞∑
k=N

|Ck\C ′k|β−1 ≤ C|BN (z0)|β−1

∞∑
k=N

1

k2
,
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which implies

|BN (z0)|β−1

|BN (z0)|β−1
→ 0, as N →∞,

and so, we obtain a contradiction with the left hand side of (3.4.21).

3.5 Hölder continuity for solutions to the variational equation

In this section, we prove Theorem 3.1.8, that is, local Hölder continuity on a neighbor-

hood of Γ̄0 for solutions u to the variational equation (3.1.16). We consider separately

the case of the interior boundary points z0 ∈ Γ0 and of the “corner points” z0 ∈ Γ̄0∩ Γ̄1.

(While Γ̄0∩ Γ̄1 is a set of geometric corner points for the domain O, the lesson of [20] is

that the solution, u, along Γ0 behaves, in many respects, just as it does in the interior

of O.) The proof of the second case, for corner points, is easier than the proof of the

first case as it does not require an application of the John-Nirenberg inequality. The

essential difference between the proof of Theorem 3.1.8 and the proof of its classical

analogue for weak solutions to non-degenerate elliptic equations [41, Theorems 8.27

& 8.29] consists in a modification of the methods of [41, §8.6, §8.9, & §8.10] when

deriving our energy estimates (3.5.11), where we adapt the application of the John-

Nirenberg inequality and Poincaré inequality to our framework of weighted Sobolev

spaces. Moreover, because the balls defined by the Koch metric, d, do not have good

scaling properties unless they are centered at a point z0 ∈ ∂H (see Remark 3.2.10), the

Moser iteration technique applies only to such balls. Therefore, the estimate (3.1.21)

holds only for points z0 ∈ ∂H, and in order to obtain the full Hölder continuity of

solutions (3.1.22), we need to apply a rescaling argument which is outlined in the last

steps of the arguments below. Therefore, boundary Hölder continuity does not follow

in the same way as in [41].

We now proceed to the proof of Theorem 3.1.8, first in §3.5.1 for the case of points

z0 ∈ Γ0 and then in §3.5.2 for points z0 ∈ Γ̄0 ∩ Γ̄1.
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3.5.1 Local Hölder continuity on a neighborhood of the degenerate

boundary interior

We commence with the

Proof of Theorem 3.1.8 for points in Γ0. Let z0 ∈ Γ0 and let R be small enough such

that

B4R(z0) = B4R(z0), (3.5.1)

that is, 4R ≤ min{R̄,dist(z0,Γ1)}, where dist(·, ·) is the distance function on H̄ defined

by the Koch metric, d. Moreover, R is chosen small enough such that for all zi =

(xi, yi) ∈ BR(z0), i = 1, 2, we have

0 < y1, y2 < 1 and 0 ≤ ‖z1 − z2‖,d(z1, z2) < 1. (3.5.2)

Choose

q ∈ (d+ β, s), (3.5.3)

δ ∈ (0, 2), (3.5.4)

and define k(R) > 0 by

k ≡ k(R) := ‖f‖Lq(B4R(z0),w) + (|mR̄|+ |MR̄|)Rδ. (3.5.5)

The remaining steps in the proof will apply to the following choices of functions w

defined on B4R(z0),

w = u−m4R + k(R) and w = M4R − u+ k(R). (3.5.6)

If mR̄ = MR̄ = 0 or m4R = M4R = 0, then automatically u = 0 on B4R(z0) and (3.1.21)

and (3.1.22) hold on B4R(z0). Therefore, without loss of generality, we may assume

m4R 6= 0 or M4R 6= 0, (3.5.7)

and mR̄ 6= 0 or MR̄ 6= 0. The last assumption implies that

k(R) 6= 0, (3.5.8)

by (3.5.5). Therefore, we notice that both choices of w in (3.5.6) are bounded, positive

functions.
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Step 1 (Energy estimate for w). Let η ∈ C1
0 (H̄) be a non-negative cutoff function with

supp η ⊆ B̄4R. For any α ∈ R, α 6= −1, let

v := η2wα. (3.5.9)

Then, v is a valid test function in H1
0 (O ∪ Γ0,w) by Lemma B.2.2. Let

H(w) := w(α+1)/2, (3.5.10)

and notice that Theorem 3.1.7 implies that H(w) is a positive, bounded function, so

the following operations are justified. The goal in this step is to prove

Claim 3.5.1 (Energy estimate). There exists a positive constant C depending only on

the Heston coefficients and δ0, and there is a positive constant ξ depending only on β

and q, such that

‖ηH(w)‖Lp(H,yβ−1) ≤ C0(R,α)‖H(w)‖L2(supp η,yβ−1),
(3.5.11)

where the constant C0(R,α) is defined by

C0(R,α) := [C|1 + α|](ξ+1)/p
(

1 + ‖√y∇η‖2L∞(H)

)1/p
, (3.5.12)

and the constant ξ is given by

ξ ≡ ξ(p, q) :=
p(q∗ − 1)

p− 2q∗
, (3.5.13)

where q∗ is the conjugate exponent for q in (3.5.3), that is, 1/q + 1/q∗ = 1.

The estimate (3.5.11) will be used in Moser iteration.

Substituting the choice (3.5.9) of v in (3.1.12) and using ∇v = αη2wα−1∇w +

2η∇ηwα gives

0 = a(u, v)− (f, v)L2(O,w)

=
α

2

∫
H
η2wα−1

(
w2
x + 2ρσwxwy + σ2w2

y

)
yw dxdy

+

∫
H
ηwα

(
wxηx + ρσwxηy + ρσwyηx + σ2wyηy

)
yw dxdy

−
∫
H

[
a1wx +

γ

2
(wx + ρσwy) sign(x)

]
η2wαyw dxdy +

∫
H

(ru− f) η2wαw dxdy.
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Using (3.5.10) to compute ∇H(w) = α+1
2 w(α−1)/2∇w, we can rewrite the preceding

equation as

0 =
2α

|1 + α|2

∫
H
η2
[
∂xH(w)2 + 2ρσ∂xH(w)∂yH(w) + σ2∂yH(w)2

]
yw dxdy

+
2

1 + α

∫
H
ηH(w)

[
∂xH(w)ηx + ρσ∂xH(w)ηy + ρσ∂yH(w)ηx + σ2∂yH(w)ηy

]
yw dxdy

− 2

1 + α

∫
H

[
a1∂xH(w) +

γ

2
(∂xH(w) + ρσ∂xH(w)) sign(x)

]
η2H(w)yw dxdy

+

∫
H

(rw + r(m4R − k)− f) η2wαw dxdy.

Using the uniform ellipticity property (3.1.14), Hölder’s inequality, the fact that w ≥ k

by (3.5.6), and the preceding identity, we see that there is a positive constant C,

depending only on the coefficients of the Heston operator, such that∫
H
η2|∇H(w)|2yw dxdy ≤ C|1 + α|

[∫
H

(
η2 + y|∇η|2

)
wα+1w dxdy

+

∫
H
η2|f + r(k −m4R)|wαw dxdy

]
,

and hence∫
H
η2|∇H(w)|2yw dxdy ≤ C|1 + α|

[∫
H

(
η2 + y|∇η|2

)
wα+1w dxdy

+

∫
H
η2 |f + r(k −m4R)|

k
wα+1w dxdy

]
.

(3.5.14)

By Hölder’s inequality, we have∫
H
η2 |f + r(k −m4R)|

k
wα+1w dxdy ≤

(∫
supp η

∣∣∣∣f + r(k −m4R)

k

∣∣∣∣q w dxdy

)1/q

×
(∫

H

∣∣∣ηw(α+1)/2
∣∣∣2q∗ w dxdy

)1/q∗

.

(3.5.15)

From our definition of k in (3.5.5), there is a positive constant C, depending only on

δ0 and β, such that (∫
supp η

∣∣∣∣f + r(k −m4R)

k

∣∣∣∣q w dxdy

)1/q

≤ C. (3.5.16)

From inequalities (3.5.14), (3.5.15) and (3.5.16), we obtain∫
H
η2|∇H(w)|2yw dxdy ≤ C|1 + α|

[∫
H

(
η2 + y|∇η|2

)
wα+1w dxdy

+

(∫
H

∣∣∣ηw(α+1)/2
∣∣∣2q∗ w dxdy

)1/q∗
]
,

(3.5.17)
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where the positive constant C depends on the Heston coefficients and δ0. We apply

Lemma 3.2.1 to ηH(w) and we have∫
H
|ηH(w)|pyβ−1dxdy ≤

(∫
H
η2|H(w)|2yβ−1dxdy

)(p−2)/2 ∫
H
|∇(ηH(w))|2yβdxdy

≤
(∫

H
η2|H(w)|2yβ−1dxdy

)(p−2)/2

×
(∫

H
|∇η|2|H(w)|2yβdxdy + η2|∇H(w)|2yβdxdy

)
.

Combining the preceding inequality with (3.5.17), we obtain∫
H
|ηH(w)|pyβ−1dxdy

≤ C|1 + α|
(∫

H
η2|H(w)|2yβ−1dxdy

)(p−2)/2

×

[∫
H

(
η2 + y|∇η|2

)
|H(w)|2yβ−1dxdy +

(∫
H
|ηH(w)|2q∗yβ−1dxdy

)1/q∗
]
,

and thus∫
H
|ηH(w)|pyβ−1dxdy

≤ C|1 + α|
(

1 + ‖√y∇η‖2L∞(H)

)(∫
supp η

η2|H(w)|2yβ−1dxdy

)p/2
+ C|1 + α|

(∫
H
η2|H(w)|2yβ−1dxdy

)(p−2)/2(∫
H
|ηH(w)|2q∗yβ−1dxdy

)1/q∗

.

(3.5.18)

From our assumption (3.5.3) that q > d+β, we have 2 < 2q∗ < p. Since q <∞ implies

q∗ > 1, while q > d+ β implies

q∗ < (d+ β)/(d+ β − 1), (3.5.19)

and thus 2q∗ < p by (3.1.24). Hence, we may apply the interpolation inequality [41,

Inequality (7.10)], for any ε > 0, to give

‖ηH(w)‖L2q∗ (H,yβ−1) ≤ ε‖ηH(w)‖Lp(H,yβ−1) + ε−ξ‖ηH(w)‖L2(H,yβ−1),

where ξ is given by (3.5.13). We need the preceding inequality in the form(∫
H
|ηH(w)|2q∗yβ−1dxdy

)1/q∗

= ‖ηH(w)‖2
L2q∗ (H,yβ−1)

≤ 2ε2‖ηH(w)‖2Lp(H,yβ−1) + 2ε−2ξ‖ηH(w)‖2L2(H,yβ−1).
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Applying the preceding inequality in (3.5.18), we obtain

‖ηH(w)‖p
Lp(H,yβ−1)

≤ C|1 + α|
(

1 + ‖√y∇η‖2L∞(H)

)
‖H(w)‖p

L2(supp η,yβ−1)

+ C|1 + α|‖ηH(w)‖p−2
L2(supp η,yβ−1)

×(
ε2‖ηH(w)‖2Lp(H,yβ−1) + ε−2ξ‖ηH(w)‖2L2(H,yβ−1)

)
.

Recombining terms, we see that

‖ηH(w)‖p
Lp(H,yβ−1)

≤ C|1 + α|
(

1 + ε−2ξ
)(

1 + ‖√y∇η‖2L∞(H)

)
‖H(w)‖p

L2(supp η,yβ−1)

+ C|1 + α|ε2‖ηH(w)‖2Lp(H,yβ−1)‖ηH(w)‖p−2
L2(H,yβ−1)

.

To bound the last term in the preceding inequality, we apply Young’s inequality with

the conjugate exponents (p/2, p/(p− 2)) to give

‖ηH(w)‖2Lp(H,yβ−1)‖ηH(w)‖p−2
L2(H,yβ−1)

≤ 2

p
‖ηH(w)‖p

Lp(H,yβ−1)
+
p− 2

p
‖ηH(w)‖p

L2(H,yβ−1)
.

Thus,

‖ηH(w)‖p
Lp(H,yβ−1)

≤ C|1 + α|ε2‖ηH(w)‖p
Lp(H,yβ−1)

+ C|1 + α|
(

1 + (ε2 + ε−2ξ)
)(

1 + ‖√y∇η‖2L∞(H)

)
‖H(w)‖p

L2(supp η,yβ−1)
.

By choosing ε = 1/ (2C|1 + α|)1/2 and taking roots of order p, we find that

‖ηH(w)‖Lp(H,yβ−1) ≤ [C|1 + α|](ξ+1)/p
(

1 + ‖√y∇η‖2L∞(H)

)1/p
‖H(w)‖L2(supp η,yβ−1),

which is equivalent to (3.5.11) and (3.5.12).

Step 2 (Moser iteration with negative power). In this step we apply the Moser iteration

technique starting with a suitable α = α0 < −1 in (3.5.11) with functions w in (3.4.2).

Let (ηN )N∈N be the sequence of cut-off functions considered in Step 2 in the proof of

Theorem 3.1.7. Let α0 < −1, p0 := α0 + 1, pN := p0(p/2)N , where p is as in (3.1.24),

and αN + 1 := pN . We notice that pN → −∞ as N increases. Set

I(N) :=

(∫
BRN

|w|pN yβ−1dxdy

)1/pN

.

By applying (3.5.11) with w = u−m4R + k, α = αN−1, and η = ηN , we obtain for all

N ≥ 1,(∫
H
ηpNw

(αN−1+1)p/2yβ−1dxdy

)1/p

≤ C0(R,α)

(∫
H

∣∣∣ηNw(αN−1+1)/2
∣∣∣2 yβ−1dxdy

)1/2

.
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Since (αN−1 +1)p/2 = pN and αN−1 +1 = pN−1, we can write the preceding inequality

as (∫
BN

|w|pN yβ−1dxdy

)1/p

≤ C0(R,α)

(∫
BN−1

|w|pN−1yβ−1dxdy

)1/2

.

Taking roots of order p/pN and noticing that p/pN < 0, we obtain

I(N) ≥ C1(R,N)I(N − 1), (3.5.20)

where C1(R,N) is given by

C1(R,N) := [C|pN−1|](ξ+1)/pN
(

1 + ‖√y∇ηn‖2L∞(H)

)1/pN
.

and C is a positive constant, independent of R and N , depending only on the Heston

coefficients and δ0. From Lemma 3.2.2, the bound on |∇ηN | and the fact that 0 < R < 1,

we obtain

1 + ‖√y∇ηn‖2L∞(H) ≤ cN
6R−2,

for some positive constant c, and so, we may assume without loss of generality

C1(R,N) =
[
C|pN−1|N6

](ξ+1)/pN R−2/pN . (3.5.21)

We notice that ∏
N≥1

C1(R,N) = C2R
4/(|p0|(p−2)) <∞,

where C2 depends at most on the Heston coefficients, δ0 and q. From (3.4.19), we know

that for some constant c > 0 we have |B2R|β−1 ≥ cR4/(p−2). Thus,

∏
N≥1

C1(R,N) ≥ C2|B2R|1/|p0|
β−1 .

By iterating (3.5.20), we obtain I(−∞) ≥ I(0)
∏
N≥1C0(R,N), which gives us

inf
BR

w = I(−∞) ≥ C2

(
1

|B2R|β−1

∫
B2R

|w|p0yβ−1dxdy

)1/p0

. (3.5.22)

Step 3 (Application of Theorem 3.3.1). The purpose of this step is to show that we

may apply Theorem 3.3.1 to w with Sr = B(2+r)R(z0), 0 ≤ r ≤ 1, and ϑ0 = ϑ1 = 1.

By Proposition 3.3.2, we find that w satisfies the inequalities (3.3.2), so it remains to
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show that (3.3.3) holds for logw. For A as defined in (3.3.3) and Sr = B(2+r)R, writing

B(2+r)R in place of B(2+r)R(z0) for brevity, we have by Hölder’s inequality that

A ≤ sup
0≤r≤1

inf
c∈R

(
1

|B(2+r)R|β−1

∫
B(2+r)R

| logw − c|2yβ−1dxdy

)1/2

,

and so, Corollary 3.2.5 gives us

A ≤ sup
0≤r≤1

((2 + r)R)2

(
1

|B(2+r)R|β

∫
B(2+r)R

|∇ logw|2yβdxdy

)1/2

. (3.5.23)

Let η ∈ C1
0 (H̄) be a non-negative cutoff function such that η = 1 on B(2+r)R, η = 0

outside B4R, and |∇η| ≤ C/R2. We choose v = η2/w and notice that v ∈ H1
0 (O∪Γ0,w)

by Lemma B.2.2. With this choice of v as a test function in the variational equation

(3.1.12) satisfied by u, we obtain

(f, v)L2(O,w) = a(u, v)

= −1

2

∫
O

η2

w2

(
w2
x + 2ρσwxwy + σ2w2

y

)
yw dxdy

+

∫
O

η

w

[
wxηx + ρσ(wxηy + wyηx) + σ2wyηy

]
yw dxdy

−
∫

O

η2

w

[
γ sign(x)

2
(wx + ρσwy) + a1wx

]
yw dxdy

+

∫
O
rη2 u

w
w dxdy.

Using the uniform ellipticity property and Hölder’s inequality, we obtain there is a

positive constant C, depending only on the Heston coefficients and δ0, such that∫
O
η2|∇ logw|2yβdxdy ≤ C

∫
O

(|∇η|2 + η2)yβdxdy + C

∫
O
η2 |f |+ |u|

w
yβ−1dxdy.

(3.5.24)

From Lemma 3.2.2, assumption (3.5.1) and the fact that |∇η| ≤ C/R2, we have∫
O

(|∇η|2 + η2)yβdxdy ≤ CR−4R2(d+β)

≤ C ((2 + r)R)−4 |B(2+r)R|β.
(3.5.25)

Using the definition (3.5.5) of k(R) and Hölder’s inequality, we obtain∫
O
η2 |f |+ |u|

w
yβ−1dxdy ≤ 1

‖f‖Lq(B4R,yβ−1)

‖f‖Lq(B4R,yβ−1)R
2(d+β−1)/q∗

+
1

Rδ
R2(d+β−1),
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and thus ∫
O
η2 |f |+ |u|

w
yβ−1dxdy ≤ C

(
R2(d+β−1)/q∗ +R2(d+β−1)−δ

)
. (3.5.26)

The condition q > d+ β implies

2(d+ β − 1)/q∗ − 2(d+ β) > −4, (3.5.27)

since 1/q + 1/q∗ = 1. Also, because δ is chosen in (0, 2), we obviously have

− 2− δ > −4. (3.5.28)

Using (3.5.27) and (3.5.28), and 0 < R ≤ R̄, we obtain in inequality (3.5.26) that there

is a positive constant C, depending only on the Heston coefficients and δ0, such that∫
O
η2 |f |+ |u|

w
yβ−1dxdy ≤ C ((2 + r)R)2(d+β)−4

≤ C ((2 + r)R)−4 |B(2+r)R|β.
(3.5.29)

In the last inequality, we used Lemma 3.2.2 and (3.5.1). By combining equations

(3.5.24), (3.5.25) and (3.5.29), we obtain∫
B(2+r)R

|∇ logw|2yβdxdy ≤ C ((2 + r)R)−4 |B(2+r)R|β.

Then, it immediately follows that the right hand side of (3.5.23) is finite, and so, (3.3.3)

holds for logw.

Step 4 (Proof of inequality (3.1.21)). In the previous step we showed that Theorem

3.3.1 applies to w with ϑ0 = ϑ1 = 1. Hence, there is a constant C > 0, depending only

on the coefficients of the Heston operator and δ0, but independent of R and w, such

that(
1

|B2R|β−1

∫
B2R

|w|yβ−1dxdy

)
≤ C

(
1

|B2R|β−1

∫
B2R

|w|−1yβ−1dxdy

)−1

. (3.5.30)

From (3.5.22), we obtain

inf
BR

w = I(−∞) ≥ C
(

1

|B2R|β−1

∫
B2R

|w|yβ−1dxdy

)
. (3.5.31)
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We now choose w = u − m4R + k and w = M4R − u + k in (3.5.31). By adding the

following two inequalities

mR −m4R + k(R) = inf
BR

(u−m4R + k(R))

≥ C

|B2R|β−1

∫
B2R

(u−m4R + k(R))yβ−1dxdy

≥ C

|B2R|β−1

∫
B2R

(u−m4R)yβ−1dxdy,

M4R −MR + k(R) = inf
B2R

(M4R − u+ k(R))

≥ C

|B2R|β−1

∫
B2R

(M4R − u+ k(R))yβ−1dxdy

≥ C

|B2R|β−1

∫
B2R

(M4R − u)yβ−1dxdy,

we obtain

(M4R −m4R)− (MR −mR) + 2k(R) ≥ C (M4R −m4R) .

Without loss of generality, we may assume C < 1 (if not, we can make C smaller on the

right-hand side of the preceding inequality). Therefore, the the preceding inequality

can be rewritten in the form

osc
BR(z0)

≤ C osc
B4R(z0)

+2k(R). (3.5.32)

Because q ∈ (d + β, s) by (3.5.3) and f ∈ Ls(BR̄(z0),w) for some s > d + β, by

hypothesis in Theorem 3.1.8, Hölder’s inequality yields

‖f‖Lq(B4R,yβ−1) ≤ CR
2(d+β−1) s−q

sq ‖f‖Ls(BR̄,yβ−1).

Let

ν := min

{
δ, 2(d+ β − 1)

s− q
sq

}
.

Consequently, from (3.5.5), we see that there is a positive constant C, depending only

on d = 2 and β, such that

k(R) ≤ C
(
‖f‖Ls(BR̄,yβ−1) + |mR̄|+ |MR̄|

)
Rν . (3.5.33)

Therefore, by applying [41, Lemma 8.23] to (3.5.32) and using the inequality (3.5.33),

we find that there is a positive constant C depending on the coefficients of the Heston
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operator, the constant δ0, ‖f‖Ls(BR̄,yβ−1), and ‖u‖L∞(BR̄), and there is a constant α0 ∈

(0, 1), depending on s, d and β, such that

osc
BR(z0)

≤ CRα0 ,

which is the desired inequality (3.1.21).

Step 5 (Proof of inequality (3.1.22)). We prove the estimate (3.1.22) for points z1, z2 ∈

B̄R(z0), where R satisfies

0 < 8R ≤ min{R̄,dist(z0,Γ1)}, (3.5.34)

where dist(·, ·) is the distance function defined by the Koch metric. Condition (3.5.34)

implies that for any z ∈ BR(z0), we have that (3.5.1) holds for BR(z), and so estimate

(3.1.21) applies on such balls. In particular, for any points (x1, y1), (x1, 0), (x2, 0) ∈

B̄R(z0), the estimate (3.1.21) gives

|u(x1, y1)− u(x1, 0)| ≤ Cd ((x1, y1), (x1, 0))α0 ,

|u(x1, 0)− u(x2, 0)| ≤ Cd ((x1, 0), (x2, 0))α0 .

(3.5.35)

Notice that we have the simple identities

d ((x1, y1), (x1, 0)) =
√
y1/2,

d ((x1, 0), (x2, 0)) =
√
|x1 − x2|,

(3.5.36)

and so, we can rewrite (3.5.35) in the form

|u(x1, y1)− u(x1, 0)| ≤ C|y1|α0/2,

|u(x1, 0)− u(x2, 0)| ≤ C|x1 − x2|α0/2.

(3.5.37)

The idea of inequality (3.1.22) the proof now follows [20, Corollary I.9.7 & Theorem

I.9.8], but with certain differences which we outline for clarity. Let ε ∈ (0, 1/8) be fixed

and consider the following two cases.

Case 3 (Pairs of points in BR(z0) obeying (3.5.38)). Let zi = (xi, yi) ∈ BR(z0), i = 1, 2,

be such that

‖z1 − z2‖ ≥ ε(y2
1 + y2

2). (3.5.38)
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From (3.5.2), we can find a positive constant C such that

|x1 − x2| ≤ Cd(z1, z2). (3.5.39)

Using our current assumption (3.5.38), in addition to (3.5.2), we also have

d(z1, z2) ≥ εCy2
i , i = 1, 2,

and so, there exists a positive constant C, depending on ε, such that

yi ≤ Cd(z1, z2)1/2, i = 1, 2. (3.5.40)

Denote z′i = (xi, 0), for i = 1, 2. Applying (3.5.39) and (3.5.40) in (3.5.37), we obtain

|u(zi)− u(z′i)| ≤ Cd(z1, z2)α0/4, i = 1, 2,

|u(z′1)− u(z′2)| ≤ Cd(z1, z2)α0/2,

and hence, using (3.5.2),

|u(z1)− u(z2)| ≤ |u(z1)− u(z′1)|+ |u(z′1)− u(z′2)|+ |u(z2)− u(z′2)|

≤ Cd(z1, z2)α0/4,

that is,

|u(z1)− u(z2)| ≤ Cd(z1, z2)α0/4. (3.5.41)

This concludes the proof of Case 3. Therefore, the estimate (3.1.22) holds in the special

case ‖z1 − z2‖ ≥ ε(y2
1 + y2

2).

Case 4 (Pairs of points in BR(z0) obeying (3.5.42)). Now we consider points zi =

(xi, yi) ∈ BR(z0), i = 1, 2, such that

‖z1 − z2‖ < ε(y2
1 + y2

2). (3.5.42)

By scaling and using interior Hölder estimates [41, Theorem 8.22], we show that the

estimate (3.1.22) also holds in this case. We proceed by analogy with the proofs of [20,

Theorems I.9.1–4 & Corollary I.9.7]. We may assume without loss of generality that

1 > y2 ≥ y1 and x2 = 0. (3.5.43)
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We consider the function v defined by rescaling,

u(x, y) =: v

(
1

a
(x, y)

)
.

The rescaling z 7→ z′ = z/a maps By2/2(z2) into B1/2(z′2). From our assumptions

(3.5.2), (3.5.42) and the choice of ε ∈ (0, 1/8), we see that

‖z′1 − z′2‖ ≤ 2εy2 < 1/4, (3.5.44)

and so z′1 ∈ B1/4(z′2). From [18, Theorem 5.10], we know that u ∈ H2
loc(BR̄(z0)), and

so by direct calculation, we conclude that v(z′) solves

Ãv(z′) = af(az′) on B1/2(z′2),

where we define

(Ãv)(z′) :=
1

2
y′
(
vxx + 2ρσvxy + σ2vyy

)
(z′) + (r − q − ay′/2)vx(z′)

+ κ(ϑ− ay′)vy(z′)− arv(z′).

On the ball B1/2(z′2), the operator Ã is uniformly elliptic with bounded coefficients.

Moreover, there is a positive constant M , depending only on the coefficients of the He-

ston operator, such that for all a ∈ (0, 1), M is a uniform bound on the L∞(B1/2(z′2))-

norm of the coefficients of Ã. For brevity, we denote fa(z
′) := af(az′). By [41, The-

orem 8.22], there are positive constants C and α0 ∈ (0, 1), depending only on the

L∞(B1/2(z′2))-bounds of the coefficients, such that

osc
BR(z′2)

v ≤ CRα0

(
‖v‖L∞(B1/2(z′2)) + ‖fa‖Ls(B1/2(z′2))

)
, ∀R ∈ (0, 1/2], (3.5.45)

because s was assumed to satisfy s > 2d (recall that d = 2). We see that

‖v‖L∞(B1/2(z′2)) = ‖u‖L∞(By2/2(z2)) ≤ ‖u‖L∞(BR̄(z0)), (3.5.46)

where we used the fact that By2/2(z2) ⊆ BR̄(z0), which in turn follows from the re-

quirement 4R ≤ R̄ in the hypotheses of Theorem 3.1.8. We also have

‖fa‖sLs(B1/2(z′2)) =

∫
B1/2(z′2)

|af(az′)|sdz′ =
∫
By2/2(z2)

|f(z)|sas−ndz,
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that is,

‖fa‖sLs(B1/2(z′2)) =

∫
By2/2(z2)

|f(z)|sas−ndz. (3.5.47)

Using the fact that y2/2 ≤ y ≤ 3y2/2 for all z = (x, y) ∈ By2/2(z2), assumption (3.5.2),

and the fact that s > d+β by hypothesis of Theorem 3.1.8, the estimate (3.5.47) yields

‖fa‖sLs(B1/2(z′2)) ≤ C
∫
BR̄(z0)

|f(z)|syβ−1dz, (3.5.48)

where C is a positive constant depending only on β. Applying (3.5.46) and (3.5.48) in

(3.5.45) yields

osc
BR(z′2)

v ≤ CRα0
(
‖u‖L∞(BR̄(z0)) + ‖f‖Ls(BR̄(z0))

)
, ∀R ∈ (0, 1/2].

In particular, because z′1 ∈ B1/2(z′2), we see that

|v(z′1)− v(z′2)| ≤ C‖z′1 − z′2‖α0 ,

where the positive constant C now depends on ‖u‖L∞(B4R̄(z0)) and ‖f‖Ls(B4R̄(z0),w). By

rescaling back, we obtain

|u(z1)− u(z2)| ≤ C
(
‖z1 − z2‖

y2

)α0

. (3.5.49)

Using the following sequence of inequalities,

‖z1 − z2‖2/y2
2

d(z1, z2)
≤ ‖z1 − z2‖2

y2
2

√
y1 + y2 + ‖z1 − z2‖
‖z1 − z2‖

=
‖z1 − z2‖

y2
2

√
y1 + y2 + ‖z1 − z2‖

≤ 2ε
√
y1 + y2 + ‖z1 − z2‖

≤ 1 (by (3.5.2) and ε ∈ (0, 1/8)),

we therefore have

‖z1 − z2‖
y2

≤ d(z1, z2)1/2. (3.5.50)

Consequently, (3.5.49) gives us

|u(z1)− u(z2)| ≤ Cd(z1, z2)α0/2.

This concludes the proof of Case 4.
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By combining Cases 3 and 4, we find that, for any z1, z2 ∈ BR(z0) and R satisfying

(3.5.1), (3.5.2) and (3.5.34) (see Remark 3.5.4 regarding the expressions for the upper

bound for R in the hypotheses of Theorem 3.1.8), we have

|u(z1)− u(z2)| ≤ Cd(z1, z2)α0 , (3.5.51)

where C and α0 are constants with the dependencies stated in Theorem 3.1.8. Notice

that this inequality is not as strong as the inequality (3.1.22), which holds for all z1, z2 ∈

BR̄(z0). To obtain the latter inequality, we need to examine the Hölder continuity at

corner points, z0 ∈ Γ̄0 ∩ Γ̄1, which we carry out in the proof below. In Remark 3.5.2,

we then explain how (3.1.22) is obtained.

3.5.2 Hölder continuity on neighborhoods of corner points

We conclude this section with the

Proof of Theorem 3.1.8 for points in Γ̄0 ∩ Γ̄1. Suppose z0 ∈ Γ̄0∩Γ̄1. We assume (3.5.2)

holds.

First, we describe a reduction argument to non-positive source functions f . Since f

is assumed to satisfy the hypotheses of [18, Theorem 3.16], we notice that the positive

f+ and negative f− parts of f obey also these hypotheses. Then, let u+ and u− be

the unique solutions in H1
0 (O ∪ Γ0,w) to the variational equation (3.1.16) with source

functions f+ and f−, respectively. By linearity of a(·, v), for any v ∈ H1
0 (O ∪ Γ0,w)

fixed, u = u+−u− is the unique solution to the variational equation (3.1.16) with source

function f given by [18, Theorem 3.16]. Moreover, we notice that by our hypothesis we

have

f+, f− ∈ Ls(BR̄(z0),w),

and so, it is sufficient to prove (3.1.21) and the Hölder continuity property for u+ and

u−.

Therefore, without loss of generality, we may assume

f ≤ 0 on O, (3.5.52)
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which implies that

u ≤ 0 on O, (3.5.53)

by [18, Corollary 3.19]. From the standard theory of non-degenerate elliptic partial

differential equations (for example, [41, Theorem 8.30]), we know u ∈ C(B̄R̄(z0) ∩ H)

and u = 0 along the piece of the boundary ∂BR̄(z0) ∩ Γ1. Therefore, we have

osc
BR(z0)

u = −mR.

Our proof uses the same method as in the case of points in Γ0 but a choice of w which

is different from that of (3.4.2), and a choice of test function v which is different from

that of (3.5.9). Moreover, we do not need to appeal to the John-Nirenberg inequality.

Since z0 ∈ Γ̄0 ∩ Γ̄1, however, it is important to make the distinction between BR(z0)

and BR(z0). Let k ≡ k(R) be defined as in (3.5.5). Therefore, we now define w on

B4R(z0) by

w(z) := k +


u(z)−m4R, z ∈ B4R(z0) ∩B4R(z0),

−m4R, z ∈ B4R(z0)\B4R(z0).

(3.5.54)

Recall that we may assume without loss of generality that (3.5.7) and (3.5.8) hold. In

the present situation, since M4R = 0, (3.5.7) becomes

m4R 6= 0. (3.5.55)

Let α < 0 such that α 6= −1, and let η be a smooth cutoff function such that supp η ⊆

B4R(z0). We now define

v := η2 (wα − (k −m4R)α) . (3.5.56)

We notice that v is a well-defined function, for any choice of α ∈ R, by (3.5.55) and

(3.5.8). By Lemma B.2.3, v ∈ H1
0 (O ∪ Γ0,w) is a valid test function in (3.1.12). We

observe that the function w obeys

k ≤ w ≤ k −m4R on B4R(z0),

and, because α is non-positive, we also have

kα ≥ wα ≥ (k −m4R)α on B4R(z0).
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Steps 1 and 2 in the the proof of Theorem 3.1.8 for points in Γ0 apply to our current

choice of w for points in Γ̄0 ∩ Γ̄1, with the only exception that we now define I(N) by

I(N) :=

(∫
BRN
|w|pN yβ−1dxdy

)1/PN

.

Therefore, we obtain the analogue of (3.5.22),

inf
BR
w = I(−∞) ≥ C

(
1

|B2R|β−1

∫
B2R

|w|p0yβ−1dxdy

)1/p0

≥ C

(
1

|B2R|β−1

∫
B2R\B2R

|w|p0yβ−1dxdy

)1/p0

.

Recall that w = k −m4R ≥ −m4R on the set B2R\B2R. Using

inf
BR
w = k +mR −m4R,

and combining the preceding inequalities yields

k(R) +mR −m4R ≥ C
(
|B2R\B2R|β−1

|B2R|β−1

)1/p0

(−m4R)

≥ C(−m4R),

that is,

k(R) +mR −m4R ≥ C(−m4R). (3.5.57)

Indeed, (3.5.57) follows because Assumption 3.1.2 implies

|B2R\B2R|β−1

|B2R|β−1
≥ 1/2.

We rewrite (3.5.57), using oscBR(z0) u = −mR, as

osc
BR(z0)

u ≤ C osc
B4R(z0)

u+ k(R),

where C ∈ (0, 1) is a constant independent of R. Just as in the proof of Theorem 3.1.8

for the case of points in Γ0, we can apply [41, Lemma 8.23] to conclude that (3.1.21)

holds for some positive constants C and α0 ∈ (0, 1), that is,

|u(z)− u(z0)| ≤ Cd(z, z0)α0 , ∀z ∈ BR(z0). (3.5.58)

To establish (3.1.22), we proceed as in the proof of Theorem 3.1.8 for the case of points

in Γ0. In order to adapt the argument for the case of points in Γ0 to points in Γ̄0∩Γ̄1, we
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need analogues of the inequalities (3.5.35) to hold in a neighborhood in O of z0 ∈ Γ̄0∩Γ̄1.

Given these analogues of the inequalities (3.5.35), we can apply the same argument as

used in the Step 5 of the the proof of Theorem 3.1.8 for the case of points in Γ0, but

instead of applying [41, Theorem 8.22], we now apply [41, Theorem 8.27]. As before,

we assume (3.5.34) holds.

Without loss of generality, we may assume z0 = (0, 0). Let z1 = (x1, 0), z2 = (x2, 0),

z3 = (x, y) and z4 = (x, 0) be points in B̄R(z0). We may assume x2 ≥ x1 and x, x1, x2 ≥

0. We claim that the following analogues of the inequalities (3.5.35) (for points z0 ∈ Γ0)

hold for points z0 ∈ Γ̄0 ∩ Γ̄1,

|u(z1)− u(z2)| ≤ Cd(z1, z2)α0 ,

|u(z3)− u(z4)| ≤ Cd(z3, z4)α0 ,

(3.5.59)

for some positive constant C and α0 ∈ (0, 1). For the first inequality in (3.5.59), we

consider two cases.

Case 1 (Points z1, z2 ∈ B̄R(z0) obeying (3.5.60)). If

d(z1, z2) ≥ 1

8
max {d(z1, z0),d(z2, z0)} , (3.5.60)

then we have

|u(z1)− u(z2)| ≤ |u(z1)− u(z0)|+ |u(z2)− u(z0)|

≤ Cd(z1, z0)α0 + Cd(z2, z0)α0 (by (3.5.58))

≤ Cd(z1, z2)α0 (by (3.5.60)),

and so the first inequality in (3.5.59) holds in this case.

Case 2 (Points z1, z2 ∈ B̄R(z0) obeying (3.5.61)). If

d(z1, z2) ≤ 1

8
max {d(z1, z0),d(z2, z0)} , (3.5.61)

then, by applying (3.5.51) on the ball BR̃(z2) with R̃ = d(z1, z2), we again obtain the

first inequality in (3.5.59).

Next, we consider the second inequality in (3.5.59). By (3.5.36), we have

d(z3, z4) =
√
y/2 and d(z4, z0) =

√
x. (3.5.62)

As in the proof of the first inequality in (3.5.59), we consider two possible cases.



126

Case 1 (Points z3, z4 ∈ B̄R(z0) obeying (3.5.63)). If

x ≥ 32y, (3.5.63)

then, by (3.5.62), we have d(z3, z4) ≤ 1/8d(z4, z0). We may apply (3.5.51) on the ball

BR̃(z4) with R̃ = d(z3, z4), and we obtain the second inequality in (3.5.59).

Case 2 (Points z3, z4 ∈ B̄R(z0) obeying (3.5.64)). If

x < 32y, (3.5.64)

then we have d(z4, z0) ≤ 8d(z3, z4). Also, a direct calculation gives us d(z3, z0) ≤

Cd(z3, z4), for some positive constant C.By (3.5.58), we obtain

|u(z3)− u(z4)| ≤ |u(z3)− u(z0)|+ |u(z4)− u(z0)|

≤ Cd(z3, z0)α0 + Cd(z4, z0)α0

≤ Cd(z3, z4)α0 ,

and we obtain the second inequality in (3.5.59).

The proof of (3.5.59) is complete. We may now conclude, by applying the same

argument as in Step 5 of the the proof of Theorem 3.1.8 for the case of points in Γ0,

that for any z1, z2 ∈ BR̄(z0), we have

|u(z1)− u(z2)| ≤ Cd(z1, z2)α0 , (3.5.65)

where C and α0 are constants satisfying the dependencies stated in Theorem 3.1.8.

This completes the proof of Theorem 3.1.8 for the case of points in Γ̄0 ∩ Γ̄1.

Remark 3.5.2 (Completion of the proof of Theorem 3.1.8 for the case of points in Γ0).

Notice that the inequality (3.5.51) is slightly weaker than (3.1.22), because it applies to

points z1, z2 ∈ BR(z0), where R is required to satisfy assumptions (3.5.1), (3.5.2) and

(3.5.34), instead of allowing R = R̄. To obtain (3.1.22), all we need to notice is that

(3.5.51) and (3.5.65) imply that u is Cα0
s,loc-Hölder continuous on BR̄(z0)∩

(
Γ̄0 × [0, R̃]

)
,

where R̃ is small enough so that it satisfies assumptions (3.5.1), (3.5.2) and (3.5.34). For

y ≥ R̃, A is a uniformly elliptic operator with bounded coefficients, so [41, Theorems

8.22 & 8.29] apply and we see that u is Hölder continuous on BR̄(z0) ∩ {y ≥ R̃}.

Therefore, the inequality (3.1.22) follows.
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Remark 3.5.3. Hölder continuity of solutions does not follow by a Sobolev embedding-

type theorem for weighted spaces, analogous to [41, Corollary 7.11], not even for func-

tions u ∈ H2(O,w). For example, for any β > 2, let p ∈ (0, (β − 2)/2) and

u(x, y) = y−p, ∀(x, y) ∈ O.

Then, u ∈ H2(O,w), but u /∈ Cαs,loc(O ∪ Γ0), for any α ∈ [0, 1].

Remark 3.5.4 (Relaxation of the Assumption 3.1.2 on O near Γ0). As in Remark

3.4.2, we notice that in the proof of Theorem 3.1.8 for the case of points in Γ̄0 ∩ Γ̄1,

we can weaken the conditions on O embodied in Assumption 3.1.2 to an “interior and

exterior sphere condition”. That is, for points z0 ∈ Γ̄0 ∩ Γ̄1, it is enough to assume

that there exist positive constants c0 and R0 such that for all 0 < R < R0 we have, in

addition to (3.4.21), that

c−1
0 |BR(z0)|β−1 ≤ |BR(z0)\BR(z0)|β−1 ≤ c0|BR(z0)|β−1. (3.5.66)

3.6 Harnack inequality

In this section, we prove Theorem 3.1.10, that is, the Harnack inequality for solutions

u ∈ H1
0 (O ∪ Γ0,w) to the variational equation (3.1.16). The key differences from the

proof of the classical Harnack inequality for weak solutions to non-degenerate elliptic

equations [41, Theorem 8.20] are essentially those which we already outlined in §3.5

and the proof follows the same pattern as that of Theorem 3.1.8. Therefore, we only

point out the major steps in the proof of Theorem 3.1.10, as the details were explained

in the preceding sections. We now proceed to the

Proof of Theorem 3.1.10. For clarity, we split the proof into principal steps.

Step 1 (Energy estimates). Let η ∈ C1
0 (H̄) be a non-negative cutoff function with

support in B̄4R(z0). Let ε > 0 and

w = u+ ε. (3.6.1)

We consider α ∈ R, α 6= −1. We set H(w) = w(α+1)/2 and

v = η2wα. (3.6.2)
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Then, v ∈ H1
0 (O ∪ Γ0,w) is a valid test function in (3.1.12) by Lemma B.2.4. By

applying the same arguments as in the proofs of Theorem 3.1.7 and Theorem 3.1.8, we

obtain the following analogous energy estimate to (3.4.3) and (3.5.11), respectively(∫
|ηH(w)|pyβ−1dxdy

)1/p

≤ (C|1 + α|)1/p ‖√y∇η‖2/pL∞(H)

(∫
supp η

|H(w)|2yβ−1dxdy

)1/p

,

(3.6.3)

where C is independent of ε, and depends only on the coefficients of the Heston operator

and δ0.

Step 2 (Moser iteration). By applying Moser iteration as described in the proofs of

Theorem 3.1.7, for α > 0, and of Theorem 3.1.8, for α < 0, we obtain

sup
BR(z0)

w ≤ C

(
1

|B2R(z0)|β−1

∫
B2R(z0)

w2yβ−1dxdy

)1/2

,

inf
BR(z0)

w ≥ C−1

(
1

|B2R(z0)|β−1

∫
B2R(z0)

w−2yβ−1dxdy

)−1/2

,

(3.6.4)

where C satisfies the same dependencies as the constant in (3.6.3).

Step 3 (Application of Theorem 3.3.4). In this step, we verify that w satisfies the

requirements of the abstract John-Nirenberg inequality (Theorem 3.3.1) with ϑ0 =

ϑ1 = 2 with Sr = B(2+r)R, 0 ≤ r ≤ 1. By Proposition 3.3.2, we obtain that w satisfies

condition (3.3.2) of Theorem 3.3.1. Therefore, it remains to verify condition (3.3.3),

which follows in precisely the same way as in the proof of Theorem 3.1.8.

Step 4 (Proof of (3.1.23)). Because w satisfies the conditions of Theorem 3.3.1 by the

preceding step, there is a positive constant C, independent of ε, such that(
1

|B2R(z0)|β−1

∫
B2R(z0)

w2yβ−1dxdy

)1/2

≤ C

(
1

|B2R(z0)|β−1

∫
B2R(z0)

w−2yβ−1dxdy

)−1/2

.

(3.6.5)

Thus, combining inequalities (3.6.4) and (3.6.5) and recalling that w = u+ε, we obtain

sup
BR(z0)

(u+ ε) ≤ C inf
BR(z0)

(u+ ε),
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for all ε > 0. Taking the limit as ε ↓ 0, we obtain the desired Harnack inequality

(3.1.23).

This completes the proof.
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Chapter 4

Stochastic representation of solutions

4.1 Introduction

Since its discovery by Mark Kac [46], inspired in turn by the doctoral dissertation of

Richard Feynman [33], the Feynman-Kac (or stochastic representation) formula has

provided a link between probability theory and partial differential equations which has

steadily deepened and developed during the intervening years. Moreover, judging by

continuing interest in its applications to mathematical finance [48] and mathematical

physics [56, 67], including non-linear parabolic equations [17], this trend shows no

sign of abating. However, while stochastic representation formulae for solutions to

linear, second-order elliptic and parabolic boundary and obstacle problems are well

established when the generator, −A, of the Markov stochastic process is strictly elliptic

[8, 40, 47, 61] in the sense of [41, p. 31], the literature is far less complete when A is

degenerate elliptic, that is, only has a non-negative definite characteristic form in the

sense of [62], and its coefficients are unbounded.

In this chapter, we prove stochastic representation formulae for solutions to an

elliptic boundary value problem,

Au = f on O, (4.1.1)

and an elliptic obstacle problem,

min{Au− f, u− ψ} = 0 on O, (4.1.2)

respectively, subject to a partial Dirichlet boundary condition,

u = g on Γ1. (4.1.3)
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Here, f : O → R is a source function, the function g : Γ1 → R prescribes a Dirichlet

boundary condition along Γ1 and ψ : O ∪ Γ1 → R is an obstacle function which is

compatible with g in the sense that

ψ ≤ g on Γ1, (4.1.4)

while A is the Heston operator in (3.1.2), and its coefficients satisfy Assumption 3.1.1.

We require Γ0 to be non-empty throughout this chapter as, otherwise, if O is bounded,

then standard results apply [8, 40, 47, 61]. However, an additional boundary condition

is not necessarily prescribed along Γ0. Rather, we shall see that our stochastic repre-

sentation formulae will provide the unique solutions to (4.1.1) or (4.1.2), together with

(4.1.3), when we seek solutions which are suitably smooth up to the boundary portion

Γ0, a property which is guaranteed when the solutions lie in certain weighted Hölder

spaces (by analogy with [20]), or replace the boundary condition (4.1.3) with the full

Dirichlet condition,

u = g on ∂O, (4.1.5)

in which case the solutions are not guaranteed to be any more than continuous up to

Γ0 and ψ : Ō → R is now required to be compatible with g in the sense that,

ψ ≤ g on ∂O. (4.1.6)

We also prove stochastic representation formulae for solutions to a parabolic termi-

nal/boundary value problem,

− ut +Au = f on Q, (4.1.7)

and a parabolic obstacle problem,

min{−ut +Au− f, u− ψ} = 0 on Q, (4.1.8)

respectively, subject to the partial terminal/boundary condition,

u = g on ð1Q. (4.1.9)

Here, we define Q := (0, T )× O, where 0 < T <∞, and define

ð1Q := (0, T )× Γ1 ∪ {T} × (O ∪ Γ1) , (4.1.10)
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to be a subset of the parabolic boundary of Q, and now assume given a source function

f : Q→ R, a Dirichlet boundary data function g : ð1Q→ R, and an obstacle function

ψ : Q ∪ ð1Q→ R which is compatible with g in the sense that,

ψ ≤ g on ð1Q. (4.1.11)

Just as in the elliptic case, we shall either consider solutions which are suitably smooth

up to (0, T )×Γ0, but impose no explicit Dirichlet boundary condition along (0, T )×Γ0,

or replace the boundary condition in (4.1.9) with the full Dirichlet condition

u = g on ðQ, (4.1.12)

where

ðQ := (0, T )× ∂O ∪ {T} × Ō, (4.1.13)

is the full parabolic boundary of Q, in which case the solutions are not guaranteed to

be any more than continuous up to (0, T )× Γ0 and ψ : Q∪ ðQ→ R is now compatible

with g in the sense that

ψ ≤ g on ðQ. (4.1.14)

Before giving a detailed account of our main results, we summarize a few applications.

4.1.1 Applications

In mathematical finance, a solution, u, to the elliptic obstacle problem (4.1.2), (4.1.3),

when f = 0, can be interpreted as the value function for a perpetual American-style

option with payoff function given by the obstacle function, ψ, while a solution, u,

to the corresponding parabolic obstacle problem (4.1.8), (4.1.9), when f = 0, can be

interpreted as the value function for a finite-maturity American-style option with payoff

function given by a terminal condition function, h = g(T, ·) : O → R, which typically

coincides on {T} × O with the obstacle function, ψ. For example, in the case of an

American-style put option, one chooses ψ(x, y) = (E − ex)+, ∀(x, y) ∈ O, where E > 0

is a positive constant. While solutions to (4.1.1), (4.1.3) do not have an immediate

interpretation in mathematical finance, a solution, u, to the corresponding parabolic

terminal/boundary value problem (4.1.7), (4.1.9), when f = 0, can be interpreted as
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the value function for a European-style option with payoff function given by the terminal

condition function, h. For example, in the case of a European-style put option, one

chooses h(x, y) = (E − ex)+, ∀(x, y) ∈ O.

Stochastic representation formulae underly Monte Carlo methods of numerical com-

putation of value functions for option pricing in mathematical finance [42]. As is well-

known to practitioners, the question of Monte Carlo simulation of solutions to the

Heston stochastic differential equation is especially delicate [3, 55]. We hope that our

work sheds further light on these issues.

4.1.2 Summary of main results

Recall the definition of the Heston operator, −A, in (3.1.2), and the Assumption 3.1.1 on

its coefficients. In this chapter, we allow q, r ∈ R, and we impose additional conditions,

such as q ≥ 0, r ≥ 0, or r > 0, depending on the problem under consideration. 1

Let (Ω,F ,F,Q) be a filtered probability space satisfying the usual conditions,

where F = {F (s)}s≥0 is the Q-completion of the natural filtration of (W (s))s≥0, and

(W (s))s≥0 is a standard Brownian motion with values in R2. For 0 ≤ t < T < ∞, let

Tt,T denote the set of F-stopping times with values in [t, T ]. Let (Xt,x,y(s), Y t,y(s))s≥t

denote a continuous version of the strong solution to the Heston stochastic differential

equation

dX(s) =

(
r − q − Y (s)

2

)
ds+

√
Y (s) dW1(s), s > t,

dY (s) = κ (ϑ− Y (s)) ds+ σ
√
Y (s)

(
ρ dW1(s) +

√
1− ρ2 dW2(s)

)
, s > t,

(X(t), Y (t)) = (x, y),

(4.1.15)

which exists by Corollary 4.2.8, where the coefficients are as in Assumption 3.1.1. For

brevity, we sometimes denote z = (x, y) and (Zt,z(s))s≥t = (Xt,x,y(s), Y t,y(s))s≥t. We

omit the superscripts (t, z) and (t, x, y) when the initial condition is clear from the

context, or we omit the superscript t when t = 0.

1We only require that q ≥ 0 when deriving the supermartingale property in Lemma 4.2.11 (1), a
property used only in the elliptic case. We require r > 0 to ensure that the stochastic representations
are well-defined, only in the elliptic case.
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Existence and uniqueness of solutions to elliptic boundary value problems

We shall often appeal to the following

Hypothesis 4.1.1 (Growth condition). If v is a function then, for all (x, y) in its

domain of definition,

|v(x, y)| ≤ C(1 + eM1y + eM2x), (4.1.16)

where C > 0, 0 ≤M1 < min {r/ (κϑ) , µ}, and M2 ∈ [0, 1).

Let U j H be an open set. We denote

τ t,zU := inf
{
s ≥ t : Zt,z(s) /∈ U

}
, (4.1.17)

and we let

νt,zU := inf
{
s ≥ t : Zt,z(s) /∈ U ∪

(
Ū ∩ ∂H

)}
. (4.1.18)

Notice that if Ū ∩ ∂H = ∅, then τ t,zU = νt,zU . We also have that τ t,zU = νt,zU when β ≥ 1,

because in this case the process Zt,z does not reach the boundary ∂H, by Lemma 4.2.10

(1). By [61, p. 117], both τ t,zU and νt,zU are stopping times with respect to the filtration

F, since F is assumed to satisfy the usual conditions. When the initial condition, (t, z),

is clear from the context, we omit the superscripts in the preceding definitions (4.1.17)

and (4.1.18) of the stopping times. Also, when t = 0, we omit the superscript t in the

preceding definitions.

Theorem 4.1.2 (Uniqueness of solutions to the elliptic boundary value problem). Let

r > 0, q ≥ 0, and f be a Borel measurable function2 on O which obeys the growth

condition (4.1.16) on O. Then

1. If β ≥ 1, assume g ∈ Cloc(Γ1) obeys (4.1.16). Let

u ∈ Cloc(O ∪ Γ1) ∩ C2(O)

be a solution to the elliptic boundary value problem (4.1.1), (4.1.3) and which

obeys (4.1.16) on O. Then, u = u∗ on O ∪ Γ1, where

u∗(z) := EzQ
[
e−rτOg(Z(τO))1{τO<∞}

]
+ EzQ

[∫ τO

0
e−rsf(Z(s)) ds

]
, (4.1.19)

2We require f to be Borel measurable in order to ensure that expectations such as that in (4.1.19)
are well-defined.
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where τO is defined by (4.1.17), for all z ∈ O ∪ Γ1.

2. If 0 < β < 1, assume g ∈ Cloc(∂O) obeys (4.1.16) on ∂O, and let u ∈ Cloc(Ō) ∩

C2(O) be a solution to the elliptic boundary value problem (4.1.1), (4.1.5) and

which obeys (4.1.16) on O. Then, u = u∗ on Ō, where u∗ is given by (4.1.19).

Remark 4.1.3 (Existence of solutions to the elliptic boundary value problem with

traditional Hölder regularity). Existence of solutions

u ∈ Cloc(Ō) ∩ C2+α(O)

to problem (4.1.1) with boundary condition g ∈ Cloc(∂O) in (4.1.5) and source function

f ∈ Cα(O), when 0 < β < 1, and of solutions

u ∈ Cloc(O ∪ Γ1) ∩ C2+α(O)

with boundary condition g ∈ Cloc(Γ̄1) in (4.1.3) and source function f ∈ Cα(O), when

β ≥ 1, is proved in Theorem 4.3.1. See also the comments preceding problem (4.3.2).

Remark 4.1.4 (Existence of solutions with Daskalopoulos-Hamilton-Köch Hölder reg-

ularity). Ideally, the solutions to the elliptic boundary value problem (4.1.1), (4.1.3)

described in Remark 4.1.3 would actually lie in Cloc(Ō)∩C2+α
s (O) for all β > 0, where

C2+α
s (O) is an elliptic analogue of the parabolic Daskalopoulos-Hamilton-Köch Hölder

spaces described in [20, 50]. A function u ∈ C2+α
s (O) has the property that u,Du, yD2u

are Cαs continuous up to Γ0 and yD2u = 0 on Γ0, where Cαs (O) is defined by analogy

with the traditional definition of Cα(O), except that Euclidean distance between points

in O is replaced by the cycloidal distance function.

We let C1,1
s,loc(O ∪Γ0) denote the subspace of C2

loc(O ∪Γ0) consisting of functions, u,

such that, for any precompact open subset U b O ∪ Γ0,

sup
(x,y)∈U

|u(x, y)|+ |Du(x, y)|+ |yD2u(x, y)| <∞, (4.1.20)

where Du denotes the gradient and D2u the Hessian matrix of u.
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Theorem 4.1.5 (Uniqueness of solutions to the elliptic boundary value problem (4.1.1),

(4.1.3), when 0 < β < 1). Let r > 0, q ≥ 0, 0 < β < 1, and let f be as in Theorem

4.1.2. Let g ∈ Cloc(Γ1) obey (4.1.16) on Γ1 and suppose that

u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩ C1,1
s,loc(O ∪ Γ0)

is a solution to the elliptic boundary value problem (4.1.1), (4.1.3) which obeys (4.1.16)

on O. Then, u = u∗ on O ∪ Γ1, where u∗ is given by

u∗(z) := EzQ
[
e−rνOg(Z(νO))1{νO<∞}

]
+ EzQ

[∫ νO

0
e−rsf(Z(s)) ds

]
, (4.1.21)

and νO is defined by (4.1.18), for all z ∈ O ∪ Γ1.

Remark 4.1.6 (Existence and uniqueness of strong solutions in weighted Sobolev

spaces to the elliptic boundary value problem). Existence and uniqueness of strong

solutions in weighted Sobolev spaces to problem (4.1.1) with boundary condition (4.1.3)

along Γ1, for all β > 0, is proved in [18, Theorem 1.18], and Hölder continuity of such

solutions up to Γ0 is proved in [31, Theorem 1.10].

Remark 4.1.7 (Comparison of uniqueness results). To obtain uniqueness of solutions

to the elliptic boundary value problem (4.1.1) with boundary condition (4.1.3) only

specified along Γ1, we need to assume the stronger regularity hypothesis

u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩ C1,1
s,loc(O ∪ Γ0)

when 0 < β < 1, while the regularity assumption

u ∈ Cloc(O ∪ Γ1) ∩ C2(O)

suffices when β ≥ 1. The analogous comments apply to the elliptic obstacle problems

described in Theorems 4.1.8 and 4.1.9, the parabolic terminal/boundary value problems

described in Theorems 4.1.12 and 4.1.15, and the parabolic obstacle value problems

described in Theorems 4.1.19 and 4.1.20.
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Uniqueness of solutions to elliptic obstacle problems

For θ1, θ2 ∈ T , we set

Jθ1,θ2e (z) := EzQ
[∫ θ1∧θ2

0
e−rsf(Z(s)) ds

]
+ EzQ

[
e−rθ1g(Z(θ1))1{θ1≤θ2}

]
+ EzQ

[
e−rθ2ψ(Z(θ2))1{θ2<θ1}

]
.

(4.1.22)

We then have the

Theorem 4.1.8 (Uniqueness of solutions to the elliptic obstacle problem). Let r > 0,

q ≥ 0, and f be as in Theorem 4.1.2, and ψ be a Borel measurable function satisfying

(4.1.16) on O.

1. If β ≥ 1, let ψ ∈ Cloc(O ∪ Γ1) and g ∈ Cloc(Γ1) obey (4.1.16) and (4.1.4) on Γ1.

Let

u ∈ Cloc(O ∪ Γ1) ∩ C2(O)

be a solution to the elliptic obstacle problem (4.1.2), (4.1.3) such that u and Au

obey (4.1.16) on O. Then, u = u∗ on O ∪ Γ1, where u∗ is given by

u∗(z) := sup
θ∈T

JτO ,θe (z), (4.1.23)

and τO is defined by (4.1.17), for all z ∈ O ∪ Γ1.

2. If 0 < β < 1, let ψ ∈ Cloc(Ō) and g ∈ Cloc(∂O) obey (4.1.16) and (4.1.6) on ∂O.

Let

u ∈ Cloc(Ō) ∩ C2(O)

be a solution to the elliptic obstacle problem (4.1.2), (4.1.5), such that u and Au

obey (4.1.16) on O. Then, u = u∗ on Ō, where u∗ is given by (4.1.23).

Theorem 4.1.9 (Uniqueness of solutions to the elliptic obstacle problem (4.1.2),

(4.1.3), when 0 < β < 1). Let r > 0, q ≥ 0, 0 < β < 1, and f be as in Theorem

4.1.8. Let ψ ∈ Cloc(O ∪ Γ1) obey (4.1.16) on O and let g ∈ Cloc(Γ1) obey (4.1.16) and

(4.1.4) on Γ1. If

u ∈ Cloc(O ∪ Γ1) ∩ C2(O) ∩ C1,1
s,loc(O ∪ Γ0)



138

is a solution to the elliptic obstacle problem (4.1.2), (4.1.3) such that u and Au obey

(4.1.16), then u = u∗ on O ∪ Γ1, where u∗ is given by

u∗(z) := sup
θ∈T

JνO ,θ
e (z), (4.1.24)

and νO is defined by (4.1.18), for all z ∈ O ∪ Γ1.

Remark 4.1.10 (Existence and uniqueness of strong solutions in weighted Sobolev

spaces to the elliptic obstacle problem). Existence and uniqueness of strong solutions

in weighted Sobolev spaces to problem (4.1.2) with Dirichlet boundary condition (4.1.3)

along Γ1, for all β > 0, is proved in [18, Theorem 1.6], and Hölder continuity of such

solutions up to boundary portion Γ0 is proved in [31, Theorem 1.13].

Existence and uniqueness of solutions to parabolic terminal/boundary value

problems

We shall need to appeal to the following analogue of Hypothesis 4.1.1:

Hypothesis 4.1.11 (Growth condition). If v is a function then, for all (t, x, y) in its

domain of definition,

|v(t, x, y)| ≤ C(1 + eM1y + eM2x), (4.1.25)

where C > 0, 0 ≤M1 < µ, and M2 ∈ [0, 1].

We let Du denote the gradient and let D2u denote the Hessian matrix of a function

u on Q with respect to spatial variables. We let C1(Q) denote the vector space of

functions, u, such that u, ut, and Du are continuous on Q, while C1(Q̄) denotes the

Banach space of functions, u, such that u, ut, and Du are uniformly continuous and

bounded on Q; finally, C2(Q) denotes the vector space of functions, u, such that ut,

Du, and D2u are continuous Q, while C2(Q̄) denotes the Banach space of functions, u,

such that u, ut, Du, and D2u are uniformly continuous and bounded on Q.

Theorem 4.1.12 (Uniqueness of solutions to the parabolic boundary value problem).

Let f be a Borel measurable function on Q which obeys (4.1.25). Then
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1. If β ≥ 1, assume g ∈ Cloc(ð1Q) obeys (4.1.25) on ð1Q. Let

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q)

be a solution to the parabolic terminal/boundary value problem (4.1.7), (4.1.9)

which obeys (4.1.25) on Q. Then, u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := Et,zQ

[∫ τO∧T

t
e−r(s−t)f(s, Z(s)) ds

]
+ Et,zQ

[
e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))

]
,

(4.1.26)

and τO is defined by (4.1.17), for all (t, z) ∈ Q ∪ ð1Q.

2. If 0 < β < 1, assume g ∈ Cloc(ðQ) obeys (4.1.25) on ðQ, and let

u ∈ Cloc(Q ∪ ðQ) ∩ C2(Q)

be a solution to the parabolic terminal/boundary value problem (4.1.7), (4.1.12)

which obeys (4.1.25) on Q. Then, u = u∗ on Q∪ðQ, where u∗ is given by (4.1.26).

Remark 4.1.13 (Existence of solutions to the parabolic boundary value problem).

Existence of solutions

u ∈ Cloc(Q ∪ ðQ) ∩ C2+α(Q)

to problem (4.1.7), with Dirichlet boundary data g ∈ Cloc(ðQ) in (4.1.12), and source

function f ∈ Cαloc(Q̄), when 0 < β < 1, and of solutions

u ∈ Cloc(Q ∪ ð1Q) ∩ C2+α(Q)

to problem (4.1.7) with Dirichlet boundary data g ∈ Cloc(ð1Q) in (4.1.9) and source

function f ∈ Cαloc(Q̄), when β ≥ 1, is proved in Theorem 4.5.4. See also to the comments

preceding problem (4.5.2).

Remark 4.1.14 (Existence of solutions with Daskalopoulos-Hamilton-Köch Hölder

regularity). As in the elliptic case, the solutions to the parabolic terminal/boundary

value problem (4.1.7), (4.1.9) described in Remark 4.1.13 would actually lie in Cloc(Q̄)∩

C2+α
s (Q) for all β > 0, where C2+α

s (Q) is the parabolic Daskalopoulos-Hamilton-Köch

Hölder space described in [20, 50]. A function u ∈ C2+α
s (Q) has the property that
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u,Du, yD2u are Cαs continuous up to Γ0 and yD2u = 0 on (0, T ) × Γ0, where Cαs (Q)

is defined by analogy with the traditional definition of Cα(Q), except that Euclidean

distance between points in Q is replaced by the cycloidal distance function.

We let C1,1
s,loc((0, T )×(O∪Γ0)) denote the subspace of C2

loc((0, T )×(O∪Γ0)) consisting

of functions, u, such that, for any precompact open subset V b [0, T ]× (O ∪ Γ0),

sup
(t,z)∈V

|u(t, z)|+ |Du(t, z)|+ |yD2u(t, z)| <∞. (4.1.27)

We have the following alternative uniqueness result.

Theorem 4.1.15 (Uniqueness of solutions to the parabolic boundary value problem

(4.1.7), (4.1.9), when 0 < β < 1). Let 0 < β < 1 and f be as in Theorem 4.1.12. Let

g ∈ Cloc(ð1Q) obey (4.1.25) on ð1Q, and

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q) ∩ C1,1
s,loc((0, T )× (O ∪ Γ0))

be a solution to the parabolic boundary value problem (4.1.7), (4.1.9) which obeys (4.1.25)

on Q. Then, u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := Et,zQ

[∫ νO∧T

t
e−r(s−t)f(s, Z(s)) ds

]
+ Et,zQ

[
e−r(νO∧T−t)g(νO ∧ T,Z(νO ∧ T ))

]
,

(4.1.28)

and νO is defined by (4.1.18), for all (t, z) ∈ Q ∪ ð1Q.

Remark 4.1.16 (Existence and uniqueness of strong solutions in weighted Sobolev

spaces to the parabolic terminal/boundary value problem). Existence and uniqueness of

strong solutions in weighted Sobolev spaces to problem (4.1.7) with Dirichlet boundary

condition (4.1.9) along ð1Q, for all β > 0, is proved in [19].

Remark 4.1.17 (Growth of solutions to parabolic boundary value problems). Karatzas

and Shreve allow faster growth of solutions when the growth on the coefficients of the

differential operator is constrained [47, Theorem 4.4.2 & Problem 5.7.7], and polynomial

growth of solutions is allowed for linear growth coefficients and source function f with

at most polynomial growth [47, Theorem 5.7.6].
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Remark 4.1.18 (Barrier option pricing and discontinuous terminal/boundary condi-

tions). In applications to finance, O will often be a rectangle, (x0, x1)× (0,∞), where

−∞ ≤ x0 < x1 ≤ ∞; the growth exponents will be M1 = 0 and M2 = 1 — indeed,

the source function f will always be zero and the spatial boundary condition function

g : (0, T ) × Γ1 → R will often be zero. However, the spatial boundary condition,

g : (0, T ) × Γ1 → R, and terminal condition, g : {T} × Ō → R, may be discontinuous

where they meet along {T} × ∂O, as in the case of the down-and-out put, with

g(t, x, y) =


0, 0 < t < T, x = x0, y > 0,

(K − ex)+ t = T, x0 < x <∞, y > 0,

where g is discontinuous at (T, x0, y) if K − ex0 > 0, that is, x0 < logK. We shall

consider the question of establishing stochastic representations for solutions to parabolic

terminal/value problems (European-style option prices) or parabolic obstacle problems

(American-style option prices) with discontinuous data elsewhere.

Uniqueness of solutions to parabolic obstacle problems

For θ1, θ2 ∈ Tt,T , 0 ≤ t ≤ T , we set

Jθ1,θ2p (t, z) := Et,zQ

[∫ θ1∧θ2

t
e−r(s−t)f(s, Z(s)) ds

]
+ Et,zQ

[
e−r(θ2−t)ψ(θ2, Z(θ2))1{θ2<θ1}

]
+ Et,zQ

[
e−r(θ1−t)g(θ1, Z(θ1))1{θ1≤θ2}

]
.

(4.1.29)

We have the following uniqueness result of solutions to the parabolic obstacle problem

with different possible boundary conditions, depending on the value of the parameter

β > 0.

Theorem 4.1.19 (Uniqueness of solutions to the parabolic obstacle problem). Let f

be as in Theorem 4.1.12, and ψ be a Borel measurable function satisfying (4.1.25).

1. If β ≥ 1, assume ψ ∈ Cloc(Q ∪ ð1Q) and g ∈ Cloc(ð1Q) obeys (4.1.25) on ð1Q

and (4.1.11). Let

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q)
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be a solution to the parabolic obstacle problem (4.1.8), (4.1.9) such that u and Au

obey (4.1.25) on Q. Then, u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := sup
θ∈Tt,T

JτO∧T,θp (t, z), (4.1.30)

and τO is defined by (4.1.17), for all (t, z) ∈ Q ∪ ð1Q.

2. If 0 < β < 1, assume ψ ∈ Cloc(Q̄) and g ∈ Cloc(ðQ) obeys (4.1.25) on ðQ and

(4.1.14). Let

u ∈ Cloc(Q ∪ ðQ) ∩ C2(Q)

be a solution to the parabolic obstacle problem (4.1.8), (4.1.12) such that u and

Au obey (4.1.25) on Q. Then, u = u∗ on Q ∪ ðQ, where u∗ is given by (4.1.30).

Theorem 4.1.20 (Uniqueness of solutions to the parabolic obstacle problem (4.1.8),

(4.1.9), when 0 < β < 1). Let 0 < β < 1 and f be as in Theorem 4.1.12. Assume

ψ ∈ Cloc(Q ∪ ð1Q), and g ∈ Cloc(ð1Q) obey (4.1.25) on ð1Q and (4.1.11). Let

u ∈ Cloc(Q ∪ ð1Q) ∩ C2(Q) ∩ C1,1
s,loc(Q ∪ (0, T )× (O ∪ Γ0))

be a solution to the parabolic obstacle problem (4.1.8), (4.1.9) such that u and Au obey

(4.1.25). Then, u = u∗ on Q ∪ ð1Q, where u∗ is given by

u∗(t, z) := sup
θ∈Tt,T

JνO∧T,θ
p (t, z), (4.1.31)

and νO is defined by (4.1.18), for all (t, z) ∈ Q ∪ ð1Q.

Remark 4.1.21 (Existence and uniqueness of strong solutions in weighted Sobolev

spaces to the parabolic obstacle problem). Existence and uniqueness of strong solutions

in weighted Sobolev spaces to problem (4.1.8) with Dirichlet boundary condition (4.1.9)

along ð1Q, for all β > 0, is proved in [19].

4.1.3 Survey of previous results on stochastic representations of solu-

tions to boundary value or obstacle problems

Stochastic representations of solutions to elliptic and parabolic boundary value and

obstacle problems discussed by Bensoussan and Lions [8] and Friedman [40] are estab-

lished under the hypotheses that the matrix of coefficients, (aij), of the second-order
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spatial derivatives in an elliptic linear, second-order differential operator, A, is strictly

elliptic and that all coefficients of A are bounded. Relaxations of these hypotheses, as

in [40, Chapter 13 & 15], and more recently [77], fail to include the Heston generator

mainly because the matrix (aij) does not satisfy

Hypothesis 4.1.22 (Extension property for positive definite, C2 matrix-valued func-

tions). Given a subdomain V $ (0,∞) × Rd, for d ≥ 1, we say that a matrix-valued

function,

a : V → Rd×d,

which is C2 on V and a(t, z) is positive definite for each (t, z) ∈ V has the extension

property if there is a matrix-valued function,

ã : [0,∞)× Rd → Rd×d,

which coincides with a on V but is C2 on [0,∞)×Rd and ã(t, z) is positive definite for

each (t, z) ∈ [0,∞)× Rd.

Naturally, Hypothesis 4.1.22 is also applicable when the matrix a is constant with

respect to time, that is, in elliptic problems. Note that in the case of the Heston process,

d = 2, V = (0,∞)×H, and

a(t, x, y) :=

 y σρy

σρy σ2y

 , ∀(x, y) ∈ H,

and so the matrix a does not satisfy Hypothesis 4.1.22. We now give more detailed

comparisons for each of the four main problems which we consider in this chapter.

Additional comparison details are provided in Appendix C.4.

Elliptic boundary value problems

Stochastic representations of solutions to non-degenerate elliptic partial differential

equations are described in [40, Theorem 6.5.1], [47, Proposition 5.7.2], [61, Theorem

9.1.1 & Corollary 9.1.2] and [8, Theorems 2.7.1 & 2.7.2].

Stochastic representations of solutions to a certain class of degenerate elliptic partial

differential equations are described by Friedman in [40, Chapter 13], but those results
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do not apply to the Heston operator because a square root, (σij), of the matrix (aij)

cannot be extended as a uniformly Lipschitz continuous function on R2, that is, [40,

Condition (A), p. 308] is not satisfied. Stroock and Varadhan [69, §5-8] also discuss

existence and uniqueness of solutions to degenerate elliptic partial differential equations,

but their assumption that the matrix (aij) satisfies Hypothesis 4.1.22 does not hold for

the Heston operator (see [69, Theorem 2.1]).

More recently, Zhou [77] employs the method of quasiderivatives to establish the

stochastic representation of solutions to a certain class of degenerate elliptic partial

differential equations, and obtains estimates for the derivatives of their solutions. How-

ever, his results do not apply to the Heston operator because [77, Assumptions 3.1

& Condition (3.2)] are not satisfied in this case. Moreover, the Dirichlet condition is

imposed on the whole boundary of the domain (see [77, Equation (1.1)]), while we take

into consideration the portion of the boundary, Γ0, where the differential operator A

becomes degenerate.

Elliptic obstacle problems

We may compare Theorems 4.1.8 and 4.1.9 with the uniqueness assertions (in increas-

ing degrees of generality) for non-degenerate elliptic operators in [8, Theorems 3.3.1,

3.3.2, 3.3.4, 3.3.5, 3.3.8, 3.3.19, 3.3.20, & 3.3.23]. See also [61, Theorem 10.4.1] and

[40, Theorems 16.4.1, 16.4.2, 16.7.1, & 16.8.1] for uniqueness assertions non-degenerate

elliptic operators, though with more limited applicability.

Parabolic boundary value problems

Uniqueness of solutions to non-degenerate parabolic partial differential equations and

their stochastic representations are described in [40, Theorems 6.5.2, 6.5.3], [47, Theo-

rem 5.7.6] and [8, Theorems 2.7.3 & 2.7.4].

Friedman obtains fundamental solutions and stochastic representations of solutions

to certain degenerate parabolic partial differential equations in [39], while he obtains

uniqueness and stochastic representations of solutions to the Cauchy problem in [38];

those results are summarized in [40, Chapter 15]. Nevertheless, the results in [40,
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Chapter 15] and [39] do not apply to the Heston operator because Hypothesis 4.1.22

does not hold, that is [40, Condition (A), p. 389] is not satisfied. Therefore, the method

of construction in [39, Theorem 1.2] of a candidate for a fundamental solution does not

apply to the Heston operator. A stochastic representation for a solution to the Cauchy

problem for a degenerate operator is obtained in [40, §15.10], but the hypotheses of [40,

Theorem 15.10.1] are again too restrictive and exclude the Heston operator.

Ekström and Tysk [25] consider the problem of pricing European-style options on an

underlying process which is the solution to a degenerate, one-dimensional stochastic dif-

ferential equation which satisfies [25, Hypothesis 2.1], and so includes the Feller square

root (or Cox-Ingersoll-Ross) process, (4.2.1). The option price is the classical solution

in the sense of [25, Definition 2.2] to the corresponding parabolic partial differential

equation [25, Theorem 2.3]. Under their assumption that the payoff function g(T, ·) is

in C1([0,∞)), they show that their classical solution has the regularity property,

u ∈ C([0, T ]× [0,∞)) ∩ C1([0, T )× [0,∞)) ∩ C2([0, T )× (0,∞)),

and obeys the second-order boundary condition,

lim
(t,y)→(0,t0)

yuyy(t, y) = 0, ∀t0 ∈ (0, T ) (by [25, Proposition 4.1]).

As a consequence, in the present framework, their solution obeys

u ∈ C1,1
s,loc((0, t0)× [0,∞)), ∀t0 ∈ (0, T ),

where the vector space of functions C1,1
s,loc((0, t0) × [0,∞)) is defined by analogy with

(4.1.27).

In [24], Ekström and Tysk extend their results in [25] to the case of two-dimensional

stochastic volatility models for option prices, where the variance process satisfies the

assumptions of [25, Hypothesis 2.1].

Bayraktar, Kardaras, and Xing [7] address the problem of uniqueness of classi-

cal solutions, in the sense of [7, Definitions 2.4 & 2.5], to a class of two-dimensional,

degenerate parabolic partial differential equations. Their differential operator has a

degeneracy which is similar to that of the Heston generator, −A, and to the differential
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operator considered in [25], but the matrix of coefficients, (aij), of their operator may

have more than quadratic growth with respect to the spatial variables (see [7, Standing

Assumption 2.1]). Therefore, weak maximum principles for parabolic partial differential

operators on unbounded domains such as [51, Exercise 8.1.22] do not guarantee unique-

ness of solutions in such situations. The main result of their article – [7, Theorem 2.9]

– establishes by probabilistic methods that uniqueness of classical solutions, obeying a

natural growth condition, holds if and only if the asset price process is a martingale.

In our work, we consider the two-dimensional Heston stochastic process, (4.1.15),

where the component Y of the process satisfies [25, Hypothesis 2.1] and [7, Standing

Assumption 2.1]. We only require the payoff function, g(T, ·), to be continuous with

respect to the spatial variables and have exponential growth, as in (4.1.25). Notice that

the conditions on the payoff function are more restrictive in [25, Hypothesis 2.1] and

[7, Standing Assumption 2.3] than in our case. We consider the parabolic equation

associated to the Heston generator, −A, on bounded or unbounded subdomains, O, of

the upper half plane, H, with Dirichlet boundary condition along the portion, Γ1, of

the boundary ∂O contained in H. Along the portion, Γ0, of the boundary contained in

∂H, we impose a suitable Dirichlet boundary condition, depending on the value of the

parameter β in (3.1.11), which governs the behavior of the Feller square-root process

when it approaches the boundary point y = 0. In each case, we establish uniqueness

of solutions by proving that suitably regular solutions must have the stochastic rep-

resentations in Theorems 4.1.12 and 4.1.15, and we prove existence and regularity of

solutions, in a special case, in Theorems 4.5.4 and 4.5.5, complementing the results of

[25]. In addition, we consider the parabolic obstacle problem and establish uniqueness

and the stochastic representations of suitably regular solutions in Theorems 4.1.19 and

4.1.20.

Parabolic obstacle problems

We may compare Theorems 4.1.19 and 4.1.20 with the uniqueness assertions and

stochastic representations of solutions (in increasing degrees of generality) for non-

degenerate operators in [8, Theorems 3.4.1, 3.4.2, 3.4.3, 3.4.5, 3.4.6, 3.4.7, 3.4.8].
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4.1.4 Outline of the chapter

For the convenience of the reader, we provide a brief outline of the chapter. We begin

in §4.2 by reviewing or proving some of the key properties of the Feller square root

and Heston processes which we shall need. In §4.3, we prove existence and uniqueness

(in various settings) of solutions to the elliptic boundary value problem for the Heston

operator, while in §4.4, we prove uniqueness (again in various settings) of solutions to the

corresponding obstacle problem. We proceed in §4.5, to prove existence and uniqueness

of solutions to the parabolic terminal/boundary value problem for the Heston operator

and in §4.6, we prove uniqueness of solutions to the corresponding parabolic obstacle

problem. Appendices C.1, C.2, and C.3 contain technical additional results which we

shall need.

4.2 Properties of the Heston stochastic volatility process

In this section, we review or develop some important properties of the Feller square

root process and the Heston stochastic volatility process.

By [30, Theorem 1.9], it follows that for any initial point (t, y) ∈ [0,∞) × [0,∞),

the Feller stochastic differential equation,

dY (s) = κ (ϑ− Y (s)) ds+ σ
√
|Y (s)|dW (s), s > t,

Y (t) = y,

(4.2.1)

admits a unique weak solution (Y t,y(s),W (s))s≥t, called the Feller square root process,

where (W (s))s≥t is a one-dimensional Brownian motion on a filtered probability space(
Ω,F ,Pt,y,F

)
such that the filtration F = {F (s)}s≥0 satisfies the usual conditions

[47, Definition 1.2.25]. Theorem 1.9 in [30] also implies that the Heston stochastic

differential equation (4.1.15) admits a unique weak solution,
(
Zt,z(s),W (s)

)
s≥t, for any

initial point (t, z) ∈ [0,∞)× H̄, where (W (s))s≥t is now an R2-valued Brownian motion

on a filtered probability space
(
Ω,F ,Qt,z,F

)
such that the filtration F = {F (s)}s≥0

satisfies the usual conditions. When the initial condition (t, y) or (t, z) is clear from the

context, we omit the superscripts in the definition of the probability measures Pt,y and

Qt,z, respectively.
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Moreover, the weak solutions to the Feller and Heston stochastic differential equa-

tions are strong. To prove this, we begin by reviewing a result of Yamada [75].

Definition 4.2.1 (Coefficients for a non-Lipschitz stochastic differential equation).

[75, p. 115] In this section, we shall consider one-dimensional stochastic differential

equations whose diffusion and drift coefficients, α, b, obey the following properties:

1. The functions α, b : [0,∞)× R→ R are continuous.

2. (Yamada condition) There is an increasing function % : [0,∞)→ [0,∞) such that

%(0) = 0, for some ε > 0 one has
∫ ε

0 %
−2(y) dy =∞, and

|α(t, y1)− α(t, y2)| ≤ %(|y1 − y2|), y1, y2 ∈ R, t ≥ 0. (4.2.2)

3. There is a constant C1 > 0 such that

|b(t, y2)− b(t, y1)| ≤ C1|y2 − y1|, y1, y2 ∈ R, t ≥ 0. (4.2.3)

4. There is a constant C2 > 0 such that

|α(t, y)|+ |b(t, y)| ≤ C2(1 + |y|), t ≥ 0, y ∈ R. (4.2.4)

Clearly, the coefficients of the Feller stochastic differential equation obey the hy-

potheses in Definition 4.2.3, where α(t, y) = σ
√
y and b(t, y) = κ(θ − y). Indeed, one

can choose C1 = κ, C2 = max{κ, κθ, σ}, and %(y) = σ
√
y, as the mean value theorem

yields

√
y2 −

√
y1 = c(y1, y2)(y2 − y1),

where

c(y1, y2) =
1

2

∫ 1

0

1√
y1 + t(y2 − y1)

≤ 1√
y2 − y1

,

for 0 < y1 < y2. See [75, Remark 1] for other examples of suitable functions %.

Remark 4.2.2. When %(u) = uγ , γ ∈ [1
2 , 1] [75, Remark 1], then Definition 4.2.1

implies that α(t, ·) is Hölder continuous with exponent γ, uniformly with respect to

t ∈ [0,∞).
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Definition 4.2.3 (Solution to a non-Lipschitz stochastic differential equation). [75, p.

115], [64, Definitions IX.1.2 & IX.1.5] Let (Ω,F ,P,F) be a filtered probability space

satisfying the usual conditions. We call a pair (Y (s),W (s))s≥0 a weak solution to the

non-Lipschitz one-dimensional stochastic differential equation,

dY (s) = b(s, Y (s)) ds+ α(s, Y (s)) dW (s), s ≥ 0, Y (0) = y, (4.2.5)

where y ∈ R, if the following hold:

1. The processes Y (s) and W (s) are defined on (Ω,F ,P,F);

2. The process Y (s) is continuous with respect to s ∈ [0,∞) and is F-adapted;

3. The process W (s) is a standard F-Brownian motion.

We call (Y (s),W (s))s≥0 a strong solution to (4.2.5) if Y is FW -adapted, where FW is the

P-completion of the filtration of F generated by (W (s))s≥0. (Compare [45, Definition

IV.1.2], [47, Definition 5.2.1], and [61, §5.3].)

Theorem 4.2.4. [75, p. 117] There exists a weak solution (Y,W ) to (4.2.5).

Remark 4.2.5. Yamada’s main theorem [75, p. 117] asserts considerably more than

Theorem 4.2.4. In particular, his article shows that (4.2.5) may be solved using the

method of finite differences. Simpler results may suffice to merely guarantee the exis-

tence of a weak solution, as we need here; see Skorokhod [68].

Proposition 4.2.6. There exists a unique strong solution to (4.2.5).

Proof. Theorem 4.2.4 ensures that (4.2.5) admits a weak solution. Conditions (4.2.2)

and (4.2.3) ensure that pathwise uniqueness holds for (weak) solutions to (4.2.5) by

Revuz and Yor [64, Theorem IX.3.5 (ii)], while Karatzas and Shreve [47, Corollary

5.3.23] imply that (4.2.5) admits a strong solution; see [47, p. 310]. Conditions (4.2.2)

and (4.2.3) guarantee the uniqueness of strong solutions to (4.2.5) by Karatzas and

Shreve [47, Proposition 5.2.13]; compare Yamada and Watanabe [73, 74]. (Pathwise

uniqueness is also asserted for (4.2.5) by [45, Theorem IV.3.2] when (4.2.5) is time-

homogeneous, noting that the coefficients α, b are not required to be bounded by Ikeda
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and Watanabe [45, p. 168]). We conclude that a strong solution to (4.2.5) exists and

is unique.

Corollary 4.2.7. Given any initial point (t, y) ∈ [0,∞)× [0,∞), there exists a unique

strong solution, (Y t,y(s),W (s))s≥t, to the Feller stochastic differential equation.

Proof. Immediate from Proposition 4.2.6.

Corollary 4.2.8. Given (t, z) ∈ [0,∞) × H̄, there exists a unique strong solution,

(Zt,z(s),W (s))s≥t, to the Heston stochastic differential equation, where (W (s))s≥0 is a

standard two-dimensional F-Brownian motion on (Ω,F ,P,F).

Proof. By Proposition 4.2.6, the Cox-Ingersoll-Ross stochastic differential equation has

a unique strong solution, (Y t,y(s),W2(s))s≥t, where (W2(s))s≥t is a standard one-

dimensional F-Brownian motion on (Ω,F ,P,F) and (Y t,y(s))s≥t is FW2-adapted. But

given (Y t,y(s))s≥t and a standard two-dimensional F-Brownian motion, (W (s))s≥t =

(W1(s),W2(s))s≥t on (Ω,F ,P,F), the process (Xt,x,y(s))s≥t, and thus (Zt,z(s))s≥t =

(Xt,x,y(s), Y t,y(s))s≥t, is uniquely determined by

Xt,x,y(s) = x+

∫ s

t

(
r − q − 1

2
Y t,y(u)

)
du

+

∫ s

t

√
Y t,y(u)

(√
1− ρ2dW1(u) + ρdW2(u)

)
.

This completes the proof.

Lemma 4.2.9 (Properties of the Feller square-root process). The unique strong solution

of the Feller stochastic differential equation started at any (t, y) ∈ [0,∞)×[0,∞) satisfies

Y (s) ≥ 0 Pt,y-a.s., ∀s ≥ t, (4.2.6)

and also ∫ s

t
1{Y (u)=0} du = 0, ∀s ≥ t, (4.2.7)

L(s, x) = 0, ∀x ≤ 0,∀s ≥ t, (4.2.8)

where L(·, ·) is the local time of the Feller square-root process.
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Proof. Without loss of generality, we may assume that t = 0. In [7, Lemma 2.4], it is

proved that L(s, 0) = 0, for all s ≥ 0, but it is not clear to us why it also follows that

L(s, 0−) := lim
x↑0

L(s, x) = 0, ∀s ≥ 0,

a property we shall need in our proof of (4.2.6). To complete the argument, we consider

the following stochastic differential equation,

dỸ (s) = b(Ỹ (s)) ds+ α(Ỹ (s)) dW (s), s > 0,

Ỹ (0) = y,

where we let

b(y) := κ(ϑ− y) and α(y) := 1{y≥0}σ
√
y, ∀y ∈ R. (4.2.9)

This stochastic differential equation admits a unique strong solution by Proposition

4.2.6. We will show that Ỹ (s) ≥ 0 a.s., for all s ≥ 0, so that uniqueness of solutions

to the Feller stochastic differential equation (4.2.1) implies that Ỹ = Y a.s. and Y will

satisfy the same properties as Ỹ . Thus, it is enough to prove (4.2.7) and (4.2.8) for Ỹ .

Property (4.2.6) is a consequence of the preceding two properties of Ỹ .

Let L̃ be the local time process for the continuous semimartingale Ỹ (see [47, The-

orem 3.7.1]). From [47, Theorem 3.7.1 (iii)], we know that, for any Borel measurable

function k : R→ [0,∞), we have∫ s

0
k(Ỹ (u))σ2Ỹ +(u) du = 2

∫
R
k(x)L̃(s, x)dx, ∀s ≥ 0. (4.2.10)

Assume, to obtain a contradiction, that L̃(s, 0) > 0. From the right-continuity in

the spatial variable of L̃(s, ·) [47, Theorem 3.7.1 (iv)], there are positive constants c

and x0 such that L̃(s, x) ≥ c, for all x ∈ [0, x0]. For ε > 0, we define k(x) = x−1, for

x ∈ [ε, x0], and 0 otherwise. With this choice of k, the left-hand-side in identity (4.2.10)

is bounded in absolute value by σ2s, for any ε > 0, while the right-hand-side of (4.2.10)

is greater or equal than 2c log (x0/ε), which diverges as ε tends to 0. Therefore, our

assumption that L̃(s, 0) > 0 is false, and so L̃(s, 0) = 0. Moreover, we notice that for

any bounded, Borel-measurable function k with support in (−∞, 0) the left-hand-side

in identity (4.2.10) is identically zero. Thus, we conclude that L̃(s, x) = 0, for all x < 0,

and also L̃(s, 0−) = 0.
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We use this result to show that P(Ỹ (s) ≤ 0, ∀s ≥ 0) = 0. From [47, p. 223, third

formula] and the fact that κ, ϑ > 0, we see that

0 = L̃(s, 0)− L̃(s, 0−) = κϑ

∫ s

0
1{Ỹ (u)=0} du,

which implies that P(Ỹ (s) = 0, ∀s ≥ 0) = 0. It remains to show that P(Ỹ (s) ∈

(−∞, 0)) = 0, for all s ≥ 0, which is equivalent to proving that for any ε > 0 and s ≥ 0,

we have P(Ỹ (s) ∈ (−∞,−ε)) = 0. Let ϕ : R→ [0, 1] be a smooth cut-off function such

that ϕ|(−∞,−ε) ≡ 1 and ϕ|(0,∞) ≡ 0. We can choose ϕ such that ϕ′ ≤ 0. Then, it follows

by Itô’s formula that

ϕ(Ỹ (s)) = ϕ(Ỹ (0)) +

∫ s

0

(
κ(ϑ− Ỹ (u))ϕ′(Ỹ (u)) +

1

2
α2(Y (u))ϕ′′(Y (u))

)
du

+

∫ s

0
α(Ỹ (u))ϕ′(Ỹ (u)) dW (u)

= ϕ(Ỹ (0)) +

∫ s

0
κ(ϑ− Ỹ (u))ϕ′(Ỹ (u)) du (as α(y) = 0 when ϕ′ 6= 0).

We notice that the right-hand-side is non-negative, while the left-hand-side is non-

positive, as ϕ′ ≤ 0 on R, and ϕ′ = 0 on (0,∞). Therefore, we must have ϕ(Ỹ (s)) = 0

a.s. which implies that P(Ỹ (s) ∈ (−∞,−ε)) = 0. This concludes the proof of the

lemma.

For a, y, t ≥ 0, we let

T t,ya := inf
{
s ≥ t : Y t,y(s) = a

}
(4.2.11)

denote the first time the process Y started at y at time t hits a. When the initial

condition, (t, y), is clear from the context, we omit the superscripts in the preceding

definition (4.2.11). Also, when t = 0, we omit the superscript t.

Lemma 4.2.10 (Boundary classification at y = 0 of the Feller square root process).

Let Y y be the unique strong solution to the Feller stochastic differential equation (4.2.1)

with initial condition Y y(0) = y. Then

1. For β ≥ 1, y = 0 is an entrance boundary point in the sense of [49, §15.6(c)].
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2. For 0 < β < 1, y = 0 is a regular, instantaneously reflecting boundary point in

the sense of [49, §15.6(a)], and

lim
y↓0

T y0 = 0 a.s., (4.2.12)

where T y0 is given by (4.2.11).

Proof. A direct calculation give us that the scale function, s, and the speed measure,

m, of the Feller square root process are given by

s(y) = y−βeµy and m(y) =
2

σ2
yβ−1e−µy, ∀y > 0

where β = 2κϑ/σ2 and µ = 2κ/σ2. We consider the following quantities, for 0 < a <

b <∞ and x > 0,

S[a, b] :=

∫ b

a
s(y)dy, S(a, b] := lim

c↓a
S[c, b],

M [a, b] :=

∫ b

a
m(y)dy, M(a, b] := lim

c↓a
M [c, b],

N(0) :=

∫ x

0
S[y, x]m(y)dy.

Then, for β ≥ 1, we have S(0, x] = ∞ and N(0) < ∞, which implies that y = 0 is an

entrance boundary point ([49, p. 235]), while for 0 < β < 1, we have S(0, x] < ∞ and

M(0, x] <∞, and so y = 0 is a regular boundary point ([49, p. 232]).

Next, we consider the case 0 < β < 1. To establish (4.2.12), we consider the

following quantities

ua,b(y) := Py (Tb < Ta) =
S[a, y]

S[a, b]
,

va,b(y) := EyP [Ta ∧ Tb] = 2ua,b(y)

∫ b

y
S[z, b]m(z)dz + 2 (1− ua,b(y))

∫ y

a
S(a, z]m(z)dz,

as in [49, Equations (15.6.1) & (15.6.5)] and [49, Equations (15.6.2) & (15.6.6)], respec-

tively. Notice that T ya → T y0 , when y ↓ 0, by the continuity of the paths of Y . Then,

for fixed b > 0, we obtain

lim
y↓0

Py(Tb < T0) = lim
y↓0

lim
a↓0

Py(Tb < Ta) = 0,

lim
y↓0

EyP [T0 ∧ Tb] = lim
y↓0

lim
a↓0

EyP [Ta ∧ Tb] = 0,

from where (4.2.12) follows.
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Next, we have the following

Lemma 4.2.11 (Properties of the Heston process). Let (Z(s))s≥0 be the unique strong

solution to the Heston stochastic differential equation (4.1.15).

1. Assume q ≥ 0 and r ∈ R. Then, for any constant c ∈ [0, 1],(
e−rcsecX(s)

)
s≥0

is a positive supermartingale. (4.2.13)

2. For any positive constant c ≤ µ,(
e−cκϑsecY (s)

)
s≥0

is a positive supermartingale. (4.2.14)

Proof. To establish (4.2.13), we use Itô’s formula to give

d
(
e−rcsecX(s)

)
= −e−rcsecX(s)

(
cq +

1

2
c(1− c)Y (s)

)
ds

+ ce−rcsecX(s)
√
Y (s) dW1(s).

(4.2.15)

Notice that the drift coefficient is non-positive, since Y (s) ≥ 0 a.s. for all s ≥ 0 by

Lemma 4.2.9, and q ≥ 0, and c ∈ [0, 1].

Similarly, to establish (4.2.14) for the Feller square root process, we have

d
(
e−cκϑsecY (s)

)
= e−cκϑsecY (s)c

(
cσ2/2− κ

)
Y (s)ds

+ cσe−cκϑsecY (s)
√
Y (s)

(
ρdW1(s) +

√
1− ρ2dW2(s)

)
.

(4.2.16)

When c ≤ µ, we see that the drift coefficient in the preceding stochastic differential

equation is non-negative.

The supermartingale properties (4.2.13) and (4.2.14) follow if we show in addition

that the processes are integrable random variables for each time s ≥ 0. For simplicity,

we let Q(s) denote either one of the processes we consider, and we let θn be the first

exit time of the Heston process (X(s), Y (s))s≥0 from the rectangle (−n, n) × (−n, n),

where n ∈ N. We set Qn(s) := Q(s ∧ θn), for all s ≥ 0. We then have

dQn(s) = 1{s≤θn}dQn(s), ∀s > 0, ∀n ∈ N.

Using equations (4.2.15) and (4.2.16), it is clear that (Qn(s))s≥0 are supermartingales,

because the coefficients of the stochastic differential equations are bounded and the
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drift terms are non-positive. Therefore, we know that

Ex,yQ [Qn(t)|F (s)] ≤ Qn(s), ∀t ≥ s, ∀s ≥ 0, ∀n ∈ N. (4.2.17)

Clearly, we also have Qn(t) → Q(t) a.s., as n → ∞, for all t ≥ s and s ≥ 0. Taking

the limit as n→∞ in (4.2.17) and using the positivity of the processes, Fatou’s lemma

yields

Ex,yQ [Q(t)|F (s)] ≤ lim inf
n→∞

Ex,yQ [Qn(t)|F (s)]

≤ lim inf
n→∞

Qn(s) (by (4.2.17))

= Q(s), ∀t ≥ s, ∀s ≥ 0,

and so (4.2.13) and (4.2.14) follow.

The next lemma is used to show that the functions u∗ given by (4.1.19) and (4.1.21)

are well-defined and satisfy the growth assumption (4.1.16).

Lemma 4.2.12. Suppose r > 0, and f , g, ψ are Borel measurable functions on O and

satisfy assumption (4.1.16). Then there is a positive constant C̄, depending on r, κ, ϑ,

M1, M2 and C in (4.1.16), such that for any θ1, θ2 ∈ T , the function Jθ1,θ2e in (4.1.22)

satisfies the growth assumption,

|Jθ1,θ2e (x, y)| ≤ C̄
(
1 + eM1y + eM2x

)
, ∀(x, y) ∈ O,

where 0 < M1 < min {r/ (κϑ) , µ} and M2 ∈ [0, 1) are as in (4.1.16).

Remark 4.2.13. The obstacle function ψ in (4.1.22) is only relevant for solutions to

problem (4.1.2).

Proof. The conclusion is a consequence of the properties of the Heston process given in

Lemma 4.2.11. We first estimate the integral term in (4.1.22). For z ∈ O, then

EzQ
[∫ θ1∧θ2

0
e−rs|f(Z(s))|ds

]
≤ CEzQ

[∫ ∞
0

e−rs
(

1 + e−rseM1Y (s) + e−rseM2X(s)
)
ds

]
(by (4.1.16))

≤ C
(

1 +

∫ ∞
0

e−(r−M1κϑ)sEzQ
[
e−M1κϑseM1Y (s)

]
ds

+

∫ ∞
0

e−(1−M2)rsEzQ
[
e−rM2seM2X(s)ds

]
ds

)
.
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Using the condition M1 < min {r/(κϑ), µ} and (4.2.14), together with M2 < 1 and

(4.2.13), we see that

EzQ
[∫ θ1∧θ2

0
e−rs|f(Z(s))|ds

]
≤ C̄

(
1 + eM1y + eM2x

)
, (4.2.18)

for a positive constant C̄ depending on r, M1κϑ, M2 and the constant C in the growth

assumption (4.1.16) on f , g and ψ.

Next, we show that the first non-integral term in (4.1.22) can be written as

EzQ
[
e−rθ1g(Z(θ1))1{θ1≤θ2}

]
= EzQ

[
e−rθ1g(Z(θ1))1{θ1≤θ2,θ1<∞}

]
, (4.2.19)

for any θ1 ∈ T which is not necessarily finite. This is reasonable because by rewriting

EzQ
[
e−rθ1g(Z(θ1))1{θ1≤θ2}

]
= EzQ

[
e−rθ1g(Z(θ1))1{θ1≤θ2∧T}

]
+ EzQ

[
e−rθ1g(Z(θ1))1{T<θ1≤θ2}

]
,

we shall see that the second term converges to zero, as T → ∞. Using the growth

assumption on g in (4.1.16), we have

EzQ
[
e−rθ1 |g(Z(θ1))|1{T<θ1≤θ2}

]
≤ CEzQ

[
e−rθ1

(
1 + eM1Y (θ1) + eM2X(θ1)

)
1{T<θ1}

]
,

and so by Lemma 4.2.11, we obtain

EzQ
[
e−rθ1g(Z(θ1))1{T<θ1≤θ2}

]
≤ C

(
e−rT + e−(r−M1κϑ)T eM1y + e−r(1−M2)T eM2x

)
.

Since M1 < r/(κϑ) and M2 < 1, we see that the right hand side converges to 0, as

T →∞. This justifies the identity (4.2.19).

Now, we use Fatou’s lemma to obtain the bound (4.1.16) on the first non-integral

term in (4.1.22). For z ∈ O,

EzQ
[
e−rθ1 |g(Z(θ1))|1{θ1≤θ2}

]
≤ lim inf

n→∞
EzQ
[
e−r(θ1∧n)|g(Z(θ1 ∧ n))|

]
≤ lim inf

n→∞
C
(

1 + EzQ
[
e−r(θ1∧n)eM1Y (θ1∧n)

]
+ EzQ

[
e−r(θ1∧n)eM2X(θ1∧n)

])
(by (4.1.16)).

Because M1 < µ, we may apply the supermartingale property (4.2.14) with c := M2.

We use also that M1 < r/ (κϑ) to obtain M1κϑ < r, and so it follows by the Optional
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Sampling Theorem [47, Theorem 1.3.22] that

EzQ
[
e−r(θ1∧n)eM1Y (θ1∧n)

]
≤ EzQ

[
e−M1κϑ(θ1∧n)eM1Y (θ1∧n)

]
≤ eM1y, ∀n ∈ N.

Using the fact that M2 < 1, we see by the supermartingale property (4.2.13) applies

with c := M1. By the Optional Sampling Theorem [47, Theorem 1.3.22] we have

EzQ
[
e−r(θ1∧n)eM2X(θ1∧n)

]
≤ EzQ

[
e−rM2(θ1∧n)eM2X(θ1∧n)

]
≤ eM2x, ∀n ∈ N.

Therefore, we obtain

EzQ
[
e−rθ1 |g(Z(θ1))|1{θ1≤θ2}

]
≤ C

(
1 + eM1y + eM2x

)
.

We obtain the same bound on the second non-integral term in (4.1.22) because the

obstacle function ψ satisfies the same growth condition (4.1.16) as the boundary data

g.

To prove Theorems 4.1.12 and 4.1.15, we make use of the following auxiliary result

Lemma 4.2.14. Let z ∈ H and T ∈ (0, T0], where T0 is a positive constant. Let

(Zz(s))s≥0 be the unique strong solution to the Heston stochastic differential equation

(4.1.15) with initial condition Zz(0) = z. Then there is a positive constant c, depending

on y, κ, ϑ, σ and T0, such that for any constant p satisfying

0 ≤ p < c

2σT
, (4.2.20)

we have

sup
θ∈T0,T

EzQ
[
epX

z(θ)
]
<∞, (4.2.21)

where T0,T denotes the set of (Ω,F ,Qz,F)-stopping times with values in [0, T ].

Proof. We use the method of time-change. Denote

Mi(t) :=

∫ t

0

√
Y (s)dWi(s), i = 1, 2,
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and observe that there is a two-dimensional Brownian motion (B1, B2) [47, Theorem

3.4.13] such that

Mi(t) = Bi

(∫ t

0
Y (s)ds

)
, i = 1, 2.

Thus, we may rewrite the solution of the Heston stochastic differential equation (4.1.15)

in the form

X(t) = x+ (r − q)s− 1

2

∫ t

0
Y (s)ds+B1

(∫ t

0
Y (s)ds

)
, (4.2.22)

Y (t) = y + κϑs− κ
∫ t

0
Y (s)ds+ σB3

(∫ t

0
Y (s)ds

)
, (4.2.23)

where B3 := ρB1 +
√

1− ρ2B2 is a one-dimensional Brownian motion.

For any continuous stochastic process (P (t))t≥0, we let

MP (t) := max
0≤s≤t

P (s), ∀t ≥ 0.

We first prove the following estimate.

Claim 4.2.15. There are positive constants n0 and c, depending on y, κ, ϑ, σ and T0,

such that

Qz (n ≤MY (T ) ≤ n+ 1) ≤ 2√
π
e−cn/(2σ

2T )1{n≥n0} + 1{n<n0}, ∀n ∈ N. (4.2.24)

Proof. Notice that if MY (T ) ≤ n+ 1, where n ∈ N, then∫ T

0
Y (s)ds ≤ (n+ 1)T,

and so, for any positive constant m,{
max

0≤t≤T
B3

(∫ t

0
Y (s)ds

)
≥ m,MY (T ) ≤ n+ 1

}
⊆ {MB3((n+ 1)T ) ≥ m} . (4.2.25)

Using the inclusion

{n ≤MY (T )} ⊆
{

max
0≤t≤T

B3

(∫ t

0
Y (s)ds

)
≥ n− y − κϑT

σ

}
(by (4.2.23)),

we obtain by (4.2.25),

Qz (n ≤MY (T ) ≤ n+ 1) ≤ Qz

(
MB3((n+ 1)T ) ≥ n− y − κϑT

σ

)
.
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The expression for the density of the running maximum of Brownian motion [47, Equa-

tion (2.8.4)] yields

Qz

(
MB3((n+ 1)T ) ≥ n− y − κϑT

σ

)
≤
∫ ∞

(n−y−κϑT )/(σ
√

(n+1)T )

2√
2π
e−x

2/2dx.

As in [1, §7.1.2], we let

erfc(a) :=
2√
π

∫ ∞
a

e−x
2/2dx, ∀a ∈ R,

and so,

Qz (n ≤MY (T ) ≤ n+ 1) ≤ 1√
2

erfc

(
n− y − κϑT
σ
√

(n+ 1)T

)
.

Because for any a ≥ 1, ∫ ∞
a

e−x
2/2dx ≤

∫ ∞
a

xe−x
2/2dx

= e−a
2/2,

we see that

erfc(a) ≤ 2√
π
e−a

2/2, ∀a ≥ 1.

By hypothesis, T ∈ (0, T0], which implies that

n− y − κϑT
σ
√

(n+ 1)T
≥ n− y − κϑT0

σ
√

(n+ 1)T0

, ∀n ∈ N.

Hence, provided we have

n− y − κϑT0

σ
√

(n+ 1)T0

≥ 1,

which is true for all n ≥ n0(y, κ, ϑ, σ, T0), the smallest integer such that the preceding

inequality holds, we see that

Qz (n ≤MY (T ) ≤ n+ 1) ≤ 2√
π
e−(n−y−κϑT )2/(2σ2(n+1)T ), ∀n ≥ n0. (4.2.26)

Similarly, for a possibly larger n0(y, κ, ϑ, σ, T0), using again the fact that T ∈ (0, T0],

we may choose a positive constant c, depending also on y, κ, ϑ, σ and T0, such that for

all n ≥ n0, we have

(n− y − κϑT )2

2σ2(n+ 1)T
≥ c n

2σ2T
.

Then, using the preceding inequality, we obtain the estimate (4.2.24) from (4.2.26).

This completes the proof of the claim.
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Next, we employ (4.2.24) to obtain (4.2.21). For any stopping time θ ∈ T0,T , we

may write

epX(θ) =

∞∑
n=0

epX(θ)1{MY (T )≤n+1}1{n≤MY (T )≤n+1},

and, by Hölder’s inequality, it follows

EzQ
[
epX(θ)

]
≤
∞∑
n=0

EzQ
[
epX(θ)1{MY (T )≤n+1}

]1/2
Qz (n ≤MY (T ) ≤ n+ 1)1/2 . (4.2.27)

Using (4.2.22) and the condition p ≥ 0 in (4.2.20), we have

EzQ
[
epX(θ)1{MY (T )≤n+1}

]
≤ ep(x+|r−q|T )EzQ

[
exp

(
2pB1

(∫ θ

0
Y (s)ds

))
1{MY (T )≤n+1}

]
≤ ep(x+|r−q|T )EzQ

[
exp

(
2p max

0≤t≤T
B1

(∫ t

0
Y (s)ds

))
1{MY (T )≤n+1}

]
≤ ep(x+|r−q|T )EzQ

[
e2pMB1

((n+1)T )
]
, ∀n ∈ N (by (4.2.25)).

We see from the expression for the density of the running maximum of Brownian motion

[47, Exercise (2.8.4)] that

EzQ
[
e2pMB1

((n+1)T )
]

=

∫ ∞
0

e2px 2√
2π(n+ 1)T

e−x
2/(2(n+1)T )dx

≤ 2e2p2(n+1)T , ∀n ∈ N (by Mathematica),

and so,

EzQ
[
epX(θ)1{MY (T )≤n+1}

]
≤ 2ep(x+|r−q|T )e2p2(n+1)T , ∀n ∈ N. (4.2.28)

Inequalities (4.2.24), (4.2.27) and (4.2.28) give us

EzQ
[
epX(θ)

]
≤
√

2ep(x+|r−q|T )/2
n0−1∑
n=0

ep
2(n+1)T

+
2

π1/4
ep(x+|r−q|T )/2

∞∑
n=n0

ep
2(n+1)T e−cn/(4σ

2T )

=
√

2ep(x+|r−q|T )/2
n0−1∑
n=0

ep
2(n+1)T

+
2

π1/4
ep(x+|r−q|T )/2+p2T

∞∑
n=n0

e(p2T−c/(4σ2T ))n.
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We choose p such that

0 ≤ p <
√
c

2σT
,

that is, condition (4.2.20) is obeyed, and we obtain a bound on EzQ
[
epX(θ)

]
which is

independent of the choice of θ ∈ T0,T . Thus, (4.2.21) follows. (Note that (4.2.21) holds

trivially when p = 0.)

4.3 Elliptic boundary value problem

In this section, we prove Theorem 4.1.2. In addition to the uniqueness result in Theorem

4.1.2 we establish the existence and uniqueness of solutions in Theorem 4.3.1.

The existence and uniqueness of solutions to problem (4.1.1) with boundary con-

dition (4.1.3) along Γ1, when β ≥ 1, and with boundary condition (4.1.5) along ∂O,

when 0 < β < 1, are similar in nature. Therefore, we define

∂βO :=


Γ1 if β ≥ 1,

∂O if 0 < β < 1.

(4.3.1)

and treat the previous mentioned boundary value problems together as
Au = f on O,

u = g on ∂βO.

(4.3.2)

Now, we can give the

Proof of Theorem 4.1.2. Our goal is to show that if u ∈ Cloc(O ∪ ∂βO) ∩ C2(O) is a

solution to problem (4.3.2), satisfying the pointwise growth condition (4.1.16), then it

admits the stochastic representation (4.1.19).

We let {Ok : k ∈ N} denote an increasing sequence of C2+α subdomains of O (see

[41, Definition §6.2]) such that each Ok has compact closure in O, and

⋃
k∈N

Ok = O.
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By applying Itô’s lemma (Theorem C.2.1), we obtain for all t > 0,

d
(
e−r(t∧τOk )u(Z(t ∧ τOk))

)
= −1{t≤τOk}e

−rtAu(Z(t))dt

+ 1{t≤τOk}e
−rt√Y (t)

(
(ux(Z(t)) + σρuy(Z(t))) dW1(t) + σ

√
1− ρ2uy(Z(t))dW2(t)

)
.

Since the subdomain Ok ⊂ O is bounded and u ∈ C2(O), the dWi-terms, i = 1, 2, in

the preceding identity are martingales, and so we obtain

EzQ
[
e−r(t∧τOk )u(Z(t ∧ τOk))

]
= u(z)− EzQ

[∫ t∧τOk

0
e−rsf(Z(s))ds

]
. (4.3.3)

We take the limit as k tends to ∞ in the preceding identity. By the growth estimate

(4.2.18), we may apply the Lebesgue Dominated Convergence Theorem to show that

the integral term in (4.3.3) converges to

EzQ
[∫ t∧τO

0
e−rsf(Z(s))ds

]
.

For the non-integral term on the left hand side of (4.3.3), using the continuity of u on

O ∪ ∂βO and of the sample paths of the Heston process, we see that

e−r(t∧τOk )u(Z(t ∧ τOk))→ e−r(t∧τO)u(Z(t ∧ τO)), a.s. as k →∞.

Using [10, Theorem 16.13], we prove that

EzQ
[
e−r(t∧τOk )u(Z(t ∧ τOk))

]
→ EzQ

[
e−r(t∧τO)u(Z(t ∧ τO))

]
, as k →∞,

by showing that {
e−r(t∧τOk )u(Z(t ∧ τOk)) : k ∈ N

}
is a collection of uniformly integrable random variables. By [10, Remark related to

formula (16.23)], it suffices to show that their p-th order moment is uniformly bounded

(independent of k), for some p > 1. We choose p > 1 such that pM1 < µ and pM2 < 1.

Notice that this is possible because we assumed the coefficients M1 < µ and M2 < 1.

Then, from the growth estimate (4.1.16), we have∣∣∣e−r(t∧τOk )u(Z)
∣∣∣p ≤ Ce−rp(t∧τOk )

(
1 + epM1Y + epM2X

)
, ∀k ∈ N.
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From the inequality (4.2.14) with c = pM1 < µ and property (4.2.13) applied with

c = pM2 ∈ (0, 1), we obtain using M1 < r/(κϑ)

EzQ
[∣∣∣e−r(t∧τOk )u(Z(t ∧ τOk))

∣∣∣p] ≤ C (1 + epM1y + epM2x
)
, ∀k ∈ N.

Therefore, by taking limit as k tends to ∞ in (4.3.3) we obtain

EzQ
[
e−r(t∧τO)u(Z(t ∧ τO))

]
= u(z)− EzQ

[∫ t∧τO

0
e−rsf(Z(s))ds

]
. (4.3.4)

As we let t tend to∞, the integral term on the right-hand side in the preceding identity

clearly converges to

EzQ
[∫ τO

0
e−rsf(Z(s)) ds

]
.

It remains to consider the left-hand side of (4.3.4). Keeping in mind that u ∈ Cloc(O ∪

∂βO) solves (4.3.2), we rewrite this term as

EzQ
[
e−r(t∧τO)u(Z(t ∧ τO))

]
= EzQ

[
e−rτOg(Z(τO))1{τO≤t}

]
+ EzQ

[
e−rtu(Z(t))1{τO>t}

]
.

Using the growth assumption (4.1.16), we notice as above that both collections of

random variables in the preceding identity,

{
e−rτOg(Z(τO))1{τO≤t} : t ≥ 0

}
and

{
e−rtu(Z(t))1{τO>t} : t ≥ 0

}
,

are uniformly integrable, and they converge a.s. to e−rτOg(Z(τO))1{τO<∞} and zero,

respectively. Therefore, by [10, Theorem 16.13], letting t tend to∞ in (4.3.4), we obtain

EzQ
[
e−rτOg(Z(τO))1{τO<∞}

]
= u(z)− EzQ

[∫ τO

0
e−rsf(Z(s)) ds

]
,

which implies that u = u∗ on O ∪ ∂βO, where u∗ is defined by (4.1.19).

Proof of Theorem 4.1.5. Our goal is to show that if 0 < β < 1 and u ∈ Cloc(O ∪ Γ1) ∩

C2(O) ∩ C1,1
s,loc(O ∪ Γ0) is a solution to problem (4.1.1), satisfying the growth estimate

(4.1.16), then it admits the stochastic representation (4.1.21).

We consider the following sequence of increasing subdomains of O,

Uk := {z ∈ O : |z| < k, dist (z,Γ1) > 1/k} , k ∈ N, (4.3.5)
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with non-empty boundary portions Γ̄0 ∩Uk. Let ε > 0 and denote

Y ε := Y + ε, and Zε := (X,Y ε) . (4.3.6)

By applying Itô’s lemma (Theorem C.2.1), we obtain

EzQ
[
e−r(t∧νUk

)u(Zε(t ∧ νUk))
]

= u(z)− EzQ
[∫ t∧νUk

0
e−rsAεu(Zε(s))ds

]
, ∀t > 0,

(4.3.7)

where νUk is given by (4.1.18), and Aε denotes the elliptic differential operator,

Aεv := Av +
ε

2
vx + κεvy −

ε

2

(
vxx + 2ρσvxy + σ2vyy

)
, ∀v ∈ C2(O). (4.3.8)

Using (4.1.1), we can write (4.3.7) as

EzQ
[
e−r(t∧νUk

)u(Zε(t ∧ νUk))
]

= u(z)− EzQ
[∫ t∧νUk

0
e−rsf(Zε(s))ds

]
− EzQ

[∫ t∧νUk

0
e−rs(Aε −A)u(Zε(s))ds

]
.

(4.3.9)

First, we take limit as ε tends to 0 in the preceding identity. We may assume without

loss of generality that ε < 1/k, for any fixed k ≥ 1. We evaluate the residual term

(Aε −A)u with (4.3.8) to give

|(Aε −A)u(Zε(s))| ≤ Cε|Du|C(Ū2k) + C
(
1{Y ε(s)≤√ε} +

√
ε
)
|yD2u|C(Ū2k), (4.3.10)

for all 0 ≤ s ≤ t ∧ νUk , where C is a positive constant depending only on the Heston

constant coefficients. This follows from the fact that

εD2u(Zε(s)) = εD2u(Zε(s))1{Y ε(s)≤√ε} + εD2u(Zε(s))1{Y ε(s)>√ε}, ∀s ≥ 0,

and so,

ε|D2u(Zε(s))| ≤ Y ε(s)|D2u(Zε(s))|1{Y ε(s)≤√ε} + ε
Y ε(s)√

ε
|D2u(Zε(s))|1{Y ε(s)>√ε}

≤
(
1{Y ε(s)≤√ε} +

√
ε
)
Y ε(s)|D2u(Zε(s))|.

Combining the preceding inequality with the definition (4.3.8) of Aε, we obtain (4.3.10).

Since u ∈ C1,1
s,loc(O ∪ Γ0), and

1{Y ε(s)≤√ε} → 0, as ε ↓ 0,
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we see that by (4.3.10) yields, for each k ≥ 1,

EzQ
[∫ t∧νUk

0
e−rs(Aε −A)u(Zε(s))ds

]
→ 0, as ε ↓ 0. (4.3.11)

In addition, using the continuity of f and u on compact subsets of O ∪ Γ0, we have

EzQ
[
e−r(t∧νUk

)u(Zε(t ∧ νUk))
]
→ EzQ

[
e−r(t∧νUk

)u(Z(t ∧ νUk))
]
, as ε ↓ 0,

EzQ
[∫ t∧νUk

0
e−rsf(Zε(s))ds

]
→ EzQ

[∫ t∧νUk

0
e−rsf(Z(s))ds

]
, as ε ↓ 0.

(4.3.12)

Therefore, using (4.3.11) and the preceding limits, we find that (4.3.9) gives

EzQ
[
e−r(t∧νUk

)u(Z(t ∧ νUk))
]

= u(z)− EzQ
[∫ t∧νUk

0
e−rsf(Z(s))ds

]
. (4.3.13)

Note that by letting k and t tend to ∞, we have

t ∧ νUk → νO , a.s. (4.3.14)

By using the same argument as that used in the proof of Theorem 4.1.2 to take the

limit as k and t tend to ∞ in (4.3.3), we can take the limit as k and t tend to ∞ in

(4.3.13) to give

EzQ
[
e−rνOg(Z(νO))

]
= u(z)− EzQ

[∫ νO

0
e−rsf(Z(s))ds

]
.

This establishes u = u∗, where u∗ is given by (4.1.21), and completes the proof.

Next, we prove existence of solutions to problem (4.3.2) when the boundary data g

is continuous on suitable portions of the boundary of O.

Theorem 4.3.1 (Existence of solutions to the elliptic boundary value problem (4.3.2)

with continuous Dirichlet boundary condition). In addition to the hypotheses of Theo-

rem 4.1.2, assume that the domain O ⊂ H has boundary portion Γ1 which satisfies the

exterior sphere condition, and that f ∈ Cα(O).

1. If β ≥ 1 and also g ∈ Cloc(Γ̄1), then the function u∗ in (4.1.19) is a solution

to problem (4.1.1) with boundary condition (4.1.3) along Γ1. In particular, u∗ ∈

Cloc(O ∪ Γ1) ∩ C2+α(O) and u∗ satisfies the growth assumption (4.1.16).
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2. If 0 < β < 1 and also g ∈ Cloc(∂O), then the function u∗ in (4.1.19) is a solution

to problem (4.1.1) with boundary condition (4.1.5) along ∂O. In particular, u∗ ∈

Cloc(Ō) ∩ C2+α(O) and u∗ satisfies the growth assumption (4.1.16).

Proof. Following the comments preceding problem (4.3.2), we need to show that u∗,

given by (4.1.19), is a solution to problem (4.3.2), that u∗ ∈ Cloc(O ∪ ∂βO) ∩ C2(O),

and that u∗ satisfies the growth assumption (4.1.16).

Notice that Lemma 4.2.12, applied with θ1 = τO , θ2 =∞ and ψ ≡ 0, shows that u∗

defined by (4.1.19) satisfies the growth assumption (4.1.16). It remains to prove that

u∗ ∈ Cloc(O ∪ ∂βO) ∩ C2(O). Notice that Theorem 4.1.2 implies that u∗ is the unique

solution to the elliptic boundary value problem (4.3.2), since any Cloc(O∪∂βO)∩C2(O)

solution must coincide with u∗.

By hypothesis and the definition of ∂βO in (4.3.1), we have g ∈ Cloc(∂βO). Since

∂βO is closed, we may use [37, Theorem 3.1.2] to extend g to R2 such that its extension

g̃ ∈ Cloc(R2). We organize the proof in two steps.

Step 1 (u∗ ∈ C2+α(O)). Let {Ok : k ∈ N} be an increasing sequence of C2+α sub-

domains of O as in the proof of Theorem 4.1.2. We notice that on each domain Ok

the differential operator A is uniformly elliptic with C∞(Ōk) coefficients. From our

hypotheses, we have f ∈ Cα(Ōk) and g̃ ∈ C(Ōk). Therefore, [41, Theorem 6.13] implies

that the elliptic boundary value problem
Au = f on Ok,

u = g̃ on ∂Ok.

(4.3.15)

admits a unique solution uk ∈ C(Ōk) ∩ C2+α(Ok). Moreover, by Theorem C.3.10, uk

admits a stochastic representation on Ōk,

uk(z) = EzQ
[
e−rτOk g̃(Z(τOk))1{τOk<∞}

]
+ EzQ

[∫ τOk

0
e−rsf(Z(s)) ds

]
. (4.3.16)

Our goal is to show that uk converges pointwise to u∗ on O. Recall that τk is an

increasing sequence of stopping times which converges to τO almost surely. Using

g̃ ∈ Cloc(O ∪ ∂βO) and the continuity of the sample paths of the Heston process, the
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growth estimate (4.1.16) and Lemma 4.2.12, the same argument used in the proof of

Theorem 4.1.2 shows that the sequence {uk : k ∈ N} converges pointwise to u∗ on O.

Fix z0 := (x0, y0) ∈ O, and choose a Euclidean ball B := B(z0, r0) such that B̄ ⊂ O.

We denote B1/2 = B(z0, r0/2). As in the proof of Lemma 4.2.12, the sequence uk is

uniformly bounded on B̄ because it obeys

|uk(z)| ≤ C̄
(
1 + eM1y + eM2x

)
, ∀z = (x, y) ∈ B, k ∈ N.

From the interior Schauder estimates [41, Corollary 6.3], the sequence {uk : k ∈ N} has

uniformly bounded C2+α(B̄1/2) norms. Compactness of the embedding C2+α(B̄1/2) ↪→

C2+γ(B̄1/2), for 0 ≤ γ < α, shows that, after passing to a subsequence, the sequence

{uk : k ∈ N} converges in C2+γ(B̄1/2) to u∗ ∈ C2+γ(B̄1/2), and so Au∗ = f on B̄1/2.

Because the subsequence has uniformly bounded C2+α(B̄1/2) norms and it converges

strongly in C2(B̄1/2) to u∗, we obtain that u∗ ∈ C2+α(B̄1/2).

Step 2 (u∗ ∈ Cloc(O ∪ ∂βO)). From the previous step, we know that u∗ ∈ C(O), so it

remains to show continuity of u∗ up to ∂βO. We consider two cases.

Case 1 (u∗ ∈ Cloc(O ∪ Γ1), for all β > 0). First, we show that u∗ is continuous up to

Γ1. We fix z0 ∈ Γ1, and let B be an open ball centered at z0, such that B̄ ∩ ∂H = ∅.

Let U := B ∩ O. Let the function ĝ be defined on ∂U such that it coincides with g on

∂U ∩ ∂O, and it coincides with u∗ on ∂U ∩ O.

Claim 4.3.2. The strong Markov property of the Heston process (Z(s))s≥0 and the

definition (4.1.19) of u∗, implies that

u∗(z) = EzQ
[
e−rτU ĝ(Z(τU ))

]
+ EzQ

[∫ τU

0
e−rtf(Z(t))dt

]
, ∀z ∈ U. (4.3.17)

Proof. By Corollary 4.2.8, the Heston stochastic differential equation (4.1.15) admits

a unique strong solution, for any initial point (t, x, y) ∈ [0,∞) × R × [0,∞), and [30,

Theorem 1.16(c)] shows that the solution satisfies the strong Markov property.

Let z ∈ U , then τ zU ≤ τ zO a.s. Since Z is a time-homogeneous strong Markov process,
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we obtain

EzQ
[
e−rτOg(Z(τO))

]
= EzQ

[
EzQ
[
e−rτOg(Z(τO))

]
|F (τU )

]
= EzQ

[
e−rτUEZ(τU )

Q
[
e−rτOg(Z(τO))

]]
,

which can be written as

EzQ
[
e−rτOg(Z(τO))

]
= EzQ

[
e−rτU g(Z(τU ))1{τU=τO}

]
+ EzQ

[
e−rτUEZ(τU )

Q
[
e−rτOg(Z(τO))

]
1{τU<τO}

]
.

(4.3.18)

Similarly, we have for the integral term

EzQ
[∫ τO

0
e−rtf(Z(t))dt

]
= EzQ

[∫ τU

0
e−rtf(Z(t))dt

]
+ EzQ

[
1{τU<τO}

∫ τO

τU

e−rtf(Z(t))dt

]
,

and so, by conditioning the second term in the preceding equality on F (τU ) and ap-

plying the strong Markov property, we have

EzQ
[
1{τU<τO}

∫ τO

τU

e−rtf(Z(t))dt

]
= EzQ

[
EzQ
[
1{τU≤τO}

∫ τO

τU

e−rtf(Z(t))dt

]
|F (τU )

]
= EzQ

[
1{τU<τO}e

−rτUEZ(τU )
Q

[∫ τO

0
e−rtf(Z(t))dt

]]
.

(4.3.19)

Combining (4.3.18) and (4.3.19) in (4.1.19), we obtain

u(z) = EzQ
[
e−rτU g(Z(τU ))1{τU=τO}

]
+ EzQ

[∫ τU

0
e−rtf(Z(t))dt

]
+ EzQ

[
e−rτU1{τU<τO}E

Z(τU )
Q

[
e−rτOg(Z(τO)) +

∫ τO

0
e−rtf(Z(t))dt

]]
.

Using again (4.1.19) for u∗(Z(τU )), the preceding equality yields (4.3.17). This com-

pletes the proof of Claim 4.3.2.

By [41, Theorem 6.13] and a straightforward extension of Theorem C.3.10 from

domains with C2 to domains with regular boundary, as in [23, §6.2.6.A], the integral

term in (4.3.17) is the solution on U of the uniformly elliptic partial differential equa-

tion Au∗ = f with homogeneous Dirichlet boundary condition, and it is a continuous

function up to ∂U . Notice that ∂U satisfies the exterior sphere condition and thus ∂U
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is regular by Proposition C.3.6 (see Definition C.3.2 for the definition of regular points

of ∂U). The continuity of the non-integral term in (4.3.17) at z0 follows from Corollary

C.3.9, as ĝ is continuous at z0 by hypotheses.

It remains to show that, when 0 < β < 1, the solution u∗ is continuous up to Γ̄0.

Case 2 (u∗ ∈ Cloc(O ∪ Γ̄0), for all 0 < β < 1). Let z0 = (x0, 0) ∈ Γ̄0. We denote by θz

the first time the process started at z = (x, y) ∈ O hits y = 0. Obviously, we have

τ zO ≤ θz ≤ T
y
0 a.s., (4.3.20)

where T y0 is given by (4.2.11). For β ∈ (0, 1), it follows from (4.2.12) and the preceding

inequality between stopping times, that θz converges to 0, as y goes to 0, uniformly in

x ∈ R. Therefore, the integral term in (4.3.17) converges to zero. Next, we want to

show that the non-integral term in (4.3.17) converges to g(z0). We rewrite that term

as

EzQ
[
e−rτOg(Z(τO))

]
− g(z0) = EzQ

[
e−rτO (g(Z(τO))− g(z0))

]
+ g(z0)

(
1− EzQ

[
e−rτO

])
.

(4.3.21)

From the observation that τ zO ≤ θz a.s., we see that

EzQ
[
e−rτO

]
→ 1, as z → z0. (4.3.22)

By (4.3.21), it remains to show that EzQ [e−rτO (g(Z(τO))− g(z0))] converges to zero, as

z ∈ O converges to z0. We fix ε > 0 and choose δ1 > 0 such that

|g(z)− g(z0)| < ε, ∀z ∈ B(z0, δ1) ∩ ∂O. (4.3.23)

From [47, Equation (5.3.18) in Problem 5.3.15 ], there is a positive constant C1, de-

pending on z0 and δ1, such that

sup
z∈B(z0,δ1)∩O

EzQ
[

sup
0≤s≤t

|Z(s)− z|
]
≤ C1

√
t,

from where it follows

sup
z∈B(z0,δ1)∩O

Qz

(
sup

0≤s≤t
|Z(s)− z| > δ1/2

)
≤ 2C1

√
t

δ1
. (4.3.24)
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Next, we choose t > 0 sufficiently small such that

2C1

√
t

δ1
< ε, (4.3.25)

and, by (4.3.20) and (4.2.12), we may choose δ2 > 0 sufficiently small such that

Q
(
T δ20 > t

)
< ε. (4.3.26)

Let δ := min{δ1/2, δ2}. We rewrite

e−rτO (g(Z(τO))− g(z0)) = e−rτO (g(Z(τO))− g(z0)) 1{τO≤t}

+ e−rτO (g(Z(τO))− g(z0)) 1{τO>t}

to give

e−rτO (g(Z(τO))− g(z0)) = e−rτO (g(Z(τO))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|<δ1/2}

+ e−rτO (g(Z(τO))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|≥δ1/2}

+ e−rτO (g(Z(τO))− g(z0)) 1{τO>t}
(4.3.27)

By (4.3.23), we have for all z ∈ B(z0, δ) ∩ O

EzQ
[
|g(Z(τO))− g(z0)|1{τO≤t, sup0≤s≤t |Z(s)−z|<δ1/2}

]
< ε. (4.3.28)

We choose p > 1 such that pM1 < µ and pM2 < 1. Notice that this is possible because

we assumed the coefficients M1 < µ and M2 < 1. Then, from the growth estimate

(4.1.16) for g, we have∣∣e−rτOg(Z(τO))
∣∣p ≤ Ce−rpτO (1 + epM1Y (τO) + epM2X(τO)

)
.

From the inequality (4.2.14) with c = pM1 < µ and property (4.2.13) applied with

c = pM2 ∈ (0, 1), we obtain using the condition M1 ≤ r/(κϑ)

EzQ
[∣∣e−rτOg(Z(τO))

∣∣p] ≤ C (1 + epM1y + epM2x
)
.

Let C2 > 0 be an bound on the right-hand side of the preceding inequality, for all

z = (x, y) ∈ B(z0, δ) ∩ O. By the Cauchy-Schwarz inequality, we have∣∣EzQ [e−rτO (g(Z(τO))− g(z0)) 1{τO>t}
]∣∣

≤ EzQ
[
e−rpτO |g(Z(τO))− g(z0)|p

]1/pQz (τO > t)1/p′ ,
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where p′ > 1 denotes the conjugate exponent of p. Using the fact that τ zO ≤ T δ20 from

(4.3.20) and (4.3.26), we obtain in the preceding inequality∣∣EzQ [e−rτO (g(Z(τO))− g(z0)) 1{τO>t}
]∣∣ ≤ 2C

1/p
2 Qz (T0 > t)1/p′

≤ 2C
1/p
2 ε1/p′ , ∀z ∈ B(z0, δ) ∩ O,

(4.3.29)

From the inequality,∣∣∣EzQ [e−rτO (g(Z(τO))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|≥δ1/2}

]∣∣∣
≤ EzQ

[
e−rpτO |g(Z(τO))− g(z0)|p

]1/pQz

(
sup

0≤s≤t
|Z(s)− z| ≥ δ1/2

)1/p′

,

the inequalities (4.3.24) and (4.3.25) and definition of C2 yield∣∣∣EzQ [e−rτO (g(Z(τO))− g(z0)) 1{τO≤t,sup0≤s≤t |Z(s)−z|≥δ1/2}

]∣∣∣ ≤ 2C
1/p
2 ε1/p′ . (4.3.30)

Substituting (4.3.28), (4.3.29), and (4.3.30) in (4.3.27), we obtain

E
[
e−rτO (g(Z(τO))− g(z0))

]
<
(

1 + 4C
1/p
2

)(
ε+ ε1/p′

)
, ∀z ∈ B(z0, δ) ∩ O,

and so u∗ is continuous up to Γ̄0, when 0 < β < 1.

This concludes the proof that u∗ ∈ Cloc(O ∪ ∂βO), for all β > 0.

This completes the proof of Theorem 4.3.1.

We now prove existence of solutions to problem (4.3.2) when the boundary data g

is Hölder continuous on suitable portions of the boundary of O.

Theorem 4.3.3 (Existence of solutions to the elliptic boundary value problem (4.3.2)

with Hölder continuous Dirichlet boundary condition). In addition to the hypotheses of

Theorem 4.1.2, let O ⊂ H be a domain such that the boundary portion Γ1 is of class

C2+α, that f ∈ Cαloc(O ∪ Γ1) and g ∈ C2+α
loc (O ∪ Γ1).

1. If β ≥ 1, then u∗, given by (4.1.19), is a solution to problem (4.1.1) with boundary

condition (4.1.3) along Γ1. In particular,

u∗ ∈ C2+α
loc (O ∪ Γ1)

and satisfies the growth assumption (4.1.16).
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2. If 0 < β < 1 and g ∈ Cloc(∂O), then u∗, given by (4.1.19), is a solution to problem

(4.1.1) with boundary condition (4.1.5) along ∂O. In particular,

u∗ ∈ Cloc(Ō) ∩ C2+α(O ∪ Γ1)

and satisfies the growth assumption (4.1.16).

Proof. The proof of the theorem is the same as that of Theorem 4.3.1, with the exception

that Case 1 of Step 2 can be simplified by applying the classical boundary Schauder

estimates. Also, instead of using the sequence of subdomains {Ok : k ∈ N} precompactly

contained in O, as in the proof of Theorem 4.1.2, we consider an increasing sequence,

{Dk : k ∈ N}, of C2+α subdomains of O (see [41, Definition §6.2]) such that each Dk

satisfies

O ∩ (−k, k)× (1/k, k) ⊂ Dk ⊂ O ∩ (−2k, 2k)× (1/(2k), 2k), ∀k ∈ N, (4.3.31)

and ⋃
k∈N

Dk = O.

Since Γ1 is assumed to be of class C2+α, we may choose Dk to be of class C2+α.

Let z0 ∈ Γ1, and r0 > 0 small enough such that B(z0, r0) ∩ Γ0 = ∅. Let

D := B(z0, r0) ∩ O and D′ := B(z0, r0/2) ∩ O.

By (4.3.31), we may choose k0 ∈ N large enough such that D ⊂ Dk, for all k ≥ k0.

Using f ∈ Cα(D̄), g ∈ C2+α(D̄) and applying [41, Corollary 6.7], and the fact that uk

solves (4.3.15)

‖uk‖C2+α(D̄′) ≤ C
(
‖uk‖C(D̄) + ‖g̃‖C2+α(D̄) + ‖f‖Cα(D̄)

)
, ∀k ≥ k0, (4.3.32)

where C > 0 is a constant depending only on the coefficients of A, and the domains

D and D′. Combining the preceding inequality with the uniform bound on the C(D̄)

norms of the sequence {uk : k ∈ N}, resulting from Lemma 4.2.12, the compactness of

the embedding of C2+α(D̄′) ↪→ C2+γ(D̄′), when 0 ≤ γ < α, implies that a subsequence

converges strongly to u∗. Therefore, u∗ ∈ C2+γ(D̄′), and Au∗ = f on D′ and u∗ = g
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on ∂D′ ∩ Γ1. Moreover, u∗ ∈ C2+α(D̄′), since uk ∈ C2+α(D̄′), for all k ≥ k0, and the

sequence converges in C2(D̄′) to u∗. Combining the boundary estimate (4.3.32) with

Step 1 in the proof of Theorem 4.3.1, we obtain the conclusion that u∗ ∈ C2+α
loc (O ∪

Γ1).

Remark 4.3.4 (Validity of the stochastic representation for strong solutions). The

stochastic representation (4.1.21) for solutions to problem (4.1.1) with boundary condi-

tion along Γ1 is valid if we replace the condition u ∈ Cloc(O∪Γ1)∩C2(O)∩C1,1
s,loc(O∪Γ0)

in the hypotheses of Theorem 4.1.5, with the weaker condition u ∈ Cloc(O ∪ Γ1) ∩

W 2,2
loc (O) ∩ C1,1

s,loc(O ∪ Γ0).

4.4 Elliptic obstacle problem

This section contains the proofs of Theorems 4.1.8 and 4.1.9. As in problem (4.3.2),

the questions of uniqueness of solutions to problem (4.1.2) with Dirichlet boundary

condition along Γ1, when β ≥ 1, and along ∂O, when 0 < β < 1, are similar in nature.

We can conveniently treat them together as
min {Au− f, u− ψ} = 0 on O,

u = g on ∂βO,

(4.4.1)

where ∂βO is given by (4.3.1).

Proof of Theorem 4.1.8. Lemma 4.2.12 indicates that u∗ given by (4.1.23) satisfies

(4.1.16), so the growth assumption on u in Theorem 4.1.8 is justified.

By the preceding remarks, it suffices to prove that the stochastic representation

(4.1.23) holds for solutions u ∈ Cloc(O ∪∂βO)∩C2(O) to problem (4.4.1). We consider

the two situations: u ≥ u∗ and u ≤ u∗ on O ∪ ∂βO, where u∗ is defined by (4.1.23).

Step 1 (Proof that u ≥ u∗ on O ∪∂βO). Let {Ok : k ∈ N} be an increasing sequence of

C2+α subdomains of O as in the proof of Theorem 4.1.2. Since u ∈ C2(O), Itô’s lemma

(Theorem C.2.1) yields, for any stopping time θ ∈ T ,

EzQ
[
e−r(θ∧τOk )u(Z(θ ∧ τOk))

]
= u(z)− EzQ

[∫ θ∧τOk

0
e−rsAu(Z(s))ds

]
. (4.4.2)
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By splitting the right-hand side in the preceding identity,

EzQ
[
e−r(θ∧τOk )u(Z(θ ∧ τOk))

]
= EzQ

[
e−rτOku(Z(θ ∧ τOk))1{τOk≤θ}

]
+ EzQ

[
e−rθu(Z(θ ∧ τOk))1{τOk>θ}

]
,

and using u ≥ ψ on O and Au ≥ f a.e. on O, the identity (4.4.2) gives

u(z) ≥ EzQ
[
e−rθψ(Z(θ))1{θ<τOk}

]
+ EzQ

[
e−rτOku(Z(τOk))1{τOk≤θ}

]
+ Ez

[∫ θ∧τOk

0
e−rsf(Z(s)) ds

]
.

(4.4.3)

Just as in the proof of Theorem 4.1.2, the collections of random variables

{
e−rθψ(Z(θ))1{θ<τOk}

: k ∈ N
}

and
{
e−rτOku(Z(τOk))1{τOk≤θ}

: k ∈ N
}

are uniformly integrable because u and ψ satisfy the pointwise growth estimate (4.1.16).

From the continuity of u and ψ on O ∪ ∂βO, we also have the a.s. convergence,

e−rθψ(Z(θ))1{θ<τOk}
→ e−rθψ(Z(θ))1{θ<τO}, as k →∞,

e−rτOku(Z(τOk))1{τOk≤θ}
→ e−rτOu(Z(τO))1{τO≤θ}, as k →∞.

Therefore, by [10, Theorem 16.13], we can take limit as k tends to ∞ in inequality

(4.4.3) to obtain, for all θ ∈ T ,

u(z) ≥ EzQ
[
e−rθψ(Z(θ))1{θ<τO}

]
+ EzQ

[
e−rτOu(Z(τO))1{τO≤θ}

]
+ EzQ

[∫ θ∧τO

0
e−rsf(Z(s)) ds

]
,

which yields u ≥ u∗ on O ∪ ∂βO.

Step 2 (Proof that u ≤ u∗ on O ∪ ∂βO). The continuation region,

C := {u > ψ}, (4.4.4)

is an open set by the continuity of u and ψ. We denote the first exit time of Zt,z from

the continuation region, C , by

τ̃ t,z :=
{
s ≥ t : Zt,z(s) /∈ C

}
, (4.4.5)
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and write τ̃ = τ̃ t,z for brevity. This is indeed a stopping time because the process Zt,z

is continuous and C is open. By the same argument used in Step 1 with θ replaced by

τ̃ , we obtain that all inequalities hold with equalities because u(Z(τ̃)) = ψ(Z(τ̃)) and

Au = f on the continuation region, C . Therefore,

u(z) = EzQ
[
e−rτ̃ψ(Z(τ̃))1{τ̃<τO}

]
+ EzQ

[
e−rτOg(Z(τO))1{τO≤τ̃O}

]
+ EzQ

[∫ τ̃∧τO

0
e−rsf(Z(s)) ds

]
,

which implies that u ≤ u∗.

By combining the preceding two steps, we obtain the stochastic representation

(4.1.23) of solutions to problem (4.4.1), and hence the uniqueness assertion.

Proof of Theorem 4.1.9. Lemma 4.2.12 indicates that u∗ given by (4.1.24) satisfies

(4.1.16), so the growth assumption on u in Theorem 4.1.8 is justified.

Our goal is to show that if 0 < β < 1 and u ∈ Cloc(O ∪Γ1)∩C2(O)∩C1,1
s,loc(O ∪Γ0)

is a solution to problem (4.1.2) with Dirichlet boundary condition (4.1.4) along Γ1, and

satisfying the growth estimate (4.1.16), then it admits the stochastic representation

(4.1.24). As in the proof of Theorem 4.1.8, we consider the following two cases.

Step 1 (Proof that u ≥ u∗ on O ∪Γ1). Let ε > 0 and {Uk : k ∈ N} be the collection of

increasing subdomains as in (4.3.5). By applying Itô’s lemma, we obtain, for all t > 0

and θ ∈ T ,

u(z) = EzQ
[
e−r(t∧νUk

∧θ)u(Zε(t ∧ νUk ∧ θ))
]

+ EzQ
[∫ t∧νUk

∧θ

0
e−rsAεu(Zε(s))ds

]
,

(4.4.6)

where νUk is given by (4.1.18) and Zε is defined in (4.3.6), and Aε is defined by (4.3.8).

By (4.1.2) and (4.3.8), preceding identity gives

u(z) ≥ EzQ
[
e−r(t∧νUk

∧θ)u(Zε(t ∧ νUk ∧ θ))
]

+ EzQ
[∫ t∧νUk

∧θ

0
e−rsf(Zε(s))ds

]
+ EzQ

[∫ t∧νUk
∧θ

0
e−rs(Aε −A)u(Zε(s))ds

]
.

(4.4.7)

First, we take the limit as ε tends to 0 in (4.4.7). We can assume without loss of

generality that ε < 1/k, for any fixed k ∈ N. The residual term (Aε − A)u then
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obeys estimate (4.3.10) because u ∈ C1,1
s,loc(O ∪ Γ0). Therefore, (4.3.11) also holds in

the present case. In addition, using the continuity of f , u, Du and yD2u on compact

subsets of O ∪Γ0, we see that (4.3.12) holds, and so, by taking limit as ε ↓ 0 in (4.4.7),

u(z) ≥ EzQ
[
e−r(t∧νUk

∧θ)u(Z(t ∧ νUk ∧ θ))
]

+ EzQ
[∫ t∧νUk

∧θ

0
e−rsf(Z(s))ds

]
. (4.4.8)

Finally, letting k and t tend to∞ and using the convergence (4.3.14), the same argument

employed in the proof of Theorem 4.1.2 can be applied to conclude that u ≥ u∗ on O∪Γ1,

where u∗ is given by (4.1.24).

Step 2 (Proof that u ≤ u∗ on O ∪ Γ1). We choose θ = τ̃ in the preceding step, where

τ̃ is defined by (4.4.5). By the definition (4.4.4) of the continuation region, C , and

the obstacle problem (4.1.2), we notice that inequalities (4.4.7) and (4.4.8) hold with

equality and so it follows as in Step 1 that u ≤ u∗ on O ∪ Γ1.

This completes the proof.

Remark 4.4.1 (Validity of the stochastic representation for strong solutions). The

stochastic representation (4.1.23) of solutions to problem (4.4.1), when β > 0, holds

under the weaker assumption that u ∈ Cloc(O∪∂βO)∩W 2,2
loc (O). Similarly, the stochastic

representation (4.1.24) of solutions to problem (4.1.2) with Dirichlet boundary condition

(4.1.4) along Γ1, when 0 < β < 1, holds under the weaker assumption that u ∈

Cloc(O ∪Γ1)∩C1,1
s,loc(O ∪Γ0)∪W 2,2

loc (O). In each case, we would replace the application

of the classical Itô lemma (Theorem C.2.1) with [8, Identity (8.62) in Theorem 2.8.5],

or we could apply an approximation argument involving C2(O) functions.

4.5 Parabolic terminal/boundary value problem

This section contains the proofs of Theorems 4.1.12 and 4.1.15 and an existence result

in Theorem 4.5.4. Because the Heston process satisfies the strong Markov property, it

suffices to prove the stochastic representation of solutions to the terminal value problem

for T as small as we like. In particular, without loss of generality, we can choose T such

that

Hypothesis 4.5.1. There is a constant p0 > 1 such that
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1. Condition (4.2.20) in Lemma 4.2.14 is satisfied for p := p0M2, where M2 ∈ [0, 1]

is the constant appearing in (4.1.25);

2. One has p0M1 ≤ µ, where M1 ∈ [0, µ) in (4.1.25).

As in §4.3, we first prove uniqueness of solutions to the parabolic boundary value

problems (4.1.7) with different possible Dirichlet boundary conditions depending on the

parameter β. The proofs are similar those of Theorems 4.1.2 and 4.1.5.

The existence and uniqueness of solutions to problem (4.1.7) with boundary condi-

tion (4.1.9), when β ≥ 1, and with boundary condition (4.1.12), when 0 < β < 1, are

similar in nature. By analogy with our treatment of problem (4.3.2), we define

ðβQ :=


ð1Q if β ≥ 1,

ðQ if 0 < β < 1,

(4.5.1)

where we recall that Q := (0, T )×O. The preceding problems can then be formulated

as

−ut +Au = f on Q, (4.5.2)

u = g on ðβQ. (4.5.3)

We now have the

Proof of Theorem 4.1.12. We choose T > 0 small enough and p0 > 1 as in Hypothesis

4.5.1. The pattern of the proof is the same as that of Theorem 4.1.2. For completeness,

we outline the main steps of the argument.

We need to show that if u ∈ Cloc(Q ∪ ðβQ) ∩ C2(Q) is a solution to problem

(4.5.2), satisfying the growth bound (4.1.25), then it admits the stochastic representa-

tion (4.1.26). We choose a collection of increasing subdomains, {Ok : k ∈ N}, as in the

proof of Theorem 4.1.2. By applying Itô’s lemma (Theorem C.2.1), we obtain, for all

t > 0 and k ∈ N,

Et,zQ
[
e−r(τOk∧T−t)u(τOk ∧ T,Z(τOk ∧ T ))

]
= u(t, z)− Et,zQ

[∫ τOk∧T

t
e−r(s−t)f(s, Z(s))ds

]
.

(4.5.4)
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We now take limit as k tends to∞ in the preceding identity. Using (4.1.25) and Lemma

4.2.11, we obtain

Et,zQ

[∫ τOk∧T

t
e−r(s−t)f(s, Z(s))ds

]
→ Et,zQ

[∫ τO∧T

t
e−r(s−t)f(s, Z(s))ds

]
, as k →∞.

(4.5.5)

From the continuity of u and of the sample paths of Z, we obtain the a.s. convergence

as k tends to ∞,

e−r(τOk∧T−t)u(τOk ∧ T,Z(τOk ∧ T ))→ e−r(τO∧T )g(τO ∧ T,Z(τO ∧ T )).

In order to prove that, as k tends to ∞,

Et,zQ
[
e−r(τOk∧T−t)u(τOk ∧ T,Z(τOk ∧ T ))

]
→ Et,zQ

[
e−r(τO∧T )g(τO ∧ T,Z(τO ∧ T ))

]
,

(4.5.6)

using [10, Theorem 16.13], it is enough to show that the collection of random variables,{
e−r(τOk∧T−t)u(τOk ∧ T,Z(τOk ∧ T )) : k ∈ N

}
(4.5.7)

is uniformly integrable. For p0 > 1 as in Hypothesis 4.5.1, it is enough to show that

their p0-th order moments are uniformly bounded ([10, Observation following Equation

(16.23)]), that is

sup
k∈N

Et,zQ
[∣∣∣e−rτOku(τOk , Z(τOk))1{τOk<T}

∣∣∣p0
]
< +∞. (4.5.8)

From (4.1.25), we have, for some constant C,

Et,zQ
[∣∣∣e−r(τOk∧T−t)u(τOk ∧ T,Z(τOk ∧ T ))

∣∣∣p0
]

≤ C
(

1 + Et,zQ
[
ep0M1Y (τOk∧T )

]
+ Et,zQ

[
ep0M2X(τOk∧T )

])
.

Now, the uniform bound in (4.5.8) follows by applying the supermartingale property

(4.2.14) with c := p0M1 to the first expectation in the preceding inequality, and by

applying (4.2.21) with p := p0M2 to the second expectation above. Therefore, by

taking the limit as k tends to ∞ in (4.5.4), with the aid of (4.5.5) and (4.5.6), we

obtain the stochastic representation (4.1.26) of solutions to problem (4.5.2).

Proof of Theorem 4.1.15. The need is to show that if 0 < β < 1 and u ∈ Cloc(Q ∪

ð1Q)∩C2(Q)∩C1,1
s,loc((0, T )× (O ∪Γ0)) is a solution to problem (4.1.7) with boundary
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condition (4.1.9), satisfying the growth bound (4.1.25), then it admits the stochastic

representation (4.1.28).

Let ε > 0 and {Uk : k ∈ N} be the collection of increasing subdomains as in (4.3.5).

By applying Itô’s lemma, we obtain

Et,zQ
[
e−r(T∧νUk

)u(T ∧ νUk , Z
ε(T ∧ νUk))

]
= u(t, z)− Et,zQ

[∫ T∧νUk

t
e−rsAεu(s, Zε(s))ds

]
,

where νUk is given by (4.1.18), Zε by (4.3.6) and Aε is defined by (4.3.8). The proof

now follows the same path as that of Theorem 4.1.5, with the only modification being

that we now take the limit as k tends to ∞ in the preceding identity in order to obtain

(4.1.28).

Analogous to Lemma 4.2.12, we have the following auxiliary result.

Lemma 4.5.2. Suppose f and g obey the growth assumption (4.1.25). Then there

are positive constants C̄, M1 ≤ µ and M2 ∈ [0, 1], such that for any stopping times

θ1, θ2 ∈ Tt,T with values in [t, T ], the function Jθ1,θ2p given by (4.1.29) obeys the growth

assumption (4.1.25).

Proof. The proof follows as in Lemma 4.2.12 with the aid of Lemma 4.2.11. Notice

that because the stopping times θ1, θ2 ∈ Tt,T are bounded by T , we do not need the

constant r to be positive, as in Lemma 4.2.12.

Next, we have the following existence results for solutions to the parabolic boundary

value problem (4.5.2), for all β > 0.

Remark 4.5.3. The function ψ in (4.1.29) plays the role of the obstacle function and

is relevant only for problem (4.1.8).

Theorem 4.5.4 (Existence of solutions to problem (4.5.2) with continuous Dirichlet

boundary condition). In addition to the hypotheses of Theorem 4.1.12, let O ⊂ H be a

domain such that the boundary Γ1 obeys an exterior sphere condition, and f ∈ Cαloc(Q̄).
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1. If β ≥ 1 and g ∈ Cloc(ð1Q), then u∗ in (4.1.26) is a solution to problem (4.5.2).

In particular, u∗ ∈ Cloc(Q ∪ ð1Q) ∩ C2+α(Q) and obeys the growth assumption

(4.1.25).

2. If 0 < β < 1 and g ∈ Cloc(ðQ), then u∗ in (4.1.26) is a solution to problem (4.5.2).

In particular, u∗ ∈ Cloc(Q ∪ ðQ) ∩ C2+α(Q) and satisfies the growth assumption

(4.1.25).

Proof. We choose T > 0 small enough and p0 > 1 as in Hypothesis 4.5.1.

By hypothesis, we have g ∈ Cloc(ðβQ). Since ðβQ is closed, we may use [37,

Theorem 3.1.2] to extend g to a function on [0, T ] × R2, again called g, such that

g ∈ Cloc([0, T ]× R2).

The proof follows the same pattern as that of Theorem 4.3.1. For completeness,

we outline the main steps. Let Ok be an increasing sequence of C2+α subdomains of

O as in the proof of Theorem 4.1.2, and let Qk := (0, T ) × Ok. We notice that on

each cylindrical domain, Qk, the operator A is uniformly elliptic, and its coefficients

are C∞(Q̄k) functions. By hypothesis, there is an α ∈ (0, 1) such that f ∈ Cα(Q̄k) and

g ∈ C(Q̄k). Therefore, by [37, Theorem 3.4.9], the terminal value problem

−ut +Au = f on Qk,

u = g on (0, T )× ∂Ok ∪ {T} × Ōk,

has a unique solution uk ∈ C(Q̄k) ∩ C2+α(Qk), and by Theorem C.3.11, it has the

stochastic representation

uk(t, z) = Et,zQ
[
e−r(τOk∧T−t)g(τOk ∧ T,Z(τOk ∧ T ))

]
+ Et,zQ

[∫ τOk∧T

t
e−r(s−t)f(s, Z(s)) ds

]
, ∀(t, z) ∈ Q̄k.

(4.5.9)

Because τOk converges to τO a.s. as k → ∞, the integral term in (4.5.9) converges to

the integral term of u∗ in (4.1.26), by the same argument as that used in the proof of

Theorem 4.1.12. By the continuity of g and of the paths of the Heston process Z, we

also know that

e−r(τOk∧T )g(τOk ∧ T,Z(τOk ∧ T ))→ e−r(τO∧T )g(τO ∧ T,Z(τO ∧ T )), as k →∞.
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In order to show that the preceding convergence takes place in expectation also, it is

enough to show that the collection of random variables,{
e−r(τOk∧T )g(τOk ∧ T,Z(τOk ∧ T )) : k ∈ N

}
,

is uniformly integrable, but this follows by the same argument as that used for the

collections (4.5.7) in the proof of Theorem 4.1.12, by bounding their p0-th order mo-

ments (p0 > 1). Therefore, the sequence {uk : k ∈ N} converges to u∗ pointwise on Q.

By interior Schauder estimates for parabolic equations [40, Theorem 3.3.5] and Lemma

4.5.2, there is a subsequence of {uk : k ∈ N} which converges to u∗ in C2+α′(Q), when

0 < α′ < α. Using the Arzelà-Ascoli Theorem, we obtain u∗ ∈ C2+α(Q). The proof

of continuity of u up to ðβQ follows by exactly the same argument as that used in the

proof of Step 2 in Theorem 4.3.1. Therefore, u∗ is a solution to (4.5.2).

From Theorem 4.1.12 and Lemma 4.5.2, we see that u∗ in (4.1.26) is the unique

solution to the parabolic terminal value problem (4.5.2), for all β > 0.

Theorem 4.5.5 (Existence of solutions to problem (4.5.2) with Hölder continuous

Dirichlet boundary condition). In addition to the hypotheses of Theorem 4.1.12, let

O ⊂ H be a domain such that

1. If β ≥ 1, the boundary portion Γ1 is of class C2+α, and g ∈ C2+α
loc (Q∪ð1Q) obeys

− gt +Ag = f on {T} × Γ1. (4.5.10)

Then u∗ in (4.1.26) is a solution to problem (4.5.2). In particular,

u∗ ∈ C2+α
loc (Q ∪ ð1Q)

and obeys the growth estimate (4.1.25).

2. If 0 < β < 1, the boundary portion Γ1 is of class C2+α, and g ∈ C2+α
loc (Q∪ð1Q)∩

C loc(Ō) obeys

− gt +Ag = f on {T} × ∂O. (4.5.11)

Then u∗ in (4.1.26) is a solution to problem (4.5.2). In particular,

u∗ ∈ C2+α
loc (Q ∪ ð1Q) ∩ C loc(Ō).
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and obeys the growth estimate (4.1.25).

Proof. Just as in the proof of Theorem 4.5.4, we can easily adapt the proof of Theorem

4.3.3 for the elliptic case to the present parabolic case. For this purpose, we only need

to make use of the local boundary Schauder estimate Lemma C.1.1 instead of [41,

Corollary 6.7] for the elliptic case.

Remark 4.5.6 (Zero and first-order compatibility conditions for parabolic equations).

The conditions (4.5.10) and (4.5.11) are the analogues of the first-order compatibility

condition [51, Equation (10.4.3)]. The analogue of the zero-order compatibility condi-

tion in [51, Equation (10.4.2)] automatically holds at {T} × Γ1 or {T} × ∂O, since we

always choose h = g(T, ·) on Γ1 or ∂O, respectively.

4.6 Parabolic obstacle problem

Problem (4.1.8) with boundary condition (4.1.12), when 0 < β < 1, and with boundary

condition (4.1.9), when β ≥ 1, can be formulated as
min {−ut +Au− f, u− ψ} = 0 on Q,

u = g on ðβQ,
(4.6.1)

where ðβQ is defined in (4.5.1). According to Theorem 4.1.19, the solution to problem

(4.6.1) is given in (4.1.31).

Proof of Theorem 4.1.19. We choose T̃ > 0 small enough so that it obeys Hypothesis

4.5.1. For such T̃ > 0, the proof of Theorem 4.1.8 adapts to the present case in the

same way that the proof of Theorem 4.1.2 adapts to give a proof of Theorem 4.1.12.

Therefore, it remains to show that the corresponding stochastic representation (4.1.30)

of the solution to problem (4.6.1) holds for T arbitrarily large.

Let N := bT/T̃ c (the greatest integer in T/T̃ ), and Ti := iT̃ , for i = 0, . . . , N−1, and

TN := T . Let k be an integer such that 1 ≤ k ≤ N − 1, and assume that the stochastic

representation formula (4.1.30) holds for any t ∈ [Ti, T ], where i = k, . . . , N − 1. We

want to show that it holds also for t ∈ [Tk−1, T ]. Notice that for k = N − 1, we have
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T − t ≤ T̃ , for all t ∈ [TN−1, T ], and so we know that the stochastic representation

(4.1.30) of the solution to problem (4.1.8) holds, by the observation at the beginning of

the present proof.

For any t ≤ v ≤ T , stopping time θ ∈ Tt,v with values in [t, v], and ϕ ∈ C(Ō), we

denote

Fϕ(t, z, v, θ) :=

∫ τO∧θ

t
e−r(s−t)f(s, Z(s)) ds+ e−r(θ−t)ψ(θ, Z(θ))1{θ<τO∧v}

+ e−r(τO−t)g(τO , Z(τO))1{τO≤θ,τO<v}

+ e−r(v−t)ϕ(Z(v))1{τO∧v≤θ,τO≥v}.

(4.6.2)

Notice that by choosing ϕ = g(T, ·) and v = T in (4.6.2), we obtain, for any stopping

time θ ∈ Tt,T ,

e−r(τO−t)g(τO , Z(τO))1{τO≤θ,τO<T} + e−r(T−t)ϕ(Z(T ))1{τO∧T≤θ,τO≥T}

= e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤θ}

and so,

F g(T,·)(t, z, T, θ) =

∫ τO∧θ

t
e−r(s−t)f(s, Z(s)) ds+ e−r(θ−t)ψ(θ, Z(θ))1{θ<τO∧T}

+ e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤θ}.

(4.6.3)

Because u solves problem (4.6.1) on the interval (Tk−1, Tk), and Tk − Tk−1 ≤ T̃ , we see

that u has the stochastic representation (4.1.30), for any t ∈ [Tk−1, Tk) and z ∈ O∪∂βO,

u(t, z) = sup
θ∈Tt,Tk

Et,zQ
[
F u
∗(Tk,·)(t, z, Tk, θ)

]
. (4.6.4)

For any stopping time η ∈ Tt,Tk , we set

F1(t, z, Tk, η) :=

∫ τO∧η

t
e−r(s−t)f(s, Z(s))ds

+ e−r(η−t)ψ(η, Z(η))1{η<τO∧Tk}

+ e−r(τO−t)g(τO , Z(τO))1{τO≤η,η<Tk},

(4.6.5)

and for any stopping time ξ ∈ TTk,T , we let

F2(t, z, T, ξ) :=

∫ τO∧ξ

Tk

e−r(s−Tk)f(s, Z(s))ds

+ e−r(ξ−Tk)ψ(ξ, Z(ξ))1{ξ<τO∧T}

+ e−r(τO∧T−Tk)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤ξ}.

(4.6.6)
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For the rest of the proof, we fix z ∈ O ∪ ∂βO and t ∈ [Tk−1, Tk).

Let η ∈ Tt,Tk and ξ ∈ TTk,T . It is straightforward to see that

θ :=


η if η < Tk,

ξ if η = Tk,

is a stopping time with values in [t, T ]. We denote by

St,T =
{
θ ∈ Tt,T : θ = η1{η<Tk} + ξ1{η=Tk}, where η ∈ Tt,Tk and ξ ∈ TTk,T

}
.

(4.6.7)

For any stopping time θ ∈ Tt,T , we define the stopping times θ′ ∈ Tt,Tk and θ′′ ∈ TTk,T ,

θ′ := 1{θ<Tk}θ + 1{θ≥Tk}Tk and θ′′ := 1{θ<Tk}Tk + 1{θ≥Tk}θ. (4.6.8)

Then, any stopping time θ ∈ Tt,T can be written as

θ = θ′1{θ<Tk} + θ′′1{θ≥Tk}

= θ′1{θ′<Tk} + θ′′1{θ′=Tk}

and so,

Tt,T = St,T .

The preceding identity and definitions (4.1.30) of u∗ and (4.6.2) of Fϕ give us

u∗(t, z) = sup
θ∈St,T

Et,zQ
[
F g(T,·)(t, z, T, θ)

]
. (4.6.9)

We shall need the following identities

Claim 4.6.1. For any stopping time θ = η1{η<Tk} + ξ1{η=Tk}, where η ∈ Tt,Tk and

ξ ∈ TTk,T , we have the following identities∫ τO∧θ

t
e−r(s−t)f(s, Z(s))ds = 1{η<Tk}

∫ τO∧η

t
e−r(s−t)f(s, Z(s))ds

+ 1{η=Tk}

∫ τO∧ξ

Tk

e−r(s−t)f(s, Z(s))ds,

and

e−r(θ−t)ψ(θ, Z(θ))1{θ<τO∧T} = e−r(η−t)ψ(η, Z(η))1{η<τO∧Tk}1{η<Tk}

+ e−r(ξ−t)ψ(ξ, Z(ξ))1{ξ<τO∧T}1{η=Tk},
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and

e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤θ}

= e−r(τO−t)g(τO , Z(τO))1{τO≤η,η<Tk}1{η<Tk}

+ e−r(τO∧T−t)g(τO ∧ T,Z(τO ∧ T ))1{τO∧T≤ξ}1{η=Tk}.

Proof. Notice that

{θ < Tk} = {η < Tk} and {θ ≥ Tk} = {η = Tk}. (4.6.10)

The first identity is obvious because, by (4.6.10), we see that

θ = η on {η < Tk} and θ = ξ on {η = Tk}. (4.6.11)

The second identity follows by the observation that

{θ < τO ∧ T} = {θ < τO ∧ T, θ < Tk} ∪ {θ < τO ∧ T, θ ≥ Tk},

and using (4.6.11) and (4.6.10), it follows

{θ < τO ∧ T} = {η < τO ∧ Tk, η < Tk} ∪ {ξ < τO ∧ T, η = Tk}.

For the last identity of the claim, we notice

{τO ∧ T ≤ θ} = {τO ∧ T ≤ θ, τO < T} ∪ {τO ∧ T ≤ θ, τO ≥ T}

= {τO ∧ T ≤ θ, τO < T, θ < Tk} ∪ {τO ∧ T ≤ θ, τO < T, θ ≥ Tk}

∪ {τO ∧ T ≤ θ, τO ≥ T}.

By (4.6.11) and (4.6.10), we obtain

{τO ∧ T ≤ θ} = {τO ≤ η, τO < T, η < Tk} ∪ {τO ∧ T ≤ ξ, τO < T, η = Tk}

∪ {τO ∧ T ≤ ξ, τO ≥ T}

= {τO ≤ η, η < Tk} ∪ {τO ∧ T ≤ ξ, η = Tk},

which implies the last identity of the claim.
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We can write the expression for F g(T,·)(t, z, T, θ) as a sum,

F g(T,·)(t, z, T, θ) = 1{η<Tk}F1(t, z, Tk, η) + 1{η=Tk}e
−r(Tk−t)F2(t, z, T, ξ). (4.6.12)

Because ξ ∈ TTk,T and F2(t, z, T, ξ) depends only on
(
Zt,z(s)

)
Tk≤s≤T

, and the Heston

process has the (strong) Markov property [30, Theorem 1.15 (c)], we have a.s. that

Et,zQ [F2(t, z, T, ξ)|FTk ] = ETk,Z
t,z(Tk)

Q
[
F2(Tk, Z

t,z(Tk), T, ξ)
]

= ETk,Z
t,z(Tk)

Q

[
F g(T,·)(Tk, Z

t,z(Tk), T, ξ)
]
,

by applying definitions (4.6.3) and (4.6.6). Thus,

Et,zQ
[
1{η=Tk}e

−r(Tk−t)F2(t, z, T, ξ)|FTk

]
= Et,zQ

[
Et,zQ

[
1{η=Tk}e

−r(Tk−t)F2(t, z, T, ξ)|FTk

]]
= Et,zQ

[
1{η=Tk}e

−r(Tk−t)Et,zQ [F2(t, z, T, ξ)|FTk ]
]

= Et,zQ
[
1{η=Tk}e

−r(Tk−t)ETk,Z(Tk)
Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]]
.

By the preceding identity, (4.6.7) and (4.6.12), the identity (4.6.9) yields

u∗(t, z) = sup
θ=η1{η<Tk}+ξ1{η=Tk}
θ∈St,T ,η∈Tt,Tk ,ξ∈TTk,T

{
Et,zQ

[
1{η<Tk}F1(t, z, Tk, η)

+1{η=Tk}e
−r(Tk−t)ETk,Z(Tk)

Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]]}
= sup

η∈Tt,Tk

{
Et,zQ

[
1{η<Tk}F1(t, z, Tk, η)

+1{η=Tk}e
−r(Tk−t) sup

ξ∈TTk,T

ETk,Z(Tk)
Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]]}
.

Using the definition (4.1.30) of u∗, we have

u∗(Tk, Z(Tk)) = sup
ξ∈TTk,T

ETk,Z(Tk)
Q

[
F g(T,·)(Tk, Z(Tk), T, ξ)

]
,

and so it follows that

u∗(t, z) = sup
η∈Tt,Tk

Et,zQ
[
1{η<Tk}F1(t, z, Tk, η) + 1{η=Tk}e

−r(Tk−t)u∗(Tk, Z(Tk))
]
.

Notice that, by the definitions (4.6.2) of Fϕ and (4.6.5) of F1, we have

F u
∗(T,·)(t, z, Tk, η) = 1{η<Tk}F1(t, z, Tk, η) + 1{η=Tk}e

−r(Tk−t)u∗(Tk, Z(Tk)).
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The preceding two identities yield

u∗(t, z) = sup
η∈Tt,Tk

Et,zQ
[
F u
∗(T,·)(t, z, Tk, η)

]
= u(t, z), (by (4.6.4)).

This concludes the proof of the theorem.

Proof of Theorem 4.1.20. We omit the proof as it is very similar to the proofs of The-

orems 4.1.19 and 4.1.9.
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Appendix A

Auxiliary results for Chapter 2

In this appendix, we give proofs for several results which are slightly more technical

than those in the body of Chapter 2.

A.1 Existence and uniqueness of solutions for a degenerate parabolic

operator with constant coefficients

In order to derive the local a priori boundary estimates in Theorem 2.3.8, we need an

analogue of [20, Theorem I.1.1] when the coefficients of our operator L, aij , bi and c,

are assumed constant. To emphasize this fact in this appendix, we denote our parabolic

operator by

−L0u := −ut +

d∑
i,j=1

xdaijuxixj +

d∑
i=1

biuxi + cu on (0, T )×H.

We now have the following analogue of [20, Theorem I.1.1].

Proposition A.1.1 (Existence and uniqueness of solutions for a degenerate parabolic

operator with constant coefficients). Let K, δ and ν be positive constants such that

aijηiηj ≥ δ‖η‖2, ∀η ∈ Rd, (A.1.1)

bd ≥ ν, (A.1.2)

|aij |, |bi|, |c| ≤ K. (A.1.3)

Let k be a nonnegative integer, T > 0, and α ∈ (0, 1). Assume that f ∈ Ck,αs (H̄T ) and

g ∈ Ck,2+α
s (H̄) with both f and g compactly supported in H̄T and H̄, respectively. Then,

the inhomogeneous initial value problem
L0u = f on (0, T )×H,

u(0, ·) = g on H̄.
(A.1.4)
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admits a unique solution u ∈ Ck,2+α
s (H̄T ). Moreover, there exists a positive constant

C = C(T,K, δ, ν, α, d, k) such that

‖u‖
Ck,2+α
s (H̄T )

≤ C
(
‖f‖

Ck,αs (H̄T )
+ ‖g‖

Ck,2+α
s (H̄)

)
. (A.1.5)

Proof. The proof follows by adapting the proof of [20, Theorem I.1.1]. Because the

proof of [20, Theorem I.1.1] is lengthy, we only outline the modifications, noting that

these modifications are straightforward. We remark that there is no simple change of

variables that can be applied in order to bring the constant coefficients equation (A.1.4)

to the form of the model operator defined in [20, p. 901]. Another difficulty is that

our interpolation inequalities (Lemma 2.3.2) do not allow us to treat the first order

derivatives, uxi , in (2.1.3) as lower order terms: in order to do that, we would need to

have

‖uxi‖Cαs (H̄T ) ≤ ε‖u‖C2+α
s (H̄T ) + Cε−m‖u‖C(H̄T ),

instead of the interpolation inequality (2.3.8). On the other hand, by simple changes of

variables which we describe below and which preserve the domain H and its boundary

∂H, problem (A.1.4) can be simplified to

−L0u = −ut + xd

d∑
i=1

uxixi +
d∑
i=1

biuxi on (0, T )×H, (A.1.6)

where the coefficient bd > 0 remains unchanged. In addition, the possibly new constant

coefficients bi are bounded in absolute value by constants which depend only on δ

(A.1.1) and K (A.1.3). The simple changes of variables are the following. As usual, we

eliminate the zeroth order term cu by multiplying u by ect. By applying the change of

variable

u(t, x) = ũ(t, x1 + α1xd, . . . , xd−1 + αd−1xd, xd), with αi = − aid
add

,

the problem (A.1.4) is reduced to the study of the operator L̃0 given by

L̃0ũ = ũt − xdaddũxdxd −
∑
i,j 6=d

aij ũxixd −
∑
i 6=d

(bi + αibd) ũxi − bdũxd on (0, T )×H.

Next, we diagonalize the upper symmetric, positive-definite matrix (aij)i,j=1,...,d−1 and

we rescale each coordinate to obtain

−L̄0ū = −ūt + xd

d∑
i=1

ūxixi +

d∑
i=1

b̄iūxi on (0, T )×H,
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where the constant coefficients b̄i may differ from bi, with the exception that b̄d = bd,

because the transformation affects only the first d − 1 coordinates. Therefore, for the

remainder of this section, we may assume without loss of generality that L0 is of the

simpler form (A.1.6).

The primary change required in the proof of [20, Theorem I.1.1] lies in [20, §I.4].

The arguments in the remainder of [20, Part I] adapt almost line by line to our model

operator (A.1.6). The goal in [20, §I.4] is to derive local derivative estimates and this is

achieved by applying a comparison principle with barrier functions. First, we need to

adapt the definition of the barrier function [20, Definition I.4.1] to one which is suitable

for use with (A.1.6).

Definition A.1.2. Let 0 < t1 < t2. We say ϕ is a barrier function for L0 when

t ∈ [t1, t2], if there are positive constants C and c such

L0ϕ > −Cxdϕ2 + cϕ3/2 + c. (A.1.7)

The barrier functions in [20, Theorem I.4.5 & Theorem I.4.8] are barrier functions

in the sense of Definition A.1.2, also. The barrier function constructed in [20, Theorem

I.4.6] needs modification because the coefficients bi, i = 1, . . . , d − 1, are non-zero in

general, unlike in [20, Part I]. We have the following modification.

Claim A.1.3. Assume i 6= d. For any γ < 1 as in [20, Definition I.4.2], there are a

positive constant b depending only on |bi|, and a positive constant ∆, depending only

on |bi|, b and γ such that, for any t0 ≥ 0,

ϕi(t, x) :=
1

(1 + xi − b(t− t0))2
+

1

(1− xi − b(t− t0))2
(A.1.8)

is a valid barrier function satisfying (A.1.7), for all t ∈ [t0, t0 + ∆t].

Proof of Claim A.1.3. It suffices to consider separately the terms +ϕi and −ϕi defined

by

±ϕ :=
1

(1± xi − b(t− t0))2
,

because the barrier functions form a cone by [20, Theorem I.4.4]. We prove that +ϕi

satisfies (A.1.7), and the proof follows similarly for −ϕi. We denote for simplicity
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ϕ := +ϕi. By direct calculation, we obtain

ϕt = 2bϕ3/2,

ϕxi = −2ϕ3/2,

ϕxixi = 6ϕ2,

while ϕxj = 0 and ϕxjxk = 0, unless j = k = i. Then, we have

L0ϕ = 2(b+ bi)ϕ
3/2 − 6xdϕ

2.

We impose 1 − b(t − t0) ≥ γ, for all t ∈ [t0, t0 + ∆], so we choose ∆ < (1 − γ)/b. By

choosing b = |bi|+ 1, we can find C > 0 and c > 0 such that

L0ϕ ≥ −xdCϕ2 + cϕ3/2 + c,

and so ϕ satisfies the requirement (A.1.7), for all t ∈ [t0, t0 + ∆].

Next, the arguments in [20, §I.5] adapt to our framework with the following ob-

servation. Because our barrier functions (A.1.8) are not defined for all t ∈ [0, 1], we

cover first the interval [0, 1] by a finite number of intervals of length ∆, as given in

Claim A.1.3, and we apply the maximum principle on each of the resulting subinter-

vals. This will yield local estimates analogous to [20, Theorem I.5.1, I.5.4 & Corollary

I.5.7], on the small time subintervals of the finite covering. By combining the local

derivative estimates over each subinterval, we obtain the required local estimates for

all t ∈ [0, 1].

A.2 Proof of Proposition 2.3.13

Next, we include the proof of Proposition 2.3.13. The estimate (2.3.98) is obtained

exactly as in the proof of [51, Theorems 9.2.2 & 8.9.2] using Lemma 2.3.11.

Proof of Proposition 2.3.13. Due to the classical interpolation inequalities [51, Theorem

8.8.1] and the classical maximum principle for unbounded domains [51, Corollary 8.1.5],

it suffices to prove that the estimate (2.3.98) holds with

[ut]Cαρ ([0,T ]×Rd) and
[
uxixj

]
Cαρ ([0,T ]×Rd)
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on the left hand side of the inequality. We will prove this for the Cαρ ([0, T ] × Rd)-

seminorm of ut, but the same argument can be applied for the Cαρ ([0, T ]×Rd)-seminorm

of uxixj .

For simplicity of notation, we denote Q := (0, T )×Rd, and we omit the subscript ρ

in the definition of the Hölder spaces. We also use the simplified notation

[u]C2+α(Q̄) := [ut]Cα(Q̄) +
[
uxixj

]
Cα(Q̄)

. (A.2.1)

Let u ∈ C2+α(Q̄) be a solution to Problem 2.3.81. Then,

ū := e−λ1tu (A.2.2)

is in C2+α(Q̄) and it solves
(
−L̄− λ1

)
ū = −e−λ1tf on (0, T )× Rd,

ū(0, ·) = g on Rd,

where λ1 is the upper bound on the zeroth order coefficient, c̄, assumed in (2.3.78). We

may apply [51, Corollary 8.1.5], because the zeroth order term of the parabolic operator

−L̄− λ1 is nonpositive, and we obtain

‖ū‖C(Q̄) ≤ T‖e−λ1tf‖C(Q̄) + ‖g‖C(Q̄) ≤ T‖f‖C(Q̄) + ‖g‖C(Q̄).

Thus, it follows by (A.2.2)

‖u‖C(Q̄) ≤ eλ1T
(
T‖f‖C(Q̄) + ‖g‖C(Q̄)

)
. (A.2.3)

Let z1, z2 ∈ [0, T ]× Rd be two points such that

|ut(z1)− ut(z2)|
ρα(z1, z2)

≥ 1

2
[ut]Cα(Q̄). (A.2.4)

Let γ > 0 be a constant which will be suitably chosen below. We consider two cases.

Case 1 (ρ(z1, z2) ≥ γ). Then, we have

[ut]Cα(Q̄) ≤ 2γ−α|ut|C(Q̄),

and, by [51, Theorem 8.8.1, Inequality (8.8.1)], it follows, for all ε > 0,

[ut]Cα(Q̄) ≤ 2γ−α
(
ε[u]C2+α(Q̄) + Cε−α/2|u|C(Q̄)

)
.
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By choosing ε := γα/8 and by inequality (A.2.3), we obtain

[ut]Cα(Q̄) ≤
1

4
[u]C2+α(Q̄) + Cγ−(α+α2/2)eλ1T

(
T‖f‖C(Q̄) + ‖g‖C(Q̄)

)
, (A.2.5)

where the constant C = C(d, α).

Case 2 (ρ(z1, z2) < γ). We denote z = (t, x). Let ζ : Rd+1 → [0, 1] be a smooth cutoff

function such that

ζ(z) = 1, if ρ(z, z1) ≤ 1, and ζ(z) = 0, if ρ(z, z1) ≥ 2,

and we define ϕ by

ϕ(z) := ζ((t− t1)/γ2, (x− x1)/γ) ∀z ∈ Rd+1,

so that,

ϕ(z) = 1, if ρ(z, z1) ≤ γ, and ϕ(z) = 0, if ρ(z, z1) ≥ 2γ, (A.2.6)

It is straightforward to see that ϕ satisfies

‖ϕ‖C2+α(Rd+1) ≤ C
(

1 + γ−(2+α)
)
, (A.2.7)

where C is a positive constant. Since z2 ∈ {ϕ = 1}, we obtain by (A.2.4)

[ut]Cα(Q̄) ≤ 2
|ut(z1)− ut(z2)|

ρα(z1, z2)
≤ 2[(uϕ)t]Cα(Q̄). (A.2.8)

Let L̄0 denote the differential operator, with constant coefficients, of the type considered

in Lemma 2.3.11

− L̄0 = −∂t +

d∑
i,j=1

āij(z1)∂xixj . (A.2.9)

Estimate (2.3.82) shows that there are constants p1 = p1(α) and C = C(d, α, T ) such

that

[(uϕ)t]Cα(Q̄) ≤ C
(

1 + δ−p1
1 +Kp1

1

)(
‖L̄0(uϕ)‖Cα(Q̄) + ‖gϕ‖C2+α({0}×Rd)

)
. (A.2.10)

By (A.2.7), we obtain

‖gϕ‖C2+α({0}×Rd) ≤ C
(

1 + γ−(2+α)
)
‖g‖C2+α(Rd). (A.2.11)
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By writing L̄0(uϕ) = L(uϕ) + (L̄0 − L)(uϕ), we have

L̄0(uϕ) = L(uϕ) +
d∑

i,j=1

(āij(z)− āij(z1)) (uϕ)xixj +
d∑
i=1

b̄i(z)(uϕ)xi + c̄(z)uϕ. (A.2.12)

We may write

L(uϕ) = ϕLu+
d∑

i,j=1

āij(z)ϕxjuxi +

 d∑
i,j=1

āij(z)ϕxixj +
d∑
i=1

b̄i(z)ϕxi + c̄(z)

u

and so, by (A.2.7) and (2.3.77), we obtain there is a positive constant C = C(d) such

that

‖L(uϕ)‖Cα(Q̄) ≤ C
(

1 + γ−(2+α)
)
‖Lu‖Cα(Q̄)

+ CK1

(
1 + γ−(2+α)

)(
‖uxi‖Cα(Q̄) + ‖u‖Cα(Q̄)

)
.

(A.2.13)

Notice that we may write the difference as

L̄0(uϕ)− L(uϕ) =
d∑

i,j=1

(āij(z)− āij(z1))ϕuxixj

+
d∑
i=1

 d∑
j=1

(āij(z)− āij(z1))ϕxj + b̄i(z)ϕ

uxi

+

 d∑
i,j=1

(āij(z)− āij(z1)) (ϕ)xixj +
d∑
i=1

b̄i(z)ϕxi + c̄(z)ϕ

u.

By (2.3.77), (A.2.6) and (A.2.7), we obtain

‖ (āij(z)− āij(z1))ϕuxixj‖Cα(Q̄) ≤ CK1γ
α[uxixj ]Cα(Q̄) + CK1(1 + γ−(2+α))‖uxixj‖C(Q̄).

From an argument similar to that used to obtain (A.2.13), we have

‖L̄0(uϕ)− L(uϕ)‖Cα(Q̄) ≤ CK1γ
α[uxixj ]Cα(Q̄)

+ CK1(1 + γ−(2+α))
(
‖uxixj‖C(Q̄) + ‖uxi‖Cα(Q̄) + ‖u‖Cα(Q̄)

)
.

(A.2.14)

Estimates (A.2.13) and (A.2.14), give us, by (A.2.12),

‖L̄0(uϕ)‖Cα(Q̄) ≤ C
(

1 + γ−(2+α)
)
‖Lu‖Cα(Q̄) + CK1γ

α[uxixj ]Cα(Q̄)

+ CK1

(
1 + γ−(2+α)

)(
‖uxixj‖C(Q̄) + ‖uxi‖Cα(Q̄) + ‖u‖Cα(Q̄)

)
.

(A.2.15)
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Combining the preceding inequality, estimates (A.2.10) and (A.2.11) in (A.2.8), and

using notation (A.2.1), it follows

[ut]Cα(Q̄) ≤ C
(

1 + δ−p1
1 +Kp1

1

)((
1 + γ−(2+α)

)
‖L̄u‖Cα(Q̄)

+K1γ
α[u]C2+α(Q̄)

+K1

(
1 + γ−(2+α)

)(
‖uxixj‖C(Q̄) + ‖uxi‖Cα(Q̄) + ‖u‖Cα(Q̄)

)
+
(

1 + γ−(2+α)
)
‖g‖C2+α(Rd)

)
,

where C = C(d, α, T ). The interpolation inequalities [51, Theorem 8.8.1] and the

maximum principle [51, Corollary 8.1.5], gives us, for any ε > 0,

[ut]Cα(Q̄) ≤ C
(

1 + δ−p1
1 +Kp1

1

)
×
[
eλ1T

(
1 +K1ε

−m) (1 + γ−(2+α)
)(
‖f‖Cα(Q̄) + ‖g‖C2+α(Rd)

)
+K1

(
γα + ε

(
1 + γ−(2+α)

))
[u]C2+α(Q̄)

]
,

where m = m(α). We choose γ ∈ (0, 1) such that

C
(

1 + δ−p1
1 +Kp1

1

)
K1γ

α ≤ 1

16
,

as for instance,

γ :=

(
1

48C
min

{
K−1

1 ,K−1
1 δp1

1 ,K
−(1+p1)
1

})1/α

∧ 1. (A.2.16)

Then, we choose ε > 0 such that

C
(

1 + δ−p1
1 +Kp1

1

)(
1 + γ−(2+α)

)
K1ε ≤

1

16
.

A suitable choice is

ε :=
1

96C
(1 + γ2+α) min

{
K−1

1 ,K−1
1 δp1

1 ,K
−(1+p1)
1

}
(A.2.17)

Then, we obtain

[ut]Cα(Q̄) ≤
1

4
[u]C2+α(Q̄) + Ceλ1T

(
1 + δ−p1

1 +Kp1
1

) (
1 +K1ε

−m) (1 + γ−(2+α)
)

×
(
‖f‖Cα(Q̄) + ‖g‖C2+α(Rd)

)
.

(A.2.18)
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By combining inequalities (A.2.5) and (A.2.18) of the preceding two cases, we obtain

the global estimate

[ut]Cα(Q̄) ≤
1

4
[u]C2+α(Q̄) + Ceλ1T

(
1 + δ−p1

1 +Kp1
1

) (
1 +K1ε

−m) (1 + γ−(2+α)
)

×
(
‖f‖Cα(Q̄) + ‖g‖C2+α(Rd)

)
.

(A.2.19)

We notice from (A.2.16) and (A.2.17) that we may find positive constants N3 =

N3(d, α, T ) and p = p(α) such that

[ut]Cα(Q̄) ≤
1

4
[u]C2+α(Q̄) +N3e

λ1T
(

1 + δ−p1 +Kp
1

)(
‖f‖Cα(Q̄) + ‖g‖C2+α(Rd)

)
.

The similar argument applied to [uxixj ]Cα(Q̄) yields

[
uxixj

]
Cα(Q̄)

≤ 1

4
[u]C2+α(Q̄) +N3e

λ1T
(

1 + δ−p1 +Kp
1

)(
‖f‖Cα(Q̄) + ‖g‖C2+α(Rd)

)
.

Therefore, (A.2.1) gives us

[u]C2+α(Q̄) ≤ N3e
λ1T

(
1 + δ−p1 +Kp

1

)(
‖f‖Cα(Q̄) + ‖g‖C2+α(Rd)

)
,

which concludes the proof of the proposition by the interpolation inequalities [51, The-

orem 8.8.1] and the maximum principle estimate (A.2.3).
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Appendix B

Auxiliary results for Chapter 3

In this section we collect the technical justifications of a few assertions employed in the

body of Chapter3.

B.1 An extension lemma

First, we give the proof of Lemma 3.2.6. As in §3.2, we work under the assumptions

stated in Remarks 3.2.3 and 3.2.7.

Proof of Lemma 3.2.6. By [18, Corollary A.14], it is enough to prove the existence of an

extension operator for functions u ∈ C1(B̄R(z0)). Fix a point z′0 = (x′0, y
′
0) ∈ BR(z0),

say z′0 =
(
R2/100, R2/100

)
. We consider two different cases depending on whether

0 < y ≤ y′0 or y > y′0.

First, we consider the points z = (x, y) ∈ D\BR(z0) such that 0 < y ≤ y′0. Let

z′ = (x′, y) be the intersection of ∂BR(z0) with the horizontal segment connecting z

and (x′0, y). Then, we define Eu(z) by reflection (with respect to the point z′ in the

hyperplane at level y)

Eu(z) := u

(
x′0 +

|x′ − x′0|
|x− x′0|2

(x− x′0), y

)
.

Next, we consider the case of points z = (x, y) ∈ D\BR(z0) such that y > y′0. Let

z′ = (x′, y′) be the intersection of ∂BR(z0) with the segment connecting z and z′0.

Then, we define Eu(z) by reflection

Eu(z) := u

(
z′0 +

|z′ − z′0|
|z − z′0|2

(z − z′0)

)
.

It is clear that Eu is a continuous extension of u from BR(z0) to D. Remark 3.2.3

ensures that ∂BR(z0) is a piecewise smooth curve, and so Eu has well-defined weak
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derivatives in D. Next, we show that (3.2.6) holds. For this purpose, we denote by

D1 := (D\BR(z0)) ∩ {y < y′0},

D2 := (D\BR(z0)) ∩ {y ≥ y′0}.

To prove (3.2.6), it is enough to show there is a positive constant C, depending on

R and D, such that∫
D1

|Eu(x, y)|2yβ−1dxdy ≤ C
∫
BR(z0)

|u(x, y)|2yβ−1dxdy,∫
D1

|∇Eu(x, y)|2yβdxdy ≤ C
∫
BR(z0)

|∇u(x, y)|2yβdxdy,∫
D2

|Eu(x, y)|2yβ−1dxdy ≤ C
∫
BR(z0)

|u(x, y)|2yβ−1dxdy,∫
D2

|∇Eu(x, y)|2yβdxdy ≤ C
∫
BR(z0)

|∇u(x, y)|2yβdxdy,

(B.1.1)

We begin by evaluating the integrals over D1 in (B.1.1) and we show that∫
D+

1

|Eu(x, y)|2yβ−1dxdy ≤ C
∫
BR(z0)

|u(x, y)|2yβ−1dxdy,∫
D+

1

|∇Eu(x, y)|2yβdxdy ≤ C
∫
BR(z0)

|∇u(x, y)|2yβdxdy,
(B.1.2)

where D+
1 := D1 ∩{x > 0}. The analogous relation to (B.1.2) can be shown to hold on

D−1 := D1 ∩ {x < 0}, in a similar way.

Denote by

f(x, y) = x′0 +
|x′ − x′0|
|x− x′0|2

(x− x′0). (B.1.3)

We notice that (f(x, y), y) ∈ BR(z0), for all (x, y) ∈ D1, so Eu(x, y) is well-defined on

D1. The coordinate x′ = x′(y) is determined by the condition d((y, x′), z0) = R. Direct

calculations give us

x′(y) =

((
R2 +R

√
R2 + 4y

)2
/4− y4

)1/2

.

We obtain, for all (x, y) ∈ D1,

fx(x, y) = − x′ − x′0
(x− x′0)2

,

fy(x, y) =
x′y(y)

x− x′0
.
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We can find a positive constant C1, depending only on R, such that

x− x′0 ≥ x′ − x′0 ≥ C1, ∀(x, y) ∈ D+
1 ,

and there is a positive constant C2, depending on R and D, such that

|fx(x, y)|, |fx(x, y)|−1, |fy(x, y)| ≤ C2. (B.1.4)

Using the change of variable w = f(x, y) in (B.1.2), we obtain∫
D+

1

|Eu(x, y)|2yβ−1dxdy ≤
∫
BR(z0)

|u(w, y)|2yβ−1|fx(x, y)|−1dwdy

≤ C2

∫
BR(z0)

|u(x, y)|2yβ−1dxdy, (by (B.1.4).)

(B.1.5)

Using

∂xEu(x, y) = ux(f(x, y), y)fx(x, y),

∂yEu(x, y) = ux(f(x, y), y)fy(x, y) + uy(f(x, y), y),

the change of variable w = f(x, y) and the upper bound (B.1.4), we obtain for a positive

constant C3, depending on R and D,∫
D+

1

|∇Eu(x, y)|2yβdxdy ≤ C
∫
BR(z0)

|∇u(w, y)|2(|fx(x, y)|2+|fy(x, y)|2)|fx(x, y)|−1yβdwdy,

and thus ∫
D+

1

|∇Eu(x, y)|2yβdxdy ≤ C3

∫
BR(z0)

|∇u(x, y)|2yβdxdy. (B.1.6)

Therefore, (B.1.5) and (B.1.6) give us (B.1.2).

Next, we consider the last two integrals in (B.1.1). Notice that on D2 we have

y ≥ y′0 > 0 and so it is enough to show∫
D2

|Eu(x, y)|2dxdy ≤ C4

∫
BR(z0)

|u(x, y)|2dxdy,∫
D2

|∇Eu(x, y)|2dxdy ≤ C4

∫
BR(z0)

|∇u(x, y)|2dxdy,
(B.1.7)

for some positive constant C4, depending on R and D. For all (x, y) ∈ D2, we denote

ϕ(x, y) ≡ (ϕ1(x, y), ϕ2(x, y)) := z′0 +
z′ − z′0
|z − z′0|2

(z − z′0).
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Hence, we can find a positive constant C5, depending on R and D, such that for all

(x, y) ∈ D2,

det|∇ϕ(x, y)|−1 ≤ C5,

|∇ϕ(x, y)| ≤ C5.

(B.1.8)

We notice that ϕ(x, y) ∈ BR(z0), for all (x, y) ∈ D2. Therefore, using the change of

variable w = ϕ(x, y), we obtain∫
D2

|Eu(x, y)|2dxdy ≤
∫
BR(z0)

|u(w)|2det|∇ϕ(x, y)|−1dw

≤ C5

∫
BR(z0)

|u(x, y)|2dxdy (by (B.1.8)).

(B.1.9)

Using

∂xEu(x, y) = ux(x, y)ϕ1
x(x, y) + uy(x, y)ϕ2

x(x, y),

∂yEu(x, y) = ux(x, y)ϕ1
y(x, y) + uy(x, y)ϕ2

y(x, y),

we obtain∫
D2

|∇Eu(x, y)|2dxdy ≤ C
∫
BR(z0)

|∇u(w)|2|∇ϕ(x, y)|2det|∇ϕ(x, y)|−1dxdy

≤ CC5

∫
BR(z0)

|∇u(x, y)|2dxdy, (by (B.1.8).)

(B.1.10)

From (B.1.9) and (B.1.10), we obtain (B.1.7). This concludes the proof of Lemma

3.2.6.

B.2 Test functions

In this section, we verify that the test functions used in the proofs of our main results

are indeed in the space H1
0 (O ∪ Γ0,w). We start with the test function (3.4.6) used in

the proof of Theorem 3.1.7.

Lemma B.2.1. The function v given by (3.4.6) is in H1
0 (O ∪ Γ0,w).

Proof. We only show that v ∈ H1
0 (O ∪Γ0,w) defined by (3.4.6) with w = u+ +A. The

proof for the choice w = u− + A follows similarly. We fix k ∈ N and we consider the

definitions of Hk and Gk given by (3.4.4) and (3.4.5), respectively.

Since u ∈ H1
0 (O ∪ Γ0,w), we have u+ ∈ H1

0 (O ∪ Γ0,w) by [18, Lemma A.34]. Let

(ui)i∈N be a sequence of functions in C1
0 (O ∪ Γ0) converging to u+ in H1(O,w). We
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extract a subsequence, for which we use the same notation as for the original sequence,

such that

ui → u+ a.e. on O. (B.2.1)

Let wi := ui + A and vi := ηGk(wi), where η has support in B̄2R(z0) as in the proof

of Theorem 3.1.7. Our goal is to show that vi ∈ H1
0 (O ∪ Γ0,w) converge to v in

H1(O ∪ Γ0,w), from where the assertion of the lemma follows.

We notice that each vi ∈ C(Ō). Because ui = 0 along Γ1 by construction, we have

wi = A, along Γ1, (B.2.2)

and so, we also have by (3.4.4) and (3.4.5),

vi = 0, along Γ1.

Since η has support in B̄2R(z0), it follows that

vi ∈ C0(O ∪ Γ0). (B.2.3)

Using

|H ′k(t)| ≤ αkα−1, (B.2.4)

we obtain

|vi − v| ≤
∣∣∣∣∫ w

wi

|H ′k(t)|dt
∣∣∣∣ ≤ αkα−1|wi − w|

= αkα−1|ui − u+|.

Since the last term converges to zero in L2(O ∪ Γ0,w), it follows that

vi → v, as i→∞, in L2(O ∪ Γ0,w). (B.2.5)

By direct calculation, we have

∇vi = 2η∇ηGk(wi) + η2|H ′k(wi)|2∇ui,

∇v = 2η∇ηGk(w) + η2|H ′k(w)|2∇u+.

By (B.2.2), (B.2.4) and using ∇ui ∈ C0(O ∪ Γ0), we obtain

∇vi ∈ C0(O ∪ Γ0). (B.2.6)
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We have

|∇vi −∇v| ≤ 2η|∇η||G′k(wi)−G′k(w)|

+ |H ′k(wi)2 −H ′k(w)2||∇u+|+ |∇ui −∇u+||H ′k(wi)|2.

Using (B.2.4), there is a positive constant depending on k, α and η, such that

|∇vi −∇v| ≤ C|ui − u+|+ |H ′k(wi)2 −H ′k(w)2||∇u+|. (B.2.7)

By (B.2.1) and the boundedness of H ′k in (B.2.4), we notice that

|H ′k(wi)2 −H ′k(w)2||∇u+| ≤ |αkα−1|2|∇u+|

|H ′k(wi)2 −H ′k(w)2||∇u+| → 0, as i→∞ a.e.,

and so, using the Dominated Convergence theorem, we have

|H ′k(wi)2 −H ′k(w)2||∇u+| → 0, as i→∞, in L2(O ∪ Γ0, yw).

Then, we obtain by (B.2.7)

|∇vi −∇v| → 0, as i→∞, in L2(O ∪ Γ0, yw).

Combining the preceding inequality with (B.2.3), (B.2.5) and (B.2.6), we obtain the

assertion of the lemma.

Next, we verify that the test functions employed in the proofs of Theorems 3.1.8 and

3.1.10 belong to the space H1
0 (O∪Γ0,w). For this purpose, since u ∈ H1

0 (O∪Γ0,w), we

let (ui)i∈N be a sequence of functions in C1
0 (O ∪ Γ0) converging to u in H1(O,w). We

extract a subsequence, for which we keep the same notation as for the original sequence,

such that

ui → u a.e. on O. (B.2.8)

We will use this construction in the following results of this subsection.

Lemma B.2.2. The function v given by (3.5.9) is in H1
0 (O ∪ Γ0,w), for any α ∈ R.
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Proof. We outline the proof for the choice w = u−m4R+k(R) in (3.5.6) in the definition

of v in (3.5.9). The conclusion of the lemma for the choice w = M4R − u + k(R) in

(3.5.9) follows similarly. Let

Ωi := {z ∈ B4R(z0) : −k/2 +m4R ≤ ui ≤M4R + k/2} ,

and let Ωc
i be the complement of Ωi in B4R(z0). By setting

ûi := (ui ∧ (−k/2 +m4R)) ∨ (M4R + k/2), ∀i ∈ N,

we obtain ∫
B4R(z0)

|ui − u|2wdxdy ≥
∫

Ωci

|ui − u|2wdxdy

≥ (k/2)2 |Ωc
i |w.

Since the left hand side in the preceding inequality converges to zero, we obtain that

|Ωc
i |w → 0, as i→∞. (B.2.9)

We let

wi := ûi −m4R + k

Then, wi satisfies on B4R(z0)

k/2 ≤ wi ≤M4R −m4R + 3k/2. (B.2.10)

Now, we define

vi := η2wαi , ∀i ∈ N,

where α ∈ R and η is a smooth, non-negative cutoff function with support in B̄4R(z0).

By (3.5.1) and (B.2.10), we notice that vi are well-defined functions and

vi ∈ C0(O ∪ Γ0), ∀i ∈ N.

By (B.2.8) and (B.2.9), we obtain that vi converges a.e. to v, and by (B.2.10), the

sequence (vi)i∈N is uniformly bounded. Thus, by the Dominated Convergence theorem

we obtain that the sequence (vi)i∈N converges to v in L2(O,w).

Next, we have

∇vi := 2η∇ηwαi + αηwα−1
i ∇ûi,

∇v := 2η∇ηwα + αηwα−1∇u.



204

Since the support of η is included in B̄4R(z0), the same holds for ∇vi, for all i ∈ N.

We can evaluate ∇vi − ∇v in the following way. There exists a positive constant C,

depending only on η and α, such that on B4R(z0)

|∇vi −∇v| ≤ C|wαi − wα|+ C|wα−1
i ∇ûi − wα−1∇u|

≤ C|wαi − wα|+ C|wα−1
i ||∇ûi −∇u|+ C|wα−1

i − wα−1||∇u|.
(B.2.11)

Recall that (wi)i∈N converges a.e. to w on B4R(z0). By (B.2.10), for any t ∈ R, the

sequence (wti)i∈N is uniformly bounded, and so we have by the Dominated Convergence

theorem, that |wαi −wα| and |wα−1
i −wα−1||∇u| converges to zero in L2(B4R(z0), yw).

Moreover, by (B.2.10), there is a positive constant C, such that on B4R(z0)

|wα−1
i ||∇ûi −∇u| ≤ C|∇ûi −∇u|.

Notice that∫
B4R(z0)

|∇ûi −∇u|2ywdxdy =

∫
Ωi

|∇ui −∇u|2ywdxdy +

∫
B4R(z0)Ωi

|∇u|2ywdxdy

≤
∫
B4R(z0)

|∇ui −∇u|2ywdxdy +

∫
B4R(z0)

χΩci
|∇u|2ywdxdy.

The first term in the preceding inequality converges to zero, because (ui)i∈N converges to

u in H1(O,w), and the second term converges to zero as well, by (B.2.9) and because

∇u ∈ L2(O, yw). Therefore, we conclude by (B.2.11) that ∇vi converges to ∇v in

L2(B4R(z0), yw), and so the conclusion of the lemma follows.

Lemma B.2.3. The function v given by (3.5.56) is in H1
0 (O ∪ Γ0,w).

Proof. From the reduction argument in the proof of Theorem 3.1.8 at points z0 ∈ Γ̄1∩Γ̄0,

we have u ≤ 0 a.e. on O. From Theorem 3.1.7, we know u is bounded on B4R(z0) and

we have

m4R ≤ u ≤ 0, a.e. on B4R(z0),

Recall that we may assume without loss of generality that m4R 6= 0 and k 6= 0, by

(3.5.55) and (3.5.8), respectively. Let

Ωi := {z ∈ B4R(z0) : −k/2 +m4R ≤ ui(z) ≤ k/2} , ∀i ∈ N,
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and denote by Ωc
i the complement of Ωi in B4R(z0). Let

ûi := (ui ∧ k/2) ∨ (−k/2 +m4R) , ∀i ∈ N, (B.2.12)

and obviously this new choice satisfies

− k/2 +m4R ≤ ûi(z) ≤ k/2, ∀i ∈ N. (B.2.13)

First, we show that (ûi)i∈N converges to u in H1(B4R(z0),w). Notice that ûi = ui

on Ωi, ûi ∈ C(B̄R̄(z0)) and

ûi = 0, along Γ1 ∩ ∂B4R(z0).

By (B.2.13), we notice that |u− ui| ≥ k/2 a.e. on Ωc
i , which implies∫

B4R(z0)
|u(z)− ui(z)|2wdz ≥ |k/2|2 |Ωc

i |w .

Since the left hand side in the preceding inequality converges to zero, we obtain

|Ωc
i |w → 0, as i→∞, (B.2.14)

Using the uniform boundedness of the sequence (ûi)i∈N and (B.2.8), we obtain by the

Dominated Convergence theorem that (ûi)i∈N converges to u in L2(B4R(z0),w). Also,

we have that ∇ûi = ∇ui on Ωi, and ∇ûi = 0 on Ωc
i . Then, we have∫

B4R(z0)
|∇ûi −∇u|2ywdz =

∫
Ωi

|∇ui −∇u|2ywdz +

∫
Ωci

|∇u|2ywdz.

The first term on the right hand side converges to zero, because (ui)i∈N converges to

u in H1(O,w), while the second term goes to zero as well, by (B.2.14) and ∇u ∈

L2(B4R(z0), yw). We conclude that (∇ûi)i∈N converges to ∇u in L2(BR̄(z0), yw).

This completes the proof that (ûi)i∈N converges to u in H1(B4R(z0),w).

Next, we define

wi := k + ûi −m4R,

vi = η2 (wαi − (k −m4R)α) .

From the definition (B.2.12) of ûi, we have

0 < k/2 ≤ wi ≤ 3k/2−m4R, on B4R(z0), ∀i ∈ N, (B.2.15)
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and so, vi are well-defined functions, for all α ∈ R. Since ûi ∈ C(B̄4R(z0)) and ûi = 0

along Γ1 ∩ ∂B4R(z0), we notice that

wi = k −m4R, on ∂BR̄(z0) ∩ Γ1. (B.2.16)

Also, η was chosen such that its support is contained in B̄4R(z0). Therefore, vi = 0

along the piece of the boundary ∂B4R(z0) contained in H, and so,

vi ∈ C0(B4R(z0) ∪ Γ0), ∀i ∈ N. (B.2.17)

By (B.2.8) and (B.2.15), we also have, for any t ∈ R,

vi → v, a.e. on B4R(z0), (B.2.18)

wti → wt, a.e. on B4R(z0). (B.2.19)

In addition, we can find a positive constant M1, depending on α, such that

‖v‖L∞(B4R(z0)), ‖vi‖L∞(B4R(z0)) ≤M1, ∀i ∈ N, (B.2.20)

and, for any t ∈ R, we can find positive constants M2, depending on t, such that

‖wt‖L∞(B4R(z0)), ‖wti‖L∞(B4R(z0)) ≤M2, ∀i ∈ N. (B.2.21)

Therefore, using the Dominated Convergence theorem, (B.2.18) and (B.2.20), we obtain

vi → v, in L2(B4R(z0),w). (B.2.22)

Next, we want to establish ∀i ∈ N,

∇vi ∈ L2(B4R(z0), yw), (B.2.23)

∇vi = 0, along Γ1 ∩ ∂B4R(z0), (B.2.24)

supp∇vi ⊆ B̄4R(z0), (B.2.25)

∇vi → ∇v, in L2(B4R(z0), yw). (B.2.26)

By a direct calculation, we have

∇v = 2η∇η (wα − (k −m4R)α) + αη2wα−1∇u, (B.2.27)

∇vi = 2η∇η (wαi − (k −m4R)α) + αη2wα−1
i ∇ûi, ∀i ∈ N. (B.2.28)
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By (B.2.15), we have that (B.2.23) holds. Because the support of η in contained in

B̄4R(z0), we also have the (B.2.25) holds. By (B.2.16), we have that

wαi − (k −m4R)α = 0, along Γ1 ∩ ∂B4R(z0).

Also, by construction of ûi, we know

∇ûi = 0, along Γ1 ∩ ∂B4R(z0).

Therefore, we have that (B.2.24) holds.

We denote by V 1 and V 2 the two terms appearing on the right hand side of (B.2.27).

Analogously, we denote V 1
i and V 2

i , i ∈ N, the two terms in (B.2.28). Next, we show

that V k
i converges in L2(B4R(z0), yw) to V k, for k = 1, 2, which implies (B.2.26). By

choosing t = α in (B.2.19) and (B.2.21), we obtain using the Dominated Convergence

theorem that V 1
i converges in L2(B4R(z0), yw) to V 1. Next, we have

|V 2
i − V 2| ≤ |α|η2|wα−1

i − wα−1||∇u|+ |α|η2|wi|α−1|∇ûi −∇u|,

and, using (B.2.21) with t = α− 1, for the second term on the right hand side, we have

|V 2
i − V 2| ≤ |α||wα−1

i − wα−1||∇u|+ |α|M2|∇ûi −∇u|.

Obviously, the second term in the preceding inequality converges to zero in L2(B4R(z0), yw).

The first term |wα−1
i −wα−1|∇u converges to zero a.e., by (B.2.19), and it has the upper

bound, by (B.2.21),

|wα−1
i − wα−1||∇u| ≤ 2M2|∇u|, ∀i ∈ N.

Since ∇u ∈ L2(B4R(z0), yw), we may apply the Dominated Convergence theorem to

conclude

|wα−1
i − wα−1||∇u| → 0, in L2(B4R(z0), yw).

Therefore, we obtain that V 2
i converges in L2(B4R(z0), yw) to V 2, and so, (B.2.26)

follows.

Combining (B.2.17), (B.2.22), (B.2.23), (B.2.24), (B.2.25) and (B.2.26), we obtain

that (vi)i∈N is a sequence of functions in H1
0 (B4R ∪ Γ0, yw) converging to v, and so,

v ∈ H1
0 (B4R(z0) ∪ Γ0,w).
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Next, we show that the test function used in the proof of the Harnack inequality,

Theorem 3.1.10, is indeed in H1
0 (O ∪ Γ0,w).

Lemma B.2.4. The function v given by (3.6.2) is in H1
0 (O ∪ Γ0,w).

Proof. The proof of the lemma follows similarly to the proof of Lemma B.2.2. Because

of this, we only outline the main steps of the proof. Let

Ωi := {z ∈ B4R(z0) : −ε/2 ≤ ui ≤M4R + ε/2} , ∀i ∈ N.

and

ûi := (ui ∧ (−ε/2)) ∨ (M4R + ε/2), ∀i ∈ N.

We let

wi := ûi + ε, ∀i ∈ N.

Then, wi satisfies on bB4R(z0)

ε/2 ≤ wi ≤M4R + 3ε/2, ∀i ∈ N.

Now, we define

vi := η2wαi , ∀i ∈ N,

where η is a smooth, non-negative cutoff function with support in B̄4R(z0). Similarly

to the proof of Lemma B.2.2, it follows that vi ∈ H1
0 (O ∪ Γ0,w), for all i ∈ N, and

(vi)i∈N converges to v in H1(O,w), and thus the conclusion of the lemma follows.

B.3 Weighted Sobolev norms and uniform bounds

We have the following analogue of [2, Theorem 2.8], [41, Exercise 7.1].

Lemma B.3.1 (Weighted Sobolev norms and uniform bounds). For 1 ≤ p <∞ and u

a measurable function on O such that |u|p ∈ L1(O,w) for some p ∈ R, define

Φp(u) :=

(
1

|O|

∫
O
|u|pw dxdy

)1/p

.

Then

lim
p→∞

Φp(u) = sup
O
|u|, (B.3.1)

lim
p→−∞

Φp(u) = inf
O
|u|. (B.3.2)
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Proof. For 1 ≤ p < q <∞,∫
O
|u|pw dxdy ≤

(∫
O
|u|q w dxdy

)p/q (∫
O

1w dxdy

)1−p/q
,

and thus

Φp(u) ≤ Φq(u),

while for q =∞, ∫
O
|u|pw dxdy ≤

(
sup
O
|u|
)p ∫

O
1w dxdy,

and thus

Φp(u) ≤ sup
O
|u|.

Hence,

lim
p→∞

Φp(u) ≤ sup
O
|u|.

On the other hand, for any ε > 0, there is a set B ⊂ O of positive measure |B| =∫
B 1w dxdy such that

|u(x)| ≥ sup
O
|u| − ε, x ∈ B.

Hence,

1

|O|

∫
O
|u|pw dxdy ≥ 1

|O|

∫
B
|u|pw dxdy ≥ |B|

|O|

(
sup
O
|u| − ε

)p
,

so (
1

|O|

∫
O
|u|pw dxdy

)1/p

≥
(
|B|
|O|

)1/p(
sup
O
|u| − ε

)
It follows that Φp(u) ≥ (|B|/|O|)1/p(supO |u| − ε), and thus

lim
p→∞

Φp(u) ≥ sup
O
|u|.

For the second assertion, we may assume without loss of generality that infO |u| > 0

and so supO |u|−1 = (infO |u|)−1. For 1 ≤ p < q <∞,∫
O
|u|−pw dxdy ≤

(∫
O
|u|−q w dxdy

)p/q (∫
O

1w dxdy

)1−p/q
,

so (∫
O
|u|−pw dxdy

)−p
≥
(∫

O
|u|−q w dxdy

)−q
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and thus

Φ−p(u) ≥ Φ−q(u),

while for q = −∞, ∫
O
|u|−pw dxdy ≤

(
sup
O
|u|−1

)p ∫
O

1w dxdy,

and thus

Φ−p(u) =

(∫
O
|u|−pw dxdy

)−p
≥
(

sup
O
|u|−1

)−1

= inf
O
|u|.

Hence,

lim
p→∞

Φ−p(u) ≥ inf
O
|u|.

On the other hand, for any ε > 0, there is a set B ⊂ O of positive measure such that

|u(x)| ≤ inf
O
|u|+ ε, x ∈ B.

Hence,

1

|O|

∫
O
|u|−pw dxdy ≥ 1

|O|

∫
B
|u|−pw dxdy ≥ |B|

|O|

(
inf
O
|u|+ ε

)−p
.

It follows that Φ−p(u) ≤ (|B|/|O|)−1/p(infO |u|+ ε), and thus

lim
p→∞

Φ−p(u) ≤ inf
O
|u|.

This completes the proof.
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Appendix C

Auxiliary results for Chapter 4

C.1 Local a priori boundary estimates

To complete the proof of Theorem 4.5.5 we need the following local a priori boundary

estimate for parabolic boundary value problems.

Lemma C.1.1 (Local a priori boundary estimates). Let O ⊆ H be a domain such that

the boundary portion Γ1 is of class C2+α. For z0 ∈ Γ1 and R > 0, let

BR(z0) := {z ∈ O : |z − z0| < R} and QR,T (z0) := (0, T )×BR(z0).

Assume BR(z0) ∩ Γ0 = ∅. Then, there is a positive constant C, depending only on z0,

R and the coefficients of A, such that for any solution u ∈ C2+α(Q̄2R,T (z0)) to
−ut +Au = f on Q2R,T (z0),

u = g on [0, T ]× (∂B2R(z0) ∩ Γ1) ,

u(T, ·) = h on B2R(z0)

we have

‖u‖C2+α(Q̄R,T (z0)) ≤ C
(
‖f‖C2+α(Q̄2R,T (z0)) + ‖g‖C2+α([0,T ]×(∂B2R(z0)∩Γ1))

+‖h‖C2+α(B̄2R(z0)) + ‖u‖C(Q̄2R,T (z0))

)
.

Proof. The result follows by combining the global Schauder estimate [51, Theorem

10.4.1] and the localization procedure of [51, Theorem 8.11.1], exactly as in the proof

of [30, Theorem 3.8].

Remark C.1.2. The interior version of Lemma C.1.1 can be found in [51, Exercise

10.4.2].
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C.2 The Itô lemma

To be consistent, we recall the classical Itô formula specialized to the Heston process

with our sign convention for its generator, −A.

Theorem C.2.1 (Itô formula). [47, Theorems 3.3.3 & 3.3.6] Let u ∈ C2
(
[0,∞)× R2

)
and let Z be a solution to (4.1.15) with initial condition Z(0) on a filtered probability

space (Ω,F ,Q), {F (t)}t≥0. Then, for all t ≥ 0, we have,

u(t, Z(t)) = u(0, Z(0))−
∫ t

0
(−us(s, Z(s)) +Au(s, Z(s))) ds

+

∫ t

0

√
Y (s) (ux(s, Z(s)) + ρσuy(s, Z(s))) dW1(s)

+

∫ t

0

√
Y (s)σ

√
1− ρ2uy(s, Z(s))dW2(s), a.s. Q.

C.3 Regular points and continuity properties of stochastic represen-

tations

For the purpose of this section, let d be a non-negative integer, D ⊂ Rd a bounded

domain and t1 < t2. We denote by Q := (t1, t2) × D and recall that ðQ := (t1, t2) ×

∂D ∪ {t2} × D̄. We consider coefficients a, b and σ satisfying the following conditions.

Hypothesis C.3.1. Let

a : Q̄→ Sd and b : Q̄→ Rd,

be maps with component functions, aij , bi, belonging to C0,1(Q̄), where Sd is defined

in §??. Require that the matrix a be symmetric and obey

d∑
i,j=1

aij(t, z)ξiξj ≥ δ|ξ|2, ∀ξ ∈ Rd, ∀(t, z) ∈ Q̄, (C.3.1)

where δ is a positive constant.

Let σ be a square root of the matrix a such that σ ∈ C0,1(Q̄;Rd×d). Such a choice

exists by [40, Lemma 6.1.1]. We consider an extension of the coefficients b and σ from Q̄

to R×Rd, such that these extensions are bounded and uniformly Lipschitz continuous,
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and condition (C.3.1) is satisfied on R×Rd. Then, by [47, Theorems 5.2.5 & 5.2.9], for

any (t, z) ∈ R× Rd, there is a unique strong solution to

dZi(s) = bi(s, Z(s))dt+

d∑
j=1

σij(s, Z(s))dWj(s), ∀i = 1, . . . , d, s > t,

Z(t) = z,

(C.3.2)

where W is a Rd-valued Brownian motion.

We next review the notion of regular point.

Definition C.3.2 (Regular point). [23, Definitions 2.4.1 & 6.2.3], [47, Definition 4.2.9],

[61, Definition 9.2.8] A point (t, z) ∈ ∂Q is regular if for every s > t, we have

Qt,z ((u, Z(u)) ∈ Q,∀u ∈ (t, s)) = 0, (C.3.3)

where Qt,z denotes the law of the Heston process started at (t, z), as in Corollary 4.2.8.

Remark C.3.3. Notice that by choosing (t1, t2) = R, Definition C.3.2 is equivalent to

[23, Definition 6.2.3].

We have the following characterization of regular points.

Theorem C.3.4 (Characterization of regular points). [23, Theorem 2.4.1 and the Re-

mark following Theorem 2.4.1] Assume Hypothesis C.3.1 holds. A point (t, z) ∈ ∂Q is

regular if and only if, for every t0 > t,

lim
Q3(t′,z′)→(t,z)

Qt′,z′ (τQ > t0) = 0, (C.3.4)

where τ t
′,z′

Q is the first exit time from Q of the process Z(t′,z′) started at (t′, z′) ∈ Q.

Remark C.3.5. Notice that τ t
′,z′

Q = τ t
′,z′

D ∧ t2, where τ t
′,z′

D is defined in (4.1.17), for all

(t′, z′) ∈ Q.

The following condition on the boundary of the cylinder Q is sufficient to ensure

that a boundary point is regular.

Proposition C.3.6 (Exterior sphere condition). [23, Theorem 2.4.4], [47, Proposition

4.2.15 & Theorem 4.2.19] Assume Hypothesis C.3.1 holds. Let (t, z) ∈ ∂Q. If Q satisfies

the exterior sphere condition at (t, z), then (t, z) is a regular point.



214

Proof. The conclusion follows from [23, Theorem 2.4.4] and the characterization of

regular points Theorem C.3.4.

Remark C.3.7. Proposition C.3.6 implies that if z ∈ ∂D and D satisfies the exterior

sphere condition at z, then (t, z) is a regular point, for all t ∈ (t1, t2). Obviously, Q

satisfies the exterior sphere condition at all points (t2, z) ∈ {t2} × D̄, and so (t2, z) is a

regular point, for all z ∈ D̄.

Theorem C.3.8 (Continuity of stochastic representations). [23, Theorem 2.4.2], [47,

Theorem 4.2.12] Assume Hypothesis C.3.1 holds. If (t, z) ∈ ðQ is a regular point, and

g is a Borel measurable, bounded function on ðQ which is continuous at (t, z), then

lim
Q3(t′,z′)→(t,z)

Et
′,z′

Q [g(τQ, Z(τQ))] = g(t, z). (C.3.5)

We have the following consequence of Theorems C.3.8 and C.3.4.

Corollary C.3.9 (Continuity of stochastic representations with killing term). In ad-

dition to the hypotheses of Theorem C.3.8, assume that

1. the function c : Q̄→ [0,∞) is non-negative, bounded and Borel measurable,

2. if there is T > 0, such that τQ ≤ T a.s., then the function c : Q̄ → R is bounded

and Borel measurable function.

Then

lim
Q3(t′,z′)→(t,z)

Et
′,z′

Q

[
exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
g(τQ, Z(τQ))

]
= g(t, z), (C.3.6)

for all regular points (t, z) ∈ ðQ.

Proof. We consider first the case when the stopping time τQ is not necessarily bounded

by a positive constant T . Then, we let c0 be a positive constant such that

0 ≤ c ≤ c0, a.e. on Q. (C.3.7)

Let (t, z) ∈ ðQ be a fixed regular point. We fix ε > 0 and consider t′ ∈ [t1, t2] such that

|t− t′| < ε/2. Then, using the fact that τ t
′,z′

Q ≥ t′ > t− ε/2, we see that{
τ t
′,z′

Q < t− ε
}
⊆
{
t− ε/2 < t′ ≤ τ t

′,z′

Q < t− ε
}

= ∅,
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and so, we obtain

{
|τ t
′,z′

Q − t| > ε
}
⊆
{
τ t
′,z′

Q > t+ ε
}
∪
{
τ t
′,z′

Q t < t− ε
}

⊆
{
τ t
′,z′

Q > t+ ε
}
.

Theorem C.3.4, with t0 := t+ ε, implies that

lim
Q3(t′,z′)→(t,z)

Qt′,z′ (|τQ − t| > ε) ≤ lim
Q3(t′,z′)→(t,z)

Qt′,z′ (τQ > t+ ε) = 0,

from where it follows that τ t
′,z′

Q converges in probability to 0. Similarly, we can argue

that

exp

−∫ τ t
′,z′
Q

t′
c(s, Z(t′,z′)(s))ds

 (C.3.8)

converges in probability to 1, as (t′, z′) ∈ Q tends to (t, z). We again fix ε ∈ (0, 1) and

consider t′ such that |t′ − t| < −1/(2c0) log(1− ε). By inequality (C.3.7), we see that

Qt′,z′
(∣∣∣∣exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
− 1

∣∣∣∣ > ε

)
= Qt′,z′

(
exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
< 1− ε

)
, (as c ≥ 0),

≤ Qt′,z′
(
exp

(
−c0(τQ − t′)

)
< 1− ε

)
, (as 0 ≤ c ≤ c0),

= Qt′,z′
(
τQ > t′ − 1

c0
log(1− ε)

)
= Qt′,z′

(
τQ > t− 1

2c0
log(1− ε)

)
(because |t′ − t| < −1/(2c0) log(1− ε)).

Choosing t0 := t − log(1 − ε)/(2c0) in Theorem C.3.4, we see that the last term in

the preceding sequence of inequalities converges to 0, and so the collection of random

variables (C.3.8) converges in probability to 1, as (t′, z′) ∈ Q tends to (t, z). The

sequence is uniformly bounded by the constant 1, and so [34, Exercise 2.4.34 (b)]

implies that the sequence converges to 1 in expectation also, that is

lim
Q3(t′,z′)→(t,z)

Et
′,z′

Q

[∣∣∣∣exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
− 1

∣∣∣∣] = 0. (C.3.9)
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From the sequence of inequalities,∣∣∣∣Et′,z′Q

[
exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)
g(τQ, Z(τQ))

]
− g(t, z)

∣∣∣∣
≤
∣∣∣Et′,z′Q [g(τQ, Z(τQ))]− g(t, z)

∣∣∣
+

∣∣∣∣Et′,z′Q

[(
1− exp

(
−
∫ τQ

t′
c(s, Z(s))ds

))
g(τQ, Z(τQ))

]∣∣∣∣
≤
∣∣∣Et′,z′Q [g(τQ, Z(τQ))]− g(t, z)

∣∣∣
+ ‖g‖L∞(ðQ)E

t′,z′

Q

[∣∣∣∣1− exp

(
−
∫ τQ

t′
c(s, Z(s))ds

)∣∣∣∣] ,
the conclusion (C.3.6) follows from (C.3.5) and (C.3.9).

We next consider the case when the stopping time τQ is bounded a.s. by a positive

constant T . We fix (t, z) ∈ ðQ. Without loss of generality, we may assume that

t ∈ [0, T ] and Q ⊆ [0, T ] × Rd. Because c is a bounded function on Q, we let c1, c2 be

two positive constants such that

−c1 ≤ c ≤ c2 a.e. on Q,

and we set

c̃ := c+ c1 on Q,

and

g̃(t′, z′) := ec1(t′−t)g(t′, z′), ∀(t′, z′) ∈ ðQ.

Notice that c̃ is a non-negative, bounded Borel measurable function on Q. Also, g̃ is a

bounded, Borel measurable function on ðQ, and it is continuous at (t, z) with

g̃(t, z) = g(t, z). (C.3.10)

In addition, we have for all (t′, z′) ∈ Q,

exp

(
−
∫ τQ

t′
c(s, Zt

′,z′(s))ds

)
g(τQ, Z

t′,z′(τQ))

= exp

(
−
∫ τQ

t′
c̃(s, Zt

′,z′(s))ds

)
g̃(τQ, Z

t′,z′(τQ))

+
(
exp

(
c1(t− t′)

)
− 1
)

exp

(
−
∫ τQ

t′
c̃(s, Zt

′,z′(s))ds

)
g̃(τQ, Z

t′,z′(τQ)).

(C.3.11)
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The functions c̃ : Q̄→ [0,∞] and g̃ : ðQ→ R satisfy the requirements of the preceding

case, and so, we have that

lim
Q3(t′,z′)→(t,z)

Et
′,z′

Q

[
exp

(
−
∫ τQ

t′
c̃(s, Z(s))ds

)
g̃(τQ, Z(τQ))

]
= g(t, z),

using (C.3.10). By the boundedness of c̃ on Q, of g̃ on ðQ, and the fact that τQ ≤ T

a.s., we also have

lim
Q3(t′,z′)→(t,z)

Et
′,z′

Q

[(
exp

(
c1(t− t′)

)
− 1
)

exp

(
−
∫ τQ

t′
c̃(s, Z(s))ds

)
g̃(τQ, Z(τQ))

]
= 0.

Therefore, the conclusion of the corollary follows from the preceding two limits and

identity (C.3.11).

Next, we review classical results on stochastic representations of solutions to non-

degenerate, elliptic and parabolic partial differential equations. For this purpose, we

denote by

Lv := −aijvxixj − bivxi + cv,

where aij , bi and c depend on z ∈ Rd in the elliptic case, and on (t, z) ∈ [0,∞)×Rd in

the parabolic case, and v is a smooth function of z or (t, z), respectively.

Theorem C.3.10 (Stochastic representation of solutions to non-degenerate elliptic dif-

ferential equations on bounded domains). [40, Theorem 6.5.1], [47, Proposition 5.7.2],

[61, Theorem 9.1.1 & Corollary 9.1.2] Assume Hypothesis C.3.1 holds. Let α ∈ (0, 1)

and D ⊂ Rd be a bounded domain with C2 boundary. Let f ∈ Cα(D̄) and g ∈ C(∂D)

and require that c ∈ Cα(D̄) and c ≥ 0. Then the unique solution u ∈ C(D̄) ∩C2(D) to

the Dirichlet problem, 
Lu = f on D,

u = g on ∂D,

has the stochastic representation,

u(z) = Ez
[
e−
∫ τD
0 c(Z(s))dsg(Z(τD))

]
+ Ez

[∫ τD

0
e−
∫ t
0 c(Z(s))dsf(Z(s))ds

]
, ∀z ∈ D̄.
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Next, we recall the analogue of Theorem C.3.10 for the parabolic case.

Theorem C.3.11 (Stochastic representation of solutions to non-degenerate parabolic

differential equations on bounded domains). [40, Theorem 6.5.2][47, Theorem 5.7.6]

Assume Hypothesis C.3.1 holds. Let T > 0, α ∈ (0, 1), and D ⊂ Rd be a bounded

domain with C2 boundary. Set Q = (0, T )×D. Let f ∈ Cα(Q̄) and g ∈ Cloc(ðQ) and

require that c ∈ Cα(Q̄). Then the unique solution u ∈ C(Q̄) ∩ C2(Q) to the Dirichlet

problem, 
−ut + Lu = f on Q,

u = g on ðQ,

has the stochastic representation,

u(t, z) = Et,z
[
e−
∫ τD∧T
t c(s,Z(s))dsg(τD ∧ T,Z(τD ∧ T ))

]
+ Ez

[∫ τD∧T

t
e−
∫ s
t c(v,Z(v))dvf(s, Z(s))ds

]
, ∀(t, z) ∈ Q̄.

We use Theorems C.3.10 and C.3.11 in our proofs of Theorems 4.3.1 and 4.5.4 which

provide existence of solutions to the degenerate partial differential equations defined by

the Heston operator.

C.4 Further comparisons with previous classical results for solutions

to boundary value or obstacle problems and their stochastic rep-

resentations

We provide a few more detailed comparisons between some of our main results and

classical results in the literature for boundary value or obstacle problems defined by an

elliptic differential operator, A.

C.4.1 Existence and uniqueness of solutions to elliptic boundary value

problems

Existence and uniqueness of solutions to the elliptic boundary value problem (4.1.1)

and (4.1.3), provided Γ1 = ∂O, follow from Schauder methods when the coefficient
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matrix, (aij), of the second-order derivatives in A is uniformly elliptic. For example,

see [41, Theorem 6.13] for the case where O is bounded and f and the coefficients of A

are bounded and in Cα(O), α ∈ (0, 1), giving a unique solution u ∈ C2+α(O) ∩ C(Ō),

while [41, Theorem 6.14] gives u ∈ C2+α(Ō) when f and the coefficients of A are in

Cα(Ō). See [51, Corollary 7.4.4], together with [51, Corollary 7.4.9] or [51, Theorem

7.6.4] or [51, Theorem 7.6.5 & Remark 7.6.6], for similar statements.

C.4.2 Stochastic representations for solutions to elliptic boundary

value problems

We may compare Theorems 4.1.2 and 4.1.5 with [61, Theorem 9.1.1] for a statement of

uniqueness in the case where O ⊂ Rn is a domain and

(a) u ∈ C2(O) ∩ Cb(O) solves

Au = f on O,

where

A := −
n∑

i,j=1

aij(z)
∂2

∂zi∂zj
+

n∑
i=1

bi(z)
∂

∂zi
;

(b) u = g on ∂O;

and the coefficients defining the boundary value problem obey

(i) (aij(z)) is symmetric and nonnegative definite on O;

(ii) (σij(z)) and b(z) = (bi(z)) have linear growth and are globally Lipschitz on O;

(iii) g ∈ Cb(∂O);

(iv) f ∈ C(O) obeys

EQ

[∫ τz

0
f(Zz(s)) ds

]
<∞, ∀z ∈ O.

Condition (iv) holds, for example, when EQ[τz] <∞, ∀z ∈ O, and f is bounded.

Here, (Zz(s))s≥0 is the solution to dZ(s) = b(Z(s)) ds+ σ(Z(s)) dW (s), starting at

z ∈ O, and σ(z) = (σij(z)) obeys

1

2

n∑
k=1

σik(z)σjk(z) = aij(z),
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while b(z) = (bi(z)).

See [61, Theorem 9.3.2] for a statement of uniqueness in the case where (iii) is

replaced by (iii’) g = 0, and (a), (b) are replaced by

(a’) u ∈ C2(O) and obeys, for some constant C > 0,

|u(z)| ≤ C
(

1 + EQ

[∫ τz

0
|f(Zz(s))| ds

])
, ∀z ∈ O;

(b’) limO3z→z0 u(z) = 0 at regular points z0 ∈ ∂O.

Compare [8, Theorem 2.7.1 & Remarks 2.7.1, 2.7.2] for a statement of uniqueness in the

case where O is bounded, f, g, bi ∈ C(Ō), and aij ∈ C1(Ō) with (aij) strictly elliptic

on Ō, while r is replaced by a function c ∈ C(Ō), c ≥ 0. Compare [8, Theorem 2.7.2 &

Remarks 2.7.3–5] for a statement of uniqueness in the case where O = Rn, bi ∈ C1(Rn),

aij ∈ C2
b (Rn), while r is replaced by a function c ∈ C1

b (Ō), c ≥ c0 > 0, and f ∈ C1(Rn)

obeys |f |+ |Df | ≤ C(1 + |x|m, for some m ∈ N.

We may compare Theorem 4.3.1 with [61, Theorem 9.2.14] for a statement of ex-

istence in the case where, in addition to the hypotheses of [61, Theorem 9.1.1], (i) is

replaced by (i’) (aij) is symmetric and strictly elliptic on Ō; and (iii) is replaced by

(iii’) g = 0. See [61, Theorem 9.3.1] for a statement of existence in the case where (iii)

is replaced by (iii’) g = 0. Finally, see [61, Theorem 9.3.3 & Remark, p. 196] for a com-

bined statement of uniqueness and existence, where (iv) is replaced by (iv”) f ∈ Cα(O)

for some α > 0 and obeys (iv); and (b) is replaced by (b”) limO3z→z0 u(z) = g(z) at

regular points z0 ∈ ∂O.

Compare [40, Theorem 6.5.1] for a statement of existence and uniqueness in the case

where O is bounded and the coefficient matrix, (aij), is strictly elliptic on Ō, and [40,

Theorems 13.1.1 & 13.3.1] in the case where (aij) is only assumed nonnegative definite

on Ō.

C.4.3 Existence and uniqueness of solutions to parabolic terminal/

boundary value problems

Existence and uniqueness of solutions to the parabolic terminal/boundary value prob-

lem (4.1.7) and (4.1.9), again provided Γ1 = ∂O, follow from Schauder methods when
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the coefficient matrix, (aij), of A is strictly elliptic on Ō. For example, see [54, The-

orems 5.9 & 5.10] for the case where f and the coefficients of A are bounded and in

Cα(Q), giving a unique solution u ∈ C2+α(Q) ∩ C(Q̄).
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Parabolic Hölder spaces, 4
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