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ABSTRACT OF THE DISSERTATION

Quantitative Integration of Imaging and Non-imaging

Data: Application to Integrating Multi-parametric MRI

for Prostate Cancer Diagnosis, Grading and Treatment

Evaluation

by Pallavi Tiwari

Dissertation Director: Anant Madabhushi

The problem of data integration involving imaging and non-imaging modalities is largely

unexplored in the biomedical field, mainly due to the challenges in quantitatively com-

bining such heterogeneous modalities existing in different dimensions and scales. Al-

though several methods have been proposed in the literature involving quantitative

integration of multi-protocol imaging, there has been a paucity of similar biomedi-

cal tools for quantitative integration of imaging and non-imaging data. In this work,

we present novel data integration schemes to overcome the aforementioned challenges

limiting the integration of imaging and non-imaging modalities, and hence improve

disease characterization. Our novel data integration methods are applied to integra-

tion of multi-parametric Magnetic Resonance (MR) imaging (MP-MRI)-structural MR

imaging with metabolic spectroscopic information (non-imaging) for improved prostate

cancer (CaP) diagnosis, grading, and treatment evaluation post-radiation therapy (RT).

To this end, we have developed novel data integration schemes such as, Multi-

modal Wavelet Embedding Representation for data Combination (MaWERiC), and

ii



Semi-Supervised Multi-Kernel (SeSMiK) Graph Embedding, which first uniformly rep-

resent individual data modalities into a common framework using dimensionality re-

duction and kernel embedding techniques, followed by a seamless integration of imaging

and non-imaging data in the common framework. The integrated quantitative signa-

tures thus obtained are shown to be significantly more diagnostically informative as

compared to any single modality. Similar improvement in results was observed using

integrated MP-MRI signatures for evaluating radiation therapy related changes in CaP

patients, with an aim to identify (a) pre-RT disease extent along with extra capsule

spread (if any) and (b) residual disease on post-RT MP-MRI.
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over the course of her thesis work.
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Chapter 1

Introduction

1.1 Overview

In the biomedical domain, there is a real need for developing data integration strategies

for combining discriminatory features from multiple modalities to develop multi-modal

meta-classifiers for improved disease detection, diagnosis, and prognosis [9]. While data

integration methods have been proposed for quantitatively combining multiple imaging

modalities [10, 11, 12], these tools are not readily extensible to integration of imaging

and non-imaging data on account of differences in scale and feature dimensionality. For

instance, consider the difficulties in quantitatively combining, at the voxel-level, T2-

weighted (T2-w) magnetic resonance (MR) imaging (reflecting structural attributes)

acquired as scalar intensity values, with MR spectroscopy (MRS) acquired as a vector

(or spectrum) of metabolite concentrations; each modality encoding a different type

(structural or metabolic) and dimensionality of information. Nonetheless, both modal-

ities reflect information regarding the same region of interest they are captured from,

and consequently, examining them in conjunction is crucial.

In this dissertation, we present computerized decision support (CDS) strategies

that leverage combination of features from different imaging and non-imaging protocols

and quantitatively integrate these features across different imaging and non-imaging

protocols for improved disease diagnosis. We demonstrate the utility of our methods

for quantitative integration of multi-parametric Magnetic Resonance Imaging (MP-

MRI) (T2-w MRI, MRS, and diffusion weighted (DWI) MRI) for early prostate cancer

diagnosis, grading, and evaluating radiation-therapy related changes in the prostate.
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1.2 Significance of Multi-parametric Magnetic Resonance Imaging (MP-

MRI) for prostate cancer

1.2.1 MP-MRI for prostate cancer diagnosis

Prostate cancer (CaP) is the second leading cause of cancer related deaths amongst

men with 217,730 new cases and 32,050 estimated deaths in United States in 2010

(Source: American Cancer Society). The current gold standard for CaP detection is

a blinded sextant trans-rectal ultrasound examination which is known to have a low

detection sensitivity (20-25%) due to the poor image resolution of ultrasound. In the

last decade, MR Imaging (MRI) has shown great potential for characterizing disease

presence as well as staging of CaP [13]. T2-w MRI provides high resolution structural

details of the gland. CaP typically appears as a hypo-intense region within the gland

showing less inherent structure as compared to non-CaP regions (Figure 1.1). MRS has

recently emerged as a complement to traditional T2w MRI [14]. MRS quantifies the

metabolic concentrations of specific molecular markers such as choline (Ach), creatine

(Acr), and citrate (Acit) in the prostate [15]. The relative concentrations of these

metabolites are recorded by calculating area under the metabolic peak and relative

changes in metabolite concentrations (Ach+cr/Acit > 1) and are used to assess presence

of CaP at different spatial locations in the image [15, 16]. However, the utility of

MRS metabolic features for detecting, localizing, and characterizing disease is highly

dependent on the quality of spectral examinations obtained, automated spectral peak

detection algorithms are challenged in their ability to resolve overlapping peaks (for

instance the choline peak overlaps with the creatine peak in case of CaP spectra) [17].

Figure 1.1 demonstrates one such noisy spectrum with poor signal to noise ratio and

with the baseline affected by a tail of broad upfield lipid resonance (2.0-2.5 ppm).

Manual diagnosis of CaP on T2w MRI and MRS involves first visually identifying hypo-

intense regions on T2w MRI, followed by inspection of spectra at those corresponding

spatial locations for changes in metabolite (choline, creatine, citrate) ratios.

While clinical studies have shown that the use of structural and metabolic MR

information yields greater CaP detection accuracy compared to diagnosis based off any
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individual modality [18] few attempts have been made to quantitatively combine the

different information channels [19, 20]. Additionally, some studies have shown that

manual interpretation and visual integration of multi-modal data is subjective and

thus prone to inter- and intra-observer variability [21, 22]. It is hence desirable to

build a data integration based computerized decision support system (DI-CDS) that

can accurately extract and combine relevant information from both imaging and non-

imaging data channels for improved disease diagnosis and detection [11, 23]. Such a

CDS could then be integrated into a clinical setting to assist radiologists in accurate

characterization, staging, as well as directing and evaluating treatment of the disease.

While a few groups have proposed CDS classifiers for combining multiple MR imaging

protocols (T2w, dynamic contrast enhanced (DCE), line-scan diffusion, T2-mapping

MRI) [11, 23, 24], to the best of our knowledge no method for quantitative integration

of T2w MRI and MRS for CaP detection has been presented thus far in the literature.

1.2.2 MP-MRI for Gleason grading of prostate cancer

Gleason grading is the most widely used grading scheme for CaP [25], with low Gleason

scores being associated with better patient outcome and high Gleason score tending to

be correlated with more biologically aggressive disease and worse prognoses for long-

term, metastasis-free survival [26, 27]. Currently, over one million prostate biopsies

are performed annually in the US, of which approximately 60-70% are negative for

CaP presence [28]. The overdiagnosis and associated overtreatment due to these false

positives causes severe health implications such as risk of bleeding and infection of the

prostate gland or urinary tract [29]. Most of the otherwise correctly diagnosed CaP

cases are identified as low grade disease, and are not destined to metastasize [30]. Such

patients are now opting for a “wait and watch policy” involving active surveillance, as

opposed to opting for immediate aggressive therapy [31].

MP-MRI has begun to be routinely used in several centers for staging of disease in

patients previously identified with CaP. Over the last decade several researchers have

been investigating MRI and MRS for staging and possible screening of CaP [14, 32, 33]

with a view to reduce unnecessary biopsies in men, with elevated PSA but without



4

(a) (b)

(c) (d) (e)

Figure 1.1: (a) shows a T2-w MRI slice of the prostate with a user-selected 3x7 voxel grid
overlaid on the prostate, MRS spectral grid corresponding to the T2 slice is shown in 1.1(b).
An abnormal appearing spectra (red voxel in (a) and (b)) is shown in (c), while (e) shows a
normal appearing spectra (green voxel in (a) and (b)). Figure 1.1(d) shows an additional spectra
(blue voxel in (a) and (b)), with poor signal to noise ratio and with the baseline affected by a
tail of broad upfield lipid resonance (2.0-2.5 ppm).

CaP, who might otherwise have a significant risk of sexual, urinary, and bowel related

symptoms caused due to biopsy [29].

Recently, some investigators have begun to explore the correlation between MP MRS

and T2w MRI features and corresponding low and high Gleason grades of CaP [34, 35,

36]. It has been qualitatively demonstrated in clinical studies that high Gleason grade

is associated with elevated ratios of Ach+cr/Acit [37]. Hypo-intense signal intensities on

T2w MRI are also found to be significantly correlated with CaP aggressiveness [38].

In [35], qualitatively combining T2w MRI-MRS allowed for accurately predicting the

presence of low grade CaP. In a similar related multi-protocol study, Shukla-Dave et
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al. studied the correlation of T2w MRI and MRS along with expression levels of three

molecular markers: Ki-67, phospho-Akt, and androgen receptor obtained via immuno-

histochemical analysis, to successfully differentiate clinically insignificant and significant

CaP [36]. Biologically significant disease was defined based on pathologic examination

of surgical specimens. Correlation of the three molecular markers with respect to com-

bined MRI-MRS signatures was observed. Additionally, a high area under the receiver

operating characteristic curve (ROC) of 0.91 was obtained for identifying significant

high grade CaP using combined MRI, MRS parameters.

1.2.3 MP-MRI for evaluating treatment related changes post- Radi-

ation Therapy (RT)

Upto 25% of all CaP patients undergo some form of radiation therapy (RT) (e.g.

intensity-modulated radiation therapy (IMRT), proton beam therapy, brachytherapy)

as treatment for clinically localized disease1. Currently, differentiation between local

or systemic recurrence of CaP (which have radically different prognoses and treatment

regimens) is only appreciable on trans-rectal ultrasound, that too at a relatively ad-

vanced stage [39]. Early identification of non-responders via the use of imaging will

allow for modification of the therapy [39], as well as provide clues about long-term

patient outcome.

Recently, in-vivo MP-MRI (T2-w, MRS, and DWI) has shown great potential in

early identification of RT related changes in the prostate [40, 41] (Figure 1.2). Pucar

et al. [39] showed that MP-MRI significantly improves identification of CaP regions

pre-, post-RT, compared to sextant biopsy and digital rectal examination. Similarly,

in [42] an area under the receiver operating curve (AUC) of 0.79 was obtained via

qualitative examination of MP-MRI (T2w, MRS) in accurately identifying new and re-

current disease post-RT. In another similar study [41], DWI when combined with T2-w

MRI was shown to significantly outperform T2w MRI alone, for accurately predicting

locally recurrent CaP post-RT. Successful treatment of CaP on T2w MRI, post RT, is

1American Cancer Society
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Figure 1.2: (a), (b), (c) show the pre-treatment imaging markers for T2w MRI, MRS and
DWI respectively, where (a) shows hypointense T2w MRI intensity regions (outlined in red) on
a single T2w MRI slice, (b) shows a typical MRS CaP spectrum characterized with elevated
choline peak, and (c) shows a DWI image with CaP outlined in red, defined by low ADC values.
Figures 1.2(d), (e), and (f) show the T2w MRI, MRS and DWI scenes post-RT where, (d)
shows the corresponding post RT T2w MRI slice with uniform signal intensities characterizing
successful treatment, while hypo intense CaP region is outlined in red, reflecting local disease
recurrence, Similarly in (e) the elevated choline peak appears to suggest local CaP recurrence
within a single MR spectrum (outlined in red), along with a spectrum showing low metabolic
activity (outlined in blue) reflecting disappearance of disease. (f) shows CaP recurrence defined
by low ADC and successful treatment characterized by diffuse ADC values.

characterized by uniform T2w signal intensity without focal abnormalities, while new

or locally recurrent CaP is characterized by hypo-intense regions of smooth texture [43]

(Figure 1.2(d)). MRS shows an absence of citrate, as well as low metabolic activity

in cases of successful treatment (Figure 1.2(e), outlined in blue). New foci and lo-

cally recurrent CaP on post-RT MRS is characterized by elevated levels of choline [43]

(Figure 1.2(e), outlined in red). Similarly, post-RT, DWI shows an overall increase in

apparent diffusion coefficient (ADC) values within the entire prostate when CaP is suc-

cessfully treated. Unchanged or decreased ADC values correspond to locally recurrent

CaP [44] (Figure 1.2(f)).
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1.3 Challenges with integrating MP-MRI protocols for CaP diagnosis

and treatment evaluation

1.3.1 Challenges with combining MP-MRI for CaP diagnosis and

grading

The relatively recent efforts at attempting to combine multiple MRI markers (qualita-

tively) to identify high grade CaP in-vivo are limited in that (a) the different MRI pro-

tocols are not quantitatively combined, and (b) qualitative evaluation is often subjective

and prone to inter-observer variability [21, 22]. It is hence desirable to build a CDS that

can (a) quantitatively integrate relevant MP MRI data to create meta-classifiers that

can identify disease presence in-vivo [45, 24, 46, 47] (b) can subsequently characterize

the Gleason grade of areas ascertained by the meta-classifier, most likely to be CaP,

and (c) assist in early identification of treatment related changes (such as recurrence,

new CaP foci) in CaP patients. Such a CDS could then be used in a clinical setting

to assist a radiologist in making a more informed diagnosis of the presence, extent and

aggressiveness of the disease. However, one of the major challenges in constructing a

meta-classifier that can quantitatively combine heterogeneous imaging and non-imaging

modalities such as T2w MRI and MRS, is to overcome the differences in dimensional-

ity and resolution associated with each of the heterogeneous imaging protocols; each

modality encoding a different type (structural or metabolic) and dimensionality of in-

formation. Nonetheless, both modalities reflect information regarding the same region

of interest they are captured from, and consequently, examining them in conjunction is

crucial (Figure 1.3). One of the major challenges in quantitatively integrating imaging

and non-imaging data is to represent them in a unified framework prior to integration.

1.3.2 Challenges with MP-MRI for evaluating treatment related changes

post-RT

Visual examination of post-RT MRI for evaluating treatment related changes and resid-

ual disease is usually associated with poor detection rates due to (a) diffuse T2w signal
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Figure 1.3: (a) shows a MRS grid superposed on a T2w MRI image. (b) shows a high dimen-
sional spectral signal from a spatial location on the MRI grid, and (c) shows the scalar T2w
MRI intensities corresponding to the spatial location shown in (b). Note the heterogeneity in
the data, which lead to difficulties in quantitative integration of these imaging and non-imaging
channels of information.

intensity and indistinct zonal anatomy on T2w MRI [48], (b) adverse effects of post-

biopsy hemorrhage and hormonal therapy which in turn adversely affects identification

of metabolic peaks [49], and (c) significant gland shrinkage and distortion post-RT [39].

Automated quantitative assessment of RT changes on a per voxel basis may thus allow

accurate and precise identification of (a) residual disease, and (b) new foci of cancer

(local recurrence) within the prostate. Additionally, since each of the individual MR

imaging markers provide orthogonal information (structural, functional, metabolic),

a MP-MRI approach that can leverage multiple imaging channels could significantly

improve detection specificity and sensitivity.

A few major challenges associated with developing an automated quantitative scheme

for pre-, post-RT evaluation include, (a) developing elastic registration tools to deal with

changes in shape and size of the prostate gland pre-, post-RT, (b) accurate alignment of

various MP imaging protocols for computing voxel level absolute difference of the imag-

ing markers (reflective of treatment changes), and (c) optimized weighted quantitative

integration of imaging marker changes across MP-MRI.

1.4 Summary of the major goals of this thesis

In this work, we develop novel CDS strategies that seamlessly integrate imaging and

non-imaging features by overcoming the aforementioned challenges with registration,

representation and integration of heterogeneous protocols. We demonstrate the utility
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of our approaches by quantitatively integrating MP-MRI data for (a) prostate can-

cer diagnosis, (b) Gleason grading, and (c) evaluating treatment related changes in

the prostate. The CDS strategies developed in this dissertation are described in the

following chapters,

In Chapter 3 and 4, feature extraction, and data integration strategies developed in

this work are respectively described. In Chapters 5 and 6, we employ the techniques

described in Chapters 3 and 4 for integrating MP-MRI for CaP diagnosis; while in

Chapter 7, these methods are employed for identifying high-grade aggressive prostate

cancer using integrated MP-MRI signatures. In Chapter 8, MP-MRI signatures corre-

sponding to treatment-related changes in CaP patients are developed and evaluated for

early identification of CaP recurrence in the prostate. The remainder of this thesis is

presented based on examining each of following topics in turn.

• Developing novel feature extraction strategies for extracting unique features across

imaging and non imaging protocols for common data representation.

• Developing novel data integration strategies for integrating imaging and non-

imaging protocols.

• Demonstrating an application of the feature extraction and data integration strate-

gies developed in this work for CaP diagnosis via MP-MRI.

• Demonstrating an application of the feature extraction and data integration strate-

gies developed in this work for CaP grading via MP-MRI.

• Developing novel MP-MRI signatures for evaluating radiation-treatment related

changes in CaP patients.
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Chapter 2

Previous Work and Novel Contributions

2.1 Previous Work in multi-modal data integration

Broadly speaking, MP data fusion strategies, from a classification perspective, may be

categorized as combination of data (COD) (where the information from each channel

is combined prior to classification), and combination of interpretations (COI) (where

independent classifications based on the individual channels are combined) [58]. It

has been suggested that COI approaches are less than optimal since binary classifier

outputs from individual classifiers are combined without accounting for inter-channel

dependencies [59]. Consequently, several COD strategies with the express purpose of

building integrated quantitative meta-classifiers have been proposed, including feature-

based [60], kernel-based [61], and dimensionality reduction (DR)-based [62] strategies.

2.1.1 Feature-based COD schemes

In COD strategies, MP data is combined by direct concatenation of raw features in their

original acquired form (such as unfiltered image intensities). In [60], image intensities

obtained via five structural MRI sequences (B0, diffusion weighted images, FLAIR, T1-

w and gadolinium-enhanced T1-w) and two scalar maps obtained via diffusion tensor

imaging (fractional anisotropy and apparent diffusion coefficient) were concatenated

into a single feature vector which was then used to train a classifier for brain tumor

diagnosis. However, directly aggregating heterogeneous data channels without account-

ing for differences in the dimensionality (number of features) and their relative scaling,

can adversely impact classifier performance [63]. This is especially true in the case of

combining imaging and non-imaging data.
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2.1.2 Multi-kernel learning (MKL)

Another recent COD scheme is multi-kernel learning (MKL) [61], which attempts to

overcome differences in dimensions and resolutions across imaging protocols, by first

representing the data in a common kernel space, prior to data combination and meta-

classification. Kernels [64] are positive definite functions which transform the input data

to a dot product similarity space such that K(F(ci),F(cj)) = 〈Φ((F(ci)),Φ(F(cj)))〉,

where Φ is the implicit pairwise embedding between input feature vectors F(ci) and

F(cj) associated with points ci, cj , and 〈.〉 denotes the dot product operation. MKL

involves computing similarity matrices for kernels derived from the individual modalities

being combined, so that fused classifiers (within the fused kernel space) can be trained

in order to make integrated predictions. In [61], Lanckriet et al. transformed data

from amino acid sequences, protein complex data, gene expression data, and protein

interactions into a common kernel space. The kernels were linearly combined and

used to train a support vector machine (SVM) classifier for classifying functions of

yeast proteins. However, when a large amount of information is present in each input

source, most COD methods, including MKL, suffer from the curse of dimensionality

problem [63].

2.1.3 Previous work in developing CDS strategies for CaP diagnosis

Unimodal classifiers for T2-w MRI

Since image intensity on T2-w MRI, is susceptible to artifacts such as bias field inho-

mogeneity [65] and intensity non-standardness [66], researchers have explored alternate

representations of T2-w image intensities (e.g. Gabor or wavelet based texture fea-

tures [67]) to build classifiers for predicting CaP presence on MRI. In [67], Madabhushi

et al. presented a supervised CDS system for detection of CaP from 4 Tesla (T) ex vivo

prostate T2-w MRI where 33 3D texture features (statistical, gradient, and Gabor) were

quantitatively extracted at each voxel (T2-w MRI spatial resolution). These extracted

features were then used to train a number of supervised classifiers (Adaboost, Bayes,

and Decision Trees) which were employed to assign a probability of CaP presence at
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each image voxel.

Unimodal classifiers for MRS

Previous CDS approaches that have been developed in the context of MRS data can

be broadly divided into two main categories: (a) signal quantification (model depen-

dent) [68, 69, 70], and (b) statistical pattern recognition based (model independent)

approaches [67, 71, 72, 73]. Commonly used MRS quantification methods include

VARPRO [69], AMARES [70], and QUEST [68], which are software utilities where

the objective is to minimize the squared distance between the acquired data and a

model basis function built on prior knowledge about the metabolic profiles of a typical

MR spectrum. Pattern recognition based features on the other hand, try to capture

the underlying variance in the data using regression analysis. Kelm et al. [71] pre-

sented a comparative study of classification techniques for prostate MRS data based on

pattern recognition methods such as PCA [74] and Independent Component Analysis

(ICA) [75] against quantification based feature extraction methods using SVM, Random

Forest (RF) and Gaussian processes classifiers. They showed that pattern recognition

based classifiers provided better classification results for CaP detection compared to

MRS quantification schemes. In [73] we presented a CDS for CaP detection using

1.5 Tesla in vivo prostate MRS where each prostate spectrum was classified, on a per

voxel basis, as either belonging to cancerous or non-cancerous classes using a hierarchi-

cal, clustering scheme in conjunction with non-linear dimensionality reduction (NLDR)

methods. NLDR schemes were employed to obtain a low dimensional representation of

high dimensional MR spectra, followed by hierarchical k-means clustering to identify

CaP signatures in the prostate. A sensitivity of 89.33% and a specificity of 79.79%, on a

per voxel basis, were obtained across a total of 18 1.5 T prostate MRS studies. Luts et

al. [72] presented a method which leveraged ICA and Relief-F in conjunction with SVM

and linear discriminant analysis classifiers for brain tumor classification using MRS.
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Combining imaging-imaging MRI channels

While DSS schemes for CaP detection using individual MRS [76, 73], and T2w MRI [23]

protocols have been proposed, we are not aware of any works that have attempted

quantitative integration of imaging and non-imaging protocols. In [11] Chan et al.

presented a statistical classifier which integrated texture features from multi-protocol

1.5 T in vivo MRI to generate a statistical probability map representing likelihoods

of cancer for different regions within the prostate. Liu et al. [77] examined multi

parametric in vivo MRI maps (T2-w, DCE, DWI) within a fuzzy Markov Random Fields

framework. The maps were generated via curve fitting of data from each of the protocols

with the ROI limited to the peripheral zone of the prostate, while the evaluation of the

results was done against manually delineated CaP regions on MRI (with corresponding

whole-mount histology and ex vivo MRI data used for reference). Ampeliotis et al. [78]

explored the use of image intensity features from both DCE and T2-w MRI data for the

classification of CaP. A statistically significant improvement in classifier performance

when fusing modalities, over the use of individual modalities, was reported. Another

multi-protocol (DCE and T2-w) MRI based CSS was presented in [24] which combined

pharmacokinetic features from DCE along with T2-w image intensities. A comparison

of different supervised and unsupervised methods for CaP segmentation using MP MRI

was presented in [79]. However, for none of these methods is it immediately obvious

how one might extend existing frameworks to combining imaging and non-imaging data

with widely differing dimensionalities.

Decision Integration strategies for integrating MRI, MRS

To the best of our knowledge, no data or decision integration methods for combining

imaging and spectroscopy in the context of prostate cancer have been proposed. Jesneck

et al. [80] proposed a decision integration scheme where probabilities for breast cancer

presence obtained from classifiers built individually from features extracted from dif-

ferent imaging modalities (sonogram, mammogram) and patient history (non-imaging)

were combined to obtain an integrated classifier for improved breast cancer diagnosis.
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Another COI scheme was presented in [81], which combined classifier outputs from

three heterogeneous modalities: face recognition, voice recognition, and hand geometry

within a Bayesian framework for improved biometric based personnel identification.

However, one of the major disadvantages of such decision integration based approaches

is that all inter-source dependencies between modalities may be lost, given that each

modality is being treated independently [82].

Data Integration strategies for integrating MRI, MRS

A data integration method involving integration of multi-protocol MR image intensities

(T1-w, T2-w, proton density-weighted, and gadolinium-DTPA) with the areas under

spectral peaks of specific metabolites (myo-inositol, glucose, choline, creatine, gluta-

mate/glutamine, N-acetyl aspartate, lactate/fatty acids and fatty acids) from MRS

was presented in [83] for classifying four brain tumor types (Tumor II, III, IV, menin-

gioma), healthy tissues and cerebrospinal fluid (CSF). All MRS and MRI features were

directly concatenated into a single joint feature vector and employed in conjunction with

a Mahalanobis distance based classifier. The classifier results showed that the voxel-

level classification obtained via this multi-modal feature combination was significantly

superior compared to the results obtained using unimodal classifiers.

2.2 Novel Contributions

2.2.1 Developing novel quantitative dimensionality reduction based

feature extraction strategies

The first goal of this work is to evaluate and develop novel quantitative signatures

on individual imaging and non-imaging protocols, in order to develop a common data

representation platform across different imaging and non-imaging protocols. We will

first investigate dimensionality reduction techniques commonly used in the literature for

the purposes of data representation of high dimensional biomedical data. We will then

discuss the limitations of some of the parameter (κ) based non-linear DR techniques,

such as Locally linear embedding (LLE).
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We will then present a novel Consensus-LLE (C-LLE) algorithm for creating a

stable low dimensional representation of the data, in a manner analogous to building

classifier ensembles such as Breiman’s Bagging scheme [84]. Instead of attempting

to estimate a single globally optimal κ value as in [62], [85] to be applied to the

entire dataset, our scheme aims to estimate the true pairwise object adjacency D(c, d)

in the low dimensional embedding between two objects c, d ∈ C. We formulate the

problem of estimating object distances D(c, d) as a Maximum Likelihood Estimation

problem (MLE) from multiple approximations Dκ(c, d) obtained by varying κ, which

we assume are unstable and uncorrelated. Our scheme thus differs from related work

in two fundamental ways: (a) C-LLE attempts to reconstruct the true low dimensional

data manifold by learning pairwise object distance across the entire data space and

avoids the κ estimation problem, and (b) C-LLE learns the low dimensional manifold

in a locally adaptive fashion, compared to [62], [85] that attempt to learn an optimal

κ value which is then uniformly applied to learning the manifold across the entire data

space.

2.2.2 Developing integrated MP-MRI signatures for prostate cancer

diagnosis and grading

In the second goal, we will present two novel data integration strategies, Multimodal

Wavelet Embedding Representation for data Combination, MaWERiC, and Semi su-

pervised Multi-Kernel Graph Embedding (SeSMiK-GE) that will leverage both imaging

and non-imaging features to obtain an integrated quantitative signature.

The first data integration strategy, MaWERiC, is specifically geared towards quan-

titative integration of imaging and non-imaging data. MaWERiC comprises of two

transformation modules, (i) wavelet transformation and (ii) principal component anal-

ysis which together provide a platform for uniform and homogeneous data integration

across modalities. The homogeneous, low-dimensional representation of disparate data

sources obtained via MaWERiC is then combined in the Eigen space. The MaWERiC

data integration framework provides a general framework for potentially integrating any

combination of heterogeneous data modalities, independent of scales and dimensions.
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It considers equal contributions from each protocol while computing the integrated low

dimensional representation.

The second data integration strategy, SeSMiK-GE, employs MKL to represent each

data channel in a common kernel framework, followed by a linear weighted combination

of individual data kernels. To avoid the curse of dimensionality, the combined kernel is

then reduced to a lower dimensional space using GE [52], which employs partial label

information to maximize class separation using SSL thereby allowing for construction

of a more accurate low dimensional representation of the different data sources. While

MKL has previously been employed for a variety of multi-modal data integration strate-

gies for biomedical applications [61, 86, 87], none of these methods have been employed

in conjunction with DR.

2.2.3 Developing integrated MP-MRI signatures for evaluating radi-

ation therapy (RT) related changes in the prostate

In the third and final goal, we will present a novel data integration strategy which

optimally weights contributions from differences of individual imaging markers in accu-

rately evaluating pre-, post-RT prostate cancer via MP-MRI. Different MRI protocols

from pre- and post-RT MRI scans will be first registered on a per-voxel basis. Func-

tional, structural, and metabolic difference maps will then be obtained individually

using DWI, T2w, and MRS respectively, by taking a scaled absolute difference of the

imaging markers pre-, post- RT. A combined weighted MP-MRI map is then created

by leveraging differences across multiple imaging markers. We believe that such an ac-

curate per-voxel based quantitative evaluation of treatment changes pre-, post-RT will

have a high clinical impact in monitoring treatment effectiveness, and could be used to

modify treatment regimen early, in cases of studies with new foci or recurrence of CaP.
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Chapter 3

Feature Extraction and Classification Strategies

3.1 Notation

Let F = [F(c1),F(c2), ...,F(cn)] ∈ RD be a data matrix of n objects, ci, i ∈ {1, ..., n},

with dimensionality D. The corresponding class labels for these objects are given as

ωi ∈ {0, 1}. Let G = {F ,W} be an undirected weighted graph with vertex set F

and similarity matrix W ∈ Rn×n. W = [wij ] assigns edge weight similarities in a

pairwise fashion between objects ci and cj , i, j ∈ {1, ..., n}. The diagonal matrix D and

Laplacian matrix L of a graph G is defined as: Dii =
∑

iwij , where L = D −W . A

kernel gram matrix defining similarities between n points is given as Km for protocol

m, m ∈ {1, ...,M}, where M is the total number of protocols (or data channels).

The 3D prostate T2w MRI scene is represented by Ĉ = (Ĉ, f̂), where Ĉ is a 3D grid

of voxels ĉ ∈ Ĉ and f̂(ĉ) is a function that assigns an intensity value to every ĉ ∈ Ĉ.

Hence at every metavoxel c ∈ C, the corresponding intensity feature vector is denoted as

FT2(c) while the corresponding mean Gabor wavelet feature vector (details in the next

section) is denoted as FT2
w (c). We define a metavoxel in the MRS grid as c ∈ C, where

C is a 3D grid of MRS metavoxels. For each c ∈ C, F(c) = [fα(c)], α = {1, ...,M},

represents the MR spectral vector, reflecting the frequency component of each of the

metabolites being measured [73]. For MRS, the feature vector comprised of ratios of

concentrations of metabolites is denoted as FMRS(c), while the corresponding Haar

wavelet feature vector for each c ∈ C is denoted as FMRSw(c). Note that on account of

differences in resolution of MRI/MRS, a single spectral metavoxel is several times larger

compared to the size of a corresponding T2w MRI voxel. We define a CaP classifier

output as h(c) h ∈ {RF,SVM,PBT} where RF is a random forest, SVM is a support

vector machine, and PBT is a probabilistic boosting tree classifier (described in the
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subsequent Sections). The corresponding pairwise probabilistic markov model (PPMM)

classifier is defined as h̃(c), and a high grade CaP classifier output is defined as ĥ(c).

Similarly, notation for a classifier trained in conjunction with different feature vectors is

identical to the corresponding notation for the feature vectors and involves replacing the

F with h (e.g. a CaP classifier that leverages T2w MRI features in FT2(c) is denoted as

hT2(c), corresponding MRF CaP classifier as h̃T2(c) and the corresponding high grade

CaP classifier as ĥT2(c)). The common notations used in this dissertation are listed in

Table 11.2.

3.2 Wavelet feature extraction of spectral signals

In mathematical terms, the wavelet transform is defined as a convolution of the wavelet

function η with the signal F(c). The spectral (non-imaging) signal F(c) is convolved si-

multaneously with a high pass (ηh) and a low pass filter (ηl) to obtain the corresponding

high (Hh) and low filter (Ll) coefficients as,

Hh = ηh ∗ F(c) (3.1)

Ll = ηl ∗ F(c) (3.2)

where ∗ is the convolution operator and dimensionality of coefficients Hh and Ll is

M/2 (M is the dimensionality of each spectrum). Downsampling or decimation by a

factor 2 is performed on coefficients after each pass through filters during the multi-level

decomposition. In this work we considered the wavelet packet decomposition (WPD)

scheme for extracting spectral wavelet features as suggested in [88], in which both

Hh and Ll coefficients are iteratively decomposed using high (ηh) and low (ηl) pass

filters, into a full tree like structure of a pre-defined length K, producing a total of 2K

coefficients. The reconstruction of the signal in WPD is then performed by using the

best basis algorithm [89] which combines the coefficients that minimize the entropy at

each level of the tree. Hence, for each spectrum F(c), at each c ∈ C, an M dimensional

wavelet feature vector FMRSw(c) is extracted using a Haar wavelet basis function. M

varies as a function of the number of coefficients retained by the best basis algorithm,

which in turn aims to minimize the entropy for each spectrum.
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3.3 Metabolic ratio quantification of spectral signals

In the clinic, radiologists typically assess presence of CaP on MRS based on the choline

(Ach), creatine(Acr), citrate peaks (Acit) and the Ach+cr/Acit ratio. Variations in these

values from predefined normal ranges (Ach+cr/Acit < 1) is highly indicative of the

presence of the disease. However, peak detection algorithms in the context of MRS are

often limited in their ability to deal with the poor signal to noise ratio (54). In this

work, we have developed a simple, yet accurate peak detection algorithm to calculate

Ach, Acr, Acit peaks and the corresponding ratios(Ach/Acr, Ach+cr/Acit). The algorithm

is initialized with an approximate range of parts per million (ppm) for each of choline

(vch), creatine (vcr), and citrate (vcit) peaks. For each spectral voxel, c ∈ C, the peak

value fβmax(c) = max[vβ] is obtained over the range vβ for each specific metabolite

β ∈ {ch, cr, cit}. The first minima on both left and right sides of the peak value fβmax(c)

are then calculated as fβl , f
β
r . If either of fβl or fβr is found to be greater than a

predefined threshold (defined as 25% of fβmax(c)), the algorithm iteratively finds the

next minima on either side that does not satisfy this condition. The area (Aβ) under

the metabolite peak is calculated between the final range β ∈ {ch, cr, cit}, using the

composite trapezoidal rule.

3.4 z-score

z-score is a statistical measure defined as the ratio of the difference between the pop-

ulation mean and individual score to the population standard deviation. For a set of

voxels, Φtr of c, Φtr ⊂ C, the mean spectral vector Fµ = [fµu |u ∈ {1, ..M}] is ob-

tained and the corresponding standard deviation vector Fσ = [fσu |u ∈ {1, ...M}], where

fµu = 1
|Φtr|

∑
c∈Φtr fu(c) and fσu =

√
1
|Φtr |

∑
c∈Φtr [fu(c)− fµ(c)]2. The z-score at each

c ∈ C is given as z(c) = ||F (c)−Fµ||2
||Fσ ||2 , where |Φtr| is the cardinality of Φtr. A predefined

threshold θz is then used to identify each c ∈ C as cancerous or not based on whether

z(c) ≥ θz.
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3.5 Dimensionality Reduction (DR) Techniques

The analysis and classification of high-dimensional biomedical data has been signifi-

cantly facilitated via the use of dimensionality reduction techniques, which allow clas-

sifier schemes to overcome issues such as the curse of dimensionality. This is an issue

where the number of variables (features) is disproportionately large compared to the

number of training instances (objects) [90]. Dimensionality reduction (DR) involves the

projection of data originally represented in a N -dimensional (N -D) space into a lower

n-dimensional (n-D) space (known as an embedding) such that n << N . DR techniques

are broadly categorized as linear or non-linear, based on the type of projection method

used.

3.5.1 Principal Component Analysis (PCA)

PCA is a linear DR method widely used to visualize high-dimensional data and discern

object relationships in the data by finding orthogonal axes that contain the greatest

amount of variance in the data [74]. These orthogonal Eigen vectors corresponding

to the largest Eigenvalues are called ‘principal components’. To obtain these principal

components each data point c in set C is first centered by subtracting the mean of all

the features for each observation c from its original M dimensional feature value f u(c),

u ∈ {1, ...,M} as shown in Equation 3.3.

¯f u(c) = f u(c)− 1

|C|
∑
c∈C

f u(c), u ∈ {1, ..,M} (3.3)

From feature values ¯f (c) for each c ∈ C, a new |C| ×M matrix Y is constructed,

where |C| is the cardinality of set C. The matrix Y is then decomposed into corre-

sponding singular values as shown in Equation 3.4.

Y = UWPCAV
T , (3.4)

where via singular value decomposition a |C|×|C| diagonal matrix WPCA containing

the Eigenvalues of the principal components, a m × |C| left singular matrix U , and a
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M × |C| matrix V , are obtained. The Eigenvalues in WPCA represent the amount of

variance for each Eigen vector SPCAv , v ∈ {1, 2, ...,m}, in matrix V T and are used to

rank the corresponding Eigen vectors in the order of greatest variance. Thus the first m

Eigen vectors that represent a pre-specified percentage of the variance in the data are

extracted while the remaining Eigen vectors are discarded. Thus each data sample c ∈ C

is now described by an m-dimensional embedding vector SPCA(c). In spite of the fact

that PCA assumes that the data lies on a linear manifold, it allows for specification

of the number of Eigen vectors required to explain a pre-specified percentage of the

variance in the data.

3.5.2 Non-linear Dimensionality Reduction

Due to inherent non-linearities in biomedical data, non-linear dimensionality reduction

(NLDR) schemes such as Locally Linear Embedding (LLE) and Graph Embedding (GE)

have begun to be employed for data analysis and visualization. LLE [91] attempts to

preserve geodesic distances between objects, while projecting the data from the high

to the low dimensional feature spaces unlike linear DR schemes such as PCA which

preserve the Euclidean distances between objects. GE [52] preserves object adjacencies

in the data by non-linearly projecting the data from high to low dimensional space.

Graph Embedding (GE)

The aim of GE [52] is to reduce the data matrix F ∈ RD into a low-dimensional space

y ∈ Rd (D >> d), such that object adjacencies are preserved from RD to Rd. GE

attempts to find the optimal low dimensional vector representations among the vertices

of G that best characterize the similarity relationship between the vertex pairs in G.

The low dimensional representation y = [y1, y2, ..yn] can be obtained by solving,

The aim of GE [52] is to reduce the data matrix F ∈ RD into a low-dimensional

space y ∈ Rd (D >> d), such that object adjacencies are preserved from RD to Rd. Let

F = [F(c1),F(c2), ...,F(cn)] ∈ RD be a data matrix of n objects, i ∈ {1, ..., n}, with

dimensionality D, and y = [y1, y2, ..., yn] be the corresponding optimal low dimensional

projection matrix. y can be obtained by solving,
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y∗ = arg min
y

(

n∑
i,j=1

||yi − yj ||2wij), (3.5)

where W = [wij ] is a similarity matrix which assigns edge weights to characterize

similarities between pairwise points ci and cj , i, j ∈ {1, ..., n}. Solving equation (3.5),

y∗ = arg min
y

[
n∑
i=1

||yi||2 − 2
n∑
i,j

yiyj +
n∑
j=1

||yj ||2]wij ,

Since i and j are notations and can be interchanged, it is reasonable to assume that,

n∑
i=1

||yi||2wij =
n∑
j=1

||yj ||2wij =
n∑
i=1

||yi||2]wii

Hence equation (3.5) reduces to,

y∗ = arg min
y

2[
n∑
i=1

||yi||2wii −
n∑
i,j

yiyjwij ],

which in matrix notation form is written as

y∗ = arg min
y

(yDyT − yWyT ) = arg min
y

[y(D −W )yT ] = arg min
y

[yLyT ] (3.6)

where D is a diagonal matrix, Dii =
∑

iWii. Now to minimize Equation (3.6), y∗

needs to be differentiated, such that ∂y∗

dy = 2yL = 0 which makes either y = 0 (all

output embeddings converge to a single point at y = 0), or L = 0, (all elements of L

are 0). To avoid this, a constraint is defined such that yTDy = I. Now according to

Lagrange multipliers, optimization equation becomes,

∂y∗

dy
= arg min

y
[yLyT − λ(yDyT − I)]

2Ly − 2λDy = 0

The minimization hence reduces to an Eigenvalue decomposition problem,

Ly = λDy
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L = D −W , hence the equation reduces to,

The solution to this objective function can be obtained using an Eigenvalue decom-

position problem as,

(D −W )y = λDy,

(1− λ)Dy = Wy,

Wy = λDy

with the constraint yTDy = 1. W = [wij ] is a similarity matrix which assigns edge

weights to characterize pairwise similarities between points ci and cj , i, j ∈ {1, ..., n},

wij =
−||F (ci)−F (cj)||

σ , where σ is the scaling parameter.

Locally Linear Embedding (LLE)

LLE [91] operates by assuming that objects within a local neighborhood in a high

dimensional feature space are linearly related. Consider the set of high dimensional

feature vectors F ={F (c1) ,F (c2), . . . ,F (cn)}, ∀ci ∈ C, i ∈ {1, ..., n}. LLE aims to

map the set F to the corresponding set XLLE = {SLLE (c1) ,SLLE (c2) , . . . ,SLLE (cn)}

of embedding co-ordinates. Let d(1), ..., d(K) be the K nearest neighbors of ci and let

ηK(ci) be the indices of the location of the K-nearest neighbors (K-NN) of ci ∈ C. The

feature vector F (ci) and its K-NN’s {F
(
d(1)
)
,F
(
d(2)
)
, . . . ,F

(
d(K)

)
} are assumed to

lie on a patch of the manifold that is locally linear, allowing us to use the Euclidean

metric to determine distance between neighbors. Each F (ci) can then be approximated

by a weighted sum of its K-NN. The optimal reconstruction weights are given by the

sparse matrix WLLE (subject to the constraint
∑

jWLLE(i, j) = 1) that minimizes

E1 (WLLE) =

n∑
i=1

∥∥∥∥∥F (ci)−
K∑
r=1

WLLE (i, ηr(ci))F
(
d(r)
)∥∥∥∥∥

2

. (3.7)

Having determined the weighting matrix WLLE, the next step is to find a low-

dimensional representation of the points in F that preserves this weighting. Thus,

for each F (ci) approximated as the weighted combination of its K-NN, its projection

SLLE (ci) will be the weighted combination of the projections of these same K-NN. The

optimal XLLE in the least squares sense minimizes
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E2 (XLLE) =

n∑
i=1

∥∥∥∥∥∥SLLE (ci)−
n∑
j=1

WLLE (i, j)SLLE (cj)

∥∥∥∥∥∥
2

= trace
(
XLLELXT

LLE

)
,

(3.8)

where XLLE =
[
SLLE (c1) ,SLLE (c2) , . . . ,SLLE (cn)

]
, L = (I −WLLE)

(
I −WT

LLE

)
,

and I is the identity matrix. The minimization of Equation 3.8 subject to the constraint

XLLEXT
LLE = I (a normalization constraint that prevents the solution XLLE ≡ 0) is an

Eigenvalue problem whose solutions are the Eigen vectors of the Laplacian matrix L.

Since the rank of L is n−1, the first Eigen vector is ignored and the second smallest

Eigen vector represents the best one-dimensional projection of all the samples. The

best two-dimensional projection is given by the Eigen vectors with the second and

third smallest eigenvalues, and so forth.

3.6 Consensus-Locally Linear Embedding (C-LLE)

3.6.1 Issues with LLE

The low dimensional data representations obtained via LLE are a function of κ, a pa-

rameter controlling the size of the neighborhood within which local linearity is assumed

and used to approximate geodesic distances. The objective behind LLE is to non-

linearly map objects c, d ∈ C that are adjacent in the M dimensional ambient space

(F(c), F(d)) to adjacent locations in the low dimensional embedding (S(c), S(d)), where

(S(c), S(d)) represent the m-dimensional dominant eigen vectors corresponding to c, d

(m << M). If d is in the κ neighborhood of c ∈ C, then c, d ∈ C are assumed to be

linearly related. LLE attempts to non-linearly project each F(c) to S(c) so that the κ

neighborhood of c ∈ C is preserved. LLE is sensitive to the choice of κ since different

values of κ will result in different low dimensional data representations. Since LLE is

typically used in an unsupervised context for visualizing and identifying object clusters,

a priori, the optimal value of κ is not-obvious. In [91], Roweis and Saul suggest that

varying κ over a wide range of values, still yields stable, consistent low dimensional em-

beddings for dense synthetic datasets. Our own experiments on real biomedical data,

suggest otherwise [54]. Further, for sparsely populated datasets, the most common
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failure of LLE is to map faraway points to adjacent locations in the embedding space

depending on the choice of κ [91].

Automatically estimating κ is largely an open problem, though some researchers

have attempted to adaptively determine a globally optimal κ value [62], [85]. However,

these experiments were limited to dense synthetic datasets. We argue that in general no

single global optimal value of κ can be applied to learning the low dimensional manifold

over the entire data space. We further contend that different values of κ are required in

different regions of the data space to optimally reconstruct locally linear neighborhood.

3.6.2 Relationship between C-LLE and Bagging Classifiers

The aim behind constructing ensemble classifiers such as Bagging [84] is to reduce the

variance and bias across weak classifiers. In Bagging [84], for an input object c ∈ C, a

sequence of weak predictors φ(c,Sk) are generated from K bootstrapped training sets Sk

where 1 ≤ k ≤ K. A strong Bagged classifier φBag(c) is obtained by averaging or voting

over the multiple weak classifiers φ(c,Sk), k ∈ {1, .....K}. An analogous idea is used

for C-LLE whereby we combine several weak embeddings, Sκ(c) across different values

of κ ∈ {1, ....K} to obtain a comprehensive stable low dimensional data embedding,

with lower variance and bias compared to individual weak embeddings. Our hypothesis

is that for any c, d ∈ C, the pairwise object distance in the low dimensional space is

faithfully represented in the stable consensus embedding Ŝ(c), for c ∈ C.

3.6.3 Maximum Likelihood Estimation (MLE) of Object Adjacency

The spirit behind C-LLE is the direct determination of pairwise object adjacencies in

the low dimensional embedding space as opposed to κ estimation. For each c, d the

aim is to find the true distance D̂ψ(c, d) between c, d ∈ C in some lower dimensional

embedding space, where ψ is an appropriately defined distance metric. Given multiple

lower dimensional embeddings, the distance between c, d can be expressed as a distribu-

tion Dκ(c, d) where for brevity the metric notation has been dropped. The problem of

determining D̂(c, d) can be posed as a MLE problem. Thus we can rewrite this problem
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as,

p(ϕD|D̂) =
K∏
κ=1

p(Dκ|D̂);∀c, d ∈ C, (3.9)

where ϕD is a set of low dimensional distance estimates between c, d ∈ C, and based

on the assumption that the lower dimensional embeddings obtained for κ ∈ {1, ...K}

are independent. We endeavor to find the MLE of D, D̃ that maximizes ln p(ϕD|D) for

c, d ∈ C. Intuitively this corresponds to computing the peak (mode) of the distribution

p(ϕD|D̂).

3.6.4 Algorithm for C-LLE

Step 1. Generate Multiple lower dimensional embeddings

Multiple lower dimensional embeddings are generated by varying κ ∈ {1, ..K} using

LLE. Each embedding Sκ(c) will hence represent adjacencies between objects ci, cj ∈

C, i, j ∈ {1, ...|C|}, where |C| is the cardinality of C. Thus ||Sκ(ci)−Sκ(cj)||ψ will vary

as a function of κ.

Step 2. Obtain MLE of pairwise object adjacency:

A confusion matrix WLLE
κ ∈ <|C|×|C| representing the adjacency between any two

objects ci, cj ∈ C, i, j ∈ {1, ..., |C|} in the lower dimensional embedding representation

Sκ(c) is calculated as:

WLLE
κ (i, j) = DLLEκ (ci, cj) = ‖Sκ(ci)− Sκ(cj)‖ψ , (3.10)

where ci, cj ∈ C, for i, j ∈ {1, . . . , |C|}, κ ∈ {1, . . . ,K}, and ψ in our case is the L2 norm.

MLE of DLLEκ (ci, cj) is estimated as the mode of all adjacency values in WLLE
κ (i, j) over

all κ. This D̂LLE for all c ∈ C is then used to obtain the new confusion matrix ŴLLE .

Step 3. Multidimensional scaling (MDS):

MDS [92] is applied to ŴLLE to achieve the final combined embedding S̃(c) for c ∈ C.

MDS is implemented as a linear method that preserves the Euclidean geometry between

each pair of objects ci, cj ∈ C, i, j ∈ {1, ..., |C|}. This is done by finding optimal
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positions for the data points ci, cj in lower-dimensional space through minimization of

the least squares error in the input pairwise distances in ŴLLE .

3.6.5 Semi-supervised Dimensionality Reduction

Most NLDR schemes are unsupervised and often lead to overlapping embeddings with

poor class discriminability. Recently several semi-supervised DR (SSDR) schemes have

been proposed where limited labeled information is employed in the construction of

a pairwise similarity matrix. In [55], Sugiyama et al. applied semi supervised (SS)-

learning to Fisher’s discriminant analysis in order to find projections that maximize

class separation. [56] implemented a SS version of PCA by exploiting between-class and

within-class scatter matrices. Semi-supervised graph embedding [57] is another semi-

supervised method based on GE which constructs a weight matrix (W ) by leveraging

the known class labels such that higher weights are given to within-class points and

lower weights to points from different classes. The proximity of labeled and unlabeled

data is then used to construct the low dimensional manifold. Assuming the first l of

n samples are labeled ωl ∈ {0, 1}, we can incorporate the partial known labels into

the similarity matrix W = [wij ]. A N nearest neighbor graph, N > 0, is created to

obtain W such that pairwise points in N neighborhood with same labels are given high

weights and points with different class labels are given low weights [57]. If the points

are not in N , the corresponding edges are not connected. Thus the weight matrix may

be expressed as,

w̃ij =



γ(1 + γ), if ci ∈ Nj or cj ∈ Ni and ωi = ωj ,

γ(1− γ), if ci ∈ Nj or cj ∈ Ni and ωi 6= ωj ,

γ, if ci ∈ Nj or cj ∈ Ni, i > l or j > l,

0, otherwise.

(3.11)

where γ = e
−||F (c)i−F (c)j ||

2

σ .
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3.7 Texture Feature extraction

The textural operators Φβ, β ∈ {1, . . . , n} include both linear and non-linear image op-

erations, and are drawn from 3 general classes of texture features including (i) gradient,

(ii) first order statistical, and (iii) second order statistical texture features. Table 3.1

details the texture features that were employed in this work.

3.8 Classifier Strategies

3.8.1 Random Forest (RF) Classifier

The RF classifier uses the majority voting rule for class assignment by combining de-

cisions from an ensemble of bagged (bootstrapped aggregated) [97] decision trees. The

C4.5 decision tree [98] is a multistage classifier which creates a tree like structure by

breaking down a complex decision process into a collection of simpler decisions for

predicting the best possible outcome solution by combining the simple decisions. RF

further combines these decisions obtained from different decision trees to provide a

more optimal and stable solution. For a given training set, N bootstrapped subsets are

created with replacement of the training data. Based on each training subset, a C4.5

decision tree [98] classifier , hj , j ∈ {1, ..., N} is constructed. The class label (CaP or

normal) hj(c) for each metavoxel c ∈ C, based on the feature vector FT2w
PCA(c), is then

obtained using the decision trees hj , j ∈ {1, ..., N}; hj(c) = 1 if c is classified as CaP

(scale 4, 5) and otherwise hj(c) = 0. The final class likelihood that c belongs to the

CaP class, via the RF classifier, is obtained by aggregating the decisions of individual

weak learners as 1
N

∑N
j=1 hj(c). The higher the value of this class likelihood, the more

likely c belongs to the CaP class.

3.8.2 Probabilistic Boosting Tree (PBT) classifier

The PBT algorithm [99] is a combination of the decision tree [98] and Adaboost [100]

classifiers. Adaboost is an ensemble classifier obtained by combining classifier pre-

dictions from several weak classifiers. PBT combines decision tree and Adaboost by
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iteratively generating a tree structure of a predefined length in the training stage where

each node of the tree is boosted with weak classifiers. The hierarchical tree is obtained

by dividing the training samples in two left and right subsets and recursively training

the left and right sub-trees using Adaboost [100]. During testing, the conditional prob-

ability that any object c belongs to the target class, given the feature vector, F(c), is

calculated at each node based on the learned hierarchical tree.

3.8.3 Support Vector Machines (SVM)

SVM aims at identifying the best possible hyper plane that can accurately separate the

data into two classes. SVM classifier [101] is constructed by using a kernel function

which projects the training data into a higher-dimensional space via an implicit feature

mapping in the dot product space. In our implementation, the radial basis function

(RBF) kernel was employed to project the training data into a higher dimensional

space. In contrast to PBTs and RFs where a probability (or likelihood) is generated

for each voxel belonging to a class, SVM classifiers are typically used to generate a

hard decision; h(c) = 1 if metavoxel c is identified as CaP and h(c) = 0 otherwise.

However, a pseudo-likelihood that any meta-voxel c belongs to a class can be generated

by calculating how far or close each c is from the SVM decision hyperplane during

classification and converting this distance in terms of likelihood of each c belonging to

a class. Thus the greater the distance of from the hyperplane, the higher the likelihood

that it belongs to a particular class; the proximity of an object to the hyperplane reflects

greater ambiguity with respect to class membership.
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Feature Implementation Purpose
Significance for
quantifying CaP

appearance

Gabor wavelet
transform (48)

Modulation of a
complex sinusoid

by a Gaussian
function

Attempt to match
localized frequency
characteristics at

multiple scales and
orientations[93]

Quantify visual
processing

features used by
radiologists when

examining
appearance of the

carcinoma

Haar wavelet
transform (12)

Decomposition
coefficients via

wavelet
decomposition at
multiple scales

Attempt decomposition
of a signal in the

discrete space while
offering localization in
the time and frequency

domains[94]

Differentiate the
amorphous

nature of the
non-CaP regions
within foci of low

SI

Haralick texture
feature (36)

Construct joint
probability

distribution of
the occurrence of

greylevel
intensities in an
image (spatial
relationship

between pixels
used to restrict

counting of
greylevel

co-occurrences).
Statistical

features are then
calculated from
this distribution

Differentiate between
different types of

texture excellently due
to calculation of 2nd

order statistics (which
quantify perceptual

appearance of
image)[95]

Useful in
differentiating

homogeneous low
SI regions (CaP)

from more
hyper-intense
appearance of

normal prostate

Greylevel
statistical

features (14)

Mean, standard
deviation as well

as derivative
features such as
via convolution
with the Sobel

and Kirsch
operators are

calculated

Provide 1st order
information,
quantifying
macroscopic

appearance of image
e.g. variation of
intensities within

image[96] etc.

May help localize
regions of
significant

differences on
T2w MR image,
accurately detect
region boundaries

Table 3.1: Summary of texture features used in this study as well as their significance for
localization of CaP on T2w MRI (numbers in brackets signify how many features of each texture
category were computed)
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Chapter 4

Data Integration Strategies

4.1 Multi-wavelet Embedding Representation for Data Combination

(MaWERiC)

In [102], it has been suggested that data level integration can be achieved by aggregating

features from two disparate sources (F 1(c) and F 2(c)) into a single feature vector E(c)

before classification. While this may be a reasonable strategy when |F 1(c)|=|F 2(c)|, it

may not be optimal when the feature vectors are of very different dimensionalities. In

this work, we have developed a novel data integration strategy, called MaWERiC, that

incorporates wavelet transformation and dimensionality reduction to represent different

data streams into a common framework, that is conducive for data integration. Figure

4.1 illustrates the organization of our MaWERiC strategy. Below we describe each of

the modules associated with our MaWERiC strategy.

1. Feature Extraction: Our scheme is based on combining wavelet (Gabor and Haar

filters) features [103] extracted from both the T2-w MRI and MRS modalities.

The advantage of using wavelet transform [103] is that it can provide multi-

resolution discriminatory information from different data modalities, including

but not limited to signals and images [67, 104, 105]. The 2D-Gabor wavelet

filter is defined as the convolution of a 2D Gaussian function with a sinusoid

[106]. A Gabor filter bank is then generated by variation of the associated scale

and orientation parameters. This filter bank provides a means for multi-scale,

multi-orientation texture characterization and representation of an image. Haar

wavelet decomposition is a commonly employed signal filtering technique [103]
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which provides a way of extracting the class discriminating frequency compo-

nents that may yield higher classifier accuracy compared to the original signal

[107]. An advantage of the Haar wavelet [107] is that it preserves features that

are representative of abrupt changes in signals, dominant spectral peaks such as

those that correspond to the most significant metabolites on MRS, while simulta-

neously eliminating spectral noise. Both the Gabor and Haar wavelet filters have

been previously used in conjunction with CDS classifiers to distinguish between

different data classes for various biomedical applications [67, 104, 105, 108]. In

the context of this work, multi-resolution features for T2-w MRI and MRS are

obtained via use of the Gabor and Haar wavelet filters respectively.

2. Data Representation: While the wavelet based representations of the MRS, T2-w

MRI channels provide a uniform, feature representation of the data, the feature

vectors obtained via the application of the Gabor and Haar wavelet filters are of

a very high and dimensionality and hence subject to the curse of dimensionality

[82]. Consequently a subsequent step is application of PCA [74] to the high dimen-

sional feature vectors obtained (via wavelet decomposition) from each individual

data modality (T2-w MRI, MRS) to obtain a reduced dimensional representation

of the data and thus make the data representation amenable to the application

of the classifier. The representation of the MRS and T2-w MRI data in terms of

the Eigen vectors (obtained via PCA) also allows for the overcoming of the scale

(resolution) and dimensionality differences between the two modalities, since the

wavelet representations obtained from each individual modality are of varying

dimensionality, and can be reduced to the same number of Eigen vectors. MaW-

ERiC enables data fusion between different dimensional feature vectors F 1(c),

F 2(c) by first decomposing them in a wavelet space, followed by independently

reducing them to a low dimensional space (F 1
PCA(c)| = |F 2

PCA(c)|).

3. Data Integration: The reduced low dimensional representations across the two

protocols, F 1
PCA(c),F 2

PCA(c), are then concatenated to obtain the fused Eigen

vector representation as, F Int = [ F 1
PCA(c),F 2

PCA(c)].
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Figure 4.1: Flowchart showing various components and methodological overview of our data
integration scheme. Wavelet features are first extracted individually from T2-w MRI and MRS,
followed by dimensionality reduction using PCA. The reduced dimensional vectors, now existing
in the same dimensions and scale, are concatenated during data combination followed by data
classification.

4. Data Classification: This fused Eigen vector representation is then used to train

a Random forest (RF) classifier. RF is a commonly used ensemble classifier that

combines predictions from several weak classifiers to generate a more accurate and

stable classifier [109]. The RF classifier has previously been successfully employed

for various biomedical classification applications [67, 110, 71]. Advantages of RF

include, (1) ability to integrate a large number of input variables, (2) robustness

to noise in the data, and (3) relatively few tuning-parameters.

4.2 Semi-Supervised Multi-kernel Graph Embedding (SeSMiK)

4.2.1 Kernel Graph Embedding (KGE) Framework

KGE is a technique to extend linear projections of data to a non-linear dot product

space using the kernel trick [111], which maps data from the original input space to an

alternative higher dimensional space as K(F(ci),F(cj)) = 〈(Φ(F(ci)),Φ(F(cj)))〉, where

Φ is the implicit pairwise embedding between F(ci) and F(cj). A kernel gram matrix

Km for each protocol m may be obtained as Km = [K(F(ci),F(cj))], ∀i, j ∈ {1, ..., n},
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where Km may be expressed as

Km =



K(F(c1),F(c1)) K(F(c1),F(c2)) . . . K(F(c1),F(cn))

K(F(c2),F(c1)) K(F(c2),F(c2)) . . . K(F(c2),F(cn))

...
...

. . .
...

K(F(cn),F(c1)) K(F(cn),F(c1)) . . . K(F(cn),F(cn))


m

. (4.1)

According to the Representer Theorem [112], to calculate the kernel representation

K(F(ci), F(cj)) of input data, it is assumed that the optimal embedding y lies in the

input space such that,

y =

n∑
j=1

αjK(F(.),F(cj)) = K(F)Tα, (4.2)

where, α = [α1, α2, ..., αn]T is the low dimensional matrix representation for KGE and

K(F) = [K(F(.),F(c1)),K(F(.),F(c2)), ...,K(F(.),F(cn))]m. Hence,

y = [y1, y2, ..yn]T

=


K(F1)

...

K(Fn)


m

α

=



K(F(c1),F(c1)) . . . . . . K(F(c1),F(cn))

K(F(c2),F(c1)) . . . . . . K(F(c2),F(cn))

...
...

. . .
...

K(F(cn),F(c1)) . . . . . . K(F(cn),F(cn))


m

α

= Kmα (4.3)

where Km is the kernel matrix Kij = K(F(ci),F(cj)). Using Equation (4.3), the

objective function can be reduced to,

α∗ = arg max
α

[αTKDKα], (4.4)

where K is a valid positive semi-definite kernel and α is the d dimensional Eigenvec-

tor of the objective kernel function in Equation (4.4). Similar to Equation (3.5.2),

optimization function can again be solved by an Eigenvalue decomposition problem as,

KWKα = λKDKα, (4.5)

with the constraint αTKDKα = 1.
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4.2.2 Semi-Supervised Multi-Kernel Graph Embedding (SeSMiK-GE

Algorithm)

Overview of SeSMiK-GE

Figure 4.2 shows a schematic flowchart of the proposed data integration strategy,

SeSMiK-GE. Below we briefly describe each of the modules comprising SeSMiK-GE.

1. Module 1: Multi Kernel Learning: Due to the dimensionality and resolution dif-

ferences between different data channels, each source needs to first be represented

in a common framework prior to data integration. MKL is employed to transform

each of m individual data channel to a kernel similarity matrix (Km), in order to

then derive a weighted combination of individual kernels as K̂ =
∑M

m=1 βmKm,

where Km,m ∈ {1, 2, ...,M}, is the kernel obtained from each data channel, and

βm is the weight assigned to each kernel.

2. Module 2: Semi-Supervised Learning: Employing SSDR in a DSS scheme has ben-

efits in that, (a) SSDR is computationally inexpensive, and (b) yields a low di-

mensional representation with better discriminability between object classes with

fewer training samples. SeSMiK-GE employs SSGE [57], a well known SSDR

scheme, which modifies the similarity weight matrix (W̃m) for each data channel,

by incorporating partial label information. A modified weight matrix (W̃m) is

obtained from each of the M data channels, which are then averaged to obtain,

Ŵ = 1
M

∑M
i=1 W̃ .

3. Module 3: Dimensionality Reduction: K̂ and Ŵ are employed in a generalized

KGE framework to obtain the integrated low dimensional data representation.

It is worth noting that although other NLDR schemes such as LLE [50] and

Isomaps [51] are also popular for DR purposes, GE was our method of choice for

SeSMiK framework since unlike LLE [50] and Isomaps [51], GE is not dependent

on kappa (the parameter determining the size of the local neighborhood within

which linearity of the manifold is assumed) which is known to significantly affect

the quality of the low dimensional manifold [113, 85].
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Figure 4.2: Flowchart showing various components of SeSMiK-GE. MKL and SSDR are per-
formed simultaneously on the M individual data channels followed by DR on the combined
kernel and weight matrix. A supervised classifier is subsequently trained in the integrated low
dimensional space to discriminate the object classes (shown via different colors in the right most
panel).

Module 1. Multi-Kernel Learning

A linear combination of different kernels has the advantage of also yielding a kernel

which is at once a symmetric, positive definite matrix. Assuming we have M base

kernel functions for M channels, Km, m ∈ {1, ...,M}, with corresponding individual

kernel weights βm, the combined kernel function may be expressed as,

K̂(F(ci),F(cj)) =
M∑
m=1

βmKm(F(ci),F(cj)), βm ≥ 0,∀i, j ∈ {1, ..., n},

=
M∑
m=1

βmKm, βm ≥ 0. (4.6)

K̂ is the combined multi-channel kernel obtained by combining M protocols in a

multi-kernel framework.

Module 2. Semi-supervised Graph Embedding (SSGE)

Equation 3.11 as described in Chapter 3 is used to obtain the Gaussian weight matrix

W̃m = [w̃ij ]. W̃m = [w̃ij ] is then normalized by σ such that σ = max(||F (ci)−F (cj)||2)

∀i, j for each individual data channel m, m ∈ {1, ...,M}. Hence, the range of normalized

weight matrix, W̃m, is between e−1 = 0.333 and e0 = 1, which is subsequently scaled

linearly between 0 and 1. Weight matrices across individual data channels, W̃m, m ∈

{1, ...,M} can then be averaged to obtain,

Ŵ =
1

M

M∑
m=1

W̃m (4.7)
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where W̃m is the modified weight matrix obtained using Equation (3.11) for protocol

m, and Ŵ is the combined weight matrix obtained by averaging the modified weight

matrices from each of the M data channels.

Module 3. Dimensionality Reduction

The combined kernel K̂ obtained from MKL, and the associated weight matrix Ŵ

obtained from SSL can be used in a KGE framework to obtain the low dimensional

fused representation of the multi-channel data. By substituting K̂ from Equation (4.6)

and Ŵ from Equation (4.7), Equation (4.5) is reduced to a multi-kernel Eigenvalue

decomposition problem as,

K̂Ŵ K̂T ᾱ = λK̂D̂K̂T ᾱ, (4.8)

where D̂ =
∑

j ŵji, and ᾱ is the combined low dimensional fused data representation

obtained by combining M different channels.

4.2.3 SeSMiK-GE Optimization

In Equation 4.8, two variables, ᾱ and βm (within K̂) need to be optimized simultane-

ously. The low dimensional representation ᾱ is optimized using a kernel ridge regression

function, while the weights βm are optimized using a hierarchical brute force algorithm.

Each individual optimization step is explained below.

Optimizing the low dimensional representation (ᾱ)

The optimal d dimensional Eigenvectors ᾱ = {ᾱ1, ..., ᾱd}, d << D are obtained from

Equation (4.8) using standard kernel ridge regression optimization as described in [114].

Kernel ridge regression is a regularized least square linear regression in kernel space,

and is used when the matrix K̂ is invertible (ill-conditioned), or noisy to obtain the

target output accurately. Hence, to solve ᾱ, we make use of the regularized solution

of Equation 4.3. The optimization of Equation 4.8 can then be solved via a two step

process:
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1.1) Solve the Eigenvalue decomposition problem as given in Equation 3.5.2 for the

combined data matrix Ŵy = λD̂y.

1.2) If K̂ is non-singular for any given y, unique Eigenvalues can be obtained as ᾱ =

K̂−1y (Equation 4.3). However, when K̂ is singular, the equation may have no or

infinite solutions. The solution is then obtained using regularized kernel ridge regression

as: ᾱ = (K̂ + δI)−1y, where I is the identity matrix and δ is the regularization

parameter. In this work we used the regularization parameter, δ = 0.1, as suggested

in [114].

Optimizing weights (β) for MKL

To obtain ᾱ, optimal set of weights β̂ = [β̂1, ..., β̂M ], β̂m ∈ {0, 1}, have to be obtained

for each modality m, m ∈ {1, ...M} such that
∑M

m=1 β̂m = 1. A hierarchical brute

force optimization strategy is employed to optimize weights, β = [β1, ..., βM ], which

iteratively optimizes β based on the classification accuracy of training data. Once ini-

tial values for β̂ ∀m,m ∈ {1, ...,M}, are estimated at a certain interval resolution that

optimizes accuracy, the algorithm searches for a more accurate value only within the

vicinity of β̂ estimated at the previous level of the hierarchy. At each level of the opti-

mization strategy, the value of β̂ is estimated based on the ability of weights to create

a low dimensional representation that maximizes classifier accuracy. The process is re-

peated until either a pre-defined interval resolution is reached or classification accuracy

does not change significantly by reducing the step size.

4.2.4 SeSMiK-GE algorithm

Algorithm SeSMiK-GE

Input: Fm, M , N , d, β̂ = [β̂1, β̂2, ..., β̂M ]

Output: ᾱ

begin

0. for m = 1 : M

1. Obtain Km for each data channel Fm

2. Obtain W̃m using N from Equation (3.11)
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3. endfor

4. Obtain Ŵ as Ŵ = 1
M

∑M
m=1 W̃m using each of the W̃m obtained in Step 2

5. Obtain K̂ =
∑M

m=1 β̂mKm using each of the Km obtained in Step 1

6. Substitute K̂ and Ŵ in Equation 4.5

7. Obtain d-dimensional ᾱ by solving Equation 4.8

end

Km and W̃m are obtained for each of the data channels Fm, m ∈ {1, ...,M}, in

Steps 1 and 2 respectively. Combined weight matrix Ŵ is obtained by averaging the

modified weight matrices (obtained in Step 2) across the M data channels (Step 4).

Similarly, in Step 5, the contributions of each Km are individually weighted using the

optimal weights β̂m across the M data channels. Ŵ and K̂ are then substituted in

the generalized KGE framework in Step 6 which is solved in Step 7 to obtain the d-

dimensional fused representation of the multi-modal data. A supervised classifier can

then be trained on the fused low dimensional representation ᾱ for subsequent object

classification.
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Chapter 5

Consensus Locally-Linear Embedding: Application to

Prostate Cancer Diagnosis

5.1 Prostate cancer detection on MRS via C-LLE

5.1.1 Data Description

A total of 18 1.5 T in vivo endorectal T2-weighted MRI and MRS ACRIN studies1 were

obtained prior to prostatectomy. Partial ground truth for the CaP extent on MR studies

is available in the form of approximate sextant locations and sizes for each study. The

maximum diameter of the tumor is also recorded in each of the 6 prostate sextants (left

base, left midgland, left apex, right base, right midgland, right apex). The tumor size

and sextant locations were used to identify a potential cancer space used for performing

a semi-quantitative evaluation of our CAD scheme. Additional details on identifying

this cancer space are provided in [73].

5.1.2 C-LLE and consensus clustering for CaP detection on MRS

Figure 5.1 shows the flowchart demonstrating the different steps comprising our prostate

MRS detection scheme. The adjacency matrix (WLLE) is constructed across K embed-

dings of the MR spectral space so that for any ci, cj ∈ C, where i, j ∈ {1, ...|C|},

Wκ(i, j) represents the distribution Dκ(ci, cj) of the low dimensional distance between

MR spectra F (ci),F (cj), for k ∈ {1, ...K}. As described in Chapter 3, the stable

spectral distance matrix ŴLLE is then obtained and MDS applied to obtain the stable

embedding representation of the spectra, S̃(c) for each c ∈ C.

To overcome the instability associated with centroid based clustering algorithms, we

1http : //www.acrin.org/6659 protocol.html
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Figure 5.1: Flowchart showing the C-LLE algorithm and consensus clustering scheme for CaP
detection on prostate MRS.

generate multiple weak clusterings V 1
t , V

2
t , V

3
t , t ∈ {0, . . . , T} by repeated application

of k-means clustering on the combined low dimensional manifold S̃(c), for all c ∈ C.

We assume that each prostate spectra could be classified as one of the three classes:

cancer, benign and other tissue classes (e.g. benign hyperplasia (BPH)). Each cluster,

Vt is a set of objects which has been assigned the same class label by the k-means

clustering algorithm. As the number of elements in each cluster tends to change for each

such iteration of k-means, we calculate a co-association matrix H with the underlying

assumption that objects belonging to a natural cluster are very likely to be co-located in

the same cluster for each iteration. Co-occurrences of pairs of objects ci, cj ∈ C in the

same cluster Vt are hence taken as votes for their association. H(i, j) thus represents

the number of times ci, cj ∈ C, for i, j ∈ {1, ...|C|}, were found in the same cluster over

T iterations. We apply MDS [92] to H followed by a final unsupervised classification

using k-means, to obtain the final stable clusters V̂ 1, V̂ 2, V̂ 3.

5.1.3 Model based peak integration scheme via Independent Com-

ponent Analysis (ICA)

Peak detection on prostate MRS is a difficult problem due to noise and spectral contri-

butions from extra-prostatic regions. In this work, we have developed a model based ap-

proach to localize choline, creatine and citrate peaks based on Independent Component

Analysis (ICA). ICA is a multivariate decomposition technique which linearly trans-

forms the observed data into statistically maximally independent components (ICs).

For a set of voxels identified offline as cancer, χCaP ⊂ C, we obtain A independent
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components FICα , α ∈ {1, ...A} which represent spectral contributions of choline, crea-

tine and citrate for prostate cancer. The parts per million (ppm) ranges (νcc, νcr) on

the X-axis are then learnt for choline+creatine and citrate from FICα , α ∈ {1, ...A}.

Peak detection is then performed on C to identify choline, creatine and citrate peaks

within the ranges νcc and νcr. Area under the choline+creatine peak (Ach+cr) and

under citrate peak (Acit) is obtained via integration for all voxels c ∈ C as described

in Chapter 3, and a ratio of Ach+cr(c)/Acit(c) is computed. A pre-defined threshold

determined by radiologists [115] is used to classify the spectra as cancer/benign based

on Ach+cr(c)/Acit(c) for c ∈ C.

5.1.4 z-score and PCA

Similar to our C-LLE scheme, each c ∈ C is described by 5 principal components,

SPCA(c) which contain 98% of the data variance. Consensus clustering is then applied

on SPCA(c), to cluster each c ∈ C into one of 3 classes. A z-score as described in

Chapter 3 at every c ∈ C is also computed.

5.2 Results and Discussion

5.2.1 Qualitative Results

Figure 5.2 shows CaP detection results on a prostate MRS study via C-LLE, LLE, PCA,

z-score, and ICA based peak detection. Figures 5.2(a)-(c) show the comparison of C-

LLE (c) with LLE for (a) κ = 5, and (b) κ = 7 on a single 2D T2 weighted MRI slice.

Figures 5.2(d), (e), (f) show the clustering results obtained via ICA peak detection,

z-score and PCA respectively. At each spatial location on the MRI slice a spectral

signature was analyzed and that corresponding location was assigned one of 3 colors

(for C-LLE, PCA) and one of the two colors (for z-score, ICA based peak detection)

based on clustering/classifier results. The white box superposed on 5.2(a)-(f) show the

potential cancer space for corresponding slices. In each of Figures 5.2(a)-(f) the red

cluster represents the one identified as cancer by each of the different methods. Note

in Figure 5.2(c) that the C-LLE result shows excellent sensitivity and specificity and
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also appears to reduce the variance and instability in the individual weak embeddings

shown in 5.2(a), (b). Figures 5.2(d)-(f) corresponding to results obtained via ICA-

based peak detection, z-score method and PCA respectively, show low sensitivity and

specificity compared to our C-LLE scheme (Figure 5.2(c)). To assess the validity of C-

LLE and PCA, we employed ICA to isolate independent components (IC) from clusters

identified as CaP by the two schemes. Figure 5.2(h) shows an IC obtained from the

cluster identified as CaP by C-LLE (shown as red in Figure 5.2(c)); Figure 5.2(i) shows

the corresponding result obtained via PCA. Note the strong correlation between the ICs

obtained via C-LLE (Figure 5.2(g)) and a known CaP MRS signature (Figure 5.2(h))

according to the 5-point scale defined in [116]. Note also the dissimilarity between the

spectra obtained by PCA and shown in Figure 5.2(i) compared to those in Figure

5.2(g),(h).

5.2.2 Quantitative Results

Table 5.1 shows average CaP detection sensitivity and specificity over 18 studies ob-

tained from C-LLE (m = 4), ICA based peak detection, PCA and z-score. Table

5.1 (b) shows the sensitivity and specificity results averaged across 18 datasets for C-

LLE (m = 3, 4, 5) compared to LLE by varying the number of dimensions. Note that

the C-LLE scheme has a higher sensitivity and specificity across all dimensions which

suggests the efficacy of the scheme. The effectiveness of our scheme for detection of

prostate cancer is evident from the quantitative results (Table 5.1) with both sensitiv-

ity and specificity of close to 87% and 85% respectively compared to current state of

the art methods peak detection, PCA and z-score. Table 5.1(b) reveals that C-LLE

consistently outperforms traditional LLE across multiple dimensions (m = 3, 4, 5).
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Method Sensitivity Specificity

C-LLE 86.90 85.14

Peak detection 45.29 76.62

PCA 66.95 77.89

z-score 74.74 49.75

(a)

m Sensitivity Specificity

C-LLE LLE C-LLE LLE

3 83.20 82.07 84.81 81.89

4 86.90 83.38 85.14 81.77

5 84.88 82.10 85.60 81.70

(b)

Table 5.1: (a) Average CaP detection Sensitivity and Specificity of C-LLE (m = 4), compared
to ICA based peak detection, z-score, and PCA, averaged over a total of 18 MRS studies using
the top 7 eigen values. Table 5.1(b). Average CaP detection Sensitivity and Specificity results
of C-LLE compared to LLE for dimensions 3, 4 and 5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Clustering results for (a) LLE (κ = 5), (b) LLE (κ = 7), (c) C-LLE, (d) ICA
based peak detection, (e) z-score, and (f) PCA. The white box superposed on the T2 MR
image corresponds to the ground truth region. In each image the red cluster corresponds to the
locations identified as cancer by each of the methods. Fig 5.2(g) Typical CaP MR spectra, (h)
IC obtained from clusters identified as CaP in C-LLE, and (i) corresponding IC obtained via
PCA.
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Chapter 6

Integrating Magnetic Resonance (MR) Imaging (MRI)

and MR Spectroscopy: Application to Prostate Cancer

Diagnosis

6.1 Materials and Methods

6.1.1 Data Description

A total of 36 1.5 Tesla (T) T2-w MRI, MRS studies were obtained prior to radical

prostatectomy. All of these studies were biopsy proven prostate cancer patient studies

that were clinically referred for a prostate cancer MR staging exam for improved thera-

peutic selection. MR imaging was performed by using a 1.5-T whole-body MR imaging

unit (Signa; GE Medical Systems, Milwaukee, Wisconsin). The patients were imaged

while in the supine position by using a body coil for signal excitation and a pelvic

phased-array coil (GE Medical Systems) combined with a balloon-covered expandable

endorectal coil (Medrad, Pittsburgh, PA) for signal reception. All MR images were rou-

tinely post-processed to compensate for the reception profile of the endorectal and pelvic

phased-array coils. A spectroscopic MR imaging volume was then selected by an expert

to maximize coverage of the prostate while minimizing the inclusion of peri-prostatic

fat and rectal air. Three-dimensional proton (1H) MR spectroscopic imaging data

were acquired by using a water and lipid-suppressed double-spin-echo point-resolved

spectroscopic sequence optimized for the quantitative detection of both choline and

citrate. Water and lipid suppression was achieved by using the band selective inversion

with gradient dephasing technique [117]. To eliminate signals from adjacent tissues,

especially periprostatic lipids and the rectal wall [118], outer voxel saturation pulses

also were used. Data sets were acquired as 16 × 8 × 8 phase-encoded spectral arrays
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Scale Spectra Patients
Labeled Spectra 4242 36

Scale 1 820 32
Scale 2 1300 28
Scale 3 1096 36
Scale 4 574 34
Scale 5 452 23

Table 6.1: Number of spectra and patients for each scale as annotated by the expert.

(1024 voxels) by using a nominal spectral resolution of 0.240.34cm3, 1000/130, and a

17-minute acquisition time.

6.1.2 Pre-processing

Three-dimensional, MR spectroscopic imaging data were processed and aligned with the

corresponding T2-w imaging data using a combination of in-house software and Interac-

tive Display Language (Research Systems, Boulder, Colorado) software tools [118]. The

raw spectral data were apodized with a 1-Hz Gaussian function and Fourier transformed

in the time domain and in three spatial domains. Choline, creatine, and citrate peak

parameters (i.e., peak area, peak height, peak location, and line width) were estimated

by using an iterative procedure that was used to first identify statistically significant

peaks (those with a signal-to-noise ratio higher than 5) in the magnitude spectrum.

The frequency shift that best aligns the spectral peaks with the expected locations of

choline, creatine, citrate, and residual water is then estimated. Subsequently, the spec-

tra are phased by using the phase of the residual water and the metabolite resonances.

Baseline values were corrected by using a local nonlinear fit to the non-peak regions

of the spectra. Subsequent feature extraction and classification steps were performed

using algorithms developed within the MATLAB (The MathWorks, Inc.) programming

environment.
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6.1.3 Ground Truth annotations

For all the studies considered in this work, ex vivo whole mount histological sections

obtained from radical prostatectomy specimens were available. The “ground truth”

CaP extent on the MR imaging was manually delineated by an expert (JK) by vi-

sually registering corresponding histological and radiological sections; correspondence

between sections having been determined manually by visually determining anatomical

fiducials on the histology and the imaging. Having delineated the CaP extent on the

MR imaging, an expert spectroscopist then labeled the spectral voxels within the CaP

annotated regions on the MRI/MRS according to the 5-point scale. Figure 6.1 shows

the standardized 5-point scale developed by Jung et al. [119] which was used to visu-

ally classify each spectrum as being either (a) definitely benign (scale 1), (b) probably

benign (scale 2), (c) equivocal (scale 3), (d) probably cancer (scale 4), and (e) definitely

cancer (scale 5). In this study, all spectra labeled (4, 5) were assumed to be CaP and all

spectra labeled as (1, 2) were assumed as benign. The voxels labeled as 3 and atrophic

(A) were assumed to be indeterminate and consequently excluded from our analysis.

The 36 studies comprised 2120 class 1, 2 and 1026 class 4, 5 spectra (Table 6.1). The

class labels for the individual spectral voxels, assigned via a combination of manual

registration of histology and MRI and subsequent visual inspection, were used as the

surrogate ground truth for CaP extent on the MRI/MRS. This ground truth surrogate

is then used for training and evaluation of the MaWERiC classifiers.

6.2 Methodology

The MaWERiC scheme comprises of 4 modules: C.1 wavelet feature extraction, C.2

data representation using PCA, C.3 data combination, and C.4 data classification (Fig-

ure 4.1). In the subsequent sub-sections, we will describe each of these modules in

detail.
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Figure 6.1: Illustration of the standardized five point scale spectra where Figures 6.1(a) - (e)
correspond respectively to (a) likely benign (scale 1), (b) probably benign (scale 2), (c) equivocal
(scale 3), (d) probably malignant (scale 4), and (e) likely malignant (scale 5) prostate spectra
(Figure reproduced from Jung et al. with permission of the author).

6.2.1 Wavelet feature extraction

Haar wavelet features for MRS

The wavelet feature extraction for MRS is performed as detailed in 7.3.

Gabor wavelet features for T2-w MRI

At every metavoxel c ∈ C, a total of 54 Gabor features, FT2w
k (c), k ∈ {1, ..., 54} are

obtained at 9 different scales and 6 orientations similar to that shown in [67] and are

represented by a Gabor feature vector FT2w. Further details on the implementation of

Gabor texture features for feature extraction can be found in [67].

6.2.2 Lower dimensional data representation using Principal Compo-

nent Analysis

At each metavoxel c ∈ C, the high-dimensional MRS wavelet feature vector FMRSw is

reduced to transformed Eigen vector FMRSw
PCA (c) = [e1, e2, e3, ..., eM ] using PCA, where
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[e1, e2, e3, ..., eM ] represent the Eigen vectors obtained from Eigen value decomposition

of the data ranked in order of greatest variance. Thus the first m Eigen vectors that

represent a pre-specified percentage of the variance in the data are extracted, while the

remaining Eigen vectors are discarded. The high dimensional T2-w MRI Gabor feature

vector FT2w(c) is similarly reduced to a lower dimensional representation, FT2w
PCA(c)

using PCA.

6.2.3 Data combination

Owing to the physical and dimensionality differences between the MR spectra and

the T2-w MRI features, the MaWERiC meta-classifier is created in the joint T2-w

MRI and MRS Eigen space obtained via PCA. Following the mapping of FT2w and

FMRSw to reduced dimensional Eigen vector representations, FT2w
PCA and FMRSw

PCA , a new

concatenated feature vector FIntPCA = [FT2w
PCA,F

MRSw
PCA ] is obtained.

6.2.4 Data Classification using a Random Forest classifier

We define hρ(c) as the binary prediction result for the RF classifier, at each threshold

ρ ∈ [0, 1] such that hρ(c) = 1 when h(c) ≥ ρ, 0 otherwise. Further details of RF

classifier are detailed in Section 3.8.1.

6.3 Experimental Design and Evaluation

6.3.1 Comparative Strategies

In the following sub-sections, we evaluate and compare the individual modules (fea-

ture extraction, classification, data integration) comprising MaWERiC with (i) other

feature extraction schemes [67, 120] used in the context of automated CaP detection

for individual T2-w MRI, MRS modalities, (ii) a data integration scheme similar to a

COD scheme presented in [83] that combines MRS metabolite features with T2-w MRI

intensities, (iii) a decision integration strategy and (iv) two other ensemble classifiers,

SVMs [101] and probabilistic boosting trees (PBT) [99]. Comparative feature extrac-

tion strategies (T2-w MRI, MRS) Below, we discuss some of the feature extraction and
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quantification methods previously proposed in the context of MRS [71, 72] and T2-w

MRI [11, 67, 24] and that we have implemented in order to quantitatively compare

against MaWERiC. The results of these comparative studies will be described later in

the Results Section.

Metabolic Peak features for MRS

In the clinic, radiologists typically assess presence of CaP on MRS based on the choline

(Ach), creatine (Acr), citrate peaks (Acit) and the Ach+cr
Acit

ratio. Variations in these

values from predefined normal ranges (Ach+cr
Acit

< 1) is highly indicative of the presence

of the disease [121, 122]. To compare MaWERiC with metabolic features used clinically,

we created a metabolic feature vector for MRS, by calculating area under the choline

(Ach), creatine (Acr), citrate (Acit) peaks using the composite trapezoidal rule and

recording the corresponding ratios (AchAcr
,
Ach+cr
Acit

) [120]. Each c ∈ C is then defined by a

metabolite feature vector FMRS(c) = [Ach, Acr, Acit,
Ach
Acr

,
Ach+cr
Acit

].

Texture features for T2-w MRI

Below is a brief description of other individual texture features which have previously

been explored in conjunction with classifiers for discriminating between CaP and normal

areas on T2-w MRI [11, 67]. A more detailed description of the texture features is

provided in Table 3.1.

• Non-steerable Gradient Thirteen non-steerable gradient features for each voxel on

the T2-w MRI scene were obtained via convolution of the T2-w MRI scene with

the Sobel, Kirsch and standard derivative operators at every spatial location [123].

• First Order Statistical: A total of 8 first-order statistical features including mean,

median, standard deviation, and range of gray scale image intensities within a

sliding window neighborhood of 3×3 pixels centered around each spatial location

in the T2-w MRI scene were extracted [123].

• Second Order Statistical: A total of 13 Haralick features including energy, entropy,

inertia, contrast, correlation, sum average, sum variance, sum entropy, difference
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average, difference variance, difference entropy, local homogeneity and average

deviation were extracted within a sliding window neighborhood of 3x3 pixels

centered around each voxel in the T2-w MRI scene [95].

For each class of texture features (first order statistical, second order statistical,

non-steerable gradient), corresponding T2-w texture feature vectors Ft2τi , i ∈ {1, 2, 3},

are constructed at every c ∈ C. A combined ensemble of texture features is defined

as Ft2τ = [FT2w,Ft2τ1 ,Ft2τ2 ,Ft2τ3 ] obtained by concatenating all textural attributes

obtained from T2-w MRI. PCA was used to reduce each individual texture feature,

Ft2τi , i ∈ {1, 2, 3} to the corresponding low dimensional representation, Ft2τiPCA(c), and

this was then used for classification.

6.3.2 Comparative Data integration strategies

Classifier combination (COI)

Classifiers hT2w(c),hMRS(c) are individually trained on FT2w
PCA(c) and FMRS(c), for all

c ∈ C. The independence assumption [82] can then be invoked to fuse hT2w
PCA(c) and

hMRS(c) at each c ∈ C, and at every threshold ρ as hIntd (c) = hT2w
PCA(c) × hMRS(c),

h ∈ {RF,PBT,SVM}.

Data combination (COD) via MRS metabolic area and ratio features and

T2-w image intensity

A combined feature vector FInt(c) = [FMRS(c),FT2w(c)] is obtained by concatenating

the MRS metabolite area and ratio features (FMRS(c)) with the mean intensity feature

(FT2(c)) for each metavoxel c ∈ C. RF classifier along with PBT and SVM classifiers

(described in the next section) are then trained using FInt(c) to obtain the meta-

classifiers hInt(c),h ∈ {PBT,SVM,RF}.
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6.3.3 Comparative classifier strategies

Probabilistic Boosting Tree (PBT) classifier

The conditional probability that any c ∈ C belongs to the CaP class, given the combined

MRI-MRS feature vector, FIntPCA(c), is calculated at each node based on the learned

hierarchical tree as described in Section 3.8.2.

Support vector machine (SVM) classifier

Similarly, the conditional probability that any c ∈ C belongs to the CaP class, given

the combined MRI-MRS feature vector, FIntPCA(c), is calculated using an SVM classifier

(details in Section 3.8.3).

6.4 Performance Measures

The classification performance of MaWERiC strategy was compared against related

state-of-the-art feature extraction, classifier, and data fusion strategies via (a) area

under the Receiver Operating Characteristic (ROC) [124] curve (µAUC), and (b) clas-

sification accuracy (µAcc) at the operating point on the ROC curve. Both performance

measures were reported for voxel-level classification.

6.4.1 Classifier Accuracy

Based on the binary prediction results obtained from the classifier, ROC curves repre-

senting the trade-off between CaP detection sensitivity and specificity can be generated.

Each point on the curve corresponds to the voxel-level CaP detection sensitivity and

specificity of the classifier (hρ(c)) for some ρ ∈ [0, 1]. The operating point Θ on the

ROC curve is defined as value of ρ which yields detection sensitivity and specificity that

is closest to 100%. A 3-fold, randomized cross-validation procedure was employed for

evaluating performance of MaWERiC against other strategies. Hence for the 36 patient

studies considered in this study, 3 sets of spectra each obtained from 12 different studies

were constituted. During a single run of cross-validation, 2 out of the 3 sets (corre-

sponding to 24 studies) were chosen for training the classifier while the remaining set of
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12 patient studies were used for independent testing. Classifier results were generated

on a per voxel basis. This process was repeated until all voxels from all 36 studies were

classified once within a single run of cross-validation. This randomized cross-validation

process was then repeated a total of 25 times for different training and testing sets.

The mean and standard deviation of classifier AUC values (µAUC) were recorded over

these 25 runs. Additionally, the classifier accuracy (µAcc) at the operating point of the

ROC curve was also recorded.

6.5 Experimental Setup

6.5.1 Experiment 1: Comparison of MaWERiC against uni-modal

classifiers (T2-w MRI, MRS)

MaWERiC was compared against individual feature extraction strategies for T2-w MRI

and MRS. Individual features obtained from T2-w MRI and MRS were also quantita-

tively evaluated against each other to determine the best performing T2-w MRI and

MRS features in terms of µAUC and µAcc.

6.5.2 Experiment 2: Comparison of MaWERiC against other COD

and COI strategies

MaWERiC was compared against current state of the art COD, and COI strategies,

involving direct combination of metabolic features with T2-w image intensities and

combination of individual classifier predictions respectively for MRI-MRS integration,

where binary predictions from the two uni-modal classifiers were combined using a dot

product operation to obtain the final classification.

6.5.3 Experiment 3: Comparison of classifiers (RFs against PBTs and

SVMs)

Performance of SVMs and PBT classifiers was compared against the RF classifier (em-

ployed for MaWERiC), and across other comparative studies (uni-modal T2-w MRI,
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MRS strategies in Experiment 1 and COD, COI strategies in experiment 2) using µAUC

and µAcc measures.

6.6 Results

6.6.1 Experiment 1: Comparing MaWERiC against uni-modal clas-

sifiers (T2-w MRS, MRS)

Qualitative results of classifications obtained from Gabor T2-w MRI (hT2w), Metabolic

MRS features (hMRS), COD (hInt), COI (hIntd ), and MaWERiC (hIntPCA) using a RF

classifier are shown in Figure 6.2. Probability heat maps for each strategy were ob-

tained, where the spatial locations shown in red (Figures 6.2(b)-(f)) were identified as

having a higher probability of CaP as determined by classifiers hT2w, hMRS , hInt, hIntd ,

hIntPCA and on a single T2-w slice. Locations shown in blue were identified as having a

higher probability of being benign by the classifiers. The white outline in Figure 6.2(a)

shows the ground truth (outlined with a white rectangle) for CaP as annotated by an

expert. Note the high CaP detection sensitivity and specificity of MaWERiC (Figure

6.2(f)) compared to individual uni-modal T2-w MRI (Figure 6.2(b)) and MRS (Figure

6.2(c)).

Figure 6.3(a) shows the AUC results, while Figure 6.3(b) shows the accuracy re-

sults for different feature extraction strategies (hT2w, hMRS , hInt, hIntd , and hIntPCA)

obtained via a RF classifier over 25 runs of cross validation using box-and-whiskers

plots respectively. Note that m = 15 was used to reduce the dimensionality of T2w

MRI, MRS features since it captured 93% of the variance across MRS and T2w MRI

features. Hence, the dimensionality of MaWERiC used for evaluation was . Table 6.3

shows the quantitative results in terms of AUC and accuracy across various feature

extraction and classifier strategies (hT2w, hMRS , hInt, hIntd , hIntPCA) under evaluation.

The µAUC and µAcc results shown in Table 6.3 across 25 iterations of 3-fold cross val-

idation suggest higher CaP detection accuracy using MaWERiC (µAUC = 0.89± 0.02,

µAcc = 0.83± 0.03) against both T2-w MRI ( µAUC = 0.55± 0.02, µAcc = 0.54± 0.01)

and MRS ( µAUC = 0.77 ± 0.03, µAUC = 0.72 ± 0.02) for a RF classifier. Note that
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Figure 6.2: (a) Original T2-w image with MRS grid superposed and labeled according to the
five point scale (2 = probably benign, 3= indeterminate, 4= probably cancer, 5= definitely
cancer, A = atrophy), (b)-(d) probability heat map results superposed on a single T2 slice by
interpolating the CaP probabilities at MRS resolution to a pixel level T2w MRI resolution using
Gaussian smoothing, (b) T2-w MRI wavelet classifier (hT2w), (c) MRS classifier (hMRS), (d)
COD scheme involving integration of MRI mean intensity + MRS metabolic features (hInt), (e)
decision level integration (hIntd ), and (f) MaWERiC (hIntPCA) respectively. Locations shown in
red correspond to those identified by the classifiers as CaP while those shown in blue correspond
to metavoxels classified as benign. Note that the white outline in Figures 6.2(b)-(f) denotes
the spatial extent of CaP shown on the T2-w slice. Also note the high detection sensitivity and
specificity of CaP probability (Figure 6.2(f)) compared to other classifiers ( hT2w, hMRS , hInt,
hIntd ) under evaluation.

a higher accuracy for MaWERiC was observed across the other two classifiers (SVM

and PBT) as well. Table 6.4 shows the p-values of paired student t-tests conducted

over µAUC values for comparing statistical significant difference of MaWERiC against

all the other comparative feature extraction strategies (hT2w, hMRS , hInt, hIntd ), with

the null hypothesis being equal classification performance from MaWERiC when com-

pared to the other feature extraction strategies. Significantly superior performance for

MaWERiC (p < 0.05) was observed for all pairwise comparisons (hIntPCA - hT2w, hIntPCA -

hMRS , hIntPCA - hInt, hIntPCA - hIntd ). Table 6.2 shows the individual µAUC and µAcc val-

ues (obtained across 25 runs of 3-fold cross validation) using each set of texture features

(1st order statistical (ht2τ1), 2nd order statistical (ht2τ2), Gradient (ht2τ3) and Gabor
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(a) (b)

Figure 6.3: Box-and-whisker plot results of (a) AUC, and (b) accuracy obtained over 25 runs
of 3 fold cross validation across 36 studies for the different feature extraction strategies using a
RF classifier. Note that the red line in the middle of each box reflects the median value, while
the box is bounded by 25 and 75 percentile of AUC (a) and accuracy (b) values. The whisker
plot extends to the minimum and maximum values (obtained across all 25 runs) outside the box
and the outliers are denoted as the red plus symbol for different feature extraction methods.

(ht2w)), extracted from T2-w MRI across the three sets of classifiers (SVM, RF and

PBT). Except in the case of the PBT classifier, Gabor (ht2w) was found to outperform

the other first, second-order statistical and gradient texture features (ht2τ1 , ht2τ2 , and

ht2τ3) for both the RF and SVM classifiers.

6.6.2 Experiment 2: Comparing MaWERiC against peak integra-

tion/average MR intensities based COD

The qualitative results in Figure 6.2 and box-plots in Figure 6.3 suggest that MaW-

ERiC (hIntPCA) (Figure 6.2(f)) yields a higher detection accuracy compared to state-of-

the-art COD (hInt) (Figure 6.2(d)) and COI (hIntd ) (Figure 6.2(e)) strategies.

Table 6.3 demonstrates the quantitative results which suggest a significantly higher

CaP detection accuracy of MaWERiC, hIntPCA (µAUC = 0.89 ± 0.02, µAcc = 0.83 ±

0.03) compared to both COD, (µAUC = 0.66 ± 0.02, µAUC = 0.62 ± 0.02), and COI,

(µAUC = 0.85± 0.03, µAUC = 0.78± 0.03) integration strategies using a RF classifier.

MaWERiC results were found to be significantly better than the other comparative

feature extraction strategies (hT2w, hMRS , hInt, hIntd ) across the two classifiers (SVM

and PBT) as well.
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Classifier Feature Mean AUC Mean accuracy

PBT

Gabor 0.549± 0.019 0.545± 0.017
Gradient 0.560± 0.018 0.556± 0.012

1st order statistical 0.566± 0.013 0.554± 0.016
2nd order statistical 0.534± 0.016 0.538± 0.012

RF

Gabor 0.554± 0.112 0.546± 0.014
Gradient 0.547± 0.115 0.545± 0.014

1st order statistical 0.544± 0.011 0.537± 0.013
2nd order statistical 0.544± 0.011 0.537± 0.013

SVM

Gabor 0.513± 0.030 0.659± 0.013
Gradient 0.495± 0.038 0.499± 0.029

1st order statistical 0.493± 0.026 0.498± 0.027
2nd order statistical 0.504± 0.041 0.511± 0.033

Table 6.2: Mean AUC and accuracy values with standard deviation for different texture and
wavelet features obtained using PBT, RF and SVM classifier across 25 iterations of 3 fold cross
validation.

1 MRS (FMRS) PBT 0.78± 0.03 0.72± 0.02

2 T2w MRI (FT2w
PCA) PBT 0.54± 0.01 0.54± 0.01

3 COD (FInt) PBT 0.72± 0.03 0.67± 0.03

4 COI (FIntd ) PBT 0.82± 0.01 0.81± 0.03

5 MaWERiC(FIntPCA) PBT 0.88± 0.03 0.81± 0.03

6 MRS (FMRS) RF 0.77± 0.03 0.72± 0.02

7 T2w MRI (FT2w
PCA) RF 0.55± 0.02 0.54± 0.01

8 COD (FInt) RF 0.66± 0.02 0.62± 0.02

9 COI (FIntd ) RF 0.85± 0.03 0.78± 0.03

10 MaWERiC(FIntPCA) RF 0.89± 0.02 0.83± 0.03

11 MRS (FMRS) SVM 0.73± 0.01 0.76± 0.14

12 T2w MRI (FT2w
PCA) SVM 0.51± 0.03 0.65± 0.01

13 COD (FInt) SVM 0.68± 0.14 0.71± 0.08

14 COI (FIntd ) SVM 0.81± 0.22 0.77± 0.18

15 MaWERiC(FIntPCA) SVM 0.90± 0.24 0.84± 0.11

Table 6.3: Mean AUC and accuracy results of different feature extraction and classification
techniques used for comparing different methods in this study against MaWERiC across 25
iterations of 3 fold cross validation across three classifier strategies (PBT, RF, SVM).
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6.6.3 Experiment 3: Comparing PBT against SVM and RF classifiers

PBTs, SVMs, and RFs demonstrated similar AUC and accuracy results across all fea-

ture combination strategies (hT2w, hMRS , hInt, hIntd , hIntPCA). Both RF and SVM

demonstrated higher µAUC and µAcc for MaWERiC (hIntPCA) compared to PBT but the

results from all three classifiers for were not found to be statistically significantly dif-

ferent from each other. Although slightly higher µAUC and µAcc were obtained using

SVM classifier, RF was employed for MaWERiC due to its stable performance across

different classifier iterations. Results from SVM classifier were found to have a high

standard deviation across both accuracy (0.24 for SVM against 0.02 for RF) and AUC

values (0.11 for SVM against 0.03 for RF).

6.7 Discussion

To the best of our knowledge, MaWERiC is the first CDS that provides a system-

atic framework for quantitative combination of structural information from T2-w MRI

(imaging) with metabolic information from MRS (non-imaging) for improved CaP de-

tection. The few COI and COD based data integration techniques previously explored

in the literature [80, 83] are limited in applicability due to the ad-hoc approaches em-

ployed for overcoming dimensionality differences across modalities. For instance, in

[83], Simonetti et al. quantitatively combined MRI and MRS by directly concatenat-

ing features obtained from the two heterogeneous data sources. However the differing

dimensionalities of MRI, MRS features were not accounted for in this study, suggesting

that the classifier may have been biased towards the MRS features (8 MRS versus 4 MRI

features). Another approach for combining binary decisions, COI, makes an unrealistic

assumption of independence across the two data modalities, although complimentary

information is acquired simultaneously from the two or more sources about the same

disease. MaWERiC was evaluated on 36 1.5 T in-vivo MRS, T2-w MRI patient studies

on a per-voxel basis and results thus obtained were compared against 4 other feature

extraction strategies, using (i) MRS metabolic features, (ii) T2-w Gabor wavelet fea-

tures, (iii) a COD scheme involving integration of MRS metabolic features with mean
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Method MRS T2w MRI COI COD
MaWERiC 1.60× 10−12 4.06× 10−24 0.0017 5.62× 10−12

Table 6.4: p-values obtained by pairwise t-test for evaluating presence of statistically significant
differences in AUC for MaWERiC against the other 4 methods (Gabor MRI, Metabolic MRS,
COI and COD schemes) under evaluation using a RF classifier.

image intensity from T2-w MRI, and (iv) a COI scheme which combined the indepen-

dent classification results obtained from T2-w MRI and MRS. We also evaluated three

classifiers, SVM, PBT and RF, across all the aforementioned 4 strategies (uni-modal

MRI, MRS, COD and COI scheme) to identify the best classifier. MaWERiC was found

to significantly outperform all the other 4 feature extraction (individual MRS, T2-w

MRI) COD and COI strategies, for all 3 classifiers.

To overcome concerns of bias and over-fitting of the data, we iteratively divided 36

patient studies into training and testing sets via a three-fold cross validation scheme.

µAUC and µAcc values over 25 iteration runs were then reported for all 15 combinations

of feature extraction, classifier, and data fusion strategies (see Table 6.2). In the

following subsections, we discuss the detection results of MaWERiC with respect to

the other feature extraction, data fusion, and classification strategies considered.

6.7.1 Experiment 1: Comparing MaWERiC against uni-modal clas-

sifiers (T2-w MRI, MRS)

MaWERiC was found to significantly outperform a uni-modal classifier trained on Ga-

bor features for T2-w MRI. MaWERiC also outperformed a MRS uni-modal classifier

trained on clinically used metabolic MRS features. Our results were consistent with

several multi-modal integration studies [84, 125, 80, 126, 127, 128] which have sug-

gested that combining orthogonal, complementary pieces of information from different

modalities can improve classification accuracy compared to uni-modal data channels

[129, 130, 131, 132, 13, 18].

Our results demonstrate that MRS metabolite peak area and ratio features yield

better classifiers (at a meta-voxel level) compared to a Gabor texture based T2-w MRI

classifier. Our findings are consistent with [66] where µAUC of 0.68 was obtained using



61

T2-w MRI compared to µAUC of 0.80 obtained using MRS, the metabolic peaks having

been identified by visual inspection of 2 expert readers. In a related study [133], MRS

ratios of metabolite concentrations (µAUC=0.89) were shown to outperform visually

identified, hypo-intense T2-w MRI features (µAUC=0.85) for CaP detection on a total

of 65 patient studies. Note that in these studies the AUC evaluation was done on a

per patient basis, as opposed to a voxel-based evaluation, as in our work. Our findings

(Figure 6.3 (a)-(b)) suggest that T2-w MRI texture features alone may not be enough

to identify CaP signatures on the prostate. Our findings are also consistent with recent

1.5 T and 3T multi-parametric clinical studies [134, 135, 136] which reported sensitivity

(at the patient level) in the range of 0.45-0.55 and specificity in the range of 0.80-0.90

from T2-w MRI.

6.7.2 Experiment 2: Comparing MaWERiC against other Data fusion

Strategies

MaWERiC versus decision combination (COI)

MaWERiC outperformed a decision level combination scheme [80, 102] in terms of

µAUC and µAcc. The decision level classifier was obtained by combining the binary

class decisions (AND operation) from the individual uni-modal classifiers. Decision

level integration while helping to overcome the curse of dimensionality (since all the

input information is reduced to a scalar valued decision), tends to implicitly treat the

data channels as independent. More specifically, in case of T2-w MRI, MRS, data is

acquired simultaneously providing complementary (structural and metabolic) informa-

tion from each spatial location about the same disease. Decision-level fusion strategies

may thus be unable to exploit the synergy between these complimentary data streams.

By contrast, data level fusion strategies not only exploit the complementary informa-

tion spread across the different modalities, but are also able to leverage the cross-talk

between the data channels [82].
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MaWERiC versus data integration using metabolic MRS and MRI intensity

features (COD)

The only other work that we are aware of where MRI and MRS features were quantita-

tively combined at data-level has been for brain tumor detection [83]. However, in this

approach [83] MRS features (obtained via PCA, ICA and quantification) were directly

combined with 4 intensity features from multi-protocol MRI, possibly causing the clas-

sifier to be biased towards MRS features. Although MaWERiC was compared only

against the best performing COD strategy (quantification + MR intensities), one of 4

presented in [83], our superior results suggested that directly aggregating multi-modal,

heterogeneous data from very different sources without accounting for differences in

feature dimensionality and relative scaling, can adversely impact classifier performance

[82]. This is especially true if the constituent classifier features are high dimensional

or are unevenly scaled. The superior classifier accuracy of MaWERiC compared to a

COD meta-classifier trained using just T2-w MR image intensities and metabolic peak

area features (Figures 6.2(a)-(b)), may be attributable to the uniform scaling and data

representation provided by the MaWERiC framework.

Since the high dimensional data could be embedded into a reduced space of arbitrary

dimensions, we evaluated MaWERiC across different numbers of Eigen vectors, m ∈

{5, 10, 15, 20}; The MaWERiC classifier was found to consistently outperform the COD

classifier [83] across different values of m. m = 15 was chosen as the number of low

dimensional embedding vectors on which to project the high dimensional T2w MRI

and MRS features, since it accounts for up to 93% of the variance in the data. Note

that no significant differences in and for the MaWERiC classifier were observable for

, these values accounting for more than 93% of variance in the data. Figure 6.4

shows the variation in µAUC (y-axis) and µAcc (x-axis) of MaWERiC using a random

forest classifier across different values of MRS dimensions, from m = 5 to 40 (m = 40

captures 99.8% variance for MRS), with dimension for T2-w MRI fixed at m = 15

(captures 99.8% T2w MRI variance). As can be seen from Figure 6.4, the highest

AUC and accuracy was obtained when dimensions (m = 15) were same for both T2-w
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Figure 6.4: 3D Plot showing variation of AUC (y-axis) and accuracy (z-axis) values of MaW-
ERiC across different PCs (x-axis) for MRS (m is fixed as 15 for T2w MRI as it captures 98.8%
MRI variance). Note that the highest AUC and accuracy values were obtained when the same
number of dimensions were used for both T2- MRI and MRS at m =15.

MRI and MRS. It is important to note here that our choice of number of Eigen vectors

was based of maximizing classifier accuracy while using a minimal number of attributes,

based on the guiding principle of Occams razor [137].

6.7.3 Experiment 3: Comparing RF against SVM and PBT classifiers

The three classifiers considered in this study, PBTs, RFs and SVMs are all relatively

new, state of the art classifier ensembles that have been shown to be useful in different

medical imaging applications [138, 11, 67, 120, 110, 71, 72] . The advantage of these

classifier ensembles is that they are able to incorporate information from multiple chan-

nels and data sources easily. The RF classifier was employed as the ensemble of choice

within MaWERiC due to its improved and stable performance over SVM and PBT

classifiers (Table 6.3). The RF classifier is known to be able to reduce data variance

and hence is able to provide substantial performance improvement over other ensemble

classifier strategies [109]. RF classifiers have also shown to be relatively more stable
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across different levels of noise compared to other classifier ensembles [109].

It was observed that µAUC obtained via hIntPCA was statistically significantly different

from hIntT2w, hMRS , hInt and, hIntd across all three classifiers (Table 6.3), although

no statistically significant difference was observed across the 3 classifiers (results not

shown). These results suggest that the detection performance was more a function of

the choice of the feature set and/or fusion strategy (data or decision level), rather than

the choice of classifiers.

Although the results obtained via our MaWERiC data integration scheme signifi-

cantly outperformed a number of state of the art feature extraction and fusion strategies

for MRS and T2-w MRI, we also acknowledge a few limitations of our study: (1) the

spectra belonging to scale 3 (identified by the expert as being indeterminate) and voxels

identified as atrophic (A) were not considered for classification. We believe that spectra

classified as intermediate might provide some clinical insights about the disease specific

features, a topic which will be explored in future work. (2) Alternative wavelet-based

(apart from Haar and Gabor) and other feature extraction strategies (e.g. indepen-

dent component analysis (ICA) [71, 72]) were not considered. However, our choice of

Haar wavelets for MRS and Gabor wavelets for T2-w MRI was motivated by previous

demonstrations of their successful employment in building accurate classifiers for CaP

detection [67, 107]. (3) While PCA was employed to obtain a uniform, homogeneous

space for representation of the different modalities, newer NLDR methods [91, 139, 73]

have been shown to yield better low dimensional data representations compared to PCA

[73]. However, these NLDR methods are highly sensitive to the parameter selection and

selecting the optimal parameters for two modalities would have been a challenge. (4)

Ground truth for evaluation was delineated on a per-MRS voxel by an expert, after

considering the disease extent mapped on the radiological imaging from corresponding

histopathology. Another way of more robustly and accurately estimating spatial ex-

tent of disease on the MRI is by spatially co-registering ex vivo whole mount radical

prostatectomy sections with corresponding in vivo pre-operative MRI. Our group has

previously developed elastic registration algorithms for handling deformations between

ex vivo histology and pre-operative MRI [67]. However in this study, this strategy
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could not be leveraged due to the non-availability of digital pathology resources for

digitization of whole mount histology glass slides.
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Chapter 7

Quantitative Integration of Multi-parametric MRI:

Application to Prostate Cancer Grading

7.1 Overview

Figure 7.1 provides an overview of the hierarchical scheme that leverages SeSMiK-GE

for CaP detection and grading. In Step 1, a RF classifier is trained on the low dimen-

sional representation obtained via SeSMiK-GE to obtain a probability of each spatial

location on T2w MRI/MRS scene as being either cancer or benign. A probabilistic

pairwise Markov model (PPMM) algorithm [140] is then leveraged to impose spatial

constraints to the RF classifier result, yielding a lesion segmentation. CaP lesions iden-

tified in Step 1, in Step 2 are then further distinguished as high or low grade CaP via

the RF classifier trained on the SeSMiK-GE derived low dimensional representation of

the data. Our assumption is that by first localizing the CaP ROI, we can achieve better

discriminability between high and low grade CaP regions, as opposed to a non hier-

archical three-class classifier (i.e. attempting to directly distinguish between normal,

high and low grade CaP).

Figure 7.1: Flowchart showing the hierarchical classification strategy employed in this work for
CaP detection and grading. In Step 1, CaP ROI is identified using RF and PPMM classifier
trained on the SeSMiK-GE derived low dimensional data representation. In Step 2, CaP regions
identified in Step 1, are further discriminated as high and low grade CaP.
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7.2 Description of Semi-Supervised Multi Kernel Graph Embedding

(SeSMiK-GE)

In the following subsections, we describe the detailed mathematical formulation of our

SeSMiK-GE strategy. We first provide a brief overview of (1) kernel graph embedding,

(2) semi-supervised, and (3) multi-kernel learning strategies. We subsequently describe

how these different strategies are combined within the SeSMiK-GE framework for data

integration and constructing meta-classifiers.

7.3 Experimental Design

7.3.1 Data Description

A total of 29 1.5 Tesla (T) endorectal T2w MRI, MRS studies were obtained prior to

radical prostatectomy. The 29 1.5 T studies comprised a total of 960 CaP and 1365

benign metavoxels. Of the 29 studies, 12 studies were found to have high grade CaP with

188 low and 310 high grade CaP metavoxels. All of these studies were biopsy proven

prostate cancer patient studies that were clinically referred for a CaP MR staging exam

for improved therapeutic selection. All MP MR imaging and spectroscopy scans were

performed using the acquisition details provided in Section 6.1.1.

7.3.2 Manual Ground Truth annotation of voxels

For all the studies considered in this work, ex-vivo whole mount histological sections ob-

tained from radical prostatectomy specimens were available (Figure 7.2). The “ground

truth” CaP and grade extent on the MR imaging was manually delineated and graded

by an expert (JK) (more than 25 year experience in the field of MP MRI for CaP de-

tection and grading) by visually registering corresponding histological (Figure 7.2(a))

and radiological sections (Figure 7.2(b)); correspondence between sections having been

determined manually by visually determining anatomical fiducials (urethra, verumon-

tanum, large benign prostatic hyperplasia (BPH) nodules) on the histology and the

imaging. Having delineated the CaP extent on the MR imaging, the individual regions
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(a) (b) (c)

Figure 7.2: (a) Ground truth for CaP extent as defined through the histopathological analysis
of hemotoxylin and eosin stained tissue section. The histological CaP extent in Figure 7.2(a)
is then visually registered onto the corresponding T2w MRI (Figure 7.2(b)) and MRS sections
(Figure 7.2(c)) by an expert using histology as a visual reference.

were then graded based on the 5-point scale (Figures 6.1, 7.3). The class labels for

the individual spectral voxels, assigned via a combination of manual registration of his-

tology and MRI and subsequent visual inspection, were used as the surrogate ground

truth for CaP detection and grading on the MRI/MRS and employed for subsequent

training and evaluation of the SeSMiK-GE classifier.

Since digitized images of the radical prostatectomy histologic sections were not

available for this study (Figure 7.2(a) only represents one single illustrative example),

deformable image registration methods for spatially aligning ex-vivo histology and pre-

operative MRI [142, 143] could not be employed to more precisely map the extent of CaP

on to MRI. The 5-point scale (described in Chapter 6 Figure 6.1) used by the expert for

annotation purposes in this work has previously been used as surrogate ground truth

in several clinical papers for CaP evaluation in the absence of digitized whole mount

histology sections [144, 145, 146].

Annotations for High vs. low Gleason score

Of the labels that were annotated as CaP, spectra were further identified as being of

high or low grade (using a scale of 1 to 5). Figure 7.3 shows the five-point scale used to

annotate different grades of CaP by our expert spectroscopist (JK), (a) Gleason score 6

(3+3) (scale 1), (b) Gleason score 7 (3+4) (scale 2), (c) Gleason score 7 (4+3) (scale 3),

(d) Gleason score 8 (4+4) (scale 4), and (e) Gleason score 9 (>4+4) (scale 5). Again,

the voxels labeled (1, 2) were assumed to be low grade and voxels labeled (3, 4, 5) were
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Figure 7.3: Illustration of the five point scale used to annotate ground truth for each spectrum
as (a) Gleason score 5 (scale 1), (b) Gleason score 6 (scale 2), (c) Gleason score 7 (scale 3), and
(d) Gleason score 8 (scale 4), where increasing Gleason score reflects greater severity of CaP.

assumed to be high grade.

7.3.3 Feature extraction from MRI and MRS

Feature extraction from MRS

For each c ∈ C, F (c) = [fa(c)|a ∈ {1, ...U}], represents the MR spectral vector, re-

flecting the frequency component of each of U metabolites. The corresponding spectral

data matrix is given as F = [F1(c); F2(c), ...; Fn(c)] ∈ Rn×U where n = |C|, |C| is the

cardinality of C.

Feature extraction from T2w MRI

T2w MRI images were first corrected for bias field (due to the inhomogeneous endorectal

coil reception) using a post-processing correction strategy as given in [147]. 34 texture

features were then extracted for each metavoxel c ∈ C based on responses to various

gradient filters and gray level co-occurrence operators. These features were chosen

based on their previous demonstrated discriminability between CaP and benign regions

on T2w MRI [23]. Figure 7.4 shows an example of a texture feature (Figure 7.4 (b))

extracted from the original T2w MRI image (Figure 7.4 (a)) that captures some of

the subtle differences between low and high Gleason grade CaP regions, both of which
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Figure 7.4: (a) Ground truth for high (red arrows) and low grade (blue arrows) CaP extent on
a single T2w MRI section. (b) A grey-level texture feature for the corresponding section used
to illustrate subtle, yet existing texture differences for low and high grade CaP regions on the
same section.

appear as hypointense on the original T2w MRI image. A brief summary of T2w MRI

features extracted in this work is provided in Table 3.1.

Feature extraction for T2w MRI was performed in two steps. In Step 1, we calculated

the feature scenes Ĝu = (Ĉ, f̂u) for each Ĉ by applying the feature operators Φu, u ∈

{1, . . . , 34} within a local neighborhood associated with every ĉ ∈ Ĉ. 13 gradient

(Kirsch, Sobel, Directional filters), 8 first order statistical (Grey Level features with

window sizes, 3× 3, and 5× 5) and 13 Haralick features were extracted at each ĉ ∈ Ĉ.

In Step 2, pixel level features (obtained in Step 1) are re-sampled to a lower MRS

voxel level resolution. For each MRS voxel c ∈ C, a T2w MRI texture feature vector is

obtained by taking the average of the feature values within the corresponding metavoxel

as gu(c) = 1
|Rcd|

∑
ĉ∈Rcd

[
f̂u(ĉ)

]
. The corresponding T2w MRI feature vector is then

expressed as G(c) = [gu(c)|u ∈ {1, . . . , 34}],∀c ∈ C, and the MRI data matrix is given

as G = [G1;G2; ...;Gn] ∈ Rn×34. Note that T2w MRI and MRS are in implicit spatial

alignment with each other but re-sampling of the T2w MRI features is necessitated by

the resolution differences across the imaging and non-imaging MRI protocols.
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7.3.4 Hierarchical Classification of high grade CaP via MP SeSMiK-

GE signature

Random forest (RF) classifier

Detailed description of RF classifier is provided in Section 3.8.1 (Chapter 3). The final

class likelihood that c belongs to CaP, via the RF classifier, is obtained h(c).

Imposition of spatial constraints via Probabilistic pairwise Markov Random

Field (PPMM)

In a Bayesian framework, the restriction of contextual information to local neighbor-

hoods is called the Markov property, and a system of sites that obeys this property is

termed MRF [46]. Our group has previously presented a novel extension of MRF, called

probabilistic pairwise Markov random model (PPMM) that formulates Markov priors

in terms of probability densities, instead of the typical potential functions, facilitating

the creation of more sophisticated priors [140]. We modeled the local neighborhood

constraints of a CaP voxel existing close to another CaP voxel, using PPMMs based on

the assumption that a CaP voxel would have a higher probability of co-existing with

another CaP voxel compared to a benign voxel. PPMMs are applied to the output of

the RF classifier (h(c)) to obtain a spatially constrained classifier output, (h̃(c)), which

accurately delineates CaP presence using fused MP low dimensional representation ᾱ.

Algorithm for Hierarchical Classifier using SeSMiK-GE

Algorithm SeSMiK-GE is first called to obtain the fused MP T2-MRI/MRS represen-

tation FT2MRS = ᾱ for each c ∈ C. The algorithm for hierarchical classification of

high grade CaP HierarchHighGradeCaP is presented below.

Algorithm HierarchHighGradeCaP

Input: F , G, N , d, β̂ = [β̂1, β̂2]

Output: h̃(c), ĥ(c)

begin
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0. Obtain FT2MRS = SeSMiK-GE ([F , G, N , d, β̂])

1. Compute h(c) for each c ∈ C using RF

2. Apply PPMM to obtain h̃(c) for each c ∈ C

3. ρ = 0

4. while ρ ≤ 1

5. obtain γ(ρ) = [SN(ρ) + SP(ρ)]

6. ρ = ρ+ 0.1

7. endwhile

8. Obtain ν = arg maxρ[γ(ρ)]

9. A = {c|h̃(c) ≥ ν}, A ⊂ C, ν ∈ [0, 1]

10. ∀c ∈ A, compute ĥ(c) using RF

11. return h̃(c), ĥ(c)

end

In Step 0, fused MP T2w MRI/ MRS signature FT2MRS is obtained by calling

the SeSMiK-GE algorithm, which is subsequently employed to train a RF classifier to

obtain CaP probabilities, h(c), for each c ∈ C in Step 1. PPMM is applied in Step 2

on h(c) to obtain h̃(c) for every c ∈ C. In Steps 4 to 7, classifier detection sensitivity

(SN(ρ)), specificity (SP(ρ)), and the sum γ(ρ) = [SN(ρ) + SP(ρ)] are calculated at every

threshold ρ, ρ ∈ [0, 1]. The thresholds are performed in intervals of 0.1 to obtain 11

SN(ρ), SP(ρ), and γ values. In Step 8, ν is obtained as the threshold that maximizes γ

and is subsequently used in Step 9, to identify a subset of voxels, A ⊂ C, that have a

CaP probability greater than ν. All the voxels in A are then further distinguished, in

Step 10, as belonging to either high or low grade CaP using a RF classifier.

7.3.5 Implementation Details and Classifier Training

Parameter Selection for SeSMiK-GE

For the SSL module, 40% of the total training samples were randomly selected to

obtain W̃MRS and W̃MRI . For the MKL module, a Gaussian kernel was used to obtain
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KMRI and KMRS , and the corresponding weights β̂1 and β̂2 = (1 − β̂1), β1, β2 ∈ [0, 1]

that optimized CaP accuracy on 40% of the same training set (used for Ŵ ). The set

of Ŵ were learned using a hierarchical brute force strategy (see Section 4.2.3), and

subsequently used to obtain FT2MRS .

Classifier Training

Two independent cross validation strategies, leave-one-out (LOO) and three-fold cross

validation, were used for evaluation of CaP classifiers. In LOO, each classifier was

trained on 28 CaP studies, while one study was used for testing [76]. This process

was repeated until all 29 studies were classified once within a single run of LOO cross-

validation on a per voxel basis. Similarly, for three-fold-cross-validation, 29 patient

studies were divided into three sets such that two of the three sets (corresponding to

20 studies) were chosen for training the classifier, while the remaining set of 9 studies

was used for independent testing. This process was repeated until all 29 studies were

classified once within a single run of cross-validation. The three-fold randomized cross-

validation process was then repeated 25 times for different training and testing sets.

A total of 12 out of the 29 CaP patient studies were found to have high grade CaP.

Both LOO, and three-fold cross validation strategies were similarly independently used

for evaluation of high Gleason grade CaP classifiers over 12 patient studies. For LOO,

11 studies were used to training and 1 study was used for testing at a time, until all

12 patient studies were classified. For three-fold-cross-validation, 8 studies were used

for training and 4 for testing, until all 12 patient studies are classified within a single

cross-validation run. Three-fold-cross-validation was similarly repeated 25 times over

different training and testing sets for classifying patients with high Gleason grade CaP

on a per-voxel basis.

Performance Evaluation Measures

ROC curves representing the trade-off between CaP detection sensitivity and specificity

were independently generated for each of the classifiers considered in this work for both

leave-one-out and three-fold cross validation strategies as described in Section ??.
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7.3.6 Comparative Data Integration Strategies

In the following sub-sections, we evaluate and compare SeSMiK with other feature ex-

traction schemes used in the context of automated CaP detection for (i) individual

MRS [73], T2w MRI [23] modalities, (ii) a data integration (COD) scheme for com-

bining MRS with T2w MRI features, and (iii) a decision integration strategy where

the individual uni-modal classifier outputs are fused to obtain a combined classification

output [58]. A summary of all the comparative strategies used for CaP detection and

grading in this work is given in Table 7.1.

Uni-modal T2w MRI, MRS classifiers

The high dimensional MRS and T2w MRI feature vectors, F and G respectively, are re-

duced to corresponding low dimensional representations, FMRS , and FT2 using GE [73]

for each c ∈ C. FMRS and FT2 were used to train uni-modal T2w MRI, MRS classifiers,

hT2 and hMRS respectively. Similarly, h̃MRS and h̃T2 were obtained using a PPMM

classifier on hT2 and hMRS . Corresponding uni-modal grading classifiers for T2w MRI

and MRS were obtained as ĥT2 and ĥMRS .

Classifier combination (COI)

The independence assumption can be invoked to fuse hMRS and hT2 at each c ∈ C as

hIntD(c) = hT2(c)×hMRS(c). PPMM classifier was employed on the decision classifier

output hIntD(c) to obtain h̃IntD(c), and similarly, ĥIntD(c) was obtained for high grade

CaP classification via COI for each c ∈ C.

Data combination (COD)

A combined feature vector F Int(c) = [FMRS(c),FT2(c)] is obtained by concatenating

MRS and T2w MRI reduced Eigenfeatures for each metavoxel c ∈ C. A RF classifier

is then trained using F Int(c) to obtain the CaP meta-classifier hInt(c), followed by the

corresponding MRF classifier output as h̃Int(c). The corresponding high grade COD

classifier is obtained as ĥInt(c) for each c ∈ C.
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Index Feature extraction strategy CaP Classifier PPMM Grade classifier

1. MRS classifier hMRS h̃MRS ĥMRS

2. T2w MRI classifier hT2 h̃T2 ĥT2

3. Classifier combination hIntD = hMRS × hT2 h̃IntD ĥIntD

4. Data combination classifier hInt = [hMRS ,hT2] h̃Int ĥInt

5. SeSMiK-GE classifier hT2MRS h̃T2MRS ĥT2MRS

Table 7.1: Summary of different feature extraction and classifier techniques compared in this
work against the SeSMiK-GE classifier.

7.3.7 Experimental Evaluation

Experiment 1. CaP detection via SeSMiK-GE

We compared the performance of PPMM based SeSMiK-GE classifier (h̃
T2MRS

(c))

against each of the individual PPMM spatially constrained classifier outputs for T2w

MRI (h̃
T2

(c)), MRS (h̃
MRS

(c)) as well as COD (h̃
Int

(c)), and COI (h̃IntD(c)) classifiers

in accurately identifying CaP regions. This was done via (a) area under the ROC [150]

curve (ϕAUC), and (b) classification accuracy (ϕAcc) at the operating point on the ROC

curve.

Experiment 2. High grade CaP detection via SeSMiK-GE

ROC analysis across both LOO and three-fold cross validation was independently per-

formed to compare the performance of SeSMiK-GE in accurately identifying high grade

CaP (ĥ
T2MRS

(c)) against other classifier strategies (ĥ
T2

(c), ĥ
MRS

(c), ĥ
Int

(c), ĥIntD(c))

via ϕAUC and ϕAcc.

7.4 Results and Discussion

7.4.1 Experiment 1: CaP detection via SeSMiK-GE

Figure 7.5 (a), (c) show AUC results (ϕAUC) while Figure 7.5 (b), (d) show accuracy

results (ϕAcc) for LOO and three-fold cross validation across various feature extraction

and classifier strategies (h̃T2, h̃MRS , h̃Int, h̃IntD, h̃T2MRS) using box-and-whiskers

plots. The mean (ϕAUCµ ) and standard deviation (ζAUC) of AUC values, and classifier

accuracy (ϕAccµ ) at the operating point of the ROC curve were also recorded. A higher
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ϕAUCµ and ϕAccµ was obtained using PPMM based SeSMiK-GE (ϕAUCµ = 0.89 ± 0.07,

ϕAccµ = 0.84 ± 0.14) compared to the individual T2w MRI (ϕAUCµ = 0.54 ± 0.18, ϕAccµ

= 0.58 ± 0.20), MRS (ϕAUCµ = 0.61 ± 0.20, ϕAccµ = 0.58 ± 0.22), COD (ϕAUCµ = 0.64

± 0.22, ϕAccµ = 0.62 ± 0.18), and COI classifiers (ϕAUCµ = 0.62 ± 0.07, ϕAccµ = 0.45 ±

0.07) across different dimensions d ∈ {5, 10, 15, 20} (results reported for d = 15) using

a LOO cross-validation strategy.

Similar results were obtained using a three-fold cross validation strategy, with a

higher ϕAUCµ and ϕAccµ reported using PPMM based SeSMiK-GE (ϕAUCµ = 0.85 ± 0.02,

ϕAccµ = 0.84 ± 0.03) compared to the individual T2w MRI (ϕAUCµ = 0.57 ± 0.02, ϕAccµ

= 0.58 ± 0.01), MRS (ϕAUCµ = 0.76 ± 0.01, ϕAccµ = 0.67 ± 0.01), COD (ϕAUCµ = 0.77

± 0.01, ϕAccµ = 0.66 ± 0.02), and COI classifiers (ϕAUCµ = 0.64 ± 0.01, ϕAccµ = 0.51

± 0.01) across different dimensions. Note that although LOO-cross-validation strategy

yielded higher ϕAUCµ and ϕAccµ values, variance across ϕAUCµ and ϕAccµ was significantly

reduced with a three-fold cross-validation strategy.

CV strategy ϕAUC
h̃T2 − ϕAUCh̃T2MRS ϕAUC

h̃MRS − ϕAUCh̃T2MRS ϕAUC
h̃COD

− ϕAUC
h̃T2MRS ϕAUC

h̃COI
− ϕAUC

h̃T2MRS

LOO 1.87× 10−5 0.001 0.005 2.8× 10−6

3-fold 1.4× 10−7 1.4× 10−7 1.4× 10−7 1.4× 10−7

(a)
CV strategy ϕAcc

h̃T2 − ϕAcch̃T2MRS ϕAcc
h̃MRS − ϕAcch̃T2MRS ϕAcc

h̃COD
− ϕAcc

h̃T2MRS ϕAcc
h̃COI

− ϕAcc
h̃T2MRS

LOO 1.87× 10−4 6.09× 10−4 8.8× 10−4 4.17× 10−5

3-fold 2.02× 10−7 2.09× 10−4 2.09× 10−4 1.47× 10−7

(b)

Table 7.2: Table showing the p-values of statistical significance obtained using a pairwise
Wilcoxon signed ranked test across the two cross-validation (CV) strategies (LOO and 3-fold)
while comparing classifiers h̃T2 , h̃MRS , h̃Int, h̃IntD, with h̃T2MRS for (a) ϕAUC and (b) ϕAcc

at d = 15.

Figure 7.5 suggests that MP COD based data integration strategies (h̃Int, and

h̃T2MRS) yield higher CaP detection ϕAUC and ϕAcc as compared to uni-modal h̃T2

and h̃MRS classifiers [45, 24, 46] and a COI based data integration classifier. Table 7.2

shows the p values of statistical significance obtained using a non-parametric Wilcoxon

signed test [151] for comparing ϕAUCµ and ϕAccµ for h̃T2MRS against h̃T2, h̃MRS , h̃Int,

and h̃IntD across LOO and three-fold-cross validation strategies at d = 15. The p-value

was appropriately adjusted at p = 0.001 on account of multiple testing via a Bonferroni
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Figure 7.5: Box-and-whisker plot results of AUC (Fig. 7.5(a)) and accuracy (Fig. 7.5(b)) ob-
tained over 29 studies via a leave-one-out cross validation strategy for h̃T2 , h̃MRS , h̃Int, h̃IntD,
and h̃T2MRS . Fig. 7.5(c) and (d) shows the box-whisker-plots for three-fold cross validation
strategy over 25 cross-validation runs for AUC and accuracy respectively. Note that the red
line in the middle of each box reflects the median value while the box is bounded by 25 and 75
percentile of AUC (Fig. 7.5(a), (c)) and accuracy (Fig. 7.5(b), (d)) values. The whisker plot
extends to the minimum and maximum values outside the box and the outliers are denoted as
the red plus symbol for different feature extraction strategies.



78

test. It is worth noting that the results across different d ∈ {10, 15, 20} were found to

be consistent, where h̃T2MRS consistently significantly outperformed (p < 0.001) the

other classifiers across all reduced dimensions (results not shown). We believe that the

high sensitivity and specificity of SeSMiK-GE compared to the other data integration

strategies (COI and COD) is due to (a) combining and weighting individual kernel

contributions within the MKL formation, and (b) employing partial label information

for SSL which improves class differentiability.

Finally, it should be noted that employing PPMM classifier h̃T2MRS (ϕAccµ = 0.72±

0.16) (significantly improved CaP detection accuracy (∼20% improvement for d = 15)

over not imposing any spatial constraints hT2MRS (ϕAccµ = 0.89 ± 0.07). The im-

provement was consistent across h̃Int, h̃IntD, h̃MRS , and h̃T2 over both LOO and

three-fold-cross-validation, and resonates with similar findings in [46].

7.4.2 Experiment 2: CaP grading via SeSMiK-GE

Figure 7.6 shows qualitative results for the hierarchical classification strategy for iden-

tifying high grade CaP. Figures 7.6 (a), (d), (g) show the CaP and high grade CaP

ground truth as annotated by an expert. Yellow outline in Figures 7.6 (a), (d), (g) de-

fines the CaP extent while the black outline denotes the high grade CaP extent for three

different T2w MRI sections from three different patients. The corresponding probabil-

ity heat maps for CaP classification are shown in Figures 7.6 (b), (e), (h), where the

spatial locations shown in red were identified by the respective classifiers as having a

higher probability of CaP presence. Locations shown in blue were those identified as

having a higher probability of being benign by the SeSMiK-GE classifier. Within the

high probability CaP regions (red) in Figures 7.6 (b), (e), (h), a probability of high

grade CaP is further assigned, the corresponding probability heat maps for which are

shown in Figures 7.6 (c), (f), (i). Here, the spatial locations shown in red (Figures 7.6

(c), (f), (i)) were identified as having a higher probability of high grade CaP, while lo-

cations shown in blue were identified as having a higher probability of being low grade

using ĥ
T2MRS

. Note the high detection accuracy in accurately identifying CaP and

high grade CaP using our hierarchical classification strategy across all three T2w MRI
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.6: (a), (d) and (g) show three different T2w MRI sections with CaP ground truth (as
annotated by an expert) outlined in yellow, while the high grade CaP ground truth outlined in
red. Figures 7.6(b), (e) and (h) show the probability heat map results corresponding to CaP
classification on T2w MRI sections in (a), (d) and (g) respectively for three different T2w MRI
studies. Figures 7.6(c), (f) and (i) show the probability heat maps corresponding to high grade
CaP classification performed within the spatial locations identified as high probabilistic CaP
regions (shown in red) in Figures 7.6(b), (e) and (h) respectively. Note that locations shown
in red in Figures 7.6(b), (e) and (h) correspond to those identified by hT2MRS as CaP while

in Figures 7.6(c), (f) and (i) as those identified as high grade CaP by ĥT2MRS . Similarly the
spatial locations shown in blue in Figures 7.6(b), (e) and (h) correspond to spatial locations
classified as benign and as low grade CaP in Figures 7.6(c), (f) and (i).
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sections.

Figure 7.7 (a) shows ϕAUC while Figure 7.7 (b) shows ϕAcc values across various

feature extraction and classifier strategies (ĥT2, ĥMRS , ĥInt, ĥIntD, ĥT2MRS) for high

grade CaP using box-and-whiskers plots obtained via a LOO-cross-validation strategy.

Corresponding results for ϕAUC and ϕAcc obtained via a three-fold cross-validation

strategy are shown in Figure 7.7 (c) and (d) respectively. A higher AUC (ϕAUCµ =

0.84 ± 0.07) was obtained using SeSMiK-GE for classifying high grade CaP via the

hierarchical classification strategy, compared to the individual T2w MRI (ϕAUCµ = 0.54

± 0.13), MRS (ϕAUCµ = 0.59 ± 0.19), COD (ϕAUCµ = 0.62 ± 0.18), and COI classifiers

(ϕAUCµ = 0.61 ± 0.07), using a LOO cross-validation strategy. Table 7.3 shows the

p-values obtained by performing a paired non-parametric Wilcoxon test for comparing

ϕAUC obtained from ĥT2MRS with other classifier strategies (ĥT2, ĥMRS , ĥInt, ĥIntD)

using LOO and three-fold-cross-validation strategies at d = 15.

CV strategy ϕAUC
ĥT2

− ϕAUC
ĥT2MRS

ϕAUC
ĥMRS

− ϕAUC
ĥT2MRS

ϕAUC
ĥCOD

− ϕAUC
ĥT2MRS

ϕAUC
h̃COI

− ϕAUC
ĥT2MRS

LOO 2.3× 104 0.001 0.002 3.8× 104

3-fold 1× 104 0.001 0.001 2.1× 104

Table 7.3: Table showing the p-values of statistical significance using a pairwise Wilcoxon signed
test across the two cross-validation (CV) strategies (LOO and 3-fold) while comparing classifiers

ĥT2 , ĥMRS , ĥInt, ĥIntD, with ĥT2MRS for ϕAUC at d = 15.

Figure 7.8 shows the average ROC curves obtained using hT2, hMRS , hInt, hT2MRS

and h̃T2MRS for CaP versus benign classification (Figure 7.8(a)) and using ĥT2, ĥMRS ,

ĥInt, and ĥT2MRS for low versus high grade classification (Figure 7.8 (b)) for d = 15.

Again note the improvement in AUC using the MRF based SeSMiK-GE CaP classifier

(h̃T2MRS) compared to SeSMiK-GE CaP classifier with no spatial constraints (hT2MRS)

(Figure 7.8 (a)).

We attribute the high ϕAUC and ϕAcc obtained via ĥT2MRS to the hierarchical

classification of high grade CaP which systematically hones-in on the CaP region of

interest by eliminating other confounders that might otherwise affect classification [73].

The hierarchical scheme is especially relevant in cases where the morphologic differences

between the two classes are subtle. These differences may not be appreciable in the

presence of other object classes which first need to be eliminated (benign confounders)
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Figure 7.7: Box-and-whisker plot results of AUC (Fig. 7.7(a)) and accuracy (Fig. 7.7(b)) ob-

tained over 12 studies via a leave-one-out cross validation strategy for ĥT2 , ĥMRS , ĥInt, ĥIntD,
and ĥT2MRS . Corresponding results obtained via a three-fold-cross-validation are shown in
Fig. 7.7(c) and (d). Note that the red line in the middle of each box reflects the median
value while the box is bounded by 25 and 75 percentile of AUC (Fig. 7.7(a), (c)) and accuracy
(Fig. 7.7(b), (d)) values. The whisker plot extends to the minimum and maximum values out-
side the box and the outliers are denoted as the red plus symbol for different feature extraction
strategies.
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Figure 7.8: ROC curves for (a) CaP versus benign classification using hT2, hMRS , hInt,

hT2MRS , h̃T2MRS and (b) high versus low grade CaP using ĥT2, ĥMRS , ĥInt, and ĥT2MRS

for d = 15.

Figure 7.9: (a) High grade CaP ground truth (outlined in red) as annotated by an expert,
where label 2 = Gleason score 7 (3+4), and label 5 = Gleason score 9 (>4+4) spectra on a
single T2w MRI section. Figure 7.9(b) shows the corresponding classification result obtained by
thresholding the probability values at the operating point ν on MRS grid, where red corresponds
to high probability of high grade CaP and blue corresponds to high probability of low grade
CaP. Note the high detection sensitivity and specificity obtained via SeSMiK-GE in accurately
localizing high grade CaP region. Also note the elevated choline peak in all the metavoxels
identified as high grade (in red). Elevation in choline has clinically been shown to be correlated
with high grade CaP
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thereby allowing for the subtle differences to be accentuated. Our results are also

consistent with studies that have demonstrated a higher accuracy of high grade CaP

detection using MP MRI/MRS compared to individual protocols [34, 35, 36].

Figure 7.9 shows the classification result obtained for one of the T2w MRI/MRS

sections, subsequently plotted back onto the corresponding MRS grid, where the red

square represents the ground truth extent for high grade CaP. Figure 7.9 (b) shows

the corresponding classification result obtained via SeSMiK-GE on a MRS grid, which

demonstrates the high sensitivity and specificity obtained via SeSMiK-GE for high

grade CaP detection. Note that the spectra identified as low grade and high grade CaP

(in red) by the classifier appear to be qualitatively different in terms of the relative

concentrations of choline, creatine and citrate.
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Chapter 8

Quantitative Integration of MP-MRI: Application to

Evaluating Treatment Related Changes in Prostate

8.1 Overview

In this paper we present a novel MP quantitative data integration scheme for evaluating

pre-, post-RT related changes, that, (1) provides a common framework across pre-, post-

patient studies via registration, segmentation and classification modules, to overcome

the aforementioned challenges associated with pre-, post- data alignment, (2) accurately

quantifies post-RT imaging marker changes (“hotspots”) on a per-voxel level, on T2w

MRI, MRS, and DWI, and (3) intelligently combines “changes in imaging markers”

across individual MP-MRI modalities for accurately assessing pre-, post-RT changes

(“hotspots”), identified as, (a) successful treatment (CaP on pre-RT, no CaP on post-

RT), (b) new CaP foci (no CaP on pre-RT, CaP on post-RT) and (c) local recurrence

(CaP on pre-RT, CaP on post-RT but in a different location relative to the site of

treatment). These treatment changes are captured by differences in imaging markers

across different imaging modalities (T2w, MRS, DWI), and are combined by optimally

weighting contributions of each MP-MRI modality based on their ability to accurately

capture post-RT changes.

8.2 System Overview and Data Description

8.2.1 System Overview

Figure 8.1 presents an overview of our scheme illustrating the registration, segmenta-

tion, quantification and integration modules. In Module 1, T2w MRI, MRS and DWI

pre-, post-treatment are brought into alignment using a spatially constrained 3-D affine
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registration scheme [152], that accounts for changes in overall shape and size of the

prostate pre-, and post-RT. Module 2 involves accurate delineation of the prostate re-

gion of interest (ROI) on pre-, post-RT using a robust statistical shape model [153] that

is able to compensate for the loss of image resolution post-RT. In Module 3, a difference

map is generated for each of the individual T2w MRI, MRS and DWI protocols by tak-

ing an absolute difference of the corresponding imaging markers pre-, post-RT MRI on

a per-voxel basis. The difference maps thus obtained on each of these imaging markers

are then intelligently weighted based on their respective ability in capturing treatment

related changes to yield a weighted, combined MP-MRI imaging marker difference map

(Module 4).

Figure 8.1: Flowchart of the new strategy showing different modules, registration (Module
1), segmentation (Module 2), quantification of imaging markers (Module 3). The individual
imaging marker difference maps are integrated via a weighted combination scheme to yield an
integrated difference map, one that is more reflective of the disease specific changes, pre-, post,
RT (Module 4).
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8.2.2 Notation

We denote a pre-treatment T2w prostate MRI scene as Cpret2 = (C, fpret2 ), where fpret2 (c)

is the associated intensity at every voxel location c on a 3D grid C. MRS data cor-

responding to Cpret2 is obtained at a much coarser resolution, such that multiple voxels

are located within a single MRS voxel. To obtain a voxel based MRS representation,

we linearly interpolate acquired MRS information to a T2w MRI voxel resolution, thus

yielding the corresponding spectral scene Cpremrs = (C,Gpre), where Gpre(c) is the asso-

ciated MRS metabolic vector at every voxel c ∈ C (representing the concentrations of

different biochemicals, such as creatine, citrate, and choline). The DWI MRI scene is

similarly defined as Cpreadc = (C, fpreadc ), where fpreadc (c) is the associated ADC intensity at

every voxel location c on a 3D grid C (interpolated to a T2w MRI voxel resolution).

Post-RT T2w MRI prostate image scene, Ĉpostt2 , is registered to Cpret2 to yield the corre-

sponding registered T2w MRI scene (post-RT) as Cpostt2 = (C, fpostt2 ). MRS information

(interpolated to T2w voxel resolution) is transformed to yield Cpostmrs = (C,Gpost). DWI

image is similarly transformed to yield the corresponding registered DWI image as

Cpostadc = (C, fpostadc ).

8.2.3 Data Description

A total of 14 in vivo endorectal MP-MRI patient datasets were acquired at the Univer-

sity of California, San Francisco between 1998-2007. All patients underwent external

beam radiotherapy after initial MRI (1.5 Tesla, GE Signa, endorectal coil), with supple-

mentary, neo-adjuvant hormonal therapy. Post-RT, patients were reimaged via MRI (3

Tesla, GE Signa, endorectal coil). An expert spectroscopist labeled the spectral voxels

as CaP and benign on the MRI/MRS pre- and post-RT studies, which was used as

surrogate ground truth labels for CaP extent. Five out of the 14 studies included T2w,

MRS, and ADC maps (from DWI), while the remaining 9 comprised MRS and T2w

MRI alone. A total of 51 slices from the 14 patient studies (with T2w MRI and MRS

information, acquired between 1998-2002) with CaP (pre-RT) constituted Dataset 1,

and a total of 20 slices with CaP (pre-RT) from the 5 patients studies (with ADC,
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Treatment response Residual CaP
New CaP

Number of studies
occurrence

Successful treatment N N 5

Partially successful treatment Y N 3

Local recurrence
Y Y

6
N Y

Table 8.1: Different RT outcomes with corresponding effects on CaP presence and extent.

T2w and MRS information, acquired between 2002-2007) constituted Dataset 2. Based

on the pre-, and post-RT CaP label information, regions of definite treatment change

(“hotspots”) were defined on each of the 51 images for Dataset 1, and 20 images for

Dataset 2. These included regions of (1) successful treatment, (2) partially successful

treatment, and (3) local recurrence (detailed in Table 8.1).

8.3 Registration and Segmentation of Multi-parametric MR imagery

8.3.1 Registration of pre- and post-treatment MR imagery

Registration of Cpret2 to Ĉpostt2 is uniquely complicated by (1) changes in the overall shape

and size of the prostate gland (which is known to shrink, post-RT [39]), (2) differing

acquisition parameters, and (3) changes in imaging markers due to RT effects. We

attempt to address these challenges by employing a mutual information (MI) based 3D

registration scheme [152], comprising of following steps,

1. Post-RT MP-MRI data is first down-sampled to pre-RT image resolution. Bound-

ing boxes containing the prostate on Cpret2 and Ĉpostt2 are then manually selected.

2. A spatially constrained MI similarity measure is used to drive the affine transfor-

mation of Ĉpostt2 onto Cpret2 . Only those voxels of Cpret2 and Ĉpostt2 that fall within the

bounding box (selected in Step 1) are considered in the calculation of MI (chosen

for its robustness to non-linear intensity relationships [152]).

3. A 3D affine transformation with 12 degrees of freedom, encoding rotation, trans-

lation, shear, and scale, is implemented (as presented in [152]) to accurately align

the prostate between Cpret2 and Ĉpostt2 .
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Alignment of T2w and ADC maps is done based on available voxel sizes and locations

(automatically extracted from DICOM headers). In the case of post-RT ADC maps,

the 3D transformation from Step 3 is applied to map all the data into the pre-treatment

coordinate frame C (associated with Cpret2 ). However, alignment of T2w MRI and MRS

is done in 2D (since MRS, T2 are implicitly aligned pre-registration in 2D), by applying

the transformation obtained in Step 3 along the X and Y -direction to obtain Cpostmrs .

8.3.2 Automated segmentation of prostate capsule on T2w MRI data

This module utilizes a novel, fully automated Active Shape Model (ASM) scheme for

delineation of the prostate capsule on in vivo T2w MR imagery [153]. This technique,

developed by our group and presented in [153], leverages multi-protocol data as follows,

1. First, a texture-based SVM classifier is constructed to be able to classify voxels

within the prostate ROI.

2. A single midgland slice is selected from each test study. Corresponding MRS data

is identified as either prostatic or extra-prostatic via a replicated k-means spectral

clustering scheme [153]. This yields a bounding box of spectra from within the

prostate.

3. The SVM classifier from Step 1 is used to identify prostatic voxels within the

bounding box identified in Step 2, resulting in a boundary initialization.

4. The ASM transforms a known mean shape of the prostate (detailed in [153]) to the

boundary initialization from Step 3, resulting in the gland capsule segmentation

for this slice.

5. This segmentation is extended to the base and apex to yield a delineation of the

prostate ROI (as described in [153]) on Cpret2 , Cpostt2 as well as on the ADC map.
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8.4 Weighted combination of imaging marker difference maps for iden-

tifying treatment related changes post-therapy

8.4.1 Feature extraction for individual T2, MRS and DWI protocols

A difference map for each of the imaging markers, extracted from each of the individual

MR protocols (T2, MRS, DWI) is computed for every scene C, for every c ∈ C as,

∆i = |Cprei − Cposti |, (8.1)

where i ∈ {1, 2, ..., n} is the imaging marker evaluated, C is the 3D image scene associ-

ated with each imaging marker i, and n is the total number of imaging markers.

A. Structural (T2w): All T2w MRI images, pre-, post- RT, were first corrected for

bias-field and underwent intensity standardization [23]. A difference map (∆1) is then

calculated by taking an absolute difference (L1-norm) of T2w signal intensities across

pre-, post- RT image scenes at every c ∈ C, using Equation 8.1.

B. Metabolic (MRS): Kurhanewicz et al [42] have suggested that ratios of area under

the choline (Ach), creatine (Acr) and citrate peaks (Acit) are highly indicative of the

presence of CaP. However, only choline (Ach) and creatine (Acr) are considered post-RT,

due to the known absence of citrate [43]. We calculated Ach and Acr using a composite

trapezoidal rule within the pre-defined metabolic ranges on each spectrum, both pre-,

and post-RT. A ratio of Ach /Acr was recorded and used to obtain a difference map

(∆2) by taking a L1 norm of Ach/Acr pre-, and post-RT as illustrated in Equation 8.1.

C. Functional (ADC): DWI images were corrected for bias field and intensity standard-

ized pre-, post-RT. Equation 8.1 is then employed to compute an ADC difference map

(∆3) by taking an absolute difference of ADC signal intensities values across pre-, and

registered post- RT on a per voxel basis.

8.4.2 Generating a combined multi-parametric weighted map

Individual difference maps (∆1,∆2,∆3) obtained from T2w, MRS and DWI, allow for

quantification of the changes in imaging markers across each of the individual protocols.
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A MP-MRI weighted map can thus be obtained by leveraging each of the different

marker difference maps as,

Cmap =
n∑
i=1

αi ×∆i, (8.2)

where αi, i ∈ {1, 2, .., n} reflects the contribution of each of the individual n imaging

markers obtained via different MP-MRI protocols (T2w MRI, ADC, MRS) employed

simultaneously to accurately quantify treatment-specific changes on MP-MRI.

Optimization of weights:

Weights are obtained via a rigorous optimization of imaging marker difference maps

from a set of training images (D̃), and the learned weights are then assigned to the test

image to obtain D̂.

1. For each of the training images, D̃i, a binary mask, D̃θ
i , is created by thresholding

the intensity values between 0 and 1, such that D̃θ
i = D̃i ≥ θ for each i, i ∈

{1, ...n}.

2. Sensitivity and specificity values at each threshold θ, θ ∈ [0, 1] are recorded and a

ROC is obtained for each D̃i, for each i, i ∈ {1, ..., n}. Binary map at the operating

point of the ROC curve D̃ν
i for each i is recorded, where ν is the operating point

of the ROC curve.

3. D̃ν
i is then used to create a MP-MRI map as, D̃map =

∑n
i=1 αi × D̃ν

i , where

weights are such that
∑n

i=1 αi = 1, αi ∈ [0, 1].

Pre-RT appearance Post-RT appearance

T2w
low T2w signal intensity Hypo-intense regions, smooth texture

in peripheral zone No change in residual CaP regions

MRS
elevated levels of choline (Ach)/creatine (Acr) Nearly absent Acit, polyamines

reduced levels of citrate (Acit) Residual CaP has elevated Ach, Acr

DWI
significantly low ADC Residual CaP has increased ADC
compared to benign Residual CaP lower ADC

Table 8.2: Summary of qualitative changes in MP-MR imaging parameters pre- and post-RT,
and the corresponding quantitative features used in this work to characterize each of the marker
differences for different protocols.
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4. Positive predictive value (Φ) is recorded for different values of αi, α ∈ [0, 1] based

on the overlap of training MP-MRI image, D̃map, with respect to expert delineated

ground truth, DGT . The values of αi that maximize Φ in accurately identifying

treatment changes are obtained as:

{α̃1, ..., α̃n} = arg max
α1,...,αn

(Φ) (8.3)

5. The maximum likelihood estimate (MLE) of α̃i (mode of the distribution assuming

each α̃i is normally distributed) for each i, i ∈ {1, ..., n} across all training images,

α̂i, is then used to obtain the combined test image, D̂ =
∑n

i=1 α̂i × D̂i.

8.5 Results and Discussion

A leave-one-out cross validation strategy was used, where at each iteration, slices from

a single patient study were held out from testing, while the remaining slices were used

for training. The cross-validation process was repeated until all slices from all patient

studies are evaluated. During each run of cross validation, test image, D̂, is evaluated

via ROC analysis for threshold θ, θ ∈ [0, 1] based on overlap of thresholded binary image

with respect to the expert delineated ground truth labels, DGT , on a per-voxel basis.

8.5.1 Experiment 1: Quantifying changes in individual imaging mark-

ers post-RT

Figure 8.2 shows scaled absolute difference images of T2w intensities (Figure 8.2(c), (i)),

ADC values (Figure 8.2(d), (j)), ch/cr metabolites (Figure 8.2(e), (k)), and weighted

MP-MRI maps (Figures 8.2(f), (l)) for single 2D slices from two different patient studies.

The results were evaluated based on the overlap of ground truth labels (“hotspots”) on

a per-voxel basis. CaP on pre-RT is outlined in magenta, while the CaP on post-RT

is outlined in black. Note that ADC (Figure 8.2(d), (j)) appears to identify more true

positive regions (RT-changes) as compared to T2w MRI (Figure 8.2(c), (i)) and MRS

(Figure 8.2(e), (k)). MRS (Figure 8.2(e), (k)) appears to pick fewer false positives

associated with RT-related changes, as compared to ADC (Figure 8.2(d), (j)), and T2w

MRI (Figure 8.2(c), (i)) across the two slices.
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Method AUC Accuracy

T2w intensity map 49.6 ± 9.0 51.7 ± 7.0

ch/cr map 55.9 ± 20.0 55.2 ± 11.3

MP-MRI map 61.6 ± 7.5 63.0 ± 4.3

(a)

Method AUC Accuracy

T2w intensity map 54.4 ± 8.3 54.9 ± 7.8

ch/cr map 68.6 ± 10.3 67.5 ± 9.0

ADC map 70.8 ± 7.0 70.2 ± 10.2

MP-MRI map 73.2 ± 6.9 72.5 ± 8.0

(b)

Table 8.3: Average AUC and accuracy obtained via leave-one-out cross validation for quantify-
ing pre-, post-RT changes, obtained from T2w image intensity map, ch/cr map, ADC difference
map and the weighted MP map for, (a) Dataset 1 (T2w MRI and MRS) over a total of 14 T2w
MRI-MRS studies and, (b) Dataset 2 (T2w, MRS and DWI) over a total of 5 patient studies.
Note that Dataset 2 which was acquired later compared to Dataset 1 used a more optimized
set of MRI protocols, resulting in superior image quality.

Table 8.3(a) shows the mean AUC and accuracy for Dataset 1 across 14 patient

studies (with only T2w MRI and MRS data), while Table 8.3(b) shows the mean AUC

and accuracy obtained for Dataset 2 (with DWI, T2w MRI and MRS) for 5 patient

studies, obtained via a leave-one-out cross validation. It is worth noting that ADC

difference maps outperformed T2w MRI and MRS difference maps, with an AUC of

70.2%, compared to 67.5% for MRS and 54.9% for T2w MRI, in accurately quantifying

RT-related changes. The qualitative and quantitative results presented in this work

corroborate with the findings in [44] which suggests that difference in ADC values

might be an important imaging marker in evaluating pre-, post-RT changes.

8.5.2 Experiment 2: Quantifying changes via weighted combination

of MP-MRI

The results presented in Figure 8.2 and Table 8.3 suggest that MP-MRI map outper-

formed each of the individual imaging marker differences (∆1,∆2,∆3) across both the

datasets, in accurately quantifying treatment changes. The improved performance of

combined MP-MRI map clearly indicates the efficacy of optimal weighted combination

of imaging markers in identifying treatment specific changes pre-, post RT. It is also in-

teresting to note that a much higher AUC was obtained for Dataset 2 (AUC = 73.2%),
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as compared to Dataset 1 (AUC = 61.6%), when ADC was incorporated along with

T2w MRI and MRS to create the weighted MP-MRI map. This is not surprising as a

number of groups [154, 155, 156] have shown that that the inclusion of DWI in addi-

tion to the other MRI protocols, significantly improves CaP detection. Since Dataset

2 only comprised 5 patient studies, AUC values obtained via MP-MRI were not found

to be statistically significantly different compared to AUC values obtained from DWI

different maps using a paired student t-test.
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Figure 8.2: (a), (g) show pre-RT T2w MRI image with the pre, post-RT CaP labels delineated
in magenta (pre-RT CaP) and black (post-RT CaP) respectively. (b), (h) demonstrate the
corresponding registered post-RT T2w MRI image with the segmented prostate region shown
with the orange boundary. (c), (i) correspond to the scaled absolute T2w MRI image intensity
difference heat maps. (d) and (j) show the corresponding difference heatmaps obtained by
taking a difference of ADC values pre-, post- RT. Similarly, (e) and (k) show the heatmaps for
metabolic marker Ach/Acr, and (f) and (l) show the corresponding weighted MP-MRI maps for
two single slices from two different patient studies.
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Chapter 9

Concluding Remarks

In this thesis, we have presented a suite of novel feature extraction and data integration

strategies for quantitative integration of imaging and non-imaging data. Specific appli-

cations of this work were shown in the context of integrating multi-parametric MRI for

(a) prostate cancer diagnosis,(b) Gleason grading, and (c) evaluating radiation-therapy

treatment related changes in the prostate. The major goals accomplished in this work

include,

• Developing and evaluating novel data representation strategies to provide a com-

mon framework for data representation across imaging and non-imaging protocols.

• Theoretic and algorithmic development of two novel data integration strategies,

(1) Multi-modal Wavelet Embedding Representation for data Combination (MaW-

ERiC), and (2) Semi-Supervised Multi-Kernel Graph Embedding (SeSMiK-GE),

which overcome the differences in resolution and dimensionalities across hetero-

geneous multi-parametric data. MaWERiC assumes equal contributions across

the protocols, while SeSMiK-GE is a weighted data combination strategy, which

optimizes weights across the protocols depending on their diagnostic capabilities.

• Application of MaWERiC and SeSMiK for integrating structural and metabolic

information from MP MRI/MRS for (a) identifying high probability CaP regions,

and (b) further classifying the high probability CaP regions as being high or low

grade CaP. To the best of our knowledge, our work is the first application of a

computerized decision support classifier for identifying high grade CaP using MP

MRI.

• Developing and evaluating a MP-MRI map which optimally weights contributions
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from differences of individual imaging markers in accurately evaluating pre-, post-

RT prostate cancer via MP-MRI.

The C-LLE algorithm was introduced in Chapter 3, which aims to overcome the

limitations of traditional LLE by obtaining a stable low dimensional representation

of high dimensional data by integrating object adjacencies from across multiple low

dimensional unstable data projections. The spirit behind C-LLE, is rooted in the

classifier ensembles literature where multiple weak classifiers with high variance and

bias are combined to create a strong classifier with low bias and variance.

In Chapter 5, we demonstrated the excellent performance of C-LLE algorithm for

CaP detection on prostate MRS compared to ICA based peak detection scheme, PCA,

z-score, and traditional LLE. One issue that was not addressed in this work is the

intrinsic dimensionality at which to combine the multiple weak embeddings in C-LLE.

While, C-LLE is computationally more expensive compared to traditional LLE, it is

not computationally prohibitive except for very large or dense datasets. In future work

we will address some of these issues and also explore the applicability of C-LLE to other

classification problems.

In Chapter 4, two novel data integration strategies, MaWERiC and SeSMiK were

introduced.

MaWERiC is specifically geared towards quantitative integration of imaging and

non-imaging data. MaWERiC comprises of two transformation modules, (i) wavelet

transformation and (ii) principal component analysis which together provide a platform

for uniform and homogeneous data integration across modalities. The homogeneous,

low-dimensional representation of disparate data sources obtained via MaWERiC is

then combined in the Eigen space.

In Chapter 6, a three-fold cross-validation performed over 25 iterations and the

corresponding pairwise t-test on a total of 36 1.5 Tesla in-vivo T2-w MRI, MRS studies

demonstrated that the MaWERiC classifier significantly outperforms (a) either modal-

ity individually, (b) decision combination obtained by combining individual classifier

decisions from both modalities, and (c) a classifier combining metabolite peak area and
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ratio features from MRS and T2-w MR image intensities.

SeSMiK-GE is a slight improvement over MaWERiC in that it overcomes the dif-

ferences in resolution and dimensionalities across heterogeneous multi-parametric data,

while linearly combining different protocols, by leveraging (1) multi-kernel learning, (2)

semi-supervised learning, and (3) dimensionality reduction methods under a single uni-

fied framework. In Chapter 7, quantitative evaluation of the SeSMiK-GE classifier re-

vealed a significantly higher detection accuracy in identifying both CaP and high-grade

CaP regions as compared to (a) individual uni-modal T2w MRI, MRS modalities, (b)

decision combination obtained by combining individual classifier decisions from both

modalities, and (c) a classifier combining MRS features and T2w MR texture features.

In Chapter 8, we extended our integrated MP-MRI approach to optimally weighting

contributions from differences of individual imaging markers in accurately evaluating

pre-, post-RT CaP via MP-MRI. Different MRI protocols from pre- and post-RT MRI

scans were first affinely registered. Functional, structural, and metabolic difference

maps were then obtained individually using DWI, T2w, and MRS respectively, by

taking a scaled absolute difference of the imaging markers pre-, post- RT. A combined

weighted MP-MRI map is then created by leveraging differences across multiple imaging

markers. Quantitative evaluation against expert delineated ground truth of treatment

changes, yielded a high AUC and accuracy for the weighted MP-MRI map as compared

to individual imaging markers. We believe that such an accurate per-voxel based quan-

titative evaluation of treatment changes pre-, post-RT will have a high clinical impact

in monitoring treatment effectiveness, and could be used to modify treatment regimen

early, in cases of studies with new foci or recurrence of CaP.

To conclude, MP-MRI holds great potential as a screening tool for prostate cancer

diagnosis, prognosis, and has more recently been found to be effective in identifying

treatment related changes in the prostate. However, there is still a great need of com-

puterized decision support tools to optimize and quantify imaging signatures obtained

across the different MP-MRI imaging protocols to assist radiologists in making a more

informed and improved disease diagnosis. The methods developed in this work will thus
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have significant translational and clinical benefits towards improved, early CaP diag-

nosis, prognosis and early identification of treatment related changes in the prostate.
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Chapter 10

Future Work

In future work, we intend to extend the strategies developed in this work to more gener-

alizable imaging and non-imaging, multi-scale, multi-modality protocols for character-

izing different diseases. Below we more specifically describe the future work associated

with each of the goals presented in this work. Towards goals 1 and 2, we developed

two novel strategies MaWERiC and SeSMiK for combining T2w MRI and MRS for

prostate cancer diagnosis and prognosis. Both SeSMiK and MaWERiC are developed

to provide a general framework for potentially integrating any combination of hetero-

geneous data modalities, independent of scales and dimensions. In future work, we

will look at applying and extending MaWERiC and SeSMiK in the context of other

biomedical applications such as integration of -omics with imaging data for improved

disease characterization.

The SeSMiK methodology described in this dissertation , to the best of our knowl-

edge, is the first CDS strategy for distinguishing high versus low grade CaP patients,

and could have far reaching implications for CaP patients trying to decide on the appro-

priate treatment option. The ability to identify low grade disease in-vivo might allow

CaP patients to opt for active surveillance rather than immediately opting for aggres-

sive therapy. Recent studies have demonstrated a correlation between ADC values and

Gleason grade [157]. While DWI was not considered while implementing SeSMiK in this

work, the SeSMiK-GE framework could be easily extended to accommodate additional

imaging protocols. We are currently working on extending SeSMiK to intelligently

combining T2w MRI, MRS and ADC maps for predicting Gleason grade in-vivo.

We additionally demonstrated the utility of MP-MRI signatures (T2w, MRS and

DWI) for evaluating treatment-related changes in CaP patients who opt for IMRT as
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a treatment modality. In future work, we aim to incorporate additional MR protocols

(such as DCE MRI) to further improve efficacy of quantitative treatment evaluation

using MP-MRI. We also aim to evaluate our quantitative scheme for other treatment

modalities such as proton beam therapy and brachytherapy to quantitatively compare

the different treatment modalities in accurately quantifying treatment related changes.

The work presented here should set the stage for ultimately developing image based

predictors for early treatment response and potentially long-term patient outcome. Ad-

ditionally, the framework could be applied in the context of clinical trials for evaluating

the comparative effectiveness of different prostate cancer treatment modalities.
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Chapter 11

Appendix

Abbreviation Description
MRI Magnetic Resonance Imaging
MP-MRI Multi-parametric MRI
CaP Prostate Cancer
MaWERiC Multimodal Wavelet Embedding Representation for data Combination
SeSMiK Semi-Supervised Multi-Kernel
RT Radiation Therapy
MRS Magnetic Resonance Spectroscopy
CDS Computerized Decision Support
DWI Diffusion Weighted Imaging
ADC Apparent diffusion coefficient
IMRT Intensity Modulated Radiation Therapy
COD Combination of Data
COI Combination of Interpretation
DR Dimensionality Reduction
MKL Multi-kernel Learning
NLDR Non-linear dimensionality reduction
PCA Principal Component Analysis
ICA Independent Component Analysis
LLE Locally Linear Embedding
C-LLE Consensus- Locally Linear Embedding
MLE Maximum Likelihood Estimation
GE Graph embedding
SVM Support Vector Machine
PBT Probabilistic Boosting Tree
RF Random Forest classifier
PPMM Pairwise Probabilistic Markov Model
SSDR Semi-supervised dimensionality reduction
SSGE Semi-supervised graph embedding
LOO Leave one out
CV Cross validation
IMRT Intensity modulated radiation therapy

Table 11.1: List of abbreviations used in this dissertation.
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Symbol Description

F data matrix

ηh high-pass filter

ηl low-pass filter

Hh high-filter coefficients

Ll low-filter coefficients

M dimensionality of spectrum

z(c) z-score at every c ∈ C
SLLE(c) low-dimensional embedding vector obtained via LLE

Sκ(c) low-dimensional embedding at κ

ΦB Texture feature operator

H Co-occurrence matrix

Vt weak clustering at iteration t

V̂ stable clustering

κ Neighborhood parameter

φ(c,Sk) weak predictor

Sk Bootstrapped training set

φBag(c) Strong bagged classifier

Ŝ(c) stable consensus embedding

FT2w Gabor feature vector for T2w MRI

FT2τ1 non-steerable Gradient T2w MRI feature vector

FT2τ2 first order statistical T2w MRI feature vector

FT2τ3 Haralick T2w MRI feature vector

FT2t T2w feature vector FT2t= [FT2w, FT2τ1 , FT2τ2 , FT2τ3 ]

FMRS Metabolic vector FMRS =[Ach, Acr, Acit, Ach/Acr, Ach+cr/Acr

FMRSw MRS wavelet feature vector

FT2w
PCA T2w MRI Eigen feature vector obtained via PCA on FT2w

FMRSw
PCA MRS Eigen feature vector obtained via PCA on FMRSw

FInt Combined feature vector FInt = [FT2w,FMRS ]

FIntPCA Wavelet PCA based MaWERiC feature vector

Ĉ 3D MRI scene

C 3D MR spectral scene

Ĉ 3D grid of MRI voxels

C 3D grid of metavoxels

ĉ Voxel location in Ĉ, ĉ ∈ Ĉ
c A metavoxel in C, c ∈ C
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Symbol Description

gu(c) mean feature value at metavoxel c

G Undirected weighted graph

K Kernel matrix

φ Pairwise kernel mapping

Fm Original data matrix for protocol m

F(c) Feature vector at metavoxel c

D High dimensional feature space

d Low dimensional feature space

D Diagonal weight matrix

L Laplacian matrix, L = D −W
n Number of data points

y Output embedding in original space

W Similarity weight matrix

α Output embedding in kernel space

λ Eigenvalues

ωl class label for point l, ω ∈ {0, 1}
N Neighborhood parameter for SSDR

µAUC mean classification AUC

µAcc mean classification accuracy

W̃m Modified weight matrix for modality m

M Number of modalities/kernels

βm weight for kernel m, β ∈ [0, 1]

Ach Area under choline peak

Acr Area under creatine peak

Acit Area under citrate peak

D̂ Combined diagonal matrix

K̂ Combined kernel matrix

Ŵ Combined weight matrix

KMRI MRI kernel matrix

KMRS MRS kernel matrix
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Symbol Description

f a(c) MRS signal intensity at c

a Frequency index

Ĝ T2w MRI feature scene

Φu Feature operator, u ∈ {1, ..., 34}
δ Optimization parameter

σ Scaling parameter

β̂ Subset of optimal weights [β̂m]

ᾱ Fused low dimensional representation

FMRS MRS feature vector for each c ∈ C
FT2MRS Low dimensional SeSMiK-GE feature vector

G Average T2w feature vector

GT2 Low dimensional T2w MRI feature vector

hρ(c) Binary CaP classifier output at ρ

h̃ρ(c) Binary MRF classifier output at ρ

ĥρ(c) High grade CaP classifier output at ρ

ν Threshold for hierarchical classification

Θ Operating point of ROC curve

Cpreq pre-treatment MRI scene, q ∈ {T2,mrs, adc}
Ĉpostq post-treatment MRI scene, q ∈ {T2,mrs, adc}
Cpostq registered post-treatment MRI scene, q ∈ {T2,mrs, adc}

Table 11.2: List of commonly used notation and symbols in this dissertation.
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