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ABSTRACT OF THE DISSERTATION

D-brane Engineering of Surface Defects in

Supersymmetric Gauge Theories

by Yi Zhang

Dissertation Director: Professor Duiliu-Emanuel Diaconescu

The subject is investigating the D-brane engineering of the surface defect. First, we investigate

the duality between instanton counting and refined topological string in the presence of surface

defect. We construct a supersymmetric quantum mechanical model with surface operator in five

dimensional SU(r) gauge theory by D-brane engineering. Then we present a conjecture formula

relating the K-theoretic partition function to the refined topological amplitude. Second, we

can use it as a tool to study the knot invariant. Surface operator can be engineered by toric

brane in A-model topological string while A-model topological string with several toric branes

on a conifold can be related to refined HOMFLY polynomial. Then we can explore the refined

HOMFLY polynomial in knot theory with the help of surface operator. The formula of refined

HOMFLY polynomial from physics argument is presented and it agrees with Oblomkov-Shende

conjecture.
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Chapter 1

Introduction

1.1 Topological String

1.1.1 Topological Field Theory

Topological field theory is a field theory which doesn’t depend on the metric.

δ

δgµν
〈O1 · · · On〉 = 0

The operators usually contain the identity operator so that the partition function is independent

of the metric. There are two general types of topological field theory : Schwarz type and Witten

type.

Schwarz Type Topological Field Theory

The Schwarz type topological field theory has a Lagrangian which doesn’t contain the explicit

metric dependence. That invariance is true at classical level. If the symmetry is also preserved

at the quantum level, we get a topological quantum field theory. The operators in Schwarz type

are operators without metric dependence.

One typical example of Schwarz type topological field theory is Chern-Simons theory on a

three dimensional manifold.

S =
k

4π

∫
M

Tr

(
A ∧ dA+

2
3
A ∧A ∧A

)
,

The operators we are interested in Chern-Simons theory are Wilson loops.

Witten Type Topological Field Theory

Witten type topological filed theory, or cohomological field theory , has a special fermionic

nilpotent symmetry operator Q: Q2 = 0.
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If the energy-momentum tensor Tµν can be written in the form of

Tµν = {Q,Gµν},

where Gµν is some tensor, we can see the correlation function doesn’t depend on the metric

because

δ

δgµν
〈O1 · · · On〉 = 〈O1 · · · OnTµν〉

= 〈O1 · · · OnδGµν〉

= 〈δ(O1 · · · OnGµν)〉

= 0

One practical way to ensure that is to require action is Q-exact: S = {Q,V }. then we

will have two consequences. One is that the energy-momentum tensor Tµν will be Q-exact

automatically. The other consequence is that the semi-classical limit is exact.If we introduce t in

front of the action, 〈O〉 =
∫
DφOe−itS[φ],then we have d

dt 〈O1 · · · On〉 = 〈{Q,O1 · · · OnV }〉 = 0.

The physical operator is Q-closed : {Q,O} = 0. At the same time, the Q-exact operators

are decoupled from the theory since their correlation functions vanish. Then the physical

observables are the cohomology classes of Q :

O ∈ ker Q

imQ
.

Twisted Topological Sigma Models

Let’s start from two dimensional (2,2) sigma model. In two dimensions, the Lorentz group

SO(2)=U(1). And there are two rotations that:

RA :(θ+, θ̄+) → (e−iαθ+, eiαθ̄+), (θ−, θ̄−) → (eiαθ−, e−iαθ̄−)

RV :(θ+, θ̄+) → (e−iαθ+, eiαθ̄+), (θ−, θ̄−) → (e−iαθ−, eiαθ̄−)

Then redefine the spin , or equivalently the energy-moment tensor, by using the two U(1)

R symmetry currents FA and FV .

A− twist :MA = M − FV

B− twist :MB = M − FA

where M is the Lorentz generator. The twisted A model depends on the Kahler class of the

target space and is independent of the complex structure of the target space. The twisted B

model is independent on the Kahler class but depends on the complex structure. The vector
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current is not anomalous at quantum level, while the axial current has anomaly unless the first

Chern class of the target space vanishes, c1(X) = 0. So the target space needs to be Calabi-Yau

manifold. From now on, we focus on the twisted A model [57, 59]. In the new lorentz symmetry,

two of the four supercharges become scalars. The sum is the BRST QA in the Witten type

topological field theory.

In A model, the action is Q-exact up to a term, which is the integral of the pullback of

Kahler form.

S = it

∫
Σ

d2z{Q,V }+ t

∫
Σ

Φ∗(ω)

,where

V = gij̄

(
ψīz∂z̄φ

j + ∂zφ
īψjz̄

)
and

∫
Σ

Φ∗(ω) is the integral of pullback of the Kahler form ω = −gij̄dzidzj̄ ,∫
Σ

Φ∗(ω) =
∫

Σ

d2z
(
∂zφ

i∂z̄φ
j̄gij̄ − ∂z̄φ

i∂zφ
j̄gij̄

)
The physical operator(Q-cohomology) is one to one corresponding to the de Rham cohomol-

ogy of the target space Hp(X). The path integral localizes at the holomorphic maps from the

Riemann surface to the target space. It connects A model with Gromov-Witten theory.

The next step is to couple the twisted sigma model to gravity. Then we obtain topological

string.

The topological string has a close relation with superstring compactification. First, The

prepotential of the vector multiplets in type IIA/B Superstring compactification on Calabi-

Yau is captured by the topological string theory genus zero amplitude on the same Calabi-Yau.

Second,
∫
d4xFg(XI)R2

+F
2g−2
+ is also captured by topological string. XI is vector multiplet, R+

is the self dual part of Riemann tensor, F+ is the self dual part of graviphoton field strength. It

turns out that Fg is the higher-genus topological string amplitude at genus g. In the topological

string , the boundary condition need to preserves the BRST symmetry. In A model, the brane is

the Lagrangian brane wrapping Lagrangian submanifold with U(1) flat connection(Lagrangian

manifold has dimension 3 and the Kahler form vanishes when it is restricting on the Lagrangian

).

1.1.2 Toric Calabi-Yau

Toric Calabi-Yau is a Calabi-Yau with the structure of a torus fibration. The toric Calabi-Yau

we are interested in has a T 2 × R over R3. The geometry can be encoded in two dimensional
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graph that corresponds to the degeneration locus of the fibration. The edges are along the

direction (p, q) ∈ Z2,where, p,q corresponds to the generators in H1(T 2) of the shrinking cycle.

The elementary building block of toric Calabi-Yau is C3 . The base R3 of C3 are image of

moment maps:

rα(z) = |z1|2 − |z3|2,

rβ(z) = |z2|2 − |z3|2,

rγ(z) = Im(z1z2z3).

There three Hamiltonians generate three flows on C3 via the standard symplectic form ω =

i
∑
dzi ∧ dz̄i and poisson brackets ∂vzi = rv, ziω, v = α, β, γ.The fiber T 2 ×R is parameterized

by the flows. In particular, the T 2 fiber is generated by

exp(iαrα + iβrβ) : (z1, z2, z3) → (eiαz1, eiβz2, e−i(α+β)z3)

while rγ generates the real line R. There are three types of Lagrangian submanifold in C3:

L1 : rα = 0, rβ = r1, r1γ > 0,

L2 : rα = r2, rβ = 0, rγ > 0,

L3 : rα = r3, rβ = r3, rγ > 0,

where r1,2,3 are constants. Lagrangian submanifold are located at the edges in the toric diagram.

1.1.3 Geometric Transition

The open topological string A model on T ∗S3 with N lagrangian branes wrapping S3 is equiv-

alent to U(N) Chern Simons theory on S3 [61]. The string coupling is related to the level k

of the Chern-Simons theory : gs = 2π
k+N . The free energy of Chern-Simons theory at large N

expansion has a form of closed string theory.

The large N duality [28] suggests the open topological string on the deformed conifold

with branes , is dual to a closed string, which turns out to be the closed topological A model
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on a resolved conifold without brane. The open/closed string duality involves the geometric

transition in the background geometry. After geometric transition , the branes disappeared and

S3 is replaced by a blown up CP1. The ’t Hooft coupling in Chern Simons theory is mapped to

the Kahler parameter of the size of CP1.

We can extend the large N duality to incorporate Wilson loops [54]. The basic physical

observables in Chern-Simons theory are Wilson loops. In order to describe the Wilson loop in

topological open string on the deformed conifold , we need a Lagrangian submanifold. For any

knot q(s) ∈ S3 (0 ≤ s < 2π), we define

C = { (q(s), p) ∈ T ∗S3| pi
dqi

ds
= 0, 0 ≤ s < 2π }

. The Lagrangian 3-cycle C has a topology of R2 × S1, intersecting S3 along the knot q(s).

Let’s wrap N branes on S3 and M branes the knot q(s). Then we will have U(N) Chern-Simons

theory with gauge connection A on S3 and U(M) Chern-Simons theory with gauge connection

Ã on the knot q(s).In addition , there is a new sector with strings stretching between S3 and the

knot q(s). Integrating out this mode we obtain a series of correction to Chern-Simons theory

on S3

∞∑
n=1

1
n

Tr(Un)Tr(V −n),

where U,V are the holonomies of A,Ã around the knot q(s).Let’s follow the system through the

geometric transition. The N branes disappear and the deformed conifold is replaced by resolved

conifold. But the M branes still exist. Now they are wrapping some Lagrangian submanifold in

the resolved conifold. We need to figure out the corresponding Lagrangian submanifold. The

case of unknot is solved in [54] .

We can extend the geometric transition to get all genus amplitude on a large class of toric

Calabi-Yau [18, 1].The idea is to construct geometry locally containing T ∗S3. Then after the

geometric transition, the deformed conifolds are replaced by resolved conifolds. The closed

topological amplitude can be obtained by analyzing the open topological string in the dual

picture. The tricky part is that there are strings stretching between two different S3. The

problem is to figure out which configurations like this contribute to the full amplitude. [18, 17]

found out only the strings stretching along the edges of the toric diagram contribute.

1.1.4 Topological Vertex

The building block of toric Calabi-Yau is the trivalent. The topological vertex [2] formalism is

defined in terms of the open topological string amplitude on C3. The exact trivalent vertices
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amplitude is given by [3, eq(6.5)]. When we glue the vertices, there are some subtleties. First,

when we glue two vertices, the boundaries should have opposite orientations. The change of

orientation corresponds to take an inversion of the edge vector: CR1,R2,R3 → (−1)l(R1)CRt
1,R2,R3

.

The propagator associated to the edge with representation R ,R’ is (−1)l(R)−l(R′)δRR′ . Finally

, we need to take care the framing.For A mathematical view of gluing , please see [16]. In

summary, gluing the i-th edge is given by

∑
Ri

CRjRkRi
e−`(Ri)ti(−1)(ni+1)`(Ri)q−niκRi

/2CRt
iR

′
jR

′
k

.

Topological vertex formulism allows us to get all genus topological string amplitudes on toric

Calabi-Yau. Instanton counting in N = 2 gauge theory with and without matter fields has been

checked with the corresponding topological string partition function by using topological vertex

[35, 36, 32, 42].

The instanton generating function Z has two equivariant parameters ε1 and ε2. When

setting ε1 = −ε2 = ~, the instanton partition function reduces to the A-model topological string

partition function.Obviously, the instanton partition function has more refined information. We

need to extend the topological vertex formalism to deal with the case ε1 + ε2 6= 0.

1.1.5 Refined Topological Vertex

There is an extension of topological vertex formalism [37] which produce refined topological

amplitude.

The derivation of this refined formalism is based on the combinatorial explanation of topo-

logical vertex [53].Assume three dimensional Young tableaux π has such boundary conditions:

along the edges of x,y,z , it ends up with shape of 2d young tableaux R1, R2, R3. Then we will

have CR1R2R3 =
∑
π q

|π|, where CR1R2R3 is the topological vertex, |π| is the number of boxes

inside π, and π satisfies the boundary condition above.

The refined topological vertex is in the form :

Cλµν(t, q) =
(q
t

) ‖µ‖2+‖ν‖2
2

t
κ(µ)

2 Pνt(t−ρ; q, t) ×
∑
η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t−ρq−ν)sµ/η(t−ν
t

q−ρ).

The new variable is t. We can see it will reduce to the ordinary topological vertex if we set t=q.

The topological vertex has a cyclic symmetry in the three representations labelling its legs

: CR1R2R3 = CR2R3R1 = CR3R1R2 . But the refined top vertex doesn’t have this symmetry . It
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has a preferred leg, labelled by ν.

∑
λ

Cλ ∅ ∅(t−1, q−1)sλ(x) =
∞∏
i=1

(1−Qt−i+
1
2 ) , Q = −x

√
t
q

∑
µ

C∅µ ∅(t−1, q−1)sµ(x) =
∞∏
i=1

(1−Qq−i+
1
2 ) , Q = −x

They are the same as the ordinary vertex result up to a variable redefinition.But for the preferred

leg, the amplitude is different:

∑
ν

C∅ ∅ ν(t−1, q−1) sν(−Q) =
∞∑
k=0

(
Q

t√
k

)k k∏
n=1

(1− t qn−1)−1

The gluing algorithm is similar but we need to take care the preferred leg. The refined

topological amplitude can match 5d instanton counting of generic ε1,2 by matching q = eε1 ,

t = e−ε2 [37, 9, 10, 56].

1.1.6 Nekrasov Conjecture

Nekrasov [51] introduces two deformation parameters ε1 and ε2. ε1 rotates x1 − x2 plane,while

ε2 rotates x3 − x4 plane. Define the observable of interest Z(a, ε1, ε2), where a is the vacuum

expectation of vector multiplet. In ultraviolet the theory is weakly coupled and the instan-

tons dominate. In the infrared , we have Z(a, ε1, ε2) = exp
F (a;Λ)+O(ε1,2)

ε1ε2
, where F (a; Λ) is

the prepotential of the system. Comparing the results in UV and IR leads to a conjectural

relation between the instanton partition function and the Seiberg-Witten prepotential. In UV,

Z(a, ε1, ε2; q) =
∑∞
k=0 q

k
∫
M(r,k)

1,where M(r,k) is instanton moduli space for k instanton under

gauge group SU(r). In IR , Z(a, ε1, ε2; q) = exp

(
F inst(a, ε1, ε2; q)

ε1ε2

)
. F inst(a, ε1 = ε2 = 0; q)

will give instanton part of the prepotential N = 2 gauge theory.

Nekrasov also conjecture Z5d(a, ε1 = ~, ε2 = −~; q) represents the topological string partition

function on the Calabi-Yau which can geometric engineer the gauge theory. Z5d(a, ε1, ε2, β) =

χ(M(r, n), V ) ,where V is a vector bundle of zero mode of Dirac equation coupled to matter

representation.β is the radius of the fifth dimension. When β → 0, Z5d reduces to the Z4d.

1.2 Instanton Counting

In this section, we will review the instanton moduli space M(r,n) for n instantons in 4D SU(r)

gauge theory and the fixed points for the toric action. See [48, 49, 50] for a good Mathematica

exposition.
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M(r, n) =


(B1, B2, I, J)

i)[B1, B2] + IJ = 0

ii)(stability)There is no proper subspace

in Cn containing ImI

and closed under B1 and B2


/

GLn(C)

(1.2.1)

where B1,2 ∈ End(Cn), I ∈ Hom(Cr,Cn) , J ∈ Hom(Cn,Cr) and g ∈ GLn(C) action is given

by g · (B1, B2, I, J) = (gB1g
−1, gB2g

−1, gI, Jg−1).

V

B1

��

B2

YY
J ++

W,
I

kk

The right side is ADHM data [7]. It is also can be obtained from brane construction [23]. For

the Dp−4−Dp system, the worldvolume theory of Dp has a Chern-Simons term
∫
dp+1xCp−3∧

F ∧ F . Recall the instanton number is given by trF ∧ F . The Dp−4 plays the role of instanton

inside Dp brane. The supersymmetric flat direction of Higgs branch gives the same data as

ADHM quiver diagram.

Mathematically, M(r,n) is isomorphic to the framed moduli space of torsion free sheaves on

P2 with rank r and c2=n ,which is equipped by (E,Φ) such that :

• E is a torsion free sheaf of rank(E)=r , c2(E)=n which is locally free in a neighborhood

of l∞.

• framing at infinity: Φ:E|l∞
∼→O⊕rl∞

1.2.1 r=1

M(1, n) is isomorphism to Hilbert Scheme of points on C2. If we have n indistinguishable

points on the surface C2, the configuration space will be the nth symmetric product of C2:

SnC2 ≡ (C2)n/Sn. Sn is the symmetric group. There is a natural resolution of SnC2 denoted

by (C2)[n]. There exists a morphism π : (C2)[n] → SnC2 called Hilbert-Chow morphism.

There are several different descriptions of (C2)[n].

(C2)[n] can be described by codimension n Ideal of C[x, y]. Consider n indistinguishable

points on C2 : p1(x1, y1), · · · , pn(xn, yn). The set of all polynomial functions f(x,y) vanishing

at all the n points will form an Ideal I of C[x, y]. The quotient C[x, y]/I has dimension n.
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Second,(C2)[n] is also able to be described by the data below:
(B1, B2, i)

i)[B1, B2] = 0

ii)(stability)There is no proper subspace

in Cn containing ImI

and closed under B1 and B2


/
GLn(C)

where B1,2 ∈ End(Cn), i ∈ Hom(C,Cn), and g ∈ GLn(C) action is given by g · (B1, B2, I, J) =

(gB1g
−1, gB2g

−1, gI, Jg−1). The proof of isomorphism is given at [48, Thm. 1.9]. For any

codimension n ideal I⊂ C[x, y], the quotient C[x, y]/I is mapped to Cn ,and the multiplication

of x is mapped to B1 while the multiplication of y is mapped to B2.

The second description is similar to the ADHM data (1.2.1) because j = 0 [48, Prop. 2.8]

The toric action on ADHM data is given by [(B1, B2, I, J)]→ [(t1B1, t2B2, I, t1t2J)] for

(t1, t2) ∈ T 2 = U(1)× U(1). The original toric action is acting on the coordinates : (z1, z2) →

(t1z1, t2z2). From the ADHM data, we can construct the anti-self-dual connection. During the

construction, we can see the toric action will be lifted to act on B1,2.[(B1, B2, I, J)] is a fixed

point Y if and only if there is a gauge transformation λ(t) such that :

t1B1 = λ(t)−1B1λ(t)

t2B2 = λ(t)−1B2λ(t)

I = λ(t)−1I

t1t2J = Jλ(t)

It turns out the fixed points are one to one mapped to a Young tableau ν ≡ (ν1, · · · , νn)

of weight n [48, Sect. 5.2]. The ideal is given by I = (yν1 , xyν2 , x2yν3 , · · · , xνt
1). The tangent

space TνM(r, n), regarded as an element of the representation ring of T, is given as

TνM(r, n) =
∑

(i,j)∈ν

T
i−νt

j

1 T νi−j+1
2 +

∑
(i,j)∈ν

T
νt

j−i+1

1 T j−νi

2

1.2.2 General Case

The fixed point corresponds to a length r sequence of young diagrams (ν1, . . . , νr) so that∑
a |νa| = n. The tangent space TνM(r, n) is given by

TνM(r, n) =
r∑

a,b=1

R−1
a Rb

( ∑
(i,j)∈νa

T
i−(νb)t

j

1 T
νa

i −j+1
2 +

∑
(i,j)∈νb

T
(νa)t

j−i+1

1 T
j−νb

i
2

)
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Chapter 2

Surface Operators, ADHM Quiver Representations and

Refined Topological String

2.1 Introduction

The main goal of this chapter is to construct a microscopic quantum mechanical model for

BPS states bound to certain surface operators in minimally supersymmetric five dimensional

SU(r) gauge theories. This model is obtained employing a string theory construction of such

theories consisting of IIA D-branes in a nontrivial geometric background. The BPS states are

engineered in terms of D2-brane configurations, the resulting low energy effective action being

naturally constructed as the dimensional reduction of a (0, 2) quiver gauged linear sigma model.

An ADHM style theorem is proven, identifying the moduli space of quiver representations in a

special stability chamber with a moduli space of decorated framed torsion free sheaves on the

projective plane. The counting function of BPS states bound to surface operators is identified

with a K-theoretic partition function of this moduli space. A precise conjecture is formulated,

relating this partition function to refined open string invariants of toric lagrangian branes in

conifold and local P1 × P1 geometries. This conjecture is motivated by previous work on the

subject [5, 21], where surface operators are engineered by branes wrapping such cycles. Previous

papers on a similar subject also include [6, 8, 40, 39], treating various aspects of surface operators

in relation with localization on affine Laumon spaces and two dimensional conformal field theory.

The relation between some of these results and the present work will be explained below.

In more detail, this chapter is structured as follows. Five dimensional gauge theories are

constructed in section (2.2.1) using D6-branes wrapping exceptional cycles of a resolved ADE

singularity. Surface operators are obtained by adding D4-branes wrapping certain supersym-

metric cycles in this background. BPS states bound to surface operators are identified with

supersymmetric ground states of a certain D2-brane system with boundary on a D4-brane. The

effective action of this system is constructed in section (2.2.2) by dimensional reduction of a

(0, 2) quiver gauged linear sigma model. The final result is given in the quiver diagram (2.2.20)

and the table (2.2.29).
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The geometry of the resulting moduli space of flat directions is studied in detail in section

(2.3). Theorem (2.3.3) proves that the quantum mechanical moduli space is isomorphic to the

moduli space of θ-stable representations of a quiver with relations presented in section (2.3.1),

equation (2.3.5). This quiver is an enhancement of the standard ADHM quiver whose stable

representations are in one-to-one correspondence to isomorphism classes of framed torsion free

sheaves on the projective plane. As opposed to the standard ADHM quiver, the space of θ-

stability conditions has a nontrivial chamber structure. In particular Lemma (2.3.1) establishes

the existence of a special chamber where θ-stability is equivalent with an algebraic stability con-

dition generalizing standard ADHM stability. Theorem (2.3.5) proves that the moduli space of

stable quiver representation is smooth in the special chamber, and provides an explicit presen-

tation of its tangent space. Finally, Theorem (2.3.6) proves that in the special stability chamber

the moduli space is isomorphic to a moduli space of data (E, ξ,G, g) where E is a torsion free

sheaf on the projective plane, ξ : E ∼−→O⊕rD∞ is a framing of E along a hyperplane D∞ ⊂ P2,

and g : E � G is a skyscraper quotient of E supported (in the scheme theoretic sense) on a

fixed hyperplane D. The fixed hyperplane D represents the support of the surface operator.

Note that similar moduli spaces (without framing data) have been studied by Mochizuki in

[47, 46]. The data (G, g) can be also interpreted as a degenerate parabolic structure of E along

D, since only zero dimensional quotients of E|D are involved. In similar situations studied in

the literature [6, 8, 39], surface operators are associated to affine Laumon spaces [25], which are

moduli spaces of framed parabolic sheaves E on P1×P1. In those cases, the parabolic structure

consists of a genuine filtration of the restriction E|D, as expected from the general classification

of surface operators [30]. The moduli space obtained above offers a different geometric model

for surface operators, its viability being tested in section (2.5) by comparison with refined open

string invariants. The relation between these models will become clearer below, once their

connection with toric open string invariants is understood.

The counting function of BPS states is identified with a K-theoretic counting function for

stable enhanced ADHM quiver representations in section (2.4). The moduli space of stable

quiver representations is equipped by construction with a natural torus action and a determinant

line bundle. The K-theoretic partition function defined in section (2.4.2) is a generating function

for the equivariant Euler character of this determinant line bundle. From a physical point of view

(0, q)-forms on the moduli space with values in the determinant line bundle are supersymmetric

ground states in the quiver quantum mechanics constructed in section (2.2). The torus invariant

stable quiver representations in the special chamber are classified in terms of sequences of nested

partitions in Proposition (2.4.1). Moreover, an explicit expression for the equivariant K-theory
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class of the tangent space at each fixed point is also provided. This yields an explicit expression

(2.4.17) for the equivariant Euler character of the determinant line bundle.

Section (2.5) consists of a detailed comparison of the r = 1, 2 quiver K-theoretic partition

functions in the special chamber and the refined open string invariants of toric lagrangian branes

in the corresponding toric threefold Z. This relation is stated in Conjecture (2.5.1) for r = 1,

and Conjecture (2.5.3) for r = 2, both conjectures being supported by extensive numerical

computations. Computation samples are provided in Examples (2.5.2), (2.5.4).

Some details of this relation may help elucidate the connection between the present con-

struction and previous work [21, 8]. Note that the refined vertex formalism developed in [37]

assigns to a special lagrangian cycle L three distinct refined open string partition functions

corresponding to the choice of a preferred leg of the refined vertex. If the brane L is placed on

one of the two ordinary legs, the resulting partition functions are related by a simple change

of variables. These are cases I and II in [37, Sect 4.2]. In the third case, III, the lagrangian

brane is placed on the preferred leg, resulting in a different expression for the open topological

partition function. The third case has been considered in connection with surface operators in

[21]. In particular the refined topological open string partition function is identified in loc. cit.

with a surface operator partition function in the limit Λinst → 0. A similar comparison was

carried out in [8] for topological, non-refined open string invariants, in which case there is no

distinction between the three legs. As mentioned above, the surface operator partition function

is calculated in [8] by localization on affine Laumon spaces.

Conjectures (2.5.1) and (2.5.3) establish a precise relation between the K-theoretic partition

function introduced in section (2.4) and the refined open string partition function of an external

toric lagrangian brane. This means that the brane intersects only a noncompact component of

the toric skeleton of the Calabi-Yau threefold Z, as discussed in detail in section (2.5). A similar

relation is expected between the equivariant K-theory partition function of the affine Laumon

space and the refined open string invariants of an internal toric lagrangian brane [21]. An

internal brane intersects a compact rational component of the toric skeleton of Z, therefore such

branes are naturally labelled by elements of the co-root lattice of the gauge group, in agreement

with [30]. In certain situations, open string invariants of external and internal branes can be

related by analytic continuation, explaining the fact that the same partition function may have

different gauge theoretic constructions. In principle, the surface operators corresponding to

internal branes can also be engineered as in section (2.2), the resulting moduli spaces of quiver

representations being presumably closely related to affine Laumon spaces. This will be left for

future work.
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2.2 Surface operators and quiver quantum mechanics

This section presents a IIA D-brane construction of BPS states in five dimensional gauge theo-

ries, in the presence of surface operators. The final outcome, presented in detail at the end of

section (2.2.2), is a supersymmetric quiver quantum mechanical model for such states obtained

as the effective action of certain D2-brane configurations with boundary.

2.2.1 D-brane engineering

Minimally supersymmetric five dimensional gauge theories can be easily constructed using IIA

D6-branes wrapping rational holomorphic curves in a K3 surface. More precisely, consider a

K3 surface with a canonical ADE singularity. Its crepant resolution contains a configuration

of (−2) rational curves whose intersection matrix is determined by the incidence matrix of the

corresponding Dynkin diagram. A configuration consisting of an arbitrary number of D6-branes

wrapped on each such curve yields in the low energy limit a quiver five dimensional gauge theory

with eight supercharges. Moreover, BPS states in this quiver gauge theory can be obtained by

wrapping D2-branes on the same holomorphic cycles. Then standard D-brane technology shows

that the effective action of such a D-brane configuration is a supersymmetric quiver quantum

mechanics. This is a microscopic model for such BPS states which can be effectively used in

counting problems via localization on moduli spaces of stable quiver representations. It will

be shown below that a similar model can be constructed for BPS states bound to a surface

operator. Since toric geometry methods will be used, only K3 surfaces with Ak singularities

are amenable to the approach developed below. Moreover in order to keep the technical details

to a minimum, the construction will be carried out only for k = 1. The same basic principles

apply to all k ≥ 1, more involved computations being required.

For the present purposes it suffices to consider a noncompact K3 surface T isomorphic to

the total space of the cotangent bundle T ∗P1. The time direction will be Wick rotated to

euclidean signature and assumed to be periodic. This yields a natural presentation of the BPS

counting function as a finite temperature partition function. Therefore one obtains a geometric

background of the form T × S1 ×R5 in IIA theory in euclidean space-time. Note that periodic

time translations form a free S1-action on the space-time manifold. In this setup, the world

volume of a Dp-brane is a submanifold of space-time of real dimension (p + 1) preserved by

the free S1 action. In contrast, the world-volume of a Dp-instanton is a (p + 1)-submanifold

embedded in a fixed time subspace. Dp-instantons will not be employed in the following,

therefore all D-brane world-volume manifolds must be invariant under time translations. Let
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(x1, . . . , x5) be linear coordinates on R5.

Minimally supersymmetric five dimensional SU(r) Yang Mills theory is engineered by r

coincident D6-branes with world-volume P1 × S1 × R4, where P1 is identified with the zero

section of T → P1, and R4 ⊂ R5 is a linear subspace. Let (x1, . . . , x5) be linear coordinates on

R5 so that the later is the hyperplane x5 = 0. BPS particles in this theory are engineered by

D2-branes with world-volume P1 × S1. Therefore BPS states are identified to supersymmetric

ground states in the effective action of D2-branes in the presence of D6-branes, which will be

explicitly constructed later in this section.

In order to construct supersymmetric surface operators, note that there is a natural identifi-

cation T ×S1×R5 ' T ×C××R4, where R4 ⊂ R5 is the hyperplane x5 = 0. The isomorphism

S1 × R ' C× is given by U = ex
5+iθ, where θ is an angular coordinate on S1. The free S1-

action corresponding to euclidean time translations is θ → θ+ δθ. Obviously, T ×C× is a toric

Calabi-Yau threefold preserved by this action. Then surface operators will be engineered by

wrapping D4-branes on M ×R2, where M ⊂ T ×C× is an S1-invariant toric special lagrangian

and R2 ⊂ R4 is the linear subspace {x1 = x2 = 0}.

The cycle M will be constructed employing the methods used in [4]. Note that T is a toric

quotient
(
C3 \ {X1 = X2 = 0}

)
/C×, where (X1, . . . , X3) are linear coordinates on C3 such that

weights of the C× action are (1, 1,−2). Alternatively, T admits a presentation as a symplectic

quotient C3//U(1) with respect to a hamiltonian U(1) action with moment map

µ(X1, . . . , X3) = |X1|2 + |X2|2 − 2|X3|2.

The U(1) action on the level set µ−1(ζ), ζ ∈ R>0 is free and the quotient µ−1(ζ)/U(1) is

isomorphic to T . Note also that there is a natural symplectic torus action U(1)2 × T → T , the

resulting moment map giving a projection % : T → R2. The image of % is the Delzant polytope

of T . In homogeneous coordinates, this map is given by

%(X1, X2, X3) = (|X1|2, |X2|2, |X3|2),

where R2 ⊂ R3 is identified with the hyperplane

|X1|2 + |X2|2 − 2|X3|2 = ζ. (2.2.1)

Obviously, there is a similar map %̃ : T × C× → R3,

%̃(X1, X2, X3, U) = (|X1|2, |X2|2, |X3|2, |U |2).

Using the methods of [4], the cycle M will be constructed by first specifying its image under %̃,

|X1|2 − |X2|2 = c1, |U |2 − |X2|2 = c2, (2.2.2)
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where c1, c2 are real parameters. Suppose

c1 > ζ > 0, c2 > 0.

Then, taking into account equation (2.2.1), it follows that any solution to (2.2.2) must satisfy

the inequalities

|X1|2 ≥ c1, |X2|2 ≥ 0, |X3|2 ≥
1
2
(c1 − ζ), |U |2 ≥ c2.

Therefore the image of M under %̃ is a half real line. and X1, X3 are not allowed to vanish

for any solution to (2.2.2). M is defined by specifying linear constraints on the phases of the

homogeneous coordinates in addition to equations (2.2.2). The intersection of M with the dense

open subset X2 6= 0 is a union of two two-tori defined by the equations

φ1 + φ2 + φU = 0, π. (2.2.3)

The intersection of M with the divisor X2 = 0 is the two-torus

|X1|2 = c1, |X3|2 =
1
2
(c1 − ζ), |U |2 = c2, (2.2.4)

the phases of X3, U being unconstrained, while the phase of X1 is set to zero using U(1) gauge

transformation. Therefore the two branches of M defined in equation (2.2.3) are joined together

at X2 = 0, resulting in a special lagrangian cycle of the form T 2 × R. Taking a single branch

would yield a special lagrangian cycle with boundary, T 2 × R≥0.

For further reference note that there is a one parameter family of holomorphic discs in T×C×

with boundary on M cut by the equations

X2 = 0, 0 ≤ |X3| ≤
1
2
(c1 − r), U =

√
c2e

iθ. (2.2.5)

Note also that M is invariant under euclidean time translations, φU → φU + δφU , since any

such translation is compensated by a U(1)-gauge transformation φ1 → φ1 − δφU in (2.2.3).

The same S1-action acts freely and transitively on the total space of the family of discs (2.2.5),

identifying the parameter space of this family with the euclidean time circle.

Returning to gauge theory, surface operators are engineered by a D4-brane with world-

volume M × {x1 = x2 = 0}. BPS particles bound to this operator are D2-brane configurations

consisting of n1 D2-branes with world-volume

x1 = · · · = x4 = 0, X3 = 0, |U | =
√
c2 (2.2.6)

and n2 D2-branes with world-volume

x1 = · · · = x4 = 0, X2 = 0, 0 ≤ |X3| ≤
1
2
(c1 − r), U =

√
c2. (2.2.7)



16

These stacks of D2-branes will be denoted by D21, D22 respectively. Note that the three cycles

(2.2.6), (2.2.7) are preserved by euclidean time translations, as expected. Taking quotient by

this free action yields in the first case the two-cycle

x1 = · · · = x4 = 0, X3 = 0, x5 = ln
√
c2 (2.2.8)

which is isomorphic to the zero section of T → P1. In the second case, one obtains a holomorphic

disc ∆ ⊂ T cut by the equations

x1 = · · · = x4 = 0, X2 = 0, 0 ≤ |X3| ≤
1
2
(c1 − r), x5 = ln

√
c2. (2.2.9)

This is obviously a vertical holomorphic disc embedded in the fiber of T → P1 at X2 = 0.

Therefore the first stack of D2-branes is wrapped on the zero section of P1, while the second

stack is wrapped on the disc ∆.

2.2.2 D2-brane effective action via quiver (0, 2) models

To summarize the construction in the previous section, five dimensional supersymmetric SU(r)

gauge theory is engineered by wrapping r D6-branes on the exceptional cycle of a resolved A1

singularity T . The space-time is Wick rotated to euclidean signature, and the time direction is

periodic. Surface operators in this theory are engineered by certain supersymmetric D4-brane

configurations determined by equations (2.2.2), (2.2.3). BPS states bound to such operators are

realized by two stacks of D2-branes with multiplicities n1, n2 wrapping the holomorphic cycles

(2.2.8), (2.2.9), which intersect transversely at the point X2 = X3 = 0 in T .

The goal of the present section is to construct the effective action of the stacks of D2-branes

in this background, including modes of D2-D4 and D2-D6 open strings. Since the D2-branes

wrap compact cycles, KK reduction will yield an effective quantum mechanical action for their

zero modes. In order to analyze the dynamics of this D-brane system, it is helpful to note that

that it is related to the D0-D4-D8-brane configuration studied in [22]. The effective action of

the D0-branes was identified in [22] with a gauged version of the (0, 4) ADHM sigma model

action constructed in [62].

As opposed to the current case, the D-brane system analyzed in [22] is embedded in flat

space. In order to understand the relation between these configurations, the complex surface

T → P1 must be replaced by T ′ = T 2×C → C, allowing two flat space directions to be compact.

Then consider a D21-D22-D6-brane system in the new background consisting of n2 D2-branes

wrapping a T 2 fiber of T ′ → C, n1 D2-branes wrapping a section of T ′ → C, and r D6-brane

wrapping the same section and a linear subspace R4 ⊂ R5. Obviously, the relative positions of
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these branes are the same as the relative positions in the D21-D22-D6 system on T . The new

brane system on T ′×R5 is related by a T-duality transformation on T 2 to the configuration of

parallel D0-D4-D8 branes studied in [22, Sect 3]. The D0-brane effective action was constructed

there by dimensional reduction of a two dimensional (0, 4) gauged linear sigma model, obtaining

a quantum mechanical action with four supercharges. In the present case, T ′ is replaced by T ,

which breaks half of the underlying thirty-two IIA supercharges, and in addition a D4-brane is

added to the system. The resulting configuration preserves only two supercharges as opposed

to four. Therefore by analogy with [22], the effective action will be constructed by dimensional

reduction of a two dimensional (0, 2) gauged linear sigma model [60, Sect. 6]. Since the system

is fairly complicated, it will be convenient to proceed in several stages. The D21-D6, D22-D4

configurations will be first studied separately, classifying the massless states in (0, 2)-multiplets

(reduced to one dimension), and writing down the interactions in (0, 2) formalism. The coupling

between these two sectors via open string D21-D22 massless modes will be studied at the next

stage. In the following all Chan-Paton bundles on branes will be taken topologically trivial.

(0, 2) models

Since the massless states will be classified in (0, 2) multiplets reduced to one dimension, a

brief review of such models is provided below, following [60, Sect 6.1]. There are three types

of (0, 2) multiplets, the chiral multiplet, the Fermi multiplet, and the vector multiplet. The

on shell (0, 2) chiral multiplet consists of a complex scalar field and a complex chiral fermion

of positive chirality, while the (0, 2) Fermi multiplet consists of a complex chiral fermion of

negative chirality. The (0, 2) gauge multiplet consists of a gauge field and an adjoint complex

chiral fermion. A pair consisting of one (0, 2)-chiral multiplet and one (0, 2) Fermi multiplet has

the same degrees of freedom as a (2, 2) multiplet [60, Sect 6.1]. Chiral multiplets will be denoted

by A+ in the following, and Fermi multiplets will be denoted by Y−. Each Fermi superfield Y−

satisfies a superspace constraint of the form

D+Y− =
√

2EY− , D+EY− = 0, (2.2.10)

where EY− is a holomorphic function of chiral superfields taking values in the same represen-

tation of the gauge group as Y−. Additional F-term like interactions can be written down in

terms of some holomorphic functions JY− of chiral superfields which take values in the dual

representation of the gauge group. The following constraint

∑
Y−

〈JY− , EY−〉 = 0. (2.2.11)
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must be satisfied in order to obtain a (0, 2) supersymmetric lagrangian. Then the (0, 2) super-

space action is [60, Sect 6.1]

1
8

∫
d2xdθ+dθ+Tr(WW)− i

2

∫
d2xd2θ

∑
A
A(D0 −D1)A

− 1
2

∫
d2xd2θ

∑
Y−

Y†−Y− −
1√
2

∫
d2xdθ+

∑
Y−

〈JY− , Y−〉|θ+ ,
(2.2.12)

where W is the field strength of the vector multiplet. In addition, one can add an FI term of

the form
ζ

4

∫
d2xdθ+TrW|

θ+=0
+ h.c

for each simple factor of the gauge group. The total potential energy of the resulting (0, 2)

lagrangian is

UD +
∑
Y−

|EY− |2 + |JY− |2 (2.2.13)

where UD is a standard D-term contribution. Moreover, assuming that EY− , JY− are polynomial

functions in the chiral superfields A, the Yukawa couplings can be written as follows. Any

monomial A1 · · · An in EY− determines a sequence of Yukawa couplings of the form

n∑
i=1

〈λ†Y− , A1 · · ·Ai−1ψAi
Ai+1 · · ·An〉 (2.2.14)

and any monomial A1 · · · An in JY− determines a sequence of Yukawa couplings of the form

n∑
i=1

〈λY− , A1 · · ·Ai−1ψAi
Ai+1 · · ·An〉. (2.2.15)

Then one has to sum over all Y− and over all such monomials.

D21-D6 system

Recall that this D-brane system is supported on the zero section of T , and the Chan-Paton bun-

dles E1, F are topologically trivial. In addition, E1, F are equipped with hermitian structures

and compatible connections, which determine in particular holomorphic structures. Since they

are bundles on P1, E1, F must be isomorphic to the trivial holomorphic bundles V1⊗OP1 ,W ⊗

OP1 , where V1,W are vector spaces of dimensions n1, r equipped with hermitian structures.

Moreover, the Chan-Paton connections are gauge equivalent to the trivial connection. The

temporal component of the gauge field has a constant zero mode on P1.

The normal bundle to the D2-branes in T × R5 is N1 ' OP1(−2)⊕O⊕2
P1 ⊕RP1 , where RP1

denotes the trivial real line bundle. The transverse fluctuations of the D2-brane are parametrized

by a section (Φ1, A1, A2, σ1) of N1 ⊗ End(E1), the last component, σ1, being subject to the
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reality condition σ†1 = σ1. Then the zero modes of the transverse fluctuations are holomorphic

sections of End(V1) ⊗
(
OP1(−2)⊕O⊕2

P1

)
. Therefore Φ1 is identically zero, and A1, A2, σ1 are

constant.

In conclusion KK reduction on P1 yields two complex fields A1, A2 ∈ End(V1), a real field

σ1 ∈ End(V1), and an U(V1)-gauge field. This is precisely the bosonic field content of an D = 4,

N = 2 vector multiplet reduced to one dimension, which is expected since the D2-branes pre-

serve eight supercharges. By supersymmetry the fermionic fields are obtained by dimensional

reduction of the fermions in the same multiplet. The resulting massless spectrum can be orga-

nized in terms of two dimensional (0, 2) multiplets reduced to one dimensions. Namely, there

are two complex adjoint (0, 2) chiral superfields, A1+,A2+ with bosonic components A1, A2,

a (0, 2) vector multiplet, and a (0, 2) adjoint Fermi multiplet X−. The gauge fields and real

adjoint bosonic field σ1 are obtained by reduction of the two dimensional vector multiplet.

A similar analysis must be carried out for the D21-D6 fields. In flat space space, with

trivial Chan-Paton bundles, and trivial gauge connections, the massless open string modes in

this sector yield a D = 3, N = 4 bifundamental hypermultiplet on the D2-brane world-volume.

There are two complex bosonic fields I, J , sections of Hom(F,E1), Hom(E1, F ) respectively,

and two bifundamental Dirac fermions ψ, ψ̃, also sections of Hom(F,E1), Hom(E1, F ). Note

that there is an SU(2)R global symmetry group induced by transverse rotations to the D2-D6

system. The bosonic fields are SU(2)R-singlets, while the fermions (ψ, ψ̃†) form a doublet.

When the D-branes are wrapped on the zero section of T → P1, the bosonic fields I, J are still

sections I, J ofHom(F,E1), Hom(E1, F ), which have constant zero modes on P1. Therefore KK

reduction on P1 yields two complex bosonic fields I, J with values in Hom(W,V1), Hom(V1,W )

respectively.

The fermions are topologically twisted as follows. The Lorentz symmetry group Spin(3) '

SU(2) and the global symmetry group SU(2) are broken to U(1) subgroups identified with the

spin groups of the tangent, respectively normal bundle to the zero section. Both fermions ψ, ψ̃

have U(1)×U(1) charges (1, 1)⊕ (−1, 1). Moreover, the normal bundle is canonically identified

with the cotangent bundle of the zero section once a global holomorphic 2-form on T is chosen.

Since the cotangent bundle is dual to the tangent bundle, it follows that the components of ψ, ψ̃

are sections of

Hom(F,E1)⊗ (OP1 ⊕OP1(−2)) , Hom(E1, F )⊗ (OP1 ⊕OP1(−2))

respectively. Therefore dimensional reduction on P1 yields two chiral fermion fields with values
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in Hom(W,V1), Hom(V1,W ), which are related by supersymmetry to the bosonic fields. In con-

clusion, the D21-D6 strings yield two (0, 2) chiral superfields I+,J+ with values in Hom(W,V1),

Hom(V1,W ) and no other degrees of freedom.

Finally, it is helpful to note that there is an alternative derivation of the D21-D6 massless

spectrum, following from the observation that T is the crepant resolution of the C2/Z2 orbifold

singularity. Then D-branes wrapped on the zero section with trivial Chan-Paton bundles are

identified with orbifold fractional branes [24, 19] associated to the trivial representation of the

orbifold group. More specifically, the D21-branes are identified with n1 fractional D0-branes,

while the D6-branes are identified with r fractional D4-branes. Therefore the massless open

string spectrum is identified with the Z2-invariant part of the spectrum of a D0-D4 system

transverse to the orbifold, the action of orbifold group on the Chan-Paton spaces V1, W being

trivial. Then a straightforward computation similar to [24] yields the same massless spectrum

as obtained above by geometric methods. In particular, all transverse fluctuations of the D0-

branes along the orbifold directions are projected out. The field content of the effective action

is encoded in the following quiver diagram

V1

A1+

��

A2+

XX
X− 77

I+
++
W.

J+

kk (2.2.16)

where each arrow represents a (0, 2) multiplet reduced to one dimension.

As explained in section (2.2.1), the interactions are determined by two holomorphic functions

EX− , JX− of the chiral superfields A1+,A2+, I+,J+. Their tree level values can be easily deter-

mined using the fractional brane description of the system explained in the previous paragraph.

The tree level potential energy of the D21-D6 system is the same as the tree level potential

energy of a flat space D0-D4 system, truncated to Z2-invariant fields. This yields the following

expression

|[A1, A2] + IJ |2 + |[A1, A
†
1] + [A2, A

†
2] + II† − J†J − ζ1|2, (2.2.17)

which consists of standard F-term, respectively D-term contributions. ζ1 is an FI parameter

which can be identified with a flat B-field background on the D4-brane world-volume. The

F-term contribution to (2.2.17) determines

JX− = [A1+,A2+] + I+J+, EX− = 0 (2.2.18)

up to an ambiguity exchanging EX− and JX− . In the present context, exchanging EX− and

JX− is equivalent to a field redefinition, hence there is no loss of generality in making the choice
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(2.2.18). One can also multiply JX− by an arbitrary phase, but this ambiguity can be again

absorbed by a field redefinition.

D22-D4 system

By construction, the D4-brane world-volume is of the formM×R2, whereM ⊂ T×S1×R ' T×

C× is the S1-invariant special lagrangian cycle constructed in (2.2.2)-(2.2.3). The world-volume

of the second stack of the D2-branes is the family of holomorphic discs (2.2.5) parameterized

by periodic euclidean time. For fixed time, the D2-branes wrap the vertical holomorphic disc in

∆ ⊂ T given in (2.2.9). The geometric background T ×S1×R5 preserves half of the thirty-two

IIA supercharges, and the D4-brane wrapped on M preserves only four. The combined D22-D4

system preserves half of the remaining four supercharges.

The D2-brane fluctuations consist of the standard gauge field, transverse fluctuations, and

their superpartners. The Chan-Paton bundle E2 is again topologically trivial, therefore it can

be taken of the form E2 = V2 ⊗ O∆, with V2 an n2-dimensional vector space equipped with

hermitian structure. The Chan-Paton connection is gauge equivalent to the trivial connection.

The temporal component of the gauge field has again a constant zero mode on ∆.

The normal bundle to ∆ ⊂ T × R5 is trivial,

N2 ' O∆ ⊕O⊕2
∆ ⊕R∆,

where the first summand is the normal bundle to ∆ in T . The second and third summands

correspond to the remaining five transverse directions, R∆ denoting the trivial real line bundle

on ∆. The transverse fluctuations are parameterized therefore by a section (Φ2, B1, B2, σ2) of

End(V2)⊗N2, the last component being real, σ2 = σ†2.

In order to determine the zero modes of the transverse fluctuations, boundary conditions

must be specified for the fields (Φ2, B1, B2, σ2). The fluctuations Φ2, B1 are transverse to the

D4-brane world-volume, therefore they have to satisfy Dirichlet boundary conditions, Φ1|∂∆ = 0,

B1|∂∆ = 0. This implies that they have no zero modes on ∆ since any holomorphic function

which vanishes on the boundary must vanish everywhere. The remaining fluctuations B2, σ2

are parallel to the D4-brane, therefore they have to satisfy Newmann boundary conditions.

A holomorphic function on ∆ satisfying Newmann boundary conditions must be constant,

therefore B2, σ2 have constant zero modes on ∆.

In conclusion, KK reduction on the disc yields a spectrum of bosonic fields consisting of a

complex field B2 ∈ End(V2), a real field σ2 ∈ End(V2) and a U(V2)-gauge field. These are the

bosonic components of a (0, 2) chiral multiplet B2+, and a (0, 2) vector multiplet, reduced to
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one dimension. Since the system D22-D4 preserves two supercharges, the zero modes of the

fermionic fields must naturally provide the missing fermionic components in these multiplets.

The resulting field content is summarized in the following quiver diagram

V2B2+ 77 (2.2.19)

Since there are no Fermi superfields, the only interactions are gauge couplings and D-term

interactions. This is consistent with the fact that the D2-branes are free to glide along the

D4 branes with no cost in energy. Note that FI terms in the D2-brane world-volume can be

obtained by turning on a flat gauge field background on the D4-brane.

Coupling the two systems

The next task is to couple the two D-brane systems analyzed above. In addition to the zero

modes found in sections (2.2.2), (2.2.3), there are extra massless open string states in the

D21-D22 sector and in the D22-D6-sector. In both cases the stacks of D-branes intersect trans-

versely at a point, therefore the massless states are the same as in a similar D-brane con-

figuration embedded in flat space. The fields in the D21-D22 sector are naturally identified

with the components of a D = 4, N = 2 bifundamental hypermultiplet reduced to one dimen-

sion. In terms of (0, 2)-superfields, there are two (0, 2) chiral multiplets Φ+,Γ+ with values in

Hom(V2, V1), Hom(V1, V2) respectively, and two Fermi superfields Ω−,Ψ−, also with values in

in Hom(V2, V1), Hom(V1, V2). The the D22-D6-sector yields a single Fermi superfield Λ− with

values in Hom(V2,W ). Taking into account the previous results, the combined (0, 2) spectrum

is summarized in the following quiver diagram

V2B2+ 77

Φ+,Ω−
++

Λ−

��
V1

Γ+,Ψ−

kk

A1+,A2+

��

X−

XX

I
++
W.

J
kk (2.2.20)

Note that an arrow marked by two superfields represents in fact two distinct arrows, corre-

sponding respectively to the two superfields. For ease of exposition, the arrows corresponding

to chiral superfields will be called bosonic, while the arrows corresponding to Fermi superfields

will be called fermionic. Therefore, for example, there are three arrows beginning and ending at

V1, two bosonic corresponding to A1+,A2+ , and one fermionic, corresponding to X−. Similarly,

there are two arrows between V2 and V1, one bosonic and one fermionic, and two arrows between

V1 and V2, again, one bosonic and one fermionic.
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Next one has to determine the holomorphic functions E, J for each Fermi superfield in

(2.2.20). First note that the tree level potential energy must include quartic couplings between

the fields Φ+,Γ+ superfields A1+,A2+,B2 reflecting the fact that the D21-D22 fields become

massive once the two stacks of D2-branes are displaced, their mass being proportional with the

separation. Therefore, taking into account gauge invariance, the potential interactions between

the bosonic components of Φ+,Γ+ and A1+,A2+,B2 must be of the form

|A1f |2 + |A2f − fB2|2 + |gA1|2 + |gA2 −B2g|2. (2.2.21)

Here f ∈ Hom(V2, V1), g ∈ Hom(V1, V2) are the bosonic components of chiral superfields Φ+,Γ+.

Note that since V1, V2,W are equipped with hermitian structures, any space of morphisms

between any two vector spaces has an induced hermitian structure. The resulting hermitian

form is denoted by | | in (2.2.21). Such couplings are obtained by setting

EΩ− = ε1(Φ+B2+ −A2+Φ+), JΩ− = η1Γ+A1+,

EΨ− = ε2(B2+Γ+ − Γ+A2+), JΨ− = η2A1+Φ+

(2.2.22)

where ε1, ε2, η1, η2 are phases, i.e. complex numbers with modulus 1. One can also obtain the

same potential energy exchanging the ordered pairs (EΩ− , JΩ−), (JΨ− , EΨ−). This ambiguity

is equivalent to a field redefinition, hence there is no loss of generality in making the choice

(2.2.22).

The phases will be fixed up to field redefinitions imposing the supersymmetry condition

(2.2.11). Since the coupling between the two sectors will not change the tree level potential

energy (2.2.17) of the D21-D6 modes, one must have

JX− = [A1+,A2+] + I+J+ (2.2.23)

as found in equation (2.2.18). The holomorphic function EX− is not necessarily zero, as found

there, but, if nonzero, it must have nontrivial dependence on the extra chiral superfields Φ+,Γ+.

The supersymmetry condition (2.2.11) yields

〈JΩ− , EΩ−〉+ 〈JΨ− , EΨ−〉+ 〈JX− , EX−〉+ 〈JΛ− , EΛ−〉 = 0. (2.2.24)

The possible contributions to the holomorphic functions EY− , JY− assigned to each Fermi su-

perfield Y− ∈ {X−,Ω−,Ψ−,Λ−} can be classified as follows. Let Vt(Y−), Vh(Y−) be the vector

spaces assigned to the tail, respectively the head of the arrow corresponding to Y− in the dia-

gram (2.2.20). Then Y− takes values in the linear space Hom(Vt(Y−), Vh(Y−)). The holomorphic

functions

EY− ∈ Hom(Vt(Y−), Vh(Y−)), JY− ∈ Hom(Vh(Y−), Vt(Y−))
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are determined by linear combinations of paths of bosonic arrows in the path algebra of the

quiver (2.2.20).

Next note that a simple computation yields

〈JΩ− , EΩ−〉+ 〈JΨ− , EΨ−〉 = (ε1η1 + ε2η2)TrV2

(
Γ+A1+Φ+B2+

)
− ε1η1TrV2

(
Γ+A1+A2+Φ+

)
− ε2η2TrV2

(
Γ+A2+A1+Φ+

)
.

(2.2.25)

Moreover

〈JX− , EX−〉 = TrV1

(
([A1+,A2+] + I+J+)EX−

)
where EX− must be a linear combination of paths consisting of the following building blocks

Φ+Bk2+Γ+, A1+, A2+, I+J+,

with k ∈ Z≥0. Similarly, EΛ− , JΛ− must be linear combinations of paths of the form

Bk2+Γ+P (A1+,A2+, I+J+,Φ+Γ+,Γ+Φ+)I+,

J+Q(A1+,A2+, I+J+,Φ+Γ+,Γ+Φ+)Φ+Bl2+,

where k, l ∈ Z≥0 and P (A1+,A2+, I+J+), Q(A1+,A2+, I+J+) are polynomial functions of

A1+,A2+, I+J+,Φ+Γ+,Γ+Φ+. This implies that

〈JX− , EX−〉+ 〈JΛ− , EΛ−〉 (2.2.26)

cannot contain any terms proportional to

TrV2

(
Γ+A1+Φ+B2+

)
= TrV1

(
Φ+B2+Γ+A1+

)
.

Therefore supersymmetry requires ε1η1 + ε2η2 = 0 in (2.2.25). Then the remaining terms in the

right hand side of (2.2.25) can be written as

ε2η2TrV1

(
[A1+,A2+]Φ+Γ+

)
.

These terms must be cancelled by similar terms in the expansion of (2.2.26). Since all terms in

the expansion of 〈JΛ− , EΛ−〉 have non-trivial dependence on I+,J+, the terms required by this

cancellation must occur in the expansion of 〈JX− , EX−〉. This uniquely determines

EX− = −ε2η2Φ+Γ+. (2.2.27)

Taking into account all conditions obtained so far, the right hand side of (2.2.25) reduces to

〈JΛ− , EΛ−〉 − ε2η2TrV2(Γ+I+J+Φ+).
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Given the building blocks for EΛ− , JΛ− listed above, it follows that

EΛ− = ε3J+Φ+, JΛ− = η3Γ+I+ (2.2.28)

where ε3, η3 are phases satisfying ε3η3 − ε2η2 = 0.

In conclusion, all holomorphic functions EY− , JY− have been completely determined up to

certain ambiguous phases which can be set to ±1 by field redefinitions. The final results are

summarized in the following table

Y− EY− JY−

X− − Φ+Γ+ [A1+,A2+] + I+J+

Ω− Φ+B2+ −A2+Φ+ − Γ+A1+

Ψ− B2+Γ+ − Γ+A2+ A1+Φ+

Λ− J+Φ+ Γ+I

(2.2.29)

Then the total potential energy of the quantum mechanical effective action is

U = Ugauge + UD + UE + UJ (2.2.30)

where Ugauge is the potential energy determined by gauge couplings,

Ugauge = |[σ1, A1]|2 + |[σ1, A2]|2 + |[σ2, B2]|2 + |σ1I|2 + |Jσ1|2

+ |σ1f − fσ2|2 + |σ2g − gσ1|2,
(2.2.31)

UD is the D-term contribution

UD =
(
[A1, A

†
1] + [A2, A

†
2] + II† − J†J + ff† − g†g − ζ1

)2

+
(
[B2, B

†
2] + gg† − f†f − ζ2

)2

,

(2.2.32)

and
UE + UJ = |[A1, A2] + IJ |2 + |fg|2 + |A1f |2 + |gA1|2

+ |A2f − fB2|2 + |gA2 −B2g|2 + |Jf |2 + |gI|2
(2.2.33)

are the E and J term contributions.

The supersymmetric ground states of the resulting quantum-mechanical system are obtained

in the Born-Oppenheimer approximation by quantization of the moduli space of classical su-

persymmetric flat directions. As usual in supersymmetric theories, this approximation yields

an exact count of such states. The geometry of the resulting moduli space will be studied in

the next section.
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2.3 Moduli space of flat directions and enhanced ADHM data

The main goal of this section is to analyze the geometry of the moduli space of supersymmetric

flat directions of the quantum mechanical potential (2.2.33). It will be shown below that, for

generic values of the FI parameters, such moduli space is isomorphic to the moduli space of stable

representations of a quiver with relations, called the enhanced ADHM quiver. It will be also

shown that, in a certain stability chamber, this moduli space admits a geometric interpretation

in terms of framed torsion free sheaves on the projective plane.

Summarizing the results of the previous section, the D2-brane effective action has been

constructed by dimensional reduction of a (0, 2) model with field content given by the quiver

diagram (2.2.20) and interactions given by (2.2.29). The space of constant field configurations

(A1, A2, I, J,B2, f, g, σ1, σ2) is the vector space

End(V1)⊕2 ⊕Hom(W,V1)⊕Hom(V1,W )⊕

End(V2)⊕Hom(V1, V2)⊕Hom(V2, V1)⊕ u(V1)⊕ u(V2)
(2.3.1)

where V1, V2 and W are complex vector spaces equipped with hermitian inner products. The

moduli space of flat directions is the moduli space of gauge equivalence classes of solutions to

the zero-energy equations

[A1, A
†
1] + [A2, A

†
2] + II† − J†J + ff† − g†g = ζ1,

[B2, B
†
2] + gg† − f†f = ζ2,

(2.3.2)

[A1, A2] + IJ = 0, Jf = 0, gI = 0, A1f = 0, gA1 = 0

A2f − fB2 = 0, gA2 −B2g = 0, fg = 0,
(2.3.3)

[σ1, Ai] = 0, [σ2, B2] = 0, σ1I = 0, Jσ1 = 0,

σ1f − fσ2 = 0, gσ1 − σ2g = 0
(2.3.4)

derived from (2.2.30). Two solutions are gauge equivalent if they are related by the natural

action of the gauge group U(V1)× U(V2) on the space (2.3.1). The resulting moduli space can

be naturally identified with a moduli space of quiver representations, as presented below.

2.3.1 Enhanced ADHM Quiver

The enhanced ADHM quiver is the quiver with relations defined by the following diagram

e2β 77
φ ++ e1
γ

kk

α1

��

α2

YY
η ++ e∞,
ξ

kk (2.3.5)
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and ideal of relations being generated by

α1α2 − α2α1 + ξη, α1φ, α2φ− φβ, ηφ, γξ

φγ, γα1, γα2 − βγ.
(2.3.6)

Note that omitting the vertex e2 and all above relations except the first one, one obtains the

usual ADHM quiver.

A representation R of the enhanced ADHM quiver in the category of complex vector

spaces is given by a triple (V1, V2,W ) of vector spaces assigned to the vertices (e1, e2, e∞)

and linear maps (A1, A2, I, J,B, f, g) assigned to the arrows (α1, α2, ξ, η, β, φ, γ) respectively,

and satisfying the relations (2.3.6). The numerical type of a representation is the triple

(dim(W ),dim(V1),dim(V2)) ∈ (Z≥0)3. A morphism between two such representations R andR′

is a triple (ξ1, ξ2, ξ∞) of linear maps between the vector spaces assigned to the nodes (e1, e2, e∞),

respectively, satisfying obvious compatibility conditions with the morphisms attached to the ar-

rows. This defines an abelian category of quiver representations. Note that this abelian category

contains the abelian category of representations of the ADHM quiver as the full subcategory of

representations with n2 = 0.

A framed representation of the enhanced ADHM quiver with type (r, n1, n2) ∈ (Z≥0)3

is a pair (R, h) consisting of a representation R and an isomorphism h : W ∼−→Cr. Two

framed representations (R, h) and (R′, h′) are isomorphic if there is an isomorphism of the

form (ξ1, ξ2, ξ∞) : R ∼−→R′ such that h′ξ∞ = h.

In order to construct moduli spaces of framed representations of the enhanced ADHM quiver,

one has to introduce suitable stability conditions. By analogy with [38], a stability condition

will be defined by a triple θ = (θ1, θ2, θ∞) ∈ Q3 satisfying the relation

n1θ1 + n2θ2 + rθ∞ = 0. (2.3.7)

A representation R of numerical type (r, n1, n2) ∈ (Z>0)3 will be called θ-(semi)stable if the

following conditions hold

(i) Any subrepresentation R′ ⊂ R of numerical type (0, n′1, n
′
2) satisfies

n′1θ1 + n′2θ2 (≤) 0. (2.3.8)

(ii) Any subrepresentation R′ ⊂ R of numerical type (r, n′1, n
′
2) satisfies

n′1θ1 + n′2θ2 + rθ∞ (≤) 0. (2.3.9)
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We emphasize that the above definition does not coincide with the one considered by King in

[38, Section 3] because only subrepresentations with r′ = 0, r are considered in the stability

condition. However, as we shall see in the next subsection, it plays essentially the same role.

Note also that θ-stability has the Harder-Narasimhan, respectively Jordan-Hölder property

since the abelian category of quiver representations is noetherian and artinian. Two θ-semistable

representation with identical dimension vectors will be called S-equivalent if their associated

graded representations with respect to the Jordan-Hölder filtration are isomorphic.

Let (r, n1, n2) ∈ (Z>0)3 be a fixed dimension vector. Note that the space of stability para-

meters θ = (θ1, θ2, θ∞) ∈ Q3 satisfying n1θ1 + n2θ2 + rθ∞ = 0 can be naturally identified with

the (θ1, θ2)-plane Q2, after solving for θ∞. Such a parameter θ will be called critical of type

(r, n1, n2) if the set of strictly θ-semistable representations R with dimension vector (r, n1, n2)

is non-empty. If this set is empty, θ will be called generic. Then it is easy to prove that, for a

fixed dimension vector (r, n1, n2) ∈ (Z>0)3, the set of critical stability parameters consists of of

finitely many lines in the (θ1, θ2)-plane.

The following lemma establishes the existence of generic stability parameters for any given

dimension vector (r, n1, n2).

Lemma 2.3.1 Suppose θ2 > 0 and θ1 + n2θ2 < 0 for some fixed (r, n1, n2) ∈ (Z>0)3. Then

a representation R is θ-semistable if and only if it is θ-stable and if and only if the following

conditions are satisfied

(S.1) f : V2 → V1 is injective and g : V1 → V2 is identically zero.

(S.2) The data A = (V1,W,A1, A2, I, J) satisfies the ADHM stability condition, that is there is

no proper nontrivial subspace 0 ⊂ V ′1 ⊂ V1 preserved by A1, A2 and containing the image

of I.

Proof. Under the assumptions of lemma (2.3.1) let R be a θ-semistable representation.

Suppose f is not injective. Then it is straightforward to check that ker(f) ⊂ V2 is preserved

by B2, therefore it determines a subrepresentation of R with n′1 = 0, r′ = 0. The semistability

condition yields

θ2 dim(Ker(f)) ≤ 0

which leads to a contradiction if dim(Ker(f)) > 0. Therefore f must be injective, and relation

fg = 0 implies g = 0.

Similarly, if condition (S.2) is not satisfied by some proper nontrivial subspace 0 ⊂ V ′1 ⊂ V1,
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the data

R′ = (V ′1 , 0,W,A1|V ′1 , A2|V ′1 , I, J |V ′1 , 0, 0)

determines a proper nontrivial subrepresentation of R with r′ = r so that

n′1θ1 + n′2θ2 + rθ∞ = (n′1 − n1)θ1 > 0.

This is again a contradiction.

Next let R be a representation satisfying conditions (S.1), (S.2), and suppose R′ ⊂ R is a

nontrivial proper subrepresentation of R. Note that g′ = 0 since g = 0. There are two cases,

r′ = r and r′ = 0.

Suppose r′ = r. Then (S.2) implies that I is not identically zero, hence n′1 > 0. If n′1 < n1,

the data A′ = (V ′1 , A
′
1, A

′
2, I

′, J ′) would violate condition (S.2). Therefore n1 = n′1. Since R′

has to be a proper subrepresentation, n′2 < n2. Then

n′1θ1 + n′2θ2 + rθ∞ = (n′2 − n2)θ2 < 0.

Now suppose r′ = 0. Note that n′1 = 0 implies that V ′2 ⊂ Ker(f) = 0, hence n′2 = 0 as well.

This is impossible since R′ is assumed nontrivial. Therefore n′1 ≥ 1, and

n′1θ1 + n′2θ2 ≤ θ1 + n2θ2 < 0

using the conditions of lemma (2.3.1).

2

In the following, a representation R of the enhanced ADHM quiver will be called stable if

it satisfies conditions (S.1), (S.2) of lemma (2.3.1).

2.3.2 Moduli spaces

Moduli spaces of θ-semistable framed quiver representations will be constructed employing GIT

techniques, by analogy to [38]. Since framed quiver moduli of the type considered here do

not seem to be treated previously in the literature, the details will be presented below for

completeness.

Let V1, V2,W be vector spaces of dimensions n1, n2, r ∈ Z>0 respectively. Let

X(r, n1, n2) =End(V1)⊕2 ⊕Hom(W,V1)⊕Hom(V1,W )⊕

End(V2)⊕Hom(V1, V2)⊕Hom(V2, V1).

and note that there is a natural G = GL(V1)×GL(V2) action on X(r, n1, n2) given by

(g1, g2)× (A1, A2,I, J,B2, f, g) −→

(g1A1g
−1
1 , g1A2g

−1
1 , Jg−1

1 , g1I, g2B2g
−1
2 , g1fg

−1
2 , g2gg

−1
1 ).
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The closed points of X(r, n1, n2) will be denoted by x = (A1, A2, I, J,B2, f, g), and the action

of (g1, g2) ∈ G on a point x ∈ X will be denoted by (g1, g2) · x. The stabilizer of a given point

x will be denoted by Gx ⊂ G. Moreover, let X0(r, n1, n2) ⊂ X denote the subscheme defined by

the algebraic equations (2.3.3). Obviously, X0(r, n1, n2) is preserved by the G-action.

Note also each representation R = (V1, V2,W,A1, A2, I, J,B2, f, g) corresponds to a unique

point x = (A1, A2, I, J,B2, f, g) in X0; two framed representations are isomorphic if and only if

the corresponding points in X0(r, n1, n2) are in the same G-orbit.

Next, recall some standard facts on GIT quotients for a reductive algebraic group G acting

on a vector space X(r, n1, n2) [38, Section 2]. Given an algebraic character χ : G→ C× one has

the following notion of χ-(semi)stability.

(a) A point x0 is called χ-semistable if there exists a polynomial function p(x) on X(r, n1, n2)

satisfying p((g1, g2) · x) = χ(g1, g2)lp(x) for some l ∈ Z≥1, so that p(x0) 6= 0.

(b) A point x0 is called χ-stable if there exists a polynomial function p(x) as in (a) above so

that dim(G·x0) = dim(G/∆), where ∆ ⊂ G is the subgroup acting trivially on X(r, n1, n2).

and the action of G on {x ∈ X(r, n1, n2) | p(x) 6= 0} is closed.

This definition can be reformulated as follows. Let G act on the direct product X0(r, n1, n2)×C

by

(g1, g2)× (x, z) → ((g1, g2) · x, χ(g1, g2)−1z)

Then according to [38, Lemma 2.2], x ∈ X(r, n1, n2) is χ-semistable if and only if the closure of

the orbit G · (x, z) is disjoint from the zero section X(r, n1, n2)×{0}, for any z 6= 0. Moreover x

is χ-stable if and only if the orbit G · (x, z) is closed in complement of the zero section, and the

stabilizer G(x,z) is a finite index subgroup of ∆.

One can form the quasi-projective scheme:

N ss
θ (r, n1, n2) = X0(r, n1, n2)//χG := Proj

(
⊕n≥0A(X0(r, n1, n2))G,χ

n
)

,

where

A(X0(r, n1, n2))G,χ
n

:= {f ∈ A(X0(r, n1, n2)) | f(g · x) = χ(g)nf(x) ∀g ∈ G} .

Clearly, N ss
θ (r, n1, n2) is projective over Spec

(
X0(r, n1, n2))G

)
, and it is quasi-projective over

C. Geometric Invariant Theory tells us that N ss
θ (r, n1, n2) is the space of χ-semistable orbits;

moreover, it contains an open subscheme N s
θ (r, n1, n2) ⊆ N ss

θ (r, n1, n2) consisting of χ-stable

orbits.
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Then the following holds by analogy with [38, Prop. 3.1, Thm. 4.1]. Again the details of

the proof are given below for completeness.

Proposition 2.3.2 Suppose θ = (θ1, θ2) ∈ Z2, and let χθ : G→ C× be the character

χθ(g1, g2) = det(g1)−θ1det(g2)−θ2 .

Then a representation R = (V1, V2,W,A1, A2, I, J,B2, f, g) of an enhanced ADHM quiver, of

dimension vector (r, n1, n2) ∈ (Z>0)3, is θ-(semi)stable if and only if the corresponding closed

point x ∈ X0 is χθ-(semi)stable.

It follows that N ss
θ (r, n1, n2) parameterizes S-equivalence classes of θ-semistable framed

representations, while N s
θ (r, n1, n2) parameterizes isomorphism classes of θ-stable framed rep-

resentations.

Proof. First, we prove that if x ∈ X is χθ-semistable, then the corresponding representation

R is θ-semistable. Suppose that there exists a nontrivial proper subrepresentation 0 ⊂ R′ ⊂ R

with either r′ = 0 or r′ = r so that

n′1θ1 + n′2θ2 + r′θ∞ > 0.

Let us first consider the case r′ = 0. Since R′ = (V ′1 , V
′
2 , {0}, A′1, A′2, I ′, J ′, B′2, f ′, g′) is a

subrepresentation of R, then V ′1 and V ′2 can be regarded as subspaces of V1 and V2, respectively,

and it follows that
f(V ′2) ⊆ V ′2 , g(V ′2) ⊆ V ′1 , Ai(V ′1) ⊆ V ′1 ,

B2(V ′2) ⊆ V ′2 , J(V ′1) = 0,
(2.3.10)

for i = 1, 2. Then there exist direct sum decompositions V1 ' V ′1 ⊕V ′′1 , V2 ' V ′2 ⊕V ′′2 such that

the linear maps A1, A2, B2, f , and g have block decomposition of the form ∗ ∗

0 ∗

 (2.3.11)

while I, J have block decompositions of the form

I =

 ∗

∗

 , J =
[

0 ∗
]
. (2.3.12)

Consider a one-parameter subgroup of G of the form

g1(t) =

 t1V ′1 0

0 1V ′′1

 , g2(t) =

 t1V ′2 0

0 1V ′′2

 .
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It follows that the linear maps (A1(t), A2(t), I(t), J(t), B2(t), f(t), g(t)) = (g1(t), g2(t)) · x have

block decompositions of the form  ∗ t∗

0 ∗

 , (2.3.13)

and

It =

 t∗

∗

 , J t =
[

0 ∗
]
. (2.3.14)

At the same time, χθ(g1(t), g2(t))−1z = tn
′
1θ1+n

′
2θ2z, with n′1θ1 + n′2θ2 > 0. Therefore the limit

of (g1(t), g2(t)) · (x, z) as t→ 0 is a point on the zero section, which contradicts χθ-semistability.

Suppose x is χθ-stable butR is not θ-stable. Then the previous argument shows thatR must

be θ-semistable, therefore there must exist a nontrivial proper subrepresentation 0 ⊂ R′ ⊂ R,

r′ = 0 or r′ = r, so that

n′1θ1 + n′2θ2 + r′θ∞ = 0.

Since the orbit G · (x, z) must be closed in the complement of the zero section for any z 6= 0

it follows that the block decompositions (2.3.11) must be diagonal, and the upper block in the

decomposition of I in (2.3.12) must be trivial. Otherwise the limit of (g1(t), g2(t)) · (x, z) exists,

but does not belong to the G-orbit through (x, z). However, this implies that the one-parameter

subgroup (g1(t), g2(t)) stabilizes (x, z). Since the kernel ∆ of the representation of G on X is

trivial, this contradicts the χθ-stability assumption. Therefore R must be θ-stable.

Next, consider the case r′ = r. As in the previous case, it follows that

f(V ′2) ⊆ V ′2 , g(V ′2) ⊆ V ′1 , Ai(V ′1) ⊆ V ′1 ,

B2(V ′2) ⊆ V ′2 , I(W ) ⊆ V ′1 ,
(2.3.15)

for i = 1, 2. Therefore there exist direct sum decompositions V1 ' V ′1 ⊕ V ′′1 , V2 ' V ′2 ⊕ V ′′2 such

that the linear maps (A1, A2, B2, f, g) have block decomposition of the form (2.3.11) while I, J

have block form decompositions of the form

I =

 ∗

0

 , J =
[
∗ ∗

]
. (2.3.16)

Consider a one-parameter subgroup of G of the form

g1(t) =

 1V ′1 0

0 t−11V ′′1

 , g2(t) =

 t1V ′2 0

0 t−11V ′′2
.


Then the linear maps (At1, A

t
2, B

t
2, f

t, gt) in (g1(t), g2(t)) · x have block decompositions of the
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form (2.3.13) and (It, J t) have block decompositions

It =

 ∗

0

 , J t =
[
∗ t∗

]
. (2.3.17)

Since χθ(g1(t), g2(t))−1z = t(n
′
1−n1)θ1+(n′2−n2)θ2z, this leads again to a contradiction.

Suppose x is χθ-stable, but R is not θ-stable. Then, as above, it follows that the block

decompositions (2.3.11) must be diagonal, and the left block in the decomposition of J in (2.3.14)

must be trivial. This again implies that x has nontrivial stabilizer, leading to a contradiction.

The proof of the converse statement is very similar, the details being left to the reader.

2

As observed above Lemma 2.3.1, for fixed dimension vector (r, n1, n2) ∈ (Z>0)3, the space of

stability parameters θ can be naturally identified with the (θ1, θ2)-plane and there is a critical

set of lines through the origin dividing it into finitely many stability chambers. All moduli

spaces associated to stability parameters within a chamber are canonically isomorphic and do

not contain strictly semi-stable points.

Lemma 2.3.1 shows that there is a special stability chamber, determined by the inequalities

θ2 > 0, θ1 +n2θ2 < 0, within which θ-semistability is equivalent to θ-stability and to conditions

(S.1), (S.2) stated in Lemma 2.3.1. Framed representations of the enhanced ADHM quiver

satisfying conditions (S.1), (S.2) will simply be called stable, and their moduli space will be

denoted by N (r, n1, n2).

Theorem 2.3.3 Let (r, n1, n2) ∈ (Z>0)3 be a fixed dimension vector and θ = (θ1, θ2, θ∞) ∈

Z2 ×Q be a generic stability parameter. Then the set of gauge equivalence classes of solutions

to equations (2.3.2)-(2.3.4) with ζ1 = θ1 and ζ2 = −θ2 is a complex quasi-projective scheme

isomorphic to N s
θ (r, n1, n2).

Proof. The two equations in (2.3.2) are obviously moment map equations for the natural

hamiltonian U(V1)× U(V2)-action on the vector space

X(r, n1, n2) =End(V1)⊕2 ⊕Hom(W,V1)⊕Hom(V1,W )⊕

End(V2)⊕Hom(V1, V2)⊕Hom(V2, V1).

The parameters (ζ1, ζ2) determine the level of the moment map µ : X(r, n1, n2) → u(V1)∗ ⊕

u(V2)∗. Standard results imply that for generic (θ1, θ2) ∈ Z2, the symplectic Kähler quotient

µ−1(−θ1,−θ2)/U(V1)× U(V2), is isomorphic to the GIT quotient X0(r, n1, n2)//χG, where χ :

G→ C× is a character of the form

χ(g1, g2) = det(g1)−θ1det(g2)−θ2 .
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As it was observed below Proposition 2.3.2, the GIT quotient X0(r, n1, n2)//χG is iso-

morphic to the moduli space of S-equivalence classes of θ-semistable quiver representations

N ss
θ (r, n1, n2). For generic θ there are no strictly semistable representations by Lemma 2.3.1,

henceN ss
θ (r, n1, n2) = N s(r, n1, n2). In conclusion, the symplectic quotient µ−1(−θ1,−θ2)/U(V1)×

U(V2) is isomorphic to the moduli space N s
θ (r, n1, n2).

Finally, note that equations (2.3.4) imply that the triple (exp(σ1), exp(σ2), 1W ) is an endo-

morphism of the enhanced ADHM quiver representation

R = (V1, V2,W,A1, A2, I, J,B2, f) preserving the framing h : W ∼−→Cr. However, the proof

of Proposition (2.3.2) implies that a nontrivial endomorphism of a stable framed representation

must be the identity. In conclusion, σ1, σ2 must be identically 0 for generic θ.

2

In particular, it follows from the proof above and from Lemma 2.3.1 that if ζ2 < 0 and

ζ1 + n2ζ2 > 0, then the moduli space of flat directions is isomorphic to N (r, n1, n2).

For further reference, note that if R = (V1, V2,W,A1, A2, I, J,B2, f) is a stable framed

representation of type (r, n1, n2) ∈ Z3
>0 with n1 > n2, the linear maps (A1, A2, I, J) yield linear

maps

Ãi : V1/Im(f) → V1/Im(f), Ĩ : W → V1/Im(f), J̃ : V1/Im(f) →W

with i = 1, 2, which satisfy the ADHM relation

[Ã1, Ã2] + Ĩ J̃ = 0.

Moreover, it is not difficult to check that the resulting ADHM data (V,W, Ã1, Ã2, Ĩ, J̃), where

V = V1/Im(f) satisfies the ADHM stability condition (S.2).

Lemma 2.3.4 Suppose n = n1−n2 > 0 and let V2 be a complex vector space of dimension n2 ∈

Z>0. Let also M(r, n) denote the moduli space of stable ADHM data of type (n, r) ∈ (Z>0)2.

Then there is a surjective morphism q : N (r, n1, n2) → M(r, n) mapping a the isomorphism

class of the stable framed representation R = (V1, V2,W,A1, A2, I, J,B2, f) to isomorphism class

of the ADHM data (V,W, Ã1, Ã2, Ĩ, J̃) constructed above.

Proof. The existence of the morphism q of moduli spaces follows from repeating the above

construction for flat families of quiver representations.

In order to prove its surjectivity, start with a stable ADHM data (V,W, Ã1, Ã2, Ĩ, J̃) of type

(n, r) and B2 ∈ End(V2), and set

V1 = V2 ⊕ V, and f =

 1V2

0

 .
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Now let A1, A2 ∈ End(V1), I ∈ Hom(W,V1), and J ∈ Hom(V1,W ) be of the following form

A1 =

 0 A′1

0 Ã1

 , A2 =

 B2 A′2

0 Ã2



I =

 I ′

Ĩ

 , J =
[

0 J̃
]
,

according to the decomposition V1 = V2 ⊕ V . To be precise, one has A′1, A
′
2 ∈ Hom(V, V2) and

I ′ ∈ Hom(W,V2).

One immediately sees that A1f = A2f − fB2 = Jf = 0, while [A1, A2] + IJ = 0 if and only

if the following auxiliary equation is satisfied:

A′1Ã2 −A′2Ã1 −B2A
′
1 + I ′J̃ = 0. (2.3.18)

Clearly, f : V2 → V1 is injective, and note that (V1,W,A1, A2, I, J) defined above is stable

if and only if the following conditions hold:

(i) at least one of the linear maps A′1, A
′
2, I

′ is nontrivial;

(ii) there is no proper subspace S ( V2 such that A′1(V ), A′2(V ), I ′(W ) ⊂ S and B2(S) ⊆ S.

Indeed, if A′1 = A′2 = I ′ = 0, then V is a subspace of V1 which violates the ADHM sta-

bility condition. As for the second condition, (V1,W,A1, A2, I, J) is not stable if and only if

there is a subspace S̃ ( V1 which is invariant under A1 and A2, and contains the image of

I. Since (V,W, Ã1, Ã2, Ĩ, J̃) is stable, S̃ must be of the form S ⊕ V , with S ( V2 nontrivial,

A′1(V ), A′2(V ), I ′(W ) ⊂ S and B2(S) ⊆ S.

Therefore, in order to prove the surjectivity of the morphism q it is sufficient to prove

that there exist nontrivial solutions of the auxiliary equation (2.3.18), so that linear subspaces

0 ( S ( V2 as in the previous paragraph do not exist.

Choose a basis {v1, . . . , vn2} of V2 and let B2 be a diagonal matrix with distinct eigenvalues,

B2 = diag(β1, . . . , βn2), βi 6= βj for all i, j = 1, . . . , n2, i 6= j. Let I ′ : W → V2 be a rank

one linear map so that its image is generated by a vector v =
∑n2
i=1 vi. Note that the set

{v,B(v), . . . , Bn2−1(v)} is a basis of V2. Otherwise there would exist a nontrivial linear relation

of the form
n2∑
i=1

xiB
i(v) = 0.

Given the above choice for B2, this would imply that the xi are a solution of the linear system
n2∑
i=1

βijxi = 0
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where j = 1, . . . , n2. However the discriminant of this system is the Vandermonde deter-

minant ∆(β1, . . . , βn2) =
∏
i<j(βj − βi), which is nonzero since the βi are assumed to be

distinct. Therefore all xi would have to vanish, leading to a contradiction. In conclusion,

{v,B(v), . . . , Bn2−1(v)} is a basis of V2. In particular there are no nontrivial proper subspaces

0 ( S ( V2 preserved by B2 and containing Im(I ′).

Having fixed B2, I
′ as in the previous paragraph, equation (2.3.18) is a linear system of

n2(n1−n2) linear equations in the 2n2(n1−n2) variables A′1, A
′
2. Such a system has a n2(n1−n2)

dimensional space of solutions. Any nontrivial solution determines a set (V1,W,A1, A2, I, J) of

stable ADHM data.

2

2.3.3 Smoothness

The main result of this subsection is the following.

Theorem 2.3.5 The moduli space N (r, n1, n2) of stable framed representations of an enhanced

ADHM quiver with fixed numerical invariants (r, n1, n2) ∈ (Z>0)3 is a smooth, quasi-projective

variety of dimension (2n1 − n2)r. Moreover, the tangent space to N (r, n1, n2) at a closed point

[R] = [(A1, A2, I, J,B2, f)] is isomorphic to the first cohomology group of a complex C(R) of

the form

End(V1)

⊕

End(V2)

d0−→

End(V1)⊕2

⊕

Hom(W,V1)

⊕

Hom(V1,W )

⊕

End(V2)

⊕

Hom(V2, V1)

d1−→

End(V1)

⊕

Hom(V2, V1)⊕2

⊕

Hom(V2,W )

d2−→ Hom(V2, V1) (2.3.19)

where the four terms have degrees 0, . . . , 3, and the differentials are given by

d0(α1, α2)t = ([α1, A1], [α1, A2], α1I,−Jα1, [α2, B2], α1f − fα2)t

d1(a1, a2, i, j, b2, φ)t = ([a1, A2]+ [A1, a2]+ Ij+ iJ,A1φ+a1f,A2φ+a2f −fb2−φB2, jf +Jφ)t

d2(c1, c2, c3, c4)t = c1f +A2c2 − c2B2 −A1c3 − Ic4.
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Proof. First note that the moduli space of stable framed representations of the enhanced

ADHM quiver (2.3.5) can be canonically identified with the moduli space of stable framed

representations of the following simpler quiver

e2β 77 φ // e1

α1

��

α2

YY
η ++ e∞
ξ

kk (2.3.20)

with relations

α1α2 − α2α1 + ξη, α1φ, α2φ− φβ, ηφ. (2.3.21)

For further reference, let (ρ1, . . . , ρ4) denote the generators (2.3.21) respectively.

The moduli space Ñ (r, n1, n2) of stable framed representations of numerical type (r, n1, n2) ∈

(Z>0)3 is defined in complete analogy with the moduli space of similar representations of the

enhanced ADHM quiver (2.3.5). In particular, a result analogous to Lemma (2.3.1) also holds

for θ-stable framed representations of (2.3.20). Namely, if θ1 < 0, θ2 > 0, θ1 + n2θ2 < 0, a

framed representation (V1, V2,W,A1, A2, I, J,B2, f) of (2.3.20) is θ-semistable if and only if it

is θ-stable and if and only if f is injective and the data (V1,W,A1, A2, I, J) satisfies the ADHM

stability condition (S.2). Finally, there is an obvious morphism Ñ (r, n1, n2) → N (r, n1, n2),

which is an isomorphism according to Lemma (2.3.1). This isomorphism will be used implicitly

in the following, making no distinction between stable framed representations of (2.3.5) and

(2.3.20).

The truncated cotangent complex of the moduli space Ñ (r, n1, n2) can be determined by a

standard computation in deformation theory. Such an explicit computation has been carried

out in a similar context, see [15, Sect. 4.1]. To be more precise, the differential d0 comes from

the linearization of the action of G on X, while the differential d1 is just the linearization of

the relations (2.3.21). The only new element in the present case is the fact that the generators

(ρ1, . . . , ρ4) in (2.3.21) satisfy the relation

ρ1φ+ α2ρ2 − ρ2β − α1ρ3 − ξρ4 = 0.

This “relation on relations” yields an extra term in the deformation complex of a framed rep-

resentation R = (V1, V2,W,A1, A2, I, J,B2, f) of the quiver (2.3.20), and the differential d2 is

precisely its linearization.

We conclude that the infinitesimal deformation space of R is the first cohomology group

H1(C(R)) and the obstruction space is H2(C(R)). In order to prove theorem (2.3.5), it suffices

to show that Hi(C(R)) = 0, for i = 0, 2, 3, for any stable framed representation R. A helpful

observation is that C(R) can be presented as a cone of a morphism between simpler complexes

as follows.
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Let A = (V1, A1, A2, I, J) and B = (V2, B2), and construct the following complexes of vector

spaces:

• C(A) is the three term complex

Hom(V1, V1)
d0−→

End(V1, V1)⊕2

⊕

Hom(W,V1)

⊕

Hom(V1,W )

d1−→ End(V1, V1) (2.3.22)

where the terms have degrees 0, 1, 2, and the differentials are given by

d0(α1) = ([α1, A1], [α1, A2], α1I,−Jα1)t

d1(a1, a2, i, j)t = ([a1, A2] + [A1, a2] + Ij + iJ);

• C(B) is the two-term complex

Hom(V2, V2)
d0−→Hom(V2, V2) (2.3.23)

with differential

d0(α2) = [α2, B2]

and terms in degrees 0, 1;

• C(A,B) is the three term complex

Hom(V2, V1)
d0−→

Hom(V2, V1)⊕2

⊕

Hom(V2,W )

d1−→ Hom(V2, V1) (2.3.24)

where the terms have degrees 0, 1, 2 and the differentials are

d0(φ) = −(A1φ,A2φ− φB2, Jφ)t

d1(c2, c3, c4)t = −(A2c2 − c2B2 −A1c3 − Ic4).

Abusing notation, the differentials of the above three complexes have been denoted by the

same symbols d0, d1. The distinction will be clear from the context. Note that C(A) is the

deformation complex of the representation A of the standard ADHM quiver.
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It is then straightforward to check that the complex C(R)[1] is the cone of the morphism of

complexes

% : C(A)⊕ C(B) −→ C(A,B)

%0(α1, α2)t = −(α1f − fα2)

%1(a1, a2, i, j, b2)t = −(a1f, a2f − fb2, jf)t

%2(c1) = −c1f.

In particular, there is an exact triangle

C(R) −→ C(A)⊕ C(B) −→ C(A,B). (2.3.25)

Next, note that the following vanishing results hold

H0(C(A)) = 0 H2(C(A)) = 0 H2(C(A,B)) = 0. (2.3.26)

if R is stable. The first two follow from observing that C(A) is just the deformation complex of

a stable ADHM data; the vanishing of H0 and H2 in this case is a well-known result.

The last vanishing in (2.3.26) follows from considering the dual of the differential d1 :

C1(A,B) → C2(A,B). It reads

d∨1 : Hom(V1, V2) →

Hom(V1, V2)⊕2

⊕

Hom(W,V2)

d∨1 (ψ) = (B2ψ − ψA2, ψA1, ψI)t.

Suppose d∨1 (ψ) = 0. Then it is straightforward to check that Ker(ψ) is preserved by A1, A2

and contains the image of I, which implies that Ker(ψ) is either 0 or V1. If ψ is injective, then

A1 = 0 and I = 0, leading to a contradiction. Therefore ψ = 0, and d1 is surjective.

Using a similar argument, it is also straightforward to prove that the morphism

H0(C(A))⊕H0(C(B))
H0(%)−→ H0(C(A,B))

is injective if the stability conditions are satisfied. Then the long exact cohomology sequence of

the exact triangle (2.3.25) implies that

H0(C(R)) = 0, H3(C(R)) = 0, (2.3.27)

and there is a short exact sequence of cohomology groups

H1(C(A))⊕H1(C(B))
H1(%)−→ H1(C(A,B)) −→ H2(C(R)) −→ 0.
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Therefore, in order to prove that H2(C(R)) = 0, it suffices to prove that h1(%) is surjective.

Then, denoting by Z1(C) the kernel of d1 : C1 → C2 for any complex C, it suffices to prove that

the induced map

z1(%) : Z1(C(A))⊕ Z1(C(B)) −→ Z1(C(A,B))

is surjective. The vanishing results (2.3.26) imply that there is a commutative diagram of linear

maps with exact rows of the form

0 // Z1(C(A))⊕ Z1(C(B)) //

z1(%)

��

C1(A)⊕ C1(B)
d1 //

%1

��

C2(A) //

%2

��

0

0 // Z1(C(A,B)) // C1(A,B)
d1 // C2(A,B) // 0.

Since f : V2 → V1 is injective, it follows trivially that the maps %1, %2 are surjective. In

order to prove that z1(%) is surjective, it suffices to prove that the fiber of %1 over any point

in Z1(C(A,B)) intersects Z1(C(A)) ⊕ Z1(C(B)) nontrivially in C1(A) ⊕ C1(B). Since %1 is a

surjective linear map, its fiber over any point in C1(A,B) is a torsor over the linear space

Ker(%1). Since Z1(C(A))⊕ Z1(C(B)) is a linear subspace of C1(A)⊕ C1(B), it suffices to check

that

dim (Ker(%1)) + dim
(
Z1(C(A))⊕ Z1(C(B))

)
− dim

(
C1(A)⊕ C1(B)

)
≥ 0.

This follows by an elementary computation, given that the stability conditions imply dim(V2) ≤

dim(V1).

2

Finally, we also conclude that the morphism q : N (r, n1, n2) → M(n, r) introduced in

Lemma 2.3.4 is a submersion, and that its fibers have dimension n1r.

2.3.4 Geometric interpretation in terms of framed sheaves

Let S be a smooth projective surface andD,D∞ smooth irreducible divisors on S with transverse

intersection. According to [13], if D∞ is big and nef, and c ∈ A•(S) ⊗ Q (the Chow group of

S), there is a quasi-projective fine moduli scheme M(c) parametrizing isomorphism classes of

pairs (E, ξ), where

• E is a torsion free sheaf on S with numerical invariants ch(E) = c;

• ξ : E|D∞
∼−→O⊕rD∞ is an isomorphism of OD∞ -modules.

In particular there exists a universal framed torsion free sheaf (U , ε) on M(c) × S, flat over

M(c). The class c = (r, c1, ch2) will satisfy the constraint c1 ·D∞ = 0. Under some additional
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assumptions (e.g., if the condition (KS + D∞) · D∞ < 0 holds), the moduli scheme M(c) is

smooth.

We shall consider the functor Fr,n,d : Schop/C → Sets which to any scheme T associates the

isomorphism classes of quadruples (ET , ξT , GT , gT ), where

• ET is a coherent sheaf on T ×S, flat over T , such that for all closed points t ∈ T the sheaf

ET,t = E|{t}×S is torsion-free and has fixed Chern character ch0 = r, ch1 = 0, ch2 = −n;

• ξT : ET×D∞ → O⊕rT×D∞ is an isomorphism of OD∞×T -modules;

• GT is a coherent sheaf on T × S, supported on T ×D and flat over T , such that for all

closed points t ∈ T , the sheaf GT,t is a skyscraper of fixed length d ≥ 1, whose support is

disjoint from T × (D ∩D∞);

• gT : ET � GT is a surjective morphism of OT×S-modules.

Two such quadruples (ET , ξT , GT , gT ) and (E′T , ξ
′
T , G

′
T , g

′
T ) are considered to be isomorphic if

there exist an isomorphism of OT×D-modules φT : ET
∼→ E′T and an isomorphism of OT×D-

modules ψT : GT
∼→ G′T such that the diagrams

ET |T×D∞

φT |T×D∞

��

∼
ξT

// O⊕rT×D∞

E′T |T×D∞

∼
ξ′T

99ssssssssss

ET
gT // //

φT

��

GT

ψT

��
E′T

g′T // // G′T

commute. There is a forgetful natural transformation from Fr,n,d to the moduli functor repre-

sented by M(r, n), which simply forgets the data GT and gT .

The steps leading to the construction of the moduli space M(r, n) [13, 34, 33] can be easily

generalized to get a moduli scheme MD(r, n, d) which universally represents the functor Fr,n,d.

Moreover the above-mentioned forgetful functor induces a projective morphism MD(r, n, d) →

M(r, n). However these results can be obtained in a more economical way by noting that Fr,n,d

is isomorphic to a Quot functor, which is representable by general theory. For any d ≥ 1,

let Qr,n,d be the functor Schop/M(r,n) → Sets which associates to a scheme T → M(r, n) over

M(r, n) an isomorphism class of pairs (FT , fT ) where

• FT is a flat coherent OT×D-module with finite support over T of relative length d, disjoint

from T × (D ∩D∞), and

• fT : (UD)T → FT is a surjective morphism of OD×T -modules.
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Two such quotients (FT , gT ) (F ′T , g
′
T ) are isomorphic if there exists an isomorphism ηT : FT →

F ′T such that f ′T = ηT ◦ fT . In accordance with Grothendieck’s general theory of the Quot

scheme, there exists a relative M(r, n)-scheme π : Q(UD, d) →M(r, n) that universally repre-

sents the functor Qr,n,d.

The previously mentioned natural transformation Fr,n,d → Qr,n,d is defined by (ET , ξT , GT , gT ) →

(GT , gT ). The inverse transformation is obtained by taking ET = ker(gT ) and noting that, as

consequence of the condition on the support of GT , the framing of the universal sheaf U in-

duces a framing ξT on ET . As a consequence, we have an isomorphism of M(r, n)-schemes

MD(r, n, d) ' Q(ED, d).

Next let S = P2 with homogeneous coordinates [z0, z1, z2] and let D,D∞ be the hyperplanes

defined by z1 = 0 and z0 = 0, respectively. Then the moduli space M(r, n) is isomorphic to the

moduli space of stable ADHM data of type (r, n) [48, Thm. 2.1]. Let N (r, n+ d, d) denote the

moduli space of stable representations of an enhanced ADHM quiver of type (n+d, d, r). Recall

also that Lemma (2.3.4) proves the existence of a surjective morphism q : N (r, n + d, d) →

M(r, n). Then the following holds.

Theorem 2.3.6 There is an isomorphismMD(r, n, d) ' N (r, n+d, d) of schemes overM(r, n).

Proof. The proof relies on the Beilinson spectral sequence, by analogy with the proof of the

ADHM correspondence [48, Thm 2.1]. Detailed computations has been carried out in a similar

context in [15, Sect. 7.1],[31], therefore it suffices here to outline the main steps, omitting many

details.

Now recall that the Beilinson spectral sequence yields an isomorphism [48, Thm 2.1] between

the moduli stack of framed torsion free sheaves on S with fixed numerical invariants (r, n) and

a moduli stack of three-term locally free monad complexes on S. The same correspondence

exists for families of framed sheaves; this has been worked out in [31] when S is a blowup of the

complex plane, but it can be easily adapted to the case of P2. More specifically, let (ET , ξT )

be a flat family of framed torsion free sheaves on S parameterized by a scheme T of finite type

over C. Let pT : T × S → T , pS : T × S → S denote the canonical projections and for any

coherent sheaf FT on T × S, FT (k) = FT ⊗ p∗SOS(k) for any k ∈ Z. One can check that the

direct images RipT∗(ET (−1)) vanish for i = 0, 2, and R1pT∗(ET (−1)) is a locally free sheaf VT

of rank n on T . Then the relative Beilinson spectral spectral sequence for the projective bundle

T × S → T collapses to a monad complex F (ET , ξT ) of the form

p∗TVT (−1) aT−→p∗TV⊕2
T ⊕ p∗TWT

bT−→p∗TVT (1). (2.3.28)
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where

WT = R0pT∗E ⊗OT×D∞ ' O⊕rT .

The differentials aT , bT are of the form

aT =


z1 − z0AT,1

z2 − z0AT,2

z0JT

 bT = [ −z2 + z2AT,2z1 − z0AT,1 z0IT ]

where

(AT,1, AT,2, IT , JT ) ∈ End(VT )⊕2 ⊕Hom(WT ,VT )⊕Hom(VT ,WT )

is a flat family of stable representations of the ADHM quiver. Recall that the monad complex

F (ET , ξT ) is exact at both ends, and its middle cohomology sheaf is isomorphic to ET . The

three terms have degrees 0, 1, 2 respectively. Recall also that

IT : WT = R0pT∗E ⊗OT×D∞ → VT = R1pT∗E(−1)

is the natural coboundary morphism.

There is a similar isomorphism between the moduli stack of degree d skyscraper sheaves G

on D with support disjoint from D∞ and a moduli stack of locally-free two-term complexes on

D = P1. Given a flat family GT of such objects parameterized by a scheme T , the corresponding

two-term monad complex F (GT ) is

p∗TVT,2(−1)
bT,2−→p∗TVT,2 (2.3.29)

where VT,2 = R0pT∗GT is a locally free OT -module, and the terms have degrees −1, 0 respec-

tively. The differential is of the form

bT2 = [ z2 − z0BT,2 ]

where BT,2 ∈ End(VT,2) is an endomorphism of VT,2.

Let gT : ET → GT be a surjective morphism of OT×S-modules, and let ẼT = Ker(gT ); ẼT

is a flat family of torsion free OS-modules. Since the support of GT is disjoint from T × D,

there is a canonical isomorphism ET ⊗OT×D∞ ' ẼT ⊗OT×D∞ . Therefore the framing of ET

along T × D∞ yields a framing ξ′T of ẼT . Therefore the Beilinson spectral sequence of ẼT is

again a monad complex F(ẼT , ξ′T ). Let VT,1 = R1pT∗ẼT . Since the Beilinson spectral sequence

is functorial, the exact sequence

0 → ẼT → ET → GT → 0 (2.3.30)
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yields an exact triangle of the form

F(GT )[−1]
ϕ−→F(ẼT , ξ′T ) → F(ET , ξT ). (2.3.31)

Proceeding by analogy with [15, Sect. 7.1], it follows that the morphism ϕ : F(GT )[−1] →

F(ẼT , ξ′T ) is a morphism of monad complexes determined by the natural injective morphism of

sheaves

fT : VT,2 = R0pT∗GT → VT,1 = R1pT∗Ẽ(−1),

which satisfies

AT,1fT = 0, AT,2fT = fTB2,T , JT fT = 0. (2.3.32)

The details are very similar to those in loc.cit., hence will be omitted. In conclusion, there is a

morphism of stacks between the stack of data ((E, ξ), G, g) on S and the moduli stack of stable

framed representations of the enhanced ADHM quiver.

Conversely, suppose RT = (VT,1,VT,2, AT,1, AT,2, IT , JT , BT,2, fT ) is a flat family of sta-

ble framed quiver representations parameterized by T with WT = O⊕rT . Since the relations

(2.3.32) are satisfied and Im(fT ) ∩ Im(IT ) = 0, the data (AT,1, AT,2, IT , JT ) induce ADHM

data (ÃT,1, ÃT,2, ĨT , J̃T ) on the quotient sheaf VT,1/Im(fT ) as in lemma (2.3.4). Note that this

quotient is locally free since the restriction of fT to any point t ∈ T is injective. Moreover,

it is straightforward to check that the resulting flat family of ADHM data is a flat family of

stable ADHM data. Given this data, one can easily construct an exact sequence of monad

complexes of the form (2.3.31), which in turns yields an exact sequence of framed shaves of the

form (2.3.30).

2

2.4 The Quiver Partition Function

Summarizing the results obtained so far, a quiver quantum mechanical model for BPS states

bound to surface operators has been constructed in section (2.2). The geometry of the mod-

uli space of supersymmetric vacua has been studied in detail in section (2.3). In particular,

according to Theorems (2.3.3), (2.3.5), in a special chamber in the space of FI parameters,

the moduli space N (r, n1, n2) is a smooth quasi-projective variety. An important application

of these results is a rigorous mathematical construction of a counting function for such BPS

states, which is the main focus of this section.

From a physics point of view, the BPS counting function is the Witten index of the super-

symmetric quantum mechanics obtained in section (2.2). This index can be computed exactly
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in the Born-Oppenheimer low energy approximation. In this limit the gauged linear quantum

mechanical model reduces to a one dimensional sigma model on the moduli space of super-

symmetric vacua, by analogy with the two dimensional situation [60]. A complete description

of this one dimensional sigma model requires an explicit computation of the space of fermion

zero modes, at any point in the moduli space. The zero modes of the fermionic components

of chiral multiplets are in one-to-one correspondence with the zero modes of the bosonic com-

ponents, by supersymmetry. The zero modes of the fermionic components of Fermi multiplets

are determined by a system of linear equations following from the Yukawa couplings (2.2.14),

(2.2.15). A slightly tedious linear algebra computation shows that in the special stability cham-

ber all these fermionic fields are in fact massive at any point in the moduli space. Therefore the

only fermion zero modes in the low energy effective action belong to the chiral multiplets. By

supersymmetry, they must take values in the holomorphic tangent space to the moduli space.

In particular, there are no fermion zero modes with values in the anti-holomorphic tangent

bundle. This implies that the supersymmetric ground states are in one-to-one correspondence

with cohomology classes in ⊕iH0,i(N (r, n1, n2)). In conclusion, the Witten index is given in

this case by the holomorphic Euler character χ(ON (r,n1,n2)) of the trivial line bundle on the

moduli space N (r, n1, n2).

Since the moduli space is non-compact, this Euler character is ill-defined, as the cohomology

groups are infinite dimensional. However, in instanton computations one is interested in an

equivariant Euler character with respect to a natural torus action on the moduli space [51]. In

this case, T = C× × C× × (C×)r and the action on the moduli space N (r, n1, n2) is given by

(t1, t2, z)×(V1, V2,W,A1, A2, I, J,B2, f) −→

(V1, V2,W, t1A1, t2A2, Iz
−1, zt1t2J, t2B2, f)

(2.4.1)

where z = (z1, . . . , zr) ∈ (C×)r. From the point of view of (topologically twisted) super-

symmetric quantum mechanics, the equivariant Euler character can still be interpreted as an

Witten index employing a deformation of the nilpotent BRST operator [12]. This solves the

non-compactness problem because a direct application of a standard fixed point theorem shows

that the equivariant Euler character is an element of the quotient field of the representation

ring of T.

Finally, note that there is in fact a natural family of equivariant partition functions depending

on two integers (p1, p2) ∈ Z2. These are obtained by coupling the quantum mechanical system

with a line bundle on N (r, n1, n2) as in [55]. Since N (r, n1, n2) is a fine moduli space of

quiver representations, it is equipped with a universal locally free quiver sheaf/ In particular
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there are three tautological bundles V1,V2,W on the moduli space corresponding to the nodes

e1, e2, e∞ of the enhanced ADHM quiver. By construction, W ' O⊕rN (r,n1,n2)
. Let L1 = det(V1),

L2 = det(V2) be the determinant line bundles of V1,V2. For any pair of integers (p1, p2) ∈ Z2

let L(p1,p2) = L⊗p11 ⊗ L⊗p22 . Then the partition function of the quantum mechanical system

coupled to the line bundle L(p1,p2) is the equivariant Euler character χT (N (r, n1, n2),L(p1,p2)).

Note that L(p1,p2) has by construction a canonical T-linearization. In principle one can consider

more general partition functions twisting the linearization of L(p1,p2) by an arbitrary irreducible

representation S of T . Therefore the most general quiver partition function is an equivariant

Euler character of the form χT(N (r, n1, n2), S ⊗ L(p1,p2)).

Next let the discrete data r, d ∈ Z>0, (p1, p2) ∈ Z2 and S be fixed. Let (Q1, Q2, Ra),

a = 1, . . . , r, denote the canonical generators of the representation ring of T and (q1, q2, ρa),

a = 1, . . . , r denote their characters. Let T be a formal variable. Then define a generating

function

Z(r,d,p1,p2,S)
quiv (q1, q2, ρa, T ) =

∑
n≥0

chT χT(N (r, n+ d, d), S ⊗ L(p1,p2))T
n (2.4.2)

where chT (R) denotes the character of the representation R of T. A combinatorial formula for

this counting function will be derived in the following by equivariant localization. This requires

an explicit classification of the T-fixed loci in the moduli space N (r, n+d, d), and a computation

of the equivariant normal bundles to the fixed loci.

2.4.1 T-fixed loci and nested Young diagrams

The T-fixed loci in N (r, n+ d, d) will be classified in terms of pairs of nested Young diagrams,

which are defined as follows.

Recall that a Young diagram is a finite set µ of integral points (i, j) ∈ (R≥1)2 with the

property that if µ contains a point (i, j) ∈ (R≥1)2, then it contains all integral points (i′, j′) ∈

(R≥1)2 so that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. To fix conventions, the number of columns of

a (nonempty) Young diagram µ will be denoted by cµ ∈ Z≥1, the columns being labelled by

i = 1, . . . , cµ. The number of rows will be denoted by lµ ∈ Z≥1, the rows being labelled by

j = 1, . . . , lµ. The number of points in the i-th column of µ will be denoted by µi. Note

that the number of points in the j-th row equals the number of points µtj in the j-th column

of the transpose diagram µt. Obviously, µi = 0 unless 1 ≤ i ≤ cµ, h0 ≥ h1 · · · ≥ µcµ
, and

µ1 + · · ·+ µcµ
= |µ|. If µ is empty, by convention cµ = 0 and µi = 0 for all i ∈ Z.

A pair (µ, ν) of Young diagrams will be called a pair of nested Young diagrams if there is

an inclusion ν ⊆ µ so that the complement µ \ ν satisfies the following condition
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(N) If (i, j) ∈ µ \ ν, then (i+ 1, j) /∈ µ.

Ordered sequence of r ≥ 1 Young diagrams will be denoted by µ = (µa)1≤a≤r and r will be

called the length of the sequence. The size of the sequence if defined as

|µ| =
r∑
a=1

|µa|.

A pair (µ, ν) of ordered sequences of equal length will be called nested if (µa, νa) is a pair

of nested Young diagrams for all 1 ≤ a ≤ r. Given such a pair (µ, ν) of nested sequences, the

number of columns of µa, νa will be denoted by ca ∈ Z≥0, ea ∈ Z≥0 respectively, for a = 1, . . . , r.

The height of the i-th column of µa will be denoted by µai , and the height of the i-th column

of νa will be denoted by νai , for a = 1, . . . , r. The pair (|µ|, |ν|) ∈ (Z≥0)2 will be called the

numerical type of the pair of nested sequences.

Note that condition (N) implies that no two points in the complement µ \ ν are allowed to

be in the same row. Then it is easy to check that the following inequalities must hold

0 ≤ ca − ea ≤ 1, 0 ≤ µai − νai ≤ νai−1 − νai (2.4.3)

for any a = 1, . . . , r, and any i ≥ 0. If any partition µa or νa is empty, by convention, ca = 0,

respectively ea = 0. Recall also that by convention µai = 0, νai = 0 if i > ca, respectively i > ea.

Moreover, Q1, Q2, Ra denote the one dimensional representations of T with characters t1, t2, za,

a = 1, . . . , r, respectively.

The classification of T-fixed loci in N (r, n+d, d) will be facilitated by the existence of the

projection morphism q : N (r, n + d, d) → M(r, n) constructed in lemma (2.3.4). There is an

analogous T-action on the moduli space M(n, r), the fixed loci being classified in [48] for r = 1,

and [49] for all r ≥ 1. According to [49, Prop. 2.9], the fixed locus M(r, n)T is a finite set of

points in one-to-one correspondence with length r sequences ν = (νa)1≤a≤r of Young diagrams

so that |ν| = n. Moreover, according to [26], [49, Thm. 4.2], the tangent space TνM(r, n),

regarded as an element of the representation ring of T, is given by the following formula

TνM(r, n) =
r∑

a,b=1

R−1
a Rb

( ∑
(i,j)∈νa

Q
i−(νb)t

j

1 Q
νa

i −j+1
2 +

∑
(i,j)∈νb

Q
(νa)t

j−i+1

1 Q
j−νb

i
2

)
(2.4.4)

The analogous result for N (r, n+ d, d) is given below.

Proposition 2.4.1 The T-fixed locus N (r, n + d, d)T is a finite set of points in one-to-one

correspondence with pairs of nested length r sequences (µ, ν) = (µa, νa)1≤a≤r of Young diagrams

of type (|µ|, |ν|) = (n + d, n). The tangent space to the moduli space at a T-fixed point (µ, ν),
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regarded as an element of the representation ring of T, is given by the following formula

T(µ,ν)N (r, n+ d, d) =

TνM(n, r) +
r∑

a,b=1

ea+1∑
i=2

cb∑
j=1

µb
j−ν

b
j∑

s=1

R−1
a RbQ

i−j
1

(
Q
µa

i−ν
b
j−s+1

2 −Q
νa

i−1−ν
b
j−s+1

2

)

+
r∑

a,b=1

cb∑
j=1

µb
j−ν

b
j∑

s=1

R−1
a RbQ

−j+1
1 Q

µa
1−ν

b
j−s+1

2 .

(2.4.5)

Proof. Using lemma (2.3.4) the moduli space of stable framed representations N (r, n +

d, d) can be alternatively characterized as the moduli space of pairs A = (V1,W,A1, A2, I, J),

Ã = (V,W, Ã1, Ã2, Ĩ, J̃) of stable ADHM data of type (n + d, r), (n, r) respectively, and a

surjective morphism f̃ : V1 → V of ADHM data such that A1|Ker(f̃) is identically zero. Then

the correspondence between the T-fixed loci in N (r, n+d, d) and r-collections of pairs of nested

Young diagrams is a direct consequence of the classification of T-fixed loci in the moduli spaces

of stable ADHM data M(r, n+ d), M(r, n) [49, Prop. 2.9].

In order to prove equation (2.4.5), recall that the tangent space at a closed point [R] ∈

N (r, n+ d, d) is isomorphic to the first cohomology group of the complex C(R) constructed in

theorem (2.3.5), equation (2.3.19). Moreover, in the proof of theorem (2.3.5) it has been proven

that there is an exact triangle

C(R) −→ C(A)⊕ C(B) −→ C(A,B), (2.4.6)

where A = (V1, A1, A2, I, J), B = (V2, B2) and the complexes C(A), C(B), C(A,B), are given

in equations (2.3.22), (2.3.23),(2.3.24) respectively. Note that there is a natural T-equivariant

structure on the restrictions C(A)|(µ,ν), C(B)|(µ,ν), C(A,B)|(µ,ν) to a T-fixed point (µ, ν) =

(µa, νa)1≤a≤r induced by the action of T on the moduli space. The resulting T-equivariant

structures are given below.

C(A) : End(V1)
d0−→

Q1 ⊗ End(V1)

⊕

Q2 ⊗ End(V1)

⊕

Hom(W,V1)

⊕

Q1 ⊗Q2 ⊗Hom(V1,W )

d1−→ Q1 ⊗Q2 ⊗ End(V1) (2.4.7)

C(B) : Q2 ⊗ End(V2)
d0−→End(V2) (2.4.8)
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C(A,B) : Hom(V2, V1)
d0−→

Q1 ⊗Hom(V2, V1)

⊕

Q2 ⊗Hom(V2, V1)

⊕

Q1 ⊗Q2 ⊗Hom(V2,W )

d1−→ Q1 ⊗Q2 ⊗Hom(V2, V1) (2.4.9)

where V1, V2,W have the following expressions in the representation ring of T

V1 =
r∑
a=1

∑
(i,j)∈µa

RaQ
1−i
1 Q1−j

2 , V2 =
r∑
a=1

∑
(i,j)∈µa\νa

RaQ
1−i
1 Q1−j

2 , W =
r∑
a=1

Ra.

(2.4.10)

Note that C(A) is the equivariant deformation complex of the T-fixed ADHM data A. The

underlying vector space V ' V1/V2 of the quotient ADHM data Ã has a similar expression,

V =
r∑
a=1

∑
(i,j)∈νa

RaQ
1−i
1 Q1−j

2 . (2.4.11)

Obviously, V1 = V + V2. Then the exact triangle (2.4.6) yields the following identity in the

representation ring of T

T(µ,ν)N (n+ d, d, r) =− (1−Q1)(1−Q2)V ∨1 V1 +W∨V1 +Q1Q2V
∨
1 W

− (1−Q2)V ∨2 V2

+ (1−Q1)(1−Q2)V ∨2 V1 −Q1Q2V
∨
2 W

= TνM(n, r) + (1−Q2)(Q1V
∨V2 − V ∨1 V2) +W∨V2.

(2.4.12)

Next note that

(1−Q2)V ∨1 =
r∑
a=1

R−1
a

∑
(i,j)∈µa

(1−Q2)Qi−1
1 Qj−1

2

=
r∑
a=1

ca∑
i=1

µa
i∑

j=1

R−1
a Qi−1

1 (Qj−1
2 −Qj2)

=
r∑
a=1

ca∑
i=1

R−1
a Qi−1

1 (1−Q
µa

i
2 ).

Similarly,

(1−Q2)V ∨ =
r∑
a=1

ea−1∑
i=0

R−1
a Qi1(1−Q

νa
i

2 ).

Moreover,

V2 =
r∑
a=1

ca∑
i=1

µa
i−ν

a
i∑

s=1

RaQ
1−i
1 Q

−νa
i −s+1

2 .



50

Therefore,

(1−Q2)Q1V
∨V2 =

r∑
a,b=1

ea∑
i=1

cb∑
l=1

µb
l−ν

b
l∑

s=1

R−1
a RbQ

i−l+1
1 (1−Q

νa
i

2 )Q−ν
b
l−s+1

2

=
r∑

a,b=1

ea+1∑
i=2

cb∑
l=1

µb
l−ν

b
l∑

s=1

R−1
a RbQ

i−l
1 Q

−νb
l−s+1

2 (1−Q
νa

i−1
2 ),

(2.4.13)

−(1−Q2)V ∨1 V2 =−
r∑

a,b=1

ca∑
i=1

cb∑
l=1

µb
l−ν

b
l∑

s=1

R−1
a RbQ

i−l
1 Q

−νb
l−s+1

2 (1−Q
µa

i
2 ), (2.4.14)

W∨V2 =
r∑

a,b=1

cb∑
l=1

µb
l−ν

b
l∑

s=1

R−1
a RbQ

1−l
1 Q

−νb
l−s+1

2 . (2.4.15)

Given inequalities (2.4.3), it follows that the sum over i = 1, . . . , ca can be written as a sum

over i = 1, . . . , ea + 1 employing the convention that hai = 0 for i ≥ ca + 1. Then (2.4.5) follows

from (2.4.12) adding the right hand sides of equations (2.4.13)-(2.4.14).

2

2.4.2 Equivariant Euler character

Given Proposition (2.4.1), the computation of the equivariant Euler character χT(N (r, n1, n2), S⊗

L(p1,p2)) is a straightforward exercise. Explicit formulas will be given below only for (p1, p2) =

(0, 1), which is the relevant case for comparison with toric open string invariants. For simplicity,

let L denote L(0,1) below. Note that the restriction of L to the T-fixed point (µ, ν) is given by

L(µ,ν) =
r∏
a=1

ca∏
i=1

µa
i−ν

a
i∏

s=1

RaQ
1−i
1 Q

−νa
i −s+1

2 . (2.4.16)

Then the localization theorem yields the following formula for the equivariant Euler character

of L.

chT(χT(L)) =
∑
(µ,ν)

(|µ|,|ν|)=(n+d,n)

chT(L(µ,ν))

Λ−1(T∨(µ,ν)N (r, n+ d, d))

=
∑
(µ,ν)

(|µ|,|ν|)=(n+d,n)

W(µ,ν)(q1, q2, ρa)

Λ−1(T∨ν M(r, n))
,

(2.4.17)

where

W(µ,ν)(q1, q2, ρa) =
∏r
a=1

∏ca

i=1

∏µa
i−ν

a
i

s=1 ρaq
1−i
1 q

−νa
i −s+1

2∏r
a,b=1

∏ea+1
i=2

∏cb

j=1

∏µb
j−νb

j

s=1 (1− ρaρ
−1
b qj−i1 q

νb
j +s−µa

i−1

2 )∏r
a,b=1

∏ea+1
i=2

∏cb

j=1

∏µb
j−ν

b
j

s=1 (1− ρaρ
−1
b qj−i1 q

νb
j +s−νa

i−1−1

2 )∏r
a,b=1

∏cb

j=1

∏µb
j−νb

j

s=1 (1− ρaρ
−1
b qj−1

1 q
νb

j +s−µa
1−1

2 )
,

(2.4.18)
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1
Λ−1(T∨ν M(r, n))

=

1∏r
a,b=1

∏
(i,j)∈νa(1− ρaρ

−1
b q

(νb)t
j−i

1 q
j−νa

i −1
2 )

∏
(i,j)∈νb(1− ρaρ

−1
b q

i−(νa)t
j−1

1 q
νb

i−j
2 )

(2.4.19)

and

q1 = chT (Q1), q2 = ch2(Q2), ρa = chT(Ra), a = 1, . . . , r.

Given any collection of r Young diagrams ν and an positive integer d ∈ Z≥1, set

Wν,d(q1, q2, ρa) =
∑
(µ,ν)

|µ|=|ν|+d

W(µ,ν)(q1, q2, ρa). (2.4.20)

where the sum is over all nested sequences (µ, ν) of r Young diagrams with fixed ν. Then,

obviously,

chTχT(L) =
∑
ν

1
Λ−1(T∨ν M(r, n))

Wν,d(q1, q2, ρa).

In conclusion, for fixed r, d ∈ Z≥1, (p1, p2) = (0, 1) and S, the quiver partition function (2.4.2)

is given by

Z(r,d,S)
quiv (q1, q2, ρa, T ) =

∑
n

TnchT(S)
∑
|ν|=n

1
Λ−1(T∨ν M(r, n))

Wν,d(q1, q2, ρa). (2.4.21)

2.5 Comparison with refined open string invariants

The goal of this section is to formulate a precise conjecture relating the quiver partition functions

(2.4.21) , with r = 1, 2, to refined open string invariants of special lagrangian branes in toric

Calabi-Yau threefolds. According to [5, 21], M5-branes wrapping such cycles yield surface

operators in the five dimensional gauge theory effective action. Therefore a direct comparison

between the quiver partition (2.4.21) and refined open string invariants is an important test for

the models constructed in this chapter.

Five dimensional pure gauge theories with eight supercharges and gauge group SU(r), r ≥ 2

are engineered by toric Calabi-Yau threefolds constructed as follows. Let Y be a resolved

conifold geometry, that is the total space of O(−1)⊕O(−1) over P1. Note that the finite group

Γr of r-th roots of unity acts fiberwise on Y by

ω × (s1, s2) → (ωs1, ω−1s2)

where ω = e2iπ/r and s1, s2 are linear coordinates along the fibers. The quotient Z0 is a local

Calabi-Yau threefold with a curve X ' P1 of C2/Γr singularities. Let Z → Z0 be the natural

crepant resolution; Z is a smooth Calabi-Yau threefold containing a reducible exceptional divisor
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with r − 1 components S1, . . . , Sr−1. Each component Si is a geometrically ruled surface over

X with smooth P1-fibers. One can formally allow r = 1 in this construction, in which case Γr

is trivial, and Z ' Z0 ' Y .

Note that the threefolds Z are toric, therefore they are equipped with canonical symplectic

U(1)3 actions. The resulting moment map, ρZ : Z → R3 maps Z surjectively onto its Delzant

polytope. The boundary of the Delzant polytope consists of a collection of 2-dimensional faces

linearly embedded in R3, which intersect along 1-faces. The 1-faces form trivalent a trivalent

graph ∆Z in R3, which is the image of the toric skeleton of Z under the moment map ρZ .

The toric skeleton of Z is the union of all rational holomorphic curves in Z, both compact and

noncompact, preserved by the U(1)3-action. The compact components of the toric skeleton are

mapped to finite 1-faces while the non-compact components are mapped to semi-infinite 1-faces.

Toric special lagrangian cycles L ⊂ Z can be constructed applying the methods of [4], as

in section (2.2.1). They are essentially classified by their image under the moment map ρZ ,

which has to be a half real line embedded in the Delzant polytope of Z. There is a special class

of cycles L such that ρZ(L) intersects a 1-face of the graph ∆Z . These cycles have topology

R2×S1 and intersect the toric skeleton of Z along a one dimensional orbit of the canonical U(1)

action. They are naturally classified in external lagrangian cycles, in which case L intersects a

non-compact component of the toric skeleton, and internal cycles, in which case L L intersects

a compact component of the toric skeleton. Equivalently, ρZ(L) intersects a semi-infinite 1-face,

respectively a finite 1-face of ∆Z . The lagrangian cycles of primary interest in the following will

be external cycles as shown below for r = 1, 2.

�
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L

r = 1
�

�
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@
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...

...
. L

r = 2

The refined open string partition function for an external toric special lagrangian cycle

L ⊂ Z is constructed using the refined topological vertex of [37], which will be briefly reviewed

below.

Given three (possibly empty) Young diagrams (λ, µ, ν), the refined vertex is a formal series
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of two variables (t, q) of the form

Cλµ ν(t, q) =
( t
q

) ||µ||2
2

q
κ(µ)+||ν||2

2 Z̃ν(t, q)∑
η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t−ρq−ν)sµ/η(t−ν
t

q−ρ)
(2.5.1)

where sλt/η(t−ρq−ν), sµ/η(t−ν
t

q−ρ) are skew Schur functions of the infinite set of variables

t−ρq−ν = (t
1
2 q−ν1 , t

3
2 q−ν2 , t

5
2 q−ν3 , . . .) defined in [? ],

Z̃ν(t, q) =
∏

(i,j)∈ν

(1− q
νt

j−i+1

1 qνi−j−1
2 ),

and for any partition λ,

|λ| =
∑
i

λi, ||λ|| =
∑
i

λ2
i , κ(λ) = ||λ||2 − ||λt||2.

Note that the expression (2.5.1) differs from [37, Eqn. 24] by the choice of normalization, which

is closely related to the normalization chosen in [29, Sect. 5]. Detailed computations will show

below that (2.5.1) yields the same results as [37] for refined closed string invariants.

The gluing algorithm developed in [37], assigns to any triple (Z,L, λ) a formal series Zλ(q, t,Q),

which is an expansion in the formal variables Q = (Q1, . . . , QM ) associated to the Mori cone

generators of X. Zλ(q, t,Q) is constructed assigning an expression of the form (2.5.1) to each

trivalent vertex of the dual toric polytope of Z, the partitions (λ, µ, ν) being assigned to the

edges meeting at the given vertex. Then one has to specify gluing rules along edges, eventu-

ally including certain framing factors, and sum over all partitions associated to finite edges.

Toric lagrangian branes correspond to infinite edges, and the corresponding partitions are not

summed over. The details are somewhat intricate and easier to explain in concrete examples as

shown in sections (2.5.1), (2.5.2) below.

Suppose there is a stack of m D3-branes wrapped on L, the holonomy of the flat U(m)

gauge field around S1 being in the conjugacy class of an element (α1, . . . , αm) of the maximal

torus. In order to compute the refined open topological A-model partition function of such a

D3-brane system, let y = (y1, y2, . . . , ) be an infinite set of formal variables and let

Zrefopen(t, q,Q; y) =
∑
λ

Zλ(t, q,Q)sλ(y) (2.5.2)

Then the refined open topological partition function of m D3-branes on L with holonomy in

the conjugacy class of the diagonal matrix (α1, . . . , αm) is obtained by evaluating (2.5.2) at

y = (α1, . . . , αm, 0, 0, . . .). Note that only Young diagrams λ with |λ| ≤ m contribute to this

truncation.
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Using this formalism, the quiver partition function (2.4.21) will be related to the correspond-

ing refined open string partition function for r = 1, 2. For r = 1, the threefold Z is isomorphic

to the crepant resolution of a conifold singularity, while for r = 1, Z is isomorphic to the total

space of the canonical bundle of P1 × P1.

2.5.1 Conifold

The resolved conifold is the toric threefold Y isomorphic to the total space of O(−1)⊕O(−1) →

P1. Note that there is only one formal variable Q assigned to the class of the zero section. The

toric polytope and projection of special lagrangian cycle are represented below.

�
�

��
...
...
...
.

λ

ν

νt

Then, applying the refined vertex construction, one obtains

Zλ(t, q,Q) =
∑
ν

(−Q)|ν|C∅,∅,ν(t, q)Cλ,∅,νt(q, t)

∑
ν

(−Q)|ν|q||ν||
2/2t||ν

t||2/2
(
t

q

)|λ|/2
Z̃ν(t, q)Z̃νt(q, t)sλt(q−ρt−ν

t

)

(2.5.3)

Note that under the change of variables

t = q1, q = q−1
2 , Q = T (q1q2)1/2 (2.5.4)

the expression

(−Q)|ν|q||ν||
2/2t||ν

t||2/2Z̃ν(t, q)Z̃νt(q, t)

becomes

T |ν|
1

Λ−1T ∗ν (M(|ν|, 1))
.

Then (2.5.3) becomes

Zλ(q1, q−1
2 , T (q1q2)1/2) =

∑
ν

T |ν|
1

Λ−1T ∗νM(|ν|, 1)
(q1q2)

|λ|/2
sλt(q−ρ2 q−ν

t

1 )

=
∑
ν

T |ν|
1

Λ−1T ∗νM(|ν|, 1)
q
|λ|/2
1 q

|λ|
2 sλt(q−1/2

2 q−ρ2 q−ν
t

1 ).
(2.5.5)
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Redefining the formal variables yi by

yi = q
−1/2
1 q−1

2 xi

for all i ≥ 1, it follows that

Zrefopen(q1, q
−1
2 , (q1q2)1/2T ; q1/21 q2x) =∑

λ

∑
ν

T |ν|
1

Λ−1T ∗νM(|ν|, 1)
sλt(q−1/2

2 q−ρ2 q−ν
t

1 )sλ(x) =

∑
ν

T |ν|
1

Λ−1T ∗νM(|ν|, 1)

∞∏
i=1

∞∏
j=1

(1 + q1−i2 q
−νt

i
1 xj)

(2.5.6)

The right hand side of equation (2.5.6) can be expanded in terms of the monomial basisMη(x) in

the space of symmetric functions, which is labelled by partitions η. Note that for any positive

integer d ∈ Z>0, M(d,0,0,...)(x) = xd1 + xd2 + · · · . Let Zrefopen,d(q1, q2, T ) be the coefficient of

M(d,0,0,...)(x) in this expansion, which can be computed as follows.

Let Ek(x), k ∈ Z≥0 be the degree k elementary symmetric function in the variables x =

(x1, x2, . . .). Then

ln
∞∏
i=1

∞∏
j=1

(1 + q1−i2 q
−νt

i
1 xj) = ln

∞∏
i=1

( ∞∑
k=0

q
k(1−i)
2 q

−kνt
i

1 Ek(x)

)
.

=
∞∑
i=1

ln

( ∞∑
k=0

q
k(1−i)
2 q

−kνt
i

1 Ek(x)

)

=
∞∑
i=1

∞∑
l=1

(−1)l−1

l

( ∞∑
k=1

q
k(1−i)
2 q

−kνt
i

1 Ek(x)

)l
.

Therefore

∞∏
i=1

∞∏
j=1

(1 + q1−i2 q
−νt

i
1 xj) = exp

 ∞∑
i=1

∞∑
l=1

(−1)l−1

l

( ∞∑
k=1

q
k(1−i)
2 q

−kνt
i

1 Ek(x)

)l (2.5.7)

In order to compute the coefficients of M(d,0,0,...)(x) = xd1 +xd2 + · · · in the expansion, it suffices

to truncate the argument of the exponential function in right hand side of (2.5.7) to k = 1

terms,

exp

[ ∞∑
i=1

∞∑
l=1

(−1)l−1

l

(
q1−i2 q

−νt
i

1 E1(x)
)l]

.

Let

Fν(q1, q2) =
∞∑
i=1

q1−i2 q
−νt

i
1 =

lν∑
i=1

q1−i2 q
−νt

i
1 +

q−lν2

1− q−1
2

.

Then one has to identify the coefficients of the monomial functionsM(d,0,0,...)(x) in the expansion

of

exp

[ ∞∑
l=1

(−1)l−1

l
E1(x)lFν(ql1, q

l
2)

]
,
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which is the same as the coefficient of xd1 in the expansion of

exp

[ ∞∑
l=1

(−1)l−1

l
xl1Fν(q

l
1, q

l
2)

]
.

Expanding the exponential function and collecting all relevant terms, it follows that the coeffi-

cient of M(d,0,0,...)(x), d ≥ 1 is

1
d!

∑
η=(1d1 ,2d2 ,...)

d!∏d
k=1 dk!

d∏
k=1

(
(−1)k−1

k
Fν(qk1 , q

k
2 )
)dk

(2.5.8)

where the sum is over all partitions η = (1d1 , 2d2 , . . .) of d.

In conclusion the coefficient of M(d,0,0,...)(x) in the right hand side of (2.5.6) is

Zrefopen,d(q1, q2, T ) =
∑
ν

T |ν|
1

Λ−1T ∗νM(|ν|, 1)

∑
η=(1d1 ,2d2 ,...)

(−1)d−
∑d

k=1 dk∏d
k=1(dk! kdk)

d∏
k=1

Fν(qk1 , q
k
2 )dk .

(2.5.9)

For any ν and d ≥ 1 let

Zν,d(q1, q2) =
∑

η=(1d1 ,2d2 ,...)

(−1)d−
∑d

k=1 dk∏d
k=1(dk! kdk)

d∏
k=1

Fν(qk1 , q
k
2 )dk .

Then the relation between the quiver partition function (2.4.21) and the refined open topological

string partition function (2.5.5) is given by:

Conjecture 2.5.1 The following identity holds for any Young diagram ν and any d ∈ Z≥1.

Wν,d(q1, q2) = Zν,d(q1, q2), (2.5.10)

where Wν,d(q1, q2) is defined in equation (2.4.20). In particular

Z(1,d,1)
quiv (q1, q2, T ) = Zrefopen,d(q1, q2, T ). (2.5.11)

Extensive numerical computations show that conjecture (2.5.1) holds for all Young diagrams ν

with |ν| ≤ 10 and all 1 ≤ d ≤ 10. A sample computation is presented below.

Example 2.5.2 Let ν = and d = 2. Then

Fν(q1, q2) = q−3
1 + q−1

1 q−1
2 + q−2

2 (1− q−1
2 )−1

and
Zν,2(q1, q2) =

1
2
Fν(q1, q2)2 −

1
2
Fν(q21 , q

2
2)

=
q41 + q31q

2
2 − q31 + q1q

3
2 − q2q1 − q32 + q2 + q42 − q22

q41q
2
2(1− q2)(1− q22)
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The set of all nested pairs (µ, ν) with |µ| = |ν|+2 consists of the four elements (µ1, ν), . . . , (µ4, ν)

represented below.

•
• •

•
•

•
•

•

The boxes in the complement µ \ ν are marked with •. Then equation (2.4.18) specializes to

W(µ1,ν),2(q1, q2) =
q41 − q2q1 − q31 + q2

q22(1− q22)(1− q2)(q1 − q22)(q31 − q32)

W(µ2,ν),2(q1, q2) =
q51 − q31 − q2q

2
1 + q2

q1(1− q2)(q21 − q2)(q1 − q22)(q31 − q22)

W(µ3,ν),2(q1, q2) =
(q21 + q2q1 − q1 − q2)q − 2

q31(q21 − q2)(q1 − q2)(q21 + q2q1 + q22)(1− q2)

W(µ4,ν),2(q1, q2) =
q22

q41(q1 − q2)(q31 − q22)

Adding the above expressions, it follows that indeed Wν,2(q1, q2) = Zν,2(q1, q2).

2.5.2 Local P1 × P1

In this case Z is isomorphic to the total space of the canonical bundle O(−2,−2) of P1 × P1.

The Mori cone of Z is generated by the two curve classes associated to the two obvious rulings

of P1 × P1. The corresponding formal variables will be denoted by Qf , Qb. The toric polytope

and projection of the special lagrangian cycle L are represented below.
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ν2 νt2
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µ

By analogy with [37, Sect. 5.5], the refined open string partition function is

Zλ(t, q,Qf , Qb) =
∑
ν1,ν2

(−Qb)|ν1|+|ν2|f̃νt
1
(q, t)f̃ν2(t, q)Zνt

1,ν
t
2,∅(t, q,Qf )Zν1,ν2,λ(q, t,Qf ) (2.5.12)

where

Zν1,ν2,λ(q, t,Qf ) =
∑

ν1,ν2,µ

(−Qf )|µ|Cλ,µ,νt
1
(q, t)Cµt,∅,νt

2
(q, t)fµ(t, q) (2.5.13)
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and fη(t, q) f̃η(t, q) are framing factors of the form

fη(t, q) = (−1)|η|t||η
t||2/2−|η|/2q−||η||

2/2+|η|/2, f̃η(t, q) = (−1)|η|
( t
q

)|η|/2
fη(t, q)

Substituting (2.5.1) in (2.5.13) yields

Zν1,ν2,λ(q, t,Qf ) =

t
||νt

1||
2+||νt

2||
2

2

∑
ν1,ν2,µ

Q
|µ|
f

∑
η

( t
q

) |η|+|λ|−|µ|
2

sλt/η(q−ρt−ν
t
1)sµ/η(q−ν1t−ρ)sµ(q−ρt−ν

t
2).

(2.5.14)

Using the skew Schur function identities

∑
α

sα/η1(x)sα/η2(y) =
∏
i,j

(1− xiyj)−1
∑
κ

sη2/κ(x)sη1/κ(y)

∑
α

sαt/η1(x)sα/η2(y) =
∏
i,j

(1 + xiyj)
∑
κ

sηt
2/κ

t(x)sηt
1/κ

(y),

it follows that ∑
µ

Q
|µ|
f

(q
t

)|µ|/2
sµ/η(q−ν1t−ρ)sµ(q−ρt−ν

t
2) =

∏
i,j≥1

(1−Qfq
j−ν1,iti−1−νt

2,j )−1sη(Qfq−ρ+1/2t−ν
t
2−1/2)

∑
λ

( t
q

)|λ|/2
sλt/η(q−ρt−ν

t
1)sλ(y) =

∏
i,j≥1

(1 + qi−1t−ν
t
1,j+1/2yj)sηt(t1/2q−1/2y)

Then ∑
λ

Zν1,ν2,λ(q, t,Qf )sλ(y) =

t
||νt

1||
2+||νt

2||
2

2

∏
i,j≥1

(1−Qfq
j−ν1,iti−1−νt

2,j )−1
∏
i,j≥1

(1 + qi−1t−ν
t
1,j+1/2yj)

∑
η

( t
q

)|η|/2
sη(Qfq−ρ+1/2t−ν

t
2−1/2)sηt(t1/2q−1/2y) =

t
||νt

1||
2+||νt

2||
2

2

∏
i,j≥1

(1−Qfq
j−ν1,iti−1−νt

2,j )−1
∏
i,j≥1

(1 + qi−1t−ν
t
1,j+1/2yj)

∏
i,j≥1

(1 +Qfq
i−1t−ν

t
2,j+1/2yj)

(2.5.15)

Taking into account the framing factors in (2.5.12) and redefining yj = t1/2xj , it follows that

Zrefopen(t, q,Qf , Qb; t
1/2x) =∑

ν1,ν2

(−Qb)|ν1|+|ν2|q||ν1||
2
t||ν

t
2||

2
Z̃ν1(t, q)Z̃νt

1
(q, t)Z̃ν2(t, q)Z̃νt

2
(q, t)

P(ν1,ν2)(t, q,Qf )
∏
i,j≥1

(1 + qi−1t−ν
t
1,jxj)(1 +Qfq

i−1t−ν
t
2,jxj)

(2.5.16)
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where

Pν1,ν2(t, q,Qf ) =
∏
i,j≥1

(1−Qfq
j−ν1,iti−1−νt

2,j )−1
∏
i,j≥1

(1−Qf t
i−νt

1,jqj−1−νt
2,i)−1

For the purpose of comparison with the quiver partition function, one has to consider the

normalized partition function Z̃refopen(t, q,Qf , Qb; t
1/2x) obtained by replacing Pν1,ν2(t, q,Qf ) in

equation (2.5.15) by

Pν1,ν2(t, q,Qf )
P∅,∅(t, q,Qf )

=
∏
i,j≥1

(1−Qf t
i−1qj)(1−Qfq

i−1tj)

(1−Qfqj−ν1,iti−1−νt
2,j )(1−Qf t

i−νt
1,jqj−1−νt

2,i)
.

Proceeding by analogy with [37, Sect. 5.5.1] it follows that

1
Λ−1(Tν1,ν2M(|ν1|+ |ν2|, 2))

=

q||ν1||
2
t||ν

t
2||

2
(
−Qf

t

q

)|ν1|+|ν2|
Z̃ν1(t, q)Z̃νt

1
(q, t)Z̃ν2(t, q)Z̃νt

2
(q, t)

Pν1,ν2(t, q,Qf )
P∅,∅(t, q,Qf )

∣∣∣∣∣t=q1, q=q−1
2

Qf =ρ−1
1 ρ2

Therefore

Z̃refopen(q1, q
−1
2 , ρ−1

1 ρ2, q1q2ρ
−1
1 ρ2T ; t1/2x) =∑

ν1,ν2

T |ν1|+|ν2|

Λ−1(Tν1,ν2M(|ν1|+ |ν2|, 2))

∏
i,j≥1

(1 + q1−i2 q
−νt

1,j

1 xj)(1 + ρ−1
1 ρ2q

1−i
2 q

−νt
2,j

1 xj)
(2.5.17)

Let ρ12 = ρ−1
1 ρ2. Proceeding by analogy with section (2.5.1), (2.5.6) – (2.5.9), the coefficient of

M(d,0,...)(x1, x2, . . .) in the expansion of the right hand side of (2.5.17) is

Z̃refopen,d(q1, q2, ρ12, T ) =∑
ν1,ν2

T |ν1|+|ν2|

Λ−1(Tν1,ν2M(|ν1|+ |ν2|, 2))
Z(ν1,ν2),d(q1, q2, ρ12)

(2.5.18)

where

Z(ν1,ν2),d(q1, q2, ρ
−1
1 ρ2) =

∑
η=(1d1 ,2d2 ,...)

(−1)d−
∑d

k=1 dk∏d
k=1(dk! kdk)

d∏
k=1

F(ν1,ν2)(q
k
1 , q

k
2 , ρ

k
12)

dk

and
F(ν1,ν2)(q1, q2, ρ12) = Fν1(q1, q2) + ρ12Fν2(q1, q2) =

lν1∑
i=1

q1−i2 q
−νt

1,i

1 +
q
−lν1
2

1− q−1
2

+ ρ12

( lν2∑
i=1

q1−i2 q
−νt

2,i

1 +
q
−lν2
2

1− q−1
2

)
Then the relation between the quiver partition function (2.4.21) and the refined open topological

string partition function (2.5.17) is given by:

Conjecture 2.5.3 The following identity holds for any pair of Young diagrams (ν1, ν2) and

any d ∈ Z≥1.

ρ−d1 W(ν1,ν2),d(q1, q2, ρ1, ρ2) = Z(ν1,ν2),d(q1, q2, ρ12), (2.5.19)
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where Wν,d(q1, q2, ρ1, ρ2) is defined in equation (2.4.20). In particular

Z(2,d,R−d
1 )

quiv (q1, q2, ρ1, ρ2, T ) = Z̃refopen,d(q1, q2, ρ12, T ). (2.5.20)

Again, extensive numerical computations show that conjecture (2.5.3) holds for all pairs of

Young diagrams (ν1, ν2) with |ν1| + |ν2| ≤ 10 and all 1 ≤ d ≤ 10. A sample computation is

presented below.

Example 2.5.4 Let (ν1, ν2) = ( , ) and d = 2. Then there are eight sequences of nested

pairs ((µ1, µ2), (ν1, ν2)) with |µ1|+ |µ2| = 5. The partitions (µ1, µ2) are listed below for all these

cases.

(A)

•
•

(B)
•

•

(C)
• •

(D)
•

•

(E) •
•

(F ) • •

(G)

•
•

(H)
•
•

Then

F(ν1,ν2)(q1, q2, ρ12)2 = q−2
1 +

q−1
2

1− q−1
2

+ ρ12

(
q−1
1 +

q−1
2

1− q−1
2

)
and

Z(ν1,ν2)(q1, q2, ρ12) =
1
2
F(ν1,ν2)(q1, q2, ρ12)2 −

1
2
F(ν1,ν2)(q

2
1 , q

2
2 , ρ

2
12) =

q22q1 + q31 − q1
(1− q22)(1− q2)q31

+ ρ12
q32 + q21q

2
2 + q22q1 − q22 + q2q

3
1 − q2 + 1− q21 − q1 + q31

(1− q22)(1− q2)q31

+ ρ2
12

q21q
2
2 + q31 − q21

(1− q22)(1− q2)q31
Equation (2.4.18) specializes respectively to

W(A)
(µ,ν),2(q1, q2, ρ1, ρ2) =

(q21 − 1)(q1 − ρ12)
(−1 + q2)2(1 + q2)(q21 − q22)(−1 + ρ12)(−1 + q2ρ12)(q1 − q22ρ12)

W(B)
(µ,ν),2(q1, q2, ρ1, ρ2) =

q22(q1 − ρ12)(q2 − q1ρ12)
q21(q2 − 1)(q21 − q22)(ρ12 − 1)(q1ρ12 − 1)(q21ρ12 − q2)(q1 − q2ρ12)



61

W(C)
(µ,ν),2(q1, q2, ρ1, ρ2) =

(q1 − 1)2(1 + q1)q22(q1 − ρ12)ρ2
12(q

2
1ρ12 − 1)

(q1 − q2)(q21 − q2)(q2 − 1)2(q2 − ρ12)(q21ρ12 − q2)(q1 − q2ρ12)(q2ρ12 − 1)

W(D)
(µ,ν),2(q1, q2, ρ1, ρ2) = − (q21 − 1)q22ρ

2
12(q1q2ρ12 − 1)

q1(q1 − q2)(q21 − q2)(q2 − 1)(ρ12 − 1)(q1ρ12 − 1)(q1 − q22ρ12)

W(E)
(µ,ν),2(q1, q2, ρ1, ρ2) =

(q1 − 1)q22ρ
2
12(q1ρ12 − q2)

q21(q1 − q2)(q21 − q2)(q2 − 1)(ρ12 − 1)(q1ρ12 − 1)(q21ρ12 − q22)

W(F )
(µ,ν),2(q1, q2, ρ1, ρ2) =

q42ρ
2
12

q31(q1 − q2)(q21 − q2)(q21ρ12 − q2)(q1 − q2ρ12)

W(G)
(µ,ν),2(q1, q2, ρ1, ρ2) = − (q1 − 1)ρ4

12(q
2
1ρ12 − 1)

(q2 − 1)2(q2 + 1)(q22 − q1)(q2 − ρ12)(ρ12 − 1)(q22 − q21ρ12)

W(H)
(µ,ν),2(q1, q2, ρ1, ρ2) =

q22ρ
4
12(q

2
1ρ12 − 1)(q1q2ρ12 − 1)

q1(q2 − 1)(q1 − q22)(ρ12 − 1)(q1ρ12 − 1)(q21ρ12 − q2)(q1 − q2ρ12)

Adding all above expressions confirms identity (2.5.19) in this case.

2.6 Summary

A supersymmetric quantum mechanical model is constructed for BPS states bound to surface

operators in five dimensional SU(r) gauge theories using D-brane engineering. This model rep-

resents the effective action of a certain D2-brane configuration, and is naturally obtained by

dimensional reduction of a quiver (0, 2) gauged linear sigma model. In a special stability cham-

ber, the resulting moduli space of quiver representations is shown to be smooth and isomorphic

to a moduli space of framed quotients on the projective plane. A precise conjecture relating

a K-theoretic partition function of this moduli space to refined open string invariants of toric

lagrangian branes is formulated for conifold and local P1 × P1 geometries.
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Chapter 3

Surface Operator and Knot Invariant

3.1 Review of HOMFLY Polynomial

The HOMFLY polynomial is introduced by [27]. The HOMFLY polynomial H(L)(a,z) is defined

as

aH(!)− a−1H(") = zH(H) (3.1.1)

H(©) =
a− a−1

z
(3.1.2)

We calculated the HOMFLY polynomial for two and three component link, assuming the

all components with a clockwise orientation.

H(Hopf link) =
a− a−1

z

(z
a

+
1
az
− 1
a∧3z

)
=

1
z2a4

+
−1− 2

z2

a2
+
(

1 +
1
z2

)

H(three component link) =
a− a−1

z

(
1− a2

(
2 + 3z2 + z4

)
+ a4

(
1 + 3z2 + 4z4 + z6

)
a8z2

)

Oblomkov-Shende conjecture [52] is a method to compute the refined version of the HOM-

FLY polynomial.

3.2 Surface operator and Refined Topological Vertex

For topological string with several toric branes as the configuration as the Figure 3.1 , the com-

putation of refined topological vertex is nontrivial for more than three toric branes. Fortunately

the gauge theory provide a formula for the refined topological vertex.

We put several Lagrangian branes in such a way that those disks are disconnect with each

other as the Figure 3.1. It is like inserting parallel surface operators in gauge theory. In our

construction, that’s easy to take them into account. After similar D-brane analyzing, we can

get the quiver diagram and partition function. That’s just to insert more tails in the ADHM

quiver. One example with three tails is shown at (3.2.1)
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Figure 3.1: resolved conifold with several toric branes

e1

��e2 &&
ii

VV

xx

��
\\

++ e∞,jj

e3

66

(3.2.1)

We can analyze this quiver diagram again in the same method as Chapter 2, then come up

the product formula for the refined topological vertex.

3.3 Topological String and Knot Invariant

The relationship between physics observable and knot invariant can be traced bakc to the

work of Witten [58]. In U(N) Chern-Simons theory, the correlation function is related to the

HOMFLY polynomial. In section 1.1.3, we reviewed how the A-model topological strings on

conifold is related to Wilson loop through geometric transition. This relationship can be used

to predict the coefficients of HOMFLY polynomials [54, 41, 44, 43, 45, 14, 20].

This relation to knot is through the geometric transition. The construction is that we have

k holomorphic cylinders as Figure 3.1. After the geometric transition, the boundaries of those

cylinders on S3 are pairwise intersecting k-component link. The HOMFLY polynomial of the

link will be captured by the refined topological amplitude. The precise formula will be presented

in next section.
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3.4 Conjecture on Refined HOMFLY polynomial

Conjecture 3.4.1 The topological amplitude corresponding to k-component link Zrefopen is given

by

Zrefopen (x, y, z, · · · )︸ ︷︷ ︸
k components

=
∑
ν

T |ν|
1

Λ−1(T∨ν )

∞∏
i=1

∞∏
j=1

(1 + q1−i2 q
−νt

i
1 xj)

∞∏
i′=1

∞∏
j′=1

(1 + q1−i
′

2 q
−νt

i′
1 yj′)

∞∏
i′′=1

∞∏
j′′=1

(1 + q1−i
′′

2 q
−νt

i′′
1 zj′′) · · ·

(3.4.1)

where Λ−1(T∨ν ) is given by eq(4.19) of [11](case r=1):

1
Λ−1(T∨ν M(r, n))

=
1∏

(i,j)∈ν(1− q
νt

j−i
1 qj−νi−1

2 )
∏

(i,j)∈ν(1− q
i−νt

j−1

1 qνi−j
2 )

(3.4.2)

So that the refined HOMFLY polynomial for k-component link will be given by the coefficient

of x1y1z1 · · ·︸ ︷︷ ︸
k components

in the expression Zrefopen (x, y, z, · · · )︸ ︷︷ ︸
k components

/

(∑
ν

T |ν|

Λ−1(T∨ν )

)

3.4.1 Two Component link , Hopf link∑
ν

T |ν|
1

Λ−1(T∨ν )

∞∏
i=1

∞∏
j=1

(1 + q1−i2 q
−νt

i
1 xj)

∞∏
i′=1

∞∏
j′=1

(1 + q1−i
′

2 q
−νt

i′
1 yj′)

=

(∑
ν

T |ν|

Λ−1(T∨ν )

)
(· · ·+H11x1y1 + · · · )

(3.4.3)

H11 should correspond to the refined HOMFLY polynomial for Hopf link.

H11 =
q22

(−1 + q2)2
− q2(−1 + q1 + q2 + q1q2)

q1(−1 + q2)2
T +

−q2 + q1q2 + q22
q1(−1 + q2)2

T 2

While the refined HOMFLY for Hopf link is

Href(Hopf Link) =

(
1 + a2y

) (
1 + q4y2+a2q2y3

1−q2

)
1− q2

We can map Href(Hopf Link) to the unrefined HOMFLY (3.1) by setting y = −1, z →

q − 1/q, a→ 1/a.

If we set q1 → q2y2, q2 → q−2, T → −a−2y−1, we will have

H11 a
4q2y4 = Href(Hopf Link)
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3.4.2 Three Component Link∑
ν

T |ν|
1

Λ−1(T∨ν )

∞∏
i=1

∞∏
j=1

(1 + q1−i2 q
−νt

i
1 aj)

∞∏
i′=1

∞∏
j′=1

(1 + q1−i
′

2 q
−νt

i′
1 bj′)

∞∏
i′′=1

∞∏
j′′=1

(1 + q1−i
′′

2 q
−νt

i′′
1 cj′′)

=
(∑

ν

T |ν|

Λ−1(T∨ν )

)
(· · ·+H111a1b1c1 + · · · )

(3.4.4)

Then we can get the conjecture refined HOMLFY for three component link :

H111 =
q32

(−1 + q2)3

+
−q2 + 2q1q2 − q21q2 + 2q22 − q1q

2
2 − q21q

2
2 − q32 − q1q

3
2 − q21q

3
2

q21(−1 + q2)3
T

+
q1 − 2q21 + q31 + q2 − q1q2 − q21q2 + q31q2 − 2q22 − q1q

2
2 + 2q21q

2
2 + q31q

2
2 + q32 + q1q

3
2 + q21q

3
2

q31(−1 + q2)3
T 2

+
−q1 + 2q21 − q31 − q2 + 2q1q2 − q21q2 + 2q22 − q1q

2
2 − q21q

2
2 − q32

q31(−1 + q2)3
T 3

It can match the unrefined HOMFLY polynomial (3.1) by setting q1 → q2, q2 → q−2, T →

a−2. It also matched the refined HOMFLY polynomial.

We also compute the results for four-component and five-component links. Vivek Shende has

checked that our results agree with the conjecture of Oblomkov and Shende up to 5-component

link.

3.5 Summary

By analyzing surface operator in gauge theory, we can figure out refined topological string

amplitudes in cases beyond the reach of the formalism of refined topological vertex, which

are sometimes closely related to refined HOMFLY polynomial in knot theory. We compute

the refined HOMFLY polynomial for k-component link pairwise intersecting by that physics

approach, and can use the result to double check the Oblomkov-Shende conjecutre, which is

mathematically interesting.
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Chapter 4

Conclusions

The scheme of thesis is analyzing the gauge theory with surface defect and how it is related to

topological string theory and knot theory. In this chapter, we will discuss the results we have

obtained.

Nekrasov conjecture has related the instanton counting and Seiberg-Witten prepotential.

Besides, Nekrasov conjecture also includes the conjecture on connection between instanton

counting and topological amplitude. The equivalence of instanton counting and non-refined or

refined topological string partition has been checked in many cases. In the second chapter, we

found the relationship still true in the presence of surface operator. At the instanton counting

side, we construct a quantum mechanical model with surface operator in five dimension SU(r)

gauge theory. The model is constructed by string theory construction. The instanton is con-

structed by D2-D6 system and the surface operate is engineered by adding D4 brane wrapping

certain supersymmetric cycles. The resulting moduli space of flat directions is studied in chap-

ter 2 in details. In a special stability chamber, the moduli space of quiver representations is

smooth and isomorphic to a moduli space of framed quotients on the projective plane. The

counting function is identified with a K-theoretic counting function for stable enhanced ADHM

quiver representations. The explicit expression for the counting function is presented in chapter

2. At the other side, the refined topological amplitude is computed in the corresponding toric

Calabi-Yau with toric brane by the formalism of refined topological vertex. It turns out that

the two results match each other.

The chapter 3 is a follow up of chapter 2. In chapter 2, we have checked the duality still

true in the presence of surface operator. Then we can figure out the refined topological string

amplitude for some special geometry, which is beyond the reach of refined topological vertex.

The special case we investigated is putting several disconnect toric branes on the P2 of resolved

conifold. If we have too many toric branes, it is beyond the ability of formalism of refined

topological vertex. Fortunately we know it is correspond to inserting several parallel surface

operator in gauge theory. Similar to chapter 2, we analyze this configuration again and find

the quiver representation is similar to that in chapter 2 except with more tails in the ADHM
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quiver. Furthermore we can figure out the refined topological amplitude in the string side. The

expression is presented in chapter 3. At the same time, the topological string on the geometry we

studied has a natural dual object in knot theory by geometric transition. After the geometric

transition, the resolved conifold becomes the deformed conifold and those toric branes will

intersect the S3 of the deformed conifold, whose boundary is k-component link with component

pairwise intersecting. Recall we know the refined topological amplitude on the resolved conifold

by analyzing surface operators in gauge theory. Then it is straightforward to know the refined

amplitude on the deformed conifold after the geometric transition. As pointed by Witten, the

amplitude on deformed conifold has a natural interpretation by HOMFLY polynomial. We are

able to compute the refined HOMFLY polynomial in several nontrivial cases, which agree with

the Oblomkov-Shende conjecutre.

The main objective of this thesis is to investigate the duality between the physics of super-

symmetric gauge theory with surface defect and topological string, knot theory. Much more

work needs to be done to fully understand the duality, which we hope will lead to a deeper

understanding of the relevant physical and mathematical problems.
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