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ABSTRACT OF THE THESIS

Performance Evaluation of Forwarding Algorithms for

Generalized Storage Aware Routing Protocols

by Nehal Somani

Thesis Director: Professor Dipankar Raychaudhuri

This thesis presents an investigation of the design and evaluation of the generalized

storage aware routing (GSTAR) protocol proposed for use in the MobilityFirst future

Internet architecture. The GSTAR protocol uses in-network storage to improve service

quality and throughput in wireless access networks with varying radio link quality

and/or disconnection. These gains are achieved using a combination of short-term

buffering at routers to smooth out fluctuations in path quality along with delay-tolerant

storage, to overcome total disconnection of the mobile device. The performance of the

GSTAR protocol is evaluated for exemplary wireless access network scenarios using ns-3

based simulation models, and key design parameters are investigated.

Each node in GSTAR maintains two kinds of topology information. The intra-

partition graph contains information about path quality between nodes in the current

partition of the network. The path quality is determined using two metrics: short term

and long term expected transmission time (SETT and LETT). Every node compares

these two metrics using the store/forward decision threshold and stores the data on

finding that the path is degraded with the expectation that it may improve in the future.

Inter-partition graph gives a probabilistic view of the connection patterns between nodes

in the network. It is used in the event of disconnections or partitions.
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An ns-3 based simulation model is described which includes nodes with storage,

hop-by-hop transport, time-varying wireless channels and mobile users with possi-

ble disconnection. The model is used to evaluate different forwarding algorithms in

GSTAR. Using a baseline threshold scheme where packets are temporarily stored when

SETT > 1.1 · LETT , it is shown that the resulting system achieves performance im-

provements over the baseline with no storage. The threshold algorithm is studied

further to consider adaptive settings based on the moving average and other temporal

filters of the SETT sequence. The results show that if link quality fluctuations are ran-

dom, the moving average scheme works well, while an exponentially weighted moving

average is recommended for on-off channels with periodic outages. Simulation results

are provided in each case, showing the benefit of adaptive threshold settings over the

baseline non-adaptive case considered in earlier work.
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Chapter 1

Introduction

The current internet architecture considers mobile devices as end hosts and not a part

of core Internet. But, with the recent proliferation of wireless and mobile devices, the

future Internet would be highly heterogeneous with no strict characterization of core vs

access, wired vs wireless, ad-hoc vs managed etc. This brings about some interesting

challenges like host and network mobility, variable link quality and connectivity, net-

work partitions and multi-homing. The future Internet requires an efficient and robust

support for handling these mobility related challanges. [1]

To this end, several clean-slate proposols have come up like [2, 3, 4, 5, 6, 7]. One such

project is the NSF-funded Future Internet Architecture (FIA) project, called Mobility-

First. MobilityFirst treats the mobile devices and associated application as first-class

Internet citizens.

1.1 MobilityFirst - Future Internet Architecture

Due to the hierarchical, aggregation-based nature of BGP, along with the current con-

cept of IP addresses being used for higher-level naming, the current Internet is not

flexible enough to handle mobility and its challenges.

The MobilityFirst architecture has the following key features:

• Each device is provided with both a name (called Globally Unique ID or GUID)

and an address or addresses (in case of multi-homed devices).

• The address could be bound to the name any time during the transmision of a

data packet. Thus, packets could be routed using either name or address. This

late binding to an address enables the network to handle multi-homing, where
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packets for a multi-homed device could be routed using only GUID.

• Each node in the network uses in-network storage with hop-by-hop transport of

large data units to deal with all forms of mobility and the associated challenges

in a unified manner.

• It provides efficient support for handling anycast and multicast data.

Detailed information on MobilityFirst architecture is provided in [8, 9, 10].

Since most of the interesting mobility related challenges will occur relatively close

to end users, it is critical for future protocols to support a flexible, robust, and unified

means of exchanging routing information in a local area through many different types

of environment. To this end, we present GSTAR, a generalized storage-aware intra-

domain routing protocol capable of high performance in a variety of mobility-driven

environments, including wired, wireless mesh, wireless ad-hoc, and DTN. GSTAR is a

local, or intra-domain, routing protocol based on the MobilityFirst architecture.

At a high level, GSTAR maintains time-sensitive information about links within its

currently connected component (e.g., all nodes to which an instantaneous end-to-end

path exists from the node in question) and time-insensitive information about general

connection patterns between all nodes in the network. It attempts to use the time-

sensitive information when possible, and fall back on the connection patterns when

needed. In this way, it can be thought of as a MANET+DTN protocol that is easily

extended to more stable, perhaps wired, environments.

1.2 Problem Statement

High mobility in the Internet can lead to complete disconnections, where end-to-end

protocols such as TCP fail as they require a path to be setup before data is sent. A

number of solutions have been proposed to overcome this problem, particularly from the

delay-tolerant networking community. Techniques such as message replication in [11,

12, 13] and hop-by-hop transport [14] are utilized to bridge partitions in the network.

Unfortunately, there has been no comprehensive solution to bridge varying levels
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of connectivity, in that DTN protocols are usually not sufficient in highly connected

environments and MANET protocols fail in highly disconnected environments.

While there has been some work on merging DTN and MANET protocols, they

usually consider DTN nodes as specialized entities useful only for extending MANET

protocols [15, 16], or consider MANET clusters to be relatively static and simply bridged

by DTN nodes [17].

With GSTAR, we envision both DTN and MANET capabilities in all nodes, allowing

them to appropriately choose techniques in a more fluid manner with no reliance on

the stability of a local cluster.

For nodes that it has an instantaneous end-to-end path to, it makes both path

selection and transmission decisions based on factors such as link quality and storage

availability. It temporarily and proactively stores data when a problem is detected with

the upstream path, in an attempt to not add to the congestion or make unnecessary

retransmissions. Furthermore, if the destination is detected to be outside of parti-

tion, it will utilize connection probability information that is proactively disseminated

throughout the network to progress the message, relying on routers’ ability to store.

Thus, with GSTAR, all these mobility related challanges are handled at the network

layer.

1.2.1 Previous Work: Cache and Forward

Cache and Forward (CNF) [18], [1] project was a clean-slate protocol that aimed to take

advantage of cheap storage to deal with mobile traffic in the future Internet. It was

designed to deal with variable link quality and connectivity inherent with the mobile

devices.

In CNF, the link quality between any two mobile devices is determined using two

metrics called short term estimated transmission time (SETT) and long term estimated

transmission time (LETT). SETT is equal to the time required for transmission of a

probe message between devices. LETT is computed as a simple average of past 10

SETTs.

Every node compares these two metrics to determine whether the current path
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quality is exceptionally good or bad. If the current path quality is bad as compared to

the usual path quality, the node pro-actively stores the data in order for the links to

get back to their normal state.

1.2.2 GSTAR

Each node running GSTAR maintains two kinds of topology information in its database.

First is called the intra-partition graph which deals with the nodes in the current

partition only. The other is inter-partition graph which gives a probabilistic view of

the nodes in the complete network. Intra-domain routing table is based on CNF and

Inter-domain routing table is based on a generalized single copy DTN routing protocol.

Intra-partition graph of GSTAR uses the same parameter settings of SETT and

LETT as of CNF. But, SETT is computed by directly taking the current bit rate from

the net-card. This gives the best possible transmission time.

1.2.3 Contributions

This thesis aims at evaluation of GSTAR protocol with different forwarding algorithms

through NS3 based simulation.

We first set the forwarding logic to be same as that of CNF with LETT as an

average of past 10 SETTs and store-forward comparison threshold equal to 1.1 and

compare GSTAR with a traditional link-state protocol. It is observed that GSTAR

provides considerable gain in throughput (or goodput) for both wireless and wired-

wireless hybrid network environments.

Next, we explore various computation methods of LETT. We basically investigate

two alternate scheme:

• exponentially weighted moving average with different weighting factors

• simple moving average with different amounts of past history

Lastly, we look at various ways of making the store or forward decision threshold

dynamic to adjust automatically to the type of traffic and current network conditions.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. We explain the GSTAR protocol in

Chapter 2. Chapter 3 gives an overview of the implementation of GSTAR in NS3.

Chapter 4 presents some intial performance evaluation of GSTAR against a traditional

link-state protocol augemented with storage. We further explore the parameter space of

GSTAR with different forwarding algorithms in Chapter 5. Chapter 6 presents future

work.
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Chapter 2

GSTAR Protocol

2.1 Overview

Existing ad-hoc and DTN routing protocols handle some of the challanges inherent

with mobile devices. But, a unified approach for dealing with all kinds of network

environments within a future Internet framework has yet to be explored.

GSTAR is a proactive link state protocol, with added DTN capabilities. It is a

combination of MANET and DTN routing techniques with in-network storage. Basi-

cally, GSTAR aims at overcoming the following three challenges associated with mobile

devices:

• Fluctuations in link quality

• Varying levels of connections and disconnections

• Partitions in the network

Each node running GSTAR maintains two types of topology and path quality infor-

mation. The first one, called intra-partition graph responds to link quality information

of the nodes in the current partition. The second, called inter-partition graph responds

to connection probabilities between all nodes in the network. These tables are formed

by proactive dissemination of control messages. This enables all nodes to have an up-

to-date view of the network topology both inside and outside of the node’s current

partition.

Intra-partition graph enables GSTAR to be sensitive to link quality fluctuations.

On the other hand, inter-partition graph makes it robust enough to deal with network

partitions and disconnections.
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Figure 2.1: GSTAR: Intra-partition Graph

The next hop for transmission of data is decided on the basis of link qualities and

connection probabilities. Every node in the network is capable of storing the packet in

the event of exceptionally bad link or disconnection in the route to the destination.

2.2 Intra-partition Graph

The intra-partition graph responds to time-sensitive information about the network

topology. This graph maintains information about the quality of the link between all

nodes in the current partition of network. The Expected Transmission Time (ETT) is

used as the measure of link quality. This enables GSTAR to maintain an up-to-date

view of the fine-grained changes in the network.

2.2.1 Control Messages

The intra-partition graph is formed using two types of control messages:

1. Link probe (LP)

2. Flooded link state advertisement (F-LSA)

The LP messages (Figure 2.1) are periodically broadcasted by evey node in the

network to learn about their current one-hop neighbors. The LP message of Node 1

(shown in Figure 2.2) reaches nodes 2 and 3.

They are used in the following three ways:
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Figure 2.2: LP Packet of Node 1

• It allows the node to compute ETT for a given neighbor. For calculating the

ETT, the node probes the data-link layer with the MAC Address of the neighbor

for the transmission rate used for it. With this data-rate, ETT is set equal to the

time required to transmit a 45 byte packet to the neighbor.

ETT (msec) =
45 · 8 · 1000

datarate

where datarate is in Mbps.

• It enables each node to update a running database of contact probabilities for all

nodes in the network. This is used for inter-partition graph (explained in next

section).

The ETTs calculated through the link probes are used to estimate short term

and long term link quality. These are called Short term Expected Transmission Time

(SETT) and Long term Expected Transmission Time (LETT). SETT is computed by

taking the average of last three ETTs. The computation of LETT can take two forms:

1. Exponentially weighted moving average (EWMA) of past SETTs

LETT = α · SETT + (1 − α) · LETT

where α is a weighting factor between 0 < α < 1

2. simple moving average of past SETTs

These are explored via simulation (as explained in Chapter 5).

In addition to link probe messages, each node periodically floods the network with

F-LSA messages. F-LSAs carry one-hop neighbor information i.e., one-hop neighbor
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Figure 2.3: F-LSA Packet of Node 1

address with its SETT and LETT. These messages are periodically broadcasted by

every node in the network.

A node on receiving an F-LSA, updates its own database and then re-broadcastes

the message. Thus, F-LSAs of a node are received by all the other nodes in a given

network partition. This enables each node to have an up-to-date view of the current

network topology called intra-partition graph.

In the network of Figure 2.1, an F-LSA of Node 1 contains the SETT and LETT

for its neighboring nodes 2 and 3. This packet format is shown in Figure 2.3.

2.2.2 Intra-partition forwarding table

The F-LSA messages are used to compute the intra-partition forwarding table. This

table provides the next hops for every other node to which an end-to-end path exists.

The next hop corresponds to the route with lowest possible transmission time to the

destination. These routes are computed by any shortest path algorthim, such as Djik-

stra’s algorithm, using SETT values as weights. This sum of SETT values along the

path is called short term path quality (STPath). In addition to STPath, long term

path quality (LTPath) is computed as the sum of the LETT values along the selected

path.
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Figure 2.4: GSTAR: Inter-partition Graph

2.3 Inter-partition Graph

The inter-partition graph corresponds to time-insensitive information about general

connectivity patterns for the entire network. This graph maintains information about

the frequency or likelihood of a connection between nodes. The frequency or likelihood

is represented in terms of connection probability. Thus, GSTAR is able to respond to

the coarse-grain changes within the complete network.

2.3.1 Control Messages

The inter-partition graph is formed using the following control messages:

1. Link probe (LP)

2. Summary vector

3. Summary vector ACK

4. Disseminated link state advertisement (D-LSA)

The connection probability determines the percentage of time a node is connected

to some other node in the network. Each node maintains a running database of the

“on” time and “off” time for every other node it has come in contact (i.e. was a 1 hop
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neighbor anytime in the past). This is called “Connectivity Table”.“on” time signifies

the amount of time the two nodes had an active connection, whereas, “off” time is the

amount of time the nodes where disconnected. GSTAR periodically checks the neighbor

table and updates the “on” and “off” time for all the nodes in the “Connectivity Table”.

The connection probability is computed using the “on ” time and “off” time. It is

called average availability (AA) of a node and is given by:

AA =
on

on+ off

In order to bridge partitions in the network, these average availabilties should reach

every other node in the complete network. This is accompalished through D-LSA mes-

sages. These messages are epidimecially disseminated. A received D-LSA is carried

indefinately by all nodes running GSTAR. The main aim here is to make this connec-

tivity patterns to reach all nodes in the entire network. This is carried out through

Summary vector and Summary vector ACK messsages.

Every node periodically unicasts a Summary vector packet containing the summary

of all available D-LSAs. The receiving node checks its own database for the avail-

able D-LSAs and replies with a summary vector ACK containing addresses of nodes

whose D-LSAs are unavailable. On receiving the ACK, the corresponding D-LSAs are

broadcasted.

As these D-LSAs are carried indefinitely, it is possible for a node to recieve the D-

LSA of nodes that were never within its partition. This enables a node to know about

all other nodes in the entire network.

Consider the network with two partitions and two ferry nodes (Node A and Node

B) as shown in Figure 2.4. When Node 2 comes in contact with Node B, it sends a

summary vector packet as in Figure 2.5. Node B on receiving this packet, replies with

a summary vector ACK of Figure 2.6. (Here, we are assuming that Node B already

has a D-LSAs of Node 2 and Node 3). Thus, Node 2 transmits the D-LSA of Node 1

(Figure 2.7) to Node B. In the same way, Node B transmits this D-LSA of Node 1 in

the other partition consisting of Nodes 4, 5 and 6. Thus, D-LSA of Node 1 reaches all
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Figure 2.5: Summary Vector Packet of Node 2

Figure 2.6: Summary Vector ACK Packet of Node B

the nodes in the complete network.

2.3.2 Inter-partition forwarding table

The D-LSA messages are used to compute the inter-partition forwarding table. This

table provides the next hops for every other node in the entire network. The next hop

corresponds to the route with best possible chance of meeting the destination. These

routes are computed by any shortest path algorthim, such as Dijkstra’s algorithm, using

a function of the average availability as weights. GSTAR uses the approach taken by

PREP [13] and defines a weight as 1 − AA + 0.01, where the small constant is added

to favor paths with shorter hop counts if the average availabilities are all close to 1.



13

Figure 2.7: D-LSA Packet for Node 1

2.4 Transmission of Data

In a wireless network with varying levels of connectivity and partitions, it is not always

possible to have a good end-to-end route to the destination. Thus, GSTAR provides

hop-by-hop reliability for data packets. GSTAR combines a set of data packets into

chunks. These chunks forms the autonomous unit of message transmission. All decisions

related to routing including reliability are made at chunk level.

Assuming both forwarding tables have been computed, each node first looks for the

destination node in its current network partition. It, therefore, checks its intra-partition

table for an end-to-end path to the destination. Even though an end-to-end path exists,

its possible for this path to be not good enough. This could be due to congestion or

low signal-to-noise ratio anywhere along the route to the destination in the network.

If a node finds the current path quality to be abormally bad, it proactively stores the

chunk and waits for the path to get back to its original state. This decision is based on

short and long term path qualities. A node stores the chunk, if it finds that

STPath > k · LTPath

where k is a threshold which detects how bad the path must be, relative to its long

term performance, before a decision to store the data is made. We explore this value

via simulation (explained in Chapter 5).

This decision to store or forward is made at every node in the route to the destina-

tion. As, the F-LSAs are periodically flooded through the entire network partition, the
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STPath and LTPath looks the same to all intermediate nodes in the path. Thus, once

the node close to the source (or the source itself) finds the path to be of good quality,

other nodes along the path would not generally store the data. They do store the data

over the time it takes for the F-LSA of the node with the bad link to reach all the way

down to the source.

Thus, GSTAR proactively stores data close to the source if upstream link quality

issues are detected. This is advantageous for three reasons:

• If congestion is the cause of upstream link problems, this will not unnecessarily

add to the congestion, instead waiting for it to resolve.

• Storing data away from faulty links in the network will minimize the number

of lower-level retransmissions that must occur to push data through a poorly

performing link, and hence not congest the area around the link.

• Storage around the faulty link has a higher chance of being depleted (due to

routers around that area being forced to make store decisions), and hence adding

to the storage problem in that area will hurt flows that must traverse that area,

but not the faulty link itself.

If no end-to-end path exists for the destination in the intra-partition table; the

node switches to DTN mode by checking its inter-partiton table. In this case, the node

proactively pushes the message along the most probable route to the destination.

Thus, by considering whether or not the destination for a chunk is part of the node’s

current partition, the router will know how to appropriately respond. This may include

proactively storing the message, if a path exists but is of low quality, or proactively

pushing the message, if no instantaneous end-to-end path exists.
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Chapter 3

Implementation of GSTAR

We implemented GSTAR with hop-by-hop transport in Network Simulator 3. Each

node in the network is identified by a unique IP address. IP headers and link layer

headers are appended to all the GSTAR control and data packets. This chapters pro-

vides an overview of the various databases maintained at every node in the network.

3.1 Implementation of Routing

3.1.1 Intra-Partition Graph

Each node in the network periodically broadcasts link probe message every 1 second.

A node on receiving this link probe, probes its link layer with the IP address of the

neighbor for the transmission rate. This transmission rate is used for calculation of

ETT. Every node maintains a neighbor table with the IP address of the neighbor with

the corresponding SETT and LETT. This table is updated everytime a new link probe

is received. A node also maintains a timer of 5 seconds with each entry in the neighbor

table. This timer is restarted on receiving a new link probe from the neighbor. If a

link probe is not received for 5 seconds, it is assumed that the node is not reachable

anymore amd the corresponding neighbor entry is deleted. The neighbor table at Node

1 for the network of Figure 2.4 is shown below.

The information in the neighbor table is encapsulated in the F-LSA packet and

periodically broadcasted every 2 seconds. The F-LSAs are stored in F-LSA table. A

node on receiving a F-LSA checks if this F-LSA is newer than the one it has in the F-

LSA table. If this is of a higher sequence number than the one in its database, the node

deletes the pervious F-LSA and saves this newly received F-LSA in its F-LSA table.
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Figure 3.1: Neighbor Table at Node 1 for the network of Figure 2.4

Figure 3.2: Intra-Partition Forwarding Table at Node 1 for the network of Figure 2.4

At the same time, the node re-broadcasts this new F-LSA. Also, a timer of 5 seconds

is started with every entry in the F-LSA table. This timer automatically deletes that

F-LSA from the database after 5 seconds. Thus, the F-LSA table contains F-LSAs of

the nodes in the current partition only.

The neighbor table and F-LSA table are used to compute intra-partition forwarding

table [Figure 3.2]. It contains the next-hop IP address with the STPath and LTPath.

It is formed using Djikstra’s algorthim with SETT as the link weights. This table is

recalculated whenever a link probe or F-LSA is received or deleted.

3.1.2 Inter-Partition Graph

Each node updates the “Connectivity Table” every 1 second. This table conatins the

average availabilty of the nodes. The information in the “Connectivity Table” is en-

capsulated in the D-LSA packet. The “Connectivity Table” at Node 2 is shown below.

Each node in the network periodically broadcasts summary vector message every 5

second to its neighbors. This message contains the summary of the D-LSAs available

in D-LSA table. A node on receiving a summary vector, checks its own D-LSA table

for any new D-LSAs available with the neighbor. It then replies with a summary vector

ACK containing node addresses of these new D-LSAs. A node on receiving a summary

vector ACK, broadcastes the requested D-LSAs.

All these D-LSAs are saved in D-LSA table. The entries in the D-LSA table are

carried indefinately. Thus, they help to bridge partitions in the network.

The connectivity and D-LSA tables are used to compute inter-partition forwarding
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Figure 3.3: Connectivity Table at Node 1 for the network of Figure 2.4

Figure 3.4: Inter-Partition Forwarding Table at Node 2 for the network of Figure 2.4

table [Figure 3.4]. This table is formed using Djikstra’s algorthim with 1 − AA+ 0.01

as the link weights. This table is recalculated whenever a new D-LSA is received.

3.2 Implementation of Hop-by-Hop transport

The autonomous unit of transmission at network layer is a chunk. A chunk consists of

CHK PKT COUNT number of data packets. Every node acknowledges a reception of

a chunk to the neighbor sending it.

Every node maintains following two databases:

• DataSet: A Data tuple consists of a Chunk ID, Source IP address and all the data

packets for that chunk. DataSet is a collection of such Data tuples.

• BitmapSet: A Bitmap tuple consists of a Chunk ID, Source IP address and a

bitmap for that chunk. A bitmap is an array of size CHK PKT COUNT bytes,

each position corresponding to a data packet. BitmapSet is a collection of such

Bitmap tuples.

The source Node A (refer Figure 3.5) first checks its forwarding tables to find the

next-hop IP address and the corresponding STPath and LTPath. It then checks to see
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Figure 3.5: Hop by hop Data Transfer with CHK PKT COUNT = 3

Figure 3.6: CSYNC Packet by Node A

if the path quality is reasonable enough by comparing these two metrics. If the path

is found to be of good quality, it starts the transmission by sending a CSYNC packet

[Figure 3.6] to the next-hop.

On receiving a CSYNC, the node checks its BitmapSet for the corresponding source

and chunk ID. If there isn’t an entry in BitmapSet, it creates one and initilizes the the

bitmap array to 0. This bitmap is sent back as a CSYNC ACK to the source.

The source on receiving the CSYNC ACK, checks the bitmap and transmits the

data packets for which the bitmap conatins a 0. Thus, in the Figure 3.5, all three data

pakets in the chunk are transmitted. Also, it resends the CSYNC.
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Figure 3.7: Bitmap Tuple at Node B after receiving first CSYNC packet

Figure 3.8: Bitmap Tuple at Node B before receiving second CSYNC packet

A node on receiving a data packet, creates a Data tuple and saves it in the DataSet.

At the same time, it sets the corresponding position in the bitmap array of the Bitmap

tuple to 1. On receiving the second CSYNC, this modified bitmap tuple is encapsulated

in the CSYNC ACK and forwarded to the source.

If all the positions in the bitmap of CSYNC ACK is 1, the source starts the trans-

mission for the next chunk in the same way. If some entries are still set to 0, it

re-transmits those data packets and again sends the CSYNC. Thus, Data packet with

sequence number 1 is re-transmitted in Figure 3.5.

Every node on receiving a complete chunk, checks the destination address in it.

If the destination address is same as its own IP address, the chunk is moved to the

application. If that chunk is destined for some other node, it checks the forwarding

tables to find the next-hop and the same process is repeated. As a result, in Figure 3.5,

Node B after receiving the third CSYNC, starts transmitting the chunk to Node C.

If any node does not receives a CSYNC ACK for its CSYNC in 5 seconds, the

CSYNC is re-transmitted.

The current implementation of hop-by-hop transport provides each node with infi-

nite storage. This is to ensure that no packets are ever dropped by GSTAR layer.
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Figure 3.9: CSYNC ACK Packet by Node B

Figure 3.10: DATA Packet by Node B

Figure 3.11: Bitmap Tuple at Node B before receiving third CSYNC packet
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Chapter 4

Performance Evaluation of GSTAR

The first set of simulations demonstrate the effectiveness of proactive storing in case

of abnormally bad links somewhere along the route to the destination. We perform a

comparative study of GSTAR and a traditional link state protocol augmented with a

hop-by-hop transport protocol.

We explore complete wireless, mixed wired-wireless (hybrid) and disconnected net-

work environments. It is observed that GSTAR provides considerable gain in through-

put for all these networks.

In these simulations, we set the LETT to be an average of past 10 SETTs. Also,

the store or forward decision threshold is held static at 1.1. Thus, a node decides to

store a chunk if

STPath > 1.1 · LTPath

We consider goodput as the performance metric in all of the evaluations. It is

measured as total number of chunks received by the destinations.

4.1 GSTAR vs Traditional Link State protocol in Wireless network

We consider a multi-hop network of nine nodes (see Figure 5.10 for topology) each with

a 802.11 net-card. The bit-rate for the links is set to 54 Mbps.

In this simulation setup we have two 5-hop flows from Node 1 to Dest 1 and Node

2 to Dest 2. The two sources continuously transmit chunks of 25 packets. The bit-rate

of the Node 6 - Dest 1 link is periodically fluctuated from 54 Mbps to 6 Mbps. This

simluates congestion in the network for one of the flows.
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Figure 4.1: Wireless network topology

The bit-rate fluctuation period is varied from 20 + rand(-10/4,10/4) seconds to 40

+ rand(-20/4,20/4) seconds with an increment of 5 seconds and equal on and off time.

Each simulation is run for 90 second. Each data point in the graph (Figure 4.2) is an

average of 10 runs. We also show 95% confidence interval for each point.

It is observed that GSTAR outperforms traditional link-state protocol with a con-

siderable gain in aggregate goodput. With a traditional link-state protocol, congested

Flow 1 and normal Flow 2 compete with each other to gain access to the channel. But,

with 6 Mbps bit-rate, Flow 1 keeps this access for a longer duration than Flow 2. Thus,

congestion in one flow affects the other flow in the network reducing overall network

goodput. SETT and LETT enables GSTAR to detect this variation in link quality.

Thus, it efficiently alleviates the effect of congestion in Flow 1 from Flow 2 resulting in

better network utilization.
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Figure 4.2: GSTAR vs Traditional Link State with Wireless network topology

4.2 GSTAR vs Traditional Link State protocol in Hybrid network

We consider a multi-hop network of nine nodes (see Figure 4.3 for topology). The links

between Node 6 - Dest 1 and Node 7 - Dest 2 are wireless (802.11) and remaining are

all wired (point to point) links. Thus, Node 6 and Node 7 are multi-homed. The bit

rate for both wired and wireless links is set to 54 Mbps.

For this hybrid network, we run 2 types of simulation. In the first simulation, we

have 4 flows:

• Node 1 - Dest 1 of 5 hops

• Node 2 - Dest 2 of 5 hops

• Node 3 - Dest 1 of 4 hops

• Node 4 - Dest 2 of 3 hops

The other simulation is with 6 flows:

• Node 1 - Dest 1 of 5 hops

• Node 2 - Dest 2 of 5 hops

• Node 3 - Dest 1 of 4 hops
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Figure 4.3: Hybrid network topology

• Node 4 - Dest 2 of 3 hops

• Node 5 - Dest 1 of 2 hops

• Node 6 - Dest 2 of 1 hop

For both the simulation setups, the bit-rate of the Node 6 - Dest 1 link is periodically

varied from 54 Mbps to 6 Mbps. The fluctuation period is set to 30 + rand(-5,5)

seconds with equal on and off time. The chunk size is set to 10 data packets. In these

simulations, we vary the offered load by increasing the number of chunks generated per

second by the sources. We start with 25 chunks per second by each source, followed by

50 to 200 in increments of 50. Each simulation is run for 90 second. Each data point

in the graphs (Figure 4.4 and Figure 4.5) is an average of 10 runs. We also show 95%

confidence interval for each point.

It is observed that GSTAR provides gain in aggregate goodput for medium to high

offered load. This is because the congestion in one part of the network doesn’t affect

other parts as shown in the previous result. The cross-over points in the graphs are
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Figure 4.4: GSTAR vs Traditional Link State with Hybrid network topology (4 Flows)
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Figure 4.5: GSTAR vs Traditional Link State with Hybrid network topology (6 Flows)

the load at which network is fully utilized. At the points below complete utilization of

network, the flows don’t have to compete to gain access of the channel. Thus, storing

chunks, while the channels are not utilized reduces the goodput from the network.

4.3 GSTAR with DTN vs GSTAR without DTN in Disconnected net-

work environment

We consider the same hybrid muti-hop network topology of Figure 4.3. But, here the

Dest 1 and Dest 2 are periodically disconnected from the remaining network as shown in
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Figure 4.6: Disconnected hybrid network topology

Figure 4.6. The connection and disconnection period is set to 15 + rand(-5,5) seconds.

In this simulation setup we have two 5-hop flows from Node 1 to Dest 1 and Node 2 to

Dest 2. The chunk size is set to 25 packets. The bit rate for both wired and wireless

links is 54 Mbps.

We vary the offered load by starting with 25 chunks per second by each source,

followed by 50 to 200 in increments of 50. Each simulation is run for 90 second. Each

data point in the graph (Figure 4.7) is an average of 10 runs. We also show 95%

confidence interval for each point.

It is seen from the graph that for all types of offered load, GSTAR with DTN

outperforms GSTAR without DTN providing a gain in aggregate goodput. GSTAR

with DTN uses probabilistic view of the network to push the data further down the

path. This proactive pushing enables the disconnected node to start receiving the data

as soon as it reconnects with the complete network. Without DTN, the disconnected

nodes have to wait for their F-LSAs to be received by the sources.
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Figure 4.7: GSTAR with DTN vs GSTAR without DTN

4.4 Conclusion

These results emphasize that GSTAR as a whole, with its flooded F-LSAs and epidemic

dissemination of D-LSAs, is able to detect different mobility challenges such as whether

the node is disconnected or only the current link quality is bad. GSTAR augmented

with storage enables the nodes to make intelligent proactive decisions to store or push

the data depending on network conditions, resulting in better performance.
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Chapter 5

Forwarding Algorithms for GSTAR

The previous results showed that even with a standard forwarding algorithm with LETT

as simple moving average of past 10 SETTs and 1.1 as the store or forward decision

threshold, storage aware routing performaned quite well. In this chapter, we look at

different forwarding algorithms for GSTAR. This parameter exploration of GSTAR

is divided into two parts. First, we look at different ways of computation of LETT.

Next, we consider making the store or forward decision threshold adaptive to depend

on network conditions.

5.1 Computation of LETT

The LETT can be computed in two ways:

• Exponentially weighted moving average (EWMA) of past SETTs:

LETT = α · SETT + (1 − α) · LETT

where α is a weighting factor explored via simulation

• Simple moving average of past SETTs, where we explore using different amounts

of past history through simulation

For all the simulations, we consider the same multi-hop hybrid network of nine nodes

(reproduced in Figure 5.1 for topology) where Node 6 and Node 7 are multi-homed.

The bit rate for both wired and wireless links is 54 Mbps.

We have two 5-hop flows from Node 1 to Dest 1 and Node 2 to Dest 2 each trans-

miting chunks of 25 packets. To simulate congestion in the network, the bit-rate of the

Node 6 - Dest 1 link is periodically fluctuated from 54 Mbps to 6 Mbps. The fluctuation

period is set to 30 + rand(-5,5) seconds with equal on and off time.
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Figure 5.1: Hybrid network topology

5.1.1 EWMA: Performance Evaluation

This simulation compares EWMA with simple moving average of past 10 SETTs. We

consider two cases of exponentially weighted moving average; one with α set to 0.1 and

the other with α set to 0.5.

In this simulation setup, the offered load is varied by increasing the number of

chunks generated per second by the two sources. We start with 25 chunks per second

by each source, followed by 50 to 200 in increments of 50. Each simulation is run for

90 second. Each data point in the graph (Figure 5.2) is an average of 10 runs. We also

show 95% confidence interval for each point.

It is observed that we get the best performance by giving more weights to past

values of SETT. This is because our link quality variation method folllows a simple

on-off model. Due to this periodic fluctuations, the past information of link quality is

relevant in this network topology.
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Figure 5.2: Computation of LETT with EWMA

5.1.2 Simple Moving Average: Performance Evaluation

This simulation set-up compares simple moving average with different amounts of past

history. We consider compuatation of LETT using past 10 to 50, in increments of 10,

SETTs.The offered load is set to 200 chunks per second by each source. Each simulation

is run for 150 second.

It is observed from Figure 5.3 that the goodput from the network is at its maximum

with using past 30, 40 and 50 SETTs. With 15 seconds of on and off period for the

link; by giving equal weights to anywhere between 30 to 50 past SETTs, the LETT

contains all the relevant information.

5.1.3 Conclusion

The best way for computation of LETT depends on the general trend in variation of link

quality. Usually, this variation in links is not periodic and even if it is, the period varies

with time. Hence, the weights for EWMA is usually difficult to predict for practical

networks.

The other possible solution is to use Simple Moving Average with sufficient past

history; so that LETT follows SETT slowly. As we saw in the previous results, using

30 seconds of past history seems reasonable enough if the link is bad for around 15 to
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Figure 5.3: Computation of LETT with Simple Moving Average

20 seconds. This time is reasonable enough for the link to get back to its original state.

Also, storing for longer than 20 seconds at a stretch is anyways not desirable.

5.2 Dynamic Store or Forward Decision Threshold

The previous results showed that static threshold of 1.1 with simple moving average

of past 30 seconds history works well with on-off model and with some minor link

fluctuations.

But, for the practical networks, in addition to short term and long term link quality,

we need some way to detect the trend in link fluctuation. This trend in link fluctuation

needs to be the basis for deciding the store or forward decision threshold. Instead of

making it static at 1.1 which works well if the LETT follows SETT quickly, we need to

make it dynamic, adapting itself to the current link fluctuation rate.

5.2.1 Approaches

We consider three possible ways of making this threshold dynamic. Each of these are

some simple filtering techniques applied on past STPath/LTPath ratios.
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1. Simple Moving Average Filtering: Just as our intial computation of LETT, we

take the average of past 10 STPath/LTPath ratios. This averaged ratio value is

then used as the threshold.

2. Median Filtering: Here, we take the median of past 10 STPath/LTPath ratios.

This median ratio value is then used as the threshold.

3. Moving Average + Median Filtering: This is a combination of past two techniques.

First, we take a simple moving average of past 5 STPath/LTPath ratio. Next,

we perform median filtering on 5 such averaged ratio values. This technique, thus,

takes a bit more past history into consideration.

Each of these techinques sets the minimum threshold to be 1.1. Thus whenever the

ratio of STPath/LTPath goes below 1.1, the store or forward decision threshold is set

to 1.1.

5.2.2 Theoretical Analysis

We consider two data rate traces of 802.11 link between a moving car equipped with

omnidirectional antenna and a base station; one in an apartment complex and the other

in a parking lot [19]. We are using the data rates at every 1 second interval.

Figure 5.4: Store and Forward Regions with 802.11 link in apartment complex

Figure 5.4 and Figure 5.5 shows the the store and forward regions for these two links.

It is observed that, theoretically, the averaging technique yields the most optimized

result in both the cases. The other two techniques provides nearly the same results;

but in some instances, the threshold rises too quickly and hence the forwarding starts
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Figure 5.5: Store and Forward Regions with 802.11 link in parking lot

early. The static threshold of 1.1 works exactly the opposite by storing for a longer

time.

This is also seen from the actual store or forward thresholds shown in Figure 5.6

and Figure 5.7 for both the cases. It is observed that the threshold with the averaging

technique is the smoothest where as the other two techniques have sharp jumps. Thus,

average filtering provides better results.

Figure 5.6: Store or Forward Decision Threshold for 802.11 link in apartment complex
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Figure 5.7: Store or Forward Decision Threshold for 802.11 link in parking lot

But for an on-off link fluctuation model with 30 seconds period, the static threshold

of 1.1 works well as compared to a dynamic store-forward decision threshold. This

is shown in Figure 5.8 where with the static threshold of 1.1, the data is stored for

complete duration of off time.
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5.2.3 Simulation Results

We analyze the above three approaches of dynamic store or forward decision thresholds

and compare them to the static threshold of 1.1 for multi-hop networks through ns3

simulations.

First is the same multi-hop hybrid network of nine nodes (see Figure 5.9 for topol-

ogy) but here Node 1 and Node 2 are multi-homed. The bit rate for wired links is again

set to 54 Mbps. The wireless links follow the trend of the previous two environments

of apartment complex and parking lot.

Figure 5.9: Hybrid network topology with wireless sources

The other is pure wireless networks as shown in Figure 5.10 where the Node 3 -

Node 5 and Node 4 - Node 6 links fluctuate as per the data rate traces and remaining

links are set to 54 Mbps.

The last set of simulation uses the nine nodes hybrid network topology of Figure 5.11

with Node 6 - Dest 1 and Node 7 - Dest 2 links as wireless. The bit rate for both wired

and wireless links is set to 54 Mbps. The bit-rate of the Node 6 - Dest 1 link is

periodically fluctuated from 54 Mbps to 6 Mbps. The fluctuation period is set to 30 +
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Figure 5.10: Wireless network topology

rand(-5,5) seconds with equal on and off time.

Figure 5.11: Hybrid network topology with wireless destinations (on-off model)

For all the networks, we have two flows from Node 1 to Dest 1 and Node 2 to Dest

2 each transmiting chunks of 25 packets. In these simulation setup, the offered load is

varied by increasing the number of chunks generated per second by the sources. We

start with 25 chunks per second by each source, followed by 50 to 200 in increments of

50. Each simulation is run for 45 second.
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Figure 5.12: Dynamic Store or Forward Decision Threshold: Simulation Results for
Hybrid network with wireless sources

It is observed from Figure 5.12 and Figure 5.13 that for medium to high offered

loads averaging outperforms all other techniques, where as the static threshold of 1.1

provides the least goodput. But for on-off periodic fluctuation model, static threshold

of 1.1 outperforms all other techniques (Figure 5.14) .

5.2.4 Conclusion

Thus, a static threshold of 1.1 works well if the link fluctuation is periodic. But if the

link fluctuation is random then using a dynamic store or forward decision threshold

provides better performance from the network.
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Chapter 6

Future Work

The following aspects of GSTAR protocol needs to be explored further:

• Inter-partition Graph: We have implemented a single copy DTN routing mecha-

nism. This needs to be compared with multiple copy DTN routing mechanisms.

Also, GSTAR needs to compared with some existing DTN Routing protocols.

• Finite Storage for Hop-by-hop transport: The current implementation of hop-by-

hop transport considers infinite storage. We need to study the effect of various

amounts of finite storage along with the associated congestion control on the

throughput of the network.

• Storage Aware Routing Metric: The forwarding paths are calculated using SETT

as link weights. This path selection metric should be modified to include SETT,

LETT and storage available at each node in the route to the destination.
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