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by Jay Williams

Dissertation Director: Simon Thomas

In recent years, much work in descriptive set theory has been focused on the Borel

complexity of naturally occurring classification problems, in particular, the study of

countable Borel equivalence relations and their structure under the quasi-order of Borel

reducibility. Following the approach of Louveau and Rosendal in [25] for the study of

analytic equivalence relations, we study countable Borel quasi-orders.

We are largely concerned in this thesis with universal countable Borel quasi-orders,

i.e. countable Borel quasi-orders above all other countable Borel quasi-orders with re-

gard to Borel reducibility. We first establish that there is a universal countable Borel

quasi-order, using a Feldman-Moore-type result for countable Borel quasi-orders and an

argument similar to that of Dougherty, Jackson, and Kechris in [5]. We then establish

that several countable Borel quasi-orders are universal. An important example is an

embeddability relation on descriptive set theoretic trees. This is used in many of the

other proofs of universality.

Our main result is Theorem 5.5.2, which states that embeddability of finitely gener-

ated groups is a universal countable Borel quasi-order, answering a question of Louveau

and Rosendal in [25]. This immediately implies that biembeddability of finitely gen-

erated groups is a universal countable Borel equivalence relation. Although it may
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have been possible to prove this only using results on countable Borel equivalence re-

lations, the use of quasi-orders seems to be the most direct route to this result. The

proof uses small cancellation theory. The same techniques are also used to show that

embeddability of countable groups is a universal analytic quasi-order.

Finally, we discuss the structure of countable Borel quasi-orders under Borel re-

ducibility, and we present some open problems.
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Chapter 1

Introduction to Countable Borel Equivalence Relations

and Quasi-Orders

Mathematicians often work to classify the objects of their study up to some notion of

equivalence, for example classifying finitely generated groups up to isomorphism, or

unitary operators on infinite-dimensional Hilbert space up to unitary equivalence. De-

scriptive set theory gives us tools to compare the relative complexity of many naturally

occurring classification problems throughout mathematics.

In this thesis, we are particularly interested in the complexity of classifying finitely

generated groups up to biembeddability. In this case, it is more natural to study

embeddability of finitely generated groups, which is a quasi-order and not an equiva-

lence relation. Previously, in [25], Louveau and Rosendal studied the class of analytic

quasi-orders to prove results about the analytic equivalence relations which arise by

symmetrizing them. Following their approach, we introduce and study the class of

countable Borel quasi-orders. Not only is this a natural way to study the complexity of

the equivalence relations which arise from these quasi-orders, such as biembeddability

of finitely generated groups, but also this class of relations is interesting in its own right.

The rest of this chapter introduces the concepts mentioned above in greater detail.

After setting out some of the basic definitions used in descriptive set theory, the use

of descriptive set theory to study classification problems and how they are related

is explained in more detail. This is followed by a discussion of the countable Borel

equivalence relations. Finally there is a section on quasi-orders and how they fit into

the descriptive set-theoretic framework. The precise statements of the results of this

thesis can be found in Chapter 2.
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1.1 Descriptive set theory basics

Descriptive set theory provides a framework for the study of classification problems from

throughout mathematics. The core of descriptive set theory is the study of “definable”

subsets of Polish spaces. A Polish space is a separable topological space which can be

equipped with a compatible complete metric. Examples of Polish spaces include R and

Rn with their standard topologies, [0, 1] with the subspace topology, {0, 1}N (written

2N) with the product topology, and the p-adics Qp with their usual topology.

A subset of a Polish space X is Borel if it is a member of the smallest σ-algebra

containing the open sets of X, and analytic if it is a continuous image of a Borel set.

Note that every Borel set is analytic, although the converse is not true. These collections

of sets will be sufficient for the purposes of this thesis.

We will also need the notion of a standard Borel space, a measurable space (X,S)

for which there is a Polish topology T on X that gives rise to S as its Borel σ-algebra.

Obviously every Polish space equipped with the induced Borel σ-algebra is a standard

Borel space. It can be shown that every Borel subset Y of a standard Borel space (X,B)

is a standard Borel space when equipped with the Borel sets

B � Y = {A ∩ Y | A ∈ B}.

Note that the Polish topology placed on Y is not necessarily the subspace topology

which it inherits from X. For example, open intervals in R are standard Borel spaces,

but are not complete in the subspace topology.

If (X,BX), (Y,BY ) are standard Borel spaces, we call f : X → Y Borel if for every

Borel set U ⊆ Y , f−1(U) is a Borel subset of X. This is equivalent to requiring that

the graph of f is a Borel subset of X × Y . It follows that if f : X → Y is Borel and a

bijection then f−1 : Y → X is Borel, as graph(f−1) is a Borel subset of Y ×X. In this

case f is said to be a Borel isomorphism. It is a remarkable theorem of Kuratowski

that every uncountable standard Borel space is Borel isomorphic to R. (See Theorem

15.6 in [22].) For more background on descriptive set theory, see [22] or [34].
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1.2 Classification problems and equivalence relations

Many collections of mathematical objects may be viewed as forming a Polish space X,

and then a classification problem corresponds to understanding an equivalence relation

E on X. For example consider the problem of classifying the subsets of N up to

recursive isomorphism, written ≡1. Recall that a function from N to N is recursive if

it is computable by a Turing machine, and sets A,B ⊆ N are said to be recursively

isomorphic if there is a recursive permutation π : N → N such that π(A) = B. The

set P(N) may be identified with the Polish space 2N in the obvious way. Recursive

isomorphism is then an equivalence relation on 2N, which may be viewed as a subset of

2N × 2N. Note that ≡1 is ∪n graph(fn), where the fn : 2N → 2N are the maps induced

by the recursive permutations of N. As each fn is continuous, their graphs are closed,

and so ≡1 is a Borel subset of 2N × 2N. This is a general phenomenon; many of the

equivalence relations corresponding to natural classification problems, when viewed as

subsets of the appropriate product spaces, are either Borel or analytic. We call such

equivalence relations Borel or analytic.

Classifying the objects in X up to the equivalence relation E amounts to finding a

set of complete invariants I and a map c : X → I such that

xEx′ ⇐⇒ c(x) = c(x′).

This is the same as finding an injective map c′ : X/E → I, where X/E is the quotient

space corresponding to E. If this is all that we require, then classification is trivial

but useless. Most interesting examples of Borel equivalence relations have 2ℵ0 distinct

equivalence classes. By the Axiom of Choice we may assign each equivalence class a

unique real number, but this classification is not useful if we have no idea what the

assignment looks like.

1.3 Borel reductions

In order to avoid such difficulties, we restrict ourselves to more explicit classification

maps. Borel sets and maps can be thought of as being in some sense explicit, and
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avoiding the “pathologies” of the Axiom of Choice. For example, every Borel set of

reals is Lebesgue measurable and has the property of Baire, and every Borel map is

Baire measurable. So we require our classification maps to be Borel.

An ideal classification scheme for an analytic equivalence relation E on a space X

would be a Borel map c : X → R, assigning each E-class a unique real number. If E

admits such a classification, then E is said to be smooth. Finding such a classification

scheme is not always possible, since there are non-smooth equivalence relations. For

example, define E0 on 2N by

x E0 y ⇐⇒ ∃N ∈ N ∀n ≥ N (x(n) = y(n)).

In other words, E0 is eventual equality of infinite binary sequences. Suppose f : 2N → R

is a Borel map such that x E0 y ⇒ f(x) = f(y). Then basic category or measure

arguments can be used to show that there must exist α, β ∈ 2N such that α 6E0β and

f(α) = f(β), meaning f does not give a complete classification for E0.

This leads one to consider different types of invariants. We can use objects identified

up to some equivalence relation to classify other objects up to an equivalence relation.

This gives us a natural way to compare the complexity of various equivalence relations.

Definition 1.3.1. Suppose that E,F are Borel (or analytic) equivalence relations on

the standard Borel spaces (X,BX), (Y,BY ) respectively. Then we say E Borel reduces

to F , written E ≤B F , if there exists a Borel map f : X → Y such that for all x, x′ ∈ X

x E x′ ⇐⇒ f(x) F f(x′).

We write E <B F if E ≤B F and F 6≤B E. We write E ∼B F if E ≤B F and F ≤B E,

and say that E and F are Borel bireducible.

A Borel reduction can be seen as an explicit assignment of complete invariants from

the quotient space Y/F to the objects in X. This means that if we have a classification

scheme for the objects in Y up to F -equivalence, we can use the Borel reduction to

turn it into a classification scheme for the objects in X up to E-equivalence. In light

of this, if E ≤B F , then we consider F to be at least as complicated as E.
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One well-known example of these more general invariants is the classification of rank

one torsion-free abelian groups due to Baer in [3] using sequences of elements from

N ∪ {∞}. Here two groups are isomorphic if and only if they are assigned sequences

which eventually agree, and always agree where they equal ∞. It is easy to see this is

an equivalence relation on such sequences.

Let C be a collection of equivalence relations. Then E is universal for C if E ∈ C and

F ≤B E for every F ∈ C. A universal equivalence relation for C can be thought of as

being as complicated as possible among all equivalence relations in C, lending it special

significance. There may be several equivalence relations in C which are universal, but

the definition easily implies that they are the same up to Borel bireducibility.

Thus far the only collections of equivalence relations that we have mentioned are the

collections of all Borel equivalence relations and all analytic equivalence relations. It is

a result of H. Friedman and L. Stanley in [9] that there is no universal Borel equivalence

relation. In fact they prove something more:

Theorem 1.3.2. Suppose E is a Borel equivalence relation on a Polish space X. Let

[x]E denote the E-equivalence class of x and define E+ on XN by

(xn) E+ (yn) ⇐⇒ {[xn]E}n∈N = {[yn]E}n∈N.

Then E+ is Borel and E <B E+.

On the other hand, there is a universal analytic equivalence relation. This is due to

Becker and Kechris in section 3.5 of [4], and relies on the existence of what are known

as universal analytic sets. There are several natural examples of universal analytic

equivalence relations, including:

• Bi-embeddability of countable graphs. [25]

• Isometric bi-embeddability between Polish metric spaces. [25]

• Isomorphism of separable Banach spaces. [8]
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1.4 Countable Borel equivalence relations

One class of equivalence relations of particular interest in this area is the class of

countable Borel equivalence relations. Here a Borel equivalence relation is said to be

countable if all of its equivalence classes are countable. Some simple examples are

equality on R, eventual equality of infinite binary sequences, recursive isomorphism of

sets of natural numbers, and isomorphism of finitely generated groups. (We will define

the space of finitely generated groups in section 3.2.)

Many countable Borel equivalence relations arise in practice as the orbit equivalence

relations of Borel actions of countable groups. Let G be a countable group acting in a

Borel way on a Polish space X. Then the orbit equivalence relation EXG is defined by

xEXG y ⇐⇒ (∃g ∈ G) g · x = y.

It is easy to see that the first three equivalence relations listed in the previous paragraph

can be realized as orbit equivalence relations of Borel actions of suitable countable

groups. However, Turing equivalence ≡T of sets of natural numbers is a countable

Borel equivalence relation for which there is no obvious countable group G such that

≡T coincides with E2N
G . Nonetheless, we have the following result of Feldman and

Moore [7]:

Theorem 1.4.1. If E is a countable Borel equivalence relation on the Polish space X,

then there is a countable group G which acts on X in a Borel way such that E = EXG .

In [5], Dougherty, Jackson, and Kechris used the Feldman-Moore Theorem to show

that there is a universal countable Borel equivalence relation. There are several natural

examples of such an equivalence relation.

• The shift equivalence relation on subsets of F2, the free group on 2 generators,

written E∞. (Two subsets A,B of a group G are shift equivalent if there is some

g ∈ G such that gA = B.) [5]

• The conjugacy equivalence relation on subgroups of F2, or even on subgroups of

groups embedding F2. [39], [11], [2]
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• Isomorphism of finitely generated groups. [39]

• Arithmetic equivalence of subsets of N. [27]

1.5 The structure of countable Borel equivalence relations under ≤B

There has been a great deal of research concerning the structure of the countable Borel

equivalence relations under ≤B. Let ∆(X) denote the equality relation on X. If we

let n denote a discrete n-element space, then n is Polish and ∆(n) is a countable Borel

equivalence relation. Similarly ∆(N) is a countable Borel equivalence relation on N.

Clearly

∆(1) <B ∆(2) <B ∆(3) <B . . . <B ∆(N).

By a result of Silver [32], if E is any Borel equivalence relation, either E ≤B ∆(N)

or ∆(R) ≤B E. Again it is clear that ∆(N) <B ∆(R). Thus ∆(R) is an immediate

successor to ∆(N) under ≤B.

Recall the definition of E0 from section 1.3. Perhaps more surprising than Silver’s

theorem is the following result of Harrington, Kechris, and Louveau in [15]:

Theorem 1.5.1. Suppose that E is a Borel equivalence relation. Then either

E ≤B ∆(R) or E0 ≤B E.

We saw in section 1.3 that ∆(R) <B E0. Thus E0 is an immediate successor to ∆(R)

under ≤B among the Borel equivalence relations, and so also among the countable Borel

equivalence relations. As previously mentioned, there are also universal countable Borel

equivalence relations such as E∞, the shift equivalence relation on subsets of F2. By

an argument of Slaman and Steel [33], E0 <B E∞, and hence our picture so far is

∆(R) <B E0 <B E∞.

For some time, it was not known if the countable Borel equivalence relations were

linearly ordered by <B, or how many countable Borel equivalence relations there were.

This question was settled in 2000 by Adams and Kechris in [1], where they show there

are 2ℵ0 countable Borel equivalence relations up to Borel bireducibility, and that the

structure of the corresponding quasi-order is quite complicated.
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Theorem 1.5.2. There is a map A 7→ EA assigning to each Borel subset A ⊆ 2N an

equivalence relation EA such that A1 ⊆ A2 ⇔ EA1 ≤B EA2.

The proof of this result relied on the Zimmer Cocycle Superrigidity Theorem [40],

which implies that certain orbit equivalence relations remember information about the

groups that created them. Since the Adams-Kechris result, many examples of countable

Borel equivalence relations intermediate between E0 and E∞ have been found, often

using superrigidity theorems. For example, let ∼=n denote the isomorphism relation on

torsion-free abelian groups of rank n. The result of Baer mentioned earlier shows that

∼=1∼B E0. Thomas showed in [35] that ∼=n<B∼=n+1 for all n, establishing that there

was a natural strictly increasing countable chain of equivalence relations between E0

and E∞.

1.6 Special classes of countable Borel equivalence relations

A Borel equivalence relation F is hyperfinite if there is an increasing sequence F1 ⊆ F2 ⊆

F3 ⊆ . . . of finite equivalence relations (i.e. equivalence relations with every class finite)

such that F = ∪nFn. Clearly every hyperfinite Borel equivalence relation is countable.

It is also easy to see that E0 is hyperfinite. In fact, Dougherty, Jackson, and Kechris [19]

showed that every non-smooth hyperfinite countable Borel equivalence relation is Borel

bireducible with E0. This is notable because there are several conditions equivalent

to hyperfiniteness, but not obviously so. For example, in the early 80’s Slaman and

Steel [33] showed that E is hyperfinite if and only if E is induced by a Borel action of

Z. Since then, a great deal of work has been done to expand the collection of groups

for which it is known that their Borel actions always induce hyperfinite equivalence

relations. In particular, Gao and Jackson have shown in [13] that every Borel action of

a countable abelian group induces a hyperfinite Borel equivalence relation. For example,

define Ec on R+ by

x Ec y ⇐⇒ x/y ∈ Q+.

This is induced by a Borel action of Q+ and hence must be hyperfinite by the Gao-

Jackson result, although this fact is far from obvious.
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Let X be a Polish space. A Borel graph on X is a graph with vertex set X whose

edge set Γ ⊆ X×X is Borel. We identify the graph with its edge set. A countable Borel

equivalence relation E on X is treeable if there is an acyclic Borel graph Γ ⊆ X × X

for which the connected components of Γ are precisely the equivalence classes of E.

Every hyperfinite equivalence relation is treeable, as one can use the fact that E arises

from a Borel Z-action to show that it is possible to associate a discrete linear order

to each equivalence class in a Borel way, and together these form an acyclic Borel

graph. Jackson, Kechris, and Louveau showed in [19] that there is a universal treeable

equivalence relation E∞T , and that E0 <B E∞T <B E∞. In particular there are

non-hyperfinite treeable equivalence relations. Hjorth went on to show in [18] that

there are 2ℵ0 distinct treeable equivalence relations up to Borel bireducibility. In fact,

Hjorth showed that there are 2ℵ0 treeable equivalence relations which are pairwise

incomparable with respect to Borel reducibility, although his proof did not produce

any explicit examples of incomparable treeable equivalence relations. This remains an

open problem.

A common thread through the analysis of all of these types of equivalence relations

is the importance of various properties of the corresponding group actions, and the

proofs often involve tools and results from ergodic theory and related fields, such as the

superrigidity results mentioned earlier. Most of these techniques only apply in the case

of a free Borel action of a countable group G on a standard Borel space X. Recall that

a group action is free if

∀g ∈ G, ∀x ∈ X (g · x = x→ g = e).

A countable Borel equivalence relation E on a Borel set X is free if it is induced by a free

Borel action of a countable group on X. A Borel equivalence relation F is essentially

free if there is a free countable Borel equivalence relation E such that F ≤B E.

All of the treeable equivalence relations are essentially free. However, in [38],

Thomas showed that the class of essentially free equivalence relations does not admit

a universal element, and so in particular E∞ is not essentially free. In fact, he proved
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∆(R) and below

E0 ← hyperfinite

treeable

E∞T

essentially free

◦

E∞

2ℵ0 other equivalence relations

Figure 1.1: The countable Borel equivalence relations under ≤B

there are 2ℵ0 inequivalent essentially free non-treeable equivalence relations and 2ℵ0 in-

equivalent non-essentially free equivalence relations. Thus the picture of the countable

Borel equivalence relations looks like figure 1.1 (modeled after a figure in section 9.5

of [21]).

1.7 Quasi-orders

A quasi-order is a binary relation which is reflexive and transitive. Every quasi-order

can be symmetrized to create an associated equivalence relation, i.e. if Q is a quasi-

order, then there is an associated equivalence relation EQ defined by

x EQ y ⇐⇒ x Q y ∧ y Q x.
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We call EQ the symmetrization of Q. Many naturally occurring equivalence relations

arise most naturally by symmetrizing quasi-orders in this way.

For example, biembeddability of countable groups is most naturally seen as the

symmetrization of the quasi-order of embeddability of countable groups. As another

example, recall the notions of Turing reducibility ≤T and Turing equivalence ≡T on 2N.

Here if x, y ∈ 2N, then x ≤T y if there is some Turing machine which can compute the

digits of x, given an oracle for the digits of y. Then by definition ≡T is E≤T .

As with equivalence relations, many quasi-orders can be viewed as Borel or analytic

subsets of standard Borel spaces, and the notion of Borel reducibility can also be defined

for quasi-orders.

Definition 1.7.1. Suppose that Q is a Borel (or analytic) quasi-order on a standard

Borel space (X,BX) and Q′ is a Borel (or analytic) quasi-order on a standard Borel

space (Y,BY ). We say that Q is Borel reducible to Q′, written Q ≤B Q′, if there is a

Borel function f : X → Y such that

x Q y ⇐⇒ f(x)Q′ f(y).

We can once again think of ≤B as capturing a notion of relative complexity, so

if Q and R are quasi-orders and Q ≤B R, then we can think of R as being at least

as complicated as Q. We can define Borel bireducibility and universality for a class of

quasi-orders C as before. Quasi-orders which are universal for some class of quasi-orders

often symmetrize to equivalence relations which are universal for a closely related class

of equivalence relations. This is due to the following lemma.

Lemma 1.7.2. Suppose F is an equivalence relation on X and Q is a quasi-order on

Y . If F ≤B Q, then F ≤B EQ.

Proof. Suppose f : X → Y is a Borel reduction from F to Q. Then

f(x)Q f(y) ⇐⇒ x F y

⇐⇒ y F x

⇐⇒ f(y)Q f(x)
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Thus f is in fact a reduction of F to EQ.

In [25], Louveau and Rosendal showed there is a universal analytic quasi-order ≤max.

By the last lemma, and the fact that every analytic equivalence relation is an analytic

quasi-order, this means that E≤max is a universal analytic equivalence relation.

Louveau and Rosendal went on to present several natural examples of universal

analytic quasi-orders, generally coming from embeddability notions. This explains why

many of the universal analytic equivalence relations listed above are bi-embeddability

relations. The connection between bi-embeddability relations and analytic equivalence

relations was further explored by S. Friedman and L. Motto Ros in [10].

Louveau and Rosendal also looked at several other classes of quasi-orders, most

notably Kσ quasi-orders; i.e. quasi-orders which are countable unions of compact sets.

There is a universal Kσ quasi-order, which gives rise to a universal Kσ equivalence

relation. Some examples include

• Embeddability of locally-finite combinatorial trees. [25]

• The quasi-order ⊆F2,t
P(F2) defined on subsets of F2 by

A ⊆F2,t
P(F2) B ⇐⇒ (∃g ∈ F2) gA ⊆ B [25].

• Surjectability of finitely-generated groups. [37]

In this thesis, we will largely be concerned with countable Borel quasi-orders. Here a

quasi-orderQ defined on a Polish spaceX is said to be countable Borel ifQ is Borel when

viewed as a subset of X2 and for every x ∈ X, the set of predecessors of x, {y | yQx}, is

countable. Clearly if Q is a countable Borel quasi-order, then the associated equivalence

relation EQ is also countable Borel. There are several natural examples of countable

Borel quasi-orders. For example, if A,B ⊆ N, then A is 1-reducible to B, written

A ≤1 B, if there is a one-to-one recursive function f : N → N such that f−1(B) = A.

As there are only countably many recursive functions, 1-reducibility is a countable Borel

quasi-order. So is Turing reducibility≤T and many of the other standard computability-

theoretic reducibilities. In addition, the embeddability relation on the space of finitely
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generated groups is a countable Borel quasi-order. We will see many other countable

Borel quasi-orders throughout this thesis.
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Chapter 2

Precise Statement of Results

We will begin by discussing the work of Louveau and Rosendal on analytic quasi-orders

in more detail. They begin by proving that there is a universal analytic quasi-order, but

the proof gives no real indication of what such a quasi-order might look like. They next

find a universal analytic quasi-order with a simple combinatorial description. Finally,

they use this to establish that several quasi-orders from various areas of mathematics

are universal analytic quasi-orders.

Most of these universal analytic quasi-orders are given by an embeddability relation

for some space of mathematical structures. Louveau and Rosendal noted that in many

cases, if the embeddability relation is restricted to structures which are finitely gener-

ated or locally finite in some sense, then it becomes Kσ or compact. In many of these

cases, the restricted quasi-orders are universal for the corresponding class of quasi-

orders. This led Louveau and Rosendal to conjecture that embeddability of finitely

generated groups, which we will write 4em, was a universal Kσ quasi-order. (There is

a formal definition of the Polish space of finitely generated groups and 4em in chapter

3.) Although the conjecture as stated is false, a slight modification of this conjecture

is true, as we will prove later in the thesis.

To see that the stated conjecture is false, first observe that 4em is a countable

quasi-order, since a finitely generated group has only countably many finitely generated

subgroups. Thus biembeddability of finitely generated subgroups is a countable Borel

equivalence relation. However, it is impossible for a countable Borel equivalence relation

to be a universal Kσ equivalence relation. One reason for this is the following theorem of

Kechris and Louveau in [23] regarding the equivalence relation E1 on (2N)N of eventual

equality of sequences of reals.
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Theorem 2.0.3 (Kechris-Louveau). Suppose that G is a Polish group with a Borel

action on the standard Borel space X. Then E1 6≤B EXG .

In particular, along with the Feldman-Moore Theorem this implies that E1 does not

Borel reduce to any countable Borel equivalence relation. As E1 is a Kσ equivalence

relation, it follows that a countable Borel equivalence relation cannot be a universal Kσ

equivalence relation. Thus it is not possible for 4em to be a universal Kσ quasi-order.

We will prove instead that 4em is a universal countable Borel quasi-order. Following

Louveau and Rosendal, we will first show that there exists a universal countable Borel

quasi-order, and then later deduce that 4em is also universal.

Unless otherwise noted, all of the results mentioned in this chapter are due to the

author, and their proofs will be presented in chapter 5.

2.1 Finding a universal countable Borel quasi-order

Before we can show that 4em is a universal countable Borel quasi-order, we first show

that such a quasi-order exists. There is no analog of a universal analytic set to take

advantage of in this case, and so we must use a different approach. As mentioned in

section 1.5, the existence of a universal countable Borel equivalence relation relies on

the theorem of Feldman and Moore, and so we begin by establishing a similar result.

Theorem 2.1.1. If 4 is a countable Borel quasi-order on the standard Borel space X,

then there is a monoid M which acts on X in a Borel way such that

x 4 y ⇐⇒ (∃m ∈M) x = m · y.

Although to the author’s knowledge, this result is not in the literature, it is a

straightforward application of the well-known Lusin-Novikov theorem, and should per-

haps be considered as folklore. It is proven in section 5.1. Thus every countable Borel

quasi-order comes from the Borel action of a countable monoid.

Definition 2.1.2. For every standard Borel space X and countable monoid M , the

corresponding canonical Borel action of M on XM is defined by (m · f)(s) = f(sm)
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for m, s ∈ M and f ∈ XM . We denote the corresponding quasi-order by 4XM , i.e. for

f, g ∈ XM ,

f 4XM g ⇐⇒ (∃m ∈M) f = m · g.

To see that this is an action, let m,n ∈M and f ∈ XM . Then

(m · (n · f))(s) = (n · f)(sm)

= f(smn)

= (mn · f)(s)

as desired.

Definition 2.1.3 (The quasi-order 4ω). Let Mω be the free monoid on countably many

generators. Then define 4ω to be 42N
Mω

.

Suppose that M is a countable monoid acting on a standard Borel space X. This

defines a quasi-order 4 by

x 4 y ⇐⇒ x = m · y.

Every countable monoid M is a homomorphic image of Mω. Suppose that f : Mω →M

is such a homomorphism. Then we can define an action of Mω on X by

m · x = f(m) · x.

This defines the same quasi-order as the M -action, so every countable Borel quasi-order

actually comes from an action of Mω. Once this is established, it is straightforward to

prove the next theorem.

Theorem 2.1.4. 4ω is a universal countable Borel quasi-order.

Unfortunately 4ω is difficult to work with, and so we follow the approach of [5] to

obtain a simpler universal countable Borel quasi-order.

Theorem 2.1.5. Let M2 denote the free monoid on 2 generators, and 2 = {0, 1}. Then

42
M2

is a universal countable Borel quasi-order.
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Note that if M is in fact a group, then 4XM is the equivalence relation EXM . Indeed,

E2
F2

is the same as E∞, the universal countable Borel equivalence relation mentioned

earlier. In the case of a group G, E2
G can be identified with the orbit equivalence relation

of the shift action of G on P(G). For monoids which are not groups, we must be more

careful. Let m ∈ M and f ∈ 2M . In general, if g = m · f , then the values of g only

depend on the values of f on some subset of its domain. For this reason, 42
M2

is not

quite as simple as it first appears. This leads us to consider alternative quasi-orders.

In descriptive set theory, a tree on X is a set T ⊆ X<N such that if t ∈ T , and s is

an initial segment of t, then s ∈ T . We write s ⊂ t if s is an initial segment of t, and

we write s_t for the concatenation of s and t. If X is a countable discrete space, then

Tr(X), the space of trees on X, is a closed subspace of 2X
<N

, and so is a Polish space.

One can identify M2 with the complete binary tree 2<N, and doing so leads us to the

following quasi-order.

Definition 2.1.6. Given a countable discrete space X, the quasi-order 4treeX on the

space of trees on X, Tr(X), is given by T 4treeX T ′ if there exists u ∈ X<N such that

T = T ′u, where T ′u = {v ∈ X<N | u_v ∈ T ′}.

In section 5.2 we will prove the following:

Theorem 2.1.7. 4tree2 is a universal countable Borel quasi-order.

With this quasi-order, we have finally arrived at a universal countable Borel quasi-

order which is easy to describe and work with. This will make it easier to prove that

other countable Borel quasi-orders are universal.

2.2 Some group-theoretic universal countable Borel quasi-orders

Consider E∞, the universal countable Borel equivalence relation induced by the shift

action of F2 on P(F2). We have seen that this is the same as the quasi-order 42
F2

, and

so our universal quasi-order 42
M2

is a natural modification of E∞, simply moving from

a group action to the analogous monoid action.

At this point, it is natural to turn our attention to other quasi-orders which can be

seen as modifications of E∞ and hope to arrive at a universal quasi-order as we did
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before. The most obvious generalization is to look at the quasi-order ⊆F2,t
P(F2) on P(F2)

defined by

A ⊆F2,t
P(F2) B ⇐⇒ (∃g ∈ F2) gA ⊆ B.

Replacing the ⊆ symbol on the right-hand side of the definition with the = symbol

gives E∞. Unfortunately the above quasi-order is clearly not countable, and in fact has

been shown to be a universal Kσ quasi-order (in [25]). As explained earlier, a universal

Kσ quasi-order is more complex than any countable Borel quasi-order; and so we must

generalize in another way, which leads us to the following quasi-order.

Definition 2.2.1. If G is a countable group, then 4Gt is the countable Borel quasi-order

on P(G) defined by

A 4Gt B ⇐⇒ (∃g1, . . . , gn ∈ G) A = g1B ∩ . . . ∩ gnB.

In section 5.3 we will show

Theorem 2.2.2. 4F2
t is a universal countable Borel quasi-order.

Given a countable group G, the space Sg(G) of subgroups of G is a standard Borel

space, on which G acts by conjugation. The orbit equivalence relation of this action,

which we will write Ec(G), is Borel. In [39], Thomas and Velickovic showed that Ec(F2)

is a universal countable Borel equivalence relation, essentially by coding E∞ into Ec(F2).

Recall that a subgroup H of a group G is said to be malnormal if gHg−1 ∩ H = {1}

for all g ∈ G \ H. If H is a malnormal subgroup of G then it is easily seen that

Ec(H) ≤B Ec(G). It follows from the Thomas and Velickovic result that if G is a

countable nonabelian free group, then Ec(G) is a universal countable Borel equivalence

relation.

As we have the quasi-order 4F2
t which is analogous to E∞, we might expect to

be able to use a similar coding to find a new universal countable Borel quasi-order.

Rather than attempt to adapt the coding of Thomas and Velickovic, we will use a

simpler coding of Gao [11], which he used to prove the following result.

Theorem 2.2.3 (Gao). If G = K ∗H, where K has a nonabelian free subgroup and H

is nontrivial cyclic, then Ec(G) is a universal countable Borel equivalence relation.
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We consider the following countable Borel quasi-order:

Definition 2.2.4. Let G be a countable group. Then 4Gc is the countable Borel quasi-

order on Sg(G) defined by

A 4Gc B ⇐⇒ (∃g1, . . . , gn ∈ G) A = g1Bg
−1
1 ∩ . . . ∩ gnBg

−1
n .

In section 5.3 we will use a straightforward adaptation of the argument in [11] to

prove:

Theorem 2.2.5. Suppose that K is a countable group containing a nonabelian free

subgroup and that H is a nontrivial cyclic group. Then 4K∗Hc is a universal countable

Borel quasi-order.

2.3 Group embeddability

One can view 4tree2 as a type of embeddability relation, while the other universal quasi-

orders that we have seen so far do not relate as clearly to embedding notions. Thus to

show that 4em is a universal countable Borel quasi-order, it is most natural to attempt

to show that 4tree2 ≤B 4em.

Given a tree T ∈ Tr(2), our general strategy is to create a finitely generated group

GT with subgroups corresponding to the trees Tw for w ∈ 2<N. We will start with two

generators and then add other relations to this group according to the nodes present in

T . The idea is to add relations which restrict the possible embeddings between these

“tree-groups”. We will use the results of small cancellation theory, which is discussed

in chapter 4, in order to choose appropriate relations.

Before we prove anything about 4em, which will be the focus of section 5.5, we will

first discuss embeddability of countable groups, which we write as vGp. By removing

the restriction that the groups we work with should be finitely generated, we are allowed

more freedom with regards to our construction, and the ideas we use when working with

4em can be seen more clearly. At the same time, removing this restriction means that

vGp is an analytic quasi-order, rather than a countable Borel quasi-order.

In [25], Louveau and Rosendal showed that embeddability of countable graphs is a

universal analytic quasi-order. In section 5.4 we will use small cancellation techniques
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to create countable groups whose relations encode countable graphs in such a way that

embeddability of countable graphs reduces to vGp, establishing the following theorem.

Theorem 2.3.1. vGp is a universal analytic quasi-order.

Emboldened by our success, we will use the same ideas to show that 4tree2 ≤B 4em.

The combinatorial details of the construction will be considerably more involved since

we can only work with finitely many generators. Thus we will prove

Theorem 2.3.2. 4em is a universal countable Borel quasi-order.

2.4 The structure of countable Borel quasi-orders under ≤B

As every countable Borel equivalence relation is a quasi-order, we know the structure

of the countable Borel quasi-orders is quite complicated, thanks to the result of Adams

and Kechris. However, this is not a satisfying answer to the question, since it completely

ignores the asymmetric countable Borel quasi-orders.

Given a countable Borel equivalence relation E on a standard Borel space X with

a Borel linear order ≤, define E(≤) to be E ∩ ≤. Note that since any two uncountable

Polish spaces are Borel isomorphic, we can put a Borel linear order on any Polish

space X, for example by using a Borel isomorphism between R and X. Clearly E(≤)

is an asymmetric countable Borel quasi-order (unless E is just equality on X, since

(∆(X))(≤) is simply (∆(X)).). Note that

E(≤) ≤B F (≤) =⇒ E ≤B F

and so if E(≤) and F (≤) are Borel bireducible, then so are E and F . Thus by the

result of Adams and Kechris we have the following theorem:

Theorem 2.4.1. There are 2ℵ0 quasi-orders of the form E(≤) up to Borel bireducibility.

Every E(≤) symmetrizes to equality, i.e. the equivalence relation EE(≤) is equality.

Consequently, it would be nice to find examples of countable Borel quasi-orders which

are not universal and do not symmetrize to a smooth countable Borel equivalence rela-

tion. A modest goal would be to find a quasi-order which symmetrized to a nonsmooth

hyperfinite Borel equivalence relation.
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The shift action of Z on P(Z) induces an equivalence relation, written EZ, which is

Borel bireducible with E0, since every Borel Z-action induces a hyperfinite equivalence

relation. Recall our definition of 4Gt in section 2.2, and let EZ
t denote the symmetriza-

tion of 4Z
t . In section 5.6 we will prove

Theorem 2.4.2. EZ
t = EZ

Thus 4Z
t is a countable Borel quasi-order which is not universal and does not sym-

metrize to a smooth countable Borel equivalence relation. Let EG be the equivalence re-

lation induced by the shift action of G on P(G). It is not true in general that EGt = EG,

and we will provide an explicit example of a group where the two equivalence relations

differ.

2.5 Organization of this thesis

In chapter 3, we will discuss the space of finitely generated groups and the space of

countable groups. We will show that the first is a Polish space and that the second

is a standard Borel space. We will also show that embeddability of finitely generated

groups is Borel, while embeddability of countable groups is analytic.

In chapter 4, we will discuss the basic results of small cancellation theory, and give

a few examples of its use in proving results related to group embeddings.

In chapter 5 we will present proofs of all of the results mentioned in this chapter, as

well as related lemmas, corollaries, etc. We will also discuss some of the open problems

in this area.
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Chapter 3

Spaces of groups

There are two spaces of groups which appear in this thesis: the space of countable

groups and the space of finitely generated groups. Although the finitely generated

groups form a Borel subspace of the space of countable groups, for technical reasons we

will not be working with them as a subspace. Instead we will use a construction due to

Grigorchuk in [14]. We will also show that 4em is a countable Borel quasi-order, and

that vGp is an analytic quasi-order. We will start with the space of countable groups,

which is simpler to describe.

3.1 The space of countable groups

When dealing with countable groups, we may always assume that the underlying set is

N. Let G be such a countable group. Then the multiplication table of G is the set

◦G = {(k, l,m) ∈ N3 | k ◦ l = m}.

Thus each countable group may be identified with a subset of N3. The collection of

subsets of N3 which correspond to multiplication tables is

Gp = {x ∈ P(N3) | the group axioms hold for x}

and this is easily seen to be a Borel subset of P(N3). Thus Gp is a standard Borel

space.

3.1.1 Embeddability of countable groups is analytic

Let I(N) denote the set of injections from N to N. Recall that NN has the product

topology that comes from giving each copy of N the discrete topology. In this topology,
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I(N) is a closed subset of NN and so is a Polish space when given the subspace topology.

If x ∈ P(N3), f · x is the function defined by

f · x(a, b, c) = x(f(a), f(b), f(c)).

LetvGp denote the quasi-order of embeddability of countable groups, i.e. forG,H ∈ Gp,

G vGp H ⇐⇒ G embeds in H

⇐⇒ ∃f ∈ I(N) (G = f ·H)

Let Γ ⊂ I(N)×Gp×Gp be defined by

(f, x, y) ∈ Γ ⇐⇒ x = f · y.

We will show that Γ is Borel. If x 6= f · y, then there is some (a, b, c) such that

y(f(a), f(b), f(c)) 6= x(a, b, c).

Suppose for example y(f(a), f(b), f(c)) = 1 and x(a, b, c) = 0. Then define

V = {f} × {x | x(a, b, c) = 0} × {x | x(f(a), f(b), f(c)) = 1}.

If we give I(N) the subspace topology inherited from NN and Gp the subspace topology

inherited from 2N
3
, then V is open. It follows that in this topology the complement of Γ

is open and so Γ is closed. The Borel sets of Gp as a standard Borel space coincide with

the Borel sets of Gp given the subspace topology, so Γ is a Borel subset of the standard

Borel space I(N) × Gp × Gp. Finally, vGp is the projection of Γ onto its second two

coordinates, and so it is analytic.

3.2 The space of finitely generated groups

There are two equivalent ways to define the space of finitely generated groups.

A marked group (G,S) is a group G along with an ordered list of generators

S = (s1, . . . , sn). If S contains n elements, then we say that (G,S) is marked by n

elements. The list of generators need not be canonical or minimal in any sense, and

may include repetitions or even the identity of G. Two marked groups (G, (s1, . . . , sn))

and (G′, (s′1, . . . , s
′
n)) are identified if the map sending s1 7→ s′1, s2 7→ s′2, etc. extends

to an isomorphism. We call such an isomorphism a marked isomorphism.
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Definition 3.2.1. For each n, the set of marked groups Gn is the set of groups marked

by n elements identified up to marked isomorphism.

Let Fn denote the free group on n generators {x1, . . . , xn}. For every (G,S) ∈ Gn,

there is an epimorphism θG,S : Fn → G sending x1 7→ s1, x2 7→ s2, etc. Note that

(G,S), (G′, S′) ∈ Gn are the same up to marked isomorphism if and only if kerG,S(θ) =

kerG′,S′(θ
′). Thus we may identify Gn with the space Nn of normal subgroups of Fn. It

is easy to see that Nn is a closed subset of 2Fn , and therefore is a compact Polish space.

Clearly Gn ↪→ Gn+1 via the map

(G, (s1, . . . , sn)) 7→ (G, (s1, . . . , sn, 1))

or equivalently the corresponding normal subgroup N ∈ Nn is mapped to the normal

closure of N ∪ {xn+1} in Fn+1. Under this map, Gn maps to a clopen subset of Gn+1.

Thus it makes sense to define G = ∪nGn, and we call G the space of marked groups. As

each Gn is compact, G is locally compact. Furthermore, as the union of Hausdorff, sec-

ond countable spaces, it is also Hausdorff and second countable. Thus by [22, Theorem

5.3], G is a Polish space.

Let F∞ be the free group on countably many generators {x1, x2, . . .}. Our previous

discussion shows that Gn may be identified with

Nn = {N E F∞ | N contains xm for all m > n}.

Then we may identify G with N = ∪nNn; i.e. N is the set of normal subgroups N E F∞

such that N contains all but finitely many of the xn.

3.2.1 Embeddability of finitely generated groups is Borel

If G,H ∈ G, then we write G 4em H if and only if there is a group embedding from G

into H. To prove this is Borel, it is easier to work with N , and we will do this in what

follows. In this space, if A,B ∈ N , then we write A 4em B if and only if there is a

group embedding from F∞/A into F∞/B, or in other words if F∞/A is isomorphic to a

subgroup of F∞/B. Write 4nem for 4em� Nn. Note that if A,B are normal subgroups of

Fn = 〈x1, . . . , xn〉, then A 4nem B iff there exist g1, . . . , gn ∈ Fn such that for any word
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w(x1, . . . , xn) in the generators of Fn, w(x1, . . . , xn) ∈ A ↔ w(g1, . . . , gn) ∈ B, where

w(g1, . . . , gn) indicates the element of Fn that comes from replacing xi in w(x1, . . . , xn)

with gi. Let Bg = {N ∈ N | g ∈ N}, which is Borel in Nn. Then

4nem=
⋃

g1,...,gn∈Fn

⋂
w(x)∈Fn

(Bw(x) ×Bw(g)) ∪ (Bc
w(x) ×B

c
w(g)).

This is a Borel set, and hence the union 4em of the 4nem is Borel. To see that it

is countable, simply note that any finitely generated group only has countably many

finitely generated subgroups, and that there are only countably many ways of marking

each subgroup.
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Chapter 4

Small cancellation theory

Small cancellation theory has its roots in work of Dehn on the word problem for the

fundamental groups of closed orientable surfaces. Recall that the word problem for a

group presentation G = 〈S | R〉 is the problem of determining whether a word w in the

generators S represents the identity. Dehn proved that the following algorithm would

work to solve the word problem for fundamental groups of closed of closed orientable

surfaces, which all have finite presentations with a single defining relation r. Suppose

w is a word in the generators {s1, s2, . . . , sn} for such a fundamental group G.

1. Remove all subwords of w of the form sis
−1
i and s−1

i si.

2. Suppose w contains more than half of some cyclic permutation r∗ of r or r−1, i.e.

w contains a subword r1 such that r∗ = tr1v and |r1| > 1
2 |r|. Then replace r1 in

w with t−1v−1. This does not change the element represented by w, since r∗ is a

relation for G. Note that this replacement strictly decreases the length of w.

3. Return to step 1 until the operations in steps 1 and 2 cannot be performed.

4. If w = 1 then it represents the identity, otherwise it does not.

Dehn’s algorithm shows that the only words in G that represent the identity are

the obvious ones. For a general group presentation, one could attempt to use the same

algorithm (modulo the obvious changes to deal with multiple relations). However, it

will not always work. For example, any group with unsolvable word problem must have

words which represent the identity which Dehn’s algorithm does not reduce to 1.

Dehn’s proof that his algorithm worked in the restricted case that he was looking

at relied on the fact that if s is a cyclic permutation of r or r−1, there is very little
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overlap between r and s, i.e. there is very little cancellation in the product rs−1. Small

cancellation theory tells us that given a presentation with defining relations of a par-

ticular form and a similar restriction on the overlaps between them, Dehn’s algorithm

may be used to solve the word problem for the group.

4.1 The small cancellation hypotheses and basic consequences

Let G = 〈x1, x2, . . . | r1, r2 . . .〉 be a group presentation. We will refer to the set

of defining relations collectively as R. Recall that a word w = y1 . . . yn is cyclically

reduced if w is freely reduced and y1 is not the inverse of yn. This is equivalent to

saying that every cyclic permutation of w is freely reduced. We say the set of words

R is symmetrized if every element of R is cyclically reduced and whenever r ∈ R, all

cyclic permutations of r and r−1 are in R.

Suppose R is a cyclically reduced set of words on {x1, x2, . . .}. Let R′ ⊇ R be

the set obtained by closing R under inverses and cyclic permutations, so that R′ is

symmetrized. We call R′ the symmetrization of R. Then

〈x1, x2, . . . | R〉 ∼= 〈x1, x2, . . . | R′〉

since the normal closure of R must contain all of the words that we added to R to

create R′. Thus restricting ourselves to symmetrized sets of relations does not change

the set of groups we can consider.

In this thesis, we are largely concerned with the following small cancellation prop-

erty, which quantifies the extent to which relators in particular group presentations

overlap.

Definition 4.1.1. A symmetrized set R in a free group F is said to satisfy the C ′(λ)

small cancellation condition if for every pair of distinct r1, r2 ∈ R, if we can write

r1 = bc1 and r2 = bc2, then |b| < λmin{|r1|, |r2|}.

The significance of this property can be seen in the following theorems (Theorem

V.4.4 and Theorem V.10.1 in [26])
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Theorem 4.1.2. Let F be a free group. Let R be a symmetrized subset of F and N its

normal closure. If R satisfies C ′(λ) for some λ ≤ 1/6, then every non-trivial element

w ∈ N contains a subword s of some r ∈ R with |s| > (1− 3λ)|r| ≥ 1
2 |r|.

It follows immediately that if G = 〈X | R〉 is a group presentation satisfying the

C ′(1/6) condition, then Dehn’s algorithm succeeds in solving the word problem for G.

This theorem also leads to other nice results on small cancellation groups.

Theorem 4.1.3. Suppose that G = 〈x1, x2, . . . | R〉 is such that R is a symmetrized

subset of 〈x1, x2, . . .〉 satisfying the C ′(1/6) small cancellation condition. If w represents

a word of finite order in G, then there is some r ∈ R of the form r = vn such that w is

conjugate to a power of v.

In other words, the only words in G which represent torsion elements are the obvious

ones.

4.2 Small cancellation and embeddability results

Many theorems regarding group embeddings rely on small cancellation techniques in

their proofs. This section offers a small sample. The following results will not be

used later in this thesis, but instead are presented here to give an idea of how small

cancellation is used in proofs about group embeddings.

Definition 4.2.1. A countable group K is SQ-universal if every countable group can

be embedded in a quotient group of K.

The celebrated result of Higman, Neumann, and Neumann [17] that every countable

group can be embedded in a two generator group may be interpreted as saying that F2

is SQ-universal. Small cancellation theory can be used to show a much wider class of

groups is SQ-universal.

Theorem 4.2.2 (Schupp [31]). Let P be any non-trivial free product P = X ∗ Y , with

the single exception of P = C2 ∗ C2. Then P is SQ-universal. In fact, every countable

group may be embedded in a simple quotient of P .
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The proof of this uses small cancellation theory on free products, which we have not

specifically defined but which is similar to what we have discussed.

A group G is hopfian if every surjection from G onto G is an automorphism. A group

G is co-hopfian if every injection from G into G is an automorphism. For example, Z is

hopfian, since every subgroup of Z has finite index, and so any surjection from Z onto

Z must have trivial kernel. However, Z is not co-hopfian, since for example Z ∼= 2Z,

which is a proper subgroup of Z. An example of a hopfian and co-hopfian group is Q.

Since every non-zero element of Q is a root of a power of every other, it follows that

every injection of Q into Q must also be onto, and every surjection of Q onto Q must

have trivial kernel.

These two properties imply that the collection of endomorphisms of G is limited in

some sense. Small cancellation theory gives us the tools to enforce such limitations on

the endomorphisms of a group.

Theorem 4.2.3 (Miller and Schupp [29]). Any countable group H can be embedded in

a two-generator hopfian group G. If there is some m ∈ N such that H has no elements

of order m, then G can be chosen to be co-hopfian as well.

Here is a sketch of the proof. Let H = 〈h1, h2, . . .〉 be a countable group and define

F = H ∗ C5 ∗ C7. Write the generators of C5 and C7 as x and y respectively. Let

r0 = xyxy2(xy)2xy2 . . . (xy)80xy2

and for i = 1, 2, . . . let

ri = h−1
i

80(i+2)∏
j=80i+1

((xy)jxy2).

It is easy to see that the symmetrized set R generated by the ri satisfies the C ′(1/10)

condition. Let N be the normal closure of R in F and G = F/N .

It is a result of small cancellation theory for free products that H, C5, and C7 each

embed into G. The ri ensure that each hi is equal to some word on x and y, so G is

actually a quotient of C5 ∗ C7.

Let ψ : G→ G be a surjection. Then ψ is determined by its values on x and y, and

ψ(x) and ψ(y) generate G. This implies that each is nontrivial, since otherwise G would
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be cyclic of order 5 or 7. By the generalization of Theorem 4.1.3 to free products, ψ(x)

must be in some conjugate of C5 or H in F . Similarly ψ(y) must have order 7 and be

in some conjugate of C7 or H in F .

From here, one need only show that in order for the ri to map to relations for

G, it must be that ψ is an inner automorphism. Hence by following ψ by an inner

automorphism, we may assume that ψ(x) ∈ C5 or ψ(x) ∈ H. Since ψ is onto, there is

some word α in x and y such that ψ(α) = y. Using the appropriate generalization of

Theorem 4.1.2, one finds that ψ(y) ∈ C7, since if ψ(y) /∈ C7 then it would not be possible

for ψ(α) to contain enough of a relator so that y−1ψ(α) ∈ N . Arguing similarly for x,

one finds that ψ(x) ∈ C5. At this point we have ψ(x) = xδ and ψ(y) = yγ with neither

equal to 1. By looking at ψ(r0) and then again using the appropriate generalization of

Theorem 4.1.2, one finds that ψ(x) = x and ψ(y) = y.

Now suppose that H has no elements of order 5. (More generally, if H has no

elements of order m, then we can do this same proof with F = H ∗ Cm ∗ Cq, where q

is some prime greater than m.) Then if θ is an injection from G into G, we examine

θ(x) and θ(y). Because H has no elements of order 5, the appropriate generalization

of 4.1.3 implies that, up to an inner automorphism, θ(x) ∈ C5. From here, the proof is

similar to that in the previous paragraph.

The above proof heavily uses the fact that torsion elements of small cancellation

groups are of a very particular form. This is what gives control over the surjections

and injections from G to itself. We will encounter this idea of using torsion elements

to control embeddings again in the next chapter.
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Chapter 5

Proofs of results

5.1 A universal countable Borel quasi-order

We start by proving an analogue of the Feldman-Moore Theorem [7] for countable Borel

quasi-orders. This is a straightforward application of the following theorem of Lusin

and Novikov (see Theorem 18.10 in Kechris [22]):

Theorem 5.1.1 (Lusin-Novikov). Let X,Y be standard Borel spaces and let P ⊆ X×Y

be Borel. If every section Px = {y | (x, y) ∈ P} is countable, then P can be written as

∪nPn, where each Pn is the graph of a partial Borel function.

Theorem 5.1.2. If 4 is a countable Borel quasi-order on the Polish space X, there is

a monoid M which acts on X in a Borel way such that

x 4 y ⇐⇒ (∃m ∈M) x = m · y.

Proof. First, note that by definition for all y ∈ X, 4y= {x | x 4 y} is countable, which

implies the set 4⊆ X×X has countable sections with respect to its second coordinate.

By the Lusin-Novikov theorem, <= ∪nfn, where each fn : En → X is a Borel function,

with En ⊆ X Borel.

We can extend these to total functions on X by letting fn(y) = y for y ∈ X \ En.

These functions are still Borel, and their union is still equal to < by reflexivity. We

may also add the identity function to our collection without changing the union, again

by reflexivity. With all this in place, the fn generate a monoid M under composition,

and M acts on X by m · x = m(x). If x 4 y then there exists m ∈ M such that

x = m · y = m(y), and the transitivity of 4 ensures that for all m ∈ M and x ∈ X,

m · x 4 x.
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We wish to use this result to show that there is a universal countable Borel quasi-

order. Our approach closely follows the proof of Dougherty, Jackson, and Kechris in [5]

that there is a universal countable Borel equivalence relation. Recall the definition of

4ω (Definition 2.1.3).

Theorem 5.1.3. 4ω is a universal countable Borel quasi-order.

Proof. Let 4 be a countable Borel quasi-order on a Polish space X. By Theorem 5.1.2,

there is a countable monoid M such that 4 is the quasi-order induced by a Borel action

of M on X. Let f : Mω → M be a surjective homomorphism. Then we can define an

action of Mω on X by

m · x = f(m) · x.

This action is Borel and also induces 4, and so without loss of generality we may assume

that M = Mω.

Let {Ui}i∈N be a sequence of Borel sets in X which separates points. Then we define

φ : X → (2N)Mω by x 7→ φx, with

φx(s)(i) = 1 ⇐⇒ s · x ∈ Ui.

We will show this is Borel. Let V be a basic open set in (2N)Mω . Then there is some

u ∈ 2<N and (v, s) ∈ (N×Mω)<N such that |u| = |(v, s)| and

V =
⋂

0≤k<|u|

{f ∈ (2N)Mω | f(sk)(vk) = uk}.

Let Ak equal Uvk if uk = 1, the complement of Uvk otherwise. Let Sk : X → X be the

Borel map Sk(x) = sk · x and define Bk = (Sk)
−1(Ak). Then φ−1(V ) = ∩0≤k<|u|Bk is

a Borel set, and so φ is a Borel map.

Since the Ui separate points, we see that φ is injective. Furthermore, if t ∈ Mω,

then t · φx = φt·x. To see this, let s ∈Mω, and i ∈ N. Then

φt·x(s)(i) = 1 ⇐⇒ s · t · x ∈ Ui

⇐⇒ φx(st)(i) = 1

⇐⇒ t · φx(s)(i) = 1
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Now suppose that x 4 y. Then there exists m ∈Mω such that x = m · y. It follows

that φx = φm·y = m · φy, and so φx 4ω φy. The same reasoning works in reverse, and

hence φx 4ω φy implies that x 4 y. Thus φ is a Borel reduction.

Thus there exists a universal countable Borel quasi-order. Next we wish to find

universal countable Borel quasi-orders which are easier to work with. We proceed by

a series of easily proven lemmas which are the analogues of propositions 1.4-1.8 in

Dougherty, Jackson, and Kechris [5]. The proofs are virtually the same, although we

must take care to ensure that they also work for monoid actions (as opposed to group

actions). We will use several quasi-orders of the form 4XM (see Definition 2.1.2).

Lemma 5.1.4. If M,N are monoids and M is a homomorphic image of N , then

4XM≤B 4XN .

Proof. Let π : N → M be a surjective homomorphism. Then we define f : XM → XN

by f(p) = p∗, where p∗(h) = p(π(h)). Then if n ∈ N ,

(n · p∗)(h) = p∗(hn)

= p(π(hn))

= p(π(h)π(n))

= π(n) · p(π(h))

= (π(n) · p)∗(h)

So n · p∗ = (π(n) · p)∗.

Now, if p 4XM q, then there is some m ∈M such that p = m ·q. Since π is surjective,

there is some n ∈ N such that m = π(n). Thus p = π(n) · q, and so p∗ = n · q∗ by the

above, whence p∗ 4XN q∗.

Next suppose that p∗ 4XN q∗, so that p∗ = n · q∗ = (π(n) · q)∗ for some n ∈ N . Then
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for all m ∈M , there exists s ∈ N such that m = π(s), and hence

p(m) = p(π(s))

= p∗(s)

= (π(n) · q)∗(s)

= (π(n) · q)(π(s))

= (π(n) · q)(m)

So p = π(n) · q, and f is a Borel reduction.

Lemma 5.1.5. For any countable monoid M , 42Z−{0}
M ≤B 43

M×Z.

Proof. Define f : (2Z−{0})M → 3M×Z by p 7→ p∗, where

p∗(s, n) =


p(s)(n) if n 6= 0

2 if n = 0

.

Suppose that p = g · q. Then for n 6= 0,

((g, 0) · q∗)(s, n) = q∗(sg, n)

= q(sg)(n)

= (g · q)(s)(n)

= p(s)(n)

= p∗(s, n)

If n = 0, then ((g, 0) · q∗)(s, n) = q∗(sg, n) = 2 = p∗(s, n).

Now, if (g, n) · q∗ = p∗, then there are two cases. If n = 0, then everything is as

above and p = g · q. Suppose n 6= 0. Then we have ((g, n) · q∗)(s,−n) = q∗(sg, 0) = 2,

but p∗(s,−n) is 0 or 1, a contradiction. Thus f is a Borel reduction.

Lemma 5.1.6. For any countable monoid M , 43
M≤B42

M×Z2
.
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Proof. Define the map p ∈ 3M 7→ p∗ ∈ 2M×Z2 by

p∗(m, i) =



0 if p(m) = 0

0 if p(m) = 1, i = 0

1 if p(m) = 1, i = 1

1 if p(m) = 2

.

Suppose that p = g · q. Then

((g, 0) · q∗)(s, i) = q∗(sg, i) =



0 if q(sg) = p(s) = 0

0 if q(sg) = p(s) = 1, i = 0

1 if q(sg) = p(s) = 1, i = 1

1 if q(sg) = p(s) = 2

,

and we see that this equals p∗(s, i).

Now, suppose that we have (g, i) · q∗ = p∗. We wish to show that g · q = p. We will

break it down case-by-case.

Case i = 0: Suppose that s ∈ M satisfies p∗(s, 0) = 0. Then ((g, 0) · q∗)(s, 0) = 0

as well, and p(s) = 0 or 1 and q(sg) = 0 or 1. If also p∗(s, 1) = 0 = (g, 0) · q∗(s, 1),

then p(s) = 0 = q(sg). If instead p∗(s, 1) = 1, then p(s) = 1 = q(sg). If p∗(s, 0) = 1 =

(g, 0) · q∗(s, 0), then p(s) = 2 = q(sg). Thus p = g · q.

Case i = 1: Suppose instead that (g, 1) · q∗ = p∗. We look at the case that p(s) = 1

for some s ∈ M . Then p∗(s, 0) = 0 = q∗(sg, 1) and p∗(s, 1) = 1 = q∗(sg, 0). But

then q∗(sg, 1) = 0 can only happen if q(sg) = 0, and q∗(sg, 0) = 1 can only happen if

q(sg) = 2, so we have a contradiction. Thus p(s) = 0 or 2 for all s ∈M .

Now suppose that q(sg) = 1 for some s ∈ M . Then ((g, 1) · q∗)(s, 0) = 1 and

(g, 1) · q∗(s, 1) = 0. This implies p∗(s, 0) = 1, which can only happen if p(s) = 2, and

p∗(s, 1) = 0, which can only happen if p(s) = 0, another contradiction. So we find that

q(sg) = 0 or 2 for all s ∈M .

By the above, for any s ∈ M , if p∗(s, 0) = 1 = q∗(sg, 1), then p(s) = 2 = q(sg). If

p∗(s, 1) = 0 = q∗(sg, 0), then p(s) = 0 = q(sg). Thus if either of these two cases occurs,
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we are guaranteed to have p(s) = q(sg). Suppose that p∗(s, 0) = 0 and p∗(s, 1) = 1,

the only remaining case. The first equality implies p(s) = 0, and the second implies

p(s) = 2, a contradiction. Thus p = g · q, and f is indeed a Borel reduction.

Lemma 5.1.7. Let M2 denote the free monoid on 2 generators. Then

42
Mω
≤B 42

M2
.

Proof. We start by embedding Mω into M2 in order to view it as a submonoid of M2.

Let Mω = 〈x1, x2, . . .〉 and M2 = 〈a, b〉. We define our embedding by e 7→ e and

xn 7→ abn for all n ∈ N+.

Next we note that if h ∈M2, then we can canonically write h as a product h = h′g,

with g ∈ Mω and h′ ∈ M2 \Mω, possibly with g = e or h′ = e, by finding the longest

word in Mω at the end of h. Define L : M2 → N by

L(h) = the length of h′

where h = h′g is the canonical form of h. This function has the desirable property that

multiplying an element h ∈M2 on the right by an element g ∈Mω does not change the

given length, i.e. L(h) = L(hg).

Define f : 2Mω → 2M2 by p 7→ p∗ where

p∗(h) =


p(h) if L(h) = 0

1 if L(h) = 1

0 if L(h) > 1

.

Suppose that p 42
Mω

q. Then ∃g ∈Mω such that p = g · q. So if h ∈Mω,

(g · q∗)(h) = q∗(hg)

= q(hg)

= (g · q)(h)

= p(h)

= p∗(h)
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If h ∈M2 \Mω, then since L(h) = L(hg), we find

(g · q∗)(h) = q∗(hg)

= p∗(h)

So p∗ 4XM2
q∗.

Now suppose that p∗ 42
M2

q∗. Then there exists g ∈ M2 such that p∗ = g · q∗.

Clearly if g ∈ Mω, then p = g · q. If instead g ∈ M2 \Mω with L(g) = n, n ≥ 1, then

we should have that p∗(b) = (g · q∗)(b) = q∗(bg). But p∗(b) = 1, while L(bg) > 1, and

so q∗(bg) = 0. Thus this case cannot happen, and hence f is a Borel reduction.

Theorem 5.1.8. 4ω ≤B 42
M2

. It follows that 42
M2

is universal.

Proof. Using the preceding lemmas, we find that

42N
Mω
≤B 42Z−{0}

Mω

≤B 43
Mω×Z by Prop. 5.1.5

≤B 42
Mω×Z×Z2

by Prop. 5.1.6

≤B 42
Mω

by Prop. 5.1.4

≤B 42
M2

by Prop. 5.1.7

The quasi-order 42
M2

is easier to work with than 4ω, as both the monoid and the

space being acted on are simpler. Using 42
M2

, we will find another universal countable

Borel quasi-order, this one of a more combinatorial nature.

5.2 A quasi-order on trees

In this section, we will reduce 42
M2

to 4tree2 , the quasi-order on descriptive-set-theoretic

trees defined in chapter 2. This has the advantage of moving us away from working

with monoids and towards more classical areas of mathematics. We must first make a

few intermediate reductions.

Definition 5.2.1. The quasi-order 4s2 (the s is for “suffix”) on P(M2) is defined by

A 4s2 B ⇐⇒ (∃m ∈M2) Am = Bm
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where

Bm = B ∩M2m.

Remark 5.2.2. Note that if we made a similar definition for a group M , then we would

always have that Bm, since in this case Mm = M . So this definition is only interesting

when dealing with a monoid.

If we identify P(M2) with 2M2 , then this quasi-order is the same as 42
M2

. Writing it

in this way brings out the fact that knowing a set A ∈ P(M2) and that A 42
M2

B only

gives partial information about B. This differs from E∞, the analogous equivalence

relation, since knowing A ∈ P(F2) and that AE∞ B gives information about all of B.

Next, we modify this quasi-order slightly, in order to make it somewhat easier to

work with.

Definition 5.2.3. The quasi-order 4p2 (the p is for “prefix”) on P(M2) is defined by

A 4p2 B ⇐⇒ (∃m ∈M2) mA = Bm

where

Bm = B ∩mM2.

As before, this definition is only interesting when working with a monoid.

Theorem 5.2.4. 4s2∼B 4
p
2

Proof. Every nontrivial element w ∈ M2 may be written as w = an0bm0 . . . ankbmk ,

where ni,mj ∈ N, and only n0 or mk may be 0. Define w̄ = bmkank . . . bm0an0 , and

ē = e. Then the bijection f : M2 → M2 defined by f(w) = w̄ induces a Borel bijection

f∗ : P(M2) → P(M2) such that if Am = Bm, then m̄f∗(A) = f∗(B)m̄. Similarly, if

wf∗(A) = f∗(B)w, then Aw̄ = Bw̄. Thus f∗ is a Borel reduction from 4s2 to 4p2. Since

f∗ is its own inverse, we see that it is also a Borel reduction from 4p2 to 4s2.

One can view M2 as the complete binary tree 2<N, with each word in M2 corre-

sponding to a node in the tree. From this point of view, when looking at A ⊆ M2, we

see that Am is simply the set of words in A which are above the node corresponding
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e

a

aa

aaa aab

ab

aba abb

b

ba

baa bab

bb

bba bbb

Figure 5.1: The set A = {a, b, aa, abb, bab, . . .} in the binary tree correspond-

ing to M2. Note that, for example, Aba = {bab, . . .} is the set of words in A

above ba.

to m. (See figure 5.1.) This natural interpretation of one of the sets involved in 4p2 in

terms of trees leads us to consider the quasi-order 4treeX from Definition 2.1.6. Recall

that for a countable discrete space X, a tree on X is a (non-empty) collection of finite

sequences of elements of X which is closed under initial segments. Let Λ(X) be the

Borel set of infinite trees in Tr(X), the Polish space of trees on X.

Note that if we have A,B ∈ P(M2) and m ∈M2 such that mA = Bm, and further-

more A,B are both infinite trees on {a, b}, then m witnesses that A 4tree{a,b} B. If A or

B is not a tree, then it does not make sense to compare them using 4tree{a,b}, but this is

only a minor difficulty, as we will see in the next proof.

Theorem 5.2.5. 4p2≤B 4tree3 � Λ(3)

Proof. Given A ∈ P(M2), we define the tree TA ∈ Tr(3) as follows. We start with the

complete binary tree 2<N, and add to it the sequence ŵ_2 iff w ∈ A, where ŵ is the

sequence in 2<N corresponding to the word w in M2. This collection is closed under

subsequences and so is a tree. Clearly it is infinite. Define TA to be this collection of

sequences.

Suppose that A 4p2 B. Then there exists m ∈ M2 such that mA = Bm. First note
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that 2<N is contained in both TA and (TB)m̂. Next suppose that w ∈M2. Then

ŵ_2 ∈ TA ⇐⇒ w ∈ A

⇐⇒ m_w ∈ B

⇐⇒ m̂_w
_

2 = m̂_ŵ_2 ∈ TB

⇐⇒ ŵ_2 ∈ (TB)m̂

So TA = (TB)m̂.

Conversely, suppose that TA = (TB)α for some α ∈ 3<ω. If α contains a 2, then

(TB)α is {∅} or ∅, since the only sequences in TB containing 2 are leaves of the tree.

However, TA is infinite. So α ∈ 2<ω, which means that there is a word w ∈ M2 such

that ŵ = α. Now

wx ∈ B ⇐⇒ ŵx_2 ∈ TB

⇐⇒ x̂_2 ∈ (TB)ŵ

⇐⇒ x̂_2 ∈ TA

⇐⇒ x ∈ A,

so wA = Bw. Thus the map t : P(M2) → Tr(3) sending A to TA is a Borel reduction.

Finally, we will show that 4tree2 is universal.

Corollary 5.2.6. 4p2≤B 4tree2 � Λ(2). It follows that 4tree2 is universal.

Proof. We define the map c : 3<N → 2<N inductively. First let c(e) = e, c(0) = 00,

c(1) = 01, and c(2) = 10. Now assume that c has been defined for all words of

length ≤ n, and let w = x_u, where x ∈ {a, b, c} and u ∈ 3<N has length n. Define

c(w) = c(x)_c(u). Given t(A) ∈ Tr(3), where t : M2 → Tr(3) is the Borel reduction

from 4p2 to 4tree3 � Λ(3) which was defined in the previous proof, apply c and close the

resulting set under initial segments.

Suppose that t(A) 4tree3 t(B), so there exists u ∈ 3<N (in fact, u ∈ 2<N) such that
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t(A) = t(B)u. Then

c(w) ∈ c(t(A)) ⇐⇒ w ∈ t(A)

⇐⇒ u_w ∈ t(B)

⇐⇒ c(u_w) = c(u)_c(w) ∈ c(t(B))

Hence c(t(A)) = c(t(B))c(u) and thus c(t(A)) 4tree2 c(t(B)).

Now suppose that c(t(A)) 4tree2 c(t(B)), and so there exists w ∈ 2<N such that

c(t(A)) = c(t(B))w. Suppose that w is not in the image of c. Then we either have

c(f(B))w = ∅, which is impossible, or w is an initial segment of odd length of something

in the image of c. If w ends in a 0, then 100 ∈ c(t(B))w, but this is not in c(t(A)). If

w ends in a 1, then 00 /∈ c(t(B))w, but 00 ∈ c(t(A)). Thus w is in the image of c, say

w = c(u). Then

u_v ∈ t(B) ⇐⇒ c(u)_c(v) ∈ c(t(B))

⇐⇒ c(v) ∈ c(t(A))

⇐⇒ v ∈ t(A)

Thus t(A) = t(B)u, and so t(A) 4tree3 t(B).

5.3 Universal quasi-orders from group theory

We have seen that E∞ is the same as the quasi-order 42
F2

, and so our universal quasi-

order 42
M2

is a natural generalization of E∞. At this point, we will turn our attention

to other quasi-orders which can be seen as generalizations of E∞. The most obvious

generalization is the quasi-order ⊆F2,t
P(F2) on P(F2) defined by

A ⊆F2,t
P(F2) B ⇐⇒ (∃g ∈ F2) gA ⊆ B.

Replacing the ⊆ symbol on the right-hand side of the definition with the = symbol gives

E∞. Unfortunately for our purposes, the above quasi-order is clearly not countable, and

in fact has been shown to be a universal Kσ quasi-order (see Louveau-Rosendal [25]).

Consequently, ⊆F2,t
P(F2) is much more complex than any countable Borel quasi-order. So

we instead consider the quasi-order 4F2
t from Definition 2.2.1.
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For any group G, let Ω(G) be the set of infinite subsets of G. In order to show that

4F2
t is a universal countable Borel quasi-order, we will reduce 4tree2 � Λ(2) to 4F2

t � Ω(F2).

Every tree on 2 is isomorphic to a tree T on {a, b}, and these can easily be identified

with subsets of F2 = 〈a, b〉. If we take a subset T ⊂ F2 corresponding to a tree

and multiply it on the left by w−1, then the positive words in w−1T are precisely Tw.

Unfortunately, there is no natural way to pick out the positive words from w−1T simply

by intersecting it with other shifts of T , and so we instead will define a set based on

T for which Tw is easy to find simply by intersecting its shifts. In order to do this, we

will look at subsets of F∞, the free group on countably many generators. We list the

generators of F∞ as

{a, b, xa, xb, xaa, xab, xba, xbb, xaaa, . . .}.

Using the two generators a, b we identify T with a subset of the group, to which we

add the sets xwwTw for w ∈ T . Call this new set T ′. Note that for all w ∈ T , w_Tw

is a subset of T , and so xwwTw ⊆ T ′. Then T ′ ∩ x−1
w T ′ = wTw, since wTw is the set of

positive words in x−1
w T ′. We can then multiply by wTw by w−1 to find Tw. However,

the map sending T to T ′ is not a Borel reduction. Although we can now find Tw by

intersecting shifts of T ′, Tw maps to (Tw)′, so that is the set we need to find. The

following proof addresses this issue.

Theorem 5.3.1. 4F∞
t � Ω(F∞) is a universal countable Borel quasi-order.

Proof. We will construct the reduction in a few steps. We start with trees on {a, b},

which we then map to trees on {a, b, c, d} for technical reasons. Next we define a map

f : {a, b, c, d}<N → P(F∞), which will induce a map F : Tr({a, b, c, d})→ P(F∞). The

composition of these two maps will be our reduction.

If T ∈ Tr({a, b}), define

ta(T ) = {w ∈ T | w_a /∈ T}.

Similarly define tb(T ). These sets are elements of T which are “along the edge” of

the tree, i.e. some immediate extension of these words is not in the tree. We define
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S : Tr({a, b})→ Tr({a, b, c, d}) by

S(T ) = T ∪ (ta(T )_c) ∪ (tb(T )_d) (5.1)

where X_z = {x_z | x ∈ X}. Here S “outlines” the tree using the letters c and d.

The following property of S will be important later.

Lemma 5.3.2. If T, T ′ ∈ Tr({a, b}) and S(T ) ⊆ S(T ′), then T = T ′.

Proof. It is easily seen that S(T ) ⊆ S(T ′) implies T ⊆ T ′, as

S(T ) ∩ {a, b}<N = T and S(T ′) ∩ {a, b}<N = T ′.

Suppose w ∈ {a, b}<N \ T . Then there is some initial segment of w′ ⊂ w (possibly

the empty string) and some x ∈ {a, b} such that w′ ∈ tx(T ), i.e. w = w′_x_t, where

w′ ∈ T , w′_x /∈ T , and t ∈ {a, b}<N. Then w′_y ∈ S(T ) for some y ∈ {c, d}, and so

w′_y ∈ S(T ′). This is only possible if w′_x and all its extensions are not in T ′, and in

particular w /∈ T ′.

We list the generators of F∞ as

{a, b, c, d, xa, xb, xc, xd, xaa, xab, xac . . .}

i.e. every string in {a, b, c, d}<N (except the empty string) has a unique generator as-

sociated to it in addition to generators corresponding to the letters in our trees. The

empty string in {a, b, c, d}<N and the identity element in F∞ will both be written as e.

This should not cause confusion, although both uses will appear close to each other.

Finally, we recall that if A,B ∈ P(F∞), then AB = {ab | a ∈ A, b ∈ B}. We can now

define f : {a, b, c, d}<N → P(F∞) inductively.
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f(e) = {e}

f(a) = {a, xaa}

f(b) = {b, xbb}

f(c) = {c, xcc}

f(d) = {d, xdd}

f(w) =

 ⋃
w=s_t
s,t 6=e

f(s)f(t)

 ∪ {xww}
The idea here is that every set f(w) contains elements which encode the relation of

w to its initial segments. Then define F : Tr({a, b, c, d})→ P(F∞) by

F (S) =
⋃
w∈S

f(w).

There are a few helpful facts to record at this point. The simplest one is that

w ∈ f(w), which follows by a simple induction. The others we record as lemmas.

Lemma 5.3.3. If u, v ∈ {a, b, c, d}<N are not equal, the sets f(u) and f(v) are disjoint.

Proof. Define the function Φ: F∞ → {a, b, c, d}<N as

Φ(g) =the word in {a, b, c, d}<N obtained by removing all other letters

from the freely reduced representation of g.

By a simple inductive argument we see that for all w ∈ {a, b, c, d}<N, Φ is constant on

f(w) and equal to w. Thus the sets are disjoint.

Lemma 5.3.4. If a word starting with xw is in f(u), then w ⊂ u.

Proof. This follows from an straightforward induction on the length of u.

Lemma 5.3.5. If γ ∈ f(u) starts with xww and u = w_t, then γ = xwwλ, with

λ ∈ f(t).
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Proof. If t = e, then γ = xww. Otherwise, there must be some α, β such that u = α_β

and γ ∈ f(α)f(β). We can then split γ into two words, γ = δλ, where δ starts with

xww and δ ∈ f(α), while λ ∈ f(β). By the previous lemma, w ⊂ α, say α = w_z.

Then u = w_z_β. We write t = z_β. By induction, δ = xwwδ
′ with δ′ ∈ f(z). Then

γ = xwwδ
′λ, and δ′λ ∈ f(z)f(β) ⊆ f(t) by definition.

Recall the definition of the map S in (5.1). We define the map G : Tr({a, b}) →

P(F∞) by

G(T ) = F (S(T )).

Lemma 5.3.6. For all w ∈ {a, b}<N and all nonempty T ∈ Tr({a, b, c, d}),

G(T ) ∩ x−1
w G(T ) = wG(Tw)

and hence

w−1G(T ) ∩ (xww)−1G(T ) = G(Tw).

Proof. First, we will show that G(T ) ∩ x−1
w G(T ) ⊆ wG(Tw). Every element of G(T ) is

a positive word in the generators of F∞, so any word not starting with xw will be freely

reduced in x−1
w G(T ) and begin with x−1

w , and thus not be in G(T ). So we need only

focus on the words that start with xw.

Suppose g ∈ f(u) ⊆ G(T ) and g = xwα for some α ∈ F∞. By our inductive

definition, this implies g = xwwβ for some β ∈ F∞. By Lemma 5.3.4, we must have

u = w_t for some t ∈ {a, b, c, d}<N. By Lemma 5.3.5, β ∈ f(t). Also, wβ is in f(w)f(t),

so wβ ∈ G(T )∩x−1
w G(T ). In addition, wβ ∈ wG(Tw), since t ∈ (S(T ))w = S(Tw) (since

w ∈ {a, b}<N) and so f(t) ⊆ G(Tw). Thus G(T ) ∩ x−1
w G(T ) ⊆ wG(Tw).

If g ∈ G(Tw), then there is some u ∈ S(Tw) such that g ∈ f(u). Then

xwwg,wg ∈ f(w)f(u) ⊆ G(T )

so wg ∈ G(T ) ∩ x−1
w G(T ). Thus G(T ) ∩ x−1

w G(T ) ⊇ wG(Tw).

Lemma 5.3.6 shows that for T, S ∈ Λ(2), if T 4tree2 S, then G(T ) 4F∞
t G(S). Next

we check the other direction.



46

Suppose that G(T ) = g1G(T ′) ∩ . . . ∩ gnG(T ′). We know that e ∈ G(T ) (since T is

nonempty), which means that each gi must be an inverse of an element in G(T ′), say

g−1
i = hi ∈ G(T ′). Fix some 1 ≤ i ≤ n and suppose that Φ(hi) = w, i.e. hi ∈ f(w). If

u ∈ S(T ), then xuu ∈ G(T ). This implies hixuu ∈ G(T ′) ∩ f(w_u), and in particular

the intersection is nonempty, so w_u ∈ S(T ′). Thus S(T ) ⊆ S(T ′)w.

If w /∈ {a, b}<N, then S(T ′)w is either empty or a single element, but S(T ) is infinite.

Thus w ∈ {a, b}<N, and so S(T ′)w = S(T ′w). It follows that S(T ) ⊆ S(T ′w), and so by

Lemma 5.3.2, T = T ′w. Thus G is a Borel reduction. This completes the proof of

Theorem 5.3.1.

Corollary 5.3.7. 4F2
t � Ω(F2) is a universal countable Borel quasi-order, and so 4F2

t

is a universal countable Borel quasi-order.

Proof. Let φ : F∞ → F2 be a monomorphism. Then φ induces a map

Φ: Ω(F∞)→ Ω(F2)

A 7→ {φ(a) | a ∈ A}

If A,B ∈ Ω(F∞) and there exist g1, . . . , gn ∈ F∞ such that

A = g1B ∩ . . . ∩ gnB

then Φ(A) = φ(g1)Φ(B) ∩ . . . ∩ φ(gn)Φ(B).

Conversely, suppose that

Φ(A) = h1Φ(B) ∩ . . . ∩ hnΦ(B). (∗)

If some hi is not in the image of φ, then hiΦ(B) is disjoint from any set in the image of

Φ, and so the right hand side cannot equal the left hand side unless Φ(A) = ∅, which

is impossible. This implies that every hi in (∗) is in the image of φ. It follows that

A = φ−1(h1)B ∩ . . . ∩ φ−1(hn)B.

Remark 5.3.8. The above proof shows that if G is any countable group containing F2

as a subgroup, then 4Gt � Ω(G) is a universal countable Borel quasi-order.



47

Recall that Ec(G) denotes conjugacy equivalence relation on the standard Borel

space Sg(G) of subgroups of G, i.e. for A,B ∈ Sg(G),

AEc(G)B ⇐⇒ (∃g ∈ G)A = gBg−1.

In [11], Gao used a simple coding technique to prove the following result.

Theorem 5.3.9 (Gao). If G = K ∗H, where K has a nonabelian free subgroup and H

is nontrivial cyclic, then Ec(G) is a universal countable Borel equivalence relation.

In light of the relationship between E∞ and 4F2
t , it is natural to consider the count-

able Borel quasi-order 4Gc from Definition 2.2.4.

Let Γ(G) be the standard Borel space of infinite subgroups of G. Then the proof of

the following result is a straightforward adaptation of Gao’s argument in [11].

Theorem 5.3.10. Suppose that G is a countable group containing a nonabelian free

subgroup and that H is a nontrivial cyclic group. Then 4G∗Hc � Γ(G ∗H) is a universal

countable Borel quasi-order, and so 4G∗Hc is a universal countable Borel quasi-order.

Proof. Let h ∈ H be a generator of H. We define the map K : Ω(G)→ Sg(G ∗H) by

K(A) = 〈xhx−1 : x ∈ A〉.

This map is Borel (in fact, continuous). The basic open sets of Sg(G ∗ H) are of the

form

V (a1, . . . , an, b1, . . . , bm) = {L ∈ Sg(G ∗H) | a1, . . . , an ∈ L ∧ b1, . . . , bm /∈ L}.

Then K−1(V (a1, . . . , an, b1, . . . , bm) is an open subset of P(G), and so is an open subset

of Ω(G). We need only check that K is a Borel reduction from 4Gt � Ω(G) to 4G∗Hc . We

will make use of the observation that K(A) = ∗
g∈A

gHg−1.

If A,B ∈ P(G), then clearly K(A ∩ B) ⊆ K(A) ∩ K(B). We will show that

K(A) ∩ K(B) ⊆ K(A ∩ B). Suppose that g ∈ K(A) ∩ K(B), and so can be written

both as g = x1hx
−1
1 . . . xnhx

−1
n with x1, . . . , xn ∈ A and as g = y1hy

−1
1 . . . ymhy

−1
m

with y1, . . . , ym ∈ B. Then clearly x1 = y1, and so multiplying g on the left by

y1h
−1y−1

1 = x1h
−1x−1

1 we find that

x2hx
−1
2 . . . xnhx

−1
n = y2hy

−1
2 . . . ymhy

−1
m .
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Thus x2 = y2, and repeating this argument we find that xi = yi for 1 ≤ i ≤ minn,m.

If for example m < n, then we would have the equation

xm+1hx
−1
m+1 . . . xnhx

−1
n = e

which is absurd. Thusm = n, and it follows that g ∈ K(A∩B). ThusK(A∩B) = K(A)∩

K(B).

Also note that if g ∈ G, then K(gA) = gK(A)g−1. Thus

K(g1A ∩ . . . ∩ gnA) = K(g1A) ∩ . . . ∩K(gnA)

= g1K(A)g−1
1 ∩ . . . ∩ gnK(A)g−1

n

Suppose that A,B ∈ P(G) and that A 4Gt B, i.e. there exist g1, . . . , gn ∈ G such

that A = g1B ∩ . . . ∩ gnB. Then

K(A) = K(g1B ∩ . . . ∩ gnB) = g1K(B)g−1
1 ∩ . . . ∩ gnK(B)g−1

n .

Thus A 4Gt B implies that K(A) 4G∗Hc K(B).

Next, suppose that A,B ∈ P(G) and that K(A) 4G∗Hc K(B), so there exist

γ1, . . . , γn ∈ G ∗H such that K(A) = γ1K(B)γ−1
1 ∩ . . . ∩ γnK(B)γ−1

n . For each x ∈ A

and 1 ≤ i ≤ n, let wx,i ∈ K(B) be the element such that xhx−1 = γiwx,iγ
−1
i . Clearly

for each i = 1, . . . , n the map x 7→ wx,i is an injection.

Note that xhx−1 is a reduced word in G ∗H. For 1 ≤ i ≤ n, we may assume that

γi is a reduced word in G ∗H, and that wx,i ∈ K(B) can be written as

wx,i = z1h
ε1z−1

1 . . . zkh
εkz−1

k (zj ∈ B, εj ∈ {±1}).

If we reduce this word, then we obtain that

wx,i = u1h
m1u2h

m2 . . . uth
mtut+1

where mj ∈ Z \ {0}, uj ∈ G and the product u1u2 . . . uj ∈ B for 1 ≤ j ≤ t + 1.

Furthermore, wx,i is never the trivial word.

The equation xhx−1 = γiwx,iγ
−1
i implies that starting with the right-hand side,

there is a cancellation procedure which eventually leads to the left-hand side. In any
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such procedure, there must be some occurrence of h in the right-hand side which is

never cancelled. We call this the preserved occurrence of h. Let ∆i ⊆ A be the set of

elements x ∈ A for which the preserved occurrence of h in some cancellation procedure

is in the original expression for wx,i.

We claim that A \∆i is finite for each 1 ≤ i ≤ n. If x ∈ A \∆i, then the preserved

occurrence of h is in either γi or γ−1
i . Suppose that x1, x2 ∈ A \ ∆i are both words

such that the preserved occurrence of h is in γi. Then the preserved occurrence of h

must be the first h in γi, since γi is assumed to be reduced. Thus γi = khu for some

k ∈ G, u ∈ G ∗H, and this gives us the two equations

x1hx
−1
1 = khuwx1,iγ

−1
i

x2hx
−1
2 = khuwx2,iγ

−1
i

which implies that x1 = k = x2. Thus there is at most one element in A \∆i such that

the preserved occurrence of h is in γi. A similar argument shows that there is at most

one element in A\∆i such that the preserved occurrence of h is in γ−1
i . So |A\∆i| ≤ 2

for 1 ≤ i ≤ n.

As A is infinite, this implies that each ∆i must also be infinite. If we fix some

x0,i ∈ ∆i for i = 1, . . . , n, then we can write

x0,ihx
−1
0,i = γiwx0,iγ

−1
i

= γiux0,i(zx0,ihz
−1
x0,i

)vx0,iγ
−1
i

with zx0,i ∈ B, ux0,i, vx0,i ∈ K(B), and the displayed h is the preserved occurrence

in some cancellation procedure. This implies that x0,i = γiux0,izx0,i, and x−1
0,i =

z−1
x0,i

vx0,iγ
−1
i . Let βi = x0,iz

−1
x0,i
∈ G. Then γi = βiu

−1
x0,i

. Thus

K(A) = β1u
−1
x0,1

K(B)ux0,1β
−1
1 ∩ . . . ∩ βnu−1

x0,nK(B)ux0,nβ
−1
n

= β1K(B)β−1
1 ∩ . . . ∩ βnK(B)β−1

n

= K(β1B ∩ . . . ∩ βnB)

and so A = β1B ∩ . . . ∩ βnB, with each βi ∈ G, and so A 4Gt B, as desired.

The following result is an immediate consequence of Theorem 5.3.10.
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Corollary 5.3.11. If n ≥ 3, then 4Fn
c � Γ(Fn) is a universal countable Borel quasi-

order.

Finally, the proof of the following result is a straightforward adaptation of the proof

of Proposition 1 of Thomas-Velickovic [39].

Corollary 5.3.12. 4F2
c � Γ(F2) is a universal countable Borel quasi-order.

Proof. Recall that a subgroupH of a groupG is said to be malnormal if gHg−1∩H = {1}

for all g ∈ G\H, and that F3 can be embedded as a malnormal subgroup of F2. Arguing

as in Corollary 5.3.7, we see this embedding induces a Borel reduction from 4F3
c � Γ(F3)

to 4F2
c � Γ(F2).

5.4 Embeddability of countable groups

Our ultimate goal is to show that embeddability of finitely generated groups is a uni-

versal countable Borel quasi-order. The techniques we will use in the proof are easier

to understand in the more general setting of arbitrary countable groups. With this in

mind, we first turn our attention to the embeddability relation for countable groups,

vGp. In chapter 3 we showed that there is a standard Borel space of countable groups

and that vGp is an analytic quasi-order. In this section, we will show the following:

Theorem 5.4.1. vGp is a universal analytic quasi-order.

Corollary 5.4.2. The bi-embeddability relation for countable groups ≡Gp is a universal

analytic equivalence relation.

This is in contrast with the isomorphism relation for countable groups ∼=Gp, which is

known to be universal among all analytic equivalence relations induced by a Borel action

of S∞. (This is due to Mekler in [28].) However, such equivalence relations are known

not to be universal among all analytic equivalence relations. Several natural equivalence

relations are Borel bireducible with ∼=Gp, including isomorphism of countable graphs,

isomorphism of countable lattices, and isomorphism of countable linear orderings. For

more about such equivalence relations, see Chapter 13 in [12].
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Clearly ≡Gp-classes are unions of ∼=Gp-classes, and so it is natural to ask if there is a

Borel way to select a particular ∼=Gp class from each ≡Gp class. Such a selection would

be a Borel reduction of ≡Gp to ∼=Gp, but by Theorem 5.4.1 we know ∼=Gp <B ≡Gp, and

hence there is no such selection.

Before we prove Theorem 5.4.1, we need to make a few definitions. We will write C

for the set of countable graphs whose vertex set is N. By identifying each graph with

its edge relation, we see that C is a closed subset of 2N
2

and so is a Polish space.

Definition 5.4.3. If S, T ∈ C, then we write S vC T if S embeds into T , i.e. there

exists f : N→ N such that for all m,n ∈ N, (m,n) ∈ S ⇔ (f(m), f(n)) ∈ T .

In [25], it was shown that vC is a universal analytic quasi-order. Thus to show that

vGp is universal, we need only show that vC Borel reduces to it. To do this, we will use

small cancellation techniques to create groups that encode the edge relations of graphs.

In particular, we will need the following two theorems, which were discussed in Chapter

4.

Theorem 4.1.2. Let F be a free group. Let R be a symmetrized subset of F and N its

normal closure. If R satisfies C ′(λ) for some λ ≤ 1/6, then every non-trivial element

w ∈ N contains a subword s of some r ∈ R with |s| > (1− 3λ)|r| ≥ 1
2 |r|.

Theorem 4.1.3. Suppose that G = 〈x1, x2, . . . | R〉 is such that R is a symmetrized

subset of 〈x1, x2, . . .〉 satisfying the C ′(1/6) small cancellation condition. If w represents

a word of finite order in G, then there is some r ∈ R of the form r = vn such that w is

conjugate to a power of v.

With these theorems in hand, we can proceed to the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1. Let T ∈ C and let v0, v1, . . . be an enumeration of the vertices

of T . Then GT is defined to be the group with generators v0, v1, . . . and relators

• v7
i for all i ∈ N

• (vivj)
11 if (vi, vj) ∈ T

• (vivj)
13 if (vi, vj) /∈ T
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Let RT be the symmetrization of the set of defining relations for GT . Note that if

T is any graph, then RT obviously satisfies the C ′(1/6) condition. Now suppose that

S, T ∈ C are such that S embeds into T , say via the map f . Then f extends to a group

homomorphism from GS to GT , as it sends the relations of GS to relations of GT .

To see that it is an embedding, let α = vk1i1 v
k2
i2
. . . vknin be a word in the generators of

GS , so that

f(α) = f(vi1)k1f(vi2)k2 . . . f(vin)kn

and suppose that f(α) = 1 in GT . Then by the C ′(1/6) condition, f(α) must contain

more than 1/2 of a relation in RT . Note that any such relation must involve only

generators in the image of the graph embedding f : S → T . Suppose that f(α) contains

more than half of a relation of the form f(vi)
±7. Since f is one-to-one, this cannot

happen unless α already contained more than half of v±7
i .

Suppose that f(α) contains more than 1/2 of the relation (f(vi)f(vj))
k, where the

value of k depends on whether or not (f(vi), f(vj)) ∈ T . Since

(vi, vj) ∈ S ⇔ (f(vi), f(vj)) ∈ T

it must be the case that (vivj)
k ∈ RS , and α already contained more than 1/2 of (vivj)

k.

Thus f(α) does not contain more than 1/2 of a relation in RT unless α contains more

than 1/2 of the corresponding relation in RS . Since every nontrivial element in GS may

be written as a word which does not contain more than 1/2 of a relation in RS , every

nontrivial element in GS maps to a nontrivial element in GT . Thus if S embeds into

T , then GS embeds into GT .

Conversely, suppose that θ : GS → GT is an embedding. Let v0, v1, . . . enumerate

the vertices of S. By Theorem 4.1.3, after adjusting the embedding θ by an inner

automorphism of GT if necessary, we may assume θ(v0) = tk0 for some k such that

|k| < 7, where t0 is some vertex of T , since θ(v0) must have order 7. Let vj 6= v0 be

some vertex of S. Again by Theorem 4.1.3, we find that θ(vj) = utlju
−1 for some l

such that |l| < 7, where u ∈ GT and tj is some vertex of T . Unfortunately we cannot

eliminate u by an inner automorphism without possibly changing the value of θ(v0).

Note that θ(v0vj) = tk0ut
l
ju
−1. We may assume that u is freely reduced and does not
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start with any power of t0. To see this, note that if u began with tm0 , then we would be

able to follow θ by the inner automorphism corresponding to tm0 without changing the

value of θ(v0). Thus θ(v0vj) = tk0ut
l
ju
−1 is cyclically reduced. Since v0vj is a torsion

element, so is θ(v0vj). By Theorem 4.1.3, the only cyclically reduced torsion elements

in GT are cyclically reduced conjugates of the relations in RT , i.e. cyclic permutations

of the relations in RT . It immediately follows that u = 1, since no such words contain

a mix of positive and negative powers. Thus θ(v0vj) = tk0t
l
j .

From this we find that t0 6= tj , since otherwise θ(v0vj) would have order 1 or 7,

which is impossible since θ is an embedding and v0vj has order 11 or 13. Again, by

Theorem 4.1.3, we find that tk0t
l
j has finite order only if k = l = ±1. As the orders of

v0vj and θ(v0vj) = t±1
0 t±1

j are equal, we see that

(v0, vj) ∈ S ⇐⇒ (t0, tj) ∈ T.

Let vm 6= vn be arbitrary vertices in S. Repeating the above argument with v0

and vm, as well as v0 and vn, we find there are inner automorphisms ψ1, ψ2 of GT ,

corresponding to conjugating by suitable powers of t0, such that ψ1(θ(vm)) = t±1
m and

ψ2(θ(vn)) = t±1
n , where tm 6= t0 and tn 6= t0. A priori it may be the case that, for

example, ψ1(θ(vn)) = tk0t
±1
n t−k0 , with k 6= 0. But then ψ1(θ(vmvn)) = t±1

m tk0t
±1
n t−k0 is

cyclically reduced, and by Theorem 4.1.3 it has infinite order, which is impossible. Thus

ψ1 = ψ2, and so ψ1(θ(vmvn)) = t±1
m t±1

n , and the above argument shows tm 6= tn and

that

(vm, vn) ∈ S ⇐⇒ (tm, tn) ∈ T.

As vm and vn were arbitrary, the function g : S → T defined by g(vi) = ti for all i ∈ N

is an embedding. Thus vG ≤B vGp, which establishes the result.

5.5 Embeddability of finitely generated groups

We now turn our attention to the embeddability relation for finitely generated groups.

Definition 5.5.1. Let G denote the Polish space of finitely generated groups. If A, B ∈ G,
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then we write A 4em B if and only if there is a group embedding from A into B. We

write ≡em for the associated equivalence relation.

Recall from section 3.2 that 4em is a countable Borel quasi-order. We will show that

in fact it is universal by reducing 4tree2 to 4em. Given a tree T ∈ Tr(2), our general

strategy is to define a finitely generated group GT with subgroups corresponding to the

trees Tw for w ∈ 2<N. We will start with two generators and then add relations to this

group according to the nodes present in T . As in the previous section, these additional

relations will allow us to control the embeddings that exist between two of these groups

and thus ensure that T 7→ GT is a Borel reduction. Thus we will have shown:

Theorem 5.5.2. 4em is a universal countable Borel quasi-order.

In order to define the relations of GT , we first define the following two homomor-

phisms:

f0 : F2 → F2 f1 : F2 → F2

x 7→ x5y x 7→ x2yxyx

y 7→ y5x y 7→ y2xyxy

We also define fe to be the identity map. For any element w ∈ 2<N, we define fw to

be the corresponding composition of f0 and f1, e.g. f01 = f0 ◦ f1 and f110 = f1 ◦ f1 ◦ f0.

In other words, if we can write w as u_v, then fw = fu ◦ fv. The associativity of

function composition ensures that this is well-defined.

These maps are not chosen entirely at random. One basic property of the maps is

that for all u ∈ 2<N, the first letter of fu(a) is different for each a ∈ {x±1, y±1}, and

the same is true for the last letter. This can be established through an easy induction

on the length of u. If u = e, then this is immediate, and for u = 0 or u = 1, we quickly

check that it holds. Now suppose that this is true for u. Then for i ∈ {0, 1}, consider

fu_i(a) = fu(fi(a)). We have already seen the first and last letters of fi(a) are different

for each a. By assumption, fu takes the first and last letters of fi(a) to words with first
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and last letters different from those of fi(b) for any b 6= a with b ∈ {x±1, y±1}, and this

completes the induction.

With this established, a similar induction shows that every fu takes freely reduced

words to freely reduced words. In fact, every fu takes cyclically reduced words to

cyclically reduced words, since for a, b ∈ {x±1, y±1}, the first letter of fu(a) is the

inverse of the last letter of fu(b) only if b = a−1, by the uniqueness of the last letters.

Given T ∈ Tr(2), we define

GT = 〈x, y | {(fw(x))59, (fw(y))61 | w ∈ T}, {(fw(x))67, (fw(y))71 | w /∈ T}〉.

The numbers in the exponents were chosen to be relatively prime and so that the

relations satisfy small cancellation conditions, and they have no significance beyond

that. We will eventually show that the map T 7→ GT is a Borel reduction from 4tree2

to 4em. To see that this is the case, we proceed by a series of lemmas.

Lemma 5.5.3. Let T ∈ Tr(2). If RT denotes the symmetrization of the defining

relations for GT , then RT satisfies the C ′(1/8) small cancellation condition.

Proof. We only need to check the positive relations, since they satisfy the C ′(1/8)

condition iff their inverses do, and there is no overlap between a positive word and a

negative word.

We begin with an easy case. Suppose that w ∈ 2<N and consider fw(x)nx and

fw(y)ny , where nx and ny denote the appropriate exponent, which depends on whether

w ∈ T . As fw(x) and fw(y) do not start with the same letter, they do not have

a common initial segment. We must also consider common initial segments of cyclic

permutations of these two words, since we had to add the cyclic permutations of fw(x)nx

and fw(y)ny to RT to make sure that it was symmetrized.

A picture of sorts helps in the analysis. Before any sort of cyclic permutation,

the two words are just fw(x) and fw(y) repeated some number of times, so they can

naturally be seen as being split into blocks. The example of f00(x)nx is shown in figure

5.2. When a word is cyclically permuted a bit, the blocks at the beginning and end are

truncated, as in figure 5.3. Now we cannot determine which word is a power of fw(x)

and which is a power of fw(y) just by looking at the first letter of the words as before.
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x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)

x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)

. . . x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)︸ ︷︷ ︸

nx times

Figure 5.2: f00(x)nx , with its “blocks” shown

yx5yx5yx5yy5xx5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)

. . . x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)︸ ︷︷ ︸

nx−1 times

x5yx5

Figure 5.3: f00(x)nx after being cyclically permuted

Let r1 be a cyclic permutation of fw(x)nx and r2 be a cyclic permutation of fw(y)ny

and let M = min{|r1|, |r2|}. Suppose that r1 = st1 and r2 = st2 with s maximal.

Permuting both r1 and r2 leftwards by < |fw(x)| letters, we get r∗1 and r∗2, with

r∗1 = fw(x)nx . If the fw-blocks in r∗2 also line up correctly, i.e. r∗2 = fw(y)ny , then

we know that r∗1 and r∗2 disagree at their first letter. Thus |s| < |fw(x)| < 1
8M if

r1 6= r2.

Suppose that r∗2 is not in alignment, i.e. it is not fw(y)ny . Then for r∗1 and r∗2 to

agree for ≥ |fw(x)| letters, fw(x) must be a subword of fw(y)2 containing letters from

each copy of fw(y). We will show that this cannot happen. In fact we can prove a

slightly more general result which will be useful later.

Lemma 5.5.4. Let u ∈ 2<N, a, b, c ∈ {x±1, y±1}. Suppose fu(a) is a subword of fu(bc).

Then fu(a) is not a subword of fu(bc) = fu(b)fu(c) containing letters from both fu(b)

and fu(c). In other words, fu(a) must equal fu(b) or fu(c). It follows that if α, β ∈ F2

are nontrivial and fu(α) is a subword of fu(β), then α is a subword of β.

Proof. We prove this inductively. It is easily checked to be true in the case that u ∈

{0, 1}. Now suppose that it is true for all u with |u| < n. Then if u′ = u_i with

|u′| = n and i ∈ {0, 1} we may write fu′(a) = fu(fi(a)) and fu′(bc) = fu(fi(bc)). By

assumption, the fu-blocks in fu′(a) line up with the fu-blocks in fu′(bc), and since

fu′(a) is a subword of fu′(bc), it follows that fi(a) is a subword of fi(bc). This implies

that fi(a) equals fi(b) or fi(c). Thus we find fu′(a) equals fu′(b) or fu′(c).
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This tells us that r∗1 and r∗2 agree for < |fw(x)| letters if they are out of alignment

and so |s| < 2|fw(x)| < 1
8M . In fact, the same reasoning shows that two different cyclic

permutations of fw(x)nx or of fw(y)ny also overlap for less than 1
8M letters.

Now we consider the case when w, v ∈ T are distinct and a, b ∈ {x, y}. Let r1 be

a cyclic permutation of (fw(a))na and r2 be a cyclic permutation of (fv(b))
nb , and let

M = min{|r1|, |r2|}. If v = e and w 6= e, then we observe that no cyclic permutation

of (fw(a))na agrees with (fe(b))
nb = bnb for more than 6 letters, which is less than 1/8

of the length of either word. If w and v begin with different symbols, then one of r1

and r2 will be a cyclic permutation of a word in x5y and y5x, while the other will be a

cyclic permutation of a word in x2yxyx and y2xyxy. Then the biggest possible common

initial segment between r1 and r2 is xyx3 or yxy3, which is less than 1/8 of the length

of either word.

So we may assume that w and v start with the same symbols. Suppose that w =

u_w′ and v = u_v′, with u maximal. Taking our cue from the notation for the greatest

common divisor, we will write this as u = (w, v). This should not cause confusion, as

there are no ordered pairs (or greatest common divisors!) in what follows. Then up to

some truncated bits at the beginning and end, r1 and r2 are both words in fu(x) and

fu(y), and so we are in a situation very similar to our first case, except that now r1

and r2 contain a mix of fu(x)- and fu(y)-blocks, rather than just being conjugates of a

power of one or the other. See figure 5.4 for a picture.

y x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

y5x︸︷︷︸
f0(y)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

. . . x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

y5x︸︷︷︸
f0(y)

x5y︸︷︷︸
f0(x)

x5

Figure 5.4: f00(x)nx after being cyclically permuted, with f0(x)- and f0(y)-blocks shown

Suppose that r1 and r2 are both made up entirely of fu-blocks, i.e. there are no

truncated fu-blocks at their beginning and end. Because fu(x) and fu(y) start with

different letters, we see that if r1 and r2 agree on the beginning of a block, then they

agree for the entire block. So the largest common initial segment s which r1 and r2

share is made up of entire fu-blocks. We have r1 = fu(α), r2 = fu(β), and s = fu(γ)

with α, β, γ words in x and y, and so by Lemma 5.5.4, we find that γ is a common
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initial segment of α and β. Furthermore, α and β are related to fw(ana) and fv(b
nb) as

follows.

We know that r1 = fu(α) is a cyclic permutation of fw(ana) = fu(fw′(a
na)), and

both r1 and fw(ana) can be viewed as words made up entirely of fu-blocks. Further,

Lemma 5.5.4 implies that r1 must be the result of cyclically permuting whole fu-blocks,

since whatever the first fu-block of r1 is, it cannot meet two of the fu-blocks in fw(ana).

It follows that α is a cyclic permutation of fw′(a
na). Similarly, β is a cyclic permutation

of fv′(b
nb).

So γ is a common initial segment of a cyclic permutation of fw′(a
na) and a cyclic

permutation of fv′(b
nb). This brings us back to the earlier cases. If w′ and v′ are both

nontrivial words, then they start with different symbols, which implies that |γ| ≤ 5,

and so s is made up of at most 5 fu-blocks. On the other hand, r1 and r2 are made

up of at least 6 ·min{|fw′(ana)|, |fv′(bnb)|} fu-blocks, and so |s| < 1
8M . If w′ = e and

v′ 6= e or vice versa, then |γ| ≤ 6 and we still find that |s| < 1
8M . If w′ = e and v′ = e,

then γ is empty unless a = b, which implies that r1 = r2.

This leaves only the out of alignment cases to deal with. As before, we may permute

r1 and r2 leftwards by < |fu(x)| letters to get r∗1 and r∗2, with r∗1 a product of fu-blocks.

If r∗2 is not a product of fu-blocks, then Lemma 5.5.4 tells us that r∗1 and r∗2 agree for

< |fu(x)| letters, and so r1 and r2 agree for < 2|fu(x)| letters, which is < 1/8 of the

length of each word. If r∗2 is a product of fu-blocks, then we are in the previous case,

and we have seen that either r∗1 = r∗2 or the corresponding common initial segment

between them consists of at most 6 fu-blocks. This implies that |s| < 7|fu(a)| < 1
8M .

We have finally exhausted all of the cases and have shown that RT satisfies the C ′(1/8)

condition, as desired.

The following lemma was shown to be true in the course of the above proof. We

record it here separately for ease of future reference.

Lemma 5.5.5. If fw(α) is a cyclic permutation of fw(β) and β is cyclically reduced,

then α is a cyclic permutation of β.
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Lemma 5.5.6. If T, T ′ ∈ Tr(2) and there exists w ∈ 2<N such that T = T ′w, then

GT ↪→ GT ′.

Proof. This is obvious if w = e, and so we may assume that w is nontrivial. It is easy

to see that fw, viewed as a map from GT to GT ′ , is a homomorphism, since it will take

defining relations in GT to defining relations in GT ′ . In more detail,

fv(x)59, fv(y)61 ∈ RT ⇐⇒ v ∈ T

⇐⇒ w_v ∈ T ′

⇐⇒ fw_v(x)59 = fw(fv(x)59),

fw_v(y)61 = fw(fv(y)61) ∈ RT ′

and similar equivalences hold for fv(x)67 and fv(y)71. It remains to show that fw is an

embedding.

We still need to show that nontrivial elements of GT do not map to the identity

in GT ′ . Our map is defined in terms of where it sends words, but we must take into

account the relations in our two groups in order to see which words correspond to the

identity. As in the previous section, we will show that if α ∈ F2 is such that fw(α)

contains more than 1/2 of a relation in RT ′ , then α contains more than 1/2 of a relation

in RT , which easily implies the result.

Suppose that α ∈ F2 and that fw(α) = 1 in GT ′ . Then fw(α) contains more than

half of a relation r ∈ RT ′ . We know that r is a cyclic permutation of some fv(a
na),

where v ∈ 2<N, a ∈ {x±1, y±1}, and na ∈ {59, 61, 67, 71}. Let u = (w, v), so that

w = u_w′ and v = u_v′. Then fw(α) = fu(fw′(α)), and r is a cyclic permutation of

fu(fv′(a
na)). By assumption, the subword of r that both words contain must be big

enough to contain an entire fu-block. Thus Lemma 5.5.4 tells us that the fu-blocks of

r and fw(α) must line up. The fu-blocks are uniquely identified by their first or last

letters, so once fw(α) and r agree for part of an fu-block, they agree on the whole thing,

unless r begins and ends with a truncated fu-block. In this case, cyclically permuting

r until it is made up of fu-blocks will “complete” the fu-block at one end of r. This

new word is also a relation which agrees with fw(α) for at least as long as r did, since
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either only one end of r was in fw(α) and cyclically permuting increases the length of

the word the two agree on, or r was a subword of fw(α) and this cyclic permutation is

also a subword of fw(α).

Thus we may assume that r = fu(ω) for some ω ∈ F2, and that r and fw(α) share a

subword of the form fu(γ), where γ ∈ F2. By Lemma 5.5.5, we know that ω is a cyclic

permutation of fv′(a
na). Then γ is a subword of a cyclic permutation of fv′(a

na) and

a subword of fw′(α). If w′ and v′ are both nontrivial, then they begin with different

symbols, and so |γ| ≤ 5. But then

|fu(γ)|
|fv(ana)|

=
|γ|

|fv′(ana)|

≤ 5

|fv′(ana)|

< 1/2

which is a contradiction. If v′ = e but w′ 6= e, then virtually the same inequalities

hold since f ′w(α) does not contain any letter to a power greater than 6, and again we

get a contradiction. Thus w′ = e, meaning w = u, and so α contains > 1/2 of a

cyclic permutation of fv′(a
na). Further, since w_v′ ∈ T ′ ⇔ v′ ∈ T , it follows that

fv′(a
na) ∈ RT . Thus if fw(α) = 1 in GT ′ , then α contains > 1/2 of a word in RT , as

desired.

The proof of the converse of Lemma 5.5.6 will depend on the following two lemmas.

Lemma 5.5.7. Suppose α, β ∈ F2 are cyclically reduced, and w, v ∈ 2<N. If r1 is a

cyclic permutation of fw(α) and r2 is both a cyclic permutation of fv(β) and a subword

of r1, then v ⊂ w or w ⊂ v.

Moreover, if w = v_w′ then a cyclic permutation of fw′(α) contains a cyclic per-

mutation of β, and if v = w_v′, then a cyclic permutation of α contains a cyclic

permutation of fv′(β).

Proof. The result is trivial if w = e or v = e, so we may assume that w and v are

nontrivial. Let u = (w, v), with w = u_w′ and v = u_v′. If u = e, then w and v begin

with different symbols, which is impossible, since |r1|, |r2| > 5, the length of the longest
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possible agreement between r1 and r2. So u is nontrivial, and r1 is a cyclic permutation

of fu(fw′(α)), while r2 is a cyclic permutation of fu(fv′(β)). The fu-blocks of each word

must line up, by Lemma 5.5.4. Further, since r2 is a subword of r1, any truncated bits

of fu-blocks at the ends of r2 are duplicated in r1. So we can permute r1 and r2 the

same amount to get r∗1 = fu(γ) and r∗2 = fu(ω), words composed entirely of fu-blocks,

with r∗2 contained in r∗1. By Lemma 5.5.5, we know γ is a cyclic permutation of fw′(α)

and ω is a cyclic permutation of fv′(β). In addition, Lemma 5.5.4 implies that ω is a

subword of γ.

If w′ and v′ are nontrivial, then they start with different symbols, and as above we

reach a contradiction. Thus either w′ = e, and so w ⊂ v and a cyclic permutation of α

contains a cyclic permutation of fv′(β), or v′ = e, so v ⊂ w and a cyclic permutation

of fw′(α) contains a cyclic permutation of β.

Lemma 5.5.8. Suppose that t, u, v ∈ 2<N, and some cyclic permutation of ft(x
k) is

a product of a cyclic permutation of fu(xl) and a cyclic permutation of fv(y
m), with

k, l,m ∈ Z \ {0}. Then u = v, t = u_0, k = m = ±1, l = 5k, and ft(x
k) = fu_0(x±1)

is either

fu(x5)fu(y)

or

fu(y−1)fu(x−5).

Proof. By Lemma 5.5.7, either t ⊂ u or u ⊂ t. If t ⊂ u and u = t_u′, then by the

previous lemma, we find that a cyclic permutation of xk contains a cyclic permutation

of fu′(x
l). This is impossible unless u′ = e. So we may assume that u ⊂ t and t = u_t′.

Similarly we find that v ⊂ t and t = v_t′′. It follows that u ⊂ v or v ⊂ u.

Suppose that u ⊂ v and v = u_v′. We know that the fu-blocks in fu(xl) and

fu(fv′(y
m)) must line up with those in ft(x

k). This means in particular that a truncated

fu-block at the end of the cyclic permutation of fu(xl) must be completed by a truncated

fu-block at the beginning of the cyclic permutation of fu(fv′(y
m)), and vice versa. So

we can assume that the cyclic permutations we are considering are made up of complete
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fu-blocks. Then by Lemma 5.5.4 we obtain that a cyclic permutation of ft′(x
k) is a

product of xl and a cyclic permutation of fv′(y
m).

Now, ft′(x
k) is composed of fv′-blocks, which must line up with those in the cyclic

permutation of fv′(y
m). So it must be the case that xl is a cyclic permutation of fv′-

blocks. But this can only happen if v′ = e, meaning u = v. Similar reasoning applies if

v ⊂ u. Thus u = v. It is not possible for a truncated fu(x)-block to be completed by a

truncated fu(y)-block, or vice versa, and so we must have that the cyclic permutation

of ft(x
k) we started with is either fu(xl)fu(ym) or fu(ym)fu(xl).

It follows that xlym is a cyclic permutation of ft′(x
k). This can only happen if

t′ = 0 and k, l,m are as in the statement of the lemma, since if t′ = e then xk contains

no occurrences of y, and if t′ 6= 0 is nontrivial then ft′(x
k) must contain at least two

distinct blocks of x’s and y’s.

We now take up the converse of Lemma 5.5.6, which will complete the proof of

Theorem 5.5.2.

Lemma 5.5.9. If T, T ′ ∈ Tr(2) and GT ↪→ GT ′, then ∃w ∈ 2<N such that T = T ′w.

Proof. Suppose that θ : GT → GT ′ is a monomorphism. Our main goal is to prove that

θ must actually be fw for some w ∈ 2<N, up to an inner automorphism of GT ′ . Once

we know this, it is easy to recover the relations in each group, and thus to show that

T = T ′w.

Since x = fe(x), x has some finite order nx in GT . Then θ(x) has order nx,

and so by Theorem 4.1.3, θ(x) must be conjugate to a power of some fw(x), where

w ∈ T ′ ⇔ e ∈ T . If we follow θ by an inner automorphism of GT ′ , we may assume that

θ(x) = (fw(x))δ for some nonzero integer δ.

Similarly, θ(y) is conjugate to a power of some fv(y) with v ∈ T ′ ⇔ e ∈ T . We

find that θ(y) = u(fv(y))γu−1. We can assume that u does not contain more than

half of an element of RT ′ . We may also follow θ by the inner automorphism cor-

responding to fw(x) as necessary to ensure that u does not begin with a power of

fw(x), and this will not change the value of θ(x). After freely reducing we get that

θ(y) = u′ru′−1, where r is a cyclic permutation of (fv(y))γ . To see this, suppose
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that u = αβ−1, where (fv(y))γ = βµ and β is the longest subword of u for which

this is true. Then u(fv(y))γu−1 = αβ−1βµβα−1 = αµβα−1. Then u′ = α and

r = µβ. A similar argument works if (fv(y))γ cancels with u−1. For example, if

we had θ(y) = xy−1f0(y)yx−1 = xy−1(y5x)yx−1, then after freely reducing we would

find θ(y) = xy4xyx−1 = xrx−1, where r = y4xy.

We now proceed much as in the proof of 5.4.1. Let mx be the order of f0(x) in GT .

Since θ is a monomorphism, it must take f0(x) to a torsion element of order mx. We

know that

θ(f0(x)) = θ(x5y) = (fw(x))5δu′ru′−1

= (fw(x))δ
′
u′ru′−1

where |δ′| < bnx
2 c. Note that, as written, this word may not be freely reduced, so we

can not necessarily use Theorem 4.1.2 yet. Let z = θ(f0(x)).

Suppose that z is cyclically reduced as written and that u′ 6= 1. Then z is a cyclically

reduced word with finite order in GT ′ which contains a mixture of positive and negative

letters, which is impossible since the words in RT ′ are either entirely positive or entirely

negative. So either u′ = 1 or else z is not cyclically reduced.

First suppose that u′ = 1, so that z = (fw(x))δ
′
r. If δ′ and γ have the same sign,

then z is cyclically reduced as written. By Theorem 4.1.3, z is a cyclic permutation of

some ft(x
k), and so by Lemma 5.5.8, θ(x) = fw(x)±1 and θ(y) = fw(y)±1.

Suppose that δ′ and γ have opposite signs. There is a (possibly trivial) inner auto-

morphism ψ such that ψ(z) = sr′, where s is a cyclic permutation of fw(x)δ
′
, and r′

is a cyclic permutation of fv(y)γ , and freely reducing sr′ will leave a cyclically reduced

word. Let ψ(z) = z′. Since z′ is a torsion element, it must be a cyclic permutation of

some ft(x
k). So if we write z′ as the result of freely reducing sr′, then its letters must

all have the same sign.

Suppose z′ and s have letters of the same sign. Then z′r′−1 is cyclically reduced and

so we have a cyclic permutation of fw(x)δ
′

written as a product of a cyclic permutation

of ft(x)k and a cyclic permutation of fv(y)γ . By Lemma 5.5.8, we get that θ(x) =

fv_0(x±1) = fv((x
5y)±1), and θ(y) = fv(y

∓1). But then either θ(xy) = fv(x
5) or
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θ(xy) = fv(y
−1x−5y) = fv(y)−1fv(x

−5)fv(y). Both of these are torsion elements, but

xy is not a torsion element in GT , which contradicts the fact that θ is an embedding. So

suppose that z′ and r′ have letters of the same sign. Then z′s−1 is cyclically reduced and

so we have a cyclic permutation of fv(y)γ written as a product of a cyclic permutation

of ft(x)k and a cyclic permutation of fw(x)δ
′
. Arguing as in the proof of Lemma 5.5.8,

we find that w = t and that w ⊂ v. Let v = w_v′. We obtain that fv′(y
γ) = x−δ

′+k,

which is absurd.

We still must address the case where u′ 6= 1 and z is not cyclically reduced. This

can happen for two reasons. It may be that u′ and fw(x) begin in the same way.

We know that u′ does not begin with an entire copy of fw(x), and we have assumed

that u′ does not further cancel with r, so there is an inner automorphism ψ such

that ψθ(f0(x)) = su′′ru′′−1, a cyclically reduced word with s a cyclic permutation of

(fw(x))δ
′
. If u′′ 6= 1, then ψ(θ(f0(x)) contains positive and negative letters, and we

have already seen that this is impossible. Thus we must have that z′ = sr, and as

before we see that θ(x) = fw(x)±1 and θ(y) = fw(y)±1.

The other possibility is that u′ cancels with the end of fw(x). It cannot cancel with

the whole of fw(x), and so again after following θ by an appropriate inner automor-

phism ψ we get that ψ(θ(f0(x))) = su′′ru′′−1, a cyclically reduced word with s a cyclic

permutation of (fw(x))δ
′
. This case is treated exactly as in the previous paragraph.

So we have shown that θ(x) = fw(x)±1 and θ(y) = fw(y)±1 with the signs matching.

If θ(x) = fw(x) and θ(y) = fw(y), then θ = fw, and hence

u ∈ T ⇔ fu(x53) ∈ RT

⇔ fw(fu(x53)) ∈ RT ′

⇔ w_u ∈ T ′

Thus T = T ′w, as desired. Thus it only remains is to eliminate the undesirable case

when θ(x) = fw(x−1) and θ(y) = fw(y−1). In this case we have that
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θ(f00(x)) = θ(x5yx5yx5yx5yx5yy5x)

= fw(x−5y−1x−5y−1x−5y−1x−5y−1x−5y−1y−5x−1)

= fw((xy5yx5yx5yx5yx5yx5)−1)

We will show this is not a torsion element in GT ′ . Since f00(x) is a torsion element in

GT , this implies that θ is not a homomorphism, which is a contradiction.

Let α = xy5yx5yx5yx5yx5yx5. It is easy to see that f00(x) is the only torsion element

that has length 36 and that contains 26 xs. However, α is not a cyclic permutation

of f00(x). It follows that fw(α) (and hence θ(f00(x))) is not a torsion element, since

otherwise it would have to be a cyclic permutation of some ft(x
k) with t ∈ T ′. Thus

by Lemma 5.5.7, either w ⊂ t or t ⊂ w. Suppose that w ⊂ t and t = w_t′. Then α

must be a cyclic permutation of ft′(x
k), which we have already seen is impossible. If

t ⊂ w and w = t_w′, then xk must be a cyclic permutation of fw′(α), which is also

impossible. Thus we reach a contradiction, eliminating the final undesirable case.

Proof of Theorem 5.5.2. Lemmas 5.5.6 and 5.5.9 establish that the map T 7→ GT is a

Borel reduction from 4tree2 to 4em.

Corollary 5.5.10. ≡em is a universal countable Borel equivalence relation.

It may have been possible to prove this corollary without any reference to quasi-

orders, by reducing some known universal countable Borel equivalence relation to ≡em.

However, it seems that the most natural and direct route to this result is through

Theorem 5.5.2. A closer look at the above proof also leads to the following result,

which tells us that the bi-embeddability relation on the groups constructed above is

much more complicated than the isomorphism relation on these groups.

Corollary 5.5.11. With the above notation, GT ∼= GS ⇔ T = S.

Proof. One direction is trivial. For the other, suppose that T, S ∈ Tr(2) are such that

GT ∼= GS , via φ : GT → GS . Then in particular φ is an embedding, and by the proof of

Lemma 5.5.9, there exists w ∈ 2<N such that T = Sw. Furthermore, after adjusting by
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an inner automorphism of GS if necessary, we can suppose that φ = fw. We will show

that if w 6= e, then fw : GT → GS is not surjective. Hence w = e and GT = GS .

Suppose that w ∈ 2<N is nontrivial and that fw : GT → GS is surjective. Then

there is some word α ∈ F2, which we may assume does not contain more than 1/2 of a

relation in RT , such that fw(α) = x in GS , where x is one of the generators of GS . This

means that fw(α)x−1 = 1 in GS . By the proof of Lemma 5.5.6, we know that fw(α)

does not contain more than 1/2 of a relation in GS . By Theorem 4.1.2, for fw(α)x−1 to

represent the identity in GS , it must contain more than (1− 3/8) = 5/8 of a relation in

RT . But fw(α)x−1 has at most one more letter in common with a relation than fw(α)

does. Since fw(α) contains less than 1/2 of a relation in RT , fw(α)x−1 contains less

than 5/8 of a relation in RT . This is a contradiction.

5.6 The structure of the countable Borel quasi-orders under ≤B

The previous results have all been concerned with universal countable Borel quasi-

orders, which are above all other countable Borel quasi-orders with respect to ≤B. It

is natural to ask about the overall structure of the countable Borel quasi-orders.

Recall that n may be viewed as a discrete space with n elements. We have already

seen that if we restrict our attention to equivalence relations, the equality relations

∆(n) are such that

∆(1) <B ∆(2) <B ∆(3) <B . . . <B ∆(N).

If we also look at quasi-orders on these spaces, then the structure is more complicated.

For these spaces, Borel reducibility is embeddability. This is undoubtedly chaotic, but

a complete description more properly belongs to combinatorics rather than logic.

In light of the relative chaos that occurs in the lower part of the Borel hierarchy for

countable Borel quasi-orders, one might worry that we lose all of the nice dichotomies

that hold for countable Borel equivalence relations. Thankfully this is not the case.

Suppose that Q is a countable Borel quasi-order on an uncountable Polish space. By

the Kuratowski-Ulam theorem, since every section of Q is meager, Q is a meager subset

of X2. Then recall the following theorem of Mycielski in [30].
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Theorem 5.6.1. If X is an uncountable Polish space and Rn is a meager subset of

Xn, then there is a perfect subset P ⊆ X such that

∀p1, . . . , pn ∈ P (p1, . . . , pn) /∈ Rn.

In particular, if Q is a meager quasi-order on an uncountable Polish space X, then

there is a perfect subset P ⊆ X for which none of the elements are Q-comparable, and

hence ∆(P ) ≤B Q by the identity map. Since P is an uncountable standard Borel space

in its own right, ∆(R) ∼B ∆(P ), and so ∆(R) reduces to every meager quasi-order on

an uncountable Polish space, including every countable Borel quasi-order.

Also, because symmetry is preserved downwards under ≤B, E0 is an immediate

successor of ∆(R) within the collection of countable Borel quasi-orders. It is natural to

ask whether there are any other immediate successors of ∆(R). Recall from section 2.4

that if E is a countable Borel equivalence relation on a standard Borel space X with

a Borel linear order ≤, then E(≤) is defined to be E ∩ ≤. Some of these quasi-orders

seem to furnish candidates for immediate successors of ∆(R). We have seen that

E(≤) ≤B F (≤)⇒ E ≤B F. (∗)

However, the converse is not true in general. Define E on 2N ×Q by

(x, r) E (y, s) ⇐⇒ x = y

and similarly define F on 2N × N. Also, let ≤Q denote the lexicographical order on

2N ×Q, i.e.

(x, r) ≤Q (y, s) ⇐⇒ x ≤2N y ∨ (x = y ∧ r ≤Q s)

where ≤2N is the standard lexicographical order on 2N and ≤Q is the standard order

on Q. Similarly define ≤N to be the lexicographical order on 2N ×N. Clearly E ∼B F ,

as both equivalence relations are smooth. However, E(≤Q) 6≤B F (≤N). To see this,

let x ∈ 2N. Any Borel reduction from E(≤Q) to F (≤N) must send [(x, 0)]E into some

[(y, 0)]F in an order-preserving way, which is impossible.

We now discuss another important property of the E(≤).
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Definition 5.6.2. Let 4 and 4′ be quasi-orders on X and Y , respectively. A map

h : X → Y is half-order-preserving, or h.o.p., if x 4 y ⇒ h(x) 4′ h(y).

Definition 5.6.3. A Borel quasi-order Q on X is Borel linearizable if there is a Borel

linear order L on Y and a Borel h.o.p. map h : X → Y (called a linearization map)

such that x EQ y ⇔ h(x) = h(y).

This concept first appeared in [16]. Each E(≤) is Borel linearizable, as the identity

map is a linearization map. In [20], Kanovei proved a dichotomy theorem for Borel

quasi-orders which involves the property of Borel linearizability. Define ≤0 on 2N by

x ≤0 y iff x = y or x E0 y and x(n) < y(n) where n is the largest natural number

for which x(n) 6= y(n). Note that this is not the same as E0(≤). Kanovei proved the

following dichotomy:

Theorem 5.6.4 (Kanovei [20]). Suppose that 4 is a Borel quasi-order on NN. Then

exactly one of the following conditions is satisfied:

i) 4 is Borel linearizable,

ii) there exists a continuous 1-1 map F : 2N → NN such that

a ≤0 b⇒ F (a) 4 F (b)

while a 6E0b implies that F (a) and F (b) are 4-incomparable.

In particular, ≤0 is not Borel linearizable. Notice that Borel linearizability is pre-

served downwards under ≤B. To see this, suppose Q,R are Borel quasi-orders on

standard Borel spaces X,Y respectively, and R is Borel linearizable. Then there is

some standard Borel space Z with a Borel linear order ≤ and a h.o.p. map h : Y → Z.

Suppose that f : X → Y is a Borel reduction from Q to R. Then

x EQ y ⇐⇒ f(x) ER f(y)

⇐⇒ h(f(x)) = h(f(y))

Thus h ◦ f witnesses that Q is Borel linearizable. Consequently, Kanovei’s theorem has

the following corollary.
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Corollary 5.6.5. If E is any countable Borel equivalence relation, then ≤0 does not

Borel reduce to E(≤).

Open Problem. Suppose Q is a countable Borel quasi-order, E is a countable Borel

equivalence relation, and Q ≤B E(≤). Does it follow that Q ∼B F (≤) for some

countable Borel equivalence relation F?

It is currently not known if any of the E(≤) Borel reduce to ≤0. Note that ≤0

symmetrizes to ∆(2N). So all of the examples of “genuine” quasi-orders which we have

discussed so far symmetrize to either equality on some standard Borel space or to a

universal countable Borel equivalence relation. This leads us to ask if there are any

natural quasi-orders Q which are not equivalence relations and for which EQ is neither

smooth nor universal.

There is at least one example. Recall the earlier definition of 4Gt for a countable

group G. If we write EGt for the symmetrization of 4Gt and EG for the equivalence

relation on subsets of G given by the orbits of the shift action, then clearly EG ⊆ EGt .

In particular, it follows that EGt is not smooth. This is because if E,F are countable

Borel equivalence relations and E ⊆ F , then if F is smooth, so is E. (This is an

immediate consequence of Lemma 2.1 in [36].) But for any infinite countable group

G, EG is not smooth (cf. [24, Example 3.1]). So the question is whether or not EGt

is universal. We will show that EZ
t is not universal. In fact, we will prove a stronger

statement, after first establishing a lemma due to Cherlin which simplifies the author’s

original argument.

Lemma 5.6.6. If A ⊆ Z and A = ∩ni=1(A+ ci), then A = A+ ci for some i.

Proof. Let I = {k ∈ Z | A ⊆ A + k}. Then ci ∈ I for all i, and I is closed under

addition. If I contains both positive and negative integers, then I = dZ for some d ∈ Z.

Hence d | ci for all i. Then A ⊆ A + d, A ⊆ A − d ⇔ A + d ⊆ A, and so A = A + d.

Thus A = A+ ci for all i.

So we may suppose that I contains no negative numbers. We may assume that no

ci = 0, since otherwise we are done. Thus all the ci are positive. Let d = gcd(c1, . . . , cn).
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If A ⊆ A + d, then A + d ⊆ A + ci for all i, and so A = A + d. But then −d ∈ I, a

contradiction. So A is not contained in A+d. We may assume that 0 ∈ A\(A+d), since

otherwise we shift A as necessary. Every sufficiently large multiple of d is a positive

linear combination of the ci. Thus −nd ∈ A for every sufficiently large n. Take n

maximal with −nd /∈ A. Then −nd ∈ (A+ ci) for all i, a contradiction.

Theorem 5.6.7. EZ
t = EZ

Proof. Suppose AEZ
t B, as witnessed by a1, . . . an, b1, . . . , bm ∈ Z, i.e.

A = (a1 +B) ∩ . . . ∩ (an +B) (5.2)

B = (b1 +A) ∩ . . . ∩ (bm +A) (5.3)

If n = 1 or m = 1, then A is a shift of B, so we may assume that n > 1 and m > 1. If

we replace every instance of B on the right hand side of (5.2) with the right hand side

of (5.3), and similarly replace the instances of A in (5.3), we get

A = ∩i,j(ai + bj +A)

B = ∩i,j(ai + bj +B)

By Lemma 5.6.6, we have A = ai + bj +A for some i, j. Then

A ⊆ B + ai ⊆ A+ bj + ai = A

and so A = B + ai.

In general EGt 6= EG. It is still the case that any sets which are equivalent under

EGt to sets other than their shifts are contained in translates of themselves, but the

arguments used in showing EZ
t = EZ do not carry over. For example, there are sets

A,B ∈ P(Z3) such that AEZ3

t B and A 6EZ3B. Figure 5.5 shows part of such an A. Each

grid is a copy of Z2, and the copies are indexed by Z. So the element (a, b, c) corresponds

to (a, b) in the grid indexed by c. A 1 indicates the corresponding element is in A, while

a 0 indicates it is not. All of the grids below what is pictured are entirely 0s. The grids

above continue the pattern of moving the lowest nonzero row up by two, and adding an

additional 1 to the lowest row. Let B = A ∩A+ (1, 0, 0), which is shown in figure 5.6.
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It is easy to see that B is not a shift of A. However, B ∩B + (0, 0,−1) = A+ (0, 2, 0),

and so AEZ3

t B.

This implies that EGt 6= EG for any countable group G such that Z3 ≤ G. Suppose

that G is a countable group such that EGt 6= EG and H is a countable group which

surjects onto G, say via f . Let A,B ⊆ P(G) be such that A EGt B, say via c1, . . . , cn

and d1, . . . , dm, and A 6EGB. Then f−1(A) EHt f−1(B) and f−1(A) 6EHf−1(B). Let

g1, . . . , gn ∈ H be such that gi ∈ f−1(ci) and h1, . . . , hm ∈ H be such that hi ∈ f−1(di).

Then

f−1(A) = g1f
−1(B) ∩ . . . ∩ gnf−1(B)

f−1(B) = h1f
−1(A) ∩ . . . ∩ hmf−1(A)

Suppose that there were some h ∈ H such that f−1(A) = hf−1(B). Then A = f(h)B,

a contradiction. This further expands the collection of groups such that EGt 6= EG. In

particular, any SQ-universal group has this property, including F2. So while we have

seen that EF2
t ∼B E∞, the two are not equal.

If we restrict the shift action of F2 on its subsets to the free part of the shift action

(i.e. the points which are not fixed by any nontrivial element of F2), then we obtain

the universal treeable equivalence relation E∞T . Recall that E0 <B E∞T <B E∞.

In the same spirit, we can restrict 4F2
t to the free part of the shift action and get a

new quasi-order 4F2
ft . It is reasonable to conjecture that the associated equivalence

relation is Borel bireducible with E∞T , but the above results make it unlikely that the

associated equivalence relation is actually equal to E∞T . If this conjecture holds, it

would give another example of a quasi-order whose associated equivalence relation is

neither smooth nor universal.

5.7 Future directions

We have already mentioned some of the remaining open questions concerning the struc-

ture of the countable Borel quasi-orders under ≤B. Of course it is also natural to ask

where specific countable Borel quasi-orders are situated in this structure. In particular,

most of the reducibilities from computability theory, such as Turing reducibility ≤T or
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. . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 0 0 0 . . .

. . . 0 0 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 0 0 0 . . .

. . . 0 0 0 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 0 0 0 . . .

. . . 0 0 0 0 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . .

Figure 5.5: The set A ∈ P(Z3)
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. . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 0 0 0 . . .

. . . 0 0 0 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 0 0 0 . . .

. . . 0 0 0 0 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 1 1 1 1 . . .

. . . 1 1 1 0 0 0 0 . . .

. . . 0 0 0 0 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . .

. . .

Figure 5.6: The set B = A ∩A+ (1, 0, 0)
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1-reducibility ≤1, are countable Borel quasi-orders. The equivalence relations associ-

ated with them have been the subject of a great deal of work in descriptive set theory;

for example, see [6].

Open Problem. Are any of ≤1,≤T , etc. universal countable Borel quasi-orders?

It is open whether the associated countable Borel equivalence relations ≡1 or ≡T

are universal. We have seen that universal countable Borel quasi-orders give rise to

universal countable Borel equivalence relations, so a positive answer to any part of

this question would settle the problem for the corresponding equivalence relation. It is

possible for a non-universal countable Borel quasi-order to symmetrize to a universal

countable Borel equivalence relation, for example a quasi-order which was already an

equivalence relation. So we ask the following.

Open Problem. How many countable Borel quasi-orders are there up to Borel bire-

ducibility which symmetrize to a universal countable Borel equivalence relation?

There are interesting open questions about the relationship between the biembed-

dability relation ≡em for finitely generated groups and the isomorphism relation ∼=G for

finitely generated groups. As both relations are universal there are Borel reductions

in each direction. However, both universality results ultimately rely upon the Lusin-

Novikov theorem, which gives no information about the resulting Borel reductions.

It is therefore natural to ask if there are such Borel reductions which are group-

theoretic in nature, meaning maps which only use group-theoretic constructions such as

semidirect products, wreath products, HNN extensions, etc. All of these constructions

induce continuous maps on the space G of finitely generated groups, so this raises the

question of whether there is a continuous reduction between the two relations.

Open Problem. Is there a continuous reduction from ∼=G to ≈G , or in the opposite

direction?

Currently the only results ruling out continuous reductions between countable Borel

equivalence relations E,F such that E ≤B F are due to Thomas. In particular, we

have the following.



75

Theorem 5.7.1 (Thomas [36]). Suppose G is a countable subgroup of Sym(N), the

group of bijections of N. Let EG be the orbit equivalence relation of the group on 2N.

Then ≡T does not continuously reduce to EG.
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