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ABSTRACT OF THE DISSERTATION

Improving the security and usability of cloud services

with user-centric security models

by Saman Zarandioon

Dissertation Director: Danfeng Yao and Vinod Ganapathy

Cloud computing is a paradigm shift in the way we define software and hardware, and

architect our IT solutions. The emerging cloud technologies, due to their various unique

and attractive properties, are evolving with tremendous momentum and rapidly being

adopted throughout the IT industry. In this dissertation, we identify security challenges

that arise in integration of cloud-based services, and present a set of novel solutions to

address them. We analyze the security of our solutions, demonstrate their usage and

effectiveness, and evaluate their performance by extensive experimentation. To address

the problem of access control in untrusted cloud storage, we introduce K2C (Key To

Cloud) protocol, which is a cryptographic access control protocol based on our new

key-updating scheme referred to as AB-HKU. To improve the security and usability

of integrated cloud services, we introduce a flexible client-side integration framework

called OMOS. This framework enables secure and seamless client-side integration of

cloud-based resources and services. Finally, to address the problem of identity manage-

ment in an integrated cloud environment, we present a user-centric identity management

solution called Web2ID. Our Web2ID protocol, by leveraging secure client-side cryptog-

raphy and communication, introduces a privacy-preserving and secure mechanism for

user authentication, fine-grained access delegation and identity attribute exchange.
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Chapter 1

Introduction

In this chapter we define the scope, goal and thesis of this dissertation. We first de-

fine terms and concepts related to cloud computing and provide a taxonomy of cloud

computing. Then we discuss new security and privacy challenges posed by cloud-based

architecture, and summarize our contributions in addressing these challenges. Finally,

we present the organization of the rest of this dissertation. We try to keep our defini-

tions and terminology consistent with The NIST Definition of Cloud Computing [69].

1.1 Cloud Computing

Cloud computing is a computing model in which hardware, platform, infrastructure and

software are defined and delivered as a service rather than a product. Cloud computing

is emerging from recent advances in technologies such as hardware virtualization, Web

services, distributed computing, utility computing and system automation.

Cloud computing takes advantage of hardware virtualization to securely and dynam-

ically allocate physical resources such as computational power, storage, and networks

to the users. Cloud resources are are delivered to the end-users through Web services.

This simple model results in the following attractive features:

• Elasticity : Since physical resources are dynamically allocated to the consumers

according to their needs, cloud services can scale on-demand.

• Cost Effectiveness: Resource sharing improves utilization of physical resources

and thus reduces the associated cost.

• Pay-as-you-go Pricing Model : Cloud services have consumption-based metering

and billing; this property makes them more affordable for small businesses and
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startups.

• Global-scale Accessibility and Usability : Cloud consumers have access to a virtu-

ally unlimited physical resource pool through Web.

• Easy Maintenance: All non-functional requirements of IT, such as maintenance

of hardware and software, are addressed by cloud providers, therefore consumers

can concentrate on their functional business requirements.

1.2 Taxonomy of Clouds

To better understand the scope of cloud computing and related concepts and technolo-

gies, in this section we present a taxonomy of cloud.

1.2.1 Participants

In a cloud-model there are four main participants:

• Cloud Provider : A cloud provider (service provider) is an entity that is responsible

for every thing required for making a cloud service available.

• Cloud Consumer : A cloud consumer is either a cloud service owner or a cloud

service consumer. Cloud service owner is the individual or organization who

subscribes for a cloud service. If there is any charge associated with the service,

the cloud service owner will be responsible for the bills. Cloud service consumer

is an individual or application who accesses a cloud service.

• Cloud Broker : A cloud broker is an entity that mediates between cloud providers

and cloud consumers. The goal of a service broker is to provide the cloud consumer

a service that is more suitable for its needs. This can be done by simplifying

and improving the service and contract, aggregating multiple cloud services or

providing value-added services. One can consider cloud brokers as a special cloud

provider.
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• Cloud Auditor : A cloud auditor is an independent party who examines a cloud

service stack to provide an assessment on security, privacy and availability level

of the corresponding cloud services and ensures that the corresponding SLAs

(Service Level Agreement) are fulfilled. The details and scope of auditing process

is normally specified in the service contract.

1.2.2 Cloud Services

The services provided by cloud providers can be divided into following three main

layered categories. Each layer consumes services provided by the layer below it.

1. Software as a Service (SaaS): All types of softwares including financial, CRM, HR,

Sales, and office assistance can be delivered as a service. Salesforce.com, Google

Docs, and Zoho Docs are some examples of SaaS services. Consumers of SaaS

services, who are usually end users of the application or software administrators,

access these types of softwares through web browsers or mobile apps.

2. Platform as a Service (PaaS): Database, middleware, and integration bus are ex-

amples of platform resources that are provided by PaaS providers as a service.

PaaS services are normally consumed by developers, testers, deployers, middle-

ware/integration engineers and application administrators. Google App Engine

is an example of a popular PaaS.

3. Infrastructure as a Service (IaaS): IaaS clouds provide their consumers with low-

level infrastructure resources, such as storage, Content Delivery Network (CDN),

computational power, networks, backup and recovery, as a service. Typical IaaS

consumers consist of system developers, network engineers, system administra-

tors, monitoring engineers and IT managers.

1.2.3 Isolation Levels

With respect to deployment model and isolation levels, clouds can be categorized into

the following five categories:
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• Public Cloud : A public cloud is a cloud that its infrastructure is shared by many

mutually untrusted cloud consumers.

• Private Cloud : If the infrastructure of a cloud is dedicated to a specific organiza-

tion, we refer to that cloud as a private cloud. A private cloud can be on or off

premise.

• Virtual Private Clouds: Off-premise clouds that are isolated from untrusted or-

ganization only through virtual network isolation (not physical network isolation)

are called virtual private cloud.

• Community Clouds: Community clouds are clouds that their services are acces-

sible to a particular set of organizations which form a community. Community

clouds can all be on or off premises.

• Hybrid Clouds: A cloud that is a composition of two or more types of clouds

is called hybrid cloud. These types of clouds are becoming increasingly more

popular. Integration of these clouds poses some security challenges which we

discuss in this chapter.

1.3 Cloud Integration

In traditional IT architecture enterprises use middleware technologies for internal or

business to business (B2B) integration. In a cloud-based architecture, however, integra-

tion is more complex as it involves multiple heterogeneous environments and untrusted

or semi-trusted entities. Therefore, cloud integration introduces new challenges and

requirements that cannot be directly addressed by traditional middleware solutions.

Below we list some common cloud integration scenarios:

• Internal Cloud Integration: Cloud has a layered architecture composed of three

main layers: Application layer, Platform layer, and Infrastructure layer. There-

fore, inside each cloud these layers should interact, integrate and collaborate with

each other.
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• Cloud-to-Cloud (C2C) Integration: In community clouds a set of heterogeneous

or homogeneous clouds need to be integrated with each other.

• Enterprise-to-Cloud (E2C) Integration: For security and historical reasons, most

of the confidential and corporate data needs to be maintained in enterprise data

centers. This requires seamless integration of on-premise data and applications

with public cloud services.

• SaaS to SaaS/on-premise Integration: Normally each SaaS provider services only

a specific line of business. As a result, depending on its business requirements, an

enterprise may need to use services from multiple SaaS providers. In this case,

to fulfill a specif business process, these service providers may need to interact

with each other. In these types of interactions real-time data synchronization and

seamless connectivity is essential.

• Interaction of Cloud Participants: By definition, development, deployment, man-

agement and usage of cloud services requires interaction of different individuals,

organizations and services. These entities need to be seamlessly integrated so that

they can effectively and securely communicate.

Compared to traditional models, the diversity and distributed nature of cloud-based

applications and infrastructure services makes the problem of cloud integration more

complex. These challenges and complexities demand more versatile and adaptive inte-

gration solutions and technologies. In this dissertation, we introduce some protocols and

frameworks to facilitate seamless communication between cloud entities by empowering

them to securely interact with each other.

1.4 Security and Privacy Challenges in Clouds

In spite of its popularity, however, cloud computing has raised a range of significant

security and privacy concerns which hinder its adoption in sensitive environments. The

transition to cloud computing model exacerbate security and privacy challenges, mainly

due to its dynamic nature and the fact that in this model hardware and software
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components of a single service span multiple trust domains. In the cloud, data and

services are not restricted within a single organization’s perimeter. This dynamism and

fluidity of data introduces more risk and complicates the problem of access control [77].

Therefore, compared with the traditional models, in cloud computing model ensuring

confidentiality and integrity of the end-users’ data is far more challenging.

Moreover, cloud services are usually multi-tenancy services, meaning that a single

infrastructure, platform, or software provides its services to multiple mutually untrusted

parties simultaneously [31]. Therefore, confidentiality of these parties’ data need to pro-

tected against each other. However, in some cases these parties may want to collaborate

and share some data with each other in a controlled manner and thus there should be

a mechanism that allows them to collaborate.

Layered architecture of cloud computing requires different levels of security consider-

ations. In this work we are mainly concerned with the problem of identity management

and access control in application and service level. We introduce a set of multi-party

protocols specifically designed for cross-domain integrated cloud services. The main

objective of these protocols is to provide more visibility and control to the end-users

and close the gap between capabilities of existing solutions and new requirements of

cloud-based systems.

1.5 Summary of Contributions

In this dissertation we introduce a set of protocols and frameworks that address some

cloud security challenges introduced by the gap between the existing web security solu-

tions and the security requirements of cloud consumers. Below we enumerate the main

contributions of our work:

• We introduce a novel cryptographic access control protocol for untrusted cloud

storage called K2C. Our protocol provides a flexible, privacy-preserving and secure

way for cloud storage consumers to store and manage their data in the cloud

without requiring them to fully trust the cloud provider.

• To enable seamless, dynamic and secure interaction of could services, we design
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and implement an integration framework called OMOS. Our framework facilitates

secure client-side interaction of cloud services and gives the end-users more control

over their protected resources.

• We present Web2ID protocol which is a user centric and privacy preserving iden-

tity and access management protocol. Web2ID is specifically tailored for inte-

grated web and cloud environments.

1.6 Thesis

The flexibility, security and privacy of cloud services can be enhanced by adopting

user centric access control and identity management solutions. Recent advances in

cryptography and web technologies allow us to design security solutions that give the

consumers more visibility and control over their cloud-based resources and thus alleviate

some security and privacy concerns and fears associated with cloud paradigm. In other

words, these solutions make it feasible for the enterprises to adopt cloud paradigm and

outsource hardware, infrastructure and software while maintaining control over their

identities and data.

1.7 Related Work

Cryptographic access control protocols are studied in the literature in the context of

shared and untrusted file systems [60, 62]. However, these protocols suffer from a

trade-off between granularity and scalability. Finding a cryptographic solution that is

granular and scalable was an open problem until very recently that Shucheng Yu et

al. in [88] introduced a novel approach that addresses this trade-off. However, in their

protocol revocation requires re-encryption which is very expensive. In K2C protocol

we address these restrictions by introducing a cryptographic access protocol that is

granular enough to support hierarchies also scalable with respect to key management

and revocation.
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By providing cloud resources in the client-side, cloud providers can give their con-

sumers more control and visibility over their cloud resources and identities. To fa-

cilitate integration with these types of cloud resources, recently different integration

frameworks have been proposed [83, 58, 63]. However, these frameworks require change

to browser, limit the functionality of service providers and consumers, or require a

trusted component to ensure security and privacy of the framework. We introduce a

client-side integration framework that without requiring any change to the browser or

trusted component provide an infrastructure for secure interaction between client-side

service providers, consumers and the end-user. On top of this framework we introduce

an identity management solution that addresses some privacy and scalability concerns

with existing protocols such as OpenID and OAuth. We will provide more details on

specific relevant work in each chapter.

1.8 Organization of the Dissertation

This dissertation is structured as follows. Chapter 2 presents a solution for access

control to untrusted cloud storage. Chapter 3 introduces an integration framework for

secure and seamless interaction of cloud services. Chapter 4 presents a user-centric and

privacy-preserving identity management and access control protocol for cloud mashups.

Chapter 5 concludes with directions for future work.
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Chapter 2

Client-side Access Control

In this chapter we present a user-centric privacy-preserving cryptographic access control

protocol called K2C (Key To Cloud) that enables end-users to securely store, share,

and manage their sensitive data in an untrusted cloud storage anonymously. K2C is

scalable and supports lazy revocation. It can be easily implemented on top of existing

cloud services and APIs – we demonstrate its prototype based on Amazon S3 API.

K2C is realized through our new cryptographic key-updating scheme, referred to as

AB-HKU. The main advantage of the AB-HKU scheme its support for efficient delega-

tion and revocation of privileges in hierarchies without requiring complex cryptographic

data structures.

We analyze the security and performance of our access control protocol, and pro-

vide an open source implementation. Two cryptographic libraries, Hierarchical Identity-

Based Encryption and Key-Policy Attribute-Based Encryption, developed in this project

are useful beyond the specific cloud security problem studied.

2.1 Introduction

In industries such as health-care, insurance and financial organizations, which deal

with sensitive data, the question of how to ensure data security and privacy in cloud

environments is crucial [36, 82] and even of legal concerns. For example, in the health-

care industry the privacy and security of protected health information (PHI) need to

be guaranteed according to HIPAA (Health Insurance Portability and Accountability

Act)[5] requirements.

To take advantage of public clouds, data owners must upload their data to commer-

cial cloud providers which are usually outside of their trusted domain. Therefore, they
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need a way to protect the confidentiality of their sensitive data from cloud providers.

Moreover, in many cases, data owners also play the role of content provider for other

parties. Following the naming convention used in [84, 88], we refer to the parties that

consume data owner’s data as data consumers or end-users. For example, a healthcare

provider (data owner) may need to let a medical doctor (data consumer) access medical

record of his patient. In turn, a data consumer itself may recursively play the role of

data owner. A medical doctor may want to share part of his patient’s medical record

with his secretary or nurse. Therefore, there is a need for a decentralized, scalable and

flexible way to control access to cloud data without fully relying on the cloud providers.

In this chapter present design and implementation of a scalable, user-centric, and

privacy-preserving access control framework for untrusted cloud storage. Our frame-

work protects the confidentiality and integrity of stored data as well as the privacy of

end-users. It is also implementable on top of existing cloud services and APIs. (Design

goals in more details are presented in Section 2.3.1) .

Traditional access control techniques are based on the assumption that the server is

in the trusted domain of the data owner and therefore an omniscient reference monitor

can be used to enforce access policies against authenticated users. However, in cloud-

based services this assumption usually does not hold and therefore these solutions are

not applicable. Cryptographic access control techniques designed for shared/untrusted

file systems are potential candidates for clouds. In these approaches, the data stored

on untrusted storage is encrypted and the corresponding decryption keys are disclosed

only to the authorized users. Therefore, the confidentiality of data is protected against

untrusted storage as well as unauthorized users.

However, the existing solutions [53, 60, 62] have scalability limitations that hinder

their adoption in the cloud-storage settings. For example, until recently finding a

cryptographic approach that simultaneously supports fine-granularity, scalability, and

data confidentiality was an open problem. In [88], Shucheng Yu et al. addressed this

open problem by introducing a novel protocol which closes this gap.

Another scalability issue, which we address in this paper, is related to access revo-

cation. To eliminate re-encryptions required as part of access revocation, a technique
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called lazy revocation is widely adopted by existing cryptographic filesystems [20, 78, 81].

Lazy re-encryption delays required re-encryptions until the next write access 1. In prac-

tice, lazy revocation eliminates extra re-encryptions as write access requires the client

to re-encrypt the data anyway. Therefore, lazy revocation significantly improves the

performance at the cost of slightly lowered security. To support lazy revocation, cryp-

tographic access control protocols need to use a key-updating scheme which provides

key regression. Key regression enables a user holding a new key to derive an older key.

Despite the recent developments on untrusted cloud storage, current key-updating

schemes are still inadequate in terms of usability and efficiency. Specifically, exist-

ing key-updating schemes [20], especially for access hierarchies, are not scalable as they

require complex data structures such as cryptographic trees [53] or linked lists [62] (sec-

tion 2.2). These cryptographic data structures need to be updated after each revocation.

Since most of the existing cloud storage services have very simple APIs which allow only

storing and updating key-value pairs, implementation of existing key-updating schemes

on top of existing commercial clouds is inefficient and unscalable.

We introduce a new key-updating scheme called AB-HKU which is scalable and

also supports access hierarchies without requiring complex data structures. Our AB-

HKU scheme enables us to support lazy revocation without requiring any change to

the existing cloud APIs. We also introduce a new signature scheme for Key-Policy

Attribute-Based Encryption [51] called AB-SIGN. We then apply these new crypto-

graphic schemes to achieve scalable and anonymous information sharing in existing

commercial cloud storage services. We provide an implementation of the proposed pro-

tocols and perform extensive experimental evaluation on cloud storage environments.

Our technical contributions are summarized as follows:

• We introduce a new scalable and secure key-updating scheme for access hierar-

chies.

1Lazy re-encryption, adopted by [88], delays re-encryptions till next (read or write) access. Since
in regular workloads read accesses are significantly more than write accesses, the performance gain by
lazy revocation is drastically more than that of lazy re-encryption.
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• We design and implement a scalable and privacy-preserving access control frame-

work for existing untrusted cloud services. Our framework supports lazy revoca-

tion and access hierarchies.

• We present a signature scheme for Key-Policy Attribute-Based Encryption [51].

Using our signature scheme, users can prove that they own a key that its policy

satisfies with a set of attributes, without revealing their identity or credentials.

• We provide the first open source implementation of cryptographic libraries for

Hierarchical Identity-Based Encryption [10] and Key-Policy Attribute-Based En-

cryption [12] schemes. They are useful beyond the specific cloud storage problem

studied.

This chapter is organized as follows. In Section 2.2 we introduce our new key-

updating scheme and prove its security. In Section 2.3 we explain our access control

protocol and discuss its features and security guarantees. Then, in Section 2.4 and 2.5

we discuss the implementation details of our cryptographic libraries and access control

framework and evaluate their performance. In Section 2.6 we discuss the related work.

Conclusions and future work are given in Section 2.7.

2.2 Key Updating Schemes For Access Hierarchies

In this section we present an efficient secure key-updating scheme that supports hi-

erarchies. First, we provide a formal definition for secure key-updating schemes for

hierarchical access. Then, we give a concrete construction of a key-updating scheme

based on the use of attribute-based encryption scheme. Our solution supports both key

revocation and hierarchical delegation of secret access keys. Our secure cloud storage

framework for easy sharing and revocation, described in Section 2.3, is built based on

those two key properties.
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2.2.1 Background

Lazy revocation, first introduced in Cephues [45], is a technique which reduces the

overhead of revocation at the price of slightly lowered security [53]. When a user’s read

access right on a file is revoked, lazy revocation allows to postpone re-encryption of that

file until the next change. Lazy revocation has been adopted by all majors cryptographic

file systems [20, 78, 81]. However, it also causes fragmentation of encryption keys in

access hierarchies. Therefore, a user receiving the most recent key of an access hierarchy

should be able to compute the older keys in order to decrypt files that are not yet re-

encrypted by the most recent key, a capability that is referred to as key regression [46].

Key-updating schemes [20] are cryptographic schemes which support key regression.

Another key management issue that we need to address is related to access hierar-

chies. A user owning access key of a specific hierarchy class should be able to decrypt

all objects belonging to that hierarchy as well as all lower hierarchies. Key manage-

ment schemes for hierarchies generate keys that satisfy this requirement. Key-updating

schemes enable users to move backward in time dimension and decrypt data objects

encrypted by older keys, whereas key management schemes for hierarchies let users

traverse space forward and decrypt data objects encrypted by keys which correspond

to lower hierarchies. Access control protocols that are coupled with folder structure

of file system ([53]) and need support for lazy revocation, require schemes that let the

users simultaneously traverse time backward and space forward. For example, a user

holding the most recent version of an access key for folder /a should be able to decrypt

a file located at /a/b/c which is encrypted by an older key.

In [20], Backes et al. formalize key-updating schemes. They also analyze and

evaluate existing protocols that support key regression, but none of these protocols

support hierarchies. In [26, 27], Blanton et al. formalize key management schemes for

hierarchies, study existing protocols and introduce an efficient protocol for managing

keys in hierarchies. But all of these schemes and protocols are static with respect to

time, as they do not support key-updating/regression. Therefore, none of these schemes

are capable of handling key regression and hierarchies simultaneously.
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To our knowledge, the only work on key regression (lazy revocation) in hierarchies is

[53], in which Grolimund et al. introduced the concept of Cryptree, a tree constructed by

symmetric and asymmetric cryptographic links. In Cryptree, a user holding a clearance

key pointing to a folder can traverse a sequence of cryptographic links to derive access

keys to all of its sub-folders and files. Moreover, the structure of the Cryptree lets

the protocol delay re-encryption of data until the next update; thus supports lazy

revocation. However, for the reasons that we explain in Section 2.6, the complexity of

required data structure and its high performance cost for large volume of data makes

its implementation on top of existing cloud services unscalable and inefficient.

2.2.2 Model and Definitions in HKU Scheme

In this section we present a formal definition for Hierarchical Key Updating (HKU)

Schemes and its security. Let T = (V,E,O) be a tree that represent a hierarchical

access structure. More general access class hierarchies in which partially ordered access

classes are represented by a DAG are studied in [27]. In our work, we are only interested

in a special case where DAG is a tree. Each vertex vi in V = {v0, v1, ..., vn} corresponds

to an access class. v0 is the root and an edge e = (vi, vj) ∈ E implies that vi class is

the parent of class vj .

For example, top secret, secret, confidential, and unclassified form a hierarchy of

access classes, where the root top secret access class is the parent of the secret access

class. In a more complex access tree, a parent access class may have two or more

child access classes. For example, a root Enterprise access class may have Marketing,

Manufacturing, and R&D as its child access classes. We sometimes refer to access class

as class, and use terms node, vertex and access class interchangeably.

O is a set of sensitive data objects, each object o is associated with exactly one

access class V(o). In this model, any subject that can assume access rights at class vi

is also permitted to access any object assigned to a vertex that is a descendant of vi.

The following definitions introduce the concept of time into our model.

Definition 1 The local time at vertex vi is an integer ti that increases (elapses) every
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time access rights of a subject to that class is revoked.

Definition 2 The global time associated with node vi is a vector τi = (t0, ..., tj , .., ti)

where tj is the local time of jth vertex on the path from root to vertex vi on the access

tree T .

Two instances of global time are comparable only if the vertices that they belong to

are identical or one of them is the ancestor of the other one; We say τi < τj iff τi and

τj are comparable and all common components of τi are less then the corresponding

components in τj . Similarly, we define comparative operators =, >, ≤, and ≥.

Definition 3 A Hierarchical Key-Updating (HKU) Scheme consists of a root user and

end users. An end user may be a reader, a writer, or both. There are five polynomial

time algorithms HKU = (Init, Derive, Encrypt, Decrypt, Update) defined as follows.

• Init(1k, T ) is a randomized process run by the root user which takes as input

a security parameter k and an access hierarchy tree T and then generates and

publishes a set of public parameters Pub and outputs the root key Kv0,⊥. It also

initializes the state parameters including the value of local time at each vertex.

• Derive(T,K(vi,τi), vj) is a randomized process run by the root user, reader or writer

which using the private key K(vi,τi) of vi at time τi derives a private key of target

class vj at its current global time τj according to T . Derive computes the requested

key only if vi is an ancestor of vj and τj = τi; otherwise, it outputs null (⊥).

• Revoke(T, vi) run by the root user, reader or writer, increments the local time ti

of vi by one, updates other state variables, and returns the updated tree T ′.

• Encrypt(T, ok) is a randomized algorithm called by writer that encrypts the data

object ok and returns the encrypted object C.

• Decrypt(K(vi;τi), C) is a deterministic process run by reader which takes a key and

an encrypted object as inputs and returns the corresponding object in plaintext.

This function can decrypt C only if it belongs to the same or a descendant of the
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access class that the key belongs to and the time that ok is encrypted at is less

than or equal to τi; otherwise, it outputs null (⊥).

Definition 3 is a generalization of the definition of key-updating schemes in [20] and

the definition of key allocation schemes for hierarchies in [27]. If we assign to T a tree

of depth 1 where its leaves are a set of groups (i.e, remove hierarchies), our definition

reduces to a key-updating scheme defined in [20] and if we remove the update process

and the time dimension, our scheme reduces to key allocation scheme for hierarchies

defined in [27]. Intuitively, a hierarchical key-updating scheme is secure if all polynomial

time adversaries have at most a negligible advantage to break the ciphertext encrypted

with the current-time key of a target class, assuming that the adversaries do not belong

to higher (ancestor) target classes in the hierarchy, or possess keys for earlier time

periods. In this model the adversary chooses her target at the beginning of the game

and then adaptively queries the scheme.

We define the security model of hierarchical key-updating schemes as follows:

Definition 4 A hierarchical key-updating scheme is secure if no polynomial time ad-

versary A has a non-negligible advantage (in the security parameter k) against the

challenger in the following game (HKU game) :

Choosing target: The adversary declares an access object v̂ and a time instance τv̂

that she wishes to guess its corresponding private key (i.e. K ′(v′, τ ′)).

Setup: The challenger runs Init(1k, T ), and gives the resulting public parameters Pub

and T to the adversary.

Key-Extraction Query: The adversary adaptively queries the private keys of polyno-

mial number of vertices at any time that she wishes subject to the restriction that either

the queried vertices are not an ancestor of (or equal to) v̂ or the time instance that they

are being queried at is earlier than or equal to τv̂.

Challenge: The adversary submits two equal length objects o0 and o1 belonging to the

access class v̂. The challenger flips a random coin b, and encrypts ob for time τv̂ and

submits the result to the adversary.

The adversary issues more Key-Extraction queries.
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Guess: The adversary outputs a guess b′ of b.

Adversary’s advantage is the probability that her guess is correct: AdvA = Pr[b′ = b].

The HKU scheme is secure if the adversary’s probability compared to random guessing

(12) is negligible.

2.2.3 AB-HKU Scheme

In this section, we present a concrete construction for HKU scheme called AB-HKU.

This scheme is based on the use of bilinear map and the difficulty of the Decisional

Bilinear Diffie-Hellman problem. Our solution is realized on top of the Key-Policy

Attribute-Based Encryption scheme (KP-ABE) [51] and invokes KP-ABE operations

including Setup ABE, KeyGen ABE for private key generation, Encrypt ABE for

data encryption, and Decrypt ABE for decryption.

• Init(1k, T )

1. The root user runs the Setup ABE process with 1k as security parameter

to generate ABE public parameters and the master key MK. Publishes the

ABE public parameters as Pubabe.

2. Calls KeyGen ABE procedure using MK as the secret key and “L0 =

v0” as its policy. Outputs the result as the root key (K(v0,⊥)= Key-

Gen ABE(MK, L0 = v0)).

3. To each vertex in T adds a local time variable ti initialized to zero.

• Derive(T,K(vi; τi), vj) is run by a user (root user, reader, or writer) with secret

key K(vi; τi) at time τi to obtain the private key for node vj .

If class vj is not a descendant of class vi, or the time τi is not equal to current

time τj associated with vj , then return null. Otherwise, denote (u1, u2, ..., un) as

the list of vertices in the path from vi to vj ; denote (tu1 , tu2 , ..., tun , tvj ) on T as

the list of current local time values of intermediate vertices (including vj); and let

d represent the depth of vi.

The user performs the following operations.
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1. Construct the access tree T ′ which corresponds to the following Boolean

expression: (Ld.v attribute represents vertex in d-th level, Ld.t represents its

current local time and ∧ is conjunction operator.)

(L(d+1).v = u1 ∧ ... ∧ L(d+n).v = un

∧L(d+ n+ 1).v = vj) ∧

(L(d+1).t ≤ τu1 ∧ ... ∧ L(d+n).t ≤ τun

∧L(vj).t ≤ τvj ) (2.1)

This Boolean expression restricts access to objects that belong to node vj or

its descendants and are created at current time or before.

2. Denote the access tree of K(vi,τi) by T . Using the procedure for delegation

of private key in [51], add the access tree T ′ to the root of K(vi, τi), increase

its threshold by one, update and calculate the private parameters associated

to the root according the protocol. In implementation section we provide

more details on this procedure.

3. Output the resulting access tree and parameters as a private key K(vj , τj)

for vj .

• Encrypt(T, ok): Denote vi as the access class that object ok belongs to. (vi =

V(ok)). Denote (v0, u1, u2, ..., un, vi) as vi’s path and τi = (tv0 , tu1 , tu2 , ..., tun , tvi)

as its current time according to T . A writer encrypts ok as follows.

1. Set the attribute set γ as follows. The attribute set is used as the public key

for encryption.

γ = {L0.v = v0, ..., Ln.v = vn, Ln+1.v = vi,

L0.t = tv0 , ..., Ln.t = tun , Ln+1.t = tvi} (2.2)

2. Use ABE encryption procedure to encrypt ok with attribute set γ and return

the resulting encrypted object. (C = Encrypt ABE(Pubabe, γ, ok)).

• Decrypt(K(vi,τi), C). The reader decrypts as follows.
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1. If the encrypted object C does not belong to the same access class vi as the

key K(vi,τi) or one of its descendants, or the time when C is encrypted is

later than the time τi when the key is generated, then return null (⊥).

2. Otherwise, run ABE decryption procedure and return its result as output

(ok= Decrypt ABE(K(vi,τi), C)).

• Revoke (T, vi) is run by a user to increment the local time of vi by one and then

returns the updated tree T ′.)

The correctness of our HKU scheme follows the correctness of the key policy ABE

scheme [51].

Theorem 1 Assuming the hardness of the Decisional BDH, AB-HKU is a secure hi-

erarchical key-updating scheme.

Proof 1 Sketch. It suffices to show that an adversary who can play HKU game for AB-

HKUwith non-negligible advantage, can also win KP-ABE game with a non-negligible

probability, and thus break the security of KP-ABE and subsequently the Decisional

BDH. Let A be an adversary who can win HKU game with non-negligible advantage

1
2 + ε. She can play KP-ABE Selective-Set model game as follows.

Init: A declares the set of attributes that corresponds to vertex v̂ and time τv̂ as γ, the

set of attributes that she wishes to be challenged uppon.

Setup: This step is identical to Setup step in HKU game.

Phase 1: In this phase the adversary queries for the private keys for access structures

(trees) Tj which correspond to that of keys that she would query in HKU game. Since,

according to the protocol of HKU game, these keys belong to vertices that are not an an-

cestor of v̂ or their time is less than τv̂, their access trees will not satisfy with attributes

in γ (γ /∈ Tj) and therefore they are legitimate queries.

Challenge: Identical to the Challenge step in HKU game.

Phase 2: Repeat Phase 1.

Guess: The adversary guesses b using the same strategy that she uses in HKU game.
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Since the data is encrypted under the same set of attributes and using the same pro-

cedure, she has the same non-negligible advantage to make the correct guess. This

concludes our proof. �

2.3 K2C Protocol

We describe the application of our hierarchical key-updating scheme in realizing a secure

and scalable cloud access control protocol that supports easy sharing and revocation

on hierarchically organized resources. We also analyze the security of our protocol.

2.3.1 Design Goals

Below we list the design goals of our K2C access control protocol:

• Security. Our protocol must protect the confidentiality and integrity of stored

data against cloud providers and unauthorized end-users. Meaning that the stored

data should be readable for authorized users only and any unauthorized change

to the data should be prevented or detectable.

• Privacy-preserving. Access rights of a specific end-user as well as his usage

trends should not be visible to other users or cloud service providers.

• Efficiency and Scalability. To avoid unjustified cost of re-encryption, the pro-

tocol should support lazy revocation. Also, the complexity of operations should

be independent of number of data objects and users in the system. This ensures

that the protocol will not affect the scalability of existing cloud services.

• Flexibility. The protocol should allow data owners and end-users to organize and

manage their data in hierarchies similar to conventional file systems. Directories

also represent access class hierarchies, users who have access to a directory/folder

also assume the same access to all files and directories below that directory. Also,

they should be able to grant/revoke part of their access rights to/from other users

in a decentralized and scalable manner.
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• Simplicity and Extensibility. Last but not the least, the protocol should be

simple enough to be efficiently implementable on top of existing commercial cloud

APIs.

We assume end-users have secure communication channels, limited computation

power and storage required for authenticating each other and performing client-side

key distribution in a synchronous or asynchronous manner.

2.3.2 Security Model

In this section we present the security model for K2C. We assume that the root user,

representing the data owner, is trusted. The cloud providers are honest-but-curious

(aka semi-honest), who follow the protocol and faithfully execute the operations, but

may actively attempt to gain additional knowledge, such as the sensitive data stored

in the cloud. An adversary may attempt to perform unauthorized read or write access

against the stored data, or attempt to learn the identities of readers or writers. For

example, end-users may try to perform unauthorized read or write operations on stored

data objects. To perform their attacks, unauthorized users may use their existing access

keys for other objects and categories or cooperate with other unauthorized users and

cloud providers to derive/guess credentials required to perform unauthorized access.

Similarly, cloud providers may try to read or modify stored data or learn about the

identities of the end uers. Cloud providers may collude with each other or some unau-

thorized end-users to break the security of K2C. We assume communication channels

between participants are secure (e.g., SSL).

2.3.3 A signature scheme for KP-ABE

K2C requires a signature scheme to 1) enable the readers to verify the integrity of data

and ensure that it is produced by an authorized writer, 2) enable the cloud service

providers to validate incoming requests and block unauthorized accesses. However, the

original paper which introduces KP-ABE [51] does not present any signature scheme. In

this section we introduce an attribute-based signature scheme called AB-SIGN which
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enables the verifier to ensure that a signature is produced by a user whose access policy

is satisfiable by a set of attributes without learning the signer’s identity.

Our design for AB-SIGN is based on the same technique introduced by by Moni

Naor (Section 6 of [30]) for Identity Based Encryption and then extended in [47] for

HIDS signature scheme.

Definition 5 AB-SIGN is a signature scheme for key-policy attribute-based encryption

that its signing and verification methods are defined as follows. Let’s say that the signer

has a key K for policy P , and wants to sign message M. The verifier needs to verify

that the signature is generated by a signer whose key policy satisfies attribute set A:

Signing

From K derive a key (K ′) which corresponds to a policy which is the concatenation of

P and (@S =M) (@S is a reserved attribute for signatures). Send the derived key to

the verifier as the signature.

Verification

Generate a random token and encrypt it using the attribute set A ∪ {@S = M} and

then decrypt the result using a key which is equal to the signature. If the result is equal

to the original token the signature is valid (i.e. the attribute set A satisfies the signer’s

key policy.)

To prevent an attacker from using the signature method to derive a valid access key,

we need to reserve the attribute ‘@S’ for signature.

Theorem 2 Assuming the hardness of the Decisional BDH, AB-SIGN is a secure sig-

nature scheme.

Proof 2 Sketch. Unforgeability of AB-SIGN scheme follows immediately from the se-

curity of KP-ABE scheme. In AB-SIGN, a signature is a derived key from the actual

write access key. Therefore, based on the security of KP-ABE derive operation, the only

entity who can generate the signature is the owner of the write access key. Moreover,
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security of derive operation guarantees that the verifier cannot guess the original access

key from the derived key. �

2.3.4 Protocol Description

In this section we provide the details of K2C protocol. The protocol runs between the

root user, end-user (reader or writer), and the cloud providers. The root user may be

a system administrator in the data owner’s organization, who can specify the access

privileges of end-users. The end-users may further delegate their access privileges to

other individuals for easy sharing. We achieve the revocation of privilege by encoding

the validity period in the private keys of users and advancing time with respect to the

target hierarchy or data object. Another advantage of our K2C framework for use in

cloud storage is the support of anonymous access.

As illustrated in Figure 2.1, K2C requires three repositories: Meta-data Directory,

Data Store and Key-store.

• Meta-data Directory: All meta-data associated with hierarchies and data ob-

jects are maintained in this repository. K2C requires two properties for each

object: Read Access Revision (RAR) and Write Access Revision (WAR). These

two properties play the role of local time in AB-HKU for read and write access,

respectively. In order to compute Read/Write Access Revision Vectors (which cor-

respond to global time instances in K2C ), the cloud provider that hosts Meta-data

Directory needs to provide an API for querying RAR and WAR values of multi-

ple directories in a single request. All existing cloud-based databases (also known

as ‘NoSQL systems’, or ‘schema-free database’) such as Amazon SimpleDB [7],

Microsoft Azure SQL [16], and Google’s AppEngine [8] database (Bigtable [35]))

satisfy this requirement and therefore qualify to host a K2C Meta-data Directory.

For our experiments we use Amazon SimpleDB [7].

• Data Store: This repository contains the actual content of each data object.

Any cloud key-value based storage system such as Amazon S3 [6] can be used

as K2C Data Store. In K2C, keys are hierarchical path name of data objects
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Figure 2.1: Illustration of all major participants of K2C. Following K2C protocol,
end-users can enforce access control on their own data without fully trusting or relying
on the cloud providers. In K2C, keys are distributed and managed in a distributed
fashion. Solid arrows represent access delegation.

and values are the actual content of corresponding data objects. Cloud key-

value storage providers are tuned for high throughput and low storage cost; these

features make them a good candidate for K2C Data Store 2.

• Key-store: All read/write access keys of end-users are kept in their secure local

repository called Key-store. Each key-store contains all public parameters as well

as read/write access key entries of all data-objects and categories that the end

user has access to. Each access key entry contains the following fields: object

path, access type (read/write), granter’s identity, and secret key. The Key-store

provides an API that given user’s credential and a path, returns the first key entry

that its path is a prefix of the input path.

2Note that using key-value storage for Meta-data Directory is not efficient as computing WAR/RAR
vector leads to multiple calls to the cloud storage system.
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Initial Setup and Basic Operations

To setup K2C, the root user needs to follow the steps listed below:

1. Sign up for cloud services required for hosting Meta-data Directory and Data

Store.

2. Run Init procedure according to AB-HKU scheme to generate public parameters

and the master key.

3. Save the master key and public parameters in the root’s Key-store.

4. Share the public parameters with the cloud service providers that support K2C re-

quest authorization.

5. Create an entry in Meta-date Directory that corresponds to the root directory.

The WAR and RAR numbers of the root directory entry are initialized to zero.

There are four basic operations in our protocol: write, read, delegate, and revoke.

Each basic operation leads to calls to Meta-data directory and/or Data Store. We

present the high-level steps involved in these operations below. Other operations such

as create/remove/rename for directories and data objects can be defined similarly. K2C

requires that each request be signed by user’s access key for the target object using our

AB-SIGN operation. This requirement enables cloud providers which support K2C to

block unauthorized request. We refer to this property as K2C request authorization.

• Write: To write into a specific data object, the end-user needs to perform the

following steps (See also Figure 2.2).

1. Retrieve the required write access key from the local Key-store.

2. Query Meta-data directory to get read access revision (RAR) vector of the

target object.

3. Using AB-HKU scheme, encrypt the data by the retrieved RAR vector and

its path.

4. Using AB-SIGN scheme, sign the data by his write access key.
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Figure 2.2: Write Operation.

5. Construct a key-value pair where the key is equal to the path of data object

and the value is the encrypted data and corresponding signature. Store the

pair in Data Store.

6. To prevent destructive writes by unauthorized users, the Data Store can

query write access revision (WAR) vector of that object from the Meta-data

Directory to validate the signature of request 3.

• Read: To read a specific data object stored using K2C protocol, the end-user

needs to do the following (See also Figure 2.3). To ensure the data is produced

by an authorized writer, the reader needs to validate the corresponding signature

using AB-SIGN signature scheme. Then the reader can decrypt the data using

its read access key and AB-HKU scheme.

3Note that unauthorized writes are also detectable by the reader.
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1. Retrieve the required read access key from the local Key-store.

2. Using AB-HKU scheme and the read access key, decrypt the encrypted data.

3. Using AB-SIGN signature scheme, validate the signature to ensure that data

is produced by a user who has the proper write access.

4. Return the decrypted data.

Figure 2.3: Read Operation.

• Delegation: Delegation operation can be run by a user to authorize another

user a subset of his access privileges. It requires three input parameters: the

identity of the delegatee, the resource path, and access type (read/write). The

steps required for this operation are listed below:

1. From the local Key-store, get the access key that matches the target resource

path and access type.

2. Query Meta-date Directory to get the read/write access revision (RAR/WAR)

vector of target resource.

3. Run Derive operation, as defined in AB-HKU scheme, to generate the re-

quired access key.
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4. Send the generated access key to the delegatee through a secure communi-

cation channel.

• Revocation: To revoke a user’s access on a specific directory or data object,

the authorized user needs to make a signed request to the Meta-data Directory

to increase the corresponding access revision number. To ensure the integrity of

access revision numbers, these entries should be signed by the requester.

Key Distribution and Management

In K2C, there is no centralized entity responsible for key distribution and management.

Each user is responsible for maintaining and managing its own access keys. Key owners

can derive access key to all sub categories according to AB-HKU scheme and distribute

them to other users thorough secure communication channels. K2C assumes there is al-

ready some secure communication channels between all entities so that they can identify

each other and securely communicate in synchronous or asynchronous manner.

2.3.5 Security Analysis

In this section we state the security guarantees provided by K2C protocol. More

detailed proofs and analysis can be found in our full version [89].

Confidentiality. Our solution ensures that only the users who have the most

recent version of the access key of the data object or one of its ancestor directories can

decrypt it. The confidentiality of stored data is protected under our protocol because

writers always encrypt the data objects by their path and most recent read access

revision (RAR) vector according to AB-HKU scheme. The cloud provider or other

unauthorized users cannot gain any information that helps them to guess the access

key of unauthorized data objects.

Collusion-resistance. Security of KP-ABE guarantees that unauthorized users

and malicious cloud service providers cannot collude to guess access key to an unau-

thorized data object.
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Integrity. The integrity of stored data is preserved. This guarantee is realized by

requiring writers to sign the data by their write access key using AB-SIGN scheme.

We require readers to validate writer’s signature to ensure that it is produced by an

authorized writer (i.e. a user with write access to that data object or on of its parent

directories). Because meta-data entries stored in the Meta-data Directory are also

required to be signed by the end-users, any unauthorized change in Meta-data Directory

is detectable by the reader.

Anonymity. The end users are anonymous to each other and to the cloud providers.

The signatures used in the our authorization do not contain any identify information.

During the course of protocol, the end-users do not reveal any information about their

credentials. AB-SIGN signatures bound to the data objects and requests, include only

attributes related to the location and global time of those objects.

2.4 Our KP-ABE Crypto Library

To support lazy-revocation and hierarchies, K2C uses our AB-HKU scheme that is

based on Key-Policy Attribute-Based encryption scheme [51]. But, we were not able

to find any implementation of KP-ABE 4. Therefore, we develop a general KP-ABE

cryptographic library and release it as an independent open source project [12]. In this

section, we provide a short overview of this library.

2.4.1 High-level Design

Our library implements the KP-ABE scheme. KP-ABE is a large universe construction,

meaning that it does not require the attributes to be fixed during the initialization

process. However, the maximum number of attributes should be known in advance – a

limitation which is not desirable in many practical cases. To overcome this limitation,

we adopt the random oracle model [23] and replace function T (X) (used in the Setup

phase) by a secure hash function. This modification also improves the efficiency of the

4The open source implementation of Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [24]
which was presented in the original paper [24] is available at [15]. However, CP-ABE is not applicable
in our protocol.
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library. Therefore, our library does not put any limitation on the number of attributes

that can be used in the system. We support numerical attributes and comparisons [24].

In this approach, numerical attributes are converted into multiple symbolic at-

tributes each representing a specific bit in its binary representation (a ‘bag of bits’

representation). Similarly, numerical comparisons are translated into an access tree

which its leaves are the corresponding bit-wise attributes and evaluates to the same

results as the numerical comparison. In other words, this approach converts numerical

comparisons into a symbolic comparison.

In our library, policies are defined recursively and represented using an S-Expression

(LISP-like expression) as follows:



a = v a is a symbolic attribute

(c a v) a is a numerical attribute &

c is a comparative operator

([ t | and | or ] p1 p2 . . . pn) Composite policy

The first type corresponds to a simple policy for symbolic attributes. For example,

policy role=manager gets satisfied only if the attribute role assumes a value equal

to the literal manager. The second type represents policies for numerical attributes.

For example, policy (> age 18) gets satisfied only if the value of the attribute age is

greater than 18.

The third type represents policies which are composed of a set of policies (i. e.

p1, p2, . . . , pn) proceeded by a threshold. Composed polices get satisfied only if the

number of satisfied polices in that list is more than or equal to the specified threshold.

The threshold can be one of the following three items: an integer threshold t ∈ [1, n],

and, or. For example, (and role=manager (> age 18)) is a composite policy which

gets satisfied only when the value of attribute role is equal to manager and the value

of the numerical attribute age is greater than 18.
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2.4.2 Implementation Details

Our library consists of two main public classes: ABE and Entity. ABE class can be

used by the root user to initialize the system. It also represents the public parameters

of the system. Entity class represents privileges of users within the corresponding

system. ABE has a constructor that receives two security parameters (rBits and qBits

with default value of 160 and 512, respectively) and generates all public parameters

as well as the master key. The root user constructs an object of this class during

the setup process and then calls a function called ABE.getRootEntity() to generate

an instance of the Entity class which represents the root privilege. This class also

provides a the methods for encrypting data using a set of attribute-values based on

the public parameters. Moreover, it has a method for validating signatures using AB-

SIGN signature scheme, which we introduced in this paper. This method validates

that data is signed by an entity which its access policy satisfies with input parameters.

Entity class does not have any public constructor. The first instance of Entity

is generated by calling ABE.getRootEntity() during the setup time (as explained in

the previous paragraph). Then other instances will be derived from root and other

instances. The Entity.derive method accepts a policy as input and generates an

instance of Entity which its access tree corresponds to the conjunction of the input

policy and the original policy. This means that the derived entities always have more

restrictive access. The derive method is implemented using ‘Re-randomization’ and

‘Converting a (t, n)-gate to a (t+ 1, n+ 1)-gate’ operations as they are defined in [51].

During the derive operation we perform some optimization to keep size of the resulting

access tree minimal.This class also provides methods for decrypting and signing data.

ABE and Entity classes are serializable. This feature enables us to store, retrieve,

and transfer the public and private parameters. Moreover, encryption, decryption, and

signature methods are steam-based meaning that their methods can process data in an

InputStream and write the result in an OutputStream.

To improve the performance, the actual data is encrypted using a symmetric-key
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encryption scheme 5 and only the key is encrypted using KP-ABE.

KP-ABE is a pairing-based crypto-system which requires pairing-based operations

such as elliptic curve generation, elliptic curve arithmetic and pairing computation.

For pairing-based operations, we used a Java-based library called jPBC [11]. This

library comes in two flavors: Java Porting, Java Wrapper. In our implementation and

experiments we used the Java Wrapper version. Since in Java Wrapper version, the

computation is done in C, it is faster but platform dependent. To parse a policy and

construct an access tree (T ), we used jSExp [13], an open source Java library for parsing

Lisp S-expressions.

We also implemented a similar crypto library for Hierarchical Identity-Based En-

cryption scheme [47]. The source code is accessible at [10].

2.5 K2C Framework

In this section we present the high-level architecture of K2C framework and explain the

implementation details of its major components. We also provide some experimental

results that show performance overhead of our solution.

2.5.1 Design and Implementation

Simplicity and extendability are two major design goals of our framework. To make

K2C framework independent of any specific cloud provider, we abstract away the details

of the cloud providers through two simple interfaces: IDataStore and IMetadataDirectory.

A new cloud service provider can be easily supported by implementing these interfaces.

To support a new cloud service provider, we need to do the following:

1. Implement these interfaces using the API of the new cloud service provider. We

refer to their implementation as the K2C driver of that service provider.

2. Inject the new driver into K2C framework by binding it to the corresponding

interface. This can be done easily through the framework’s dependency provider

5The default is Advanced Encryption Standard (AES) [39] with the key size of 128 bits; however, it
can be replaced by other symmetric-key encryption scheme.
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module (A Google Juice [9] module).

Out of the box, K2C framework comes with a data store driver for Amazon S3 and

a meta-data directory driver which uses Amazon SimpleDB. To make it easier for the

developers to learn and use our framework, we expose its services through a set of APIs

which are very similar to the Java APIs for accessing the file system. In fact, we first

extracted the Java source code of java.io.* classes from the OpenJDK [70] project and

then, by re-implementing the abstract class java.io.FileSystem, replaced all the calls

to the filesystem with a call to the corresponding operations in the K2C protocol. Our

framework uses a password-based encrypted 6 keystore similar to JKS (Java KeyStore).

At runtime, the required keys are retrieved from the keystore and cashed into the

memory. The users need to perform their key management operations manually using

a command-line utility called k2ctool. For example, to delegate another user access

to a specific folder (e.g. /Enterprise/IT/Middleware/docs/), the user needs to run the

following command:

Listing 2.1: Delegation

k2c too l −de l e ga t e −ob j e c t / Ente rp r i s e /IT/Middleware/ docs / \

−keys to r e /home/k2c / . keys to r e \

−s t o r e p a s s ∗∗∗∗ \

−output /home/${USER}/ . key

This command generates the required access key and saves it into /home/${USER}/.key.

Then the user needs to send the generated file to the delegatee. Later, using the import

option of k2ctool, the delegatee can add this key into his own keystore . Similarly,

during the initial setup, the root user can use the option genkey to generate the public

parameters and the master key.

2.5.2 Performance Evaluation

In this section we provide some experimental results which show the performance over-

head of our K2C protocol. We ran our experiments on a machine with the following

6PBE with Triple DES
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configuration: Intel Pentium(R) Dual-Core CPU, 3.20GHz, Cache 2048 KB, 3.3 GB

RAM, i386 GNU/Linux 2.6.

Pre-computation and caching. As discussed in the previous sections, to overcome

the limitation of fixed attributes, we adopted large universe construction of KP-ABE.

However, in this construction the process of mapping an attribute to the bilinear group

G1 (i.e. {1, 0}∗ → G1) is very expensive (on average 23 ms per attribute). In our KP-

ABE library every bit of a numerical attribute gets translated into a symbolic attribute.

For example, a 10-bit representation of the numerical attribute li = 355 gets translated

into a list of symbolic attributes shown in 2.2.

Listing 2.2: Symbolic representation of attribute li = 355

[ l i@0 =1, l i@1 =1, l i@2 =0, l i@3 =0, l i@4 =0,

l i@5 =1, l i@6 =1, l i@7 =0, l i@8 =1, l i@9 =0]

Also, all numerical comparisons get translated into symbolic matching policies. For

example, policy 2.3 corresponds to the numerical comparison li < 358.

Listing 2.3: KP-ABE policy for li < 358

(2 l i@9=0 (1 (2 l i@7=0 (1 (1 (2 l i@4=0

(2 l i@3=0 (1 l i@1=0 l i@2 =0))

) l i@5 =0) l i@6 =0)) l i@8 =0))

In K2C, every level of an object’s path has two numbers associated with it - read

access revision number and write access revision number. Therefore, these numerical

attributes lead to many symbolic attributes which their mapping cost create a significant

over-head. Since the value of each bit is either zero or one, we pre-compute the mapped

values of these symbols and during the startup process load them into the framework.

Moreover, at runtime, we cache the mapped value of each path segment in a hash table

so that it can be reused. Using the described pre-computation and caching techniques,

we were able to significantly reduce the computational cost associated with required

KP-ABE crypto operations.

Using symmetric-key crypto. In K2C the actual content of data is encrypted

using a symmetric-key encryption scheme and only the corresponding symmetric key
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is encrypted by KP-ABE scheme. By default our framework uses AES (Advanced

Encryption Standard) [39] for symmetric encryption with the default key length of 128

bits. Similarly, AB-SIGN signature scheme is performed on fixed-length digest of data.

Our framework, by default, uses SHA-1 [1] as the digest hash function. SHA-1 generates

160-bit message digest of data.

The following figures show the overhead of our encryption and signature schemes on

top of underlying symmetric-key encryption and hashing schemes. In our experiments

numerical attributes are of size 10 bits.

Figure 2.4 shows how the cost of K2C encryption and decryption relates to the

user’s access level and hierarchy level of the data object. In KP-ABE the encryption

time is only a function of number of attributes, which linearly increases as the object

level increases. As a result, K2C encryption cost linearly increases as the hierarchy

level of the object increases, but it is independent of the user’s access level.

Figure 2.4: Overhead of K2C encryption and decryption of objects in different hierar-
chy levels for users with different access levels.

By contrast, as figure 2.4 shows, decryption time is just a function of user’s access

level. That is because in KP-ABE, decryption time is a function of complexity of

access structure that linearly increases as user’s access level increases. Decryption time

is independent of hierarchy level of the encrypted object.

In K2C, as Figure 2.5 illustrates, signature cost is independent of the hierarchy

level of data objects; it only depends on access level of the user. This is because our

AB-SIGN signature scheme is based on KP-ABE derive operation which its complexity
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linearly increases as the complexity of the access structures increases.

Figure 2.5: Overhead of K2C signing and signature verification on signed objects in
different hierarchy levels for users with different access levels.

In AB-SIGN scheme, each signature verification operation requires KP-ABE en-

cryption and decryption, therefore its computational cost depends on the user’s access

level as well as the hierarchy level of data object. Figure 2.5 shows how the time re-

quired for signature verification increases linearly as the access level of user decrease

and the hierarchy level of data object increases.

Figure 2.6 shows the combined overhead cost of read and write operations in K2C.

To perform a K2C write operation, a user needs to encrypt and sign the data objects.

The portion of cost below the white indicator is related to encryption and the rest is

the cost associated with signature. A K2C read operation includes cost of decryption

and signature verification. The value below and above the white indicator shows the

overhead cost for decryption and signature verification, respectively.

2.6 Related Work

There are two general key management approaches which are used in the existing cryp-

tographic file systems: 1) classic access control list (e.g., [53, 60]) requires maintaining

a key list along with each file. This approach supports fine-granularity but is not scal-

able. 2) grouping files and assigning the same access key to each group (e.g., [62]). This

approach is more scalable but provides coarse-grained access control. This trade-off

makes these solutions unsuitable for clouds where we need a fine-grained and scalable
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Figure 2.6: Overhead of K2C write and read operations on objects in different hierarchy
levels for users with different access levels.

access control mechanism. In [88], Shucheng Yu et al. introduced a novel approach

which addresses this trade-off by proposing a fine-grained and scalable access control

protocol. Their solution uses lazy re-encryption to statistically reduce the number of re-

encryptions required after access revocation. They use proxy re-encryption (PRE) [28]

to off-load the task of re-encryption to cloud servers. In our solution, we adopt lazy

revocation to eliminate these re-encryptions. In [86], Xiong et al. introduce a protocol

for securing end-to-end content distribution when delivery services are involved.

Lazy revocation was first introduced in Cephues [45] to eliminate re-encryption

required for each revocation at the cost of slightly lowered security. Lazy revocation,

which is widely being used in recent cryptographic file systems [62, 78, 81], requires a

key-updating scheme to support key regression. Key-updating schemes are studied and

formalized in [20]. In [53], Grolimund et al. introduced Cryptree which can support

access hierarchies and lazy revocation simultaneously. However, due to the explicit and

physical dependency of these links, file system operations – especially revocations –

require updating large number of these cryptographic links. For example, the revocation

of write privilege requires updating O(n) keys, where n is the number of data objects

contained in that folder and its sub-folders. Therefore, revocation of write access for

a folder containing many files is relatively slow as all the links that connect to the

contained sub-folders and files need to be updated.

Moreover, in Cryptree, since key derivation requires traversing cryptographic links,
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key derivation time is a function of distance of data objects to the folder that the user

has access to. Therefore, users with access to high-level folders (e.g. root user) have

slower read access. For a specific user read access time depends on the location of

the data object, but intuitively we expect the read access time to be independent of

the location of the data object. Another limitation of this approach is that Cryptree

does not support the delegation of administrative rights and assumes that granting

and revoking access rights are done by a single administrator, an assumption which

is usually unrealistic in the context of Cloud Storage, as we expect non-centralized

administration of data. In this paper we introduced a scalable key updating scheme for

hierarchies which addresses these shortcomings and enables us to build a cryptographic

access control supporting lazy revocation.

2.7 Summary

We presented a novel key-updating scheme that can be used to enhance the scalability

and performance of cryptographic cloud storages by adopting lazy revocation. We also

designed a new digital signature scheme that enables cloud providers to ensure that

requests are submitted by authorized end-users, without learning their identities. Using

our key-updating and signature schemes, we developed, implemented, and evaluated a

scalable cryptographic access control protocol for hierarchically organized data.
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Chapter 3

Client-side Service Mashup

In this chapter we present the design and implementation of our browser-independent

integration framework called OMOS (Open Mashup OS).OMOS framework is designed

for dynamic, seamless and secure integration of cloud services. In Web 2.0 terminology

applications that seamlessly combine contents from multiple heterogeneous data sources

into one integrated browser environment are called Mashups. The hallmark of these

applications is to facilitate dynamic information sharing and analysis, thereby creating a

more integrated and convenient experience for end-users. Currently, developers use ad-

hoc and often insecure techniques to develop mashups. As mashups evolve into portals

designed to offer convenient access to cloud resources and critical domains, concerns

to protect users’ personal information and trade secrets become important, thereby

motivating the need for strong security guarantees. We develop a security architecture

that provides high assurance on the mutual authentication, data confidentiality, and

message integrity of mashup applications, thereby is suitable for integration of cloud

services. In the next chapter, we show how using this framework we can develop secure

and privacy-preserving identity management protocols.

This chapter is organized as follows. In Section 3.1 we introduce the security chal-

lenges that exist in development of mashups and explain our design goals. The ar-

chitecture of OMOS framework is presented in Section 3.2. In Section 3.3 we explain

implementation details of OMOS framework. The security analysis is in Section 3.5.

Related work is explained in Section 3.6. We give the conclusions in Section 3.7.



40

3.1 Introduction

Mashup applications are emerging as a Web 2.0 technology to seamlessly combine con-

tents from multiple heterogeneous data sources; their overall goal is to create a more

integrated and convenient experience for end users. For example, http://mapdango.com

is a mashup application that integrates Google Maps data with relevant information

from WeatherBug, Flickr, Eventful, etc. By entering a location, the user is presented

with an integrated view of the weather of the location, events happening in surround-

ing area, photos that others took in the area, and so on. There are two main types of

architectures for mashup applications, namely, server-side and client-side architectures.

As the name indicates, server-side mashups integrate data from different sources at

the server-side, and return the aggregated page to the client. For example, Facebook

mashup APIs are mainly based on server-side integration [44].

However, the main drawback of server-side mashups is the requirement of com-

plete trust on the mashup server by the client. Typically, the client needs to delegate

authorization to the mashup server to act on its behalf.

In comparison, a client-side architecture, as illustrated in Figure 3.1, enables con-

sumers and service providers to communicate within a browser, thus reduces the amount

of trust that one has to place on untrusted third-party integrator. OpenSocial provides

a client-side mashup API [72]. Throughout this paper, we focus on client-side mashup

architecture, as emerging mashup applications using AJAX techniques hold the promise

of the next technical wave of the future [18]. AJAX, short for asynchronous JavaScript

with XML, is a technique that allows a Web page to retrieve contents from the Web

server and update the page asynchronously using JavaScript. AJAX mashups are able

to present a rich user interface and interactive experience with multiple data sources

with minimal transmission delays.

3.1.1 Security Challenges

Client-side mashup architectures allow information mashup to happen within the client’s

browser through the use of JavaScript. A mashup application should be able to access
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Figure 3.1: Client-side mashup architecture. The rectangle represents the browser on
the client’s local computer where contents from heterogeneous data sources such as
a.com and b.com are mashed up.

and integrate contents from different sources. In general, there is a trade-off between the

security and functionality in today’s mashup applications. In order to achieve higher

security guarantees, a source should not be allowed to access contents of another do-

main. The frame or iframe element in the current browsers realizes this separation

by forbidding one frame from accessing another frame with a different source domain.

However, frame environments make it awkward for cross-frame communication and thus

information integration in mashups.

To mitigate issues caused due to lack of communication method between iframes,

HTML5 introduces a new API called postMessage [22]. The postMessage API pro-

vides a way for verification of sender’s and receiver’s origin, however that remains the

responsibility of the developer to do the actual verifications. For the reasons that we

discuss in the next section, in practice the required verifications are not trivial and

therefore often developers skip the required verifications which leads to various vulner-

abilities. Moreover, According to Facebook [22] only about half of their users’ browsers
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support postMessage, therefore for compatibility reasons they were using some ad-hoc

non-secure technique for inter-frame communication. ( trade-off for functionality and

compatibility over security. )

To address these problems, several client-side mashup architectures have recently

been proposed, including MashupOS [83], Subspace [58] and SMash [63]. The main goal

of these solutions is two-fold: to isolate content from different sources in sandboxes, such

as frames, and to achieve secure frame-to-frame communication.

SMash [63] uses the concepts in publish-subscribe systems and creates an event hub

abstraction that allows the mashup integrator to securely coordinate and manage con-

tent and information sharing from multiple domains. The mashup integrator (i.e., the

event hub) is assumed to be trusted by all the web services. The event hub implements

the access policies that governs the communication among domains.

MashupOS [83] introduces a sophisticated abstraction that enables web components

from different domains to securely communicate. OMash [38], inspired by MashupOS,

tries to simplify the abstraction and remove the reliance on same origin policy (ex-

plained in Section 3.1.4). However, implementing these abstractions requires adding

new elements to the HTML standard and major changes in the browsers to support

them.

Subspace [58] suggests an efficient techniques for www.mashup.com to use a JavaScript

Web service from webservice.com by sandboxing the Web service in a frame that is

originated from a throwaway sub-domain (e.g. webservice.mashup.com) and commu-

nicating with it by shortening document.domain to a common suffix and passing a

JavaScript object that can be used for secure communication. The main drawback of

this approach is that, due to the same origin policy, the Web service running from

webservice.mashup.com, cannot use XMLHTTPRequest to communicate with its re-

sources on backend site (webservice.com) and this restriction limits the use of AJAX

Web services.

However, none of these solutions provide a flexible and secure point-to-point inter-

domain communication mechanism that can be used in today’s browsers without relying

on developers to ensure the security of communication.
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3.1.2 Relevance of OMOS in the postMessage era

HTML5 introduces postMessage [22] API as a standard component of web. This new

API greatly facilitates client-side inter-domain communication. Previously this method

was only available in a few bowers such as Opera, but HTML5 guarantees that this API

will be consistently available in all browsers in near future. Using postMessage API,

a sender who has a reference to another iframe can forward a message to that iframe.

This method has an optional input parameter that receives the expected domain name

of the target iframe and ensures that the message will be delivered only if the domain

name of the target iframe is equal to the specified domain. Note that due to Same-

Origin-Policy (SOP) there is no other direct way for the sender to check the domain

name of the target iframe. On the receiver side, upon arrival of each message the

receiver can query the origin of the message to learn the domain name of its sender.

Since this API is directly supported by the browser, it provides a very efficient way

for client-side communication thus will result in increased adoption of the client-side

integration paradigm.

Although postMessage API can greatly improve the quality of client-side integration

and also provides all information required for ensuring authenticity and confidentially

of communication, but in practice it cannot directly satisfy all the requirements of

non-trivial mashups in terms of functionality and security. This is mainly due to the

fact that postMessage API only provides a low-level one-way mechanism for physical

transfer of data from one iframe to another and completely relies on the developers to

to use it securely. However, in practice interactions of mashup components are two-way

and in the form of asynchronous request-reply. This makes the process of tracking

messages and ensuring that they will be properly routed and transfered to the right

domain complex and tedious.

A recent study [54] on usage of postMessage shows that due to these limitations and

complexities developers tend to skip the required verification and this leads to various

vulnerabilities. As part of their research, they investigated two prominent users of the

postMessage primitive, the Facebook Connect protocol and the Google Friend Connect
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protocol, and discovered many security vulnerabilities caused by direct usage of this low-

level communication API. In their evaluation, they observed that developers, belonging

to the same organization and sometimes of the same application, used the primitives

safely in some places while using them unsafely in others. Their research shows that

the reason that developers fail to follow the recommended practice and required sanity

checks is the complex cross-domain interactions involving fine-grained origins. For

example, in a dynamic mashup environment requests can come from any domain and

even one domain may have multiple request sessions. In these cases, validating the

origin of sender, enforcing access control on each request and making sure that the

corresponding response will be sent back to the correct party is non-trivial and very

tedious. When highly talented and trained developers at Google and Facebook fail to

use the API securely, we can expect to see more of these types of vulnerabilities as the

usage of this API becomes more and more widespread.

To address these problems, the OMOS framework introduces a communication stack

that provides a set of very flexible high-level APIs that abstracts away all the under-

lying complexity of client-side communication, and performs all the required sanity

checks consistently according to best practices. This not only addresses the security

concerns associated with direct and inconsistent usage of this API, but also lets the de-

velopers concentrate on implementation of the actual service rather than dealing with

performance and security details of communication. Besides ensuring security of com-

munication, the OMOS framework addresses security problems such as frame Phishing,

access control and user authentication.

3.1.3 Design Goals

To close the security gap that we explained in the previous section, we designed and

implemented OMOS framework considering the following design goals:

• To be compatible with all major browsers without any change or extension to the

browsers.

• To provide a powerful abstraction that is flexible and easy to understand and use
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by mashup developers.

• To guarantee mutual authentication, data confidentiality, and message integrity

in mashup applications. (Defined in Section 3.1.4.)

The novel features of our approach are as follows. First, we present key-based

protocol for secure asynchronous point-to-pint inter-origin communication. Second, we

separate communication layer from access control layer, therefore the framework can be

used using different access control mechanism. Third, we present a layered communi-

cation abstraction for inter-frame communication fashioned after the networking stacks

that is both powerful to use and easy to understand. Additionally, the framework does

not require any browser change, so it is a good candidate for secure development of

today’s mashup applications.

The following techniques, enable us to achieve all of our design goals. Our key-

based protocol satisfies the security requirements and prevents attackers from phishing,

forging, tampering, and eavesdropping on cross-domain communications. Since we do

not require new HTML elements, OMOS is compatible with current browsers. The

layered abstraction hides implementation details from mashup developers and the API

allows anyone to extend and improve any part of the mashup framework. OMOS’

communication API and component-based development also make the development of

complex AJAX applications much easier. (Reusable components are called mashlets in

OMOS, Section 3.1.4.)

An additional advantage gained by using our techniques is that the mashup integra-

tor (i.e., mashup site) need no longer be trusted by all the content providers (i.e., web

services). This is possible because the frames from different web services are able to

directly and securely communicate within the user’s browser. Therefore, with OMOS it

is possible to create new types of mashup applications that may involve and integrate

sensitive and personal data without fully trusting the mashup integrator. For exam-

ple, banking, shopping, and financial planning applications contain important personal

information that users want to have high assurance on the controlled sharing of data.

Allowing different domains to communicate in a secure fashion minimizes the potential
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risks of information exposure due to corrupted websites such as compromised mashup

integrators, and untrusted contents from other data sources. We have implemented

and evaluated the performance of the OMOS framework on five types of browsers.

These initial experiments show that the communication channels are able to deliver

high throughput without affecting the end user’s browsing experience.

3.1.4 Definitions

We define mashlets, gadgets and mashup applications. A mashlet is recursively defined

as a HTML frame hosting JavaScript service that contains zero or more mashlets. The

root mashlet is always visible and is usually called a mashup container. Every mashlet

is controlled by and loads contents from its originating domain. Conceptually, mashlets

are analogous to processes or daemons in the operating system, binary components

(e.g COM/DCOM, DLL) in component-based architectures or web service providers

in service oriented architectures (SOA). A gadget is a mashlet that is visible in the

browser. A mashup application is a gadget that integrates data received from other

mashlets 1.

Two most important aspects of mashup applications are interaction and security.

Interaction refers to the ability of a mashlet to interact with its siblings, children,

and parent mashlets. Security requires that a mashlet should not be able to access

private information, such as DOM elements, events, memory, and cookies, of any other

mashlet that is running under a different domain. In particular, a mashlet should

not be able to listen to the communication between two other mashlets running under

different domains. We call this requirement data confidentiality. In today’s browsers,

the same origin policy (SOP) [79] is designed to protect data confidentiality of domains

against each other; in other words, SOP prevents documents or programs from one

origin to access or alter documents loaded from another origin. SOP restrictions on

JavaScript that govern the access to inline frames (iframes) 2 forbid JavaScript in one

mashlet including the root mashlet to read or modify the contents in another mashlet.

1This definition concentrates on client-side mashups

2 Frames that can be inserted within a block of texts.
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However, SOP is restrictive and rigid for mashup applications in general. Mashlets from

different domains are isolated and cannot communicate or interact unless specifically

allowed. Most of existing mashup applications circumvent this restriction either by

creating server-side mashups, which is a less flexible approach, or by allowing complete

access from other domains. Recently, researchers also demonstrated the vulnerabilities

associated with carelessly attempting finer-grained origins [57]. In HTML5 a new API,

postMessage [22], has been introduced that facilitates inter-domain communication

between iframes.

Mutual authentication is another important security requirement in cross-domain

mashlet communication. We define mutual authentication in mashup applications as

the requirement that two mashlets that are communicating with each other must be

able to verify each other’s domain name.

Mashup applications should also satisfy the message integrity requirement that

means that any tampering of the messages between two mashlets should be detected.

OMOS satisfies the three requirements of data confidentiality, mutual authentication,

and message integrity, by leveraging the security restrictions available in current browsers

and by developing a lightweight key establishment protocol.

3.2 Architecture of OMOS

In this section, we first give an overview of OMOS, and present its layered commu-

nication stack for inter-mashlet communication. Finally, we present some important

implementation details of our technique.

3.2.1 Components

Our goal is to support secure, asynchronous, inter-mashlet communication in browser

environments. Much of our design in OMOS is lead by existing inter-process commu-

nications in networking, e.g., TCP. That is, we model the cross-domain frame-to-frame

interactions (i.e. a frame communicating with another frame of a different domain) in a

manner similar to cross-domain process-to-process interactions in networking paradigm.
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We develop a layered communication model for the purpose of cross-domain frame-to-

frame communications that can be easily extended.

The OMOS framework can be viewed as a container for mashlets that manages

their construction, destruction and resources, also provides them with services such as

communication, persistence, user interface, user authentication and pub-sub messaging.

Services that OMOS provides to mashlets are analogous to services that operating

systems provide to desktop applications through well-defined APIs. OMOS runs entirely

in the browser, requires no browser plug-in, and supports all main stream browsers,

including Firefox, Internet Explore, Safari, Opera, and Chrome. Figure 3.2 illustrates

how mashlets using OMOS interact.

Figure 3.2: Interactions between mashlets in OMOS framework. Each mashlet con-
nects to the integrator using a socket connection that OMOS uses to provide services
to mashlets.

OMOS uses iframes to implement mashlets. For each mashlet loaded from a distinct

domain, existing SOP restriction guarantees the confidentiality and isolation of mash-

lets. Also OMOS provides mashlets with a flexible, reliable, asynchronous and secure

communication service that guarantees data confidentiality, data integrity, and mutual

authentication using a layered communication stack.

3.2.2 Layered Communication Stack

Our OMOS architecture abstracts the mashlet communication and provides mashup

developers with a powerful and flexible API. We borrow the concepts in networking to

design a communication stack in OMOS. The administrative communications between

mashlet and the parent mashlet (i.e., integrator) are done using a socket connection.
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Most of the OMOS service calls through JavaScript APIs lead to a communication

through this socket connection. As a result, we are able to support modularity and

transparency. Complex implementation details are hidden from the outside. For ex-

ample, the request to get the DOM address of a specific domain name (or principal) is

invisible to mashup developers. Figure 3.3 depicts the communication layers in OMOS

architecture, namely from bottom to top, Datalink layer, Mashup Datagram Protocol

(MDP) layer, and Mashup Hypertext Transfer Protocol (MHTTP) layer.

Figure 3.3: Communication stack in OMOS. The arrows and their texts are the com-
munication methods for the layers. Note that all the communications between two
mashlets take place within the end user’s browser.

At the Datalink layer, communications are realized in a direct frame-to-frame fash-

ion, which needs to be compliant with restrictions imposed by browsers. For example,

the size of data to be transferred is limited depending on the type of the browser and

the communication method, and DOM location of an iframe (e.g., parent.frame[3]) is

used for addressing. We further discuss the Datalink layer services and implementation

techniques in Section 3.3.1.

The purpose of Mashup Datagram Protocol (MDP) layer is to abstract the Datalink

layer details. MDP provides the logical client-side communication between two mash-

lets, in such a way that from a mashlet’s perspective, it is directly sending arbitrary

sized data to another mashlet. Yet, in reality, the data may be fragmented, defrag-

mented, and re-ordered which are all handled in the lower Datalink layer. Mashup

applications use the logical communications provided by the MDP layer to send data

to each other, without worrying about the implementation details of browser types,
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restrictions, etc. In MDP layer domain names and port numbers are being used for

addressing. OMOS exposes services provided by this layer using socket APIs that is

very similar to Java socket API for conventional TCP/IP communication. OMOS uses

socket connection for administrative communication between mashlets and their par-

ents. During the bootstrapping process, when a mashlet is first loaded, it gets the

communication parameters from the segment identifier of its URL provided by the in-

tegrator, i.e., parent mashlet. Then the mashlet creates a socket connection to the

integrator service on port zero (dedicated for this purpose). Through this bootstrap-

ping process, the integrator establishes connections to all the mashlets that it contains.

The integrator uses these connections to provide the services that the mashlets need,

e.g., finding the DOM location of a specific mashlet, changing the width and height of

their iframes, or resolving domain names to frame address, etc.

Mashup HyperText Transfer Protocol (MHTTP) is the top layer in the communica-

tion stack of OMOS. MHTTP provides stateless request and reply types of communica-

tion and abstracts all the details of socket programming. It is very common for service

consumers that need to send a request to a service provider and get the corresponding

response. It is easy for service providers to define the interface for these types of services

with MHTTP.

We use JSON-RPC protocol on top of the MHTTP layer [61]. JSON-RPC is a

simple lightweight remote procedure call protocol that is very efficient in AJAX appli-

cations [18]. This layer makes it easy to use existing JavaScript services. Instead of

directly injecting JavaScript code, service consumer includes the service in a sandbox

mashlet and hosts the mashlet in a safe throwaway subdomain. Then the service con-

sumer uses JSON-RPC to call the service and retrieves the result without giving the

script full access to resources available in the main domain.

3.3 Implementation Details

In this section, we describe some important implementation details of OMOS. Our
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descriptions of our communication stack are bottom-up, starting from the Datalink

layer.

3.3.1 Datalink Layer

Datalink is the layer that does the actual transfer of data from one frame to another.

OMOS currently uses iframe proxy or postMessage (if available) for cross-domain com-

munication between frames. Other communication mechanisms can be implemented

and easily plugged into the framework. In Opera and some especial configuration of

other browsers, frame navigation is restricted that prevents two mashlets in different

frame hierarchies from communicating directly. In this case, if the integrator is not

trusted then the communication fails and OMOS will prompt the user to use a browser

with permissive navigation policy; otherwise, the data link layer or the integrator me-

diates and routes the data link packets to the destination.

For inter-frame communication, if postMessage API is not available, OMOS fails

to iframe proxy techniques to do inter-frame communication. OMOSuses a simple

key exchange protocol and the fact that browsers enforce a write-only policy on URL

field of iframes to ensure confidentiality and authenticity of communication. If the

postMessage API is present (e.g. in HTML5 or Opera), we set targetOrigin properly

to make sure the message will be delivered only to the correct domain, also check

the sourceOrigin property of the received messages to ensure that they are coming

from an authentic sender. In the next section we provide more details on iframe proxy

communication and our key exchange protocol.

iFrame Proxy and Key Establishment Protocol

Browsers enforce a write-only policy on URL field of iframes, which means that a frame

can write to the URL field of a frame with a different origin domain, but not read.

The URL field of a frame can only be read by the frame itself or a frame of the same

origin. Therefore, in OMOS, if iframe A originated from a.com wants to pass some

data to iframe B from b.com, iframe A creates an internal temporary hidden iframe

that points to a proxy page that is hosted on b.com and sets the fragment identifier
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to carry data (for example, http://b.com/proxy.html#data). As part of its OnLoad

event, the proxy page reads the data from its URL and delivers that to iframe B. The

iframe proxy gets removed afterward. This method has the following benefits over the

approach that is used in [63]; it is event driven and does not require polling, therefore

eliminates the delay between each poll and improves the performance by eliminating

unnecessary timers. With this solution, we eliminate the click sound problem that IE

has in SMash 3.

Although this event-based communication mechanism through iframe proxy has

been documented elsewhere [40], [37], it is not known previously how to achieve mutual

authentication in this communication method. When frame A writes http://b.com/

proxy.html#data as the URL in the iframe proxy, A can make sure that frame B can get

the data only if its domain is b.com (because of SOP); however when frame B receives

data, there is no direct way to find out the origin of the received data. We develop a

key establishment protocol in OMOS that is used by two frames to initiate a shared

secret key. By leveraging the write-only property of frame URL, the key establishment

protocol elegantly allows the two frames to verify each other’s domain name (e.g., that

iframe[A]’s domain is a.com and iframe[B]’s domain is b.com).

OMOS key establishment protocol is as follows. Let say frame[1] from a.com and

frame[2] from b.com want to exchange a shared secret key. Frame[1] generates the

secret key SK1 and passes the key to frame[2] using a proxy from b.com. Since frame[2]

can get the key only if it is originated from b.com, frame[2] can prove that its origin

is b.com by responding back with SK1. However, b.com still needs to verify that the

origin of frame[1] is a.com. To do so, it generates a new secret key SK2 and passes it

along with SK1 using a.com’s proxy then frame[2] can prove that its origin is a.com

by responding with SK2. At this point only a.com and b.com know SK2 so they can

use it as a shared secret for the rest of communication. Note that key establishment

happens during three-way handshake in MDP layer that is described in the next section.

Using this protocol, OMOS framework can provide mutual authentication capability in

3A click sound is usually made in IE when a frame is redirected, which can be distracting if it occurs
too frequently as the frames URL gets repeatedly updated for the data transfer purpose.
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inter-mashlet communication.

Figure 3.4 illustrates this key establishment protocol. Data fields shown on the

arrows between the two frames represent Datalink packets, which encapsulate MDP

packets. SK1 and SK2 are session secrets chosen by frame[1] and frame[2], respectively

for each communication session. EID is an identifier needed by Datalink layer for

addressing destination object. Each frame also creates a serial number in each Datalink

packet.

Figure 3.4: Key establishment protocol between two mashlets, frame[1] from a.com and
frame[2] from b.com, through Datalink layer.

Other services of Datalink layer

Besides physical tranfer of data, the Datalink layer provides services like reordering,

(de)fragmentation, and (un)piggybacking to enable efficient transfer of arbitrarily big

data objects or frequent events/small objects. We explain them as follows.



54

• Fragmentation: Each browser defines Maximum Transfer Unit (MTU) size that

specifies the maximum amount of data that can be transfered without interrupting

responsiveness of user interface. Generally, postMessage API does not impose any

hard limit but transferring large chunk of data will affect end-user’s experience.

In proxy-based communication MUT is set to the maximum size that is allowed

for the URL field. When the size of a MDP packet is larger than MTU, the packet

should be fragmented to smaller chucks and then sent to the other end, which is

called fragmentation. On the other side, the receiver’s DataLink layer assembles

these fragments and sends the resulting MDP packet up to MDP layer, which

is called defragmentation. This service enables transfer of arbitrarily large data

objects without interrupting responsiveness of user interface.

• Reordering: We observe that in some cases, depending on how event han-

dling is implemented in the browser, packets sent using iframe proxy and also

postMessage sometimes arrive out of order. Reordering ensures that MDP pack-

ets are delivered to MDP layer in the order that they are sent by the sender.

• Piggybacking: Piggybacking essentially refers to a lazy-send approach for trans-

ferring small data objects. OMOS needs to create a new iframe proxy for every

data transfer between two iframes. When the sender has frequent small sized data

objects, it is more efficient to collect them and send them together using only one

iframe proxy, instead of sending them in multiple iframe proxies. To do so, OMOS

automatically detects this case and keeps the small data objects in a queue and

piggyback them on an single iframe proxy. This service dramatically improves

the event rate. Similarly in the case of postMessage, piggybacking reduces the

number of generated events and reduces the overhead of communication.

3.3.2 MDP Layer

In OMOS, MDP (Mashup Datagram Protocol) is similar to transport layer protocols

in TCP/IP (or UDP/TCP). However, note that all of the frame-to-frame communi-

cations occurred in OMOS take place in the end user’s browser on the user’s local
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machine, as OMOS supports client-side mashups. The inter-frame messages are repre-

sented by the thick arrows in Figure 3.1. An MDP communication has three phases: 1)

Connection establishment (three-way handshake) 2) Communication (transferring ac-

tual data) 3) Disconnection (upon requests of one of the peers, closing the connection

and releasing the resources). Figure 3.5 illustrates these three phases. Note that all

mashlet-to-mashlet communications are asynchronous. Applications can communicate

at the MDP layer using OMOS socket APIs. The APIs are asynchronous meaning that

actions are executed in non-blocking scheme, allowing the main program flow to con-

tinue processing. Programs pass callback functions to handle events. Figure 3.5 shows

a usual MDP communication scenario;

Figure 3.5: Connection establishment (three-way handshake), Communication, and
Disconnection are three phases of a typical MDP communication session.

The following code snippets illustrate how OMOS socket APIs can be used for
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providing and consuming data/service. In code snippet 3.1, the service provider starts

a server socket on port 1111. When a client connect, the server socket sends the current

time to the client.

Listing 3.1: Server Socket Setup

var s e rve rSocke t = OMOS. ServerSocket ( 1 1 1 1 ) ;

var s sCa l lback =

{

onConnectionRequested : f unc t i on ( socke t )

{

/∗Def ine the s e r v e r socke t to handle

onDataReceived , onTimeout , and onError events ∗/

var sCal lback = . . .

// Set the c a l l b a c k ob j e c t to se rver−s i d e socket endpoint

socke t . s e tCa l lback ( sCal lback ) ;

var currentTime = new Date ( ) ;

//Send data to c l i e n t that i s connected to t h i s socke t

socke t . send ( currentTime . getTime ( ) ) ;

} ,

onError : f unc t i on ( exp ) {/∗ handle except ion ∗/}

}

s e rve rSocke t . accept ( s sCa l lback ) ;

The code snippet 3.2 illustrates how a service consumer can connect to a server

socket on port 1111 of a mashlet hosted by domain time.example.com. Once the

client receives the current time from server, after presenting it to the user, closes the

connection.

Listing 3.2: Client Socket Setup

var sCal lback =

{

onConnected : func t i on ( ) { a l e r t (” Connected to s e r v e r ” ) ; } ,

onDisconnected : func t i on ( ) { a l e r t (” Disconnected . ” ) ; } ,

onDataReceived : func t i on ( socket , data ) {

a l e r t (” Server ’ s time i s ”+data ) ;

socke t . d i s connec t ( ) ; } ,

onTimeout : f unc t i on ( ) { /∗ handle timeout ∗/ } ,
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onError : f unc t i on ( exp ){ /∗ handle except ion ∗/ } ,

t imeout :1000

}

var socket = OMOS. socket (” time . example . com” ,1111 , sCal lback ) ;

3.3.3 MHTTP Layer

Figure 3.6: Illustration of the flexibility of asyncRequest method in OMOS that can
be used to realize three types of requests from b.com: same-domain mashlet-to-server
communication (solid thin line), cross-domain mashlet-to-server communication (dash
line to server at c.com), and mashlet-to-mashlet communication (solid thick line to
mashlet at a.com).

OMOS provides the main functionality of the MHTTP layer through the versatile

asyncRequest method that abstracts the same-domain and cross-domain HTTP calls to

servers as well as the mashlet-to-mashlet communication. The latter happens inside the

browser on the client’s local machine. The implementation of the asyncRequest method

is built on the existing XMLHttpRequest API in JavaScript. Currently, XMLHttpRequest

only handles same domain mashlet-to-server interaction. Our asyncRequest realizes

cross-domain requests by coupling XMLHttpRequest with our mashlet-to-mashlet com-

munication mechanism (described in previous sections). Thereby, we are able to provide

a nice and clean interface for all three types of calls, which are shown in Figure 3.6.
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The code snippet 3.3 shows how we can use OMOS API to make a MHTTP call:

Listing 3.3: Client Socket Setup

var c a l l b a c k =

{

onDataReceived : func t i on ( re sponse ){ /∗consume response ∗/ } ,

onTimeout : f unc t i on ( ){ /∗ handle timeout ∗/ } ,

onError : f unc t i on ( except ion ){ /∗ handle except ion ∗/ } ,

t imeout : 1000

}

OMOS. asyncRequest ( ’POST’ ,

”mhttp :5555// soc i a lne twork . com/ s e r v i c e ” ,

ca l lback ,

JsonRpcRequest

) ;

3.4 Performance Evaluation of iFrame Proxy

The goal of the experiments is to test the performance of OMOS iframe proxy com-

munication method in various browsers. We ran experiments on a machine with the

following configurations. Intel Core 2 CPU, 980 MHz, 1.99 GB RAM, Microsoft Win-

dows XP 2002 SP2, Firefox v2.0.0.14, Internet Explorer v7.0.5730.13, Opera v9.27, and

Apple Safari v3.1.1. The values reported are the averaged results over five runs.

Figure 3.7 shows the throughput as the size of messages increases in FireFox, IE,

and Safari. FireFox and Safari have similar performance in terms of throughput as

they both can achieve around 430 KB/s of transfer rate. Recall that MDP layer can

handle arbitrarily large data objects. The underlying Datalink layer handles the URL

limitation by fragmentation and defragmentation. For IE, the throughput is much

lower and can achieve the transfer rate of 50 KB/s. The slowdown in IE is due to

the URL limit (2KB) imposed by IE, as there is overhead in the Datalink layer to

fragment and defragment large messages into small packets that can be fit into 2KB

URL. The mashlets communicate through iframe proxies described in our protocol. In

general, larger message sizes give higher throughput for all three types of browsers.
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Figure 3.7: The figure shows the throughput between two mashlets with iframe proxies
in FireFox, IE, and Safari. X-axis is the size of MDP packets.

Opera gives high throughput, due to the native support of inter-frame messaging (i.e.,

postMessage [22]), it is shown in a separate graph in Figure 3.8. Figure 3.8 shows

that Opera gives throughput as high as 2500 KB/s with message sizes around 2MB.

However, the performance then degrades as the message sizes increase. The transfer

rate eventually drops to zero as the message size reaches around 2.6MB. The root cause

of this poor performance of Opera with larger message sizes is currently not clear to

us. From the throughput results, 2 MB seems to be the optimal message size.

Even though using the larger message sizes (i.e., frame URL) for transferring data

leads to higher throughput, we observed that using very large message sizes leads to less

responsive user interface and thus affects the surfing experience of the end user. Based

on our experiences, the maximum message size should be around 100 KB to ensure

responsive browser interface. Therefore, there is a trade-off between performance and

usability. IE’s URL limit affects the rate of information transferred and significantly

slows down the data transfer. In comparison, for all the other three browsers, the frame

URL can be very large (> 2MB). OMOS is able to find the suitable size of frame URL

automatically.
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Figure 3.8: The figure shows the throughput between two mashlets with PostMessage
in Opera. X-axis is the size of MDP packets.

3.5 Security Analysis

We analysis the security of OMOS from three aspects: data confidentiality, message

integrity, and mutual authentication. We describe how frame phishing can be easily

prevented in our framework.

Data Confidentiality. OMOS satisfies the data confidentiality requirement of

inter-mashlet communication by leveraging the browser’s same origin policy. SOP pro-

tects the message that is being transfered through postMessage API or iframe proxy

from being read by any domain other than the target domain. In the case of proxy-

based communication, the sender passes the message through the URL of a proxy

iframe hosted by the domain of the intended receiver. Since SOP enforces write-only

restriction on the URL field of iframes, the URL can be read only by proxy’s domain,

an therefore no man-in-the-middle can read the message. In the case of postMessage,

targetOrigin input ensures that the message can be read by the receiver iframe only

if it is hosted by the intended domain.

Message Integrity. In proxy-based communication message integrity is realized

by utilizing the browser’s restriction on partial change of URLs and the shared key

between two frames. To modify any data carried on the URL, a mashlet needs to know
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the secret key, otherwise the packet is rejected and dropped at the destination. Thus, an

unauthorized mashlet is unable to tamper with inter-frame messages. SOP guarantees

that a message being sent by postMessage cannot be modified during transmission.

Mutual Authentication. In proxy-based communication, our key establishment

protocol in Figure 3.4 guarantees that the mutual authentication between two frames,

say frame[1] from a.com and frame[2] from b.com, is achieved in OMOS. Frame[2]’s

origin is successfully authenticated, if and only if it sends back the secret key SK1

sent by frame[1] through b.com’s proxy. Similarly, frame[1] proves its origin by sending

SK2 back to frame[2]. The confidentiality of communication ensures that frame[1] and

frame[2] are the only two mashlets that know SK2. If postMessage is being used for

the communication, OMOS sets the targetOrigin parameters properly to make sure

that the message will be delivered to the right target and also upon arrival of each

message OMOS checks its origin and make sure that the corresponding response will

be delivered back to the same sender.

Detecting Frame Phishing. Frame phishing refers to where a malicious frame

in a mashup can change which frame is loaded in another part of the mashup [63]. For

example, an attacker’s frame can change bank.com’s frame to point to attacker.com,

which may mislead the end user into disclosing sensitive information such as password

or banking data. The mashlet’s parent in OMOS can conveniently detect this type

of frame phishing. A regular mashlet has an on-going socket session with its parent

for administrative commands. In a normal scenario, disconnection of this session is

initiated by mashlet or its parent and this session should be closed before mashlet gets

unloaded. Therefore, if attacker.com redirects bank.com to a malicious frame, since

the administrative session is still alive, bank.com mashlet, as part of its onunload even

handler, will send a phishing attack notification to its parent. Therefore, parent mashlet

can take the appropriate action and notify the end user of the threat by prompting an

alert window, for example.

Access Control. OMOS framework separates communication and access control

mechanism. Therefore, different access control techniques can be used to control com-

munications between mashlets. For example, a policy enforcement mashlet can govern
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communication of different mashlets similar to central even hub in SMash, or in a

distributed fashion, each mashlet can control access to its services using a dynamic

whitelisting technique. In the next chapter we present more details on access control

and authentication protocols which are designed and developed based on OMOS frame-

work.

3.6 Related Work

The authors of MashupOS recognized that existing browser has a limited all-or-nothing

trust model and protection abstractions suitable only for a single-domain system [83].

They proposed new abstractions for the content types and trust relationships in the

current browser environments. In MashupOS, new native HTML tags are introduced to

HTML page. These tags can be added and removed dynamically using JavaScript, so

mashups with dynamic layout are possible. To demonstrate the feasibility, the authors

have implemented their abstraction using browser plug-in for IE in such a way that

browser at compile time converts them to standard HTML tags and simulates their

functionality. The main difference between MashupOS and OMOS is that MashupOS

provides a modified browser, whereas we create library supports that applications can

use within current browsers. In Subspace [58], JavaScript web services are placed into

iframes that are originated from “throw-away” subdomains of mashup integrator. This

approach is not flexible in general, as web services need to run under the subdomain of

the integrator, and cannot directly perform XMLHtmlRequest calls to their backends.

Keukelaere et al. developed SMash that is a secure component communication

model for cross-domain mashups called SMash [63]. In SMash, all of the communica-

tions are through the mashup integrator, which is also called hub. The hub mediates

and coordinates all the communications via tunnel frames among the participating

frames. The hub also enforces access policies. It prevents frames from eavesdropping

on or tampering the others’ communication channels. SMash inter-frame communica-

tion is supported through a tunnel frame pointing to the integrator’s domain that each

frame needs to create in order to communicate with the integrator.
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In comparison to SMash where a tunnel frame exists in every mashlet, we cre-

ate an iframe for every round of communication and send the information encoded in

the fragment identifier during an onLoad event. Therefore, unlike SMash, we do not

need a polling mechanism and the communication in OMOS is event-driven. Polling

creates negative impacts on the performance of single-threaded browser. We support

mutual authentication in our inter-mashlet communication that prevents an attacker

from frame spoofing. In our OMOS, cross-domain frames can communicate directly

without the participation of the mashup integrator. Therefore, the trust assumption

put on the mashup integrator can be relaxed.

Recently, a secure postMessage method is proposed by Barth, Jackson, and Mitchell [22].

They have proposed a protocol to fix an authentication vulnerability in several (polling-

based) inter-frame communication protocols including SMash, and Windows Live com-

munication protocol [68]. The communication protocol used in OMOS dose not have

this issue, as is explained in Section 3.5.

Cross-site request forgery (XSRF), which is also known as the confused deputy at-

tack against a Web browser [17], is a malicious attack again websites by exploiting

browser vulnerabilities. In a XSRF attack, a malicious website can launch an iframe

to make requests on behalf of the user to another website with which the user’s au-

thenticated session is still valid. For example, the request may be to transfer funds

from the user’s bank or to change the user’s Gmail configuration. A secure browser OP

browser that prevents and detects XSRF was presented by [52]. Simple alternatives are

for websites to set a short expiration period on authenticated sessions, and to educate

users to close authenticated sessions upon finishing.

Singh and Lee presented a browser design inspired by µ-kernel based OS [65] that

allows flexible and finer customization. The main design difference between Singh-Lee

browser and OP browser is that OP browser is process-based whereas Singh-Lee browser

is within the same address space that makes it possible for the browser to provide

memory isolation for browser components. As with other mashup solutions (SMash and

MashupOS), OMOS depends on the security of browser to correctly operate. Therefore,

a secure browser such as OP would be complementary to our techniques in realizing
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web security.

Recently, Hanna et al. studied usage of postMessage API, which was recently

introduced in HTML5, in a set of real-world applications [54]. Their results show that

many applications, for various reasons, do not use this API securely. They propose the

economy of liabilities principle for designing future abstractions.

3.7 Summary

We presented our design and implementation of a secure and efficient communication

framework OMOS for mashup applications. OMOSprovides a flexible and powerful set

of API for client-side inter-domain communication and abstracts away the implementa-

tion details and handles all security related challenges such as authenticity and integrity

of communication, access control and frame phishing protection.
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Chapter 4

User-centric Identity Management System

This chapter addresses the identity management problems in integrated cloud-based

mashup environments. We present Web2ID, a new identity management framework

tailored for mashup applications that integrate multiple cloud services. Web2ID lever-

ages a secure mashup framework and enables transfer of credentials between cloud

service providers and consumers. We also describe a new relay framework in which

communication between two service providers is mediated by a relay agent within the

mashup. We show that Web2ID is privacy-preserving and prevents service providers

from learning a user’s surfing habits.

This chapter is organized as follows. In Section 4.1 we provide a short introduction to

some identity management related challenges that exist in today’s mashup environments

and summarize our contributions in addressing these issues. We provide the background

information on mashup-related concepts in Section 4.2. We give our threat model in

Section 4.3. Our basic Web2ID protocol is in Section 4.4. Extensions of Web2ID are

presented in 4.5 and 4.6. Our implementation is presented in Section 4.7. We apply

Web2ID to the identity management problem in webtop applications in Section 4.8.

Related work is described and compared in Section 4.9. We give the conclusions at the

end of this chapter.

4.1 Introduction

Mashup applications integrate information from multiple autonomous data sources

within the Web browser for a seamless browsing experience. For example, iGoogle

allows users to create personal pages containing “gadgets” from multiple Web domains,

such as NYTimes, Weather.com and Google Maps. Despite their popularity, mashups
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are still not in widespread use for sensitive cloud applications. Such mashup applica-

tions currently require user authentication to prevent unauthorized access to sensitive

information. For example, financial mashups such as mint.com and yodlee.com allow

users to view a summary of their financial activities by accessing back-end services, such

as banks and credit card companies. However, users have to reveal their credentials to

these mashup service providers in order to delegate them access to their financial data.

For historical reasons the Internet lacks unified provisions for identifying who com-

municates with whom [76]. Therefore, currently service providers use ad-hoc solutions

to identify and authenticate their users. These ah-hoc solutions require the user to cre-

ate a new identity for each service provider. This leads to multiple isolated identities

for each user; a problem which is particularly troublesome in mashup applications as

they need to authenticate and cores-reference users across multiple service providers in

order to share users’ protected resources with their consent.

Most existing identity management protocols for the Web, including OpenID [2], use

a unique URL to represent the identity of a principal. The advantage of using a URL as

opposed to a name or email address is that a URL is tangible, clickable, user-friendly,

and can contain information that facilitates the authentication process. This URL is

called the principal’s identity URL . The static page that is located at identity URL is

called the identity page. The server that hosts the identity page is called the identity

host. Therefore, during authentication, users claim ownership of their identity URL and

proves their claims to a service provider by following the corresponding authentication

protocol. However, all these authentication protocols require a trusted third party,

called Identity Provider (IdP), to validate the user’s claim. Users first create an account

with IdP and use the identity page to delegate the authentication of their identity URL

to that IdP. But this feature may compromise user privacy as the IdP can learn the

surfing habits of the user.

In this work, user privacy refers to the protection of a user’s transaction history. Bet-

ter privacy refers to the separation of providers (service providers or identity providers)

in a way so that they do not directly communicate to each other regarding to the users
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and their activities. This notion of privacy follows the one used by Goodrich, Tamas-

sia, and Yao in a federated identity management or single sign-on (SSO) model [50].

Unlike [50], our solution is decentralized and does not require any centralized server.

The main advantage of Web2ID is that it uses public-key cryptography to enable

users to prove the ownership of their identity URL without relying on third parties.

Authentication in Web2ID and PGP [3, 85] are similar as they both eliminate the need

for a centralized identity provider, and thus support decentralized trust management.

However, the main difference is that Web2ID is specifically designed for modern web

2.0 mashup application. In Web2ID, the identity of each user is represented by a URL

whereas in PGP the public keys directly represent the identity of users. This feature

makes Web2ID more user friendly as URLs are easier to remember. Moreover, Web2ID

provides powerful and flexible APIs that can be easily imported and integrated into

existing modern Mashup applications.

Web2ID relies on client-side components that run within browser and are able to

securely communicate with each other. In this paper we use the term mashlet, which we

introduced in [90], to refer to these components. We provide more details on mashlets

in Section 4.2. In Web2ID, users are represented by a mashlet hosted at their identity

URL, in much the same way that service providers are represented on the client-side

by their mashlets. We call the mashlet that is hosted at the identity URL an identity

mashlet. That is, in Web2ID, the identity page is a mashlet, (i.e., it includes JavaScript

libraries required for communication) which provides authentication services.

During the authentication protocol, users first presents their identity credentials to

their identity mashlet. In turn, the identity mashlet acts on behalf of the user and in-

teracts with other mashlets to prove that the user owns the identity that corresponds to

its URL. The identity mashlet enables other desirable features including authorization

delegation and attribute exchange.

We have three main technical contributions in this paper.

1. We design and implement a new identity-management framework – Web2ID – for
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sensitive client-side mashup applications. Web2ID supports identity authentica-

tion on the Internet without any centralized trusted party. In addition, user’s

privacy (in terms of service history) is protected because identity providers and

service providers do not communicate directly about the user’s requests.

We also describe how attribute exchange and the delegation of authorization are

done in Web2ID.

2. We implement an in-browser public-key cryptosystem in JavaScript for Web2ID

cryptographic operations can be completed solely in the browser. Our library is

general-purpose and is useful beyond the specific identity management problem

studied.

3. We generalize Web2ID to the identity management in Webtop applications, where

a browser provides a desktop-like environment for SaaS applications such as office

applications and data management systems. We describe our open-source Webtop

application and how to integrate Web2ID with it. The source code for Webtop

and cryptographic libraries are available on SourceForge ([92]).

In our Web2ID architecture, we define a new communication structure which we

call mashlet relay. The mashlet relay is a mashlet that passes information between

two mashlets belonging to different domains. Thus, it enables indirect cross-domain

communication. For identity management, mashlet relay enables a service provider

to send a query to another provider without revealing its identity. The mashlet-relay

framework protects user privacy in mashup environments because service providers

that host user data are unable to learn how users consume their data. This feature is

especially important when users wants to provide their identity attributes (certified by

a trusted party) to another service provider.

Our framework is implemented as a JavaScript library without browser modifica-

tions or specialized plugins to operate. It is fully portable across browsers and execution

platforms. We illustrate the portability of our framework by incorporating it with sev-

eral popular browsers, including Firefox, Opera, Apple Safari, IE and Google Chrome.

Moreover, we avoid using HTTP redirections for communication; consequently, our
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protocol is compatible with modern Ajax-based Web applications.

4.2 Background and Definitions

In this section, we present background material on mashup frameworks, discuss the

problems addressed by our identity management protocol, and conclude with a descrip-

tion of an existing relatively popular identity management protocol (OpenID).

4.2.1 Mashups and Mashlets

Mashup applications aggregate content from a number of providers and display them

within Web browsers. Such applications can be designed either as server-side mashups

or client-side mashups. In server-side mashups, a proxy (called the mashup server) ag-

gregates content from multiple sources. The Web browser loads the mashup application

by visiting a URL corresponding to the proxy. For example, Facebook applications use

the RESTful API provided by Facebook to query a user’s social information and ag-

gregate it with other data. In contrast, client-side mashups directly aggregate content

within the Web browser. Several frameworks have recently been proposed to support

safe yet expressive client-side mashups [22, 42, 58, 63, 83, 90]. In this paper, we restrict

our attention to client-side mashup applications.

The client-side components of a mashup application are called mashlets. Mashlets

represent the service provider that is hosting them in the client side and run in the

browser with the privileges given to their hosts. To be concrete, a mashlet is simply a

HTML page which loads to an iframe and contains some JavaScript code that enables

it to communicate with other mashlets in the page. A mashup application is a Web

application that aggregates a number of mashlets, possibly from different sources on

the Web. We also use the term mashlet container to refer to the mashup application.

A number of recently-proposed frameworks allow mashlets to securely communicate

with other mashlets executing in a mashup application [22, 58, 63, 83, 90]. A secure

inter-mashlet communication protocol is one that guarantees mutual authentication,
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data confidentiality, and message integrity. Mutual authentication in inter-mashlet com-

munication means that two mashlets that communicate with each other must be able to

verify each other’s domain name. Message integrity requires that any attempt to tam-

per with the messages exchanged between two mashlets should be detected/prevented.

Data confidentiality means a mashlet should not be able to listen to the communication

between two other mashlets running under different domains.

For concreteness, the rest of this paper describes mashups and mashlets in the

context of OMOS (Open Mashup OS) [71, 90], a secure client-side mashup framework

that we developed in prior work. However, the concepts developed in this paper are

applicable to any client-side mashup framework that provides the above properties.

4.2.2 Identity Management in Mashup Applications

In the following discussion, we consider three problems in identity management and

discuss how the Web2ID protocol and our mashup relay framework address each of these

problems. Where applicable, we also discuss why existing techniques fail to address the

problem.

User Authentication. When sensitive Web applications, such as those for banking,

investment and tax services, are integrated into a mashup environment, it is highly

desirable to use an authentication protocol that provides single sign-on (SSO). SSO en-

ables these service providers (i.e., the bank or the investment company) to authenticate

the user without requiring her to prove her identity separately to each provider. The

goal of an authentication protocol in a mashup environment is for the user to prove the

ownership of an identity to a service provider without revealing any information that

can be misused by a malicious service provider to impersonate the user.

Most existing identity management protocols for the Web, including OpenID [2],

use a unique URL to represent the identity of a principal. The advantage of using a

URL as opposed to a name or email address is that a URL is tangible, clickable, user-

friendly, and can contain information that facilitates the authentication process. This

URL is called the principal’s identity URL. The static page that is located at identity

URL is called the identity page. The server that hosts the identity page is called
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the identity host. Therefore, during authentication, the user claims ownership of an

identity URL and proves her claim to a service provider by following the corresponding

authentication protocol. However, all these authentication protocols require a trusted

third party, called the Identity Provider (IdP), to validate the user’s claim. Users first

create an account with IdP and use the identity page to delegate the authentication

of their identity URL to that IdP. But this violates user privacy because the IdP can

learn the surfing habits of the user.

Web2ID uses public-key cryptography to enable users to prove ownership of their

identity URL without relying on third parties. In Web2ID, users are represented by

a mashlet hosted at their identity URL, in much the same way that service providers

are represented on the client-side by their mashlets. We call the mashlet that is hosted

at the identity URL an identity mashlet. That is, in Web2ID, the identity page is a

mashlet, i.e., it includes JavaScript libraries required for communication and providing

authentication services.

During the authentication protocol, the user first presents her identity credentials

to her identity mashlet. In turn, the identity mashlet acts on behalf of the user and in-

teracts with other mashlets to prove that the user owns the identity that corresponds to

its URL. The identity mashlet enables other desirable features including authorization

delegation and attribute exchange. We define both problems below.

Attribute Exchange. An important feature supported by most identity management

frameworks is that of attribute exchange, in which one service provider requests a user’s

identity attributes (e.g., her age) or preferences from another service provider. Attribute

exchange is especially important for mashup applications, in which interaction between

mashlets is the norm. We refer to a service provider that requests user’s attributes as an

attribute requester and the service provider that stores user attributes and settings as

an attribute provider (also called a wallet [74]). An attribute provider may optionally

certify user attributes (e.g., for attribute-based authorization) or simply send non-

certified values (e.g., for providing settings and preferences).

An identity attribute exchange protocol should ideally accommodate three privacy

requirements:
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• Requirement 1: An attribute provider should share a user’s attributes only

upon explicit consent from the user.

• Requirement 2: An attribute requester should be able to query a user’s at-

tributes without necessarily knowing the identity of the user.

• Requirement 3: The protocol should be able to anonymize an attribute re-

quester to prevent an attribute provider from learning identity of the requester

(and thereby, the user’s Web surfing habits).

Designing a browser-based protocol that can satisfy all these requirements is chal-

lenging. Existing browser-based attribute exchange protocols use a series of HTTP

redirections to keep users in the loop to acquire their consent without revealing their

identity to the requester (Requirement 1). However, in such protocols, the requester

must send a callback URL to the provider; as a result, HTTP redirection-based com-

munication discloses the identity of the requesters, thereby violating Requirement 3.

State of the art techniques to remove the need for communication between the attribute

requester and provider use sophisticated cryptographic techniques (e.g., idemix [32]).

However, these solutions are not currently suitable for practical use in browser-based

protocols [74]. Web2ID uses our proposed mashlet relay framework to anonymize the

attribute requester.

Authorization Delegation. Web application mashlets included in a mashup typically

access resources hosted at other domains. In this context, the mashlet that accesses

resources is typically called Consumer, while the domain that hosts the resource is

called Service Provider. Consumers should not be able to access a user’s protected

resources unless the user grants them the required access permission.

An authorization delegation protocol allows a user to delegate permissions to a con-

sumer to access her resources hosted at a service provider. For example, a user may

be able to delegate permissions needed to access her files on a photo-sharing website

(the service provider) to a website that provides photo editing utilities (the consumer).

An authorization delegation protocol should be privacy-preserving in that it must not

reveal the user’s identity. In the example above, for instance, the user may wish to
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grant the photo editing service read access to her photos hosted on the photo sharing

website without revealing her identity to the photo editing service.

4.2.3 OpenID Protocol

In this section, we outline the OpenID protocol, which is relatively a popular identity

management solution on the Web, and explain its shortcomings for the next generation

of Web applications. The main purpose of this section is to give some background to

the reader that is not familiar with OpenID. We have deliberately omitted details, and

encourage interested readers to consult the OpenID specification.

OpenID was originally designed to enable bloggers to leave comment on others’

blog posts without requiring them to create new new accounts in each blog providers.

OpenID requires the users to define their identities on a trusted third party Web site

that serves as the IdP. Service providers can verify a user’s claim for ownership of

an identity url (e.g., Alice.me) by contacting the identity provider using the OpenID

protocol. According to the OpenID standard, the protocol is executed via a series of

communication sessions between the the IdP and the SP that happen via a sequence

of HTTP redirections, i.e., the SP page redirects the browser automatically to the IdP,

which then redirects the browser back to the SP page with the user’s credentials.

Description of the OpenID protocol. Suppose that Alice wants to adopt the URL

Alice.me as her OpenID identity. Alice needs to first select an identity provider that she

trusts (e.g IdP.com) and then register herself, say as Alice@IDP.com. Alice must then

embed information about her trusted IdP along with her identity into the page that is

located at Alice.me (her identity page). This means that the owner of the URL Alice.me

should be able to prove that she owns identity Alice@IDP.com on IdP.com. Figure 4.1

depicts the operation of the OpenID protocol. It shows how a service provider can

verify the claim of ownership of an identity URL. As this figure shows, the protocol

proceeds in eight steps:

1. The user claims the identity URL Alice.me.
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Figure 4.1: This figure illustrates how using OpenID a service provider can use au-
thenticate a user.

2. From the identity page located at the claimed URL, the service provider re-

trieves information about IdP (service end point URLs) and delegate ID (e.g.

Alice@IdP.com).

3. If the service provider and the identity provider have not already established a

shared secret key, they exchange a secret key using the Deffie-Hellman protocol.

4. Service provider sends an HTTP redirect response back to the user’s browser

(agent).

5. The user’s browser redirects to the identity provider. If the user has an au-

thenticated session with identity provider then this request also carries a cookie

containing the session info .

6. Identity provider first checks the session information to see if the user is authen-

ticated and has a valid session ID.

If the user is not already authenticated then IdP returns a login page asking the
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user to login. The user enters and submits her login credentials for Alice@IdP.com

and identity provider authenticates the user (for clarity, this step is not shown in

the figure).

After ensuring that the user’s identity is Alice@IdP.com, the IdP generates an

assertion (∆) using a secret key shared with the service provider stating that the

user owns the identity Alice@IdP.com, and sends a redirect HTTP response to the

browser.

7. After receiving the HTTP redirect response, the browser makes an HTTP call

back to the service provider passing the assertion.

8. Service provider validates the assertion using the corresponding shared secret key

and if it is valid, service provider can make sure that user’s claim of ownership of

the identity Alice.me is valid.

Shortcomings of the OpenID protocol. Although a well-accepted standard in

the domain of traditional Web applications, we argue that OpenID is ill-suited for the

domain of Ajax-based Web-2.0 applications for several reasons.

First, the redirection-based approach to IdP/SP communication dictated by the

OpenID standard fails with Ajax-based Web-2.0 applications. Redirection requires the

browser to unload the currently-loaded Web application and load a new page. As Web

applications move from stateless, static entities to dynamic, stateful ones, unloading

and reloading a page is no longer practical. For example, consider a Web-based desk-

top application with several windows open for Word-processing, Email-processing and

financial applications using spreadsheets. Simply unloading such a Web-based appli-

cation will result in loss of unsaved data. Creating Web applications that support

checkpointing of state is complex and is unlikely to be adopted by Web application

developers.

Second, the OpenID protocol is vulnerable when applied in the Web-2.0 domain.

For instance, OpenID uses the Diffie-Hellman key-exchange protocol to exchange secret

keys between an SP and a consumer who wish to share a user’s identity. However, the

Diffie-Hellman protocol is known to be vulnerable to the Man-in-the-Middle attack.
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Although the OpenID specification suggests that this attack can be avoided using SSL

(https), this approach is rigid and may not be practical for several Web-2.0 applications.

Third, implementing SSO using OpenID requires storing session information in

a cookie that will be sent to the identity provider. However, as described in prior

work [21], doing so renders the protocol vulnerable to cross-site request forgery attacks.

In addition to the above imitations of OpenID, several other smaller limitations

preclude OpenID from being adapted easily to environments that mashup information

from Ajax-based Web-2.0 applications. For example, implementing the OpenID proto-

col requires both the SP and the IdP to maintain state information. This complicates

the implementation of the protocol and also makes it unscalable to large deployments.

In addition, a trusted third party (the IdP) is required for authentication. This may

not always be a practical assumption, and even if a third party is available, users with

privacy concerns may be unwilling to share their surfing habits with the third party.

These concerns motivate the need for a new identity management protocol for Ajax-

based Web-2.0 applications.

4.3 Our Threat Model

In Web2ID, there are several types of players: user, service provider, service consumer,

attribute provider, and outside attacker (or stranger). Each player has a different degree

of trustworthiness, as we explain next.

Users may be malicious. As is standard with AJAX-based applications, some mes-

sages of the Web2ID protocol are exchanged on the client-side, within the user’s browser

via inter-mashlet communication. Because the user has complete control over the

browser, a malicious user may alter the client-side component of the Web2ID pro-

tocol, for example, by forging the identity of another user or providing forged identity

attributes to an attribute requester. Consequently, for transactions in which the user

must not be trusted, the correctness and integrity of the Web2ID protocol must not

rely on the client-side portion of the protocol executing correctly. Web2ID uses cryp-

tographic techniques to ensure the integrity of data that passes through the client.
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Service providers may be malicious. When a service provider authenticates a

user, it must receive certain information that enables it to ensure the authenticity of

the user. A malicious service provider may misuse this information to impersonate the

user to a second service provider using a relay attack. For example, a malicious service

provider attacker.com that authenticates Alice may use her credentials to impersonate

her to another service provider honest.com. In this attack, attacker.com tries to log

into honest.com claiming the ownership of Alice’s identity URL (e.g., alice.me). When

honest.com challenges attacker.com, it relays that challenge to Alice when she tries

to prove her identity to attacker.com. In turn, attacker.com uses this information to

convince honest.com of Alice’s identity.

Service consumers may be malicious. In the authorization delegation protocol,

a malicious consumer may try to convince a service provider to give it access to a

user’s protected resources without possessing appropriate authorization (i.e., explicit

consent from the user). In the case where users wish to protect their privacy from the

consumer, a malicious consumer may try to learn the user’s identity during the course

of authorization.

Attribute providers may be malicious. We refer to a service provider that requests

user’s attributes as an attribute requester and the service provider that stores user

attributes and settings as an attribute provider (also called a wallet [74]). An attribute

provider may optionally certify user attributes (e.g., for attribute-based authorization)

or simply send non-certified values (e.g., for providing settings and preferences).

In an attribute exchange, a malicious attribute provider may try to violate a user’s

privacy by learning the identity of requesters that try to obtain the user’s attributes.

As a result, the attribute provider may learn the user’s surfing habits. Similarly, a

malicious attribute requester may also try to learn the identity or attributes of the user

without user’s agreement.

Man-in-the-Middle (MitM) attacks. Based on their capabilities, man-in-the-

middle attackers (MitM) [56] can be either active or passive. A passive MitM attacker

only listens to the conversation between two parties in the protocol. The goal of a

passive attacker is to obtain information that can be used to impersonate the users,
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get unauthorized access to their private resources or violate their privacy. In contrast,

an active attacker can also modify the content of conversation. An active MitM may

try to change the result of an authentication or authorization check by modifying or

replaying data transmitted in the protocol. MitMs can also be classified based upon

their location in the network. Client-side MitMs involve a malicious mashlet that tries

to spoof mashlet-to-mashlet communication in the protocol. A network MitM spoofs

network communication, such as those between a mashlet and its server, or between two

servers. In the Web2ID protocol, we assume that the point-to-point network communi-

cations are safe against active MitM attacks, which can be guaranteed by using secure

lower level protocols like SSL. Finally, malicious mashlets may also try to subvert the

protocol by launching frame phishing attacks against the user [63].

4.4 Basic Web2ID Protocol

The basic Web2ID protocol enables users to prove their identity to a service provider

website without the use of a trusted third party. This protocol enables users to inde-

pendently prove their identities and prevent any third party from learning their surfing

habits. We achieve this goal using public-key cryptographic primitives in a manner

akin to public-key client authentication in SSH (RFC 4252 [4]).

In Sections 4.5 and 4.6, we extend our basic Web2ID protocol to support attribute

exchange and the delegation of authorization, respectively.

Suppose that a principal P (e.g., Alice) wishes to adopt an identity I (e.g., an

identity URL, such as alice.me) and prove her ownership of that URL to a service

provider SP.com. There are two main operations in the basic Web2ID protocol: identity

adoption and user authentication, as described in the following.

Identity Adoption. To adopt an identity URL I, say alice.me, Alice first hosts an

identity mashlet at this URL. The identity mashlet is a component that is trusted

by Alice and represents her within a mashup application. To configure her identity

mashlet, Alice must navigate to her identity mashlet using a browser. When the identity

mashlet loads for the first time, it detects that it is not configured, and generates a
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public/private-key pair (Pu(I),Pr(I)). The public key is embedded within the identity

mashlet, while the private key must be stored safely by Alice.

User Authentication. When a user such as Alice attempts to authenticate herself

with a service provider, she claims the ownership of an identity URL, such as alice.me.

In turn, the service provider sends a session token encrypted under the public key

associated with the identity URL alice.me. When the user then sends requests to access

resources, she must prove ownership of the session token corresponding to her claimed

identity. Figure 4.2 illustrates how service provider SP.com assigns a session token

to the user who claims the ownership of identity alice.me. As Figure 4.2 illustrates,

authentication happens in seven steps, as described below:

1. The user claims to own an identity I. For instance, this identity could be an

identity URL alice.me. This claim can be communicated to the mashlet of the

service provider SP.com. For example, the user may enter the URL in a form

provided by SP.com.

2. The service provider’s mashlet sends the claimed ID I to the service provider and,

if not already loaded, loads the identity mashlet located at the claimed identity

URL (i.e. alice.me).

3. The service provider extracts the public key Pu(I) and the type/version of the cor-

responding public-key encryption algorithm Alg from the claimed identity page.

4. The service provider first generates a session token χ, and encrypts χ and the

domain name of its mashlet SP.com with the public key Pu(I). It then sends the

result ∆ = EPu(I)(χ, SP.com) back to the service provider’s mashlet as response.

Note that the domain name of the service provider must be included in ∆ to

protect users against relay attacks by malicious service provider (see Section 4.3).

5. The service provider’s mashlet sends ∆ = EPu(I)(χ, SP.com) to the identity mash-

let for decryption.

6. If the identity mashlet does not already have the private key Pr(I), it asks the

user to provide her login credentials. Using the user’s login credentials identity
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mashlet computes the private key. For example, the user can load the encrypted

value of her private key from a USB memory stick and provide a passphrase that

can be used by the mashlet to compute the private key. Alternatively, the user

may enter the private key directly by swiping a smart card that contains her

private key.

Once the identity mashlet has the private key and user permits the authentication,

the identity mashlet decrypts ∆ and verifies that the domain name of the service

provider (SP.com) matches the domain name in the token.

7. The identity mashlet sends the computed session token χ back to the service

provider mashlet.

In our implementation, inter-mashlet communication is facilitated by the OMOS

framework [90] which provides mutual authentication, and confidentiality and integrity

guarantees for the data exchanged between two mashlets. This ensures that a mali-

cious mashlet in the mashup application will not be able to compromise communication

between the identity mashlet and the service provider’s mashlet (so the value χ will not

be available to an eavesdropper).

Upon the completion of the above protocol, the service provider can verify that the

value of the session token received from the identity I is valid. This proves the user’s

claim of ownership of I to SP.com. Existing identity management protocols prove the

possession of the session token by including it with each request, and are therefore

vulnerable to session hijacking via MitM attacks. Our implementation of Web2ID uses

a MAC (message authentication code) to prove possession of the session token.1 In

this approach, the MAC value of each XMLHttpRequest request is computed using the

session token and is included in every request. The service provider serves a request

only if the included MAC value is correct. Note that during the above protocol does

not require the service provider to keep any protocol-specific state, thereby ensuring a

stateless implementation of the web application at the service provider. In addition, the

1To do so, we ported the necessary cryptographic functions HMAC-SHA1 and HMAC-SHA256
(RFC2104 [64], RFC3174 [41]) into the OMOS framework.
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Figure 4.2: An identity mashlet represents the user within the application. The user
can prove ownership of the identity mashlet by proving the possession of the private
key that corresponds to the public key located at URL of the identity mashlet.

user’s credentials are never transmitted over the network; instead such communication

happens on the client-side, where communication is secured using OMOS.

The Web2ID authentication protocol can also be used by a service provider to prove

the ownership of its mashlet. We use this feature as part of authorization delegation

protocol that we describe next. The authorization delegation and attribute exchange

protocols build upon the authentication protocol described above.

The above basic Web2ID protocol supports user authentication. It can be gen-

eralized to support more complex operations such as identity attribute exchange and

authorization delegation. In Section 4.5, we will present a mashup relay framework and

explain how it facilitates attribute exchange in Web2ID. Our authorization delegation

protocol is described in Section 4.6.

Security Analysis of the User Authentication Protocol. Because Web2ID uses

client-side inter-mashlet communication, its security relies on the client-side commu-

nication protocol that is used in its implementation. We assume that the mashlet
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framework that is used for implementation of Web2ID guarantees confidentiality of

inter-mashlet communication. This assumption implies that the mashlet framework

protects the protocol against MitM attacks by malicious mashlets. Next, we analyze

how the user authentication protocol resists against attacks launch by adversaries.

Since the session token χ is encrypted by the public key that is associated with

the claimed identity URL (located at the identity page), the user can get access to the

session token only if she owns the corresponding private key. Therefore, assuming that

only the owner of an identity URL has access to the private key that corresponds to the

public key embedded in the corresponding identity page, she will be the only person

that can use that session token. This prevents malicious users from forging identities

that does not belong to them.

To protect users against relay attacks, Web2ID requires service providers to encrypt

the domain name of their mashlet besides the session token. This way the identity

mashlet can ensure that the mashlet that is requesting the session token is not relaying

an encrypted session token issued by another service provider. Finally, since user’s

credentials and session tokens are never sent over network in clear text, Web2ID au-

thentication is immune to passive MitM attacks. As discussed earlier, Web2ID relies

on the underlying network protocols (e.g., https) to protect integrity of point to point

communication against active MitM attackers. However, to prevent active MitM at-

tackers from replaying a successful authentication transaction, service providers need

to record tokens and reject transactions which contain a token which is already used.

Number of tokens that need to be saved can be reduced by introducing a timestamp

into each token and rejecting tokens that are older than a threshold.

4.5 Attribute Exchange and Relay Mashlet in Web2ID

An important feature supported by most identity management frameworks is that of

attribute exchange, in which one service provider requests a user’s identity attributes

(e.g. age) or preferences from another service provider. Attribute exchange protocol

allows sensitive applications to bind an identity URL with a physical entity (person)
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by querying attributes of its owner certified by a trusted third party. For example,

SP.com can query certified address of alice.me from a trusted third-party (e.g. Division

of Motor Vehicle Bureau or dmv.org) to ensure that URL belongs to the same phys-

ical entity that claims its ownership. Attribute exchange is especially important for

mashup applications, in which interaction between mashlets is the norm and user may

have multiple identities for each service provider as attribute exchange can be used to

correlate these identities.

In this section, we introduce a new mashlet-relay structure that enables user-centric

client-side communications between two domains. Then, we explain why such a mash-

let relay framework is useful in the implementation of identity attribute exchange in

Web2ID. The main purpose of mashlet relay is for better user privacy, as it provides an

indirect communication channel between two service providers. The providers do not

directly interact with each other with regard to a user’s request, and thus cannot share

information of a user.

4.5.1 Mashlet-Relay Framework

We define mashlet-relay framework as a special client-side mashup framework with

three mashlets within a browser environment where the communication of two mash-

lets, each hosting contents of a remote server, is indirect and realized through a third

mashlet that is hosted by the local host. We refer to the two mashlets hosted by

remote servers as server mashlets. A server mashlet also communicates to its corre-

sponding remote server via the mashlet-to-server communication mechanism. We refer

to the mashlet that bridges the communication of the two server mashlets as the relay

mashlet. All inter-mashlet communication follows the mashlet-to-mashlet messaging

mechanism. The relay mashlet effectively passes messages between two server mashlets

and is able to modify the messages based on user’s inputs. Figure 4.3 shows a schematic

drawing of such a mashlet relay framework, where the mashlet in the middle (Mediator)

mediates the communication between a requester (e.g., SP.com) and a provider (e.g.,

AttProvider.com). The mediator mashlet is launched by the local host of the individual

user. It anonymizes the identity of the requester (e.g., SP.com), as the provider (e.g.,
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AttProvider.com) learns nothing about who issues the request. Such a mashlet relay

framework, although simple, supports a user-centric design where the user is able to

monitor and actively control the messages being communicated among server mashlets.

As a consequence, the client-side relay mashlet eliminates the need of direct commu-

nication between the two server mashlets. This feature plays a key role in enabling

privacy-aware identity management in Web2ID.

Figure 4.3: Web2ID users mashlet relay communication framework for attribute ex-
change. In mashlet relay framework, a mashlet (center) mediates the communication
between requester (left) and provider (right) and anonymizes the identity of requester.

This mashup-based relay framework naturally facilitates the construction of a privacy-

aware identity management protocol, namely identity attribute exchange in SSO, that

enables the exchange of user’s identity credentials without the direct communication

between the identity provider and service provider. In existing (federated) identity man-

agement systems, direct communications between providers on user’s ID information are

typically required, which, however, is undesirable as providers may learn sensitive at-

tributes of the user. Therefore, the segregation of providers in their communication

protects user privacy and prevents providers from colluding to discover user activities.

Yet, in the meantime, proper message exchanges among providers should be allowed,
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e.g., a service provider may need to verify Alice’s identity attributes hosted by an iden-

tity provider. Next, we explain why such a mashlet relay framework is useful in the

identity attribute exchange in Web2ID.

4.5.2 Identity Attribute Exchange Based on Mashlet Relay

When a service provider requests a user’s identity attributes from another service

provider, the user may wish to anonymize the identity of the provider requesting these

attributes. Doing so prevents the attribute providing service from learning the user’s

surfing habits. To implement privacy-aware identity attribute exchange, Web2ID avails

of the mashup relay framework. In particular, the relay mashlet mediates the exchange

of identity attributes between service providers. Because the relay mashlet forwards

the request to the attribute provider only after obtaining the user’s consent, users have

full control over what attributes can be exchanged.

Figure 4.3 presents an example that shows how using Web2ID a service provider

SP.com can query user’s age certified by AttProvider.com. If the attribute requester

already knows the user’s identity, the identity mashlet of the user can itself be used as

a relay mashlet. Alternatively, a mashlet loaded from a trusted third party or the local

machine can act as the relay mashlet. We omit the security definition and analysis for

our identity attribute exchange protocol, as they can be easily deduced following the

analysis in the basic Web2ID protocol.

4.6 Web2ID Extension: Realizing Authorization Delegation

Web application mashlets included in a mashup typically access resources hosted at

other domains. In this context, the mashlet that accesses resources is typically called

the Consumer, while the domain that hosts the resource is called the Service Provider.

Consumers should not be able to access a user’s protected resources unless the user

grants them the required access permission.

An authorization delegation protocol allows the users to delegate permissions to a

consumer to access their resources hosted at a service provider. For example, users
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may be able to delegate permissions needed to access their files on a photo-sharing

website (the service provider) to a website that provides photo editing utilities (the

consumer). An authorization delegation protocol should be privacy-preserving in that

it must not reveal the user’s identity. For instance, users may wish to grant the photo

editing service read access to their photos hosted on the photo sharing website without

revealing their identity to the photo editing service.

Users may wish to delegate to a consumer the rights to access their resources hosted

on a service provider. There are two cases that arise in the implementation of autho-

rization delegation, based upon the privacy guarantees that the user requires.

Case 1: Protecting user identity from the consumer. In the first case, users may

not want to disclose their identity to the consumer. For example, a user Alice may wish

to print her photos hosted at a photo sharing website SP.com by allowing a printing

website Consumer.com to access her photos at SP.com. Yet, she may not wish disclose

her identity (i.e. Alice.me) to Consumer.com. To support this case, the authorization

delegation protocol should not give any information to the consumer that reveals her

identity.

Figure 4.4 illustrates the authorization delegation protocol, via which Consumer.com

acquires an opaque token AC to access Alice’s resource (e.g., /a/v.jpg) without learning

her identity I (e.g., Alice.me). As this figure illustrates, the service provider SP.com

uses a secret key SK, known only to the service provider, to generate an opaque token

AC = ESK(Consumer.com, GET, /a/v.jpg, I) that grants Consumer.com read access

(i.e., a GET request) to the resource /a/v.jpg, which belongs to I.

When the service provider SP.com receives a request from Consumer.com (via back-

end server-to-server communication) containing the access token AC, it first decrypts

AC and ensures that that the identity of the requester matches the principal that the

token is granted to (Consumer.com); if so, it allows the request.

Case 2: User identity known to consumer In this case, the consumer already

knows the user’s identity (e.g., because the user has authenticated to the consumer).

Figure 4.5 illustrates the protocol used in this case. The identity mashlet of users can

independently issue an access delegation certificate using their private keys to grant



87

Figure 4.4: In Web2ID, a service provider can issue an opaque token to a consumer to
access user’s resources. In doing so, Web2ID does not reveal the user’s identity to the
consumer.

the consumer access to their protected resources hosted on a service provider. In turn,

the service provider can validate the certificate using the user’s public key. The service

provider can obtain the public key using the identity URL of the user that the resource

belongs to.

Our Web2ID authorization-delegation protocol does not require the consumer to

pre-register with the service provider. This property is in sharp contrast to similar

protocols (such as OAuth), which require the consumer to pre-register with the service

provider. Additionally, Web2ID does not require the service provider or the consumer

to maintain protocol-related state during delegation, therefore it is scalable and easy

to implement.

Security Analysis. Before serving a request, service providers verify that the access

tokens are either issued using their own secret keys or the private key of the owner of the

resource. Since these types of tokens can be issued only with user’s consent, consumers

will not be able to access users resources without agreement of their owner. To prevent

MitMs from using h ijacked access tokens, Web2ID requires that all access tokens be
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Figure 4.5: The identity mashlet issues a delegation certificate for read access to
resource /a/v.jpg. Using this certificate the consumer can access /a/v.jpg on SP.com.

bound to the domain name of the mashlet that the token is granted to. Therefore,

these tokens can be used only by the service provider that owns the mashlet. Service

providers can use Web2ID authentication to prove ownership of the mashlet that the

token is issued for. In the access tokens issued by the service provider, the identity

URL of the user is encrypted by service provider’s secret key. Therefore, the consumer

will not be able to learn the identity of user and this protects the privacy of the user.

4.7 Implementation and Evaluation

Realizing Web2ID requires in-browser symmetric and public-key cryptographic prim-

itives. However, there is no JavaScript cryptographic libraries that provide all the

operations that are required for implementation of Web2ID (i.e., HMAC, public-key

encryption and public/private key generation). The only JavaScript-based library that

implements public-key cryptography [80] does not support public/private key genera-

tion, which is required by Web2ID.

As one of the main technical contributions of this paper, we developed a JavaScript-

based cryptographic library that not only supports operations that are required by

Web2ID but also can be easily extended to support other cryptographic operations.



89

Our library is fully compatible with commodity browsers, such as IE, Firefox, Chrome,

Opera and Safari, and does not require any browser modifications.

4.7.1 Implementation Details

Since development of a JavaScript library from scratch is very time-consuming and

error-prone, we based our implementation of the JavaScript cryptographic library on

the Java Cryptography Architecture (JCA) [59, 70], an open-source Java-based cryp-

tographic toolkit. We used Google Web Toolkit (GWT) to translate code from Java to

JavaScript. However, in implementing this library and porting it to commodity browser

platforms, we encountered three technical challenges, namely performance, browser in-

terference, and code complexity, that we describe below.

Performance. Directly compiling the JCA library into JavaScript resulted in ex-

tremely poor performance of cryptographic operations. We found that the main perfor-

mance bottlenecks were BigInteger operations, such as modInverse, mod, and multiplica-

tion operations, that are frequently used in cryptographic operations. We addressed this

problem by replacing the JCA implementation of BigInteger with the native JavaScript

code using the JavaScript Native Interface (JSNI). This replacement significantly im-

proved the performance, with encryption and decryption operations consuming less

than a second (see also Section 4.7.2).

Browser Interference. The implementation of the Web2ID protocol requires genera-

tion of public/private key pairs when the identity mashlet is first loaded. We observed

that key generation algorithms for public-key cryptographic algorithms such as RSA

were quite expensive. Because most browsers (and JavaScript interpreters) are single-

threaded, users cannot interact with the browser during key generation. Most browsers

time out JavaScript functions that execute for long durations of time (typically about

10 seconds). As a result, key generation algorithms are interrupted by the browser.

To overcome browser interference during our key generation operations and keep

the browser responsive, we used an incremental and deferred computation technique.

We observed that the most expensive operation during the generation of public/private
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RSA key pairs was the generation of probable prime numbers p and q. The BigInte-

ger.getProbablePrime function continuously generates random odd integers until it finds

one that passes Miller-Rabin primality test, thereby resulting in long execution times.

We changed this procedure so that each iteration runs in a continuous time slice. We

then scheduled the next iteration for another time slice and returned control to the

browser, as illustrated in Figure 4.6. This process continues until the key generation

algorithm finds a number that passes Miller-Rabin test. We found that this approach

was effective at keeping the browser responsive and preventing browser timeouts of

JavaScript execution.

Figure 4.6: Deferred execution of prime number generation.

Code complexity. JCA, upon which our JavaScript library is based, uses several

Java features, such as reflection, that are not supported by GWT. Consequently, we

first modified JCA to a set of core components that were sufficient to implement cryp-

tographic operations needed for Web2ID. We then used this stripped-down version of

JCA with GWT to produce our JavaScript library.

4.7.2 Experimental Results

Our goal is to study feasibility and overhead of using in-browser cryptographic op-

erations. We ran experiments on a machine with the following configuration: Intel

Core 2 CPU, 980 MHz, 1.99 GB RAM, Microsoft Windows XP 2002 SP2. We tested

our implementation using the following browsers: Google chrome v1.0.154.53 Firefox

v3.0.8, Internet Explorer v7.0.5730.13, Opera v9.27, and Apple Safari v3.1.1. The most

expensive cryptographic operation that is required by Web2ID is key generation. Fig-

ure 4.7 shows the runtime of our RSA keypair generation function for keys of size 512
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Figure 4.7: Key generation performance in milliseconds of our cryptographic library on
different browsers.

and 1024 bits. Since key generation is a probabilistic process, the values reported are

averaged results over ten runs. As this Figure shows, Google Chrome, which uses a fast

JavaScript Engine (V8), generates a 1024-bit key pair in under 4 seconds. The slowest

browser was IE, which took about one minute to generate a 1024-bit key pair. Because

key generation is a one-time operation and the browser stays responsive during this

time, we feel that this delay is acceptable.

Figure 4.8 shows the performance of RSA encryption/decryption using keys of length

1024 bits. As expected, decryption is more costly compared to encryption and the

performance is quite reasonable for web applications. Of the browsers that we tested,

Google Chrome had the best performance (less than 100ms for decryption using 1024-

bit key).

4.8 Applying Web2ID to Web-based Desktop Applications

In this section, we present an application of the Web2ID protocol to a web-based

desktop application (in short, a Webtop). Web-based desktop applications (or webtops)

provide a desktop-like environment within the browser. Users can open multiple office

applications within a webtop, and can easily share data between these applications

(e.g., using drag-and-drop). A number of popular Webtops are now available, including

Glide OS, eyeOS, and G.ho.st [49, 43, 48].
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Figure 4.8: The performance in milliseconds of RSA encryption and decryption on
different browsers.

To demonstrate the application of Web2ID to Webtops, we build a Webtop appli-

cation called Zaranux [91]. To the best of our knowledge, this application is the first

linux-based open-source Webtop. Zaranux emulates a desktop environment, such as

Gnome or KDE, within the Web browser. It provides several applications, including

a command-line interface (i.e., a terminal), via which users can easily browse and ac-

cess their remote file system, upload/download files, and run third-party applications.

Each third-party application, such as a word processor, runs within its own protection

domain and can access user data in a controlled manner after obtain the user’s consent.

Because Webtops support a variety of office applications, typically from different

sources, users often have to authenticate themselves with each such application. A

Webtop that integrates an identity management solution can therefore greatly improve

end-user experience. However, existing identity management solutions are not directly

applicable to Webtop environments due to the heavy use of redirection and privacy

concerns. Office applications are typically stateful and contain unsaved data. The

identity management solutions implemented via a series of HTTP redirections would

result in the loss of unsaved data.

We therefore integrated our implementation of Web2ID with Zaranux. Below, we

discuss how Web2ID provides single sign-on, authorization delegation and resource

access in Zaranux.
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User Authentication and Single Sign-On. A user first logs into Zaranux and en-

ters his credentials into a mashlet provided by an identity provider (as discussed in

Section 4.4). The implementation of Web2ID in Zaranux ensures that any applications

that require authentication can seamlessly verify the identity of the user without re-

quiring the user to authenticate again. Zaranux shares the identity of its users with

applications only after getting their consent. The example below explains a common

authentication scenario.

Suppose that Alice has logged into Zaranux, and has started a financial application,

e.g., located at the URL http://investment.com. When Alice tries to access her data at

investment.com, it must authenticate her. To do so, the mashlet from investment.com

requests Alice’s identity URL by making a client-side system call to Zaranux. After get-

ting Alice’s consent, Zaranux returns her identity to investment.com. In turn, according

to Web2ID protocol, to verify this claim, investment.com mashlet forwards the claimed

URL to the investment.com server, which retrieves the public key from Alice’s identity

URL, encrypts a session token and returns it to the client side (as in the Web2ID pro-

tocol). Note that all these steps are transparent to Alice, once she has authenticated

herself to Zaranux, which in turn provides identity management services to other office

applications that require authentication.

Authorization Delegation and Resource Access. In Zaranux, an office application

that wishes to access a resource, such as a file or directory, invokes a client-side API akin

to the open system call on traditional desktop operating systems. This API call returns

a file handle that can be used to access the resource. This file handle serves as an opaque

capability token that delegates a certain access permission (e.g., read, write or delete)

to the token holder. Zaranux also implements the authorization delegation protocol

(discussed in Section 4.6), and uses relays to enable delegation in a privacy-preserving

manner.
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4.9 Related Work

OpenID implements decentralized user authentication on the Internet via a series of

HTTP redirections within the user’s browser. These redirections perform inter-domain

communication between the IdP and SP and transmit the user’s credentials from the

IdP to the SP. However, redirections are ill-suited for stateful Ajax-based applications,

such as Web desktops and Web-based office applications, because they involve unload-

ing/reloading the application upon each redirection. Without application-level support,

unloading/reloading operations will result in the loss of unsaved data. In addition, the

use of an identity provider to manage credentials and personal information raises pri-

vacy concerns. Web2ID provides technical solutions for both problems.

Our Web2ID protocol can be realized with any secure mashup frameworks. They

provide general infrastructure and environments for content providers to communicate

in our identity management applications. There have been a couple of recent work that

proposed secure mashup solutions including MashupOS [83], SMash [63], PostMessage

method [22], and OMOS [90]. The main goal of these solutions is two-fold: to isolate

contents from different sources in sandbox structures such as frames and to achieve

frame-frame communication.

SMash [63] uses the concepts in publish-subscribe systems and creates an efficient

event hub abstraction that allows the mashup integrator to securely coordinate and

manage contents and information sharing from multiple domains. SMash mashup in-

tegrator (i.e., the event hub) is assumed to be trusted by all the web services. Mashu-

pOS [83] applies concepts in operating systems in mashup and develops sophisticated

browser extensions and environments that enable the separation and communication

of frames similar to inter-process communication management in the operating system.

As mentioned earlier, the OpenMashupOS (OMOS) framework contains a key-based

protocol providing secure frame-to-frame communication [90].

Despite the recent progress on mashup applications, the identity management in

mashup environments has not been systematically investigated in the literature. Ca-

menisch et al. presented the architecture of PRIME (Privacy and Identity Management
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for Europe), which implements a technical framework for processing personal data [33].

PRIME focuses on enabling users to actively manage and control the release of their pri-

vate information. Privacy policies for liberty single sign-on [34, 66] have been presented

[73] by Pfitzmann. The paper identifies a number of privacy ambiguities in Liberty V1.0

specifications [67] and propose privacy policies for resolving them. A good article on

the issues and guidelines for user privacy in identity management systems was written

by Hansen, Schwartz, and Cooper [55].

In the federated identity management (FIM) solution by Bhargav-Spantzel et al.,

personal data such as a social security number is never transmitted in cleartext to help

prevent identity theft [25]. Commitment schemes and zero-knowledge proofs are used

to commit data and prove the knowledge of the data. BBAE is the federated identity-

management protocol proposed by Pfitzmann and Waidner [75]. They gave a concrete

browser-based single sign-on protocol that aims at the security of communications and

the privacy of user’s attributes. Goodrich et al. proposed a notarized FIM protocol

that uses a trusted third-party, called notary server, to effectively eliminate the direct

communication between identity provider and service provider [50]. The main difference

with these proposed privacy-aware ID management solutions and our approach is that

we study ID management in the client-side mashup environment through a novel and

efficient mashlet relay framework.

In the access control area, the closest work to ours is the framework for regulating

service access and release of private information in web-services by Bonatti and Sama-

rati [29]. They study the information disclosure using a language and policy approach.

We designed cryptographic solutions to control and manage information exchange. An-

other related work aiming to protect user privacy in web-services is the point-based

trust management model [87], which is a quantitative authorization model. Point-

based authorization allows a consumer to optimize privacy loss by choosing a subset

of attributes to disclose based on personal privacy preferences. The above two models

mainly focus on the client-server model, whereas our architecture include two different

types of providers.
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4.10 Summary

As mashup applications increase in popularity, we expect that they will also be used

with sensitive Web services, such as financial and banking applications. When mashups

are used in such scenarios, it is important to provide features such as identity manage-

ment. We presented Web2ID, an identity management protocol for mashup applica-

tions. Web2ID preserves the privacy of the end user and eliminates the need for a

trusted identity provider in the online single sign-on process. We described how this

feature can be realized with conventional public-key cryptography. We also described a

mashlet-relay framework that enables efficient yet indirect communication between two

server mashlets via a local relay mashlet controlled by the user. Such a relay frame-

work allows for attribute exchange without disclosing the user’s surfing habits to service

providers. Our implementation of Web2ID and the relay framework is implemented as

an in-browser library and is fully compatible with commodity browsers.

We overcome several technical difficulties and successfully implemented a public-key

cryptographic JavaScript library for the browser to perform cryptographic operations

such as key-pair generation, encryption, and decryption. This technical contribution is

beyond the specific identity management problem studied. Last but not the least, we

also described how Web2ID applies to the emergent Webtop environments.
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Chapter 5

Conclusions and Future Work

Cloud computing is an emerging paradigm which its cost-effectiveness and flexibility

have given it a tremendous momentum. However, there are many security challenges

that, if not addressed well, may impede its fast adoption and growth. This dissertation

primarily addresses the problem of sharing, managing and controlling access to sensitive

resources and services in an integrated cloud environment.

The primary conclusion of our research is that adoption of user-centric security

models and shifting certain parts of communication and computation to the client side

allows us to provide the cloud consumers with more visibility and control over their

resources. Therefore, using this approach not only the security and privacy concerns

of cloud consumers can be addressed more effectively, but also the burden of managing

end-users’ identities and fine-granular access control will be reduced from cloud service

providers.

In this dissertation, we presented our client-side access control protocol called K2C.

This protocol illustrates how recent cryptographic schemes can be utilized to develop an

effective client-side access control protocol for protecting confidentiality and integrity

of data stored in an untrusted cloud storage. Our protocol protects the privacy of end-

users by hiding their identities, as the authentication is realized based on attributes or

properties of a user, as opposed to the identity.

We also introduced our client-side integration framework called OMOS. This frame-

work abstracts away all the details of inter-domain communication and provides the de-

velopers with a powerful layered communication stack for component-based client-side

integration. On top of OMOS framework, we introduced a new identity management

protocol called Web2ID, which is specifically tailored for mashup applications with
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AJAX-based architecture. We showed how using client-side communication and asym-

metric cryptography, we can eliminate the need for identity providers, and thus protect

the privacy of end-users during authentication.

Below we present the list of related open problems and opportunities for extending

and improving the frameworks and protocols that we presented in this dissertation:

• Off-loading K2C key management to cloud. In current design of K2C pro-

tocol clients are responsible for key management. With respect to the capabilities

of clients, K2C is based on two assumptions: The clients have access to 1) local

storage with a mechanism for securely storing/retrieving the keys and its meta-

data. 2) point-to-point secure communication channels for distributing secret

keys. Relaxing these assumptions can improve usability and security of K2C.

The key challenge here is to do so without increasing the trust requirement on

storage provider. Development of techniques such as proxy re-encryption [19] is

very promising for solving these types of problems in clouds [88].

• Using cloud for client-side cryptography. Both K2C and Web2ID require

some expensive client-side cryptography. The required computational power may

limit their usage in certain domains (e.g. lightweight wireless devices). Finding

a secure way to leverage cloud computational power for performing the required

mathematical computations can alleviate this problem. Zhou et al. in [93]

introduce and analyze some techniques that one may be able to adopt to address

these limitations.

• Anonymous client-side communication. As part of Web2ID, we introduced

a relay mashup framework, in which a trusted client-side relay agent mediates the

communication between two mashlets to anonymizes the service provider and/or

the service consumer. Using this technique, without requiring any complex cryp-

tography, we were able to design a privacy-preserving identity attribute exchange

protocol. However, in this solution the relay mashlet needs to be hosted on the

client host, a requirement that limits the portability of our solution. Design-

ing a new primitive or enhancing postMessage to support anonymous client-side
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communication will make these kinds of solutions more portable and usable.

• Backend authentication in presence of untrusted client. In Web2ID our

focus was mainly on authentication of the end users. Another related challenging

problem is the problem of authentication between backend service providers in

presence of an untrusted client. To our knowledge currently there is no protocol

that addresses this problem without relying on trusted third-parties. Recently

a mulit-party protocol called MashSSL [14] has been proposed to address this

problem but it relies on a trusted third party to issue certificates for backend

servers.

The above items provide some directions for extending our frameworks and improv-

ing their usabilities.
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