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ABSTRACT OF THE DISSERTATION

Degenerate Partial Differential Equations and
Applications to Probability Theory and Foundations of

Mathematical Finance

by Camelia Alexandra Pop

Dissertation Director: Professor Paul M. N. Feehan

In the first part of our thesis, we prove existence, uniqueness and regularity of solutions
for a certain class of degenerate parabolic partial differential equations on the half space
which are a generalization of the Heston operator. We use these results to show that
the martingale problem associated with the differential operator is well-posed and we
build generalized Heston-like processes which match the one-dimensional probability
distributions of a certain class of It6 processes.

The second part of our thesis is concerned with the study of regularity of solutions
to the variational equation associated to the elliptic Heston operator. With the aid of
weighted Sobolev spaces, we prove supremum bounds, a Harnack inequality, and Holder
continuity near the boundary for solutions to elliptic variational equations defined by
the Heston partial differential operator.

Finally, we establish stochastic representations of solutions to elliptic and parabolic
boundary value problems and obstacle problems associated to the Heston generator.
In mathematical finance, solutions to parabolic obstacle problems correspond to value

functions for American-style options.
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Chapter 1

Introduction

We study existence, uniqueness and regularity of solutions to degenerate elliptic and
parabolic partial differential equations (PDEs) which arise as generators of Markov
processes. This research is motivated in part by applications to mathematical finance,
especially in option pricing.

In Chapter [2 we solve four intertwined problems concerning degenerate-parabolic
partial differential operators and degenerate diffusion processes. First, we consider a
parabolic partial differential equation on a half-space whose coefficients are suitably
Hoélder continuous and allowed to grow linearly in the spatial variable and which be-
comes degenerate along the boundary of the half-space. We establish existence and
uniqueness of solutions in weighted Holder spaces which incorporate both the degener-
acy at the boundary and the unboundedness of the coefficients. Second, we show that
the martingale problem associated with a degenerate elliptic differential operator with
unbounded, locally Hélder continuous coefficients on a half-space is well-posed in the
sense of Stroock and Varadhan. Third, we prove existence, uniqueness, and the strong
Markov property for weak solutions to a stochastic differential equation with degenerate
diffusion and unbounded coefficients with suitable Hélder continuity properties. Fourth,
for an Itd process with degenerate diffusion and unbounded but appropriately regular
coefficients, we prove existence of a strong Markov process, unique in the sense of prob-
ability law, whose one-dimensional marginal probability distributions match (mimic)
those of the given It process.

Mimicking theorems are useful in pricing European options in mathematical finance.
Often, stock prices follow complex dynamics, which are difficult to simulate in practice,

so it is desirable to be able to select a unique Markov stochastic process which has the



same one-dimensional probability distributions as the original asset price process, and
which can serve as an input to the pricing equation. In our framework, we achieve this
goal.

The Heston stochastic volatility process, which is widely used as an asset price model
in mathematical finance, is a paradigm for a degenerate diffusion process where the
degeneracy in the diffusion coefficient is proportional to the square root of the distance
to the boundary of the half-plane. The generator of this process with killing, called
the elliptic Heston operator, is a second-order degenerate elliptic partial differential
operator whose coefficients have linear growth in the spatial variables and where the
degeneracy in the operator symbol is proportional to the distance to the boundary of
the half-plane. With the aid of weighted Sobolev spaces, in the second part of our thesis,
Chapter [3| we prove supremum bounds, a Harnack inequality, and Holder continuity
near the boundary for solutions to elliptic variational equations defined by the Heston
partial differential operator. The difficulty in studying these properties is in adapting
the method of Moser iterations, Poincaré inequality and John-Nirenberg inequality to
our weighted spaces. We use these results to prove Holder continuity of weak solutions
to the Heston obstacle problem, which combined with additional regularity results (in
particular, the ot regularity due to Daskalopoulos and Feehan), enables us to show
that the weak solutions admit stochastic representations [32]. This result is of particular
interest to practitioners because it shows for the Heston model, that prices of perpetual
American options, with regular enough payoffs, are solutions to stationary variational
inequalities.

Finally, in Chapter [4] we establish stochastic representations of solutions to elliptic
and parabolic boundary value problems and obstacle problems associated to the Heston

generator.

1.1 Notation and conventions

We adopt the convention that a condition labeled as an Assumption is considered to be

universal and in effect throughout the chapter where it is stated and so not referenced



explicitly in theorem and similar statements; a condition labeled as a Hypothesis is only
considered to be in effect when explicitly referenced.

We let N := {1,2,...} denote the set of positive integers. For z,y € R, we let
x Ay = min{z,y},  Vy := max{z,y} and 2T := x vV 0. For any open set O in
a topological space, we denote by O its closure. Let Sy € R%*¢ denote the closed,
convex subset of non-negative definite, symmetric matrices. Let S; C R¥*4 denote the
convex subset of positive definite, symmetric matrices. We denote by Q(d) € R¥*? the
orthogonal group.

A positive integer d > 2 denotes the dimension of the Euclidean space, RY. We
denote R, := (0,00) and H := R x R, . We write points in H as x := (2/, x4), where
2= (z1,72,...,24-1) € R when d > 2, or z = (z,y), * € R and y > 0, when
d=2.

In Chapters [3] and [4] we denote by ¢ C H a possibly unbounded domain in the
open upper half-plane H, I'y = 96 N H is the portion of the boundary 0& of ¢ which
lies in H, and T is the (non-empty) interior of 9H N A&, where OH = R4~ x {0} is the
boundary of H := R%! x [0, 00). We write 90 =T'gUT; = Ty UT; and note that the

boundary portions I'g and I'; are relatively open in 90.

1.1.1 Function spaces

In the definition and naming of function spaces, including spaces of continuous func-
tions, Holder spaces, or Sobolev spaces, we follow Adams [2] and alert the reader to
occasional differences in definitions between [2] and standard references such as Gilbarg

and Trudinger [41] or Krylov [51], 52].

Elliptic Holder spaces

Let ¢ C R? be an open, connected set (domain). For an integer & > 0, we let C*(0)
denote the vector space of functions whose derivatives up to order k are continuous on
¢ and let C*(&) denote the Banach space of functions whose derivatives up to order k
are uniformly continuous and bounded on O [2, §1.25 & §1.26]. If T' S 00 is a relatively

open set, we let CF

1.(0'UT) denote the vector space of functions, u, such that, for any



precompact open subset U € ¢ U T, we have u € C*(T).

For a € (0,1), we let C*t%(¢&) denote the subspace of C¥(&) consisting of functions
whose derivatives up to order k are locally a-Holder continuous on & (in the sense
of A1, p. 52]) and let C*+®(&) denote the subspace of C*(&) consisting of functions
whose derivatives up to order k are uniformly a-Hélder continuous on ¢ [41l, p. 52],
[2, §1.27]. If T G OO0 is a relatively open set, we let C{f;o‘(ﬁ U T') denote the vector
space of functions, u, such that, for any precompact open subset U € & U T, we have

u € CF ().

Parabolic Holder spaces

The definitions of the parabolic Holder spaces are analogous to those of the elliptic
Hoélder spaces, with the only adjustment that we replace the Euclidean distance between

two points by the parabolic distance given by

p(PL, Py) : Z|x — 22|+ /Jt1 — ta], (1.1.1)

where P; = (t;, 2%, .. .,xfj), 1=1,2.

Let Q C (0,7) x R? be a domain and « € (0,1). We denote by C(Q) the space of
bounded, continuous functions on @, and by C§°(Q) the space of smooth functions with
compact support in Q. If T ; 0Q is a relatively open set, we let Clo.(Q U T) denote
the vector space of functions, u, such that, for any precompact open subset V € QUT,
we have u € C(V).

For a function u : Q — R, we consider the following norms and seminorms

lullegy = sup [u(P)], (1.1.2)
PeQ
[u(Pr) — u(P)]
U|cap)y = Sup . 1.1.3
[ ]Cp (@) PLPaed, (P17P2)a ( )
P1#P>

We say that u € C$(Q) if u € C(Q) and

HUHC’g(Q) = [Julleg) + [U]Cg(Q) < 00.

We say that u € C5t(Q) if

ez ) = Iullopi@ + lullopi@ + max, s log @ + max s, log @) < -



We denote by CglOC(Q) the space of functions v with the property that for any compact

set K C Q, we have u € CH(K). Analogously, we define the space CgI)OC‘(Q). For

T G 0Q a relatively open subset, we let Cﬁjooé(Q UT) denote the subspace of C37*(Q)
such that, for any precompact open set U € Q U T, we have u € C’g“‘(U ).
Sometimes, we omit the subscript p from the definition of the parabolic Holder

spaces (in Chapter , but we keep it when we want to emphasize the different metrics

that we use (in Chapter [2).

1.1.2 Probability spaces and filtrations

Let E be a metric space and let Z(F) be the Borel o-algebra generated by this topology.
We denote by Cioc([0,00); E) the set of continuous paths w : [0,00) — E. We endow
Cloc([0,0); E') with the topology of uniform convergence on compact sets. If (E,r)
is a complete, separable metric space, then Cio.([0,00); F) is a complete, separable,
metrizable space.

Let A(Cloc([0,00); E)) denote the o-algebra generated by the cylinder sets
{w S C]OC([O, OO); E) : w(ti) €B,i=1,..., m} s (1.1.4)

where 0 < t; < ... < ty, B; € B(E), i = 1,...,m, and m € N. For ¢t > 0, let
B (Croc([0,00); E)), denote the o-algebra generated by cylinder sets of the form ([1.1.4)
such that 0 <t; < ... <t, <t.

We specialize (E,r) to be (R |-|) ([70, p. 138], [47, Definition 5.4.5 & 5.4.10]),
(RL,[-]) ([6, §1]) and (H, |- |) in Definition

Definition 1.1.1 (Usual conditions). [47, Definition 1.2.25] A filtration {.%#;},-, on a
probability space (€2, .7, P) is said to satisfy the usual conditions if it is right-continuous,

that is, % = Ng>1-Fs, and Fg contains all events in % with P-null probability.

Definition 1.1.2 (Augmentation of a filtration). [47, Definition 2.7.2] Let (2, .%#,P),

{Zt};>0, be a filtered probability space and let .4~ denote

N ={F C Q:3G € .% such that F C G,P(G) =0}.



Let .Z;¥ denote the o-algebra generated by .%; U .4". Then, {ft‘/‘/ } />0 18 the augmen-

tation of the initial filtration {F¢},-,.



Chapter 2

Degenerate PDEs and martingale and mimicking

problems

2.1 Introduction

Consider a time-dependent, elliptic differential operator defined by unbounded coeffi-
cients (a,b) on the half-space H := R4! x (0, 00) with d > 2,

d d
Ayv(x) = % D wqai(t, 2)vse, () + > bi(t,2)oe,(x), () €[0,00) x H, (2.1.1)

ij=1 i=1

where a = (a;j), b = (b;), and v € C?(H). The operator % becomes degenerate
along the boundary OH = {z4 = 0} of the half-space. In this chapter, motivated by
applications to mathematical finance [4, 22| [63], we solve four intertwined problems
concerning degenerate-parabolic partial differential operators and degenerate diffusion
processes related to (2.1.1)).

First, as explained more fully in we prove existence, uniqueness, and regular-
ity of solutions to a degenerate-parabolic partial differential equation with unbounded,
locally Holder-continuous coefficients, (a,b,c), generalizing both the Heston equation

[44] and the linearization of the porous medium equation [20] 211, 50],

Lu=f on Hrp,

(2.1.2)
u(0,) =g onli
where
d d
—Lu = —uy + Z TqijUez; + Z bitty, +cu, Yu € CY*(Hy), (2.1.3)
i,j=1 i=1
and Hr := (0,7) x H. In particular, unlike the linearization of the porous medium

equation considered in [20) 2], 50], the coefficients of (2.1.3) are permitted to grow



linearly with x as * — oo and, even when the coefficients b; are constant, we do not
require that b =0 wheni=1,...,d — 1.

Second, we show that the martingale problem for the degenerate-elliptic op-
erator with unbounded coefficients, <%, in is well-posed in the sense of Stroock
and Varadhan [70].

Third, as discussed in more detail in §2.1.1 we prove existence, uniqueness, and the
strong Markov property for weak solutions, X , to a degenerate stochastic differential

equation with unbounded coeflicients,

dX(t) = b(t, X(t))dt + o(t, X (£))dW (), t>s,
(2.1.4)
X(s) ==.
when the coefficient o is a square root of the coefficient matrix z4a in @ in (2.1.1)),
that is, when oo™* = x4a on Hyp.

Lastly, suppose we are given a degenerate It6 process, X, with unbounded coeffi-

cients,

dX(t) = p(t)dt + £(t)dW(t), t>0,

(2.1.5)

X(0) ==,
whose coefficients (£, 8) are related to those of as explained in When
the coefficients (b, o) in are determined by the coefficients (£, ) in as de-
scribed in & we show that the weak solution X to “mimics” the Itd process
(2.1.5) in the sense that X (t) has the same one-dimensional marginal probability distri-
butions as X (t), for all £ > 0 if X (0) = X (0) € H. Our mimicking theorem complements
that of Gyongy [43], who assumes that is non-degenerate with bounded, measur-
able coefficients, that of Brunick and Shreve [12} [14], who allow to be degenerate
with unbounded, measurable coefficients, and those of Bentata and Cont [9] and Shi

and Wang [66] [72] who prove mimicking theorems for a discontinuous semimartingale

process with a non-degenerate diffusion component and bounded coefficients.

2.1.1 Summary of main results

We describe our results outlined in the preamble to



Existence and uniqueness of solutions to a degenerate-parabolic partial dif-

ferential equation with unbounded coefficients

We shall seek a solution, u, to in a certain weighted Holder space %I?J“O‘(IFI[T),
given a source function, f, in a weighted Holder space ‘Kp“(HT) and initial data, g,
in a weighted Holder space ‘55*"‘(]1:]1). These weighted Holder spaces generalize both
the standard Holder spaces as defined, for example, in [51], [54] and the Holder spaces
defined with the cycloidal metric and introduced, independently, by Daskalopoulos and
Hamilton [20] and Koch [50]. We defer a detailed description of these Hélder spaces
to However, the essential features of our Holder spaces are that (i) near the
boundary, z4 = 0, of the half-space cylinder Hp, our Holder spaces are equivalent to
those of Daskalopoulos, Hamilton, and Koch and account for the degeneracy of the
operator L, (ii) polynomial weights in the definition of our Holder spaces allow for
coefficients (a, b, ¢) in with up to linear growth near x = oo in the half-space
cylinder Hp, and (iii) on compact subsets of the half-space cylinder Hy, our Holder

spaces are equivalent to standard Hoélder spaces. We defer a detailed description of the

conditions on the coefficients (a, b, ¢) defining L in (2.1.3)) to §2.2.2 — see Assumption

on the properties of the coefficients of the parabolic differential operator. However,
the essential features of the conditions on (a,b,c) in Assumption are that (i) the
matrix a = (asj) is uniformly elliptic, so the degeneracy in is captured by the
common factor x4 appearing in the ug,,; terms, (ii) the coefficients (a, b, ¢) have at most
linear growth with respect to z € H as © — oo, (iii) the coefficients (a, b, c) are locally
Hélder continuous on Hr with exponent o € (0,1), (iv) the coefficient ¢ is bounded
above on Hp by a constant, and (v) the coefficient by is positive when x4 = 0. We can

now state our first main result.

Theorem 2.1.1 (Existence and uniqueness). Assume that the coefficients (a,b,c) in
obey the conditions in Assumption . Then there is a positive constant p,
depending only on the Hélder exponent « € (0, 1), such that for any T > 0, f € CK;(HT)
and g € CZY(H), there exists a unique solution u € €*T*(Hr) to (2.1.2). Moreover,



10

u satisfies the a priori estimate

lullgzrary < C (1 lgp e + l9lgzeac ) (2.1.6)

where C' is a positive constant, depending only on K, v, d, d, a and T'.

One of the difficulties in establishing Theorem is that the coefficient, z4a(t, x),
becomes degenerate when x4y = 0 and is allowed to have linear growth in z, instead of
being uniformly elliptic and bounded as in [53], Hypothesis 2.1]. To address the degen-
eracy of zqa(t,x) as x4 } 0, we build on the results on [20, Theorem I.1.1] by employing
a localization procedure. To address the linear growth of the coefficients (zq4a,b, c) of
the parabolic operator L in , we augment previous definitions of weighted Holder
spaces [20, 50], by introducing a weight (14 |z|)P, where p is a positive constant depend-
ing only on the dimension d of the half-space H and on the Holder exponent « € (0, 1).
The proof of existence does not follow by standard methods, for example, the method
of continuity, because L : €*t*(Hy) — Cgpa(]I:]IT) is not a well-defined operator. In
general, the domain of definition of L is a subspace of €?7(Hz) which depends on
the nature of the coefficients of L, a feature which is not encountered in the case of
parabolic operators with bounded coefficients . To circumvent this difficulty, we first
consider the case of similar degenerate operators with bounded coefficients and then use
an approximation procedure to obtain our solution. To obtain convergence of sequences
to a solution of our parabolic differential equation , we prove a priori estimates
in the weighted Holder spaces 6 and ;.

The conditions in Assumption on the coefficients (a,b,c) in are mild

enough that they allow for many examples of interest in mathematical finance.

Example 2.1.2 (Parabolic Heston partial differential equation). The conditions in As-
sumption are obeyed by the coefficients of the parabolic Heston partial differential

operator,
—Lu=—us+ % (um + 200Uy + O'Z’U,yy) +(r—q—y/2)uy + k(¥ — y)uy —ru, (2.1.7)

where ¢ > 0,7 > 0,k > 0,9 > 0,0 >0, and g € (—1, 1) are constants.
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Naturally, the conditions in Assumption on the coefficients (a,b,c) in (2.1.3))

also allow for the linearization of the generalized porous medium equation.

Example 2.1.3 (Linearization of the porous medium equation). In their landmark
article, Daskalopoulos and Hamilton [20] proved existence and uniqueness of C* solu-
tions, u, to the Cauchy problem for the porous medium equation [20, p. 899] (when

d=2),
d
—up+ Y (W)ge, =0 on (0,7) xRY, u(-,0)=g onR, (2.18)
=1

where m > 1 and g € L'(R%) with g > 0 compactly supported on RY, together with
C>-regularity of its free boundary, O{u > 0}. Their analysis is based on an extensive
development of existence, uniqueness, and regularity results for the linearization of the
porous medium equation near the free boundary and, in particular, their model linear

degenerate operator [20, p. 901] (generalized from d = 2 in their article),

d
—Lu= —Ut + Zq Z Ug,;x; + Vuxd7 (219)
=1

where v is a positive constant. The same model linear degenerate operator (for d > 2),
was studied independently by Koch [50, Equation (4.43)] and, in a remarkable Habil-
itation thesis, he obtained existence, uniqueness, and regularity results for solutions
to which complement those of Daskalopoulos and Hamilton [20]. Even when
the coefficients in are constant, our operator cannot be transformed by simple
coordinate changes to one of the form , but rather one of the form . Sim-
ilarly, the operator cannot be transformed by simple coordinate changes to one
of the form , even when the factor y in the coefficients of u, and u, in is

(artificially) replaced by zero.
Existence and uniqueness of solutions to the martingale problem for a
degenerate-parabolic operator with unbounded coefficients

We review the formulation of the classical martingale problem of Stroock and Varadhan

[70].
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Definition 2.1.4 (Classical martingale problem on the whole space). [70, p. 138], [47,

Definition 5.4.5 & 5.4.10] Suppose we are given a differential operator,

d d
D it w)vege, (2) + > bilt, z)vg,(x), () € [0,00) x RY, (2.1.10)
=1

3,7=1

d(t,z) =

N |

with v € C2(R?) and measurable coefficients,

a:[0,00) x RY = Sy,

) (2.1.11)

b:[0,00) x R — R
A probability measure P** on the canonical space, (Cloc([0, 00); R%), (Cioc ([0, 00); RY))),
is called a solution to the martingale problem associated to <7, with initial condition at
(s,7) € [0,00) x RY if

P5* (w € Cloc([0,00);RY) : w(t) = 2,0 <t < s) =1,
and, for any v € C§°(RY),
t ~
v(w(t)) —v(w(s)) — / Ayv(w(u))du, Yw € Cloe([0,00);RY), > s,

is a P*-martingale with respect to the filtration {%;(Cioc([0,00); R?))}i>s. O

Remark 2.1.5 (Well-posedness of the classical martingale problem (Definition [2.1.4)).
Standard results which ensure existence of solutions to the classical martingale problem
require that the coefficients (a, I~)) in be bounded and continuous [47, Theorem
5.4.22], [70, Theorem 6.1.7]. Standard results which ensure uniqueness of solutions
require, in addition, that the coefficients (&,IN)) are Holder continuous and that the
matrix a is uniformly elliptic (see [47, Theorem 5.4.28, Corollary 5.4.29, and Remark

5.4.29] for the time-homogeneous martingale problem).

Remark 2.1.6 (Approaches to proving uniqueness in the classical martingale problem).
Uniqueness of solutions to the classical martingale problem is often shown [47, §5.4] by
proving ezistence of solutions in C ([0, T] x RY)NCH2((0,T) x RY) to the terminal value
problem for the parabolic partial differential equation,

w4 Au=0 on (0,T)x R?

u(T,-)=y on Rd7

where g € C§°(RY) and o, is given by (2.1.10).



13

For a differential operator which is defined on a subdomain, it is natural to consider a
modification of Definition To illustrate such a formulation, we have the following

example due to Bass and Lavrentiev [6].

Example 2.1.7 (A time-homogeneous, degenerate submartingale problem on a subdo-
main). [0, §1] Consider the differential operator,

d d

1 a; d
A'v(z) = 3 ;ai(x)mi Vgre; () + ;bi(x)vzi (z), VreR%, (2.1.12)

where v € C?*(R%), the coefficients b; are bounded, the coefficients a; are continuous
and bounded from above and below by positive constants, and «; € (0,1). Let z € RY.
Then, a probability measure P? on (Cioc([0,00); RL), 2(Cloc([0, 00); RY))) is a solution

to the submartingale problem associated to <" if
p® (w € Cloo([0,00); R%) : w(0) = x) — 1,
and, for any v € CZ(R%) N C*(R4) such that vy, > 0 along {z; = 0},
w(w(t)) — v(w(0)) — /Ot A o(w(w))du, Ve € Cioe([0, 00):RE)., £ > 0,

is a P¥-submartingale with respect to the filtration {%;(Coc([0, 0); Ri))}tzg.
Bass and Lavrentiev [0, Theorem 1.1] prove that there is a unique solution to this

submartingale problem which spends zero time on the boundary of RSIF. ]

We now define an analogue of the usual martingale problem (Definition [2.1.4]) when
R? is replaced by the half-space H.

Definition 2.1.8 (Solution to a martingale problem for an operator on a half-space).

Given (s, ) € [0,00) x H, a probability measure P on
(Cloc<[07 OO); H)v t%(Cloc([Q OO); H))
is a solution to the martingale problem associated to <7, in (2.1.1)) starting from (s,x) if

M{ (w) :=v(w(t)) —v(w(s)) —/ Hyv(w(u))du, t>s,w € Cle([0,00); H),
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is a continuous @s’z—martingale, for every v € C2(H), with respect to the filtration % =
9,4, where ¥, is the augmentation under P of the filtration {B1(Choc(]0, 00); H) }e0,
and

P (w € Cloc([0,00); H) s w(t) = 2,0 <t < 5) = 1. (2.1.13)

O]

Remark 2.1.9 (Reduction to usual filtration). By modifying the statement and so-
lution to [47, Problem 5.4.13] (that is, replacing R? by H), we see that if M} is a
martingale with respect to the filtration {%;(Cloc([0, 00); H)}1>0, then it is a martin-

gale with respect to the enlarged filtration 54‘;

Theorem 2.1.10 (Existence and uniqueness of solutions to the martingale problem
for a degenerate-elliptic operator with unbounded coefficients). Suppose the coefficients
(a,b) in obey the conditions in Assumption[2.2.9, Then, for any (s,z) € [0, 00) x
H, there is a unique solution, I@s’x, to the martingale problem associated to <7; in

starting from (s, x).

Remark 2.1.11 (Comments on uniqueness). While [47, Remark 5.4.31] might appear

to provide a simple solution to the uniqueness property asserted by Theorem [2.1.10

when the nonnegative definite matrix-valued function z4a is in C?(H; Sy), that is not the

case. Although we might extend the coefficient, x4a, as a nonnegative definite matrix-
+

valued function z}a or |z4la in C%1(R%;S,), such extensions are not in C*(R%Sy), as

required by [47, Remark 5.4.31].

Existence and uniqueness of weak solutions to a degenerate stochastic dif-

ferential equation with unbounded coefficients

Given a function,
a: [0,00) XH—)Sd,

then a(t, z) is a non-negative definite, symmetric, real matrix for each (¢, z) € [0, 0c0) xH,
and so there is a function

o :[0,00) x H — R4, (2.1.14)
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such that
a(t,z) = o(t,z)o*(t,x), V(t,z) € [0,00) x H. (2.1.15)
By [40, Lemma 6.1.1], we may choose ¢ € Cioc([0, 00) x H; R¥4) when @ € Cloc(]0, 00) x

H; Sq); this continuity property is guaranteed by the conditions on @ in (2.2.11)) and
(2.2.13]) implied through (2.1.16)).

Remark 2.1.12 (Non-uniqueness of the square root and the martingale problem).
Naturally, the function ¢ is not unique. For any function, U : [0,00) x R? — Q(d), oU
is also a square root of a. However, as noted by Stroock and Varadhan [70, Remark
5.1.7 & §5.3], the solution to the martingale problem is independent of the choice of

square root.

The coefficient functions (o, b) define a degenerate stochastic differential equation
(2.1.4). Unless other conditions are explicitly substituted, we require in this chapter

that the coefficients (o, b) satisfy

Assumption 2.1.13 (Properties of the coefficients of the stochastic differential equa-
tion). The coefficient functions (o, b) in (2.1.4)) obey the following conditions.

1. There is a function a : [0,00) x H — S¢ such that

a(t,z) =z a(t,z), V(t,x) € [0,00) x H. (2.1.16)

2. The coefficient functions (a, b) obey the conditions in Assumption

Remark 2.1.14 (Absence of killing term). The coefficient ¢ in Assumption plays

no role in Theorems [2.1.16| and [2.1.19| since it does not appear in the stochastic differ-
ential equation ((2.1.4).

The constraints on the coefficients (o, b) in Assumption [2.1.13| are mild enough that

they include many examples of interest in mathematical finance.

Example 2.1.15 (Heston stochastic differential equation). The conditions in Assump-

tion [2.1.13| are obeyed by the coefficients of the R2-valued log-Heston process [44] with
killing defined by (4.1.15)). See also Example
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Theorem 2.1.16 (Existence, uniqueness, and strong Markov property of weak so-

lutions to a degenerate stochastic differential equation with unbounded coefficients).

Suppose that the coefficients (o,b) in (2.1.4) obey the conditions in Assumption|2.1.15
Let (s,z) € [0,00) x H. Then,

1. There is a weak solution, ()?, W), (Q, Z,P), {ZF:}i>s, to the stochastic differential
equation (2.1.4) such that X(s) = z, P-a.s.

2. The weak solution is unique in the sense of probability law, that is, if
(X' W), (@, 7P, (F)zs, i = 1,2,

are two weak solutions to the stochastic differential equation (2.1.4)) started at x

at time s, then the two processes X' and X? have the same law.

3. The unique weak solution, ()/(\',W), (Q, #,P), {#i}i>s, has the strong Markov

property.

The following example of Stroock and Varadhan [70, Exercise 6.7.7] shows that

solutions to degenerate martingale problems can easily fail to be unique.

Example 2.1.17 (Non-uniqueness of solutions to certain degenerate martingale prob-
lems). [70, Exercise 6.7.7] Consider a generator, <7, in Definition which is time-
homogeneous with d = 1, b(xz) = 0, and a(z) = |z|* A1 with 0 < a < 1, where z € R.
The operator o/ is degenerate at x = 0 and uniqueness in law for solutions to the

martingale problem for o fails. O
The preceding example has been explored in detail by Engelbert and Schmidt:

Example 2.1.18 (Non-uniqueness of weak solutions to certain degenerate stochastic

differential equations). Choose v € (0,1/2) and consider

dX () = |X(0)*dW (), ¥t >0, (2.1.17)

Engelbert and Schmidt [26] show that the stochastic differential equation (2.1.17)) ad-

mits weak solutions if and only if I(c) C Z(0), and uniqueness in law holds if and only
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if I(o0) = Z(0), where
Z(o)={zeR:0(z) =0},
I(c)={zeR: 1/0? is not locally integrable at z}.
It is straightforward to verify that when « is chosen in the range (0,1/2), equation

(2.1.17) admits weak solutions, but uniqueness in law does not hold. O

Mimicking one-dimensional marginal probability distributions of a degener-

ate Ito process with unbounded coefficients

Let X be an R%valued It6 process as in ([2.1.5)), where I is an R"-valued Brownian mo-
tion on a filtered probability space, (€2,.%,P,{.%; }1>0), satisfying the usual conditions
[47, Definition 1.2.25], 3 is an R%valued, adapted process, and that ¢ is a R9*"-valued,

adapted process satisfying the integrability condition,
E [/Ot(]ﬁ(sﬂ—|—|§(S)§*(s)|)d5 <oo, Vt>0. (2.1.18)
Assume z € H and that for all ¢ > 0 we have
X(t) €eH, P-as. (2.1.19)

By [12], Corollary 4.5, there are (Borel) %([0, 00) x H)-measurable (deterministic) func-

tions,

b:[0,00) x H — RY,

(2.1.20)
a: [0,00) XH%Sd,
such that, for Lebesgue a.e. t > 0,
b(t, X(1)) =E[B#)|X()] P-as.,
(2.1.21)

a(t, X (1)) = E[E(O)E" ()X (1) P-as.

We can now state the main result of this chapter.

Theorem 2.1.19 (Mimicking theorem for degenerate Itd6 processes with unbounded

coefficients). Suppose the coefficient a in (2.1.21)) satisfies (2.1.16) and the pair (a,b)
obeys Assumption where b is given by (2.1.21). Let 0 € Coe([0,00) x H;R4*9)

be a choice of square root,

a(t,z) =o(t,z)o*(t,z), ¥(t,z)€ [0,00) x H. (2.1.22)
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Let X be the unique, strong Markov weak solution to the stochastic differential equation
@-1.4) started at z whent = 0. Then X and X have the same one-dimensional marginal

probability distributions.

Remark 2.1.20 (Mimicking stochastic differential equation). We call (2.1.4)) the mim-
icking stochastic differential equation defined by the Ito process (2.1.5)) when its coeffi-

cients are defined as in (2.1.15)) and (2.1.20]).

Remark 2.1.21 (Sufficient and necessary condition to ensure that the It6 process
remains in the upper half-space). In general, the coefficients o and by defined by
and are Borel measurable functions defined on [0,00) x R%. Our assumption
(2.1.19)) implies that we may choose the coefficients ¢ and b; such that they satisfy
conditions and on [0,00) x R4™! x (—00,0). Conversely, if we are given

bq and o satisfying conditions (2.4.1)) and (2.4.2)), Proposition shows that (2.1.19))
holds.

2.1.2 Survey of previous research

Gyongy [43, Theorem 4.6] proves existence of a mimicking process as in Theorem
— although not the uniqueness or strong Markov properties — with conditions on the
coefficients (o, b) which are both partly weaker than those of Theorem because
the functions b : [0,00) x R? — R% and o : [0,00) x R? — R¥*? are only required to
be Borel-measurable, but also partly stronger than those of Theorem because
the functions (o,b) are required to be uniformly bounded on [0,00) x R% and go* is
required to be uniformly positive definite on [0, 00) x R

Since Gyongy only requires that the coefficients (o, b) of the corresponding mimick-
ing stochastic differential equation are Borel measurable functions, he uses an
auxiliary regularizing procedure to construct a weak solution X to . He shows
that the Green measure of the mimicking process X coincides with the Green measure

of the Ito process X, that is

E [/Ooo etf(t,f((t))dt] =E UOOO eTtF(t, X (4))dt]
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holds for all bounded, non-negative, Borel measurable functions, f : [0,00) x R? — R.
Uniqueness of the weak solution is not proved under the hypotheses of [43] Theorem
4.6] and the main obstacle here is the lack of regularity of the coefficients (a, b).

The hypotheses of |43, Theorem 4.6] are quite restrictive, as we can see that they
would exclude a process, X, such as that in Example[2.1.15] even though the coefficients
of its mimicking processes, X, can be found by explicit calculation [5] (see also [4]).
Moreover, Nadirashvili shows [60] that uniqueness of stochastic differential equations
with measurable coefficients satisfying the assumptions of non-degeneracy and bound-
edness in [43, Theorem 4.6] does not hold in general when d > 3. Nadirashvili considers
a sequence of smooth coefficients converging to the given measurable coefficients and
shows that there are two different solutions to the corresponding partial differential
equation.

Brunick and Shreve [12, Corollary 2.16], [14] prove an extension of [43, Theorem 4.6]
which relaxes the requirements that oo* is uniformly positive definite on [0, 00) x R?
and that the functions o and b are bounded on [0, 00) x R?. Moreover, they significantly
extend Gyongy’s theorem [43] by replacing the non-degeneracy and boundedness condi-
tions on the coefficients of the It6 process, X, by a mild integrability condition .
Using purely probabilistic methods, they show existence of weak solutions to stochas-
tic differential equations of diffusion type which preserve not only the one-dimensional
marginal distributions of the It process, but also certain statistics, such as the running
maximum or average of one of the components. More recently, Brunick [I3] establishes
weak uniqueness for a degenerate stochastic differential equation with applications to
pricing Asian options.

Bentata and Cont [9] and Shi and Wang [66, [72] extend Gyongy’s mimicking theorem
to discontinuous, non-degenerate semimartingales. Under assumptions of continuity
and boundedness on the coefficients of the process and non-degeneracy condition of
the diffusion matrix or of the Levy operator, they prove uniqueness of solutions to the
forward Kolmogorov equation associated with the generator of the mimicking process.
In this setting, they show that weak uniqueness to the mimicking stochastic differential

equation holds and that the mimicking process satisfies the Markov property.
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2.1.3 Brief outline of the chapter

In we define the Holder spaces required to prove Theorem (existence and
uniqueness of solutions to a degenerate-parabolic partial differential equation on a half-
space with unbounded coefficients) and provide a detailed description of the conditions
required of the coefficients (a,b,c) in the statement of Theorem which we then
proceed to prove in Section [2.4] contains the proofs of Theorems

and [2.1.19] In §2.4.1] we prove existence of solutions to the degenerate martingale

problem and degenerate stochastic differential equation specified in Theorems [2.1.10

and while in §2.4.2] we prove uniqueness and the strong Markov property in

Theorems [2.1.10| and 2.1.16] Lastly, in we prove our mimicking theorem for a

degenerate It06 process, namely, Theorem [2.1.19

2.2 Weighted Holder spaces and coefficients of the differential opera-

tors

In §2.2.1] we introduce the Holder spaces required for the statement and proof of The-
orem while in §2.2.2] we describe the regularity and growth conditions required
of the coefficients (a, b, ¢) in Theorem [2.1.1]

2.2.1 Weighted Holder spaces

For a > 0 and T" > 0, we denote
H, 1 = (0,T) x R¥! x (0, ),

and, when T = oo, we denote Ho, = (0,00) x H and H, o, = (0,00) x R4~ x (0,a). For

20 € Hand R > 0, we let

Bg(z?) = {zeH: |z - 20| < R} and Qr1(2°) := (0,T) x Bgr(z°).

U is clear from the context or unimportant.

We write Br or Qg when the center, =
A parabolic partial differential equation with a degeneracy similar to that considered

in this chapter arises in the study of the porous medium equation [20} 21, [50]. The
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existence, uniqueness, and regularity theory for such equations is facilitated by the use
of Holder spaces defined by the cycloidal metric on H introduced by Daskalopoulos and
Hamilton [20] and, independently, by Koch [50]. Following [20, p. 901], we define the

cycloidal distance between two points, Py = (t1,z'), P» = (to, 2?) € [0,00) x H, by

>y laf — )
s(P1, Py) = e (2.2.1)
\Jah ot e e —a?
Remark 2.2.1 (Equivalence of the cycloidal and Euclidean distance functions on suit-
able subsets of [0, 00) x H). The cycloidal and Euclidean distance functions, s and p,

are equivalent on sets of the form [0, 00) x R4~! x [yg, y1], for any 0 < yo < y1.

Let Q C (0,7) x H be an open set and a € (0,1). For a function u : Q — R, we

consider the following seminorms

[u(P1) — u(P)]

Uloa(y = Sup , 2.2.2
[ ]CS Q) PyPyett S(Pl, PQ)O‘ ( )
P1#P;
and we say that u € C¥(Q) if u € C(Q) and
[ullce@) = llullo@) + [Wlea@) < oo
We say that u € C2t%(Q) if
[ull gz+e gy = llulloa@) + luelloa @y + max, [ua,llce @) + |max [Zatiz,a; lco @) < oo

We denote by CO‘IOC(Q) the space of functions u with the property that for any compact
set K C Q, we have u € C¢(K). Analogously, we define the space C’H"‘(Q) We make

s,loc

use of the following hybrid Holder spaces

%Q(HT) = {u Tu € C?(H17T) N Cg(HT \ Hl,T)} ,
%2+Q(HT) = {u LU e CE+Q(H17T) N C§+Q(HT \ HI,T)} .
We define ¢ (H) and ¢>t*(H) in the analogous manner.
The coefficient functions x4a;;(t, ), b;(t,x) and c(t,z) of the parabolic operator

(2.1.3)) are allowed to have linear growth in |z|. To account for the unboundedness of

the coefficients, we augment our definition of Holder spaces by introducing weights of
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the form (1 + |z])9, where ¢ > 0 will be suitably chosen in the sequel. For ¢ > 0, we

define
[ullgo @ == sup (1 + [z])? |u(=)], (2.2.3)
zeH
and, given T' > 0, we define
Hu||<gg(HT) = sup (14 |=)? |u(t, )] (2.2.4)
(t7$)EHT

Moreover, given a € (0, 1), we define

lellge @mp) = llellgo@y) + [+ ) oo @, 7y + (L + ) co@pm, 1) (2:2:5)
[ullgzremyy = llullge @y + lullge @y + luellgo@my) + |2atiam; oo (2:2.6)

The vector spaces

€O (Hr) = {u € C(Hr) : ||ullyogy) < oo} ,

€2 (Hr) == {u e ¢ (Hr) : |u

Co(Hr) < 00}7

(5612+Q(HT) = {u c ¢4t (Hr) : HUH%?*“(HT) < OO}’

can be shown to be Banach spaces with respect to the norms (2.2.4)), (2.2.5) and ([2.2.6)),

respectively. The vector spaces Cﬁqo(]lj]l), quo‘(]ﬁl), and %q”o‘ (H), defined similarly, can be
shown to be Banach spaces when equipped with the corresponding norms.

We let %ﬁg‘g (Hr) denote the vector space of functions u such that for any compact

set K C Hy, we have u € %qz‘m(K), for all ¢ > 0.

When ¢ = 0, the subscript ¢ is omitted in the preceding definitions.

2.2.2 Coefficients of the differential operators

Unless other conditions are explicitly substituted, we require in this chapter that the co-
efficients (a, b, ¢) of the parabolic differential operator L in (2.1.3)) satisfy the conditions

in the following

Assumption 2.2.2 (Properties of the coefficients of the parabolic differential operator).

There are constants 6 > 0, K >0, v > 0 and « € (0,1) such that the following hold.
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1. The coefficients ¢ and by obey

c(t,r) < K, V(tz)€ Hu, (2.2.7)

ba(t,2',0) > v, Y(t,') € [0,00) x RI~L, (2.2.8)

2. On Hy o (that is, near z4 = 0), we require that

d
Z az‘j(tan)Umj > 5|77|2a VT/ € Rd? V(t,l’) € HQ,OOa (229)
ij=1

max |lagllom, o) + max [billem, o) + lello@, ) < K (2.2.10)

1<i,5<d 1<i<d

and, for all P, Py € Ha o such that Py # P and s(Py, P2) <1,

laij(P1) — aij(Ps)|
<K
lggéd s(Py, Po)® -

10i(P1) — bi(P)]

<K 2.2.11
1I2ia§Xd S(Pl,PQ)O‘ - ( )
le(P1) — e(P%)] <K
s(Pr, Py)®

3. On Hy \ Ha o (that is, farther away from x4 = 0), we require that

d

Z zqa;;(t,x)nm; > 8nl?, ¥n €RY V(t,x) € Hoo \ Ha oo, (2.2.12)
ij=1

and, for all P, P» € Hy \ Ha o such that Py # P and p(Py, P2) < 1,

ax |zgaij(Py) — x3ai;(P)| <K

1<i,j<d p(P1, Py)~
max 1P = bilP)] <K, (2.2.13)
1<i<d  p(Py, Py)®

c(P1) — (%)
p(Pr, Py)e =K

Remark 2.2.3 (Local Hélder conditions on the coefficients). The local Holder condi-

tions (2.2.11]) and (2.2.13)) are similar to those in [53, Hypothesis 2.1].
Remark 2.2.4 (Linear growth of the coefficients of the parabolic differential operator).
Conditions (2.2.10]) and ([2.2.13)) imply that the coefficients xqa;;(t, ), b;(t, ) and c(t, x)

can have at most linear growth in z. In particular, we may choose the constant K large

enough such that

d d
37 Jzgaiit o) + 3 bilt.2)] + et @) < KA+ J2)), V(o) € Heo  (2.214)
i,j=1 i=1
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2.3 Existence, uniqueness and regularity of the inhomogeneous initial

value problem

In this section, we prove Theorem We begin by reviewing the boundary properties
and establishing the interpolation inequalities (Lemma [2.3.2)) suitable of functions in
C?*(Hr). Then, we prove two versions of the maximum principle (Proposition [2.3.7)

which combined with the a priori local Holder estimates at the boundary (Theorem

2.3.8) and in the interior (Proposition [2.3.15)) allow us to obtain Theorem

2.3.1 Boundary properties of functions in Daskalopoulos-Hamilton-

Koch Holder spaces

We first review a result established in [20, Proposition 1.12.1] when d = 2. Because we
will frequently appeal to that result and as the proof of [20, Proposition 1.12.1] is not

given in detail for all cases relevant to d > 2, we include the proof here for completeness.

Lemma 2.3.1 (Boundary properties of functions in Daskalopoulos-Hamilton-Koch

Holder spaces). Let u € C*®(Hy). Then, for all P = (,7,0) € [0,T] x OH,

s,loc

_lim_zgug.; (P) =0, Vi,j=1,...,d. (2.3.1)
Hr>P—P

Proof. First, we consider the case 1 < 4,5 < d—1. Because the seminorm [xduxixj]ozloc(ﬂﬂ
is finite, the function zquy,,; is uniformly continuous on compact subsets of Hy, and

so, the limit in (2.3.1)) exists. We assume, to obtain a contradiction, that

_lim zguge; (P) = a #0, (2.3.2)
ApsP—P

and we can further assume, without loss of generality, that this limit is positive. Then,

there is a constant, € > 0, such that for all P = (t,2', 24) € Hr satisfying
O<zg<e, [|t—1tl<e |o-7<e, (2.3.3)

we have

— < Uga, (B2, ). (2.3.4)
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Let P = (t,z') and P, = (¢,22) be points satisfying (2.3.3) and such that all except

the x;-coordinates are identical. Then, by integrating (2.3.4) with respect to z;, we

obtain

a(z? —z})

le S ij(P2) - uxj(P1)7
and thus,

a(x? — x}) Uy, (P2) — ug; (P1)

(2.3.5)

<
Ql'dS(Pl, Pg)a -

s(Pr, Py)”
We can choose Py, P, such that 22 — z} = ¢/2, for all 0 < z4 < £/2. Then, by taking
limit as x4 goes to zero, the left hand side of diverges, while the right hand side
is finite since [ug;]co(m,) is bounded. This contradicts and so holds.

The case where ¢ = d or j = d can be treated as in the proof of |20, Proposition

1.12.1]. O
Next, we establish the analogue of [51, Theorem 8.8.1] for the Holder space C27%(Hr).

Lemma 2.3.2 (Interpolation inequalities for Daskalopoulos-Hamilton-Koch Hoélder
spaces). Let R > 0. Then there are positive constants m = m(d,«) and C = C(T, R,d, «)
such that for any u € C?T%(Hy) with compact support in [0,00) x Br(z?), for some

2% € OH, and any ¢ € (0,1), we have

[ull e gy < €Hu|fc§+a(HT) + Ce™""|ull ¢y (2.3.6)
o llc@y) < ellullezrag,) + Ce " lullo@,), (2.3.7)
@ dua, || ooy < ellullczre@,y +Ce ™ lullogy) (2.3.8)
@ duz;z;llo@r) < ellullczrom,) + Ce™ " lull o@y)- (2.3.9)

Remark 2.3.3. Notice that Lemma does not establish the analogue of [51) In-

equality (8.8.4)], that is,
sl iy < el cgro ) + O~ Il o).
This is replaced by the weighted inequality (2.3.8)).

Proof of Lemma[2.3.3. We consider n € (0, 1), to be suitably chosen during the proofs

of each of the desired inequalities.
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Step 1 (Proof of inequality ) We only need to show that the first inequality
holds for the seminorm [u]ce f,. It is enough to consider differences, u(Pr) —
u(Py), where all except one of the coordinates of the points P, P» € Hy are identical.
We outline the proof when the z;-coordinates of P; and P, differ, but the case of the -
coordinates can be treated in a similar manner. We consider two situations: |z} —z?| <n

and |z} — 22| > 7.

Case 1 (Points with z;-coordinates close together). Assume |z} — 22| < 7. We have

[u(Pr) = u(Po)| < |z — 7 [l|ua,ll oy
2! — a?]
<= lellezeeqany

2! — 22|\ ° (2.3.10)
<=7 0 HUHCSHQ(HT)

o
< <2¢:7d+ \x%—wﬂ) s(P1, Po)*llullgzve gy

where in the last line we used the fact that, by (2.2.1)),

ot — a

L . (2.3.11)
2y/Tq + |2} — 7]

Because u has compact support in the spatial variable, we obtain in ([2.3.10]) that there

s(Pr, Pp) =

exists a positive constant C' = C'(«a, R) such that

u(P) —u(P)l _ .

-«
s(Py, Po)” = 0n HUHC‘?M(HT)’ (2.3.12)

which concludes this case.

Case 2 (Points with z;-coordinates further apart). Assume |z} —2?| > n. By (2.3.11)),

we have
|zt — 22|\ “ “
1< (’772) =n° <2\/l’d+ |z} — 1'12|> s(Pr, Po).
Because it suffices to consider points P, and P, in the support of u, there is a positive

constant C', depending at most on « and R, such that
1< CniaS(Pl,Pg)a.

Therefore,

[u(Pr) = u(P)| < 2f[ullc@y) < Ons(Pr, Po)|lull oy
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which is equivalent to

[u(Pr) — u(P)|
S(Pl, PQ)O‘

< Cn~*|lull oy (2.3.13)

which concludes this case.

By combining (2.3.12)) and (2.3.13)), we obtain

g giry < O ull 2o iy + il
Since ¢ € (0,1), we may choose n € (0,1) such that ¢ = Cnp'~®. The preceding
inequality then gives (2.3.6)).

Step 2 (Proof of inequality (2.3.7)). Let P € Hy. Then, for any 1 > 0, we have

[, (P)] < [ua, (P) =07 (w(P +me;) — u(P))] + 207 ull oy

= [t (P) = ua, (P + nfes)| + 20 |ull oy
|tug, (P) — g, (P 4 nbe;)] 1

= [ : P, P+ nfe;)™ + 2 i)

S(P, P + neei)a S( Y + "706 ) + T’ ||u||C(HT)

for some constant 6 € [0,1]. Using
s(P,P +nbe;) <n'/?, VP eHy, (2.3.14)

we have

e, (P)] < n°[us]ce@p) + 20 lullc@y), VP € Hr (2.3.15)
Since € € (0, 1), we may choose 7 € (0,1) such that e = n®*. Then follows from
1),

Step 3 (Proof of inequality (2.3.8)). Because u has compact support in the spatial
variable, then (2.3.7) gives, for some positive constant C' = C(«, R),

zata, lo@,) < Cellullgzragm,y + Ce™ " lulle@,)- (2.3.16)

This gives the desired bound in (2.3.8) for the term |lzqus, |o(m,)- It remains to prove
the estimate ([2.3.8) for the Holder seminorm [mduxi]Cg(HT)- As in the proof of (2.3.6)),

it suffices to consider the differences zlu,, (Pr) — 22uy, (P»), where all except one of the
coordinates of the points Py, P, € Hy are identical.
First, we consider the case when only the x4-coordinates of the points P; and P;

differ. We denote P, = (¢,2/,2%), k = 1,2.
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Case 1 (Points with z4-coordinates close together). Assume |z} — 22| < 7. Using

(xduwi)xd = TqUgizg t Uz,

and the mean value theorem, there is a point P* on the line segment connecting P; and

P, such that,
Tt (P1) = 2que, (Po) = (2itt,0(P*) + g, (PY)) (24 — 23),
and so,

2 = 23\°
2htta, (P1) — w3, (P2)|<n<dd -

<\ﬁ v m) (Pu, o) ull oy -

Because u has compact support in the spatial variable, there is a positive constant

C = C(a, R) such that

’xcliul’i<P1) - x?luﬂcz(PQN
S(Pl,PQ)O‘

< O lull gz gy (2.3.17)

which concludes this case.

Case 2 (Points with z4-coordinates further apart). Assume |z} — 22| > 7. We have

’$¢liua:-(P1) — x¢2iucc(P2)| deuxiHC(HT) 1 ﬁ 1 ne
2 2 < 2 —
s(Pr, Py)° =Sl = a3 V&2t Taty g — 3

< On *||lzaua, |l og)-

Since € € (0,1), we may choose 7 such that ¢ = 7! in (2.3.16). We obtain

’xclluﬂci(Pl) - x?luﬂﬁz(P2)|
S(Pl, PQ)O‘

< Cnllull gz+a(g,y + Cn~ ™7 | oy (2.3.18)

which concludes this case.

Combining (2.3.17)) and (2.3.18)) gives

‘x}lumz (Pl) — .l"?iuxl(P2)| 1—a —m(l4+a)—a _
s(Pr, Po)> < On ~llullgzre @,y +Cn lule@r-  (2:3.19)

A similar argument, when only the x;-coordinates of the points P; and P differ, 1 <

1 < d—1, also yields (2.3.19)).
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Next, we consider the case when only the t-coordinates of the points P; and P, differ.
We denote P, = (z,t), k = 1,2. We shall only describe the proof of the interpolation

inequality for u,, when ¢ # d, as the case i = d follows by a similar argument. We
denote 0 = +/|t1 — ta].

Case 1 (Points with ¢-coordinates close together). Assume |t; — t2] < 1. We have

|ty (P1) = ug, (P2)] <

Uxi(l‘»tl) - % (U(l' + de;, tl) - U($7t1))’

+ 3

uxi(x,tz) — 1 (u(x + de;, ta) — u(l’,tz))‘

1 1
+ g|u(x + dei, t1) —u(x + de;, ta)| + g]u(x, t1) — u(zx,t2)|.

By the mean value theorem, there are points P;; € Hy, k = 1,2, such that

|z, (P1) = e, (Po)| = |u; (2, t1) — ta, (€ + 010€i, 01)] + [z, (2, t2) — Uz, (2 + O20€;, 12)]

t1 — to * —t2
+ w|ut(x + 66i,t1)| + 6‘|Ut(ﬂl‘,t;)|

< ’uﬂﬁil‘z‘(Pl*vtl)w + ‘uwixi(P;7t2)|5

t1—1t t1—t
Lt 5 2‘|ut(x+(5ei,t’{)|+7| ! 5 2

It1

|ue(, 3)].
Notice that s(P;, P2) = \/|t1 — t2| = 0 and so, by multiplying the preceding inequality
by x4 and using the fact that « has compact support, we obtain

|z gtz (P1) — Tquq, (P
S(Pl, PQ)O‘

l1—a 1—lto
< 2l|zauez|cogpylty — to| 2 4 2t —ta| T2 [|zauell oy,

and thus
|[Zduz,; (P1) — Tqug, (P)]
S(Pl, PQ)O‘

l—«
<Cn ||u”052+“(HT)’ (2.3.20)
where C' is a positive constant depending only on R.

Case 2 (Points with t-coordinates further apart). Assume |t; — to| > 7. This case is

easier, as usual, because

|z gtz (P1) — Tqua, (P2)]
S(Pl, Pg)a

< 2078 |waua [l o) (2.3.21)

which concludes this case.
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By combining inequalities (2.3.20]) and (2.3.21]), we obtain

|Tque, (P1) — Tquq, ()]

1o a
s(Pr, Pp)* < O |ullgzro gy + 207 2 |2ate llo@y)- (2.3.22)

By (2.3.19)) and (2.3.22), we have

[xduxi]C?(HT) < 077&0||U||c§+°‘(HT) + Qn_m0||$duzi||C(HT)a

where o := min{a, 1 — o, (1 — «)/2} and mg := 4 + a. Without loss of generality, we
may assume C' > 1. Since € € (0,1), we may choose n € (0,1) such that e = Cn® in
the preceding inequality, and so we obtain the estimate for [zquz,]camy). This
concludes the proof of .

Step 4 (Proof of inequality (2.3.9))). For any P = (t,z) € Hy, we can find 6 € [0, 1]
such that
|xduxixj (P)| < ‘xdu$i$j (P) - (:ZZdUIZ(P + T](Bj) - J:duwz(P))‘ + 2deul'iHC(HT)7

and thus

|xduflfil‘j (P)| < ’ﬁduxﬂj (P) — TdUzg;az; (P+ 97763')’ + QH'Tduxi”C(HT)v (2‘3'23)

where 1 < 14,5 <d. If j # d, we have

| 24Uz, (P) — TqUz,e; (P + 0ne;)|
s(P, P + fOce;)

< O, |on i) + 2T atie, |l ogy), (by @3:14)).

Because ¢ € (0,1), we may choose € (0,1) such that ¢ = Cn®/? in the preceding

|xdu73i1‘j (P)| <

s(P, P+ 0ne;)™ + 2||lzaus, || oy

inequality and combining the resulting inequality with , we see that the estimate
for ||zquz,a; [l o(m,) holds for all j # d.

Next, we consider the case j = d. For brevity, we denote P’ = P +6neq = (t,2', })
and P” = (t,2',0). We consider two distinct cases depending on whether 7 < 2/,/2 or

n > xl,/2.

Case 1 (Points with z4-coordinates further apart). Assume n < z/,/2. By (2.3.23), we

obtain , )
|xduxixd (P) - xduIiId(P )|
s(P, P')e

|Zatig,a, (P)] < s(P, P

(2.3.24)

+ |(SU& - xd)ul‘il‘d(P,)’ + 2||xduxi||C(HT)’
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and so, using (2.3.14)) and the fact that |2/, — 24| < n, by definitions of points P and
P,

n
|Tatiz;ay (P)] < na/2[xduzizd]0§‘(HT) + ?’xiiumiafd (Pl)| + 2deu1‘iHC(HT)7
d

which gives, by our assumption that n < z/,/2,
1
|ZdUa,z,(P)] < 77&/2 [l‘duzixd}cg(HT) + §||xduxixd||C(HT) + 2deuIiHC(]HIT)' (2.3.25)
As (2:3.25) holds for all P € Hy, we have

a/2[

1
deurideC(HT) < i”xduxixd”C(HT) +n xduﬂcixd]cg(]ﬁ[ﬂ + 2H1"duIiHC(HT)7

or

a/2] (2.3.26)

deuIiIdHC(HT) <27 xdufﬁil‘d]Cg(HT) + 4||$du1i||C(HT)’

which concludes this case.

Case 2 (Points with zg-coordinates close together). Assume 1 > z/,/2. Recall that

z!; = xq + 0n, for some 0 € [0, 1], so that |2/, — x4| < z/,. From Lemma we have
TqUgz, — 0, as g — 0.

Therefore, we obtain

|CC/ Ug,x (P/) —O’ "\ o
s = )t (P < [t (P)] = 25 L2, P

< [TdUaea) oo @) (20)*2,

where the second inequality follows from the fact that

s(P',P") <\Jal, < /2.

By a calculation similar to that which led to (2.3.24]), we obtain

’xdumwd (P) - xiiuwﬂd(Pl)’

P P/ [e%
S(P,P/)a S( Y )

|xdumimd (P) ‘ <

+ (@ = 2a)thaiay (P)] + 2l|atia; | o),

and hence

| Tty (P)] < Cna/Q[xduxizv loo@
‘ es ) (2.3.27)

+ (2022 atoeq) cp @) T 2lTae o)

which concludes this case.
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By combining inequalities (2.3.25)) and (2.3.27)), we obtain, for all P € Hrp,
1 a/2
|Zatz;a, (P)] < 5"$duziwd"C(HT) +Cn [Idu$ixd]C?(HT) + 2||xduxi||C(HT)v

which is equivalent to

1
"$du$i$d"C(HT) < §|’xduxi$d”0(ﬂT) + Cna/Q [xdudfidfd]Cg(HT) + 2deuﬂcz‘HC’(HT)‘

Rearranging terms yields
|2 dtte;zg | o@py < 200 [Batiemy oo gy + ATatia; log)- (2.3.28)

Since ¢ € (0,1), we may choose n € (0,1) in (2.3.26) and (2.3.28]) such that ¢ =
4(C + 1)n*/? and so we obtain

|Zavezqllc@y) < €/2[atezdce @y + 4 zavello@s)-

Combining the preceding inequality with (2.3.8) applied with e replaced by /8, we
conclude that (2.3.9) holds.

This completes the proof of Lemma [2.3.2 O

2.3.2 Maximum principle and its applications

In this subsection, we prove a variant of the classical maximum principle (see [51]

Section 8.1] and [20, Theorem 1.3.1]) for parabolic operators, L, of the form (2.1.3).

Lemma 2.3.4 (Maximum principle). We relaz the requirements stated in Assumption

on the coefficients a = (a;j),b = (b;), ¢ of the operator L in (2.1.3) to those stated
here. Require that the coefficients xqaij, bi, ¢ be in Cioc((0,T] x H), that by > 0 when

xq = 0, that ¢ obeys (2.2.7), and
tr(zqa(t,z)) + z - b(t,z) < K(1+ |z|?), VY(t,z) € Hy, (2.3.29)
where K > 0. Suppose u € C2(Hy) N C(Hyr) obeys

Uty Uz, TqUa;z; € Cloc((0,T] X H), 1<i,j<d, (2.3.30)
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and
TqUa,e; = 0 on (0, 7] x OH, 1 <4,j <d. (2.3.31)
If
Lu <0 on(0,7) x H, (2.3.32)
u(0,-) <0 onH, (2.3.33)
then
uw<0 onl0,T]xH. (2.3.34)

Proof. We apply an argument similar to that used in the proofs of [51, Theorem 2.9.2,
Exercises 2.9.4 & 2.9.5] (maximum principle for elliptic equations on unbounded do-
mains) and [51, Theorems 8.1.2 & 8.1.4] (maximum principle for parabolic equations
on unbounded domains); see also [20, Theorem 1.3.1].

We consider the transformation
u(t,z) = eMau(t,z) on [0,T] x H, (2.3.35)

where the constant A > 0 will be suitably chosen below. The conclusion of the lemma

follows if and only if holds for 4. By and definition we have
ML+ Nia=Lu<0 on(0,T)xH.
Therefore, by and , the function @ satisfies
(L+XN)a<0 on(0,7)x H, (2.3.36)
@(0,-) <0 on H. (2.3.37)

We may suppose without loss of generality that

m :=supu > 0, (2.3.38)
Hr

as if m < 0 we are done; we shall show that m = 0. Define an auxiliary function,

h(t,z) =1+ |z*, V(t,z) e Hy. (2.3.39)
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By direct calculation,

d d
—(L+Nh=" zatijhaz; + bk, + (¢ = Ah— hy
ij=1 i=1

d d
=204 Y ai+2 b+ (c— N1+ |z?)
=1 =1
<K +e= A1+ [z*) on(0,T)xH, (by ([23:29))

By choosing

A > 3K, (2.3.40)
we notice that condition , gives
2K +c(t,x) =A< 0 V(t,x) € Hr, (2.3.41)
and so, we have
(L+XA)h>0 on (0,7) x H. (2.3.42)

Fix § € (0,1) and define another auxiliary function
w :=1u— omh. (2.3.43)
From and (2.3.42)), we have (L + A)w < 0 on (0,T) x H and thus
(L+Nw<0 on (0,T)x H, (2.3.44)

since wy, W, , TqWyz,z; extend continuously from (0,7") x H to (0,77 x H because these
continuity properties are true of u by hypothesis (2.3.30)) (and trivially true for h) and

thus also true for w.

Claim 2.3.5. There is a constant, Ry = Ry(0) > 0, such that
w<0 on[0,T] x Bg, VR > Ry(d). (2.3.45)

Proof. Since w € C([0,T] x Bg), the function w attains its maximum at some point

P €[0,T] x Bg. If P € (0,T] x Bg, then

wt(P) >0, wxl(P) =0, (wl‘z‘l‘j (P)) <0.



Therefore,

d
—(LA+Nw(P)= Y wgai(Pwss,(P) + ) bi(PYws,(P) + (e(P) = Nw(P) — w(P)
ij=1 i1
< (c¢(P) — Nw(P).
IfPe (O,T] X (BR N {.%'d = 0}), then

where we use the fact that u, and thus w, obey (2.3.30)) and (2.3.31). Therefore,

d d
(LA NWP) = Y 2aa (Phves, (P) + 3 bi(Pws, (P) + c(Puw(P) — w,(P)
ij=1 i=1
< ba(P)ws, (P) + (¢(P) = Nw(P)

< (e¢(P) = N)w(P) (by hypothesis that by > 0 on {4 = 0}).
Hence, for P € (0,T] x Bg or (0,T] x (Br N {xq = 0}), we obtain

—(c(P) — NMw(P) < Lw(P).

But Lw(P) < 0 by ([2.3.44) and therefore, w(P) < 0 since ¢ < K by (2.2.7) and A > 3K

by (2.3.40) .

Now suppose P lies in one of the remaining two components of the boundary of

(O7T) X Bp,
By, = {0} x By or PBp:=(0,T] x ({xg>0}NIBR).

The definition (2.3.39) of h, definition (2.3.43)) of w, and (2.3.37)) yield

w(0,-) <0on Br, VYR>D0, (2.3.46)

and thus, w(P) < 0 if P € %Y, for R > 0. If P € %}, then |z| = R and we see that

[©3-33), (2.3.39), and (2.3.43) give




36

But 1 — (1 4+ R?) < 0 provided R > Ry(6) := (6~ = 1)1/2 > 0 and so w(P) < 0 for all
R > Ry(9). This completes the proof of Claim O

By (2.3.45)), we see that
w=1a—0mh<0 onHr,
for all 6 € (0,1) and thus, letting § | 0, we obtain (2.3.34]). O

Lemma [2:3.4] immediately leads to the following comparison principle.

Corollary 2.3.6 (Comparison principle). Assume that the coefficients of L in (2.1.3))

obey the hypotheses of Lemmal2.5.4} If u,v € CY2(Hy)NC(Hyr) obey ([2.3.30), (2.3.31)),

and
Lu<Lv on(0,7) x H, (2.3.47)
u(0,-) <v(0,-) on H, (2.3.48)

then
u<wv on|0,T]x H. (2.3.49)

Note that if (2.3.47]) and (2.3.48|) are strengthened to

|Lu| < Lv on (0,7) x H and |u(0, )] <v(0,-) on H, (2.3.50)

then Corollary yields
lu| <v on [0,T] x H. (2.3.51)

We can now turn our attention to the

Proposition 2.3.7 (Application of the maximum principle). Assume that the coef-

ficients of L in (2.1.3) obey the hypotheses of Lemma except that (2.3.29) is

replaced by the stronger condition

d
> walay(t,2)| + |- b(t, x)| < K1+ |z%), V(t,z) € Hy. (2.3.52)
i,j=1

Suppose that u € CH2(Hy) N C(Hy) solves (2.1.2) and obeys (2.3.30) and (2.3.31)).
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(a) If f € C(Hr) and g € C(H), then
lullogr < €7 (T llen + lolom ) (2.3.53)
(b) If ¢>0, f € 6)(Hr), and g € €. (H), then

Sﬂg(HO , (2.3.54)

gy < IO (

Proof. To obtain (2.3.53) and (2.3.54), we make specific choices of the function v in

Corollary To establish ([2.3.53)), we choose

vit,2) == e (¢ flloge) + lolle) . ¥(t2) € Hr,
Direct calculation gives

Lv; = (—c+ K)v, + €Kt||f||C(HT)

> fllogy) on (0.7) xH  (by @Z7)).
Therefore, since Lu = f on (0,7") x H by (2.1.2)),

|Lu| < Lv; on (0,7) x H,

and so v satisfies conditions (2.3.50)). Thus, by (2.3.51)), we obtain (2.3.53)).
Next, we prove ([2.3.54)). For this purpose, we choose

o

where A > 0 will be suitably chosen below. First, we verify that vy satisfies the first

inequality in (2.3.50f). Direct calculation gives

H _
)> ) V(t, 33) S HT, (2355)

va(t,x) :=e ( n |ac] )q/2

Lvy = vg X

d d
L) T4 a;j(t, z)xizjzg ai;(t, z)xq
tx)+ A+ E R (g + 2 —Lo IS 2
—c(t, z) q 1+| 2 alq )”Z:I (1+ [z]2)2 q; 1+ |z

Conditions (2.3.52)) and (2.2.7)), imply that

Lvg > vy (K+X—qK —q(qg+2)K — ¢K).
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By choosing
A=1+q(¢g+4)K >0,

we obtain

1fll o )
(T + )7
By the definition (2.2.4]) of the norm || - ||%ﬂqo(HT), we have

Lvy > vy > on (0,7T) x H.
2 —
(1+ 12" 1£(t,2)] < I fllgp),  V(t2) € [0,T) x I,

and so, using Lu = f on Hr by (2.1.2), we obtain the first inequality in (2.3.50)), that
is,
|Lu| < Lve on (0,7) x H. (2.3.56)

Similarly, by the definition ([2.2.3) of the norm || - H%g(ﬁ), we have

(1 + ) ? |g(2)| < llg

(gg (H)» Vx € H

Since u(0,-) = g on H, it is immediate that

[u(0,-)] < v2(0,-) on H. (2.3.57)

Therefore, by (2.3.56)) and (2.3.57), ve obeys conditions (2.3.50), and so we obtain
(2.3.54)) from the definition (2.3.55)) of wvs. O

2.3.3 Local a priori boundary estimates

We have the following analogue of [51, Theorem 8.11.1].

Theorem 2.3.8 (A priori boundary estimates). There is constant R* = R*(d, «, K, 0, v),
such that for any 0 < R < R*, we can find a positive constant C = C(d,«, K, d,v, R),
such that for any z° € OH, T € (0, R] and u € CZ*(Q3pr/2,r(2")) that satisfies

Lu=f on Qo r(a?), (2.3.58)

w(0,-) =g  on Byp(x?),

the following estimate holds

Hu||c2+a 5 (0 < C([Ifllca 0. 20
s *(Qr,r(29)) ( *(Qsry2,1(20)) (2:3.50)

+||9||C§+°‘(B3R/2(x0)) + HUHC(QSR/Z,T(mO))> )
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Proof. The proof is a blend of the localizing technique used in [51, Theorem 8.11.1] and
the method of freezing the coefficients. Fix R > 0 and T € (0, R|. Let ¢ : R — [0,1] be

a smooth function such that ¢(¢t) =0 for t < 0, and ¢(t) =1 for ¢t > 1. Let
=~ 1
Ro=RY 2=,
k=0
and consider the sequence of smooth cutoff functions {¢,},>1 € C®(RY) defined by

Ry — |ZE‘

n = B p | Ha
on(T) = (Rn+1 —Rn> Yz €

so that 0 < ¢, < 1 and ¢,|p, = 1 and @,|Be = 0, where B} denotes the
n Rn+1 n+1
complement of Bg, ,, in R?. Also, by direct calculation, we can find a positive constant

¢, independent of n and R, such that

H‘PnHCg(H)a ||(90n)xiHCg(IFH)’ de(@n)xixjHCg(H)a ||(90n)x¢xj ”C’g(lﬁl) < 3R (2:3.60)

We denote r := 373 < 1 and set

Ay 1= Hugp””C?_a(HT) (2361)

We denote by Lg the operator with constant coefficients obtained by freezing the co-
efficients of L at (0,2°). Proposition shows there exists a positive constant C,

depending only on K, § and v, such that

o = Jugnllgzio sy < C (1Eo(ugn)llos @iy + l9nllczvo ) (2.3.62)

and so

an < C (ILGugn) s gy + 1 (E — Lo)wpn)llos ) + lognllczrog ) - (2:3.63)

We have L(upy,) = ¢nLu — [L, @,|u, where, by direct calculation,

d

[L, on]u= Z 224045 (t, ) Uz, (0n)a;
1,j=1

d d
+ Zbi(tvw)u(@n)mi + Z wdaij(t7x>u(90n)xi$j'
=1

ij=1

(2.3.64)

By the analogue of the [41], Inequality (4.7)] for standard Hoélder norms, we have

lonLullce @) < cllLullce@p, . llenlloe @

n+1vT
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and by (2.3.60)), there is a positive constant ¢ such that

lonLullce @) < e " BN fllop(@ynynr) (2:3.69)

From properties (2.2.10) and (2.2.11f) of the coefficients a;;, b; and ¢ on Hz,T, we can

find a positive constant C, depending only on K and d, such that

1L, ealullcg iy < Cr7" R (Ilea(ugpnin)aillep @) + lugniiloggar ) - (2:360)
The interpolation inequality (2.3.8)) in Lemma gives us, for any € € (0, 1),

|za(uen+1)z e @iy + lwensillce @

(2.3.67)
< ellupnir lozra gy + O™ upni logir)-
Hence, the preceding inequality together with (2.3.65)) and ([2.3.66), give us
IL(ugn)llca gy < Cr"R™° (Hf||0g(Q3R/2,T) + ellupntall 2o @y
(2.3.68)
+ e upnillon) -
Next, we estimate the term (L — Lg)(ugy,) in (2.3.63), that is,
d
—(L = Lo)(ugn) = > x4 (ai(t,2) — aij(0,2°)) (wpn)sa;
ij=1
d (2.3.69)
+ 3 (bilt, ) — bi(0,2°)) (ugn)s, -

+ (c(t, x) — c(O,a:O)) (upn).
We have:

Claim 2.3.9. There is a constant C = C(K, R*,d, «) such that, for any e € (0,1), we

have

(L = Lo)(un)llcaipy < C (RY? +r7"R7%) upnsa [l avagg
2 (Fr) ( ) 2+ (Hy) (2.3.70)
+Cr "R ™ lupnll oy -

where m is the constant appearing in Lemma [2.5.3,

Proof of Claim[2.3.9. From the Holder continuity (2.2.11])) and boundedness (2.2.10]) of

the coefficients a;; on HQ,T, we can find a positive constant C, depending only on K
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and d, such that

0
[z (aij(t, 2) = aij(0,2°)) (upn) ez, co @y (25.71)
< CRa/2de(U‘Pn)xixjHCg(HT) + C|’$d(u¢n)xix]~ HC(HT)‘

Using the following calculation in the preceding inequality

l@a(wpn)oia; log @) < I@atisie, enllcs )
+ zatta, (P, e i) + |oati(on)eis g iry

< [2a(upnit)oam,lopaipy + "R (Iza(wbni ), o)
Hlwalwpni1)a g @) + leauni oo )

together with the interpolation inequality (2.3.9) in Lemma applied to w41,

||:L‘d(u(70n+1)xil'j ||C(1H1T) + de(wﬂnﬂ)wiHCg(HT) + ||U90n+1||0g(HT)
< 5||U90n+1||c§+a(HT) + Ce"lupntall oy

we obtain in (2.3.71))
”xd (aij (t, 53) - aij(O, 550)) (U‘Pn)zixj ||Cg(]HIT)
< CRQ/2[xd(US0n+1)]Cg(HT) + CT*nR?SEH“S"n—H||cg+a(HT)
+ Cr "R ™ lugniall ogay)

< C (R 4 77" R ) Jlugnsn | gz iy + O "R Jupnia gy

A similar argument gives us
I (Balt,2) = bi0,2)) (upn ) ey + I (et @) = e(0,2)) () g )
< Cr*"R*:gEHugonH|]C§+a(HT) + CT*"R*:SE*mHu(anHC(HT),

and so, using the preceding inequalities in (2.3.69), we obtain the estimate (2.3.70). [

Combining (2.3.68)), (2.3.70)) and ([2.3.63)), we obtain

—-n p—3 _ _
o < Cr "R (Ifllcg @unynry + 191243y ) s
+C <Ra/2 + r_"R_35) Qpy1 + C’T_”R_35_mHu||C(Q3R/27T).

We multiply the inequality (2.3.72) by 6", where § > 0 is chosen such that

pmtls < 1/2. (2.3.73)
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Next, we choose R* > 0 such that CR**/2 = §/2. For R € (0, R*], we choose ¢ =
e(n, R) € (0,1) such that Cr~"R~3¢ = §/2. With this choice of §, R* and ¢, inequality
(12.3.72) yields, for all 0 < R < R*,

6" < CR718)" (I fllco(@umar + 9oz (5,0 )

+ 0" a1 + (20)™H R G (=D | g

By (2.3.73)), we also have r~'§ < 1/2. Then, by choosing
C1 := max {C’R_S, (20)m+1R_3(m+1)5_m} ,

we obtain

n 1
6" < Crz (1 lcg @anam) + 191020 3y,) -

1
+ 6”+10¢n+1 + Cl?“u"C(Q3R/2,T)'

2
Summing inequality (2.3.74)) yields

o0 o0
1
> 8" < Ct (I lleg @anyaim) + 192+ 3o ) D 37
n=0

n=0

(o] o0
1
+ 20" anr + Cllull oy D 5
n=0

n=0
The sum Yo% 0", is well-defined because we assumed u € C2T%(Q3p Jo,1), for all
R € (0,R*] and T € (0, R], while 6 € (0,1). By subtracting the term ) 7, §" v, from
both sides of the preceding inequality, we obtain the desired inequality (2.3.59)). 0

2.3.4 Local a priori interior estimates

In order to establish the local interior estimates, we need to track the dependency of
the constant N appearing in [5I, Lemma 9.2.1 & Theorem 9.2.2] on the constant of

uniform ellipticity and on the supremum and Holder norms of the coefficients. Lemma

2.3.11| and Proposition [2.3.13| apply to a parabolic operator

d d
~Lu=—u+ Y Gijliaye, + Y bitta, + Cu, (2.3.75)
i,j=1 i=1

whose coefficients obey

Hypothesis 2.3.10. There are positive constants 1, K1 and A; such that
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1. (@;;(t,x)) is a symmetric, positive definite matrix, for all ¢ € [0,7] and = € R

2. The diffusion matrix a is non-degenerate

d
> ai(t2)&é > 61le)?, vEeRYt € [0,T],x € RY (2.3.76)
ij=1

3. The coefficients a;;, b; and ¢ are uniformly Hélder continuous on [0, T x R?,
1G5l g (0,77 Ra) + HBiHCg([O,T]de) + llellog (o.1)xray < K1 (2.3.77)
4. The zeroth order coefficient, ¢, is bounded from above,
e(t,x) <\ Vtel0,T], xR (2.3.78)

Lemma 2.3.11 (A priori estimate for a simple parabolic operator with constant coef-

ficients). Assume that (@;;) in (2.3.75)) is a constant matriz obeying (2.3.76), b; = 0,

and ¢ = 0. Then there are positive constants,

Ny = Ny (d, o, T), (2.3.79)

Ny = Nymax{1,6; "} max{1, K1 }(1 + 6, */*)(1 + K/, (2.3.80)

such that, for any solution u € C3T*([0,T] x RY) to

Lu=f on (0,T] x R?,
(2.3.81)
U(O, ) =g on Rd7
with f € CH([0,T] x RY) and g € Cg+°‘(Rd), we have
el oo go.rymay < N (I ooy + 9l zea gy ) - (2.3.82)

Proof. We follow the proof of [51, Lemmas 9.2.1 & 8.9.1]. Let U be an orthogonal
matrix such that A = Udiag(\;)U?, where )\; € [01, K] are the eigenvalues of the
symmetric, positive definite matrix, (a;;). We denote B = Udiag(v/A;)U* and v(t,z) =
u(t, Bx), f(t,z) = f(t, Bx), and g(x) = g(Bz). Then, v € Cg‘m([O,T] x R%) solves the

inhomogeneous heat equation,
vi—Av=f on (0,7T] x R?,

u(0,) =g on R%.
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By applying [51, Theorem 9.2.3] to v, we obtain a constant N1 = Ny(d, a, T") such that

ollzse oricmey < N1 (1Nl qorzyrey + 1l czee e ) - (2.3.83)

To obtain (2.3.82) from (|2.3.83)), we need the following

Claim 2.3.12. There is a positive constant C' = C(d), such that for any w; € C5([0,T]x
Rd) and any symmetric, positive-definite dx d-matriz, M, with eigenvalues in [Amin, Amax],

where Amax > Amin > 0, we have

lwillce(o,rxrey < C(1+ A lwelles (omxra), (2.3.84)
lwallco(o,m1xrey < C(1+ Apax) lwillce (jo,7)xra); (2.3.85)

where wa(t, z) := wq(t, M x).
Proof of Claim [2.3.12 We first prove (2.3.84)). Obviously, we have

lwilleo,mxray = llw2lleqorxra)- (2.3.86)

Next, it suffices to consider |wy(P') — w1 (P?)|/p(P, P2)*, for points P; = (t',2%) €

[0,T] % R?, i = 1,2, where only one of the coordinates differs. Notice that when z! = 2.2,
then
wi(PY) —wi(P?)] _ |wa(P') — wa(P?)]
p(Pl, P2)a p(Pl, P2)a ’
because the transformation we(t,x) := wy (¢, Mx) acts only on the spatial variables.

Therefore, we have

[wi(P1) —wi (P?)]
p(P1, P?)e = [w2]03([0,T}><]Rd)a (2.3.87)

Next, we consider the case t! = 2 = ¢. Then, we have by writing wy (¢, ) = wo(t, M ~'z),

wi(PY) = wi(PY)] _ wa(t, M~ al) — ws(t, M~ a?)|
p(PLPe MM el - M 2P

Using the fact that M is a symmetric, positive-definite matrix with eigenvalues in the

range [Amin, Amax], it follows
MMzt — M~ 12?)| > Apin| M2zt — M2, Vel 2? e RY,

and so, by the preceding two inequalities, we have

jwi(PY) —wi(P?)] _  _
p(P1, P?)a < )‘mﬁl[wﬂc,g([o,T]de)- (2.3.88)
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Combining inequalities (2.3.86]), (2.3.87)) and (2.3.88)), we obtain (2.3.84)).

To obtain ([2.3.85]), we apply (2.3.84)) to we in place of wi. Then, the matrix M is re-

placed by the symmetric, positive-definite matrix M ~! with eigenvalues in [)\;ulix, )\I;iln].

Therefore, )\;ﬁln in (2.3.84) is replaced by Amax, and thus, we obtain ([2.3.85|). [

Notice that B is a symmetric, positive-definite matrix with eigenvalues in [\/01, v/ K1].
Since v(t, ) = u(t, Bx), we may apply (12.3.84) with w; = v and we = v and M = B
to obtain

[ullcg (o,mxrey < C(1+ 51_a/2)|fv||0g([o,T]de)- (2.3.89)

Because vi(t, x) = u(t, Bz), we have as above
luellegqo ey < O+ 37 vellcg (o rymey- (2.3.90)
To evaluate u,,, we denote by L! the i-th row of the matrix B~!. Then, we have
Uy, = L'V,

and so,
—-1/2
1wz, oo xrey < 61 / IVolleqo,rxray-

where we have use the fact that B~! is a symmetric, positive-definite matrix and the

eigenvalues of B! are in [K 1 v 2, 0y 1 2] . Applying inequality [2.3.84| to u,,, we obtain

as above
—1/2 —a/2
[ta; [l oo (0,17 xRy < C) P+o Mvz;ll g (0,71 (2.3.91)
and similarly, it follows for s,
— —a/2
[ HC;*([O,T}XW) <61+ 6 / )vaijCg([o,T]dey (2.3.92)
Applying ([2.3.85)) for f(t,z) = f(t, Bx) with w; = f and wy = f and M = B, we have
r a2
Co([0,T]xRY) = 1 Co([0,T]xR%)s 0.
I Flle < (1+K)| flieg (2:3.93)
Similarly, for g(x) = g(Bz), we obtain

_ /2
15l ey < 1+ K57 gllcs oz,

_ 1/2 2
19z [l oo (may < Kl/ 1+ Kf/ Mgzl oo (rays (2.3.94)

_ 2
1Go.; g ey < K11+ K77 ara, g (re)-
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By combining the inequalities (2.3.89)), (2.3.90)), (2.3.91)), (2.3.92), (2.3.93)) and (2.3.94])
in (2.3.83)), we obtain (2.3.82)) . O

Proposition 2.3.13 (A priori estimate for a parabolic operator with variable coeffi-

cients). Assume Hypothesis|2.3.10} Then there are positive constants

p=pla) > 1, (2.3.95)
N3 = N3(d, o, T), (2.3.96)
Ny = NyeT (1407 + KT) (2.3.97)

such that, for any solution u € C3T*([0,T] x RY) to
Lu=f on (0,T] x R?,
u(0,-) =g onRY,
we have
el oo go.rpmay < Na (1 ooy + 9l ozea gy ) - (2.3.98)
The proof of Proposition [2.3.13| can be found in the appendix.

Proposition 2.3.14 (Local estimates for parabolic operators with variable coeffi-

cients). Assume Hypothesis|2.5.1(} and that R > 0. Then there are positive constants

p=pla) > 1, (2.3.99)
N3 = Ng(d,O[,T, R), (23100)
Ny = NgeMT (14677 + KY), (2.3.101)

such that for any 2 € R and any solution u € Cg+a(Q2R,T(fBO)) to

Lu=f on Qar7(2°),
uw(0,-) =g on Bag(z?),

we have

lell 2o @pr@oyy < Na (Iflleg(@anr@oy T 19llczte s, @0
o “(Qr,r(x?)) ( 5 (Q2r,1(20)) o (B2r(z?)) (2.3.102)

el @ar @) -
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Proof. The proof follows by the same argument as in Theorem [2.3.8 with the following

modifications:

e In inequality (2.3.62)), instead of applying Proposition we apply Proposition
2.0.19

e We use the interpolation inequalities for classical Holder spaces Cg““" ([51, Theo-
rem 8.8.1]), instead of the interpolation inequalities suitable for the Holder spaces

C%* e (Lemma [2.3.2)).

This completes the proof. O

We now consider estimates for the operator L in (2.1.3)).

Proposition 2.3.15 (Interior local estimates). There is a positive constant p = p(a),
and for any 0 < R < R*, with R* given as in Theorem|[2.5.8, there is a positive constant
C =C(d,a,T,K,d, R*, R), such that for any 2° € H satisfying xg — 2R > R*/2, and

for any solution u € Cg+a(Q2R,T(:ﬂO)) to the inhomogeneous initial value problem

Lu=f on Qar7(2°),
uw(0,:) =g on Bag(z?),
we have

HUHC%Jra(QR,T(xO)) <C <|’f”‘€£‘(Q2R,T(zO)) + ”g”%”;?+a(1§213(x0)) (2.3.103)

+ g @unrion) -
Proof. From Proposition [2.3.14] the linear growth estimate (2.2.14}), and the fact that
the matrix (zq4a;;(t, z)) is uniformly elliptic on HT\HR*/Q,T by (2.2.9) and (2.2.12), we

obtain

_ 0 P 9 B
H“HC?“(QR,T(IO)) < Ci(1+27)) (”fHCg(Qm,T(SCO)) + HgHC§+a(B2R(fEO)) (2.3.104)

1l e(@an @ )
where C is a positive constant depending only on T, K, §, R* and R.

Claim 2.3.16. Given a function v € Cz—i_a(QgR,T(IEO)), there is a positive constant Ca,

depending only in R*, p and «, such that for all R € (0, R*] and 2° € Hy, we have

A+ )1l @amr o) < Collollgg @amn ey (2.3.105)
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Proof of Claim[2.53.16 Recall that, by definition ([2.2.5)),
I+ [2DPollco (@om r20)) = [0ll60(@anr@o))-

We may write

1+ |2°
1+ [2°)P|u(t, z)| =
(Ul lotea) = (T

We can find a constant Cy = Co(R*, p) such that

> (1 + |z)P|v(t, )|, V(t,x)€ Q2R7T($O).

1 + ’xo‘ P = 0 *
<(Cy Vre BQR(Z‘ ), VO < R < R, (2.3.106)
1+ |z
which implies
(1+ |$0|)pHU||C(Q2R7T(x0)) < Col|(L+ 2Pl o(Gop r(20))- (2.3.107)

Next, we have

1
14+ 12°)P ] gt - m(a :1+x0p[1+xpv
(F B Ve @unriany = CH) | Gt B0 o

1

(1 +[z[)?
1 [(1 + [])"v]

1+ |z])P () 0Y)-

(1+ |z[)P C(Bag(20)) C3(Q2r,r(2°))

As in (2.3.106]), there is a (possibly larger) constant Cy = Co(R*, p, o) such that

1}

(1 + ‘x’)p Cg(BZR(zO))

(1 + ’x‘)pv”C(Qm,T(fﬁo))

< (1420 [
Cs(Bag(z?))

+ (1 + |2%))P

(1 + |2°)P [ < O.

Therefore, we obtain

(1+ [2°)P[0) oo (Gapr (a0
p(Qen.r () (2.3.108)
< Col (T + 2D vlle(@ap p (o)) + C2l(X + [2))P0lca(Gop 1(20))-

Combining inequalities (2.3.107)) and (2.3.108)) yields the desired inequality (2.3.105]).

O
Claim [2.3.16| implies that
@+ 12PN fllce @arr @) < Coll Flls(@anr @)
(1+12°)Pgll oo (Bngany < Callgllgze(pypaoy

(L + 2% lullo@unar @) < Collulle@an ro))-
From the preceding inequalities and (|2.3.104)), we obtain the interior local estimate

[2.3.103). O
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2.3.5 Global a priori estimates and existence of solutions

The goal of this subsection is to establish Theorem [2.1.1] For this purpose, we need to
first prove the analogue of Theorem [2.1.1] when the coefficients are uniformly Holder

continuous on Hy \ Ha 1 = (0,T) x R x [2,00).

Hypothesis 2.3.17. In addition to the conditions in Assumption [2.2.2] assume that

there is a positive constant K5 such that the coefficients of L obey

||$daij\|Cg(HT\ﬁﬂ2,T) + HbiHc,gv(HT\HQ,T) + ”CHCg(HT\THIQ,T) < K. (2.3.109)

We first derive global a priori estimates of solutions in the case of bounded coeffi-

cients.

Lemma 2.3.18 (Global estimates in the case of parabolic operators with bounded
coefficients). Suppose Hypothesis is satisfied. There exists a positive constant
C=C(T,a,d,Ks,0,v) such that for any solution u € ‘ffia(HT) to (2.1.2), such that
Lu € €%(Hr) and u(0,-) € €*T*(H), we have u € €*T(Hyr) and satisfies the global

estimate

(2.3.110)

lllgragiry < € (ILtlln gy + (0, )

o)

Proof. 1t is enough to prove the statement for 7" > 0 small. Let R* > 0 be defined as
in Theorem and choose T' € (0, R*]. Let {z* : k£ > 1} be a sequence of points in
OH such that

Hp o1 C© | Qrer(2Y), (2.3.111)
k>1

and let {w' : 1> 1} be a sequence of points in Hry \ Hpg- /2,7 such that

Hyp \ Hp+ja,r C U QR*/&T(wl)a (2.3.112)
>1
and assume
Qrejar (W) NHpepyp =2, V> 1, (2.3.113)

We apply the a priori boundary estimate (2.3.59) to w with R = R*, f = Lu and

g = u(0,-) on Qp+7(z¥). Then, we can find a positive constant Cy, depending at most
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on R*, K5, 9, v, such that
lullcz+e (G pziy) < C (HL“HOg(QsR*/z,T(zk)> H 110, Ml ezte(@ype o (4))

+ ||UHC(Q3R*/2,T(Zk))) ’

Using definitions (2.2.5) of €*(Hr), and (2.2.6) of €2+ (H), with ¢ = 0, Remark
and the hypotheses that Lu € €“(Hyr) and u(0,-) € €*T*(H), we obtain

[ell g2t @ e pty) < C1 (HLU e (ir) + 11w, )l g2+agm + HUHC(HT)) ;

and inequality (2.3.53)) ensures
[ull g2t (@pe 1ty < C1 (”LUH%Q(HT) + [[(0, ')||<52+a(H)) , VE>1L (2.3.114)

From our Hypothesis [2.3.17, the coefficients x4a;;, b; and c are in CS(HT \7H27T). By
Assumption we have that x4a;;, b; and ¢ are in C¢(Ha 7 \ HR*/4,T)- Since the
metrics s and p are equivalent on R x [R*/4,2], by Remark there is a positive

constant K71, depending on K5 and R*, such that

17aais o B a0+ 10illog @i o + lellog @ < K
and so the conditions of Hypothesis are obeyed on Hy \ Hp- /4,7~ This is enough
to ensure we may apply Proposition to u with f = Lu and g = u(0,-) on
QR*/&T(wl) and so there is a positive constant Cy, depending at most on R*, K1, 6, v,
giving
ol ez @ge o ptuty < C2 (1Ellog @ ) + 100, Moz e ety
+ |V“”c<@R*/4,T<wl>>>7 vi> 1.
By and Remark we obtain

[ullczte(@pn g pwty) < C2 (||LUH<ga(H) + [[u(0, )l g2+a ()
+ H“|’C<QR*/4,T<wl>>) , Vizl,
and, by inequality (2.3.53)) applied to HUHC(QR*MT(wl))v it follows

el czte @ g mutyy < C2 (HLUH%Q(H)+HU(Oa')H%Ha(HT)); vi>1.  (2:3.115)

Combining inequalities (2.3.114)) and (2.3.115)) and making use of the inclusions (2.3.111))
and (2.3.112)), we obtain the global estimate (2.3.110)). O
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Next, we establish the a priori global estimates in the case of coefficients with at

most linear growth.

Lemma 2.3.19 (Global estimates for coefficients with linear growth). There ezists a
positive constant C' = C(T,«a,d, K,0,v) such that for any solution u € ‘flija(HT) to
2.1.2), such that Lu € €2 (Hr) and u(0,-) € €2T(H), we have

(2.3.116)

I

ch+a(HT) S C (HLU

‘ﬁ;}‘(HT) + H'LL(O, ) %g""a([ﬁl)) )

where p = p(«) is the constant appearing in Proposition (2.3.15,

Proof. As in the proof of Lemma we may assume without loss of generality
that 0 < T' < R*, where R* > 0 is defined as in Theorem Let 2* and w! be
the sequences of points considered in the proof of Lemma Then, by applying
Theorem m to u with f = Lu and g = u(0, ) on Qg+ r(z¥), we obtain, for all k > 1,

Il ezt ety < C (I1Ltllos @ge o rtztn + 1800 Vo250 oy
Ul 0@y s
We notice that
1l co(@ype w4y < CLIA 2] Lllco Gy e o r(24))
= CillLullge @y pe o0 (4))
1200, Mgz (By e ey < Crll (L [21)P(0, )l 2405, e 4y
= Cullu(0; llgzta By e (24
ulle@spe o)) < CLl+ 2DPulle@ype oz (24)
= Cillulléeo @ e o (41

k

where the positive constant C7 depends on R* and p, but not on z®. Therefore, we

obtain, for all £ > 1,
lullezvo @ ooy < Co (IEullgg gy + 10, Migzroqy + lllgpia )

for a positive constant Cy depending at most on R*, K, J, v, «, d. Because the collection

of balls {Qpr+7(z%) : k > 1} covers Hpg+ o7 and as we may apply (2.3.54) to u with
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f = Lu and g = u(0,-) with ¢ = p, there is a positive constant C3, satisfying the same

dependency on constants as Co, such that

Hu‘|<g2+a(]g1R*/2yT) S 03 (”LUH%?(HT) + HU(O, )‘|%§+Q(H)) . (2.3.117)

By applying Proposition [2.3.15| to u with f = Lu and g = u(0,-) on QR*/&T(wZ) , we
obtain, for all [ > 1,

1l gz (@ e . (uty) < Ca (HL“”‘@?(@R*/&T(W”) 10 Mgz B sty (2.3.118)

+ JJu

99”;9(@R*/4,T(wl))) :
Because the collection of balls {Q g« /87T(wl) : 1 > 1} covers Hy \ Hp«/o 7 and we may

apply (2.3.54)) to u with f = Lu and g = (0, -) with ¢ = p, we obtain

(2.3.119)

letlleg o ety o) < 5 (”L“”%ﬁﬂﬂ F o, ')”‘@”3*“@)) '

By combining inequalities (2.3.117)) and (2.3.119)), we obtain the desired estimate (2.3.116).

O

Next, we prove Theorem in the case of bounded coefficients.

Proposition 2.3.20 (Existence and uniqueness for bounded coefficients). Suppose Hy-

pothesis is satisfied. Let f € €*(Hr) and g € €* *(H). Then there exists a
unique solution u € €*+*(Hr) to [2.1.2) and u satisfies estimate (2.3.110)).

Proof. The proof employs the method used in proving existence of solutions to parabolic
partial differential equations outlined in [5I, §10.2] or [20, Theorem II.1.1]. We let
€22 (Hy) denote the Banach space of functions u € €2+ (Hy) such that «(0,z) = 0,
for all # € H. The spaces C2+*(Hyz) and C‘g*'a([O, T] x R?) are defined similarly. With-
out loss of generality, we may assume g = 0 because Lg € €*(Hr), when Hypothesis

holds, and so
L: €% (Hy) — €*(Hy)

is a well-defined operator. Our goal is to show that L is invertible and we accomplish

this by constructing a bounded linear operator M : € (Hy) — €2+ (Hy) such that

HLM - Iw(HT)H <1. (2.3.120)



53

For this purpose, we fix » > 0 and choose a sequence of points {z" : n =1,2,...} such
that the collection of balls {B,(z") : n =1,2,...} covers the strip {z = (2/,24) € H :
0 < z4 < r/2}. We may assume without loss of generality, there exists a positive
constant N, depending only on the dimension d, such that at most N balls of the
covering have non-empty intersection. Let {¢, :n =0,1,...} be a partition of unity

subordinate to the open cover
o0
(H\{0 < zg <r/4}) U (] B.(z") = H,
n=1
such that
supp wo C H\ {0 < x4 < r/4} and supp ¢, C B.(z"), Vn>1.

Without loss of generality, we may choose {¢y, }n>0 such that there is a positive constant

¢, independent of r and n, such that

lonllgztegay < er™®, ¥ >0, (2.3.121)

We choose a sequence of non-negative, smooth cutoff functions, {1, },>0 C C*°(H)

such that 0 <, <1 on H, for all n > 0, and

0, for0<xzq<r/8,
Yo(x) =
1, for zqg > r/4,
\
while for all n > 1,
1, for0<uxzyg<1/2,
Yn(z) =
0, for x4 > 1.

Then, we notice that ¢y satisfies (2.3.121]). For r small enough, we have
YnPn = n, for all n > 0. (2.3.122)

For n = 0, let Ly be a uniformly elliptic parabolic operator on R? with bounded,
Cy(Hr)-Hélder continuous coefficients, such that Lo agrees with L on the support of

1. Define the operator

My : C%([0,T] x RY) — C2%*([0,T] x RY),
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be the inverse of Ly, as given by [51, Theorem 8.9.2]. For n = 1,2,..., let L, be the
degenerate-parabolic operator obtained by freezing the variable coefficients a;;(t, ),

bi(t,z) and c(t,z) at (0,2™). Define the operator
M, : C¢(Hy) — CF(Hy),

be the inverse of L,,, as given by Proposition Define the operator
M : €°(Hy) — €% (Hy)

by setting

Mf:=> @nMynf, for f € €*(Hr).
n=0

Our goal is to show that (2.3.120)) holds, for small enough r and T. We have

LMf—f=> LonMynf - f

n=0

= Z onLMpn f + Z[Lv @N]annf -/
n=0 n=0

where [L, @,] is given by ([2.3.64]). Denoting

Uy = Mptp f, forn=0,1,2,..., (2.3.123)
we have

LMn"?Z}nf = (L - Ln)un + Lnan;Z)nf

= (L= Ln)up +¢nf,
since L, M, = I, for alln > 0. This implies, by the identities and )7 onnf =
f, that . .
LMf—f=>> ¢u(L—Lo)un+ Y (L, ¢nlun. (2.3.124)
n=0 n=0

First, we estimate the terms in the preceding equality indexed by n = 0. Because

Ly = L on the support of vy, obviously we have ¢o(L — Lg)ug = 0. Next, using the

identity ([2.3.64]), there is a positive constant C, depending only on Ks in (2.3.109)),
such that

1L ol woll g o,1xray < Clluollcrre o, ryxmray %0l c2+e (o 11xre)

< Cr*3\|u0||cé+a([O7T]XRd) (by ([2-3.121))).
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From the interpolation inequalities for standard Holder spaces [51, Theorem 8.8.1],

there is a positive constant m such that, for all € > 0, we have

1L, o] woll o (jo.17xre) < Cr=? (elluoll ca+o orxrd) TE " lwolleqorxray ) -
0 o ([0,T]xR%)

(2.3.125)
By [61, Theorem 8.9.2], the identity (2.3.122)), and the definition (2.3.123) of ug, we

have

HUOHC;+Q([0,T]XRd) < Cl(r)”¢0f"0g([0,T]XRd)
< Cr()f llgemy),
for some positive constant Cy(r). From [5I, Corollary 8.1.5], there is a constant C,
depending only on K5, T and d, such that

wolleqo,rxray < CT || flle(o,mxra)-

Therefore, we obtain in (2.3.125)), for possibly a different constant C;(r),

1L wol wollcg 0,17 xray < C1(7) (EHfH%Ja(HT) + E_mTHfHC(HT)) : (2.3.126)
Next, we estimate the terms in (2.3.124]) indexed by n > 1. We closely follow the

argument used to prove Theorem [2.3.8] First, we have

lon(L = Ln)unll e @y < [enlee @ (L = Lo)unllcgorx supp ¢n
s (Hr) s (Hr) ([ ]X SUpp ¢n) (23127)
+ ||(L - Ln)“””C;"([O,T}X supp ©n )"

Using (2.3.121)) and Lemma there are positive constants m and Ci(r) such that
[‘Pn]Cg(]HIT) ”(L - Ln)unHC’([O,T]X Supp ¢n) <y (T) <€||UHHC§+°‘(]H[T) + 67mHun”C(]I:]IT)) :
By Proposition (2.3.53)) and the preceding inequality, we obtain

[onlce @ L = Ln)unllc(o,r1x supp ¢n) < C1(7) (defHCg(HT) + €7mTH¢ancoHIT)) ;

and thus,

[@H]Cg(]HIT) H(L - Ln)unHC([O,T]X supp ¢n)

(2.3.128)
< Cu(r) (el Moty + =TI loqen))
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By applying the same argument used to prove Claim [2:3.9] we find that there are

positive constants C', independent of r, and C1(r), such that
(L = Ln)unllce(o,1)x supp pn) < CTQ/QHUnHOg(HT) + C1(r) lun | iy -
By Proposition and the definition of uy, it follows that
I(L = L)unllce o.77x supp o) < CT2 1 f gy + C1(MTI fllo@yy-  (2-3.129)

With the aid of inequalities (2.3.128]) and (2.3.129)), the estimate (2.3.127)) becomes
ln(L = L)unll o @ipy < Cr2(1 fllga i

+Ci(r) (I f

(2.3.130)

goip) € T flle@sy ) -
Next, we estimate [L, op]uy, for n > 1, by employing a method similar to that used to

estimate the term [L, olug. Using the identity (2.3.64) there is a positive constant C,
depending only on K appearing in (2.2.10) and (2.2.11)), such that

s al e oy < O lunlogse oy (by BZI2D).

From Lemma there is a positive constant m such that, for all € € (0,1), we have

NZs @nl wnllosqo e < O (ellunloare go.mym + & llunlogo ) -

According to Proposition |A.1.1land (2.3.53)), there is a constant C(r) so that

NZs @al tnllosqo iy < Cr(r) (el ligocainy + & T fller) ) - (2:3.131)

Combining inequalities (2.3.126)), (2.3.130) and (2.3.131)), and using the fact that at

most N balls in the covering have non-empty intersection, the identity (2.3.124)) yields

VEAMF = Fllgavagiiny < O/ fllgaqn) + C1(r) (el o + < T logr)) -

where C' is a positive constant independent of r, while C(r) may depend on r. By
choosing small enough 7, then small enough ¢, and then small enough 7', in that order,

we find a positive constant Cy < 1 such that

ILM f = fllgoy < Collfllgemyy, VI €€ Hr),

and this gives ([2.3.120)). O
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Proof of Theorem [2.1.1] Uniqueness of solutions follows from Proposition 2.3.7
We notice that 6 (Hr) C €*(Hr) and 6,7 (H) C *"*(H). Let L be any operator
satisfying Hypothesis|2.3.17 Let {¢y }n>1 be a sequence of non-negative, smooth cut-off

functions such that
0<¢n<1, @nlp, =1 and pn|pg =0.
We define
Ly, :=p, L+ (1— gon)f/, Vn > 1.

Then, each L, satisfies Hypothesis and, by Proposition [2.3.20] there exists a
unique solution u,, € €***(Hr) to (2.1.2) with L = L,. By Lemma [2.3.19] each

solution u,, satisfies the global estimate

g2ra@p) < C (HfH%g(HT) + ||g||<g§+a(]ﬁ1)> : (2.3.132)

Hun

For any bounded subdomain U C H and denoting Ur = (0,7) x U, the parabolic
analogue, Cg’La(UT) — C’ﬁ(UT) = CY2(Ur), of the compact embedding [2, Theorem
1.31 (4)] of standard Holder spaces, C**®(U) < C?(U), implies that the sequence
{un}n>1 converges strongly in C12(Ur) to the limit u € CY2(Ur), that is, u, — u in
CY2(Ur), as n — oo for every bounded subdomain U C H. It is now easily seen that

u solves (2.1.2). By the Arzela-Ascoli Theorem, we obtain that u € €?T%(Hy) and
satisfies (2.1.6)). O

2.4 Martingale problem and the mimicking theorem

In this section, we prove Theorem concerning the degenerate stochastic dif-
ferential equation with unbounded coefficients , and establish the main result,
Theorem Our method of proof combines ideas from the martingale problem for-
mulation of Stroock and Varadhan [70] and the existence of solutions in suitable Holder
spaces, €2t (Hr), to the homogeneous version of the initial value problem established
in Theorem In we prove existence of weak solutions to the mimicking
stochastic differential equation and the existence of solutions to the martin-

gale problem associated to . In we establish uniqueness in law of solutions
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to (2.1.4) and to the martingale problem for o7, thus proving Theorems [2.1.16| and

2.1.10} in §2.4.3] we establish the matching property for the one-dimensional probabil-

ity distributions for solutions to (2.1.4)) and of an It6 process, thus proving Theorem
2119

2.4.1 Existence of solutions to the martingale problem and of weak

solutions to the stochastic differential equation

In this subsection, we show that has weak solutions ()? ,/W) on some filtered
probability space (Q,.%,P), {%; }+>0 [47, Definition 5.3.1], for any initial point x € H,
by proving existence of solutions to the martingale problem associated to <7 (Definition
2.1.39).

We begin with an intuitive property of solutions to defined by an initial
condition in H. For this purpose, we consider coefficients defined on [0,00) x R,

instead of [0, 00) x H.
Proposition 2.4.1 (Solutions started in a half-space remain in a half-space). Let

5 :[0,00) x RY — R4,

b:[0,00) x R — R?,
be Borel measurable functions. Assume that
(t,x) =0 when x4 <0, (2.4.1)

and b satisfies

0 <by(t,x) <K  when xq <0, (2.4.2)

where K is a positive constant. Let X be a weak solution of
dX =b(t, X (£))dt +&(t, X (£))dW (t), t>s,
such that X (s) € H. Then

P ()?(t) c IHI> —1, Vt>s. (2.4.3)
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Proof. 1t is sufficient to show that for any € > 0, we have
P (Xd(t) € (—o0, —e)) —0, Vt>s. (2.4.4)
Let ¢ : R — [0,1] be a smooth, non-negative cutoff function such that
@l(—o0,—e) =1, ¥l(0,00) =0, and ¢ <0. (2.4.5)
Then, by Itd’s rule [47, Theorem 3.3.3], we obtain

o(Ra(t)) = / Zodz ! (Ra(0)dTTi (v)

1

" / [bdw XD/ (Ra(w) + 566 )aalv, K@) (Rafw) | do

and so, because supp ¢ C (—o0,0] and (2.4.1)) is satisfied, we have

p(Ra(t)) = p(Ra(s)) + / ba(v, X (1)) (Ra(v))do.

By (2.4.2)) and (2.4.5)), the integral term in the preceding identity is non-positive. There-

fore, we must have ¢(X4(t)) < 0 and hence p(X4(t)) = 0, for any choice of € > 0, from

where (2.4.4) and then (2.4.3) follow. O

Remark 2.4.2 (Weak solutions are independent of choice of extension of coefficients

to lower half-space). Let
b :[0,00) x RS 5 RY, i=1,2,
be measurable functions which satisfy condition (2.4.2)), and assume

b' =02 on [0,00) x H. (2.4.6)

Let ¢ be a measurable function as in the hypotheses of Proposition Let X be a

weak solution to
dX (t) = b'(t, X (t))dt + &(t, X (1) dW (t), ¥t > s, (2.4.7)

such that
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Then, Proposition shows that X (¢) remains supported in H, for all ¢t > s. By
(2.4.6), it follows that X is a weak solution to

dX(t) = 2(t, X (£))dt + 6(t, X (£))dW (¢), V¢t > s. (2.4.8)

This simple observation shows that, under the hypotheses of Proposition any
weak solution started in H to (2.4.7) is a weak solution to (2.4.8)), and vice versa.

Theorem 2.4.3 (Existence). Assume that the coefficients o and b in are con-
tinuous on [0,00) x H, that @ obeys condition on [0,00) x H, and that a and
b have at most linear growth in the spatial variable, that is, condition holds.
Then,

~

1. For any (s,x) € [0,00) x H, there exist weak solutions (X, ) (Q, F,P), (Ft)t>s,
to (2.1.4) such that X(s) =

2. For any (s,x) € [0,00) x H, there is a solution, ]/P\’S’x, to the martingale problem

associated to <t such that (2.1.13) holds.

Proof. We organize the proof in several steps. Without loss of generality, we may

assume s = 0.

Step 1 (Solution to a classical martingale problem). The argument of this step is
similar to the one used in the proof of [47, Theorem 5.4.22].

Because @ € Cioe([0,00) x H) satisfies condition , we may extend o as a
continuous function to [0, 0c0) x R? such that is satisfied. We denote this extension
by & € Cloc([0,00) x RY). Similarly, we consider an extension, b € Coc([0, 00) x RY),
of the coefficient b in , such that is satisfied. By defining a := 6%, we
obtain a continuous extension of @ from [0, 00) x H to [0, 00) x RY.

Our goal in this step is to show that the classical martingale problem [47), Definition

5.4.10] associated with the operator,

U

d

Z (t,x) fz,(x Z

i(t fxﬂj( x), VY(t,x) € [0,00) x Rd,

[\DM—A

(2.4.9)
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where f € C%(R?), has a solution P on the canonical space with filtration defined by

the cylinder sets,

(C’loc([o,oo);Rd),%(Cloc([o,oo);]Rd))),{%t(Cloc([O,m);Rd))} . (24.10)

t>0
such that
P <w € Cloc([0, 00); RY) : w(0) = x> -1 (2.4.11)

By [47, Problem 5.4.13 (A.2)'], it is enough to show that, for any f € C2(R9),
MY (t,w) == f(w(t) — / Ay f(w(s))ds, w e Cle([0,00);RY),  (2.4.12)

is a {B1(Coc([0, 00); RY))}y>p-martingale, and (2.4.11)) holds.

Let n > 1 and define

;

~ Bl(tvx)v if ’:E‘ <n,
b (t, ) =
bi(t,z) An, if |z| > n,
. (2.4.13)
o Gij(t, x), if |z] < m,
ajy(t, o)
Gij(t,x) An, if [z| > n,

\

for all 1 < 4,7 < d and all (¢,2) € [0,00) x R%. Let
an(t,x) == &"(t,z)(6™)*(t,xz), Y(t z) € [0,00) x RY.

The coefficients b” and 6" are continuous, bounded functions on [0, 00) x R%. By [47
Theorem 5.4.22], there is a solution P" to the classical martingale problem associated

to the operator,

d d
- 1
be (t, 2 )ua, () + D 5055 (b 0tz (2), V(1 3) € [0,00) X RY,
i=1 i,j=1
(2.4.14)
for all u € C%(R?). The solution P" satisfies
" (w € Cloe([0, 00); RY) : w(0) = g;) ~1. (2.4.15)

and, an inspection of the proof of [47, Theorem 5.4.22] shows that P" exists such that

MM (t,w) = f(w(t) = f(w(0)) — /0 ' f(w(s))ds, w € Cloc([0,00); RY),
(2.4.16)
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is a {B1(Coc([0, 00); RY))};>0-martingale, for all n > 1, and for all f € C2(R%).

By Proposition [47, Proposition 5.4.11 & 5.4.6], the stochastic differential equations

AX™ () = b (t, X" (£))dt + &5 (t, X™(£))dW™(t), t >0,
(2.4.17)

X"(0) ==,
have weak solutions (X™, W™), for any initial point = € H, on an extension (Q",.#", Q"),

{Z['}+>0 of the canonical space (2.4.10) endowed with the probability measure P". Let
P =QMX") !, Vn>1, (2.4.18)

be the probability measures induced by these processes on the canonical space. By
[47, Remark 3.4.1] (definition of an extension of a probability space) and [47), Corollary
5.4.8], it follows that P" and P" agree on %(Cioc([0, 00); RY)).

We wish to prove that the collection of probability measures, {P"},,>1, forms a tight
sequence [4T, Definition 2.4.6], so there exists a weakly convergent subsequence to a

probability measure [P which we show is a solution to the martingale problem for .

By (2.2.14)), (2.4.2) and (2.4.1)), coefficients b and ™ satisfy
b7 (t,2)| + 6" (¢, 2)| < K(1+a]), Vn>1, V(tz)€[0,00) x RY

From [47, Problem 5.3.15], it follows that for any 7" > 0 and m > 1, there is a positive

constant C' = C(m, T, K,d) such that, for all n > 1 and all z € H, we have

" n 2m < 2m 4.
o | s [X"(OF"] <€ (1+12P™). (2.4.19)
Egn [|X™(t) — X"(s)]*™] < C (1 + [z[*™) [t — s|™, Vt,s€[0,T]. (2.4.20)

It follows by the Kolmogorov-Centsov theorem [47, Theorem 2.2.8] and [47, Problem
2.4.11] that the sequence of probability measures on the canonical space, {P"},>1,
is tight. Therefore, by Prohorov’s theorem [47, Theorem 2.4.7], we may extract a
subsequence which converges weakly to a probability measure P on the canonical space.

Next, we show that P solves the martingale problem associated to . Obviously,

condition (2.4.11)) follows from (2.4.15]). It remains to show that (Mf(t))t>0, given



63

in (2.4.12), is a {%i(Cioc([0,00) x R¥))}i>o-martingale. Recall that each o-algebra

B(Cloc([0,00); R)) is given by at most countable unions of sets of the form
{w € CIOC([07 OO),H) : w(SZ) € Bl72 = 17 cee 7m} )

where m > 1,0 < 51 < ... < 8, < 5, B; € B(R%), i = 1,...,m. Therefore, it is
sufficient to show that for any choice of t > s > 0, m > 1,0 < 51 < ... < 5y < 5,

B; € Z(RY),i=1,...,m, we have

E [(Mf(t) - Mf(5)> I1 1{w(si)€Bi}] ~0. (2.4.21)
i=1

By [27, Proposition 3.4.2], there is a sequence of %s(Cioc([0, 00); R%))-measurable, con-

tinuous, bounded functions H, : Cioc([0, 00); R?) — R such that

H,(w) — H Yusen), asn—o0, Yw e C([0, 00); RY).
i=1

Since f € Cg(Rd) and the coefficients of .« are bounded on compact sets, the sequence
of functions { (M (t) — M/ (s)) Hn}n>l is uniformly bounded, so the Dominated Con-

vergence Theorem yields

E[(Mf(t) >HH] —>E[(Mf >H1{w SZ)GB}] as 1 — 0.

Therefore, (2.4.21)) follows if for any s,t € [0,00], s < t, and any bounded, continuous,
%B(C([0,00); RY))-measurable function H : C([0,00); R?) — R, we have

Ep [(Mf(t) - Mf(s)) H} = 0. (2.4.22)

In the sequel, we fix f € C’g (R%) and, for brevity, omit the superscript f in the definition
of Mf and M™f, for n > 1. From ([2.4.16), we know that (2.4.22) holds with M™

replacing M, that is,
Epn [(M"(t) — M"(s)) H] =0, ¥Yn>1. (2.4.23)

Because f has compact support in the spatial variable, it follows from (2.4.13)), (2.4.9)

and (2.4.14]) that

(2.4.24)
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for all n large enough such that the support of f is contained in the Euclidean ball of

radius 2n centered at the origin. The function F : Ciye([0, 00); R?) — R defined by

F(w) = f(w(t)) — f(w(s)) —/ &Z,f(w(v))dv, Yw € C’loc([O,oo);]Rd), (2.4.25)

is bounded and continuous because f has compact support and, on any compact subset
of [0,00) x R?, the coefficients of 47, are uniformly continuous. Therefore, the function
FH : Cic([0,00); RY) — R is bounded and continuous. Since P" converges weakly to P

as n — 0o, we see that

E[pm [FH] — E[P[FH], as n — Q. (2-4-26)

By (2.4.23)), (2.4.24) and ([2.4.25)), the limit of the sequence {Epn[F H]},>1 is zero, and

so we obtain the desired identity ([2.4.22)).
Therefore, we have shows that (2.4.27) admits weak solutions for any initial condi-

tion z € H.

Step 2 (Existence of weak solutions). By [47, Proposition 5.4.6], we obtain that the

stochastic differential equation

dX (t) = b(t, X (t))dt + &(t, X (£))dW (1), Vt >0,
(2.4.27)
X(0) ==,
has at least one weak solution ()A( , W) on an extension of the canonical space (2.4.10)).
Proposition and Remark show X (¢) € H, for all ¢ > 0, so that (X, W) is a
weak solution to the stochastic differential equation (2.1.4)), as well, since the coefficients

b and & are extensions of b and o, respectively, from [0, 00) x H to [0, 00) x R%.

Step 3 (Solution to the martingale problem). Let X be the weak solution obtained in
the previous step. Since X (t) € H, for all t > 0, then we may define PY% 6 be the proba-
bility measure induced by the weak solution X on (Cloc ([0, 00); H), B(Cloc ([0, 00); H))).
Then, similarly to [47, Problem 5.4.3], it follows that P07 is a solution to the martingale
problem associated to <7 and satisfies .

This concludes the proof of the theorem. O
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2.4.2 Uniqueness of solutions to the martingale problem and of weak

solutions to the stochastic differential equation

We show that uniqueness in the sense of probability law holds for the weak solutions
of the stochastic differential equation , with initial condition x € H, and we
establish the well-posedness of the martingale problem associated to . First, we
prove that uniqueness of the one-dimensional marginal distributions holds for weak
solutions to (2.1.4)), and then the analogue of [47, Proposition 5.4.27] is used to show
that uniqueness in law of solutions also holds.

We begin with the following version of It6’s rule (compare [47, Theorem 3.3.6])
which applies to It6 processes which are solutions to .

Proposition 2.4.4 (It6’s rule). Assume that the coefficients o and b of (2.1.4) are
Borel measurable functions, @ obeys condition (2.1.16)) on [0,00) x H, and @ and b have
at most linear growth in the spatial variable, that is, condition (2.2.14]) holds. Assume

there is a positive constant K such that
laij(t, )| < K Y(t,z) € [0,T] x R x [0,1]. (2.4.28)
Let v € Cloe([0,00) x H) be such that it satisfies, for all 1 <1i,j < d,

Vg, Vay, £dVz,2; € Cloc([0,00) x H), (2.4.29)

TqUz;z; =0 on [0,T] x OHL. (2.4.30)

Let ()?,W) be a weak solution to (2.1.4) on a filtered probability space (Q,P,.F),
{F#}1>0, such that)?(O) € H, P-a.s. Then, the following holds P-a.s., for all0 <t < T,

t d N R .
u(t, X (t)) = v(0, X(0)) —i—/o Z o (u, X (u))vg, (u, X (w)dW; (u)
ij=1
t [ d AJ R
+/0 <;bi(“vX(“))vzi(uaX(U)) (2.4.31)
d
+ Z %Xd(u)aij (u, X(u))vxzx] (U, X(U)) du
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Proof. We choose € > 0 and let

xf = (x17._.,xd,1,$d +5)7

~

Xe(u) = ()?l(u), e, X (), Xa(u) + 5) . Yu>0.
Consider the stopping times
Ty = inf{u >0 | X (u)| > n} Vn > 1.

Since the coefficients a and b have at most linear growth in the spatial variable (condition
(2.2.14) holds), we obtain by [47, Problem 5.3.15], that for all m > 1 and ¢ > 0, there

is a positive constant C' = C(m,t, K, d) such that
E X" <C 1+ |z*™). 2.4.32
o IRPT] <€ (14 127) (2432
Then, it follows by ([2.4.32) that the non-decreasing sequence of stopping times {7, },,>1

satisfies

lim 7, = +o0 P-as. (2.4.33)

n—o0

If this were not the case, then there is t > 0 such that

lim P (r, < t) > 0. (2.4.34)

n—o0

But, P(r, <t) =P (supogugt X (u)| > n) and we have

(s 1K@ n) < 8 [ 10

0<u<t n 0<u<t

_CO+ [P

. (by (2-4.32)).

n2
Since the preceding expression converges to zero, as n goes to co, we obtain a contra-

diction in (2.4.34)), and so (2.4.33) holds. By (2.4.33)), it suffices to prove (2.4.31)) for

the stopped process, that is

R . tATh d —~ ~ =
V(A TR, X(EAT)) = v(0,X(0)) + /0 Z i (u, X (u))va; (u, X (u))dW;(u)
i,7=1
tATn d ~ ~
. (;bi<u,x<u>>vx,-<u,x<u>>
d
+ Y LRy R @), (0, R0 |
ij=1

(2.4.35)
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By Proposition [2.4.1 we have
X(u)€eH P-as. Yucel0,T) (2.4.36)

Since v € C'ﬁ)’f([O,T] x R4~1 x [¢/2,00)), we may extend v to be a Cllo’f function on
[0,T] x R, Then we can apply the standard It6’s rule, [47, Theorem 3.3.6] and, taking
into account that )?(t) + e > ¢, P-as., for all ¢ > 0, we obtain
R - tATh d R R .
V(t AT, XE(EATR)) = 0(0, X5(0)) + / > 0w X ())vg, (u, X5 () dWj(u)
0 ij=1
tATh N d . R
3 A OB SRS SIS (O I )
0 i=1
1s - _
+ Z iXd(u)aij(ua X(u))vrmwj (U, Xe(u)) du.
ij=
(2.4.37)
Our goal is to show that, by taking the limit as € | 0 in the preceding equation, we

obtain ([2.4.35]).

Since v € Cloe(H7), we have for all 0 <u < T,

~

V(U A Ty XE(WAT)) = v(uwATn, X(uAT,)) P-as. when e | 0. (2.4.38)

The terms in (2.4.37)) containing the pure It6 integrals can be evaluated in the following

way. As usual, we have

E [ /0 i (1, X (), (1, X () W (u) — /0 01 (1 X (), (1, X () TV )

<e|

and so,

?|

<ef T oy ot R )Pl (1, R () — (1, X ()P

[ o K ) (v, o X2 (00) — ey K 0)) a5 0
0

/ " 1 X (), (1, X7()) dV () — / " o, X (), (1, X () AT ()
0 0

1/2

|

(2.4.39)

Since vy; € Cloc(Hr), we have P-a.s., for all 0 < u < T,

o (1, X () [vg, (w0, X2 (1) — v, (u, X ()] = 0 ase L0,
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By the continuity of paths of X and the fact that o0;j satisfy the growth condition
(2.2.14)), the Lebesgue Dominated Convergence Theorem implies P-a.s.

/ o |0 (1, X () [* 0, (1, X5 (w)) — va (u, X (w))Pdu — 0 ase 0. (2.4.40)
0

On the closed ball of radius n in H centered at the origin, the coefficients oij and vy,

are bounded, so it follows

tA AT . - N 1/2
E [/ ’O'ij(U,X<U))’2’ij(u, X (u)) — vy, (u,X(u))\gdu] —0, aselO.
0
Thus, by ([2.4.39)), we obtain the L'-convergence, and also the P-a.s convergence of a

subsequence which we label the same as the given sequence, as ¢ | 0,

~ ~

tATh . - tATn R -
/0 0 1, K () (1, K () ATy () — /0 0 oty X (), (u, X () ATV ).
(2.4.41)
We write the du-integrand in (2.4.37)) as the sum of (0;+4% )v(u, )?E(u)) and Zv(u, Xe (u)),

where

d d 1

yo(u, x°) = Z bi(u, x)vg, (u, x°) + Z iaij(u,x)xavxiwj (u, %), (2.4.42)
i=1 ij=1
c d
PHv(u,z°) = ) Z i (U, ) Vg ; (U, %), (2.4.43)
ij=1

for all (u,z) € [0,T] x H. An argument similar to the one which gave us (2.4.41)) can

be used to obtain the P-a.s convergence, as € | 0,
tATh R tATh R
/ (0 + )v(u, X=(w))) du — / (0, + )o(u, X (u)) du, (2.4.44)
0 0

This requires that vy, va,;, Tque,z; € Cioc(Hr), the coefficients b; and xqa;; satisfy the

linear growth assumption (2.2.14), and coefficients a;; obey (2.4.28)). Therefore, it

tATn
/
0

Notice that the proof of (2.4.45) completes the proof of It6’s rule because ([2.4.38)),
(2.4.41)), (2.4.44) and ([2.4.45) yields (2.4.35)) by taking limit as € | 0 in (2.4.37)).

v (u, Xs(u))’ du} —0, aselO. (2.4.45)
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Now, we return to the proof of (2.4.45)). We can write the term in ([2.4.43)) in the

following way

€
ECLij(u, x)vmimj (’LL, xa) = Eaij (uv x)ifilvmix]- (uv xa)l{OSxdgﬁ}
d
(2.4.46)

£ _
+ ;saij(“,x)l‘zvij (u, %)l gy V(uw,z) € Hr,
d

We use the preceding identity to show the pointwise convergence, for all (u,z) € Hr,
€0 (U, T)Vg,z; (u,25) = 0 ase | 0. (2.4.47)

Because of the fact that a;; are locally bounded on Hp by (2.4.28) and the TUzz; €
Cloc(HT) obey TqUz,z; (U, ) = 0, when x4 = 0, we obtain

€

x—gazj (U, )T qUaa; (U, %) Lig<a,< 2y — 0,  aselO. (2.4.48)

for all (u,z) € Hy. In the case \/z < x4, obviously we have
e/zy < Ve,

and so, using Tqvz; € Cloc(Hr) and the local boundedness of a;j on Hr by (2.4.28)
and ([2.2.14]), we obtain

€
Eaij(u’ T)TqUpe; (U, %)L gy — 0, ase 0. (2.4.49)
d

for all (u,z) € Hy. By combining (2.4.48) and (2.4.49)), we obtain (2.4.47). Using the
continuity of the paths of )?, (2.4.47) and (2.4.43)), we obtain P-a.s., for all 0 < u < T,

),@v(u,)?s(u))‘ —0, asel0,

and also, the following holds P-a.s.

/t/\Tn
0

The Lebesgue Dominated Convergence Theorem, conditions ([2.4.28) and (2.2.14)) sat-

Zv(u, )?E(u))‘ du—0, asel0. (2.4.50)

isfied by a;; on Hy, and TUzz; € CIOC(HT) now imply ([2.4.45)). This concludes the

proof of the proposition. O

The next result is based on the ezistence of a solution in €?T*(Hr) to the homoge-

neous initial value problem considered in Theorem [2.1.1
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Proposition 2.4.5 (Uniqueness of the one-dimensional marginal distributions). As-
sume the hypotheses of Theorem hold. Let ()A(k,/ﬂ?k), defined on filtered prob-
ability spaces (QF PF . Fk) L F[F}is0, k = 1,2, be two weak solutions to with
initial condition (s,z) € [0,00) x H. Then the one-dimensional marginal probability

distributions of X'(t) and X2(t) agree for each t > s.

Proof. Without loss of generality, we may assume that s = 0. By Proposition [2.4.1] it

is enough to show that for any 7' > 0 and g € C5°(H), we have

~

Epr |9(X1(D))] = Ez2 [9(X*(T)], (2.4.51)

where each expectation is taken under the law of the corresponding process. For this

purpose, we consider the parabolic differential operator,

d d
. 1
— Lw(t,z) := —w(t,x) + Z bi(T — t,x)wy, (t, x) + Z §xdaij(T —t, X)Wa,a, (t, ),
i=1 ij=1
(2.4.52)
for all (t,x) € Hy and w € CY2(Hy). Let u € €?T(Hy) be the unique solution given

by Theorem to the homogeneous initial value problem,

Lu(t,z) =0, for (t,z) € (0,T) x H,

(2.4.53)
u(0,7) = g(x), for x € H.
Define
v(t,r) == u(T —t,x), Y(t,x)€0,T]x H. (2.4.54)
Then, v € €27 (Hr) solves the terminal value problem,
ve(t, ) + Ao(t,z) =0, for (t,z) € (0,T) x H,
(2.4.55)

o(T,x) = g(x), for x € H,

where the differential operator .« is given by (2.1.1). Proposition [2.4.4] gives us, for
k=1,2,

o~ T o~
Eor [o(T, XH(T)] = 0(0.2) + Ene { / (vr + ) w(t, XX () dt
(2.4.56)
+Epe / Z o (, KE (1) s, (1, K (1)) AW (1)

1,j=1
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Recall that vy, € C(Hr) and the coefficients o;; satisfy (2.2.14)). Inequality (2.4.32)

applied with m = 1, gives

Epr [/OT

and so, the Ito integrals in ([2.4.56)) are square-integrable, continuous martingales, which

~

58 50, (6, X)) dt| < OO+ [af?)va, 125
Uz] ) ’ij ) — x Uz C(Hr)

implies

~

T
(0 R0 o, (1 R0 =0
e | [ ot RO, . R O)TH0)] =0

Using the preceding inequality and ([2.4.55|), we see that (2.4.56) yields

Eps [g(ff’“(T))} =v(0,2), k=12, (2.4.57)
and so, (2.4.51)) follows. O

Next, we recall

Proposition 2.4.6 (Uniqueness of solutions to the classical martingale problem). [/7,

Proposition 5.4.27] Let

S

. [0,00) x R — RY,

. [0, 00) x R — R4,

Qe

be Borel measurable functions such that they are bounded on each compact subset in R?
and define a differential operator by

d d
~ 1
Gu(z) = Z bi(x)ug, + Z §&ij(x)uzizj, Vo € RY,

i=1 ij=1
where @ := 56* and u € C*(R?). Suppose that for every x € R?, any two solutions P*
and Q% to the time-homogeneous martingale problem associated with & have the same
one-dimensional marginal distributions. Then, for every initial condition x € R?, there

exists at most one solution to the time-homogeneous martingale problem associated to

9.

We have the following consequence of Propositions [2.4.5| and
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Corollary 2.4.7 (Uniqueness of solutions to the martingale problem associated to
). Suppose that for every x € H and s > 0, any two solutions P>* and Q> to the
martingale problem in Deﬁmtion associated to < in with wnitial condition
(s,x) have the same one-dimensional marginal distributions. Then, for every initial
condition (s, ) € [0,00) x H, there exists at most one solution to the martingale problem

associated to ;.

Proof. As (2.1.4) is time-inhomogeneous with initial condition (s,z) € [0,00) x H,

rather than time-homogeneous with initial condition z € R%, as assumed by Proposition

we first extend the coefficients, o(t,z) and b(t,z) with (¢,x) € [0,00) x H to
(t,z) € R x R¥! x (—00,0) and (t,2) € (—00,0) x H, so

Gij(t,x) =0, bi(t,x) =0, VY(t,r) €R xR x (~00,0) and (¢,z) € (—00,0) x H.

(2.4.58)

To obtain a time-homogeneous differential operator, as in Proposition [2.4.6] we increase

the space dimension by adding the time coordinate, that is, we consider the following
(d + 1)-dimensional process

dYo(t) = dt, Vt >0,

) d (2.4.59)
dYi(t) = b(Y (t))dt + > ;Y (£))dWy(t), i=1,....d, Vt>0.
j=1

Now, let ¢4 denote the time-homogeneous differential operator

d d
~ 1.
Gu(y) == E bi(y)uy, + E : iaij(y)“yiw’ vy € R,
i=1

ij=1
and u € C?(R¥H1).
For z € H and s > 0, let P*? and Q%% be two solutions to the martingale problem
associated to o4 with initial condition (s,x). We extend these probability measures
from the measurable space Ci, ([0, 00); H) to the canonical space Cioc([0, 00); R?) in the

following way
po (a; € Cloe([0, 00); RTY), 3t > 0,30 (t) £ t + s) =0,
pse (a € Cloe([0, 00); RHYY, (@1 (t), - . ., Ga(t)) € Biyi =1, ... m)

= Pp5* (w € Cloc([0,00); H), (w1 (t:), ..., wa(t;)) € Bsi=1,... ,m) ,
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forallm >1,0<t <ty <...<tp, B; € BR?),i=1,...,m. Above, we used the

notation

@ = (@0, 01, ., @q), Y& € Cloe(]0, 00); RIFL),

w:i= (wi,...,wq), VYw € Cle([0,00);H).

Similarly, we build @S’x the extension of Q%% from Ciyc([0,00); H) to Cloc([0, 00); RY).
Notice that P*® and @S’I are two solutions to the classical time-homogeneous martin-
gale problem associated to ¢, with initial condition (s, ). Therefore, the probability
measures P%* and Q%7 coincide if their extensions P57 and @5@ coincide. By Proposi-
tion uniqueness in law holds for P* and Q% if, for any y = (o, .- .,yq) € RIF!
and any two solutions ﬁf, ¢t = 1,2, to the classical martingale problem associated to
% with initial condition y, their one-dimensional marginal distribution coincide. For
i = 1,2, let Y be the weak solution to with initial condition Y*(0) = y such that
the law of Y7 is given by ﬁf (see [47), Proposition 5.4.6 & Corollary 5.4.8]). Then, the
one-dimensional marginal distributions agree for the probability measure }T"Zy, 1=1,2,
if and only if they agree for the stochastic processes Y, i = 1,2. Next, we show that
uniqueness of the one-dimensional marginal distributions of Y, i = 1,2, holds. For this

purpose, we consider two cases.

Case 1 (yg < 0 or yo < 0). In this case, the coefficients b and & are identically zero on
a neighborhood of y, and so the unique solution, Y, to (2.4.59)) is given by Y (t) = y,
for all ¢ > 0. It is obvious that the one-dimensional marginal distributions of solutions

Yi i=1,2, to (2.4.59) are uniquely determined in this situation.

Therefore, by Proposition uniqueness in law holds for solutions to (2.4.59)
if the one-dimensional marginal distributions are uniquely determined for any initial

condition y € R4 with yg > 0 and yo > 0.

Case 2 (yg; > 0 and yo > 0). Note that any weak solution, (Y (¢)):>0, to (2.4.59)) with

initial condition Y (0) = y, satisfies the property that

Yy(t) >0 P-as., V>0 (2.4.60)
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If this were not so, then there would be an € > 0 such that Y, reached the level —e with
non-zero probability. By the preceding case, we observe that the Y; would remain at the
level —¢ for any subsequent time. By the continuity of paths, Yy would have hit —e/2
at a preceding time, and again, the preceding case would imply that Y; remained at
—e/2 for all subsequent times. But this would contradict our assumption and therefore,
holds.

Any weak solution, (Y (t)):>0, to with initial condition Y (0) = y gives a

solution, ()?(t))tzyoa

X(t) = (Yi(t — yo), Ya(t — o), -, Ya(t —y0)) ¥t > yo, (2.4.61)
to the stochastic differential equation
dX;(t) = bi(t, X (t))dt + Zd:”&,-j(t,)?(t))dwj(t), i=1,...,d, Vt>uyo,

j=1

with initial condition

X(yo) = (Y1(0),...., Ya(0)) = (y1,---,9a) € L.

Moreover, X remains in H, for all ¢ > v, by .

Therefore, the one-dimensional marginal distributions of Y are uniquely determined
if the marginal distributions of X are uniquely determined. But, the last statement
is implied if the one-dimensional marginal distributions of any solution P%% to the
martingale problem associated to %, with initial condition (s,z) € [0,00) x H, are

uniquely determined.

Combining the conclusions of the preceding two cases completes the proof of the

corollary.

Finally, we have

Proof of Theorem [2.1.10} The result follows from Theorem [2.4.3| which asserts the ex-
istence of solutions to the martingale problem associated to <%, while Proposition [2.4.5
and Corollary [2.4.7]show that the solution is unique. Therefore, the martingale problem

associated to .« is well-posed, for any initial condition (s, x) € [0, 00) x H. O
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Proof of Theorem[2.1.16. By Theorem [2.4.3] we obtain existence of weak solutions to
(2-1.4). Since each weak solution induces a probability measure on Cio ([0, 00); H) which
solves the martingale problem associated to <%, we obtain by Theorem that the
probability law of the weak solutions to is uniquely determined.

To prove the strong Markov property of weak solutions to (2.1.4)), we consider again
the time-homogeneous SDE from the proof of Corollary The same ar-
gument as the one used to conclude that the martingale problem associated to < is
well-posed can be used to conclude that the classical martingale problem associated
to the SDE (12.4.59) is well-posed. Therefore, by [47, Theorem 5.4.20], we obtain that
for any y € R4! the weak solution Y to started at y possesses the strong
Markov property, that is for any stopping time 7' of {%;(Cioc([0, 00); R¥1))}i>0, any

Borel measurable set B € Z(R%*!) and u > 0, we have
PY(Y (T + u) € B|Br(Cioc([0,00); RTTY)) = PY(Y(T +u) € BIY(T)),  (24.62)

where PY denotes the probability law of the process Y started at y. Let (s,z) €
[0,00) x H and let X* be the unique weak solution of (2.1.4) with initial condition

Xs@ (s) = x. Let P5* denote the probability law of X%, Then, by analogy with
(2.4.61f), we notice that

Yo (t) = (t s, Xi(t+8),. .., Xalt + s)) >0,

is a solution to (2.4.59)) with initial condition (s, z). Therefore, (2.4.62)) can be rewritten

in terms of the probability law of X , P%* as follows

P (X (T + u) € B|Br(Coe ([0, 00): H)) = P¥*(X (T +u) € BIX(T)),  (2.4.63)

for any stopping time T' of (%;(Cloc([0,00); H)))t>0, any Borel measurable set B €

%(H)) and u > s. Thus, X7 satisfies the strong Markov property. O

2.4.3 Matching one-dimensional marginal probability distributions

We can now complete the proof of Theorem [2.1.19] For simplicity, we denote

a(t) = E(DE (L), Vit > 0.
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First, we prove the analogue of Proposition for the It6 process (2.1.5)).

Proposition 2.4.8. Let X be the It6 process ([2.1.5), such that X (0) € H. Assume

the coefficients o and by defined by [2.1.21) and [2.1.22) (now defined on [0,00) x RY)
satisfy (2.4.1) and (2.4.2)), respectively. Then

P(X(t) e HIX(0)) =1, Vt>0. (2.4.64)

Proof. The argument is similar to the proof of Proposition We include it for

completeness. It suffices to show that, for any € > 0, we have
P(Xq4(t) € (—o0, —¢€)) = 0. (2.4.65)
Let ¢ : R — [0, 1] be the smooth cut-off function defined in the proof Proposition
1to’s rule gives
! 1
p(Xa(t)) = p(Xa(0)) +/0 {%(SW(Xd(S)) + 50ad(s)¢" (Xa(s))| ds

+ /0 04,i(5)¢' (Xa(s))dWi(s).

By taking conditional expectations in the preceding expression and using the fact that

the last term in that expression is a martingale by (2.1.18)), we obtain
B CXalt)] = B o) + B [ [ (81004 (Xa(6) + Jaaa(s)e"CXats)) ) 5]
= EfpX0)] + [ B[]l
+ SR X ()] (X)) ds
= Bl + | [ (balor X6 06u05)
+ ;Xj(s)add(s,X(s))cp”(Xd(s))> ds} .

We have by(s, X (5))¢'(X(s)) < 0 and ¢(X4(0)) = 0, while p(X4(¢)) > 0. Therefore,

E[p(X4(t))] < 0 and thus E [p(X4(¢))] = 0, which yields (2.4.65). O

Next, we have
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Proof of Theorem[Z.1.19. Let X be the unique weak solution to the mimicking stochas-
tic differential equation (2.1.4) with initial condition X (0) = X(0) = z. As in the proof
of Proposition we need to show that for any 7' > 0 and g € C§°(H), we have

E[¢(X(1)] = Elg(x(D))]. (2.4.66)

Let v € €*T%(Hr) be defined by (2.4.52), (2.4.53) and (2.4.54). Then, (2.4.57) gives

E [g()?(T))] = (0, 2). (2.4.67)

We wish to prove that (2.4.67) holds with X (T") in place of X(T). We proceed as in

the proof of Proposition m By applying It6’s rule to v(t, X¢(t)), we obtain
d d 1
dv(t, X°(t) = | ve(t, X°(1) + ) Bi(t)oa, (6, XE(8) + D i (t)vg,a; (8, X5 (1)) | dt

, — 2
i=1 i,j=1

d
+ D &ig(t)ua, (8, X)W ().
ij=1
The dW;(t)-terms in the preceding identity are square-integrable, continuous martin-

gales, because

[0,T] 5 t — vy, (t, X(¢))

are bounded processes since v,, € C([0,T] xH), and £(t) is a square-integrable, adapted

process by (2.1.18]). Therefore,

E (T, X5(T))] = v(0,2°)

T d
+E /O ol XE(0)) + D Bu0)ee (6. X(0) + 3 Jaais (B, (1, X7(0) |
i=1 ij—1

Using conditional expectations, we may rewrite the preceding identity as

T
E [o(T, X*(T))] :v(o,x5)+/0 E

d
(w, X)) + 3 Bl (1, X(0)
=1

d 1

+ ) 50 (0)v,e, (8, X5(0) || X7(1) | dt
i,j=1

T
— v(0,2°) + E [/0 (ua(t, X2 (1)) + po(t, X2 (1)) dt] .
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Since ve(t,z) + 4v(t,x) = 0, for all (¢,x) € Hy, by letting ¢ | 0 in the preceding

identity, we obtain

and this concludes the proof by (2.4.67)). O
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Chapter 3

Holder continuity for solutions to variational equations

defined by degenerate elliptic operators

3.1 Introduction

The Heston stochastic volatility process, which is widely used as an asset price model
in mathematical finance, is a paradigm for a degenerate diffusion process where the
degeneracy in the diffusion coefficient is proportional to the square root of the distance
to the boundary of the half-plane. The generator of this process with killing, called
the elliptic Heston operator, is a second-order degenerate elliptic partial differential
operator whose coefficients have linear growth in the spatial variables and where the
degeneracy in the operator symbol is proportional to the distance to the boundary of
the half-plane. With the aid of weighted Sobolev spaces, we prove supremum bounds,
a Harnack inequality, and Holder continuity near the boundary for solutions to elliptic
variational equations defined by the Heston partial differential operator.

We require the portion of the boundary I'g to be non-empty and consider a second-
order, linear elliptic differential operator, A, on ¢ which is degenerate along I'g. Sup-
pose f: & — R is a source function. In this chapter, we prove local supremum bounds
near the boundary portion, Iy, and Holder continuity up to Iy, for suitably defined

weak solutions, u : & — R, to the elliptic boundary value problem,
Au= fae on 0, u=0only, (3.1.1)

together with a boundary Harnack inequality (near I'g) for non-negative, weak solutions
to (3.1.1) when f = 0. Because A is degenerate along I'y and weighted Sobolev spaces
are required to establish existence of weak solutions to (3.1.1]), these results do not follow

from the standard theory for non-degenerate elliptic differential operators [41] [51].
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No boundary condition is prescribed in problem along I'g. Indeed, we recall
from [18] that the problem is well-posed when we seek solutions in suitable
function spaces which describe their qualitative behavior near the boundary portion
T'p: for example, continuity of derivatives up to I'g via suitable weighted Holder spaces
(by analogy with [20]) or integrability of derivatives in a neighborhood of T'y via suitable
weighted Sobolev spaces (by analogy with [50]).

Similar results were obtained by Koch in the parabolic case [50), Proposition 4.5.1,
Theorems 4.5.3 & 4.5.5]. While he used potential theory to obtain the Holder continuity
of solutions and the Harnack inequality, our method of proof is based on the Moser
iteration technique. This is not a straightforward adaptation of results [41, Theorems
8.15, 8.20, 8.22 & 8.27], due to the fact that our Sobolev spaces are weighted, so the
standard Sobolev inequality, Poincaré inequality and the John-Nirenberg inequality do
not apply. The most difficult step in making the Moser iteration technique work involves
a suitable application of the John-Nirenberg inequality. For this purpose, we use the so-
called abstract John-Nirenberg inequality, due to Bombieri and Giusti [I1, Theorem 4],
which can be applied to any topological spaces endowed with a regular Borel measure
satisfying some natural requirements. In order to verify the hypotheses of the abstract
John-Nirenberg inequality, we prove a local version of the Poincaré inequality, Corollary
suitable for our weighted spaces.

In this chapter, we set d = 2 and choose A to be the generator of the two-dimensional
Heston stochastic volatility process with killing [44], a degenerate diffusion process well
known in mathematical finance and a paradigm for a broad class of degenerate Markov
processes, driven by d-dimensional Brownian motion, and corresponding generators

which are degenerate elliptic integro-differential operators:
Av =Y (v + 2p0vg, + 020 )
= 7o Waz T 2P0 Vzy vy
(3.1.2)
—(r—q—y/2)vy — k(0 —y)vy +rv, ve CH).

Throughout this chapter, the coefficients of A are required to obey

Assumption 3.1.1 (Ellipticity condition for the coefficients of the Heston operator).
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The coefficients defining A in (3.1.2)) are constants obeying
cA£0,-1<p<1, (3.1.3)
and k> 0,9 >0,r >0, and ¢ > 0.

For clarity of exposition in this chapter, we only consider the homogeneous Dirichlet
boundary condition v = 0 on I'; in , as the modifications of our main results
to include the case of a inhomogeneous Dirichlet boundary condition, u = g on I'y for
some g : 0 UT'y — R, are straightforward and similar modifications are described in

18]

3.1.1 Summary of main results

We shall state a selection of our main results here and then refer the reader to our guide
to this chapter in §3.1.3] We commence with some mathematical preliminaries. As in
[18) §2], we shall assume that the spatial domain has the following structure throughout

this chapter:

Assumption 3.1.2 (Property of the domain near T'y). For & as in there is a

positive constant, dg, such that for all 0 < § < g,

09 := 0N (R x(0,0) =Ty x (0,6),

' N(R x(0,0)) =9y x (0,0),
where T'g € R is a finite union of open intervals.

Remark 3.1.3 (Need for the assumption on the domain near I'g). If our setting had
allowed for elliptic operators with variable coefficients, a™/, b’, ¢, with suitable regularity
and growth properties, then we could replace Assumption with the more geometric
requirement that T';  {y = 0} (C*-transverse intersection, & > 1) by making use of

C*-diffeomorphisms of H to “straighten” the boundary, 'y, near where it meets I'.

We shall consider weak solutions to (3.1.1)), so we introduce our weighted Sobolev
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spaces. For 1 < ¢ < oo, let
LI(0,1) = {u € Lioo(0) : [l Lagom) < 00}, (3.1.4)
HY (O, w) := {u e L*(0,w) : (1+1y)"?u,y"/?|Du| € L*(0,w)}, (3.1.5)
H*(0,m) :={u € L*(0,w) : (1 +)"?u, (1 +y)| Dul,y| D*u| € L*(0,w)},  (3.1.6)

where Du = (ug, uy), D*u = (Ugg, Uy, Uyz, Uyy), all derivatives of u are defined in the

sense of distributions, and

[l = [ e day, (3.17)
ullFr (g ) = /ﬁ (yIDul® + (1 + y)u?) v dady, (3.1.8)
[ullFr2 (0 ) = /ﬁ (y?|D%uf* + (1 + y)?|Dul® + (1 + y)u?) o dzdy, (3.1.9)

with weight function to : H — (0, 00) given by
w(z,y) =y e (2y) € W, (3.1.10)

where the Feller parameters, 8 and u, are defined by

B 2Kk0 2K

Bi=—5 and p:=—, (3.1.11)
o o

and 0 < v < y(A), where vy depends only on the constant coefficients of A in (3.1.2)).
We call

1
a(u,v) := 3 /ﬁ (uzvz + poUyVy + poUuLVy + JQvay) y 1 dzdy

- % / (uz + pouy) vsign(z)y o dady (3.1.12)
%

—/(aly—i—bl)uxvmd:z:dy—k/ ruvtw dedy, Yu,v € H'(O,w),
2 2

the bilinear form associated with the Heston operator, A, in (3.1.2), noting that

1 ¥
ay = e 2 and b ::’r’—q—L. (3113)
o 2 o

We shall also avail of the

Assumption 3.1.4 (Condition on the coefficients of the Heston operator). The coef-
ficients defining A in (3.1.2) have the property that by = 0 in (3.1.13]).
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Assumption [3:1.4] involves no significant loss of generality because, using a simple
affine changes of variables on R? which maps (H, 9H) onto (H, 9H) (see [18]), we can
arrange that by = 0.

The conditions ensure that y~'A is uniformly elliptic on H. Indeed,

(& +2p0a6+0%8) 2 vyl +8), V(&) € R, (3.0.14)

where
vo := min{1, (1 — p*)o?}, (3.1.15)
and vy > 0 by Assumption [3.1.1
Given T C 90, a relatively open subset, we let H} (0 U T,1w) be the closure in
HY(0,w) of C°(0'UT). Given a source function f € L?(&,w), we call a function
u € H&(ﬁ’ U T, ) a solution to the variational equation for the Heston operator with

homogeneous Dirichlet boundary condition on I'; if
a(u,v) = (f,v)r2(00), YV E H}(0 UT, ). (3.1.16)

If w € H?(O,w), we recall from [I8] that u is a solution to (3.1.1)) if and only if

u € H} (0 UTy,w) and u is a solution to (3.1.16).
We recall definition of the Koch metric, d, on H introduced by Koch in [50} p. 11],

d((z1,22) := 21 — 2| Vzi = (w5, ;) € Hyi = 1,2, (3.1.17)

- \/3/14-y2—i‘\21—22|7

The metric d is equivalent to the cycloidal metric, s, introduced by Daskalopoulos and

Hamilton. Away from z € H the function d(-, z) is smooth, while this is not true for
s(+,z) even away from z. For this reason, it will be convenient to use the metric d,

instead of s, in Chapter [3] For R > 0 and zy € &, we denote
Br(z0) ={z € 0 :d(z,20) < R}, (3.1.18)
Br(z0) ={z € H:d(z,20) < R}. (3.1.19)
Notation 3.1.5. Let R = \/M. Then, the following inclusions hold
Br(20) €T x (0,00) C O,

for any 0 < R < R and 2y € Ty. In the sequel, we assume without loss of generality

that R < 1.
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Remark 3.1.6. As in [20, Theorem I.1.1], the assumption that x,9 > 0, i.e. that the
coefficient multiplying v, in the definition of —A, is strictly positive is of crucial
importance. We can notice from that 8 > 0 and so, the weight ro € L(H).
Therefore, the volume of balls Br(zp) centered at points zp € I'g is finite with respect
to the weight 1, a fact that we use repeatedly in the arguments we employ. Clearly, if

8 were negative, then w € Ll (H), but not in L'(H).

loc

We have the following analogue of [50, Proposition 4.5.1] and [41, Theorem 8.15].

Theorem 3.1.7 (Supremum estimates at points in Tg). Let s > d + 3. Then there is
a positive constant C, depending at most on the coefficients of A, dg and s, such that
for any u € HL(O UTy,w) obeying (3.1.16) with source function f € L*(By(20), W),

we have

—-1/2
ess sup [u] < C (IBar(z0) 5 10l 2(@anz0) 1)
Br(z0) (3.1.20)

+Hf”LS(B2R(z0),y5*1)) ;
for all z0 € Ty and all R € (0, R/2].

For zp € 0 and R > 0, we denote
Mp :=ess supu(z), mp:=ess infu(z),
Br(20) Br(20)
and we let

osc u:=Mgr—mpg
Br(20)

denote the oscillation of u over the ball Br(zp). From Theorem we know that
Mp and mp are finite quantities and oscp ;) is well-defined for weak solutions u as

in Theorem B.1.7

20)

We have the following analogue of [41, Theorem 8.27 & 8.29] and [50, Theorem 4.5.5

& 4.5.6] for the boundary portion I'y.

Theorem 3.1.8 (Holder continuity up to T'g for solutions to the variational equation).
Let u € HY(OUTy,w) obey (3.1.16) and let f € L*(Bj(20), ), where s > max{2d, d +

B}. Then there is a positive constant C, depending at most on the coefficients of A, s,
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605 1 f1lLs (B (20)10) @ [[ull Loo (B (20)), and there is a constant ap € (0,1), depending at

most on s and 3, such that for zg € Ty and 0 < 4R < R, we have

osc u < CR™. (3.1.21)
Br(20)

Moreover, u is CY0-Hélder continuous in Bg(z0) and satisfies
lu(z1) — u(z2)| < Od(z1,22), Vz1,20 € B(20). (3.1.22)

Remark 3.1.9 (Comparison with the case of the boundary portion where the op-
erator is non-degenerate). The term o(v/RRp), where o(R) := 05Cyorp (z0)Us Which
appears in [41, Equation (8.72)] in the statement of [41, Theorem 8.27] does not appear
in the statement of our Theorem The reason is that unlike in [41, Equation
(8.71)], the test functions defined in the proof of Theorem do not need to involve
SUPgoNBR(z) U OF INfasnB (2 ¥ since no boundary condition is imposed on v along

Iy, in contrast to the Dirichlet boundary condition assumed for v in the proofs of [41]

Theorem 8.18 & 8.26].

We also have the following analogue of [41, Theorem 8.20] and [50, Theorem 4.5.3].

Theorem 3.1.10 (Boundary Harnack inequality near I'y). Then there is a positive

constant C, depending at most on the coefficients of A and &g, such that for any non-

negative u € H (0, w) obeying (3.1.16)) with f =0 on By(z20), we have

sup v < C inf w, (3.1.23)
Br(20) Br(20)

for all zg € Ty and 0 < 4R < max{R, dist(z,T1)}.

Previous results ([58, 59], [15], [28, 29], [36], [65]) on supremum bounds, Holder
continuity and Harnack continuity for solutions to degenerate elliptic partial differen-
tial equations do not apply in our setting, mainly because of differences between the

following principal features in the previous results and those in this chapter:

1. Structure of the differential operators, including the nature of the degeneracy and

presence of lower-order terms;
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2. Boundary conditions, where no boundary condition is specified on I'g (the “de-
generate” portion of the boundary d¢’) and a Dirichlet condition is prescribed

along I'; (the “non-degenerate” portion of the boundary 90);
3. Weights used to define weighted Sobolev spaces and weak solutions;

4. Dependency of the constants in estimates, with those appearing in our estimates
depending at most on the L4(BN ¢, w) norm (¢ > 2) of f on neighborhoods B of
boundary points, the L?(&, 1) norm of u, the geometry of I'1, and the constant

coefficients of A.

Furthermore, near I'g, the weights yto and to used in our definition of H'(&, ) are
yPe =1y and yPf—le=I#l=1y  respectively, with constants 0 < 3, 1 < co depending on
the coefficients of u,, and u, when our differential operator A is expressed in standard
divergence form and so the weight to depends on both the second and first-order parts
of A and not just on the second-order part of the differential operator, unlike in the
cited references. Note also that w is zero along I'g, where A is degenerate, but positive
along I'y, where A is non-degenerate.

Koch [50] considers certain linear elliptic and parabolic degenerate model partial dif-
ferential equations in divergence form, with a degeneracy similar to ours, and which arise
as linearizations of the porous medium equation. However, while Koch uses Sobolev
weights which are comparable to ours, his methods (which use pointwise estimates for
fundamental solutions and Moser iteration) are different from ours (which use Moser
iteration and the abstract John-Nirenberg inequality). Moreover, he does not consider
the case where 00 = I'oUT, where A is degenerate along I'g but non-degenerate along

I.

3.1.2 Extensions to degenerate operators in higher dimensions

The Heston stochastic volatility process and its associated generator serve as paradigms
for degenerate Markov processes and their degenerate elliptic generators which appear

widely in mathematical finance.
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Generalizations of the Heston process to higher-dimensional, degenerate diffusion
processes may be accommodated by extending the framework developed in this chap-
ter and we shall describe extensions in a sequel. First, the two-dimensional Heston
process has natural d-dimensional analogues [35] defined, for example, by coupling
non-degenerate (d — 1)-diffusion processes with degenerate one-dimensional processes
[16, 57, [76]. Elliptic differential operators arising in this way have time-independent,
affine coefficients but, as one can see from standard theory [41], 51, 52}, [54] and previous
work of Daskalopoulos and her collaborators [20, 21] on the porous medium equation,
we would not expect significant new difficulties to arise when extending the methods
and results of this chapter to the case of elliptic and parabolic operators in higher
dimensions and variable coefficients, depending on both spatial variables or time and

possessing suitable regularity and growth properties.

3.1.3 Brief outline of the chapter

We begin in by describing a Sobolev inequality due to H. Koch [50] and prove
a Poincaré inequality for our weighted Sobolev spaces. In §3.3] we recall the ab-
stract John-Nirenberg inequality (Theorem due to E. Bombieri and E. Giusti
[11] and justify its application (via Proposition in the setting of our weighted
Sobolev spaces. The supremum estimate near I'g for solutions to the variational equa-
tion (Theorem is proved in by adapting the Moser iteration technique
employed in the proof of [41, Theorem 8.15] to the setting of our degenerate elliptic
operators and weighted Sobolev spaces. Section [3.5| contains our proof of local Holder
continuity along Iy of solutions to the variational equation (Theorem .
The essential difference between the proof of Theorem and the proof of its classical
analogue for weak solutions to non-degenerate elliptic equations [41, Theorems 8.27 &
8.29] consists in a modification of the methods of [41], §8.6, §8.9, & §8.10] when deriving
our energy estimates , where we adapt the application of the John-Nirenberg
inequality and Poincaré inequality to our framework of weighted Sobolev spaces. Fi-

nally, in §3.6| we prove the Harnack inequality (Theorem [3.1.10]) for solutions to the
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variational equation ([3.1.16)). Appendix |Bf contains the proofs of auxiliary results em-
ployed throughout the chapter whose proofs are sufficiently technical that they would

have otherwise interrupted the logical flow of the chapter.

3.1.4 Notation and conventions

Throughout Chapter [3| we fix d = 2 and set

_2(d+p)
PE I AT (3.1.24)

for any 3 > 0, as used in Lemma[3.2.T] and the sequel. We keep track of the dependency
of many of our estimates on the dimension, d, of H = R%! x (0,00) in our analysis,
even though d = 2 in this chapter, as this will make it easier to extend our results to
partial differential equations on domains in H which preserve the key features of .

If S C H is a Borel measurable subset, we let S| denote the volume of S with
respect to the measure y” dz, and |S|, denote the volume of S with respect to the
measure v dz.

In many of our proofs, we will make use of a sequence of cutoff functions (nx)nen-
Let ¢ : R — [0,1] be a smooth function such that ¢(z) =1 for z < 0, and ¢ = 0 for
x > 1. Let zg € H and let (Ry)nen be an non-increasing sequence of positive numbers.
We define

1
Ry — Ry

nn(z) == ( (d?(zg, 2) — R%)) , VzeH,VN cN, (3.1.25)

Then, the sequence (nn)n>1 satisfies the following properties

INIBay () =1L Ny =0, (3.1.26)
(V| < SN (3.1.27)
nN_R?V_l_RJQV) .
where By, v i=H \ Bry_,(20) and C is a positive constant independent of N and

the sequence (Ry)nen. The bound in (3.1.27) can be deduced from the calculation,

1
Ry, — Ry

1

——Vd?*(20, 2).
Ry — Ry

Vin =¢' ( (d*(20,2) — R?v))

Also, we have that |Vd?(zg, 2)| < 5, for all 29, z € H. Since ¢’ is also uniformly bounded,

we obtain (3.3.7]).
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Similarly, we can construct a sequence of cutoff functions (ny)nen, when (Ry)nen

is a non-decreasing sequence of positive numbers.

3.2 Sobolev and Poincaré inequalities for weighted Sobolev spaces

We review a Sobolev inequality (Lemma[3.2.1]) due to H. Koch [50] and prove a Poincaré
inequality (Lemma for weighted Sobolev spaces.

Recall from [50, Corollary 4.3.4] that the weight y®~! defines a doubling measure,
y#~1dz on H for any 3 > 0 (see, for example, [71, Definition 1.2.6]), where dz = dady

is Lebesgue measure on H.

Lemma 3.2.1 (Weighted Sobolev inequality). [50, Lemma 4.2.4] Let p be as in (3.1.24)).

Then there is a positive constant C = C(d,p) such that
p—2
2
/ |u[PyP Y dx dy < ¢ (/ lul?yP 1 dx dy> / \Vu)?y® da dy, (3.2.1)
H H H
for any u € L? (H,yﬁfl) such that Vu € L? (H,yﬁ).

Lemma 3.2.2. [50, Lemma 4.3.3] There is a positive constant ¢, depending only on d

and B, such that, for any R > 0 and 2z € H,

¢ RY (R + /o)™ < [Br(20)|p < cR™M(R+ /yo) . (3.2.2)
Moreover, the following inclusions hold,
B, (20) € Br(20) € Br,(20), (3.2.3)
where Ry = R (R+ /o) /2000 and Ry = R (R + 2,/y0).

Remark 3.2.3. The technical assumption, 0 < R < R, in the hypotheses of Lemmas
and Corollary is used to ensure

Br(z0) € To x (0,80), Vzo € To.

This property is used in the construction of the extension operator E in Lemma |3.2.6

and therefore it is implicitly used in Lemma [3.2.4] and Corollary [3.2.5
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Lemma 3.2.4 (Poincaré inequality). Let 29 € ['g and 0 < R < R. Then there is a

positive constant C, depending on 3 and R, such that for any v € H'(Bg(z0), ), we

1/2 1/2
inf / u(z) =y’ 'dz] <C / Vu(2)|?yPdz | . (3.2.4)
ceR Br(z0) Br(20)

Corollary 3.2.5 (Poincaré inequality with scaling). There is a positive constant C,

have

depending only on B and R, such that for any v € H*(Bg(20),1) and zy € Ty, with

0<R§R, we have

. 1/2
inf / w(z) — c|*y?dz
ceR <|BR(ZO)|ﬁ—1 BR(ZO)’ =

1/2
1
< CR? / Vu(z)|?y? dz .
<|BR<zo>|ﬂ Baeny

To prove Lemma [3.2.4 and Corollary we make use of the following extension

(3.2.5)

property

Lemma 3.2.6 (Extension operator). Let 29 € Tg and0 < R < R. Let D = (a,b)x(0,c)

be a rectangle such that Br(zo) C D. Then, there exists a continuous extension
E: H' (Bg(z),w) — H'(D,w),

and there exists a positive constant C, depending on D, R and 3, such that for any

u € HY(BRr(20),10) we have

1Eullz2(pys-1) < Cllull 2@ g(20).00-1)
(DyyP=1) (Br(20),5°~1) (3.2.6)
IVEul|2(pyey < ClIVUll 285 (20),05)-
Remark 3.2.7. Without loss of generality, in the proofs of Lemmas [3.2.4] [3.2.6] and

Corollary we may assume zg = (0,0) and
Br(z0) N{(z,y) € H:z >0} € Bp(z0).

Proof of Lemma[3.2.4). Let u € HY(Bg(z0), ) and choose a,b € R and § > 0, depend-

ing only on R, such that Bgr(z9) C (a,b) x (0,d). Let £ > 1 be such that

1
2%k=F = 5 (3.2.7)
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and denote by D = (a,b) x (0,kd). Let & = Eu be the extension of u to D given by
Lemma Assuming that (3.2.4)) holds for 4, we obtain that it holds for u also in

the following way,

1/2 12
inf / u(z —chB_ldz < inf (/ u(z —czyﬁ_ldz>
cER( BR(ZO)‘ ( ) ‘ ceR D| ( ) ‘

1/2
<c (/ Va2 2P dz)
D

1/2
C (/ Vu(z)[%y” dz) .
Br(20)

In the first and last inequalities above, we made use of (3.2.6]).

IN

Therefore, we may assume v € H'(D,w). Our goal is to prove that holds
for u € H'(D,w). By [18, Corollary A.14], we may assume without loss of generality
that u € C1(D). Let ¢ € R and let v = u — c¢. Then, by the mean value theorem, we
have for any y € (0,6) and z € (a,b)

y
v(z,y) = v(z, ky) + /ky vy(z, t)dt.

Squaring both sides of the preceding equation and integrating in y with respect to

y
/ vy(x,t)dt
ky

yP~1 dy, we obtain

2

1 9 é
/0 o(z, y) Py~ dy < 2 /0 o(x, ky)Py" " dy + 2 /0 y?dy. (3.2.8)

By applying the change of variable i/ = ky, we see that
0 ko
/ o(z, ky)|*y’ " dy = k‘ﬂ/ lo(z, )27 dy'. (3.2.9)
0 0
Also, we have for 8 # 1,
51 ry 2 )
/ / vy(z, t)dt| y? 1 dy :/
0 ky 0
1 6 rky
< Ilﬁl/ / vy (0, 1) |27 dt ‘y—ﬁﬂ — (ky)_BJrl‘ P ldy  (3.2.10)
_ o Jy

1+ k—A+L ko
<ot [ ey dy
1—=8] Jo

2
Yy dy

Y
/ vy (x, )PP 2 at
ky
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For B =1, we have

51 ry
/ / vy(x,t)dt
0 ky

y 2
/ vy (, )t 224t | dy
ky

2 &
dy—/
0

</6/ky v, (z,t)|*tdt 1o kY g (3.2.11)
—= Yy I g y e
0 Jy Y

ké

< 5logk/0 oy (2, y) [Py dy.

Define a positive constant Cy = Co(8,9) by Cy = 24 1J|rf:g|+1 when 8 # 1, and Cy =

20 log k when = 1. By combining equations ({3.2.8]), (3.2.9), (3.2.10) and (3.2.11), we

obtain
) ) L ko ) L k& )
/0 oz, 9)[2y* 1 dy < 2 /0 oz, 9)[2% dy + Co /0 oy (2, ) 2° dy
) ko
§2/<:5/0 \v(x,y)\Qy’“der?kﬁ/é vz, y)[*y? dy
o ko ) ﬂd
+ Cp ; vy (2, y)[“y” dy.

Recall that & > 1 was chosen such that (3.2.7)) is satisfied. Therefore, by integrating

also in z, there exists C' = C(f,d) such that

b k&
/ / o, )Py dy da
a 0
b ko ) L b ké )
gc//(S oz, )Py dydmw//O oy (2, 1)y dy da.

Since v = u — ¢, we have
inf/ lu(z,y) — >y’ dy dx
ceR D

b ké
< Cinf / / u(z,y) — c|*y’ " dyde + C / Juy (2, )|y’ dy da.
cE a Jé D

The rectangle D' := [a,b] X [d, kd] is contained in {y > 0}, so the weighted measure
y?~ 1 dy dzx is equivalent to the Lebesgue measure dydz. The rectangle D’ is a convex
domain and so we may apply the classical Poincaré inequality [41, Equation (7.45)] to
give

ceR

b ks b ks
inf/ / lu(z,y) — />y’ Ldydx < C/ / \Vu(z, y) [y’ dy da.
a Jo a Jo

Combining the last two inequalities yields (3.2.4)). 0
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Remark 3.2.8. Koch states a weighted Poincaré inequality on the half-space [50)
Lemma 4.4.4], with weight yP—le—rr(%:20) wwhere £ is a positive constant, zg is a fixed
point in H, and p(z, 20) is equivalent to d?(z, zg), in the sense that there exists a constant
¢ > 0 such that

1
Cd2(Z,Zo) < P(Z> ZO) < ECF(Z,ZO),VZ € H.

The proof of this result is long and technical. So, rather than use this result to prove
a weighted Poincaré inequality on a ball using an extension principle, we give a much

simpler proof for balls and weights y®~! and y?.

Remark 3.2.9. When 3 > 1, from [I8, Lemma A.1 & A.4] we have that H}(0,w) =

H(0UTy, ). Then, as in [2, Theorem 6.30], it might be true that the stronger version

of (3.2.4) holds

1/2 1/2
/ lu(z)]?y’tdz )] <C / Vu(2) 2P dz | . (3.2.12)
Br(z20) BRr(20)

Remark 3.2.10 (Scaling under Koch metric). We have the following scaling property

R 2
Br, (20) = <R;> Br,(20), VRi,Rs > 0. (3.2.13)

This property follows from the observation that, for any z € H, using the fact that

20 = (0,0), we have
2|

y+ 2]

2
d ((g;) z,zo> g;d(z,zo),

and so, d(z,z0) < Ry if and only if d<(R1/R2)Qz,zo> < Ry, from which (3.2.13)

d(z,2) =

Therefore, for any z € H,

follows.

Notice that (3.2.13)) does not hold if zg = (yo, z0) with yo > 0.

Proof of Corollary[3.2.5. Let 0 < R < R and define v by rescaling

u(z) =wv ((Z)Z) ,  Vz € Bpg(20).
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The rescaling map v defined by
— AN
z — | =z,
R
maps & into a domain & satisfying the same assumptions as & in Assumption
Then, using (3.2.13)), ¥ maps Br(zp) into BR(Z()), where

By(z0) = {z € 0 :d(z, 2) < R}.

By applying Lemma to v on B &(z0), there is a positive constant C, depending
only on R and 3, such that (3.2.4) holds. By changing variables, we obtain

B 2(51)/ R\* /R\28
inf | = u— |y’ tdady < <> <) / Vul?yP dzdy.
ceR (R> Br(z0) | | R R Br(20) v

(3.2.14)

By Assumption [3.1.2] we have
1 _
5[Br(20)ls < [Br(20)ls < [Br(20)ls, VO <R <R,
and using Lemma we rewrite (3.2.14)) in the following form

B _ 1 1Bx
inf’R(zﬁﬁ’ﬁl/ it — cf2yPLdady < <R> |R<20>|6/ VultyP dedy,
ceR |Br(20)[5-1 /B (20) R |Br(20)ls JBj(20)

from which (3.2.5) follows immediately. O]

3.3 John-Nirenberg inequality

In this section we recall the abstract John-Nirenberg inequality (Theorem due
to E. Bombieri and E. Giusti [II] and, in particular, provide a justification — via
Proposition [3.3.2] — that its hypotheses hold in the setting of the problems described
in

We restrict the statement of [I1, Theorem 4] to the framework of our problems, so
in [IT, Theorem 4] we choose H to be the topological space and du = y®~'dxdy to be
the regular positive Borel measure on H. Let S, 0 < r < 1 be a family of non-empty

open sets in H such that
Ss C S, VO<s<r<l,

(3.3.1)
0 < |Sr|g=1 < o0, Vo <r<1.
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Let w be a measurable positive function on S7. For ¢ # 0 and 0 < r < 1, we denote by

1 5 1/t
[wler = lw|'y"dady |,
7 |ST‘B71 Sy

’w‘oo,r = sup w,

r

|| ooy = igrfw.
We now recall the

Theorem 3.3.1 (Abstract John-Nirenberg Inequality). [71, Theorem 4] Let 0 < g, 91 <

oo and w be a measurable positive function on Sy such that
[w|gy,1 < 0o and |wlg, 1 > 0.

Suppose there exist constants v > 0, 0 < t* < %min{ﬁo,ﬁl} and Q@ > 0 such that for

all0<s<r<1and0<t<t",

|w]go,s < [Q(r — 8)]7 7 )y,

(3.3.2)
[l g, = [Qr — )T/ o] .
Assume further that
. 1 _
4= 2, B o e ey <o @
Then, we have
‘Sl‘ﬁ—l 1/90+1/91 )

w90 < <|50,3 1) exp {2Q * (A+1/t*)} |w|_g, 1, (3.3.4)

where co s a constant depending only on v, but not on Q, Vg, V1,t*, A and 5.

We now provide a justification that the hypotheses of Theorem [3.3.1] hold in the

setting of the problems discussed in this chapter.

Proposition 3.3.2 (Application of Theorem [3.3.1)). Let zy € Ty and 0 < 4R < R.
Let S, = B(2+T)R(Z()), for all 0 < r < 1. Let ¥g,%1 be as in Theorem and set

t* = %min{ﬂg, Y1}. Then, there exist positive constants @ and v, independent of R and

20, such that (3.3.2) holds for any bounded positive function w on S1 which satisfies the

energy estimate (3.5.11)) or (3.6.3)
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Proof of Proposition[3.53.3. We begin by proving the first inequality in by ap-
plying Moser iteration finitely many times. The second inequality in can be
proved by a similar technique. We outline the proof when w satisfies the energy esti-
mate , but the proof applies as well to positive bounded functions w satisfying
the energy estimate .

First, we consider the special case when ¥y and t satisfy the requirement: There

exists an integer N* > 1 such that ¥y can be written as

o =1 (g)N* . (3.3.5)

Let 0 < s <r <1 andset Ry = (2+r)R. We denote
[e.e]
1
=3
k=1
and we let

1

N
R% = ((2 +r)? = (r—s5)2) Ck) R?), VYN=1,...,N*. (3.3.6)
k=1

We observe that (2 4+ s)R < Ry < Ry—1 < (2+ r)R. Let (nn)nen be a sequence
of non-negative, smooth cutoff functions as constructed in §1.5, by choosing Ry as in
(B:3.8). Then, (B1.29) becomes

CN?
V| < a7 (3.3.7)

Let Py ::t(p/Q)N7 for N=1,...,N*, anday =py—1,foral N=0,... , N*—1.
We set
1/pn
I(N) := </ |w|pNyﬂ_1dxdy> , (3.3.8)
By

where we denote for simplicity By = Bpg,(20). From our hypothesis, w satisfies

(13.5.11), that is,

”nw(a—‘rl)/QHLp(H,yﬁ*l) < Co(R, a)||w(a+1)/2||L2( (339)

suppn,yf=1)

where

1/p
Co(R, a) = [C]1 + af]ETV/? (1 + ||\/37vny\%w(ﬂ)) , (3.3.10)
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and ¢ and C' are positive constants, independent of u, & and n. We choose @ = any—1

and n = ny in (3.3.9), so the definition ([3.3.8) gives us, for all N > 1,
I(N) < Cy(R, 7,5, N)I(N — 1), (3.3.11)

where

1/pN
Co(Bor5,V) 1= (Clox—a DSV (14 [Vl o

From Lemma we have y < CR? on By, where C is a positive constant indepen-

dent of R and N. Using the bound (3.3.7)), we obtain

O N4 1/pN
W)

Cr(Rrs, V) = (Clawa ) S0/ (2

By iterating inequality (3.3.11)), we obtain

I(N7) < Ca(R, 1, 5)1(0), (3.3.12)
where )
- 41 ard p—2 _4]Y/pN
Ca(R,r,s) = [ [Cpf VR0 )71 (3.3.13)
N=1

Next, we prove the

Claim 3.3.3. There are positive constants Q and -y, independent of N*, R,r and s,

such that

Cs(R, 7, 5) < (Q(r — s))Y/ P01/t gp=a(1/90=1/1), (3.3.14)

Proof of Claim[3.3.3 We can rewrite the expression (3.3.13)) for Co(R,r, s) to obtain

*

Co(R,1,8) = H [Ct£+1R_2(r _ S)_ﬂ 1/pn [<p>N1 N‘ﬂ 1/pn

2
N=1

2

9

}Z%*_l 1/pN (Cp>2%*_1 N/pN

< [Ct5+1R_2(r —s5)?

where we used in the last line that N* < C(p/2)", for some positive constant C

depending only on p. Thus,

N1 NN,
Ca(R,7,5) < |CIF R (r — s)—ﬂzm fow (cg)&“ o (3.3.15)

Recall that

ZmN: 11—_wx and ZN N = 211__‘%:*.
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Hence, (3.3.5]) leads to the identities

1 1 1 1
—=—+—(-——) and ——7 -——.
szv p— 2< ) ZPN )<t 190>
Therefore, inequality (3.3.14)) becomes

Co(Ryrys) < [R-2(r — 5172 (55) (Cﬁ%*‘lg)”(;”(i_;o) | (3.3.16)

-1
which is equivalent to (3.3.14]) with the choice of the constants Q = (C’ﬂg+1p/ 2) and
v =8/(p — 2). This completes the proof of Claim [3.3.3] O

By Assumption [3.1.2] we have

1
3 Btayrls-1 < [Beiayrls-1 < [Batorls-1,

where the constant, a, can be either r or s. Using the fact that 4/(p—2) = 2(d+5—1),

Lemma yields
B ’1/190
—(2+s JBl5-1 > /0o +1/t g4/ (p=2)(1/00—1/t)

|B(2+7‘)R‘
for some positive constant C' < 1. Therefore, inequality (3.3.16)) becomes

B i 1/90
Co(R, 7, 5) < C~V/P0 /1 (Q(r — s)7) /P01t —’ RS (3.3.17)
B24r) R|571

From our hypothesis, ¢t < t* < 1Jy/2, we have
3(1/99 — 1/t) < =1/90 — 1/t < 1/99 — 1/t,

and so, for a new positive constant @, the inequality (3.3.17)) leads to

B S
Co(R,m,8) < (Q(r — s)7)/ 70~ 1/t ﬂ (3.3.18)
B24r R|g 1
By employing the inequalities (3.3.18)) and (3.3.12)) and the definition (3.3.8]) of I(V),
we obtain
1/90
</ |w|ﬂ°yﬁ_1d:cdy> < I(N7)
Boigr
/0
ooy Bersrlst
< (Q(r—s)7)/"° —I(O)
|B(2+T)R|ﬂ 1

B | 1/t
= (Q(r — 5)Y )1/190 1/t 1P (2+s)RIg— 1 (/ |w|tyﬂ—1dxdy> :
|B(2+T)R|ﬁ 1 \/Bainr
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from which we readily obtain the first inequality in (3.3.2)), in the special case where ¢
and g satisfy (3.3.5)) for some integer N* > 1.
Next, we show that the first inequality in (3.3.2)) holds for any ¢ € (0,¢*). For this

purpose, we choose an integer N* > 1 such that

(@) <o)

We denote ¥ =t (p/ 2)N " and we apply the previous analysis to ¢ and ¥, which now

satisfy (3.3.5)), to give

925 < (Q(r — )7 |y

"UJ tr-

Using Hoélder’s inequality with p = 9§/9¢ > 1, we find that

|w]go,s < |w

95,89

and so
[w]gg,s < (Q(r — s)7)/707H ),

<(Q(r — 5)7)%(1/%—1#) w

t,r-

Notice that 29§/p < ¥ < 9 and 0 < t < ¥y/2. Then,

. . _ N* _
P VL e ViR VL Tk VPR e T, ) Al WP 2
=100 — 1/t ~ p/205— 1/t — (2/p N1 = p—2

Consequently, we define @ to be QP/(P=2) if Q < 1, and we leave Q unchanged if Q > 1

and, setting ¥ := yp/(p — 2), the preceding estimate for |w|y, s becomes

~ ~ 1/19()—1/75
[wlop.s < (Qlr = 5)7) e,
which is precisely the first inequality in (3.3.2)). O

3.4 Supremum estimates near the boundary portion where the oper-

ator is degenerate

In this section, we prove Theorem that is, local boundedness up to I'y for solutions,
u, to the variational equation (3.1.16)). Our choice of test functions when applying

Moser iteration follows that employed in the proof of [41, Theorem 8.15]. However, the
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choice of test functions used in the proof of the classical local supremum estimates [41]
Theorem 8.17] is not suitable in our case because the test functions in are not
required to satisfy a homogeneous Dirichlet boundary condition along I'y. In addition,
the method of deriving the energy estimate is slightly different from [41, Theorem
8.18] because, instead of using the classical Sobolev inequalities [41, Theorem 7.10], w

use Lemma [3.2.11

Proof of Theorem [3.1.7. We organize the proof in several steps.

Step 1 (Energy estimates). Let a > 1 and let n € C}(H) be a non-negative cutoff

function with support in Bog(z0). We define
A= [ fll L (suppmys—1) - (3.4.1)
We will apply the following calculations in Steps [l and [2| to two choices of w, namely,
wi=u"+ Aand w:=u" + A (3.4.2)
For concreteness, we will illustrate our calculations with the choice
w=u"+ A,
but they apply equally well to the choice w = u~ + A. Our goal is to prove the following

Claim 3.4.1 (Energy estimate). There is a positive constant C, depending only on the
coefficients of the Heston operator (3.1.2) and 0y, and there is a positive constant &,

depending only on d, 8 and s, such that

1/p
< / I [Py” ‘ld:vdy>
0

1/2
< (€t (VT2 + lswomal 5 7) ([ wey o)
supp 7
(3.4.3)

Proof of Claim[3.4.1. We fix k € N. Similarly to the proof of [41, Theorem 8.15], we

consider the functions Hy : R — [0, 00),

/

0, t< A,

Hy(t) :== ¢ o — Ao, A<t<k, (3.4.4)

ak® Yt — k) + Hi(k), t>k.
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and

Gi(t) = /0 \HL(s) [2ds. (3.4.5)

Then,

v = Gp(w)n? (3.4.6)

is a valid test function in HZ (& UTg, ) in (3.1.12), by Lemma Because u €
H} (0 UTy, ) obeys (3.1.16) for all v € H} (0 UTy, ) with support in Bag(zg), then

the expression (3.1.12)) for a(u,v) yields

0= a(u,v) = (f,v)r2(6,m)

5 / (uxvx + poUzVy + POUYVL + U2uyvy) yro dxdy
%

— / (alux + % (ugy + pouy) sign(:n)) vy dedy + /
%

(ru— f)vw dzdy.
%

Since Vv = G} (w)n*Vw + 2Gx(w)nVn and the fact that Gg(w) = 0 when w < A, that

is, u™ = 0, the preceding identity becomes

5 / (w2 + 2pow,wy, + OQwZ) G (w)n*yvo dxdy
o

- / (Wene + poweny + powyn. + o>wyny) Gr(w)nyto dzdy
%

+ / [alwx + g (wg + powy) sign(x)} G (w)n*yro dzdy
%

- / (rut = f) G, (w)n*ro dady.
%

For convenience, we write the identity as Iy = Is + I3+ I;. From the uniform ellipticity

(3.1.14)), we obtain for I; that

c / Vel22Gly(w)yw dady < T,
17

where C' is a positive constant depending only on the coefficients of the Heston operator.
We notice that 0 < Gg(w) < wG)(w) because G} (w) = |Hj(w)|?* is a non-decreasing

function. Using this fact and that w > A, we obtain for the integrals Iy, I3, I4 that
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there exists a positive constant C, depending only on the Heston coefficients, such that
1
L] <5 /ﬁ (lwen[wne| + polwen|lwny| + polwyn| lwn.| + o wynllwn,|) G (w)yr drdy
2 2~ C 2 2~/
<< [ [VuPrPGiwm ddy+ < [ [wf90PGLw)ym dody,
17 17
2 2 v C 2 12 vt
Bl <= [ Vol Gilwimdsdy+ 2 [ (Pl Gyw)ym dady,
|I4] < T‘/ w? G (w)n*ro drdy —i—/ | flwGY (w)n*ro dedy
17 174
<C (1 + |fA|> w2 Gl (w)n*ro dady,
17

where € > 0. Choosing ¢ small enough, we obtain for a positive constant C, depending

on the coefficients of the Heston operator and ¢y, that

| [wulrGy )P dsdy < © [ | Pl tasay

(3.4.7)
+/ (7 + y|Vn|?) wQGL(w)yﬁldxdy] -
17

Hélder’s inequality applied to the conjugate pair (s, s*) gives

/ 772|£|w2G2(w)y51dxdy
17

Jik . : i
< / Fyﬂ_ldxdy </ |772w2G§c(w)\5 yﬁ_ldmdy> ,
supp n 6

and thus, by definition (3.4.1)) of A,

1/s*
AHQEwQGz(w)yﬁ‘ldwdyS (/ﬁ!nszGk(w)\s yﬁ‘ldxdy> : (3.4.8)

We need to justify first that the right hand side in (3.4.8]) is finite. First, we notice that

the following identities hold

VHg(w)* = [Vl | H(w)]* = [Vw[* Gl (w),
(3.4.9)
wH;,(w)? = [w* G, (w),

From the hypothesis s > d + 8 in Theorem [3.1.7], we observe that 2 < 2s* < p, so we
may apply the interpolation inequality [41, Inequality (7.10)]. For any ¢ € (0,1), we

have

lnwH (w)|| 2o 1,451y < elnwHi(w) | Logeys—) + € InwHi ()] 2eys-1), (3.4.10)
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where
p(s* —1)

§=¢(p,s) == b 25 (3.4.11)

We notice that |Hj (w)| < ak®! and nw € H' (€, w) has compact support in Bog(zp).
Therefore, we may apply Lemma to build an extension w of nw to a rectangle D
containing Bog(zp). Lemma shows that w € LP(D,y%~1), which implies that

[l H, (w)| o e y5-1) < 00,

and so, the right hand side of (3.4.8) is finite.
Inequalities (3.4.7) and (3.4.8]), together with the identities (3.4.9) yield

1/s*
([ oty s oy

+/ﬁ (772 +y!Vn\2) \wH,’f(w)lzyﬁldxdy} )

/ 2|V Hy(w)|2yPdady < C
17

(3.4.12)

From Lemma [3.2.1] we obtain
(p—2)/2
/\nHk(w)\pyﬂ_ldxdyS (/ 772]Hk(w)\2yﬂ_ld:cdy) /\V(nHk(w))IQyﬁdmdy
17 178 17

) ) ) (p—2)/2
<2 ( /ﬁ 02 Hy(w) 2y~ dxdy)

([ 1Vl dndy 479 )PP oy )
17

(3.4.13)
Using Hy(w) < wHj (w) and inequality (3.4.12) in (3.4.13)), we see that
/ [nHi.(w) [Py~ dady
2
2 102, 8—1 o2
<C <1+ H\/WnHLoo(H)) (/ jwHj (w) |y~ dxdy) (3.4.14)
supp 7

(p—2)/2 ) 1/s*
+</ !ané(w)lzyﬂldxdy> (/ [nwHy, (w)|** yﬁldmdy) :
17 17

where C' is a positive constant depending on the Heston coefficients and §y. We rewrite

the estimate for nwH; (w) in (3.4.10)) in the form

1/s*
(/ﬁme]/C(w)Ps yﬁ—ldxdy> = Han;C(w)H%QS*(H’yB,l)

< 2% I Hp(w) |2y g o1y + 262 mw H (w)] B g -1
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Applying the preceding inequality in (3.4.14]), we obtain

IO 511y < C (1 IV i) ) 100 s
T Ol o1 %
2 H —2¢ H 2
&”|lnw k(w)”Lp(H,yﬂ—l) +e 2 lnw k(w)Hm(H,yﬁ—l) -
By recombining terms in the preceding inequality, we find that
) g0 om0y < €O+ €2 (14 1VTT i) ) T B0 ity
O B ()72, e [0 ()2 -1
To estimate the last term in the preceding inequality, we apply Young’s inequality with

the conjugate pair of exponents, (p/2,p/(p — 2)), to give
2
Hané(w)HLp(H,yﬂ—l)H??wHk( )HLz Hyﬁ 1
2
< 2 ) g o1y + P I H ) 1
Combining the previous two inequalities yields
(| Hy (w )HLp (H,yB-1) < CEQHUU)HI@( )HLp (H,yB-1) +C (1 + (52 +572£)> X

(1+ VIV i) IR g1

Employing the definition (3.4.4) of Hy(w) gives 0 < wH, (w) < aHp(w) 4+ aA%, and so

(3.4.15)

[ oty sy < ol | [ oty sy + [ 1gaspy o]
< pal? | [ 1wty dady + supp a4
and thus, applying inequality yields
[ APy dady < Cl2ae? (InH(w)lfy ey + |supprls-147)
+C (14 (24+e7%)) (14 IVIIlE iy ) 0@ -1
By choosing ¢ = 1/(24/C(2a)P) and taking p-th order roots, we obtain

1/p

2 1/p / 2 -1 12
+ (1 + ”\/@VUHL«;(H)) (/ |lwH; (w)] Yo dmdy) .
supp 1)
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Because the positive constants C and ¢ are independent of k, we may take limit as k

goes to 0o, in the preceding inequality, and we obtain

1/p
</ [ (w® — A%)Py*~ ldxdy) < (Ca)tt' x (Isuppn\};/flA"‘

1p ) 1/2
+ (1 + H\@V??H%oo(m)> </ w*y” 1d9€dy> ) ;
suppn

which yields

1/p
([ lm iy tasay) < (€t (Jsuppulyra”

9 1/p 9 1 1/2
suppn

1 1/2
AY = < / A%B—ldxdy)
| supp 77|5—1 suppn

1 1/2
< </ w2ayﬁ_1dxdy) .
|Supp 77|5—1 suppn

Combining the last two inequalities gives (3.4.3). This completes the proof of Claim
B.41l O

We also have

Step 2 (Moser iteration). Let (nny)nen be a sequence of non-negative, smooth cutoff
functions as constructed in §1.5, by choosing Ry := R (1 + 1/(N + 1)). Then, we have

eN3

= (3.4.16)

InlBy =1, anlBg  =0,[Van| <

where ¢ is a positive constant independent of R and N. For each N > 0, we set
py = 2(p/2)N and ay = (p/2)V. Let Ay := 11l L (supp iy wo-1) and wy = ut + Ay

or wy :=u~ + Apy. Define

IV = ( [

Applying the energy estimate (3.4.3) with w = wy, @ = ay_1, and n = ny, we obtain

1/pN
IwNIPNyB_ldwdy> :

N

for all N > 1 that
I(N) < Co(R,N)I(N — 1), (3.4.17)
where we denote

2/pN-1

Co(R, N) 1= [Clan-1[PEP5 (I1/gVnn 72 ) + | supp w7 17)
(3.4.18)
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In the preceding equality, C is a positive constant depending only on the Heston coef-
ficients and dg. By Assumption and Lemma there is a constant ¢ > 0 such
that

¢IRY (P~ < |Byg|s_q < cRYPY), (3.4.19)

where we used the fact that 2(d + 8 — 1) = 4/(p — 2) by (3.1.24)). Moreover, by Lemma
there is a positive constants ¢ such that 0 < y < cR? on Bg(20), for all R > 0.

Consequently, we have
2 1/p—1/2 _
H\/??VUN||L/£(H) + ]suppnN\ﬁ/_pl / < ¢NO/PR 2/p7

and so,

Co(R,N) < [C|aN_1|N6]p(5+1)/PN R™2/pN

Therefore,

T[] Co(R.N) < [ [Clan—i|NO]PEDP p2/px
N>1 N>1

< CLR22N=1V/eN — 0y R72/(0-2)

< Cl\B2R!Ei/12, (by (.4.19)),

where (1 is a positive constant depending only on the Heston coefficients, §p and s. By

iterating (|3.4.17)), we obtain

N>1
which gives us
ess supw = I(+o00) < Cy </ ]wlzyﬁ_ldxdy) ) (3.4.20)
Br Barls-1 JB,p

Applying (3.4.20) to both choices of w in (3.4.2) yields

1 1/2
<‘:BZI%|/31 /:B ’U‘Qyﬂldxdy> + ||f||LS(BgR,y5—1)] ,
- 2R

1 1/2
<‘:BZI%|/31 /:B ’U‘Qyﬂldxdy> + ||f||LS(BgR,yﬂ—1)] .
- 2R

Adding the two estimates gives us the supremum estimate ((3.1.20]) .

ess supu’ < Cy
Br

ess supu~ < (4
Br
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Remark 3.4.2 (Relaxation of the Assumption on O near I'g). We notice that the
conditions on ¢ embodied in Assumption which are used in obtaining ([3.4.19)),
can be relaxed to the following weaker condition. For zy € T, there exist positive

constants ¢y and Ry such that for all 0 < R < Ry we have

¢ 'Br(20)l5-1 < IBr(20)|3-1 < co/Br(20)|5-1- (3.4.21)

In this case, the constant C' appearing in the supremum estimate ([3.1.20)) will depend

in addition on ¢y and Ry.

Example 3.4.3 (A domain & which does not satisfy condition (3.4.21))). This con-
struction is in the spirit of [47, Example 4.2.17] (Lebesgue’s thorn). Let zy = (0,0),
Ry =1/N and ay = N—2/B. We set

Cn ={(z,y) € Bn(20) : 0 <y < anz},
Cy ={(z,y) € Bn41(20) : 0 <y < anz},

and define & by
0= ] cn\Cy.

N=1
From Lemma there exist positive constants ¢; < cg, independent of R and N,

such that
Cn\Cy C {(z,y) e H: Ry 1 <z <ceaR3,0<y< anz},

which give us

02R2
|ICN\Cylp-1 </ / yPVdyda

N+1
o C - <R2(1+6) _R2(1+B))
N 6(6 4 1) N N+1
C 20148

< BN

C
S W|BN(ZO)’5*1’( by Lemma [3.2.2])

Recall By (20) = 0 NBn(20). Then, we obtain

o0 o0 1

By (20)lp-1 = Y [Ck\Cils—1 < C|Bn(z0)|5-1 Z 72
k=N k=
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which implies

B _
7’ N(zo)‘ﬁ L — 0, as N — oo,

IBn(20)]5-1
and so, we obtain a contradiction with the left hand side of ((3.4.21)).

3.5 Holder continuity for solutions to the variational equation

In this section, we prove Theorem that is, local Holder continuity on a neighbor-
hood of T'y for solutions u to the variational equation . We consider separately
the case of the interior boundary points zy € I'g and of the “corner points” zy € [oNT;.
(While ['gN Ty is a set of geometric corner points for the domain &, the lesson of [20] is
that the solution, u, along I'y behaves, in many respects, just as it does in the interior
of 0.) The proof of the second case, for corner points, is easier than the proof of the
first case as it does not require an application of the John-Nirenberg inequality. The
essential difference between the proof of Theorem and the proof of its classical
analogue for weak solutions to non-degenerate elliptic equations [4I, Theorems 8.27
& 8.29] consists in a modification of the methods of [41], §8.6, §8.9, & §8.10] when
deriving our energy estimates , where we adapt the application of the John-
Nirenberg inequality and Poincaré inequality to our framework of weighted Sobolev
spaces. Moreover, because the balls defined by the Koch metric, d, do not have good
scaling properties unless they are centered at a point zy € OH (see Remark , the
Moser iteration technique applies only to such balls. Therefore, the estimate
holds only for points zy € OH, and in order to obtain the full Holder continuity of
solutions ([3.1.22)), we need to apply a rescaling argument which is outlined in the last
steps of the arguments below. Therefore, boundary Holder continuity does not follow
in the same way as in [41].

We now proceed to the proof of Theorem first in for the case of points
zg € I'g and then in for points zg € TN T.
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3.5.1 Local Holder continuity on a neighborhood of the degenerate

boundary interior

We commence with the

Proof of Theorem [3.1.8 for points in T'g. Let zp € I'gp and let R be small enough such
that

Bur(20) = Bar(20), (3.5.1)
that is, 4R < min{R, dist(zo, 1)}, where dist(-, -) is the distance function on H defined
by the Koch metric, d. Moreover, R is chosen small enough such that for all z; =

(zi,yi) € Br(20), i = 1,2, we have

0<yi,y2 <1land 0<|z — 22f],d(21, 22) < 1. (3.5.2)

Choose
q € (d+5,s), (3.5.3)
5 €(0,2), (3.5.4)

and define k(R) > 0 by

k=k(R):= HfHLq(BzLR(Zo),m) + (Img| + [Mg|) R (3.5.5)

The remaining steps in the proof will apply to the following choices of functions w

defined on By4pr(2o),
w=u—myr+ k(R) and w = Myp — u+ k(R). (3.5.6)

If mp = Mp =0or myp = Myr = 0, then automatically u = 0 on B4r(zp) and (3.1.21])
and (3.1.22)) hold on Byg(2p). Therefore, without loss of generality, we may assume

mar # 0 or Myg # 0, (3.5.7)
and mp # 0 or Mz # 0. The last assumption implies that
k(R) # 0, (3.5.8)

by (3.5.5). Therefore, we notice that both choices of w in (3.5.6)) are bounded, positive

functions.
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Step 1 (Energy estimate for w). Let n € C3(H) be a non-negative cutoff function with

suppn C Byg. For any a € R, a # —1, let
v = n*w®. (3.5.9)
Then, v is a valid test function in H}(& UT)y, w) by Lemma Let
H(w) = w®t/2, (3.5.10)
and notice that Theorem implies that H(w) is a positive, bounded function, so

the following operations are justified. The goal in this step is to prove

Claim 3.5.1 (Energy estimate). There exists a positive constant C depending only on
the Heston coefficients and dy, and there is a positive constant & depending only on 3

and q, such that

1 H ()] o 51,5-1) < ColR )| H ()| 2 (supp g1 (3.5.11)

where the constant Co(R, «) is defined by

1/p
Co(R,a) = [C1L+all 7 (14 | VoVl eg) - (3.5.12)

and the constant € is given by

plg" —1)

§=E&(p,q) = P

(3.5.13)

where ¢* is the conjugate exponent for q in (3.5.3), that is, 1/q+ 1/q¢* = 1.

The estimate (3.5.11)) will be used in Moser iteration.

Substituting the choice ([3.5.9) of v in (3.1.12) and using Vv = an?w® 'Vw +
2nVnw® gives

Q

(f? )L2ﬁm

2a1

% w + 2powwy, + o?w ) yro dxdy

wam;D + powgny + powyn; + o wyny) yro dady

alwz (wy + pow,) sign(x )] n*wyro dedy + / (ru — f) n*w® dady.
H
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Using (3.5.10) to compute VH(w) = aTHw(O‘_l)/QVw, we can rewrite the preceding

equation as

0= 1 _2,_0;‘2 / Uk [(%H(w)Q +2p00, H(w)0, H (w) + 028yH(w)2] yto dxdy
H
2
+ 1+a / nH(w) [axH(w)Tlx + po 0, H(w)ny + podyH (w)n, + 028yH(w)77y] yo dady
H
2

T 1+a /H [alaxH(w) + g (O H(w) + pod, H(w)) sign(x)} n*H (w)yro dedy

+ / (rw + r(map — k) — f) *w*w dzdy.
H

Using the uniform ellipticity property (3.1.14]), Holder’s inequality, the fact that w > k
by (3.5.6), and the preceding identity, we see that there is a positive constant C,

depending only on the coefficients of the Heston operator, such that
/HUQVH(w)IQym dxdy < C|1+ qf [/H (772 + y\Vn\Q) w* o dzdy
# [P 4= maluro dody
and hence
LV P dady < ol | [+l 9aR) o dedy

k _
+/ 772|f+r( ? m4R)|wa+1mdxdy]
H

(3.5.14)

By Holder’s inequality, we have
f?—F T(k?-— Tn4]{)

k— q 1/q
/ n? |f 4 mar)) w¥ o dady < (/ 10 d:z:dy)
H k supp 7 k

X (/ ‘nw(o‘ﬂ)/?‘ mdxdy) .
H

(3.5.15)

From our definition of k in (3.5.5)), there is a positive constant C, depending only on

(Lo,

From inequalities (3.5.14)), (3.5.15) and (3.5.16)), we obtain

do and [, such that

f‘+-T(k — My4R)
k

q 1/q
(i da:dy) <C. (3.5.16)

/nQyVH(w)Pym dzdy < C|1+ U (n* + y|Vn|?) w* o dady
H H

2q* 1/q"
+ (/H ’nw(aﬂ)ﬂ} t’oda:dy) ,

(3.5.17)
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where the positive constant C' depends on the Heston coefficients and &g. We apply
Lemma to nH(w) and we have

(p—2)/2
[ttty < ([ oplory tasay) " [ 9Py dsdy
H H H
(p—2)/2
< ( / n2|H<w>|2yﬁ—1dmy)
H
>< ( / \Vn|2\H<w>Qyﬂdafdy+n2|VH<w>|2yﬁdxdy) |
H
Combining the preceding inequality with (3.5.17)), we obtain
[ inm )y tdzay
H
(p—2)/2
<l 1ol ( / n2\H<w>|2yﬁ—1dxdy)
H

1/q*
X [/H (n* + y|Vn|?) |H (w)|*y? ' dzdy + (/H InH (w)|* yﬁldxdy) ] :
and thus
/ InH (w)[Py®*dzdy
H

p/2
<O+l (U IVIValep) ([ oGP ey
supp”

(p—2)/2 i 1/q*
L Ot al ( /H n2|H<w>|2yﬂ—1dxdy) ( /H I (w) yﬂ—ldxdy> .
(3.5.18)

From our assumption (3.5.3) that ¢ > d+ /3, we have 2 < 2¢* < p. Since ¢ < oo implies

q* > 1, while ¢ > d 4+ g implies
¢ <(d+p)/(d+p-1), (3.5.19)

and thus 2¢* < p by (3.1.24). Hence, we may apply the interpolation inequality [41]

Inequality (7.10)], for any € > 0, to give
1nH (w)l| p20% y5-1) < €llnH (W)l| ogegs—r) + & InH W)l 251,451,
where £ is given by (3.5.13]). We need the preceding inequality in the form
2¢*, B—1 e 2
([t -tasay) ™ =1t e

< 282 | H ()2 g -1 + 220 H () 2y -1
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Applying the preceding inequality in (3.5.18]), we obtain
InE () -1y < CI ] (14 IVTT0 ) ) I @I -1y
L+ allnHW)E2, X
(210 ()1 5,451 + & X IMH @) 2 g1 ) -
Recombining terms, we see that
InH W) 501
< C[1+«f (1 + 572§> (1 + ”\/gvnH%OO(H)> | H (w )HLQ (supp7,y5—1)

-2
1L+ ale2InH ()2, gy I () 252 5 -

To bound the last term in the preceding inequality, we apply Young’s inequality with
the conjugate exponents (p/2,p/(p — 2)) to give

lnH (w)][3 InH (w)|7,, H H(w)|l7 EH H(w)|l7

" Lr(Hys—) " Ty < Sl Ly, N @ys-
Thus,

H77H(w)||§p(H7y671) < C[1+ a\52|\77H( )HLP(H yB—1
+Cl1+af (14 (2 +272) (1+ ||¢Wn|rLoo(H)) LT

By choosing ¢ = 1/ (2C|1 + a|)*/? and taking roots of order p, we find that

1/p
InH ()| o1y < 111+ al]EP (14 GV wqe) I () 2gauppys

which is equivalent to (3.5.11]) and (3.5.12]).

Step 2 (Moser iteration with negative power). In this step we apply the Moser iteration
technique starting with a suitable a = ap < —1 in (3.5.11]) with functions w in (3.4.2)).

Let (nn)nen be the sequence of cut-off functions considered in Step [2| in the proof of

Theorem Let ap < —1, po := ag + 1, pn := po(p/2)Y, where p is as in ([3.1.24),

and ay + 1 := py. We notice that py — —oo as N increases. Set

(L,

By applying (3.5.11) with w = v — myr + k, @« = ay_1, and n = ny, we obtain for all
N >1,

1/p )
</H n%w(ochJrl)p/QyBldxdy) < C’O(R7 a) </H ‘an(CVN—1+1)/2‘ yﬁldxdy>

1/pn
\w|pNyﬁ1dxdy> .

1/2
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Since (ay-1+1)p/2 = py and ay—1 +1 = py_1, we can write the preceding inequality

1/p 1/2
</ |w|pNy5_1dxdy> < CO(R, Oé) </ ’w|pN1yﬁ—1dxdy> )
By By-1

Taking roots of order p/px and noticing that p/py < 0, we obtain

as

I(N) > Cy(R, N)I(N — 1), (3.5.20)

where C1(R, N) is given by

1/pNn
CL(R,N) = [l [P (14 i ¥mle)

and C' is a positive constant, independent of R and N, depending only on the Heston
coefficients and dg. From Lemma the bound on |Vny| and the fact that 0 < R < 1,
we obtain

L+ VYVl g gy < eN°R72,

for some positive constant ¢, and so, we may assume without loss of generality

Ci(R,N) = [Clpn_1|N®)ETD/PN p2/en, (3.5.21)

We notice that

H C1(R,N) = CoR* (IPol(P=2))
N>1

where Cy depends at most on the Heston coefficients, dy and ¢. From (3.4.19)), we know
that for some constant ¢ > 0 we have [Bag|s_; > cRY®~2). Thus,

H Ci(R,N) > Cz\B2R|é/_|IiO|-
N>1

By iterating (3.5.20)), we obtain I(—00) > I(0) [Ty, Co(R, N), which gives us
1 1/po
infw = I(—o00) > Cy (/ |w\p°y*81da;dy> ) (3.5.22)
B IB2rls-1 /B,
Step 3 (Application of Theorem [3.3.1). The purpose of this step is to show that we
may apply Theorem m to w with S, = Ba1,yp(20), 0 <7 < 1, and Jg = ¥ = 1.
By Proposition we find that w satisfies the inequalities (3.3.2)), so it remains to
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show that (3.3.3) holds for logw. For A as defined in (3.3.3)) and S, = B(y,g, writing

B(24r)r in place of B(a4,)r(20) for brevity, we have by Holder’s inequality that
. 1/2
A< sup inf / |log w — ¢|*yPtdady ,
o<r<1ceR \ [B(ayr)rls—1 Ba1mR

and so, Corollary gives us

1/2

1

A< s (@R (o [ [ViguPydedy) . (3529)
0<r<t Be+r)rls /By

Let n € C}(H) be a non-negative cutoff function such that n = 1 on Botrr,n=0
outside Byg, and |Vn| < C/R?. We choose v = n*/w and notice that v € H}(€'UT, tv)
by Lemma With this choice of v as a test function in the variational equation

(13.1.12) satisfied by wu, we obtain
(f7 U)U(ﬁ’,m) = CL('LL, U)

1 772
L g, o) oy
n 2
+ / w [wane + po(wany + wyne) + o wyny] yro dzdy
%

2 sign(x
- /ﬁ % [’ygz()<w$ + powy) + arwy | yro dedy

+ / rnzﬁm dxdy.
Vi w

Using the uniform ellipticity property and Holder’s inequality, we obtain there is a

positive constant C, depending only on the Heston coefficients and &y, such that

/ n*|V log w|?yPdxdy < C/ (IVn)? + n?)yPdady + C/ nZWyﬁ_lda:dy.
o o o
(3.5.24)
From Lemma assumption (3.5.1)) and the fact that |Vn| < C/R?, we have
[ 492+ oy dady < CRR0)
o

(3.5.25)
<C(2+rR)™ 1B(2+r)rls-

Using the definition (3.5.5)) of k(R) and Holder’s inequality, we obtain

Py : 2(d+8-1)/q*
T s fll s-1 R q
/ﬁ v "f“Lq(B4R,y6—1) H ‘ L1(Byg,yP~1)

L o(d+8-1
+ 25 R (d+5-1),
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and thus

/ WQMyﬂfldxdy e ( R2Ad+8-1)/a" R2<d+ﬁf1>76) , (3.5.26)
o

w

The condition ¢ > d + 8 implies
2d+8-1)/q" —2(d+ B) > —4, (3.5.27)
since 1/q + 1/¢* = 1. Also, because ¢ is chosen in (0, 2), we obviously have
—2- 5> 4. (3.5.28)

Using (3.5.27) and (3.5.28), and 0 < R < R, we obtain in inequality ([3.5.26]) that there

is a positive constant C, depending only on the Heston coefficients and &g, such that

/ 772 |f|+ |u|y*3’1dxdy <C(2+ T)R)Q(d+6)_4
o w (3.5.29)

<c(2+rRrR™ 1B21r)Rls-

In the last inequality, we used Lemma and (3.5.1). By combining equations

(3.5.24), (3.5.25) and (3.5.29)), we obtain

[ IVloguPytsdy < C (@24 NR) Bl
Bieinr

Then, it immediately follows that the right hand side of (3.5.23) is finite, and so, (3.3.3))

holds for log w.

Step 4 (Proof of inequality (3.1.21])). In the previous step we showed that Theorem
[3:37] applies to w with 99 =91 = 1. Hence, there is a constant C' > 0, depending only
on the coefficients of the Heston operator and dy, but independent of R and w, such

that
1 8—1 1 1 -1 -
—_— |lwly” dxdy | < C | =—— lw|™ y” " drdy . (3.5.30)
B2rls-1 JBog B2rls-1 /B,
From ([3.5.22)), we obtain

1
infw = I(—o0) > C </ \w]yﬁldscdy) . (3.5.31)
Br B2rls-1 /By
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We now choose w = u — mygr + k and w = Myp — u + k in (3.5.31)). By adding the

following two inequalities

mp — myr + k(R) = glf(u —myg + k(R))
R
C

> / (u—myr + k(R))yﬁ_ld:Udy
1B2rls—1 /Bor

> C/ (u — mag)y” " dady,
|B2R|B_1 BQR

M4R — MR + ]‘J(R) = én%(leR —u+ k(R))
2
C 51

> = (Myp — u+ Ek(R))y” " dzxdy
|B2R|B_1 BQR

> ¢ [ (i =)y dudy,
1Bar[s—1 JB,p

we obtain

(Myp — magr) — (Mg —mg) + 2k(R) > C (Mg — myR) .

Without loss of generality, we may assume C' < 1 (if not, we can make C' smaller on the
right-hand side of the preceding inequality). Therefore, the the preceding inequality

can be rewritten in the form

osc <C osc +2k(R). (3.5.32)
Br(z0) B4r(20)

Because ¢ € (d + 8,s) by (3.5.3) and f € L*(Bg(z0),w) for some s > d + S, by

hypothesis in Theorem |3.1.8, Holder’s inequality yields

s—4q
| fll s B pe-1)-

2(d+p—1
1F | LB g1y < CRAHID

Let

V= min{5,2(d+,3—1)ss_qq}.

Consequently, from (3.5.5), we see that there is a positive constant C, depending only
on d = 2 and (3, such that

K(R) < C (Ifle(@ o) + Imal + [ Mg|) B. (3.5.33)

Therefore, by applying [41, Lemma 8.23] to (3.5.32)) and using the inequality (3.5.33]),

we find that there is a positive constant C' depending on the coefficients of the Heston
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operator, the constant o, || f||LsB,ys-1), and |[ullL~ ), and there is a constant ag €

(0,1), depending on s, d and 3, such that

osc < CR%°,
Br(z0)

which is the desired inequality (3.1.21)).
Step 5 (Proof of inequality (3.1.22])). We prove the estimate (3.1.22)) for points 21, 29 €

Br(20), where R satisfies

0 < 8R < min{R, dist(20,T1)}, (3.5.34)

where dist(-, -) is the distance function defined by the Koch metric. Condition
implies that for any z € Br(zp), we have that holds for Br(z), and so estimate
applies on such balls. In particular, for any points (z1,1), (z1,0), (22,0) €
BRr(20), the estimate gives

(@1, 91) = u(z1,0)| < Cd (w1, 1), (1,0))*7,

(3.5.35)
|u(z1,0) — u(z2,0)] < Cd((x1,0), (z2,0))*.
Notice that we have the simple identities
d ((w1,1), (21,0)) = Vy1/2,
(3.5.36)
d((fL‘l,O),(.’EQ,O)) - |CC1 —$2|7
and so, we can rewrite (3.5.35)) in the form
u(z1,y1) — u(a1,0)] < Clyr|*/?,
(3.5.37)

lu(z1,0) — u(wzs,0)| < Clay — za|*/2.

The idea of inequality (3.1.22)) the proof now follows [20, Corollary 1.9.7 & Theorem
1.9.8], but with certain differences which we outline for clarity. Let ¢ € (0,1/8) be fixed
and consider the following two cases.

Case 3 (Pairs of points in Br(29) obeying (3.5.38))). Let z; = (zi,yi) € Br(z0),17 =1, 2,
be such that

21 = 2all > e(yf +43). (3.5.38)
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From , we can find a positive constant C' such that
|z1 — 29| < Cd(z1, 22). (3.5.39)
Using our current assumption , in addition to , we also have
d(z1,22) > eCy?, i=1,2,
and so, there exists a positive constant C, depending on €, such that

yi < Cd(z1, )2, i=1,2. (3.5.40)

Denote z, = (z;,0), for i = 1,2. Applying (3.5.39)) and (3.5.40) in (3.5.37), we obtain

lu(zi) — u(z)| < Cd(z1, 22)%0/4, i =1,2,

lu(21) — u(z5)| < Cd(z1, 22)*2,
and hence, using (3.5.2)),

uz1) = u(z2)| < Julz1) —u(21)] + |u(z1) — w(2)] + |u(z2) — u(z)]

< Cd(z1, 20)™/%,
that is,
lu(z1) — u(z)| < Cd(z1, 29)*0/4. (3.5.41)

This concludes the proof of Case|3| Therefore, the estimate (3.1.22]) holds in the special

case ||z1 — 22| > e(y? + v3).

Case 4 (Pairs of points in Bg(z9) obeying (3.5.42))). Now we consider points z; =

(z4,9:i) € Br(20), i = 1,2, such that

21 = 2ol < e(yf + v3)- (3.5.42)

By scaling and using interior Holder estimates [41, Theorem 8.22], we show that the
estimate (3.1.22)) also holds in this case. We proceed by analogy with the proofs of [20)]

Theorems 1.9.1-4 & Corollary 1.9.7]. We may assume without loss of generality that

1>ys >y and x3 = 0. (3.5.43)
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We consider the function v defined by rescaling,

wa) = v ().

The rescaling z + 2’ = z/a maps By, /5(22) into By/s(23). From our assumptions

(13.5.2), (3.5.42)) and the choice of £ € (0,1/8), we see that
121 — 25| < 2ey < 1/4, (3.5.44)

and so z| € By 4(z3). From [I8, Theorem 5.10], we know that u € H (By(20)), and

so by direct calculation, we conclude that v(2’) solves
Av(2') = af(az') on By (z),

where we define
1
(Av)(7) = §y’ (Vaz + 2p0Vzy + 0vyy) (2) + (r — q — ay' /2)v,(2)
+ k(9 — ay)vy (") — arv(2’).

On the ball By /g(zé), the operator A is uniformly elliptic with bounded coefficients.
Moreover, there is a positive constant M, depending only on the coefficients of the He-
ston operator, such that for all a € (0,1), M is a uniform bound on the L>(B5(23))-
norm of the coefficients of A. For brevity, we denote f,(2') := af(az’). By [41, The-
orem 8.22], there are positive constants C' and ag € (0,1), depending only on the

L*>(Bj j2(25))-bounds of the coefficients, such that

osc v < CR™ (||U||Lo<>(31/2(zg)) + ||fa||LS(B1/2(z§))> , VRe(0,1/2], (3.5.45)
IBR(ZQ)

because s was assumed to satisfy s > 2d (recall that d = 2). We see that

[olloe (B, o (z)) = lullLoe(B,, o(22)) < el oo (B 5 (20)) (3.5.46)

where we used the fact that By, »(z2) € Bg(20), which in turn follows from the re-

quirement 4R < R in the hypotheses of Theorem We also have

M allZe(, a0 :/B oy [F @ = / f(2)*a* " dz,
1/2(Z2

By, 2(22)
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that is,

allismyacn = [ IFGIFa (35.47)
392/2(22)

Using the fact that ya/2 <y < 3ya/2 for all z = (z,y) € B, /5(22), assumption (3.5.2),
and the fact that s > d+ 3 by hypothesis of Theorem the estimate ([3.5.47)) yields

1 fallzs B, o0z < C | (2)[*y"dz, (3.5.48)
Bx(20)

where C' is a positive constant depending only on 3. Applying (3.5.46) and (3.5.48)) in

(13.5.45)) yields

5 ¥ < OB (lull i @peon + Il @acon) YR € (0,1/2];
R\(Z5

In particular, because 27 € B /9(25), we see that
[v(21) —v(23)] < Cllz] — 2,

where the positive constant C' now depends on ||ul[poc(B, 5 (z)) 20d || f]|Ls(B, 5 (20),w)- BY

rescaling back, we obtain

u(z1) — u(zo)| < C (W) y (3.5.49)

Using the following sequence of inequalities,

|21 — 22|1/y3 | 2| Vyr +y2 + |71 — 22|
d(z1,22) — Y3 |21 — 22|
_ |z -

z
szH\/yl +y2 + |21 — 22|
2

< 2e\/y1 + y2 + [|21 — 22|
<1 (by (3.5.2) and e € (0,1/8)),

we therefore have
|21 — 22|

< d(z1,20)"% (3.5.50)
Y2

Consequently, (3.5.49) gives us
lu(21) — u(ze)| < Cd(z1, 22)*/2.

This concludes the proof of Case [4]
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By combining Cases 3| and |4, we find that, for any 21,z € Br(z0) and R satisfying

(13.5.1)), (3.5.2)) and (3.5.34]) (see Remark regarding the expressions for the upper
bound for R in the hypotheses of Theorem [3.1.8]), we have

lu(z1) — u(z2)| < Cd(z1,22)°, (3.5.51)

where C and «g are constants with the dependencies stated in Theorem Notice
that this inequality is not as strong as the inequality (3.1.22)), which holds for all z1, zo €
Bg(z0). To obtain the latter inequality, we need to examine the Holder continuity at

corner points, zg € o N T';, which we carry out in the proof below. In Remark
we then explain how (3.1.22) is obtained.

3.5.2 Holder continuity on neighborhoods of corner points

We conclude this section with the

Proof of Theorem for points in To N T1. Suppose zg € ToNT;. We assume
holds.

First, we describe a reduction argument to non-positive source functions f. Since f
is assumed to satisfy the hypotheses of [I8, Theorem 3.16], we notice that the positive
fT and negative f~ parts of f obey also these hypotheses. Then, let v and u~ be
the unique solutions in H{ (&' U T, ) to the variational equation with source
functions fT and f~, respectively. By linearity of a(-,v), for any v € H(0 U T, )
fixed, v = v —u~ is the unique solution to the variational equation with source
function f given by [I8, Theorem 3.16]. Moreover, we notice that by our hypothesis we
have

[T € L*(Bg(20), ),

and so, it is sufficient to prove ([3.1.21)) and the Hélder continuity property for u* and

u .

Therefore, without loss of generality, we may assume

f<0on 0O, (3.5.52)
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which implies that
u<0on O, (3.5.53)

by [I8, Corollary 3.19]. From the standard theory of non-degenerate elliptic partial
differential equations (for example, [41, Theorem 8.30]), we know u € C(Bg(z0) N H)
and u = 0 along the piece of the boundary OB (29) NI'1. Therefore, we have
SO

Our proof uses the same method as in the case of points in I'y but a choice of w which
is different from that of , and a choice of test function v which is different from
that of . Moreover, we do not need to appeal to the John-Nirenberg inequality.
Since 29 € Tp N Ty, however, it is important to make the distinction between Br(z0)
and Bg(z0). Let k = k(R) be defined as in (3.5.5). Therefore, we now define w on
Bar(20) by

u(z) — myr, 2 € Bar(z0) N Byr(20),
w(z) :=k+ (3.5.54)

—MyR, z € Bar(20)\Bar(20).

Recall that we may assume without loss of generality that (3.5.7) and (3.5.8) hold. In

the present situation, since Myr = 0, (3.5.7) becomes
M4aRr 7& 0. (3.5.55)

Let a < 0 such that a # —1, and let 5 be a smooth cutoff function such that suppn C
B4r(20). We now define
vi=n" (w* = (k — m4g)®) . (3.5.56)

We notice that v is a well-defined function, for any choice of o € R, by (3.5.55)) and
(3.5.8). By Lemma v € HY(O UTg, 1) is a valid test function in (3.1.12). We

observe that the function w obeys
kE<w<k—msr on Byp(2),
and, because « is non-positive, we also have

k> w®* > (k—myr)® on Byg(20).
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Steps [1] and [2] in the the proof of Theorem [3.1.§| for points in I’ apply to our current

choice of w for points in I'o N 'y, with the only exception that we now define I(N) by

1) = ( /

Therefore, we obtain the analogue of (3.5.22]),

1/Py
|w|pNy51d:1cdy> .

Ry

1 1/po
infw=1I(—o00) >C (/ \w|p°y5_1dxdy>
Br IBarlg—1 JB,p

1 1/po
>C / lw[Poy?~Ldady .
‘IB%ZR|5—1 B2r\B2r

Recall that w = k — myr > —mypr on the set Bor\Bog. Using

infw=k+mpr — myg,
Br

and combining the preceding inequalities yields

Bor\B 0\ Ypo
E(R) 4+ mpg —mur > C <‘2R\2R|ﬁl> (—mug)

Barls—1
> C(_m4R)a
that is,
]{J(R) + mp — MyR > C(—m4R). (3557)

Indeed, (3.5.57) follows because Assumption implies

IBar\Bar|s—1

>1/2.
Bar|g—1 /

We rewrite (3.5.57]), using 0sCB () ¥ = —MR, as

osc u<C osc u+k(R),
Br(20) B4r(20)

where C' € (0,1) is a constant independent of R. Just as in the proof of Theorem
for the case of points in I'g, we can apply [41, Lemma 8.23] to conclude that (3.1.21])

holds for some positive constants C' and «ag € (0, 1), that is,
lu(z) — u(z0)| < Cd(z,20)*, Vze Br(20). (3.5.58)

To establish ([3.1.22)), we proceed as in the proof of Theorem for the case of points

in I'g. In order to adapt the argument for the case of points in I'g to points in [oNT;, we
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need analogues of the inequalities ([3.5.35)) to hold in a neighborhood in & of zy € ToNT;.
Given these analogues of the inequalities (3.5.35|), we can apply the same argument as
used in the Step [p| of the the proof of Theorem for the case of points in Iy, but

instead of applying [41, Theorem 8.22], we now apply [41, Theorem 8.27]. As before,
we assume (|3.5.34)) holds.

Without loss of generality, we may assume zp = (0,0). Let z; = (21,0), 22 = (22,0),
23 = (z,y) and z4 = (z,0) be points in Br(zp). We may assume x5 > x1 and z, x1, 2 >
0. We claim that the following analogues of the inequalities (3.5.35|) (for points zy € T'g)

hold for points zg € g N Ty,
[u(z1) — u(z2)| < Cd(z1, 22)™,
(3.5.59)
u(z3) — u(z4)| < Cd(z3,24)",
for some positive constant C' and «g € (0,1). For the first inequality in (3.5.59), we

consider two cases.

Case 1 (Points z1, 22 € Bg(20) obeying (3.5.60)). If
d(z1,22) > %max {d(z1,20),d(22,20)}, (3.5.60)
then we have
u(21) = u(z2)] < [u(z1) = u(z0)] + [u(z2) — u(z0)]
< Cd(z1,20)* + Cd(z2,20)* (by (8.5.58))

< Cd(zl,ZQ)aO (by 3.5.60),
and so the first inequality in (3.5.59)) holds in this case.

Case 2 (Points 21, 20 € Br(z9) obeying (3.5.61)). If
1
d(z1,22) < g max {d(z1, 20),d(22,20)}, (3.5.61)

then, by applying (3.5.51)) on the ball B 3(22) with R = d(z1, 22), we again obtain the
first inequality in (3.5.59)).

Next, we consider the second inequality in (3.5.59)). By (3.5.36]), we have
d(z3,24) = \/y/2 and d(z4, 20) = V. (3.5.62)

As in the proof of the first inequality in (3.5.59)), we consider two possible cases.
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Case 1 (Points 23,24 € Br(20) obeying (3.5.63)). If

x > 32y, (3.5.63)

then, by (3.5.62), we have d(z3, z4) < 1/8d(24, 29). We may apply (3.5.51)) on the ball
Bj(2z4) with R = d(z3, 24), and we obtain the second inequality in (3.5.59).

Case 2 (Points z3, 24 € Br(29) obeying (3.5.64))). If
x < 32y, (3.5.64)

then we have d(z4,29) < 8d(z3,24). Also, a direct calculation gives us d(zs3,z9) <

Cd(z3, 2z4), for some positive constant C.By , we obtain
[u(zs) — u(za)| < u(zs) — u(zo)| + fu(z1) — u(z0)
< Cd(z3,20)* + Cd(z4, 20)*
< COd(z3,24)*,

and we obtain the second inequality in ([3.5.59)).

The proof of (3.5.59)) is complete. We may now conclude, by applying the same
argument as in Step [b| of the the proof of Theorem for the case of points in I'y,

that for any z1, 2z € Bg(20), we have
lu(z1) — u(z2)| < Cd(z1,22)°, (3.5.65)

where C' and «q are constants satisfying the dependencies stated in Theorem [3.1.8

This completes the proof of Theorem for the case of points in I'g N T'y. O

Remark 3.5.2 (Completion of the proof of Theorem for the case of points in I'g).

Notice that the inequality is slightly weaker than , because it applies to
points z1,z2 € Bg(20), where R is required to satisfy assumptions , and
(3-5.34), instead of allowing R = R. To obtain (3.1.22), all we need to notice is that
and imply that u is C}, -Holder continuous on B (20)N (f‘o x [0, R]),
where R is small enough so that it satisfies assumptions , and . For
y > R, A is a uniformly elliptic operator with bounded coefficients, so [41, Theorems

8.22 & 8.29] apply and we see that u is Hélder continuous on By(z) N {y > R}.
Therefore, the inequality (3.1.22)) follows.
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Remark 3.5.3. Holder continuity of solutions does not follow by a Sobolev embedding-
type theorem for weighted spaces, analogous to [41], Corollary 7.11], not even for func-

tions u € H?(0,w). For example, for any 8 > 2, let p € (0, (8 — 2)/2) and
u(z,y) =y *, V(z,y) €O.

Then, u € H*(0,w), but u ¢ C%,.(0 UTYy), for any « € [0, 1].

Remark 3.5.4 (Relaxation of the Assumption on O near I'g). As in Remark

we notice that in the proof of Theorem for the case of points in Ty N Ty,

we can weaken the conditions on ¢ embodied in Assumption to an “interior and

exterior sphere condition”. That is, for points zy € I'o N T, it is enough to assume

that there exist positive constants cg and Ry such that for all 0 < R < Ry we have, in

addition to (|3.4.21)), that

¢y ' Br(z0)|5-1 < Br(20)\Br(20)[g-1 < co|Br(20)]g-1- (3.5.66)
3.6 Harnack inequality

In this section, we prove Theorem that is, the Harnack inequality for solutions
u € H&(ﬁ U g, ) to the variational equation (3.1.16)). The key differences from the
proof of the classical Harnack inequality for weak solutions to non-degenerate elliptic
equations [41, Theorem 8.20] are essentially those which we already outlined in §3.5|
and the proof follows the same pattern as that of Theorem [3.1.8] Therefore, we only
point out the major steps in the proof of Theorem [3.1.10] as the details were explained

in the preceding sections. We now proceed to the

Proof of Theorem [3.1.1(} For clarity, we split the proof into principal steps.

Step 1 (Energy estimates). Let n € C3(H) be a non-negative cutoff function with

support in B4r(20). Let € > 0 and
w=mu+e. (3.6.1)
We consider a € R, o # —1. We set H(w) = w(®T1/2 and

v = n*w (3.6.2)
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Then, v € H{(6 UTo,w) is a valid test function in (3.1.12) by Lemma [B.2.4 By

applying the same arguments as in the proofs of Theorem [3.1.7] and Theorem [3.1.8] we

obtain the following analogous energy estimate to (3.4.3|) and (3.5.11]), respectively

( / |nH<w>|py51da:dy> "

1/p (3.6.3)
n

where C is independent of €, and depends only on the coefficients of the Heston operator

and 50 .

Step 2 (Moser iteration). By applying Moser iteration as described in the proofs of
Theorem for a > 0, and of Theorem for a < 0, we obtain

1/2
1
sup w<C / wy’Ldady ,
Br(zo0) IB2r(20)|-1 Bar(20)

—-1/2
1
inf w>C™! / w2y dady ,
Br(z0) <|B2R(ZO)|5—1 Bar(z0)

where C satisfies the same dependencies as the constant in (3.6.3]).

(3.6.4)

Step 3 (Application of Theorem . In this step, we verify that w satisfies the
requirements of the abstract John-Nirenberg inequality (Theorem with ¥g =
v = 2 with S, = Ba4,)r, 0 < r < 1. By Proposition we obtain that w satisfies
condition of Theorem m Therefore, it remains to verify condition ,

which follows in precisely the same way as in the proof of Theorem [3.1.8

Step 4 (Proof of (3.1.23])). Because w satisfies the conditions of Theorem by the

preceding step, there is a positive constant C, independent of ¢, such that

| 1/2
2, B—1
_ wy” " dady
(\Bm(zo)!ﬂl /Bm(zo) >

) —1/2
<C / w™2yP N dady .
<|B2R(Z0)’,3—1 Bor(zo0)

Thus, combining inequalities (3.6.4) and (3.6.5) and recalling that w = u+ ¢, we obtain

(3.6.5)

sup (u+¢) <C inf (u+¢),
Br(20) Br(z0)
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for all € > 0. Taking the limit as € | 0, we obtain the desired Harnack inequality

(B.1.23).

This completes the proof. O
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Chapter 4

Stochastic representation of solutions

4.1 Introduction

Since its discovery by Mark Kac [46], inspired in turn by the doctoral dissertation of
Richard Feynman [33], the Feynman-Kac (or stochastic representation) formula has
provided a link between probability theory and partial differential equations which has
steadily deepened and developed during the intervening years. Moreover, judging by
continuing interest in its applications to mathematical finance [48] and mathematical
physics [56l, 67], including non-linear parabolic equations [17], this trend shows no
sign of abating. However, while stochastic representation formulae for solutions to
linear, second-order elliptic and parabolic boundary and obstacle problems are well
established when the generator, — A, of the Markov stochastic process is strictly elliptic
[8, 40}, [47, 61] in the sense of [41l, p. 31], the literature is far less complete when A is
degenerate elliptic, that is, only has a non-negative definite characteristic form in the
sense of [62], and its coefficients are unbounded.

In this chapter, we prove stochastic representation formulae for solutions to an

elliptic boundary value problem,
Au=f on O, (4.1.1)
and an elliptic obstacle problem,
min{Au — f,u—¢} =0 on 0, (4.1.2)
respectively, subject to a partial Dirichlet boundary condition,

u=g¢g onl}j. (4.1.3)
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Here, f : & — R is a source function, the function g : I'y — R prescribes a Dirichlet
boundary condition along I'y and ¢ : & UI'y — R is an obstacle function which is

compatible with g in the sense that
Y <g only, (4.1.4)

while A is the Heston operator in (3.1.2), and its coefficients satisfy Assumption
We require I'g to be non-empty throughout this chapter as, otherwise, if &' is bounded,
then standard results apply [8, 40, 47, [61]. However, an additional boundary condition

is not necessarily prescribed along I'g. Rather, we shall see that our stochastic repre-

sentation formulae will provide the unique solutions to (4.1.1]) or (4.1.2)), together with

, when we seek solutions which are suitably smooth up to the boundary portion
T'p, a property which is guaranteed when the solutions lie in certain weighted Holder
spaces (by analogy with [20]), or replace the boundary condition with the full
Dirichlet condition,

u=g ond0, (4.1.5)

in which case the solutions are not guaranteed to be any more than continuous up to

I'p and ¥ : & — R is now required to be compatible with g in the sense that,
Y <g ondl. (4.1.6)

We also prove stochastic representation formulae for solutions to a parabolic termi-

nal/boundary value problem,
—uw+Au=f onQ@, (4.1.7)
and a parabolic obstacle problem,
min{—u; + Au — f,u —¥} =0 on Q, (4.1.8)
respectively, subject to the partial terminal /boundary condition,
u=g ondQ. (4.1.9)
Here, we define @ := (0,7') x 0, where 0 < T' < oo, and define

9'Q := (0, T) x T U{T} x (CUT}), (4.1.10)
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to be a subset of the parabolic boundary of ), and now assume given a source function
f:@Q — R, a Dirichlet boundary data function g : 3'@Q — R, and an obstacle function

Y : QUO'Q — R which is compatible with g in the sense that,
Y <g ondQ. (4.1.11)

Just as in the elliptic case, we shall either consider solutions which are suitably smooth
up to (0,7) x 'y, but impose no explicit Dirichlet boundary condition along (0,7") x T',
or replace the boundary condition in (4.1.9)) with the full Dirichlet condition

u=g onoQ, (4.1.12)

where

0Q := (0,T) x 00 U{T} x O, (4.1.13)

is the full parabolic boundary of (), in which case the solutions are not guaranteed to
be any more than continuous up to (0,7") x I'g and ¢ : Q UOQ — R is now compatible
with ¢ in the sense that

P <g ondQ. (4.1.14)

Before giving a detailed account of our main results, we summarize a few applications.

4.1.1 Applications

In mathematical finance, a solution, u, to the elliptic obstacle problem , ,
when f = 0, can be interpreted as the value function for a perpetual American-style
option with payoff function given by the obstacle function, 1, while a solution, u,
to the corresponding parabolic obstacle problem , , when f = 0, can be
interpreted as the value function for a finite-maturity American-style option with payoff
function given by a terminal condition function, h = ¢(7T,-) : ¢ — R, which typically
coincides on {T'} x O with the obstacle function, ¥. For example, in the case of an
American-style put option, one chooses ¥ (z,y) = (E —e*)", V(z,y) € O, where E > 0
is a positive constant. While solutions to , do not have an immediate

interpretation in mathematical finance, a solution, u, to the corresponding parabolic

terminal /boundary value problem (4.1.7), (4.1.9), when f = 0, can be interpreted as
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the value function for a Furopean-style option with payoff function given by the terminal
condition function, h. For example, in the case of a European-style put option, one
chooses h(z,y) = (E —e”)*, V(x,y) € 0.

Stochastic representation formulae underly Monte Carlo methods of numerical com-
putation of value functions for option pricing in mathematical finance [42]. As is well-
known to practitioners, the question of Monte Carlo simulation of solutions to the
Heston stochastic differential equation is especially delicate [3, 55]. We hope that our

work sheds further light on these issues.

4.1.2 Summary of main results

Recall the definition of the Heston operator, — A, in , and the Assumption on
its coefficients. In this chapter, we allow ¢, r € R, and we impose additional conditions,
such as ¢ > 0, r > 0, or r > 0, depending on the problem under consideration. E|

Let (Q,.%#,F,Q) be a filtered probability space satisfying the usual conditions,
where F = {%(s)}s>0 is the Q-completion of the natural filtration of (W (s))s>0, and
(W(s))s>0 is a standard Brownian motion with values in R%. For 0 <t < T < oo, let
J; 1 denote the set of F-stopping times with values in [t, T]. Let (X5%¥(s), Y (5))s>t
denote a continuous version of the strong solution to the Heston stochastic differential

equation

dX(s) = <r —q— Yés)

> ds+ /Y (s)dWi(s), s>t
dY (s) = k (0 — Y (5)) ds + o1/Y (5) (del(s) /1 p2 sz(s)) , s>t (41.15)
(X(8),Y(t) = (z,9),
which exists by Corollary where the coefficients are as in Assumption For
brevity, we sometimes denote z = (z,y) and (Z%%(s))s>t = (X5%Y(s), Y (5))s>t. We

omit the superscripts (¢,z) and (¢,z,y) when the initial condition is clear from the

context, or we omit the superscript ¢ when ¢t = 0.

"'We only require that ¢ > 0 when deriving the supermartingale property in Lemma 4.2.11 , a
property used only in the elliptic case. We require » > 0 to ensure that the stochastic representations
are well-defined, only in the elliptic case.
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Existence and uniqueness of solutions to elliptic boundary value problems

We shall often appeal to the following

Hypothesis 4.1.1 (Growth condition). If v is a function then, for all (x,y) in its
domain of definition,

lv(z,y)| < C(1 + My 4 M2y, (4.1.16)
where C' > 0, 0 < M < min {r/ (k9),u}, and My € [0,1).
Let U € H be an open set. We denote
7 =inf {s >t: Z%(s) ¢ U}, (4.1.17)
and we let
I/;]’Z =inf{s>t:Z"(s) ¢ UU (UNOH)}. (4.1.18)

Notice that if U N OH = @, then 73?’ = V[tj’z. We also have that ng = l/ltj’z when 8 > 1,
because in this case the process Z%# does not reach the boundary 0H, by Lemma
. By [61, p. 117], both 7'3Z and V[t],z are stopping times with respect to the filtration
IF, since F is assumed to satisfy the usual conditions. When the initial condition, (t, z),
is clear from the context, we omit the superscripts in the preceding definitions (4.1.17))
and of the stopping times. Also, when ¢ = 0, we omit the superscript ¢ in the

preceding definitions.

Theorem 4.1.2 (Uniqueness of solutions to the elliptic boundary value problem). Let

r>0,qg >0, and f be a Borel measurable functiorﬂ on O which obeys the growth

condition (4.1.16)) on &. Then
1. If B> 1, assume g € Cioc(T'1) obeys (4.1.16)). Let

u € Cle(OUT1)N CQ(ﬁ)

be a solution to the elliptic boundary value problem (4.1.1)), (4.1.3) and which
obeys (4.1.16)) on &. Then, u = u* on O UTI'1, where

u*(z) ;= Ef [e_rTﬁg(Z(Tﬁ))l{T@@o}] +Eg [/OW e " f(Z(s))ds|, (4.1.19)

2We require f to be Borel measurable in order to ensure that expectations such as that in ([£.1.19)
are well-defined.
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where T is defined by (4.1.17), for all z € O UT.

2. If 0 < B < 1, assume g € Cloc(00) obeys (4.1.16]) on 00, and let u € Cloe(O) N

C%(0) be a solution to the elliptic boundary value problem (4.1.1), (A.1.5) and
which obeys (A.1.16) on 0. Then, u = u* on O, where u* is given by ([A.1.19).

Remark 4.1.3 (Existence of solutions to the elliptic boundary value problem with

traditional Holder regularity). Existence of solutions
u € Cloe(0) N C*T2(0)

to problem (4.1.1)) with boundary condition g € Cj,.(0€) in (4.1.5)) and source function

f € C*0), when 0 < § < 1, and of solutions
u € Coe(0 UT1) NCHo(0)

with boundary condition g € Cj,.(T1) in (4.1.3) and source function f € C%(&), when
B > 1, is proved in Theorem See also the comments preceding problem (4.3.2]).

Remark 4.1.4 (Existence of solutions with Daskalopoulos-Hamilton-K6ch Holder reg-
ularity). Ideally, the solutions to the elliptic boundary value problem ,
described in Remark would actually lie in Cloe(0) N C2T¥(0) for all 3 > 0, where
C2+%(0) is an elliptic analogue of the parabolic Daskalopoulos-Hamilton-Kéch Holder
spaces described in [20,50]. A function u € C27%(&) has the property that u, Du, yD*u
are C¢ continuous up to I'g and yD?u = 0 on [y, where C%(0) is defined by analogy
with the traditional definition of C%(&), except that Euclidean distance between points

in ¢ is replaced by the cycloidal distance function.

We let O}

s,loc

(0'UTy) denote the subspace of C2 (€'UT) consisting of functions, u,

such that, for any precompact open subset U € &' UT,

S lu(z,y)| + |Du(z, y)| + lyD*u(z, y)| < oo, (4.1.20)
x,y)e

where Du denotes the gradient and D?u the Hessian matrix of u.
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Theorem 4.1.5 (Uniqueness of solutions to the elliptic boundary value problem (4.1.1)),
(4.1.3), when 0 < B < 1). Letr > 0,q > 0,0 < B <1, and let f be as in Theorem

. Let g € Cloc(T'1) obey (4.1.16) on T'y and suppose that

ue Cloo(OUT) NC*HO)NCHL

s,loc

(0UTy)

is a solution to the elliptic boundary value problem (4.1.1)), (4.1.3) which obeys (4.1.16])

on O. Then, u=u* on O UT', where u* is given by
Vo
u*(z) :=E§ [e79(Z(ve)) iy y<ooy] +EG [/0 e " f(Z(s))ds|, (4.1.21)

and vg is defined by (4.1.18), for all z € O UT.

Remark 4.1.6 (Existence and uniqueness of strong solutions in weighted Sobolev
spaces to the elliptic boundary value problem). Existence and uniqueness of strong
solutions in weighted Sobolev spaces to problem with boundary condition
along I'y, for all § > 0, is proved in [I8 Theorem 1.18], and Hélder continuity of such

solutions up to Iy is proved in [31, Theorem 1.10].

Remark 4.1.7 (Comparison of uniqueness results). To obtain uniqueness of solutions
to the elliptic boundary value problem (4.1.1)) with boundary condition (4.1.3) only

specified along I'y, we need to assume the stronger regularity hypothesis

u € Coe(OUT)NC*O)NnCh!

s,loc

(0 UT)
when 0 < 8 < 1, while the regularity assumption
u € Cloe(OUT) N C?(0)

suffices when 8 > 1. The analogous comments apply to the elliptic obstacle problems

described in Theorems and the parabolic terminal /boundary value problems

described in Theorems [4.1.12| and [4.1.15] and the parabolic obstacle value problems

described in Theorems 4.1.19 and [4.1.201
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Uniqueness of solutions to elliptic obstacle problems

For 61,05 € 7, we set

J%(2) == B [ /0 M ez ds] (4.1.22)

+Ef [ g(Z(00) 0,0y | +ER [T U(Z(02) L 0s<0r) ]

We then have the

Theorem 4.1.8 (Uniqueness of solutions to the elliptic obstacle problem). Let r > 0,

q >0, and f be as in Theorem[{.1.3, and ¢ be a Borel measurable function satisfying
(4.1.16) on O.

1. If B> 1, let € Croc(CUT1) and g € Cioc(T'1) obey (4.1.16) and (4.1.4) on T'y.
Let

u € Cloe(OUT) NC?(0)
be a solution to the elliptic obstacle problem (4.1.2), 4.1.3) such that u and Au

obey (4.1.16) on &. Then, u = u* on O UT'1, where u* is given by

u(z) = gélg JT09(2), (4.1.23)

and Tg is defined by (4.1.17), for all z € O UT.

2. If0 < B <1, let Y € Cioe(O) and g € Cioe(00) obey (@.1.16) and ([#.1.6) on 00.
Let

u € C]oc(ﬁ) N 02(6))

be a solution to the elliptic obstacle problem (4.1.2), (4.1.5), such that u and Au
obey [@.1.16) on 0. Then, u=u* on O, where u* is given by ([4.1.23).

Theorem 4.1.9 (Uniqueness of solutions to the elliptic obstacle problem (4.1.2)),
(4.1.3), when 0 < 8 < 1). Letr >0, ¢ > 0,0 < B8 < 1, and f be as in Theorem

. Let 1 € Cloe (O UT1) obey (4.1.16) on O and let g € Cloe(I'1) obey (4.1.16) and

(4.1.4) on I'y. If
u e Cloo(CUT) NC*O)NCHL

s,loc

(0UTy)
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is a solution to the elliptic obstacle problem (4.1.2)), (4.1.3)) such that u and Au obey
(4.1.16)), then u = u* on O UT'1, where u* is given by

u(z) = g,ug JVo0(2), (4.1.24)
€.

and ve is defined by (4.1.18)), for all z € O UT.

Remark 4.1.10 (Existence and uniqueness of strong solutions in weighted Sobolev
spaces to the elliptic obstacle problem). Existence and uniqueness of strong solutions
in weighted Sobolev spaces to problem with Dirichlet boundary condition
along I', for all § > 0, is proved in [I8, Theorem 1.6], and Holder continuity of such

solutions up to boundary portion I'y is proved in [31, Theorem 1.13].

Existence and uniqueness of solutions to parabolic terminal/boundary value

problems
We shall need to appeal to the following analogue of Hypothesis

Hypothesis 4.1.11 (Growth condition). If v is a function then, for all (¢,z,y) in its

domain of definition,

lu(t, z,y)| < C(1+4 MY 4 Mz (4.1.25)

where C' > 0, 0 < M; < u, and My € [0, 1].

We let Du denote the gradient and let D?u denote the Hessian matrix of a function
u on @ with respect to spatial variables. We let C1(Q) denote the vector space of
functions, u, such that u, u;, and Du are continuous on @, while C*(Q) denotes the
Banach space of functions, u, such that u, u;, and Du are uniformly continuous and
bounded on Q; finally, C?(Q) denotes the vector space of functions, u, such that wu,
Du, and D?u are continuous @, while C?(Q) denotes the Banach space of functions, u,

such that u, u;, Du, and D?u are uniformly continuous and bounded on Q.

Theorem 4.1.12 (Uniqueness of solutions to the parabolic boundary value problem).

Let f be a Borel measurable function on @) which obeys (4.1.25). Then
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1. If B> 1, assume g € Cloc(0'Q) obeys [@.1.25) on 8'Q. Let
u € Cloe(QUT'Q) N C*(Q)

be a solution to the parabolic terminal/boundary value problem (4.1.7)), (4.1.9)
which obeys (A.1.25) on Q. Then, u = u* on QU 3'Q, where u* is given by

S [ /tmm e D (s, Z(s)) ds} 4.126)

+EY [N T g (r, AT, Z(75 A T))]
and 7 is defined by ([E1.17), for all (t,z) € QU I'Q.

2. If 0 < B < 1, assume g € Cloe(0Q) obeys (4.1.25) on 0Q), and let
(RS CIOC(Q U SQ) N C2(Q)

be a solution to the parabolic terminal/boundary value problem (4.1.7), (4.1.12))
which obeys (4.1.25) on Q. Then, u = u* on QUOQ), where u* is given by (4.1.26)).

Remark 4.1.13 (Existence of solutions to the parabolic boundary value problem).
Existence of solutions

u € Cioe(QUIQ) N C*H(Q)

to problem (4.1.7)), with Dirichlet boundary data g € Coc(0Q) in (4.1.12)), and source

function f € C2_(Q), when 0 < 8 < 1, and of solutions

u € Cloc(QUB'Q) N C*H(Q)

to problem (4.1.7) with Dirichlet boundary data g € Cioe(9'Q) in (4.1.9) and source
function f € Cfgc(@), when 8 > 1, is proved in Theorem See also to the comments

preceding problem (4.5.2)).

Remark 4.1.14 (Existence of solutions with Daskalopoulos-Hamilton-K6ch Hoélder
regularity). As in the elliptic case, the solutions to the parabolic terminal/boundary
value problem , described in Remarkwould actually lie in Cloe(Q)N
C2re(Q) for all > 0, where C2+%(Q) is the parabolic Daskalopoulos-Hamilton-Kéch

Holder space described in [20, 50]. A function v € C?*%(Q) has the property that
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u, Du,yD?u are C® continuous up to 'y and yD?u = 0 on (0,T) x 'y, where C¥(Q)
is defined by analogy with the traditional definition of C*(Q), except that Euclidean

distance between points in @ is replaced by the cycloidal distance function.

We let O11

s,loc

((0,T)x (0UI'y)) denote the subspace of C?

loc

((0, T)x(€UIy)) consisting
of functions, w, such that, for any precompact open subset V' € [0,T] x (0 UT)),
sup |u(t, 2)| + |Du(t, 2)| + |yD*u(t, )| < occ. (4.1.27)
(t,2)eV

We have the following alternative uniqueness result.

Theorem 4.1.15 (Uniqueness of solutions to the parabolic boundary value problem

(4.1.7)), , when 0 < 8 < 1). Let 0 < 8 <1 and f be as in Theorem|4.1.14 Let
g € C1oc(0'Q) obey ([£.1.25) on 8'Q, and

u € Cioe(QUB'Q) N C*Q) N O

s,loc

((0,T) x (6'UTy))

be a solution to the parabolic boundary value problem (4.1.7)), (4.1.9) which obeys (4.1.25))
on Q. Then, u =u* on QUI'Q, where u* is given by

u*(t,z) = B [ /t o e[ (s, 2()) ds] (4.1.28)

+EG [N gy AT, Z(vs AT))|
and vg is defined by (&.1.18), for all (t,z) € QUB'Q.

Remark 4.1.16 (Existence and uniqueness of strong solutions in weighted Sobolev
spaces to the parabolic terminal /boundary value problem). Existence and uniqueness of
strong solutions in weighted Sobolev spaces to problem (4.1.7)) with Dirichlet boundary
condition along 8'Q, for all 8 > 0, is proved in [19].

Remark 4.1.17 (Growth of solutions to parabolic boundary value problems). Karatzas
and Shreve allow faster growth of solutions when the growth on the coefficients of the
differential operator is constrained [47, Theorem 4.4.2 & Problem 5.7.7], and polynomial
growth of solutions is allowed for linear growth coefficients and source function f with

at most polynomial growth [47, Theorem 5.7.6].
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Remark 4.1.18 (Barrier option pricing and discontinuous terminal/boundary condi-
tions). In applications to finance, & will often be a rectangle, (xg,x1) x (0, 00), where
—o0 < xg < 21 < 00; the growth exponents will be M; = 0 and My = 1 — indeed,
the source function f will always be zero and the spatial boundary condition function
g : (0,7) x I'y — R will often be zero. However, the spatial boundary condition,
g:(0,T) xT; — R, and terminal condition, g : {T'} x & — R, may be discontinuous
where they meet along {T'} x 90, as in the case of the down-and-out put, with

0, O0<t<T,x=ux9,y>0,

g(t,z,y) =

(K—e*)T t=T,z90<z <00,y >0,
where g is discontinuous at (T, zg,y) if K — e*™ > 0, that is, xop < log K. We shall
consider the question of establishing stochastic representations for solutions to parabolic
terminal /value problems (European-style option prices) or parabolic obstacle problems

(American-style option prices) with discontinuous data elsewhere.

Uniqueness of solutions to parabolic obstacle problems

For 01,02 € Z4 7, 0 <t <T, we set

01 N\O2
TPt 2) = By [ /t e " f(s, Z(s)) ds] +Eg [e—ﬂﬁz—t)@z)(e% Z(62))1 {92<91}]
+Eg [6_“91_”9(91,2(91))1{0592}} :
(4.1.29)
We have the following uniqueness result of solutions to the parabolic obstacle problem
with different possible boundary conditions, depending on the value of the parameter

8> 0.

Theorem 4.1.19 (Uniqueness of solutions to the parabolic obstacle problem). Let f
be as in Theorem and v be a Borel measurable function satisfying (4.1.25).

1. If B> 1, assume 1 € Cloe(Q UOQ) and g € Cloe(0'Q) obeys ([(#.1.25) on 3'Q
ond (LTI Le
u € Cloe(QUI'Q) N C(Q)
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be a solution to the parabolic obstacle problem (4.1.8)), (4.1.9)) such that u and Au
obey (A1.25) on Q. Then, u=u* on QU 3'Q, where u* is given by

u*(t,z) ;== sup Jgﬁ/\T’e(t,z), (4.1.30)
0cT

and 7 is defined by (E1.17)), for all (t,z) € QU I'Q.

2. If 0 < B < 1, assume ¥ € Cioe(Q) and g € Cloe(0Q) obeys ([A.1.25) on 8Q and

. Let
U € Cloo(QUBQ) N C2(Q)

be a solution to the parabolic obstacle problem (4.1.8)), (4.1.12) such that u and
Au obey (4.1.25)) on Q. Then, u = u* on Q U OQ, where u* is given by (4.1.30)).

Theorem 4.1.20 (Uniqueness of solutions to the parabolic obstacle problem (4.1.8]),

(4.1.9), when 0 < 8 < 1). Let 0 < B < 1 and f be as in Theorem . Assume
b € CloeQUD'Q), and g € Cloe(0'Q) obey [T1ZF) on 9'Q and (ELTL). Let

u € Cioe(QUI'Q) N CHQ) N CHE

s,loc

(QU(0,T) x (¢ UTy))

be a solution to the parabolic obstacle problem (4.1.8)), (4.1.9) such that u and Au obey
[@.1.25). Then, v =u* on QUI'Q, where u* is given by

u*(t,z) := sup JZ’;ﬁ/\T’e(t,z), (4.1.31)
9€=Z,T

and vg is defined by (AE.1.18), for all (t,z) € QU Q.

Remark 4.1.21 (Existence and uniqueness of strong solutions in weighted Sobolev
spaces to the parabolic obstacle problem). Existence and uniqueness of strong solutions
in weighted Sobolev spaces to problem (4.1.8]) with Dirichlet boundary condition
along d'Q, for all 8 > 0, is proved in [19].

4.1.3 Survey of previous results on stochastic representations of solu-

tions to boundary value or obstacle problems

Stochastic representations of solutions to elliptic and parabolic boundary value and
obstacle problems discussed by Bensoussan and Lions [8] and Friedman [40] are estab-

lished under the hypotheses that the matrix of coefficients, (a%), of the second-order
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spatial derivatives in an elliptic linear, second-order differential operator, A, is strictly
elliptic and that all coefficients of A are bounded. Relaxations of these hypotheses, as
in [40, Chapter 13 & 15], and more recently [77], fail to include the Heston generator

mainly because the matrix (a”/) does not satisfy

Hypothesis 4.1.22 (Extension property for positive definite, C? matrix-valued func-
tions). Given a subdomain V' & (0, 00) x R?, for d > 1, we say that a matrix-valued
function,

a:V — R4

which is C2? on V and a(t, 2) is positive definite for each (¢,z) € V has the extension

property if there is a matrix-valued function,
a: [0,00) x RY — R4,

which coincides with a on V but is C? on [0, 00) x R? and a(t, z) is positive definite for

each (t, z) € [0,00) x R%.

Naturally, Hypothesis is also applicable when the matrix a is constant with
respect to time, that is, in elliptic problems. Note that in the case of the Heston process,

d=2,V =(0,00) x H, and

Yy opy
a(t,z,y) == , Y(x,y) € H,
opy o’y
and so the matrix a does not satisfy Hypothesis We now give more detailed

comparisons for each of the four main problems which we consider in this chapter.

Additional comparison details are provided in Appendix [C.4]

Elliptic boundary value problems

Stochastic representations of solutions to non-degenerate elliptic partial differential
equations are described in [40, Theorem 6.5.1], [47, Proposition 5.7.2], [61, Theorem
9.1.1 & Corollary 9.1.2] and [8, Theorems 2.7.1 & 2.7.2].

Stochastic representations of solutions to a certain class of degenerate elliptic partial

differential equations are described by Friedman in [40, Chapter 13], but those results



144

do not apply to the Heston operator because a square root, (0¥/), of the matrix (a*)
cannot be extended as a uniformly Lipschitz continuous function on R?, that is, [40]
Condition (A), p. 308] is not satisfied. Stroock and Varadhan [69, §5-8] also discuss
existence and uniqueness of solutions to degenerate elliptic partial differential equations,
but their assumption that the matrix (a*/) satisfies Hypothesis does not hold for
the Heston operator (see [69, Theorem 2.1]).

More recently, Zhou [77] employs the method of quasiderivatives to establish the
stochastic representation of solutions to a certain class of degenerate elliptic partial
differential equations, and obtains estimates for the derivatives of their solutions. How-
ever, his results do not apply to the Heston operator because [77, Assumptions 3.1
& Condition (3.2)] are not satisfied in this case. Moreover, the Dirichlet condition is
imposed on the whole boundary of the domain (see [77, Equation (1.1)]), while we take
into consideration the portion of the boundary, I'g, where the differential operator A

becomes degenerate.

Elliptic obstacle problems

We may compare Theorems and with the uniqueness assertions (in increas-
ing degrees of generality) for non-degenerate elliptic operators in [8, Theorems 3.3.1,
3.3.2, 3.3.4, 3.3.5, 3.3.8, 3.3.19, 3.3.20, & 3.3.23]. See also [61, Theorem 10.4.1] and
[40, Theorems 16.4.1, 16.4.2, 16.7.1, & 16.8.1] for uniqueness assertions non-degenerate

elliptic operators, though with more limited applicability.

Parabolic boundary value problems

Uniqueness of solutions to non-degenerate parabolic partial differential equations and
their stochastic representations are described in [40, Theorems 6.5.2, 6.5.3], [47, Theo-
rem 5.7.6] and [8, Theorems 2.7.3 & 2.7.4].

Friedman obtains fundamental solutions and stochastic representations of solutions
to certain degenerate parabolic partial differential equations in [39], while he obtains
uniqueness and stochastic representations of solutions to the Cauchy problem in [3§];

those results are summarized in [40, Chapter 15]. Nevertheless, the results in [40]
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Chapter 15] and [39] do not apply to the Heston operator because Hypothesis m
does not hold, that is [40, Condition (A), p. 389] is not satisfied. Therefore, the method
of construction in [39] Theorem 1.2] of a candidate for a fundamental solution does not
apply to the Heston operator. A stochastic representation for a solution to the Cauchy
problem for a degenerate operator is obtained in [40, §15.10], but the hypotheses of [40),
Theorem 15.10.1] are again too restrictive and exclude the Heston operator.

Ekstrom and Tysk [25] consider the problem of pricing European-style options on an
underlying process which is the solution to a degenerate, one-dimensional stochastic dif-
ferential equation which satisfies [25, Hypothesis 2.1], and so includes the Feller square
root (or Cozx-Ingersoll-Ross) process, . The option price is the classical solution
in the sense of [25, Definition 2.2] to the corresponding parabolic partial differential
equation [25, Theorem 2.3]. Under their assumption that the payoff function ¢(T',-) is

in C1([0,00)), they show that their classical solution has the regularity property,
u e C([0,T] x [0,00)) N C([0,T) x [0,00)) N C*([0,T) x (0,00)),
and obeys the second-order boundary condition,

lim  yuy,(t,y) =0, Vtope (0,T) (by [25, Proposition 4.1]).
(t:y)—=(0,to0)

As a consequence, in the present framework, their solution obeys

u € ChL ((0,0) x [0,00)), Vio € (0,T),

where the vector space of functions C’Sl?ﬁ)c((o,tg) x [0,00)) is defined by analogy with
{127,

In [24], Ekstrom and Tysk extend their results in [25] to the case of two-dimensional
stochastic volatility models for option prices, where the variance process satisfies the
assumptions of [25, Hypothesis 2.1].

Bayraktar, Kardaras, and Xing [7] address the problem of uniqueness of classi-
cal solutions, in the sense of [7, Definitions 2.4 & 2.5], to a class of two-dimensional,

degenerate parabolic partial differential equations. Their differential operator has a

degeneracy which is similar to that of the Heston generator, — A, and to the differential
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operator considered in [25], but the matrix of coefficients, (a”/), of their operator may
have more than quadratic growth with respect to the spatial variables (see [7, Standing
Assumption 2.1]). Therefore, weak maximum principles for parabolic partial differential
operators on unbounded domains such as [51], Exercise 8.1.22] do not guarantee unique-
ness of solutions in such situations. The main result of their article — [7, Theorem 2.9]
— establishes by probabilistic methods that uniqueness of classical solutions, obeying a
natural growth condition, holds if and only if the asset price process is a martingale.
In our work, we consider the two-dimensional Heston stochastic process, ,
where the component Y of the process satisfies [25, Hypothesis 2.1] and [7, Standing
Assumption 2.1]. We only require the payoff function, g(7',-), to be continuous with
respect to the spatial variables and have exponential growth, as in . Notice that
the conditions on the payoff function are more restrictive in [25, Hypothesis 2.1] and
[7, Standing Assumption 2.3] than in our case. We consider the parabolic equation
associated to the Heston generator, —A, on bounded or unbounded subdomains, &, of
the upper half plane, H, with Dirichlet boundary condition along the portion, I'y, of
the boundary 0¢ contained in H. Along the portion, I'g, of the boundary contained in
OHl, we impose a suitable Dirichlet boundary condition, depending on the value of the
parameter 8 in , which governs the behavior of the Feller square-root process
when it approaches the boundary point y = 0. In each case, we establish uniqueness

of solutions by proving that suitably regular solutions must have the stochastic rep-

resentations in Theorems 4.1.12] and [4.1.15] and we prove existence and regularity of

solutions, in a special case, in Theorems and complementing the results of
[25]. In addition, we consider the parabolic obstacle problem and establish uniqueness
and the stochastic representations of suitably regular solutions in Theorems [4.1.19] and

4. 1.20

Parabolic obstacle problems

We may compare Theorems [I.1.19] and [A.1.20] with the uniqueness assertions and

stochastic representations of solutions (in increasing degrees of generality) for non-

degenerate operators in [8, Theorems 3.4.1, 3.4.2, 3.4.3, 3.4.5, 3.4.6, 3.4.7, 3.4.8].
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4.1.4 Outline of the chapter

For the convenience of the reader, we provide a brief outline of the chapter. We begin
in by reviewing or proving some of the key properties of the Feller square root
and Heston processes which we shall need. In we prove existence and uniqueness
(in various settings) of solutions to the elliptic boundary value problem for the Heston
operator, while in we prove uniqueness (again in various settings) of solutions to the
corresponding obstacle problem. We proceed in to prove existence and uniqueness
of solutions to the parabolic terminal/boundary value problem for the Heston operator

o

and in §4.6] we prove uniqueness of solutions to the corresponding parabolic obstacle

problem. Appendices [C.1], [C.2], and [C.3] contain technical additional results which we

shall need.

4.2 Properties of the Heston stochastic volatility process

In this section, we review or develop some important properties of the Feller square
root process and the Heston stochastic volatility process.
By [30, Theorem 1.9], it follows that for any initial point (¢,y) € [0,00) X [0,00),

the Feller stochastic differential equation,

dY (s) =k (0 =Y (s))ds + o+/|Y(s)|dW(s), s>t,

Y(t) =y,

(4.2.1)

admits a unique weak solution (Y*¥(s), W(s))s>¢, called the Feller square root process,
where (W (s))s>¢+ is a one-dimensional Brownian motion on a filtered probability space
(Q, Z,P",F) such that the filtration F = {Z(s)}s>0 satisfies the usual conditions
[47, Definition 1.2.25]. Theorem 1.9 in [30] also implies that the Heston stochastic

differential equation ([4.1.15)) admits a unique weak solution, (Z b2 (s), W(s)) for any

s>t?
initial point (¢,2) € [0, 00) x H, where (W(s))s>¢ is now an R?-valued Brownian motion
on a filtered probability space (Q, ZF, Qt’z,]F) such that the filtration F = {%(s)}s>0
satisfies the usual conditions. When the initial condition (¢,y) or (¢, z) is clear from the

context, we omit the superscripts in the definition of the probability measures P»¥ and

Q%*, respectively.
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Moreover, the weak solutions to the Feller and Heston stochastic differential equa-

tions are strong. To prove this, we begin by reviewing a result of Yamada [75].

Definition 4.2.1 (Coefficients for a non-Lipschitz stochastic differential equation).
[75] p. 115] In this section, we shall consider one-dimensional stochastic differential

equations whose diffusion and drift coefficients, «, b, obey the following properties:
1. The functions «,b : [0,00) x R — R are continuous.

2. (Yamada condition) There is an increasing function ¢ : [0,00) — [0, 00) such that

0(0) = 0, for some € > 0 one has fog 0 2(y) dy = oo, and
la(t, y1) — ot y2)| < o(lyr — y2l),  y1,92 €R,E = 0. (4.2.2)
3. There is a constant C7 > 0 such that

|b(t7y2) - b(tvyl)‘ < Cl|y2 - y1|’ Y1,Y2 € th > 0. (423)

4. There is a constant Cy > 0 such that

at,y)| + bt y)| < Co(1+ y]), =0,y €R. (4.24)

Clearly, the coefficients of the Feller stochastic differential equation obey the hy-
potheses in Definition where a(t,y) = o/y and b(t,y) = k(6 —y). Indeed, one
can choose C1 = k, Co = max{k, 0,0}, and o(y) = 0/y, as the mean value theorem

yields
VY2 = V1 = c(y1,92) (Y2 — y1),

where
1

( ) 1/1 1 _
C\Y1,Y2) = = >~ 5
2Jo Vi +tly2—w) ~ V2 — 0

for 0 < y1 < y2. See [75, Remark 1] for other examples of suitable functions p.

Remark 4.2.2. When o(u) = u?, vy € [%,1] [75, Remark 1], then Definition

implies that «(t,-) is Holder continuous with exponent -, uniformly with respect to

t €[0,00).
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Definition 4.2.3 (Solution to a non-Lipschitz stochastic differential equation). [75] p.
115], [64, Definitions 1X.1.2 & IX.1.5] Let (92, #,P,F) be a filtered probability space
satisfying the usual conditions. We call a pair (Y'(s), W(s))s>0 a weak solution to the

non-Lipschitz one-dimensional stochastic differential equation,
dY (s) =b(s,Y(s))ds +a(s,Y(s))dW(s), s>0,Y(0)=y, (4.2.5)
where y € R, if the following hold:
1. The processes Y (s) and W (s) are defined on (2, .%#,P,F);
2. The process Y (s) is continuous with respect to s € [0,00) and is F-adapted,;
3. The process W (s) is a standard F-Brownian motion.

We call (Y (s), W(s))s>0 a strong solution to ([#.2.5)) if Y is FW-adapted, where FV is the
P-completion of the filtration of .# generated by (W (s))s>o. (Compare [45, Definition
IV.1.2], [47, Definition 5.2.1], and [61} §5.3].)

Theorem 4.2.4. [75, p. 117] There exists a weak solution (Y, W) to (4.2.5)).

Remark 4.2.5. Yamada’s main theorem [75, p. 117] asserts considerably more than
Theorem In particular, his article shows that (4.2.5) may be solved using the
method of finite differences. Simpler results may suffice to merely guarantee the exis-

tence of a weak solution, as we need here; see Skorokhod [68].
Proposition 4.2.6. There exists a unique strong solution to (4.2.5)).

Proof. Theorem ensures that admits a weak solution. Conditions (4.2.2))
and ensure that pathwise uniqueness holds for (weak) solutions to by
Revuz and Yor [64, Theorem IX.3.5 (ii)], while Karatzas and Shreve [47, Corollary
5.3.23] imply that admits a strong solution; see [47, p. 310]. Conditions
and guarantee the uniqueness of strong solutions to by Karatzas and
Shreve [47, Proposition 5.2.13]; compare Yamada and Watanabe [73, [74]. (Pathwise
uniqueness is also asserted for by [45, Theorem IV.3.2] when is time-

homogeneous, noting that the coefficients «, b are not required to be bounded by Ikeda
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and Watanabe [45, p. 168]). We conclude that a strong solution to (4.2.5) exists and

is unique. ]

Corollary 4.2.7. Given any initial point (t,y) € [0,00) x [0,00), there exists a unique

strong solution, (Y"Y(s), W (s))s>t, to the Feller stochastic differential equation.
Proof. Immediate from Proposition O

Corollary 4.2.8. Given (t,z) € [0,00) x H, there exists a unique strong solution,
(Z4%(s), W (s))s>t, to the Heston stochastic differential equation, where (W (s))s>0 is a

standard two-dimensional F-Brownian motion on (Q2,.%,P,F).

Proof. By Proposition [£.2.6] the Cox-Ingersoll-Ross stochastic differential equation has
a unique strong solution, (Y'¥(s), Wa(s))s>t, where (Wa(s))s>t is a standard one-
dimensional F-Brownian motion on (©2,.%,P,F) and (Y*¥(s))s>; is F"2-adapted. But
given (Y%¥(s))s>¢ and a standard two-dimensional F-Brownian motion, (W (s))s>; =
(Wi(s), Wa(s))s>t on (Q,.Z,P,F), the process (X»*¥(s))s>¢, and thus (Z4%(s))s>t =

(XB%Y(s), Y (5))s>¢, is uniquely determined by

XEE(g) = 74 /t ) <r _q- ;yt’y(u)> du
+ /t /Y () (\/1 — p2dWi (u) + deg(u)) .

This completes the proof. O

Lemma 4.2.9 (Properties of the Feller square-root process). The unique strong solution

of the Feller stochastic differential equation started at any (t,y) € [0,00) %[0, 00) satisfies

Y(s) >0 P".as., Vs>t, (4.2.6)

and also
/tS Ly =0y du =0, Vs>1, (4.2.7)
L(s,x) =0, Vax<0,Vs>t, (4.2.8)

where L(-,-) is the local time of the Feller square-root process.
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Proof. Without loss of generality, we may assume that t = 0. In [7, Lemma 2.4], it is

proved that L(s,0) = 0, for all s > 0, but it is not clear to us why it also follows that

L(s,0—):=lmL(s,z) =0, Vs>0,
10

a property we shall need in our proof of (4.2.6). To complete the argument, we consider

the following stochastic differential equation,

dY (s) = b(Y (s)) ds + (Y (s)) dW (s), s> 0,

Y (0) =y,

where we let
b(y) == k(¥ —y) and a(y) := 1y>00/y, Yy €ER. (4.2.9)
This stochastic differential equation admits a unique strong solution by Proposition
We will show that }7(8) > 0 a.s., for all s > 0, so that uniqueness of solutions
to the Feller stochastic differential equation implies that Y =Y as. and Y will
satisfy the same properties as Y. Thus, it is enough to prove and for Y.
Property is a consequence of the preceding two properties of Y.
Let L be the local time process for the continuous semimartingale Y (see [47, The-
orem 3.7.1]). From [47, Theorem 3.7.1 (iii)], we know that, for any Borel measurable

function k : R — [0, 00), we have
/ k(Y (u)o?Y () du = 2 / k(z)L(s,x)dz, Vs> 0. (4.2.10)
0 R

Assume, to obtain a contradiction, that E(S,O) > 0. From the right-continuity in
the spatial variable of L(s,-) [A7, Theorem 3.7.1 (iv)], there are positive constants ¢
and xo such that L(s,z) > ¢, for all z € [0,z]. For ¢ > 0, we define k(z) = 2, for
x € [e, xp], and 0 otherwise. With this choice of k, the left-hand-side in identity
is bounded in absolute value by ¢?s, for any € > 0, while the right-hand-side of
is greater or equal than 2clog (z¢/€), which diverges as ¢ tends to 0. Therefore, our
assumption that L(s,0) > 0 is false, and so L(s,0) = 0. Moreover, we notice that for
any bounded, Borel-measurable function k& with support in (—o0,0) the left-hand-side
in identity is identically zero. Thus, we conclude that E(s, x) =0, for all z < 0,
and also L(s,0—) = 0.
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We use this result to show that P(Y(s) < 0,Vs > 0) = 0. From [47, p. 223, third

formula] and the fact that x,9 > 0, we see that

0= L(s,0) = L(s,0—) = "“9/0 L5 (uy=oy 4t

which implies that P(Y(s) = 0,Vs > 0) = 0. It remains to show that P(Y(s) €
(—00,0)) =0, for all s > 0, which is equivalent to proving that for any ¢ > 0 and s > 0,
we have P(Y (s) € (=00, —¢)) = 0. Let ¢ : R — [0,1] be a smooth cut-off function such
that ¢|(_c,—c) = 1 and ¢|(g ) = 0. We can choose ¢ such that ¢’ < 0. Then, it follows

by It6’s formula that

T ) =TO)+ [ 5 (w V() (V) + La (Y(U))SO”(Y(U))> du
+ [ o) (7 w) aw w)
0

— o(T(0)) + /0 "R~ V()@ (F(w) du  (as afy) = 0 when ¢ #0).

We notice that the right-hand-side is non-negative, while the left-hand-side is non-
positive, as ¢’ < 0 on R, and ¢’ = 0 on (0, 00). Therefore, we must have ¢(Y (s)) = 0
a.s. which implies that P(Y(s) € (—oo,—¢)) = 0. This concludes the proof of the

lemma. O
For a,y,t > 0, we let
ToY :=inf{s >t:Y"Y(s) =a} (4.2.11)

denote the first time the process Y started at y at time ¢ hits a. When the initial
condition, (¢,y), is clear from the context, we omit the superscripts in the preceding

definition (4.2.11)). Also, when ¢ = 0, we omit the superscript ¢.

Lemma 4.2.10 (Boundary classification at y = 0 of the Feller square root process).
Let Y'Y be the unique strong solution to the Feller stochastic differential equation (4.2.1))

with initial condition YY(0) =y. Then

1. For B> 1, y =0 is an entrance boundary point in the sense of [49, §15.6(c)].
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2. For 0 < B <1, y =0 is a regular, instantaneously reflecting boundary point in

the sense of [19, §15.6(a)/, and

Im7¢ =0 a.s., (4.2.12)
yJ0

where TY is given by (4.2.11)).

Proof. A direct calculation give us that the scale function, s, and the speed measure,

m, of the Feller square root process are given by
—Bohy 2 81 —py
s(y) =y e and m(y) = "™, Wy >0

where 8 = 2x1/0? and pu = 2k/0%. We consider the following quantities, for 0 < a <

b < ooand z >0,

b
Sla, b] ::/ s(y)dy, S(a,b] = lcigllS[c, b],

b
M]a, b] ::/ m(y)dy, M(a,b] = lciﬁle[c’ b],

N = [ " Sy, alm(y)dy.

Then, for 8 > 1, we have S(0,z] = co and N(0) < oo, which implies that y = 0 is an
entrance boundary point ([49, p. 235]), while for 0 < § < 1, we have S(0,z] < oo and
M (0, z] < 0o, and so y = 0 is a regular boundary point ([49, p. 232]).

Next, we consider the case 0 < S < 1. To establish , we consider the
following quantities

Sla, y]
Sla,b]’

uap(y) =P (T, < Tp,) =

b Yy
Vap(Y) == E% [T AN Tp] = 2uq p(y) / Slz,bjm(z)dz + 2 (1 — uqp(y)) / S(a, zlm(z)dz,
) a

as in [49, Equations (15.6.1) & (15.6.5)] and [49, Equations (15.6.2) & (15.6.6)], respec-
tively. Notice that T¢ — T, when y | 0, by the continuity of the paths of Y. Then,

for fixed b > 0, we obtain
lim PY (1 Iy) = lim lim PY (1 [,)=0

lylﬁ)lE% [To A Tb] = lleI’I()l E%E% [Ta A Tb] =0,

from where (4.2.12)) follows. O
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Next, we have the following

Lemma 4.2.11 (Properties of the Heston process). Let (Z(s)),~ be the unique strong
solution to the Heston stochastic differential equation (4.1.15)).

1. Assume q¢ >0 and r € R. Then, for any constant ¢ € [0,1],

(e*TCSeCX(S)) . is a positive supermartingale. (4.2.13)
5>

2. For any positive constant ¢ < u,

(e—cm%ecY(S)> . is a positive supermartingale. (4.2.14)
§2

Proof. To establish (4.2.13)), we use It6’s formula to give

1 (e 0) = e X (g e~ (e)) s
(4.2.15)

+ ce e X ) /Y () AW (s).
Notice that the drift coefficient is non-positive, since Y (s) > 0 a.s. for all s > 0 by

Lemma and ¢ > 0, and ¢ € [0,1].
Similarly, to establish (4.2.14)) for the Feller square root process, we have

d (e—cm%ecY(s)) _ e—cnﬂsecy(s)c (00_2/2 _ ,Lq;) Y(S)ds

+ coe 3V () fY (s) (del(s) ++1-— deWQ(s)) .

When ¢ < u, we see that the drift coefficient in the preceding stochastic differential

(4.2.16)

equation is non-negative.

The supermartingale properties (4.2.13)) and (4.2.14)) follow if we show in addition

that the processes are integrable random variables for each time s > 0. For simplicity,
we let QQ(s) denote either one of the processes we consider, and we let 6,, be the first
exit time of the Heston process (X(s),Y (s)),5( from the rectangle (—n,n) x (—n,n),

where n € N. We set Q,,(s) := Q(s A by), for all s > 0. We then have
dQn(s) = 145<0,1dQn(s), Vs >0, VneN.

Using equations (4.2.15)) and (4.2.16)), it is clear that (Qn(s))s>0 are supermartingales,

because the coefficients of the stochastic differential equations are bounded and the
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drift terms are non-positive. Therefore, we know that
EgY [@u(t)| 7 (s)] < Qn(s), Vt>s, Vs>0, VneN. (4.2.17)

Clearly, we also have Q,(t) — Q(t) a.s., as n — oo, for all t > s and s > 0. Taking

the limit as n — oo in (4.2.17)) and using the positivity of the processes, Fatou’s lemma

yields
ESY [Q)|F ()] < liminf Y [Qu(t)| 7 (9)
< T
< liminf Qn(s)  (by (4.2.17))
=Q(s), Vt>s, Vs>0,
and so (4.2.13)) and (4.2.14]) follow. O]

The next lemma is used to show that the functions u* given by (4.1.19)) and (4.1.21])
are well-defined and satisfy the growth assumption (4.1.16]).

Lemma 4.2.12. Suppose r > 0, and f, g, ¥ are Borel measurable functions on & and
satisfy assumption (£.1.16)). Then there is a positive constant C, depending on r, k, ¥,
My, My and C in (4.1.16)), such that for any 01,02 € T, the function Job2 4y (14.1.22)

satisfies the growth assumption,
| J002 (2, 4)| < C (1 + MY 4 M2®) | Y(a,y) € 0,

where 0 < My < min{r/ (k9),u} and My € [0,1) are as in (4.1.16).

Remark 4.2.13. The obstacle function %) in (4.1.22)) is only relevant for solutions to
problem (4.1.2]).

Proof. The conclusion is a consequence of the properties of the Heston process given in

Lemma [4.2.11 We first estimate the integral term in (4.1.22)). For z € &, then
61 N\O2
By [ e rlnzeias)
0

< CEg [/ e (1 + e oMY () 4 eiTSeMQX(S)> ds] (by (4.1.16))
0

- o (1 N /oo e_(r—Mlnﬂ)sE@ [e—MlmﬁseMlY(s)} ds
0

+/0 6_(1_M2)TSE(Z@ [e_rMQSeMQX(s)dS} ds).
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Using the condition M; < min {r/(k?9),u} and (4.2.14), together with My < 1 and
(4.2.13]), we see that

61 N\62 _
E3 [/0 eS| F(Z(s))|ds| < O (1+ My 4 Mav), (4.2.18)

for a positive constant C' depending on r, M;x¥, My and the constant C in the growth

assumption (4.1.16)) on f, g and 2.

Next, we show that the first non-integral term in (4.1.22f) can be written as

B, [e_relg(z(gl))lwlg%}] —E, [e—relg(z(el))1{9662,91@}] , (4.2.19)

for any 61 € 7 which is not necessarily finite. This is reasonable because by rewriting

E3, [e*’"el 9(2(91))1{91392}} =Eg [6*”’19(2 (01))1{91592@}}
+ B [ g(Z00)) o, <o)

we shall see that the second term converges to zero, as T — oco. Using the growth

assumption on g in , we have

Eg [6401 19(Z(61))] 1{T<91§02}} < CEg [6—7’91 (1 4 MY (01) 4 6M2X(01)> 1{T<01}} )
and so by Lemma [4.2.11] we obtain

E}, [e_relg(Z(éﬁ))1{T<91392}} <C (e—rT 1o (r=MirO)T My | e—r(l—Mg)TeM2x> _

Since M7 < r/(k¥) and My < 1, we see that the right hand side converges to 0, as
T — oo. This justifies the identity .

Now, we use Fatou’s lemma to obtain the bound on the first non-integral
term in (4.1.22). For z € O,

E [6_r91 lg(Z(61))] 1{91§02}}

. . z —7”(9 /\n)
< lminf B e~ |g(2(61 A n))]

< liminf C <1 + Eé [e—r(01/\n)€M1Y(91/\n)} + ]E@ [e—r(ﬁl/\n)eMzX(OU\n)]) (by )

n—oo

Because M1 < p, we may apply the supermartingale property (4.2.14) with ¢ := Ms.

We use also that M; < r/(k?) to obtain M;kd¥ < r, and so it follows by the Optional
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Sampling Theorem [47, Theorem 1.3.22] that
E@ efr(91/\n)€M1Y(91/\n)} < ]E(a |:67M1m9(91/\n)6M1Y(91/\n)}

<eMy  wyneN.

Using the fact that My < 1, we see by the supermartingale property (4.2.13|) applies

with ¢ := M;. By the Optional Sampling Theorem [47, Theorem 1.3.22] we have
E o—T(01/An) eMgX(Ql/\n)} <Ej |:€—7‘M2(91/\n) eMgX(Gl/\n)]
<eM* yneN.
Therefore, we obtain
B [ 19(Z(00)] Loy <oy | < € (1+ €M7 4 eM7).

We obtain the same bound on the second non-integral term in (4.1.22) because the
obstacle function 1 satisfies the same growth condition (4.1.16)) as the boundary data
g. O

To prove Theorems [4.1.12| and [4.1.15] we make use of the following auxiliary result

Lemma 4.2.14. Let z € H and T € (0,Ty], where Ty is a positive constant. Let
(Z%(s))s>0 be the unique strong solution to the Heston stochastic differential equation
(4.1.15) with initial condition Z*#(0) = z. Then there is a positive constant ¢, depending

ony, k, ¥, o and Ty, such that for any constant p satisfying

c
0< — 4.2.20
<P <5 ( )
we have
sup Eg [erZ(e)] < 00, (4.2.21)
o€, T

where Iy denotes the set of (Q,.7,Q%,F)-stopping times with values in [0,T].

Proof. We use the method of time-change. Denote

Mi(t) ::/0 JY ) AWi(s), i =1,2,
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and observe that there is a two-dimensional Brownian motion (Bj, B2) [47, Theorem

3.4.13] such that

Thus, we may rewrite the solution of the Heston stochastic differential equation (4.1.15)

X(t) =2+ (r—q)s — ;/Ot Y(s)ds + By (/Ot Y(s)d5> , (4.2.22)

Y(t) =y + ks — & /Ot Y (s)ds + 0B (/Ot Y(s)d5> , (4.2.23)

in the form

where B3 := pB1 + /1 — p2Bs is a one-dimensional Brownian motion.

For any continuous stochastic process (P(t))¢>0, we let

Mp(t) == Orggi(tP(s), Vit > 0.

We first prove the following estimate.
Claim 4.2.15. There are positive constants ng and c, depending on vy, k, ¥, o and Ty,

such that

2
Q*(n< My(T)<n+1)< ﬁe—m/@”h{nzno} +1lpngy, YREN.  (4.2.24)

Proof. Notice that if My (T) < n+ 1, where n € N, then
T
/ Y(s)ds < (n+ 1)T,
0
and so, for any positive constant m,

{Org%xT B </0tY(s)ds) > m, My (T) < n+ 1} C (M, (n+1)T) > m}. (4.2.25)

Using the inclusion

— rOT
o =210} < { s o / Viss) > "Ly @),
we obtain by (4.2.25)),

Q' (n<My(T)<n+1) <Q° (MBS((n )T > ”—y—“ﬁT> _
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The expression for the density of the running maximum of Brownian motion [47, Equa-

tion (2.8.4)] yields

—y—kOT e 2
Q* (MBg((n+ nrT) > W) < / e 2.
o (n—y—~r9T)/(o/(n+1)T) V 2m
As in [1I, §7.1.2], we let
erfc(a) := 2 [ e " 12dy, VaeR
S VT ’ ’

and so,

we see that

2
erfc(a) < ﬁe*‘ﬁﬂ, Va > 1.

By hypothesis, T' € (0, Tp], which implies that

n—y— kT S n—y— k¥l
o/ (n+ DT ~ o/(n+ 1Ty

Hence, provided we have

n € N.

n—y— k¥l > 1

o/ (n+ 1Ty ~

which is true for all n > ng(y, k, 3, 0, Tp), the smallest integer such that the preceding

inequality holds, we see that

Q*(n<My(T)<n+1)< }e—("—y—“”)g/ @* (A 1)T) -y > g, (4.2.26)
T
Similarly, for a possibly larger ng(y, x,9, 0, Ty), using again the fact that 7" € (0, Tp],
we may choose a positive constant ¢, depending also on y, x, ¥, o and Tp, such that for

all n > ng, we have

(n —y — xVT)? n
>c .
202(n+1)T — 20T
Then, using the preceding inequality, we obtain the estimate (4.2.24]) from (4.2.26)).

This completes the proof of the claim. O
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Next, we employ (4.2.24) to obtain (4.2.21)). For any stopping time 0 € 1, we

may write
oo
X0 =3 P Oy my<nry sty (r)<ns1y;
n=0
and, by Hélder’s inequality, it follows

1/2

Bp [¥O] <3 By [ O1pn | QF (0 < My(D) S0+ )V2. (4.227)

n=0

Using (4.2.22) and the condition p > 0 in (4.2.20]), we have
Eg [epx(e)l{Mymsm}}
r 0
< ep(z+|r_Q|T)]Ea exp <2p31 (/0 Y(s)ds)) 1{My(T)Sn+1}]

- t
r—q|T
< eplatlr=dl )]E@ _exp (ZporngXTBl (/0 Y(s)ds)) 1{MY(T)§n+1}:|

< rlHr—a Dz 'e2pMsl<<n+1>T>] . VYneN (by [E229)).

We see from the expression for the density of the running maximum of Brownian motion

[47, Exercise (2.8.4)] that

—z2/(2(n+1)T)d

E [eQPMBl((nH)T)] _ /OO 2P "
0

2
———c
V2r(n+1)T
< 2e2* (T yp e N (by Mathematica),

and so,

Ej [er(e)l{ My (T)<n H}} < 2ePEHr=a D) 2P+ 0T -y € N, (4.2.28)

Inequalities (4.2.24)), (4.2.27) and (4.2.28) give us
no—1
2
E [er(G)} < V2P (HIr=alT)/2 37 pi )T
n=0

W12/4 ePHr=alT)/2 3 P (n1)T g=en/(40%T)

+
n=ng
no—1

_ \/§€p(m+|r—q\T)/2 Z epQ(’rH—l)T

n=0

_2  _p(etlr—qlT)/24p?T S T—c/(e* T,

o

n=ng
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We choose p such that

Ve
0< ~ -
sP< 20T’

that is, condition (4.2.20)) is obeyed, and we obtain a bound on Ea [er (9)] which is
independent of the choice of § € 9 . Thus, (4.2.21]) follows. (Note that (4.2.21]) holds

trivially when p = 0.) O

4.3 Elliptic boundary value problem

In this section, we prove Theorem [£.1.2] In addition to the uniqueness result in Theorem
4.1.2| we establish the existence and uniqueness of solutions in Theorem [4.3.1

The existence and uniqueness of solutions to problem (4.1.1) with boundary con-
dition (4.1.3) along I'y, when 8 > 1, and with boundary condition (4.1.5) along 00,
when 0 < 8 < 1, are similar in nature. Therefore, we define

ry, ifg>1,
D50 = (4.3.1)

00 if0o<p<l.

and treat the previous mentioned boundary value problems together as

Au=f on 0O,
(4.3.2)

u=gq on 0g0'.

Now, we can give the

Proof of Theorem [{.1.4 Our goal is to show that if u € Cle(0 U 90) N C?(0) is a
solution to problem , satisfying the pointwise growth condition , then it
admits the stochastic representation .

We let {0}, : k € N} denote an increasing sequence of C**® subdomains of & (see
[41, Definition §6.2]) such that each &} has compact closure in ¢, and

U@:@

keN
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By applying It6’s lemma (Theorem |C.2.1)), we obtain for all ¢ > 0,
d (e eu(z(t A ry,)
= Lo, ye " Au(Z(1))dt
+ l{témk}e_rt Y () ((um(Z(t)) + opuy(Z(t))) dWi(t) + o1 — pzuy(Z(t))de(t)) :

Since the subdomain ) C € is bounded and u € C?(0), the dW;-terms, i = 1,2, in

the preceding identity are martingales, and so we obtain
tATﬁk
Eg [e_r(t/\Tﬁk)u(Z(t N7g,)) | = u(z) —Ef [/0 e " f(Z(s))ds]| . (4.3.3)

We take the limit as k tends to oo in the preceding identity. By the growth estimate

(4.2.18)), we may apply the Lebesgue Dominated Convergence Theorem to show that

the integral term in (4.3.3) converges to
tATe
Eg [/ e " f(Z(s))ds| .
0

For the non-integral term on the left hand side of (4.3.3)), using the continuity of u on

0 U 0g0 and of the sample paths of the Heston process, we see that
e TN Z(E A Te,)) = e TN Z(EATE)), as. as k — oc.
Using [10, Theorem 16.13], we prove that
Eg e TN TO ) (Z (A Tﬁk))j| - E [e_r(tATﬁ)u(Z(t A Tﬁ))] , ask — oo,

by showing that
{e*T(Wﬁwu(Z(t N7g)) k€ N}

is a collection of uniformly integrable random variables. By [10, Remark related to
formula (16.23)], it suffices to show that their p-th order moment is uniformly bounded
(independent of k), for some p > 1. We choose p > 1 such that pM; < p and pMs < 1.
Notice that this is possible because we assumed the coefficients M7 < p and My < 1.
Then, from the growth estimate , we have

efr(t/\‘rﬁk)u(z)’p < Ce"P(tATe,) (1 4 ePMY | epMzX) , VkeN.
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From the inequality (4.2.14) with ¢ = pM; < p and property (4.2.13) applied with
¢ =pM; € (0,1), we obtain using My < r/(k¥)

P
E He—r“wk)u(za A T@k))\ } < C(1+ePMiv 4 PMom) Yk e N,
Therefore, by taking limit as k tends to oo in (4.3.3)) we obtain

E [e‘r(tAT@’)u(Z(t A T@))} — u(z) — B} [ /O I s f(Z(s))ds] . (4.3.4)

As we let t tend to oo, the integral term on the right-hand side in the preceding identity

clearly converges to

Ef [ /0 s f(Z(s))ds} .
It remains to consider the left-hand side of . Keeping in mind that u € Coc(0'U
030) solves , we rewrite this term as

Eg [e‘r(tAT’ﬁ’)u(Z (A m))} =E [e79(Z(10))Lrp<y]) + EG [e T u(Z(1)1irpnry] -

Using the growth assumption (4.1.16), we notice as above that both collections of

random variables in the preceding identity,
{e*”@’g(Z(Tﬁ))l{TﬁSt} it > 0} and {e*rtu(Z(t))l{Tﬁx} it > O} ,

are uniformly integrable, and they converge a.s. to e™"7?g(Z(7¢))1{7, <0} and zero,

respectively. Therefore, by [10, Theorem 16.13], letting ¢ tend to oo in (4.3.4)), we obtain

To
By (€7 9(Z(70))1rp<o0y] = u(2) — B [/0 e " f(Z(s))ds|,
which implies that u = u* on &' U 030, where u* is defined by (4.1.19). O

Proof of Theorem[{.1.5. Our goal is to show that if 0 < 8 <1 and u € Co.(CUT1) N
c2(o)nct!

s,loc

(0 UT)y) is a solution to problem (4.1.1]), satisfying the growth estimate
(4.1.16)), then it admits the stochastic representation (4.1.21)).

We consider the following sequence of increasing subdomains of &,

U, ={z€ 0 :|z| < k,dist (2,T1) >1/k}, keN, (4.3.5)
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with non-empty boundary portions I'g N %4. Let € > 0 and denote
Yo:=Y +¢, and Z° := (X,Y*). (4.3.6)
By applying Itd’s lemma (Theorem |C.2.1]), we obtain

tAvey,
Ef@ e—r(t/\V%k)u(ZE(t A Vg//k))} — u(z) _ ]E(a |:/ k e—rsAsu(Zs(S))dS . Vt>0,
0

(4.3.7)
where vy, is given by (4.1.18]), and A® denotes the elliptic differential operator,
Ay = Av + %vx + KEVy — % ('Uzz + 2p0vsy + 02vyy) , Yve 02(6’). (4.3.8)
Using (4.1.1)), we can write (4.3.7)) as
t/\y%k
E(Z@ |:€—r(t/\1/%k)u(26(t A V%k))} = U(Z) — E@ |:/ eTsf(ZE(S))dS]
0 (4.3.9)

_E [ /0 T s 47 A)u(ZE(s))ds} .

First, we take limit as € tends to 0 in the preceding identity. We may assume without

loss of generality that e < 1/k, for any fixed & > 1. We evaluate the residual term

Af — A)u with (4.3.8) to give
( ) g
(A7 — A)u(Z°(s))| < Ce|Dulgyz,) + C (1 [veweve) + \/g) lyD?ul ¢z, (4.3.10)

for all 0 < s <t A vy, where C is a positive constant depending only on the Heston

constant coefficients. This follows from the fact that
eD*u(Z%(s)) = eDQU(ZE(s))l{YE(S)Sﬁ} + 6D2u(Z€(s))1{YE(S)>\/g}, Vs >0,
and so,

AP Z ()] < YD UL DLy 22} + o IDUZE D o)

< (Lgyeeye) +VE) V()| DPu(Z(s).

Combining the preceding inequality with the definition (4.3.8]) of A%, we obtain (4.3.10)).

Since u € C1' (0'UTY), and

s,loc

1{Y5(s)§\/5} — 0, aselO,
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we see that by (4.3.10) yields, for each k > 1,
t/\l/%k
Eg [/ e (AT — A)u(ZE(S))ds} — 0, aselO. (4.3.11)
0
In addition, using the continuity of f and u on compact subsets of & U Ty, we have

Eg [efr(m”””k)u(Ze(t A V%))] — Eg [ef’ﬂ(tA””"‘k)u(Z(t A Vq/k))] , asel0,

t/\l/%k t/\l/@/k (4312)
Eg [/0 e_rsf(Za(s))ds] —E [/0 e_rsf(Z(s))ds] , asel0.
Therefore, using (4.3.11)) and the preceding limits, we find that (4.3.9) gives
t/\l/q/k
E [e_r(t/\”%k)u(Z(t A y%))} — u(z) — B} [ /0 T f(Z(s))ds} . (4.3.13)
Note that by letting k and ¢ tend to oo, we have
tANvy, — Vg, a.s. (4.3.14)

By using the same argument as that used in the proof of Theorem to take the
limit as k£ and ¢ tend to oo in (4.3.3]), we can take the limit as k& and ¢ tend to oo in

(4.3.13)) to give
Eg [e ”’ﬁg(Z(Vﬁ))] =u(z) — Eg {/0 e " f(Z(s))ds]| .
This establishes © = u*, where u* is given by (4.1.21]), and completes the proof. ]

Next, we prove existence of solutions to problem (4.3.2)) when the boundary data g

is continuous on suitable portions of the boundary of &.

Theorem 4.3.1 (Existence of solutions to the elliptic boundary value problem ({4.3.2))
with continuous Dirichlet boundary condition). In addition to the hypotheses of Theo-
rem[{.1.9, assume that the domain € C H has boundary portion I'y which satisfies the

exterior sphere condition, and that f € C*(0).

1. If B> 1 and also g € Cioc(T1), then the function u* in (4.1.19) is a solution

to problem (4.1.1)) with boundary condition (4.1.3) along I'y. In particular, u* €
Cloc (O UT1) N C?*T¥(0) and u* satisfies the growth assumption (4.1.16)).
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2. If0 < 8 <1 and also g € Cloc(00), then the function u* in (4.1.19)) is a solution

to problem (4.1.1) with boundary condition (4.1.5)) along 0C. In particular, u* €
Cloc(0) N C*(0) and u* satisfies the growth assumption ([#.1.16)).

Proof. Following the comments preceding problem , we need to show that u*,
given by (4.1.19), is a solution to problem (4.3.2), that u* € Cioe(€ U dp0) N C%(0),
and that u* satisfies the growth assumption .

Notice that Lemma applied with 61 = 74, 6o = 0o and ¢ = 0, shows that u*
defined by satisfies the growth assumption . It remains to prove that
u* € Cloc(0' U 830) N C?(0). Notice that Theorem implies that u* is the unique
solution to the elliptic boundary value problem ([4.3.2)), since any Cioo(6'U030)NC?(O)
solution must coincide with u*.

By hypothesis and the definition of dg& in ([£.3.1]), we have g € Cloc(930). Since
930 is closed, we may use [37, Theorem 3.1.2] to extend g to R? such that its extension

G € Cloc(R?). We organize the proof in two steps.

Step 1 (u* € C*t%(0)). Let {0}, : k € N} be an increasing sequence of C?T® sub-
domains of & as in the proof of Theorem We notice that on each domain O}
the differential operator A is uniformly elliptic with C*°(&},) coefficients. From our
hypotheses, we have f € C*(0}) and § € C(0y). Therefore, [41, Theorem 6.13] implies
that the elliptic boundary value problem

Au=f on O, (43.15)

u=4g on O0.
admits a unique solution uy € C(6) N C?T(0}). Moreover, by Theorem [C.3.10] wuy,

admits a stochastic representation on &y,

uk(2) = B [Tk GZ(70,) g, <o) | + B Uo e f(Z(s))ds| . (4.3.16)

Our goal is to show that wug converges pointwise to u* on &. Recall that 7, is an
increasing sequence of stopping times which converges to 7, almost surely. Using

G € Cioc(0 U 0g0) and the continuity of the sample paths of the Heston process, the
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growth estimate and Lemma the same argument used in the proof of

Theorem shows that the sequence {uy : k € N} converges pointwise to u* on 0.
Fix 29 := (20,0) € O, and choose a Euclidean ball B := B(zg, ) such that B C 0.

We denote Bj/y = B(z0,70/2). As in the proof of Lemma the sequence uy, is

uniformly bounded on B because it obeys
lup(2)] < C (1 + My 4 esz) , Vz=(x,y) € B,keN.

From the interior Schauder estimates [41, Corollary 6.3], the sequence {uy : k € N} has
uniformly bounded C?*%(B; /2) norms. Compactness of the embedding C*t (B, /2) =
C*t (B, /2), for 0 < 7 < a, shows that, after passing to a subsequence, the sequence
{ur, : k € N} converges in C?%7(B ) to u* € CQ+'Y(B1/2), and so Au* = f on Bys.
Because the subsequence has uniformly bounded C?*%(B,; /2) norms and it converges

strongly in CQ(BI/Q) to u*, we obtain that u* € CQ+O‘(Bl/2).

Step 2 (u* € Cloe(0'U030)). From the previous step, we know that u* € C(0), so it

remains to show continuity of u* up to dg&. We consider two cases.

Case 1 (u* € Cioc(0 UTy), for all B > 0). First, we show that «* is continuous up to
I'y. We fix 29 € I'y, and let B be an open ball centered at zg, such that BN oH = @.
Let U := BN 0. Let the function § be defined on dU such that it coincides with g on
oU N OO, and it coincides with u* on QU N 0.

Claim 4.3.2. The strong Markov property of the Heston process (Z(s))s>o and the
definition (4.1.19) of u*, implies that

u*(z) =E§ [e "V §(Z(r))] + Ef [/OTU e_rtf(Z(t))dt] , Vzel. (4.3.17)

Proof. By Corollary the Heston stochastic differential equation (4.1.15) admits
a unique strong solution, for any initial point (¢,z,y) € [0,00) X R x [0,00), and [30}
Theorem 1.16(c)] shows that the solution satisfies the strong Markov property.

Let z € U, then 77 < 77 a.s. Since Z is a time-homogeneous strong Markov process,
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we obtain

By [e770g(Z(0))] =BG [EG [e779(Z(70))] |7 (10)]

_ E@ [G—TTUEé(TU) [e_TTﬁg(Z(Tﬁ))H ,

which can be written as

Ej [e7779(Z(70))] = Eg [e7 9(Z(0))Liry =73

) (4.3.18)
+E@ |:6—TTUEQ(’TU) [e_TT‘ﬁg(Z<T@’)):| 1{TU<T@’}:| .

Similarly, we have for the integral term
Ej [ /0 e f(Z(t))dt] — B}, [ /0 e f(Z(t))dt}
TG
1B [umw} / e—”f<z<t>>dt] |
TU

and so, by conditioning the second term in the preceding equality on .Z (7y7) and ap-

plying the strong Markov property, we have
To -
E@ [1{TU<7'0}/ e’ f(Z(t»dt}
TU
To
=Eg [% [1@%} / e f(Z (t))dt] Iff(m)] (4.3.19)
TU

—E2 |1 —T‘TUEZ(TU) e —rt Z(t))dt
Q | Hru<re}® Q ) e " f(Z(1)) .

Combining (4.3.18]) and (4.3.19) in (4.1.19), we obtain

() = B [ (20 i ] + B | [ (201l
B |V o BG) [ea(ztro) + [ ez |

Using again (4.1.19) for u*(Z(7y)), the preceding equality yields (4.3.17). This com-
pletes the proof of Claim [£.3.2] O

By [41, Theorem 6.13] and a straightforward extension of Theorem from
domains with C? to domains with regular boundary, as in [23, §6.2.6.A], the integral
term in is the solution on U of the uniformly elliptic partial differential equa-
tion Au* = f with homogeneous Dirichlet boundary condition, and it is a continuous

function up to OU. Notice that QU satisfies the exterior sphere condition and thus 0U
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is regular by Proposition m (see Definition for the definition of regular points

of QU). The continuity of the non-integral term in (4.3.17)) at zy follows from Corollary

as g is continuous at zy by hypotheses.

It remains to show that, when 0 < 3 < 1, the solution u* is continuous up to L.

Case 2 (u* € Cloc(0 UTy), for all 0 < 8 < 1). Let z9 = (z0,0) € Tp. We denote by 67

the first time the process started at z = (x,y) € € hits y = 0. Obviously, we have
TE<HP<TY  as., (4.3.20)

where T is given by (4.2.11)). For 3 € (0,1), it follows from (4.2.12)) and the preceding

inequality between stopping times, that 8% converges to 0, as y goes to 0, uniformly in
x € R. Therefore, the integral term in (4.3.17) converges to zero. Next, we want to
show that the non-integral term in (4.3.17)) converges to g(zg). We rewrite that term

as
Ef [e779(Z(16))] — 9(20) = E§ [e777 (9(Z (7)) — 9(20))]
(4.3.21)
+9(20) (1 —E§ [e7777]).
From the observation that 77 < 6% a.s., we see that
E [e7777] = 1, as z — 2. (4.3.22)

By (4.3.21), it remains to show that Eg [e™"¢ (g(Z(74)) — g(20))] converges to zero, as

z € O converges to zg. We fix € > 0 and choose 61 > 0 such that
lg(z) — g(20)| <&, Vze€ B(z,01)NI0. (4.3.23)

From [47, Equation (5.3.18) in Problem 5.3.15 |, there is a positive constant Cp, de-

pending on zy and d1, such that

sp  E3 { sup |2(s) - z|] < OVA,

z€B(20,61)NC 0<s<t

from where it follows

sup Q7 < sup |Z(s) — z| > 51/2> < QCI\/i. (4.3.24)

z€B(z0,01)NC 0<s<t
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Next, we choose t > 0 sufficiently small such that

2
Cl\/g <g,
01

(4.3.25)

and, by (4.3.20) and (4.2.12), we may choose 3 > 0 sufficiently small such that

Q (TSQ > t) <e. (4.3.26)
Lot § := min{d1/2, 65}, We rewrite
e "7 (9(Z(10)) — 9(20)) = €77 (9(Z(76)) — 9(20)) Lz, <t}
+e 77 (9(Z(70)) — 9(20)) Lz >ty
to give
e "7 (9(Z(10)) — 9(20)) = €777 (9(Z(70)) — 9(20)) Lz <tisupoe.c; |12(s)~21<61/2}

+e 7" (g(Z(16)) — 9(20)) 1{Tﬁgt73up0§s§t |Z(s)—z|=>81/2}

+ e (9(Z(10)) — 9(20)) Liry >ty
(4.3.27)

By (4.3.23]), we have for all z € B(zp,0) N O
E@ “g(Z(Tﬁ)) - 9(20)‘ 1{Tﬁ§t, SUPg<s<t \Z(s)fz\<61/2}:| <e. (4328)

We choose p > 1 such that pM; < p and pMs < 1. Notice that this is possible because

we assumed the coefficients M7 < p and Ms < 1. Then, from the growth estimate

(4.1.16|) for g, we have

‘G_TTﬁg(Z(Tﬁ))‘p < Ce PO (1 + ePM1Y (10) + epMzX(Tﬁ)> )

From the inequality (4.2.14) with ¢ = pM; < p and property (4.2.13) applied with
¢ = pMy € (0,1), we obtain using the condition M; < r/(kV)

Eg HG_TT@Q(Z(Tﬁ))‘p] <C (1 + ePMiy epM”) .
Let C5 > 0 be an bound on the right-hand side of the preceding inequality, for all
z = (z,y) € B(20,0) N 0. By the Cauchy-Schwarz inequality, we have

[EG [e777 (9(2(70)) — 9(20)) Lizpoy]|

<E% [e7770 |g(Z(7p)) — g(z0)[] 1/p Q" (1 > t)l/p/ ,
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where p’ > 1 denotes the conjugate exponent of p. Using the fact that 77, < T| g 2 from
(4.3.20) and (4.3.26)), we obtain in the preceding inequality
—rr 1 ’
(B3 [e77 (9(2(70)) = 9(20)) Loy ] | < 26707 (Th > 1) .
< 2021/1051/”/, Vz € B(z9,0) N O,

From the inequality,

BS (777 (0(2(70)) = 9(20) Liny <tmupoeocs 1260 —1260/23 |

1/p
<E3 [T |9(Z(70)) — 9(z0)”] /P @7 (08<th Z(s) — 2| > 51/2> :

the inequalities (4.3.24)) and (4.3.25)) and definition of Cy yield

E@ [6—7"7'@ (g(Z(Tﬁ)) - g(ZO)) 1{7'6>§t,sup0§s§t \Z(s)—z\261/2}:| ’ < 2021/]361/1)" (4330)

Substituting ([.3.28), ([.3.29), and ([@.3.30) in (£.3.27), we obtain

E[e77 (9(Z(70)) = 9(z0))] < (14+4C57) (e +7), vz € B(zo,0)N 0,
and so u* is continuous up to Iy, when 0 < 8 < 1.
This concludes the proof that u* € Cioc(€' U 0g0), for all 5 > 0.

This completes the proof of Theorem [4.3.1 O

We now prove existence of solutions to problem (4.3.2)) when the boundary data g

is Holder continuous on suitable portions of the boundary of &.

Theorem 4.3.3 (Existence of solutions to the elliptic boundary value problem
with Hélder continuous Dirichlet boundary condition). In addition to the hypotheses of
Theorem let © C H be a domain such that the boundary portion I'y is of class
O+ that f € CE (O UTy) and g € CEL*(0 UTY).

loc

1. If B > 1, then u*, given by (4.1.19)), is a solution to problem (4.1.1)) with boundary
condition (4.1.3) along T'1. In particular,

u' e CH (o UT)

loc

and satisfies the growth assumption (4.1.16)).
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2. If0 < B < 1andg € Cpc(00), then u*, given by (4.1.19)), is a solution to problem
(4.1.1) with boundary condition (4.1.5) along OC. In particular,

u* € Cloe(O)NC*T (O UTY)

and satisfies the growth assumption (4.1.16)).

Proof. The proof of the theorem is the same as that of Theorem [£.3.1] with the exception
that Case [1] of Step [2] can be simplified by applying the classical boundary Schauder
estimates. Also, instead of using the sequence of subdomains {0}, : k € N} precompactly
contained in &, as in the proof of Theorem [4.1.2] we consider an increasing sequence,
{9}, : k € N}, of C**® subdomains of & (see [41], Definition §6.2]) such that each %

satisfies
ON(=k,k)x (1/k, k) C D, C ON(=2k,2k) x (1/(2k),2k), Vk €N, (4.3.31)

and

Uaz=0.

keN

Since T'; is assumed to be of class C?T®, we may choose Z;, to be of class C*+?,

Let zp € T'1, and rp > 0 small enough such that B(zp,79) NT'g = @. Let
D := B(z9,70) N € and D" := B(z,70/2) N O.

By (4.3.31), we may choose kg € N large enough such that D C %, for all k > kq.
Using f € C%(D), g € C?***(D) and applying 41, Corollary 6.7], and the fact that uy

solves ((4.3.15))
lukllotapy < C (HUkHC(D) + |9llc2e ) + Hf”m(D)) , Vk > ko, (4.3.32)

where C' > 0 is a constant depending only on the coefficients of A, and the domains
D and D’. Combining the preceding inequality with the uniform bound on the C(D)
norms of the sequence {uy : k € N}, resulting from Lemma the compactness of
the embedding of C?**(D’) — C?™7(D'), when 0 < v < «, implies that a subsequence

converges strongly to u*. Therefore, u* € C?T7(D’), and Au* = f on D' and u* = g
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on D' NTy. Moreover, u* € C?T*(D'), since uj, € C?*T*(D'), for all k > ko, and the
sequence converges in C2(D’) to u*. Combining the boundary estimate (4.3.32)) with
Step (1| in the proof of Theorem we obtain the conclusion that u* € 02+a(ﬁ U

loc

I). O

Remark 4.3.4 (Validity of the stochastic representation for strong solutions). The
stochastic representation (4.1.21)) for solutions to problem (4.1.1]) with boundary condi-

tion along I'; is valid if we replace the condition u € Cioe(GUT1)NC2(G)NC L

s,loc

(0UT)
in the hypotheses of Theorem m with the weaker condition u € Cioc(€0 UT1) N
W2 (o)nchl (6UTy).

s,loc

4.4 Elliptic obstacle problem

This section contains the proofs of Theorems {4.1.8[ and 4.1.9, As in problem (4.3.2)),

the questions of wuniqueness of solutions to problem (4.1.2) with Dirichlet boundary
condition along I'y, when 8 > 1, and along 00, when 0 < 8 < 1, are similar in nature.
We can conveniently treat them together as

min {Au — f,u—19} =0 on O,
(4.4.1)

U=y on 0g0,
where 030 is given by (4.3.1]).

Proof of Theorem[{.1.8, Lemma [4.2.12 indicates that u* given by (£.1.23) satisfies
(4.1.16)), so the growth assumption on v in Theorem is justified.

By the preceding remarks, it suffices to prove that the stochastic representation
([4.1:23)) holds for solutions u € Cioc(€'UI0) NC?(O) to problem (4.4.1)). We consider
the two situations: u > v* and u < u* on 0 U dg0, where u* is defined by (4.1.23)).

Step 1 (Proof that u > u* on OUJR0). Let {0}, : k € N} be an increasing sequence of
C?** subdomains of & as in the proof of Theorem Since u € C?(0), 1t6’s lemma
(Theorem |C.2.1)) yields, for any stopping time 6 € .7,

Ej [0 u(Z2(0 A 7o,))| = ul(z) — B [ /0 PO s Au(z(s)ds| . (442)
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By splitting the right-hand side in the preceding identity,
£ [e—"“’wwu(zw A Tﬁk))}
= B [T u(Z(0 A T0)) L rg, <0y | + B [TPUZO N T0)) 1 (1,501
and using v > v on € and Au > f a.e. on 0, the identity gives
u(z) 2 By e W(Z(0)1p<r, )]
+ B [e " ulZ(10,) 1 (rp, <0y | + B [ /0
Just as in the proof of Theorem the collections of random variables
{e‘T%(Z(@)l{e«ﬁk} ke N} and {e—”ﬁku(Z(Tﬁkm fro,<0y k€ N}

are uniformly integrable because u and v satisfy the pointwise growth estimate (4.1.16)).

From the continuity of u and ¢ on &' U 930, we also have the a.s. convergence,

e Z(0))Ligar, y = € U(Z(0)Lipar,y,  as k= 0o,

T Z (10 Lirg, <0y = € TOUZ(T0) i pzoy, a8 ko,

Therefore, by [10, Theorem 16.13], we can take limit as k tends to oo in inequality
(4.4.3)) to obtain, for all 8 € .7,

u(z) 2 By [ W(Z(0)) Ligery) | + B [ OU(Z(70)) 7y n)]
ONT
LB [ / e F(2(s)) ds] ,
0
which yields u > u* on U930

Step 2 (Proof that u < u* on ¢ U 0g0). The continuation region,
% = {u> 1}, (4.4.4)

is an open set by the continuity of u and 1. We denote the first exit time of Z%* from

the continuation region, %, by

Fhe = {s>t: Z4(s) ¢ ¢}, (4.4.5)



175

and write 7 = 7% for brevity. This is indeed a stopping time because the process Z%*
is continuous and ¥ is open. By the same argument used in Step [I] with 8 replaced by
7, we obtain that all inequalities hold with equalities because u(Z(7)) = ¥(Z(7)) and

Au = f on the continuation region, . Therefore,

u(2) = B [e7TY(Z()) L p<rpy] +EG [7T09(Z(160)) 1 (rp<rp)]

+E [/0 Cer(z(s)) ds|

which implies that u < u*.

By combining the preceding two steps, we obtain the stochastic representation

(4.1.23]) of solutions to problem (4.4.1)), and hence the uniqueness assertion. O

Proof of Theorem[].1.9 Lemma [4.2.12| indicates that u* given by (4.1.24) satisfies
(4.1.16]), so the growth assumption on u in Theorem is justified.

Our goal is to show that if 0 < 8 < 1 and u € Cloe(0 UT)NC2(O)NCH}

s,loc

is a solution to problem (4.1.2]) with Dirichlet boundary condition (4.1.4]) along I';, and

(0UTy)

satisfying the growth estimate (4.1.16)), then it admits the stochastic representation
(4.1.24). As in the proof of Theorem we consider the following two cases.

Step 1 (Proof that u > u* on &' UT";). Let € > 0 and {% : k € N} be the collection of
increasing subdomains as in (4.3.5). By applying It6’s lemma, we obtain, for all ¢ > 0
and 0 € 7,

t/\l/oz/k/\e
U(Z) _ E@ |:67T(t/\l/%k/\9)u(Z€(t A V%k A 9)):| +E@ |:/ eirsAEu(ZE(S))dS 7
0
(4.4.6)

where vy, is given by (4.1.18]) and Z¢ is defined in (4.3.6)), and A® is defined by (4.3.8).
By (4.1.2) and (4.3.8)), preceding identity gives

u(z) > B3 [e_r(t/\”@/k/\a)u(ZE(t A v, A 9))]
== o e pz | 185 | [ P g Az (s))as].
(4.4.7)

First, we take the limit as ¢ tends to 0 in (4.4.7). We can assume without loss of

generality that ¢ < 1/k, for any fixed k¥ € N. The residual term (A° — A)u then
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obeys estimate (|4.3.10) because u € Cslﬁx,(ﬁ UTg). Therefore, (4.3.11]) also holds in

the present case. In addition, using the continuity of f, v, Du and yD?u on compact

subsets of &' UTy, we see that (4.3.12)) holds, and so, by taking limit as € | 0 in (4.4.7)),
tAvay, NI
u(z) > Eg [e_’"(t/\”“”k/\e)u(Z(t A vy, N 9))} +Eg [/0 e " f(Z(s))ds|. (4.4.8)

Finally, letting £ and ¢ tend to oo and using the convergence (4.3.14)), the same argument

employed in the proof of Theorem [1.1.2]can be applied to conclude that u > u* on OUT',
where u* is given by (4.1.24]).

Step 2 (Proof that u < u* on & UT';). We choose § = 7 in the preceding step, where
7 is defined by (4.4.5). By the definition (4.4.4) of the continuation region, %, and
the obstacle problem (4.1.2)), we notice that inequalities (4.4.7) and (4.4.8]) hold with

equality and so it follows as in Step [I| that v < u* on & UT';.

This completes the proof. O

Remark 4.4.1 (Validity of the stochastic representation for strong solutions). The
stochastic representation of solutions to problem , when 8 > 0, holds
under the weaker assumption that u € Cioc(OUIg 0 )ﬂI/Vlif (0)). Similarly, the stochastic
representation of solutions to problem with Dirichlet boundary condition
along I'y;, when 0 < 8 < 1, holds under the weaker assumption that u €

Cloc(CUT)NCH!

s,loc

(CUTyH)U Wi’f(ﬁ ). In each case, we would replace the application
of the classical It6 lemma (Theorem |C.2.1)) with [8, Identity (8.62) in Theorem 2.8.5],

or we could apply an approximation argument involving C2(¢&) functions.

4.5 Parabolic terminal/boundary value problem

This section contains the proofs of Theorems 4.1.12| and [4.1.15| and an existence result

in Theorem [4.5.4] Because the Heston process satisfies the strong Markov property, it
suffices to prove the stochastic representation of solutions to the terminal value problem
for T' as small as we like. In particular, without loss of generality, we can choose T' such

that

Hypothesis 4.5.1. There is a constant py > 1 such that
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1. Condition (4.2.20) in Lemma 4.2.14) is satisfied for p := po My, where My € [0, 1]
is the constant appearing in (4.1.25));

2. One has poM; < p, where M; € [0, 1) in (4.1.25).

As in we first prove uniqueness of solutions to the parabolic boundary value
problems with different possible Dirichlet boundary conditions depending on the
parameter 3. The proofs are similar those of Theorems [£.1.2] and

The existence and uniqueness of solutions to problem with boundary condi-

tion (4.1.9), when 8 > 1, and with boundary condition (4.1.12)), when 0 < 8 < 1, are
similar in nature. By analogy with our treatment of problem (4.3.2), we define

0'Q if B >1,
05Q == (4.5.1)
0 ifo<p<l,
where we recall that @ := (0,7") x €. The preceding problems can then be formulated

as

—u+Au=f onQ, (4.5.2)

u=g¢g on0gQ. (4.5.3)
We now have the

Proof of Theorem [{.1.13. We choose T' > 0 small enough and py > 1 as in Hypothesis
The pattern of the proof is the same as that of Theorem For completeness,
we outline the main steps of the argument.

We need to show that if u € Cle(Q U 35Q) N C*(Q) is a solution to problem
, satisfying the growth bound , then it admits the stochastic representa-
tion . We choose a collection of increasing subdomains, {0} : k € N}, as in the
proof of Theorem By applying Ité’s lemma (Theorem , we obtain, for all
t>0and k €N,

EfQZ [C_T(TﬁkAT_t)U(Tﬁk NT, Z(1g, N T))]

= u(t, z) — Eg [/tTﬁ’“AT e 70 f (s, Z(s))ds] ' (4.5.4)
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We now take limit as k tends to oo in the preceding identity. Using (4.1.25)) and Lemma
we obtain

t 7Oy AT . TeNT
E@Z [/t e*r(sft)f(s, Z(S))dé‘} — E@z [/t efr(sft)f(s, Z(s))ds| , as k — co.
(4.5.5)
From the continuity of u and of the sample paths of Z, we obtain the a.s. convergence

as k tends to oo,
G_T(Tﬁk/\T_t)u(Tﬁk NT, Z(1g, NT)) — 6_T(Tﬁ/\T)g(Tﬁ NT, Z(te NT)).
In order to prove that, as k tends to oo,

Eaz [e_T(Tﬁk /\T_t)u(Tﬁk AT, Z(Tﬁk A T))] — Ef@z [e_T(TﬁAT)g(Tﬁ AT, Z(Tﬁ A T)) )
(4.5.6)

using [10, Theorem 16.13], it is enough to show that the collection of random variables,
{e—“mkAT—%(Tﬁk AT, Z(7g, AT)) : k € N} (4.5.7)

is uniformly integrable. For py > 1 as in Hypothesis it is enough to show that
their po-th order moments are uniformly bounded ([10, Observation following Equation

(16.23)]), that is

t,z
supEg [
keN Q

_ Po
. rTﬁku<Tﬁk,Z(Tﬁk))l{Tﬁk<T}‘ } < to0. (4.5.8)
From (4.1.25)), we have, for some constant C,

EfQ@Z [ E_T(Tﬁk/\T_t)u(Tﬁk NT, Z(15, NT))

po]
<cC (1 +Eaz |:ep0M1Y(7'5>k/\T)i| +E%z [epOM2X(T@k/\T)D ‘

Now, the uniform bound in (4.5.8) follows by applying the supermartingale property

(4.2.14) with ¢ := pgM; to the first expectation in the preceding inequality, and by

applying (4.2.21) with p := poMs to the second expectation above. Therefore, by

taking the limit as k tends to oo in (4.5.4]), with the aid of (4.5.5) and (4.5.6)), we
obtain the stochastic representation (4.1.26)) of solutions to problem (4.5.2)). O

Proof of Theorem[{.1.15. The need is to show that if 0 < < 1 and u € Cjoc(Q U
9'Q)NCHQ)NCyy,

s,loc

((0,T) x (0'UTy)) is a solution to problem (4.1.7)) with boundary
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condition (4.1.9), satisfying the growth bound (4.1.25)), then it admits the stochastic
representation (4.1.28)).
Let € > 0 and {%}, : k € N} be the collection of increasing subdomains as in (4.3.5).

By applying It0’s lemma, we obtain
Ef@z {e_T(TA”%k)u(T Nvagy, Z5(T A Vﬂ//k))}
' T/\V%k
2 -
= u(t,z) — Eg {/t e " Afu(s, Z‘E(s))ds] ,

where vy, is given by (4.1.18]), Z° by (4.3.6) and A°® is defined by (4.3.8). The proof

now follows the same path as that of Theorem [£.1.5 with the only modification being
that we now take the limit as k tends to oo in the preceding identity in order to obtain

(T.1.29). O
Analogous to Lemma we have the following auxiliary result.

Lemma 4.5.2. Suppose f and g obey the growth assumption (4.1.25). Then there
are positive constants C, My < p and Mo € [0,1], such that for any stopping times
61,02 € T with values in [t,T], the function ng’92 given by (4.1.29)) obeys the growth

assumption (4.1.25)).

Proof. The proof follows as in Lemma [4.2.12] with the aid of Lemma Notice
that because the stopping times 61,602 € 7 1 are bounded by T, we do not need the

constant r to be positive, as in Lemma |4.2.12 O

Next, we have the following existence results for solutions to the parabolic boundary

value problem (4.5.2)), for all g > 0.

Remark 4.5.3. The function v in (4.1.29) plays the role of the obstacle function and
is relevant only for problem (4.1.8)).

Theorem 4.5.4 (Existence of solutions to problem (4.5.2]) with continuous Dirichlet
boundary condition). In addition to the hypotheses of Theorem let 6 C H be a

domain such that the boundary I'1 obeys an exterior sphere condition, and f € C'l‘f)c(@)
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1. If 6> 1 and g € C1oc(0'Q), then u* in (4.1.26) is a solution to problem (4.5.2)).
In particular, u* € Cioe(Q U 3'Q) N C?*T(Q) and obeys the growth assumption

@.1.25).

2. If0 < B <1 and g € Cioc(0Q), then u* in ([£.1.26)) is a solution to problem (4.5.2)).
In particular, u* € Cloe(Q UDQ) N C?*TY(Q) and satisfies the growth assumption

[@.1.25).

Proof. We choose T' > 0 small enough and pg > 1 as in Hypothesis

By hypothesis, we have g € Cloc(%iQ). Since 557(02 is closed, we may use [37,
Theorem 3.1.2] to extend g to a function on [0,7] x R?, again called g, such that
g € Cloc([0,T] x R?).

The proof follows the same pattern as that of Theorem [£.3.I] For completeness,
we outline the main steps. Let &}, be an increasing sequence of C?T® subdomains of
O as in the proof of Theorem and let Qx := (0,T) x O). We notice that on
each cylindrical domain, @y, the operator A is uniformly elliptic, and its coefficients
are C*°(Q},) functions. By hypothesis, there is an o € (0,1) such that f € C*(Qy) and

g € C(Qy). Therefore, by [37, Theorem 3.4.9], the terminal value problem

—us+Au=f on Qp,

u=g on (0,T)x 00, U{T} x O,

has a unique solution u, € C(Qg) N C**(Qk), and by Theorem |C.3.11] it has the

stochastic representation

uk(t,2) = B [0 T Dg(rp AT, Z(r, AT))]
' Tﬁk/\T _ (459)
+Eg [/t e (s, Z(s)) ds} . V(t 2) € Qk.
Because 74, converges to 7¢ a.s. as k — oo, the integral term in (4.5.9)) converges to
the integral term of u* in (4.1.26)), by the same argument as that used in the proof of
Theorem [4.1.12] By the continuity of g and of the paths of the Heston process Z, we

also know that

E_T(Tﬁk/\T)g(Tﬁk NT, Z(1e, NT)) = e "N g(7o AT, Z(16 AT)), as k — occ.
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In order to show that the preceding convergence takes place in expectation also, it is

enough to show that the collection of random variables,
{6_7"(75%/@)9(7'@C NT, Z(16, NT)) : k € N} ,

is uniformly integrable, but this follows by the same argument as that used for the
collections in the proof of Theorem by bounding their pg-th order mo-
ments (po > 1). Therefore, the sequence {uy : k € N} converges to u* pointwise on Q.
By interior Schauder estimates for parabolic equations [40, Theorem 3.3.5] and Lemma
there is a subsequence of {uy : k € N} which converges to u* in C?T®(Q), when
0 < o < a. Using the Arzela-Ascoli Theorem, we obtain u* € C?*%(Q). The proof
of continuity of u up to 93Q follows by exactly the same argument as that used in the
proof of Step [2| in Theorem m Therefore, u* is a solution to .

From Theorem and Lemma we see that u* in is the unique
solution to the parabolic terminal value problem , for all 8 > 0. O

Theorem 4.5.5 (Existence of solutions to problem (4.5.2) with Holder continuous
Dirichlet boundary condition). In addition to the hypotheses of Theorem let

O C H be a domain such that

1. If B > 1, the boundary portion Ty is of class C*>T*, and g € C2T*(QUI'Q) obeys

loc

—g+Ag=f on{T} xTI}y. (4.5.10)

Then u* in (4.1.26) is a solution to problem (4.5.2)). In particular,

= C2+a(Q U 6162)

loc

and obeys the growth estimate (4.1.25)).

2. If0 < B < 1, the boundary portion T'y is of class C*>T®, and g € Cﬁjga(QU?SlQ) N
C'°¢(0) obeys
—g+Ag=f on{T} x 00. (4.5.11)

Then u* in (4.1.26) is a solution to problem (4.5.2)). In particular,

u*t € C2H(QuUtQ) N C(0).

loc
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and obeys the growth estimate (4.1.25)).

Proof. Just as in the proof of Theorem [4.5.4] we can easily adapt the proof of Theorem
for the elliptic case to the present parabolic case. For this purpose, we only need
to make use of the local boundary Schauder estimate Lemma instead of [41]

Corollary 6.7] for the elliptic case. O

Remark 4.5.6 (Zero and first-order compatibility conditions for parabolic equations).

The conditions (4.5.10) and (4.5.11) are the analogues of the first-order compatibility
condition [51, Equation (10.4.3)]. The analogue of the zero-order compatibility condi-
tion in [51, Equation (10.4.2)] automatically holds at {T'} x I'1 or {T'} x 9€, since we

always choose h = g(T,-) on I'; or 00, respectively.

4.6 Parabolic obstacle problem

Problem (4.1.8) with boundary condition (4.1.12)), when 0 < 8 < 1, and with boundary
condition (4.1.9), when 5 > 1, can be formulated as

min {—u; + Au — fu—1} =0 on @,
(4.6.1)

U=y on 03Q,
where 03Q is defined in (4.5.1). According to Theorem {4.1.19, the solution to problem
(4.6.1)) is given in (4.1.31)).

Proof of Theorem[{.1.19. We choose T > 0 small enough so that it obeys Hypothesis
4.5.1 For such T > 0, the proof of Theorem adapts to the present case in the
same way that the proof of Theorem adapts to give a proof of Theorem
Therefore, it remains to show that the corresponding stochastic representation
of the solution to problem holds for T" arbitrarily large.

Let N := |T/T] (the greatest integer in T/T'), and T; := iT', fori = 0,..., N—1, and
Ty :=T. Let k be an integer such that 1 < k < N — 1, and assume that the stochastic
representation formula holds for any t € [T;,T], where i = k,...,N — 1. We

want to show that it holds also for ¢ € [Ty_1,T]. Notice that for K = N — 1, we have
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T—-1t< T, for all t € [Ty_1,T], and so we know that the stochastic representation
of the solution to problem holds, by the observation at the beginning of
the present proof.

For any ¢t < v < T, stopping time 6 € %, with values in [t,v], and ¢ € C (&), we

denote
T6 N0

FP(t,2,v,0) = / e " f (s, Z(s)) ds + €070, Z(0)Ligarpno
t

+ €O (10, Z(r0)) 11y <07} (4.6.2)
+ eir(vit)()o(z(v»1{7’5/\1}§9,7‘@2v}-
Notice that by choosing ¢ = g(7,-) and v = T in (4.6.2)), we obtain, for any stopping

time 6 € 7 7,

eir(Tﬁit)g(Tﬁv Z(T@>>)1{T5§9,T@’<T} + eir(Tit)SO(Z(T))1{7’0/\T§9,T@2T}

— e_T(Tﬁ/\T_t)g(Tﬁ A T, Z(Tﬁ A T))l{'rﬁ/\Tﬁe}
and so,

TN
FIT(t, 2, T, 0) = / e "0 (s, 2(s)) ds + "0, Z(0)Lpo<rpnry
¢ (4.6.3)

+e TN (16 NT, Z(16 ANT)) L par<0)-
Because u solves problem (4.6.1)) on the interval (Ty_1, 7)), and T — Tp—1 < f, we see

that u has the stochastic representation (4.1.30)), for any ¢t € [T},_1,T}) and z € OUIR0,
— t,Z u*(Tkv')
u(t,z) = sup Eg [F (t,z, Tk, 9)} . (4.6.4)
IS

For any stopping time 1 € .7, 1, , we set

To/A\N
Filta Do) = [ 00 f(s, 2(s)ds
t

+ e DY (0, Z()) Ly erp i) (4.6.5)

+ eir(Tﬁit)g(Tﬁﬂ Z(Tﬁ))l{T@Sn,n<Tk}a
and for any stopping time £ € I7, 1, we let

TEN

Fy(t,2,T,€) = / T f(s, Z(s))ds

Ty

+ G_T(S_TkW(fa Z(&)Ye<ronTy (4.6.6)

+ G*T(Tﬁ’/\Tka)g(Tﬁ AT, Z(Tﬁ A T))]-{Tﬁ/\Tﬁﬁ}'
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For the rest of the proof, we fix z € 6 U000 and t € [T}_1,T}).

Let n € 1, and £ € I3y, 7. 1t is straightforward to see that

n if n < Tk,
0 :=
¢ iftnp="1T,
is a stopping time with values in [¢,T]. We denote by
%,T = {9 S %j 10 = 771{77<Tk} + gl{n:Tk}, where 1 € ‘%’Tk and £ € ka,T} .
(4.6.7)

For any stopping time 6§ € 7 7, we define the stopping times §' € 7, 1, and 0" € I, r,
0" = Lger )0 + Liosry T and 0" := 1oy Tk + Lip>1,30. (4.6.8)
Then, any stopping time 6 € J; v can be written as
0=01pony +0"Lio>1y
=0'Lg ey + 0" 111

and so,

S = LT
The preceding identity and definitions (4.1.30)) of «* and (4.6.2]) of F'¥ give us

u*(t,z) = sup Eaz {FQ(T")(t,z,T,G)} : (4.6.9)
Geéﬂt,T

We shall need the following identities

Claim 4.6.1. For any stopping time 0 = nlg,my + {lg—7,), where n € 1y and
§ € I, 1, we have the following identities

To NN

T NG
/ e "6 f(s, Z(s))ds = 1{7I<Tk}/ e "6 £ (s, Z(s))ds
. t
TeNE .
- 1{n=Tk}/ e " f (s, Z(s))ds,
Ty
and

e Y0, Z2(0) L {g<ronry = €00, Z() Ly <roatiy Lin<ri)

+ e EIY(E Z(E)) L g crpnry Lin=11}
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and

e "N g1 NT, Z(1 ANT)) 7y nr<0)

_ efr(Tﬁ*t)g(Tﬁ7 Z(Tﬁ))1{T6§7777I<Tk}1{77<T’“}

+ e_T(TﬁAT_t)g(Tﬁ NT, Z(16 NT))ironr<ey Lin=Ty)-
Proof. Notice that
{0 < T} ={n < Tx} and {0 > T}.} = {n = Tx}. (4.6.10)
The first identity is obvious because, by , we see that
=non {n<Ti}and 0 =& on {n =Ty} (4.6.11)
The second identity follows by the observation that
{0<16 NTy={0 <15 NT,0 <T,} U{0 <716 NT,0 > T}},
and using and , it follows
{0<16 NT}={n<16 NT}e,n <Tp}U{ <16 AT, =T}
For the last identity of the claim, we notice

{te NT <0} ={16 NT < 0,76 <T}U{m6 NT < 0,76 >T}
:{Tﬁ/\Tﬁ@,Tﬁ<T,0<Tk}U{Tﬁ/\T§9,Tﬁ<T,(92Tk}

U{Tﬁ/\TSH,TﬁZT}.

By (4.6.11)) and (4.6.10), we obtain

{to NT <0}y ={16 <076 <T,n<Tp} U{to AT <& 16 <T,n="Ts}
U{re AT <& 16> T}

:{Tﬁ§n7n<Tk}U{Tﬁ/\T§§7T/:Tk’}a

which implies the last identity of the claim. O
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We can write the expression for F Q(T")(t, z,T,0) as a sum,
Fg(Tf) (t7 27 T7 9) = 1{77<Tk}F1 (ta 27 Tk7 77) + 1{77=Tk}eir(Tk7t)F2 (t7 Z7 T7 §) (4612)

Because £ € Jr, 1 and Fy(t, z,T,€) depends only on (Zt’z(s))Tk<S<T, and the Heston

process has the (strong) Markov property [30, Theorem 1.15 (c)], we have a.s. that

t,z
EY [Fy(t, 2, T,€)| ] = Ego? ") [By(Ty, 2(T,), T, €))

=BG [Ty, 2(1), 7.

by applying definitions (4.6.3)) and (4.6.6). Thus,

E&Z |:1{77:Tk}6_r(Tk_t)F2 (t’ Z, Tu 5) |ngi|
= Ef@z ]Eaz |:1{77:Tk}€_7"(Tk—t)F2 (t, 2, T, g)LngH

= Ef@z _1{n:Tk}efr(Tk—t)Ef@z [Fo(t, 2, T, g)y,%kﬂ

2 [ o (To—t) 2T, Z (T .
By the preceding identity, (4.6.7)) and (4.6.12), the identity (4.6.9)) yields

t,
u’ (t7 Z) = sup {EQZ [1{n<Tk}F1 (t7 Z, Tka 77)
0=n1{y<my )+l (=17}
€S, €T, 1y, €T, T

o (Tr — )T, Z (T .
e ORGP, (1), T,0)] |}

= sup {Ef@z [1{T,<Tk}F1(t,Zkav77)
nETL, T,

Flgmnye "B sup B A [T, 2(T3), T,
§€TT T

Using the definition (4.1.30)) of u*, we have

} |

u*(Ty, Z(Ty)) = sup Eé’“’Z(Tk) {FQ(T")(Tk,Z(Tk)yTa f)} )
§€IT, T

and so it follows that

U*(ta Z) = S;p Eaz [1{77<Tk}F1(ta 2, Tk, 7]) + 1{n:Tk}e_T(Tk_t)U*(Tka Z(Tk)):| :
ne€Jt, 1y,

Notice that, by the definitions (4.6.2]) of F'¥ and (4.6.5) of F}, we have

Fu*(T7.) (t; 2, Tk7 7]) = 1{77<Tk}F1 (ta 2 Tka 77) + l{n:Tk}e_T(Tk_t)u* (Tk? Z(Tk))
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The preceding two identities yield

u*(t,z) = sup E&Z [F“*(T“)(t,Z,Tk,n)}
USSR

= u(tvz)v (by )

This concludes the proof of the theorem. O

Proof of Theorem [{.1.20. We omit the proof as it is very similar to the proofs of The-
orems 4.1.19 and 4.1.9 O
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Appendix A

Auxiliary results for Chapter

In this appendix, we give proofs for several results which are slightly more technical

than those in the body of Chapter

A.1 Existence and uniqueness of solutions for a degenerate parabolic

operator with constant coefficients

In order to derive the local a priori boundary estimates in Theorem we need an
analogue of [20, Theorem I.1.1] when the coefficients of our operator L, a;;, b; and c,
are assumed constant. To emphasize this fact in this appendix, we denote our parabolic
operator by

d d
—Lou := —u + Z TqQijlyz; + ZbiUm +cu on (0,7) x H.
ij=1 i=1

We now have the following analogue of [20, Theorem I.1.1].

Proposition A.1.1 (Existence and uniqueness of solutions for a degenerate parabolic

operator with constant coefficients). Let K, § and v be positive constants such that

aignim; > 6llnll?,  vn € R, (A.1.1)
ba > v, (A.1.2)
|aijl bil, e] < K. (A.1.3)

Let k be a nonnegative integer, T > 0, and a € (0,1). Assume that f € CP*(Hy) and
g e C§’2+a(]ﬁl) with both f and g compactly supported in Hy and H, respectively. Then,

the inhomogeneous initial value problem

(A.1.4)
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admits a unique solution u € C§’2+O‘(HT). Moreover, there exists a positive constant

C=C(T,K,dv,a,d, k) such that

lullgzn gy < € (1 llgho gy + 19 grvo ) - (A.15)
Proof. The proof follows by adapting the proof of [20, Theorem I.1.1]. Because the
proof of [20, Theorem I.1.1] is lengthy, we only outline the modifications, noting that
these modifications are straightforward. We remark that there is no simple change of
variables that can be applied in order to bring the constant coefficients equation
to the form of the model operator defined in |20, p. 901]. Another difficulty is that
our interpolation inequalities (Lemma do not allow us to treat the first order
derivatives, ug,, in as lower order terms: in order to do that, we would need to

have

lue; oo @) < ellullgzem,y + Ce™ " lullo@y),
instead of the interpolation inequality (2.3.8). On the other hand, by simple changes of

variables which we describe below and which preserve the domain H and its boundary

OH, problem (|A.1.4)) can be simplified to

d d
—Lou = —u; + deuxixi + Z biug, on (0,7) x H, (A.1.6)
i=1 i=1

where the coefficient by > 0 remains unchanged. In addition, the possibly new constant
coefficients b; are bounded in absolute value by constants which depend only on §
(A.1.1) and K . The simple changes of variables are the following. As usual, we
eliminate the zeroth order term cu by multiplying u by e“. By applying the change of
variable

- . Qiq
u(t,z) =a(t,x1 + anxg, ..., T4—1 + a@g_1xq, xq), with a; = o
dd

the problem (A.1.4)) is reduced to the study of the operator Lo given by

Lot = up — xdaddﬁfcd:,;d — Z aijﬁwd — Z (bz + Ozz‘bd) ﬂ;ti — bdﬂxd on (0, T) x HL.
ij#d i#d
Next, we diagonalize the upper symmetric, positive-definite matrix (a;;); j=1,... 4—1 and

we rescale each coordinate to obtain

d d
— Lot = —s + x4 Zﬂm + Z biti,, on (0,T) x H,
=1 =1
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where the constant coefficients b; may differ from b;, with the exception that by = by,
because the transformation affects only the first d — 1 coordinates. Therefore, for the
remainder of this section, we may assume without loss of generality that Lg is of the
simpler form .

The primary change required in the proof of [20, Theorem I.1.1] lies in [20] §I.4].
The arguments in the remainder of [20, Part I] adapt almost line by line to our model
operator ((A.1.6). The goal in [20, §1.4] is to derive local derivative estimates and this is
achieved by applying a comparison principle with barrier functions. First, we need to

adapt the definition of the barrier function [20], Definition I1.4.1] to one which is suitable
for use with (A.1.6).

Definition A.1.2. Let 0 < t; < to. We say ¢ is a barrier function for Ly when

t € [t1,t9], if there are positive constants C' and ¢ such
Lop > —Ca:dg02 + cg03/2 + c. (A.1.7)

The barrier functions in [20, Theorem 1.4.5 & Theorem 1.4.8] are barrier functions
in the sense of Definition also. The barrier function constructed in [20, Theorem
1.4.6] needs modification because the coefficients b;, i = 1,...,d — 1, are non-zero in

general, unlike in [20, Part I]. We have the following modification.

Claim A.1.3. Assume i # d. For any v < 1 as in [20, Definition 1.4.2], there are a
positive constant b depending only on |b;|, and a positive constant A, depending only

on |bi|, b and v such that, for any ty >0,

1 1
T 2; = b(t—10)2 | (1— s — b(t — t0))2

pi(t, x) = ( (A.1.8)

is a valid barrier function satisfying (A.1.7)), for all t € [to,to + At].

Proof of Claim[A.1.3 Tt suffices to consider separately the terms T¢; and ~¢; defined

by

+, . 1
P A ta— bt —1))?

because the barrier functions form a cone by [20, Theorem 1.4.4]. We prove that T¢;

satisfies (A.1.7)), and the proof follows similarly for ~¢;. We denote for simplicity
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¢ 1= T;. By direct calculation, we obtain

Yt = 2b<;03/2>
Px; = _2903/2’
Pz = 69027

while 0z, =0 and Pz, =0, unless j = k = ¢. Then, we have

Lo = 2(b+ b;)¢*? — 6349”.

We impose 1 — b(t — tg) > =, for all t € [to,to + AJ, so we choose A < (1 —~)/b. By

choosing b = |b;| + 1, we can find C' > 0 and ¢ > 0 such that
Loy > —:ch’go2 + 6@3/2 +c,
and so ¢ satisfies the requirement (A.1.7)), for all ¢ € [to, to + A O

Next, the arguments in [20, §1.5] adapt to our framework with the following ob-
servation. Because our barrier functions are not defined for all ¢ € [0, 1], we
cover first the interval [0,1] by a finite number of intervals of length A, as given in
Claim and we apply the maximum principle on each of the resulting subinter-
vals. This will yield local estimates analogous to [20, Theorem 1.5.1, 1.5.4 & Corollary
1.5.7], on the small time subintervals of the finite covering. By combining the local
derivative estimates over each subinterval, we obtain the required local estimates for

all t € [0,1]. 0

A.2 Proof of Proposition 2.3.13

Next, we include the proof of Proposition [2.3.13] The estimate (2.3.98)) is obtained
exactly as in the proof of [51, Theorems 9.2.2 & 8.9.2] using Lemma [2.3.11

Proof of Proposition[2.5.13. Due to the classical interpolation inequalities [51, Theorem
8.8.1] and the classical maximum principle for unbounded domains [51}, Corollary 8.1.5],

it suffices to prove that the estimate (2.3.98]) holds with

[utl oo (jo,7x ey and [“xizj]og([o,T]de)
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on the left hand side of the inequality. We will prove this for the C([0,T] x R9)-
seminorm of u;, but the same argument can be applied for the C7([0, T x R9)-seminorm
of Uz,

For simplicity of notation, we denote @ := (0,T) x R?, and we omit the subscript p

in the definition of the Holder spaces. We also use the simplified notation
[Wlgeta(qg) = lutlca(g) + [ul«ﬁj]ca@) . (A.2.1)
Let u € C?*T*(Q) be a solution to Problem Then,
7:=e My (A.2.2)

is in C?7*(Q) and it solves

(-L—X\)a=—e™f on(0,T) xR,
u(0,-) =g on RY,
where A1 is the upper bound on the zeroth order coefficient, ¢, assumed in (2.3.78). We

may apply [51) Corollary 8.1.5], because the zeroth order term of the parabolic operator

—L — )\ is nonpositive, and we obtain
il gy < Tlle ™ fllog) + lglo@) < Tliflo@) + l9llc@):
Thus, it follows by (A.2.2))
lullowg) < 7 (Tl fllewg) + I9le@) - (A.2.3)

Let 21, 29 € [0,7] x R? be two points such that

ui(21) — ur(22)]
p* (21, 22)

Y

1
Let v > 0 be a constant which will be suitably chosen below. We consider two cases.

Case 1 (p(z1,22) > 7). Then, we have

[utl ooy < 29 utle(g)

and, by [51, Theorem 8.8.1, Inequality (8.8.1)], it follows, for all £ > 0,

[u)cag) < 207" (6[u]cz+a@) + Cs_o‘/z\u\c@)> .
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By choosing € := v*/8 and by inequality (A.2.3)), we obtain
—(x Cl{2
[utl ey < Z[U]CZM(Q) + Oy (atet e T (THfHC(Q) + HQHC(Q)> ; (A.2.5)

where the constant C' = C'(d, a).

Case 2 (p(z1, 22) < 7). We denote z = (¢,z). Let ¢ : R — [0, 1] be a smooth cutoff

function such that
C(2) =1, if p(z,21) <1, and {(2) =0, if p(z,21) > 2,
and we define ¢ by

p(z) = (((t—t)) /7" (@ —21)/7) Yz e R,

so that,

o(z) =1, if p(z,21) <, and @(z) = 0, if p(2,21) > 27, (A.2.6)
It is straightforward to see that ¢ satisfies
[llenengany < C (1477, (A.2.7)

where C' is a positive constant. Since z3 € {¢ = 1}, we obtain by (A.2.4)

lut(21) — ue(22)]
p*(21, 22)

[ud) ey < 2 < 2[(up)ilce(g)- (A.2.8)

Let Lo denote the differential operator, with constant coefficients, of the type considered

in Lemma 2.3.11]

d

—Lo=—-0,+ Z @ij(21)0z;z; - (A.2.9)
ij=1

Estimate (2.3.82) shows that there are constants p; = p;(«) and C = C(d, o, T") such

that
[(up)i]cag) < C <1 +o; 7+ Kfl) (HEO(WP)Hca(Q) + HQSOHC2+C«({0}XW)) . (A.2.10)
By (A.2.7)), we obtain

lgellcotafoyxrey < C (1 + ’y’(”“)) 9l oo ®a- (A.2.11)
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By writing Lo(up) = L(uyp) + (Lo — L)(up), we have

d d
Lo(up) = L(up) + > (aij(2) — aij(21)) (up)a,z, + Y bi(2)(up)s, +&(2)uep. (A.2.12)
ij=1 =
We may write
d
L(uyp) = ¢Lu + Z ij(2)Pa; e, + Z ij(2)Puiz; + Zb 2)pz;, +¢(2) | u
3,j=1 i,5=1

and so, by (A.2.7) and (2.3.77)), we obtain there is a positive constant C' = C(d) such

that

IE@@)lloa(g) < € (1477 ||Lulcagy

(A.2.13)
+ K1 (1477 (luail ooy + lullee)) -
Notice that we may write the difference as
) d
Lo(ugp) — L(up) = > (aij(2) — @ij(21)) Pz,
ij=1
d d )
+ Z Z azj — Q45 (21)) Pa; +bi(2)p | ug,
=1 \j=1
d
+ Z (@ij(2) — aij(21)) (0)zsz; + Zb 2)pz; +E(2)p | u.
ij=1

By (2.3.77), (A.2.6) and (A.2.7), we obtain
[ (aij (2) — @ij(21)) Pua,a ||C‘l @ = CK1y*® [U%w‘g]()a( Q) T CKi(1+~~ (@t )Hua:szHC(Qy
From an argument similar to that used to obtain (A.2.13]), we have

ILo(ue) = L(up)llca(g) < CK1Y [thaia;]0a (@)

(A.2.14)
+ CKy (147 #) (HuxixjHC(Q) + vz, e gy + lulloe g
Estimates (A.2.13) and (A.2.14), give us, by (A.2.12),
1 Lo(ug) | ca(gy < C (1 + ’Y*(zm)) [ Lul| gy + CE1Y [Uaa;]ca @) (A.215)

+ Oy (1477 (lluaia, e + e lloa@) + lulloe(g)
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Combining the preceding inequality, estimates (A.2.10) and (A.2.11)) in (A.2.8)), and
using notation (A.2.1)), it follows

[lenqg) < C (14677 + K) (14+97#)) | Zullon )
+ K17 [u]gzva ()
+ K1 (1477 ) (Jtaia, o) + luallon@) + lullon@) )
+ (1477 gl caseas) )
where C' = C(d,«,T). The interpolation inequalities [51, Theorem 8.8.1] and the
maximum principle [51], Corollary 8.1.5], gives us, for any ¢ > 0,
[utlca(g) < C (1 +o,7 + Kﬁ”)
x [N (14 Kae™) (14737 C) (I leagg) + lgllorr@a)

+ K ("}/a +e (1 + 77(2+a)>> [U]C%LQ(Q)} ,
where m = m(«). We choose v € (0,1) such that

_ 1
c (1 TP Kfl) K" < 1.

as for instance,
1 1 1 —(1+4p1) e
v = <480 min{Kl_ JKO KT }) AL (A.2.16)
Then, we choose € > 0 such that

C (14677 4 K (14973 Kie < 1173

A suitable choice is

e 192t min { K7 KT K (A.2.17)

= 60"
Then, we obtain
[ut]ca(@ < Z[U]era((?) + C’e’\lT (1 + 51—p1 + Ki?l) (1 + K1€_m) (1 + ’Y_(Q+a)>

% (I lemgy + lglcarees)) -
(A.2.18)
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By combining inequalities (A.2.5)) and (A.2.18]) of the preceding two cases, we obtain

the global estimate

[u]cz+a(g) + CeMT (1 + 077 4 Kfl) (1+ Kie™™) (1 i 7—(2+a)>

N

[ulea(g) =

% (Ifllgag) + lgllcasaes)) -
(A.2.19)

We notice from (A.2.16) and (A.2.17) that we may find positive constants N3 =
Ns(d,a,T) and p = p(«) such that

1 -
[ut]ca(Q) < i[u]cwa@) + N3€)‘1T (1 + 0 Py Kf) <Hf”ca(@) + HgHC2+a(Rd)> .

Therefore, (A.2.1]) gives us

[ulearaqg) < NoeMT (14077 + K7) (Ifllcm (@) + lgllcaraay )

which concludes the proof of the proposition by the interpolation inequalities [51], The-

orem 8.8.1] and the maximum principle estimate (A.2.3]). ]
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Appendix B

Auxiliary results for Chapter

In this section we collect the technical justifications of a few assertions employed in the

body of Chapteif3]

B.1 An extension lemma

First, we give the proof of Lemma As in we work under the assumptions
stated in Remarks [3.2.3] and

Proof of Lemma[3.2.6, By [18, Corollary A.14], it is enough to prove the existence of an
extension operator for functions u € C*(Bg(z9)). Fix a point 2, = (zf, ;) € Br(20),
say z = (R2 /100, R?/ 100). We consider two different cases depending on whether
0<y<uypory >y

First, we consider the points z = (z,y) € D\Bg(zo) such that 0 < y < y{. Let
z! = (2/,y) be the intersection of 0Bg(zp) with the horizontal segment connecting z

and (x(,y). Then, we define Fu(z) by reflection (with respect to the point 2’ in the

hyperplane at level y)

/ /
E — / ‘:B —$0| o )
U(Z) u <$O + ‘.’B _ 1’6‘2($ xO)vy

Next, we consider the case of points z = (z,y) € D\Bg(z0) such that y > y;. Let
2 = (2/,y') be the intersection of OBR(zp) with the segment connecting z and z.
Then, we define Eu(z) by reflection

2" = 2]

Bu(z) == u <zg R 26)) .

It is clear that Eu is a continuous extension of u from Bpr(zp) to D. Remark

ensures that 0BR(zg) is a piecewise smooth curve, and so Fu has well-defined weak
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derivatives in D. Next, we show that (3.2.6) holds. For this purpose, we denote by

Dy == (D\Br(20)) N {y <y},
Dy := (D\Br(20)) N {y > 9o }-

To prove (3.2.6)), it is enough to show there is a positive constant C, depending on

R and D, such that

/ \Bu(z, y)|*y"dady < C lu(z,y)|*y" dzdy,
Dy Br(20)

| VB Pty <C [ [Guley)Py oy,
D1 Br(20)

(B.1.1)
/ |Bu(z, y)|*y"dady < C lu(z,y)|*y” dzdy,
Do BR(20)

| Bty <C [ (Fute,y) Py dudy,
Do Br(20)

We begin by evaluating the integrals over D; in (B.1.1) and we show that

[ By ety <€ [ Jute) Py dedy
1

Br(z0) (B.1.2)

| VB sty <C [ [Tule,)Py ey,
Df Br(z0)

where D := D; N {z > 0}. The analogous relation to (B.1.2]) can be shown to hold on

Dy :=D; n{x <0}, in a similar way.

Denote by
o — )
f(z,y) :$6+ﬁ($—$6)- (B.1.3)
0

We notice that (f(x,y),y) € Br(20), for all (z,y) € D1, so Fu(z,y) is well-defined on
D;. The coordinate 2’ = 2/(y) is determined by the condition d((y, z’), 29) = R. Direct
calculations give us

1/2

2 (y) = <<R2 + R\ R? + 4y>2 /4 — y4>

We obtain, for all (x,y) € Dy,

' — x|

fa(@,y) = —m,

/

fylay) = W)

CL‘*QZ’O
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We can find a positive constant C', depending only on R, such that
r—x(>a2 —xy>C1, V(z,y) € D;r,

and there is a positive constant Cs, depending on R and D, such that

|fa(a, )], | fala, )| 7H  fy (2, 9)] < Co. (B.1.4)

Using the change of variable w = f(z,y) in (B.1.2), we obtain

/ |Bu(z, y)2y* dedy < / (oo, ) 2y o ()| dedy

D?_ BR(ZO) (B 1 5)

< /B )Py dady, (v (B1)
R\(20

Using
81Eu(xay) = Ux(f(«%',y),y)fz(m,y),

8yEu(xa y) = Ux(f(l', y)a y)fy(xa y) + uy(f(xa y)a y)7
the change of variable w = f(x,y) and the upper bound (B.1.4)), we obtain for a positive

constant C3, depending on R and D,

| IVEuw Py dedy < C [ Vutw ) Pl o) P+ o) P )|y dudy,
Df Br(z0)
and thus
| VB )PPndy < C [ Vue)PyPdady, (B.16)
DY Br(20)

Therefore, (B.1.5) and (B.1.6]) give us (B.1.2]).
Next, we consider the last two integrals in (B.1.1). Notice that on Dy we have

y >y, > 0 and so it is enough to show
/ |Bu(z,y)|*dzdy < 04/ lu(z, y)|*dzdy,
Do Br(20)

(B.1.7)

/ IV Bu(e,y)Pdedy < Cy / Vulz, y)|2dady,
Do BRr(20)

for some positive constant Cy, depending on R and D. For all (z,y) € Dy, we denote

o(x,y) = (¢ (z,y), *(z,y)) = 20 +
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Hence, we can find a positive constant Cs, depending on R and D, such that for all

(l’,y) € D27

det]Vgo(x, y)|71 < C57
(B.1.8)

IVe(z,y)| < Cs.
We notice that ¢(z,y) € Br(z0), for all (z,y) € Dy. Therefore, using the change of

variable w = ¢(z,y), we obtain

/ |Bu(e, y)Pdedy < / () Pdet | Vip(z, )|~ du
Do Br(z0)

(B.1.9)
e /B  JuCe)Pdady (vy BI),
R\Z0
Using
O Bu(z,y) = ua(z,y)0s(2,y) + uy(z, y)2(2, y),
OyEu(z,y) = ux(z,y) 0y, y) + uy(z,y) 05 (2, 1),
we obtain
| IVBu@p)Pdsdy <€ [ [Tuw)?Vele,)Pdet V(e )] dudy
= Br(=0) (B.1.10)

<cc [ _ [Vulw)Pdzdy, 0oy BI3)
Rr(20

From (B.1.9) and (B.1.10), we obtain (B.1.7). This concludes the proof of Lemma
3. 2.6l L]

B.2 Test functions

In this section, we verify that the test functions used in the proofs of our main results
are indeed in the space H}(0 UTg,w). We start with the test function (3.4.6)) used in

the proof of Theorem [3.1.

Lemma B.2.1. The function v given by (3.4.6) is in H} (0 UT, ).

Proof. We only show that v € H} (0 UT g, w) defined by (3.4.6) with w = u* + A. The

proof for the choice w = u~ + A follows similarly. We fix £k € N and we consider the

definitions of Hjy and Gy, given by (3.4.4)) and (3.4.5)), respectively.

Since u € H} (0 UTy, ), we have u™ € H} (60 UT, ) by [18, Lemma A.34]. Let

(u;)ien be a sequence of functions in C} (& UTy) converging to v in H'(0,w). We
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extract a subsequence, for which we use the same notation as for the original sequence,

such that

+

u; — u' a.e. on 0.

(B.2.1)

Let w; := u; + A and v; := nGy(w;), where 1 has support in Bog(2g) as in the proof

of Theorem Our goal is to show that v; € H}(€ U Ty, ) converge to v in

H(0 UTy, ), from where the assertion of the lemma follows.

We notice that each v; € C( 7 ). Because u; = 0 along I'; by construction, we have

w; = A, along ',

and so, we also have by ([3.4.4)) and (3.4.5)),

v; =0, along I'y.
Since 1 has support in Bag(20), it follows that
v; € Co(ﬁU F(]).

Using
|Hi ()] < ok,

we obtain

lv; —v| <

/ |H,’€(t)\dt‘ < ak* Hw; —w

Wi

= ak* Hu; —ut.
Since the last term converges to zero in L?(¢ U T, w), it follows that
v; — v, as i — oo, in L*(0 UTp,w).

By direct calculation, we have

Vi = 20VnGr(w;) + n?|Hy, (w;)|* Vg,

Vo = 2pVnGr(w) + 1 | Hy (w) V™.
By (B.2.2)), (B.2.4) and using Vu; € Co(0 UT), we obtain

Vu; € Co(0 UTy).

(B.2.2)

(B.2.3)

(B.2.4)

(B.2.5)

(B.2.6)
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We have
Vo — Vel < 20|V Gl ) — Gi(w)
+ [ Hy(wi)? = Hy(w)?||[ V™| + |Vu; — Vu' || H (wi) .
Using (B.2.4]), there is a positive constant depending on k, o and 7, such that

|Vv; — Vo| < Clug — u™| + | Hp(w;)* — Hy(w)?||Vu™]. (B.2.7)

By (B.2.1)) and the boundedness of Hj, in (B.2.4), we notice that
| Hi(wi)* — Hy(w)?||Vu™| < Jak* | Va™|
|H} (w;)? — Hj,(w)?||Vut| — 0, as i — oo a.e.,
and so, using the Dominated Convergence theorem, we have

|Hy (w;)? — Hj(w)?||[Vu| = 0, as i — oo, in L*(€ UTy,ymw).

Then, we obtain by (B.2.7)

|Vv; — V| = 0, as i — oo, in L?(0 U Ty, yw).

Combining the preceding inequality with (B.2.3]), (B.2.5) and (B.2.6)), we obtain the

assertion of the lemma. O

Next, we verify that the test functions employed in the proofs of Theorems[3.1.8 and
belong to the space H}(€'UT, 1). For this purpose, since u € H} (0'UTy, ), we
let (u;);en be a sequence of functions in C¢ (& UTy) converging to u in H'(&, ). We
extract a subsequence, for which we keep the same notation as for the original sequence,
such that

u; — u a.e. on 0. (B.2.8)

We will use this construction in the following results of this subsection.

Lemma B.2.2. The function v given by (3.5.9)) is in H} (0 UTy, ), for any a € R.
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Proof. We outline the proof for the choice w = u—myr+k(R) in (3.5.6]) in the definition
of v in (3.5.9). The conclusion of the lemma for the choice w = Myr — u + k(R) in

follows similarly. Let
Q; :={z € Byr(20) : =k/2 +mur < u; < Myg + k/2},
and let Qf be the complement of ; in Byr(zp). By setting
;= (ui A (—=k/2+myr)) vV (Myr + k/2), VieN,

we obtain

/ lu; — u*rodzdy > / |u; — ul*rodzdy
B4r(20) Q5

> (k/2)" 19 .

Since the left hand side in the preceding inequality converges to zero, we obtain that
12w — 0, as i — oc. (B.2.9)

We let
w; = U; —myup +k
Then, w; satisfies on Byr(20)
k‘/? < w; §M4R—m4R—|—3k/2. (B.Q.IO)
Now, we define
v = anf‘, Vi € N,

where a € R and 7 is a smooth, non-negative cutoff function with support in Byg(z0).

By (3.5.1)) and (B.2.10), we notice that v; are well-defined functions and

v; € CQ(@UF()), Vi € N.

By (B.2.8) and (B.2.9), we obtain that v; converges a.e. to v, and by (B.2.10)), the

sequence (v;);en is uniformly bounded. Thus, by the Dominated Convergence theorem
we obtain that the sequence (v;);en converges to v in L?(0, ).
Next, we have
Vo, i= 2nVnuws + anwi Vi,

Vv := 2nVnuw® + anw® V.
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Since the support of 1 is included in Bygr(zo), the same holds for Vu;, for all i € N.
We can evaluate Vv; — Vv in the following way. There exists a positive constant C,
depending only on 7 and «, such that on B4r(z0)
Vi — Vo| < Clw§ — w®| + Clw? 'V, — w* ' Vul
(B.2.11)
< Clwf — w®| + Clwd | Vi — Vau| + Clw®™ — w*||Vul.
Recall that (w;);en converges a.e. to w on Bygr(zp). By (B.2.10), for any t € R, the

sequence (w!);ey is uniformly bounded, and so we have by the Dominated Convergence

a—1
i

theorem, that |w{* —w®| and |w w1 Vu| converges to zero in L?(B4g(20), yto).

Moreover, by (B.2.10)), there is a positive constant C, such that on Byg(20)
lw || Vi — V| < C|Via; — Vaul.

Notice that

/ Vi, — Vul*yrodedy = / |Vu; — Vul*yrodedy —i—/ |Vu|*yroddy
Bar(20) Q; B

4r(20)%

< / |Vu; — Vul|*ywdzdy + / XQ§|VU|2ymdxdy.
B4r(20) B4r(20

The first term in the preceding inequality converges to zero, because (u;);cn converges to
u in H'(0,w), and the second term converges to zero as well, by (B.2.9) and because
Vu € L?(0,yw). Therefore, we conclude by (B.2.11)) that Vuv; converges to Vv in

L?*(B4gr(20), ym), and so the conclusion of the lemma follows. O
Lemma B.2.3. The function v given by (3.5.56) is in Hi(€ U T, ).

Proof. From the reduction argument in the proof of Theorem at points zy € T'1NC,
we have u < 0 a.e. on ¢. From Theorem we know u is bounded on Byg(zp) and
we have

mqRr <u< 0, a.c. on B4R(ZO),

Recall that we may assume without loss of generality that myr # 0 and k # 0, by

(3.5.55)) and ({3.5.8]), respectively. Let

Q,; = {Z€B4R(Z0) : —k/2+m4R§ui(z) gk/Q}, Vi € N,
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and denote by €2 the complement of 2; in B4r(2g). Let
;= (u; Nk/2)V (=k/2 4+ myRr), VieN, (B.2.12)
and obviously this new choice satisfies
—k/2+myp < 4;(z) <k/2, VieN. (B.2.13)

First, we show that (i;);en converges to u in H'(B4g(z0), ). Notice that i; = u;

on €, 4; € C(Bp(20)) and
u; = 0, along I'1 N 8B4R(ZD).
By (B.2.13)), we notice that |u — u;| > k/2 a.e. on Qf, which implies
[ ) - wl)Prods = k2 9],
Byr(20)
Since the left hand side in the preceding inequality converges to zero, we obtain
Q%] — 0, as i — oo, (B.2.14)

Using the uniform boundedness of the sequence (4;);en and (B.2.8), we obtain by the
Dominated Convergence theorem that (i;);en converges to u in L?(Bygr(20), ). Also,

we have that Vi; = Vu; on Q;, and Vi; = 0 on Qf. Then, we have

/ |Vii; — Vul*ytodz = / |Vu; — Vul*yrodz +/ |Vu|?yrodz.
Byr(z0) Q Q¢

The first term on the right hand side converges to zero, because (u;);en converges to

u in H'(0,w), while the second term goes to zero as well, by and Vu €

L?(By4gr(20), yw). We conclude that (Vii;);en converges to Vu in L2(Bg(20), yro).
This completes the proof that (;);en converges to u in H'(Byr(20), ).

Next, we define

w; =k + U; — myR,

v; = 7)2 (wi — (k — mygr)?).

From the definition (B.2.12)) of #;, we have

0<k/2<w; <3k/2—myg, on Byr(zy), VieN, (B.2.15)
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and so, v; are well-defined functions, for all & € R. Since i; € C(Bygr(20)) and i; = 0

along 'y N 0B4r(20), we notice that
w; =k —mypr, on 0B (z0) NT. (B.2.16)

Also, n was chosen such that its support is contained in Byg(zp). Therefore, v; = 0

along the piece of the boundary 0B4r(zp) contained in H, and so,

v; € Co(B4R(Zo) U Fo), Vi € N. (B.2.17)

By (B.2.8)) and (B.2.15)), we also have, for any t € R,

v; = v, a.e. on Byg(z0), (B.2.18)

w! — w', a.e. on Byr(2). (B.2.19)
In addition, we can find a positive constant M, depending on «, such that
] oo (Bug(20))> Vill Lo (Bun(z0)) < M1, Vi €N, (B.2.20)
and, for any t € R, we can find positive constants Ms, depending on ¢, such that
”wt||Loo(B4R(ZO)), ||w,f|\Loo(B4R(ZO)) < M,, VieN. (B.2.21)
Therefore, using the Dominated Convergence theorem, and , we obtain
v; = v, in L*(Byr(20), ). (B.2.22)

Next, we want to establish Vi € N,

Vu; € L*(Byr(20), yw), (B.2.23)
Vov; =0, along I'y N 0B4r(20), (B.2.24)
supp Vv; € Byr(20), (B.2.25)
Vu; — Vo, in L*(Byg(20), yt). (B.2.26)

By a direct calculation, we have

Vo = 2nVn (w® — (k — myg)®) + an*w® 1 Vu, (B.2.27)

Vu; = 20V (0w — (k — myr)®) + an*w® Vi, VieN. (B.2.28)

i
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By (B.2.15)), we have that (B.2.23) holds. Because the support of n in contained in
B4r(20), we also have the (B.2.25) holds. By (B.2.16)), we have that

wi' — (k—myr)* =0, along I't N OB4r(20).

7

Also, by construction of u;, we know
Via; =0, along I'1 N 8B4R(Z()).

Therefore, we have that holds.

We denote by V! and V2 the two terms appearing on the right hand side of .
Analogously, we denote V! and V2, i € N, the two terms in . Next, we show
that V;k converges in L%(Bygr(20),ymw) to V¥, for k = 1,2, which implies . By

choosing t = « in (B.2.19) and (B.2.21]), we obtain using the Dominated Convergence

theorem that V! converges in L?(B4g(20), yw) to V1. Next, we have
V2 — V2| < |alp?lw® ™ — w® Y| Vu| + |afn?|w|* Y| Vi — Vul,
and, using with ¢ = a — 1, for the second term on the right hand side, we have
V2 = V2 < Jallwf ™! = w |Vl + || M2| Vi — V.

Obviously, the second term in the preceding inequality converges to zero in L?(Byg(20), yto).

The first term |wio‘71 —w*1|Vu converges to zero a.e., by (B.2.19)), and it has the upper
bound, by (B.2.21)),

lw?™t — w* | Vu| < 2Ms|Vu|, VieN.

(2

Since Vu € L?(By4gr(20),yw), we may apply the Dominated Convergence theorem to
conclude

|w?71 - wa_1]|Vu| — 0, in LQ(B4R(z0),ym).
Therefore, we obtain that V;? converges in L?(Bygr(20),yw) to V2, and so,

follows.

Combining (B.2.17), (B.2.22), (B-2.23), (B.2.24), (B.2.25) and (B.2.26), we obtain

that (v;)ien is a sequence of functions in H}(Bygr U T, yw) converging to v, and so,

NS H&(B4R(20) U Po, m).
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Next, we show that the test function used in the proof of the Harnack inequality,
Theorem [3.1.10], is indeed in HE (€ U Ty, o).

Lemma B.2.4. The function v given by (3.6.2)) is in H} (0 UTy, w).

Proof. The proof of the lemma follows similarly to the proof of Lemma Because

of this, we only outline the main steps of the proof. Let
Q; == {Z € Bur(z0) : —¢/2 < wu; < Mygr —I-E/Q}, Vi € N.
and
U; 1= (ui/\(—€/2))\/(M4R+€/2), Vi € N.

We let

w; = u; +¢&, VieN.
Then, w; satisfies on bB4r(z0)

5/2 <w; < M4R+35/2, Vi € N.

Now, we define

v == n*wd, VieN,

where 7 is a smooth, non-negative cutoff function with support in Byg(z). Similarly
to the proof of Lemma it follows that v; € H}(0 U Ty, ), for all i € N, and

(vi)ien converges to v in H'(&, ), and thus the conclusion of the lemma follows. [J

B.3 Weighted Sobolev norms and uniform bounds

We have the following analogue of |2, Theorem 2.8|, [41, Exercise 7.1].

Lemma B.3.1 (Weighted Sobolev norms and uniform bounds). For 1 < p < oo and u

a measurable function on O such that |ulP € L'(€,w) for some p € R, define

1 1/p
O, (u) := <|ﬁ|/ﬁ\u|pmd:cdy) .

Then
Jim @p(u) = Sup |ul, (B.3.1)
pll}r_noo P, (u) = I%f |ul. (B.3.2)
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Proof. For 1 < p < q < oo,
p/q 1-p/q
/ |u|P v dxdy < </ |u]qmda:dy> (/ 1mdxdy) ,
% % %

<I>p(u) < (I)q(u)v

p
/ |ulP ro dedy < <sup u|> / 11w dxdy,
o 0 o

®p(u) < sup ful.
%

and thus
while for ¢ = oo,
and thus

Hence,

. _ .
Jin ©p(u) < Sup |ul

On the other hand, for any € > 0, there is a set B C & of positive measure |B| =
[ 1w dzdy such that
|u(x)| > sup|u| —e, z € B.
%

Hence,
1

1 |B]< )p
— ulP vo dxd Z/ ulProdrdy > — |suplu| —¢ ] ,
1 J, ey > o [l wdsdy > (2 (s

1 1/p ‘B’ 1/p
P > _
(rﬁr L “’d””dy> 2 <\m> <Siép'“' )

It follows that ®,(u) > (|B|/|0|)/?(supy |u| — ), and thus

SO

lim ®,(u) > sup |ul.
o

p—o0

For the second assertion, we may assume without loss of generality that infs |u| > 0

and so sup, |u|~! = (infy |u|)~!. For 1 <p < ¢ < oo,

p/q 1-p/q
/ |u| 7P 1o dedy < (/ |u]qmd:z:dy> </ 1mdﬂsdy> ,
7 1% 173
—p _q
</ |u|_pt’odazdy> > </ |u|_qmd:ndy>
17 17

SO
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and thus

(I)*p(u) Z (I)fq(“),
while for ¢ = —o0,

P
/ lu| 7P ro dedy < <sup ]u\_1> / 1w dzdy,
% o %
and thus
—p -1
O_,(u) = (/ |u\pmda:dy> > (sup ]u\l) = inf |u].
% o 4

Hence,

. S '
plglcr)lo O_p(u) > uféf |ul

On the other hand, for any € > 0, there is a set B C & of positive measure such that
lu(z)] < i%f lu|+e, z€B.
Hence,

1/]u\pmda:d >L |u| P ro dxd >@ inf |u| +¢ -
01 ), V=101 Jp A '

It follows that ®_,(u) < (|B|/|0])~YP(infs |u| + ¢), and thus

lim ®_,(u) < inf |ul.
Jim @_p(u) < inf [ul

This completes the proof. ]
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Appendix C

Auxiliary results for Chapter

C.1 Local a priori boundary estimates

To complete the proof of Theorem we need the following local a priori boundary

estimate for parabolic boundary value problems.

Lemma C.1.1 (Local a priori boundary estimates). Let & C H be a domain such that

the boundary portion Ty is of class C*T. For zg € Ty and R > 0, let
Br(z0) :={2€ 0 : |z — 2| < R} and Qrr(20) := (0,T) x Br(20).

Assume Br(zp) NTg = &. Then, there is a positive constant C, depending only on zy,

R and the coefficients of A, such that for any solution u € C*T*(Qap1(20)) to

—ug+Au=f on Qa2r,1(20),
u=g on [0,T] x (0B2r(z0) NT1),

u(T,-)=h on Bagr(20)

we have

lulle o @nreon < € (1712 @unron + 19lczreqoix@Bantearra)
1 hlloza Bt + ltlo@anrton)

Proof. The result follows by combining the global Schauder estimate [5I, Theorem
10.4.1] and the localization procedure of [51, Theorem 8.11.1], exactly as in the proof
of [30, Theorem 3.8]. O

Remark C.1.2. The interior version of Lemma can be found in [51], Exercise
10.4.2).
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C.2 The Ito lemma

To be consistent, we recall the classical It6 formula specialized to the Heston process

with our sign convention for its generator, —A.

Theorem C.2.1 (It6 formula). [{7, Theorems 3.3.3 € 3.3.6] Let u € C? ([0, 00) x R?)
and let Z be a solution to (4.1.15) with initial condition Z(0) on a filtered probability
space (2, 7,Q), {F (t)};>o- Then, for allt >0, we have,

u(t, Z(t)) = u(0, Z(0)) /0 (—us(s, Z(s)) + Au(s, Z(s))) ds
+/0 VY (5) (uz(s, Z(s)) + pouy(s, Z(s))) dWi(s)
+/0 VY (s)on/1 — p?uy(s, Z(s))dWa(s), a.s. Q.

C.3 Regular points and continuity properties of stochastic represen-

tations

For the purpose of this section, let d be a non-negative integer, D C R% a bounded
domain and t; < to. We denote by @ := (t1,t2) x D and recall that 8Q := (t1,t2) X

OD U {t2} x D. We consider coefficients a, b and o satisfying the following conditions.

Hypothesis C.3.1. Let
a:Q—S? and b:Q — RY

be maps with component functions, a”/, b?, belonging to C%!(Q), where S? is defined

in §77. Require that the matrix a be symmetric and obey

d
> al(t2)EE > 6lER, VEER?, V(tz)€Q, (C:3.1)
i,j=1
where ¢ is a positive constant. ]

Let o be a square root of the matrix a such that o € C%(Q;R¥*?). Such a choice
exists by [40, Lemma 6.1.1]. We consider an extension of the coefficients b and o from Q

to R x RY, such that these extensions are bounded and uniformly Lipschitz continuous,
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and condition (C.3.1) is satisfied on R x R%. Then, by [47, Theorems 5.2.5 & 5.2.9], for

any (t,2) € R x RY, there is a unique strong solution to

d
dZ;(s) = b'(s, Z(s))dt + > 0" (s, Z(s))dWy(s), Vi=1,...,d, s>t
j=1 (C.3.2)
Z(t) =z,
where W is a R%valued Brownian motion.

We next review the notion of regular point.

Definition C.3.2 (Regular point). [23] Definitions 2.4.1 & 6.2.3], [47), Definition 4.2.9],

[61] Definition 9.2.8] A point (¢, 2z) € 0Q is regular if for every s > t, we have
Q" ((u, Z(u)) € Q,Yu € (t,5)) =0, (C.3.3)
where Q% denotes the law of the Heston process started at (¢, z), as in Corollary

Remark C.3.3. Notice that by choosing (¢1,t2) = R, Definition is equivalent to
[23, Definition 6.2.3].

We have the following characterization of regular points.

Theorem C.3.4 (Characterization of regular points). [23, Theorem 2.4.1 and the Re-
mark following Theorem 2.4.1] Assume Hypothesis holds. A point (t,z) € 0Q is

reqular if and only if, for every ty > t,

lim Y2 (1o > to) = 0, C.3.4
QS(t/,z’)ﬁ\(t,z)Q ( Q 0) ( )

where Tg’z, is the first exit time from @ of the process ZW2) started at (t',2') € Q.
Remark C.3.5. Notice that 7‘5’2/ = Tg’zl Ata, where TtD/’Z/ is defined in (4.1.17)), for all

(', 2) e Q.

The following condition on the boundary of the cylinder @ is sufficient to ensure

that a boundary point is regular.

Proposition C.3.6 (Exterior sphere condition). [23, Theorem 2.4.4], [47, Proposition
4.2.15 & Theorem 4.2.19] Assume Hypothesis|C.3.1| holds. Let (t,z) € 0Q. If Q satisfies

the exterior sphere condition at (t,z), then (t,z) is a reqular point.
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Proof. The conclusion follows from [23, Theorem 2.4.4] and the characterization of

regular points Theorem O

Remark C.3.7. Proposition implies that if 2 € 9D and D satisfies the exterior
sphere condition at z, then (t,z) is a regular point, for all ¢t € (¢1,t2). Obviously, @
satisfies the exterior sphere condition at all points (t2,2) € {t2} x D, and so (t2,2) is a

regular point, for all z € D.

Theorem C.3.8 (Continuity of stochastic representations). [23, Theorem 2.4.2], [{7,
Theorem 4.2.12] Assume Hypothesis holds. If (t,z) € 0Q is a regular point, and

g is a Borel measurable, bounded function on 0Q which is continuous at (t,z), then

li ]Et/’zl 7 — ot ‘ N
Q3 ) s (t) © l9(7q, Z(rQ))] = 9(t. 2) (C.3.5)

We have the following consequence of Theorems [C.3.8 and [C.3.4]

Corollary C.3.9 (Continuity of stochastic representations with killing term). In ad-
dition to the hypotheses of Theorem[C.3.8, assume that

1. the function ¢ : Q — [0,00) is non-negative, bounded and Borel measurable,

2. if there is T'> 0, such that 19 < T a.s., then the function c : Q — R is bounded

and Borel measurable function.

Then

im | EG” {exp <— /t " c(s,Z(s))ds> g(Tsz(TQ))] —gt,2),  (C3.6)

Q3(t',2")—

for all regular points (t,z) € 0Q.

Proof. We consider first the case when the stopping time 7¢ is not necessarily bounded

by a positive constant T'. Then, we let cg be a positive constant such that
0<c<c¢y, ae. onQ. (C.3.7)

Let (t, z) € 0Q be a fixed regular point. We fix € > 0 and consider ' € [t1, t2] such that

t,z2'

|t — /| <e/2. Then, using the fact that 7, >’ >t —¢/2, we see that

t/,/ t/,/ o
{TQ*Z <t—5}§{t—5/2<t’§TQz <t—€}—®,
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and so, we obtain

{|Tg’2/ —t| > E} C {TSZI >t 4 &?} U {T(g’zlt <t-— 5}

t,z2'
g {TQ >t + 5} .
Theorem with tg := t + ¢, implies that

lim ' (lrp —t] > ) < lim Y2 (10 > t+¢e) =0,
Qa(t’,z’)—>(t7z)Q (|rq — )_Qa(t’,z’)%(t,z)Q (1q )

from where it follows that Tg’Z/ converges in probability to 0. Similarly, we can argue

that

.

exp —/Q (s, 28 (s))ds (C.3.8)
t/

converges in probability to 1, as (¢',2’) € Q tends to (t, z). We again fix € € (0,1) and

consider ¢’ such that [t —t| < —1/(2¢p)log(1 — €). By inequality (C.3.7)), we see that

(o L) -

gt (exp <_ / (s, Z(s))ds> <1- 5)  (asc>0),

<O foxp (~eolrg 1)) < 1), (as0< e <co)

=Qt'* (TQ >t — % log(1 — 5)) (because |t —t| < —1/(2¢o)log(1 — €)).
0

Choosing tg := t — log(1 — €)/(2¢p) in Theorem we see that the last term in
the preceding sequence of inequalities converges to 0, and so the collection of random
variables converges in probability to 1, as (¢/,2') € @ tends to (¢,z). The
sequence is uniformly bounded by the constant 1, and so [34, Exercise 2.4.34 (b)]

implies that the sequence converges to 1 in expectation also, that is

lim  E” [exp (— /t/TQ c(s,Z(s))ds> - 1” = 0. (C.3.9)

Q3 ,2")—(t,2)
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From the sequence of inequalities,

5 [oww (= [ cto. 20900 ) atra. 200))| - a0,

< |BG la(ro. Z(7o))) - o(t.2)|

5 | (1= o0 (= [ et 209)a5) ) atro. 260)|

< |BG lo(ro. Z(7o))) - o(t.2)|

tl7 /
T 10l oo EY Hl —exp (— /
t/
We next consider the case when the stopping time 7¢ is bounded a.s. by a positive

_|_

Q

(s, Z(s))ds)

the conclusion (C.3.6) follows from (C.3.5) and (C.3.9).

constant 7. We fix (t,z) € 0Q. Without loss of generality, we may assume that
t € [0,7] and Q C [0,T] x R%. Because ¢ is a bounded function on @, we let c1, ¢y be

two positive constants such that
—c1 <c<co a.e onQ,
and we set
c:=c+c on Q,
and
G’ ) = e gt ), Y, ) € 0Q.

Notice that ¢ is a non-negative, bounded Borel measurable function on Q). Also, g is a

bounded, Borel measurable function on 9@, and it is continuous at (¢, z) with
g(t,z) = g(t, 2). (C.3.10)
In addition, we have for all (¢,2') € Q,
TQ / ! Y4
exp (= [ s, 2 (6)ds) a2 (7))
tl
TQ ’ ’ ! !
= exp <—/ é(s, 21 (s))ds> g(mo, Z"* (19)) (C.3.11)
t/
+ (exp (c1(t —t')) — 1) exp <—/
t/

’TQ , , , ,
(s, 2" <s>>ds) 310, 7" (rq)).
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The functions ¢ : Q — [0,00] and § : 9Q — R satisfy the requirements of the preceding

case, and so, we have that

1!

i E5 o (= [ 6,205 ) i, 20001 | = att,2)

Q3(t,2")—(t,2)
using . By the boundedness of ¢ on @, of g on 0Q, and the fact that 79 < T
a.s., we also have
7Q

lim  Eb [(exp (ci(t =1") —1)exp (— /t

Q3(t,2")—(t,2)

é(s,Z(s))ds) 9(1q, Z(TQ))] =0.

Therefore, the conclusion of the corollary follows from the preceding two limits and

identity (C.3.11)).
O

Next, we review classical results on stochastic representations of solutions to non-
degenerate, elliptic and parabolic partial differential equations. For this purpose, we
denote by

Lv = —a" v, — b'vg, + cv,

where %/, b’ and ¢ depend on z € R? in the elliptic case, and on (¢,2) € [0,00) x R? in

the parabolic case, and v is a smooth function of z or (¢, z), respectively.

Theorem C.3.10 (Stochastic representation of solutions to non-degenerate elliptic dif-
ferential equations on bounded domains). [{0, Theorem 6.5.1], [47, Proposition 5.7.2],
[61, Theorem 9.1.1 & Corollary 9.1.2] Assume Hypothesis holds. Let a € (0,1)
and D C R? be a bounded domain with C? boundary. Let f € C%(D) and g € C(OD)
and require that ¢ € C*(D) and ¢ > 0. Then the unique solution u € C(D) N C?(D) to

the Dirichlet problem,

has the stochastic representation,

- D . _
u(z) = E? [e— oDC<Z<S>>dsg(Z(TD))} +E? [ / e JoclZ6Dds f(7(5))ds|, Vze D.
0
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Next, we recall the analogue of Theorem [C.3.10] for the parabolic case.

Theorem C.3.11 (Stochastic representation of solutions to non-degenerate parabolic
differential equations on bounded domains). [40, Theorem 6.5.2][{7, Theorem 5.7.6/
Assume Hypothesis holds. Let T > 0, a € (0,1), and D C R¢ be a bounded
domain with C? boundary. Set Q = (0,T) x D. Let f € C*(Q) and g € Cioc(0Q) and
require that ¢ € C*(Q). Then the unique solution u € C(Q) N C%(Q) to the Dirichlet

problem,

has the stochastic representation,
_ mwtz | — 7—D/\Tc(s Z(s))ds
u(t,z) = E" [e ¢ ’ g(TD/\T,Z(TD/\T)):|
Tp AT R _
+ E* [/ e Ji e Z@)dv g Z(s))ds] . Y(t,z) € Q.
t

We use Theorems [C.3.10] and [C.3.11]in our proofs of Theorems and which

provide existence of solutions to the degenerate partial differential equations defined by

the Heston operator.

C.4 Further comparisons with previous classical results for solutions
to boundary value or obstacle problems and their stochastic rep-

resentations

We provide a few more detailed comparisons between some of our main results and
classical results in the literature for boundary value or obstacle problems defined by an

elliptic differential operator, A.

C.4.1 Existence and uniqueness of solutions to elliptic boundary value

problems

Existence and uniqueness of solutions to the elliptic boundary value problem (4.1.1))

and (4.1.3)), provided T'y = 00, follow from Schauder methods when the coefficient



219

matrix, (a¥/), of the second-order derivatives in A is uniformly elliptic. For example,
see [41], Theorem 6.13] for the case where ¢ is bounded and f and the coefficients of A
are bounded and in C%(&), a € (0, 1), giving a unique solution u € C***(&) N C(0),
while 41, Theorem 6.14] gives u € C?T*(0) when f and the coefficients of A are in

C*(0). See [51l Corollary 7.4.4], together with [51, Corollary 7.4.9] or [51, Theorem
7.6.4] or [51, Theorem 7.6.5 & Remark 7.6.6], for similar statements.

C.4.2 Stochastic representations for solutions to elliptic boundary

value problems

We may compare Theorems and with [61, Theorem 9.1.1] for a statement of

uniqueness in the case where ¢ C R" is a domain and

(a) u € C%(0) N Cy(O) solves

Au=f on O,
where
LA 52 no B
— ij i) Y.
A: MZ:IQ (2) 92207, + 3 b'(z) 95,

(b) u =g on 00,
and the coefficients defining the boundary value problem obey
(i) (a¥(z)) is symmetric and nonnegative definite on &;
(ii) (0¥(2)) and b(z) = (b'(z)) have linear growth and are globally Lipschitz on &;
(iii) g € Cp(00);

(iv) f e C(0) obeys
Eq [/ ’ f(Zz(s))ds} <00, Vzeo.
0
Condition (iv) holds, for example, when Eg[7,] < 00,7z € €, and f is bounded.

Here, (Z%(s))s>0 is the solution to dZ(s) = b(Z(s)) ds+ o(Z(s)) dW (s), starting at
z € 0, and o(z) = (69 (z)) obeys

5 D u(o(e) = al(z),
k=1
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while b(z) = (b'(2)).
See [61, Theorem 9.3.2] for a statement of uniqueness in the case where (iii) is

replaced by (iii’) ¢ = 0, and (a), (b) are replaced by
(a’) u € C?(0) and obeys, for some constant C' > 0,
lu(z)| < C (1 +Eq [/ ]f(ZZ(S))]ds]> , Vze0;
0

(b)) limgs,—,, u(2) = 0 at regular points zg € 90

Compare [8, Theorem 2.7.1 & Remarks 2.7.1, 2.7.2] for a statement of uniqueness in the
case where € is bounded, f,g,b' € C(0), and a¥ € C'(0) with (a¥) strictly elliptic
on O, while r is replaced by a function ¢ € C(&), ¢ > 0. Compare [8, Theorem 2.7.2 &
Remarks 2.7.3-5] for a statement of uniqueness in the case where & = R", b* € C*(R"),
a € CZ(R™), while 7 is replaced by a function ¢ € C}(0), ¢ > ¢y > 0, and f € C1(R")
obeys |f| 4+ |Df| < C(1 + |z|™, for some m € N.

We may compare Theorem with [61, Theorem 9.2.14] for a statement of ez-
istence in the case where, in addition to the hypotheses of [61, Theorem 9.1.1], (i) is
replaced by (i’) (a¥) is symmetric and strictly elliptic on &; and (iii) is replaced by
(iii’) g = 0. See [61, Theorem 9.3.1] for a statement of existence in the case where (iii)
is replaced by (iii’) g = 0. Finally, see [61, Theorem 9.3.3 & Remark, p. 196] for a com-
bined statement of uniqueness and existence, where (iv) is replaced by (iv”) f € C*(0)
for some a > 0 and obeys (iv); and (b) is replaced by (b”) limgs, ., u(z) = g(2) at
regular points zg € 00.

Compare [40, Theorem 6.5.1] for a statement of existence and uniqueness in the case
where € is bounded and the coefficient matrix, (a%), is strictly elliptic on &, and [40]
Theorems 13.1.1 & 13.3.1] in the case where (a%) is only assumed nonnegative definite

on 0.

C.4.3 Existence and uniqueness of solutions to parabolic terminal/

boundary value problems

Existence and uniqueness of solutions to the parabolic terminal/boundary value prob-

lem (4.1.7) and (4.1.9), again provided I'y = 00, follow from Schauder methods when
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the coefficient matrix, (a”), of A is strictly elliptic on &. For example, see [54, The-
orems 5.9 & 5.10] for the case where f and the coefficients of A are bounded and in

C*(Q), giving a unique solution u € C***(Q) N C(Q).
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