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ABSTRACT OF THE THESIS

The Influence of Dissipative Numerics on Shock Interaction

Modeling for Hypersonic Flows

by Will J. Stoffers

Thesis Director: Dr. Doyle Knight

This paper presents a low order simulation of a hypersonic shock tunnel experiment at the

Calspan-University at Buffalo Research Center (CUBRC). In this experiment, a relatively

low enthalpy flow is passed over a double cone geometry at a speed near Mach 12. Empirical

data is taken and a higher order simulation of the experiment is also used for comparison.

The present study compares the low fidelity data (first order spatial reconstruction) against

the empirical and higher fidelity data (second order reconstruction) for this flow. A large

difference in separation zone length is evident between the high and low order simulations

when pressure and heat transfer are plotted. This confirms the dissipative nature of low

order numerical schemes. An evaluation of chemistry models is made as well, comparing

the Park model with Kang & Dunn’s. Little difference is observed between the low order

Park results and the low order Kang & Dunn data. The Kang & Dunn model is chosen

because it requires fewer computational resources.
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3.1. Properties the Roe Matrix Ã Must Satisfy . . . . . . . . . . . . . . . . . . . 23

B.1. Source of CUBRC Experimental Data . . . . . . . . . . . . . . . . . . . . . 48

viii



List of Figures

1.1. Double Cone Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1. Double Cone Flow Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. Changes to Computational Grid . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1. Inviscid Pressure on the Fine Grid . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. Viscous Flow Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3. Contour Lines of Reversed Flow . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4. Mach Number of Reactive Flow . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5. Viscous Surface Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6. Reversed Flow with Surface Pressure Shape . . . . . . . . . . . . . . . . . . 36

4.7. Grid Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8. Sensitivity to Grid Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.9. Chemistry Model Comparison (Coarse Grid) . . . . . . . . . . . . . . . . . 39

4.10. Sensitivity to Chemistry Model (Coarse Grid) . . . . . . . . . . . . . . . . . 39

4.11. Assessment of Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.12. Solution Quality in Regions of Interest . . . . . . . . . . . . . . . . . . . . . 41

ix



1

Chapter 1

Introduction

1.1 Motivation

Advancements in propulsion over the last decade have made new hypersonic vehicle designs

feasible. NASA funded projects like the X-51 show promise for new government applica-

tions of the technology, and the retirement of the space shuttle has contractors analyzing

hypersonic flow cases more than ever. Hypersonic flight could find its way into commercial

business as well. The second phase of ESA’s LAPCAT project continues to fund research

for a commercial transport touted to provide cost effective, environmentally friendly flight

in excess of Mach five [26]. Additionally, if Virgin Galactic’s suborbital spaceflights are

successful, commercial spaceflight firms may find it profitable to push higher, into the hy-

personic regime.

Such advanced technologies must be proven, however, to make these exciting designs a

reality. Unfortunately, research budgets are tight and using flight test for concept validation

is prohibitively expensive. Improvements to the accuracy of computational fluid dynamics

(CFD) must be made to allow for computational analysis of aerothermodynamics as a lower

cost alternative.

1.2 Related Studies

Hypersonic flow over a double cone geometry is a frequently used test case for the validation

of CFD codes. Specifically, a 25◦/55◦ double cone has been examined by academia, in

industry, and even by NATO. It is characterized by an initial cone with a half angle of

25◦, as measured from the axis of symmetry. It then rises further to a half angle of 55◦

as seen in Figure 1.1. Here, it is depicted as a union of three simple solids. A solid
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Figure 1.1: Double Cone Geometry

geometric representation was chosen because of its increasing popularity in the aerospace

industry. The high repute of this representation is mainly due to cost savings; parametric

solids enable engineers to make rapid design changes and even automate these changes in

an optimization process [25].

Much experimental data for this configuration has been gathered at the Calspan-University

at Buffalo Research Center (CUBRC) by Michael Holden. The CUBRC double cone model

measures 7.625 inches from base to tip. The first cone has a 25◦ half angle and is 3.625

inches long. The model then flares into the second cone, of half angle 55◦, which continues

for 2.42552 inches in depth. The geometry flattens out to the base, which is 1.57448 inches

thick. This model has been run in their first Large Energy National Shock (LENS-I) tunnel

under many different flow conditions to gather data for computational studies.

While a large number of double cone experiments were conducted at CUBRC, a few

runs are particularly relevant to the test studied in this paper, and are listed in Table 1.1.1

First, the double cone was tested under the low enthalpy Run 28 conditions to assess the

1Sources for these values are listed in Appendix B
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impact that model misalignment or nose blunting would have on the surface data [4, 5, 21].

Another low enthalpy test, Run 35, was conducted with a higher Mach number [4]. The

stagnation enthalpy was then raised to that of Run 40, and while Holden determined the

flow to be steady, simulations by many CFD experts indicated unsteady flow. The total

enthalpy was then raised again for the high enthalpy test, Run 42 [22]. Good agreement

was once again found between computational and experimental data at this condition. Two

more runs, Run 46 and Run 50, were set up based on the Run 42 test. Both runs used

similar conditions, except that the total enthalpy was higher for Run 42, and the model

nose was rounded for Run 50 [22]. The rounded tip was analyzed to determine the effect of

strong stagnation at the tip of the geometry [22]. Lastly, the Run 80 condition was tested to

learn more about the discrepancy found while simulating Run 40. The predominant change

between the runs was Reynolds number, which was roughly halved for Run 80. This is the

experiment that this study focuses on, but a variety of experts have run many simulations,

and have compared their data to that of these tests.

M u1 h0 T ρ
Experiment [m/s] [MJ/kg] [K] [10−3kg/m3]

Run 28 9.59 2664 3.55 186 0.655
Run 35 11.30 2713 3.68 139 0.552
Run 40 11.54 3094 5.38 173 2.52
Run 42 11.46 4065 9.17 303 1.34
Run 46 11.54 3947 7.79 282 1.96
Run 50 11.60 3904 7.62 273 1.51
Run 80 11.68 3067 5.28 166 1.29

Table 1.1: Freestream Quantities for Select CUBRC Double Cone Experiments

After computations were run that greatly overpredicted the heat transfer to the model,

Nompelis et al. began a simulation of the tunnel’s nozzle flowfield [20]. It was discovered

that the vibrational modes of the pure nitrogen flow were freezing near the nozzle throat,

raising the vibrational temperature downstream. They showed the importance of modeling

vibrational nonequilibrium by correcting for this and achieving a much better prediction of

heat transfer [20]. In 2002, Roy et al. compared direct simulation Monte Carlo (DSMC) and

Navier-Stokes methods for modeling the hypersonic double cone flow [24]. Using the same

density mesh as the present study, they validated DSMC as a capable tool for simulating
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separated flow, as long as adequate grid refinement has been achieved in the recirculation

region [24]. More recently, Gaitonde simulated a series of double cone cases, and evaluated

the Park I chemistry model against Kang & Dunn’s [8]. He was able to make good pre-

dictions for one laminar flow case, although the predicted surface pressure was of higher

fidelity than the predicted heat transfer to the model [8]. His predictions for the other

double cone case, however, suggested the flow was unsteady even though the LENS-I ex-

periment produced a steady flow. A similar result is presented in Knight and Longo’s 2010

paper for the NATO Advanced Vehicle Technology Group 136 (AVT-136) - all participants

of the study predicted the flow to be unsteady [13]. Holden ran another test in the tunnel,

designated Run 80, to determine the case’s sensitivity to Reynolds number [13]. This is

the flow configuration being studied in the present work. A similar study on a different

flow case was conducted by Druguet et al. while validating their modified Steger-Warming

scheme [6]. They found that the size of the double cone recirculation region was sensitive

to the amount of dissipation introduced by the numerical scheme. The more dissipative

numerical algorithms required a finer mesh to achieve accurate results.

1.3 Objective of Research

This study aims to evaluate high speed flow simulations and their sensitivity to the ac-

curacy of the schemes used to compute them. The low enthalpy double cone experiment

run by Michael Holden, designated Run 80, is used for comparison. A first order spatial

reconstruction is used to predict the pressure at the surface and the heat transfer to the

surface of the model. A similar computation, performed by Ioannis Nompelis, simulates

Holden’s experiment with a second order spatial reconstruction. This simulation is used

as a baseline, and the structured, point-matched mesh for the current study is obtained

directly from Nompelis to minimize sources of error. The grid is modified slightly (as de-

scribed in Section 3.1.1) to make it compatible with the computational software package

that is used. For the low order simulation, Aerosoft’s General Aerodynamic Simulation

Program (GASP) is used. This multi-block, cell centered, and scalable finite volume code

offers multiple thermochemical models for nonequilibrium flow modeling. Two of these

nonequilibrium chemical models are compared in this work. Both the Park model and the
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Kang & Dunn model are evaluated using low order schemes, to determine their impact on

the simulated results.
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Chapter 2

Methodology

2.1 Governing Equations

The equations that describe fluid motion are introduced here in differential form, with-

out derivation.1 Since this study analyzes flow under multiple assumptions, equations are

presented to define the fluid motion in each case. They appear in order of complexity.

2.1.1 Inviscid Flow

The simplest case ignores any effects that viscosity has on the flow. The fluid medium

is considered homogeneous and assumed to be a perfect gas. No turbulence effects are

modeled.

Conservation of Mass

Also known as the continuity equation, the conservation of mass states that the net mass

flow into any volume must equal the increase of mass in the same volume. It appears as

∂ρ

∂t
+

∂ρui

∂xi
= 0 (2.1)

where ρ is the density and ui represents the Cartesian components of the Eulerian velocity

of the fluid. The index notation used (subscripts i, j, k) is vector component notation unless

the same index is repeated in a term. A repeated index will be representative of a sum over

that index even though no summation sign is displayed [16]. This notation is known as the

Einstein summation convention.

1Derivation of the conservation equations for a non-reacting flow can be found in [30].
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Conservation of Momentum

The conservation of linear momentum states that a volume’s change in momentum is due

to the external forces acting on it. It can be expressed as

∂ρuj

∂t
+

∂ρujui

∂xi
= − ∂p

∂xj
+ ρfj

with p being the static pressure and fj being the body force per unit mass. This formulation

is most often associated with Newton’s second law, and the external forces can be grouped

as surface forces and body forces. Body forces are conservative forces generated by objects

that are not in contact with the fluid, like gravity or electromagnetic forces. The effect

of body forces, however, is not within the scope of this study. Therefore the end term is

dropped, leaving

∂ρuj

∂t
+

∂ρujui

∂xi
= − ∂p

∂xj
(2.2)

All other forces are considered surface forces, but pressure is the only remaining force for a

frictionless flow.

Conservation of Energy

There are many different ways to express the idea that energy can neither be created

nor destroyed. Different forms will be presented for each type of flow, with the clearest

representation selected for each. For an inviscid flow, the energy equation is given as

∂ρε0

∂t
+

∂ρε0ui

∂xi
= −∂pui

∂xi
+ ρfiui

where ε0 is the total energy per unit mass. Total energy is the combination of the kinetic

energy (per unit mass) and internal energy of a particle, so ε0 = ε + 1
2ujuj . Assuming the

fluid is calorically perfect, the internal energy per unit mass is determined using ε = cvT .

Here, cv is the fluid’s specific heat at constant volume and T is the static temperature of

the flow.

As with the conservation of momentum, body forces are neglected. Dropping the last

term in the total energy equation leaves

∂ρε0

∂t
+

∂ρε0ui

∂xi
= −∂pui

∂xi
(2.3)
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Equation of State

One more equation is needed to close the system of equations, relating independent ther-

modynamic properties to each other. This is known as the equation of state, and for an

inviscid compressible flow it is presented as

p = ρRsT (2.4)

where Rs is the specific gas constant [1]. The specific gas constant can be obtained by

dividing the universal gas constant by the molecular weight of the fluid.

2.1.2 Viscous Flow

The viscous flow case still considers the fluid to be homogeneous, but viscosity is introduced

to the flow. In order to properly model the viscous effects, the conservation laws must be

altered with additional terms. The fluid is still considered laminar.

Conservation of Mass

The addition of viscosity does not change the representation of mass conservation because

the fluid is still made up of a single species in chemical equilibrium. Equation 2.1 is still

used.

Conservation of Momentum

Additional surface forces act on a fluid volume when the flow is considered viscous. These

forces are accounted for in the new viscous stress term on the right hand side:

∂ρuj

∂t
+

∂ρujui

∂xi
= − ∂p

∂xj
+

∂τji

∂xi
(2.5)

Assuming a Newtonian fluid and using the Stokes assumption, the viscous stress can be

expressed as

τji = µ

[
∂uj

∂xi
+

∂ui

∂xj

]

− 2

3
µδij

∂uk

∂xk
(2.6)

where µ is the dynamic viscosity of the fluid. Here δij is the Kronecker delta, defined such

that it equals one when i = j but is zero otherwise.
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When Equation 2.6 is substituted into Equation 2.5, the conservation of momentum

becomes the well known equation that bears the name of Claude-Louis Navier and George

Stokes:

∂ρuj

∂t
+

∂ρujui

∂xi
= − ∂p

∂xj
+

∂

∂xi

[

µ

(
∂uj

∂xi
+

∂ui

∂xj

)

− 2

3
µδij

∂uk

∂xk

]

Conservation of Energy

The conservation of energy also changes with the addition of viscosity, and may be better

expressed in terms of enthalpy. This formulation is given by

∂ρh

∂t
+

∂ρhui

∂xi
= − ∂qi

∂xi
+

∂p

∂t
+ ui

∂p

∂xi
+ τji

∂ui

∂xj
(2.7)

where h is the static enthalpy and q is the heat flux. Here the static enthalpy is defined as

h = ε + p/ρ. The heat flux occurs by conduction, which is goverened by Fourier’s law:

qi = −K ∂T

∂xi

The variable K represents the thermal conductivity of the fluid.

Visualizing the last term in Equation 2.7 requires the expansion of a laborious double

sum. It is therefore presented for the reader in the three Cartesian directions:

τji
∂ui

∂xj
= µ

[

2

(
∂u1

∂x1

)2

+ 2

(
∂u2

∂x2

)2

+ 2

(
∂u3

∂x3

)2

+

(
∂u2

∂x1
+

∂u1

∂x2

)2

+

(
∂u3

∂x2
+

∂u2

∂x3

)2

+

(
∂u1

∂x3
+

∂u3

∂x1

)2
]

− 2

3
µ

(
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)2

Equation of State

The equation of state for the viscous, compressible flow of a perfect gas is identical to that

of the inviscid case. This relation was presented in Equation 2.4.

2.1.3 Reactive Flow

The governing equations for a chemically reactive flow are composed of the three laws that

govern physical motion plus a conservation equation for nonequilibrium energy [30]. The

most notable change from the equations presented in the preceding sections is the inclusion

of multiple species in the flow. Turbulence effects are still neglected.
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Conservation of Mass

The standard continuity equation must be altered for a chemically reacting flow, to account

for nonequilibrium processes. For a volumetric space, the mass rate of change of a given

species is not only dependent upon the flow of mass through that space, but also the

nonequilibrium production of mass within [29]. The mass of each species is conserved by

∂ρs

∂t
+

∂ρsui

∂xi
= − ∂

∂xi
(ρsudi

) + ẇs (2.8)

where ρs is the density of species s. The species index s will run from the first species n

to the last species m, but for this study N2 will always be the first species, represented

by n. In this equation ẇs is the rate of nonequilibrium production of the species s. The

two velocity terms, ui and udi
represent the mass-averaged mixture (bulk) velocity and the

species diffusion velocity, respectively. A derivation of the diffusion velocity follows below.

The mixture density ρ can be determined by summing all species densities ρs, and follows

the convention of this study where a value is assumed to be for the mixture unless a species

index is given. The exception is the diffusion velocity term, which does not have a species

index. It is implied that the quantity is that of species s since it does not exist for the

mixture as a whole. If Equation 2.8 is summed for all species s, the right hand side will

sum to zero and the continuity equation for a non-reacting flow is recovered [19].

Diffusion Velocity Fick’s law of diffusion can be used to define the diffusion velocity

for a species in the presence of concentration, pressure, or temperature gradients. Diffusion

due to pressure and temperature gradients can be neglected for this flow, so only diffusion

due to concentration gradients will be defined here [30]. In index notation, Fick’s law relates

diffusion velocity to concentration gradient with

ρsud = −D

(
∂ρs

∂x1
x̂1 +

∂ρs

∂x2
x̂2 +

∂ρs

∂x3
x̂3

)

where D is the coefficient of mass diffusivity and x̂1,2,3 are the Cartesian unit vectors.

Solving for diffusion velocity, this equation can be cast in terms of the species mass fraction

as

ud = −D
ρ

ρs

(
∂(ρs

ρ )

∂x1
x̂1 +

∂(ρs

ρ )

∂x2
x̂2 +

∂(ρs

ρ )

∂x3
x̂3

)
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which can be a more useful form.

The diffusion coefficient can be found through a dimensionless quantity known as the

Schmidt number (Sc), which relates a fluid’s viscous and mass diffusion rates [30]. If a

constant Schmidt number is assumed, mixture quantities can be used to relate it to the

coefficient of mass diffusivity:

Sc =
µ

ρD
→ D =

µ

ρSc

The coefficient can then be determined using the Schmidt number, which is a known prop-

erty of the fluid.

It is important to note that the diffusion velocity does not account for the total motion

of a species. The species diffusion velocity is relative to the mixture coordinate frame, which

is moving at a bulk velocity uj [29]. These velocity components can be combined simply as

ūsj
= udj

+ uj

to determine the mean species velocity, ūsj
. As before, combining the mean mass flux of

every species with

ρuj =
∑

s

ρsūsj

should recover the mass flux of the mixture.

Conservation of Momentum

The conservation of linear momentum for a reactive fluid is, at first glance, the same as

Equation 2.5. The various diffusion velocities do not appear because when considered

collectively, they equal zero [19]. The viscous stress term, however, is slightly different than

the definition provided by Equation 2.6. The difference lies in how the dynamic viscosity is

calculated; now it must be calculated for a mixture. This computation can be performed

using the semi-empirical method by Wilke [31]. This algorithm calculates the mixture

dynamic viscosity by

µ =
∑̺

ς=1

µς

[

1 +
1

χς

∑̺

ι=1

χιφςι(1 − δςι)

]−1
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where the dimensionless constant φςι is defined by the equation

φςι =

√
2

4

[

1 +

√
µς

µι

(
Mι

Mς

) 1

4

]2 [

1 +

(
Mς

Mι

)]−
1

2

Conservation of Energy

The conservation of energy is again presented in a total energy formulation, but for a

chemically reactive flow it is more complex:

∂ǫ0
∂t

+
∂ǫ0ui

∂xi
= − ∂qi

∂xi
− ∂pui

∂xi
+

∂τjiuj

∂xi
− ∂

∂xi

(
m∑

b=1

ρbhbudi

)

Here the heat flux q is the sum of the translational, rotational, and vibrational heat flux.

Again, the diffusion velocity udi
implies a species quantity (for every b from 1. . .m). The

enthalpy per unit mass is now given by hb = h◦
b + cvb

T + εvb
+ pb/ρb, where h◦ represents

the enthalpy of formation for each species. The specific heat at constant volume for each

species is defined by the contribution 3
2Rs from translation plus the contribution Rs from

rotation [19]. The partial pressure pb will be described later with the equation of state, and

the vibrational energy per unit mass εv is explained below since it is also related to the

total energy.

It is important to note that the variable ǫ0 represents the total energy per unit volume,

in contrast to the total energy per unit mass equation given earlier. Since this case con-

siders multiple species, the total energy is found by adding together the internal energy

components for all relevant species:

ǫ0 =
m∑

b=1

(ρbcvb
T + ρbh

◦
b) +

α∑

b=1

ρbεvb
+

1

2
ρujuj

The variable α is the number of diatomic species in the system. A simple harmonic oscil-

lator is used to model the vibrational energy of each diatomic species, with characteristic

temperature θv. The vibrational energy per unit mass is derived from this model, and is

determined by the equation

εvb
=

Rsθvb

exp(θvb
/Tv) − 1

where Tv is the vibrational temperature.
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Conservation of Vibrational Energy

Only one vibrational energy equation is needed because all vibrational modes are assumed

to be in equilibrium [19]. This conservation is expressed as

∂ǫv

∂t
+

∂ǫvui

∂xi
= −∂qvi

∂xi
+ ṡv −

∂

∂xi

(
α∑

b=1

ρbεvb
udi

)

(2.9)

with ǫv representing the vibrational energy per unit volume and udi
as the diffusion velocity

for each species b. This volumetric quantity is simply the sum of ρbεvb
for all diatomic

species. The qv term is the vibrational heat flux and ṡv is the reactive source term, which

models the rate of vibrational energy production. The presence of this source term is partly

due to creation of diatomic species in the system. Other contributions come from the

exchange of energy with the other modes of the gas. These rates are approximated with

the Landau-Teller model, which uses a single exchange rate to represent the inter-modal

energy transfer [29]. The source term is comprised of the summation of these parts for each

diatomic species

ṡv =
α∑

b=1

ρb

ε∗vb
− εvb

τb
+

α∑

b=1

ẇbεvb

where τ is the Landau-Teller relaxation time. The equilibrium vibrational energy ε∗vb
is

determined in a form that is analagous to εvb
, except the equilibrium (translational) tem-

perature is used instead of Tv.

Equation of State

The equation of state in this case must be altered to compensate for the addition of species

to the system. This can be done with the additive pressure rule, which states that the

static pressure of a mixture can be expressed as the sum of its component pressures [18].

Each component pressure can be determined with its own compressibility factor. By ne-

glecting intermolecular forces, the Dalton model approximates this complex relationship,

and simplifies to

p = T
m∑

b=1

ρbRsb
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2.2 Flow Variables

Since GASP is a cell centered finite volume code, it stores the above governing equations in

a slightly different, vector format. Doing this requires storage of the dependent variables in

vector form. This vector, Q, appears in Equation 2.10 for perfect gas cases, where again,

ε0 is the total energy per unit mass.

Q = [ρn, . . . , ρm, ρu1, ρu2, ρu3, ρε0]
T (2.10)

For the sake of efficiency, GASP also stores the primitive variables in vector form [10].

Equation 2.11 shows this vector, q, for a perfect gas.

q = [ρn, . . . , ρm, u1, u2, u3, p]T (2.11)

These vectors will require an additional term, for vibrational nonequilibrium, when ther-

mochemistry effects are to be modeled. The vector for dependent variables becomes

Q = [ρn, . . . , ρm, ρu1, ρu2, ρu3, ρnen, ρε0]
T

and the primitive variables will be stored as

q = [ρn, . . . , ρm, u1, u2, u3, en, p]T

where en represents the nonequilibrium vibrational energy of diatomic nitrogen.

2.3 Boundary Conditions

The double cone case is solved on the 2-D axisymmetric domain in Figure 2.1, depicted

in blue, with flow from left to right. The corresponding flow is subject to five of the

boundary conditions available in GASP. Since it is axisymmetric about the x-axis, GASP

requires that the flow lie in the x-y plane. It then creates a small wedge, with side walls

rotated ±π/80 from the flow plane. The boundary conditions on these walls are called

Positive Axi-symmetric Wall and Negative Axi-symmetric Wall; they simply rotate

the velocity vector about the x-axis to the wall cell.

A 1st Order Extrapolation boundary condition is placed on the right to allow the

flow to exit the domain. For each extrapolation, the cell in the domain that is adjacent to
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Figure 2.1: Double Cone Flow Domain

the boundary face is denoted q(1). The next two cells on the other side of the boundary

face are ghost cells, respectively denoted q(0) and q(-1). They have their fundamental flow

properties determined by q(1), which can be represented by Equation 2.12 below.

q(−1) = q(0) = q(1) (2.12)

Physically, information is crossing the boundary in only one direction - from inside the

domain to the ghost cells. Prescribing the downstream values in this way means this exit

boundary condition is only valid if all characteristic waves are leaving the domain [10].

For this to be true, the flow traveling orthogonal to the boundary must have a Mach

number greater than one since the steady-state, compressible Navier-Stokes equations are

incompletely hyperbolic (mixed hyperbolic-elliptic). For a region in the flow where the

Mach number is less than unity, the equations take an elliptic form. This would mean a

change at one point in the region would affect all other points in the region. Information

would be able to travel in all directions, contradicting the boundary condition. The Mach

number of the flow near the exit boundary will be analyzed in Section 4.1 to prove the

partial differential equations are hyperbolic in this region.

The supersonic inflow from the left requires a freestream boundary condition where

flow properties are specified by the user. This condition is designated Fixed at Q and the

values for q(-1) and q(0) are set in the Physical Models section of the GASP interface.
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The boundary condition is prescribed using Equation 2.13

q(−1) = q(0) = q(∞) (2.13)

where q(∞) is the vector of freestream, primitive flow quantities specified by the user.

For the current study, since the inflow is laminar and aligned with the axis of symmetry,

it is completely defined by the density and two other primitive values [9]. Therefore, GASP

only allows for the specification of two of these quantities along with the density. The

freestream fluid is homogeneously N2, which dictates a density ρ(∞) of .00129 kg/m3. The

freestream static temperature T (∞) is specified at 166 K and the velocity magnitude |u|(∞)

is 3067 m/s. The flow enters at zero angle of attack so the velocity vector can be simplified

to merely its u1 component. This velocity, however, is too high to initialize the flow with,

so a separate set of freestream quantities must be specified for initialization [11]. The

freestream Mach number in the computational domain is lowered to 0.1 to initialize the

flow, but the temperature remains at 166 K. These initialization quantities are also used as

the reference values for non-dimensionalizing the problem. Both sets of freestream quantities

are summarized in Tables 2.1 and 2.2.

Property Value

u1 [m/s] 3067.00
T [K] 166.00
p [Pa] 61.43
M 11.68
ρ [kg/m3] 0.00129

Table 2.1: Prescribed Freestream Quantities

Property Value

u1 [m/s] 25.82
T [K] 166.00
p [Pa] 61.43
M 0.10
ρ [kg/m3] 0.00129

Table 2.2: Initialized Quantities

The remaining boundary condition is applied at the bottom of the domain, where the

flow meets the surface of the cone. This boundary condition must change with the flow

type to accommodate the inclusion of viscosity and thermochemistry models.

2.3.1 Inviscid Flow

The Tangency boundary condition is applied to the surface when viscous effects are ne-

glected. The velocity of the last cell in the flow [u(1)] is projected onto the boundary [u(0)]
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using

uj(0) = uj(1) − n̂xj
n̂xi

ui(1)

where each n̂ is a component of the surface’s unit normal, positive outward. Each component

is then multiplied by the magnitude of u(1) over the magnitude of u(0), which ensures the

speed at the boundary matches that of the flow. The remaining primitive values are set at

the boundary to that of the previous cell, in the flow.

2.3.2 Viscous Flow

After viscosity is introduced, the boundary at the wall must include a no slip condition.

The condition No Slip T=Twall is selected so that the wall temperature can be specified

at Twall = 300 K. The no slip condition sets all components of the velocity to zero at the

boundary. The remaining surface quantities are set from the flow domain as follows:

p(0) = p(1)

Rs(0) = Rs(1)

ρ(0) =
p(0)

Rs(0)Twall

The variable Rs represents the specific gas constant of the fluid, in this case, homogeneous

N2.

2.3.3 Reactive Flow

The boundary condition on the cone surface must change again when thermodynamic and

chemistry effects are to be modeled. The boundary condition would need to be compat-

ible with the selected chemistry models, and Air Catalytic T=Twall: Partial is cho-

sen. For the homogeneous N2 flow, this condition is the same as No Slip T=Twall ex-

cept for one change. Since the dissociation of molecules is possible when thermochem-

istry is being modeled, the catalytic boundary condition must restrict species formation

at the wall. The assumption is made that N2 will be formed as the flow contacts the

surface, and N2 is imposed as the only species on the boundary. It may seem curious

that Air Catalytic T=Twall: Full is not the chosen boundary condition, since recom-

bination of all atoms on the wall is consistent with a fully catalytic wall assumption [12].
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Unfortunately, the fully catalytic boundary condition in GASP forces a mixed N2 and O2

composition at the surface. Therefore, the partially catalytic condition is used so that the

presence of O2 is not required at the wall.

Two chemistry models are used for comparison purposes. One is by Kang & Dunn

(K&D), the other is Park’s original air model, designated Park 3 in GASP. Both models

are applied with the Non-Equilibrium Vibration thermodynamics model. This model

places the flow in translational and rotational equilibrium, but solves for the vibrational

energy using Equation 2.9.

Kang & Dunn Model

This air model originally contains seventeen reactions between five species (N2, O2, NO,

N , O). This is simplified, however, by the restriction of a nitrogen only flow. The species

containing oxygen are eliminated, leaving only two viable reactions:

N2 + N2 ⇄ 2N + N2

N2 + N ⇄ 3N

Park Model

Like the Kang & Dunn model, this one is greatly simplified with only five possible species.

The original eleven species (N2, O2, NO, N+
2 , O+

2 , NO+, N , O, N+, O+, e−) would

combine to form forty-seven reactions. Instead, only seven reactions need to be modeled:

N2 + N ⇄ 3N

N2 + N+
⇄ N + N+

2

2N ⇄ N+
2 + e−

N + e− ⇄ N+ + 2e−

N2 + N+
2 ⇄ 2N + N+

2

N2 + N+
⇄ 2N + N+

N2 + e− ⇄ 2N + e−
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Chapter 3

Computational Methods

3.1 Finite Volume Algorithm

In order to perform the desired flow simulation, both time and the continuous domain in

Figure 2.1 must be divided into a set of discrete points. A point-matched grid is used, so

in three spatial dimensions, each point marks a boundary for a cell. Flow information is

volume averaged over each cell and passed to adjacent cells through the cell faces. After

the flow has propagated in all directions, the process is repeated for the next time interval.

3.1.1 Discretization

The flow domain is approximated by a structured grid with three coordinate directions, i,

j, and k. The coordinate origin is placed at the tip of the cone, in the lower left (note: as

seen in Figure 3.1, this does not correspond to the leftmost point in the domain). The i

index runs along the surface of the cone, ending where the flow exits the domain in the top

right. The j direction is normal to the cone surface, where j(min) resides on it and j(max)

is at the freestream boundary. The k index begins in the x-y plane and is rotated about

the x axis, positive out of the page.

The original grid, of cell dimensions 512ix256j, was obtained from Ioannis Nompelis

who had previously studied hypersonic flows over the double cone geometry [20]. This grid,

however, resulted in negative volumes when GASP revolved it axisymmetrically. It can

be seen in Figure 3.1b that one row of cells lies below the axis of revolution, causing the

negative volumes. These cells were removed, leaving the 511x256 grid shown in Figure 3.1a

that contains 131,584 nodes. This new grid was considered the fine grid for this study.

GASP was used to automatically sequence the grid down to a 511x128 medium grid and a
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511x64 coarse grid, having 66,048 and 33,280 points, respectively.
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(a) Modified Grid
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(b) Original Grid

Figure 3.1: Changes to Computational Grid

3.1.2 Control Volume Formulation

For simplicity, the governing equations of three dimensional flow are recast in the vectorized,

control volume form seen in Equation 3.1. This equation is solved using each cell in the

computational domain as a control volume.

∂

∂t

∫

V
Q dV

︸ ︷︷ ︸

Conservative

+

∮

A
(F · n̂) dA

︸ ︷︷ ︸

Flux

=

∫

V
S dV

︸ ︷︷ ︸

Chemical Source

(3.1)

Here the three vectors Q, F, and S represent the conserved variables, fluxes, and chemical

source terms. The variable V is the cell volume while A is the area of a cell face. The unit

normal of each cell face is denoted n̂. If the volume-averaged vector of conserved quantities

is defined as

Q =
1

V

∫

V
Q dV

then GASP can approximate Equation 3.1 with

V
∂Q
∂t

+
∑

A

(F · n̂)A = SV (3.2)



21

on the computational grid. Since GASP performs calculations with the primitive variables,

the chain rule is applied to Equation 3.2 to give

V
∂Q
∂q

∂q

∂t
︸ ︷︷ ︸

Conservative

+
∑

A

(F · n̂)A

︸ ︷︷ ︸

Flux

= SV

︸︷︷︸

Chemical Source

where q is the vector of primitive variables defined in Section 2.2.

3.1.3 Reconstruction

In order to evaluate the flux term above, the primitive variables must be known at the faces

of each cell. Since only the volume-averaged data is known, it must be used to compute a

local approximation of the data at the cell faces. This calculation is performed by a process

known as reconstruction [10].

In GASP, reconstruction is done using a method developed by Bram Van Leer called

the Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) [28]. For cell

i, the location of the left face is denoted i − 1/2 and the right face i + 1/2. Computation of

the flux terms for this cell requires the state of the right side of the left face, q(i − 1/2)r,

and the left side of the right face, q(i+ 1/2)ℓ. These values are approximated using the cells

on either side:

q(i − 1/2)r = q(i) − 1

4

(

[1 − κ][q(i + 1) − q(i)] + [1 + κ][q(i) − q(i − 1)]

)

(3.3a)

q(i + 1/2)ℓ = q(i) +
1

4

(

[1 − κ][q(i) − q(i − 1)] + [1 + κ][q(i + 1) − q(i)]

)

︸ ︷︷ ︸

Correction Term

(3.3b)

In these equations κ represents a constant that will alter the scheme type and accuracy.

The constant κ can hold values of negative one, zero, one-third, or one. When κ equals one

the MUSCL scheme is centered. A value of negative one makes the scheme fully upwind,

while zero and one-third are considered second and third order upwind-biased, respectively.

A scheme is considered upwind-biased when for a given face, the scheme uses unbalanced

data. It favors cells from the left for the left side of a face, and cells from the right for the

right side of a face. The fully upwind case only uses data from the same direction as the

side of the face being considered.
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In the computations run for this study, the reconstruction selected was merely a first

order scheme. That means Equations 3.3a and 3.3b were each truncated to one term. This

is the simplest reconstruction method, and will be shown to cause significant numerical

dissipation (amplitude error) in the solution [14].

3.1.4 Limiting

Some higher order reconstruction schemes may have trouble resolving flowfield discontinu-

ities like shock waves. This occurs when the reconstruction uses data from both sides of

the discontinuity, giving rise to unphysical local extrema in the solution [14]. These numer-

ical (fictitious) oscillations can be reduced by making an adjustment in the reconstruction

algorithm. This process is known as limiting because it limits the reconstructed value at a

face such that it stays between the adjacent cell averages. The limiting is performed on the

second, correction, term in Equations 3.3a and 3.3b [10]. Therefore, since those terms are

not present for this study’s reconstruction, no limiter is needed.

3.2 Inviscid Flux

After the primitive values are reconstructed, the flux through each cell face can be evaluated.

The flux scheme chosen is a flux difference splitting algorithm. Methods of this class provide

a solution that is analogous to that of a general Riemann problem [14]. Roe developed one

such method that can resolve a stationary shock exactly [10]. His scheme provides an

exact solution to an approximation of the nonlinear Riemann problem. Downstream of the

freestream boundary, each cell (i) uses its own state and that of the next cell to define a

Riemann problem at the face between them [23]. The algorithm can be presented as

F(i + 1/2) =
F[q(i + 1/2)r] + F[q(i + 1/2)ℓ]

2
− |Ã|

2

(

q(i + 1/2)r−ℓ

)

(3.4)

where the notation ( )r−ℓ is shorthand for subtracting the value on the left side of the

face from the value on the right side. Ã is a constant matrix dependent upon the local

conditions. This constant matrix is created such that it satisfies the items in Table 3.1.

Using a method called Roe averaging, Equation 3.4 can be recast in a simpler form:

F(i + 1/2) =
F[q(i + 1/2)r] + F[q(i + 1/2)ℓ]

2
− 1

2
(F1 + F2 + F3)



23

1. It linearly maps the vector space of q to the vector space of F

2. As q(i + 1/2)r and q(i + 1/2)ℓ both → q(i + 1/2), Ã → ∂F/∂q

3. For any left and right states, Ã×[q(i + 1/2)r−ℓ] = F[q(i + 1/2)r] − F[q(i + 1/2)ℓ]

4. The eigenvectors of Ã are linearly independent

Table 3.1: Properties the Roe Matrix Ã Must Satisfy

Here F is a result of substituting the Roe averaged variables into Ã and distributing through

the second term of Equation 3.4. Remembering that a repeated Cartesian index indicates

Einstein summation, the components of F work out to:

F1 = −pr−ℓ

a2 |λ1|

























ρn/ρ

...

ρm/ρ

u1

u2

u3

ρnen/ρ

h0 − a2

γ−1

























+ |λ1|



























ρnr−ℓ

...

ρmr−ℓ

u1ρr−ℓ + ρ{u1r−ℓ
− n̂x1

(u · n̂)r−ℓ}

u2ρr−ℓ + ρ{u2r−ℓ
− n̂x2

(u · n̂)r−ℓ}

u3ρr−ℓ + ρ{u3r−ℓ
− n̂x3

(u · n̂)r−ℓ}

(ρnen)r−ℓ
m∑

b=1

βbρbr−ℓ
+ (ρnen)r−ℓ + ρ{uiuir−ℓ

− λ1(u · n̂)r−ℓ}



























F2,3 =
1

2a2 {pr−ℓ ± ρ(a)(u · n̂)r−ℓ}|λ2,3|

























ρn/ρ

...

ρm/ρ

u1 ± n̂x1
a

u2 ± n̂x2
a

u3 ± n̂x3
a

ρnen/ρ

h0 ± (u · n̂)a

























A bar ( ) denotes the use of Roe averaging and λ1,2,3 are the eigenvalues of Ã. Each

eigenvalue uses this method of averaging, with λ1 = u · n̂, λ2 = u · n̂ + a, λ3 = u · n̂ − a.
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GASP computes the Roe averages as

ρ =
√

ρrρℓ γ = 1 +
Rs

cv

ρs =

√
ρ

r
(ρs)ℓ +

√
ρ

ℓ
(ρs)r√

ρ
r
+
√

ρ
ℓ

Rs =
(Rs

√
ρ)r + (Rs

√
ρ)ℓ√

ρ
r
+
√

ρ
ℓ

ρnen =

√
ρ

r
(ρnℓ

enℓ
) +

√
ρ

ℓ
(ρnrenr)√

ρ
r
+
√

ρ
ℓ

e∗b =
(e∗b

√
ρ)r + (e∗b

√
ρ)ℓ√

ρ
r
+
√

ρ
ℓ

u1,2,3 =
(u1,2,3

√
ρ)r + (u1,2,3

√
ρ)ℓ√

ρ
r
+
√

ρ
ℓ

βb = e∗b −
Rsb

T

γ − 1
+

1

2
ukuk

T =
(T

√
ρ)r + (T

√
ρ)ℓ√

ρ
r
+

√
ρ

ℓ

h0 =
(h0
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1
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ukuk + cvT −

m∑
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ρb

ρ
e∗b −

ρnen

ρ

]

where again, s is the species index running from n = N2 to the last species m.

3.3 Viscous Flux

When viscous effects are considered, a new vector must be added to the inviscid flux to

arrive at the total flux term for the system. The components of this new viscous flux vector

are calculated more simply than Roe’s inviscid scheme. The vector is arranged as
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where ud represents the diffusion velocity of that species. For each species, the diffusion

velocity is calculated using a form of Fick’s law

ud = −ρD

ρs









∂(ρs/ρ)
∂x1

∂(ρs/ρ)
∂x2

∂(ρs/ρ)
∂x3









where the binary diffusion coefficient D is determined using a constant Schmidt number,

as described in the following paragraph. The last two vectors in the viscous flux vector are

components of the conservation equations for nonequilibrium vibrational energy and total

energy, respectively. Each vector component of the vibrational energy equation contains a

partial derivative in a Cartesian direction, as well as a component of the species diffusion

velocity in the same direction. The N2 species-specific thermal conductivity Kn is for the

frozen vibrational mode, and is calculated by Kn = µncvn . The components of the total

energy equation contain similar terms.

A Schmidt number of 0.7 was used to determine the diffusion coefficient. This was done
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with the relation

D =
µs

ρSc

where Sc is the Schmidt number and µs is the species viscosity. The viscosity of each species

is determined with the Sutherland model, where intermolecular attraction is assumed to be

weak unless molecules are in contact [10]. The species viscosity µs is obtained with

µs ≈ µref

(
T

Tref

) 3

2 Tref + S

T + S

where µref and Tref are reference values and the effective temperature S is the Sutherland

constant [30]. The mixture viscosity is then determined by Wilke’s mixing rule.

3.3.1 Differentiation

The derivatives in the viscous flux vector are calculated using a finite difference scheme that

Aerosoft calls thin-layer gradients. For all scalar variables η, this is essentially the forward

Euler method

∂η

∂xi
(j + 1/2) =

η(j + 1) − η(j)

∆X
n̂i

where ∆X is the division of a volume term by an area term. This volume is calculated by

averaging the volumes of cells j and j + 1, while the face area between them is calculated

using the nodes. The accuracy of a gradient calculated by this method is mainly dependent

upon two grid characteristics. First, it is best for the normal at a face center to pass

through the center of both adjacent cells. When this condition is nearly satisfied, the

gradient approximation will be good. Relative cell size is also important, as accuracy is lost

if cells in close proximity have dissimilar volumes.

At a wall boundary, a second order wall gradient is selected to approximate the deriva-

tive. It is computed with the one sided scheme

∂η

∂xi
(j) =

−η(j + 2) + 7η(j + 1) − 6η(j)

∆X
n̂i

where ∆X is now the volume of the wall-adjacent cell divided by the area of the face at the

boundary.

This thin layer gradient method is used to calculate the flux through each face along

each parametric coordinate direction. For increased accuracy, the i − j cross derivative



27

terms are enabled. This adds a term from the j direction calculations to the i direction

flux, with the reverse being true as well. For a given face in the j − k plane, the added

term incorporates the flux from the four adjacent i − k faces. A simple average of the four

j direction gradients is performed; this value is then added to the original i direction flux.

3.4 Chemical Source

The vector of source terms is only present for chemically reactive flows. It contains terms

for the production of species, and appears as

S =

























ẇn

...

ẇm

0

0

0

ẇnen + ρnėn

0

























where again, ẇ is the rate of nonequilibrium production of a species, and ė is defined as the

rate of production of nonequilibrium energy for a species. The first set of non-zero terms

represents the production of mass in the continuity equation. The other non-zero term is a

part of the conservation equation for nonequilibrium vibrational energy.

3.5 Temporal Integration

The time derivative is the last remaining portion of Equation 3.1 that requires a numeric

scheme. An iterative method is used to calculate the flow parameters after each discrete

time step, but first the equation must be linearized. For the sake of simplicity, the vector

quantities in Equation 3.1 are grouped such that F′ represents the flux terms, S′ the source

terms, and Q′

∂t the conservative terms. Linearization is performed with the implicit Euler

scheme, which is first order accurate in time and unconditionally stable [27]. The implicit
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Euler method changes Equation 3.1 to

Q′(n+1) − Q′(n)

∆t
= S′(n+1) − F′(n+1)

(3.5)

where ( )(n) signifies the current time (when quantities are known) and ( )(n+1) represents

one time step later. In this way, the time derivative of the conservative term is evaluated

using the forward Euler scheme, and the flux and source terms are not known yet. These

implicit right hand side terms are approximated locally as

(S′ − F′)(n+1) = (S′ − F′)(n) + J(n)(Q′(n+1) − Q′(n)
) + higher order terms

where the higher order terms are dropped. The matrix J is the flux Jacobian, which is a

matrix of all the partial first derivatives relating (S′ −F′) to Q′. This local approximation

is inserted into Equation 3.5, giving

Q′(n+1) − Q′(n)
= ∆t(S′ − F′)(n) + ∆tJ(n)(Q′(n+1) − Q′(n)

)

after both sides have been multiplied by ∆t. Noting the presence of (Q′(n+1) − Q′(n)) on

both sides, it can be grouped with the similar term on the left

(I − ∆tJ(n))(Q′(n+1) − Q′(n)
) = ∆t(S′ − F′)(n)

after the whole term is moved to the other side. The matrix I is the identity matrix. The

left hand terms can now be distributed

(I − ∆tJ(n))
︸ ︷︷ ︸

A

Q′(n+1)

︸ ︷︷ ︸

x

= ∆t(S′ − F′)(n) + (I − ∆tJ(n))Q′(n)

︸ ︷︷ ︸

b

and the known conserved quantities can be moved to the right. Grouping the known terms

on the left into a coefficient matrix (A), and the terms on the right into a matrix of known

quantities (b), the above matrix equation takes the common form Ax = b. This equation

can be solved by a direct method or through iteration [7].

Iterative schemes typically require less memory than direct methods, so iteration is used

for this study [17]. In order to obtain a solution, an initial guess is chosen, and then improved

upon repeatedly. The common form of Ax = b is changed slightly to accommodate the

improvement of x, and appears as

A1x
k+1 = A2x

k + b
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where ( )k represents the stage of iteration. The values of A1 and A2 differ depending

on the chosen scheme. For a standard Gauss-Seidel formulation, the original matrix of

coefficients is split into three matricies

A = U + D + L

where U is the upper triangular portion, D is the diagonal portion, and L is the lower

triangular portion of A. Then A1 = D + L and A2 = −U. This results in

(D + L)xk+1 = b − Uxk

and (D + L) can be inverted to solve for the xk to be used in the next iteration.

This solution method can be improved by performing a backward sweep through the

cells after the forward sweep is performed in the standard Gauss-Seidel. This improved

algorithm is called the Symmetric Gauss-Seidel method, and the new intermediate step is

represented by ( )k+ 1

2 . The forward Gauss-Seidel is calculated as before,

(D + L)xk+ 1

2 = b − Uxk (3.6)

except the next iterative index is replaced by the intermediate step. Then the backward

Gauss-Seidel

(D + U)xk+1 = b − Lxk+ 1

2 (3.7)

is used to reach the next step of iteration. Combining equations 3.6 and 3.7 gives

xk+1 = (D + U)−1L(D + L)−1Uxk + [(D + U)−1 − (D + U)−1L(D + L)−1]b

which simplifies to

xk+1 = (D + U)−1L(D + L)−1Uxk + (D + U)−1D(D + L)−1b

giving the Symmetric Gauss-Seidel method. This equation is solved repeatedly, improving

the guess each time, until the convergence criteria is met. Then the time step is advanced

by one and the process begins again.
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Chapter 4

Results

Using the described numerics, this study simulates the Run 80 experiment at CUBRC.

The experiment passed a flow of pure diatomic nitrogen over the 25◦/55◦ double cone

at approximately Mach 12. Ioannis Nompelis also simulated this experiment, using more

accurate numerics than are presented in this paper. His finite volume code also used an

implicit model, but chose the Data-Parallel Line Relaxation (DPLR) algorithm in time [22].

His inviscid flux was calculated using a hybrid Steger-Warming flux vector splitting method

that does not require a limiter. Second order inviscid reconstruction was performed with

an upwind MUSCL scheme and the viscous reconstruction used a second order central

difference. The fine grid contained 512x256 cells and chemical reactions were modeled with

Park rates. His simulation was computed using sixteen processors on a Compaq XP1000

AlphaStation cluster.

In contrast, this study uses Roe’s flux difference splitting method and a first order

MUSCL reconstruction for the inviscid flux. Since the inviscid reconstruction is first order,

no limiter is needed. Viscous differentiation is performed using the thin-layer gradient

finite difference scheme. Symmetric Gauss-Seidel iteration solves the temporal system of

equations, and all runs are performed to a steady state. The fine grid for this study contains

511x256 cells. Jobs are run on a Debian Linux cluster made up of 24 AMD Dual Core

Opteron processors running at 2.4 gigahertz with 24 gigabytes of RAM.

4.1 Flow Field

The double cone is an interesting geometry to study because of the interactions that occur

between the laminar boundary layer and the shocks that form at high speeds. It is beneficial

to begin studying this flow field in the absence of viscosity. This allows for the resolution
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of the far field shock structure without a boundary layer present. Figure 4.1a plots static

pressure in the inviscid domain, depicting some major shock features. An oblique shock (1)

forms as the flow reaches the geometry, emanating from the stagnation point at the tip of

the cone. The shock continues downstream until it intersects the detached shock (2) formed

by the change in the cone’s half angle. At this point - known as a triple point - a reflected

shock (3) forms and extends toward the cone surface. The reflected shock interacts with

another shock (4) before it reaches the wall. This fourth shock turns the flow, originally

processed by the first shock, so that it is nearly parallel with the second cone.

Shocks three and four are of opposing families, and their intersection results in the

refraction of both shocks [1]. A magnified depiction of this region appears in Figure 4.1b.

One refracted shock continues to the cone surface, finally bringing the near-wall flow to

parallel. The other reaches a slip line and is reflected as an expansion wave. Another

expansion occurs just before the flow leaves the domain, as the geometry of the second cone

flattens out to the base.
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Figure 4.1: Inviscid Pressure on the Fine Grid

The flow structure changes somewhat when viscosity is introduced to the flow, most

notably near the cone surface. Figure 4.2b shows static temperature contours near the

triple point. A plot of temperature reveals flow features that one of pressure cannot. A
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thin boundary layer is apparent along the end of the first cone, distinguished by low tem-

perature along the cone surface. It appears even thinner on the surface of the second cone.

The boundary layer cannot be visualized with pressure contours because static pressure is

constant across a boundary layer. An explanation for changes in boundary layer thickness

is offered toward the end of this section.

A contact discontinuity, or slip line, is also visible on the temperature chart. Like a

boundary layer, the pressure on either side of the slip line must be equal by definition [1].

However, since the entropy changes across it, it is visible as a line separating the two

temperature regions behind the detached shock in Figure 4.2b.
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Figure 4.2: Viscous Flow Features

Additional flow features are presented in Figure 4.2a. Unlike Figure 4.1, the initial

oblique shock does not intersect the bow shock from the 55◦ cone. Instead, an additional

shock is present due to the separation of the boundary layer, as the flow encounters the

resulting pocket of recirculating flow. This separation shock forms because the recirculation

region changes the effective wall shape, appearing as a compression corner to the flow. The

shock continues downstream until it reaches the detached shock at the triple point.

The flow that is processed by the separation shock has yet to ‘feel’ the presence of

the second cone. As it approaches the change in geometry, it doesn’t experience a sudden

compression like in the inviscid case. This is once again due to the presence of the separation
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Figure 4.3: Contour Lines of Reversed Flow

region, which can be visualized in Figure 4.3b. It appears as the pocket of low Mach number

flow against the double cone. Referring back to Figure 4.2b, a correlation can be found

between this area and the thicker boundary layer. In fact, it is the low speed that allows for

the increase in boundary layer height. A theoretical analysis shows that laminar boundary

layer thickness is inversely proportional to the square root of the Reynolds number, which is

lower for the recirculating flow [3]. It is important to note that this zone continues outside

the marked contours of reversed flow. The contours only serve to provide a relation between

the separated flow and the related shock in Figure 4.3a. The smoother outer shape of this

region allows for the formation of weaker compression waves, which coalesce into one oblique

shock. That is why this shock appears at a non-zero distance from the wall - it is actually

attached to the effective shape of the surface. The coalesced shock continues downstream

and intersects the shock reflected from the triple point. The interaction between these shocks

is similar to that of the inviscid case, except one refracted shock marks the reattachment

point as it reaches the wall.

In all flow cases, the flow expands around the corner created by the end of the second

cone and exits the domain. The speed of the flow near this boundary is of particular interest

because of the boundary condition that is used. To help visualize this, Figure 4.4a presents

the flow field of the entire domain in terms of Mach number. Unfortunately, this figure alone
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Figure 4.4: Mach Number of Reactive Flow

does not validate the exit boundary condition. As described in Section 2.3, the component

of the flow traveling orthogonal to the boundary must have a Mach number greater than

one.

A simple trigonometric analysis is conducted to ensure this condition is met. The acute

angle formed by the exit boundary and the base of the model is 48.31◦. The assumption

is made that the direction of the flow near the boundary is offset no farther than the

horizontal - a rotation of 41.69◦ from the boundary normal. If the Mach number of the

orthogonal component of the flow must be greater than unity, the Mach number of any

horizontal flow must be greater than 1.339. This forms a conservative constraint on the

flow near the domain exit. Figure 4.4b shows only the flow regions with a Mach number

greater than 1.339. The flow at the exit boundary is shown to have an adequate Mach

number, making the boundary condition a valid choice.

For the purpose of vehicle configuration design, it is more useful to analyze how these

flow features affect the double cone surface. As an example, surface data is plotted in

Figure 4.5 for both pressure and heat transfer. These plots allow for improved visualization

of relevant data for comparison purposes. They also depict major features of the flow. The

initial jump in pressure seen in Figure 4.5a is a strong adverse pressure gradient along the

wall in the streamwise direction. This is the reason for separation of the boundary layer,
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as the fluid downstream of this point flows in the reverse direction. Therefore, this marks

the separation point in the flow. The heat transfer plot in Figure 4.5b also illustrates the

recirculation zone in an obvious way. Since the Mach number of the flow in this region is

comparatively low, the cone surface is exposed to less heat flux. This appears on the graph

as a sharp reduction in heat transfer.
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Figure 4.5: Viscous Surface Data

On both charts, the separation zone is followed by a large spike in the dependent variable.

This corresponds with the location of boundary layer reattachment, where the refracted

shock impinges on the wall. Both values drop off shortly thereafter as they are processed

by the expansion slightly downstream. Finally, before the flow exits the domain, both heat

transfer and pressure drop significantly due to the expansion corner made by the end of the

geometry.

A clearer comparison of surface data and flow features is made in Figure 4.6 below. The

contours are of the u1 velocity for only the reversed flow. The normalized and translated

surface pressure data is plotted on top of this for qualitative purposes only. It can be

seen that the first rise in surface pressure occurs near the initial point of reversed flow.

The largest rise in pressure also appears near the downstream-most point of reversed flow

(reattachment), as expected.
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Figure 4.6: Reversed Flow with Surface Pressure Shape

4.2 Grid Convergence

A thorough study of grid convergence is necessary to ensure that the level of grid refinement

used does not affect the quality of the solution. One such study was performed on this

configuration by Ioannis Nompelis, for a flow case with slightly less total enthalpy [20]. His

simulations were performed on four grids, of cell resolution 2048x1024, 1024x512, 512x256,

and 256x128. The computed heat transfer on the 1024x512 and 512x256 grids showed very

little variance for most of the flow field, but the 512x256 grid did not resolve the separation

bubble well enough. However, the data on the 2048x1024 and 1024x512 grids were nearly

identical in this area, indicating grid convergence was achieved on the 1024x512 mesh. The

same flow was studied by Druguet et al. and the grid resolution needed was found to be

dependent on the solution method. For schemes with minimal numerical dissipation, a cell

resolution of 512x256 was adequate to resolve all flow features [6]. Therefore, the 512x256

mesh was chosen for this study, to examine the effect of a dissipative solution method. It was

from Nompelis’s study that the 512x256 grid was obtained, and altered to 511x256 for the

present simulation. The medium and coarse grids were derived from this fine mesh, and a

similar comparison using heat transfer is shown in Figure 4.7. The data presented is for the

viscous simulation using the nonequilibrium vibration thermodynamics model and the Kang

& Dunn chemistry model. The regions of interest have been magnified in Figure 4.8. The
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Figure 4.7: Grid Convergence

approximate separation zone length, measured from initial drop off to peak heat transfer,

varies by 33.71% between the coarse and medium grids. The percent change from medium

to fine was 29.75%. This disparity makes it obvious that grid convergence has not been

achieved on the 511x128 medium grid. Convergence is not determined for the resolution of

511x256 because this comparison is made in Section 4.4. Noting that the peak heat transfer

only changes by 0.62% and 1.87% as the grids are refined, it is evident that separation

zone length is far more sensitive to changes in grid resolution. Figure 4.8 also shows that a

drop in peak magnitude is associated with a larger recirculation zone. Increased separation

delays reattachment too, moving the peak heat transfer farther downstream on the cone

surface. This happens because the separation zone size affects the shape and strength of

the shock interactions, which in turn dictate where the refracted shock contacts the wall [6].

4.3 Chemistry Model

Two methods were used to simulate the chemical reactions taking place in this high speed

flow. As described in Section 2.3.3, the Kang & Dunn model uses two reactions between

two chemical species. The Park model uses seven reactions between five species. For both

models, the computed heat transfer to the surface is determined using identical solution
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Figure 4.8: Sensitivity to Grid Resolution

methods on the 511x64 coarse grid, and the results are plotted in Figure 4.9. Globally,

the results produced by each model are nearly identical. Magnified views of the regions of

interest are provided in Figure 4.10. It should be noted that the separation zone appears

slightly longer as calculated by the Park model, but the location of the peaks are the same.

The magnitude of the maximum heat transfer is slightly higher when the Park model is

used. These slight differences, however, are achieved while incurring high computational

cost. The CPU time required for the Park calculation was 8.58 times what the Kang &

Dunn model needed. Consequently, the Kang & Dunn chemistry model was used for all

subsequent calculations done in this study.

4.4 Algorithm Accuracy

The final results from this study are assessed in a comparison with two other datasets.

One is the experimental data provided by Michael Holden, from the LENS-I tunnel at

CUBRC, designated Run 80. The second is a simulation of Holden’s experiment by Ioannis

Nompelis, using the methods described at the beginning of Chapter 4. These datasets are

plotted against each other in Figure 4.11. Both sets of computed data were simulated on

grids of similar resolution - 512x256 for Nompelis and 511x256 for GASP.



39

X (m)

H
ea

tT
ra

ns
fe

r
(W

/m
2 )

0 0.05 0.1 0.15
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

Park
Kang & Dunn
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X (m)

H
ea

tT
ra

ns
fe

r
(W

/m
2 )

0.07 0.075 0.08 0.085 0.09

100000

200000

300000

400000

500000

Park
Kang & Dunn

(a) Separation Zone

X (m)

H
ea

tT
ra

ns
fe

r
(W

/m
2 )

0.095 0.1 0.105 0.11 0.115

1.8E+06

1.9E+06

2E+06

2.1E+06

2.2E+06

2.3E+06

Park
Kang & Dunn

(b) Peaks

Figure 4.10: Sensitivity to Chemistry Model (Coarse Grid)
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The difference between the computed separation zone shapes is noticeable. The sepa-

ration from Nompelis matches that of the experiment much closer than the GASP results.

The root cause of the disparity lies in the lower order numerics used for the GASP com-

putations. The first order reconstruction, as Section 3.1.3 alluded, suffers from artificial

dissipation that shrinks the recirculation region. This ‘smearing’ of the solution increases

the mixing in the simulated separation zone in an unphysical way [6]. Since this makes

the recirculation zone smaller, it also decreases the strength of the separation shock. This

moves the refracted shock, and therefore the location of maximum heat transfer, upstream.

Figures 4.12a and 4.12b provide a larger view of the heat transfer to the wall in these

regions. The GASP peak in heat transfer occurs roughly 1.6cm earlier than the peak in

Nompelis’ data. It should be noted that the maximum experimental heat transfer isn’t nec-

essarily a good baseline for comparison since capturing the peak depends on the placement

of instrumentation.

With that being said, the difference in peak heat transfer to the surface is reasonably

small. The lower order scheme slightly underpredicts the magnitude of the maximum heat

transfer. This is because the flow is processed by a weaker separation shock; the refracted

shock must be stronger to slow the flow down more before it reaches the wall. When the low

order data is compared to Nompelis’ data, the percent error is about 14%. Compared to

the experimental data, however, the percent error is only about 5.5%. This is a reasonable

value, considering the estimated experimental uncertainty for heat transfer is 4% [15]. The

magnitude and location of recovery heat transfer, downstream of reattachment, also matches

well.
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Chapter 5

Conclusions

This study examines the impact spatial reconstruction accuracy has on numerical simula-

tion. A first order algorithm is used to model the complex interactions between shocks and

the boundary layer in laminar flow, and the results are compared to second order data. The

study uses a first order MUSCL scheme to reconstruct the primitive flow variables at each

cell face so that Roe’s method can be used to evaluate the inviscid flux. The Symmetric

Gauss-Seidel method is used to solve the temporal problem through iteration. These lower

order results are presented against those of Ioannis Nompelis. His higher order schemes

include a hybrid Steger-Warming method with a second order upwind MUSCL reconstruc-

tion, and an implicit solution with DPLR in time. Both sets of data are plotted against the

empirical results obtained by Michael Holden at CUBRC. His experimental data is obtained

from the LENS-I reflective shock tunnel. In his test, he passes a pure nitrogen flow over a

25◦/55◦ double cone geometry, at a velocity of almost Mach 12. The data collected includes

pressure at the model surface as well as heat transfer to the surface.

Two different sets of chemical equations are used to model the reactive flow with the

lower order algorithm. The Park model produced slightly different results than Kang &

Dunn’s for both pressure and heat transfer. The Park model, however, required over eight

and a half times the computational cost in order to produce these results. Since the differ-

ence between the predictions from the models was well within the experiment’s estimated

uncertainty for pressure (3%) and heat transfer (4%), further computations were continued

with the Kang & Dunn model [15].

When comparing the pressure and heat transfer from the lower order simulation against

the higher order one or experimental data, a disparity is apparent in separation region length

and peak location. The dissipative nature of the lower order scheme shrinks the recirculation
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region substantially. This results in a premature peak and a change in shock strength, which

can be visually identified by the decrease in peak magnitude. Unlike the peak location,

however, the lower order peak magnitude compares reasonably to the experimental results.

The location and magnitude of the recovery heat transfer also matches the higher order

data well. Therefore, some flow features can be resolved reasonably by the lower order

scheme, but other, more dissipation sensitive features cannot. It is important to note that

the higher order simulated data overpredicts the separation region length slightly and the

peak pressure and heat transfer magnitude as well, but the fidelity of the higher order data

is in all cases greater than that of the lower order data. This confirms that first order

spatial reconstruction, while it can be run quickly, does not produce adequate quantitative

results. It should only be used to identify trends between flow cases. At least a second

order reconstruction is needed to match experimental results or, in the future, predict flight

conditions with confidence.
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Appendix A

Symbols Used

A.1 Latin Symbols Used as Variables

Symbol Description

a speed of sound

A area

A coefficient matrix for iteration in time

Ã Roe constant matrix

( )b species summation index

b matrix of known quantities for iteration in time

cp specific heat at constant pressure

cv specific heat at constant volume

D coefficient of mass diffusivity

D diagonal portion of the coefficient matrix for iteration in time

e∗ equilibrium internal energy (translational & rotational)

e nonequilibrium vibrational energy

ė rate of production of nonequilibrium vibrational energy

f body force per unit mass

F1,2,3 matrices of Roe averaged values

F vector of fluxes

F′ grouping of flux terms

h static enthalpy

h0 total or stagnation enthalpy

( )i,j,k Einstein summation and vector indices

(continued on the next page)
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Symbol (cont.) Description (cont.)

(i, j, k) grid location indices

i, j, k parametric coordinate indices

I identity matrix

J flux Jacobian matrix

( )k iteration index

K thermal conductivity

( )ℓ left side of a cell face

L lower triangular portion of the coefficient matrix for iteration in time

( )m index of the last species

M Mach number

M molecular weight

( )(n) time index

( )n index of the species N2

n̂ component of the unit normal vector, relative to the surface

n̂ unit normal vector, relative to a cell face

p static pressure

q component of heat flux

qv component of vibrational heat flux

q vector of primitive quantities

Q volume averaged vector of conserved quantities

Q vector of conserved quantities

Q′ grouping of conservative vector terms

( )r right side of a cell face

Rs specific gas constant (gas constant for a species)

( )s species index running from ( )n to ( )m

ṡv rate of production of vibrational energy

S Sutherland constant

Sc Schmidt number, relating a fluid’s viscous and mass diffusion rates

(continued on the next page)



46

Symbol (cont.) Description (cont.)

S vector of chemical source terms

S′ grouping of source vector terms

t time

T static temperature

Tv vibrational temperature

u component of the mass averaged (bulk) velocity

u1,2,3 x, y, and z components of the velocity vector

ū component of mean velocity

ud component of species diffusion velocity

u velocity vector

ud species diffusion velocity vector

U upper triangular portion of the coefficient matrix for iteration in time

V volume

ẇ rate of nonequilibrium production

x1,2,3 Cartesian coordinate direction components

x, y, z Cartesian coordinate axes

x matrix of unknowns for iteration

x̂1,2,3 unit vector in Cartesian coordinate directions

X, Y Distance in Cartesian directions x1,2

A.2 Greek Symbols Used as Variables

Symbol Description

α number of diatomic species

β Roe scheme total energy equation constant

γ ratio of specific heats

δij Kronecker delta of indices i, j

δςι Kronecker delta of indices ς, ι

(continued on the next page)



47

Symbol (cont.) Description (cont.)

ǫv vibrational energy per unit volume

ǫ0 total energy per unit volume

ε internal energy per unit mass

ε∗v equilibrium vibrational energy per unit mass

εv vibrational energy per unit mass

ε0 total energy per unit mass

η arbitrary scalar flow variable

θv SHO characteristic temperature of vibration

ι molecule summation index

κ MUSCL constant

λ1,2,3 eigenvalues of the Roe constant matrix

µ dynamic viscosity

ξ variable of integration

ρ static density

̺ number of molecules per unit volume

ς molecule summation index

τ component of the viscous stress

τ Landau-Teller relaxation time

φ dimensionless Wilke constant

χ mole fraction
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Appendix B

Origin of Data

B.1 Freestream Quantities

Experiment M u1 [m/s] h0 [MJ/kg] T [K] ρ [10−3kg/m3]

Run 28 9.59a 2664a 3.55c 186a 0.655a

Run 35 11.30a 2713a 3.68c 139a 0.552a

Run 40 11.54b 3094f 5.38f 173f 2.52f

Run 42 11.46b 4065f 9.17f 303f 1.34f

Run 46 11.54d 3947d 7.79c 282d 1.96d

Run 50 11.60b 3904e 7.62c 273e 1.51e

Run 80 11.68b 3067† 5.28f 166f 1.29f

a From Candler et al. [4]
b Calculated as in Section B.2
c Approximated by 1

2u2
1 in accordance with Nompelis et al. [20]

d From Nompelis et al. [21]
e From Nompelis et al. [22]
f From Knight et al [15]
† From Candler group data files provided by Doyle Knight

Table B.1: Source of CUBRC Experimental Data

B.2 Calculation of Mach Number

The Mach number of a flow, M , can be calculated as

M =
|u1|
a

(B.1)

where |u1| is the speed of the fluid and a is the speed of sound [14]. Assuming that the fluid

is an ideal gas, the speed of sound can be calculated by

a =
√

γRsT (B.2)

with γ as the ratio of specific heats, Rs being the specific gas constant, and T representing

static temperature. The specific gas constant for nitrogen can be found by dividing the
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universal gas constant by the molar mass of diatomic nitrogen. The universal gas constant

is taken to be 8.314 J
mol·K and the molar mass of N2 is 28.02 g

mol [18], [2]. The ratio of

specific heats for nitrogen is approximated to be 1.4. With this information, the Mach

number for each run can be calculated by inserting Equation B.2 into Equation B.1 to give

M =
|u1|√
γRsT
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