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ABSTRACT OF THE DISSERTATION

Countable Borel Quasi-Orders

by Jay Williams

Dissertation Director: Simon Thomas

In recent years, much work in descriptive set theory has been focused on the Borel
complexity of naturally occurring classification problems, in particular, the study of
countable Borel equivalence relations and their structure under the quasi-order of Borel
reducibility. Following the approach of Louveau and Rosendal in [25] for the study of
analytic equivalence relations, we study countable Borel quasi-orders.

We are largely concerned in this thesis with universal countable Borel quasi-orders,
i.e. countable Borel quasi-orders above all other countable Borel quasi-orders with re-
gard to Borel reducibility. We first establish that there is a universal countable Borel
quasi-order, using a Feldman-Moore-type result for countable Borel quasi-orders and an
argument similar to that of Dougherty, Jackson, and Kechris in [5]. We then establish
that several countable Borel quasi-orders are universal. An important example is an
embeddability relation on descriptive set theoretic trees. This is used in many of the
other proofs of universality.

Our main result is Theorem 5.5.2, which states that embeddability of finitely gener-
ated groups is a universal countable Borel quasi-order, answering a question of Louveau
and Rosendal in [25]. This immediately implies that biembeddability of finitely gen-

erated groups is a universal countable Borel equivalence relation. Although it may
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have been possible to prove this only using results on countable Borel equivalence re-
lations, the use of quasi-orders seems to be the most direct route to this result. The
proof uses small cancellation theory. The same techniques are also used to show that
embeddability of countable groups is a universal analytic quasi-order.

Finally, we discuss the structure of countable Borel quasi-orders under Borel re-

ducibility, and we present some open problems.
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Chapter 1

Introduction to Countable Borel Equivalence Relations

and Quasi-Orders

Mathematicians often work to classify the objects of their study up to some notion of
equivalence, for example classifying finitely generated groups up to isomorphism, or
unitary operators on infinite-dimensional Hilbert space up to unitary equivalence. De-
scriptive set theory gives us tools to compare the relative complexity of many naturally
occurring classification problems throughout mathematics.

In this thesis, we are particularly interested in the complexity of classifying finitely
generated groups up to biembeddability. In this case, it is more natural to study
embeddability of finitely generated groups, which is a quasi-order and not an equiva-
lence relation. Previously, in [25], Louveau and Rosendal studied the class of analytic
quasi-orders to prove results about the analytic equivalence relations which arise by
symmetrizing them. Following their approach, we introduce and study the class of
countable Borel quasi-orders. Not only is this a natural way to study the complexity of
the equivalence relations which arise from these quasi-orders, such as biembeddability
of finitely generated groups, but also this class of relations is interesting in its own right.

The rest of this chapter introduces the concepts mentioned above in greater detail.
After setting out some of the basic definitions used in descriptive set theory, the use
of descriptive set theory to study classification problems and how they are related
is explained in more detail. This is followed by a discussion of the countable Borel
equivalence relations. Finally there is a section on quasi-orders and how they fit into
the descriptive set-theoretic framework. The precise statements of the results of this

thesis can be found in Chapter 2.



1.1 Descriptive set theory basics

Descriptive set theory provides a framework for the study of classification problems from
throughout mathematics. The core of descriptive set theory is the study of “definable”
subsets of Polish spaces. A Polish space is a separable topological space which can be
equipped with a compatible complete metric. Examples of Polish spaces include R and
R™ with their standard topologies, [0,1] with the subspace topology, {0,1} (written
2%} with the product topology, and the p-adics Qp with their usual topology.

A subset of a Polish space X is Borel if it is a member of the smallest o-algebra
containing the open sets of X, and analytic if it is a continuous image of a Borel set.
Note that every Borel set is analytic, although the converse is not true. These collections
of sets will be sufficient for the purposes of this thesis.

We will also need the notion of a standard Borel space, a measurable space (X,S)
for which there is a Polish topology 7 on X that gives rise to S as its Borel o-algebra.
Obviously every Polish space equipped with the induced Borel o-algebra is a standard
Borel space. It can be shown that every Borel subset Y of a standard Borel space (X, B)

is a standard Borel space when equipped with the Borel sets
BlY={ANnY | A€ B}.

Note that the Polish topology placed on Y is not necessarily the subspace topology
which it inherits from X. For example, open intervals in R are standard Borel spaces,
but are not complete in the subspace topology.

If (X,Bx), (Y,By) are standard Borel spaces, we call f: X — Y Borel if for every
Borel set U C Y, f~1(U) is a Borel subset of X. This is equivalent to requiring that
the graph of f is a Borel subset of X x Y. It follows that if f: X — Y is Borel and a
bijection then f~1:Y — X is Borel, as graph(f~1!) is a Borel subset of Y x X. In this
case f is said to be a Borel isomorphism. It is a remarkable theorem of Kuratowski
that every uncountable standard Borel space is Borel isomorphic to R. (See Theorem

15.6 in [22].) For more background on descriptive set theory, see [22] or [34].



1.2 Classification problems and equivalence relations

Many collections of mathematical objects may be viewed as forming a Polish space X,
and then a classification problem corresponds to understanding an equivalence relation
E on X. For example consider the problem of classifying the subsets of N up to
recursive isomorphism, written =;. Recall that a function from N to N is recursive if
it is computable by a Turing machine, and sets A, B C N are said to be recursively
isomorphic if there is a recursive permutation 7: N — N such that 7(A) = B. The
set P(N) may be identified with the Polish space 2V in the obvious way. Recursive
isomorphism is then an equivalence relation on 2N, which may be viewed as a subset of
2N % 2N Note that =; is U,, graph(f,), where the f,: 2% — 2N are the maps induced
by the recursive permutations of N. As each f,, is continuous, their graphs are closed,
and so =; is a Borel subset of 2V x 2N, This is a general phenomenon; many of the
equivalence relations corresponding to natural classification problems, when viewed as
subsets of the appropriate product spaces, are either Borel or analytic. We call such
equivalence relations Borel or analytic.

Classifying the objects in X up to the equivalence relation £ amounts to finding a

set of complete invariants I and a map ¢: X — I such that
rEr <= c(x) = c(2).

This is the same as finding an injective map ¢’: X/E — I, where X/FE is the quotient
space corresponding to E. If this is all that we require, then classification is trivial
but useless. Most interesting examples of Borel equivalence relations have 280 distinct
equivalence classes. By the Axiom of Choice we may assign each equivalence class a
unique real number, but this classification is not useful if we have no idea what the

assignment looks like.

1.3 Borel reductions

In order to avoid such difficulties, we restrict ourselves to more explicit classification

maps. Borel sets and maps can be thought of as being in some sense explicit, and



avoiding the “pathologies” of the Axiom of Choice. For example, every Borel set of
reals is Lebesgue measurable and has the property of Baire, and every Borel map is
Baire measurable. So we require our classification maps to be Borel.

An ideal classification scheme for an analytic equivalence relation E on a space X
would be a Borel map ¢: X — R, assigning each E-class a unique real number. If £
admits such a classification, then FE is said to be smooth. Finding such a classification
scheme is not always possible, since there are non-smooth equivalence relations. For

example, define Fy on 2N by
rEyy <= INeN Vn>N (z(n)=y(n)).

In other words, Ej is eventual equality of infinite binary sequences. Suppose f: 2 — R
is a Borel map such that = Eyy = f(z) = f(y). Then basic category or measure
arguments can be used to show that there must exist o, 8 € 2V such that o £ and
fla) = f(B), meaning f does not give a complete classification for Fj.

This leads one to consider different types of invariants. We can use objects identified
up to some equivalence relation to classify other objects up to an equivalence relation.

This gives us a natural way to compare the complexity of various equivalence relations.

Definition 1.3.1. Suppose that E, F are Borel (or analytic) equivalence relations on
the standard Borel spaces (X, Bx), (Y, By) respectively. Then we say E Borel reduces

to F, written E <g F, if there exists a Borel map f: X — Y such that for all x,2’ € X
rEr < f(x)F f(2').

Wewrite E<g Fif E<p F and F £ E. Wewrite E ~g F if E <p F and F <p F,

and say that E and F are Borel bireducible.

A Borel reduction can be seen as an explicit assignment of complete invariants from
the quotient space Y/F to the objects in X. This means that if we have a classification
scheme for the objects in Y up to F-equivalence, we can use the Borel reduction to
turn it into a classification scheme for the objects in X up to E-equivalence. In light

of this, if £ <p F', then we consider F' to be at least as complicated as FE.



One well-known example of these more general invariants is the classification of rank
one torsion-free abelian groups due to Baer in [3] using sequences of elements from
N U {oco}. Here two groups are isomorphic if and only if they are assigned sequences
which eventually agree, and always agree where they equal co. It is easy to see this is
an equivalence relation on such sequences.

Let C be a collection of equivalence relations. Then F is universal for C if E € C and
F <p E for every F € C. A universal equivalence relation for C can be thought of as
being as complicated as possible among all equivalence relations in C, lending it special
significance. There may be several equivalence relations in C which are universal, but
the definition easily implies that they are the same up to Borel bireducibility.

Thus far the only collections of equivalence relations that we have mentioned are the
collections of all Borel equivalence relations and all analytic equivalence relations. It is
a result of H. Friedman and L. Stanley in [9] that there is no universal Borel equivalence

relation. In fact they prove something more:

Theorem 1.3.2. Suppose E is a Borel equivalence relation on a Polish space X. Let

[z]E denote the E-equivalence class of x and define E¥ on XN by

(#n) EY (yn) <= {[#nlE}tnen = {[yn]E}nen.
Then E1 is Borel and E <g E7.

On the other hand, there is a universal analytic equivalence relation. This is due to
Becker and Kechris in section 3.5 of [4], and relies on the existence of what are known
as universal analytic sets. There are several natural examples of universal analytic

equivalence relations, including:

e Bi-embeddability of countable graphs. [25]
e Isometric bi-embeddability between Polish metric spaces. [25]

e Isomorphism of separable Banach spaces. [8]



1.4 Countable Borel equivalence relations

One class of equivalence relations of particular interest in this area is the class of
countable Borel equivalence relations. Here a Borel equivalence relation is said to be
countable if all of its equivalence classes are countable. Some simple examples are
equality on R, eventual equality of infinite binary sequences, recursive isomorphism of
sets of natural numbers, and isomorphism of finitely generated groups. (We will define
the space of finitely generated groups in section 3.2.)

Many countable Borel equivalence relations arise in practice as the orbit equivalence
relations of Borel actions of countable groups. Let G be a countable group acting in a

Borel way on a Polish space X. Then the orbit equivalence relation Eé( is defined by
tEiy <= (3geq) g-z=y.

It is easy to see that the first three equivalence relations listed in the previous paragraph
can be realized as orbit equivalence relations of Borel actions of suitable countable
groups. However, Turing equivalence =r of sets of natural numbers is a countable
Borel equivalence relation for which there is no obvious countable group G such that
=7 coincides with E(Z;N. Nonetheless, we have the following result of Feldman and

Moore [7]:

Theorem 1.4.1. If E is a countable Borel equivalence relation on the Polish space X,

then there is a countable group G which acts on X in a Borel way such that E = Eé(

In [5], Dougherty, Jackson, and Kechris used the Feldman-Moore Theorem to show
that there is a universal countable Borel equivalence relation. There are several natural

examples of such an equivalence relation.

e The shift equivalence relation on subsets of [y, the free group on 2 generators,
written E. (Two subsets A, B of a group G are shift equivalent if there is some

g € G such that gA = B.) [5]

e The conjugacy equivalence relation on subgroups of Fg, or even on subgroups of

groups embedding Fo. [39], [11], [2]



e Isomorphism of finitely generated groups. [39]

e Arithmetic equivalence of subsets of N. [27]

1.5 The structure of countable Borel equivalence relations under <p

There has been a great deal of research concerning the structure of the countable Borel
equivalence relations under <p. Let A(X) denote the equality relation on X. If we
let n denote a discrete n-element space, then n is Polish and A(n) is a countable Borel
equivalence relation. Similarly A(N) is a countable Borel equivalence relation on N.
Clearly
A(l) <p A(2) <p A(3) <p ... <p A(N).

By a result of Silver [32], if E is any Borel equivalence relation, either £ <p A(N)
or A(R) <p E. Again it is clear that A(N) <p A(R). Thus A(R) is an immediate
successor to A(N) under <p.

Recall the definition of Ejy from section 1.3. Perhaps more surprising than Silver’s

theorem is the following result of Harrington, Kechris, and Louveau in [15]:
Theorem 1.5.1. Suppose that E is a Borel equivalence relation. Then either
E SB A(R) or Eo SB E.

We saw in section 1.3 that A(R) <p Ey. Thus Ej is an immediate successor to A(R)
under <p among the Borel equivalence relations, and so also among the countable Borel
equivalence relations. As previously mentioned, there are also universal countable Borel
equivalence relations such as E,,, the shift equivalence relation on subsets of Fy. By

an argument of Slaman and Steel [33], Ey <p E, and hence our picture so far is
A(R) <p Ey <p Fx.

For some time, it was not known if the countable Borel equivalence relations were
linearly ordered by <pg, or how many countable Borel equivalence relations there were.
This question was settled in 2000 by Adams and Kechris in [1], where they show there
are 2% countable Borel equivalence relations up to Borel bireducibility, and that the

structure of the corresponding quasi-order is quite complicated.



Theorem 1.5.2. There is a map A — E4 assigning to each Borel subset A C 2N an

equivalence relation E4 such that Ay C Ay < Ea, <p Ea,.

The proof of this result relied on the Zimmer Cocycle Superrigidity Theorem [40],
which implies that certain orbit equivalence relations remember information about the
groups that created them. Since the Adams-Kechris result, many examples of countable
Borel equivalence relations intermediate between Ey and E,, have been found, often
using superrigidity theorems. For example, let =, denote the isomorphism relation on
torsion-free abelian groups of rank n. The result of Baer mentioned earlier shows that
~~p Ey. Thomas showed in [35] that =, <p%, ;1 for all n, establishing that there
was a natural strictly increasing countable chain of equivalence relations between Ej

and F.

1.6 Special classes of countable Borel equivalence relations

A Borel equivalence relation F' is hyperfinite if there is an increasing sequence F; C Fy C
F5 C ... of finite equivalence relations (i.e. equivalence relations with every class finite)
such that F = U, F,,. Clearly every hyperfinite Borel equivalence relation is countable.
It is also easy to see that Ej is hyperfinite. In fact, Dougherty, Jackson, and Kechris [19]
showed that every non-smooth hyperfinite countable Borel equivalence relation is Borel
bireducible with Ejy. This is notable because there are several conditions equivalent
to hyperfiniteness, but not obviously so. For example, in the early 80’s Slaman and
Steel [33] showed that FE is hyperfinite if and only if F is induced by a Borel action of
Z. Since then, a great deal of work has been done to expand the collection of groups
for which it is known that their Borel actions always induce hyperfinite equivalence
relations. In particular, Gao and Jackson have shown in [13] that every Borel action of
a countable abelian group induces a hyperfinite Borel equivalence relation. For example,
define E. on RT by

rE.y < z/ycQt.

This is induced by a Borel action of Q% and hence must be hyperfinite by the Gao-

Jackson result, although this fact is far from obvious.



Let X be a Polish space. A Borel graph on X is a graph with vertex set X whose
edge set I' C X x X is Borel. We identify the graph with its edge set. A countable Borel
equivalence relation E on X is treeable if there is an acyclic Borel graph I' C X x X
for which the connected components of I' are precisely the equivalence classes of E.
Every hyperfinite equivalence relation is treeable, as one can use the fact that E arises
from a Borel Z-action to show that it is possible to associate a discrete linear order
to each equivalence class in a Borel way, and together these form an acyclic Borel
graph. Jackson, Kechris, and Louveau showed in [19] that there is a universal treeable
equivalence relation E,.7, and that Fy <p FE.r < F. In particular there are
non-hyperfinite treeable equivalence relations. Hjorth went on to show in [18] that
there are 280 distinct treeable equivalence relations up to Borel bireducibility. In fact,
Hjorth showed that there are 280 treeable equivalence relations which are pairwise
incomparable with respect to Borel reducibility, although his proof did not produce
any explicit examples of incomparable treeable equivalence relations. This remains an
open problem.

A common thread through the analysis of all of these types of equivalence relations
is the importance of various properties of the corresponding group actions, and the
proofs often involve tools and results from ergodic theory and related fields, such as the
superrigidity results mentioned earlier. Most of these techniques only apply in the case
of a free Borel action of a countable group GG on a standard Borel space X. Recall that

a group action is free if
VgeGVxeX (g-x=x—g=e).

A countable Borel equivalence relation F on a Borel set X is free if it is induced by a free
Borel action of a countable group on X. A Borel equivalence relation F' is essentially
free if there is a free countable Borel equivalence relation E such that F <g FE.

All of the treeable equivalence relations are essentially free. However, in [38],
Thomas showed that the class of essentially free equivalence relations does not admit

a universal element, and so in particular F is not essentially free. In fact, he proved
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2%0 other equivalence relations

essentially free

EooT

treeable

Ey <+ hyperfinite

|
A(R) and below

Figure 1.1: The countable Borel equivalence relations under <p

there are 280 inequivalent essentially free non-treeable equivalence relations and 2%0 in-
equivalent non-essentially free equivalence relations. Thus the picture of the countable
Borel equivalence relations looks like figure 1.1 (modeled after a figure in section 9.5

of [21]).

1.7 Quasi-orders

A quasi-order is a binary relation which is reflexive and transitive. Every quasi-order
can be symmetrized to create an associated equivalence relation, i.e. if () is a quasi-

order, then there is an associated equivalence relation Fg defined by

rEgy &= zQy ANyQu.
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We call Eg the symmetrization of (. Many naturally occurring equivalence relations
arise most naturally by symmetrizing quasi-orders in this way.

For example, biembeddability of countable groups is most naturally seen as the
symmetrization of the quasi-order of embeddability of countable groups. As another
example, recall the notions of Turing reducibility <7 and Turing equivalence =7 on 2N,
Here if 2,y € 2N, then <7 y if there is some Turing machine which can compute the
digits of z, given an oracle for the digits of y. Then by definition =7 is E<,..

As with equivalence relations, many quasi-orders can be viewed as Borel or analytic
subsets of standard Borel spaces, and the notion of Borel reducibility can also be defined

for quasi-orders.

Definition 1.7.1. Suppose that Q is a Borel (or analytic) quasi-order on a standard
Borel space (X,Bx) and Q' is a Borel (or analytic) quasi-order on a standard Borel
space (Y, By). We say that Q is Borel reducible to Q', written Q <p Q’, if there is a
Borel function f: X =Y such that

2Qy = [f()Q f(y)

We can once again think of <p as capturing a notion of relative complexity, so
if @ and R are quasi-orders and @ <p R, then we can think of R as being at least
as complicated as ). We can define Borel bireducibility and universality for a class of
quasi-orders C as before. Quasi-orders which are universal for some class of quasi-orders
often symmetrize to equivalence relations which are universal for a closely related class

of equivalence relations. This is due to the following lemma.

Lemma 1.7.2. Suppose F' is an equivalence relation on X and Q is a quasi-order on

Y. If F <pQ, then F <p Ey.
Proof. Suppose f: X — Y is a Borel reduction from F' to @. Then

f@)Qfly) <= zFy

~— yFz

— fy)Q[f(x)
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Thus f is in fact a reduction of I’ to Eg. O

In [25], Louveau and Rosendal showed there is a universal analytic quasi-order <, ;.
By the last lemma, and the fact that every analytic equivalence relation is an analytic

quasi-order, this means that F< is a universal analytic equivalence relation.

Louveau and Rosendal went on to present several natural examples of universal
analytic quasi-orders, generally coming from embeddability notions. This explains why
many of the universal analytic equivalence relations listed above are bi-embeddability
relations. The connection between bi-embeddability relations and analytic equivalence
relations was further explored by S. Friedman and L. Motto Ros in [10].

Louveau and Rosendal also looked at several other classes of quasi-orders, most
notably K, quasi-orders; i.e. quasi-orders which are countable unions of compact sets.

There is a universal K, quasi-order, which gives rise to a universal K, equivalence

relation. Some examples include

e Embeddability of locally-finite combinatorial trees. [25]

e The quasi-order Q;FDQ(’];Q) defined on subsets of Fo by

ACpi B < (3g€Fy) gACB [25]

e Surjectability of finitely-generated groups. [37]

In this thesis, we will largely be concerned with countable Borel quasi-orders. Here a
quasi-order () defined on a Polish space X is said to be countable Borel if () is Borel when
viewed as a subset of X2 and for every x € X, the set of predecessors of z, {y | yQz}, is
countable. Clearly if @) is a countable Borel quasi-order, then the associated equivalence
relation Fg is also countable Borel. There are several natural examples of countable
Borel quasi-orders. For example, if A, B C N, then A is I-reducible to B, written
A <y B, if there is a one-to-one recursive function f: N — N such that f~!(B) = A.
As there are only countably many recursive functions, 1-reducibility is a countable Borel
quasi-order. So is Turing reducibility <7 and many of the other standard computability-

theoretic reducibilities. In addition, the embeddability relation on the space of finitely
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generated groups is a countable Borel quasi-order. We will see many other countable

Borel quasi-orders throughout this thesis.



14

Chapter 2

Precise Statement of Results

We will begin by discussing the work of Louveau and Rosendal on analytic quasi-orders
in more detail. They begin by proving that there is a universal analytic quasi-order, but
the proof gives no real indication of what such a quasi-order might look like. They next
find a universal analytic quasi-order with a simple combinatorial description. Finally,
they use this to establish that several quasi-orders from various areas of mathematics
are universal analytic quasi-orders.

Most of these universal analytic quasi-orders are given by an embeddability relation
for some space of mathematical structures. Louveau and Rosendal noted that in many
cases, if the embeddability relation is restricted to structures which are finitely gener-
ated or locally finite in some sense, then it becomes K, or compact. In many of these
cases, the restricted quasi-orders are universal for the corresponding class of quasi-
orders. This led Louveau and Rosendal to conjecture that embeddability of finitely
generated groups, which we will write <¢,,, was a universal K, quasi-order. (There is
a formal definition of the Polish space of finitely generated groups and =, in chapter
3.) Although the conjecture as stated is false, a slight modification of this conjecture
is true, as we will prove later in the thesis.

To see that the stated conjecture is false, first observe that <., is a countable
quasi-order, since a finitely generated group has only countably many finitely generated
subgroups. Thus biembeddability of finitely generated subgroups is a countable Borel
equivalence relation. However, it is impossible for a countable Borel equivalence relation
to be a universal K, equivalence relation. One reason for this is the following theorem of
Kechris and Louveau in [23] regarding the equivalence relation E; on (2V)Y of eventual

equality of sequences of reals.
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Theorem 2.0.3 (Kechris-Louveau). Suppose that G is a Polish group with a Borel

action on the standard Borel space X. Then E1 £p Eg;{

In particular, along with the Feldman-Moore Theorem this implies that 7 does not
Borel reduce to any countable Borel equivalence relation. As Ej is a K, equivalence
relation, it follows that a countable Borel equivalence relation cannot be a universal K,
equivalence relation. Thus it is not possible for <., to be a universal K, quasi-order.
We will prove instead that <, is a universal countable Borel quasi-order. Following
Louveau and Rosendal, we will first show that there exists a universal countable Borel
quasi-order, and then later deduce that <,, is also universal.

Unless otherwise noted, all of the results mentioned in this chapter are due to the

author, and their proofs will be presented in chapter 5.

2.1 Finding a universal countable Borel quasi-order

Before we can show that <, is a universal countable Borel quasi-order, we first show
that such a quasi-order exists. There is no analog of a universal analytic set to take
advantage of in this case, and so we must use a different approach. As mentioned in
section 1.5, the existence of a universal countable Borel equivalence relation relies on

the theorem of Feldman and Moore, and so we begin by establishing a similar result.

Theorem 2.1.1. If X is a countable Borel quasi-order on the standard Borel space X,

then there is a monoid M which acts on X in a Borel way such that
rxy <= (ImeM)z=m-y.

Although to the author’s knowledge, this result is not in the literature, it is a
straightforward application of the well-known Lusin-Novikov theorem, and should per-
haps be considered as folklore. It is proven in section 5.1. Thus every countable Borel

quasi-order comes from the Borel action of a countable monoid.

Definition 2.1.2. For every standard Borel space X and countable monoid M, the

corresponding canonical Borel action of M on XM s defined by (m - f)(s) = f(sm)
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form,s € M and f € XM. We denote the corresponding quasi-order by -45\(4, .e. for
figex™,

fx5g9g <= BmeM) f=m-g.

To see that this is an action, let m,n € M and f € X™. Then

as desired.

Definition 2.1.3 (The quasi-order <,). Let M,, be the free monoid on countably many

generators. Then define <, to be 4?\2.

Suppose that M is a countable monoid acting on a standard Borel space X. This
defines a quasi-order < by

rYy < r=m-y.

Every countable monoid M is a homomorphic image of M,,. Suppose that f: M, — M

is such a homomorphism. Then we can define an action of M, on X by
m-z = f(m)-x.

This defines the same quasi-order as the M-action, so every countable Borel quasi-order
actually comes from an action of M,. Once this is established, it is straightforward to

prove the next theorem.
Theorem 2.1.4. <, is a universal countable Borel quasi-order.

Unfortunately <, is difficult to work with, and so we follow the approach of [5] to

obtain a simpler universal countable Borel quasi-order.

Theorem 2.1.5. Let My denote the free monoid on 2 generators, and 2 = {0,1}. Then

4%\42 18 a universal countable Borel quasi-order.
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Note that if M is in fact a group, then -4@ is the equivalence relation E]\)f[ Indeed,
EI%Q is the same as F,, the universal countable Borel equivalence relation mentioned
earlier. In the case of a group G, Eé can be identified with the orbit equivalence relation
of the shift action of G on P(G). For monoids which are not groups, we must be more
careful. Let m € M and f € 2. In general, if g = m - f, then the values of g only
depend on the values of f on some subset of its domain. For this reason, 4?\42 is not
quite as simple as it first appears. This leads us to consider alternative quasi-orders.

In descriptive set theory, a tree on X is a set T C X <N such that if t € T, and s is
an initial segment of ¢, then s € T. We write s C t if s is an initial segment of ¢, and
we write st for the concatenation of s and ¢. If X is a countable discrete space, then
Tr(X), the space of trees on X, is a closed subspace of 2% <N, and so is a Polish space.
One can identify M, with the complete binary tree 2<V, and doing so leads us to the

following quasi-order.

Definition 2.1.6. Given a countable discrete space X, the quasi-order -43?66 on the
space of trees on X, Tr(X), is given by T <% T if there exists u € X<N such that

T=T

u’

where T, = {v € XN |u"v € T'}.
In section 5.2 we will prove the following:
Theorem 2.1.7. <5 is a universal countable Borel quasi-order.

With this quasi-order, we have finally arrived at a universal countable Borel quasi-
order which is easy to describe and work with. This will make it easier to prove that

other countable Borel quasi-orders are universal.

2.2 Some group-theoretic universal countable Borel quasi-orders

Consider Eo,, the universal countable Borel equivalence relation induced by the shift
action of Fo on P(F3). We have seen that this is the same as the quasi-order 4112,2, and
so our universal quasi-order 4?\/‘,2 is a natural modification of F,, simply moving from
a group action to the analogous monoid action.

At this point, it is natural to turn our attention to other quasi-orders which can be

seen as modifications of F., and hope to arrive at a universal quasi-order as we did
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before. The most obvious generalization is to look at the quasi-order g%(’];z) on P(Fs)
defined by

A Q;FDQ(’];Z) B <= (3g€cF,) gACB.

Replacing the C symbol on the right-hand side of the definition with the = symbol
gives F. Unfortunately the above quasi-order is clearly not countable, and in fact has
been shown to be a universal K, quasi-order (in [25]). As explained earlier, a universal
K, quasi-order is more complex than any countable Borel quasi-order; and so we must

generalize in another way, which leads us to the following quasi-order.

Definition 2.2.1. If G is a countable group, then <& is the countable Borel quasi-order

on P(G) defined by
A<¢B < (GQq,....9n€G) A=gBnN...Ng,B.
In section 5.3 we will show
Theorem 2.2.2. -4?2 is a universal countable Borel quasi-order.

Given a countable group G, the space Sg(G) of subgroups of G is a standard Borel
space, on which G acts by conjugation. The orbit equivalence relation of this action,
which we will write E.(G), is Borel. In [39], Thomas and Velickovic showed that E.(IF3)
is a universal countable Borel equivalence relation, essentially by coding F+, into E.(FF2).
Recall that a subgroup H of a group G is said to be malnormal if gHg™' N H = {1}
for all g € G\ H. If H is a malnormal subgroup of G then it is easily seen that
E.(H) <p E.(G). It follows from the Thomas and Velickovic result that if G is a
countable nonabelian free group, then E.(G) is a universal countable Borel equivalence
relation.

As we have the quasi-order 4?2 which is analogous to F.,, we might expect to
be able to use a similar coding to find a new universal countable Borel quasi-order.
Rather than attempt to adapt the coding of Thomas and Velickovic, we will use a

simpler coding of Gao [11], which he used to prove the following result.

Theorem 2.2.3 (Gao). If G = K x H, where K has a nonabelian free subgroup and H

is nontrivial cyclic, then E.(G) is a universal countable Borel equivalence relation.
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We consider the following countable Borel quasi-order:

Definition 2.2.4. Let G be a countable group. Then <CG is the countable Borel quasi-

order on Sg(QG) defined by
Ag<§B <~ (dg1,...,9n € G) A:nggl_lﬂ...ﬂgntgl.

In section 5.3 we will use a straightforward adaptation of the argument in [11] to

prove:

Theorem 2.2.5. Suppose that K is a countable group containing a nonabelian free

<E*H s q universal countable

subgroup and that H is a nontrivial cyclic group. Then

Borel quasi-order.

2.3 Group embeddability

One can view <€ as a type of embeddability relation, while the other universal quasi-

orders that we have seen so far do not relate as clearly to embedding notions. Thus to
show that =<,, is a universal countable Borel quasi-order, it is most natural to attempt
to show that <t2ree <B <em-

Given a tree T € Tr(2), our general strategy is to create a finitely generated group
G with subgroups corresponding to the trees T}, for w € 2<N. We will start with two
generators and then add other relations to this group according to the nodes present in
T. The idea is to add relations which restrict the possible embeddings between these
“tree-groups”. We will use the results of small cancellation theory, which is discussed
in chapter 4, in order to choose appropriate relations.

Before we prove anything about <,,, which will be the focus of section 5.5, we will
first discuss embeddability of countable groups, which we write as C¢,. By removing
the restriction that the groups we work with should be finitely generated, we are allowed
more freedom with regards to our construction, and the ideas we use when working with
<em can be seen more clearly. At the same time, removing this restriction means that
Cgp is an analytic quasi-order, rather than a countable Borel quasi-order.

In [25], Louveau and Rosendal showed that embeddability of countable graphs is a

universal analytic quasi-order. In section 5.4 we will use small cancellation techniques
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to create countable groups whose relations encode countable graphs in such a way that

embeddability of countable graphs reduces to E¢p, establishing the following theorem.

Theorem 2.3.1. Cgy, is a universal analytic quasi-order.

Emboldened by our success, we will use the same ideas to show that —437”66 <B <em-
The combinatorial details of the construction will be considerably more involved since

we can only work with finitely many generators. Thus we will prove

Theorem 2.3.2. <., is a universal countable Borel quasi-order.

2.4 The structure of countable Borel quasi-orders under <p

As every countable Borel equivalence relation is a quasi-order, we know the structure
of the countable Borel quasi-orders is quite complicated, thanks to the result of Adams
and Kechris. However, this is not a satisfying answer to the question, since it completely
ignores the asymmetric countable Borel quasi-orders.

Given a countable Borel equivalence relation E on a standard Borel space X with
a Borel linear order <, define E(<) to be E N <. Note that since any two uncountable
Polish spaces are Borel isomorphic, we can put a Borel linear order on any Polish
space X, for example by using a Borel isomorphism between R and X. Clearly E(<)
is an asymmetric countable Borel quasi-order (unless E is just equality on X, since

(A(X))(<) is simply (A(X)).). Note that

E()<pF(<) = E<pF

and so if F(<) and F (<) are Borel bireducible, then so are £ and F. Thus by the

result of Adams and Kechris we have the following theorem:
Theorem 2.4.1. There are 28 quasi-orders of the form E(<) up to Borel bireducibility.

Every E(<) symmetrizes to equality, i.e. the equivalence relation Fp <) is equality.
Consequently, it would be nice to find examples of countable Borel quasi-orders which
are not universal and do not symmetrize to a smooth countable Borel equivalence rela-
tion. A modest goal would be to find a quasi-order which symmetrized to a nonsmooth

hyperfinite Borel equivalence relation.
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The shift action of Z on P(Z) induces an equivalence relation, written Ez, which is
Borel bireducible with Ej, since every Borel Z-action induces a hyperfinite equivalence
relation. Recall our definition of <§ in section 2.2, and let E¥ denote the symmetriza-

tion of <7. In section 5.6 we will prove

Theorem 2.4.2. EZ = Fj,

Thus <7 is a countable Borel quasi-order which is not universal and does not sym-
metrize to a smooth countable Borel equivalence relation. Let Eg be the equivalence re-
lation induced by the shift action of G on P(G). It is not true in general that EX = Eg,

and we will provide an explicit example of a group where the two equivalence relations

differ.

2.5 Organization of this thesis

In chapter 3, we will discuss the space of finitely generated groups and the space of
countable groups. We will show that the first is a Polish space and that the second
is a standard Borel space. We will also show that embeddability of finitely generated
groups is Borel, while embeddability of countable groups is analytic.

In chapter 4, we will discuss the basic results of small cancellation theory, and give
a few examples of its use in proving results related to group embeddings.

In chapter 5 we will present proofs of all of the results mentioned in this chapter, as
well as related lemmas, corollaries, etc. We will also discuss some of the open problems

in this area.
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Chapter 3

Spaces of groups

There are two spaces of groups which appear in this thesis: the space of countable
groups and the space of finitely generated groups. Although the finitely generated
groups form a Borel subspace of the space of countable groups, for technical reasons we
will not be working with them as a subspace. Instead we will use a construction due to
Grigorchuk in [14]. We will also show that <., is a countable Borel quasi-order, and
that Cgp is an analytic quasi-order. We will start with the space of countable groups,

which is simpler to describe.

3.1 The space of countable groups

When dealing with countable groups, we may always assume that the underlying set is

N. Let G be such a countable group. Then the multiplication table of G is the set
og = {(k,l,m) eN* | kol=m}.

Thus each countable group may be identified with a subset of N3. The collection of

subsets of N® which correspond to multiplication tables is
Gp = {x € P(N?) | the group axioms hold for '}

and this is easily seen to be a Borel subset of P(N3?). Thus Gp is a standard Borel

space.

3.1.1 Embeddability of countable groups is analytic

Let I(N) denote the set of injections from N to N. Recall that NV has the product

topology that comes from giving each copy of N the discrete topology. In this topology,



23

I(N) is a closed subset of NN and so is a Polish space when given the subspace topology.

If 2 € P(N3), f -z is the function defined by

f-x(a,b,c) = z(f(a), f(b), f(c)).
Let C¢;, denote the quasi-order of embeddability of countable groups, i.e. for G, H € Gp,
GCgp H <= G embedsin H
<~ JfelIlN) (G=f-H)
Let I' C I(N) x Gp x Gp be defined by
(fiz,y) el = z=f-y
We will show that I' is Borel. If = # f -y, then there is some (a, b, ¢) such that

y(f(a), f(b), f(c)) # x(a, b, c).

Suppose for example y(f(a), f(b), f(c)) =1 and z(a,b,c) = 0. Then define

V= A{f} x{z [ 2(a,b,c) = 0} x {x [ z(f(a), f(b), f(c)) = 1}-

If we give I(N) the subspace topology inherited from NN and Gp the subspace topology
inherited from 2N3, then V is open. It follows that in this topology the complement of I'
is open and so I' is closed. The Borel sets of Gp as a standard Borel space coincide with
the Borel sets of Gp given the subspace topology, so I' is a Borel subset of the standard
Borel space I(N) x Gp x Gp. Finally, Cg), is the projection of I' onto its second two

coordinates, and so it is analytic.

3.2 The space of finitely generated groups

There are two equivalent ways to define the space of finitely generated groups.

A marked group (G,S) is a group G along with an ordered list of generators
S = (s1,...,8n). If S contains n elements, then we say that (G, S) is marked by n
elements. The list of generators need not be canonical or minimal in any sense, and
may include repetitions or even the identity of G. Two marked groups (G, (s1,...,5y))
and (G, (s],...,s))) are identified if the map sending s; +— s}, s2 > s, etc. extends

to an isomorphism. We call such an isomorphism a marked isomorphism.
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Definition 3.2.1. For each n, the set of marked groups G, is the set of groups marked

by n elements identified up to marked isomorphism.

Let F,, denote the free group on n generators {z1,...,z,}. For every (G,S) € G,,
there is an epimorphism 6g s: F,, — G sending x; +— s1, x2 — s, etc. Note that
(G,S5),(G,S) € G, are the same up to marked isomorphism if and only if kerg () =
kergr s/(6'). Thus we may identify G, with the space N, of normal subgroups of Fy,. It
is easy to see that N, is a closed subset of 2F» and therefore is a compact Polish space.

Clearly G,, <= Gp+1 via the map
(G, (51,---,8n)) = (G, (s1,...,8n,1))

or equivalently the corresponding normal subgroup N € N,, is mapped to the normal
closure of N U {241} in Fj,41. Under this map, G, maps to a clopen subset of G, 11.
Thus it makes sense to define G = U,,G,,, and we call G the space of marked groups. As
each G, is compact, G is locally compact. Furthermore, as the union of Hausdorff, sec-
ond countable spaces, it is also Hausdorff and second countable. Thus by [22, Theorem
5.3], G is a Polish space.

Let Fo, be the free group on countably many generators {z1,x2,...}. Our previous

discussion shows that G,, may be identified with
N, ={N < F | N contains x,, for all m > n}.

Then we may identify G with N' = U, N,,; i.e. N is the set of normal subgroups N < Fo,

such that N contains all but finitely many of the z,,.

3.2.1 Embeddability of finitely generated groups is Borel

If G, H € G, then we write G <¢m H if and only if there is a group embedding from G
into H. To prove this is Borel, it is easier to work with A/, and we will do this in what
follows. In this space, if A, B € N, then we write A <., B if and only if there is a
group embedding from Fo, /A into Fo, /B, or in other words if F, /A is isomorphic to a
subgroup of Fo, /B. Write <7, for <¢m | Ny. Note that if A, B are normal subgroups of

F, = (z1,...,xy,), then A X2 B iff there exist g1, ..., g, € F,, such that for any word

Nem
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w(zxy,...,x,) in the generators of Fy,, w(zy,...,z,) € A <> w(g1,...,9n) € B, where
w(g1, - .., gn) indicates the element of F,, that comes from replacing x; in w(z1,...,zy)

with g;. Let By = {N € N' | g € N}, which is Borel in A,,. Then

<tn= U [ Buw x Bu) U Biw * Big)-
91,.-.,gn€Fn w(g)EIFn

This is a Borel set, and hence the union <, of the <7, is Borel. To see that it
is countable, simply note that any finitely generated group only has countably many

finitely generated subgroups, and that there are only countably many ways of marking

each subgroup.
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Chapter 4

Small cancellation theory

Small cancellation theory has its roots in work of Dehn on the word problem for the
fundamental groups of closed orientable surfaces. Recall that the word problem for a
group presentation G = (S | R) is the problem of determining whether a word w in the
generators S represents the identity. Dehn proved that the following algorithm would
work to solve the word problem for fundamental groups of closed of closed orientable
surfaces, which all have finite presentations with a single defining relation r. Suppose

w is a word in the generators {s1, s2,..., s, } for such a fundamental group G.

1. Remove all subwords of w of the form sisi_l and si_lsi.

2. Suppose w contains more than half of some cyclic permutation 7* of r or 71, i.e.

w contains a subword rq such that r* = trjv and |r1| > 1[r|. Then replace r; in
w with t~*v~!. This does not change the element represented by w, since r* is a

relation for GG. Note that this replacement strictly decreases the length of w.
3. Return to step 1 until the operations in steps 1 and 2 cannot be performed.

4. If w = 1 then it represents the identity, otherwise it does not.

Dehn’s algorithm shows that the only words in G that represent the identity are
the obvious ones. For a general group presentation, one could attempt to use the same
algorithm (modulo the obvious changes to deal with multiple relations). However, it
will not always work. For example, any group with unsolvable word problem must have
words which represent the identity which Dehn’s algorithm does not reduce to 1.

Dehn’s proof that his algorithm worked in the restricted case that he was looking

at relied on the fact that if s is a cyclic permutation of r or r—1, there is very little
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overlap between r and s, i.e. there is very little cancellation in the product rs~!. Small
cancellation theory tells us that given a presentation with defining relations of a par-
ticular form and a similar restriction on the overlaps between them, Dehn’s algorithm

may be used to solve the word problem for the group.

4.1 The small cancellation hypotheses and basic consequences

Let G = (x1,22,... | r1,72...) be a group presentation. We will refer to the set
of defining relations collectively as R. Recall that a word w = y; ...y, is cyclically
reduced if w is freely reduced and y; is not the inverse of y,. This is equivalent to
saying that every cyclic permutation of w is freely reduced. We say the set of words
R is symmetrized if every element of R is cyclically reduced and whenever r» € R, all
cyclic permutations of r and »—! are in R.

Suppose R is a cyclically reduced set of words on {z1,z2,...}. Let R’ 2 R be
the set obtained by closing R under inverses and cyclic permutations, so that R’ is

symmetrized. We call R’ the symmetrization of R. Then
<a:1,x2,... ’ R> = <:L’1,:IZ2,... ‘ RI>

since the normal closure of R must contain all of the words that we added to R to
create R'. Thus restricting ourselves to symmetrized sets of relations does not change
the set of groups we can consider.

In this thesis, we are largely concerned with the following small cancellation prop-
erty, which quantifies the extent to which relators in particular group presentations

overlap.

Definition 4.1.1. A symmetrized set R in a free group F is said to satisfy the C'(\)
small cancellation condition if for every pair of distinct r1,79 € R, if we can write

r1 = bey and ro = bea, then |b| < Amin{|ry|, |r2|}.

The significance of this property can be seen in the following theorems (Theorem

V.4.4 and Theorem V.10.1 in [26])
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Theorem 4.1.2. Let F' be a free group. Let R be a symmetrized subset of F' and N its
normal closure. If R satisfies C'(\) for some X\ < 1/6, then every non-trivial element

w € N contains a subword s of some r € R with |s| > (1 —3X\)|r| > %|r|.

It follows immediately that if G = (X | R) is a group presentation satisfying the
C’(1/6) condition, then Dehn’s algorithm succeeds in solving the word problem for G.

This theorem also leads to other nice results on small cancellation groups.

Theorem 4.1.3. Suppose that G = (x1,xa,... | R) is such that R is a symmetrized
subset of (x1, z2,...) satisfying the C'(1/6) small cancellation condition. If w represents
a word of finite order in G, then there is some r € R of the form r = v™ such that w is

conjugate to a power of v.

In other words, the only words in G which represent torsion elements are the obvious

ones.

4.2 Small cancellation and embeddability results

Many theorems regarding group embeddings rely on small cancellation techniques in
their proofs. This section offers a small sample. The following results will not be
used later in this thesis, but instead are presented here to give an idea of how small

cancellation is used in proofs about group embeddings.

Definition 4.2.1. A countable group K is SQ-universal if every countable group can

be embedded in a quotient group of K.

The celebrated result of Higman, Neumann, and Neumann [17] that every countable
group can be embedded in a two generator group may be interpreted as saying that Fy
is SQ-universal. Small cancellation theory can be used to show a much wider class of

groups is SQ-universal.

Theorem 4.2.2 (Schupp [31]). Let P be any non-trivial free product P = X %Y, with
the single exception of P = Co x Cy. Then P is SQ-universal. In fact, every countable

group may be embedded in a simple quotient of P.
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The proof of this uses small cancellation theory on free products, which we have not
specifically defined but which is similar to what we have discussed.

A group G is hopfian if every surjection from G onto G is an automorphism. A group
G is co-hopfian if every injection from G into G is an automorphism. For example, Z is
hopfian, since every subgroup of Z has finite index, and so any surjection from Z onto
7Z must have trivial kernel. However, Z is not co-hopfian, since for example Z = 27,
which is a proper subgroup of Z. An example of a hopfian and co-hopfian group is Q.
Since every non-zero element of QQ is a root of a power of every other, it follows that
every injection of Q into Q must also be onto, and every surjection of Q onto Q must
have trivial kernel.

These two properties imply that the collection of endomorphisms of G is limited in
some sense. Small cancellation theory gives us the tools to enforce such limitations on

the endomorphisms of a group.

Theorem 4.2.3 (Miller and Schupp [29]). Any countable group H can be embedded in
a two-generator hopfian group G. If there is some m € N such that H has no elements

of order m, then G can be chosen to be co-hopfian as well.

Here is a sketch of the proof. Let H = (hy, ho,...) be a countable group and define

F = H % C5 x C%7. Write the generators of C5 and C7 as x and y respectively. Let

ro = xyzy®(zy)zy? . .. (vy) zy?

and for i =1,2,... let
80(i+2)

ri=hit H ((zy) zy?).

j=80i+1
It is easy to see that the symmetrized set R generated by the r; satisfies the C'(1/10)
condition. Let N be the normal closure of R in F' and G = F//N.

It is a result of small cancellation theory for free products that H, Cs, and C7 each
embed into G. The r; ensure that each h; is equal to some word on = and y, so G is
actually a quotient of C5 x C7.

Let ¢b: G — G be a surjection. Then ¢ is determined by its values on x and y, and

¥(x) and ¢ (y) generate G. This implies that each is nontrivial, since otherwise G would
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be cyclic of order 5 or 7. By the generalization of Theorem 4.1.3 to free products, ¥ (x)
must be in some conjugate of C5 or H in F. Similarly ¢ (y) must have order 7 and be
in some conjugate of C7 or H in F.

From here, one need only show that in order for the r; to map to relations for
G, it must be that ¢ is an inner automorphism. Hence by following ¢ by an inner
automorphism, we may assume that ¢ (z) € Cs or ¢(z) € H. Since 1 is onto, there is
some word « in x and y such that ¢)(«) = y. Using the appropriate generalization of
Theorem 4.1.2, one finds that ¥ (y) € C7, since if ¥ (y) ¢ C7 then it would not be possible
for 1(a) to contain enough of a relator so that y~!¢(a) € N. Arguing similarly for z,
one finds that ¢(z) € Cs. At this point we have 1 (x) = % and 1 (y) = y” with neither
equal to 1. By looking at 1(rp) and then again using the appropriate generalization of
Theorem 4.1.2, one finds that i(z) =  and ¥ (y) = .

Now suppose that H has no elements of order 5. (More generally, if H has no
elements of order m, then we can do this same proof with F' = H x C,, * Cy, where ¢
is some prime greater than m.) Then if 6 is an injection from G into G, we examine
O(x) and 0(y). Because H has no elements of order 5, the appropriate generalization
of 4.1.3 implies that, up to an inner automorphism, 6(x) € Cs. From here, the proof is
similar to that in the previous paragraph.

The above proof heavily uses the fact that torsion elements of small cancellation
groups are of a very particular form. This is what gives control over the surjections
and injections from G to itself. We will encounter this idea of using torsion elements

to control embeddings again in the next chapter.
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Chapter 5

Proofs of results

5.1 A universal countable Borel quasi-order

We start by proving an analogue of the Feldman-Moore Theorem [7] for countable Borel
quasi-orders. This is a straightforward application of the following theorem of Lusin

and Novikov (see Theorem 18.10 in Kechris [22]):

Theorem 5.1.1 (Lusin-Novikov). Let X,Y be standard Borel spaces and let P C X XY
be Borel. If every section Py, ={y | (x,y) € P} is countable, then P can be written as

Un Py, where each P, is the graph of a partial Borel function.

Theorem 5.1.2. If < is a countable Borel quasi-order on the Polish space X, there is

a monoid M which acts on X in a Borel way such that
rxy <= (GmeM)z=m-y.

Proof. First, note that by definition for all y € X, <,= {2 | < y} is countable, which
implies the set <xC X x X has countable sections with respect to its second coordinate.
By the Lusin-Novikov theorem, = = U, f,,, where each f,,: F, — X is a Borel function,
with E,, C X Borel.

We can extend these to total functions on X by letting f,,(y) =y for y € X \ E,.
These functions are still Borel, and their union is still equal to = by reflexivity. We
may also add the identity function to our collection without changing the union, again
by reflexivity. With all this in place, the f,, generate a monoid M under composition,
and M acts on X by m -z = m(z). If z < y then there exists m € M such that
x =m -y = m(y), and the transitivity of < ensures that for all m € M and z € X,

m-r <. O
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We wish to use this result to show that there is a universal countable Borel quasi-
order. Our approach closely follows the proof of Dougherty, Jackson, and Kechris in [5]
that there is a universal countable Borel equivalence relation. Recall the definition of

<w (Definition 2.1.3).
Theorem 5.1.3. <, is a universal countable Borel quasi-order.

Proof. Let < be a countable Borel quasi-order on a Polish space X. By Theorem 5.1.2,
there is a countable monoid M such that < is the quasi-order induced by a Borel action
of M on X. Let f: M, — M be a surjective homomorphism. Then we can define an
action of M,, on X by

This action is Borel and also induces <, and so without loss of generality we may assume
that M = M,,.

Let {U; }ien be a sequence of Borel sets in X which separates points. Then we define

¢: X = 2NMe by 1+ ¢, with
02(5)(i) =1 <= s-zel,.

We will show this is Borel. Let V be a basic open set in (2Y)M<. Then there is some
u € 2N and (v, ) € (N x M,)<N such that |u| = |(v, s)| and
V=) {fe@) | f(si)(vr) = us}.
0<k<|u|
Let Ay equal U,, if ui = 1, the complement of U,, otherwise. Let Si: X — X be the
Borel map S (z) = si, - « and define By = (Sk) ™" (Ax). Then ¢~ (V) = Mo<pe)u B is
a Borel set, and so ¢ is a Borel map.

Since the U; separate points, we see that ¢ is injective. Furthermore, if t € M,

then t - ¢ = ¢r.. To see this, let s € M,,, and i € N. Then

Grz(s)(i) =1 <= s-t-zelj
= u(st)(i) =1

= tga(s)i) =1
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Now suppose that < y. Then there exists m € M, such that x = m - y. It follows
that ¢, = ¢m.y = m - ¢y, and so ¢, <., ¢y. The same reasoning works in reverse, and

hence ¢, <., ¢, implies that x < y. Thus ¢ is a Borel reduction. O

Thus there exists a universal countable Borel quasi-order. Next we wish to find
universal countable Borel quasi-orders which are easier to work with. We proceed by
a series of easily proven lemmas which are the analogues of propositions 1.4-1.8 in
Dougherty, Jackson, and Kechris [5]. The proofs are virtually the same, although we
must take care to ensure that they also work for monoid actions (as opposed to group

actions). We will use several quasi-orders of the form <%, (see Definition 2.1.2).

Lemma 5.1.4. If M, N are monoids and M is a homomorphic image of N, then

<<B<N-

Proof. Let m: N — M be a surjective homomorphism. Then we define f: XM — X~

by f(p) = p*, where p*(h) = p(w(h)). Then if n € N,

(n-p*)(h) = p*(hn)

= p((hn))

Son-p* = (w(n)-p)*.

Now, if p 45\(/[ q, then there is some m € M such that p = m-q. Since 7 is surjective,
there is some n € N such that m = 7(n). Thus p = 7(n) - ¢, and so p* = n - ¢* by the
above, whence p* 45\,( q*.

Next suppose that p* <% ¢*, so that p* = n-¢* = (7(n) - ¢)* for some n € N. Then



for all m € M, there exists s € N such that m = 7(s), and hence

So p=m(n)-q, and f is a Borel reduction.

Lemma 5.1.5. For any countable monoid M, 4?\?_{0}

Proof. Define f: (22~ {0H)M _ 3MXZ 1y iy s p* where
p(s,n) =
2 ifn=20

Suppose that p = g - q. Then for n # 0,

((9,0) - ¢")(s,n) = ¢"(sg,n)
= q(sg)(n)
=(g-9)(s)(n)
= p(s)(n)

= p*(s,n)

If n =0, then ((g,0) - ¢*)(s,n) = ¢*(sg,n) =2 = p*(s,n).

3
SB $M><Z'

p(s)(n) ifn#0
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Now, if (g,n) - ¢* = p*, then there are two cases. If n = 0, then everything is as

above and p = g - ¢. Suppose n # 0. Then we have ((g,n) - ¢*)(s,

but p*(s,—n) is 0 or 1, a contradiction. Thus f is a Borel reduction.

Lemma 5.1.6. For any countable monoid M, 4?\/1§Bﬁ?\4ng-

_n) = q*(Sg,O) = 27

O]
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Proof. Define the map p € 3M — p* € 2M*Z2 by

(

0 ifp(m)=0

' 0 ifp(m)=1,i=0
p*(m,i) =
1 ifp(m)=1,i=1

1 ifp(m)=2

Suppose that p = g - ¢q. Then

((g,O)'q*)(S,i) :q*<3g,i): . )

and we see that this equals p*(s, ).

Now, suppose that we have (g,7) - ¢* = p*. We wish to show that g-¢ = p. We will
break it down case-by-case.

Case i = 0: Suppose that s € M satisfies p*(s,0) = 0. Then ((g,0) - ¢*)(s,0) =0
as well, and p(s) = 0 or 1 and ¢(sg) = 0 or 1. If also p*(s,1) = 0 = (g,0) - ¢*(s,1),
then p(s) = 0 = ¢q(sg). If instead p*(s,1) = 1, then p(s) = 1 = ¢q(sg). If p*(s5,0) =1 =
(9,0) - ¢*(5,0), then p(s) =2 = q(sg). Thusp=g-gq.

Case i = 1: Suppose instead that (g,1)-¢* = p*. We look at the case that p(s) =1
for some s € M. Then p*(s,0) = 0 = ¢*(sg,1) and p*(s,1) = 1 = ¢*(sg,0). But
then ¢*(sg,1) = 0 can only happen if ¢(sg) = 0, and ¢*(sg,0) = 1 can only happen if
q(sg) = 2, so we have a contradiction. Thus p(s) =0 or 2 for all s € M.

Now suppose that ¢(sg) = 1 for some s € M. Then ((g,1) - ¢*)(s,0) = 1 and
(9,1) - ¢*(s,1) = 0. This implies p*(s,0) = 1, which can only happen if p(s) = 2, and
p*(s,1) = 0, which can only happen if p(s) = 0, another contradiction. So we find that
q(sg) =0or 2 for all s € M.

By the above, for any s € M, if p*(s,0) = 1 = ¢*(sg, 1), then p(s) = 2 = q(sg). If

p*(s,1) =0 = ¢*(sg,0), then p(s) = 0 = ¢q(sg). Thus if either of these two cases occurs,
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we are guaranteed to have p(s) = ¢(sg). Suppose that p*(s,0) = 0 and p*(s,1) = 1,
the only remaining case. The first equality implies p(s) = 0, and the second implies

p(s) = 2, a contradiction. Thus p =g - ¢, and f is indeed a Borel reduction. ]

Lemma 5.1.7. Let Ms denote the free monoid on 2 generators. Then
<3 <=3, -

Proof. We start by embedding M, into M5 in order to view it as a submonoid of Ms.
Let M, = (x1,z2,...) and My = (a,b). We define our embedding by e — e and
Ty — ab” for all n € NT.

Next we note that if A € My, then we can canonically write h as a product h = h/g,
with g € M, and b/ € My \ M, possibly with g = e or i/ = e, by finding the longest
word in M, at the end of h. Define L: Ms — N by

L(h) = the length of A/

where h = h/g is the canonical form of h. This function has the desirable property that
multiplying an element h € M5 on the right by an element g € M, does not change the
given length, i.e. L(h) = L(hg).

Define f: 2Mv — 2M2 by p— p* where

¢

p(h) if L(h) =0

p'(h)=491  ifL(h)=1-

0 if L(h) > 1
Suppose that p '4?% q. Then dg € M, such that p=g-q. Soif h € M,
(9-q")(h) = q"(hg)

= q(hg)

=(g9-9)(h)
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If h € My \ M, then since L(h) = L(hg), we find

(9-q")(h) = q"(hg)
=p*(h)

So p* <3y, ¢

*

Now suppose that p* 4?\/[2 q*. Then there exists g € My such that p* = ¢ - ¢*.

Clearly if g € M,,, then p = g - ¢q. If instead g € My \ M,, with L(g) = n, n > 1, then
we should have that p*(b) = (¢ - ¢*)(b) = ¢*(bg). But p*(b) = 1, while L(bg) > 1, and

so ¢*(bg) = 0. Thus this case cannot happen, and hence f is a Borel reduction. ]
Theorem 5.1.8. <, <p 4%\42. It follows that #%\42 18 universal.

Proof. Using the preceding lemmas, we find that

2Z7{0}
<M, <B S,

<B 4‘}5\/1sz by Prop. 5.1.5
<pg 4%®sz22 by Prop. 5.1.6
<B s%\/[w by Prop. 5.1.4

<B -4?\42 by Prop. 5.1.7 O

The quasi-order 4%\42 is easier to work with than <, as both the monoid and the
space being acted on are simpler. Using 4?\42, we will find another universal countable

Borel quasi-order, this one of a more combinatorial nature.

5.2 A quasi-order on trees

In this section, we will reduce 4?\42 to <7¢¢, the quasi-order on descriptive-set-theoretic
trees defined in chapter 2. This has the advantage of moving us away from working
with monoids and towards more classical areas of mathematics. We must first make a

few intermediate reductions.
Definition 5.2.1. The quasi-order <3 (the s is for “suffix”) on P(Mz) is defined by

A<5B <= (Ime M) Am =B™
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where

B™ = BN Mam.

Remark 5.2.2. Note that if we made a similar definition for a group M, then we would
always have that B™, since in this case Mm = M. So this definition is only interesting

when dealing with a monoid.

If we identify P(Mz) with 2M2 then this quasi-order is the same as 4?\42. Writing it
in this way brings out the fact that knowing a set A € P(M3) and that A 4?\/[2 B only
gives partial information about B. This differs from F, the analogous equivalence
relation, since knowing A € P(F2) and that A Eo, B gives information about all of B.

Next, we modify this quasi-order slightly, in order to make it somewhat easier to

work with.
Definition 5.2.3. The quasi-order <5 (the p is for “prefiz”) on P(Ms) is defined by
A<EB < (3Ime€ My) mA=B,

where

B,, = BN'mM,.
As before, this definition is only interesting when working with a monoid.
Theorem 5.2.4. <5 ~p <)

Proof. Every nontrivial element w € My may be written as w = a™0b™0 ... a" bk,
where n;, m; € N, and only ng or my may be 0. Define w = ™ a" ...b™a"°, and
€ = e. Then the bijection f: My — M defined by f(w) = w induces a Borel bijection
f*: P(Ma) — P(Ma) such that if Am = B™, then mf*(A) = f*(B)m. Similarly, if
wf*(A) = f*(B)y, then Aw = BY. Thus f* is a Borel reduction from <5 to <b. Since

f* is its own inverse, we see that it is also a Borel reduction from <} to <. O

One can view M, as the complete binary tree 2<N, with each word in M, corre-
sponding to a node in the tree. From this point of view, when looking at A C M,, we

see that A,, is simply the set of words in A which are above the node corresponding
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N/ N/ A\ / \ / N/
aaa aab aba baa bba bbb

W

Figure 5.1: The set A = {a,b, aa, abb, bab, ...} in the binary tree correspond-
ing to Ms. Note that, for example, Ay, = {bab, ...} is the set of words in A

above ba.

to m. (See figure 5.1.) This natural interpretation of one of the sets involved in <} in
terms of trees leads us to consider the quasi-order 43’;66 from Definition 2.1.6. Recall
that for a countable discrete space X, a tree on X is a (non-empty) collection of finite
sequences of elements of X which is closed under initial segments. Let A(X) be the
Borel set of infinite trees in Tr(X), the Polish space of trees on X.

Note that if we have A, B € P(M3) and m € M such that mA = B,,,, and further-

more A, B are both infinite trees on {a, b}, then m witnesses that A 4?65} B. If Aor

B is not a tree, then it does not make sense to compare them using 4?‘3%}, but this is

only a minor difficulty, as we will see in the next proof.
Theorem 5.2.5. <5 <p <] A(3)

Proof. Given A € P(Ma), we define the tree Ty € Tr(3) as follows. We start with the
complete binary tree 2<N and add to it the sequence w2 iff w € A, where 0 is the
sequence in 2<N corresponding to the word w in M,. This collection is closed under
subsequences and so is a tree. Clearly it is infinite. Define T4 to be this collection of
sequences.

Suppose that A <5 B. Then there exists m € My such that mA = B,,. First note
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that 2<N is contained in both T4 and (TB). Next suppose that w € M. Then

W 2eTy < weA
<~— m weB
w 2¢e€Tp

<— mTw 2=m

— w 2€ (Tp)m

So Ta = (TB) -

Conversely, suppose that Ty = (TB), for some « € 3<%, If a contains a 2, then
(T)a is {0} or 0, since the only sequences in Tp containing 2 are leaves of the tree.
However, T4 is infinite. So o € 2<%, which means that there is a word w € My such

that w = o. Now

wx € B < wi 2€Tg
— 172€(TB)w
— I72€Ty

<— x €A,

so wA = B,,. Thus the map t: P(Msz) — T'r(3) sending A to T4 is a Borel reduction.
O

Finally, we will show that <%¢¢ is universal.
Corollary 5.2.6. <5 <p<ire¢| A(2). It follows that <5°¢ is universal.

Proof. We define the map c: 3N — 2<N inductively. First let c(e) = e, ¢(0) = 00,
c(1) = 01, and ¢(2) = 10. Now assume that ¢ has been defined for all words of
length < n, and let w = 2" u, where x € {a,b,c} and u € 3<N has length n. Define
c(w) = e(x)"c(u). Given t(A) € Tr(3), where t: My — Tr(3) is the Borel reduction
from <8 to x4°°] A(3) which was defined in the previous proof, apply ¢ and close the
resulting set under initial segments.

Suppose that t(A) <5 t(B), so there exists u € 3<N (in fact, u € 2<V) such that
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c(w) € c(t(A)) <= wet(A)
<~ u wet(B)

— c(u"w) =c(u)" c(w) € c(t(B))

Hence c(t(A)) = c(t(B))c(u) and thus c¢(t(A)) <5 c(t(B)).

Now suppose that c(t(A)) <5 c(t(B)), and so there exists w € 2<N such that
c(t(A)) = c(t(B))w. Suppose that w is not in the image of ¢. Then we either have
¢(f(B))w = 0, which is impossible, or w is an initial segment of odd length of something
in the image of ¢. If w ends in a 0, then 100 € ¢(¢(B))w, but this is not in c(¢t(A4)). If
w ends in a 1, then 00 ¢ c(t(B))yw, but 00 € ¢(t(A)). Thus w is in the image of ¢, say
w = ¢(u). Then

u v Et(B) <= c(u) c(v) € c(t(B))
< c(v) € c(t(A))

— wvet(h)

Thus t(A) = t(B)y, and so t(A) <5 t(B). O

5.3 Universal quasi-orders from group theory

We have seen that E, is the same as the quasi-order 4%2, and so our universal quasi-
order 4?\42 is a natural generalization of E.,. At this point, we will turn our attention
to other quasi-orders which can be seen as generalizations of E,,. The most obvious

generalization is the quasi-order Q%(’];Q) on P(Fs) defined by

Fa,
A QPQ(Ig‘z) B — (Elg S Fg) gA C B.

Replacing the C symbol on the right-hand side of the definition with the = symbol gives
FE. Unfortunately for our purposes, the above quasi-order is clearly not countable, and
in fact has been shown to be a universal K, quasi-order (see Louveau-Rosendal [25]).
Consequently, Q%(’I;Q) is much more complex than any countable Borel quasi-order. So

we instead consider the quasi-order <;2 from Definition 2.2.1.
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For any group G, let Q(G) be the set of infinite subsets of G. In order to show that
<2 i5 a universal countable Borel quasi-order, we will reduce <5¢¢[ A(2) to <. 2| Q(Fs).

Every tree on 2 is isomorphic to a tree T on {a, b}, and these can easily be identified
with subsets of Fy = (a,b). If we take a subset 7' C Fy corresponding to a tree
and multiply it on the left by w™!, then the positive words in w™'T are precisely T},.
Unfortunately, there is no natural way to pick out the positive words from w17 simply
by intersecting it with other shifts of 7', and so we instead will define a set based on
T for which T, is easy to find simply by intersecting its shifts. In order to do this, we

will look at subsets of F,, the free group on countably many generators. We list the

generators of F, as
{aa b, Ta, Tp, Taas Tabs Thas Tbbs Taaas - - }

Using the two generators a, b we identify T" with a subset of the group, to which we
add the sets x,wT,, for w € T. Call this new set T”. Note that for all w € T, w™ T,
is a subset of T, and so x,wT,, C T'. Then T’ Nz 'T" = wT,, since wT}, is the set of
positive words in x,'7’. We can then multiply by wT,, by w~! to find T,,. However,
the map sending T" to 7" is not a Borel reduction. Although we can now find T, by
intersecting shifts of 7", T,, maps to (T},)’, so that is the set we need to find. The

following proof addresses this issue.
Theorem 5.3.1. -\<£F°° | QF) is a universal countable Borel quasi-order.

Proof. We will construct the reduction in a few steps. We start with trees on {a, b},
which we then map to trees on {a, b, c,d} for technical reasons. Next we define a map
f:{a,b,c,d}N — P(Fo), which will induce a map F: Tr({a,b,c,d}) — P(Fs). The
composition of these two maps will be our reduction.

If T'e€ Tr({a,b}), define
to(T)={weT|w a¢T}.

Similarly define ¢,(7"). These sets are elements of 7" which are “along the edge” of

the tree, i.e. some immediate extension of these words is not in the tree. We define
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S:Tr({a,b}) = Tr({a,b,c,d}) by
S(T)=TU (ta(T) " c) U (tp(T)d) (5.1)

where X7z = {7z | z € X}. Here S “outlines” the tree using the letters ¢ and d.

The following property of S will be important later.

Lemma 5.3.2. If T,T" € Tr({a,b}) and S(T) C S(T"), then T =1T".
Proof. Tt is easily seen that S(T') C S(T") implies T C 1", as
S(T)N{a,b}yN =T and S(T") N {a,b}<N =T".

Suppose w € {a,b}<N \ T. Then there is some initial segment of w’ C w (possibly
the empty string) and some z € {a,b} such that w' € ¢,(T), i.e. w = w'"x"t, where
w €T, w "z ¢T,and t € {a,b}<N. Then w' "y € S(T) for some y € {c,d}, and so
w' "y € S(T"). This is only possible if w'~x and all its extensions are not in 7”7, and in

particular w ¢ T”. O
We list the generators of Fo, as
{CL, b,c,d, Tq, Ty, Te, Tds Taa, Tab, Tac - - }

i.e. every string in {a,b,c,d}<" (except the empty string) has a unique generator as-
sociated to it in addition to generators corresponding to the letters in our trees. The
empty string in {a,b, c,d} <Y and the identity element in F,, will both be written as e.
This should not cause confusion, although both uses will appear close to each other.
Finally, we recall that if A, B € P(Fu), then AB = {ab|a € A,b e B}. We can now
define f: {a,b,c,d}<N — P(F) inductively.
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fle) ={e}

f(a) = {a,z.a}

f(®) = {b, zpb}

f(e) = {e, zec}

f(d) = {d, zqd}

flw) = Uﬁtf(S)f(t) U {zpw}
e

The idea here is that every set f(w) contains elements which encode the relation of

w to its initial segments. Then define F': Tr({a,b,c,d}) — P(Fs) by

F(s) = fw).

weS
There are a few helpful facts to record at this point. The simplest one is that

w € f(w), which follows by a simple induction. The others we record as lemmas.

Lemma 5.3.3. Ifu,v € {a,b,c,d}<N are not equal, the sets f(u) and f(v) are disjoint.

Proof. Define the function ®: Foo — {a,b,c,d}<N as

®(g) =the word in {a,b,c,d}<" obtained by removing all other letters

from the freely reduced representation of g.

By a simple inductive argument we see that for all w € {a, b, c,d}<N, ® is constant on

f(w) and equal to w. Thus the sets are disjoint. O
Lemma 5.3.4. If a word starting with x,, is in f(u), then w C u.
Proof. This follows from an straightforward induction on the length of . O

Lemma 5.3.5. If v € f(u) starts with zyw and u = w™t, then v = xy,wA, with

A€ f(t).
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Proof. If t = e, then v = z,w. Otherwise, there must be some «, 8 such that u =a™f
and v € f(a)f(B). We can then split v into two words, v = 0\, where § starts with
zpw and 0 € f(«), while A € f(f). By the previous lemma, w C «a, say @ = w™ z.
Then u = w™ 2" . We write t = z7 3. By induction, § = z,wd’ with ¢’ € f(z). Then

v = zwd’' X\, and 0'A\ € f(2)f(B) C f(t) by definition. O

Recall the definition of the map S in (5.1). We define the map G: Tr({a,b}) —
P(Foo) by

Lemma 5.3.6. For all w € {a,b}<N and all nonempty T € Tr({a,b,c,d}),
G(T) Nz, G(T) = wG(Ty)

and hence

wlG(T) N (zw) TG(T) = G(Ty).

Proof. First, we will show that G(T) N2, 'G(T) C wG(Ty). Every element of G(T) is
a positive word in the generators of F,, so any word not starting with x,, will be freely
reduced in x,'G(T) and begin with x,!, and thus not be in G(T). So we need only
focus on the words that start with z,,.

Suppose g € f(u) € G(T) and g = zy,a for some a € Fy. By our inductive
definition, this implies ¢ = x,wpf for some § € Fy. By Lemma 5.3.4, we must have
u=w"tfor somet € {a,b,c,d}<N. By Lemma 5.3.5, 8 € f(t). Also, wfisin f(w)f(t),
sowfB € G(T)Nz,'G(T). In addition, wB € wG(Ty,), since t € (S(T))w = S(T) (since
w € {a,b}<N) and so f(t) € G(Ty). Thus G(T) N2y 'G(T) C wG(Ty).

If g € G(T), then there is some u € S(T,) such that g € f(u). Then
zwwg,wg € f(w)f(u) € G(T)
so wg € G(T) Ny 'G(T). Thus G(T)Nxgy'G(T) D wG(Ty). O

Lemma 5.3.6 shows that for T, S € A(2), if T <5¢¢ S, then G(T) <> G(S). Next

we check the other direction.
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Suppose that G(T) = g1G(T") N ... N g, G(T"). We know that e € G(T') (since T is
nonempty), which means that each g; must be an inverse of an element in G(7"), say
g; ' = h; € G(T"). Fix some 1 < i < n and suppose that ®(h;) = w, i.e. h; € f(w). If
u € S(T), then z,u € G(T). This implies h;z,u € G(T') N f(w™u), and in particular
the intersection is nonempty, so w™u € S(T"). Thus S(T) C S(T").

If w ¢ {a,b}<N, then S(T"),, is either empty or a single element, but S(7’) is infinite.
Thus w € {a,b}<N, and so S(T"),, = S(T). Tt follows that S(T) C S(T7,), and so by
Lemma 5.3.2, T = T/. Thus G is a Borel reduction. This completes the proof of
Theorem 5.3.1. I

Corollary 5.3.7. 4?2[ Q(F9) is a universal countable Borel quasi-order, and so 4?2

18 a universal countable Borel quasi-order.
Proof. Let ¢: Foo — Fo be a monomorphism. Then ¢ induces a map

B: Q(Foo) — Q(F2)

A A{¢p(a) |ac A}
If A, B € Q(Fy) and there exist g1, ..., gn € Fs such that
A=g¢gBnNn...Ng,B

then ®(A) = ¢(1)®(B) ... N ¢(g.) B(B).

Conversely, suppose that
®(A) =h1®(B)N...Nh,P(B). ()

If some h; is not in the image of ¢, then h;®(B) is disjoint from any set in the image of
®, and so the right hand side cannot equal the left hand side unless ®(A) = (), which
is impossible. This implies that every h; in (%) is in the image of ¢. It follows that
A=¢ 1 (h)BN...N¢ L (h,)B. O

Remark 5.3.8. The above proof shows that if G is any countable group containing Fy

as a subgroup, then -4?[ Q(G) is a universal countable Borel quasi-order.
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Recall that E.(G) denotes conjugacy equivalence relation on the standard Borel

space Sg(G) of subgroups of G, i.e. for A, B € Sg(G),
AE.(G)B <= (g€ G)A=gBg "
In [11], Gao used a simple coding technique to prove the following result.

Theorem 5.3.9 (Gao). If G = K x H, where K has a nonabelian free subgroup and H

is nontrivial cyclic, then E.(G) is a universal countable Borel equivalence relation.

In light of the relationship between E., and -\<ItF 2 it is natural to consider the count-
able Borel quasi-order <& from Definition 2.2.4.
Let I'(G) be the standard Borel space of infinite subgroups of G. Then the proof of

the following result is a straightforward adaptation of Gao’s argument in [11].

Theorem 5.3.10. Suppose that G is a countable group containing a nonabelian free
subgroup and that H is a nontrivial cyclic group. Then S| T'(G x H) is a universal

countable Borel quasi-order, and so <CG*H is a universal countable Borel quasi-order.

Proof. Let h € H be a generator of H. We define the map K: Q(G) — Sg(G = H) by
K(A) = (zhz™t: z € A).

This map is Borel (in fact, continuous). The basic open sets of Sg(G * H) are of the

form
Vial,...,an,b1,...,bp) ={L €Sg(GxH) |ay,...,anp, € LAby,..., by & L}.

Then K~Y(V(a1,...,an,b1,...,by) is an open subset of P(G), and so is an open subset
of Q(G). We need only check that K is a Borel reduction from <§'| Q(G) to x&*H. We
will make use of the observation that K(A) = gékA gHg™ .

If A,B € P(G), then clearly K(AN B) C K(A) N K(B). We will show that
K(A)N K(B) C K(AN B). Suppose that g € K(A) N K(B), and so can be written
both as g = $1h$f1...$nh$;1 with z1,...,2, € A and as g = ylhyfl...ymhy;ll
with y1,...,ym € B. Then clearly 1 = yi, and so multiplying g on the left by

ylh_lyfl = x1h_1x1_1 we find that

ajghl‘gl e :L'nhl‘;1 = thy;I e ymhy;ll.
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Thus z9 = y9, and repeating this argument we find that z; = y; for 1 < ¢ < minn,m.

If for example m < n, then we would have the equation
h —1 h -1 _
Tmirhz, ... ophe, =e

which is absurd. Thus m = n, and it follows that g € K(ANB). Thus K(ANB) = K(A)N
K(B).

Also note that if g € G, then K(gA) = gK(A)g~!. Thus

K(g1iAN...NgyA) = K(g1A)N...N K (g, A)

= nK(A)gr'n...Ng.K(A)g,"

n

Suppose that A, B € P(G) and that A < B, i.e. there exist g1,...,9, € G such

that A=¢g1BN...Ng,B. Then

K(A)=K(@BnN...Ng,B) =g K(B)g;' N...Ng.K(B)g,".

n

Thus A < B implies that K(A) <¢*F K(B).

Next, suppose that A, B € P(G) and that K(A) < K(B), so there exist
Y1y, € G ¥ H such that K(A) = 1K (B)y;'N...Nv,K(B)y,'. For each z € A
and 1 < i < n, let w,; € K(B) be the element such that zhz™! = 'yl-ww,fyi_l. Clearly
for each 7 =1,...,n the map x — w;; is an injection.

Note that zhaz~! is a reduced word in G * H. For 1 < i < n, we may assume that

7i is a reduced word in G * H, and that w,; € K(B) can be written as
Wy = z1h 2yt zgh 2t (25 € Byej € {£1)).
If we reduce this word, then we obtain that
Wei = urth™ ugh™? . uh™ uy g

where m; € Z \ {0}, u; € G and the product wjup...u; € B for 1 < j < t+ 1.
Furthermore, w; ; is never the trivial word.
The equation zha™! = ViWz,iY; U implies that starting with the right-hand side,

there is a cancellation procedure which eventually leads to the left-hand side. In any
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such procedure, there must be some occurrence of h in the right-hand side which is
never cancelled. We call this the preserved occurrence of h. Let A; C A be the set of
elements = € A for which the preserved occurrence of i in some cancellation procedure
is in the original expression for wy ;.

We claim that A\ A; is finite for each 1 <i <n. If z € A\ A;, then the preserved
occurrence of h is in either ~; or v, 1 Suppose that z1,z0 € A \ A; are both words
such that the preserved occurrence of h is in ;. Then the preserved occurrence of h
must be the first h in ~;, since ~; is assumed to be reduced. Thus ; = khu for some

k € G,u € G* H, and this gives us the two equations

z1hay! = khuwg, iy, "

thI'Q_l = khuwm%mi_1

which implies that 1 = k = x9. Thus there is at most one element in A\ A; such that
the preserved occurrence of h is in ;. A similar argument shows that there is at most
one element in A\ A; such that the preserved occurrence of h is in v; *. So |4\ A;| < 2
for 1 <i<n.

As A is infinite, this implies that each A; must also be infinite. If we fix some

xo; € Aj for i =1,...,n, then we can write

-1 -1
Toihay; = ViWag,i;
_ -1 -1
= ’Viuxoyi(Zloﬂhzxo,i)vxoyiryi

with 230 € B, Ugq,is Vs € K(B), and the displayed h is the preserved occurrence

1

in some cancellation procedure. This implies that xo; = Yiug,izze, and zy; =
b

—1
0,?

z vmo,i’yi_l. Let 5; = 930,@'2';;01,1 € G. Then ~; = 5%’“;01,1- Thus
K(A) = Biug) 1 K(B)ugo 7 N ... N Buttyy o K (B)tag By
= /K (B)B ' N...N B K(B)B, "

=K(5BnN...NnpB,B)

and so A = 1B N...N B, B, with each 3; € G, and so A <§ B, as desired. O

The following result is an immediate consequence of Theorem 5.3.10.
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Corollary 5.3.11. If n > 3, then <in| I'(F,) is a universal countable Borel quasi-

order.

Finally, the proof of the following result is a straightforward adaptation of the proof

of Proposition 1 of Thomas-Velickovic [39].
Corollary 5.3.12. <2 I'(Fy) is a universal countable Borel quasi-order.

Proof. Recall that a subgroup H of a group G is said to be malnormal if gHg~'NH = {1}
for all g € G\ H, and that 3 can be embedded as a malnormal subgroup of Fo. Arguing
as in Corollary 5.3.7, we see this embedding induces a Borel reduction from <3| I'(F3)

to <2 T'(IFy). O

5.4 Embeddability of countable groups

Our ultimate goal is to show that embeddability of finitely generated groups is a uni-
versal countable Borel quasi-order. The techniques we will use in the proof are easier
to understand in the more general setting of arbitrary countable groups. With this in
mind, we first turn our attention to the embeddability relation for countable groups,
Cap. In chapter 3 we showed that there is a standard Borel space of countable groups

and that Cg, is an analytic quasi-order. In this section, we will show the following:
Theorem 5.4.1. Cgy, is a universal analytic quasi-order.

Corollary 5.4.2. The bi-embeddability relation for countable groups =gy is a universal

analytic equivalence relation.

This is in contrast with the isomorphism relation for countable groups =, which is
known to be universal among all analytic equivalence relations induced by a Borel action
of Seo. (This is due to Mekler in [28].) However, such equivalence relations are known
not to be universal among all analytic equivalence relations. Several natural equivalence
relations are Borel bireducible with =, including isomorphism of countable graphs,
isomorphism of countable lattices, and isomorphism of countable linear orderings. For

more about such equivalence relations, see Chapter 13 in [12].
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Clearly =g,-classes are unions of =¢,,-classes, and so it is natural to ask if there is a
Borel way to select a particular =, class from each =g, class. Such a selection would
be a Borel reduction of =g, to =g, but by Theorem 5.4.1 we know =, <p =g, and
hence there is no such selection.

Before we prove Theorem 5.4.1, we need to make a few definitions. We will write C
for the set of countable graphs whose vertex set is N. By identifying each graph with

its edge relation, we see that C is a closed subset of 2N and so is a Polish space.

Definition 5.4.3. If S,T € C, then we write S C¢ T if S embeds into T, i.e. there
exists f: N — N such that for allm,n € N, (m,n) € S < (f(m), f(n)) € T.

In [25], it was shown that C¢ is a universal analytic quasi-order. Thus to show that
Cgp is universal, we need only show that C¢ Borel reduces to it. To do this, we will use
small cancellation techniques to create groups that encode the edge relations of graphs.

In particular, we will need the following two theorems, which were discussed in Chapter

4.

Theorem 4.1.2. Let F be a free group. Let R be a symmetrized subset of F' and N its
normal closure. If R satisfies C'(\) for some X < 1/6, then every non-trivial element

w € N contains a subword s of some r € R with |s| > (1 —3\)|r| > §|r].

Theorem 4.1.3. Suppose that G = (x1,x2,... | R) is such that R is a symmetrized
subset of (x1, za,...) satisfying the C'(1/6) small cancellation condition. If w represents
a word of finite order in G, then there is some r € R of the form r = v™ such that w is

conjugate to a power of v.

With these theorems in hand, we can proceed to the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1. Let T € C and let vy, v1,... be an enumeration of the vertices

of T'. Then Gr is defined to be the group with generators vg, vy, ... and relators
° UZ for all i € N
o (Ui’(}j)ll if (’Ui,vj) erT

o (v;)? if (vi,v5) ¢ T
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Let Rr be the symmetrization of the set of defining relations for Gp. Note that if
T is any graph, then Ry obviously satisfies the C’(1/6) condition. Now suppose that
S, T € C are such that S embeds into T, say via the map f. Then f extends to a group
homomorphism from Gg to G, as it sends the relations of GGg to relations of Gr.
K1, k2

To see that it is an embedding, let o = v;'v;? ... vf: be a word in the generators of

Gg, so that
Fla) = floi)" foi)™ . fvi,)

and suppose that f(a) =1 in Gp. Then by the C’(1/6) condition, f(a) must contain
more than 1/2 of a relation in Ry. Note that any such relation must involve only
generators in the image of the graph embedding f: S — T'. Suppose that f(«) contains
more than half of a relation of the form f(v;)*7. Since f is one-to-one, this cannot
happen unless « already contained more than half of vf”.

Suppose that f(«) contains more than 1/2 of the relation (f(v;)f(v;))*, where the

value of k depends on whether or not (f(v;), f(v;)) € T. Since

(vi,vj) € S & (f(vi), f(v5)) €T

it must be the case that (v;v;)* € Rg, and « already contained more than 1/2 of (v;v;)*.
Thus f(«) does not contain more than 1/2 of a relation in Rr unless a contains more
than 1/2 of the corresponding relation in Rg. Since every nontrivial element in Gg may
be written as a word which does not contain more than 1/2 of a relation in Rg, every
nontrivial element in Gg maps to a nontrivial element in Gp. Thus if S embeds into
T, then Gg embeds into Gr.

Conversely, suppose that 8: Gg — Gr is an embedding. Let vg, vy, ... enumerate
the vertices of S. By Theorem 4.1.3, after adjusting the embedding 6 by an inner
automorphism of Gr if necessary, we may assume 0(vg) = t§ for some k such that
|k| < 7, where t is some vertex of T, since §(vg) must have order 7. Let v; # vy be
some vertex of S. Again by Theorem 4.1.3, we find that 6(v;) = utéu_l for some 1
such that |I| < 7, where u € Gr and t; is some vertex of T'. Unfortunately we cannot
eliminate u by an inner automorphism without possibly changing the value of 6(vp).

Note that 0(vov;) = tlgutéu_l. We may assume that u is freely reduced and does not
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start with any power of ¢y3. To see this, note that if u began with ¢{*, then we would be
able to follow 6 by the inner automorphism corresponding to ¢;* without changing the
value of 0(vp). Thus 6(vv;) = t’guté-u*I is cyclically reduced. Since vgv; is a torsion
element, so is 6(vov;). By Theorem 4.1.3, the only cyclically reduced torsion elements
in G are cyclically reduced conjugates of the relations in Ry, i.e. cyclic permutations
of the relations in Rp. It immediately follows that « = 1, since no such words contain
a mix of positive and negative powers. Thus §(vov;) = t’gt;.

From this we find that to # t;, since otherwise §(vgv;) would have order 1 or 7,
which is impossible since 6 is an embedding and vov; has order 11 or 13. Again, by
Theorem 4.1.3, we find that t’gté has finite order only if kK =1 = +1. As the orders of

1t;-tl are equal, we see that

vovj and O(vov;) = tF
(’U(),’Uj) €l «— (to,tj) efT.

Let v, # v, be arbitrary vertices in S. Repeating the above argument with vg
and v,,, as well as vyp and v,,, we find there are inner automorphisms 1,19 of Gr,
corresponding to conjugating by suitable powers of ¢, such that 11 (0(vy,)) = ¢! and
Po(0(vy)) = t, where t,, # to and t, # to. A priori it may be the case that, for
example, 1 (0(vy)) = tht 15", with k # 0. But then 9y (0(vmv,)) = tEMEtE " is
cyclically reduced, and by Theorem 4.1.3 it has infinite order, which is impossible. Thus
Y1 = by, and so 1 (0(vvy,)) = £ and the above argument shows ¢, # t, and

that

(Um,vn) €S <= (tm,tn) €T.

As vy, and v, were arbitrary, the function g: S — T defined by g(v;) = t; for all i € N

is an embedding. Thus Eg <p LCgp, which establishes the result.

5.5 Embeddability of finitely generated groups

We now turn our attention to the embeddability relation for finitely generated groups.

Definition 5.5.1. Let G denote the Polish space of finitely generated groups. If A, B € G,
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then we write A <Xem B if and only if there is a group embedding from A into B. We

write =, for the associated equivalence relation.

Recall from section 3.2 that <., is a countable Borel quasi-order. We will show that
in fact it is universal by reducing 4?66 t0 <em. Given a tree T' € T'r(2), our general
strategy is to define a finitely generated group G with subgroups corresponding to the
trees T, for w € 2<N. We will start with two generators and then add relations to this
group according to the nodes present in 7. As in the previous section, these additional

relations will allow us to control the embeddings that exist between two of these groups

and thus ensure that T +— G7 is a Borel reduction. Thus we will have shown:
Theorem 5.5.2. <., is a universal countable Borel quasi-order.

In order to define the relations of G, we first define the following two homomor-

phisms:

fg:F2—>F2 f1:F2—>IF2
5 2

T — Yy T — x YTy
5 2

Yy—yx Yy = ytryry

We also define f. to be the identity map. For any element w € 2<N, we define f,, to
be the corresponding composition of fy and fi, e.g. fo1 = foo f1 and fi110 = f10 f10 fo.
In other words, if we can write w as v~ v, then f,, = fy, o f,. The associativity of
function composition ensures that this is well-defined.

These maps are not chosen entirely at random. One basic property of the maps is
that for all u € 2<N, the first letter of f,(a) is different for each a € {z*! y*'}, and
the same is true for the last letter. This can be established through an easy induction
on the length of u. If u = e, then this is immediate, and for ©w = 0 or v = 1, we quickly
check that it holds. Now suppose that this is true for u. Then for i € {0, 1}, consider
fu—i(a) = fu(fi(a)). We have already seen the first and last letters of f;(a) are different

for each a. By assumption, f, takes the first and last letters of f;(a) to words with first
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and last letters different from those of f;(b) for any b # a with b € {z*!, ™1}, and this
completes the induction.

With this established, a similar induction shows that every f, takes freely reduced
words to freely reduced words. In fact, every f, takes cyclically reduced words to
cyclically reduced words, since for a,b € {z*!,y™1}, the first letter of f,(a) is the
inverse of the last letter of f,(b) only if b = a!, by the uniqueness of the last letters.

Given T € T'r(2), we define

Gr = (@,y [ {(fu(@)™, (Fuy)® | w € TH{(fu@)™, (fuly)™ |w ¢ T}).

The numbers in the exponents were chosen to be relatively prime and so that the
relations satisfy small cancellation conditions, and they have no significance beyond
that. We will eventually show that the map T +— Gr is a Borel reduction from <4

to <em- To see that this is the case, we proceed by a series of lemmas.

Lemma 5.5.3. Let T € Tr(2). If Ry denotes the symmetrization of the defining

relations for G, then Ry satisfies the C'(1/8) small cancellation condition.

Proof. We only need to check the positive relations, since they satisfy the C’(1/8)
condition iff their inverses do, and there is no overlap between a positive word and a
negative word.

We begin with an easy case. Suppose that w € 2<N and consider f,(z)"* and
fuw(y)™, where n, and n, denote the appropriate exponent, which depends on whether
w e T. As fyu(x) and fy,(y) do not start with the same letter, they do not have
a common initial segment. We must also consider common initial segments of cyclic
permutations of these two words, since we had to add the cyclic permutations of f,,(x)™
and f,(y)™ to Rp to make sure that it was symmetrized.

A picture of sorts helps in the analysis. Before any sort of cyclic permutation,
the two words are just f,(z) and f,(y) repeated some number of times, so they can

"z is shown in figure

naturally be seen as being split into blocks. The example of fyo(x)
5.2. When a word is cyclically permuted a bit, the blocks at the beginning and end are
truncated, as in figure 5.3. Now we cannot determine which word is a power of f,,(x)

and which is a power of f,,(y) just by looking at the first letter of the words as before.
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woyxtyrdyrPyr’yytr Py’ yaSySyatyytx . . PyxPyrtyaSyadyySr

foo(z) foo(x) foo(x)

Ny times

Figure 5.2: foo(x)™, with its “blocks” shown

yrlyzdyxdyyPr pdyadyxSyxdyrPyySa . . PyadyadyaSyayySa xdya®

foo(z) foo(z)

TV
ngz—1 times

Figure 5.3: foo(z)™ after being cyclically permuted

Let r1 be a cyclic permutation of f,,(x)" and ry be a cyclic permutation of f,,(y)™
and let M = min{|r1|, |r2|}. Suppose that r = st; and ro = st2 with s maximal.
Permuting both 7 and ry leftwards by < |fu(x)| letters, we get r] and 75, with
ri = fw(z)™. If the f,-blocks in r3 also line up correctly, i.e. r5 = fu,(y)"™, then
we know that r{ and rj disagree at their first letter. Thus |s| < |fu(z)| < §M if
r1 # .

Suppose that r; is not in alignment, i.e. it is not f,(y)™. Then for r and r} to
agree for > |f, ()| letters, f,,(z) must be a subword of f,(y)? containing letters from
each copy of fi,(y). We will show that this cannot happen. In fact we can prove a

slightly more general result which will be useful later.

Lemma 5.5.4. Let u € 2<N, a,b,c € {a*! 4=}, Suppose f,(a) is a subword of f.(bc).
Then f,(a) is not a subword of f,(bc) = fu(b)fu(c) containing letters from both f,(b)
and fu(c). In other words, f,(a) must equal f,(b) or fu(c). It follows that if a, 3 € Fy

are nontrivial and f,(«) is a subword of f,,(B), then « is a subword of f3.

Proof. We prove this inductively. It is easily checked to be true in the case that u €
{0,1}. Now suppose that it is true for all u with |u| < n. Then if v/ = u™i with
|u/| = n and i € {0,1} we may write f(a) = fu(fi(a)) and fu/(bc) = fu(fi(bc)). By
assumption, the f,-blocks in f,/(a) line up with the f,-blocks in f,/(bc), and since
fuw(a) is a subword of f,/(bc), it follows that f;(a) is a subword of f;(bc). This implies
that f;(a) equals f;(b) or fi(c). Thus we find f,/(a) equals f,/(b) or fu(c). O
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This tells us that 7] and r3 agree for < |f,(x)| letters if they are out of alignment
and so |s| < 2|fu(2)| < $M. In fact, the same reasoning shows that two different cyclic
permutations of f,,(z)™ or of f,(y)™ also overlap for less than %M letters.

Now we consider the case when w,v € T are distinct and a,b € {z,y}. Let r; be
a cyclic permutation of (fy(a))™ and rs be a cyclic permutation of (f,(b))™, and let
M = min{|r1|, |re|}. If v = e and w # e, then we observe that no cyclic permutation
of (fw(a))™ agrees with (fc(b))™ = b" for more than 6 letters, which is less than 1/8
of the length of either word. If w and v begin with different symbols, then one of r;
and 79 will be a cyclic permutation of a word in 2°y and y°z, while the other will be a
cyclic permutation of a word in z2yzyz and y?zyxzy. Then the biggest possible common
initial segment between 71 and ro is 2y or yry3, which is less than 1/8 of the length
of either word.

So we may assume that w and v start with the same symbols. Suppose that w =
u”w’ and v = w0/, with v maximal. Taking our cue from the notation for the greatest
common divisor, we will write this as u = (w,v). This should not cause confusion, as
there are no ordered pairs (or greatest common divisors!) in what follows. Then up to
some truncated bits at the beginning and end, r; and 7y are both words in f,(z) and
fu(y), and so we are in a situation very similar to our first case, except that now r
and 7o contain a mix of f,(x)- and f,(y)-blocks, rather than just being conjugates of a

power of one or the other. See figure 5.4 for a picture.

y :C5y :E5y a:5y y5aj x5y x5y x5y 335y .. 335y x5y x5y y5x 1:5y z°
NG NGNGAGNG NG NG NGANG NG NGNGNG
fo(z) fo(z) fo(z) fo(y) fo(z) fo(z) fo(z) fo(z)  fo(z) fo(z) folz) foly) fo(x)

Figure 5.4: foo(x)™ after being cyclically permuted, with fo(z)- and fo(y)-blocks shown

Suppose that r; and ro are both made up entirely of f,-blocks, i.e. there are no
truncated f,-blocks at their beginning and end. Because f,(z) and f,(y) start with
different letters, we see that if r1 and 79 agree on the beginning of a block, then they
agree for the entire block. So the largest common initial segment s which r1 and ro
share is made up of entire f,-blocks. We have r; = f,(a), 12 = fu(8), and s = f,(vy)

with «, 8,7 words in x and y, and so by Lemma 5.5.4, we find that v is a common
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initial segment of o and . Furthermore, o and 3 are related to f,,(a™) and f,(b™) as
follows.

We know that m = f,(«) is a cyclic permutation of f,,(a™) = fu(fuw (a™)), and
both 71 and f,(a™) can be viewed as words made up entirely of f,-blocks. Further,
Lemma 5.5.4 implies that 1 must be the result of cyclically permuting whole f,,-blocks,
since whatever the first f,-block of r; is, it cannot meet two of the f,-blocks in f,(a™).
It follows that « is a cyclic permutation of f,(a™). Similarly, 3 is a cyclic permutation
of fur(b™).

So v is a common initial segment of a cyclic permutation of f,(a™*) and a cyclic
permutation of f,/(b™). This brings us back to the earlier cases. If w’ and v" are both
nontrivial words, then they start with different symbols, which implies that |y| < 5,
and so s is made up of at most 5 f,-blocks. On the other hand, r; and ro are made
up of at least 6 - min{|f,s(a")|,|f, (b™)[} fu-blocks, and so |s| < M. If w' = e and
v' # e or vice versa, then |y| < 6 and we still find that |s| < M. If w’ = e and v/ =,
then v is empty unless a = b, which implies that r; = ro.

This leaves only the out of alignment cases to deal with. As before, we may permute
r1 and rg leftwards by < | f,(x)| letters to get 7§ and 73, with 7} a product of f,-blocks.
If 75 is not a product of f,-blocks, then Lemma 5.5.4 tells us that r] and r3 agree for
< |fu(x)| letters, and so r1 and ry agree for < 2|f,(x)| letters, which is < 1/8 of the
length of each word. If 3 is a product of f,-blocks, then we are in the previous case,
and we have seen that either 77 = 75 or the corresponding common initial segment
between them consists of at most 6 f,-blocks. This implies that [s| < 7|f,(a)| < M.
We have finally exhausted all of the cases and have shown that Rp satisfies the C’(1/8)

condition, as desired. ]

The following lemma was shown to be true in the course of the above proof. We

record it here separately for ease of future reference.

Lemma 5.5.5. If f,,(a) is a cyclic permutation of fi,(8) and B is cyclically reduced,

then « is a cyclic permutation of 3.
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Lemma 5.5.6. If T, T’ € Tr(2) and there exists w € 2<N such that T = T, then

Gpr — Grpr.

Proof. This is obvious if w = e, and so we may assume that w is nontrivial. It is easy
to see that f,,, viewed as a map from G to G, is a homomorphism, since it will take

defining relations in Gt to defining relations in Gpv. In more detail,

fo(@) fo(y)®' € Ry <= weT
= wvel
= fuo(@) = fu(folz)?),

fw"v(y)ﬁl = fw(fv(y)Gl) € Ry

and similar equivalences hold for f,(z)%" and f,(y)™*. It remains to show that f,, is an
embedding.

We still need to show that nontrivial elements of Gr do not map to the identity
in Gp. Our map is defined in terms of where it sends words, but we must take into
account the relations in our two groups in order to see which words correspond to the
identity. As in the previous section, we will show that if & € Fy is such that f,(«)
contains more than 1/2 of a relation in Ry, then « contains more than 1/2 of a relation
in Ry, which easily implies the result.

Suppose that a € Fy and that f,(a) =1 in Gyv. Then f,,(«) contains more than
half of a relation » € Ry. We know that r is a cyclic permutation of some f,(a"),
where v € 2N ¢ € {2 y*'}, and n, € {59,61,67,71}. Let u = (w,v), so that
w=u"w and v = u"v'. Then f,(a) = fu(fuw(@)), and r is a cyclic permutation of
fu(for(a™)). By assumption, the subword of r that both words contain must be big
enough to contain an entire f,-block. Thus Lemma 5.5.4 tells us that the f,-blocks of
r and f,(a) must line up. The f,-blocks are uniquely identified by their first or last
letters, so once fy,(«) and r agree for part of an f,-block, they agree on the whole thing,
unless r begins and ends with a truncated f,-block. In this case, cyclically permuting
r until it is made up of f,-blocks will “complete” the f,-block at one end of r. This

new word is also a relation which agrees with f,,(a) for at least as long as r did, since
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either only one end of r was in f,(a) and cyclically permuting increases the length of
the word the two agree on, or r was a subword of f,,(a) and this cyclic permutation is
also a subword of f,,(«).

Thus we may assume that r = f,,(w) for some w € Fy, and that r and f,,(«) share a
subword of the form f,(v), where v € Fy. By Lemma 5.5.5, we know that w is a cyclic
permutation of f,/(a™). Then v is a subword of a cyclic permutation of f,/(a™) and
a subword of f,/(a). If v’ and v’ are both nontrivial, then they begin with different

symbols, and so |y| < 5. But then

[fu)l _ Dl

[fola)| [ for(am)]|
«_ 0
= | fw(am)]|
<1/2

which is a contradiction. If v = e but w’ # e, then virtually the same inequalities
hold since f} (a) does not contain any letter to a power greater than 6, and again we
get a contradiction. Thus w’ = e, meaning w = u, and so «a contains > 1/2 of a
cyclic permutation of f,/(a™). Further, since w™v" € T' < o' € T, it follows that
for(@™) € Rp. Thus if f,(a) =1 in Gy, then « contains > 1/2 of a word in Ry, as

desired. O

The proof of the converse of Lemma 5.5.6 will depend on the following two lemmas.

Lemma 5.5.7. Suppose a, 3 € Fy are cyclically reduced, and w,v € 2<N. If r is a
cyclic permutation of fu,(a) and ro is both a cyclic permutation of f,(5) and a subword
of r1, then v Cw or w C v.

Moreover, if w = v™w' then a cyclic permutation of fu(a) contains a cyclic per-

—~,/

mutation of B, and if v = w ™', then a cyclic permutation of a contains a cyclic

permutation of fur(B).

Proof. The result is trivial if w = e or v = e, so we may assume that w and v are
nontrivial. Let u = (w,v), with w = v~ w’ and v = u™v'. If u = e, then w and v begin

with different symbols, which is impossible, since |r1|, [r2| > 5, the length of the longest
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possible agreement between r; and 2. So u is nontrivial, and r is a cyclic permutation
of fu(fuw()), while 9 is a cyclic permutation of f,(f.,/(8)). The f,-blocks of each word
must line up, by Lemma 5.5.4. Further, since rs is a subword of rq, any truncated bits
of f,-blocks at the ends of ro are duplicated in r1. So we can permute 71 and ro the
same amount to get 77 = f,(7) and r; = f,(w), words composed entirely of f,-blocks,
with 73 contained in r]. By Lemma 5.5.5, we know + is a cyclic permutation of f,(c)
and w is a cyclic permutation of f,/(/5). In addition, Lemma 5.5.4 implies that w is a
subword of ~.

If w’' and v are nontrivial, then they start with different symbols, and as above we
reach a contradiction. Thus either w’ = e, and so w C v and a cyclic permutation of «
contains a cyclic permutation of f,/(8), or v' = e, so v C w and a cyclic permutation

of fu(a) contains a cyclic permutation of . O]

Lemma 5.5.8. Suppose that t,u,v € 2<N, and some cyclic permutation of fi(z¥) is
a product of a cyclic permutation of fu(x') and a cyclic permutation of f,(y™), with
k,l,m € Z\{0}. Thenu=wv,t=u"0, k=m =41, =5k, and f;(z¥) = fu~o(z*1)
1s either

ful@®) fuly)

fu(y_l)fu(x_s)-

Proof. By Lemma 5.5.7, either t C w or w C t. If t C v and v = t"u/, then by the
previous lemma, we find that a cyclic permutation of z* contains a cyclic permutation
of fu/(2!). This is impossible unless u' = e. So we may assume that « C t and t = u™t'.
Similarly we find that v C ¢t and t = v™t". It follows that u C v or v C u.

Suppose that v C v and v = v~ v’. We know that the f,-blocks in f,(z!) and
fu(for(y™)) must line up with those in f;(2*). This means in particular that a truncated
fu-block at the end of the cyclic permutation of f,(x') must be completed by a truncated
fu-block at the beginning of the cyclic permutation of f,(f.,(y"™)), and vice versa. So

we can assume that the cyclic permutations we are considering are made up of complete
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fu-blocks. Then by Lemma 5.5.4 we obtain that a cyclic permutation of fy(2*) is a
product of 2! and a cyclic permutation of f,(y™).

Now, fy(z*) is composed of f,-blocks, which must line up with those in the cyclic
permutation of f,(y™). So it must be the case that 2! is a cyclic permutation of f,-
blocks. But this can only happen if v/ = e, meaning u = v. Similar reasoning applies if
v C u. Thus u = v. It is not possible for a truncated f,(x)-block to be completed by a
truncated f,(y)-block, or vice versa, and so we must have that the cyclic permutation
of f;(x*) we started with is either f,(z!)fu(y™) or fu(y™)fu(z!).

It follows that 2'y™ is a cyclic permutation of fy(2¥). This can only happen if

k contains

t' =0 and k,l, m are as in the statement of the lemma, since if ¢’ = e then x
no occurrences of y, and if ' # 0 is nontrivial then fy(2¥) must contain at least two

distinct blocks of x’s and y’s. O

We now take up the converse of Lemma 5.5.6, which will complete the proof of

Theorem 5.5.2.

Lemma 5.5.9. If T,T' € Tr(2) and Gt — G, then Jw € 2<N such that T = TY,.

Proof. Suppose that 0: G — Gp+ is a monomorphism. Our main goal is to prove that
6 must actually be f,, for some w € 2<N, up to an inner automorphism of G7v. Once
we know this, it is easy to recover the relations in each group, and thus to show that
T=T.,.

Since z = fe(z), = has some finite order ny in Gr. Then 6(z) has order n,,
and so by Theorem 4.1.3, 6(z) must be conjugate to a power of some f,(x), where
weT & eeT. If we follow 6 by an inner automorphism of G7v, we may assume that
0(x) = (fu(x))° for some nonzero integer 4.

Similarly, 6(y) is conjugate to a power of some f,(y) with v € T" & e € T. We
find that 0(y) = u(f,(y))"u~!. We can assume that u does not contain more than
half of an element of Ry. We may also follow 6 by the inner automorphism cor-
responding to f,(z) as necessary to ensure that u does not begin with a power of
fw(x), and this will not change the value of 0(z). After freely reducing we get that

O(y) = u'ru'~!, where r is a cyclic permutation of (f,(y))Y. To see this, suppose
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that u = aB~!, where (f,(y))? = Bu and B is the longest subword of u for which
this is true. Then u(f,(y))"u™" = aB 'BuBat = aupfa~!. Then v/ = a and

1

r = pf. A similar argument works if (f,(y))? cancels with «~'. For example, if

1

we had 0(y) = 2y~ fo(y)yx~! = xy—1(y°x)yxr~?, then after freely reducing we would

U= 2ra=!, where r = ytxy.

find 0(y) = xy*zys~
We now proceed much as in the proof of 5.4.1. Let m, be the order of fy(x) in Gp.
Since 6 is a monomorphism, it must take fo(x) to a torsion element of order m,. We

know that

0(fo(2)) = 0(a"y) = (fu (@) u/rd!

= (fulw))u'ru ™!

where |6'] < |%]. Note that, as written, this word may not be freely reduced, so we
can not necessarily use Theorem 4.1.2 yet. Let z = 0(fo(z)).

Suppose that z is cyclically reduced as written and that u’ # 1. Then z is a cyclically
reduced word with finite order in G+ which contains a mixture of positive and negative
letters, which is impossible since the words in R+ are either entirely positive or entirely
negative. So either v’ =1 or else z is not cyclically reduced.

First suppose that v/ = 1, so that z = (fu(2))?r. If & and v have the same sign,
then z is cyclically reduced as written. By Theorem 4.1.3, z is a cyclic permutation of
some f;(z¥), and so by Lemma 5.5.8, 0(2) = f,(z)* and 0(y) = fu,(y)T".

Suppose that ¢’ and 4 have opposite signs. There is a (possibly trivial) inner auto-
morphism 1 such that 1(z) = s/, where s is a cyclic permutation of f, ()%, and 7/
is a cyclic permutation of f,(y)7, and freely reducing sr’ will leave a cyclically reduced
word. Let 9(z) = 2’. Since 2z’ is a torsion element, it must be a cyclic permutation of
some fi(2). So if we write 2’ as the result of freely reducing sr’, then its letters must
all have the same sign.

Suppose 2’ and s have letters of the same sign. Then 2/r/~!

is cyclically reduced and
so we have a cyclic permutation of f, (m)(sl written as a product of a cyclic permutation
of f;(x)*¥ and a cyclic permutation of f,(y)”. By Lemma 5.5.8, we get that 6(z) =

foo(@™) = fo((z5y)*), and O(y) = f.(yT'). But then either 8(xy) = f,(2°) or



64

O(xy) = fo(ly t25y) = foly) ' folx™3)fu(y). Both of these are torsion elements, but
zy is not a torsion element in G, which contradicts the fact that 8 is an embedding. So
suppose that 2’ and r’ have letters of the same sign. Then 2’s~! is cyclically reduced and
so we have a cyclic permutation of f,(y)” written as a product of a cyclic permutation
of f;(z)¥ and a cyclic permutation of f,(x)%. Arguing as in the proof of Lemma 5.5.8,
we find that w = ¢ and that w C v. Let v = w™v'. We obtain that f(y?) = z=9 %,
which is absurd.

We still must address the case where u’ # 1 and z is not cyclically reduced. This
can happen for two reasons. It may be that v/ and f,(z) begin in the same way.
We know that u' does not begin with an entire copy of f,(x), and we have assumed
that u' does not further cancel with r, so there is an inner automorphism v such
that ¥0(fo(x)) = su”ru"~!, a cyclically reduced word with s a cyclic permutation of
(fw(@)?. If u” # 1, then (A(fo(x)) contains positive and negative letters, and we
have already seen that this is impossible. Thus we must have that 2’ = sr, and as
before we see that 6(z) = f,(z)* and 0(y) = fu(y)*'.

The other possibility is that «’ cancels with the end of f,,(x). It cannot cancel with
the whole of fi,(z), and so again after following 6 by an appropriate inner automor-
phism 9 we get that ¥ (0(fo(z))) = su”ru”~1, a cyclically reduced word with s a cyclic
permutation of (f,,(x))?. This case is treated exactly as in the previous paragraph.

So we have shown that 6(z) = f,,(z)* and 8(y) = f,(y)*" with the signs matching.

If 0(z) = fu(z) and 0(y) = fu(y), then = f,,, and hence

uweT < f,(2°) € Ry

& fulfu(e™)) € Ry

sSw ueT

Thus T' = T}, as desired. Thus it only remains is to eliminate the undesirable case

when 0(z) = f,(z~!) and 8(y) = fu(y~'). In this case we have that
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0(foo(z)) = 0(z"yz’ya’yaya°yy’x)

1 1 1

= fu(@ Py ta Py e Py ey e Py Ty P

= fu((zy’yz’ya’ya’yx yx®) 1)

We will show this is not a torsion element in Gp». Since foo(z) is a torsion element in
G, this implies that 8 is not a homomorphism, which is a contradiction.

Let a = xyPyz’yxdyx’yxdyx®. Tt is easy to see that foo(z) is the only torsion element
that has length 36 and that contains 26 xs. However, «a is not a cyclic permutation
of foo(x). It follows that f,(a) (and hence 6(foo(x))) is not a torsion element, since
otherwise it would have to be a cyclic permutation of some ft(ack') with t € T'. Thus
by Lemma 5.5.7, either w C ¢ or ¢ C w. Suppose that w C t and t = w™t'. Then «
must be a cyclic permutation of fy(z*), which we have already seen is impossible. If

k

t C wand w = ¢t~ w', then ¥ must be a cyclic permutation of f,(«), which is also

impossible. Thus we reach a contradiction, eliminating the final undesirable case. [

Proof of Theorem 5.5.2. Lemmas 5.5.6 and 5.5.9 establish that the map T+ Gr is a

Borel reduction from <5 to <em.- O
Corollary 5.5.10. =.,, is a universal countable Borel equivalence relation.

It may have been possible to prove this corollary without any reference to quasi-
orders, by reducing some known universal countable Borel equivalence relation to =,,.
However, it seems that the most natural and direct route to this result is through
Theorem 5.5.2. A closer look at the above proof also leads to the following result,
which tells us that the bi-embeddability relation on the groups constructed above is

much more complicated than the isomorphism relation on these groups.

Corollary 5.5.11. With the above notation, Gp = Gg <= T = S.

Proof. One direction is trivial. For the other, suppose that T',S € T'r(2) are such that
Gr =2 Gg, via ¢: G — Gg. Then in particular ¢ is an embedding, and by the proof of

Lemma 5.5.9, there exists w € 2<N such that 7' = S,,. Furthermore, after adjusting by
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an inner automorphism of Gg if necessary, we can suppose that ¢ = f,,. We will show
that if w # e, then f,,: Gy — Gg is not surjective. Hence w = e and Gpr = Gg.

Suppose that w € 2<N

is nontrivial and that f,,: Gp — Gg is surjective. Then
there is some word « € Fa, which we may assume does not contain more than 1/2 of a
relation in Ry, such that f,(«) = x in Gg, where x is one of the generators of Gg. This
means that f,(a)r~! = 1 in Gg. By the proof of Lemma 5.5.6, we know that f,(c)
does not contain more than 1/2 of a relation in Gg. By Theorem 4.1.2, for f,(a)x~! to
represent the identity in Gg, it must contain more than (1 —3/8) = 5/8 of a relation in
Rp. But f,(a)z~! has at most one more letter in common with a relation than f,,(«)

1

does. Since f,(a) contains less than 1/2 of a relation in Rr, fy(a)z™ contains less

than 5/8 of a relation in Ry. This is a contradiction. O

5.6 The structure of the countable Borel quasi-orders under <g

The previous results have all been concerned with universal countable Borel quasi-
orders, which are above all other countable Borel quasi-orders with respect to <p. It
is natural to ask about the overall structure of the countable Borel quasi-orders.
Recall that n may be viewed as a discrete space with n elements. We have already
seen that if we restrict our attention to equivalence relations, the equality relations

A(n) are such that
A(l) <p A(2) <p A(3) <p ... <p A(N).

If we also look at quasi-orders on these spaces, then the structure is more complicated.
For these spaces, Borel reducibility is embeddability. This is undoubtedly chaotic, but
a complete description more properly belongs to combinatorics rather than logic.

In light of the relative chaos that occurs in the lower part of the Borel hierarchy for
countable Borel quasi-orders, one might worry that we lose all of the nice dichotomies
that hold for countable Borel equivalence relations. Thankfully this is not the case.
Suppose that @Q is a countable Borel quasi-order on an uncountable Polish space. By
the Kuratowski-Ulam theorem, since every section of @) is meager, () is a meager subset

of X2. Then recall the following theorem of Mycielski in [30].
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Theorem 5.6.1. If X is an uncountable Polish space and R, is a meager subset of

X™, then there is a perfect subset P C X such that

vpl?"wpn eP(pla--'vpn) ¢Rn

In particular, if @ is a meager quasi-order on an uncountable Polish space X, then
there is a perfect subset P C X for which none of the elements are ()-comparable, and
hence A(P) <p @ by the identity map. Since P is an uncountable standard Borel space
in its own right, A(R) ~p A(P), and so A(R) reduces to every meager quasi-order on
an uncountable Polish space, including every countable Borel quasi-order.

Also, because symmetry is preserved downwards under <pg, Ej is an immediate
successor of A(R) within the collection of countable Borel quasi-orders. It is natural to
ask whether there are any other immediate successors of A(R). Recall from section 2.4
that if £ is a countable Borel equivalence relation on a standard Borel space X with
a Borel linear order <, then F(<) is defined to be E N <. Some of these quasi-orders

seem to furnish candidates for immediate successors of A(R). We have seen that

E(<) <pB F(S) = F <p F. (*)

However, the converse is not true in general. Define E on 2N x Q by
(z,7) E(y,s) <= z=y

and similarly define F' on 2V x N. Also, let <@ denote the lexicographical order on
2N % Q, i.e.

(x,r) <@ (y,8) <= x<pmwyV(@=yAr<gs)

where <,v is the standard lexicographical order on 2N and <g is the standard order
on Q. Similarly define <V to be the lexicographical order on 2% x N. Clearly E ~p F,
as both equivalence relations are smooth. However, E(<?) £ F(<N). To see this,
let z € 2N, Any Borel reduction from E(<?) to F(<Y) must send [(z,0)]z into some
[(y,0)]F in an order-preserving way, which is impossible.

We now discuss another important property of the E(<).
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Definition 5.6.2. Let < and <’ be quasi-orders on X and Y, respectively. A map

h: X —Y is half-order-preserving, or h.o.p., if v < y = h(x) <" h(y).

Definition 5.6.3. A Borel quasi-order Q on X is Borel linearizable if there is a Borel
linear order L on'Y and a Borel h.o.p. map h: X — Y (called a linearization map)

such that x Eg y < h(z) = h(y).

This concept first appeared in [16]. Each E(<) is Borel linearizable, as the identity
map is a linearization map. In [20], Kanovei proved a dichotomy theorem for Borel
quasi-orders which involves the property of Borel linearizability. Define <y on 2V by
x <gyiff 2 =y orxEyy and x(n) < y(n) where n is the largest natural number
for which xz(n) # y(n). Note that this is not the same as Ey(<). Kanovei proved the

following dichotomy:

Theorem 5.6.4 (Kanovei [20]). Suppose that < is a Borel quasi-order on NY. Then

exactly one of the following conditions is satisfied:
i) < is Borel linearizable,
i) there exists a continuous 1-1 map F: 2% — NN such that
a<ob= F(a) <X F(b)
while a Fob implies that F(a) and F(b) are <-incomparable.

In particular, < is not Borel linearizable. Notice that Borel linearizability is pre-
served downwards under <g. To see this, suppose ), R are Borel quasi-orders on
standard Borel spaces X,Y respectively, and R is Borel linearizable. Then there is
some standard Borel space Z with a Borel linear order < and a h.o.p. map h: Y — Z.

Suppose that f: X — Y is a Borel reduction from @ to R. Then

rEqy <= f(z)Er f(y)

= h(f(z)) = n(f(y))

Thus ho f witnesses that @ is Borel linearizable. Consequently, Kanovei’s theorem has

the following corollary.



69

Corollary 5.6.5. If E is any countable Borel equivalence relation, then <g does not

Borel reduce to E(<).

Open Problem. Suppose @ is a countable Borel quasi-order, E is a countable Borel
equivalence relation, and @ <p E(<). Does it follow that @ ~p F(<) for some

countable Borel equivalence relation F'?

It is currently not known if any of the E(<) Borel reduce to <. Note that <
symmetrizes to A(2Y). So all of the examples of “genuine” quasi-orders which we have
discussed so far symmetrize to either equality on some standard Borel space or to a
universal countable Borel equivalence relation. This leads us to ask if there are any
natural quasi-orders () which are not equivalence relations and for which Fg is neither
smooth nor universal.

There is at least one example. Recall the earlier definition of < for a countable
group G. If we write EC for the symmetrization of < and Eg for the equivalence
relation on subsets of G given by the orbits of the shift action, then clearly Eg C EtG .
In particular, it follows that EtG is not smooth. This is because if E, F' are countable
Borel equivalence relations and E C F, then if F' is smooth, so is E. (This is an
immediate consequence of Lemma 2.1 in [36].) But for any infinite countable group
G, Eg is not smooth (cf. [24, Example 3.1]). So the question is whether or not E&
is universal. We will show that EtZ is not universal. In fact, we will prove a stronger
statement, after first establishing a lemma due to Cherlin which simplifies the author’s

original argument.
Lemma 5.6.6. If ACZ and A=nN}_,(A+¢;), then A= A+ ¢; for some i.

Proof. Let I = {k € Z | A C A+ k}. Then ¢; € I for all ¢, and I is closed under
addition. If I contains both positive and negative integers, then I = dZ for some d € Z.
Hence d | ¢; for all i. Then AC A4+d,ACA—d< A+dC A andso A= A+d.
Thus A = A + ¢; for all 1.

So we may suppose that I contains no negative numbers. We may assume that no

¢; = 0, since otherwise we are done. Thus all the ¢; are positive. Let d = ged(cy, ..., cp).
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IfACA+d, then A+d C A+¢; for all i, and so A = A+ d. But then —d € I, a
contradiction. So A is not contained in A+d. We may assume that 0 € A\ (A+d), since
otherwise we shift A as necessary. Every sufficiently large multiple of d is a positive
linear combination of the ¢;. Thus —nd € A for every sufficiently large n. Take n

maximal with —nd ¢ A. Then —nd € (A + ¢;) for all 4, a contradiction. O

Theorem 5.6.7. EZ = Fy
Proof. Suppose A E” B, as witnessed by a1,...an,b1,...,bm € Z, i.e.

A= (a1 +B)Nn...N(an + B) (5.2)

B=(by+A)N...0 (b + A) (5.3)

If n=1o0r m=1, then A is a shift of B, so we may assume that n > 1 and m > 1. If
we replace every instance of B on the right hand side of (5.2) with the right hand side

of (5.3), and similarly replace the instances of A in (5.3), we get

A= ﬂi,j(ai + bj + A)

B =n;j(a; +b; + B)
By Lemma 5.6.6, we have A = a; + b; + A for some 7, j. Then
ACB+a; CA+bj+a;=A
and so A = B + a;. O

In general EC # Eg. It is still the case that any sets which are equivalent under
ES to sets other than their shifts are contained in translates of themselves, but the
arguments used in showing EZ = Ey do not carry over. For example, there are sets
A, B € P(Z?3) such that AEZ’ B and A s B. Figure 5.5 shows part of such an A. Each
grid is a copy of Z?2, and the copies are indexed by Z. So the element (a, b, ¢) corresponds
to (a,b) in the grid indexed by ¢. A 1 indicates the corresponding element is in A, while
a 0 indicates it is not. All of the grids below what is pictured are entirely 0s. The grids
above continue the pattern of moving the lowest nonzero row up by two, and adding an

additional 1 to the lowest row. Let B = AN A+ (1,0,0), which is shown in figure 5.6.
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It is easy to see that B is not a shift of A. However, BN B+ (0,0,—1) = A+ (0,2,0),
and so A EtZ3 B.

This implies that E& # Eg for any countable group G such that Z? < G. Suppose
that G is a countable group such that ES # Eg and H is a countable group which
surjects onto G, say via f. Let A, B C P(G) be such that A EF B, say via c1,...,cp
and di,...,dp, and A FgB. Then f~1(A) EF f~Y(B) and f~'(A) FEgf ' (B). Let
g1, --,9n € H be such that g; € f~'(c;) and hq, ..., hy, € H be such that h; € f~1(d;).
Then

YA =gfY(B)Nn...Ng.fYB)

fUB)=hif Y AN ... Nhynf (A

Suppose that there were some h € H such that f~1(A) = hf~1(B). Then A = f(h)B,
a contradiction. This further expands the collection of groups such that E& # Eg. In
particular, any SQ-universal group has this property, including F2. So while we have
seen that E,IF 2 ~p FE4, the two are not equal.

If we restrict the shift action of Fo on its subsets to the free part of the shift action
(i.e. the points which are not fixed by any nontrivial element of Fs), then we obtain
the universal treeable equivalence relation E, 7. Recall that Fy <p Foor <B Feo.
In the same spirit, we can restrict 4?2 to the free part of the shift action and get a
new quasi-order 4%’. It is reasonable to conjecture that the associated equivalence
relation is Borel bireducible with E,,7, but the above results make it unlikely that the
associated equivalence relation is actually equal to E.op. If this conjecture holds, it
would give another example of a quasi-order whose associated equivalence relation is

neither smooth nor universal.

5.7 Future directions

We have already mentioned some of the remaining open questions concerning the struc-
ture of the countable Borel quasi-orders under <pg. Of course it is also natural to ask
where specific countable Borel quasi-orders are situated in this structure. In particular,

most of the reducibilities from computability theory, such as Turing reducibility <7 or



72

0 0 O

1

0 0 0 0 O

o 0 0 0 O 0 O

0 0 0 0 0 0 O
0O 0 0 0 0 0 O

0 0 O

1

0 0 O

0O 0 0 0 0 0 O

0 0 0 0 O

0 0 O

1

0 0 0 O

0 0 0 00 0 O

0 0 0 00 0 O
0 0 0 00 0 O
0 0 0o 00 0 O
0 0 0 00 0 O
0 0 000 0 O
0 0 0 00 0 O

Figure 5.5: The set A € P(Z3)



73

0 0 O

1

0 0 0 0 O

0 0 0 0 O

0 0 0 0 O
0 0 0 0 O

0 0 O

1

0 0

0

0 0 0 0 O
0 0 0 0 O

0 0 0 O

1

0 0

0

0 0 0 00 0 O

0 0 0 00 0 O
0 0 0 00 0 O
0 0 0o 00 0 O
0 0 0 00 0 O
0 0 000 0 O
0 0 0 00 0 O

ANA+(1,0,0)

Figure 5.6: The set B



74

1-reducibility <;, are countable Borel quasi-orders. The equivalence relations associ-
ated with them have been the subject of a great deal of work in descriptive set theory;

for example, see [6].
Open Problem. Are any of <y, <p, etc. universal countable Borel quasi-orders?

It is open whether the associated countable Borel equivalence relations =1 or =p
are universal. We have seen that universal countable Borel quasi-orders give rise to
universal countable Borel equivalence relations, so a positive answer to any part of
this question would settle the problem for the corresponding equivalence relation. It is
possible for a non-universal countable Borel quasi-order to symmetrize to a universal
countable Borel equivalence relation, for example a quasi-order which was already an

equivalence relation. So we ask the following.

Open Problem. How many countable Borel quasi-orders are there up to Borel bire-

ducibility which symmetrize to a universal countable Borel equivalence relation?

There are interesting open questions about the relationship between the biembed-
dability relation =, for finitely generated groups and the isomorphism relation =g for
finitely generated groups. As both relations are universal there are Borel reductions
in each direction. However, both universality results ultimately rely upon the Lusin-
Novikov theorem, which gives no information about the resulting Borel reductions.

It is therefore natural to ask if there are such Borel reductions which are group-
theoretic in nature, meaning maps which only use group-theoretic constructions such as
semidirect products, wreath products, HNN extensions, etc. All of these constructions
induce continuous maps on the space G of finitely generated groups, so this raises the

question of whether there is a continuous reduction between the two relations.

Open Problem. Is there a continuous reduction from =g to =g, or in the opposite

direction?

Currently the only results ruling out continuous reductions between countable Borel
equivalence relations F, I’ such that £ <p F are due to Thomas. In particular, we

have the following.
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Theorem 5.7.1 (Thomas [36]). Suppose G is a countable subgroup of Sym(N), the
group of bijections of N. Let Eg be the orbit equivalence relation of the group on 2N.

Then =1 does not continuously reduce to Eg.
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