Staff View
Analysis of dispersive mixing and breakup of air bubbles during continuous mixing of viscous liquids using experimental and numerical simulation techniques

Descriptive

TitleInfo
Title
Analysis of dispersive mixing and breakup of air bubbles during continuous mixing of viscous liquids using experimental and numerical simulation techniques
Name (type = personal)
NamePart (type = family)
Vyakaranam
NamePart (type = given)
Kiran
DisplayForm
Kiran Vyakaranam
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Kokini
NamePart (type = given)
Jozef L
DisplayForm
Jozef L Kokini
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
HUANG
NamePart (type = given)
QINGRONG
DisplayForm
QINGRONG HUANG
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Rogers
NamePart (type = given)
Michael A
DisplayForm
Michael A Rogers
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Cuitino
NamePart (type = given)
Alberto
DisplayForm
Alberto Cuitino
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2012
DateOther (qualifier = exact); (type = degree)
2012-05
CopyrightDate (qualifier = exact)
2012
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Air bubble dispersion was studied during continuous mixing of a viscous Newtonian liquid in a Readco® 2” twin screw continuous mixer. A detailed review of fundamental bubble and drop breakup theories showed that elongation flows are needed for breakup of drops and bubbles in viscous flows. The velocity profiles and dispersive mixing ability of the twin screw mixer was analyzed using 3D Finite Element Method (FEM) simulations of flow and mixing and air bubble breakup was studied using experimental image analysis methods. Analysis of the velocity and pressure profiles showed that an introduction of paddle element stagger (forward or reverse) in a limited region of the mixing region caused variations in the local axial velocity. The axial transport happened mostly through the C-shaped region between the paddle elements and the barrel wall in the no stagger configuration and through the intermeshing region between the co-rotating paddle elements in a forward 45° stagger configuration. In case of a reverse 45° stagger configuration, significant local backflow regions were seen in the intermeshing region. A three region categorization was evident in the distribution of dispersive mixing index, with the highest values (predominantly elongation flow) occurring in the intermeshing region. It is proposed that the elongation flow in the intermeshing region occurred as a result of a squeeze flow created between the moving paddle element surfaces. The introduction of stagger disrupted this effect in and caused elongation flow intensity to be minimal in the intermeshing region. The measured bubble size distributions showed highest breakup for the no stagger configuration. A maximum stable bubble diameter predicted from local shear rates calculated from the FEM simulations in the mixer correlated well with the experimental mean bubble diameters. Effective shear rates calculated from measured mean bubble diameters were proportional to the mean shear rates calculated by the FEM simulations at various locations in the mixer for all paddle element configurations. This study provides methods to predict the effective shear rate for dispersion of air during continuous mixing of a highly viscous Newtonian liquid that can be applied to complex mixing flows.
Subject (authority = RUETD)
Topic
Food Science
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_3980
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Note
Supplementary File: Data File 1
Extent
xvi, 173 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Kiran Vyakaranam
Subject (authority = ETD-LCSH)
Topic
Mixing
Subject (authority = ETD-LCSH)
Topic
Mixture distributions (Probability theory)
Subject (authority = ETD-LCSH)
Topic
Mixing machinery
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000065287
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3NG4PJS
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Vyakaranam
GivenName
Kiran
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-04-16 03:00:48
AssociatedEntity
Name
Kiran Vyakaranam
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-05-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2012-11-30
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after November 30th, 2012.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

An error occurred while attempting to load this metadata section
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024