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ABSTRACT OF THE DISSERTATION 
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COMPETING RISK SYSTEMS WITH MULTIPLE DEGRADATION PROCESSES 

AND RANDOM SHOCKS 

 

By YAPING WANG 

Dissertation Director: Dr. Hoang Pham 

 

 

Multiple competing risks are one of the important topics in reliability field, especially 

degradation processes and random shocks. This research aims to relax the 

independent assumption by considering that there exist dependent relationships not 

only among multiple degradation measures but also between degradation measure and 

random shocks. In reality, many systems have multiple components with more than 

one degradation measure which is dependent with each other due to their interplaying 

functions or common usage history. Independent assumption may underestimate 

system reliability estimation under many cases. Random shocks will also contribute to 

the system failure through two ways: (1) one is working directly on the degradation 

processes; (2) the other is causing immediate failure to the system. 

We develop a new methodology to formulate the reliability prediction model for the 
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gradually degradating systems subject to multiple dependent competing risks of 

degradation processes and random shocks. Two kinds of random shocks are 

considered: (1) fatal shocks, which fail the system immediately; (2) non-fatal shocks, 

which exhibit two effects on the system degradation process, including sudden 

degradation increment and degradation rate acceleration. The dependency between 

degradation processes and random shocks are modulated by a time-scaled covariate 

factors while the dependency among degradation processes are fitted by copula 

method. Also the reliability and state probability estimation for the systems are 

derived under the research scope of multi-state system using both analytical and 

Monte Carlo simulation for the dependent competing-risk systems.  

Different maintenance policy models involving imperefect preventive maintenance 

for this dependent model are introducted and compared with each other. 

Multi-objective optimization is applied to consider two important targets 

simultaneously in maintenance issues, including long-run expected cost rate and 

system availability. 
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Chapter 1  

Introduction 

 

1.1  The Importance of Competing Risks Model of Degradation and 

Random Shocks 

Nowadays the products are developed to be more reliable with a longer lifetime and 

higher quality, so it is really a significantly challenge to obtain the sufficient and 

accurate time-to-failure data in a cost-effective manner prior to the product release. 

The design engineers may be unable to obtain the time-to-failure data of the new 

products by testing them under the normal operating environments, either because 

their lifetimes are too long, or the time period between design and product release is 

too short.  

Two approaches are introduced to overcome these obstacles to obtain the information 

of the lifetime regarding the warranty periods and the reliability specifications of the 

products. One is Accelerated Life Testing (ALT); the other is degradation analysis. 

Furthermore, by combining the ALT and degradation analysis, a new approach, called 

Accelerated Degradation Testing (ADT), is created.  

Degradation analysis involves the measurement of the degradation process of a 

product at various time points and this information is then used to estimate the 

eventual failure lifetime for the product. One of the major advantages of performing 

reliability analysis based on degradation data is that it relates the reliability analysis 
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directly to the physics of failure mechanism. Cutting tools, hydraulic structures, brake 

linings, airplane engine compressor blades, corroding pipelines, and rotating, 

equipment, all of these structural systems suffer from increasing wear with usage and 

aging. In our real life, various physical deterioration processes can be observed, such 

as cumulative wear, crack growth, erosion, corrosion, fatigue, consumption, etc. The 

deteriorating processes of these systems might incur high cost due to production 

losses, delays and safety hazards if the resistance of a deterioration structure drops 

below certain applied failure threshold. In practice, because modern highly reliable 

products usually have very complex system structure, they may have multiple 

degradation measures. In other words, the product may have multiple components 

with its own degradation process and even one component can exhibit more than one 

degradation behavior. 

However, degradation is only one mode of competing risks for the systems. Another 

important competing risk mode is random shock that represents the sudden impacts 

from the external operating environment towards the system itself. Therefore, the 

system failure mechanisms can be divided into two categories: one is catastrophic 

failure, in which units break down due to some sudden external shocks; the other is 

degradation failure, in which units fail to properly function because of the physical 

degradation.  

In the catastrophic failure mode, the units break down as soon as the cumulative 

shock damage or some extreme shock exceeds certain predetermined failure threshold, 

while in the degradation failure mode, the units fail to work once the total degradation 
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wear drops below some critical failure level. The applications with respect to the 

competing risks of degradation and random shocks are very common phenomenon in 

our practical life. 

Practical Examples: 

Rubidium standard (Quan and Kvam (2011)) is a frequency standard used to control 

the output frequency of cell phone stations, television stations, and global position 

systems (GPS) based on the hyperfine transition of electrons in rubidium-87 atoms. 

The degradation process of the rubidium's performance can be due to either the 

depletion of the discharge lamp or the consumption of the rubidium. Extremes of 

environmental factors will result in the shocks to rubidium standard, such as 

temperature, pressure, vibration and supply voltage.  

Light-emitting diode (LED) lamp (Yang et al. (2010)) has been regarded as a 

potential substitute for the traditional fluorescence and incandescence lamps. Because 

LED which is the main component of LED lamps is highly reliable, it may experience 

very few failures during the life testing experiment. Therefore, degradation testing and 

analysis are a more efficient approach to obtain the information of LED's lifetime. But 

the LED has a complex system structure which may exhibit more than one 

degradation failure dominating the system reliability. Furthermore, the system's 

common usage history intends to cause a dependent relationship between the 

performance characteristics of the system degradation paths. Over-voltage and 

over-heating may also cause the failure of LED lamps.  

The human body (Gross (1973)) is composed of a variety of biological systems, that 
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is composed of the organs, that is composed of the tissues, that is composed of the 

cells. Each unit, from tiny invisible cells to the whole biological systems, may 

experience graceful degradation of its function until a certain age. Taking the human 

heart as an example, at the age of 40, the efficiency of the heart delivering blood to 

the body will begin to greatly reduce because of the gradual loss of elasticity of blood 

vessels. As a result, the arteries may harden or become blocked. On the other hand, 

many factors can contribute as a shock to the human body, such as non-normal living 

environment and illness. Diabetes which happens when too much blood sugar is in the 

blood for a long time can damage many parts of the human body, such as the heart, 

kidneys and blood vessels. 

Li and Pham (2005a) develop a general model to estimate the reliability of multi-state 

systems subject to the multiple competing risks of two degradation processes and 

random shock, and later on Li and Pham (2005b) propose a condition-based 

inspection-maintenance model with thresholds. However, the two competing 

processes in these models are independent with each other. In our research, we will 

focus on the dependent relationships among multiple competing risks and consider 

various maintenance policies involving imperfect preventive maintenance under the 

multi-objective optimization scope for this complex dependent multiple competing 

risk model. 

 

1.2  Dependent Relationship for Competing Risks of Degradation 

and Shocks 
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There exist two kinds of dependent relationships that we focus in our research 

regarding the competing risks. Now we will discuss them in detail as follows: 

 

Dependency among multiple degradation measures 

In real world, not only many systems have more than one component with its own 

degradation process, but also one single component may possess more than one 

degradation path. Therefore, a probabilistic mathematical model should be considered 

to describe and predict the reliability functions for the multiple degradation measures. 

The neglect of the relationships among the multiple degradation measures may 

underestimate the system reliability. In the Ph.D thesis of Wang (2003), by checking 

the dependent relationship from the simulation results of reliability estimation we can 

clearly see that the positive covariance between degradation measures will lead to 

higher reliability estimation than the independent case. 

 

Dependency between degradation process and random shocks 

Usually, there are two aspects to check the dependency between the degradation 

processes and random shocks: 

A. Degradation towards shocks: Degradation will make the system more fragile 

to the random shocks. Fan et al. (2000) consider a multi-component system 

subjected to the non-homogeneous Poisson process shocks. In the model, 

aging will increase the magnitude of shock sizes, thereby resulting in a larger 

fatal probability.  
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B. Shocks towards degradation: When the random shocks occur, the degradation 

process may receive two types of impacts where the first type is a sudden 

increment jump and the second is degradation rate acceleration. Cha and 

Finkelstein (2009) extend the Brown-Proschan model by assuming that the 

random shocks will result in an immediate system failure with a probability 

p(t), but accelerate the system aging process by certain random increment 

with probability q(t). 

 

The problem formulation is becoming more and more complicated when these 

dependencies among competing risks of degradation processes and random shocks 

cannot be ignored. Therefore, a more general analysis method for the dependent 

measures is required to be developed.  

 

1.3  The Importance of Imperfect Preventive Maintenance 

Perfect maintenance or repair assumes that the system will be "as good as new" upon 

the maintenance, but in real world this assumption is not so practical. Sometimes 

because of economic principle or resource availability, we only partially restore the 

system to a younger age with the system status between "as good as new" and "as bad 

as old". For that reason, a more realistic assumption considering that upon 

maintenance the system will be restored to an intermediate status between 

pre-maintenance conditions and "as good as new” should be studied, which is called 

imperfect maintenance. In the existing literatures of imperfect maintenance, various 
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approaches of modeling the imperfect maintenance problems have been introduced. 

From the study of Wang and Pham (2006a), seven modeling approaches are 

summarized, shown as in Table 1.1. 

 

Table 1.1: Summary of treatment methods for imperfect maintenance  

(Wang and Pham (2006a)) 

Modeling method References 

(p, q) Rule 

Chan and Downs (78), Helvic (80), Nakagawa (79,80,87), Brown and 

Proschan (82,83), Fontenot and Proschan (84), Lie and Chun (86), Yun 

and Bai (87), Bhattacharjee (87), Rangan and Grace (89), Srivastava 

and Wu (93), Wang and Pham (96,97), Lim et al. (98), Pham and Wang 

(00), Cha and Kim (01), Kvam et al. (02), Li and Shaked (03) 

(p(t), q(t)) Rule 

Beichelt (80,81), Block et al. (85,88), Abdel-Hameed (87), Whitaker 

and Samaniego (89), Makis and Jardine (91),  Hollander et al. (92), 

Sheu et al. (95), Wang et al. (01), Wang and Pham (99,03) 

Improvement Factor 

Malik (79), Canfield (86), Lie and Chun (86), Jayabalan and Chaudhuri 

(92,95), Chan and Shaw (93), Suresh and Chaudhuri (94), Doyen and 

Gaudoin (04) 

Virtual Age 

Uemastsu and Nishida (87), Kijima (89), Makis and Jardine (93), Liu et 

al. (95), Gasmi et al. (03), Doyen and Gaudoin (04) 

Shock Model Bhattacharjee (87), Kijima and Nakagawa (91,92), Finkelstein (97) 

(α, β) Rule or 

Quasi-renewal 

Lam (88,96), Wang and Pham (96,97,99,06b), Pham and Wang (00,01), 

Yang and Lin (05), Wu and Clements-Croome (05) 
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Process 

Multiple (p, q) Rule Shaked and Shanthikumar (86), Sheu and Griffith (92) 

 

1.4  The Importance of Multi-objective Optimization in Maintenance 

Maintenance optimization is a systematic process that attempts to balance the 

maintenance requirements and resources to identify the maintenance periodicity and 

appropriate maintenance technique should be conducted to achieve maintenance 

targets, such as safety control, component reliability, system availability and costs. 

Generally, in most literatures the maintenance optimization has two objectives, i.e. 

maximizing system availability (As) and minimizing system cost (Cs). There are three 

cases to model the maintenance optimization problems. 

 

Case I: System Availability Maximization Problem: 

sMax A  

Subject to maxsC C  

Case II: System Cost Rate Minimization Problem: 

sMin C  

Subject to s sA R  

Case III: Simultaneously Maximizing Availability and Minimizing Cost Optimization 

Problem: 

&s sMax A Min C  

Subject to s sA R  
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         m a xsC C  

where Rs denotes the target system availability and Cmax is the tolerable maximum 

cost. 

The first two cases provide a one-dimension optimization for the maintenance issues 

while the case of multi-objective optimization show a multi-dimension optimization 

perspective for both engineers and customers to determine the criterions and 

specification for the product reliability that should be satisfied by Pareto frontier, in 

which all of the points are with the same resource-utility efficiency to achieve the 

maximized system availability and minimized expected maintenance cost rate. The 

multi-objective optimization in maintenance issues presents the alternative optimal 

solutions according to different customer preference and resource constraints. In 

recent years, many papers have begun to concentrate on the multi-objective 

maintenance optimization, such as Martorell S. et al. (2005, 2006), Quan et al. (2007), 

Okasha and Frangopol (2009) and Wang and Pham (2011). 

 

1.5  Overview of the Thesis 

The thesis is organized as follows. In Chapter 1, a general introduction of the research 

is presented. In Chapter 2, literature reviews are given. In Chapter 3, the objectives of 

the study are discussed and general probabilistic model is sketched. In Chapter 4, a 

two-process combination model for continuously degraded systems subject to 

cumulative effect from random shocks and degradation process with additive and 

multiplicative degradation path is developed. In Chapter 5, we propose a maintenance 
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model involving imperfect maintenance actions based on the dependent competing 

risk model in Chapter 4, and derive the mathematical models for the system expected 

cost rate and asymptotic unavailability of maintained system by a multi-objective 

optimization using Genetic Algorithms (GA). In Chapter 6, a multiple dependent 

competing risk model is introduced for systems subject to two degradation processes 

and random shocks. The dependent structure of random shocks and degradation 

processes is modulated by a time-scaled covariate factor and the dependent behavior 

among various degradation processes is fitted by both constant and time-varying 

copulas. In Chapter 7, a generalized multi-state degradation model is presented based 

on the methodology propsed in Chapter 6, and the reliability and state probability 

estimation are derived by both analytical method and Monte Carlo simulation. In 

Chapter 8, a condition-based imperfect preventive maintenance model with thresholds 

is proposed for the dependent competing-risk systems, and four maintenance decision 

variables are determined by minimizing the system maintenance cost rate using 

Simulated Annealing. In Chapter 9, conclusion and future research are discussed. A 

representation of research flow chart in this thesis is illustrated in Figure 1.1.  
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Figure 1.1: Research Flow Diagram  

Phase 1: Cumulative Damage Model 

 System Definition 

 Multi-objective Imperfect PM 

Phase 2: Multiple Dependent Models 

 Model for Multiple Degradation and Random Shocks 

 Model for Multi-state Competing-risk Systems 

Phase 3: Maintenance Issues 

 Condition-based Imperfect PM with Thresholds 
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Chapter 2  

Literature Review 

 

2.1 Random Shock Model 

Shock Models, one of the most importance subjects in reliability modeling, are 

usually defined by the time interval between two consecutive shocks, the damage size 

caused by individual random shock, and the system failure function. Usually, in shock 

models the system is subject to shocks of random magnitude occurring at random 

times. The basic setup in the shock models is pairs of the i.i.d two-dimension random 

variables 
0{( , )}n n nA B 

  
where nA  denotes the magnitude of the nth shocks and nB  

the time interval between the (n-1)st and nth shocks, or alternatively, the time between 

the nth and the (n+1)st shock, called model I and model II respectively. However, 

model II differs significantly from model I in the following two aspects: (1) in model 

II the magnitude nA   impacts the time interval nB  until the (n+1)st shock; (2) there 

exists a first shock at time zero in model II while in model I both 0A  and 0B  equal 

to zero. Shock models have been studies by a number of literatures, such as Esary and 

Marshall (1973), Gut and Husler (2005), Chen and Li (2008), Li and Kong (2007), 

Mallor and Omey (2001), and Bai et al. (2006), for the purpose of providing the 

mathematical formulations for modeling the system reliability in the random 

environments. Traditionally, three classic random shock models are widely used, 

listed as follows: 

 Cumulative Shock Model 
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 Extreme Shock Model 

  -Shock Model 

Furthermore, some extensions including mixed shock model and run shock model are 

developed in recent years. 

2.1.1 Cumulative Shock Model 

Cumulative shock model means the system breaks down when the cumulative shock 

magnitude exceeds some given threshold. Let 0T   denotes the lifetime of the 

system, { ( ), 0}N t t   the counting process generated by the renewal sequences 

0{ }n nB 


, and Z R  some prefixed critical region. A suitable representation of the 

cumulative shock model is indicated in the form of 

( )

0

{ }
N t

i

i

T t A Z


 
   

 
  

where iA  denotes the magnitude of the nth shocks. Thus, ( ) Pr{ }F t T t   and 

( ) 1 ( )F t F t   denote the lifetime distribution and the survival function for the 

system respectively. 

In term of the cumulative model, the properties of the lifetime distribution are studied 

in some early literatures. Esary and Marshall (1973) justify the properties of the 

lifetime distribution for a device subject to accumulative shocks governed by a 

Poisson process with a probability 
kP  of surviving the first k shocks. A-Hameed and 

Proschan (1973) extend the results from Esary and Marshall (1973) to a 

non-homogenous Poisson process in series system consisting of finite components 

and obtained the bound for the mean life of the device. Agrafiotis and Tsoukalas 

(1987) discuss the first passage time and asymptotic properties of a correlated 
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cumulative shock model with the excess level increments for individual shock. In the 

model the shock interval and shock magnitude are correlated for given n. Gut and 

Husler (2005) put forward a generalized cumulative shock model in which only the 

summation of a suitable portion of the most recent shocks will contribute to the 

system stopping time, that is 

,

1

{ } min : , 0
n

n

n

k n j

j n k

T t n S X t t
  

  
     

  
  

where 
jX  denotes the magnitude of the jth shock; 

,nk nS  the summation of the 

magnitude from the knth shocks to the nth shock. 

In addition, some results of the maintenance policies for a system subjected to 

cumulative shocks have been studied by several researchers. Nakagawa and Kijima 

(1989) propose a periodic replacement policy with minimal repair at failure for the 

cumulative shock model in order to obtain the optimal solution for the time T*, shock 

N*, and damage Z* at which time point the replacement is done. Qian et al. (2003) 

focus on the analysis of maintenance policies for an extended cumulative shock model 

with shocks occurring at a non-homogeneous Poisson process. The system will be 

maintained when cumulative shock do not exceeds the failure threshold, repaired 

when cumulative shock exceeds the threshold, and replaced at failure N or time T. 

Wortman et al. (1994) examine the maintenance strategy with the inspection time 

modulated by a renewal process for a non-self-announcing failure system subject to 

deterioration governed by random shocks. Chelbi and Ait-Kadi (2000) develop the 

expression of the time-stationary availability for a hidden failure system subject to the 

transient shocks with a predetermined inspection time in order to generate an optimal 
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solution for the target availability level with limit resources. 

2.1.2 Extreme Shock Model 

Extreme shock model means that the system fails as soon as the magnitude of an 

individual shock goes into some given critical region Z R , shown as: 

 { } min{ : ( )}iT t i A Z N t     

where T denotes the lifetime of the system, N(t) the counting process of random shock 

occurring, and iA  the magnitude of the nth shocks. 

In the early work on this model, Esary and Marshall (1973) study the properties of the 

maximum shock threshold underlying the assumption of homogeneous Poisson 

process, while Ross (1981) extends the analysis of Esary and Marshall (1973) to the 

non-homogeneous condition. One important setting of the extreme shock model is 

“general shock model” developed by Shanthikumar and Sumita (1983). The model 

extends the extreme shock model by considering a sequence of random shocks 

governed by a correlated pair of renewal sequences { , }n nX Y , where nX  denotes the 

magnitude of the nth shock and nY  the time interval between two consecutive 

shocks.  

Chen and Li (2008) analyze a deteriorating system subject to extreme shock with the 

deterioration process governed by both the external shocks and internal loading under 

the assumptions such that: (1) the magnitude of the random shock the system can bear 

will be decreasing with the numbers of repairs; (2) the repair time will be increasing 

upon each repair. Finally, an optimal replacement policy N*, at which failure number 

the system will be repaired, is determined by minimizing the long run average cost. 
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Cirillo and Husler (2011) propose an alternative Bayesian nonparametric perspective 

for the extreme shock models by using reinforced urn processes. Cha and Finkelstein 

(2011) combine the extreme shock models and cumulative shock models into a 

“combined shock model” to derive the survival probabilities for systems subject to 

nonhomogeneous Poisson process shocks.  

2.1.3 -Shock Model 

The  -shock model in Li (1984) is defined as the system fails when the time lag 

between the two successive shocks falls into some critical region determined by a 

prefixed parameter  . Therefore, a suitable representation for the  -shock model 

can be given as 

{min{ : ( ), } ( )}iT t i B C i N N t      

where ( )C   is the critical region for the system, and iB  the time interval between 

the (n-1)st and nth shocks. 

In the work of Li and Kong (2007), some useful results for the  -shock model 

underlying homogeneous Poisson process are given, such as survival function, class 

properties and asymptotic behavior of the lifetime distribution. Moreover, the 

analytical survival function for the non-homogeneous Poisson process is also 

discussed.  

Furthermore, Li and Zhao (2007) derive some useful properties for the reliability 

estimation of the coherent structure of series system, parallel system, and k-out-of n 

system, such as bounds for system mean lifetime and limiting probability. Lam and 

Zhang (2004) study a replacement policy for two systems embedded in the  -shock 
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model: one is deteriorating system with a non-decreasing threshold after repair times 

and geometrically increasing repair times; the other is improving system with 

decreasing threshold after repair and geometrically deceasing repair times. Rangan and 

Tansu (2008) extend the  -shock model of Lam and Zhang (2004) by considering the 

random threshold failure in the context of renewal process. Tang and Lam (2006) 

study a  -shock maintenance model for a deteriorating system with shocks occurring 

according to a renewal process, where the interarrival time of shocks follows a 

Weibull or gamma distribution. Because the system is deteriorating, the deadlock 

threshold for the  -shock is geometrically non-decreasing after each repair, and the 

repair time is modulated by an increasing geometric process. Eryilmaz (2012) 

develops a generalized run-related δ-shock model in which the systems fail when the 

inter-arrival time of k consecutive shocks is less than certain threshold δ. 

2.1.4 Some Extensions and Variations 

Ross (1981) defines a general shock model with a damage function tD  in which 

1( ,..., ,...,t nD x x 0) represents the damage at time t if exactly n shocks occur with the 

magnitude of 1,..., nx x . By assuming 1 1( ,..., ,0) max( ,..., ,0)t n nD x x x x  or 

1 1
( ,..., ,0)

n

t n ii
D x x x


 , the cumulative shock and extreme shock model are obtained 

respectively. Another realistic variation of shock model is provided by Fan et al. 

(2000) for the purpose of studying the lifetime distribution of the multi-component 

system that suffers from the interplay of aging and random shocks. In the model the 

probability that a shock with magnitude x arriving at time u is fatal to the system is 

given by 1 exp[ ( ) ]a u x    , where a is the initial age of the system at time zero 
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and   is the system aging rate.  

Igaki et al. (1995) generalize the cumulative and extreme shock model by considering 

a trivariate stochastic process including the magnitude of the shocks, the shock 

intervals, and the random system state. In the model, the magnitude of the shocks and 

the shock intervals are correlated with each other with a joint distribution affected by 

the transition of system state modulated by a Markov renewal process. Gut (2001) 

proposes a mixed shock model to combine the extreme model and cumulative shock 

model. In the model the system is supposed to break down either due to a cumulative 

effect of many small shocks or one single large shock, whichever comes first. Further 

realistic analysis of the model is stated by Gut and Husler (2005).  

A new case, called the run shock model, is introduced by Mallor and Omey (2001), 

which models a system operating normally until k consecutive shocks with critical 

magnitude, which is expressed as 

min{ | , 0,1,..., 1} ( )n jT t n A Z j k N t       

where 
n jA 

 represents the magnitude of the (n-j)th shock and k is some given 

positive integer. 

One extension of the run shock model is proposed by Mallor and Santos (2003a), in 

which the system breaks down when the cumulative damage due to the shock in a 

critical k run, where all of shocks are critical and not contained in any of k+1 

consecutive sequence, exceeds a fixed threshold z. This model is governed by three 

correlated variables, including the magnitude of shock, shock occurring interval and 

cumulative damage, respectively. Further analysis of the lifetime distribution and 
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mean time to failure for the extended shock model is provided by Mallor and Santos 

(2003b). Moreover, Mallor et al. (2006) generalize the asymptotic behavior for the 

lifetime of the mixed shock model that is the combination of the accumulative shock 

model and run shock model.  

In the work of Finkelstein and Zarudnij (2001), two types of non-cumulative shock 

processes are considered. The first model divides the shocks into three levels 

according to their magnitude, shocks with small level that are harmless to the system, 

shocks with intermediate level that lead to the system failure with some probability, 

and shocks with large level that result in the immediately system failure. The second 

model assumes that the system will not fail if two successive small shocks do not 

occur in a short time period. The system failure function and its exponential 

approximation are derived analytically. Bai et al. (2006) derive the asymptotic 

lifetime distribution for a new shock model based on a marked point process with 

cluster mark and then illustrate its application to an example with the insurance 

background. 

 

2.2 Degradation Model 

Degradation analysis involves the measurement of the degradation of a product at 

various time points and this information is used to estimate the eventual failure 

lifetime for the product. One of the major advantages of performing reliability 

analysis based on degradation data is that it relates the reliability analysis directly to 

the physics of failure mechanism. Many papers have been focused on the research and 
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applications for the reliability degradation model, such as Lu and Meeker (1993), 

Yuan and Pandey (2009), Van Noortwijk et al. (1995), Nicolai et al. (2007), Huang 

and Dietrich (2005), Wang et al. (2009), and Chryssaphinou et al. (2011) 

2.2.1 Methodology 

Based upon the methodology, the studies of the degradation analysis can be divided 

into three main categories.  

One of the most widely used methods to model the degradation data is called 

“General Path Model”. Lu and Meeker (1993) introduce a two-stage method of 

estimating the parameters of the mixed-effect path model to describe the system 

degradation performance. The general path model can be represented as 

( ; , )ij i ijx f t                                                       (2.1) 

where 
ijx  denotes the observation of degradation measure from the jth measurement 

on the ith unit; i  random effect parameter for the ith unit, follows normal 

distribution, that is, ~ ( , )i N     ;   the fixed-effect parameter. 

The two steps for estimating the parameters in the general path model are given as: 

 The 1
st
 stage: for each sample unit, the degradation model is individually 

fitted to the sample path to obtain n estimates of the model parameters; 

 The 2
nd

 stage: the estimates of , ,and     are computed using the n 

estimates obtained by the 1
st
 stage. 

Yuan and Pandey (2009) elaborate the limitation of the linear regression for 

degradation analysis and then propose a general nonlinear mixed-effect (NLME) 

model to analyze and predict the degradation process. An alternative approach of 
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two-stage maximum likelihood estimation for the general path model is proposed by 

Robinson and Crowder (2000), where a Bayesian estimation model is used to estimate 

the distribution function of failure time in the general path model. Wu and Shao (1999) 

develop the statistical inference using the ordinary least square and weighted least 

squares to estimate the parameters of degradation path in a nonlinear mixed-effect 

model. 

The second approach to perform the degradation analysis is “Stochastic Process 

Model”, such as Markov process and Brownian motion. Van Noortwijk et al. 

(1995) model a Bayesian failure model of degradation analysis, in which the average 

amounts of deterioration are l1-isotropic, and then explicitly obtain the probability of 

preventive repairs per unit time, failure with and without inspection conditional on the 

average amount of degradation. Van Noortwijk and Pandey (2003) generalize a 

stochastic gamma process model for a stochastically deteriorating system. In the 

model, the system may fail when its deteriorating resistance drops below certain 

critical stress s. The degradation path is modulated by gamma distribution, and thus a 

suitable representation of the lifetime distribution is in the form of 

0

0
0 ( )

( ( ),[ ] )
( ) Pr( ) Pr( ( ) } ( )

( ( ))
X t

x r s

v t r s u
F t T t X t r s f x dx

v t



 

 
      

        (2.2) 

where T is the lifetime for the system; r0 is the initial resistance; s is the deterministic 

critical stress; and   is the incomplete gamma function. 

The corresponding maintenance policies for the gamma deterioration model are 

provided by Zhao (2003), Pandey et al. (2005). Nicolai et al. (2007) compare three 

stochastic processes for degradation analysis, including Brownian motion with 
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non-linear drift, gamma process with non-linear shape function and two-stage 

hit-and-grow (TSHG) process. After that, the parameter estimation of these three 

processes for the inspection data and expert data is provided. In Hsieh et al. (2009) a 

non-homogenous compound Poisson process is utilized to model the discrete 

degradation. Then the first passage time distribution, the likelihood estimation of the 

model parameters, and confident interval approximation are derived. Xue and Yang 

(1995) extend the 2-state reliability measure to the multi-state reliability by combing 

the Markov process and s-coherent system structure in order to derive the dynamic 

reliability for the multi-state system with complex structure, including the series 

systems and parallel systems.  

Kharoufeh (2003) analytically derives the failure time distribution and the moments 

of the lifetime for a single-unit system with cumulative wear damage that is affected 

by the external environment by using the Markov additive process. Saassouh et al. 

(2007) propose a two-mode stochastically deteriorating model with a sudden change 

point in the degradation path, where the increments of deterioration follows a gamma 

law when the system is in the first mode, and the mean deterioration rate increases 

when it flips into the second mode. Based on the definition of the model, the decision 

rules for an online maintenance policy are determined to optimize the system 

performance from the angle of asymptotic unavailability.  

Kharoufeh and Cox (2005) develop a degradation-based model for assessing the 

distribution and the moments of the lifetime function using the hybrid approach 

including two models: Model I describes a degradation process with the rate of 
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degradation affected by the state of random environment governed by a homogeneous 

Markov process; Model II establishes a new path function by estimating the 

degradation rates using differential equation where the number of degradation status 

is approximated by K-nearest clustering method. Ebrahimi (2001) proposes a general 

stochastic model to estimate the reliability of the system in terms of a deterioration 

process with covariate. The survival and hazard functions are analytically derived for 

two semi-parametric models using the differential equation by taking the exponential 

form of the survival function.  

The third method is “Statistical Method”, including both parametric and 

nonparametric estimation. Huang and Dietrich (2005) present an extended graphical 

approach for degradation analysis by considering the ordering of degradation data. In 

the model, the degradation path is modulated by a truncated Weibull distribution and 

the analytical log likelihood expression is discussed. Bae et al. (2007) examine the 

relationship between the degradation path function and the lifetime distribution where 

the additive and multiplicative function is used to model the degradation path. The 

results verify that the degradation path will have a great influence on the form of the 

lifetime distribution in terms of the class properties of lifetime distribution and failure 

rate.  

Zuo et al. (1999) extend the results of Yang and Xue (1995) from the s-normal process 

to the random process with a general distribution by using three approaches for 

degradation analysis. The first is the random process to fit the degradation process 

with a data free-distribution; the second is the traditional general path function; the 
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third method is to use a multiple linear regression. Finally, a mixture model is 

introduced to model both hard failure and soft failure for the continuous state device. 

Bae and Kvam (2004) present a nonlinear random coefficients model to fit the 

degradation path for the non-monotonically deteriorating light displays, and then 

consider four different methods to approximate the log-likelihood estimation, 

including a first-order method, Lindstrom-bates algorithm, adaptive importance 

sampling, and adaptive Gaussian quadrature method. 

2.2.2 Multi-state Degradation 

For the multi-state degradation model, Chryssaphinou et al. (2011) propose a 

repairable multi-state degraded system composed of m components, whose sojourn 

time in any state is characterized by a discrete-time semi-Markov chain, and then the 

whole system is modeled as the paired process of semi-Markov chain. Soro et al. 

(2010) develop a continuous-time Markov model for evaluating the reliability 

performance measures of multi-state degraded system with imperfect preventive 

maintenance and minimal repairs. Eryilmaz (2010) derive the mean residual and mean 

past lifetime functions for multi-state k-out-of-n systems, in which the degradations 

follow a Markov process with discrete state spaces. Abou (2010) considers a number 

of alternative probabilistic models for multi-state systems with two failure modes by 

introducing multi-state operators that follow the associative and commutative laws.  

Nourelfath and Ait-Kadi (2007) apply a Markov model to modulate the redundancy 

maintenance optimization problem with reliability constraints and minimal cost 

configuration for series-parallel multi-state system by considering the priorities 
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between components. Ramirez-Marquez and Coit (2005) describe a new Monte-Carlo 

simulation methodology of reliability estimation process based on multi-state minimal 

cut vectors compared with the actual multi-state two-terminal reliability computation. 

Levitin and Lisnianski (2000) develop an imperfect preventive maintenance model for 

multi-state systems in order to obtain maintenance action sequences based on the 

system functioning levels using Genetic Algorithm to minimize the maintenance cost.  

2.2.3 Maintenance Policy 

Also increasing interest has been put upon the probabilistic models and mathematical 

formulations of the maintenance and replacement policies for the degradation or 

multi-state systems. Grall et al. (2002) propose a condition-based maintenance model 

including both the inspection and replacement policies based on a multi-level 

control-limit rule of a stochastically deteriorating system for the purpose of obtaining 

the optimal replacement threshold and inspection scheduling to minimize the long run 

expected cost. Wang et al. (2009) consider a novel maintenance model combing the 

condition-based replacement, periodical inspections, and (S, s) type provisioning 

policy, noted as (T, S, s, Lp) policy, where T denotes the inspection interval, S the 

maximum inventory level, s the reorder point, and Lp the replacement threshold. 

Furthermore, a simulation model is established to modulate the uncertain deterioration 

process and finally the maintenance scheduling is optimized to minimize the cost rate 

using genetic algorithm.  

Kiessler et al. (2002) examine the limiting average availability of a hidden-failure 

deterioration system with the periodic inspections where deterioration rate is governed 
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by a Markov model. Yang and Klutke (2000) characterize the properties of the 

lifetime distribution for the Levy degradation process and then illustrate the 

implement of the results to inspection scheduling for the maintained system with non 

self-announcing failures. Zhao (2003) presents a preventive maintenance policy for a 

deteriorating system with a critical reliability level to satisfy the preference of field 

managers with the imperfect PM effect modulated by a parameter of degradation ratio. 

Pandey et al. (2005) consider an age replacement policy for the gamma deterioration 

model where the component is replaced when the system fails or reaches a specific 

age, whichever occurs first.  

Van Noortwijk and Frangopol (2004) describe two maintenance models of 

condition-based maintenance and reliability-based maintenance for the deteriorating 

civil infrastructures for the purpose of minimizing the life-cycle cost under the 

constraint of adequate reliability level. Delia and Rafael (2006) analyze the 

maintenance policies with two types of repair modes, including preventive and 

corrective repairs, and phase-type distributed repair times for a cold standby system 

subject to multi-stage degradation. A later work of Dellia and Rafael (2008) study a 

maintenance model with failure and inspection following arrival processes and two 

types of repair modes, minimal and perfect, distributed as different phase-type 

distributions for a deteriorating system suffering from both internal and external 

failures. Deloux et al. (2009) propose a maintenance policy that combines the 

statistical process control (SPC) and condition-based maintenance (CBM) for a 

continuously deteriorating system with two kinds of failure mechanisms (deteriorating 



27 
 

 
 

and random shocks). The system failure is governed by deteriorating process as a 

function of the deterioration level and the system time but an associated failure 

acceleration factor due to stress is taken into account when the stress intensity exceeds 

some critical level.  

 

2.3 Multiple Competing Risks of Degradation and Random Shocks 

In real world, system typically deteriorates as a result of both the graceful degradation 

and discrete random shocks. However, most of the papers regarding the multiple 

competing risks of degradation and random shocks are under the assumption that 

these two processes are independent with each other. The incorrect independent 

assumption may underestimate the reliability and lifetime behaviors of the system. 

Therefore, on dealing with the relationship of competing risk of degradation and 

random shocks, the dynamic behaviors of the dependent structure between them may 

have a non-trivial impact on the reliability function estimation or on the maintenance 

and warranty policies for the deteriorating systems. 

The dependent of these two processes can be exhibited in two aspects: (1) degradation 

process will make the system more vulnerable to the environment factors, such as 

temperature, pressure and random shocks; (2) random shocks will accelerate the 

degradation process with two modes, sudden jump or minor acceleration of the 

degradation rate. Furthermore, although in many studies of reliability model, the 

multiple degradation processes are assumed to have independent lifetimes, it may be 

more realistic to assume some sort of dependence among different degradation 
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processes. For example, a system may have multiple components with its own 

degradation process or even one component may be subject to multiple degradations, 

in which the lower status of one degradation process could result in an increasing load 

on some of the other degradation processes. As a sequence, a more systematic 

probability model for the dynamic dependent structure underlying these two processes 

should be called for. 

2.3.1 Independent Model for Degradation and Shocks 

Sim and Endrenyi (1993) consider a Markov process to model the maintenance policy 

with periodically minimal maintenance and major maintenance after a number of 

minimal maintenances for a continuously operating system subject to degradation and 

Poisson failures. The optimal solution to minimize either cost rate or unavailability is 

derived. A probabilistic model of the reliability analysis for the deteriorating structural 

systems subject to Poisson shocks is introduced by Ciampoli (1998), where a 

stochastic differential equation is employed to model the degradation process in order 

to obtain the total damage of the system. A generalized Petri Net is proposed by 

Hosseini et al. (2000) to formulate a new condition-based maintenance model for a 

system subject to deterioration failures and Poisson failures. In order to maximize the 

system throughout, an optimal inspection policy based on minimal maintenance, 

major maintenance and major repairs is obtained. Van der Weibe et al. (2010) derive 

the reliability estimation and the optimal solution for calculating the discounted cost 

based on both condition-base and age-based policy for a maintained system that 

deteriorates due to both transient shocks and cumulative degradation process 
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governed by a stochastic point process.  

In practice, there is not only the system operating cost will increase with the system 

aging, but also the cost of time of the inspection, repair and replacement, Chiang and 

Yuan (2001) present a state-dependent maintenance policy 
, ( , , )i jR T N   for a 

continuously deteriorating system subject to degradation and fatal shocks using a 

continuous-time Markov process, where T is the system inspection interval, N is the 

system boundary for replacement, and   is the probability that repair will restore 

the system to a better state. Delia and Rafael (2006) examine the replacement policy 

for a Markovian degraded system submitted to internal or external failures with 

holding time on various system levels, external repair time and internal repair time, all 

of which follow the phase-type distribution. In the work by Kharoufeh et al. (2006), 

the lifetime distribution as well as the limiting availability for a periodically inspected 

single-unit system with hidden failure is explicitly derived by utilizing the 

Laplace-Stieltjes transform. The system is submitted to two failure mechanisms, the 

degradation wear that governed by its random environment characterized as a 

continuous Markov chain and random shocks modulated as a homogeneous Poisson 

process. 

2.3.2 Dependent Model for Degradation and Shocks 

Frostig and Kenzin (2009) derive the limiting average availability in a maintenance 

model for a hidden-failure system that suffers from the wear out and cumulative 

shock damage with a Poisson process. Two models are discussed: model I assumes 

the wear out process and shock will not receive any impact from the external 
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environment; in model II, the shock magnitude, the shock rate and wear out process, 

all of them are dependent on the external environment modulated by a Markov 

process. Based on the approach proposed by Mori and Ellenwood (1994), Van 

Noortwijk et al. (2007) put forward a novel approach to combine two stochastic 

processes of deteriorating resistance and fluctuating load for the reliability analysis of 

a structural component. In the model, the deteriorating process is modulated as a 

gamma process and the random loading exceed is given by a generalized Pareto 

distribution with loading arriving according to a Poisson process. Chiodo and 

Mazzanti (2006) deal with the problem of the reliability function assessment for 

power system devices due to repeated shocks. The systems may survive under the 

condition that the individual stress load is less than the remaining degradation 

resistance.  

Lehmann (2009) surveys two classes of degradation-threshold-shock models (DTS), 

including general DTS and DTS with covariates, where the system failure may be due 

to the competing risk of degradation and trauma. In the general DTS model, the 

traumatic failure is assumed to be modeled as a stochastic Poisson process with 

intensity factor that is governed by system aging level. In the DTS with covariates, a 

dynamic environment random variable is included in the model. Huynh et al. (2011) 

recently introduce a condition-based maintenance model for the 

degradation-threshold-shock (DTS) model to take the dependence between 

degradation process and shock process into account. Cha and Finkelstein (2009) 

extend the Brown-Proschan model by assuming that the random shocks will result in 
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an immediate system failure with a probability p(t), but accelerate the system aging 

process by certain random increment with probability q(t). Finkelstein (2009) 

introduces a generalized Strehler-Mildvan model to estimate the first passage time of 

the survival function for the system subject to cumulative damage due to biological 

aging and sudden killing event. The asymptotic aging properties for the repairable 

system are discussed.  

Satow et al. (2000) focus on the replacement policy for one single unit that suffers 

from cumulative damage due to aging process and shocks in order to obtain the 

optimal replacement level k* which minimizes the expected cost rate. Klutke and 

Yang (2002) present a maintenance policy for the periodically inspected systems with 

non self-announcing failure, submitted to cumulative damage due to both graceful 

degradation and random shocks for the purpose of optimizing the system performance 

from the limiting average availability point of view. Sun et al. (2006) introduce an 

analytical model to quantitatively estimate the interactive failure and its failure rate 

based on three difference cases. A later work by Sun et al. (2009) develops an 

extended split system approach for the failure interactions. Simulated data is used to 

test the proposed model and the results indicate that the PM intervals for newly repair 

components with the presence of failure interactions will become shorter compared 

with the system without failure interactions.  

Ye et al. (2011) propose a degradation-oriented single failure time model to capture 

two failure mechanisms of degradation and shocks using the Brown-Proschan model 

under the condition that only failure times and failure modes are recorded without the 



32 
 

 
 

observable information of shock magnitude and degradation amount. Wang et al. 

(2011) consider a reliability estimation model for systems subject to three failure 

modes, including catastrophic failure, degradation failure, and failure due to shocks. 

In the model, the shocks have two effects on system performance: sudden increase of 

failure rate and direct change of degradation process.  

2.3.3 Multiple Degradation Model 

Li and Pham (2005a) focus on the reliability analysis for a generalized multi-state 

degradation system subject to multiple competing failure processes, consisting of two 

degradation processes and cumulative random shock. The paper assumes that all of 

these processes are independent, and any of them causes the system to failure 

according to the threshold values of each process. No repair or maintenance policies 

are considered. Based on the definition of multi-state degraded system in Li and Pham 

(2005a), a condition-based maintenance model is built by Li and Pham (2005b), 

where an average long-run cost rate function is minimized by Nelder-Mead downhill 

simplex method. The inter-inspection sequence is generated by a geometric sequence. 

Wang and Coit (2004) propose a general model of predicting the reliability on the 

correlated multiple degradation processes and verify that the system reliability might 

be underestimated because of the incorrect independent assumption by the simulated 

data. A gamma-based state space model is studied by Zhou et al. (2009) to predict the 

lifetime for a multiple degradation processes with uncertain failure threshold using 

multivariate normal distribution, where expectation-maximization (EM) algorithm is 

utilized to estimate parameters of the model and Monte Carlo-based particle 



33 
 

 
 

smoothing algorithm is used to deal with the expectation estimation of complete 

likelihood in step E of EM algorithm.  

Pan and Balakrishnan (2011) introduce a reliability estimation model for a complex 

structure system with bivariate degradations involving two or more performance 

characteristics by utilizing the bivariate Brinbaun-Saunders distribution, and perform 

the Bayesian Markov chain Monte Carlo method to evaluate the accuracy of the 

reliability approximation. Wang and Pham (2012) recently develop a dependent 

competing risk model, in which the dependent structure of random shock and 

degradation is modulated by a time-scaled covariate factor, and the dependent 

structure among degradation processes is fitted by both constant and time-varying 

copulas, for a system subject to multi-degradation measures and random shocks, but 

without considering the maintenance issues. 

Sari (2007) introduces a novel approach to address the problem that how to qualify 

the dependence relationship between two or more degraded performance 

characteristics (PC) in his Ph.D thesis. He applies the generalized linear model (GLM) 

to fit the degradation data and model the dependency between the PCs by using 

copula methods. In his later work, Sari et al. (2009) present a bivariate degradation 

model with constant stress to accommodate the dependency between more 

degradation measures distributed with different marginal functions. The experiment 

data of LED lamps is used to illustrate that the proposed model can provide better 

system estimation than independent assumption with a two-stage modeling process. 

Zhou et al. (2010) extended the Sari (2007) model by applying Bayesian MCMC 
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approach to estimate the parameters of the gamma marginal degradation path 

functions and copulas together as a whole instead of treating the estimating separately. 

2.3.4 Imperfect Preventive Maintenance 

Cassady et al. (2005) explore the imperfect repair based on the Kijima's first virtue 

age model by validating the simulation results using 23 factorial experiment and 

converting reliability and maintainability parameters into coefficients of availability 

model using meta-models to determine the optimal replacement interval according to 

the system average cost. Liu and Huang (2010) apply the non-homogeneous 

continuous time Markov model (NHCTMM) to model the optimal replacement policy 

for the multi-state systems with the imperfect maintenance that utilizes the 

quasi-renewal process to describe the stochastic behavior of the multi-state aging 

element after each imperfect repair. Wang and Pham (2011) study a multi-objective 

maintenance optimization embedded within the imperfect PM and replacement for 

one single-unit system subject to the dependent competing risk of degradation wear 

and random shocks. Two decision variables for maintenance scheduling, the number 

of PMs to replacement and the initial PM interval, are determined by simultaneously 

maximizing the system asymptotic availability and minimizing the system cost rate 

using the fast elitist non-dominated Sorting Genetic Algorithm (NSGA-II). Satow and 

Kawai (2010) put forward an imperfect inspection with upper and lower inspection 

threshold for a bivariate failure distribution.  
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2.4 Copula Method 

Only a few studies focus on the issue of multiple degradation processes according to 

the literature review of previous section. These two papers in Li and Pham (2005a, b) 

consider the reliability and maintenance model for two degradation processes and 

random shocks, but all of them are independent with each other. A traditional way to 

build correlated multiple degradation model is to utilize the tool of multivariate 

distribution which will create the restrictions on the same distribution of each 

marginal degradation path. Recently considerable attention has been paid to the 

dependence behavior between random variables modeled by copulas, which allow us 

to link the univariate marginal distributions to obtain a joint probability of the events. 

Compared with the traditional multivariate distribution, the most attractive advantages 

of the copula method are listed as follows: (a) the univariate marginal function can be 

modulated separately from their dependent structure; (b) the marginal probability can 

be drawn from different kinds of distributions without restriction; (c) the parameter 

coefficients of the copula model can be time-varying, not constant. Because of these 

advantages, copula model is a powerful alternative approach of the multivariate 

distribution to analyze the correlated multiple degradation processes. There are 

several aspects on copulas method could be worked with. 

2.4.1 Theoretical Model 

Embrechts and Puccetti (2010) provide analytical procedures to calculate the bounds 

on the distribution function of the sum of n dependent risks with overlapping margins, 

that is, the bounds for the sum 1 ... nS X X   , where 1( ,..., )nX X X  belongs to 
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Frechet class of probability measure. Kojadinovic and Yan (2010) compare the 

asymptotic properties of three semi-parametric methods of estimating the parameters 

in copula models, which are maximum pseudo-likelihood estimation, method of 

moment estimator based on Spearman‟s rho, and method of moment estimator based 

on Kendall‟s tau. Monte Carlo simulation is used to examine the performance of the 

different estimators with finite samples and compute the asymptotic relative efficiency. 

Rodriguez-Lallena and Ubeda-Flores (2003) examine the properties of the conditional 

distribution of H1(X) given that the joint distribution of X is H2, where H1 and H2 are 

the multivariate distribution functions for random vectors 1 2( , ,..., )nX X X X  with 

common univariate marginal distributions.  

Chen and Fan (2006) derive the asymptotic properties of estimators for a class of 

copula-based semi-parametric stationary Markov models characterized by parametric 

copula functions and nonparametric margins. Hurlimann (2004) proposes a modified 

statistical method of inference functions of margins (IFM) characterized as two-step 

maximum likelihood estimations of univaraite marginal distributions and copulas, 

followed by minimizing the chi-square statistic of a bivariate version of the Pearson 

goodness-of-fit test to determine the dependence parameters for copula fitting in the 

bivariate cumulative returns. Abegaz and Naik-Nimbalkar (2008) introduce an 

alternative approach based on a copula-based Markov chain to investigate the 

conditional probability of distributions and utilize one- and two-stage statistical 

inference method to estimate the parameters. In addition, a parametric 

pseudo-likelihood ratio test is given to select the copula model for the two-stage 
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estimation. Zezula (2009) illustrates how to use the special variance structure of 

Gaussian copulas to facilitate the parameter estimations under the condition that the 

data dimension is large. 

2.4.2 Application 

Van den Goorbergh et al. (2005) apply dynamic copula model to 

better-of-two-markets and worse-of-two-markets options on the S&P500 and 

NASDAQ to examine the dependent behavior of bivariate option pricing with 

association between the assets. The aim of the study in Zhang and Singh (2007) is to 

derive the bivariate joint distribution of rainfall frequency using four Archimedean 

copulas in order to determine the return periods. Based on the data from US stock, 

Fernandez (2008) verifies that using tail-dependency tests to select the copula model 

may be misleading especially when the data is featured with conditional volatility and 

series correlation. with the help of Monte Carlo simulation Al-Harthy et al. (2007) 

illustrate how the copula method can be suitable to model the dependencies in oil and 

gas evaluations and come to the conclusion that compared with some more commonly 

used approaches to model dependence the copula method can accurately detect the tail 

dependence structure of the variable distribution. Dalla Valle (2009) suggests a new 

methodology for studying the dependent relationships of operational risk management 

by combining the copula and Bayesian models computed using simulation methods, 

especially Markov chain Monte Carlo. Dakovic and Czado (2011) examine the point 

and interval estimates using joint maximum likelihood and semi-parametric models to 

estimate the parameters of a bivariate t-copula model in financial data.  
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Applications of copula methods in various fields can also be found in Ning (2010) for 

the dependence structure between the foreign exchange market and equity market, 

Roch and Alegre (2006) for daily equity returns, Ausin and Lopes (2010) for 

multivariate time series using time-varying copulas, Renard and Lang (2007) for 

design hydrology. 

2.4.3 Special Case: Dependent Risk Model 

A special case of copula application is dependent risk model, which can be used as a 

source of reference to construct the dependent competing risk model in reliability 

using copulas, for instance the studies in Kaishev et al. (2007), Bedford (2006), Lo 

and Wilke (2010), Cossette et al. (2008), and Embrechts et al. (2003).  

Kaishev et al. (2007) establish a dependent multiple-decrement model to examine the 

dependencies among causes of death in order to analyze the impact of complete or 

partial elimination of causes of death on the survival function from competing risks 

using copulas. Bedford (2006) puts forward two different methods of non-parametric 

maximum likelihood and bilinear adjustment estimator to perform the quantile tests 

for copulas in competing risk problems. Cossette et al. (2008) derive the discounted 

penalty function via Laplace transform for a generalized Farlie-Bumbel-Morgenstern 

copula model in the presence of the associations between the claim sizes and 

interclaim time in a compound Poisson risk model. Another study of Cossette et al. 

(2002) presents two approaches of a class factor method and copula method to 

construct the dependent risk models for the insurance portfolio.  

Embrechts et al. (2003) provide the properties and computational procedures of 
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distributional bounds for the dependent risks functions using copulas. Ram and Singh 

(2008) put forward a mathematical modeling for a parallel redundant system with two 

s-independent repairable subsystems. In their model, the system performance 

characteristics, such as availability, mean time to failure, and expected profit, are 

derived under the "preemptive-resume repair discipline" by using a bivariate 

Gumbel-Hougaard family copula. Lo and Wilke (2010) develop a new copula graphic 

estimator applied to a model with multiple dependent competing risks, and apply the 

model to the data set of unemployment duration from Germany. In the work by 

Miladinovic and Tsokos (2009), a modified Gumbel failure model is used to study the 

system failure time, and Bayesian reliability estimates with five different parametric 

prior and one nonparametric kernel density prior are compared with each other for 

their effectiveness by using square error loss. 

 

2.5 Multi-objective Maintenance  

Many literature papers focus on maintenance optimization based on one objective. 

Vaurio (1995) develops advanced models to the general recursive equations for the 

availability and mission-failure probability of the standby structure system by 

considering different durations for testing and repairs, as well as various failure types, 

including start-up, standby and during mission failures, and two additional human 

errors. Zequeria and Berenguer (2006) study a maintenance policy considering three 

types of actions: minimal repairs, PM, and replacement. They study a system with two 

dependent competing failure modes of maintenance and non-maintenance by 
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minimizing the system cost rate during an infinite time. In the model, the 

improvement factor for the failure rate upon PM actions depends on the time when the 

actions are performed. Cepin (2002) determines the optimal scheduling to improve the 

safety of equipment outages in nuclear power plants by minimizing the mean value of 

the selected time-dependent risk measure. Zhu et al. (2010) examine the maintenance 

model for a competing risk of degradation and sudden failure in which the unit is 

renewed when it reaches a predetermined degradation level, or comes to a sudden 

failure within the limit of a certain degradation threshold. Also, a PM is done at the 

scheduled time. The maintenance scheduling variables of degradation threshold and 

scheduled time to PM are determined by maximizing the system availability with the 

constraint of repair cost.  

In terms of the multi-objective approach, Martorell et al. (2005) propose a new 

integrated Multi-Criteria Decision-making (IMCDM) method to determine the 

parameters in the technical specifications and maintenance (TSM) of safety-related 

equipment using a multi-objective Genetic Algorithm (GA) based on the reliability, 

availability, and maintenance (RAM) criterion. An example of an emergency diesel 

generator system illustrates the application and viability of the proposed method. 

Martorell et al. (2006) address the multi-objective problem of surveillance 

requirements at nuclear power plants with dependable variables of testing intervals 

(TI), and testing planning using a novel double-loop multiple objective evolutionary 

algorithms. In Quan et al. (2007), a new approach, which combines the preference 

with evolutionary algorithm by using utility theory to search the Pareto frontier rather 
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than conducting a dominated Pareto search, was developed to find the optimal 

solutions for a multi-objective PM scheduling. Sanchez et al. (2009) put forward a GA 

based approach using distribution free tolerance intervals to address a multi-objective 

optimization of an unavailability and cost model embedded within the uncertainty of 

the imperfect maintenance. Okasha and Frangopol (2009) consider two strategies of 

selecting maintenance actions, maintenance scheduling, maintenance structural 

components for optimization programs to design and construct structural systems in 

terms of system reliability, redundancy, and life-cycle costs as criterion in the 

multi-objective GA. Two numerical examples are used to illustrate these two 

strategies. Marseguerra et al. (2004) introduce a multi-objective optimization 

approach to determining the optimal surveillance test interval (STI) based on GA 

search towards solutions of optimal performance with high assurance.  
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Chapter 3  

Objectives of the Study 

 

3.1  Research Objectives 

In the scope of our research, we aim to focus on a generalization of reliability 

modeling framework to address the following two dependent relationship aspects, 

including: (1) the dependency between degradation processes and random shocks; (2) 

the dependency among multiple degradation processes, into a single model for a 

continuously degraded system subject to random shocks. Our objective is to develop 

the different maintenance policies involving imperfect preventive maintenance in 

terms of multi-objective optimization of simultaneously maximizing system 

asymptotic availability and minimizing expected maintenance cost rate based on the 

proposed multiple dependent competing risk models. More specifically, in our 

research we would like to achieve the following objectives: 

 

1) Develop the reliability model for the dependent competing risk system subject 

to one single degradation process and random shocks 

2) Study the multi-objective imperfect preventive maintenance policies for the 

system in objective 1 

3) Extend the achieved model in objective 1 to multiple dependent competing 

risks with more than one degradation process and random shocks 

4) Consider the probabilistic model in objective 3 under the scope of the 
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multi-state scenario 

5) Modify the model in objective 4 to incorporate condition-based maintenance 

policy with threshold level for actions "doing nothing" and "imperfect 

maintenance". Maintenance cost rate is considered as the objective function. 

 

3.2  Organization of the study 

Our research is organized as follows: 

In Chapter 1, we describe the motivation of the study and the overview of the thesis. 

In Chapter 2, an overall literature review on related topics of degradation processes, 

random shocks, competing risks and copula method are investigated. In Chapter 3, the 

objectives of the study are formulated and a general probabilistic model for the 

system subject to dependent competing risks from multiple degradation processes and 

random shocks is sketched. 

 

In the following Chapters, the research will be carried out through three phases: 

Phase 1-Cumulative damage model for competing risks with single degradation 

process and random shocks 

In Chapter 4, a two-process combination model for the continuously degraded system 

subject to cumulative effect from random shocks and degradation processes with 

additive and multiplicative degradation path will be discussed. Two numerical 

examples are used to illustrate the application of proposed combination model for the 

additive and multiplicative degradation path. Based on the system definition, we then 
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obtain a maintenance policy involving imperfect PM modulated by a common 

improvement factor to determine the pairs of optimal solutions (N*, T*), the number 

of imperfect PM till replacement and the imperfect PM interval, by minimizing the 

expected maintenance cost rate. Some extensions for the model are suggested for 

future research. 

In Chapter 5, we study a multi-objective maintenance optimization embedded within 

the imperfect preventive maintenance (PM) for one single-unit system subject to the 

dependent competing risks of degradation wear and random shocks. We consider two 

kinds of random shocks in the system: 1) fatal shocks that will cause the system to fail 

immediately, and 2) nonfatal shocks that will increase the system degradation level by 

a certain cumulative shock amount. Also, an improvement factor in the form of 

quasi-renewal sequences is introduced to modulate the imperfect maintenance by 

raising the degradation critical threshold proportionally. Finally, the two decision 

variables for maintenance scheduling, the number of PMs to replacement, and the 

initial PM interval, are determined by simultaneously maximizing the system 

asymptotic availability, and minimizing the system cost rate using the fast elitist 

non-dominated Sorting Genetic Algorithm (NSGAII). Sensitivity analysis for two 

parameters, including imperfect PM degree, and quasi-renewal coefficient of 

imperfectPMinterval, is performed to provide insight into the behavior of the 

proposed maintenance policies. The comparison results show that the optimization 

solution is consistent between one-objective and multi-objective optimization, and the 

Pareto frontier for the maintenance optimization problem can provide alternative 
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solutions according to customer preference and resource constraints. 

 

Phase 2- Reliability estimation for dependent competing risks with multiple 

degradation and random shocks 

In Chapter 6, we develop an s-dependent competing risk model for systems subject to 

multiple degradation processes and random shocks using time-varying copulas. The 

proposed model allows for a more flexible dependence structure between risks in 

which (a) the dependent relationship between random shocks and degradation 

processes is modulated by a time-scaled covariate factor, and (b) the dependent 

relationship among various degradation processes is fitted using the copula method. 

Two types of random shocks are considered in the model: fatal shocks, which fail the 

system immediately; and nonfatal shocks, which do not. In a nonfatal shock situation 

there are two impacts towards the degradation processes: sudden increment jumps, 

and degradation rate accelerations. The comparison results of the system reliability 

estimation from both constant and time-varying copulas are illustrated in the 

numerical examples to demonstrate the application of the proposed model. The 

modified joint distribution bounds in terms of Kendall‟s tau and Spearman‟s rho 

provide an improvement to Frechet-Hoeffding bounds for estimating the possible 

system reliability range. 

In Chapter 7, a generalized reliability estimation method is developed for the 

multi-state system subject to multiple dependent competing risks with two 

degradation processes and random shocks. The status of the multi-state degraded 
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system is determined by the Cartesian product of the two degradation measure levels. 

Then the system reliability estimation and state probability are derived by both 

analytical method and Monte Carlo simulation, which is applied to provide the 

approximate point estimation and confident interval to compare the results from 

analytical method. Finally, a numerical example is provided to illustrate the 

application of the proposed reliability estimation modeling with sensitivity analysis 

for the shock occurring rate. 

 

Phase 3- Condition-based imperfect preventive maintenance for the repairable 

degraded system with multiple dependent competing risks 

In Chapter 8, a condition-based maintenance model with imperfect preventive 

maintenance (PM) threshold for dependent competing-risk systems subject to multiple 

degradation processes and random shocks is studied. In the model, the dependent 

structure between degradation measures and random shocks is modulated by a 

time-scaled covariance while the dependent structure among degradation measures is 

linked using copula method. The four optimal maintenance decision variables will be 

determined by minimizing the expected long-run maintenance cost rate. They are the 

imperfect PM thresholds of the two degradation measures {L1, L2}, imperfect PM 

intervals {I}, and the imperfect PM number till replacement {N}. The system is 

continuously monitored till the imperfect PM threshold and then periodically 

inspected at each imperfect PM interval. A numerical example with sensitivity 

analysis in terms of imperfect PM degree β is discussed to illustrate the applications 
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of the proposed maintenance model.  

In our futher research, we also plan to extend the maintenance policies in Chapter 8 to 

incorporate the multi-objective maintenance optimization of system asymptotic 

availability and expected maintenance cost rate. 

 

In Chapter 9, conclusion and future research are discussed. 

 

3.3 Problem Assumption and Model Description 

In our research, we will consider a generalized model for the dependent competing 

risk model with multiple degradation processes and random shocks. The system has n 

degradation processes each with ki status, i=1, 2, .., n, and random shocks, all of 

which are interplaying with each other, as shown in Figure 3.1. 
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Figure 3.1: Flow diagram for the system subject to multiple competing risks 
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The basic assumptions of system definition are listed as follows: 

A. The system is continuously deteriorating with multi-state. With the impact of 

degradation and random shocks, the system can either go to the next lower 

system status due to time wearing, or jump to other lower system statuses due 

to random shocks. 

B. There exist two types of random shocks: one is fatal shock, resulting in system 

failure immediately, and another is non-fatal shock, resulting in two impacts 

on the system degradation processes of cumulative sudden jump and 

degradation rate acceleration. 

C. The two processes of the degradation and random shocks are dependent with 

each other. 

D. The multiple degradation processes are also dependent with each other. 

E. The system has two failure mechanisms: one is shock failure due to sudden 

fatal shocks, and another is degradation failure due to the exceeding of certain 

critical threshold by any degradation path. 

 

The basic assumptions of system maintenance issues are shown as follows: 

A. Three types of maintenance actions are considered: imperfect preventive 

maintenance, minimum repairs and replacements. 

B. The system undergoes different maintenance actions of “doing nothing”, 

“imperfect maintenance” and “replacement” according to the threshold levels 

determined by maintenance scheduling optimization. 
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C. Both the maintenance cost rate and system asymptotic availability is 

considered into the problems to form the multi-objective optimization 

programming. 

 

In summary, this research will focus on the dependence, imperfect maintenance 

and multi-objective optimization. 
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Chapter 4  

Imperfect Preventive Maintenance Policies for Two-process 

Cumulative Damage Model of Degradation and Random 

Shocks 

 

4.1  Introduction 

The failure of many units or systems, such as components, parts, machines can be 

generally classified into two kinds of failure modes: one is catastrophic failure in 

which units break down by some sudden external shocks; the other is degradation 

failure in which units fail to function due to the physical deterioration. There are a 

great number of such cases for this kind of the competing failure modes in our real 

life.  

A. A battery supplies electric power by chemical reaction. It is gradually weaken 

by usage and finally turns out to be useless when the substances in the battery 

are exhaustive. On the other hand, overheating or over-voltage can also cause 

the damage of the battery. 

B. An electronic component may have two kinds of failure modes: One failure 

mode is due to the overloading stress to the system caused by random voltage 

spikes; the other is due to wear-out process, which usually happens when it 

has run for many cycles. 

In the catastrophic failure case the units break down as soon as cumulative shock 

damage or some extreme shock exceeds certain predetermined failure threshold, while 
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in the degradation case the unit fails when the total degradation amount drops below a 

critical failure level. Therefore, it would be necessary to formulate probabilistic or 

stochastic models of such competing risk systems that outline the features of the 

two-process complex phenomenon combining degradation and random shocks. The 

reliability analysis for this model is a key step for the manufacturing engineers to 

make warranty plans and maintenance policies for the products featured by the two 

competing failure modes. Numerous mathematical formulations and probabilistic 

models are proposed to combine these two competing risk failure models. 

Li and Pham (2005a) focus on the reliability analysis for a generalized multi-state 

degradation system subject to multiple competing failure processes, consisting of two 

degradation processes and random shocks. Based on the definition of such multiple 

competing failure system, a condition-based maintenance model is built by Li and 

Pham (2005b). Deloux et al. (2009) proposes a predictive maintenance policy, 

combining statistical process control (SPC) and condition-based maintenance (CBM), 

for a continuously deteriorating system with two failure mechanisms due to 

deterioration and random shocks. Based on the method of Mori and Ellenwood (1994), 

Van Noortwijk et al. (2007) put forward a novel approach to combine two stochastic 

processes of deteriorating resistance and fluctuating load for the reliability analysis of 

a structural component. Lehman (2009) surveys two classes of 

degradation-threshold-shock models (DTS), including general DTS and DTS with 

covariates. 

A probabilistic procedure for the analysis of the deteriorating structural components 
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and systems subject to Poisson shock is introduced by Ciampoli (1998). Chiodo and 

Mazzanti (2006) deal with the problem of the reliability function assessment for 

power system devices due to repeated shocks. A generalized Petri Net is proposed by 

Hosseini et al. (2000) to formulate a new condition-based maintenance model for a 

system subject to deterioration failures and Poisson failures. Klutke and Yang (2002) 

develop a maintenance policy for the hidden failure system that deteriorates due to the 

Poisson shock and constant rate degradation. Satow et al. (2000) study a replacement 

policy for a unit subject to cumulative damage which occurs by shock or aging. Peng 

et al. (2009b) develop a periodic inspection maintenance policy to minimize the 

impact of unscheduled failures and to minimize cost for micro-electro-mechanical 

systems (MEMS) devices subject to a normal-distributed shock loads and a linear 

degradation process. 

This Chapter includes three parts to elaborate the problem from a continuously 

deteriorating system suffering from random shocks: 

PART I: A two-process cumulative combination model of competing failure between 

degradation and random shock is introduced with additive and multiplicative 

degradation path. 

PART II: Two numerical examples with sensitivity analysis for additive and 

multiplicative degradation path are used to illustrate the combination model. 

PART III: Based on the definition of the model, an imperfect preventive maintenance 

policy is put forward to obtain the optimum pair (N*, T*) using numerical methods in 

order to minimize the expected total cost rate. 



53 
 

 
 

Different from the traditional competing model, a two-process cumulative model may 

be more suitable to describe the problem. It is because both of these damage works 

directly on the unit or system, and a cumulative damage can clearly reflect the 

system‟s status. Also, the perfect preventive maintenance is not so practical in real 

world. Therefore, we modulate the imperfect preventive maintenance by an 

improvement factor. By taking some assumptions to simplify the imperfect 

maintenance model, finally an optimum policy is obtained from the complex expected 

cost rate function. 

 

4.2  A Combination Method for Degradation and Random Shock 

Competing risk model is an important subject in reliability analysis, especially 

degradation and random shock. An abundant of papers (Li and Pham (2005a,b), 

Deloux et al. (2009), Van Noortwijk et al. (2007), Lehman (2009), Klutke and Yang 

(2002)) study the competing models for degradation and random shock, and also the 

maintenance policies for this kind of system. However, many of them assume they are 

two independent failure modes. In this Chapter, we put forward a different 

combination model in which the two processes have a cumulative impact on the 

system failure and the system deteriorates due to both degradation and random 

shocks. 

4.2.1 Degradation Path Model 

The path functions for degradation model make a great difference in various studies. 

One of the most widely used models, “General Path Model”, is introduced by Lu and 
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Meeker (1993), which is a “two-stage” method of estimating parameters for the 

mixed-effect path model. Van Noortwijk and Pandey (2003) employ a stochastic 

gamma process model to account for both population and temporal variability 

associated with a degradation process. Zuo et al. (1999) present three statistical 

approaches for degradation analysis of continuous state devices.  

In this research, basic additive and multiplicative models are considered to tolerate the 

item-to-item variation by including the random variable X.  

Two kinds of degradation path function are shown as follows: 

General additive degradation model 

( ; , ) ( ; )D t X t X                                                  (4.1) 

General multiplicative degradation model 

( ; , ) ( ; )D t X X t                                                   (4.2) 

where ( ; )t   is a deterministic mean degradation path with fixed effect parameters 

  for time 0t   and X represents random variation around a mean degradation level 

with a cumulative distribution function (cdf) Fx and a probability density function 

(pdf) fx.  

The mean degradation path can either be monotonically decreasing or increasing, 

called decreasing degradation path (DDP) or increasing degradation path (IDP), 

respectively. Non-monotonic degradation model is also studied by several researchers, 

such as the non-monotonic degradation of light displays in Bae and Kvam (2004), but 

such case is seldom in real life. 

For example, if X is Weibull-distributed, one simple example for multiplicative model 
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is ( ; , )D t X t  , where X   is the degradation rate with the Weibull cumulative 

distribution function 

( ) 1 exp ( )r

X

x
F x



 
   

 
, for , 0r                                     (4.3) 

Another example for additive model is introduced by Fukada (1991) to describe the 

degradation process of electronic devices: 

2

3 1( ; , ) exp[ exp{( ) }]D t X t
     , for 1 2 3, 0, 1                        (4.4) 

By taking a log transformation, we obtain 

2

3 1log ( ; , ) log exp[( ) ]D t X t
                                        (4.5) 

Therefore 

3logX  , 2

1( ; ) exp[( ) ]t t
                                         (4.6) 

From the definitions and examples we can see that these two models can be employed 

to cover a widely used degradation models in many studies. The random variable X 

can be used to increase the flexibility for the degradation mean path function to 

tolerate the item-to-item variation. 

4.2.2 Random Shock Model 

Shock models have been widely studied by Chen and Li (2008), Mallor and Santos 

(2003a,b), Mallor et al. (2006), Gut (2001), Li (1984), Li and Kong (2007), Li and 

Zhao (2007), and Bai et al. (2006) in order to provide mathematical formulations for 

modeling the system reliability in random environments. Traditionally, three principal 

models are considered: cumulative shock model, extreme shock models and run shock 

model. After that some extensions including mixed shock model and  -shock model 

are developed. In this Chapter, traditional cumulative shock model is employed to 
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simplify the calculation process, but mixed shock model can also be used in this 

combination method.  

The random shocks occur in a homogeneous Poisson process with rate λ. Let the 

random variable N(t) denote the number of shocks until time t with the probability 

( )
Pr{ ( ) }

!

n
tt

N t n e
n

   , n=0, 1, 2,...                                   (4.7) 

In addition, we denote the amount of damage caused by the jth shock by Wj, a 

sequence of nonnegative, independent and identically distributed random variable 

with a common distribution ( ) Pr( )jG x W x   for all j. Let S(t) denote the 

cumulative shock damage, given by a compound Poisson process 
( )

0
( )

N t

jj
S t W


 . 

Assume G
(j)

(x) is the j-fold Stieltjes convolution with itself, it follows that 

( )

1 2Pr( ( ) ... } ( )j

jS t W W W x G x      , j=0, 1, 2,...                      (4.8) 

If G(x) follows an exponential distribution with parameter µ, the compound Poisson 

process turns out to be a gamma distribution with parameters (N(t), 1/µ). 

4.2.3 Combination of degradation and Random Shock 

We establish a combination model for degradation and random shocks, in which the 

system deterioration is cumulative due to both degradation and random shocks. In 

other words, the total damage for system deterioration is the cumulative effect of 

continuous degradation and sudden shocks, as shown in Figure 4.1.  

The system failure is defined as that when the cumulative deterioration amount M(t) 

drops below certain failure threshold, the system breaks down. Let R0 denote initial 

system resistance, and Rl the critical failure threshold. The function of M(t) can be 

represented as  
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0( ) ( ) ( )M t R D t S t                                                 (4.9) 

 

 

Therefore, the probability for the system to survive is given by 

0( ) ( ( ) ( ) )lR t P R D t S t R                                           (4.10) 

If multiplicative model is used in the degradation path function, the reliability for the 

system is shown as follows 
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                (4.11) 

If additive model is used in the degradation path function, the reliability for the 

system is shown as follows 

 

Shock Damage Size 

 

 

 

Degradation Amount 

Figure 4.1: Combination of Degradation and Random Shocks 
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              (4.12)

 Although the reliability formulas of both multiplicative and additive path are a little 

complex to calculate, we can obtain the approximate values by using numerical 

methods. 

 

4.3  Numerical Example 

The two examples in this section are to illustrate the model discussed in previous 

section: one for additive model, and another for multiplicative model. 

4.3.1 Example I: Multiplicative Model 

Case Study of a micro-actuator system designed by Sandia National Laboratory 

Tanner et al. (2000) is provided to illustrate the model. The linear degradation path of 

degradation amount is ( )X t t   , in which  =0 and the variable   is normal 

distributed with parameter 
98.4823 10
   and 

106.0016 10
  by Peng et al. 

(2009a) (t is the number of revolutions in micro-engines rotation). Random shocks are 

assumed to follow a homogeneous Poisson process with rate 52.5 10   . Shock 

damage size are i.i.d. normal random variables, with 
41 10y
   and 

52 10y   .  

The micro-engine fails when the total wear volume reaches a critical threshold, H, 

which is 0.00125 um
3
 by Tanner et al. (2000), Peng et al. (2009a). From the definition 

of the lifetime distribution for multiplicative model, we can obtain the reliability 

function given by 
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                          (4.13) 

where   is the cdf of standard normal distribution. 

The software Mathematica 7.0 is used to plot the reliability distribution for this 

micro-actuator system as show in Figure 4.2. In the first 50000 cycles, the system 

reliability almost keeps one because no random shock happens and the cumulative 

system degradation amount is not large enough to cause the system failure. After that, 

with the continuous degradation and sudden shock, the system reliability begins to 

drop. Until the 180000
th

 cycles the reliability for the system drops down to zero. 

 

Figure 4.2: Reliability Distribution for Multiplicative Model 

Sensitivity analysis for , , ,yu u H  is investigated with regard to reliability 

distribution. From the graphs in Figure 4.3, we can see it clearly that except H, the 

system reliability is decreasing with the increasing of parameters , , yu u . 

Compared with other parameters, H impacts the system reliability much more. The 

larger H is, the more reliability the system is. However, in real world, it is impossible 

to make H “large enough”, since H depends on both the system physical characters 
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and manufacturing technique. 

 

 

 

 
Figure 4.3: Sensitivity Analyses for λ, μβ, μy, H 

The lifetime for micro-actuator using different parameter λ is shown in Table 4.1. It is 

reasonable to see that the system reliability drops with the increasing of random shock 

intensity λ because intensely frequent random shock will make the system more 

vulnerable. 

Table 4.1: Lifetime Table for Micro-actuator System for different λ 

# Time (Cycles ×10
4
) 52 10    

52.5 10    
53 10    

1 0.0 1.0000 1.0000 1.0000 

2 6.0 0.9999 0.9996 0.9989 

3 10.0 0.8935 0.8167 0.7265 

      λ=2x10-5 

          λ=2.5x10-5 

          λ=3x10-5 

      μβ=8x10-9 

          μβ=8.5x10-9 

          μβ=9x10-9 

      μy=0.8x10-4 

          μy=1.0x10-4 

          μy =1.2x10-4 

     H=0.0010 

         H=0.00125 

         H =0.0015 



61 
 

 
 

4 10.5 0.8277 0.7279 0.6212 

5 11.0 0.7404 0.6219 0.5063 

6 11.5 0.6345 0.5059 0.3912 

7 12 0.5167 0.3893 0.2850 

8 12.5 0.3969 0.2818 0.1950 

9 13 0.2857 0.1909 0.1248 

10 13.5 0.1914 0.1204 0.0745 

11 14 0.1189 0.0706 0.0413 

12 14.5 0.0681 0.0383 0.0213 

13 15.5 0.0175 0.0089 0.0045 

14 16.5 0.0033 0.0016 0.0007 

15 20 0.0000 0.0000 0.0000 

4.3.2 Example II: Additive Model 

The second case is in term of additive model with nonlinear degradation function. 

Assume the allowance degradation amount H equals to 500, that is the difference 

between the initial resistance and critical failure threshold. Once the cumulative 

damage exceeds this level, system breaks down. Let N(t) denote the occurrence 

number of random shocks modulated by a homogeneous Poisson process with rate 

λ=0.1. The degradation function is described as D(t)=A+βt
2
, where A is normal 

distributed with mean µ=5 and standard deviation σ=2.5, and β is constant 

degradation rate with value of 0.05. The random shock damage size is i.i.d 

exponential distributed with mean α=30. The reliability function is shown as 
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                (4.14) 

where   is the cdf of standard normal distribution and γ is the pdf of gamma 

distribution.  

Therefore, after plunging parameter values into this additive model, the reliability 

distribution is plotted by Mathematica 7.0 shown in Figure 4.4. With the continuous 

degradation and sudden shock, the system reliability decreases gradually. Until t=100, 

the system reliability drops nearly to zero. 

 

Figure 4.4: Reliability Distribution for Additive model 

Sensitivity analysis for λ, β, µ, σ, α, H is investigated with regard to reliability 

distribution. From the graphs in Figure 4.5, we can see it clearly that the parameters 

,   for A have little influence on reliability distribution. Because they reflect the 

variation from mean degradation path function, they could not be changed too much 

and should be confined in a reasonable small interval. Except H, the system reliability 

is decreasing with the increasing of parameters λ, β, α.  
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Figure 4.5: Sensitivity Analysis for λ, β, µ, σ, α, H 

 

The lifetime for this additive model using different parameter α is shown in Table 4.2. 

Note that α denotes the mean damage size for each random shock. The larger the 

variable α is, the more random shock contributes to failure. Therefore reliability 

function is monotonically decreasing with the increasing of random variable α. 

 

      β=0.04 

          β=0.05 

          β=0.06 

      α=25 

          α=30 

          α=35 

      H=450 

          H=500 

          H=550 

      λ=0.08 

          λ=0.10 

          λ=0.12 

      µ=0 

          µ=5 

          µ=10 

      σ=2 

          σ=2.5 

          σ=3 
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Table 4.2: Lifetime Table for Additive Model for different α 

# Time 25   30   35   

1 0 1.0000 1.0000 1.0000 

2 10 1.0000 1.0000 1.0000 

3 20 1.0000 1.0000 0.9996 

4 30 0.9999 0.9992 0.9971 

5 40 0.9989 0.9948 0.9852 

6 50 0.9918 0.9732 0.9415 

7 60 0.9531 0.8933 0.8186 

8 65 0.8997 0.8081 0.7101 

9 70 0.8033 0.6808 0.5684 

10 75 0.6510 0.5136 0.4049 

11 80 0.4491 0.3272 0.2433 

12 85 0.2374 0.1603 0.1133 

13 90 0.0793 0.0508 0.0349 

14 95 0.0104 0.0068 0.0048 

15 100 0.0000 0.0000 0.0000 

 

4.4 Imperfect Preventive Maintenance Model 

Based on the combination model in section 4.2, an imperfect preventive maintenance 

(PM) policy with a common improvement factor is put forward to obtain the optimal 

policy pairs (N*, T*) minimizing the expected total cost rate. 
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4.4.1 Expected Cost Model 

Considering the following maintenance policy shown in Figure 4.6: 

 A sequence of imperfect preventive maintenance is done at fixed time interval 

Tn (n=1, 2, ..., N-1) 

 If the unit fails between two consecutive PMs, minimum repair is done. 

 A replacement is done at time TN, that is, the unit is as good as new at time TN. 

We call the interval between the (n-1)st PM to the nth PM as period n. Let the random 

variable Nn denote the number of shocks in period n with the probability 

( )
Pr( } exp( )

!

j

n
n n

T
N j T

j


   . In addition, we denote Wnj by the amount of damage 

caused by jth shock in period n. The degradation function is defined by ( )D t t  

just as the form in multiplicative model, where the random variable   is distributed 

with F(x).  

 

T1 

cT 

T2 

cT 

T3 

cT 

 

cM 

 

cM 

T4 

cT 

W11 

W12 

W21 
W31 

W32 

W41 
Z(t) 

Shock point 

t 

PM 

Minimal repair 

Replacement 

Figure 4.6: Imperfect PM Maintenance Model (Nakagawa (2007)) 
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Here we introduce an improvement factor in imperfect PM: suppose that each PM can 

restore 100(1-a) % (0<a<1) of the total cumulative damage. If a=0, it is a perfect PM. 

Let Zn the total damage at the end of period n, just prior to the nth PM, then the nth 

PM will restore the unit to aZn. If unit fails between the nth and the (n+1)st PM, it 

undergoes the minimum repair. However, it is assumed that the total damage is not 

reduced by the minimum repair and the repair time required for minimum repair is 

negligible. Thus, we have the relation 

1 1

nN

n n njj
Z aZ T W 

                                             (4.15) 

Let L the critical the allowable degradation threshold determined by the different 

between system initial resistance and system failure critical level. Also assume cT the 

cost associated with each PM, cN the cost associated with replacement at Nth PM, and 

cM the cost of minimum repair, with N T Mc c c   holding. Then the total cost in 

period n is 

1 1 2

1

( ) ( ... )
nN

T M n n n nj

j

c n c c P aZ T W W W L



                             (4.16) 

Every replacement at Nth PM can be viewed as a renewal process. According to the 

theory of renewal reward process, the cost rate can be expressed as E(C)/E(T). 

However, it is difficult to take the expectation for the total cost in this two-process 

cumulative damage model.  

To simplify the problem, we assume if x is the magnitude of the total damage from 

degradation and shocks, the system fails with a probability of ( ) 1 xp x e   , which 

is increasing in x from 0 to 1. Assume G*(x) be the Laplace-Stieltjes transform of 
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G(x), defined by 
0

*( ) ( )xG e dG x


  . 

Therefore, the total cost in period n is given by 

1 1 2

1
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                             (4.17) 

Similarly, the total cost in period N is 

1 1 2
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                           (4.18) 

By taking the expectation for the cost in period n, we have 
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Let *( ) {exp( )}n nB E Z     
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Thus, because Nn has a homogeneous Poisson distribution with rate λ, we have 
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It remains to determine *

1( )nB a
. 

We have 
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so that, 



68 
 

 
 

1
*

1 1

1 1

1
* *

1

( ) {exp( )} exp
1

( )exp 1 ( )
1

jNn n
n j

n n ji

j i

n n
j

j

a a
B a E aZ E T a W

a

a a
F T T G a

a

   

  




 

 





     
                

 
       

 



    (4.23) 

Finally, we obtain the expectation of the total cost in period n 
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Similarly, we can get the expectation for the total cost in period N. 

Therefore, the expected cost rate until replacement is 
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where 
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To simplify the formula, we define a function 
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where (1) Nc c , and ( ) ( 2,3,..., )Tc n c n N  . Then 
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The optimization function is a mixed integer nonlinear programming (MINP) problem. 

The Numerical Nonlinear Global Optimization in Mathematica 7.0 provides the 

function NMinimize which implements several algorithms for finding global optimal 

solutions for constrained nonlinear function, which is not differentiable or continuous. 

Because there are integer variable to determine in this problem, differential evolution 

method will be employed. For everything else nonlinear, Nelder-Mead method is 

used.  

4.4.2 Optimum Policies 

In this section, we will try to find out 

 optimum N*(T) that minimizes C(N*, T) for a fixed T by differential evolution 

 optimum T*(N) that minimizes C(N, T*) for a fixed N by Nelder-Mead 

method 

 optimum policy pair (N*, T*) by differential evolution 

Before deriving the optimal policies, we assume that ( ) 1 xG x e   , ( ) 1 xF x e    

and the corresponding Laplace transform is *( ) ( )G      , *( ) ( )F      , 

where 0.9  , 0.1   and 10  . The Poisson process shock has an occurrence 

0.35  . Let 1Mc   and 1T Nc c a  . 

4.4.2.1 Optimum Number N*(T) 

The optimum N*(T) is obtained in order to minimize C(N*, T) for a fixed T=25 by 

differential evolution method in Mathematica 7.0. The optimum value N*(T) and 

expected cost rate for a=0.1-0.9 and 3,5,8N Mc c   when T=25 are indicated in 
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Table 4.3. With the result from 3N Mc c  , we can observe that the optimum value 

increases as the variable a increases. However, this is not always the situation. When 

observing the results from 5,8N Mc c  , the optimum number is decreasing first and 

then goes to infinite. Therefore, the result indicates that N*(T) is not monotonically 

increasing with respect to a. When a is small, the total damage restore greatly by the 

imperfect PM and the system prefer to undergo only PM rather than replacement. 

Table 4.3: Optimum number N*(T) and expected cost rate C(N*, T) when T=25 

a 

cN/cM=3 cN/cM=5 cN/cM=8 

N*(T) C(N*,T) N*(T) C(N*,T) N*(T) C(N*,T) 

0.9 2 0.294463 3 0.336913 6 0.377654 

0.8 2 0.297247 3 0.345052 5 0.396764 

0.7 2 0.299680 2 0.351680 4 0.413643 

0.6 2 0.301719 2 0.357719 4 0.428695 

0.5 1 0.302056 2 0.363310 5 0.442167 

0.4 1 0.302056 2 0.368392   0.453014 

0.3 1 0.302056 2 0.372896   0.462646 

0.2 1 0.302056 2 0.376740   0.474082 

0.1 1 0.302056   0.379258   0.487283 

4.4.2.2 Optimum Number T*(N) 

The optimum T*(N) is obtained in order to minimize C (N, T*) for a fixed N by 

Nelder Mead method in Mathematica 7.0. The optimum time T*(N) and expected cost 

rate C (N, T*) for cN/cM=3, a=0.5 are obtained when N varies from 1 to 8. In Table 4.4 

we obtain the optimum time T*(N) and expected cost rate C (N, T*) for cN/cM=3, 
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a=0.5 when N varies from 1 to 8. Comparing with various N from1 to 8, it seems that 

when N=1 and T*(N) =30.0427, the expected cost rate is minimized, that is C(N, 

T*)=0.299986. It means just replacement is necessary to be performed instead of 

imperfect PM.  

Table 4.4: Optimum time T*(N) and expected cost rate C (N, T*) when cN/cM=3, 

a=0.5 

N T*(N) C(N, T*) 

1 30.0427 0.299986 

2 22.1375 0.302505 

3 19.3886 0.307938 

4 17.9690 0.312278 

5 17.0971 0.315472 

6 16.5060 0.317814 

7 16.0789 0.319555 

8 15.7562 0.320878 

4.4.2.3 Optimum Pair (N*, T*) 

The optimum pair (N*, T*) and minimum expected cost rate are obtained by 

differential evolution method in Mathematica 7.0 when cN/cM=3 and a=0.5. In Figure 

4.7, we can see the three-dimension curve for various policy pairs (N, T; C).  
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Figure 4.7: Policy pair (N, T) and expected cost rate 

In order to avoid local minimum point, different scaling factor s in NMinimize option 

has been tested. Finally, the scaling factor is set to be equal to 0.1. Table 4.5 shows the 

first 5-step and last 5-step results from the differential evolution method in 

Mathematica 7.0. The results indicate that the policy pair of N*=1, T*=30.0427 gives 

us the minimum expected cost rate C(T*, N*) =0.299986, which is also consistent 

with the result from Table 4.4. 

Table 4.5: Results from differential evolution algorithm when cN/cM=3, a=0.5 

N T C 

3 2.9524 0.750638 

3 3.0763 0.724778 

3 2.9378 0.753839 

2 3.0122 0.815242 

2 3.0122 0.815242 

…
 

…
 

…
 

T 

N 

C 
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1 25.5918 0.301545 

1 28.4421 0.300158 

1 29.7933 0.299989 

1 30.0427 0.299986 

1 30.0427 0.299986 

 

4.5 Conclusion 

In this Chapter, a two-process cumulative combination model of competing failure 

between degradation and random shocks is introduced with additive and 

multiplicative degradation path. After that, two numerical examples with sensitivity 

analysis are used to illustrate the combination model. Finally, based on the definition 

of the model, an imperfect maintenance policy is put forward to obtain the optimum 

pair (N*, T*) by numerical methods.  

Some extensions for this model are as follows: 

First, in situations where the initial resistance R0 is unknown, the reliability function 

for the multiplicative model can be rewritten as 
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where 
0 0( )Rf r  is the probability density function of 0 0R l . 

Second, the assumption of non-homogeneous Poisson process with rate function 

( , )t k  as the model for random shock, where k denotes the system status, is 

meaningful in real world, because the worse the system condition will make the 

system more vulnerable to the failure due to random shocks. Therefore, the reliability 
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function for the multiplicative model can be rewritten as 
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How to define the k will be further investigated. 
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Chapter 5  

A Multi-objective Optimization of Imperfect Preventive 

Maintenance Policy for Cumulative Competing Risk 

Systems with Hidden Failure 

 

ACRONYMS 

GA Genetic Algorithm 

IMCDM 

PM 

Integrated Multi-Criteria Decision-Making 

Preventive Maintenance 

NSGA        Non-dominated Sorting Genetic Algorithm 

TSM          Technical Specifications and Maintenance 

RAM         Reliability, Availability and Maintenance 

TI            Testing Intervals 

STI           Surveillance Test Interval 

 

NOTATION 

v(t) occurring rate of random shock with nonhomogeneous Poisson 

Process  

q(t) nonfatal shock probability 

N(t) random shock number till time t 

wi individual random shock magnitude 

Tv system degradation level 

a initial degradation level 

δ degradation rate 

S degradation failure threshold, exponentially distributed with µ 

Td time associated with degradation failure 

Ts time associated with random shock failure 

Tr time associated with replacement 
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Tp time associated with imperfect PM 

Ti length of the ith imperfect PM interval 

β quasi-renewal coefficient of imperfect PM interval 

Ii cumulative time interval till the ith imperfect PM 

α imperfect PM factor 

Cs cost associated with imperfect PM action following random shock 

failure 

Cd cost associated with imperfect PM action following degradation 

failure 

Cw cost associated with imperfect PM action without any type of failure 

CN cost associated with the replacement 

CM penalty cost per unit time associated with the idle time during the two 

consecutive imperfect PM 

R0 target reliability low bound 

 

5.1 Introduction 

Many systems or their components are subjected to the competing risks of 

degradation processes and random shocks.  A battery supplies electric power by 

chemical reaction. It gradually weakens through usage, and becomes useless once the 

chemicals in the battery are exhausted. Also, overheating or over-voltage can cause 

damage in the battery.  

On dealing with competing risks of the degradation processes and random shocks, 

some of the present papers assume that they are s-independent on each other, such as 

Li and Pham (2005a,b), Deloux et al. (2009), Mori and Ellingwood (1994), van 

Noortwijk et al. (2007), Lehmann (2009), and Ciampoli (1998). However, the 

dynamics of the dependent structure between these two processes are of importance, 
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and should not be neglected (Singupurwalla (1995)). On the one hand, the degradation 

process will make the system more vulnerable to the random shocks. On the other 

hand, the random shocks will accelerate the system degradation processes by two 

types of impacts: sudden increment jump, and degradation rate acceleration. 

Therefore, there is also some interest in the correlation between these two kinds of 

processes as a function of time.  

Kharoufeh et al. (2006) utilize the Laplace-Stieltjes transform to explicitly derive the 

lifetime distribution, as well as the limiting availability for a periodically inspected 

single-unit system with hidden failure, which is subject to the degradation wear due to 

its random environment characterized by a continuous Markov chain, and random 

shocks modulated by a homogeneous Poisson process. Ebrahimi (2001) proposes a 

general stochastic model to estimate the reliability of systems in terms of a 

deterioration process with covariates. Fan et al. (2000) consider the one-component 

system that suffers from non-homogeneous Poisson process shocks. In the system, 

aging will increase the magnitude of shock sizes, thereby resulting in a larger fatal 

probability. After that, an extension of that shock model to a multi-component system 

is examined. Satow and Kawai (2010) present an imperfect inspection with upper and 

lower inspection threshold for a bivariate failure distribution.  

Many literature papers focus on maintenance optimization based on one objective. 

Vaurio (1995) develops advanced models to the general recursive equations for the 

availability and mission-failure probability of the standby structure system by 

considering different durations for testing and repairs, as well as various failure types, 
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including start-up, standby and during mission failures, and two additional human 

errors. Zequeria and Berenguer (2006) study a maintenance policy considering three 

types of actions: minimal repairs, PM, and replacement. They studied a system with 

two dependent competing failure modes of maintenance and non-maintenance by 

minimizing the system cost rate during an infinite time. Cepin (2002) determines the 

optimal scheduling to improve the safety of equipment outages in nuclear power 

plants by minimizing the mean value of the selected time-dependent risk measure. 

Zhu et al. (2010) examine the maintenance model for a competing risk of degradation 

and sudden failure in which the unit is renewed when it reaches a predetermined 

degradation level, or comes to a sudden failure within the limit of a certain 

degradation threshold.  

In terms of the multi-objective approach, Martorell et al. (2005) propose a new 

integrated Multi-Criteria Decision-making (IMCDM) method to determine the 

parameters in the technical specifications and maintenance (TSM) of safety-related 

equipment using a multi-objective Genetic Algorithm (GA) based on the reliability, 

availability, and maintenance (RAM) criterion. Martorell et al. (2006) address the 

multi-objective problem of surveillance requirements at nuclear power plants with 

dependable variables of testing intervals (TI), and testing planning using a novel 

double-loop multiple objective evolutionary algorithms. In Quan et al. (2007), a new 

approach, which combines the preference with evolutionary algorithm by using utility 

theory to search the Pareto frontier rather than conducting a dominated Pareto search, 

was developed to find the optimal solutions for a multi-objective PM scheduling. 
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Sanchez et al. (2009) put forward a GA based approach using distribution free 

tolerance intervals to address a multi-objective optimization of an unavailability and 

cost model embedded within the uncertainty of the imperfect maintenance. Okasha 

and Frangopol (2009) consider two strategies of selecting maintenance actions, 

maintenance scheduling, maintenance structural components for optimization 

programs to design and construct structural systems in terms of system reliability, 

redundancy, and life-cycle costs as criterion in the multi-objective GA. However, the 

multi-objective optimization embedded within the imperfect maintenance for the 

dependent competing risks of degradation processes and random shocks is a blank 

topic of great interest.  

This chapter proposes a dependent competing risk model for a deteriorating system 

subject to shock processes, and a maintenance model involving imperfect 

maintenance actions. We derive the mathematical models for the system expected cost 

rate and asymptotic unavailability of the maintained system, and present a 

multi-objective optimization based on GAs. Three optimizations with sensitivity 

analysis under various cases are performed to compare the optimization results. The 

assumptions of this chapter are listed as follows.  

A. The competing risks of degradation wear and random shocks are s-dependent 

on each other. There are two kinds of random shocks: 1) a fatal shock will 

cause the system failure immediately, and 2) a nonfatal shock will increase the 

system virtual age by certain cumulative shock loading.  
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B. An improvement factor is used to simulate the imperfect PM by modulating 

the system critical threshold with a quasi-renewal process.  

C. System failure is hidden; that is, the system failure will be only detected at the 

time of the scheduled maintenance or replacement. 

D. The cost associated with imperfect PM following no failure, degradation 

failure, and random shock failure can be varied. 

 

5.2 Mathematical Model 

5.2.1 System Description 

Suppose we are interested in the reliability analysis for a single-unit system subjected 

to the compound Poisson process shock of magnitude w with a common distribution, 

and nonhomogenous rate v(t). It is reasonable to assume that the shock rate is a 

non-homogeneous Poisson process with increasing occurrence rate because the 

system is more vulnerable to the shocks with the aging of the system. 

In addition, assume that the ith shock occurring at time ti can cause immediate failure 

of the system with probability ( )ip t , called fatal shock. Otherwise, it increases the 

system degradation level by the shock magnitude iw  with probability 

( ) 1 ( )i iq t p t  , called nonfatal shock. Based on the above assumption, the system 

degradation level at time t can be expressed as  

( )

1

N t

v ii
T a t w


                                                  (5.1) 

where 0a   is the initial degradation level for the system at time zero, and  is the 

degradation rate.  
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Because some of the components or units may be used or refurbished, the system‟s 

initial degradation level needs not to be zero. System failure occurs when the 

degradation level reaches a certain critical threshold S, a random variable 

exponentially distributed with parameter  . Therefore, the probability for the system 

to survive is given by 

( )

1

( ) ( )

11

( ) ( )

11

( ) ( )

1 1

( ) ( ) ( )

( ) ( )

( ) exp ( )

exp ( ) ln ( )

N t

i vi

N t N t

i iii

N t N t

i iii

N t N t

i ii i

R t q t P T S

q t P a t w S

q t a t w

a t w q t



 

  







 

 

   

    
 

     
 







 

                       (5.2) 

Refer to the proof of Theorem 1 in Cha and Finkelstein (2009). The survival function 

of the system, and the corresponding failure rate are given by 

 0 0
( ) exp ( ) ( ) ( ) ( ) ( )

t t

WR t a t v x dx M q x v x dx        
,
                 (5.3) 

and 

( ) ( ) ( ) ( ) ( )Wh t v t M q t v t                                          (5.4) 

where WM  is the moment generating function for the random variable w. 

In this competing risk system, there are two kinds of failure mechanisms: one is 

degradation failure, and the other is random shock failure. The two processes of 

degradation and random shocks are dependent on each other because the degradation 

process will receive the cumulative loading from the random shocks. To examine 

these two failure mechanisms more clearly, we analyze the two processes separately.  

Under the first process of degradation without considering the fatal shocks, the system 

survives until t with the probability 
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 0 0

( ) ( )

exp ( ) ( ) ( ) ( ) ( ) ( )

d v

t t

W

R t P T S

a t v x q x dx M v x q x dx  

 

      
             (5.5) 

 0 0
( ) 1 exp ( ) ( ) ( ) ( ) ( ) ( )

t t

d WF t a t v x q x dx M v x q x dx         
,
          (5.6) 

and 

( ) ( ) ( ) ( ) ( ) ( )d Wh t v t q t M v t q t      .                                (5.7) 

Under the second process of random shock without considering the degradation 

process, the system survives until t with the probability 

( )

1

0 0

( ) ( )

exp( ( ) ( ) ( ) )

N t

s ii

t t

R t q t

v x dx v x q x dx




  



 
                                  (5.8) 

0 0
( ) 1 exp( ( ) ( ) ( ) )

t t

sF t v x dx v x q x dx     ,
                               (5.9) 

and 

( ) ( ) ( ) ( )sh t v t v t q t 
.
                                              (5.10) 

From the above, we can see that the hazard rate of the competing risk system is equal 

to the summation of the hazard rate of the two processes,  

( ) ( ) ( )s dh t h t h t 
.
                                                (5.11) 

In this competing risk system, the degradation failure happens under the condition 

that the system degradation level exceeds the critical threshold, but no fatal shocks 

happen until time t. That failure happens with the probability distribution 

 

 

0

0 0

0

0 0

( ) ( ) ( ) ( )

exp( ( ) ( ) ( ) )

( ) ( ) ( ) ( ) ( )

exp ( ) ( ) ( ) ( ) ( ) ( )

d

t

T d s d

u u

t

W

u u

W

F t P T t R u dF u

v x dx v x q x dx

v u q u M v u q u du

a u v x q x dx M v x q x dx

 

  

  

 
  

 
     

 
      
 



 



 
.

    (5.12) 
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In this competing risk system, the random shock occurs when there exists a fatal 

shock, but the system degradation level stays below the critical threshold until time t. 

That failure happens with the probability distribution 

 
 

0

0 0

0

0 0

( ) ( ) ( ) ( )

exp ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

exp( ( ) ( ) ( ) )

s

t

T s d s

u u

W

t

u u

F t P T t R u dF u

a u v x q x dx M v x q x dx

v u v u q u du

v x dx v x q x dx

  

  

     
 
 

   
 
   
 



 



 

     (5.13) 

5.2.2 Imperfect Preventive Maintenace 

Based on the induction of the reliability and hazard rate for the dependent competing 

risk model, we present a multi-objective optimization imperfect PM policy with a 

common improvement factor and hidden failure. Two decision variables for the 

maintenance policy, one is the imperfect PM interval, and another is the number of 

imperfect PM until replacement, are determined by simultaneously maximizing the 

system availability and minimizing the system expected cost rate. The imperfect PM 

interval sequence is modulated by a decreasing quasi-renewal process to capture the 

aging effect of the system.  

5.2.2.1 Maintenance Planning 

Consider the following maintenance policy as shown in Figure 5.1: 

 A sequence of imperfect PM is done at the end of time interval nT  

( 1,2,..., 1)n N  . 

 If the system fails between two consecutive PMs, it will remain in the 

non-functioning condition until the next imperfect PM.  
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Tp T1 T Tr 

PM 

1 

0 

Degradation Failure 

Random Shock Failure Replacement 

... 

 After an imperfect PM, the system is not as good as new, which means the 

maintenance is not perfect. 

 A replacement is done at the end of time interval NT  before the system 

reliability drops to a very low point 0R , so the unit is as good as new after 

replacement.  

 

 

 

 

Figure 5.1: Imperfect PM Maintenance Model. 

Because the system will be renewed once the replacement is performed, the time 

interval between two consecutive replacements is the renewal cycle time for the 

system. From the above relationship, it follows that the average accumulating 

imperfect PM interval for the system during one renewal cycle time is given by 

2 3 1 1
1 1 1 1 11

(1 )
...

1

N
N N

N i i

T
I T T T T T T


   








       




.

              (5.14) 

Therefore, the decision variables in this maintenance policy are the PM interval T1, 

and the PM number for replacement N.  

5.2.2.2 Improvement Factor Method 

Perfect maintenance or repair that assumes the system is as good as new after each 

PM or repair is not actually realistic. A more practical assumption is that, instead of 

perfect maintenance, an imperfect PM will restore the degradation process of the 
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system to some younger system status between "as good as new" and "as bad as old". 

In the literatures, there are seven treatment methods for imperfect maintenance by 

Wang and Pham (2006a): (p, q) rule, (p(t), q(t)) rule, improvement factor, virtual age, 

shock model, (α, β) rule or quasi-renewal process, and multiple (p, q) rule. To 

modulate the imperfect maintenance, an improvement factor is introduced into the 

model such that, upon each imperfect PM, the failure threshold of the system during 

the degradation process will be raised correspondingly such that the jump-up is 

proportional to the preceding threshold scaled by the improvement factor. In other 

words, the imperfect PM will improve the system "immunity" level. 

Upon the first imperfect PM, it will restore the system critical threshold by a fraction 

of the immediately preceding one in the previous period. Therefore, the critical 

threshold in the 2
nd

 period is indicated as , 1S    . Continuously, the critical 

threshold in the ith period equals  

1
( )i i

S
S t

 
   for 1( , ]i it I I

.
                                        (5.15) 

Because S  is exponentially distributed with parameter  , we have 

1( ) ~ ( )i

iS t Exp    for 1( , ]i it I I
.
                                  (5.16) 

It is obvious that we can obtain the reliability function and failure rate in the ith period 

as  

 1 1

0 0
( ) exp ( ) ( ) ( ) ( ) ( )

t t
i i

i WR t a t v x dx M q x v x dx         
,
          (5.17) 

and 

1 1( ) ( ) ( ) ( ) ( )i i

i Wh t v t M q t v t                                     (5.18) 

for 1( , ]i it I I
.
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In addition, under the first process of degradation without considering the fatal shocks, 

the probability for the system to survive in (5.5), (5.6), and (5.7) is changed to 

 1 1

0 0
( ) exp ( ) ( ) ( ) ( ) ( ) ( )

t t
i i

di WR t a t v x q x dx M v x q x dx         
,
     (5.19) 

 1 1

0 0
( ) 1 exp ( ) ( ) ( ) ( ) ( ) ( )

t t
i i

di WF t a t v x q x dx M v x q x dx           ,   (5.20) 

and 

1 1( ) ( ) ( ) ( ) ( ) ( )i i

di Wh t v t q t M v t q t                                 (5.21) 

for 1( , ]i it I I , respectively. 

However, under the second process of random shock without considering the 

degradation, the probability for the system to survive remains the same.  

Assume that the shock loading is exponentially distributed with parameter  . 

Therefore we have 

1

1

1
( )

1

i

W i
M 






 


                                           (5.22) 

The reliability function and hazard function can be respectively simplified as 

1 0

10

( ) ( )
( ) exp ( ) ( )

1

t

t
i

i i

q x v x dx
R t a t v x dx 







 
 

     
 

 




,

                   (5.23) 

and 

1

1

( ) ( )
( ) ( )

1

i

i i

q t v t
h t v t 






  


                                      (5.24) 

for 1( , ]i it I I
.
 

Comparing the failure rate of the (i-1)st period with the ith period, we can see it 

clearly that the failure rate decreases after each imperfect PM because the failure rate 

is a decreasing function with variable i, and finally restores to the original system 
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status upon each replacement, shown as in Figure 5.2. 

 

 

Figure 5.2: Failure Rate under the maintenance planning. 

 

5.2.2.3 System Availability Optimization 

In this periodically PM model, because the replacement that occurs at the Nth period 

after N-1 imperfect PMs will restore the system to an “as good as new” condition, we 

can view the time interval between two consecutive replacements as the system 

renewal cycles to calculate the system availability.  

The expected renewal cycle time is 

  1(1 )
( 1) [ ] [ ]

1

N

p r

T
E CYCLE N E T E T






   


                           (5.25) 

The expected up-time is  

  1(1 )
[ ]

1

NT
E UP E







 


                                          (5.26) 

where  is the cumulative idle time in the whole renewal cycle during the N period 

time. 

Then [ ]E   is calculated as  

T1 T2 

... 

T1 T2 
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                                      (5.27) 

Therefore, we can obtain 
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   (5.28) 

The system asymptotic availability can be easily derived as 

1

1 1

1

1 1 1

0 0

1

1

( ) ( ) ( ) ( ) ( )
(1 )

1 exp ( ) ( ) ( ) ( ) ( )

( , )
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i

i
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t ti i iI
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                                                                (5.29) 

or 

1

1 1

1 1 1

0 0

1

1

( ) ( ) ( ) ( ) ( )

( 1) [ ] [ ]
exp ( ) ( ) ( ) ( ) ( )

( , )
(1 )

( 1) [ ] [ ]
1

i

i

i i

i WIN

t tp r i i iI
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p r

I t v t M v t q t
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                                                               (5.30) 

5.2.2.4 Expected Cost Model 

According to renewal reward process modeling, the expected cost rate can be 

expressed as the ratio of expected total cost in one cycle time to the expected duration 

of a cycle (Pham and Wang (2000)):   

1

( )
( , )

( )

E C
c N T

E T


.

 

There are three kinds of possibilities in each PM interval: the failure may come from a 
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fatal shock failure, it may come from a degradation failure, or the system can 

experience no failure. In the previous section, we assume that the imperfect PM times 

for each situation are the same because we assume that, no matter whether a failure 

happens or not, the regular inspection and routine maintenance will be needed. 

However, the imperfect PM cost associated with different system situations may vary. 

Without loss of generality, we can assume that N d s wC C C C   . 

Based on the induction in Section 5.2.1, during the time period of 1( , ]i it I I , a 

degradation failure happens with the probability 

 

1

1 1

1

1

1 1

1 1

0 0
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exp( ( ) ( ) ( ) )

( ) ( ) ( ) ( ) ( )
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i

I

i d i s d
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t t
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I
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   (5.31) 

And during the time period of 1( , ]i it I I , a random shock failure happens with the 

probability 
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  (5.32) 

The expected PM number following random shock failures during the one cycle time 

is 
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  (5.33) 

The expected PM number following degradation failures during the one cycle time is 
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  (5.34) 

The expected PM numbers following no failures during the one cycle time is 

[ ] ( 1) [ ] [ ]w s dE N N E N E N                                      (5.35) 

The expected cost rate in the whole renewal cycle can be expressed as 
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or 
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                                                                (5.37) 

5.2.2.5 Maintenance Optimization 

Maintenance optimization is a systematic process that attempts to balance the 

maintenance requirements and resources in order to identify the appropriate 

maintenance periodicity and technique. This approach should be conducted to achieve 

multiple maintenance targets, such as safety control, component reliability, system 

availability, and costs. Generally, the maintenance optimization system has two 

objectives: maximizing system availability ( SA ), and minimizing system cost ( SC ). 

The aim of the maintenance optimization problem in this chapter is to determine two 

decision variables: the number of imperfect PMs until replacement N, and the 

imperfect PM interval T1. There are three cases to solve the maintenance optimization 

problem.  

Case I:  The general formulation to maximizing the system availability is 
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1( , )sMax A N T  

Subject to maxsC C
.
 

Case II: The general formulation to minimizing the system cost rate is 

1( , )sMin C N T  

Subject to s sA R
.
 

Case III: The formulation of the multi-objective model to simultaneously maximize 

availability and minimize cost is  

1( , )sMax A N T  and 1( , )sMin C N T  

Subject to s sA R  

         m a xsC C  

where the symbol Rs denotes the target system availability, and Cmax is the tolerable 

maximum cost.  

In this chapter, one assumption is that replacement is done at the end of time interval 

NT  before the system reliability drops to a very low point 0R . Therefore, without 

considering the constraints of the target system availability and tolerable maximum 

cost, the system reliability at the end of cycle time NI  should be kept above 0R :  

1( , )sMax A N T  and 1( , )sMin C N T  

Subject to 0( )NR I R
.
 

The optimization Toolboxes in Matlab R2010a are used to solve the maintenance 

optimization problems in these three cases. Under Case I and Case II, the optimization 

problem is a mixed-integer linear program. The “ga” function in Matlab is employed 

to optimize the system cost rate constrained to availability or system availability 
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constrained to system cost by GA, which is a mixed-integer linear programming 

problem. Under the third formula, the “gamultiobj” function in Matlab is utilized to 

optimize the multi-objective function by using the controlled elitist algorithm, called 

the fast elitist Non-dominated Sorting Genetic Algorithm (NSGA-II).  

 

5.3 Numerical Example 

Assume that the shock loading is exponentially distributed with parameter λ. Then we 

have 

1

1

1
( )

1

i

W i
M 






 


,                                           (5.38) 

where 0.01  , 5  , and 0.8  . 

Let 0.5( )v x x , and ( ) exp( )q x x   with 0.02  , 0.015  , and 

quasi-renewal process coefficient for imperfect PM interval 0.8  . The system 

replacement time 0.2rT  , replacement cost 250NC  , and the idle time penalty 

cost 300mC  . Both the imperfect PM time and cost are proportional to the 

restoration degree α. Given that each percentage of the system restoration calls for 

extra time 0.001, and extra cost 3, we have the imperfect PM time 

0.1 0.001 (1 ) 100pT     
,
 

and imperfect PM cost 

0 3 (1 ) 100pC C      , 

where 0 40C   with PM without failure, C0=60 with PM following random shock 

failure, and C0=80 with PM following degradation failure. 

Replacement should be done before the system is completely out of functioning, that 
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is ( ) 0NR I  . Because some decision variable pairs [N, T1] do not satisfy with that 

constraint, we assume that the system unavailability and cost rate for the 

corresponding infeasible solutions each equal some large value, such as 1A   and 

C=100, during the numerical analysis.  

In Figures 5.3 and 5.4, we can examine the curve behavior of the system 

unavailability and cost rate by changing decision variable [1,50]N  and 

1 [1,100]T   both with an increment step of 1. The minimized system unavailability is 

0.0609 with a cost rate of 43.8741 when N=3, and T1=5, while the minimized system 

cost rate is 38.0180 with an unavailability of 0.0723 when N=4, and T1=8. 

 

Figure 5.3: N-T1-Unavailability 3-D Plotting. 

 

Figure 5.4: N-T1-Cost 3-D Plotting. 
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CASE I: Minimizing the System Unavailability 

With the help of Matlab‟s optimization toolbox, GA is used to find the solution of this 

one-objective optimization problem in minimizing the system unavailability. The best 

solution of minimizing system unavailability is 0.0609 when the corresponding 

optimum pair of decision variables [N, T1] is [3, 4.8829], but the system cost rate is a 

little bit high with a value of 44.4460. The result is reasonable because a shorter PM 

interval and earlier replacement are more likely to maintain the system in a high 

availability status.  

From the results, we can obtain the system cycle time for each replacement without 

considering the imperfect PM time; the system operation time equals 11.9143. The 

curves of Figure 5.5 and Figure 5.6 are calculated from (5.24) and (5.25). The system 

reliability curve for that cycle time before replacement is shown in Figure 5.5, from 

which we can see that each imperfect PM will restore the system to a higher reliable 

status than the previous just before the imperfect PM, and the system reliability is 

maintained at a high level between 0.8635 and 1.0000. On the other hand, as indicated 

in Figure 5.6, the system failure rate during the cycle time before replacement has a 

sudden reduction upon each imperfect PM, ranging from 0.0100 to 0.0195. 
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Figure 5.5: Reliability Curve in One Replacement Cycle Time under Case I. 

 

Figure 5.6: Failure Rate Curve in One Replacement Cycle Time under Case I. 
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we can see the fact that the replacement cycle time is longer. Because the replacement 

cost is higher than the imperfect maintenance cost for α=0.8, the system will prefer a 

delayed replacement to decrease the cost rate. However, on the other hand, too long of 

a replacement cycle time will increase the idle times with the system reliability 

becoming lower, thereby resulting in a high cost rate. Therefore, the replacement 

cycle time is bounded within a certain region.  

During the replacement cycle time, the system reliability curve in Figure 5.7 is 

becoming higher upon each imperfect PM level, ranging from 0.6296 to 1.0000. 

Compared with Case I, both the system availability and reliability in Case II is 

relatively lower than in Case I, but they offset the system resource to a much more 

economic cost rate. In other words, the system unavailability is increased by 20.69%, 

but at the same time the system cost rate is decreased by 15.50%. The system failure 

rate shown in Figure 5.8 has a sudden reduction upon each imperfect PM, ranging 

from 0.0100 to 0.0369. 

 

Figure 5.7: Reliability Curve in One Replacement Cycle Time under Case II. 
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Figure 5.8: Failure Rate Curve in One Replacement Cycle Time under Case II. 
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Objective [N, T1] A C 

Max As [3, 4.8829] 0.9391* 44.4460 

Min Cs [4, 8.2151] 0.9265 38.0016* 
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&  

Min Cs 

2 [3,4.9145] 0.9391 44.2877 22 [3,5.7951] 0.9379 40.9175 

3 [3,4.9403] 0.9391 44.1607 23 [3,5.8502] 0.9377 40.7633 

4 [3,4.9500] 0.9391 44.1135 24 [3,5.9583] 0.9374 40.4777 

5 [3,4.9901] 0.9391 43.9208 25 [3,6.0633] 0.9371 40.2198 

6 [3,5.0723] 0.9391 43.5409 26 [3,6.1097] 0.9369 40.1120 

7 [3,5.245] 0.9389 42.8017 27 [3,6.2065] 0.9366 39.8982 

8 [3,5.2793] 0.9389 42.664 28 [3,6.2472] 0.9365 39.8130 

9 [3,5.3658] 0.9388 42.3296 29 [3,6.3348] 0.9362 39.6379 

10 [3,5.4270] 0.9387 42.1039 30 [3,6.4322] 0.9358 39.4572 

11 [3,5.4309] 0.9387 42.0898 31 [3,6.5417] 0.9354 39.2701 

12 [3,5.4732] 0.9386 41.9390 32 [3,6.6045] 0.9351 39.1704 

13 [3,5.5112] 0.9385 41.8069 33 [3,6.7106] 0.9346 39.0138 

14 [3,5.5578] 0.9384 41.6496 34 [3,6.8721] 0.9339 38.8034 

15 [3,5.5742] 0.9384 41.5950 35 [3,6.9992] 0.9333 38.6601 

16 [3,5.6085] 0.9383 41.4834 36 [4,6.997] 0.9330 38.6113 

17 [3,5.6516] 0.9382 41.3466 37 [4,7.1269] 0.9324 38.4792 

18 [3,5.6567] 0.9382 41.3306 38 [3,7.2743] 0.9319 38.4124 

19 [3,5.7048] 0.9381 41.1826 39 [4,7.6066] 0.9300 38.1411 

20 [3,5.7438] 0.9380 41.0662 40 [4,8.2151] 0.9265 38.0016* 

In Table 5.1, we can see that the corresponding optimization solutions in Case I & II 

with maximized system availability and minimized cost rate also belong to the points 
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from the Pareto frontier (marked with *). The fact indicates that all of the three 

optimization problems have consistent solutions. Also we can see that the system 

availability and cost rate are two competing objectives; when one objective becomes 

better, the other objective will turn out to be worse.  

 
Figure 5.9: Pareto Frontier of Multi-objective Optimization under Case III. 
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be considered to allocate the system resources, so multi-objective optimization can 

provide alternative solutions according to different customer preference and system 

constraints.  

 

5.4 Sensitivity Analysis 

To examine the uncertainty for the optimization results, sensitivity analysis of two 

important parameters, including the restoration degree of imperfect PM α, and the 

quasi-renewal coefficient of imperfect PM β, is performed under three cases 

separately. The parameter α ranges from 0.1 to 0.9 while the parameter β ranges from 

0.6 to 0.9. 

Under Case I, only system unavailability is considered as the optimization objective. 

The results for sensitivity analysis under Case I are indicated in Table 5.2. When the 

parameter β is fixed with a value of 0.9, we can see that the optimized system 

unavailability is firstly increasing, and then decreasing with α ranging from 0.1 to 0.9. 

When α=0.3, the optimized system unavailability reaches a peak value of 0.0605. The 

smallest optimized system unavailability equals 0.0598 with α=0.1, which is the 

highest restoration degree. Also we can check the behavior of the optimum pair [N, 

T1]. With the increasing of parameter α, the number of imperfect PM before 

replacement N is increasing, while the initial system imperfect PM interval is 

decreasing. On the other hand, when α is fixed at 0.9, the optimized system 

unavailability is decreasing with β ranging from 0.6 to 0.9. For the optimum pairs, 

with increasing β, the number of imperfect PM before replacement N is increasing 



102 
 

 
 

while the initial system imperfect PM interval is decreasing. 

Table 5.2: Sensitivity Analysis under Case I 

α 

β=0.9 β=0.8 β=0.7 β=0.6 

A  [N, T1] A  [N, T1] A  [N, T1] A  [N, T1] 

0.9 0.0601 [3,4.2724] 0.0606 [3,4.7401] 0.0615 [3,5.2310] 0.0622 [2,5.3508] 

0.8 0.0602 [3,4.4093] 0.0609 [3,4.8829] 0.0619 [2,5.1808] 0.0627 [2,5.4569] 

0.7 0.0603 [3,4.5440] 0.0611 [3,5.0231] 0.0621 [2,5.2894] 0.0631 [2,5.5632] 

0.6 0.0603 [3,4.6753] 0.0614 [3,5.1605] 0.0623 [2,5.3988] 0.0634 [2,5.6700] 

0.5 0.0604 [3,4.8034] 0.0616 [2,5.2470] 0.0625 [2,5.5093] 0.0638 [2,5.7790] 

0.4 0.0604 [3,4.9276] 0.0615 [2,5.3614] 0.0626 [2,5.6210] 0.0641 [2,5.8852] 

0.3 0.0605 [2,5.2305] 0.0614 [2,5.4777] 0.0627 [2,5.7340] 0.0643 [2,5.9940] 

0.2 0.0601 [2,5.3515] 0.0613 [2,5.5960] 0.0627 [2,5.8486] 0.0645 [2,6.1040] 

0.1 0.0598 [2,5.4752] 0.0611 [2,5.7166] 0.0627 [2,5.9651] 0.0647 [2,6.2153] 

 

Under Case II, only system cost rate is considered as the optimization objective. The 

results for sensitivity analysis under Case II are in Table 5.3. When β is fixed at 0.9, 

we can see the optimized system cost rate is decreasing with α ranging from 0.1 to 0.9. 

When α=0.1, and 0.2, the optimized system cost rate reaches the highest value of 

44.0495 with optimum pair N=1, T1=10.1018. When the restoration degree is high 

enough, the cost of imperfect PM is comparable with the replacement cost. As a result, 

the system may prefer an instant replacement instead of imperfect PM. With the 

increasing of the parameter α, both the number of imperfect PM before replacement 

and the initial imperfect PM interval are increasing. On the other hand, when α is 
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fixed with the value of 0.9, the optimized cost rate is decreasing with β ranging from 

0.6 to 0.9. For the optimum pairs, with the increasing of parameter β, the number of 

imperfect PM before replacement is increasing, while the initial imperfect PM interval 

is first decreasing and then increasing.  

Table 5.3: Sensitivity Analysis under Case II 

α 

β=0.9 β=0.8 β=0.7 β=0.6 

C [N, T1] C [N, T1] C [N, T1] C [N, T1] 

0.9 27.0753 [14,17.2784] 34.5334 [5,7.8104] 35.6160 [4,8.6962] 36.8280 [3,9.2769] 

0.8 30.5293 [14,17.4945] 38.0016 [4,8.2151] 38.6357 [3,8.9860] 39.5944 [3,9.8643] 

0.7 33.8170 [14,17.5441] 40.4618 [3,8.5615] 40.9658 [2,9.2728] 41.4068 [2,9.8619] 

0.6 36.2126 [11,19.7229] 42.0959 [2,9.0648] 42.4133 [2,9.5872] 42.9339 [2,10.1333] 

0.5 38.6764 [10,20.7841] 43.3986 [2,9.3521] 43.7868 [2,9.8866] 44.0495 [1,10.1018] 

0.4 40.8908 [10,20.7864] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 

0.3 43.0184 [10,20.7866] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 

0.2 44.0495 [1,10.1018] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 

0.1 44.0495 [1,10.1018] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 44.0495 [1,10.1018] 

The results of the sensitivity analysis for both parameters α and β under Case III are 

shown in Figure 5.10, and Figure 5.11, separately, by varying α from 0.6 to 0.9 when 

β=0.8, and varying β from 0.6 to 0.9 when α=0.8 respectively. From the results in 

Figure 5.10, we can see that, with the increasing of α, both the system unavailability 

and cost rate have smaller values in the Pareto frontier. On the other hand, in Figure 

5.11, a larger value for β also will result in a smaller combination of system 
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unavailability and cost rate. However, by comparing these two sensitivity analyses in 

Figure 5.10 and 5.11, we can come to the conclusion that the parameter α seems to 

have a larger influence on the results than the parameter β because the change of α 

will move the curve much more than will changes in β upon the same percentage 

change of both parameters. Therefore, the restoration degree for the imperfect PM is a 

more important parameter than the quasi-renewal imperfect PM coefficient in 

determining the multi-objective solution in this numerical analysis. In Figure 5.11, we 

can observe the discontinuity behavior of the Pareto frontier when β=0.9, and α=0.8. 

The fact that the algorithm is unable to jump the discontinuity has to be ascribed to 

the intrinsically complex objective function structure or the incapability to find all 

points of the optimization (Rigoni and Poles (2005)). 

 
Figure 5.10: Sensitivity Analysis of variable α Under Case III. 
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Figure 5.11: Sensitivity Analysis of variable β Under Case III. 

 

5.5 Conclusion 
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imperfect PM model by raising the degradation critical threshold using a 
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cost rate is taken into account as the objective function using GAs. Under Case III, we 

present a multi-objective optimization of both system asymptotic unavailability and 

maintenance cost rate using NSGA-II to find the Pareto optimal solutions. From the 

comparison results, we can see that the multi-objective outcomes in the Pareto frontier 

are consistent with the results from the one-objective under CASE I and CASE II. 

Furthermore, the multi-objective optimization illustrated in the Pareto frontier is a 

more useful tool for making the decisions of maintenance scheduling compared with 

the results from the single-objective optimization to provide alternative choices 

according to different customer preference and resource constraints.  

The sensitivity analysis for two important parameters of the imperfect PM degree and 

quasi-renewal coefficient of imperfect PM interval is conducted to provide insight 

into the behavior of the proposed maintenance model. From the results of our 

sensitivity analysis, we can see that both these two parameters have a significant 

impact on the optimization results. However, in this numerical analysis, the imperfect 

PM degree seems to be more influential than the quasi-renewal coefficient of the 

imperfect PM interval. 

In our future research, we will focus on the condition-based maintenance policies for 

multi-component systems embedded within the framework of dependent competing 

risk of degradation process and random shocks. 
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Chapter 6  

Modeling the Dependent Competing Risks with Multiple 

Degradation Processes and Random Shocks Using 

Time-varying Copulas 

 

ACRONYMS  

NHPP Nonhomogeneous Poisson process 

MLE Maximum likelihood estimation 

AIC Akaike information criterion 

BIC Bayesian information criterion 

PQD Positively quadrant dependent 

CDF Cumulative distribution function 

DDP Decreasing degradation path 

IDP Increasing degradation path 

SJC Symmetrised Joe-Clayton 

DTS Degradation threshold shocks 

  

NOTATIONS  

Ɵi fixed effect parameter for the ith mean degradation path 

Xi random variable for the ith multiplicative degradation path 

( )
iXF x  CDF distribution for random variable Xi 

Di(t; Xi, Ɵi) 
multiplicative path function for the ith degradation process with 

random variable Xi, and parameter Ɵi 

εi(t,Ɵi) 
deterministic mean path for the ith degradation process with fixed 

effect parameters Ɵi 

M
(i)

(t) the ith cumulative degradation wear up to time t 

( )

1

i  coefficient of nonfatal shock number in the ith degradation process 
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( )

2

i  
coefficient of cumulative nonfatal shock amount in the ith 

degradation process 

G(t, γ
(i)

) 
time-scaled covariate factor to accelerate the degradation rate with 

parameter γ
(i)

 

l
(i)

 critical failure threshold for the ith degradation process 

T
(i)

 failure time of the ith degradation process 

fi(t) failure rate of the ith degradation process 

Ri(t) marginal reliability function of the ith degradation process 

R(t) system reliability function 

C copula function 

c copula density function derived from the multivariate copula C 

τ Kendall's tau 

T   lower distribution bounds with Kendall's tau 

T   upper distribution bounds with Kendall's tau 

ρ Spearman's rho 

P  lower distribution bounds with Spearman's rho 

P  upper distribution bounds with Spearman's rho 

 

6.1 Introduction 

In reality, many systems or components are subjected to multiple degradation 

processes (Li and Pham (2005a), Pham et al. (1997)) as well as random shocks (Li 

and Pham (2005b)); either they can degrade in more than one way, or receive impacts 

from different types of random shocks. Therefore, the ability to consider multiple 

competing risk measures is required to examine the dependent structures between 

risks to derive the system reliability function more accurately. Assuming 
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s-independence between degradation processes may underestimate system reliability 

(Wang (2003)). However, in this typical competing risk problem, there exist two kinds 

of the s-dependent structures that should be taken into consideration: (a) the 

s-dependent relationship between degradation processes and random shocks, and (b) 

the s-dependent relationship among various degradation processes. 

A typical example for these s-dependent competing risks is the human body system 

(Gross (1973)). The human body is composed of a variety of biological systems, the 

organs, composed of the tissues, composed of the cells. Each unit in our body, from 

tiny invisible cells to the biological systems, may experience graceful degradation of 

its function until a certain age. Taking a human heart as an example, at the age of 40, 

the efficiency of the heart delivering blood to the body will begin to be greatly 

reduced because of the gradual loss of elasticity of blood vessels. As a result, the 

arteries may harden or become blocked. Also, many factors can contribute as a shock 

to the human body, such as non-normal living environment, and illness. Diabetes can 

damage many parts of the human body, such as the heart, kidneys, and blood vessels. 

Therefore, the human body is a complex system with correlated multiple organs and 

subsystems that contribute to the proper functioning of the physical mechanism.  

As a consequence, a more systematic probability model combining these two dynamic 

dependent structures should be considered for multiple competing-risk systems. For 

the s-dependent models of degradation and random shocks, Finkelstein (2009) 

introduces a generalized Strehler-Mildvan model to estimate the first passage time of 

the survival function for the system subject to cumulative damage due to biological 
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aging, and sudden killing events. Van Noortwijk et al. (2007) put forward a novel 

approach to combine two stochastic processes of deteriorating resistance and 

fluctuating load for the reliability analysis of a structural component. Ye et al. (2011) 

propose a degradation-oriented single failure time model to capture two failure 

mechanisms of degradation and shocks using the Brown-Proschan model under the 

condition that only failure times and failure modes are recorded without the 

observable information of shock magnitude and degradation amount. Wang and Pham 

(2011) recently study a multi-objective imperfect preventive maintenance 

optimization for one single-unit system subjected to the dependent competing risks of 

degradation wear and random shocks, by simultaneously maximizing the system 

asymptotic availability and minimizing the system cost rate. 

For the multiple degradation models, Saassouh et al. (2007) consider a two-mode 

stochastically deteriorating model with a sudden change point in the degradation path, 

where the increments of deterioration follows a gamma law when the system is in the 

first mode, and the mean deteriorating rate increases when it flips into the second 

mode. Sari et al. (2009) present a bivariate degradation model with constant stress to 

accommodate the dependency between more degradation measures distributed with 

different marginal functions. Pan and Balakrishnan (2011) introduce a reliability 

estimation model for a complex structure system with bivariate degradations 

involving two or more performance characteristics by utilizing the bivariate 

Brinbaun-Saunders distribution.  

Previous research has been focused on the reliability estimation of competing risks 
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under either the dependent relationship between degradation and random shocks, or 

the dependent relationship among degradation processes. However, there are no 

studiesconsidering both types of dependent structures into one model. This chapter 

contributes to the knowledge of dependent competingrisk models by adding a 

time-scaled covariate factor governed by random shocks into the degradation paths, 

and also modulating the joint distribution of multiple degradation processes by linking 

the marginal functions using a copula method. The traditional way to build multiple 

degradation models is to utilize multivariate distributions, but this approach forces the 

limitation of a homogeneous distribution on each marginal degradation path. Recently, 

considerable attention has been paid to the s-dependence behavior between random 

variables modeled by copulas, which allows us to link the univariate marginal 

distributions to obtain a joint probability of the events. 

Cossette et al. (2008) derive the discounted penalty function via Laplace transforms 

for a generalized Farlie-Bumbel-Morgenstern copula model in the presence of the 

associations between the claim sizes and inter-claim time in a compound Poisson risk 

model. Ram andSingh (2008) put forward a mathematical modeling for a parallel 

redundant system with two s-independent repairable subsystems by using a bivariate 

Gumbel-Hougaard family copula. Lo and Wilke (2010) develop a new copula graphic 

estimator applied to a model with multiple dependent competing risks, and apply the 

model to the data set of unemployment duration from Germany. In the work by 

Miladinovic and Tsokos (2009), a modified Gumbel failure model is used to study the 

system failure time, and Bayesian reliability estimates with five different parametric 



112 
 

 
 

prior and one nonparametric kernel density prior are compared with each other for 

their effectiveness by using square error loss. Although copula is a flexible, powerful 

technique to build multivariate distributions widely used in various applications 

including economics, finance, and actuarial science, its application to model multiple 

competing risks in reliability are few. Kaishev et al. (2007) establish an s-dependent 

multiple-degradation model to examine the dependencies among causes of death to 

analyze the impact of complete or partial elimination of causes of death on the 

survival function from competing risks using copulas. 

The main contribution of this chapter is the development of an innovative dependent 

competing risk model. (a) The modelconsiders two types of s-dependent structures 

into one model: the s-dependent relationship between degradation process and random 

shocks, and the s-dependent relationship among degradation processes. (b) We 

introduce a new method to handle the dependency between degradation processes and 

random shocks by adding a time-scaled covariate factor of nonfatal shocks into the 

cumulative degradation path functions. (c) Also, we employ the copula method which 

has several advantages over the directing methodto fit the joint distribution of 

competing random variables, and determine the modified bounds for the system 

reliability estimation.  

 

6.2 Dependent Competing Risk Model 

6.2.1 System Description 

In this section, we describe the mathematical modeling for the s-dependent competing 
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risks with multiple degradation processes and random shocks. The system has m 

degradation processes, each with 
ik  status, for i =1, 2,..., m, and one random shock, 

all of which are interplaying with each other, as shown in Figure 6.1. In this figure, S 

represents the random shocks, F represents the system failure, and ( )i

kM represents the 

kth degradation status from the ith degradation path. A more specific example 

illustrated in Section 6.1 about the human body can be used to illustrate the model: the 

first degradation process is the human heart, the second degradation process is the 

blood vessels, and diabetes represents the random shocks. 

The basic assumptions underlying our mathematical model are as follows.  

1) The system is a multi-state deteriorating system. Initially, the system is in a 

good status 1 2

(1) (2) ( )( , ,..., )
m

m

k k kM M M
. As the time goes, it can go to the next 

degradation status due to aging, jump to another lower degradation status due 

to the cumulative amount of random shocks, or result in a system failure due 

to the fatal shock occurring.  

2) We consider two kinds of random shocks in this system: (a) a fatal shock 

which causes the system to fail immediately, and (b) a nonfatal shock which 

has two impacts on the degradation process: sudden increment jump, and 

degradation rate acceleration. 

3) The system is subject to two competing risks of degradation wear and random 

shocks, which are dependent oneach other, modulated by a time-scaled 

covariate factor.  

4) The system has more than one degradation process, all of which are dependent 
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oneach other, linked by the copula method. 

5) The system exhibits two types of failure mechanisms: fatal shock to the 

system; and although no fatal shock happens, the cumulative degradation 

amount of any degradation process exceeds a certain critical failure threshold. 

 

Figure 6.1: Flow diagram for the system subject to multiple competing risks. 

 

6.2.2 Mathematical Model 

6.2.2.1 Random Shock Model 

Consider a system with multiple failure mechanisms which can be categorized as m 

degradation failures, and a fatal shock failure. We assume that the arrival of random 

shocks follows a homogeneous Poisson process { ( ), 0}N t t   with occurring rate λ, 

where the random variable N(t) denotes the number of random shocks until time t. 

Random shock loadings arriving at timesT1, T2,...,Tn are denoted as {wi1, wi2,...,win} 

for the ith degradation process i =1, 2,...,m, where n is the number of random shocks 

occurring during the degradation process. We assume that the sequence of random 

variables wij is nonnegative, s-independent, and identically distributed with a common 
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distribution Qi(x) for all random shocks in the ith degradation process. Let ( ) ( )j

iQ x for 

j=0,1,2,... be the j-fold Stieltjes convolution with Qi(x) itself. In other words, 

( )

1 2( ) ( ... )j

i i i ijQ x P w w w x     . 

The individual random shock could be fatal to the system at time point t with 

probability p(t) so that the process of the fatal shocks occurring follows an NHPPwith 

a rate λ p(t). However, if the random shock is nonfatal to the system, it will bring 

sudden increment jump and degradation rate acceleration to the degradation process. 

If fatal shock does not happen to the system until time t, there exists cumulative 

nonfatal shock damage to the ith degradation process, denoted by a compound 

Poisson process 2 ( )

0
( )

N t

i ijj
S t w


 . In that case, if Qi(x) follows an exponential 

distribution with mean μ, then the compound Poisson process leads to a gamma 

distribution, that is, ( )

2( ) ~ ( ( ), )j

iQ x Gamma N t  . 

6.2.2.2 Degradation Path Function 

The basic multiplicative path function for the ith degradation process is considered to 

tolerate the item-to-item variation by including the random variable Xi, and is  

( ; , ) ( ; )i i i i i iD t X X t                                                   (6.1) 

The ith mean degradation path ƞi(t; Ɵi) can be either monotonically decreasing, or 

monotonically increasing, called DDP, or IDP respectively. Non-monotonic 

degradation is also studied by several authors, such as the light displays in Bae and 

Kvam (2004), but such cases seldom appear in real life. For example, if X is 

Weibull-distributed, one simple example for multiplicative modeling is ( ; , )D t X t  , 

where X   is the rate for the degradation path. More examples can be found in Bae 
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et al. (2007), where we can see that such a basic degradation path function could be 

utilized to cover a wide range of degradation models. 

6.2.2.3 Degradation Process Embedded with Random Shocks 

In this section, we will introduce a new model to handle the dependent relationship of 

degradation and random shocks by using a time-scaled covariate factor. The 

degradation process will receive two kinds of impacts from the nonfatal random 

shocks: sudden increment jumps, and degradation rate acceleration. In other words, 

the nonfatal shock will affect the degradation process in such a way that the internal 

clock of the system will be accelerated by some degree. The ith degradation wear 

M
(i)

(t), including both aging with time and instantaneous damage induced by the 

random shocks, can be expressed as ( ) ( ) ( ) ( )i

i iM t D t S t  . The first term 

( ) ( ; )i i i iD t X t    is the multiplicative path function of the ith degradation process, 

and the second term 2 ( )

0
( )

N t

i ijj
S t w


  reflects the sudden increment jump from the 

impact received by the nonfatal random shocks towards the ith degradation wear. 

Furthermore, to capture the extra effect of the degradation rate acceleration, we 

introduce a new item G(t, γ
(i)

) into the ith degradation path function Di(t) by 

borrowing the original idea from the time-scaled model of accelerated life testing. The 

system time in the ith degradation paths Di(t) is scaled by an accelerated factor from t 

to 
( )( , )iG tte  . The ith cumulative degradation wear function can be defined as 

( )
2 ( )( ) ( , )

1
( ) ( ; )

i N ti G t

i i i ijj
M t X te w 


 

                                      
(6.2) 

where 2 ( )( ) ( ) ( )

1 2 2 1
( , ) ( )

N ti i i

ijj
G t N t w  


   , and the vector parameters γ

(i)
 are unknown. 

Note that the first item in the above function G(t, γ
(i)

) reflects the impact from the 
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number of nonfatal shocks towards the ith degradation wear. Usually, we have 
1

( ) 0i  , 

and then the first term can be viewed as representing the fact that the degradation rate 

is more likely to increase with the nonfatal shock number. If 
1

( ) 0i  , it means that the 

degradation rate will not be affected by the nonfatal shock number. The second term 

2

2

( )( )

1

N ti

ijj
w

  for 
2

( ) 0i   is developed to modulate the situation that the cumulative 

nonfatal shock amount will contribute to an acceleration of the system degradation 

rate. If ( )

2 0i  , then no impact of cumulative nonfatal shock amount will happen to 

accelerate the degradation rate.  

6.2.3 Reliability Estimation 

6.2.3.1 Reliability Estimation Modeling 

The measurements of the m degradation processes are random variables 

(1) (2) ( )( ) { ( ), ( ),..., ( )}mM t M t M t M t  at observation time point t. From the degradation 

failure definition, the system is considered to be failed if at least one of the m 

degradation processesreaches its corresponding critical failure threshold, which is 

known as (1) (2) ( ){ , ,..., }mL l l l . The catastrophic failures occur when the fatal shocks 

come to the system. Therefore, the system is in a working condition only when no 

fatal shock happens, and all of the individual degradation processes keep below their 

failure thresholds. Based on this definition, given the failure time of the ith 

degradation process ( )iT , the reliability of the multiple degradation system embedded 

with random shocks can be written as 

(1) (2) ( )

1

(1) (1) (2) (2) ( ) ( )

1

( ) P[ , ,..., ]P[ ( ) 0]

P[ ( ) , ( ) ,..., ( ) ]P[ ( ) 0]

m

m m

R t T t T t T t N t

M t l M t l M t l N t

    

    
                  

(6.3) 

If the multiple degradation failure mechanisms are assumed to be s-independent, the 
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system reliability in (6.3) can be rewritten as 

(1) (2) ( )

1

(1) (1) (2) (2) ( ) ( )

1

( ) ( ) ( )... ( ) [ ( ) 0]

P[ ( ) ] [ ( ) ]... [ ( ) ] P[ ( ) 0]

m

m m

R t R t R t R t P N t

M t l P M t l P M t l N t

   

      
             (6.4) 

However, if the degradation failure mechanisms are not s-independent with each other, 

then we can easily see that (6.4) will not provide accuratesystem reliability estimation. 

In this case, as we considered in this chapter, a new approach for jointing the marginal 

reliability functions under different degradation distributions is needed. However, the 

traditional multivariate distributions lay the limitation of the same marginal functions. 

Therefore, instead of using multivariate distributions, the copula method is utilized to 

establish the s-dependent structure among various degradation measurements. There 

are many advantages of using the copula function approach in analyzing the 

dependence structure such as (a) copulas allow us to separately model the marginal 

behavior, and the dependence structure; (b) the copula function can provide us with 

the degree of the dependence, and also the structure of the dependence; (c) the 

univariate marginal function can be drawn from different distributions without 

restriction; and (d) copulas are invariant under strictly increasing and continuous 

transformation. Because of these advantages, the copula method is becoming a 

flexible, powerful technique to build ajoint distribution, especially when the marginal 

functions are known but complex, as in this problem. 

6.2.3.2 Two-stage Statistical Inference for Copula Parameters 

Let 1 2 1{ , ,..., }T

t t nt tx x x    be the data matrix, drawn from the marginal CDF ( )i iF x  

with copula C. The density function for the joint distribution can be obtained as 
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1 2 1 1 2 2

1

( , ,..., ) ( ( ), ( ),..., ( )) ( )
n

n n n i i

i

f x x x c F x F x F x f x


                             (6.5) 

where 1 1 2 2 1 1 2 2 1 1 2 2( ( ), ( ),..., ( )) ( ( ( ), ( ),..., ( ))) ( ) ( )... ( )n

n n n n n nc F x F x F x C F x F x F x F x F x F x     . 

Therefore, the log-likelihood function is in the form of 

1 1 2 2

1 1 1

( ) ln ( ( ), ( ),..., ( )) ln ( )
T T n

t t n nt i it

t t i

l c F x F x F x f x
  

  
                         

(6.6) 

where   is composed of all the parameters from both marginal functions 
1 , and 

copula
2 .The maximum likelihood estimator is the value that maximizes ( ; )l x ; that 

is, 

max ( )MLE l


 


                                                      (6.7) 

If 
1  is given, the estimation of the parameters 

2  from the copula functioncan be 

performed as 

22 1 1 2 2 2 1

1

ln ( ( ), ( ),..., ( ); , )
T

t t n nt

t

ArgMax c F x F x F x  


                             (6.8) 

The detailed statistical inference of the copula method can be found in Nelsen (2006). 

In this chapter, we assume that the parameters for each marginal function 
1  are 

already given. A two-stage MLE is used to perform the statistical inference for 

copulas: (a) the first stage is to calculate the marginal reliability probability of each 

degradation process with the given parameters in marginal functions; and (b) in the 

second stage, the MLE is used to estimate the parameters of the joint copula reliability 

function with the underlying of the dependent relationship between multiple 

degradation measures. 

Stage 1: Marginal Degradation Reliability 

The ith degradation process will survive totime t only if its cumulative degradation 

remains below its corresponding failure threshold ( )il  conditioned on the event that 
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there is no fatal shock. In other words, the conditional probability for the ith 

degradation process to survive is given by 

( )

( )
( ) ( )

1 2

( ) ( )

( , ) ( )

2 20

( )

2

( ) ( )

21 0

(

0

( ) ( ( ) )

( ( ) ( ) | ( ) ) ( ( ) )

( ( ) ) ( ( ) 0)

( ( ) ) ( ( ) ) ( )

( ( ) )

i

i
i i

i

i i

i

G t i

i i in

i

i i

l
n z i n

i i in z

i
t

X

R t P M t l

P X te S t l N t n P N t n

P X t l P N t

P N t n P X te z l dQ z

l
exp q u du F
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(6.9) 

where the function ( ) 1 ( )q u p u  . 

The failure rate of the ith degradation process can be represented as 

( )
( ) i

i

dR t
f t

dt
                                                       (6.10) 

which cannot be obtained in a closed form, but a numerical solution can be 

approximated. 

Stage 2: System Reliability 

Knowing the marginal distributions will not automatically lead to a unique copula 

fitting to link the joint distributions. Therefore, during the process of applying a 

copula to this problem, there are several issues that should be discussed: (a) which 

copula functions to use, (b) tail dependency, and (c) upper-lower bounds for the joint 

copula function. In the 1
st
 stage, the analytical solutions for the marginal degradation 

reliability functions are obtained. If C is the joint copula of the marginal degradation 

distributions, the system reliability at time t in (6.3) can be expressed in terms of the 

copula method 
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 1 2
0

( ) ( ), ( ),..., ( ) exp( ( ) )
t

mR t C R t R t R t p u du                                
(6.11) 

If the system has two degradation processes linked by bivariate Gumbel copula given 

as 

1/( , ) exp{ [( ln ) ( ln ) ) }C v z v z                                           (6.12) 

then we can obtain the system reliability function as 

1/

1 2
0

( ) exp{ [( ln ( )) ( ln ( )) ) }exp( ( ) )
t

R t R t R t p u du                              
(6.13) 

Using MLE, the full log-likelihood function of the multivariate copula with marginal 

reliability function can be expressed as 

 (1) (2) ( )

1 2

1

ln ( ), ( ),..., ( )
m

m

j j m j

j

c R t R t R t


                                        (6.14) 

where c is the copula density function derived from the multivariate copula C. 

The copula parameters can be estimated by maximizing the full log-likelihood 

function in (6.14). To check the goodness of the fit from the copula fitting, multiple 

criteria could be chosen such as log-likelihood, AIC, and BIC. 

6.2.3.3 Reliability Bounds for Bivariate Degradation Processes 

Based on the assumptions and derivation in the previous sections, we can obtain the 

marginal distributions for each degradation process embedded with random shocks, 

and the joint distribution of the system reliability function by the copula method. The 

Frechet-Hoeffding bounds (Nelsen (2006)) provide the limits for the possible copula 

functions based on the marginal distributions. If there exists a bivariate copula C for 

all 0 , 1u v  , then we have the Frechet-Hoeffding bounds 

max( 1,0) ( , ) min( , )u v C u v u v     

where u, and v are the CDFs of marginal random variables. 
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When applying this bound to the bivariate degradation processes, we have the lower 

and upper bounds for the joint copula distribution at observation time t 

1 2 1 2 1 2max( ( ) ( ) 1,0) ( ) ( ( ), ( )) min( ( ), ( ))R t R t R t C R t R t R t R t      

The Frechet-Hoeffding bounds can be further narrowed to provide a better limit for 

the system reliability estimation. Nelsen et al. (2001) suggest that the set of copulas 

with a common Kendall's tau ( 1 1   ), the point-wise lower, and upper distribution 

bounds can be stated as  

  21
( , ) max 0, 1, ( ) 1

2
T u v u v u v u v 

            
                       (6.15) 

and 

  21
( , ) min , , 1 ( 1) 1

2
T u v u v u v u v 

            
                       (6.16) 

where 
2 2

4 ( , ) ( , ) 1 1 4 ( , ) ( , )
I I

C C
C v z dC v z v z v z dvdz

v z


 
   

                   (6.17) 

Instead of using Kendall's tau, for a set of copulas with a common value of 

Spearman's rho with 1 1   , the point-wise lower, and upper distribution bounds 

can be written as 

 ( , ) max 0, 1, ,1
2

u v
P u v u v u v  

 
      

                              
(6.18) 

and 

 
1

( , ) min , , 1,1
2

u v
P u v u v u v  

  
     

                               
(6.19) 

where 

2 2
=12 ( , ) 3 12 ( , ) 3

I I
C u v dudv uvdC u v                                   

(6.20) 

   
1 1

3 32 6 2 61
( , ) 9 3 9 3 9 3 9 3

6
a b b b a b b a

 
      

                         

(6.21) 

The proof of the upper and lower bounds in terms of Kendall's tau, and Spearman's 

rho can be found in Nelsen et al. (2001). Their paper also indicates that the newer 
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lower bound with a positive Kendall‟s tau is an improvement over the 

Frechet-Hoeffding lower bound, while the new upper bound with a negative Kendall‟s 

tau is an improvement over the Frechet-Hoeffding upper bound. However, unlike the 

case of Kendall's tau, the lower bound will be improved when 1/ 2   , and the 

upper bound will be improved when 1/ 2  . 

Therefore, the modified joint copula bounds at time t in this bivariate degradation can 

be expressed as 

1 2 1 2 1 2( ( ), ( )) ( ) ( ( ), ( )) ( ( ), ( ))T R t R t R t C R t R t T R t R t                            (6.22) 

for Kendall's tau, and 

1 2 1 2 1 2( ( ), ( )) ( ) ( ( ), ( )) ( ( ), ( ))P R t R t R t C R t R t P R t R t                            (6.23) 

for Spearman's rho. 

 

6.3 Numerical Example 

6.3.1 System Description 

Consider a system subject to two degradation processes, and one random shock. The 

random shocks occur with rate 1/15  , and the fatal probability ( ) 1 exp( )p t t   , 

where 0.0002  .For the first degradation path function, assume that ( ; , )D t X t  , 

X  , and Weibull distributed (Zhang et al. (2010)) with CDF 

( ) 1 exp[ ( ) ]  for , 0k

XF x x k     , where 0.8  , and 1k  . The individual shock 

loading towards the first degradation process follows the s-normal distribution with 

parameter 5w  , and 3w  . Assume the random variables in the time-scaled factor 

(1)

1 0.05  , (1)

2 0.008  , and critical failure threshold 1 =100l（ ） .For the second 
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degradation path function, choose 
2 1( ; , ) log[ ]D t X t     where 

1 4.8  , and 
2  is 

gamma distributed with pdf of 
1

( ) , 0
( )

x

a b

aX
x ef x x

b a




 


, where 50a  , and 

0.01b  . The individual shock loading towards the second degradation process 

follows the exponential distribution with mean 0.1v  . Assume (2)

1 0.01  , (2)

2 0.005  , 

and critical failure threshold (2) 3.5l  . 

According to (6.9) in Section 6.2, we can obtain the marginal reliability function for 

each degradation path, as shown in Figure 6.2(a), and the corresponding failure rate is 

indicated in Figure 6.2(b). From Figure 6.2, we can see that both of the degradation 

processes have a lifetime of approximately 450 days, and the first degradation process 

has a larger failure rate than the second one in the early time, but this situation is 

reversed from the cross time point of approximately 100 days. 

 

Figure 6.2: Marginal degradation function. 
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6.3.2 Multiple Processes with Constant Copulas 

Given marginal degradation reliability functions derived by analytical methods, the 

copula method is applied to fit the dependent bivariate data with the help of the 

copula toolbox written by Andrew Patton using Matlab R2010a. To choose the most 

suitable fitting copula, we test both constant and time-varying copulas using the 

log-likelihood, AIC, and BIC as the criteria for goodness of fit. First of all, we test the 

results from the nine selected constant copulas, which are widely used in many other 

research fields such as finance. Comparingthe results shown in Table 6.1, we can see 

that, based on the log-likelihood, the Clayton copula gives us the highest likelihood, 

followed by SJC, and then Rotated Gumbel, but the performance of Rotated Clayton 

is the worst. 

An important association measure in the copula method is tail dependence (Nelsen 

(2006)), which indicates the limiting probability that one margin value exceeds a 

certain threshold given that the other margin already exceeds the same threshold if 

that limiting probability exists. From Table 6.1, see that the three best fitting copulas 

all allow for non-zero low tail dependence. Furthermore, the fact that all of their tail 

dependenciesshare very similar values indicate the consistency of the fitting 

results.Acontour plot of the Clayton copula shown in Figure 6.3 depicts the 

bi-dimensional distribution with the estimated parameter 2.2932  , as fitted by this 

model.  
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Table 6.1: Results of constant copula fitting 

 

Copulas LL 

Parameter 

Estimation 

Lower Tail 

Dependence 

Upper Tail 

Dependence 

Ranking 

1 Normal 1216.75 0.7153 0 0 5 

2 Clayton 1774.31 2.2932 0.7391 0 1 

3 Rotated Clayton 120.56 0.2122 0 0.0381 9 

4 Plackett 927.99 99.0243 0 0 6 

5 Frank 629.96 9.3995 0 0 8 

6 Gumbel 647.50 1.8075 0 0.5326 7 

7 Rotated Gumbel 1723.76 2.2695 0.6428 0 3 

8 Student‟s t 1405.20 [0.7600,3.1793] 0.4906 0.4906 4 

9 Symmetrised 

Joe-Clayton 

1766.46 [0.0930,0.7073] 0.7073 0.0930 2 

6.3.3 Multiple Processes with Time-varying Copulas 

After testing the results from constant copulas, we also check the performance of 

time-varying copulas. Three time-varying copulas are employed to fit the degradation 

joint distribution, including the time-varying Normal (or Gaussian) copula, 

time-varying Rotated Gumbel copula, and time-varying SJC copula. In Table 6.2, 

comparingthe fitting results from both constant and time-varying copulas, see that the 

ranking results from all three criteria are consistent with each other. The best copula 

fitting for the degradation joint distribution is the time-varying SJC copula with the 

highest log-likelihood of 1886.19, and AIC and BIC of -3772.40; followed by the 

time-varying Rotated Gumbel copula with a log-likelihood of 1882.95, and AIC 
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andBIC of -3765.90; and then the Clayton copula with log-likelihood of 1774.31, and 

AIC and BIC of -3548.60. However, the Rotated Clayton is still the worst fitting 

among all the copulas, with a log-likelihood of 120.56 and AIC and BIC of-241.10.  

 

Figure 6.3: Clayton 3D Plot. 

 

Table 6.2: Goodness of fit from constant vs. time-varying copulas 

 Copulas LL AIC BIC Ranking 

1 Normal 1216.75 -2433.50 -2433.50 8 

2 Clayton 1774.31 -3548.60 -3548.60 3 

3 Rotated Clayton 120.56 -241.10 -241.10 12 

4 Plackett 927.99 -1856.00 -1856.00 9 

5 Frank 629.96 -1259.90 -1259.90 11 

6 Gumbel 647.50 -1295.00 -1295.00 10 

7 Rotated Gumbel 1723.76 -3447.50 -3447.50 5 

8 Student‟s t 1405.20 -2810.40 -2810.40 6 
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9 Symmetrised Joe-Clayton 1766.46 -3532.90 -3532.90 4 

10 Time-varying Normal 1331.35 -2681.70 -2681.70 7 

11 

Time-varying Rotated 

Gumbel 

1882.95 -3765.90 -3765.90 2 

12 Time-varying SJC 1886.19 -3772.40 -3772.40 1 

The parameter estimation curve for the time-varying copulas is indicated in Figure 6.4, 

where the solid lines come from the estimation of time-varying copulas, while the 

dashed lines come from the corresponding constant copulas. Compared with the 

results from their corresponding constant copulas, we can see that the more flexible 

parameter estimation of time-varying copulas provides a better goodness of fit no 

matter what criteriaare used. The performance of the time-varying Normal, the 

Rotated Gumbel, and the SJC copula increases 9.42%, 9.24%, and 6.78% respectively 

under the log-likelihood criteria. 
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Figure 6.4: Parameter estimation curve for time-varying copulas. 

6.3.4 Reliability Estimation 

Plugging the marginal degradation reliability distributions into the fitted copulas, we 

can obtain the CDF behavior of the joint copula distribution, as shown in Figure 6.5, 

where the joint distribution curves among the best three copulas (time-varying SJC, 

time-varying Rotated Gumbel, and Clayton copula), maximum copula, minimum 

copula, and s-independent copula are compared with each other. For bivariate 

s-independent copula, C(u, v)=uv. The best fitting of the time-varying SJC copula lies 

between the time-varying Rotated Gumbel and Clayton copula, while all of these 

three best fitting copulas are bounded by the minimum and maximum 

Frechet-Hoeffding limits. The fact that all of these three best copulas overlap with the 

s-independent copula in the early time is because at the early system stage both of the 

two degradation processes are in a good status with high performance, and unlikely to 

receive impacts from the other degradation process. However, after a period of time, 
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they all exhibit some degree of s-dependence due to the interplaying loadings from 

other degradation processes by deviating from the s-independent copula as indicated 

in Figure 6.5. 

From the definition of the PQD (Nelsen (2006)), we can see that all of these three best 

fitting copulas hold the PQD property. Compared with the assumption that 

degradation processes are s-independent fromeach other, it may be more realistic to 

assume some sort of dependence among various degradation processes. For example, 

the low stage of one degradation process may result in an increasing loading on the 

other relative degradation processes. Therefore, in a two-degradation process, we may 

wish to establish a model in which the small degradation amount in the first 

degradation process tends to occur with small degradation amount in the second 

degradation process; that is, the two degradation processes are positively quadrant 

dependent.From Section 6.2.3.3, we know that, although Frechet-Hoeffding bounds 

are commonly used limits for copula functions, they can be further narrowed by either 

Spearman's rho (ρ), or Kendall's tau (τ). Using (6.22), and (6.23), we can obtain the 

corresponding modified joint copula Spearman's and Kendall's limits. As shown in 

Figure 6.5, Spearman's lower limit is a modified limit for the Frechet-Hoeffding lower 

bound. These modified upper and lower limits will contain all possible system 

reliability estimationsregardless of the copula functions, but with a given measure of 

association and marginal distributions. 
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Figure 6.5: Comparison of the various joint copula probabilities. 

Given the joint copula degradation fitting, we can derive the system reliability by 

multiplying the copula probability with the probability of no fatal shock occurring 

because these two events are s-independent of each other. As a sequence, the system 

reliability estimated by the best time-varying SJC copula is indicated in Figure 6.6 

with the modified lower and upper limits, which can provide the system designers 

with the more accurate range for the system reliability in their design structure, and 

indicate the possible effects from the alternative plans of improving the system design. 

This information also can be used by decision makers to study the worst-case scenario 

to make the budget and system availability analysis for maintenance scheduling and 

warranty policy. 
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Figure 6.6: Best joint copula fitting with modified limits. 

 

6.4 Conclusion 

We employ the copula method to build a more flexible s-dependent competing model 

for a continuously degraded system in which (a) the dependent structure among 

different degradation processes is linked by both constant and time-varying copula 

methods, and (b) the s-dependent structure between random shocks and degradation 

processes is modulated by a time-scaled covariate factor that is used to absorb the 

extra nonfatal shock impact to accelerate the degradation rate.The two-stage statistical 

inference for copula parameters, and narrowed upper andlower distribution 

bounds,areapplied to provide a more robust estimation of the system reliability. Three 

criteria of log-likelihood, AIC (Pham (2006)), and BIC are used to check the goodness 

of fit of eleven copula functions‟ performance. Given the numerical solution to the 

proposed model, we can see that the time-varying copulas perform better than the 

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

R
e

li
a

b
il
it
y

 

 

System Reliability Estimated by
Time-varying SJC Copula

Lower Limit

Upper Limit



133 
 

 
 

constant copulas by allowing for time-changing parameter estimation. Furthermore, 

the modified distribution bounds give both the designers and decision makers more 

useful information aboutthe improvement plan for the system performance 

characteristics.   

It is interesting for further research to study (a) the parameter estimation for the 

degradation function featured as cumulative degradation embedded with random 

shocks, and (b) the issue of developing a condition-based imperfect maintenance and 

repair policy for the proposed dependent multiple competing risk model.  

  



134 
 

 
 

Chapter 7  

Copula Reliability Modeling of Multi-state Degraded 

Systems Subject to Multiple Dependent Competing Risks 

 

7.1 Introduction 

Traditional life testing is widely used for decades in manufacturing and industrial 

application by researchers and engineers to determine how well the critical 

components in a system will perform under different operating environment. Based on 

the estimation of failure time distribution for components or systems, some important 

decisions regarding product design, improvement and warranty plans can be made to 

satisfy the customer requirement. However, with the developing of modern 

technologies the systems are becoming more and more reliable so that it limits the 

availability of failure-time data. Therefore, sometimes when the systems are with high 

reliability, or when it is extremely expensive to test system failure, traditional life 

testing may not be so helpful. Recent technology advance in sensor monitoring 

systems have dramatically accelerated the research focus of degradation testing and 

degradation-based data analysis. Usually, the components or system will not fully fail 

suddenly, but can degrade with the aging and wear process. The system efficiency and 

performance may decrease with the increasing of the degradation levels until the 

degradation level of the system exceeds certain failure threshold. As a result, more 

attention should be paid to the system in terms of maintenance, availability, 

inspections as the system transits from a good system state to a bad system state.  
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For the multi-state degradation model, Chryssaphinou et al. (2011) propose a 

repairable multi-state degraded system composed of m components, whose sojourn 

time in any state is characterized by a discrete-time semi-Markov chain. Soro et al. 

(2010) develop a continuous-time Markov model for evaluating the reliability 

performance measures of multi-state degraded system with imperfect preventive 

maintenance and minimal repairs. Eryilmaz (2010) derives the mean residual and 

mean past lifetime functions for multi-state k-out-of-n systems, in which the 

degradations follow a Markov process with discrete state spaces. Li and Pham (2005a) 

present a methodology to generate system reliability and state probability for a 

generalized multi-state degraded system with multiple competing risks of two 

degradation processes and random shocks. Abou (2010) considers a number of 

alternative probabilistic models for multi-state systems with two failure modes by 

introducing multi-state operators that follow the associative and commutative laws. 

Nourelfath and Ait-Kadi (2007) apply a Markov model to modulate the redundancy 

maintenance optimization problem with reliability constraints and minimal cost 

configuration for series-parallel multi-state system by considering the priorities 

between components. Ramirez-Marquez and Coit (2005) describe a new Monte-Carlo 

simulation methodology of reliability estimation process based on multi-state minimal 

cut vectors compared with the actual multi-state two-terminal reliability computation. 

In one system, due to the manufacturing specification, various components may 

behavior very differently, but at the same time the same usage history may also result 

in some dependent structures among the various degradation measures from 
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components. The degraded status of the multi-state system is discretized into a finite 

number of states, which are characterized by the interplaying function of the 

degradation measure levels of components composed of systems. Furthermore, 

random shocks will contribute to the system in two ways: (a) fatal shock, which will 

fail the system immediately; and (b) non-fatal shock, which will not fail in this case 

but affect directly on system degradation path by cumulative shock loadings or 

degradation rate acceleration. The dependence of the degradation processes and 

random shocks can be exhibited in two aspects: on one hand, degradation process will 

make the system more vulnerable to the environment factors, such as temperature, 

pressure, and random shocks; on the other hand, the random shocks will accelerate the 

degradation process with two modes of sudden jump or minor change of degradation 

rate. 

As a sequence, a more systematic probability model for the dynamic dependent 

structure underlying these two competing processes should be called for. In the work 

by Kharoufeh et al. (2007), they utilize the Laplace-Stieltjes transform to explicitly 

derive the lifetime distribution as well as the limiting availability for a periodically 

inspected single-unit system with hidden failure. Cha and Finkelstein (2009) extend 

the Brown-Proschan model by assuming that random shocks will result in an 

immediate system failure with a probability. But if the shocks are not extreme enough, 

it will increase the system aging process by certain random increment. Ebrahimi 

(2001) proposes a general stochastic model to estimate the reliability of the system in 

terms of a deterioration process with covariate. Wang and Pham (2012) recently 
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develop a dependent competing risk model, in which the dependent structure of 

random shock and degradation is modulated by a time-scaled covariate factor, and the 

dependent structure among degradation processes is fitted by both constant and 

time-varying copulas, for a system subject to multi-degradation measures and random 

shocks. 

This chapter extends the research of Li and Pham (2005a), Wang and Pham (2012) by 

considering a multi-state model for the dependent competing-risk systems subject to 

two degradation processes and random shocks. Two types of dependent structures are 

considered in the model using the method proposed in Wang and Pham (2012): (a) 

dependency between degradation and random shocks, modulated by a time-scaled 

covariate; (b) dependency among various degradation measures, linked by copula 

method. The status of the multi-state degraded system is determined by the Cartesian 

product of the two degradation measure levels (Li and Pham (2005a)). The system 

reliability and state probability are derived by both analytical method and Monte 

Carlo simulation, which is applied to provide the approximate point estimation and 

confident interval to compare the results from analytical method. Finally, a numerical 

example is provided to illustrate the application of the proposed model with 

sensitivity analysis for the occurring rate of the random shocks.   

 

7.2 Mathematical Modeling 

In this section, we describe the mathematical notation and reliability estimation model 

for the multi-state degraded systems with dependent competing risks, consisting of 
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two degradation processes and random shocks. The basic assumptions under this 

proposed mathematical model are indicated as follows 

a) The system is subject to three competing risks of two degradation processes 

and random shocks, which are pairwise dependents with each other.  

b) The degradation process is monotonically increasing. 

c) The system is a discrete multi-state degradation system, whose state is 

determined by the Cartesian product of the degradation levels of two 

degradation processes. 

d) There exist two types of failure mechanisms in the system: one condition is 

that the fatal shocks comes to the system; another is that although there is no 

fatal shock occurring, the systems has degradation failure since one of the two 

degradation levels exceed its failure threshold. 

7.2.1 Dependent Competing Risk 

The system has three competing risks, including two degradation processes 

1 2 0{ ( ), ( )}tM t M t   and random shocks characterized by a homogeneous Poisson 

process 0{ ( )}tN t  . Assume N(t) is the number of random shocks occurring at time t 

and random shocks arriving at a rate λ. The random shock loadings can be represented 

as the sequence of {wij} distributed as a common distribution Qi(x) for all jth shock in 

the ith degradation path. The shocks are cumulative to a compound Poisson process 

which can be expressed as 
( )

0
( )

N t

i ijj
S t w


 . The random shock can be fatal at a 

probability of p(t). Therefore, the fatal shock occurring rate 1( ) ( )t p t  . 

In the model, basic multiplicative degradation path (Bae et al. (2007)) is used to 
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model the degradation process in order to tolerate the item-to-item variation by 

including the random variable Xi. The formula for basic multiplicative function in the 

ith degradation path is shown as follows 

( ; , ) ( ; )i i i i i iD t X X t                                                 (7.1) 

where ( ; )i it   denotes a deterministic mean degradation path with fixed effect 

parameters 
i ; the variable Xi represents the random variations around the mean 

degradation path, distributed as a common CDF Fi(x). More detailed description and 

examples about multiplicative and additive degradation path functions can be found in 

Bae et al. (2007).  

The total degradation wear in the ith path is a cumulative process with two parts: one 

is aging with time and usage and the other is instantaneous shock damage, which can 

be expressed as ( ) ( ) ( )i i iM t D t S t  . The first term is the multiplicative function for 

the ith degradation path and the second term is the cumulative random shock loadings. 

Furthermore, in order to capture the extra effect of the degradation rate acceleration 

due to random shocks, we introduce a time-scaled covariate into the model by scaling 

the time t to 
( )( , )iG tte   in the ith degradation path Di(t) where 

1 2

( )( ) ( ) ( )

1
( , ) ( )

N ti i i

ijj
G t N t w  


   . The first part in the formula reflects the impact 

received by degradation path from the number of random shocks and the second part 

indicates the possibility that the degradation rate can be accelerated by the amount of 

cumulative shock loadings. Therefore, the cumulative degradation wear in the ith 

degradation path can be expressed as follows: 

( ) ( )( , )

1
( ) ( ; )

i N tG t

i i i i ijj
M t X te w 


                                        (7.2) 
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where 
1 2

( )( ) ( ) ( )

1
( , ) ( )

N ti i i

ijj
G t N t w  


   . 

Assume the critical thresholds for these two degradation processes known as O= {O1, 

O2}, which can be defined as: failure threshold, maintenance threshold or system 

discrete degradation level threshold. The survival marginal probability function for 

the ith degradation process can be represented as in Wang and Pham (2011): 

( )

( ) ( )
1 2

( )

( , )

0

( )

1 0

( ) P( ( ) )

P( ( ) ( ) | ( ) )Pr( ( ) )

P( ( ) ) P( ( ) ) P( ( ) ) ( )

( )( )
( )

( ) ! (

i

i ii

i

i i i

G t

i i i in

O
n z n

i i i i i i in z

n

i i
i i

i i

m t M t O

X te S t O N t n N t n

X t O N t n X te z O dQ z

O O zexp t t
exp t F F

t n te
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in n zz
dQ z





 

 
 
 
 

 

  (7.3) 

where ( ) ( )n

iQ x  is the n-fold Stieltjes convolution with Qi(x) itself. 

The difficulty for building a joint probability through two marginal functions in this 

problem is that marginal functions may follow the different distributions. Therefore, 

the traditional multivariate distributions, which lay the limitation on the same 

marginal functions, cannot be a solution to model these two dependent processes. 

Copula method comes to be a promising rescue for this problem due to its advantages 

over the multivariate distribution: (a) copula method allows to model the marginal 

behavior and dependence structure separately; (b) copula could provide both the 

structure and the degree of the dependency; (c) the univariate marginal function could 

be drawn from different distribution without restriction; and (d) copula is invariant 

with strictly increasing and continuous transformation. Given C  represents the 

copula function with parameter ζ used in the model, the joint survival distribution for 

the two degradation paths with threshold O= {O1, O2} at time t can be expressed in 

terms of copula function as follows 
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 1 1 2 2 1 2( ) Pr( ( ) , ( ) ) ( ), ( )J t M t O M t O C m t m t                              (7.4) 

where ζ is the parameter estimated by the copula fitting using the maximum 

likelihood estimation (MLE) method.  

If the system has two degradation paths linked by bivariate Gumbel copula (Ram and 

Singh (2009), Ram and Singh (2010), Kumar and Singh (2008)), then we can obtain 

the joint distribution as follows 

1/

1 2( ) exp{ [( ln ( )) ( ln ( )) ) }J t m t m t                                       (7.5) 

The inference for the margins (IFM) method is applied to estimate the parameters for 

copula function. More detailed description about IFM method can be found in Nelson 

(2006), Cherubini et al. (2004). 

7.2.2 Multi-state System Construction 

This chapter considers some continuous probabilistic functions for the degradation 

paths and the system is degraded in a multi-state way where the system status is 

determined by the Cartesian product of the degradation levels of two dependent 

degradation processes with a finite number of discretized degradation levels. The 

methodology of constructing the multi-state degradation model is based on two-step 

procedures as in (Li and Pham (2005a)): in the 1
st
 step, we discrete each system 

degradation process into a finite numbers of intervals by dividing various degradation 

level thresholds; in the 2
nd

 step, we establish the system state space to combine the 

different degradation processes by using Cartesian product. 

Step 1: Formulate the discrete state space sets for each degradation process 

Assume that the sequences {A1,A2,..,AK1} are the degradation level thresholds 
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associated with the 1
st
 degradation process and {B1,B2,..,BK2} are the degradation level 

thresholds associated with the 2
nd

 degradation process. The variables G1 and G2 are 

corresponding failure thresholds for the two degradation processes. Mathematically, 

the relationship between the discrete degradation states and their corresponding 

intervals are shown as follows 

Degradation Process 1 Degradation Process 2 

1

1 1

1 1

1 1 1 1

2 1 1 1

1 1 1 1

0 ( )

( ) ( 1)

( ) 1

( ) 0

K

K K

M t A state K

A M t A state K

A M t A state

G A M t state



  

   

  

  

 

2

2 2

2 2

2 1 2 2

2 2 1 2

2 1 2 2

0 ( )

( ) ( 1)

( ) 1

( ) 0

K

K K

M t B state K

B M t B state K

B M t B state

G B M t state



  

   

  

  

 

The 1
st
 degradation process has K1 level of states while the 2

nd
 degradation process 

has K2 level of states. Assume Ω1 represents the state space for the 1
st
 degradation 

process, that is, Ω1= {0,1,…, K1}, and Ω2 represents the state space for the 2
nd

 

degradation process, that is, Ω1= {0,1,…,K2}. The state 0i is a degradation failure state 

and the state Ki is an excellent system state. Therefore, the continuous degradation 

process is divided into discrete levels. 

Step 2: Establish the system state using Cartesian product 

The system state space is composed of K+2 states, ΩU= {K, …, 1, 0, F}. For example, 

at a given time t when no fatal shock happens yet, suppose the 1
st
 degradation process 

is in stage i1 and the 2
nd

 degradation process is in stage j2, the system state is the 

output of a mapping relationship function f  by Cartesian product from the input 

space domain, determined by a relationship matrix Hc as follows 
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1 1 1

2

2
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0 1 ...

0 0 0
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0

c
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The top row of Hc is the state from the 1
st
 degradation process and the left column is 

the state from the 2
nd

 degradation process. The system state is characterized as the 

function of two degradation states shown as in Hc, that is, 
1 2( , )f i j k , where k is the 

system state. It is important to note that the first element in matrix Hc does not exist 

since all of these three processes of two degradation processes and random shocks are 

competing risks, that is, the system will fail whichever process meets its failure 

criteria.  

7.2.3 Reliability Estimation 

In this section, the system reliability function and mean time to failure are derived 

analytically based on the system state analysis in section 7.2.2. The model can be used 

not only to evaluate the reliability for multi-state degraded systems but also to obtain 

the state probabilities for the systems being in various states. The probability for the 

system in a catastrophic failure state F, that is, fatal shock failure, can be expressed as 

 

1
0

1 1 2 2 1

1 1 2 2 1

( )

1 1 2 2

( ) { ( ) , ( ) , ( ) 0)}

{ ( ) , ( ) } 1 { ( ) 0}

( ( ; ), ( ; )) 1

t

t

t dt

P F P M t G M t G N t

P M t G M t G P N t

C R t G R t G e






   

     

    
 

                      (7.6) 

where G1 and G2 are corresponding failure thresholds for two degradation paths; 

C  the copula functions with parameter ζ; and 

( ) ( )
1 2
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1 0

( )( )
( ; ) ( ) ( )
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n
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ni i
i i i i in n zz

i i

G G zexp t t
R t G exp t F F dQ z

t n te 

 


 



 

   
       

   
  . 



144 
 

 
 

The reliability function R(t) is the sum of the probability of the system being in state 

1,…, K, 
1

( ) { 1} ( )
K

t

i

R t P system state P i


    

where Pt(i) is the probability in state i at time t.  

The system mean time to failure can be calculated as follows 

 

1
0

0

1 1 2 2 1
0
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0

[ ] { }

{ ( ) , ( ) } { ( ) 0}

( ( ), ( ))

t

t dt

E T P T t dt
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                     (7.7) 

Therefore, the probability density function of the time to failure is computed as 
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                     (7.8) 

Example: Assume that the system state spaces associated with the 1
st
 degradation 

process and 2
nd

 degradation process are, respectively, 1 1 1 1 1{3 ,2 ,1 ,0 }  , and 

2 2 2 2{2 ,1 ,0 }  . The system state space is defined as {3,2,1,0, }U F   according 

to the given matrix Hc as follows (Li and Pham (2005a)) 

1 1 1 1

2

2

2

0 1 2 3

0 0 0 0

1 0 0 2 3

2 0 1 2 3

c

X

H

 
 


 
  

 

Then we can obtain the equivalent classes as follows: 

R0= {(01, 12), (01, 22), (11, 02), (21, 02), (31, 02), (11, 12)} 

R1= {(11, 22)} 

R2= {(21, 12), (21, 22)} 
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R3= {(31, 12), (31, 22)} 

and 

3

0

1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2{(0 ,1 ),(0 ,2 ),(1 ,0 ),(2 ,0 ),(3 ,0 ),(1 ,1 ),(2 ,1 ),(3 ,1 ),(1 ,2 ),(2 ,2 ),(3 ,2 )}

i

i

R R







 

The corresponding formulas for the system reliability and state probability functions 

based on this example are derived in next section.  

 

7.3 Numerical Examples 

The example in this section aims to illustrate the generalized multi-state model 

discussed in previous sections. Consider a system subject to three dependent 

competing risks for two degradation processes and random shocks. Assume the 

occurring rate of random shocks 1/15    and the fatal shock probability is 

proportional to the time, that is, t/500. Therefore, the fatal shock occurring rate 

1( ) 7500t t  . For the first degradation path function, we choose ( ; , )D t X t  , and 

X   Weibull distributed with CDF of ( ) 1 exp[ ( ) ]k

XF x x     where 1.2   and 

k=50. The individual shock loading towards the first degradation process follows the 

normal distribution with 5w   and 1w  . Assume random shock variables in a 

time-scaled factor (1)

1 0.001  , (1)

2 0.005   and critical failure threshold G1=100. For 

the second degradation path function, we choose 
2 1( ; , ) log[ ]D t X t    , where 

1 2.7   and 
2  is gamma distributed with pdf 

1

( ) , 0
( )

x

a b

aX
x ef x x

b a




 


, where 

a=400 and b=0.01. The individual shock loading follows the exponential distribution 

with mean 1v  . Assume random variables (2)

1 0.06  , (2)

2 0.01   and critical 
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failure threshold G2=28. The degradation level thresholds are {A1=30, A2=60, A3=100} 

for the 1
st
 degradation path and {B1=18, B2=28} for the 2

nd
 degradation path. This 

example follows the same structure of the system level matrix Hc as illustrated in 

section 7.2.3, and the corresponding system state graph corresponding to the matrix 

Hc is shown in Figure 7.1. The state {0, 1, 2, 3} is for the system in the stages of 

“failure”, “bad”, “fair” and “good”. 

The degradation path curves with simulated data are shown in Figure 7.2, from which 

we can see the impact from cumulative shock loadings and time-scaled factors 

towards the degradation paths. The fatal shock happens at time t=105.7471. The 2
nd

 

degradation path is still in a reliable state without passing the degradation failure 

threshold 28 while the 1
st
 degradation path already crosses its corresponding failure 

threshold 100. Therefore, the system will fail due to the failure of the 1
st
 degradation 

process prior to the fatal shock occurring.  

 

 

Figure 7.1: System State Graph. 
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Figure 7.2: Simulated Degradation Paths. 

 

According to the matrix Hc, the probability that the system is in state 0, which is 

degradation failure, is the sum of the probabilities of f(01,12),  f(01,22),  f(11,02),  

f(21,02), f(31,02)  and f(11,12). In this chapter, we assume that the specific joint copula 

function for marginal degradation paths is known as Symmetrized Joe-Clayton (SJC) 

copula, which a potential copula for good fitness to allow for flexible dependency of 

both upper and lower tail based on the research of Wang and Pham (2012). The 

summation is derived as 
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where N1(t) is number of fatal shock till time t; 
i

C  the SJC copula functions with 

parameter ζi;  
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. 

For each copula function in (7.9), because the threshold level combinations of {Ai, Bi} 

are varied, marginal degradation probabilities are different. Therefore, totally four 

SJC copulas with various covariate parameters ζi are fitted. This is understandable for 

the reason that during each degradation level combination, the system is in different 

stages with various dependencies between two degradation paths. At early stage the 

dependency is weak since both of the two degradation paths are in a good state with 

high performance and unlikely to impact each other, while after a period of operating 
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they intend to exhibit some degree of dependence due to common usage history and 

interplaying loadings. Figure 7.3 shows the probability for the system in state 0, 

where four curves are plotted versus time t (exact probability from analytical method, 

approximate mean probability from Monte Carlo simulation with 95% confidence 

interval (CI), exact probability from analytical method when λ=0.01). By default, 

1/15  .  

In Figure 7.3, we observe that the probability of the system being in state 0 is close to 

zero as t approaches to 200. However, a smaller random shock occurring rate results 

in a lower initial probability of being in state 0 and then higher probability after the 

approximate crossing point t = 76. The Monte Carlo simulation is almost consistent 

with the results from analytical method. This is a very encourage of our model results. 

The tiny differences between these two methods may be due to two reasons: (a) 

analytical method provides an exact probability with specific copula functions while 

the results from Monte Carlo simulation are only the approximate values; (b) the 

results from analytical method depend on the performance of the specific selected 

copula function. The advantage of the Monte Carlo simulation is that it is a simple 

method to address the complex probability problems and can provide the confidence 

intervals to check the performance of the simulation.  
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Figure 7.3: Probability plot for state 0. 

 

The probability of the system being in state 1 is calculated as 
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               (7.10) 

Figure 7.4 shows the probability of being in state 1 as a function of time t, where line 

with circle marks represents the state probability when λ=0.01, and the line with star 

marks represents the probability when 1/15  . The time range of being in state 1 at 

1/15  is between 20 and 80 while time range at λ = 0.01 is between 40 and 90.  
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Figure 7.4: Probability plot for state 1. 

 

We can also easily to derive the probability of the system being in state 2 as follows: 

1
0

3 5

1 2 1 2

3 1 2 2 1 1

( )

1 2 2 1 1 3 2 1

(2) ( (2 ,1 ), (2 ,2 ))

( ( ) , ( ) , ( ) 0)

( ( ), ( )) ( ( ), ( ))

t

t t

t dt

P P f f

P A M t A M t B N t

C R A R B C R A R B e


 





    

    

                (7.11) 

Figure 7.5 shows the probability of being in state 2 as a function of time t where line 

with circle marks represents the state probability when λ = 0.01, and the line with star 

marks represents the probability when 1/15  . The results from both analytical 

method and Monte Carlo simulation match very well for probability in state 2. The 

non-differentiable behavior of the state probability in Figure 7.5 is because the results 

are from the subtraction of two copula probabilities.  
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Figure 7.5: Probability plot for state 2. 

 

Similarly, the probability of being in state 3 is obtained as 
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                             (7.12) 

Figure 7.6 shows the probability of being in state 3 as a function of time t where line 

with circle marks represents the state probability when λ = 0.01, and the line with star 

marks represents the probability when 1/15  . The results from both analytical 

method and Monte Carlo simulation match very well for probability in state 3. The 

time range of being in state 3 is almost the same from 0 to 30 for both rates 1/15 

and λ = 0.01. 
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Figure 7.6: Probability plot for state 3. 

 

The probability of being a catastrophic failure state F is given by 
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                     (7.13) 

Figure 7.7 shows the probability of being in state F as a function of time t, where line 

with circle marks represents the state probability when λ=0.01, and the line with star 

marks represents the probability when 1/15  . With smaller occurring rate, the 

system has a lower chance to fail due to the fatal shocks but later on the system 

degradation will fail the system with a higher probability.  
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Figure 7.7: Probability plot for state F 

 

Finally, the system reliability function R(t) can be obtained as follows: 
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                                                                (7.14) 

Figure 7.8 shows the system reliability as a function with time t for the rates 1/15 

and λ = 0.01. With a smaller shock occurring rate, the system has a higher reliability. 

The system reliability approaches to zero when t = 100.The system mean time to 

failure is 44.4946 when λ = 1/15 while the system mean time to failure is 69.0299 

when λ = 0.01.  
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Figure 7.8: Reliability versus time 

 

7.4 Conclusion 

In this chapter, a generalized multi-state degradation model is developed to evaluate 

the reliability and state probability of dependent competing-risk system subject to 

multiple degradation processes and random shocks without considering the 

maintenance or repair issues. The results from analytical method and Monte Carlo 

simulated are compared with each other in the numerical example with the presence 

of the sensitivity analysis for the shock occurring rate. The fact that the results from 

both two methods are almost consistent indicates the good performance of copula 

method to capture the dependent relationship between competing risks. The 

differences between these two methods are mainly due to two reasons: (a) analytical 

method provides an exact probability with specific copula functions while the results 
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from Monte Carlo simulation are only the approximate values; (b) the results from 

analytical method depend on the performance of the specific selected copula function. 

The advantage of the Monte Carlo simulation is that it is a simple method to address 

the complex probability problems and can provide the confident intervals to check the 

performance of the simulation.  

Our further research will focus on: (a) Model application to real-life data, including 

the collection of degradation data, the statistical interference for the parameter 

estimation of the degradation path and copula functions, and (b) Maintenance cost and 

system availability for multi-component dependent competing-risk system with 

maintenance economic correlation.  
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Chapter 8  

Condition-based Threshold-Type Imperfect Preventive 

Maintenance Policy for Dependent Competing-Risk Systems 

with Multiple Degradation Processes and Random Shocks 

 

ACRONYMS  

CBM Condition-based Maintenance 

PM Preventive Maintenance 

CM Corrective Maintenance 

IFM The Inference for the Margins 

MLE Maximum Likelihood Estimation 

PQD Positively quadrant dependent 

  

NOTATIONS  

i  fixed effect parameter for the ith mean degradation path 

Xi random variable for the ith multiplicative degradation path 

( )iF x  CDF distribution for random variable Xi 

( ; , )i i iD t X   

multiplicative path function for the ith degradation path with random 

variable Xi and parameter 
i  

( , )i it   

deterministic mean for the ith degradation path with fixed effect 

parameters
i  

Mi(t) the ith cumulative degradation till time t 

( )

1

i  coefficient of nonfatal shock number in the ith degradation path 

( )

2

i  
coefficient of cumulative nonfatal shock amount in the ith 

degradation path 

G(t, γ
(i)

) time-scaled covariate factor to accelerate the degradation rate with 
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parameter γ
(i)

 

Oi general threshold for the ith degradation path 

mi 

marginal survival function for the ith degradation path with threshold 

Oi 

J(t) joint distribution for the degradation paths with threshold Oi 

Gi critical failure threshold for the ith degradation path 

Li imperfect PM threshold for the ith degradation path 

I imperfect PM interval 

N maximum number of imperfect PM 

Ri(t) marginal reliability function of the ith degradation path 

R(t) system reliability function 

ri(t) 
marginal survival function of the ith degradation path with imperfect 

PM threshold Li 

C copula function 

C  survival copula function 

β imperfect PM degree 

T passage time for the imperfect PM threshold 

Tf system failure time 

Aj time point of system clock before the jth imperfect PM 

Bj time point of system clock after the jth imperfect PM 

Hj time point of system clock upon the jth imperfect PM 

C1 total maintenance cost in one cycle time 

W2 renewal cycle time 

δ idle time in one cycle time 

CM penalty cost per unit time associated with idle time 

Cp cost associated with an imperfect PM 

CC CM action cost 

fc fixed cost of purchasing monitoring device 

vc variable cost per unit time of depreciation and operating expense 
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Np imperfect PM number 

pk probability that degradation failure happens in the kth period 

Pj 

probability that there are a total number of j imperfect PMs in the 

renewal cycle 

FT(t) 
distribution of the first passage time T for the imperfect PM 

threshold 

( )
fTF t  distribution of the system degradation failure time Tf 

 

8.1 Introduction 

Competing risk is an important issue in reliability field, especially degradation 

processes and random shocks. Li and Pham (2005a, b) study the reliability estimation 

model and develop a condition-based maintenance policy for periodically inspected 

systems subject to competing failures of two degradation processes and random 

shocks, but all of these processes are independent and maintenance is perfect to renew 

the system as good as new. However, in reality, many systems have multiple 

components with more than one degradation measure which is dependent with each 

other due to its interplaying function or common usage history. Independent 

assumption may underestimate the reliability of the system (Wang (2003)). On the 

other hand, random shocks can also contribute to the system failure in two ways: one 

is working directly on the degradation processes; the other is causing immediate 

failure to the system. This chapter aims to relax the independent assumption of Li and 

Pham (2005a, b) by considering dependent structures including not only dependency 

among multiple degradation measures but also between degradation measures and 

random shocks. 
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Lehmann (2009) surveys two classes of degradation-threshold-shock models (DTS) 

such as general DTS and DTS with covariates, where the system failure may be due to 

the competing risk of degradation and trauma. Compared with the time-based 

replacement policy, Huynh et al. (2011) recently introduce a condition-based 

maintenance model for the degradation-threshold-shock (DTS) model to take the 

dependence between degradation process and shock process into account. Deloux et al. 

(2009) propose a maintenance policy that combines the statistical process control 

(SPC) and condition-based maintenance (CBM) for a continuously deteriorating 

system with two kinds of failure mechanisms (deteriorating and random shocks).  

Sun et al. (2006) introduce an analytical model to quantitatively estimate the 

interactive failure and its failure rate based on three difference cases. A later work by 

Sun et al. (2009) develops an extended split system approach for the failure 

interactions. Simulated data is used to test the proposed model and the results indicate 

that the PM intervals for newly repair components with the presence of failure 

interactions will become shorter compared with the system without failure 

interactions. Wang and Pham (2012) recently develop a dependent competing risk 

model, in which the dependent structure of random shock and degradation is 

modulated by a time-scaled covariate factor, and the dependent structure among 

degradation processes is fitted by both constant and time-varying copulas, for a 

system subject to multi-degradation measures and random shocks, but without 

considering the maintenance issues. 
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Furthermore, this chapter also extends the perfect PM to imperfect PM which makes 

the problem more practical. Cassady et al. (2005) explore the imperfect repair based 

on the Kijima's first virtue age model by validating the simulation results using 2
3
 

factorial experiment and converting reliability & maintainability parameters into 

coefficients of availability model using meta-models to determine the optimal 

replacement interval according to the system average cost. Liu and Huang (2010) 

apply the non-homogeneous continuous time Markov model (NHCTMM) to model 

the optimal replacement policy for the multi-state systems with the imperfect 

maintenance that utilizes the quasi-renewal process to describe the stochastic behavior 

of the multi-state aging element after each imperfect repair. Wang and Pham (2011) 

study a multi-objective maintenance optimization embedded within the imperfect PM 

and replacement for one single-unit system subject to the dependent competing risk of 

degradation wear and random shocks. Satow and Kawai (2010) put forward an 

imperfect inspection with upper and lower inspection threshold for a bivariate failure 

distribution. 

In this chapter, we provide a literature review on related maintenance aspects 

including condition-based maintenance, imperfect preventive maintenance, 

independent and dependent competing risks, degradation and random shocks 

processes in section 8.1. We then discuss our proposed generalized condition-based 

maintenance model for dependent competing risk systems with multiple degradation 

processes and random shocks including assumptions. In section 8.3, a mathematical 

modeling for the optimal maintenance cost rate function will be derived analytically. 
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In section 8.4, a numerical example with sensitivity analysis will be used to illustrate 

the application of the proposed model. In section 8.5, a general conclusion will be 

discussed.  

 

8.2 Model Description 

In this chapter, an optimal maintenance strategy with condition-based imperfect PM 

thresholds is studied for a dependent competing risk system subject to two 

degradation paths measured by a pair of non-decreasing processes {M1(t), M2(t)}t≥0 

and random shocks characterized by a homogeneous Poisson process {N(t)} t≥0. 

Generally, maintenance can be classified into two categories: condition-based or 

time-based. For the former, the action is performed when need arises, that is, one or 

more system performance indicators show that the system is going to fail or the 

system is seriously deteriorating. For the latter, the maintenance action is taken at 

some predetermined time points to improve the system functioning condition. Our 

model in this chapter focuses on the condition-based maintenance aspect because it is 

more effective to optimize system maintenance resources although it may require for 

periodic or continuous condition monitoring. 

Two maintenance actions are considered in this model: the imperfect preventive 

maintenance (PM) restores the system condition to a younger state between “as good 

as new” and the current state instead of perfect PM with full restoration; the corrective 

maintenance renews the system “as good as new”. Four decision variables will be 

determined optimally by minimizing the long-run expected system cost rate in this 
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maintenance scheduling: maintenance threshold level for the first degradation process 

{L1}, maintenance threshold level for the second degradation process {L2}, imperfect 

PM interval {I}, and imperfect PM number till replacement {N}. Before any 

degradation level exceeds the imperfect PM thresholds, the maintenance strategy is 

doing nothing; otherwise, imperfect PM is taken periodically to bring back the system 

to a younger state between “as good as new” and the current state. Corrective 

maintenance (CM) is performed under two conditions: degradation failure between 

each inspection interval or maximum imperfect PM number till replacement, which 

occurs first. Our chapter aims to combine all of these factors into one model: 

condition-based maintenance with threshold, imperfect preventive maintenance and 

multiple dependent relationships between competing risks. Below is a list of some 

basic assumptions and notation will be used in the modeling. 

 

Assumptions 

A. Three non-decreasing processes of two degradation measures and one 

homogeneous Poisson process are pairwise dependent. The dependent 

relationships among these three processes are simulated using the method in 

Wang and Pham (2012): (1) the dependent structure between degradation 

measures and random shocks is modulated by a time-scaled covariance; (2) 

the dependent structure among degradation measures is linked by copula 

method. 
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B. The system is continuously monitored till imperfect PM threshold. This means 

that the system degradation level can be detected instantly. Afterwards, the 

system is switched to periodic inspection at each imperfect PM interval before 

replacement. 

C. Monitoring cost should be taken into consideration, consisting of two parts: 

fixed cost of purchasing monitoring devices and variable cost of depreciation 

and operation expense.  

D. An improvement factor is introduced into the model to reflect the effect of 

imperfect PM by rejuvenating the system clock back to a younger age. 

E. Once any of the degradation level crosses the failure threshold {G1, G2} 

between each inspection interval, the system will remain non-functioning and 

require a replacement at next inspection time, that is, the system suffers from 

hidden failure. 

F. A CM action is more costly than an imperfect PM but the cost associated with 

imperfect PM is varied with the imperfect PM degree β.  

G. Maintenance time is negligible. 

 

8.3 Mathematical Modeling 

8.3.1 Dependent Competing Risk Model 

The system starts at a brand new condition subject to two degradation processes 

{M1(t), M2(t)}t≥0 and a homogeneous Poisson process {N(t)}t≥0. Assuming that the 

random shocks arrive with occurring rate λ and N(t) denotes a random variable that 
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represents the number of random shocks till time t. The sequence of random shock 

loadings wij is nonnegative, independent and identically distributed with a common 

distribution Qi(x) for all jth shock in ith degradation path.The random shocks have 

two impacts towards the degradation path: one is sudden increment jump cumulative 

to the degradation path characterized as a compound Poisson process; and the other is 

degradation rate acceleration which is reflected as a time-scaled covariate governed 

by shock number and cumulative shock loadings. Assume the cumulative shock 

loading till time t in ith degradation path is Si(t) for i = 1, 2 which can be represented 

as a compound Poisson process 

( )

0
( )

N t

i ijj
S t w


                                                      (8.1) 

The basic multiplicative degradation path in Bae et al. (2007) for the ith degradation 

process is used to model the degradation process in order to tolerate the item-to-item 

variation by including the random variable Xi, is given by 

( ; , ) ( ; )i i i i i iD t X X t                                                  (8.2) 

where ( ; )i it   denotes a deterministic mean degradation path with fixed effect 

parameters ζi for time 0t  ; the variable Xi represents the random variation around 

the mean degradation level, distributed with a common cumulative distribution 

function (CDF) Fi(x). The mean degradation path can be either monotonically 

decreasing or increasing, called decreasing degradation path (DDP) or increasing 

degradation path (IDP), respectively. More examples of multiplicative degradation 

path with practical applications can be found in Bae et al. (2007). There also exist 

some studies for the cases of non-monotonic degradation, such as the light display in 
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Bae and Kvam (2004, 2006). However, such case is not in the research scope of this 

chapter.  

The total degradation wear in the ith degradation path is cumulative effects from two 

aspects: one is aging with time and the other is instantaneous damage induced by 

random shocks, which can be expressed as ( ) ( ) ( )i i iM t D t S t  . The first term is the 

multiplicative degradation function for the ith degradation path and the second term 

( )

0
( )

N t

i ijj
S t w


  reflects the sudden increment jump from the impact received by the 

random shocks towards the ith degradation path. Furthermore, in order to capture the 

extra effect of the degradation rate acceleration, we introduce a new function G(t, γ
(i)

) 

into the degradation path by borrowing the original idea from the time-scaled model 

of accelerated life testing. The aging amount in ith degradation process Di(t) is scaled 

by an accelerated factor from t to 
( )( , )iG tte  . Therefore, the cumulative degradation 

wear function in the ith degradation process can be defined as Wang and Pham 

(2011): 

( ) ( )( , )

1
( ) ( ; )

i N tG t

i i i i ijj
M t X te w 


                                        (8.3) 

where 
1 2

( )( ) ( ) ( )

1
( , ) ( )

N ti i i

ijj
G t N t w  


   . The form of the function G(t, γ

(i)
) is assumed 

to be known but with some unknown parameter vector γ
(i)

. 

The first item in the above function G(t, γ
(i)

) reflects the impact received from the 

number of random shocks towards the degradation process. Usually, we have 
1

( ) 0i   

and then the first term can be viewed as representing the fact that the degradation rate 

is more likely to increase with the random shocks number. The second term 

2

( )( )

1

N ti

ijj
w

  for 
2

( ) 0i  is developed to modulate the situation that the cumulative 
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shock amount will contribute to an acceleration of the system degradation rate.  

8.3.2 Joint Distribution Estimation by Copula Method 

The measurements of the two degradation paths are random variables 

1 2( ) { ( ), ( )}M t M t M t  at observation time point t. Assume there exist various 

thresholds for these two degradation processes known as O = {O1, O2}, which may be 

failure threshold, maintenance threshold, or system discrete degradation level 

threshold. The survival marginal probability for the ith degradation process with 

threshold Oi can be represented as in Wang and Pham (2011) 
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                                                                 (8.4) 

where ( ) ( )n

iQ x  is the n-fold Stieltjes convolution with Qi(x) itself. 

A tool to joint marginal probability with different distributions is called for due to the 

dependency between various degradation paths. Therefore, the fact that the traditional 

multivariate distributions lay limitation on the same marginal functions makes copula 

method a promising rescue for this problem. There are many advantages of using 

copula method over the multivariate distribution such as: (1) copula allows us to 

model the marginal behavior and dependence structure separately; (2) copula could 

provide both the degree and the structure of the dependence; (3) the univariate 

marginal function can be drawn from different distribution without restriction; (4) 

copulas are invariant under strictly increasing and continuous transformation. If C is 
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the copula of the marginal distributions, the joint survival distribution for the two 

degradation paths with threshold O= {O1, O2} at time t can be expressed in terms of 

copula method as follows: 

 1 1 2 2 1 2( ) Pr( ( ) , ( ) ) ( ), ( )J t M t O M t O C m t m t                              (8.5) 

where α is the parameters estimated by the copula fitting using the maximum 

likelihood estimation (MLE). 

If the system has two degradation paths linked by bivariate Gumbel copula (Ram and 

Singh (2009, 2010), Kumar and Singh (2008)) then we can derive the joint 

distribution as follows 

1/

1 2( ) exp{ [( ln ( )) ( ln ( )) ) }J t m t m t                                       (8.6) 

The inference for the margins (IFM) method is used to estimate the parameters for 

copula function.The detailed description of IFM method can be found in Nelson 

(2006), Cherubini (2004).  

8.3.3 Threshold-type Condition-based Maintenance 

8.3.3.1 Maintenance Planning 

A condition-based maintenance model is considered with imperfect PM threshold and 

critical failure threshold of the first degradation process {L1, G1} and the second 

degradation process {L2, G2}. The system is continuously monitored till imperfect PM 

threshold so that the state of each degradation level can be recognized immediately. 

After that the system is inspected and maintained with imperfect PM periodically at 

equal time sequences , 1,2,...,jI j N . The maximum number of imperfect PM till 

replacement {N} means that there will be at most (N-1) imperfect PMs and at the next 
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inspection time NT a replacement will be performed. According to the system 

degradation state detected, one of the following actions should be taken: 

a. If both degradation values are below their imperfect PM thresholds, in other 

words, 1 1 2 2{ ( ) } { ( ) }M t L M t L   , then the system is still in good condition. In 

this case, we do nothing but leave the system as it was.  

b. If there exists any of the degradation processes falls into the imperfect PM 

zone, that is, 1 1 1 2 2 2{ ( ) } { ( ) }L M t G L M t G     , then the system is called for 

an imperfect PM action which is done periodically at time{ ,2 ,..., ,...}I I jI . 

c. If there exists any of the degradation process value is exceeding their 

corresponding critical threshold, that is, 1 1 2 2{ ( ) } { ( ) }M t G M t G   , then the 

system is called for a CM action. In this case, the system has degradation 

failure and a CM is performed to renew the system. 

d. If the system fails due to any degradation process between the inspection 

intervals, the system remains non-functioning and will be renewed as good as 

new by CM action at next inspection time point, which means the system 

suffers from hidden failure. 

e. At each imperfect PM time point, if the system is found failure due to 

degradation, replacement is done to renew the system; otherwise imperfect 

PM will be performed till maximum imperfect PM number approaches.  

We assume that after a CM action, system will restore as good as new, while upon 

each imperfect PM action, system will bring back to a younger state between “as good 

as new” and the current state, which depend on the imperfect PM degree β. Assume T 
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denote the time point for the first passage time when any of the degradation process 

level exceeds the imperfect PM critical threshold, I the imperfect PM interval and Tf 

the time point of the system degradation failure. Figure 8.1 shows the evolution of the 

system where Mi(t) represents the ith degradation path level, Li and Gi the imperfect 

PM and CM critical threshold for the ith degradation path, respectively, for i=1,2. 

Figure 8.2 shows the maintenance zone projected on the M1(t), M2(t) planes. 

 
Figure 8.1: Evolution of the system condition 

 

 

Figure 8.2: Maintenance zone projected on M1(t), M2(t) 
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8.3.3.2 Imperfect PM Method 

Perfect maintenance or repair that assumes the system is as good as new after each 

PM or repair is not actually realistic in practical world. A more practical assumption is 

that, instead of perfect maintenance, an imperfect PM will restore the degradation 

process of the system to some younger system status between “as good as new” and 

“as old as bad”. In the literatures, there are seven treatment methods for imperfect 

maintenance by Wang and Pham (2003): (p, q) rule (Li and Shaked (2003), Cha and 

Kim (2001), Brown and Proschan (1983)), (p(t), q(t)) rule (Block et al. (1985), Sumita 

and Shanthikumar (1985)), improvement factor (Cheng and Chen (2003), Pascual and 

Ortega (2006), Kijima et al. (1988)), virtual age (Finkelstein (2010)), shock model 

(Wang and Pham (1996a)), (α, β) rule (Wang and Pham (1996b)) or quasi-renewal 

process (Rehmert and Nachlas (2009), Wang and Pham (1996c)), multiple (p, q) rule 

(Shaked and Shanthikumar (1986)). In order to model the imperfect PM, we introduce 

a time reduction factor β, that is, upon each imperfect PM the system time of the 

degradation process is reduced by the factor β proportion to the previous system time, 

as shown in Figure 8.3, where the system maintenance time is negligible. We assume 

that there are two clock time in the system: one is system clock which represents the 

age of the system physical mechanism; the other is actual clock which is the actual 

age of the system with the time.  

In the biological body systems for example, as the age of twenty or younger the major 

organ systems usually are in a good condition, and people may not care much about 

human-body self-maintenance such as exercising and taking dietary supplement. We 
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can view the system clock the same pace as the actual clock. However, as with the 

time goes, people will begin to pay more attention to their body aging process. So 

they will try to take some actions to maintain their body system, including a regular 

exercise, or a scheduled medical diagnose and treatment, which would help to slow 

down the aging process of the body system with some degree. Therefore, perhaps a 

twenty-eight years old person will have a younger body system condition with a 

system clock indicating an age of twenty-five because of the regular body 

maintenance. In this case, twenty-eight is the actual system age while twenty-five is 

the physical system clock. Of course this kind of maintenance cannot be a perfect 

maintenance.  

 

Figure 8.3: Imperfect preventive maintenance 

 

Before the first imperfect PM of time period [0, )T I , the system time is the same as 

the actual time. But with the restoration of imperfect PM, the system time is preceding 

to the actual time. Upon each imperfect PM, the system time is restored by a 

reduction factor of β ranging from 0 to 1. If β equals to 0, it is a perfect PM which can 

renew the system to the brand new condition. The imperfect PM continues until the 
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system degradation failure interrupts and triggers a CM action or the maximum 

number of imperfect PM till replacement reaches. 

As shown in Figure 3, before the first imperfect PM, the system time is T+I, but upon 

the imperfect PM, the system clock is restored to β(T+I). If the system survives during 

the next imperfect PM interval, the same situation continues. The time point of system 

clock before the jth imperfect PM is equal to the time after the (j-1)st imperfect PM 

plus the imperfect PM interval. Therefore, before the second imperfect PM, the 

system time is (β(T+I) + I), but upon the second imperfect PM, it is restored to 

β(β(T+I)+I). Similarity, we can derive the formulation for the two sequences Aj and Bj.  

The sequence of Aj, which is the time point of system clock before the jth imperfect 

PM, can be represented as 

1

0

1
1,2,...,

1

j
j j

T for j

A
T I for j N











 
  

                                (8.7) 

The sequence of Bj, which is the time point of system clock after the jth imperfect PM, 

can be obtained 

1
0,1,2,..., 1

1

j
j

j jB A T I for j N


  



    


                          (8.8) 

The sequence of Hj is the time point of the actual age clock upon the jth imperfect PM 

since the system maintenance time is negligible, given by 

0,1,2,...jH T jI for j N  
                                        

(8.9) 

Without the imperfect PM, the system time should be t, while upon imperfect PM, 

thesystem time becomes t-Hj+Bj because the cumulative degradation restoration 

amount is the difference between the Bj and Hj. Therefore, according to the formula 
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derivation in section 8.3.2, the system reliability in terms of copula function can be 

represented as 

1

1

1 2

1 2 1

( ( ), ( )) 0
( )

( ( ), ( )) , 0,2,..., 1j j j j j j f

C R t R t t T
R t

C R t C B R t C B C t C T j N



 

 
 

            

(8.10) 

where 

( ) ( )
1 2

( )

1 0

( )( )
( ) ( ) ( )

( ) ! ( )

i

i i

n
G

ni i
i i i in n zz
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t n te 

 


 



 

   
       

   
  ; 

1
C is the copula function with parameter ζ1 fitted by MLE; 

fT is the time point for the system degradation failure. 

8.3.4 Average Long-Run Maintenance Cost Analysis 

In this section an explicit expression for the average long-run cost rate is derived to 

optimize the condition-based maintenance policy through determining the imperfect 

PM critical threshold {L1, L2}, imperfect PM interval {I} and imperfect PM number 

till replacement {N}. 

8.3.4.1 Expected Maintenance Cost Rate within a Cycle 

According to the renewal theory, the expected long-run maintenance cost rate during 

one cycle is given by 

1
1 2

1

[ ]
[ , , , ]

[ ]

E C
EC L L I N

E W
  

where C1 is the total maintenance cost in one cycle time, W1 is the renewal cycle time, 

and the variables L1, L2, I, N are parameters determined by maintenance optimization. 

Assume Np be the number of imperfect PMs within one cycle time and [ ]E   be the 

expected idle time in one cycle time when the event happens, that is, the system fails 

due to degradation failure from any of the two degradation processes during the 
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inspection intervals so that the system will be idle until the next inspection time to 

require a CM action. Let us denote E[T] the expected passage time for the imperfect 

PM threshold where T is the first passage time for the imperfect PM 

threshold.Therefore, the mean maintenance cost per cycle, E[C1], is given as 

1[ ] [ ] [ ] [ ]m p p c c cE C C E C E N C f v E T      

where Cm is the penalty cost per unit time associated with idle time, Cp is the cost 

associated with an imperfect PM, and Cc is the CM action cost. Without loss of 

generality, we assume that c p mC C C  . The monitoring cost here consists of two 

parts: fixed cost of purchasing monitoring device {fc} and variable cost per unit time 

of depreciation & operating expense {vc}. Because the system is continuously 

monitored till the imperfect PM threshold T, the variable cost of monitoring cost is 

only taken into account during the period [0, )T . 

The calculations for the maintenance cost rate function 1 2[ , , , ]EC L L I N are now 

discussed: 

1) Let  P pN j be the probability that there are a total number of j imperfect PMs in 

the renewal cycle, for 0,1,2,...,j N . Based on the assumptions in section 8.2.2.1, 

there exist j imperfect PMs during one cycle time if the degradation failure occurring 

within the time interval 1( , ]j jH H  . In other word, the imperfect PM will be 

terminated whenever the current inspection detects that the system suffers from the 

degradation failure in the previous operating interval while such situation is not 

revealed upon the previous inspections or the maximum inspection PM number till 

replacement approaches.  



176 
 

 
 

In order to obtain the probability for j imperfect PMs in one cycle, we need to study 

the probability that the degradation failure occurs in different time periods first. We 

can see that the total (N-1) imperfect PMs and one replacement can divide the time 

space into (N+2) periods, that is,  

1

[0, )

[ , ) 0,1,2,..., 1

[ , )

j j

N

T

t H H for j N

H






  




 

Suppose pk the probability that the degradation failure happens in the kth period. If the 

degradation failure happens in the jth period, marked the event as E1, the system 

should firstly survive in the previous (j-1) st periods, marked the event as E2. So the 

survival probability is equal to 
1

0
1

j

kk
p




 . If we do not consider the imperfect PM, 

the probability space should be continuous, but due to the imperfect PM, the survival 

probability before (j-1)st imperfect PM is different from that after imperfect PM. 

Assume the event E2: "the system survival before (j-1)st imperfect PM" and event E2: 

"the system survival after (j-1)st imperfect PM". The probability for the system 

degradation failure in the jth period is 

''
'1 2

1 2''

2

11 1 1 2 1 2 1 1 2 2

0
1 1 1 2 1 2

Pr( )
Pr( ) Pr( )

Pr( )

Pr( ( ) , ( ) ) Pr( ( ) , ( ) )
1

Pr( ( ) , ( ) )

j

jj j j j
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j j
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M B G M B G M A G M A G
p

M B G M B G

 


 

 

    
  
  


 (8.11) 

Therefore the probability can be derived as 
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                                                                (8.12) 

where Aj is the time point of the system clock before the jth imperfect PM, Bj is the 

time point of the system clock after the jth imperfect PM, Gi is the critical failure 

threshold for the ith degradation process, Mi(t) is the cumulative amount of the ith 

degradation wear. 

However, because T is the observation time for the first passage time of imperfect PM 

threshold, 1 0 1 2 0 2Pr( ( ) , ( ) ) 1M B G M B G   and then
0 0p  . Therefore, the probability 

for degradation failure in [0, )T should be truncated from the probability space. Then 

we have 

  1

01
j

j p

p
P P N j

p
  


for 0,..., 1j N  .                            (8.13) 

Assume 1

01
N

N

p
P

p



, it is obvious that 

0
1

N

jj
P


 . 

Therefore the expected number of imperfect PMs during one cycle time can be 

obtained as 

1

00
[ ] [ | ] ( 1) ( )

N

p p j N Tj
E N E E N T t jP N P dF t

 


         

                   
(8.14) 

where the variable T is the first passage time of any degradation measure exceeding 
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the corresponding imperfect PM threshold. 

The distribution of the first passage time T is given by 

1 1 2 2( ) 1 Pr( ) 1 Pr( ( ) , ( ) )TF t T t M t L M t L                                 (8.15) 

The expected maintenance threshold time E[T] can be represented as 

2

1 1 2 2
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1 2
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                        (8.16) 

Therefore 
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where 
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  ; 

1
C is the copula function with parameter ζ1 fitted by MLE for failure threshold; 

2
C is the survival copula function with parameter ζ2 fitted by MLE for passage time. 

2) Assume fT  the system degradation failure timewith any of the two degradation 

processes crossing over its corresponding failure threshold {G1, G2}.When 
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1( , )f j jT H H   for j=0, 1, 2,..., N-1, the system will be idle during the time interval 

1[ , )f jT H  . Let [ ]E   denotes the expected idle time during the system failure and the 

next inspection time point, which can be given as 
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(8.18) 

where 1 1 2 2( ) Pr( ) 1 Pr( ( ) , ( ) )
fT fF T M G M G         . 

In the Equation (8.18), the probability is firstly conditioned on the first passage time T 

and then conditioned on the system degradation failure time Tf. Due to the difference 

between system clock and actual system age, actually the system clock at age Tf 

should be ( )j fB T t jI   . 

By taking the transformation of ( )zI t jI   , we obtain  
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                                 (8.19) 

Therefire, the expected idle time can be expressed as (8.20) 
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                                                                (8.20) 

where the definition of the formulas in the function is the same as Equation (8.17); 
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1
C  is the survival copula function with parameter ζ1 fitted by MLE for failure 

threshold.  

3) The system is renewed whenever the maximum number of imperfect PMs until 

replacement approaches or the inspection detects that the system fails due to 

degradation failure during the previous operating period. Therefore, the expected 

cycle length 1[ ]E W  can be calculated as (8.21) 
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                                                                (8.21) 

where the definition of the formulas in the function is the same as Equation (8.18).                                                                            

8.3.4.2 Optimization Maintenance Cost Rate Policy 

We determine the optimal imperfect PM interval time I, imperfect PM number till 

replacement N and PM threshold {L1, L2} such that the long-run average maintenance 

cost rate 1 2[ , , , ]EC L L I N  is minimized. Mathematically, to minimize the following 

objective function (8.22): 
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where 
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  ; 

1
C is the copula function with parameter ζ1 fitted by MLE for failure threshold;  

2
C is the survival copula function with parameter ζ2 fitted by MLE for the first 

passage time;  
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1
C  is the survival copula function with parameter ζ1 fitted by MLE for the first 

passage time. 

Therefore, the condition-based maintenance optimization can be represented as 

1 2

0

[ , , , ]

. . ( )

Min EC L L I N

s t R NI R
 

where the constraint means the system should be replaced before the system reliability 

drops to a very low critical point R0 given the optimal combination of maximum 

imperfect PM and imperfect PM interval [N,I]. 

The above optimization function is a complex nonlinear mixed-integer programming 

with four dimensions parameters {L1, L2, I, N}, which is impossible to obtain the 

close-form optimum solution. The simulated annealing (SA) technique is one of the 

most popular meta-heuristic optimization methods for obtaining the optimal solutions 

of nonlinear constraint function, which do not require the derivation calculation of the 

objective function. The SA technique mimics the gradually cooling processing for the 

physical annealing of a material to increase its crystal size until it reaches a low 

enough temperature to solidify. Compared with other traditional optimization methods, 

the most advantage for SA techniques is that although it requires a long time to 

convergence, it has the capability to obtain almost near global or global optimum 

solutions for the combinatorial optimization problems in a large search space, 

especially when the search space is discrete.  

In this problem, because we cannot get the derivation form of the maintenance cost 

rate objective function due to its complexity and nonlinearity, and also the optimum 

solutions are constrained in some feasible bound area, such as integer, SA technique 
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turns out to be a good optimization tool to fix this mixed-integer nonlinear 

optimization problems with constraints.The "simulannealbnd" function in global 

optimization toolbox is used to compute the optimum solutions in Matlab 7.10.0. 

Usually, the iterative procedure in SA algorithm is terminated when maximum 

number of iterations reaches or there is no significant improvement in the solution. 

We stop the iterations under the second condition. 

 

8.4 Numerical Examples 

A system with two degradation processes and one random shock is illustrated as 

numerical examples of the proposed condition-based maintenance model. Assume the 

occurring rate of random shock 1/15  . For the first degradation path function, 

choose ( ; , )D t X t  , and X  Weibull distributed with CDF of

( ) 1 exp[ ( ) ]k

XF x x    , where 0.8   and 30k  . The individual shock loading 

towards the first degradation process follows the normal distribution with parameter 

5w   and 1w  . Assume random variables in the time-scaled factor (1)

1 0.05  , 

(1)

2 0.008   and critical failure threshold 1=100G .For the second degradation path 

function, choose 2 1( ; , ) log[ ]D t X t    , where 1 2.7   and 2  is gamma 

distributed with pdf
1

( ) , 0
( )

x

a b

aX
x ef x x

b a




 


, where 500a  and 0.01b  . The 

individual shock loading towards the second degradation process follows the 

exponential distribution with mean 1v  . Assume random variables (2)

1 0.06  , 

(2)

2 0.01   and critical failure threshold 2 28G  . The time unit is week. The 

degradation path curves with simulated data can be shown in Figure 8.4, from which 
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we can see the impact from cumulative shock loadings and time-scaled factors 

towards the degradation paths.  

 

(a) 1
st
 Degradation Path 

 

(b) 2nd
 Degradation Path 

Figure 8.4: Degradation Path for Two Degradation Processes 

 

From the equations (8.4) and (8.5), we can obtain the marginal reliability function for 

these two degradation paths separately and the joint copula system reliability 
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estimation without considering maintenance issue, as shown in Figure 8.5. We assume 

that the specific copula function fitting for the dependent modeling is known as 

Symmetrised Joe-Clayton (SJC) copula which is a potential good fitting model to 

allow for flexible dependency from both upper and lower tail based on the study of 

Wang and Pham (2012). In Figure 8.5, we also plot the behavior curves for 

independent copula and upper & lower Frechet-Hoeffding copula bounds in order to 

show a clear picture of the copula reliability estimation. 

 

Figure 8.5: Marginal and Joint Reliability 

 

Compared with the independent copula in Figure 8.5, we can see that both of the two 

degradation processes overlap with the independent copula at the early stage because 

they are in a good system status with high performance and unlikely to receive 

impacts from each other, but exhibit some degree of dependence due to interplaying 

loadings and common usage history after a period of operation time. Also the fitting 

copula holds the positively quadrant dependent (PQD) property, which means small 
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(large) degradation amount in the first degradation process tend to occur with small 

(large) degradation amount in the second degradation process.  

We assume both of the two degradation processes have multi-state degradation with 

four levels such as good, fair, bad and failure. The corresponding thresholds for the 

first degradation process are {a1=25, a2=50, a3=75, a4=100} while those for the 

second degradation process are {b1=7, b2=14, b3=21, b4=28}. Maintenance thresholds 

{L1, L2} can be chosen from these degradation thresholds {a1, a2, a3} and {b1, b2, b3}. 

For example, the imperfect PM may be triggered by the combination thresholds 

{L1=25, L2=7}. Therefore, there are totally nine different combinations which the 

imperfect PM thresholds can be chosen from, and the final thresholds will be solved 

optimally by minimizing maintenance cost rate function.  

Assume the imperfect PM degree β equals to 0.9 and the critical low reliability point 

R0 equals to 0.001. Whenever the combination of maximum imperfect PM number till 

replacement and imperfect PM interval [N, I] does not satisfy the constraint, the 

maintenance cost rate is set to a large enough value of 100. The cost associated with 

the CM action Cc is 1000, the penalty cost per unit time associated with the idle time 

Cm is 80, and the cost associated with the imperfect PM can be 0 100(1 )p vC C C   , 

where C0 is the fixed inspection fee and Cv is the imperfect PM fee associated with 

one percentage restoration. Assume C0=100 and Cv=10. The fixed cost associated 

with purchasing monitoring devices fc is 500 and the variable cost per unit time for 

device operating and depreciation vc is 5.  

We define that the searching domain is [1,10]N  for all integer and (0,50]I . Using 
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the SA algorithm with the help of Matlab, we can obtain the minimized maintenance 

cost rate is 27.2084 with the optimal solution set is: {N*=6, I*=18.6232, L1*=75, 

L2*=21}. Under this optimal solution set, the expected maintenance threshold time

[ ] 36.4215E T  , the expected number of imperfect PMs [ ] 1.4545pE N  , the expected 

cycle time 
1[ ] 82.1313E W   and the expected idle time [ ] 3.2707E   . The contour 

plot of maintenance cost rate when L1=75 and L2=21 is shown in Figure 8.6, from 

which we can see that with the increasing of the imperfect PM interval from 1 to 50, 

the cost rate is first decreasing and then increasing, but too large value combination of 

imperfect PM interval and imperfect PM number will make the problem infeasible 

due to the dissatisfaction of the constraint of R0. The optimal solutions indicate that 

based on the assumed cost structure, a larger imperfect PM threshold with a later 

system imperfect PM action would reduce the expected long-run maintenance cost 

rate. However, this is only the result from minimizing maintenance cost rate. If we 

take both the system availability and maintenance cost rate into account, smaller 

imperfect PM threshold with shorter imperfect PM interval may be better.  
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(a) N-I-Cost Rate 3-d Plot 

 

(b) N-I Contour Plot of Cost Rate 

Figure 8.6: Cost Rate Curve when {L1=75, L2=21} 

The relationship among maintenance cost components, imperfect PM interval and 

maximum imperfect PM number till replacementwhen N=2, 4, 6, 8, given L1=75, 

L2=21 is shown in Figure 8.7: 
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(a) The relationship between imperfect PM interval and expected imperfect PM 

number when N=2, 4, 6, 8 is shown in Figure 8.7(a). It is easy to see that the 

imperfect PM number will decrease with the imperfect PM interval, and 

increase with the maximum imperfect PM number till replacement.  

(b) The relationship between imperfect PM interval and expected cycle time when 

N=2, 4, 6, 8 is shown in Figure 8.7(b), from which we can see that the 

expected system cycle time is increasing with both the imperfect PM interval 

and maximum imperfect PM number till replacement.  

(c) The relationship between imperfect PM interval and system expected idle time 

per cycle when N=2, 4, 6, 8 is shown in Figure 8.7(c). We can observe that the 

expected idle time per cycle will increase with the imperfect PM interval and 

is not so sensitive to the changing of the maximum imperfect PM number till 

replacement.  

The dashed lines in these curves mean the consequent combination of N and I make 

the problem infeasible. Through the comparison of these three plotting, we can come 

to the conclusion that the imperfect PM interval is a critical parameter which will 

contribute to all of these three maintenance cost components, while the maximum 

imperfect PM number till replacement tends to have less influence towards the 

expected cycle time and expected idle time.  
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(a) E[Np] vs. Imperfect PM Interval I 

 

(b) E[W1] vs. Imperfect PM Interval I 
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(c) E[δ] vs. Imperfect PM Interval I 

Figure 8.7: Maintenance Cost Components vs. N and I when {L1=75, L2=21} 

 

The optimization results from this sensitivity analysis with varied imperfect PM 

degree are provided in Table 8.1. From the comparison results, we can see that a 

minimized cost would prefer a larger imperfect PM threshold with a later imperfect 

PM, which is reasonable because to trigger the imperfect PM in a later time may save 

some maintenance cost under the condition that it will not significantly increase the 

penalty cost of idle time per cycle. The imperfect PM degree β=0.9 means that 10 

percentage of system age will be restored by the imperfect PM. With the increasing of 

the imperfect PM degree (decreasing of the recovery percentage), we can see that: (a) 

The maintenance cost rate is not monotonic which is the result of balancing the 

decreasing of each imperfect PM cost and increasing the risk of idle time penalty; (b) 

The imperfect PM interval is decreasing; (c) The maximum number of imperfect PMs 

till replacement is decreasing and then increasing.  
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Table 8.1: Sensitivity analysis with the imperfect PM degree 

Imperfect PM 

degreeβ 

Minimized 

Cost Rate 

Optimum Pairs 

I* N* L1* L2* 

0.9 27.2084 18.6232 6 3 3 

0.8 28.7932 20.0197 4 3 3 

0.7 29.2464 21.3134 4 3 3 

0.6 29.1440 22.7152 5 3 3 

0.5 29.1669 26.4380 4 3 3 

 

8.5 Conclusion 

This chapter develops a condition-based maintenance threshold-type model with the 

presence of imperfect PM to restore the system degradation level by a time reduction 

improvement factor for complex systems subject to dependent competing risks of two 

degradation processes and random shocks. The dependent structure between 

degradation process and random shocks is characterized as an embedded time-scaled 

factor while the dependent structure among degradation processes is linked by copula 

method. The system is continuously monitored till the imperfect PM threshold and 

then inspected at each imperfect PM time point.  

A numerical example of the proposed model for systems with multiple degradation 

processes consisting of four-level degradation stages and random shocks is illustrated. 

From the numerical results, we observe that to minimize the expected long run cost 

rate the system prefer a larger imperfect PM threshold with a later time to perform 

maintenance.Through the sensitivity analysis, with the increasing of the imperfect PM 
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degree, the maintenance cost rate and maximum imperfect PM number till 

replacement is non-monotonically changing while the imperfect PM interval is 

decreasing.  

The proposed condition-based maintenance model provides a generalized practical 

maintenance policy that can be used in many applications for complex competing risk 

systems in our daily life such as production machine, human body systems, military 

service systems, aircraft maintenance as well as others. Our further research interests 

are to investigate: (1) the multi-objective maintenance optimization to consider the 

system availability, repair spare inventory supply and profit gain; and (2) a 

maintenance policy for multi-component systems subject to dependent competing 

risks. 
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Chapter 9  

Conclusion and Future Research 

 

9.1 Concluding Remarks 

The contribution of this thesis is to focus on the development of a generalized 

reliability estimation model with time-scaled covariate and copula methodology as 

well as various maintenance policies with imperfect preventive maintenance for 

dependent competing-risk system subject to multiple degradation processes and 

random shocks. Dependency, imperfect maintenance and multi-objective optimization 

are major concerns to both researcher in reliability field and practitioners in industry. 

This research aims to relax the assumptions for independency between degradation 

process and random shocks, as well as independency among multiple degradation 

processes by considering both of the dependent structures into one model. 

 

First, we only consider one degradation process and random shocks. 

A cumulative damage model for the degradation process and random shocks is 

proposed with both additive and multiplicative degradation path function. Then an 

optimum pair of {N*, T*} is determined by a maintenance model with imperfect 

maintenance modulated by an improvement factor to minimize the long run cost rate. 

After that we extend the above model to a multi-objective maintenance optimization 

with hidden failure. However, for both models, random shocks and degradation 

processes have no interplaying with each other. Random shocks will increase the 
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system degradation level by sudden jump but have no impact towards the degradation 

rate.  

 

Second, we extend our model to multiple degradation processes and random shocks.  

There exist two types of random shocks in the system: (1) fatal shock, which causes 

the system to fail immediately; (2) non-fatal shock, which impacts the degradation 

processes in two ways of sudden increment jump and degradation rate acceleration. A 

generalized reliability estimation model for the dependent competing-risk systems 

subject to multiple degradation processes and random shocks is formulated as 

follows: 

a) The dependency between degradation process and random shocks is 

modulated by the time-scale exponential covariate factors; 

b) The dependency among different degradation processes is fitted by both 

constant and time-varying copula methods. 

Three criterions of Log likelihood, AIC and BIC are applied to measure the goodness 

of the copula fitting from the maximum likelihood estimation. The results soundly 

shed light upon the application of copula methods to the multiple degradation 

analysis. 

Next, we consider the multi-state model for the multiple competing-risk systems by 

taking the Cartersian product of two degradation process levels. The reliability and 

state probability estimation are derived by both analytical methods and Monte Carlo 

simulation with 95% Confident Intervals.  
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Finally, we move onto the condition-based preventive maintenance model for the 

dependent multiple competing-risk systems. The four optimal maintenance decision 

variables will be determined by minimizing the expected long-run maintenance cost 

rate, including the imperfect PM thresholds of the two degradation measures {L1, L2}, 

imperfect PM intervals {I}, and the imperfect PM number till replacement {N}. The 

threshold levels for system maintenance actions of “doing nothing” and “imperfect 

preventive maintenance” are determined by minimizing the expected long-run 

maintenance & monitoring cost rate. 

 

9.2 Future Research 

Our future research will focus on the following research problems that extend further 

research on our topics as follows: 

Problem 1: Extend the proposed condition-based maintenance policies to incorporate 

the multi-objective maintenance optimization of maintenance cost rate, system 

availability and maintenance part inventory control. 

Problem 2: Consider the multi-component system subject to dependent competing 

risks with different system configuration, such as parallel-series, series-parallel and 

k-out-of-n systems. 

Problem 3: For the multi-component system, maintenance economic efficiency and 

correlation among various components should be considered into the maintenance 

optimization polices.   
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