
EXPERIMENT-BASED MANAGEMENT OF DATA
CENTERS

BY WEI ZHENG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Ricardo Bianchini

and approved by

New Brunswick, New Jersey

May, 2012

ABSTRACT OF THE DISSERTATION

Experiment-based Management of Data Centers

by Wei Zheng

Dissertation Director: Ricardo Bianchini

Our daily lives depend on data centers as they host popular Internet services and critical

business applications. Managing these large and complex data centers is a challenging

endeavor. We have designed and implemented three systems that simplify the manage-

ment of data centers. The unifying characteristic of these systems is that they all rely

on a limited number of experiments with real servers and workloads.

The first system, called JustRunIt, replaces analytical modeling in assessing the

performance, availability, and/or energy implications ofpotential management deci-

sions or system configurations. The second system, called ACI, efficiently optimizes

configurations as services evolve, by detecting and leveraging dependencies between

configuration parameters. The last system, called MassConf, automatically configures

server software for new users by leveraging configuration information from the existing

users of the software.

The evaluation shows that our systems significantly reduce the resources and time

required to accomplish many management tasks. Given our experience and positive

results with these three systems, we conclude that experiment-based management has

the potential to be very useful in practice.

ii

Acknowledgements

First and foremost, I would like to thank my advisor, Professor Ricardo Bianchini,

whose guidance, encouragement, and support made the thesispossible. Not only you

worked closely with me on all research topics, but also your passion towards work and

life greatly influenced me and served me as a role model. The problem solving skills,

creative thinking, and can-do attitude that I learned through the research process built

solid foundations for the future of my career.

I would like to thank my thesis committee members, ProfessorThu D. Nguyen,

Rich Martin, and Jason N. Flinn for valuable feedback on the thesis. I also would

like to thank my internship mentors Alan Bivens at IBM Research; John Janakiraman,

José Renato Santos, and Yoshio Turner at HP Labs; and YaYunnSu at NEC Labs.

The internships and mentorships helped me to understand real world problems and to

identify the topic of my thesis.

It is an honor to be a member of DARK lab, where hard work and funcoexist. It

is a great pleasure to have worked with my labmates, Fabio Oliveira, Rekha Bachwani,

Qingyuan Deng, Inigo Goiri, Kien Le, Cheng Li, Luiz Ramos, and Ana Paula. I en-

joyed open discussion, brainstorming, and friendship overthe course of seven years.

Most importantly, you made the challenging, sometimes frustrating process much eas-

ier to go through.

Finally, I would like to thank deeply my lovely wife Fang and son Ryan, my par-

ents, and parents-in-law. Their spiritual and financial support enabled me to devote

time to the work I love.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . viii

1. Introduction . 1

1.1. Background . 1

1.2. State of the Art . 2

1.3. Challenges and Contributions .. 4

1.3.1. JustRunIt . 4

1.3.2. ACI . 5

1.3.3. MassConf . 5

1.4. Overview of the Dissertation . 6

2. JustRunIt . 7

2.1. Introduction . 7

2.2. JustRunIt Design and Implementation 9

2.2.1. Target Environment . 9

2.2.2. System Infrastructure . 11

2.2.3. Discussion . 22

2.3. Experiment-based Management . 24

2.3.1. Case Study 1: Resource Management 25

iv

2.3.2. Case Study 2: Hardware Upgrades 29

2.4. Evaluation . 31

2.4.1. Methodology . 31

2.4.2. JustRunIt Overhead . 33

2.4.3. Case Study 1: Resource Management 37

2.4.4. Case Study 2: Hardware Upgrade 40

2.4.5. Discussion . 41

2.5. Summary . 41

3. Automatic Configuration Infrastructure 44

3.1. Introduction . 44

3.2. Our Infrastructure . 48

3.3. Tuning Parameters . 53

3.3.1. Parameter Dependency Graph 56

3.3.2. Traversing the Graph . 60

3.3.3. Simplex Algorithm . 61

3.4. Evaluation . 63

3.4.1. Experimental Setup . 63

3.4.2. Complexity and Misconfigurations 64

3.4.3. Parameter Tuning . 67

3.5. Summary . 72

4. MassConf . 75

4.1. Introduction . 75

4.2. MassConf . 81

4.2.1. Design . 81

4.2.2. Configuration Ranking . 85

4.2.3. Bootstrapping the System 88

v

4.2.4. Simplex . 88

4.2.5. Potential Refinements . 89

4.3. Case Study: Apache Configuration90

4.3.1. Methodology . 90

4.3.2. Understanding Bootstrapping 94

4.3.3. Understanding Ranking . 95

4.3.4. Experimental Evaluation . 97

4.4. Extrapolating Beyond The Case Study 105

4.5. Summary . 107

5. Related Work . 108

5.1. Modeling and Other Approaches for Managing Data Centers 108

5.2. Configuration Management and Performance Tuning 112

6. Conclusion . 117

Vita . 119

References . 120

vi

List of Tables

3.1. Management complexity with and without our infrastructure. 65

3.2. Misconfigurations with our infrastructure. 66

3.3. Performance-relevant parameters. 67

3.4. Parameters with relative importance greater than 20 ascomputed by

CART. 68

3.5. Comparing performance tuning approaches for two service evolutions. 70

4.1. MassConf vs. popularity for 129 new users. 99

4.2. MassConf-without-Simplex vs. popularity for 122 new users for which

both approaches reached the targets. 99

4.3. MassConf vs. Simplex for the 55 new users for which Simplex reached

the targets. 101

4.4. MassConf+ vs. MassConf for 129 new users. The popularity and

MassConf results here are different than in Table 4.1 because this table

only considers one sequence of arrivals.102

4.5. MassConf+ vs. Simplex for the 55 new users for which Simplex reached

the targets. The popularity and MassConf results here are different than

in Table 4.3 because this table only considers one sequence of arrivals. 102

4.6. MassConf+ vs. MassConf for 129 new users in the second scenario. . 104

4.7. MassConf+ vs. Simplex for the 55 new users for which Simplex reached

the targets in the second scenario. 105

vii

List of Figures

2.1. Overview of JustRunIt. “X” represents a result obtained through ex-

perimentation, whereas “I” represents an interpolated result. “T” rep-

resents an interpolated result that has been used by the management

entity. 10

2.2. Virtualized data center and JustRunIt sandbox. Each box represents

a VM, whereas each group of boxes represents a PM. “W2”, “A2”,

and “D2” mean Web, application, and database server of service 2,

respectively. “SA2” means sandboxed application server of service 2. 12

2.3. Cloned VM and proxy data structures. 16

2.4. Overview of resource-management system. 26

2.5. Overview of update-evaluation system. 30

2.6. Throughput as a function of offered load. 33

2.7. Response time as a function of offered load. 34

2.8. On-line and sandboxed performance as a function of CPU allocation at

offered load 500 requests/second. 35

2.9. On-line and sandboxed performance as a function of CPU allocation at

offered load 1000 requests/second. 36

2.10. Server expansion using JustRunIt. 37

2.11. Server expansion using accurate modeling. 38

3.1. Overview of each node. 47

3.2. Overview of the entire system. For simplicity, we only show one server

node per service tier. 49

viii

3.3. Template for worker.properties file. 50

3.4. Script for generating worker.properties. 51

3.5. Steps involved in tuning parameters. 55

3.6. A depends on B. 58

3.7. B does not depend on A. 59

3.8. Main operations in the Simplex algorithm. 62

3.9. Parameter dependencies. 69

4.1. Many users may use the same configuration. An arrow from Ato B

means that configuration A is used by user B. Solid arrows represent

information that MassConf has. 77

4.2. Many configurations may work for each user. An arrow fromA to B

means that user A can use configuration B. Dashed arrows represent

data that MassConf cannot obtain. 77

4.3. MassConf overview. 80

4.4. Original ranking (a) and slow (b), fast (c), and fastest(d) adaptation

approaches, after configurationsC4 andC5 are selected by two con-

secutive new users. 86

4.5. Bootstrapping in MassConf. 94

4.6. Popularity of CGI-intensive, large-file-intensive, small-file-intensive

workloads, and all workloads. 95

4.7. Popularity ranking and number of new users that can be satisfied by

each configuration. 96

ix

1

Chapter 1

Introduction

1.1 Background

Data centers are part of our daily lives. Some data centers host popular Internet ser-

vices, such as Google, Yahoo, and Amazon, while others support cloud computing

systems, such as Amazon EC2 and Microsoft Azure. These data centers can easily

host thousands of computers and their supporting infrastructure. Moreover, these ser-

vices usually comprise multiple tiers that interact in complex ways. A typical three-tier

service has a Web server tier, an application server tier, and a database tier. A client

request may pass through all tiers in one direction, whereasthe reply flows through the

same tiers in the opposite direction.

The server software in each tier can also be complex. For example, designers in-

troduce a large number of configuration parameters into server software to accommo-

date various end-user needs. Among many other examples, there may be parameters

specifying the number of threads to create, the timeout before an idle network con-

nection is destroyed, and/or the amount of memory to use for caching disk data. The

configuration parameters affect the functionality, performance, availability, and energy

consumption of data centers. Thus, selecting proper valuesfor them is critical. Unfor-

tunately, doing so is often difficult.

Worse, configuration setting/tuning is only one of many datacenter management

tasks. Other tasks include managing resources to satisfy service-level agreements

(SLAs), adding or removing nodes, upgrading hardware and/or software, and capacity

2

planning. The advent of virtualization simplified certain tasks, but also added an extra

layer of software to be managed. Evaluating each possible management decision often

requires understanding its performance, availability, and energy implications.

The complexity of the management tasks in large data centersrepresents a ma-

jor burden on their operators. Previous studies [48] found that operator mistakes are

a common source of availability, performance, and securityproblems in Internet ser-

vices. Among the mistakes, misconfigurations were the most common type. Another

study [84] also observed that misconfigurations are one of the dominant causes of sys-

tem issues through analysis of extensive real world misconfiguration cases, including

commercial storage systems and other open source systems.

These studies suggest that, as much as possible, managementtasks should be au-

tomated. The aim of this thesis is to create software that enables automated, accurate,

and efficient data center management.

1.2 State of the Art

Many researchers have realized the problem and proposed various approaches to man-

age data centers: (1) [9, 19, 25, 27, 32, 64, 65, 71, 72, 75] useanalytical modeling

to automate data center management; (2) [52, 53] leverage feedback control theory

for resource management; (3) [1, 78, 79] use coercion to troubleshoot misconfigura-

tions; (4) [2, 3, 12] build infrastructures for automatic configuration management; and

(5) [41, 45, 46, 74] validate configuration changes or operator actions in an isolated

environment before deployment.

Even though the previous works are useful in many cases, theyhave some im-

portant limitations. Out of the approaches listed above, analytical modeling is the only

one that can be used to automate all of the management tasks weconsider. Specifically,

modeling can be used to predict the impact of the possible management decisions or

3

system configurations on performance, availability, and/or energy consumption. Per-

formance models are often based on queuing theory, whereas availability models are

often based on Markovian formalisms. Energy models are typically based on simple

(but potentially inaccurate) models of power consumption,as a function of CPU uti-

lization or CPU voltage/frequency. On the bright side, these models are useful in data

center management as they provide insight into the systems’behaviors, can be solved

quickly, and allow for large parameter space explorations.Essentially, the models pro-

vide an efficient way of answering “what-if” questions during management tasks.

Unfortunately, modeling has a few serious shortcomings. First, modeling con-

sumes a very expensive resource: highly skilled human laborto produce, calibrate,

and validate the models. The cost of this labor is built into the management systems

and is always disregarded in their evaluations. Second, themodels typically rely on

simplifying assumptions. For example, memoryless arrivals is a common assump-

tion of queuing models for Internet services [65]. However,this assumption is invalid

when requests come mostly from existing sessions with the service. Another common

simplifying assumption is the cubic relationship between CPU frequency and power

consumption [19]. With advances in CPU power management, such as clock gating,

the exact power behavior of the CPU is becoming more complex and, thus, more dif-

ficult to model accurately. Third, the models need to be re-calibrated and re-validated

as the systems evolve. For example, the addition of new machines to a service requires

queuing models to be calibrated and validated for them.

The other approaches can only be applied to a limited number of management

tasks. Feedback control is useful for resource management,but cannot be used for

tasks that do not involve repeated action adjustments. Capacity planning and software

or hardware upgrades are obvious examples of the latter typeof tasks. Coercion does

not prevent misconfigurations from occurring in the first place and still leaves users try-

ing to tune performance clueless. Configuration managementsystems mainly provide

support for machine installation and startup configuration. Lastly, validation presumes

4

stable system behavior, while often management tasks intend to change the systems.

1.3 Challenges and Contributions

In the dissertation, we argue that the best approach to automation is one that is based on

experiments with the managed systems themselves. Experiments can produce results

realistically and transparently, enabling automated management systems to perform

their tasks effectively. Actual experiments exchange an expensive resource (human

labor) for much cheaper ones (the time and energy consumed bya few machines in

running the experiments). Thus, actual experiments are cheaper, simpler, and more

accurate than models in their ability to answer “what-if” questions. Moreover, experi-

ments can be easily integrated with many automated management tasks.

Despite the advantages of experiment-based management, its key challenges are to

produce accurate experiments and limit the amount of resources and/or time used in

the experimentation.

To address these challenges, we design and build three experiment-based man-

agement systems for data centers, namely JustRunIt, Automatic Configuration Infras-

tructure (ACI), and MassConf. We apply our systems across different management

tasks, including resource management, configuration setting, performance tuning, and

hardware upgrades. The evaluation shows that our systems can always automate man-

agement with a limited number of experiments (time). In somecases, we can also

restrict the number of machines used for the experiments (resources). In the next few

subsections, we overview our three systems.

1.3.1 JustRunIt

JustRunIt is a software infrastructure for experiment-based management of virtualized

data centers, such as those of cloud computing providers. The idea behind JustRunIt

is to utilize a small fraction of the resources of the data center to create a sandboxed

5

environment where experiments can be performed away from the production system.

JustRunIt can be used by higher level automated management systems or by the

operators themselves to answer ”what-if” questions duringmanagement tasks. To

demonstrate JustRunIt, we combine it with a system that performs server consolida-

tion/expansion and a system that evaluates the benefits of hardware upgrades.

Our evaluation demonstrates that JustRunIt can help automate many tasks, and

produce accurate results despite using a very limited amount of resources.

1.3.2 ACI

ACI is a software infrastructure for experiment-based performance tuning of Internet

services. Its goal is to select settings for the service’s configuration parameters every

time it evolves, e.g. new machines are added or removed. ACI limits the number of

experiments by creating and leveraging a dependency graph between the configuration

parameters. The graph identifies the parameters that may need new values as a result

of each possible change to the service. To select the values,ACI uses an optimization

algorithm that is driven by the dependency graph.

Our evaluation of ACI demonstrates that it is capable of producing high-performance

configurations while limiting the number of tuning experiments. Our results also show

that ACI prevents a large number of misconfigurations reported by Nagarajaet al. [41].

1.3.3 MassConf

Finally, MassConf simplifies the configuration process for new users of server soft-

ware, by leveraging the existing users’ configurations. MassConf dynamically collects

and ranks users’ configurations. At each new user’s site, MassConf then evaluates the

ranked configurations, selecting the first one that producesthe desired behavior. The

two key observations behind the approach are that (1) a ”good” configuration may work

well for many different users, and (2) multiple good configurations may work well for

6

each user.

To evaluate MassConf, we use it to configure the Apache Web server to achieve a

response-time target. Our evaluation confirms our observations and shows that Mass-

Conf successfully reaches the new users’ performance targets in fewer experiments

than existing approaches.

1.4 Overview of the Dissertation

The dissertation comprises six chapters. Chapter 2 describes the design, implemen-

tation, and evaluation of JustRunIt. Chapter 3 details the concept of configuration

dependency and describes ACI. Chapter 4 introduces MassConf. Chapter 5 discusses

related works. Finally, Chapter 6 concludes the dissertation.

7

Chapter 2

JustRunIt

2.1 Introduction

Managing data centers is a challenging endeavor, especially when done manually by

system administrators. One of the main challenges is that performing many manage-

ment tasks involves selecting a proper resource allocationor system configuration out

of a potentially large number of possible alternatives. Even worse, evaluating each

possible management decision often requires understanding its performance, avail-

ability, and energy consumption implications. For example, a common management

task is to partition the system’s resources across applications to optimize performance

and/or energy consumption, as is done in server consolidation and virtual machine

(VM) placement. Another example is the evaluation of software or hardware upgrades,

which involves determining whether application or system behavior will benefit from

the candidate upgrades and by how much. Along the same lines,capacity planning is

a common management task that involves selecting a proper system configuration for

a set of applications.

Previous efforts have automated resource-partitioning tasks using simple heuristics

and/or feedback control, e.g. [4, 15, 53, 60, 76, 83]. These policies repeatedly adjust

the resource allocation to a change in system behavior, until their performance and/or

energy goals are again met. Unfortunately, when this react-and-observe approach is not

possible, e.g. when evaluating software or hardware upgrades, these policies cannot be

applied.

8

In contrast, analytical modeling can be used to automate allof these management

tasks. For example, researchers have built resource-partitioning systems for hosting

centers that use models to predict throughput and response time, e.g. [25, 75]. In addi-

tion, researchers have built systems that use models to maximize energy conservation

in data centers, e.g. [19, 32]. Finally, researchers have been building models that can

predict the performance of Internet applications on CPUs with different characteristics

[64]; such models can be used in deciding whether to upgrade the server hardware.

However, as discussed in the previous chapter, models need to be re-calibrated

and re-validated as the system evolves. Moreover, buildingthese models is expen-

sive, as it requires highly skilled human labor. Given theselimitations, in this chapter

we demonstrate that experiments are more effective at answering ”what-if” questions

and supporting the management tasks we consider. In particular, we demonstrate that

it is possible to produce flexible, realistic, and transparent experiments using current

virtualization technology.

To support our claims in a challenging environment, we builtJustRunIt, an infras-

tructure for experiment-based management of virtualized data centers hosting multiple

Internet services. JustRunIt creates a sandboxed environment in which experiments can

be run on a small number of machines (e.g., one machine per tier of a service) without

affecting the on-line system. JustRunIt clones a small subset of the on-line VMs (e.g.,

one VM per tier of the service) and migrates them to the sandbox. In the sandbox, Jus-

tRunIt precisely controls the resources allocated to the VMs, while offering the same

workload to them that is offered to similar VMs on-line. Workload duplication is im-

plemented by JustRunIt’s server proxies. For flexibility, the administrator can specify

the resources (and the range of allocations) with which to experiment and how long

experiments should be run. If there is not enough time to run all possible experiments

(i.e., all combinations of acceptable resource allocations), JustRunIt uses interpolation

between actual experimental results to produce the missingresults but flags them as

potentially inaccurate.

9

Automated management systems or the system administrator can use the JustRunIt

results to perform management tasks on the on-line system. If any interpolated results

are actually used by the system or administrator, JustRunItruns the corresponding

experiments in the background and warns the administrator if any experimental result

differs from the corresponding interpolated result by morethan a threshold amount.

To evaluate our infrastructure, we apply it to systems that automate two com-

mon management tasks: server consolidation/expansion andevaluation of hardware

upgrades. Modeling has been used in support of both tasks [19, 65], whereas feedback

control is only applicable for some cases of the former [19].JustRunIt combines nicely

with both systems. Our evaluation demonstrates that JustRunIt can produce results re-

alistically and transparently, enabling automated management systems to perform their

tasks effectively. In fact, JustRunIt can produce system configurations that are as good

as those resulting from idealized, perfectly accurate models, at the cost of the time and

energy dedicated to experiments.

The remainder of the chapter is organized as follows. The next section describes

JustRunIt in detail. Section 2.3 describes the automated management systems that we

designed for our two case studies. Section 2.4 presents our evaluation of JustRunIt and

the results of our case studies. Finally, Section 2.5 summarizes this chapter, discusses

the limitations of JustRunIt, and mentions potential future works.

2.2 JustRunIt Design and Implementation

In this section, we describe the design and implementation of JustRunIt, and present

an overview of its use.

2.2.1 Target Environment

Our target environment is virtualized data centers that host multiple independent Inter-

net services. Each service comprises multiple tiers. For instance, a typical three-tier

10

Driver

Checker

Heuristics

Coordinate
Range

Time Limit

XXX

XX

Interpolator

Experimenter

Management Entity

XIXX

IIII

XIIX

Coordinates

Experiment results

C
o
o
rd
in
a
te
s

E
x
p
e
ri
m
e
n
t

re
su
lt
s

T

TT

Figure 2.1: Overview of JustRunIt. “X” represents a result obtained through experi-
mentation, whereas “I” represents an interpolated result.“T” represents an interpolated
result that has been used by the management entity.

Internet service has a Web tier, an application tier, and a database tier. Each tier may

be implemented by multiple instances of a software server, e.g. multiple instances of

Apache may implement the first tier of a service. Each servicehas strict response-time

requirements specified in SLAs (Service Level Agreements) negotiated between the

service provider and the data center.

In these data centers, all services are hosted in VMs for performance and fault

isolation, easy migration, and resource management flexibility. Moreover, each soft-

ware server of a service is run on a different VM. VMs hosting software servers from

different services may co-locate on a physical machine (PM). However, VMs host-

ing software servers from the same service tier are hosted ondifferent PMs for high

availability. All VMs have network-attached storage provided by a storage server.

Our target environment presents many challenges for JustRunIt. First, Internet

services exhibit dynamically varying workloads and load intensities, suggesting that

it is important to experiment with live workloads for greater realism. Second, Inter-

net services exhibit relatively lightweight units of work (service requests), suggesting

11

that any infrastructure overheads may have a significant impact on observed perfor-

mance. Finally, Internet services have strict response-time requirements specified in

SLAs (Service Level Agreements) negotiated between the service providers and the

data center. SLAs again mean that overheads must be minimized.

2.2.2 System Infrastructure

Figure 2.1 shows an overview of the system infrastructure ofJustRunIt. There are four

components: experimenter, driver, interpolator, and checker. Theexperimenterimple-

ments the VM cloning and workload duplication mechanism to run experiments. Each

experiment tests a possible configuration change to a clonedsoftware server under the

current live workload. A configuration change may be a different resource allocation

(e.g., a larger share of the CPU) or a different hardware setting (e.g., a higher CPU volt-

age/frequency). The results of each experiment are reported as the server throughput,

response time, and energy consumption observed under the tested configuration.

The experimentdriver chooses which experiments to run in order to efficiently

explore the configuration parameter space. The driver triesto minimize the number of

experiments that must be run while ensuring that all the experiments complete within

a user-specified time bound. The driver and experimenter work together to produce a

matrix of experimental results in the configuration parameter space. The coordinates

of the matrix are the configuration parameter values for eachtype of resource, and the

values recorded at each point are the performance and energymetrics observed for the

corresponding resource assignments. When experiments arerun with multiple service

tiers, a result matrix is generated for each of them.

Blank entries in the matrix are filled in by theinterpolator, based on linear in-

terpolation from the experimental results in the matrix. The filled matrix is provided

to the management entity–i.e., the system administrator oran automated management

system–for use in deciding resource allocations for the production system.

12

Assess performance and energy for different configurations

A1

A2

A1

A2

A2

A3

A2

A3

A1

A2

A3

W1

W2

W1

W2

W2

W3

W1

W2

W3

D1

D2

D1

D3

D2

D3

D1

D2

D3

S_A2
Sandbox

S_W2 S_D2

Checker

Driver

Figure 2.2: Virtualized data center and JustRunIt sandbox.Each box represents a VM,
whereas each group of boxes represents a PM. “W2”, “A2”, and “D2” mean Web,
application, and database server of service 2, respectively. “S A2” means sandboxed
application server of service 2.

If the management entity uses any of the interpolated performance or energy val-

ues, thecheckerinvokes the experimenter to run experiments to validate those values.

If it turns out that the difference between the experimentalresults and the interpolated

results exceeds a user-specified threshold value, then the checker notifies the manage-

ment entity.

We describe the design of each component of JustRunIt in detail in the following.

Experimenter.

To run experiments, the experimenter component of JustRunIt transparently clones

a subset of the live production system into a sandbox and replays the live workload to

the sandbox system. VM cloning instantly brings the sandboxto the same operational

state as the production system, complete with fully warmed-up application-level and

OS-level caches (e.g., file buffer cache). Thus, tests can proceed with low startup

13

time on a faithful replica of the production system. By cloning only a subset of the

system, JustRunIt minimizes the physical resources that must be dedicated to testing.

Workload replay to the sandbox is used to emulate the timing and functional behavior

of the non-duplicated portions of the system.

The use of JustRunIt in a typical virtualized data center is illustrated in Figure 2.2.

The figure shows VMs of multiple three-tier services sharingeach PM. Each service

tier has multiple identically configured VMs placed on different PMs. (Note that VMs

of one tier do not share PMs with VMs of other tiers in the figure. Although JustRunIt

is agnostic to VM placement, this restriction on VM placement is often used in practice

to reduce software licensing costs [53].) For simpler management, the set of PMs in

each tier is often homogeneous.

The figure also shows one VM instance from each tier of service2 being cloned

into the sandbox for testing. This is just an example use of JustRunIt; we can use

different numbers of PMs in the sandbox, as we discuss later.Configuration changes

are applied to the clone server, and the effects of the changes are tested by replaying

live traffic duplicated from the production system. The sandbox system is monitored

to determine the resulting throughput, response time, and energy consumption. The

experimenter reports these results to the driver to includein the matrix described in

Section 2.2.2. If experiments are run with multiple servicetiers, a different matrix will

be created for each tier.

Although it may not be immediately obvious, the experimenter assumes that the

virtual machine monitor (VMM) can provide performance isolation across VMs and

includes non-work-conserving resource schedulers. Thesefeatures are required be-

cause the experiments performed in the sandbox must be realistic representations of

what would happen to the tested VM in the production system, regardless of any other

VMs that may be co-located with it. We can see this by going back to Figure 2.2. For

example, the clone VM from the application tier of service 2 must behave the same in

the sandbox (where it is run alone on a PM) as it would in the production system (where

14

it is run with A1, A3, or both), given the same configuration. Our current implemen-

tation relies on the latest version of the Xen VMM (3.3), which provides isolation for

the setups that we consider.

Importantly, both performance isolation and non-work-conserving schedulers are

desirable characteristics in virtualized data centers. Isolation simplifies the VM place-

ment decisions involved in managing SLAs, whereas non-work-conserving schedulers

allow more precise resource accounting and provide better isolation [53]. Most criti-

cally, both characteristics promote performance predictability, which is usually more

important than achieving the best possible performance (and exceeding the SLA re-

quirements) in hosting centers.

The experimenter can clone selected VMs of a production service (e.g., a single app

server instance of a three-tier service) and use traffic replay to emulate the functional

and timing behavior of the rest of the service. The infrastructure thus avoids replicating

the entire system and minimizes the resources needed for testing. The infrastructure

also enables multiple clones to operate concurrently to carry out multiple tests at a

time.

Cloning. Cloning is accomplished by minimally extending standard VMlive migra-

tion technology [21, 44]. The Xen live migration mechanism copies dirty memory

pages of a running VM in the background until the number of dirty pages is reduced

below a predefined threshold. Then VM execution is paused fora short time (tens of

milliseconds) to copy the remaining dirty pages to the destination. Finally, execution

transfers to the new VM, and the original VM is destroyed. Ourcloning mechanism

changes live migration to resume execution on both the new VMand the original VM.

Since cloning is transparent to the VM, the clone VM inheritsthe same network

identity (e.g., IP/MAC addresses) as the production VM. To avoid network address

conflicts, the cloning mechanism sets up network address translation to transparently

give the clone VM a unique external identity exposed to the network while concealing

15

the clone VM’s internal addresses. We implemented this by extending Xen’s back-

end network device driver (“netback”) to perform appropriate address translations and

protocol checksum corrections for all network traffic to andfrom the clone VM.

The disk storage used by the clone VMs must also be replicated. During the short

pause of the production system VM at the end of state transfer, the cloning mechanism

creates a copy-on-write snapshot of the block storage volumes used by the production

VM, and assigns them to the clone VM. We implemented this using the Linux LVM

snapshot capability and by exporting volumes to VMs over thenetwork using iSCSI

or ATA Over Ethernet. Snapshotting and exporting the storage volumes incurs only a

sub-second delay during cloning. Storage cloning is transparent to the VMs, which see

logical block devices and do not know that they are accessingnetwork storage.

JustRunIt may also be configurednot to perform VM cloning in the sandbox. This

configuration allows it to evaluate upgrades of the server software (e.g., Apache), op-

erating system, and/or service application (as long as the application upgrade does not

change the application’s messaging behavior). In these cases, the management entity

has to request experiments that are long enough to amortize any cold-start caching ef-

fects in the sandbox execution. However, long experiments are not a problem, since

software upgrades typically do not have stringent time requirements.

Proxies. To carry out testing, the experimenter replays live workload to the VMs in

the sandbox. Two low-overhead proxies, called in-proxy andout-proxy, are inserted

into communication paths in the production system to replicate traffic to the sand-

box. The proxies are application protocol-aware and can be (almost entirely) re-used

across services that utilize the same protocols, as we detail below. The in-proxy mim-

ics the behavior of all the previous tiers before the sandbox, and the out-proxy mimics

the behavior of all the following tiers. The local view of a VM, its cloned sandbox

VM, and the proxies is shown in Figure 2.3. Proxies record andreply requests and

replies at application protocol-level (e.g., HTTP requests and replies). Thus, proxies

are protocol-dependent; they know when requests and replies are received and if a reply

16

Req0 t0 Resp0 t0’

Server Tier NIn-Proxy Out-Proxy

Cloned VM

Req0 t00 Resp0 t00’
Req1
Req2
Req3

t01
t02
t03

Reqn t0n

Resp1
Resp2
Resp3

t01’
t02’
t03’

Respn t0n’

Resp0 ts0’
Req1
Req2
Req3

t1
t2
t3

Reqn tn

Resp1
Resp2
Resp3

t1’
t2’
t3’

Respn tn’

Resp1 ts1’
Resp2 ts2’
Resp3 ts3’

Respn tsn’

Throughput

Mean response time

Online & Sandbox

Online & Sandbox

Figure 2.3: Cloned VM and proxy data structures.

is valid.

After cloning, the proxies create as many connections with the cloned VM as they

have with the original VM. The connections that were open between the proxies and

the original VM at the time it was cloned will timeout at the cloned VM. In fact, no

requests that were active in the original VM at the time of cloning get successfully

processed at the cloned VM.

The in-proxy intercepts requests from previous tiers to thetested VM. When a

request arrives, the in-proxy records the request (Reqn in Figure 2.3) and its arrival

time (tn). The in-proxy forwards the request to the on-line production system and also

sends a duplicate request to the sandbox for processing. To prevent the sandbox system

from running ahead of the production system, the transmission of the duplicate request

is delayed by a fixed time interval (it is sufficient for the fixed time shift to be set to any

value larger than the maximum response time of the service plus the cloning overhead).

Both systems process the duplicated requests and eventually generate replies that are

intercepted by the in-proxy. For the reply from the production system, the in-proxy

records its arrival time (Tn′) and forwards the reply back to the previous tier. Later,

when the corresponding reply from the sandbox arrives, the in-proxy records its arrival

17

time (tsn′). The arrival times are used to measure the response times ofthe production

and sandbox systems.

The production and sandbox VMs may need to send requests to the next tier to

satisfy a request from the previous tier. These (duplicated) requests are intercepted

by the out-proxy. The out-proxy records the arrival times (t0n) and content of the

requests from the production system, and forwards them to the next tier. The out-

proxy also records the arrival times (t0n′) and content of the corresponding replies,

and forwards them to the production system. When the out-proxy receives a request

from the sandbox system, it uses hash table lookup to find the matching request that

was previously received from the production system. (Recall that the matching request

will certainly have been received because the replay to the sandbox is time-shifted

by more than the maximum response time of the service.) The out-proxy transmits

the recorded reply to the sandbox after a delay. The delay is introduced to accurately

mimic the delays of the subsequent tiers and is equal to the delay that was previously

experienced by the production system (t0n′ − t0n) for the same request-reply pair.

If a sandbox system operates faster than a production system, for example if more

resources are assigned to a cloned VM, then a processed request from a sandbox system

may arrive earlier than the one from a production system. In that case the out-proxy

will not find a matching request. To avoid that, we use delayedreplay. An in-proxy

will hold all requests for some time and then replay with the same time fidelity. For

example, if a user specifies a time shift for the sandbox system to be five seconds, a

request that arrives to an in-proxy at timet will be duplicated and sent to the sandbox

at timet + 5. The rest of the system works the same.

At the end of an experiment, the in-proxy reports the throughput and response time

results for the production and sandbox systems. The throughput for each system is

determined by the number of requests successfully served from the tiers following the

in-proxy. The response time for each system is defined as the delay after a request

arrives to the in-proxy until its reply is received. Since out-proxies enforce that the

18

delays of subsequent tiers are equal for the production and sandbox system, the differ-

ence of throughput and response time between the productionand sandbox systems is

the performance difference between the original VM and cloned VM.

The proxies can be installed dynamically anywhere in the system, depending on

which VMs the management entity may want to study at the time.However, we have

only implemented in-proxies and out-proxies for Web and application servers so far.

Cross-tier interactions between proxies, i.e. the communication between the out-proxy

of the Web tier and the in-proxy of the application tier, occur in exactly the same way

as the communication between regular servers.

We could implement an in-proxy for database servers by borrowing code from

the Clustered-JDBC (C-JDBC) database middleware [13]. Briefly, C-JDBC imple-

ments a software controller between a JDBC application and aset of DBMSs. In its

full-replication mode, C-JDBC keeps the content of the database replicated and con-

sistent across the DBMSs. During experimentation, our in-proxy would do the same

for the on-line and sandboxed DBMSs. Fortunately, C-JDBC already implements the

key functionality needed for cloning, namely the ability tointegrate the sandboxed

DBMS and update its content for experimentation. To complete our in-proxy, we would

modify C-JDBC to record the on-line requests and later replay them to the sandboxed

DBMS. Others have modified C-JDBC in similar ways [46].

Non-determinism. A key challenge for workload replay is to tolerate non-deterministic

behavior in the production and sandbox systems. We address non-determinism in three

ways. First, to tolerate network layer non-determinism (e.g., packet drops) the proxies

replicate application-layer requests and replies insteadof replicating network packets

directly.

Second, the replay is implemented so that the sandboxed servers canprocessre-

quests and replies in a different order than their corresponding on-line servers; only the

timing of the messagearrivals at the sandboxed servers is guaranteed to reflect that of

the on-line servers. This ordering flexibility tolerates non-determinism in the behavior

19

of the software servers, e.g. due to multithreading. However, note that this flexibility

is only acceptable for Web and application-tier proxies, since requests from different

sessions are independent of each other in those tiers. We would need to enforce or-

dering more strictly in the in-proxy for database servers, to prevent the original and

cloned databases from diverging. Our in-proxy would do so byforcing each write (and

commit) to execute by itselfduring experimentation onlyforcing a complete ordering

between all pairs of read-write and write-write operations; concurrent reads will be

allowed to execute in any order. Others have successfully created this strict ordering

in C-JDBC before [46] and saw no noticeable performance degradation for one of the

services we study in this chapter.

Third, we tolerate application-layer non-determinism by designing the proxies to be

application protocol-aware (e.g., the Web server in-proxies understand HTTP message

formats). The proxies embody knowledge of the fields in requests and replies that can

have non-deterministic values (e.g., timestamps, sessionIDs). When the out-proxy

sees a non-deterministic value in a message from the sandbox, the message is matched

against recorded messages from the production system usingwildcards for the non-

deterministic fields.

Our study of two services (an auction and a bookstore) shows that our proxies ef-

fectively tolerate their non-determinism. Even though some messages in these services

have identical values except for a non-deterministic field,our wildcard mechanism al-

lows JustRunIt to properly match replies in the production and sandbox systems for

two reasons. First, all replies from the sandbox are droppedby the proxies, preventing

them from disrupting the on-line system. Second, using different replies due to wild-

card mismatch does not affect the JustRunIt results becausethe replies are equivalent

and all delays are still accounted for.

Despite our promising experience with the auction and bookstore services, some

types of non-determinism may be hard for our proxies to handle. In particular, services

that non-deterministically change their messaging behavior (not just particular fields

20

or the destination of the messages) or their load processingbehavior (e.g., via non-

deterministic load-shedding) would be impossible to handle. For example, a service

in which servers may send an unpredictable number of messages in response to each

request cannot be handled by our proxies. We have not come across any such services,

though.

Experiment Driver.

Running experiments is not free. They cost time and energy. For this reason, Jus-

tRunIt allows the management entity to configure the experimentation using a simple

configuration file. The entity can specify the tier(s) with which JustRunIt should ex-

periment, which experiment heuristics to apply (discussedbelow), which resources to

vary, the range of resource allocations to consider, how many equally separated allo-

cation points to consider in the range, how long each experiment should take, and how

many experiments to run. These parameters can directly limit the time and indirectly

limit the energy consumed by the experiments, when there areconstraints on these

resources (as in Section 2.3.1). When experiment time and energy are not relevant

constraints (as in Section 2.3.2), the settings for the parameters can be looser.

The management entity provides the experiment driver with aconfiguration file

that specifies experiment heuristics, configuration coordinate ranges and granularities,

and experiment time limits.

Based on the configuration information, the experiment driver directs the experi-

menter to explore the parameter space within the time limit.The driver starts by run-

ning experiments to fill in the entries at the corners of the result matrix. For example,

if the experiments should vary the CPU allocation and the CPUfrequency, the matrix

will have two dimensions and four corners:(min CPU alloc, min CPU freq), (min CPU

alloc, max CPU freq), (max CPU alloc, min CPU freq), and(max CPU alloc, max CPU freq).

The management entity must configure JustRunIt so at least these corner experiments

can be performed. After filling in the corner coordinates, the driver then proceeds to

21

request experiments exactly in the middle of the unexploredranges defined by each re-

source dimension. After those are performed, it recursively sub-divides the unexplored

ranges in turn. This process is repeated until the number of experiments requested

by the management entity have been performed or there are no more experiments to

perform.

It then proceeds to run experiments along each resource dimension, starting with

low allocation and increasing by increments of one-tenth the coordinate range (so that

in nine additional experiments the range would be covered).

We designed two heuristics for the driver to use to avoid running unnecessary ex-

periments along each matrix dimension. The two observations behind the heuristics

are that: 1) beyond some point, resource additions do not improve performance; 2) the

performance gain for the same resource addition to different tiers will not be the same,

and the gains drop consistently and continually (diminishing returns).

Based on observation 1), the first heuristic cancels the remaining experiments with

larger resource allocations along the current resource dimension, if the performance

gain from a resource addition is less than a threshold amount. Based on observation

2), the second heuristic cancels the experiments with tiersthat do not produce the

largest gains from a resource addition. As we add more resources to the current tier,

the performance gains decrease until some other tier becomes the tier with the largest

gain from the same resource addition. For example, increasing the CPU allocation on

the bottleneck tier, say the application tier, will significantly improve overall response

time. At some point, however, the bottleneck will shift to other tiers, say the Web

tier, at which point the driver will experiment with the Web tier and gain more overall

response time improvement with the same CPU addition. Both heuristics cut down

the number of experiments required while still finding the minimum CPU addition that

provides the maximum performance gain.

Interpolator and Checker.

The interpolator predicts performance results for points in the matrix that have not

22

yet been determined through experiments. For simplicity, we use linear interpolation

to fill in these blanks, and we mark the values to indicate thatthey are just interpolated.

If the management entity uses any interpolated results, thechecker tries to verify

the interpolated results by invoking the experimenter to run the corresponding experi-

ments in the background. If one of these background experimental results differs from

the corresponding interpolated result by more than a user-specified threshold value, the

checker raises a flag to the management entity to decide how tohandle this mismatch.

The management entity can use this information in multiple ways. For example, it

may reconfigure the driver to run more experiments with the corresponding resources

from now on. Another option would be to reconfigure the range of allocations to con-

sider in the experiments from now on.

2.2.3 Discussion

Uses of JustRunIt.We expect that JustRunIt will be useful for many system manage-

ment scenarios. For example, in this chapter we consider resource management and

hardware upgrade case studies. In these and other scenarios, JustRunIt can be used by

the management entity to safely, efficiently, and realistically answer the same “what-if”

questions that modeling can answer given the current workload and load intensity.

Moreover, like modeling, JustRunIt can benefit from load intensity prediction tech-

niques to answer questions about future scenarios. JustRunIt can do so because its re-

quest replay is shifted in time and can be done at any desired speed. (Request stream

acceleration needs to consider whether requests belong to an existing session or start a

new session. JustRunIt can properly accelerate requests because it stores enough infor-

mation about them to differentiate between the two cases.) Section 4.5 discusses how

the current version of JustRunIt can be modified to answer “what-if” questions about

different workload mixes as well.

23

Although our current implementation does not implement this functionality, Jus-

tRunIt could also be used to select the best values for software tunables, e.g. the num-

ber of threads or the size of the memory cache in Web servers. Modeling does not lend

itself directly to this type of management task. Another possible extension could be

enabling JustRunIt to evaluate the correctness of administrator actions, as in action-

validation systems [41, 46]. All the key infrastructure required by these systems (i.e.,

proxies, cloning, sandboxing) is already part of the current version of JustRunIt, so

adding the ability to validate administrator actions should be a simple exercise. Inter-

estingly, this type of functionality cannot be provided by analytic models or feedback

control.

Obviously, JustRunIt can answer questions and validate administrator actions at

the cost of experiment time and energy. However, note that the physical resources

required by JustRunIt (i.e., enough computational resources for the proxies and for the

sandbox) can be a very small fraction of the data center’s resources. For example, in

Figure 2.2, we show that just three PMs are enough to experiment with all tiers of a

service at the same time, regardless of how large the production system is. Even fewer

resources, e.g. one PM, can be used, as long as we have the timeto experiment with

VMs sequentially. Furthermore, the JustRunIt physical resources can be borrowed

from the production system itself, e.g. during periods of low load.

In essence, JustRunIt poses an interesting tradeoff between the amount of physical

resources it uses, the experiment time that needs to elapse before decisions can be

made, and the energy consumed by its resources. More physical resources translate

into shorter experiment times but higher energy consumption. For this reason, we

allow the management entity to configure JustRunIt in whatever way is appropriate for

the data center.

Engineering cost of JustRunIt. Building the JustRunIt proxies is the most time-

consuming part of its implementation. The proxies must be designed to properly han-

dle the communication protocols used by services. Our current proxies understand the

24

HTTP, modjk, and MySQL protocols. We have built our proxies starting from the

publicly available Tinyproxy HTTP proxy daemon [7]. Each proxy required only be-

tween 800 and 1500 new lines of C code. (VM cloning required 42new lines of Python

code in the xend control daemon and the xm management tool, whereas address trans-

lation required 244 new lines of C code in the netback driver.) The vast majority of

the difference between Web and application server proxies comes from their different

communication protocols.

The engineering effort required by the proxies can be amortized, as they can be

reused for any service based on the same protocols. However,the proxies may need

modifications to handle any non-determinism in the servicesthemselves. Fortunately,

our experience with the auction and bookstore services suggests that the effort involved

in handling service-level non-determinism may be small. Specifically, it took us less

than one day to adapt the proxies designed for the auction to the bookstore. This is

particularly promising in that he had no prior knowledge of the bookstore whatsoever.

One may argue that implementing JustRunIt may require a comparable amount of

effort to developing accurate models for a service. However, we note that JustRunIt

is much more reusable than models, across different services, hardware and software

characteristics, and even as service behavior evolves.Each of these factors requires

model re-calibration and re-validation, which are typically labor-intensive. Further-

more, for models to become tractable, many simplifying assumptions about system

behavior (e.g., memoryless request arrivals) may have to bemade. These assump-

tions may compromise the accuracy of the models. JustRunIt does not require these

assumptions and produces accurate results.

2.3 Experiment-based Management

As mentioned in the previous section, our infrastructure can be used by automated

management systems or directly by the system administrator. To demonstrate its use

25

in the former scenario, we have implemented simple automated management systems

for two common tasks in virtualized hosting centers: serverconsolidation/expansion

(i.e., partitioning resources across the services to use asfew active servers as possible)

and evaluation of hardware upgrades. These tasks are currently performed by most

administrators in a manual, labor-intensive, and ad-hoc manner.

Both management systems seek to satisfy the services’ SLAs.An SLA often spec-

ifies a percentage of requests to be serviced within some amount of time. Another

possibility is for the SLA to specify an average response time (over a period of several

minutes) for the corresponding service. For simplicity, our automated systems assume

the latter type of SLA.

The next two subsections describe the management systems. However, before de-

scribing them, we note that they arenot contributions of this work. Rather, they are

presented simply to demonstrate the automated use of JustRunIt. More sophisticated

systems (or the administrator) would leverage JustRunIt insimilar ways.

2.3.1 Case Study 1: Resource Management

Overview. The ultimate goal of our resource-management system is to consolidate the

hosted services onto the smallest possible set of nodes, while satisfying all SLAs. To

achieve this goal, the system constantly monitors the average response time of each

service, comparing this average to the corresponding SLA. Because workload condi-

tions change over time, the resources assigned to a service may become insufficient

and the service may start violating its SLA. Whenever such a violation occurs, our

system initiates experiments with JustRunIt to determine what is the minimum allo-

cation of resources that would be required for the service’sSLA to be satisfied again.

Changes in workload behavior often occur at the granularityof tens of minutes or even

hours, suggesting that the time spent performing experiments is likely to be relatively

small. Nevertheless, to avoid having to perform adjustments too frequently, the system

assigns 20% more resources to a service than its minimum needs. This slack allows

26

1. While 1 do
2. Monitor QoS of all services
3. If any service needs more resources or
4. can use fewer resources
5. Run experiments with bottleneck tier
6. Find minimum resource needs
7. If used any interpolated results
8. Inform JustRunIt about them
9. Assign resources using bin-packing heuristic

10. If new nodes need to be added
11. Add new nodes and migrate VMs to them
12. Else if nodes can be removed
13. Migrate VMs and remove nodes
14. Complete resource adjustments and migrations

Figure 2.4: Overview of resource-management system.

for transient increases in offered load without excessive resource waste. Since the re-

sources required by the service have to be allocated to it, the new resource allocation

may require VM migrations or even the use of extra nodes.

Conversely, when the SLA of any service is being satisfied by more than a threshold

amount (i.e., the average response time is lower than that specified by the SLA by

more than a threshold percentage), our system considers thepossibility of reducing the

amount of resources dedicated to the service. It does so by initiating experiments with

JustRunIt to determine the minimum allocation of resourcesthat would still satisfy the

service’s SLA. Again, we give the service additional slack in its resource allocation to

avoid frequent reallocations. Because resources can be taken away from this service,

the new combined resource needs of the services may not require as many PMs. In

this case, the system determines the minimum number of PMs that can be used and

implements the required VM migrations.

Details. Figure 2.4 presents pseudo-code overviewing the operationof our manage-

ment system. The experiments with JustRunIt are performed in line 5. The manage-

ment system only runs experiments with one software server of the bottleneck tier of

the service in question. The management system can determine the bottleneck tier by

27

inspecting the resource utilization of the servers in each tier. Experimenting with one

software server is typically enough for two reasons: (1) services typically balance the

load evenly across the servers of each tier; and (2) the VMs ofall software servers

of the same tier and service are assigned the same amount of resources at their PMs.

(When at least one of these two properties does not hold, the management system needs

to request more experiments of JustRunIt.) However, if enough nodes can be used for

experiments in the sandbox, the system could run experiments with one software server

from each tier of the service at the same time.

The matrix of resource allocations vs. response times produced by JustRunIt is

then used to find the minimum resource needs of the service in line 6. Specifically, the

management system checks the results in the JustRunIt matrix (from smallest to largest

resource allocation) to find the minimum allocation that would still allow the SLA to

be satisfied. In lines 7 and 8, the system informs JustRunIt about any interpolated

results that it may have used in determining the minimum resource needs. JustRunIt

will inform the management system if the interpolated results are different than the

actual experimental results by more than a configurable threshold amount.

In line 9, the system executes a resource assignment algorithm that will determine

the VM to PM assignment for all VMs of all services. We model resource assignment

as a bin-packing problem. In bin-packing, the goal is to place a number of objects

into bins, so that we minimize the number of bins. We model theVMs (and their

resource requirements) as the objects and the PMs (and theiravailable resources) as

the bins. If more than one VM to PM assignment leads to the minimum number of

PMs, we break the tie by selecting the optimal assignment that requires the smallest

number of migrations. If more than one assignment requires the smallest number of

migrations, we pick the one of these assignments randomly. Unfortunately, the bin-

packing problem is NP-complete, so it can take an inordinateamount of time to solve

it optimally, even for hosting centers of moderate size. Thus, we resort to a heuristic

approach, namely simulated annealing [38], to solve it.

28

Simulated annealing works by trying to iteratively optimize a “current solution”,

i.e. a particular assignment of VMs to PMs, starting from an initial guess assignment.

Each assignment is generated as follows. We create an ordered list of VMs and an

ordered list of PMs. Starting from the front of the VM list, weassign VMs to the first

PM until no more VMs can be added. (Note that fully packing a PMis not a problem

because each VM already includes 20% slack in the resources it is assigned.) At that

point, we move on to the next PM and fill it (again taking VMs from the ordered list),

and so on. The only additional constraint to this placement approach is the placement

restrictions we mentioned in Section 2.2.1.

The initial guess assignment is trivially created based on the current VM to PM

assignment. Each other “candidate solution” is created by randomly swapping two

VMs in the ordered VM list and placing the VMs on the PMs as described above. A

candidate solution becomes the new current solution in two cases: when it produces a

smaller number of PMs than the current solution, or when it produces the same number

of PMs but with a smaller number of migrations. If a candidatesolution does not fit

these two cases, it might still become the new current solution, but with a decreasing

probability. Accepting a solution that is worse than the current solution allows the al-

gorithm to skip out of local minima. After evaluating each candidate solution, a new

one is generated and the process is repeated. The number of iterations and the probabil-

ity of accepting a relatively poor candidate solution is determined by a “temperature”

parameter to the annealing algorithm. More details about simulated annealing can be

found in [38].

Finally, in lines 10–14, the resource-allocation system adjusts the number of PMs

and the VM to PM assignment as determined by the best solutionever seen by simu-

lated annealing.

Comparison. A model-based implementation for this management system would be

similar; it would simply replace lines 5–8 with a call to a performance model solver.

29

The solver would use information about the current state of the system (e.g., the of-

fered load, resource allocation, and the tier response times) and the analytical model to

estimate the minimal resource requirements for the servicein question. Obviously, the

model would have to have been created, calibrated, and validateda priori.

A feedback-based implementation would replace lines 5–8 bya call to the con-

troller to execute the experiments that will adjust the offending service. However, note

that feedback control is only applicable when repeatedly varying the allocation of a

resource or changing a hardware setting does not affect the on-line behavior of the

co-located services. For example, we can use feedback control to vary the CPU alloca-

tion of a service without affecting other services. In contrast, increasing the amount of

memory allocated to a service may require decreasing the allocation of another service.

Similarly, varying the voltage setting for a service affects all services running on the

same CPU chip, because the cores in current chips share the same voltage rail. Cross-

service interactions are clearly undesirable, especiallywhen they may occur repeatedly

as in feedback control. The key problem is that feedback control experiments with the

on-line system. With JustRunIt, bin-packing and node addition/removal occur before

any resource changes are made on-line, so interference can be completely avoided in

most cases. When interference is unavoidable, e.g. the offending service cannot be

migrated to a node with enough available memory and no extra nodes can be added,

changes to the service are made only once.

2.3.2 Case Study 2: Hardware Upgrades

Overview. For our second case study, we built a management system to evaluate hard-

ware upgrades. The system assumes that at least one instanceof the hardware being

considered is available for experimentation in the sandbox. For example, consider a

scenario in which the hosting center is considering purchasing machines of a model

that is faster or has more available resources than that of its current machines. After

30

1. For each service do
2. For one software server of each tier
3. Run experiments with JustRunIt
4. Find minimum resource needs
5. If used any interpolated results
6. Inform JustRunIt about them
7. Assign resources using bin-packing heuristic
8. Estimate power consumption

Figure 2.5: Overview of update-evaluation system.

performing experiments with a single machine of the candidate model, our system de-

termines whether the upgrade would allow servers to be consolidated onto a smaller

number of machines and whether the overall power consumption of the hosting center

would be smaller than it currently is. This information is provided to the administrator,

who can make a final decision on whether or not to purchase the new machines and

ultimately perform the upgrade.

Details. Figure 2.5 presents pseudo-code overviewing our update-evaluation system.

The experiments with JustRunIt are started in line 3. For this system, the matrix that

JustRunIt produces must include information about the average response time and the

average power consumption of each resource allocation on the upgrade-candidate ma-

chine. In line 4, the system determines the resource allocation that achieves the same

average response time as on the current machine (thus guaranteeing that the SLA would

be satisfied by the candidate machine as well). Again, the administrator configures the

system to properly drive JustRunIt and gets informed about any interpolated results

that are used in line 4.

By adding the extra 20% slack to these minimum requirements and running the bin-

packing algorithm described above, the system determines how many new machines

would be required to achieve the current performance and howmuch power the entire

center would consume. Specifically, the center power can be estimated by adding up

31

the power consumption of each PM in the resource assignment produced by the sim-

ulated annealing. The consumption of each PM can be estimated by first determining

the “base” power of the candidate machine, i.e. the power consumption when the ma-

chine is on but no VM is running on it. This base power should besubtracted from the

results in the JustRunIt matrix of each software server VM. This subtraction produces

the average dynamic power required by the VM. Estimating thepower of each PM then

involves adding up the dynamic power consumption of the VMs that would run on the

PM plus the base power.

Comparison. Modeling has been used for this management task [19]. A modeling-

based implementation for our management system would replace lines 2–6 in Figure

2.5 with a call to a performance model solver to estimate the minimum resource re-

quirements for each service. Based on these results and on the resource assignment

computed in line 7, an energy model would estimate the energyconsumption in line

8. Again, both models would have to have been created, calibrated, and validateda

priori . In contrast, feedback control is not applicable to this management task.

2.4 Evaluation

In this section, we describe our evaluation methodology, evaluate the overhead of Jus-

tRunIt, and illustrate its behavior in our two automated-management case studies.

2.4.1 Methodology

Our hardware comprises 15 HP Proliant C-class blades interconnected by a Gigabit

Ethernet switch. Each server has 8 GBytes of DRAM, 2 hard disks, and 2 Intel dual-

core Xeon CPUs. Each CPU has two frequency points, 2 GHz and 3 GHz. Two

blades with direct-attached disks are used as network-attached storage servers. They

export Linux LVM logical volumes to the other blades using ATA over Ethernet. One

Gbit Ethernet port of every blade is used exclusively for network storage traffic. We

32

measure the energy consumed by a blade by querying its management processor, which

monitors the peak and average power usage of the entire blade.

Virtualization is provided by XenLinux kernel 2.6.18 with the Xen VMM [8], ver-

sion 3.3. For improving Xen’s ability to provide performance isolation, we pin Dom0

to one of the cores and isolate the service(s) from it. Note, however, that JustRunIt

does not itself impose this organization. As JustRunIt onlydepends on the VMM for

VM cloning, it can easily be ported to use VMMs that do not perform I/O in a separate

VM.

We populate the blade cluster with one or more independent instances of an on-line

auction service. To demonstrate the generality of our system, we also experiment with

an on-line bookstore. Both services are organized into three tiers of servers: Web, ap-

plication, and database tiers. The first tier is implementedby Apache Web servers (ver-

sion 2.0.54), the second tier uses Tomcat servlet servers (version 4.1.18), and the third

tier uses the MySQL relational database (version 5.0.27). (For performance reasons,

the database servers are not virtualized and run directly onLinux and the underlying

hardware.) We use LVS load balancers [85] in front of the Web and application tiers.

The service requests are received by the Web servers and may flow towards the second

and third tiers. The replies flow through the same path in the reverse direction.

We exercise each instance of the services using a client emulator. The auction

workload consists of a “bidding mix” of requests (94% of the database requests are

reads) issued by a number of concurrent clients that repeatedly open sessions with

the service. The bookstore workload comprises a “shopping mix”, where 20% of the

requests are read-write. Each client issues a request, receives and parses the reply,

“thinks” for a while, and follows a link contained in the reply. A user-defined Markov

model determines which link to follow. The code for the services, their workloads, and

the client emulator are from the DynaServer project [57] andhave been used exten-

sively by other research groups.

33

0

200

400

600

800

1000

1200

1400

1600

1800

2000

300 600 900 1200 1500 1800

Offered Load (reqs/s)

T
h

ro
u

g
h

p
u

t
(r

eq
s/

s)

Plain
ProxiesInstalled
JustRunIt

Figure 2.6: Throughput as a function of offered load.

2.4.2 JustRunIt Overhead

Our overhead evaluation seeks to answer two questions: (1) Does the overhead of Jus-

tRunIt (proxies, VM cloning, workload duplication, and reply matching) degrade the

performance of the on-line services? and (2) How faithfullydo servers in the sandbox

represent on-line servers given the same resources?

To answer these questions, we use our auction service as implemented by one

Apache VM, one Tomcat VM, and MySQL. Using a larger instance of the service

would hide some of the overhead of JustRunIt, since the proxies only instrument one

path through the service. Each of the VMs runs on a different blade. We use one blade

in the sandbox. The two proxies for the Web tier run on one of the blades, whereas

those for the application tier run on another. The proxies run on their own blades to

promote performance isolation for the auction service. In all our experiments, the time

shift used by JustRunIt is 10 seconds behind the on-line service.

Overhead on the on-line system?To isolate the overhead of JustRunIt on the on-line

service, we experiment with three scenarios: (1) Plain – no proxies are installed; (2)

34

0

10

20

30

40

50

60

70

80

300 600 900 1200 1500 1800

Offered Load (reqs/s)

R
es

p
o

n
se

 T
im

e
(m

s)

Plain
ProxiesInstalled
JustRunIt

Figure 2.7: Response time as a function of offered load.

ProxiesInstalled – proxies are installed around the Web andapplication servers, but

they only relay the network traffic; and (3) JustRunIt – proxies are installed around the

Web and application servers and perform all the JustRunIt functionality.

Figures 2.6 and 2.7 depict the average throughput and response time of the on-line

service, respectively, as a function of the offered load. Weset the CPU allocation of

all servers to 100% of one core. In this configuration, the service saturates at 1940

requests/second. Each bar corresponds to a 200-second execution.

Figure 2.6 shows that JustRunIt has no effect on the throughput of the on-line

service, even as it approaches saturation, despite having the proxies for each tier co-

located on the same blade. In fact, the resource utilizations suggest that the service

itself (its application server) would saturate well beforeJustRunIt. Specifically, the

application server is more than twice as utilized as any JustRunIt proxy.

Figure 2.7 shows that the overhead of JustRunIt is consistently small (< 5ms)

across load intensities. We could further optimizing the implementation to reduce the

JustRunIt overheads further. However, remember that the overheads in Figure 2.7 are

exaggerated by the fact that, in these experiments,all application server requests are

35

0

5

10

15

20

25

30

35

25 50 75 100

CPU Allocation

R
es

p
o

n
se

 T
im

e
(m

s)

0

50

100

150

200

250

300

350

400

450

T
h

ro
u

g
h

p
u

t
(r

eq
s/

s)

Live RT
SB RT
Live T
SB T

Figure 2.8: On-line and sandboxed performance as a functionof CPU allocation at
offered load 500 requests/second.

exposed to the JustRunIt instrumentation. If we had used a service with 4 application

servers, for example, only roughly 25% of those requests would be exposed to the

instrumentation (since we only need proxies for 1 of the application servers), thus

lowering the average overhead by 75%.

Performance in the sandbox? The results above isolate the overhead of JustRunIt

on the on-line system. However, another important consideration is how faithful the

sandbox execution is to the on-line execution given the sameresources. Obviously, it

would be inaccurate to make management decisions based on sandboxed experiments

that are not very similar to the behavior of the on-line system.

Figures 2.8 and 2.9 compare the performance of the on-line application server (la-

beled “Live”) to that of the sandboxed (labeled “SB”) application server at 500 re-

quests/second and 1000 requests/second, respectively. Inboth figures, response times

(labeled “RT”) and throughputs (labeled “T”) are measured at the application server’s

in-proxy. Again, each result represents the average performance over 200 seconds.

As one would expect, the figures show that increasing the CPU allocation tends to

36

0

20

40

60

80

100

120

140

160

25 50 75 100

CPU Allocation

R
es

p
o

n
se

 T
im

e
(m

s)

0

100

200

300

400

500

600

700

800

900

T
h

ro
u

g
h

p
u

t
(r

eq
s/

s)

Live RT
SB RT
Live T
SB T

Figure 2.9: On-line and sandboxed performance as a functionof CPU allocation at
offered load 1000 requests/second.

increase throughputs and reduce response times. The difference between the offered

load and the achieved throughput is the 20% of requests that are served directly by the

Web server and, thus, do not reach the application server’s in-proxy. More interestingly,

the figures clearly show that the sandboxed execution is a faithful representation of the

on-line system, regardless of the offered load.

The results for the Web tier also show the sandboxed execution to be accurate.

Like the application-tier results, we ran experiments withfour different CPU alloca-

tions, under two offered loads. When the offered load is 500 reqs/s, the average dif-

ference between the on-line and sandboxed results is 4 requests/second for throughput

and 1 ms for response time, across all CPU allocations. Even under a load of 1000

requests/second, the average throughput and response timedifferences are only 6 re-

quests/second and 2 ms, respectively.

Our experiments with the bookstore service exhibit the samebehaviors as in Fig-

ures 2.6 to 2.9. The throughput is not affected by JustRunIt and the overhead on the

response time is small. For example, under an offered load of300 requests/second,

37

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

Time (minutes)

R
es

p
o

n
se

 T
im

e
(m

s)

Service 0 RT
Service 1 RT
Service 2 RT
Service 3 RT

Figure 2.10: Server expansion using JustRunIt.

JustRunIt increases the mean response time for the bookstore from 18 ms to 22 ms.

For 900 requests/second, the increase is from 54 ms to 58 ms. Finally, our worst result

shows that JustRunIt increases the mean response time from 90 ms to 100 ms at 1500

requests/second.

2.4.3 Case Study 1: Resource Management

As mentioned before, we built an automated resource managerfor a virtualized host-

ing center that leverages JustRunIt. To demonstrate the behavior of our manager, we

created four instances of our auction service on 9 blades: 2 blades for first-tier servers,

2 blades for second-tier servers, 2 blades for database servers, and 3 blades for storage

servers and LVS. Each first-tier (second-tier) blade runs one Web (application) server

from each service. Each server VM is allocated 50% of one coreas its CPU allo-

cation. We assume that the services’ SLAs require an averageresponse time lower

than 50 ms in every period of one minute. The manager requested JustRunIt to run 3

CPU-allocation experiments with any service that violatedits SLA, for no longer than

38

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

Time (minutes)

R
es

p
o

n
se

 T
im

e
(m

s)

Service 0 RT
Service 1 RT
Service 2 RT
Service 3 RT

Figure 2.11: Server expansion using accurate modeling.

3 minutes overall. A 10th blade is used for the JustRunIt sandbox, whereas 2 extra

blades are used for its Web and application-server proxies.Finally, 2 more blades are

used to generate load.

Figure 2.10 shows the response time of each service during our experiment; each

point represents the average response time during the corresponding minute. We ini-

tially offered 1000 requests/second to each service. This offered load results in an

average response time hovering around 40 ms. Two minutes after the start of the exper-

iment, we increase the load offered to service 0 to 1500 requests/second. This caused

its response time to increase beyond 50 ms during the third minute of the experiment.

At that point, the manager started JustRunIt experiments todetermine the CPU allo-

cation that would be required for the service’s applicationservers (the second tier is

the bottleneck tier) to bring response time back below 50 ms under the new offered

load. The set of JustRunIt experiments lasted 3 minutes, allowing CPU allocations of

60%, 80%, and 100% of a core to be tested. The values for 70% and90% shares were

interpolated based on the experimental results.

Based on the response-time results of the experiments, the manager determined

39

that the application server VMs of the offending service should be given 72% of a core

(i.e., 60% of a core plus the 20% of 60% = 12% slack). Because ofthe extra CPU

allocation requirements, the manager decided that the system should be expanded to

include an additional PM (a 15th blade in our setup). To populate this machine, the

manager migrated 2 VMs to it (one from each PM hosting application server VMs).

Besides the 3 minutes spent with experiments, VM cloning, simulated annealing, and

VM migration took about 1 minute altogether. As a result, themanager was able to

complete the resource reallocation 7 minutes into the experiment. The experiment

ended with all services satisfying their SLAs.

Comparison against highly accurate modeling.Figure 2.11 shows what the system

behavior would be if the resource manager made its decisionsbased on a highly ac-

curate response-time model of our 3-tier auction service. To mimic such a model, we

performed the JustRunIt experiments with service 0 under the same offered load of

Figure 2.10 for all CPU allocations off-line. These off-line results were fed to the man-

ager during the experiment free of any overheads. We assumedthat the model-based

manager would require 1 minute of resource-usage monitoring after the SLA viola-

tion is detected, before the model could be solved. Based on the JustRunIt results, the

manager made the same decisions as in Figure 2.10.

The figure shows that modeling would allow the system to adjust 2 minutes faster.

However, developing, calibrating, and validating such an accurate model is a challeng-

ing and labor-intensive proposition. Furthermore, adaptations would happen relatively

infrequently in practice, given that (1) it typically takesat least tens of minutes for load

intensities to increase significantly in real systems, and (2) the manager builds slack

into the resource allocation during each adaptation. In summary, the small delay in

decision making and the limited resources that JustRunIt requires are a small price to

pay for the benefits that it affords.

40

2.4.4 Case Study 2: Hardware Upgrade

We also experimented with our automated system for evaluating hardware upgrades

in a virtualized hosting center. To demonstrate the behavior of our system, we ran

two instances of our auction service on the same number of blades as in our resource

manager study above. However, we now configure the blades that run the services to

run at 2 GHz. The blade in the JustRunIt sandbox is set to run at3 GHz to mimic a

more powerful machine that we are considering for an upgradeof the data center. We

offer 1000 requests/second to each service. We also cap eachapplication server VM of

both services at 90% of one core; for simplicity, we do not experiment with the Web

tier, but the same approach could be trivially taken for it aswell.

During the experiment, the management system requested JustRunIt to run 4 CPU-

allocation experiments for no longer than 800 seconds overall. (Note, though, that this

type of management task does not have real-time requirements, so we can afford to

run JustRunIt experiments for a much longer time.) Since each server is initially allo-

cated 90% of one core, JustRunIt is told to experiment with CPU allocations of 50%,

60%, 70%, and 80% of one core; there is no need for interpolation. The management

system’s main goal is to determine (using simulated annealing) how many of the new

machines would be needed to achieve the same response time that the services cur-

rently exhibit. With this information, the energy implications of the upgrade can be

assessed.

Based on the results generated by JustRunIt, the managementsystem decided that

the VMs of both services could each run at 72% CPU allocations(60% of one core

plus 12% slack) at 3 GHz. For a large data center with diverse services, a similar

reduction in resource requirements may allow for servers tobe consolidated, which

would most likely conserve energy. Unfortunately, our experimental system is too

small to demonstrate these effects here.

Again, an analytic model could have made the same decisions here but at the cost

41

of greater complexity, worse accuracy, and intense human labor.

2.4.5 Discussion

The results above demonstrate that the JustRunIt overhead is small, even when all re-

quests are exposed to our instrumentation. In real deployments, the observed overhead

will be even smaller, since there will certainly be more thanone path through each

service (at the very least to guarantee availability and fault-tolerance). Furthermore,

the results show that the sandboxed execution is faithful tothe on-line execution. Fi-

nally, the results demonstrate that JustRunIt can be effectively leveraged to implement

sophisticated automated management systems. Modeling could have been applied to

the two systems, whereas feedback control is applicable to resource management (in

the case of the CPU allocation), but not upgrade evaluation.The hardware resources

consumed by JustRunIt amount to one machine for the two proxies of each tier, plus as

few as one sandbox machine. Most importantly,this overhead is fixed and independent

of the size of the production system.

2.5 Summary

This chapter introduced a novel infrastructure for experiment-based management of

virtualized data centers, called JustRunIt. The infrastructure enables an automated

management system or the system administrator to answer “what-if” questions exper-

imentally during management tasks and, based on the answers, select the best course

of action. The current version of JustRunIt can be applied tomany management tasks,

including resource management, hardware upgrades, and software upgrades.

JustRunIt leverages virtualization technology, a small amount of hardware placed

in a sandbox, and real on-line workload duplication to perform experiments. To demon-

strate JustRunIt, we evaluated it in the context of two systems that automate common

management tasks. Our results showed that JustRunIt can be nicely combined with

42

automated management systems and produces results realistically and transparently.

In fact, JustRunIt produces system configurations that are as good as those resulting

from idealized, perfectly accurate models, at the cost of the time and energy consumed

by the experiments. Furthermore, JustRunIt is more generalthan feedback control and

machine learning in its ability to support many management tasks.

Limitations. There are three types of “what-if” questions that sophisticated models

can answer (by making simplifying assumptions and costing extensive human labor),

whereas JustRunIt currently cannot. First, service-wide models can answer questions

about the effect of a service tier on other tiers. In the current version of JustRunIt,

these cross-tier interactions are not visible, since the sandboxed virtual machines do

not communicate with each other.

Second, models that represent request mixes at a low enough level can answer ques-

tions about hypothetical mixes that have not been experienced in practice. Currently,

JustRunIt relies solely on real workload duplication for its experiments, so it can only

answer questions about request mixes that are offered to thesystem. Nevertheless,

JustRunItcan currently answer questions about more or less intense versions of real

workloads, which seems to be a more useful property.

Finally, models can sometimes be used to spot performance anomalies, although

differences between model results and on-line behavior areoften due to inaccuracies of

the model. Because JustRunIt uses complete-state replicasof on-line virtual machines

for greater realism in its experiments, anomalies due to software server or operating

system bugs cannot be detected.

Nevertheless, JustRunIt can be used to detect a range of improper or incorrect ad-

ministrator actions (performed first in the sandbox for testing), including those that

cause software servers to change message contents incorrectly. A similar approach has

been taken in [41, 46]. Modeling can only deal with these scenarios if they at the same

time affect performance by more than the expected modeling inaccuracy.

Future work. JustRunIt could be extended to allow cross-tier communication between

43

the sandboxed servers. This would allow the administrator to configure sandboxing

with or without cross-tier interactions. We could also extend JustRunIt to create infras-

tructure to allow experimentation with request mixes otherthan those observed on-line.

The idea here is to collect a trace of the on-line workload offered to one server of each

tier, as well as the state of these servers. Later, JustRunItcould install the states and

replay the trace to the sandboxed servers. During replay, the request mix could be

changed by eliminating or replicating some of the traced sessions. Finally, JustRunIt

could be extended to include an in-proxy for a database server, starting with code from

the C-JDBC middleware.

44

Chapter 3

Automatic Configuration Infrastructure

3.1 Introduction

Recent research has found that operator mistakes are a significant source of availability,

performance, and security problems in cluster-based Internet services [41, 48]. More-

over, these studies found that misconfigurations are the most common type of operator

mistake. For example, Oppenheimer and Patterson [48] studied three commercial Inter-

net services and found that more than 50% of the operator mistakes that led to service

unavailability were misconfigurations. As another example, Nagarajaet al. [41] asked

21 volunteer operators to perform different management tasks on a three-tier online

auction service. During 43 experiments with these volunteers, they found that mis-

configurations were the most common type of operator mistake, occurring 24 times

out of a total of 42 mistakes. Even expert operators misconfigured the service in the

experiments.

Nagarajaet al. detailed the misconfigurations that they observed. For example,

some operators misconfigured first-tier servers when a new second-tier server was

added to the service, misconfigured second-tier servers after upgrading the database

machine, misconfigured an upgraded first-tier server, and improperly assigned root-

user passwords in database configuration files. Although theoperators did not have ac-

cess to the supporting software that is available to the operators of commercial services,

we believe that these types of misconfiguration also occur incommercial services. The

reason is that, even in these services, software configuration is often done manually or

45

semi-automatically for one or a few servers and then deployed widely to the remaining

servers [49], as in [14, 39, 47].

In essence, misconfigurations occur frequently for two mainreasons. First, multi-

tier services and the servers that implement them are becoming increasingly complex.

For example, services consisting of Web, application, and database tiers require opera-

tors to master the operation of three different classes of servers. Mastering even one of

these classes may be a challenge, as illustrated by the Apache Web server. The main

configuration file for Apache has 240+ uncommented lines setting parameters that re-

late to performance, support files, service structure, and required modules, among other

things. Second, operators have to manually modify the servers’ configuration files of-

ten over the service’s lifetime. In particular, services constantly evolve through soft-

ware and hardware upgrades, as well as node additions and removals. Again taking

Apache as an example, its configuration files have to be changed every time there is a

node addition or removal in the second tier.

In this chapter, we propose a software infrastructure that can eliminate a wide range

of misconfigurations by automating the configuration of cluster-based Internet services.

In particular, we focus on the generation of configuration files for the servers that im-

plement the service. The infrastructure is motivated by three key observations we have

made in managing prototype services for our research: (1) the vast majority of the con-

figuration of each server does not change over the lifetime ofthe service; (2) some of

the most tedious and mistake-prone operator activities involve reconfiguring the service

as a result of node additions and removals (or non-transientfailures); and (3) changes

made to a configuration parameter may affect the best value for only a few of the other

parameters. Based on observation (1), we create configuration file templates that are

similar to the configuration files themselves and specify howto perform the small set of

changes that they require. Based on observation (2), we include a network of member-

ship daemons that initiates reconfigurations. Based on observation (3), we introduce

the explicit representation of relationships between configuration parameters.

46

More specifically, the infrastructure comprises a custom scripting language, config-

uration file templates, per-node communicating daemons, and heuristic algorithms to

detect dependencies between configuration parameters and select ideal configurations.

Using the scripting language, the service designer can write configuration scriptsthat

procedurally specify how the templates should be modified togenerate each config-

uration file. The daemons collect information about the membership of the different

service tiers and can readily provide this information to the configuration scripts. The

automatic configuration is started when the daemons detect changes to the membership

(or when the operator requests it explicitly). The daemons also interpret the scripts to

effect the changes to the configuration files. Finally, one ofour heuristic algorithms

defines aparameter dependency graphfor the service. During the automatic genera-

tion of files, this graph is used by another heuristic algorithm to explore the space of

parameter values, seeking the best possible configuration.Multiple criteria, such as

performance, availability, or performability, can be usedto determine the best configu-

ration.

We have developed a prototype implementation of the infrastructure, including con-

figuration scripts and templates for Apache, Tomcat, and MySQL. Our evaluation uses

the online auction service studied by Nagarajaet al. in [41]. Using their operator

action logs and a previously proposed approach to quantifying configuration complex-

ity [11], we find that our infrastructure can simplify the service operation significantly

while eliminating 58% of the misconfigurations found in [41]. Furthermore, our results

show that the infrastructure can efficiently determine the configuration parameters that

lead to high performance, as the service evolves through a hardware upgrade and the

scheduled maintenance (i.e., removal) of a few nodes, by leveraging the parameter

dependency graph.

Other infrastructures for automatic configuration have been proposed, e.g. [2, 3,

12]. However, they focus on configuring the operating systemand installing the proper

user-level software on each node; the configuration of the user-level server software

47

Figure 3.1: Overview of each node.

itself is not addressed. Furthermore, none of the previous infrastructures explicitly

represents or leverages the dependencies between configuration parameters. Thus, our

infrastructure can be combined with these previous systemsto produce services that

are manageable and efficient.

We conclude that our infrastructure can be useful for both existing and new ser-

vices, as it reduces complexity, eliminates operator mistakes, and can express a range

of configuration parameter relationships and optimize the finding of good configura-

tions.

The remainder of this chapter is organized as follows. Sections 3.2 and 3.3 describe

our infrastructure in detail. Section 3.4 describes our experimental setup and discusses

our main results. Section 3.5 summarizes our findings.

48

3.2 Our Infrastructure

Overview. The key goal of our infrastructure is to obviate the need for the operator

to specify values for the configuration parameters that should change dynamically. A

good example of such a parameter is the list of application servers that a Web server

may contact to service requests for dynamic content. Another is the maximum number

of worker threads that a Tomcat server should use, which may depend on the hardware

configuration of the machine hosting the Tomcat server. The maximum number of

worker threads is also an example of a tunable numeric parameter. Rather than forcing

the operator to manually maintain these parameters as the service evolves, we have de-

signed a simple infrastructure for determining values for these parameters dynamically

and inserting them into the appropriate configuration files at their appropriate places.

As shown in Figures 3.1 and 3.2, our infrastructure has four main components: (1)

a set of configuration file templates, which are similar to theconfiguration files them-

selves, but include place-holders for dynamic parameter values; (2) a simple language

that can be used to write configuration scripts (or simply scripts) for accessing the run-

time information and formatting it for insertion into configuration files, according to

the templates; (3) per-node daemons that monitor the service and regenerate config-

uration files as needed by interpreting the scripts; and (4) aconfiguration center that

directs the tuning of parameter values and disseminates copies of the templates and

scripts to machines that are added to the service. The clientemulator exercises the

service during the tuning process.

To tune parameters without conflicting with actual user loads, our infrastructure

assumes that the service is provided by at least two independent data centers. (Note

that real services always comprise multiple independent and geographically distributed

data centers to guarantee high availability.) During periods of light overall load, the

data center to be tuned can be dedicated to the tuning processby redirecting its load to

the other data center(s).

49

Figure 3.2: Overview of the entire system. For simplicity, we only show one server
node per service tier.

The process of automatically configuring the service works as follows. At service-

installation time, the service designer creates the configuration file templates and the

scripts for transforming the templates into the actual configuration files. At run time,

each per-node daemon monitors the state of its node, including what service com-

ponent is running on that node, and periodically broadcaststhis information so that

all daemons have a complete picture of the service. The automatic configuration is

started when the daemons detect changes to the service membership, i.e. a node is

added/removed or fails, or the operator requests it explicitly (discussed below). During

automatic configuration, the daemons interpret the scriptsto effect the changes to the

configuration files. Because parameter tuning may take long to complete, the daemons

continue using the current values for the tunable parameters but inform the configu-

ration center that the tuning process should be started at the next opportunity, i.e. the

next time the service enters a period of light load. When the configuration files have

been generated, they are installed by each local daemon, which restarts its local server.

When the opportunity arises to tune parameters, the configuration center starts the ex-

ecution of the heuristic algorithms and eventually provides the best values to the local

daemons. At that point, the local daemons again generate their configuration files and

50

1. # File worker.properties.tmp
2.
3. # List workers by name
4. worker.list = [WORKER_LIST]loadbalancer
5.
6. # Describe properties of each worker
7. [WORKER_PROPERTIES]
8.
9. # Describe properties of load balancer
10. worker.loadbalancer.type=lb
11. worker.loadbalancer.balanced_workers=[WORKERS]

Figure 3.3: Template for worker.properties file.

restart their servers.

Thus, throughout the lifetime of the service, the participation of the service operator

can be dramatically reduced with our infrastructure. However, the operator remains

responsible for physically changing the service, e.g. by replacing broken disk drives or

adding more network bandwidth to the system, and starting the automatic configuration

explicitly as a result of application-level evolution, e.g. a new database schema is

defined or new service features are added. Note that such application-level evolutions

are not detectable by an external, operating system-level monitoring infrastructure like

ours.

Templates and scripts.The generation of each configuration file requires two compo-

nents: (1) a template containing the values for the static configuration parameters and

macro names in place of the values for the dynamic configuration parameters, and (2)

a script for generating the text that will be substituted in place of the appropriate macro

names.

To discuss these components concretely, consider figures 3.3 and 3.4. Figure 3.3

shows a very simple example template for the worker.properties file used by themod jk

51

1. # Global section
2.
3. $TEMPLATE = "worker.properties.tmp";
4. $COMMENT_CHAR = "#";
5.
6. # Program section
7.
8. # Generate list of tier-2 application servers
9. ITER($TIER2.COUNT, $index)

10. {
11. $name1 = $name1 + "tomcat" + $index + ",";
12. };
13. [WORKER_LIST] = "worker.list=" + $name1;
14.
15. # Generate properties of each application server
16. ITER($TIER2.COUNT, $index)
17. {
18. $port = "worker.tomcat" + $index + ".port=8009\n";
19. $host = "worker.tomcat" + $index + ".host=" +
20. $TIER2.NAMELIST.EACH + "\n";
21. $lb = "worker.tomcat" + $index + ".lbfactor=1\n";
22. $worker_props = $worker_props + $port + $host + $lb;
23. };
24. [WORKER_PROPERTIES] = $worker_props;
25.
26. # Generate properties of the load balancer
27. CHOP($name1);
28. [WORKERS] = $name1;

Figure 3.4: Script for generating worker.properties.

module of the Apache Web server. Worker.properties describes the names and proper-

ties of the servers responsible for generating dynamic content. In the template, [WOR-

KER LIST], [WORKER PROPERTIES] and [WORKERS] are macros to be defined

dynamically by the per-node daemons, as the service evolves.

Figure 3.4 shows an example script for generating the actualworker.properties file.

Like all scripts, this example has two sections, a global section and a program section.

The global section defines the name of the template, as well asuseful constants such as

the comment character. The program section contains instructions for formatting the

information retrieved from the runtime system for the configuration file.

52

The programming language for this scripting is quite simpleand has only a few

features: macros, strings, variables, control statements(if-then and for loops), and

output to files. Macros are named by a string inside a pair of square brackets, e.g.

[WORKER LIST]. Variables are named by a $ character followed by a string. All

variables are of type string and are allocated and assigned the null string on first refer-

ence. A few variables have pre-defined meanings, such as the variable $TEMPLATE

which should store the name of the template to use in generating the configuration file.

The macros and some pre-defined variables hide communication with the local daemon

and the configuration center. In the example, the $TIER2 pre-defined variables con-

tain information about the tier of application servers. Specifically, $TIER2.COUNT

contains the number of application servers in the tier and $TIER2.NAMELIST con-

tains the names of nodes hosting these application servers.Values for these macros

are received from the local daemon. The control statements are also illustrated in the

example: lines 9–13 show the iterative construction of the list of application servers,

whereas lines 16–24 show the iterative construction of the properties of each of these

servers. Finally, lines 27–28 specify the properties of theload balancer. When the

script terminates, an interpreter (part of the local daemon) generates the configuration

file by replacing each occurrence of a macro name in the template with the string that

the corresponding macro was last assigned.

Obviously, we could have simply used Perl or some other scripting language to

write such scripts. The reason we opted for a new language is that we wanted to in-

vestigate whether we could effectively tailor the languageto configuration tasks and

integrate it tightly with the rest of the infrastructure (the local daemon and the con-

figuration center). These characteristics actually make writing scripts in the language

extremely easy and clean. Despite these benefits, we are fully aware that some users

would possibly prefer a more familiar language. In fact, we may have made different

design decisions if we had been building a commercial product rather than a research

testbed.

53

Network of per-node daemons.Each daemon tracks the service components that run

on its node. Periodically, it broadcasts information aboutthese service components to

its peers. For example, a daemon running on a node that hosts an application server

would periodically broadcast the following record:

tier: ‘‘AppServer’’

component: ‘‘Tomcat’’

ip: the node’s IP address

hostname: node’s host name

The periodic broadcasts also serve as heartbeat messages for a simple membership

protocol. If a daemon does not receive a heartbeat from a peerwithin 3 heartbeat

periods, it assumes that the peer has crashed, removes it (and the service components

hosted on that node) from its list of active hosts, and regenerates its configuration files

accordingly. The daemon regenerates the configuration filesby parsing and interpreting

the corresponding scripts.

Configuration center. The configuration center controls the tuning of the numeric

parameters and provides their best values to the local daemons for inclusion in the

configuration files. Note that, because the configuration center needs to be involved

in the generation of the configuration files and the heartbeatmessages are broadcast

to the entire cluster, we could have assigned the responsibility for generating the con-

figuration files to the configuration center. However, this design could hide network

partitions between servers that do not affect the communication of the servers with the

configuration center. For this reason, we did not pursue it.

The next section details the parameter-tuning process.

3.3 Tuning Parameters

One of the main goals of our infrastructure is to generate configuration files that op-

timize the service with respect to a pre-defined metric of interest, e.g. performance,

54

availability, performability [40], as the system evolves.In particular, common changes

that are made to services over their lifetimes, such as increasing the amount of mem-

ory per node, adding new nodes, or replacing a pair of expensive database systems (a

primary and a hot backup) with multiple cheaper computers, may cause the current

configuration settings to behave poorly with respect to the metric. Settings that are

tailored to the changed service may be more appropriate.

To see this more clearly, suppose that we have a three-tier service comprising

Web, application, and database servers. Given throughput performance as the met-

ric, increasing the amount of memory per node may allow the servers to create more

threads concurrently and, as a result, achieve higher throughput. Adding nodes at

the application-server tier may force a reduction in the maximum number of concur-

rent threads per application server to avoid exceeding the corresponding number at the

database tier. The maximum number of concurrent threads is acommon configuration

parameter of servers, like Apache, Tomcat, and MySQL. Givenavailability or per-

formability as the metric, replacing expensive database systems with more numerous

cheaper ones may require a new setting for the failover timeouts at the application-

server tier.

It is difficult to know exactly what configuration parametershave to be changed as

the system evolves in different ways. It is even harder to select new, efficient values

for the parameters to be changed, especially when there are dependencies between

parameters. Both of these decisions are typically based on the operator’s intuition

and/or a few exploratory experiments. This is clearly not ideal.

A better approach is to cast these decisions as an optimization problem and have

the system automatically search the parameter space, i.e. tune the parameter values, for

the operator. The traditional approaches to automate this tuning process are brute-force

and heuristic algorithms. The brute-force algorithm triesall possible combinations

of values for all possible parameters. Clearly, it only works when the total number

of parameters is extremely small. Heuristic algorithms arebetter in that they try to

55

Run Simplex to train CART
Run CART to determine importance

Important parameters

Run pair-wise dependency tests
setting each tier as the bottleneck

Parameter dependency graph

Traverse the graph with Simplex
to optimize the metric of interest

Tuned parameter values

Normal service execution

Service evolution

Figure 3.5: Steps involved in tuning parameters.

approximate the optimal value settings or simply produce very good settings, without

actually going through all combinations. However, these algorithms are still inefficient

because, every time they are run, they still have to considerthe space formed by all

parameters in the system.

Our infrastructure proposes thatthe key to improving efficiency further is to con-

strain the search space to only the subset of parameters thatare affected by the change

to the service. It is computationally intensive to define this subset, but this overhead is

amortized over multiple parameter tunings in which only theaffected parameters are

considered.

We represent the affected parameters in aparameter dependency graph. For each

particular change made to the service, we can traverse the graph to find all the affected

parameters and tune them. Our approach to defining the graph and tuning parameters

is experimental. More specifically, we accomplish these tasks by exercising the service

56

multiples times with a single representative trace but different parameter values. As

mentioned above, these tasks must be performed during periods of light overall load.

Figure 3.5 lists the set of steps involved in defining the dependency graph and

tuning parameters. In the next two subsections, we detail our heuristic algorithms to

define the graph and leverage it to limit the number of parameter-tuning experiments.

3.3.1 Parameter Dependency Graph

As its name suggests, our parameter dependency graph represents the dependencies

between parameters explicitly as a directed graph. Each vertex in the graph represents

a parameter, whereas a directed edge represents a dependency between two vertices.

Specifically, if a vertex B depends on another vertex A (thereis an edge from A to B),

the value for the parameter that corresponds to B has to be recomputed every time the

value for the parameter that corresponds to A changes.

When the service evolves, the parameters corresponding to the tier directly affected

by the change become “source” vertices in the graph. For example, if an application-

server node is added to the service, we would make all configuration parameters of

application servers source vertices. The parameters that are affected by the change are

those reachable from the source vertices. The values for these reachable parameters

should be tuned experimentally for each possible value of each source parameter.

The challenge at this point is to find the dependencies between parameters in an

efficient manner. Next, we describe the two steps we take to doso.

First step: Finding important parameters. Our first step in determining the depen-

dencies between parameters reduces the search space to justthe “important” param-

eters of each service tier, i.e. those parameters that have the greatest effect on the

metric of interest. To accomplish this reduction, we apply the Classification And Re-

gression Tree (CART) algorithm [10], which is particularlyeffective at determining

the importance of its input parameters, even when the distribution of their values is

57

unknown. CART has three main components: an outcome variable (e.g., throughput or

performability), a set of predictor variables (e.g., configuration parameters or hardware

characteristics), and a learning dataset. Each data point in the learning dataset must in-

clude the values for the predictor variables and the value ofthe corresponding outcome

variable. Using the learning dataset, CART constructs a binary classification tree by

recursively splitting the dataset into partitions defined by values of the predictor vari-

ables. The purpose of each partition split is to reduce the diversity of the classifications

in the partition. Partitions that become homogeneous are not split further. CART eval-

uates the importance of each predictor variable by its contribution to reducing diversity,

i.e. the more important variables produce a larger reduction in diversity.

In our evaluation (Section 3.4), we define service throughput as the outcome vari-

able. The set of configuration parameters defines our predictor variables. The learning

dataset is collected from a set of runs of the service, as determined by the Simplex

algorithm [43], which we describe below. For our purposes, the key output of CART

is the importance factor it assigns to each parameter.

Second step: Finding dependencies between important parameters. Knowing

which parameters are important, we now need to determine whether there are depen-

dencies between them. However, the dependencies between even this smaller set of pa-

rameters may be complex and difficult to isolate as a single problem. Thus, we break it

into pair-wise dependency tests between all pairs of important parameters. For a group

of N important parameters, the number of pairs of parametersis CN
2

= N ∗ (N −1)/2.

Our dependency test is as follows: a parameter A depends on parameter B, if and

only if different settings of B lead to different best valuesfor A. To understand our

definition, consider figures 3.6 and 3.7. Figure 3.6 shows thevalues of a metric of

interest as a function of parameters A and B. It is clear from this figure that the best

value for A depends on the value of B, regardless of whether weseek to maximize or

minimize the metric of interest. For example, if B=1, the value of A that minimizes the

metric is 3. If B=3, the same value is 1. The same effect does not appear in Figure 3.7.

58

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
et

ric
 R

es
po

ns
e

Variable A

Variable B=1
Variable B=3

Figure 3.6: A depends on B.

In this figure, we can see that B does not depend on A according to our dependency

test.

To restrict the set of dependencies to those that affect the metric of interest more

substantially (and, thus, reduce parameter tuning overheads), we establish a “depen-

dency threshold” below which the metric is assumed not to have changed. So, for

example, if the difference between the best values for A whenB=1 and B=3 in Fig-

ure 3.6 were smaller than the dependency threshold, we wouldhave assumed that A

does not depend on B. Thus, the dependency threshold has to beselected carefully; an

excessively high threshold may miss real dependencies, whereas an excessively low

threshold may find false dependencies.

Unfortunately, experimentally determining the behavior of the metric of interest

with respect to all possible values for each pair of parameters, as in these figures, is

not typically feasible. For this reason, our infrastructure requires service designers or

operators to specify the range of reasonable values{min value, max value} for each

59

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
et

ric
 R

es
po

ns
e

Variable B

Variable A=1
Variable A=3

Figure 3.7: B does not depend on A.

numeric parameter. For designers and operators, doing so isobviously much simpler

than having to specify the actual dependencies between a potentially large number of

parameters. Our infrastructure experiments with all combinations of min, medium (the

average between min and max), and max values for each pair of parameters. Thus, for

each pair-wise comparison, we need3 ∗ 3 = 9 experiments.

Finally, the parameter dependencies may be affected by the provisioning of the ser-

vice tiers. For example, if throughput is the metric of interest and one tier is overpro-

visioned, it is likely that parameters from other tiers willnot depend on the parameters

of the overprovisioned tier. However, these dependencies may appear if the overprovi-

sioned tier eventually becomes a performance bottleneck, as the service evolves. Thus,

we run dependency checking once per tier, each time forcing adifferent tier to become

the bottleneck by removing one or more of its nodes. To avoid checking dependencies

between parameters in the same tier repeatedly, we only perform those checks when

the tier is the bottleneck. The set of dependencies we encodein the graph is the union

60

of those found in the provisioning experiments.

Number of experiments.Overall, for a set of N important parameters, our dependency-

finding algorithm translates into(
∑M

i=1
CNi

2
+

∑M
i=1

∑M
j=1,j 6=i Ni ∗ Nj)∗9 experiments

for each tieri with Ni important parameters andM is the number of tiers, i.e.O(N2)

experiments. Considering that the total number of possiblecombinations of parameter

values isO(RT), whereT is the total number of parameters (T >> N) andR is the

number of possible values for each parameter (R >> 3), our algorithm provides a dra-

matic reduction of the dependency space. However, because our algorithm may fail to

find dependencies that do exist, we call it a heuristic. Nevertheless, our understanding

of the servers we study in this thesis and their parameters suggests that our heuristic

dependency-finding algorithm works well in practice.

As we mentioned above, the only information that our algorithm requires is the

range of possible values for each parameter. This information can be communicated to

our infrastructure using a simple interface. In fact, the same interface allows designers

or operators to specify the parameter dependencies manually.

3.3.2 Traversing the Graph

Tuning parameters involves traversing the dependency graph and using the dependen-

cies to limit the number of experiments. The traversal starts at the source vertices.

If there are cycles in the graph, all vertices that form each cycle need to be tuned at

the same time, i.e. we need to consider all combinations of values for all parameters

in the cycle. In acyclic dependency chains, parameters thatcome earlier in the chain

are tuned before those that come later. In detail, the sourceparameter is tuned first

assuming the current values for all other parameters. Afterthis step, all parameters

reachable from the source in one edge traversal can be tuned independently, each of

them assuming the best value for the source and the current values for all parameters.

The next step involves the parameters that can be reached in two edge traversals and

61

so on. If a vertex cannot reach any other vertices, all we needto do is explore the

possible values for the corresponding parameter, keeping all other parameters fixed at

their current best values. To explore the possible parameter values, we use Simplex. In

particular, Simplex considers values in the{min value, max value} range.

Number of experiments.The key advantage of using the dependency graph to guide

the tuning of parameters is a major reduction in the number ofexperiments. Recall

that the total number of possible combinations of parametervalues isO(RT). The

dependency graph transforms certain multiplicative factors in this large number into

additive factors. To see this more clearly, consider the simple (and very pessimistic)

scenario where all parameters are found to be important and each half of them form a

dependency cycle. The number of possible combinations in this scenario would only

be RT/2 + RT/2 or O(RT/2), which represents a significant reduction of the tuning

space. In practice, reductions are even more substantial than in this case.

3.3.3 Simplex Algorithm

The Simplex algorithm, as extended by Nelder and Mead [43], is an efficient method

for nonlinear, unconstrained optimization problems. The algorithm optimizes (maxi-

mizes or minimizes) unknown functionsf(x) for x ∈ IRn. A simplexis a set ofn + 1

points inIRn, i.e. a triangle inIR2, a tetrahedron inIR3, and so on. The algorithm

starts by selecting a random simplex and evaluating the function at each vertex of the

simplex. Each iteration involves reflecting one of the vertices, but may also include

expanding and contracting the simplex. These three operations are illustrated in Figure

3.8.

In more detail, each iteration involves the following steps: (1) Ordering – order-

ing the function values according to the optimization goal (e.g., descending order if

the goal is to maximize the function); (2) Reflection – replace the vertex that leads to

62

Figure 3.8: Main operations in the Simplex algorithm.

the worst function value (e.g., the smallest value when we are maximizing the func-

tion) by its mirror image in the centroid of the remainingn vertices. If the reflected

value is better than the old value but not better than the bestvalue currently, accept

the reflected vertex and terminate the iteration; (3) Expansion – if the reflected value is

better than the current best value, expand the reflected vertex away from the centroid.

If the expanded value is better than the reflected value, takethe former and terminate

the iteration. Otherwise, take the latter and terminate; (4) Contraction – if the reflected

value is worse than the next to worst value, perform a contraction of the worst vertex.

If the contracted value is better than the worst value, take the former and terminate the

iteration; and (5) Shrinking – shrink the simplex around thecentroid and start another

iteration.

Number of experiments. The number of experiments required by each Simplex ex-

ecution depends on the landscape being searched. In our evaluation, the parameter

tuning of a three-tier service using Simplex required 299 experiments. With the sup-

port of our dependency graph, only 73 experiments were required.

63

3.4 Evaluation

In this section, we present our experimental setup and results. We first evaluate our in-

frastructure’s ability to simplify service management andeliminate misconfigurations.

Next, we evaluate our infrastructure’s ability to find good configurations efficiently.

3.4.1 Experimental Setup

For comparison purposes, we experiment with the same onlineauction service used

in [41]. The service is organized into three tiers of servers: Web, application, and

database tiers. We use two machines in the first tier running the Apache Web server

(version 2.0.54), three machines running the Tomcat servlet server (version 4.1.18)

in the second tier and, in the third tier, one machine runningthe MySQL relational

database (version 4.12). The service requests are receivedby the Web servers and may

flow towards the second and third tiers. The replies flow through the same path in the

reverse direction.

We exercise the service using a client emulator. The workload consists of a “bid-

ding mix” of requests (94% of the database requests are reads) issued by a number of

concurrent clients that repeatedly open sessions with the service. Each client issues

a request, receives and parses the reply, “thinks” for a while, and follows a link con-

tained in the reply. A user-defined Markov model determines which link to follow. The

code for the service, the workload, and the client emulator are from the DynaServer

project [57].

The machines that run the service and the clients are Nexcom blade servers with

512 MB of memory, 5400 rpm IDE disks, and 1.2 GHz Celeron CPUs running the

Linux kernel (version 2.4.27) connected by a Fast Ethernet switch.

We have implemented our infrastructure (6K lines of C and Perl code) and the

generation scripts and configuration templates for Apache,Tomcat, and MySQL.

64

3.4.2 Complexity and Misconfigurations

Some of the central goals of our infrastructure are to generate configuration files au-

tomatically, simplifying service management and eliminating most misconfigurations.

To quantify management complexity with and without our infrastructure, we use the

measures recently proposed by Brownet al. [11]. Although subjective in some cases,

their measures do provide insight into complexity and represent the only comprehen-

sive set of complexity measures of which we know for service management.

The measures define management complexity according to three aspects of oper-

ator tasks: the actions that they need to execute (executioncomplexity), the parame-

ters values that they need to select (parameter complexity), and the requirements on

their minds (memory complexity). In more detail, theexecution complexityof a task

measures the number of actions (NumActions) and the number of “context switches”

(ContextSwitches) it involves. By their definition, a context switch occurs between

any two consecutive actions that act upon two different servers or subsystems. The

parameter complexitymeasures the number of parameters (ParamCount), the number

of times parameters are supplied (ParamUseCount), the number of times parameters

are used in more than one context weighted by the distance between contexts (Param-

CrossContext), the number of times parameters are used in a different syntactic form

(ParamAdaptCount), and the sum across all parameters of a score from 0 to 6 based

on how hard (0 = easy, 6 = hard) it is to obtain the value of each parameter (Param-

SourceScore). Finally, thememory complexitymeasures the number of parameters that

must be remembered (MemSize), the length of time they must beretained in memory

(MemDepth), and how many intervening items are stored in memory between uses of

a parameter (MemLatency). We consider the maximum and average of these memory

complexity measures.

To demonstrate the complexity benefits of our infrastructure, we study the operator

tasks and mistakes described in [41]. Table 3.1 lists the complexity results with and

without our infrastructure for the four tasks that involve configuration: node addition

65

Measure
Node addition Apache upgrade Apache diag DB upgrade

Without With Without With Without With Without With
E

xe
c. NumActions 8 0 12 12 7 1 20 11

ContextSwitchSum 6 0 16 16 2 0 44 22

P
ar

am
. ParamCount 7 0 6 6 0 0 4 2

ParamUseCount 13 0 12 8 0 0 10 4
ParamCrossContext 24 0 8 6 0 0 18 2
ParamAdaptCount 0 0 4 4 0 0 0 0
ParamSourceScore 25 0 24 24 0 0 12 6

M
em

or
y

MemSizeMax 7 0 4 2 ≥1 0 4 2
MemSizeAvg 2.4 0 2 1.2 NA 0 1.33 0.67

MemDepthMax 7 0 3 2 ≥1 0 2 2
MemDepthAvg 2.3 0 1.4 1.2 NA 0 1 0.67
MemLatMax 3 0 3 0 ≥1 0 1 1
MemLatAvg 0.5 0 0.6 0 NA 0 0.44 0.33

Table 3.1: Management complexity with and without our infrastructure.

in the application-server tier, Apache upgrade, database node upgrade, and diagnosing

and fixing an Apache misconfiguration. Note that the results in the table underestimate

the benefits of our infrastructure, as they do not account forthe complexity of manual

parameter tuning after the first three tasks when our infrastructure is not used.

Despite this underestimation and the fact that our infrastructure only helps with the

server configuration part of these tasks, the table shows that it can still reduce com-

plexity significantly. The execution complexity is reducedbecause our infrastructure

automates most operator tasks related to the servers, e.g. modifying worker.properties

as a result of application server additions. With automation, the operator does not need

to perform most actions and, thus, does not context switch between actions. Along

the same lines, the automation brought about by our infrastructure also reduces the

parameter and memory complexities, as it relieves the operator from having to supply

or remember most parameters, e.g. the IP address of an added node or the hostname of

the node running the database server.

The exception to these general trends is the Apache upgrade task for which our

infrastructure reduces the parameter and memory complexities somewhat, keeping the

66

Eliminated Misconfigurations
Description Instances
Duplicated entry in Apache worker.properties 4
Unmodified last line of Apache worker.properties 3
Extra space in last line of Apache worker.properties 2
Non-existing Tomcat server in Apache worker.properties 1
Unmodified Apache worker.properties 1
Missing listen port in Apache httpd.conf 1
Wrong listen port in Tomcat configuration file 1
Unmodified Tomcat configuration file 1

Remaining Misconfigurations
Wrong Apache htdocs directory 3
Apache pointing to wrong heartbeat service 2
URLs not mapped to servlets in Apache httpd.conf 1
MySQL access rights not given to Tomcat servers 2
No password for MySQL root 1
MySQL writes forbidden 1

Table 3.2: Misconfigurations with our infrastructure.

execution complexity unaffected. The reason for this behavior is that the Apache up-

grade task is dominated by non-configuration executions: installing the new version

in a different directory, copying content to the new directory, setting up the heartbeat

service, shutting down the old version, and starting the newversion.

To evaluate the ability of our infrastructure to eliminate misconfigurations, we re-

peat the operator-emulation experiments from [41]. In particular, we use the operator

action traces that they collected for the four tasks above. Table 3.2 shows the mis-

configurations that our infrastructure eliminates (left) and those that it does not (right).

Overall, our infrastructure eliminates 14 out of a total of 24 observed misconfigura-

tions, i.e. 58%.

Note that some misconfigurations remain because, for certain tasks, the operator is

required to change a few parameters in the configuration file templates. Specifically,

the operator needs to supply the htdocs directory (the root directory of the content to

be served), set the correct translation between URLs and Tomcat servlets, and point

to the correct implementation of the membership protocol (the heartbeat service) for

67

Apache TimeOut, MaxKeepAliveRequests,
KeepAliveTimeout,
StartServers,MinSpareServers,
MaxSpareServers,MaxClients,
MaxRequestsPerChild

Tomcat maxProcessors,MinProcessors,
acceptCount

MySQL key buffer, max allowed packet,
table cache, sort buffer,
read buffer size, record buffer,
myisam sort buffer size,
thread cache,
query cache size,
thread concurrency,
innodb buffer pool size,
innodb additional mem pool size,
max connections

Table 3.3: Performance-relevant parameters.

the Apache upgrade task. These changes account for 6 of the remaining misconfigu-

rations. The other 4 remaining misconfigurations do not involve configuration files, so

our infrastructure could not have eliminated them. Specifically, they occurred during

the upgrade of the database node (3) and when diagnosing and repairing an application

server hang (1).

3.4.3 Parameter Tuning

The other key goal of our infrastructure is to generate configuration files with optimized

parameter values. In this section, we assume that the metricof interest is throughput

performance, which we want to maximize. Because of our focuson performance, we

consider only the 24 parameters that may impact it, which arelisted in Table 3.3. Each

performance experiment was run for 2 minutes with warm caches.

Generating the parameter dependency graph.The first step in generating the de-

pendency graph for our auction service is to find the important parameters using CART.

68

Tier Parameter Relative
Importance

Apache MaxRequestsPerChild 100
MaxClients 44
StartServers 24

Tomcat acceptCount 100
MinProcessors 38
maxProcessors 26

MySQL innodb buffer pool size 100
max connections 47
query cachesize 32

Table 3.4: Parameters with relative importance greater than 20 as computed by CART.

To do so, we create a learning dataset for CART using Simplex to find good settings

for the above parameters for each tier independently. We start with a random configu-

ration. The first Simplex run tries to find good parameter values for the database tier,

the throughput bottleneck. We then set the database server parameters to the values

found by Simplex, make the application-server tier the bottleneck (by decreasing the

number of nodes in this tier), and run Simplex again to find good parameter values for

the application servers. Finally, we set the parameter values of the application servers

and of the database server to those found by Simplex, make theWeb-server tier the

bottleneck (by bringing back the application server nodes and removing Web server

nodes), and run Simplex again to find good parameter values for the Web servers. The

total number of experiments for these three Simplex runs is 254.

CART can use the results of these experiments to compute the relative importance

of the parameters. Table 3.4 lists the 9 parameters with relative importance greater than

20. We initially picked this threshold value based on our intuitive understanding of the

servers involved. Later, we realized that a threshold of 30 or 35 could have produced

the same results using many fewer experiments. Nevertheless, we decided to stay with

20 to study our approach in a more challenging scenario.

The second step in generating the graph involves finding dependencies between

69

MySQL.max_connections

MySQL.query_cache_size

Apache.StartServers

Apache.MaxClients

Apache.MaxRequestsPerChild

MySQL.innodb_buffer_pool_size

Tomcat.maxProcessors

Tomcat.MinProcessors

Tomcat.acceptCount

Figure 3.9: Parameter dependencies.

parameters. Following the procedure described in Section 3.3.1, we performed 567

experiments. To determine the dependencies, we set the dependency threshold to 10%,

leading to the relationships portrayed in Figure 3.9.

Performance tuning. We now evaluate the use of our parameter dependency graph

for automatic performance tuning as the service evolves. The first evolution is the

migration of the bottleneck MySQL server to a more powerful machine, which has a

2.8 GHz Xeon CPU, 2 GB of memory, and a RAID-5 SCSI disk array. Starting from

the upgraded service, the second evolution is the removal oftwo application-server

nodes to mimic a scheduled maintenance event or a brownout.

The tuning of the parameters after the evolutions can be performed using several

methods:

• Exhaustive search: Explores all combinations of parametervalues. Overall,

70

Evolution Tuning Approach Throughput Number of
(reqs/sec) Experiments

DB node upgrade Best values prior to DB node upgrade 343 –
Simplex search 372 299

Dependency graph + Simplex 377 821 + 73
Removal of 2 Best values prior to DB node upgrade 91 –
appl. servers Simplex search 114 220

Dependency graph + Simplex 110 0 + 35

Table 3.5: Comparing performance tuning approaches for twoservice evolutions.

O(RN) experiments, whereR = range andN = total number of parameters =

24. Obviously, exploring this entire space is infeasible.

• Simplex search: Uses the algorithm described in Section 3.3.3 to tune the 24

parameters. The number of experiments here depends chiefly on the landscape

being searched.

• Dependency graph + Exhaustive search: Explores all combinations of values for

the groups of dependent parameters. For our service’s dependency graph (Figure

3.9), this means an exhaustive search of the combinations ofvalues for 7 im-

portant parameters and an exhaustive search of the other 2 important parameters

independently. Again, exploring this space is infeasible.

• Our approach = Dependency graph + Simplex search: Run Simplex on the

groups of dependent parameters. For our service’s dependency graph, this means

running Simplex on 7 important parameters and exhaustive search for the 2 re-

maining ones independently.

Table 3.5 compares the number of experiments and tuned throughput entailed by

the approaches that are feasible for each of the evolutions.Each number of experiments

in our approach is presented as the sum of the number of experiments for generating

the dependency graph and for performance tuning based on thegraph. For the results

in the table, the Simplex searches were set to terminate whenthe standard deviation

71

of the throughputs forming the simplex was lower than 3 reqs/sec. The first row of

each group lists the throughput of the best parameter valuesprior to the database node

upgrade when applied to the service after the evolutions. (We used these values as the

starting point of the Simplex searches.)

It is interesting to observe that our infrastructure achieves high throughputs with

the smallest number of performance-tuning experiments. Infact, its throughput is

about 10% (database node upgrade) and 21% (removal of two application-server nodes)

higher than that of the best parameter values prior to the first evolution. However, our

approach also involves a large number of experiments (254 + 567 = 821) for generat-

ing the dependency graph. The effect of this extra overhead is that our infrastructure

needs a few evolutions to become cheaper than the Simplex approach. In particular,

after these two evolutions, our approach has executed 929 (821 + 73 + 35) experiments,

whereas the Simplex approach has involved 519 (299 + 220) experiments. Thus, we

have been able to amortize 411 (299-73 + 220-35) experimentsfrom the overhead over

the two evolutions. Assuming that this amortization rate would persist, it would only

take two more evolutions for our approach to break even with the Simplex approach.

Another interesting observation is that the actual values ultimately chosen by the

tuning approaches are different for all tuned parameters, as a result of how Simplex

searches the space. The tuned parameter values are also consistently different than the

best values prior to the DB node upgrade.

Amortizing the overhead of the dependency graph.A key remaining question is

whether the dependency graph can indeed be amortized over numerous service evo-

lutions. To answer this question, we compared the dependency graphs generated by

our heuristic algorithm before and after service evolutions. Finding the same (or a very

similar) graph after an evolution suggests that the graph does not have to be regenerated

as a result of the evolution.

We considered three types of evolutions: the database node upgrade, the removal

of the two application-server nodes, and the upgrade of MySQL server (version 4.12)

72

to version 5. Our results show that the database node upgradeleads to the same depen-

dency graph as with the slower node. We expect that system software upgrades, e.g.

upgrades of the operating system, for improving performance should lead to the same

results as this evolution.

Removing two application-server nodes also led to the same graph as before the

upgrade. Because of the way we generate the dependency graph, we expect other

membership evolutions, e.g. node additions, to behave similarly.

The MySQL upgrade was more interesting. We first had to verifythat the perfor-

mance parameters in the new version of MySQL are the same as inthe old version,

which is indeed the case. (In fact, the same is true of the mostrecent versions of

Apache and Tomcat.) After generating the dependency graph for the upgraded ser-

vice, we found that it is a subset of the original dependency graph, suggesting that the

original graph would still be useful.

Despite our ability to amortize the overhead of generating the dependency graph

over many types of evolutions, we may eventually need to regenerate it. For exam-

ple, the dependency graph may become inaccurate after a large number of evolutions,

even if each evolution affects actual dependencies only slightly. To deal with these

situations, operators can periodically start the regeneration of the dependency graph;

the frequency of regenerations should depend on the overheads involved and on the

frequency of evolutions.

3.5 Summary

In this chapter, we proposed a software infrastructure for automatically generating con-

figuration files for cluster-based Internet services. The infrastructure introduces the

notion of a parameter dependency graph and algorithms to generate the graph and opti-

mize the service with it. Our evaluation showed that the infrastructure can simplify the

73

service operation, eliminate operator mistakes, and generate high-performance config-

urations efficiently.

Limitations and future work. Although our experience and results are clearly posi-

tive, we could extend the work presented here in a few different ways. In particular, we

could study the sensitivity of our results to the parameter-importance threshold in more

detail. Our results for the first evolution above suggest that a threshold of 35 would

have been a better choice than 20, since it produces essentially the same throughput

but with many fewer experiments. We could extend our infrastructure to deal with

application-level evolutions. Furthermore, we would extend our infrastructure to au-

tomatically detect significant changes in workload characteristics, which should also

prompt parameter tuning. As a longer-term goal, we could study performability (per-

formance + availability), rather than performance alone, as the metric to be optimized

by our infrastructure.

In closing, it is important to mention four limitations of our work. First, our current

infrastructure only works for numerical parameters; categorical or symbolic parameters

are not handled. Second, our current experimental methodology is not very robust for

systems that are prone to experimental noise (e.g., performance degradation due to

unstable hardware, non-deterministic software, or operating system daemons that are

activated during experiments). For these systems, a more robust methodology could

be to run each experiment twice and use the best value of the metric of interest, for

example. Although our system is indeed prone to noise, we opted for lower overheads.

Our positive results demonstrate our current methodology worked well in practice.

Third, our sample Internet service, the online auction, is substantially simpler than real

commercial services. Configuring these real services may pose challenges that we are

not addressing. For example, a real service may involve a larger number of different

servers and configuration parameters. It is possible that the search space would have to

be reduced further to make automatic tuning practical for such a service. Finally, we do

not have access to statistics on the frequency and type of evolutions that real services

74

experience. Note however that these limitations plague thevast majority of academic

studies of Internet services, since real services rarely divulge information about their

internal structure and evolution. Despite these limitations, we believe that real services

can certainly leverage the principles and ideas introducedhere in their more complex

environments.

75

Chapter 4

MassConf

4.1 Introduction

The previous chapter describes how ACI automatically tunesconfiguration parameters

as a system evolves. When the system is first configured (i.e.,before it starts evolving),

ACI relies on Simplex to initialize configuration parametervalues. However, Simplex

often needs to run a large number of experiments. Thus, thoseusers who deploy server

software for the first time cannot take advantage of ACI, and still face great challenges

to tune configuration parameters for a specific performance or energy target. While

vendors often provide default configuration files that work well for many users, con-

figurations need to be tuned in many other cases.

Unfortunately, as described in the previous chapter, configuring modern software

can be extremely difficult in those cases. The reason is that agood configuration de-

pends (at least) on the hardware environment, the workload,the load intensity, and

the target behavior (e.g., some level of performance or availability) the user wants to

achieve. Moreover, it is very hard (if not impossible) for users to completely under-

stand the configuration-hardware-workload-intensity-target relationship.

Due to the size and complexity of this configuration space, previous research has

focused on approaches and tools to detect misconfigurationsand/or troubleshoot them

[1, 37, 41, 65, 78, 79, 81], to study the resilience of systemsin the face of configu-

ration errors [35], to automatically configure a large number of machines in a single

installation [2, 3, 12], and to automatically tune configurations for performance [73].

76

Although these efforts have been useful, a user’s ability toconfigure her software

to achieve a certain target behavior is still far from ideal in practice. For example, a

user who wants her server software to produce an average response time of 50 millisec-

onds is left clueless, when the default configuration reaches only 100 milliseconds. As

long as the parameters that affect performance are identified, this user can run exist-

ing algorithms (e.g., [43]) to optimize the server’s performance by experimentation

with different configuration settings. However, tuning performance may involve a very

large number of time-consuming experiments [73]. For example, each tuning experi-

ment with a database server may involve restoring a large database and its indexes back

to a specific initial state.

We argue that vendors need to do more to help users configure their software. One

approach vendors could take is to create automatic configurers that run locally at the

users’ sites and select the best values for the parameters, either through experimentation

or modeling. A simpler and cheaper approach, the one we advocate here, is for the

vendor to collect configuration information from the existing user community of its

software and use it in configuring the software for new users.

Our approach is based on two key observations. First,a configuration may actually

work well for many users, i.e. it may work well for many workloads, load intensities,

and target behaviors, especially when the users use similarhardware platforms. For

example, the default configuration often produces acceptable behavior for many users.

This observation means that popular (i.e., frequently used) existing configurations may

work well for many new users of the software. Figure 4.1 illustrates this observation

with a simple example. ConfigurationC9 is more popular thanC2 andC4, as it is used

by more users (2 instead of 1).

The second observation is thatmultiple configurations may actually work well for

each user, i.e. they may all meet the user’s target behavior. This observation means

that there is flexibility in which existing configuration to select for each new user; even

configurations that are unpopular may work well for her. For example, a user seeking

77

Figure 4.1: Many users may use the same configuration. An arrow from A to B means
that configuration A is used by user B. Solid arrows representinformation that Mass-
Conf has.

Figure 4.2: Many configurations may work for each user. An arrow from A to B means
that user A can use configuration B. Dashed arrows represent data that MassConf can-
not obtain.

78

an average response time of 50 milliseconds for a light workload may be able to use

many different configurations, including the default one and a configuration that has

enabled a single user with a particularly heavy workload to achieve high performance.

Similarly, many other users may be able to use the latter configuration. Figure 4.2

illustrates this observation, showing that usersU3 andU7 could also use configuration

C4 (besidesC9 andC2, respectively).

These observations mean that any work that users may do to tune their configura-

tions can benefit new users of the software as well. Thus, in this chapter we propose

to leverage the existing users’ configurations to find a good configuration for each new

user. To demonstrate this idea, we designed MassConf, a system that automatically

collects configuration and environment information from existing users, clusters users

according to environment, produces an ordered (ranked) list of possible configurations,

and tests each configuration in turn at the new user’s site until the target behavior is met.

After the configuration of each new user is complete, MassConf may change the rank-

ing of configurations. MassConf seeks to (1) reach the targetbehavior for as many

new users as possible and (2) minimize the average number of experiments required

at the new users’ sites. Because users are sometimes reluctant to divulge information

about their systems, MassConf stores as little data as possible about them: only their

environment descriptions and the non-sensitive parts of their configurations.

The most interesting technical aspect of MassConf is its ranking of configurations.

Faced with our first observation above, one would be tempted to rank configurations

based on popularity; more popular configurations would be tried first at the new users’

sites. The popularity information is readily available from the existing users’ deployed

configurations. In our example, the popularity informationcorresponds to the rela-

tionships depicted in Figure 4.1. However, as our experiments shall demonstrate, the

popularity-based ranking is not the best choice. The reasonis that particularly effec-

tive but difficult-to-find configurations would tend to appear towards the end of the

list. Ranking them higher would allow more new users to be configured with fewer

79

experiments.

To account for this effect, MassConf would require information about how every

deployed configuration would do for every existing user. In our example, it would

need to know at least about the dashed arrows in Figure 4.2. Knowing this informa-

tion, MassConf would rankC4 higher than any other configuration, sinceC4 can satisfy

more users than any other configuration. Unfortunately,such information is obviously

not obtainable.Thus, MassConf adapts its behavior over time, by moving the configu-

ration that is selected for each new user toward the front of the ranked list, regardless

of its actual popularity. This adaptation increases the chance that another new user will

also experiment with (and hopefully benefit from) the selected configuration.

Our optimized version of MassConf, which we call MassConf+,improves ranking

further by cutting off the ranked list of configurations after an initial “learning” period.

Shortening the list rids MassConf+ of configurations that are unlikely to satisfy a large

number of new users, thereby reducing the average number of experiments. (Hereafter,

we only refer to MassConf+ explicitly when discussing material that does not apply

to MassConf. When the context does not require such a distinction, we refer to both

systems simply as MassConf.)

To evaluate MassConf’s ranking of configurations in an interesting (yet understand-

able) case study, we investigate its use for automatically configuring the Apache Web

server to achieve a response-time target. Despite the popularity of Apache, evaluating

MassConf poses a challenge for academics, namely the unavailability of massive user

configuration datasets in the public domain for any piece of software. Instead of being

discouraged by this challenge, we decided to evaluate MassConf using a synthetic user

population. In this context, we study different speeds for moving a selected configura-

tion to the front of the ranking, as well as the popularity-based ranking. As a baseline

for comparison, we use Simplex [43].

The results of our case study show that adaptive ranking requires many fewer ex-

periments than the popularity-based ranking to configure a population of new users.

80

Figure 4.3: MassConf overview.

Regarding adaptation speeds, we find that the faster we move aselected configuration

to the front of the ranking, the better on average. In fact, the best approach is to always

move such a configuration straight to the front of the ranked list. Popularity-based

ranking is only faster on average than the slowest moving adaptation. We also find that

MassConf can configure many more new users than Simplex. Moreover, MassConf re-

quires many fewer experiments than Simplex, even when we consider only those new

users that both systems can configure. MassConf+ reduces ouraverage number of ex-

periments per new user even further. Based on our experiencewith the case study, we

qualitatively extrapolate from it to identify the general conditions under which Mass-

Conf is most effective.

Our experience and results illustrate that software configuration can be significantly

simplified by having users contribute parts of their configurations and use them to

configure the software for other users. Because of its simplicity and effectiveness, we

conclude that MassConf and its adaptive ranking of configurations have great potential

to work well in practice.

81

The remainder of the chapter is organized as follows. The next section describes

MassConf in detail, including its configuration ranking algorithms and Simplex. Sec-

tion 4.3 introduces our Apache case study and experimentally evaluates MassConf.

Section 4.4 extrapolates from the Apache study. Finally, Section 4.5 summarizes the

chapter and discusses some opportunities for future work.

4.2 MassConf

In this section, we first detail the design of MassConf. We then describe its ranking

approaches and discuss its bootstrapping. After that, we describe Simplex. The last

subsection discusses some potential refinements to MassConf.

4.2.1 Design

Figure 4.3 illustrates the MassConf design. The next few paragraphs detail each part

of the design in turn.

Data collection from existing users.MassConf is run by the software vendor. First

(step 1 in the figure), it collects configuration and environment information from each

existing user that is willing to participate. (Although some users may refuse to provide

this information, many would likely be willing to contribute to the community since

they can benefit from it as shall be clear below.) This information is extracted by

instrumentation in the server software itself and sent to the vendor.

The configuration information describes the settings of each configuration parame-

ter of the software. The settings can be of any type, e.g. boolean, numeric, or character

strings. When the configuration information may include sensitive data, only a few rel-

evant parameter values may be collected. (The vendor shouldknow which parameters

may include sensitive data.)

As part of the configuration information, MassConf must be informed about the

users’high-level goalswhen they selected their configurations. For example, the goal

82

may have been to improve performance, improve performability (performance + avail-

ability), or lower energy consumption.

MassConf stores the parameter settings it receives withoutmodification, except in

the case of numeric parameters. For each numeric parameter,MassConf breaks the

range of possible values into 10 evenly sized chunks. Two configurations are grouped

together if their values for each parameter fall in the same chunk. For example, suppose

that each configuration has two parameters,p1 andp2, with possible values ranging

from 1 to 200 (chunks of size 20) and from 1 to 100 (chunks of size 10), respectively.

Further, suppose that the values of these parameters for configurationsC4 andC5 are:

C4(p1) = 10 (first chunk),C4(p2) = 18 (second chunk),C5(p1) = 16 (first chunk), and

C5(p2) = 12 (second chunk). Because the chunks match for each parameter,C4 andC5

would be grouped together.

The configurations in each group are represented by a single “average” configura-

tion. In the average configuration, each parameter is given the average of the values

seen for that parameter in the corresponding group. For example, the average con-

figurationCavg for the cluster formed by configurationsC4 andC5 above would have

Cavg(p1) = 13 andCavg(p2) = 15.

The environment information is a description of the hardware (e.g., number of

cores, amount of memory) and possibly the low-level software (e.g., operating system,

settings for relevant environment variables) at the user’ssite. This information is nec-

essary since the behavior of the software to be configured maydepend heavily on the

environment.

Clustering existing users according to environment.Using the environment infor-

mation, MassConf then clusters the existing users (step 2) as was done in Mirage [22]

for software upgrade deployment. The idea is to cluster users that have similar environ-

ments together, so that their configuration information canbe used for new users with

similar environments. For example, the vendor of a multithreaded server may want to

separate out user sites with vastly different numbers of cores or threading libraries, as

83

these aspects of the environment may have a significant effect on the ideal number of

threads with which to configure the server. Conversely, usersites with similar num-

bers of cores and thread libraries should be clustered together. A number of algorithms

can be used for clustering, but we prefer the Quality Threshold (QT) algorithm [33].

QT starts with one site per cluster. It then iteratively addssites to clusters (effectively

merging clusters) while trying to achieve the smallest average inter-site distance and

not to exceed a pre-defined maximum cluster diameter. The algorithm stops when no

more clusters can be merged together. Our distance metric involves the aspects of

the environment that differ between clusters. Each aspect is weighted by the vendor,

according to its importance to the software configuration.

Collecting information from a new user. After clustering some existing users, Mass-

Conf is ready to configure a new user. It first deploys the software to the new user’s

site and collects its environment information (step 3). Then, it requests from the user

a description of the software’s target behavior (step 3). The target behavior reveals the

high-level goal for the configuration tuning. With the new user’s environment informa-

tion, MassConf can now identify the best cluster for it.

Ranking configurations. Using the configuration information from this cluster, Mass-

Conf produces a ranked list (or ranking) of configurations tobe tried at the new user’s

site (step 4). The list is formed by the configurations of the existing users that had the

same goal as the new user. (For example, we do not want to use information about con-

figurations that were selected to lower energy consumption when configuring servers

for maximum throughput.) The exact ordering of the list is influenced by the order of

the users’ (both new and existing) arrivals, as described below. The list is transferred

to the new user’s site (step 5). At this point, MassConf can run experiments with each

configuration, until the desired behavior is met or it runs out of configurations to try

(step 6).

Testing configurations at the new user’s site.These experiments are run under the

84

user’s actual workload and load intensity, so the user herself may have to provide a

realistic test harness to exercise the software. If all experiments are run and the desired

behavior is never achieved, the user is warned. MassConf’s inability to reach a target

may mean that the target is unrealistic for the workload and load intensity, or that

it still does not have enough information (i.e., enough existing users) to produce a

large enough coverage of the possible configurations. (We discuss this bootstrapping

problem in a later subsection.) If the user confirms that the target is achievable and

the parameter values are numeric, MassConf resorts to Simplex,starting from the best

configuration it has found so far. However, we expect that MassConf would rarely have

to resort to other approaches in practice; in most cases, thenew user would relax the

target. In these cases, MassConf would most likely have already found an appropriate

configuration.

Storing the selected configuration.When a configuration is selected, MassConf in-

cludes information about it in its central database of existing users (step 7). At that

point, the new user becomes one of the existing users within the corresponding clus-

ter. (As MassConf found the configuration for the new user, italready has all the

information required from an existing user.) Thus, after the bootstrapping period, the

population of existing users should exhibit similar characteristics (as a group) to the

new users (also taken as a group).

Adapting the ranking. As it is impossible to predict the set of new users that will want

to join the system, MassConf adjusts its ranking (step 8) by moving the configurations

that have been selected for each new user towards the top of the ranking. This ad-

justment enables very good configurations to be chosen more often. When MassConf

needs to resort to Simplex, the new configuration is added to the end of the ranking.

We discuss these decisions in detail in the next subsection.

Providing feedback to existing users.Finally, MassConf warns existing users when

their configurations seem suboptimal (i.e., new users with the same goal have selected

85

other configurations) with respect to the rest of the users inthe same cluster (step 9).

This feedback to existing users is an incentive for them to provide their configuration

and environment information, even when they had to configuretheir software entirely

by hand or when the community was still small. Another important incentive may be

to help these users configure an upgraded version of the software by leveraging infor-

mation from the users who benefited most from MassConf to configure the existing

version.

Discussion.Previous systems have also relied on information from theirusers [1, 66,

78, 79]. However, those systems seek to troubleshoot configurations, not tune them as

MassConf does. In our context, the specific and diverse characteristics of the users’

workloads and their behavior targets mean that configuration information is also di-

verse (i.e., coercion as in PeerPressure [78] does not apply) and prior actions from a

user do not produce the same results for another user (i.e., local experiments are neces-

sary). For these reasons, our main focus has been studying adaptive ranking algorithms

and the number of tuning experiments to which they lead on average. Neither of these

issues was considered by these prior works.

Although we have focused on the use of MassConf to configure software at the

users’ sites, our system can also be used for software that users deploy to Cloud Com-

puting services such as Amazon’s EC2. In this case, MassConfwould require informa-

tion about thevirtual environment (and, possibly, the service) on which the software

will be run. Every other aspect of MassConf would remain as described above.

4.2.2 Configuration Ranking

Dynamically adapting the ranking. As we mentioned before, a popularity-based

ranking can be misleading. It is possible that unpopular configurations can actually

satisfy many more new users than popular ones. The reason these highly useful con-

figurations are not more popular may be that they are harder tofind, e.g. they are only

86

Figure 4.4: Original ranking (a) and slow (b), fast (c), and fastest (d) adaptation ap-
proaches, after configurationsC4 andC5 are selected by two consecutive new users.

needed for heavy workloads or hard-to-achieve target behaviors.

Instead of relying on popularity, MassConf dynamically adapts its rankings to even-

tually concentrate configurations that can satisfy many newusers at the top. We study

three approaches for promoting the selected configurationswithin a ranking: slow,

fast, andfastest. The slow approach moves a selected configuration one slot upin the

ranking. The fast approach moves the configuration to the halfway point between its

current slot and the top of the ranking. The fastest approachmoves the configuration

directly to the first slot of the ranking. Figure 4.4 shows an example of how ranking (a)

is adjusted after configurationC4 andC5 are selected by two consecutive new users,

using the slow (b), fast (c), and fastest (d) adaptation approaches. For example, in the

fast approach,C4 is first moved from the 8th to the 4th slot in the ranking. This moves

C5, C9, C1, andC8 one slot down the ranking. Then, whenC5 is selected by the next

new user, it moves from the 5th to the 3rd slot. This movesC3 andC4 one slot down.

Regardless of the speed of promotion, any new configurationsthat are added to the

system are appended to the end of the corresponding ranking.The reason is that we

87

want to see more than one user benefit from a new configuration before we promote it

up the ranking.

Note that configurations coming from existing users are treated the same as those

selected for the new users, despite the fact that the former users select their configu-

rations by means other than MassConf (i.e., the ranked configurations are not tested

in turn for these users). We also considered the possibilityof not altering the rank-

ing when an existing user joins with a configuration that had already been seen. We

ultimately decided against this approach because it would disregard the fact that the

configuration satisfied an additional user.

Cutting off the tail of the ranking (MassConf+). After a period of adaptive ranking

in MassConf, the configurations that satisfy the most users’targets will tend to rank

high and reduce the average number of experiments per new user. Conversely, config-

urations that are not as widely useful will tend to be left at the tail of the ranking. This

means that the likelihood that a configuration will satisfy anew user decreases rapidly

as we move past the first set of configurations. Beyond this set, it may actually be more

advantageous for MassConf to cut off the ranking and resort to Simplex right away,

instead of trying a large number (potentially all) of the less useful configurations.

Based on this observation, we designed an optimized versionof MassConf (called

MassConf+) defining two thresholds: (1) the number of new users to see before cutting

the ranking off; and (2) where the ranking should be cut off. MassConf+ uses heuristics

to select these thresholds. For (1), it waits until the average number of experiments for

configuring each new user has gone down many times in a row (10 times by default).

Another option would have been to wait for a period with a stable average number

of experiments per new user. We selected our current approach, because it allows

MassConf+ to cut the list faster (before the average has stabilized). For (2), it cuts off

the ranking at the number of configurations that has satisfieda large percentage (80%

by default) of the new users seen so far.

Picking these thresholds properly is important, since any new configurations that

88

are added to the system arenot added to the corresponding shortened ranking. The

reason is that adding these configurations to the shortened ranking could discard more

useful configurations. A more robust approach could be to repeatedly prune the rank-

ing, allow it to grow (which would happen ever more slowly) for a period, and then

prune it again. Our simpler approach has worked well in our experiments, so we leave

the more sophisticated one for future work.

4.2.3 Bootstrapping the System

Any system that relies on other systems’ information to makedecisions faces a boot-

strapping problem. MassConf is no different. It starts performing well when the exist-

ing users within each cluster become a good representation of the new users to come

into the same cluster. Until that point, MassConf may be unable to meet the target

behavior requested by new users without resorting to (experiment-intensive) Simplex.

Instead of resorting to Simplex, the new user may also decideto optimize the configura-

tion manually until the target behavior is achieved. Fortunately, these Simplex-derived

or manually generated configurations contribute to MassConf just the same as the con-

figurations of the existing users that join MassConf.

4.2.4 Simplex

The details of the Simplex algorithm appear in section 3.3.3. In the context of this

chapter, each vertex of the simplex is a configuration. The operations done to each

vertex involve operating with the corresponding parameters of the configuration. For

example, a reflection involves reflecting each configurationparameter of the worst con-

figuration independently with respect to its value in the centroid configuration.

In our experiments, we set Simplex to terminate when a targetaverage response

time is reached or the standard deviation of the vertices’ response times is smaller than

5 milliseconds [43]. Under these stopping criteria, Simplex required between 7 and

89

174 experiments.

4.2.5 Potential Refinements

We have considered many refinements to MassConf. We describesome of them next.

Storing workload and load intensity information. We currently only collect config-

uration and environment information from users. However, we could also potentially

collect workload and load intensity data and use it to improve our ranking of configu-

rations. The obvious difficulty is how to characterize thesenew data in a manner that

enables a meaningful comparison of different user sites. For example, we could col-

lect resource utilization data summarizing behaviors at each user’s site. However, the

resource utilizations of two sites may be similar while the actual workload and load

intensity are quite different (e.g., high CPU utilization may be the result of a light load

that is computationally intensive or a high load that is network stack intensive). Config-

uration and environment information (including the users’tuning goals) are sufficiently

well-defined that characterization is not a problem.

Storing the results of experiments. Right now, MassConf only stores the configu-

ration that is selected for each user; the exact behavior (e.g., response time or energy

consumption) to which this configuration leads is not used orstored. Another poten-

tial refinement would be to store all the configurations and actual experiment results

on the way to meeting targets. The experiment results from the existing users could

be compared to the new users’ targets to potentially improveranking further. Specifi-

cally, the configurations leading to results that are close to the targets could be ranked

higher than others. However, this would require more complex ranking algorithms that

consider the experiment results. Furthermore, it is unclear that experiment results ob-

tained for the specific workload, load intensity, and targetof one user would be useful

in configuring the software for another user.

More aggressive re-ranking. Right now, MassConf does not change its ranking as

90

a result of each experiment at a new user’s site. Changes are only made after a good

configuration has actually been selected for the new user. Another approach could be

to change the ranking as we observe the behaviors of different configurations at the

new site. For example, this more aggressive adaptation could be started after finding

out that the configurations tested early on lead to very poor behavior compared to the

target.

As Section 4.3.4 demonstrates, MassConf is very effective,so we decided that these

refinements were not worth their additional complexity.

4.3 Case Study: Apache Configuration

To understand and validate MassConf and its adaptive ranking, we consider the Apache

Web server as a case study. In particular, we focus on configuring Apache to achieve

a target average response time. Because we lack real configuration data, we create a

synthetic population of users. In this section, we first describe our approach for gen-

erating the populations of existing and new users. Then, we analyze the bootstrapping

behavior and the characteristics of the configurations deployed by our users. Finally,

we evaluate MassConf by comparing its adaptive ranking against the popularity-based

ranking, as well as comparing its results to those of Simplex.

4.3.1 Methodology

Apache configuration and performance.As listed in Table 3.3, Apache has five main

configuration parameters that affect performance: StartServers, MinSpareServers, MaxS-

pareServers, MaxClients, and MaxRequestsPerChild [70]. StartServers specifies the

number of server processes that should be started, MinSpareServers specifies the mini-

mum number of server processes that should be kept in a spare pool, MaxSpareServers

specifies the maximum number of server processes that shouldbe kept in the spare

pool, MaxClients defines the maximum number of server processes allowed to start,

91

and MaxRequestsPerChild defines the maximum number of requests a server process

may serve (0 means infinite). The default configuration assigns values of 5, 5, 10, 150,

0, respectively, to each of these parameters.

Workloads, intensities, and targets.Each user in our synthetic population represents

a different combination of workload, load intensity, and response-time target.

We define each workload by its fraction of requests for three types of content: small

static files (average size 13KB with 20% cache miss rate), a large static file (130KB

in size with 0% cache miss rate), and dynamic CGI scripts (each consuming 14ms of

CPU execution). Each of these types of requests stresses a different part of the system:

the file system, networking, and the CPU, respectively. We refer to the fraction of CGI

requestsFCGI as a fraction of the total number of requests. In contrast, werefer to

the large-file component of the workloadFLF as a fraction of the static requests. The

remaining percentage represents the requests to small files. We varyFCGI andFLF

from 0% to 100%.

To define load intensities for each workload that do not overload the system, we

experimentally find the intensity that leads to saturation assuming the default config-

uration. We call this the “maximum throughput” for the workload. Then, we assign

load intensities for each workload from 50 requests/secondto the maximum throughput

with a step of 50 requests/second. Since the maximum throughputTmax is not always

a multiple of 50, the maximum load intensityLmax is

Lmax =















⌊Tmax

50
⌋ ∗ 50 Tmax%50 < 25,

Tmax Tmax%50 ≥ 25.

For each workload, we select different targets along the reachable range. The

targets are evenly distributed between the performance of the default configuration

Pdefault and the best performance we can achieve with SimplexPsimplex. Specifically,

the targets are[Pdefault, Pdefault ∗ 0.95, · · · , Psimplex]. If Psimplex is not exactly a multi-

ple of 5% away fromPdefault, the last target we use is the lowest such value that is still

92

higher thanPsimplex. We choose 5% because it creates a good number of targets and

poses a non-trivial challenge for configuration tuning.

User populations. We synthetically generated an initial set of “existing users” that

is evenly spread in the 3D space of workloads, load intensities, and response-time

targets. We assigned workloads of the formFCGI ∈ (0%, 20%, · · · , 100%) andFLF ∈

(0%, 20%, · · · , 100%) to these users. We selected intensities and targets as described

above.

We define the existing users’ configurations by running Simplex. In particular, we

set Simplex to start from the default Apache configuration and stop trying new configu-

rations (new values for the different configuration parameters) when the response-time

target is met. Only this last configuration is stored for eachexisting user.

The set of “new users” in our synthetic population is also evenly spread across the

parameter space, but is completely distinct from the set of existing users. In particular,

the new users’ workloads are defined asFCGI ∈ (10%, 30%, · · · , 90%) andFLF ∈

(10%, 30%, · · · , 90%). The load intensities for these users are selected as described

above. When setting targets for the new users, we select targets that are achievable by

either MassConf or Simplex alone. Our goals are to select configurations for as many

of these new users as possible, while using the smallest possible number of experiments

on average.

Overall, we create 219 existing users. We start with 31 different workloads. Af-

ter selecting acceptable load intensities for each of theseworkloads, we produce 91

combinations. By defining reachable targets for each workload, we get to 219 com-

binations. We also create 195 new users, starting with 25 different workloads. When

load intensities are considered, we reach 66 combinations.Finally, the addition of the

reachable targets brings us to 195 combinations.

As one would expect, our population of users is quite diverse. For example, we

have a user withFSF = 100% and a load intensity of 400 requests/second that observes

a response time of 125 ms, assuming the default Apache configuration. A second user

93

requestsFLF = 100% at 87 requests/second for a response time of 278 ms, while a

third user requestsFCGI = 100% at 80 requests/second for a response time of 174 ms.

Note that our evenly spread and non-overlapping populations of users represent a

pessimistic scenario for MassConf. The reason is that any concentration of users in

specific parts of the workload-intensity-target space would increase the likelihood that

(1) many users would deploy the same configuration; and (2) many users could be

satisfied by each configuration. These are the two basic premises behind MassConf, as

mentioned in Section 4.1 and illustrated in Figures 4.1 and 4.2.

Finally, note that, for simplicity, we assume that all usershave selected their config-

urations with the goal of lowering response time and belong to the same environment

cluster. (In fact, in our experiments, all users use the samehardware and low-level soft-

ware environment. Although it would have been interesting to investigate the effect of

slight environment variations, this assumption doesnotskew our results. The reason is

that, in the real world, there are many more users per environment than environments,

just like in our experiments.) Because MassConf operates onclusters independently,

our results extrapolate trivially to scenarios with multiple clusters.

Running experiments. Our experiments are run on two Dell 2650 machines. Each

machine has one Intel Xeon CPU (2.80 GHz), 2 GB of memory, and a7200 rpm disk.

One machine hosts an HTTP client emulator and the other the Apache Web server

(version v2.0.4). The machines run Linux 2.6.18 and are linked by a 100-Mbit Ethernet

switch.

Using the client emulator, multiple clients concurrently send requests to the server.

During each experiment, a pre-defined workload is sent to theserver at a fixed rate,

i.e. the pre-defined load intensity for that experiment. Theinter-request time follows a

Poisson distribution. At the end of each experiment, the emulator reports the average

response time and throughput.

94

10

20

30

40

50

60

70

%
 o

f
N

e
w

 U
se

rs
 R

e
so

rt
in

g
 t

o
 S

im
p

le
x

0

10

20

30

40

50

60

70

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

%
 o

f
N

e
w

 U
se

rs
 R

e
so

rt
in

g
 t

o
 S

im
p

le
x

Number of Existing Users

Figure 4.5: Bootstrapping in MassConf.

4.3.2 Understanding Bootstrapping

MassConf becomes most useful when the population of existing users has “stabilized”

as a good representation of the new users to come, i.e. the probability that MassConf

will have to resort to Simplex has become relatively small. This point occurs only

when MassConf has gathered enough configurations.

Figure 4.5 illustrates the bootstrapping process. The figure assumes that MassConf

is about to configure a new user, after a certain number of existing users have joined the

system. The figure plots the probability that MassConf will have to resort to Simplex

for the new user, as a function of the number of existing userswho have already joined.

We compute each probability by assessing the fraction of ournew users that would

require Simplex to run given the set of existing users. Sincethe state of MassConf at

each point depends on exactly which existing users have joined, we plot the average

fraction from 10 different (random) arrival orders.

As one would expect, the probability of needing Simplex is high when the number

of existing users who have joined the system is small. As thisnumber increases, the

95

20

40

60

80

100

120

C
u

m
u

la
ti

v
e

 P
o

p
u

la
ri

ty

All

CGI-intensive

LargeFile-intensive

SmallFile-intensive

0

20

40

60

80

100

120

1 5 9 13 172125 293337 414549535761

C
u

m
u

la
ti

v
e

 P
o

p
u

la
ri

ty

Configuration Index

All

CGI-intensive

LargeFile-intensive

SmallFile-intensive

Figure 4.6: Popularity of CGI-intensive, large-file-intensive, small-file-intensive work-
loads, and all workloads.

probability falls sharply. Beyond roughly 37 existing users, the probability of needing

Simplex falls below 20%. At that point, we can say that MassConf had been boot-

strapped.

4.3.3 Understanding Ranking

Popularity. Popularity refers to how often an exact set of parameter values appears

in a collection of configurations. For example, if the set of values{200, 17, 3, 1000}

for four relevant parameters appears in 12 out of 20 configurations, we say that this

configuration has 60% popularity. Any configuration that appears a smaller percent-

age of times is considered less popular than this one. Popularity-based ranking ranks

configurations based solely on their popularity.

Figure 4.6 illustrates the popularity of the configurationsthat met the performance

targets for our existing users. The figure plots the popularity for workloads domi-

nated by small files, large files, and CGI requests, as well as the popularity when all

workloads are considered together. We define a workload to beCGI-intensive when

96

10

20

30

40

50

60

70

80

N
u

m
b

e
r

o
f

N
e

w
 U

se
rs

0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

N
u

m
b

e
r

o
f

N
e

w
 U

se
rs

Configuration Index

Figure 4.7: Popularity ranking and number of new users that can be satisfied by each
configuration.

FCGI ≥ 50%. A workload is large-file-intensive whenFLF (1−FCGI) ≥ 50%, whereas

it is small-file-intensive when(1 − FLF)(1 − FCGI) ≥ 50%. On the X-axis, the figure

shows the index of the unique configurations in decreasing order of popularity (from

left to right). On the Y-axis, the figure shows the cumulativepopularity of the configu-

rations on the X-axis. The leftmost point of each curve is thedefault configuration.

The figure confirms one of the basic premises of MassConf, namely that certain

configurations work well for many existing users, despite our pessimistic assumptions

about the population of existing users. Specifically, we cansee that the default con-

figuration indeed works well for a large fraction of users. Inaddition, the fact that

the curves are not straight lines shows that other configurations, besides the default

one, are used by multiple users. Moreover, the figure shows that the configuration

popularity of the three types of loads is quite different. Large-file-intensive workloads

show the least amount of popularity, whereas small-file-intensive workloads show the

most. These observations suggest that it is harder to configure the large-file-intensive

workloads than others. Nevertheless, MassConf has potential to greatly benefit users

97

with these types of workloads, as shown by the curve that accounts for all workloads

together.

The other side of the coin.To fully understand ranking, we have to consider its impact

given a population of new users. As we have suggested, ranking configurations based

on popularity only may hide the fact that very good configurations just happen to be

unpopular. Figure 4.7 illustrates this effect clearly. On the X-axis, the figure lists the

index of each existing configuration in popularity-based order (the most popular on the

left, the least popular on the right). Only the default configuration (index #0) is not

listed. On the Y-axis, the figure lists the number of new usersin our population that

could be satisfied by each configuration.

The default configuration can satisfy the performance targets of 66 new users. As

the figure shows, there is another configuration (#50) that can satisfy even more new

users (70). Unfortunately, this configuration appears verylate, i.e. it is very unpopular.

This means that 49 other configurations would be tried beforereaching this very good

one. A similar observation can be made of configuration #20, which can satisfy 58 new

users. Moving either (or both) of these configurations up theranking would allow many

new users to be configured with a smaller average number of experiments. In contrast,

the two most popular configurations can only satisfy 17 and 11new users. These

observations clearly suggest that the popularity-based ranking can cause a higher than

necessary number of experiments.

4.3.4 Experimental Evaluation

We now turn to evaluating the use of MassConf for configuring new user installations.

We study two scenarios. In the first, we initialize MassConf with configurations from

our 219 existing users and use it to configure our 195 new usersto meet their response-

time targets. In the second scenario, we initialize MassConf with configurations from

1/3 of our existing user population chosen at random. After this initialization phase,

98

we use MassConf to configure our new users and integrate another 1/3 of our existing

users (again chosen randomly) at the same time. The order of these user arrivals is

also random. To mimic the fact that some users may decide not to join, the final 1/3 of

existing users are not used in this scenario.

To evaluate MassConf in these scenarios, we compare its ranking adaptation algo-

rithms to popularity-based ranking. In popularity-based ranking, the ranking changes

whenever the selection of an existing configuration causes the popularity ordering to

change; more popular configurations appear first. New configurations (found by Sim-

plex) are added to the end of the ranking, as they are the leastpopular.

To put the results in context, we also compare them against Simplex (running on

its own and starting from the default configuration). In addition, we present results for

the “optimal” static ranking, i.e. the static ranking that generates the smallest possible

number of experiments in configuring our population of new users. This ranking sorts

the configurations in decreasing order of number of (unique)new users that they sat-

isfy; selecting a configuration for a new user does not alter this order. Obviously, the

optimal ranking can only be determined because we know the entire set of new users

in advance, which is impossible in practice. We present results for the optimal ranking

simply as a lower bound on the number of experiments.

Next, we discuss each of the arrival scenarios in turn.

First Scenario.

We make several observations from our experiments with the first scenario:

1. MassConf successfully reached the performance targets of all new users.Out of

our 195 new users, 66 were able to meet their response-time targets using the default

configuration. MassConf was able to configureall 129 new users that could not use the

default configuration. When MassConf is not allowed to resort to Simplex (MassConf-

without-Simplex), it is able to configure 122 of these new users. Two out of the 7

new users that MassConf-without-Simplex cannot configure have light workloads and

99

Number of Popularity MassConf MassConf MassConf Optimal
Experiments Ranking Adapt-slow Adapt-fast Adapt-fastest Static

Total 1519 2383 1380 1272 873
Avg. 11.8 18.5 10.7 9.9 6.8
Max. 84 84 84 84 84

Table 4.1: MassConf vs. popularity for 129 new users.

Number of Popularity MassConf MassConf MassConf Optimal
Experiments Ranking wo Simplex wo Simplex wo Simplex Static

wo Simplex Adapt-slow Adapt-fast Adapt-fastest wo Simplex
Total 1023 1887 884 776 377
Avg. 8.4 15.5 7.2 6.4 3.1
Max. 64 60 59 59 12

Table 4.2: MassConf-without-Simplex vs. popularity for 122 new users for which both
approaches reached the targets.

seek to achieve 5% better performance than the default configuration can produce. The

other 5 new users had higher targets and missed them by several percentage points.

2 and 3. Adaptive ranking beats popularity-based ranking. The faster the adap-

tive algorithm promotes configurations, the better.Table 4.1 summarizes the statis-

tics for our new users. Table 4.2 summarizes the statistics for the case in which Mass-

Conf (with popularity-based or adaptive ranking) is not allowed to resort to Simplex.

For this latter table, we only show results for the 122 new users that MassConf-without-

Simplex can configure. Since the behavior of the adaptation algorithms depends on the

exact sequence in which new users join the system, for both tables we generated 10

random sequences and averaged the results.

Both tables show that two adaptive ranking approaches (Adapt-fast and Adapt-

fastest) require fewer experiments on average than the popularity-based ranking. The

analysis of adaptive ranking from the previous section suggested this result. The faster

selected configurations are promoted up the ranking, the smaller the average number

of experiments per user.The best adaptive ranking (Adapt-fastest) runs up to 24%

100

fewer experiments per user than popularity-based ranking on average. In contrast,

Adapt-slow actually requires up to 85% more experiments peruser than popularity-

based ranking on average. There are two effects at play here:(1) on the positive side,

moving a good configuration up enables it to satisfy more users; and (2) on the negative

side, it may increase the number of experiments required when a configuration that was

moved down is selected. When moving up one slot at a time, onlya few extra users

can be satisfied by the promoted configuration, so the negative effect becomes more

prominent. When moving configurations up faster, the good configurations can satisfy

many extra users, making the positive effect more prominent.

The fact that Adapt-fastest is the best approach confirms thetwo observations that

motivated our MassConf design: one configuration works wellfor multiple users and

multiple configurations work well for each user. If only one configuration met each

user’s target, Adapt-fastest would make the worst decision. At the other extreme, if

all configurations met all new users’ targets, all approaches would produce the same

number of experiments, i.e. 1.

When we compare MassConf Adapt-fastest to the optimal (but unrealistic) static

ranking, we find that our system is 31% slower (Table 4.1). Nevertheless, as shall be

seen, MassConf+ actually performs better than this optimalranking, because it shortens

the list of configurations to be tried. (We shall compare MassConf+ to a different

optimal static ranking below.)

4. MassConf successfully reached the performance targets for many more users

than Simplex. As mentioned above, MassConf was able to configure all 129 newusers

that could not use the default configuration. In contrast,Simplex failed to configure 74

of these new users.Even when MassConf is not allowed to resort to Simplex, it still can

configure 67 more new users than Simplex (122 vs. 55). The reason Simplex cannot

configure these new users is that it gets stuck at local minima, trying configurations

that lead to very similar performance.

The ability of MassConf and MassConf-without-Simplex to configure many more

101

Number of Simplex Popularity MassConf MassConf MassConf Optimal
Experiments Only Ranking Adapt-slow Adapt-fast Adapt-fastest Static

Total 1023 818 978 762 730 639
Avg. 18.6 14.9 17.8 13.9 13.3 11.6
Max. 112 84 84 84 84 84

Table 4.3: MassConf vs. Simplex for the 55 new users for whichSimplex reached the
targets.

new users than Simplex is particularly interesting since our existing user configurations

were originally derived using Simplex. This result reinforces the point that Simplex has

to search a large space of configurations each time it is used and so, for any particular

search, it may miss some “good” configurations. MassConf is completely different in

that it is guided by the tuning efforts of existing users and its adaptive ranking algo-

rithms.

5. MassConf is faster than Simplex. To properly compare the number of exper-

iments required by MassConf and Simplex, we consider only the subset of 55 new

users for whichbothMassConf and Simplex were able to achieve the performance tar-

gets. Table 4.3 summarizes the statistics for these new users. Again, these results are

the average over 10 random sequences. The table shows that the three adaptive ranking

approaches require between 13.3 and 17.8 experiments per user on average. The best

approach, Adapt-fastest, requires 13.3 experiments on average, which is28% faster

than Simplex.

6. MassConf+ improves significantly on MassConf.MassConf runs a significant

number of experiments when the chosen configurations are either at the tail of the

ranking or not in the ranking at all. As an example of the latter scenario, MassConf un-

successfully tries all 64 configurations before resorting to Simplex for the 7 new users’

targets that were not met by MassConf-without-Simplex. MassConf+ was designed

exactly to reduce the number of unsuccessful experiments inMassConf.

102

Number of Popularity MassConf MassConf+ Optimal+
Experiments Ranking Adapt-fastest Adapt-fastest Static

Total 1529 1262 793 528
Avg. 11.9 9.8 6.1 4.1
Max. 84 84 37 34

Table 4.4: MassConf+ vs. MassConf for 129 new users. The popularity and Mass-
Conf results here are different than in Table 4.1 because this table only considers one
sequence of arrivals.

Number of Simplex Popularity MassConf MassConf+ Optimal+
Experiments Only Ranking Adapt-fastest Adapt-fastest Static

Total 1023 818 734 336 294
Avg. 18.6 14.9 13.3 6.1 5.3
Max. 112 84 84 34 34

Table 4.5: MassConf+ vs. Simplex for the 55 new users for which Simplex reached
the targets. The popularity and MassConf results here are different than in Table 4.3
because this table only considers one sequence of arrivals.

To evaluate MassConf+, we investigated a number of sequences of new user ar-

rivals. The results we discuss next represent a randomly selected such sequence. For

that sequence, MassConf+ decided to cut off the tail of the ranking after having seen 28

new users. (Recall that MassConf+ selects this point after having seen 10 consecutive

decreases in average number of experiments per new user.) After the 28th new user was

configured, MassConf+ also decided to cut the ranking off at the 14th configuration.

(Recall that the cut off point is the minimum size that was required to satisfy 80% of

the 28 new users.) Starting with the 29th new user, MassConf+only tries a maximum

of 14 configurations for each new user before resorting to Simplex.

Using these thresholds, MassConf+ is able to find configurations that meet the

targets ofall the 129 new users that cannot use the default configuration. Table 4.4

summarizes the results of MassConf+, while comparing them against popularity-based

ranking and MassConf. The Optimal+ system ranks configurations in the best possible

order and cuts the ranking off at the optimal point (12 configurations). Again, Optimal+

103

is unrealistic and is presented simply as a lower bound on thenumber of experiments.

The table shows that MassConf+ reduced the overall number ofexperiments by

469, compared to MassConf. As a result of this reduction,MassConf+ finds configura-

tions 37% and 48% faster than MassConf and popularity-basedranking, respectively,

on average. In addition, it cuts the maximum number of experiments for any new

user to less than half of those performed by MassConf and popularity-based ranking.

Comparing these MassConf+ results with the optimal rankingresults of Table 4.1, we

can see that our system actually performs better. The reasonis that MassConf+ pre-

vents a large number of experiments by cutting off the ranking. Compared to Optimal+

ranking, MassConf+ incurs 33% more experiments.

Table 4.5 compares MassConf+, MassConf, and Simplex for the55 new users for

which Simplex reached the targets. The table shows thatMassConf+ finds config-

urations 67% faster than Simplex, again while significantly reducing the maximum

number of experiments for any new user.

To understand the impact of its two thresholds, we performeda number of sensi-

tivity experiments with MassConf+ Adapt-fastest, assuming the entire set of 129 new

users and the same sequence of new user arrivals. For the firstthreshold, we consid-

ered 5 and 15 continuous decreases of the average number of experiments per new user,

besides the default setting of 10 continuous decreases. Forthe second threshold, we

considered cutting off the list at the size that would satisfy 70% and 90% of the new

users, besides the default setting of 80%.

When the first threshold is set to 5, the numbers of new users resorting to Simplex

are 88, 88, and 71, when the second threshold is set to 70%, 80%, and 90%, respec-

tively. However, regardless of the setting of the second threshold, MassConf+ doesnot

reach the targets of all new users. The reason is that the ranking had not been trained

enough before it was cut off. In contrast, when the first threshold is 15, MassConf+

always reaches the new users’ targets. For this first threshold, the total numbers of

experiments for the different settings of the second threshold are 604, 607, and 846,

104

Number of Popularity MassConf MassConf+ Optimal+
Experiments Ranking Adapt-fastest Adapt-fastest Static

Total 1447 1250 717 528
Avg. 11.2 9.7 5.6 4.1
Max. 70 66 37 34

Table 4.6: MassConf+ vs. MassConf for 129 new users in the second scenario.

respectively. In this case, MassConf+ achieves low experiment totals for 70% and 80%

settings of the second threshold. Overall, these results suggest that it is most efficient to

select a relatively low value for the second threshold (e.g., 70%), as long as the ranking

is trained for long enough by picking a relatively high valuefor the first threshold (e.g.,

10 or higher). In fact, note that picking a value of 15 for the first threshold would lead

to significantly better MassConf+ results than those in Tables 4.4 and 4.5.

Second Scenario.

One could argue that the results of our first scenario above were optimistic in the

sense that all existing users joined MassConf before any newuser had to be configured.

To evaluate MassConf in more pessimistic circumstances, wenow turn to our second

scenario. Recall that, in this scenario, we initialize MassConf with configurations from

only a random 1/3 of our existing user population. After thisinitialization, the new

users start arriving concurrently with another random 1/3 of the existing users. The

final 1/3 of the existing users never joins.

From this scenario, we can make two observations:

7 and 8. The benefits of MassConf and MassConf+ remain significant. The com-

parisons between systems exhibit the same trends as before.Table 4.6 compares

MassConf and MassConf+ with popularity-based ranking and Optimal+ ranking for

our population of 129 new users. These results confirm the trends we observed from

the first scenario. Specifically, (1) both MassConf and MassConf+ can configure all

new users, even in the absence of a large fraction of existingusers; (2) MassConf+ re-

duces the number of experiments by 42%, compared to MassConf; (3) MassConf and

105

Number of Simplex Popularity MassConf MassConf+ Optimal+
Experiments Only Ranking Adapt-fastest Adapt-fastest Static

Total 1023 747 702 365 294
Avg. 18.6 13.6 12.8 6.6 5.3
Max. 112 70 66 37 34

Table 4.7: MassConf+ vs. Simplex for the 55 new users for which Simplex reached the
targets in the second scenario.

MassConf+ involve 14% and 50% fewer experiments than popularity-based ranking,

respectively; and (4) MassConf+ runs only 27% more experiments than the unrealistic

Optimal+ ranking algorithm.

Moreover, we can see that the MassConf, MassConf+, and popularity-based rank-

ing results are actually better in absolute terms than those forthe first scenario(Ta-

ble 4.4). The reason is that some of the configurations that cannot help many new users

are never tried, as the corresponding existing users eitherjoin the system too late or not

at all.

Table 4.7 compares MassConf and MassConf+ to Simplex for the55 new users

that the latter was able to configure. First, note that MassConf and MassConf+ can

configure many more new users than Simplex, even under adverse conditions that have

no effect on Simplex. In addition, the table shows that our systems perform 31% and

65% fewer experiments than Simplex, respectively. Again, these results exhibit the

same trends as in the first scenario.

4.4 Extrapolating Beyond The Case Study

The results from the previous section are very positive, butthey are specific to our

Apache case study. In this section, we qualitatively extrapolate from them byab-

stracting awaythe server software, the high-level tuning goal, the workloads, the load

intensities, and the target behaviors.

The extrapolation is based on the observation that three aspects of the user-configuration

106

space matter most in determining the number of experiments for a sequence of new user

arrivals: (1) the number of new users that can be satisfied by each configuration; (2)

the number of configurations that can satisfy each new user; and (3) the number of new

users for which MassConf would have to resort to Simplex.

Adapt-fastest and Adapt-fast behave better than Adapt-slow and popularity-based

ranking when there is significant potential for re-use of theconfigurations that are

promoted forward in the ranking. This potential increases when aspects #1 and #2

above are skewed towards a subset of configurations and new users, respectively, and

the tails of the distributions are short. In other words, there-use potential increases

when (a) a significant fraction of configurations can satisfymany new users and (b) a

significant fraction of new users can be satisfied by many configurations. When the

amount of skew is limited or tails are long, Adapt-slow should perform best.

Compared to Simplex, MassConf can benefit from configurationre-use to achieve a

lower average number of experiments per new user. Moreover,only a small fraction of

new users should require MassConf to resort to Simplex (aspect #3), since the existing

and new user populations should have the same characteristics (after bootstrapping).

In our Apache study, we saw significant skew, short tails, andlimited use of Sim-

plex by MassConf. Specifically, aspect #1 can be approximated as a power-law func-

tion, in which the configuration that can satisfy the most newusers satisfies 70 out of

129 such users. Aspect #2 of our Apache study can be approximated as an exponential

function, in which the new user that can be satisfied by the most configurations can be

satisfied by 52 out of 64 configurations. MassConf had to resort to Simplex for only 7

new users.

We expect real user populations to benefit from MassConf evenmore than in our

Apache study. The reason is that our synthetic population isevenly spread across

the workload-intensity-target space; greater concentration in part of the space would

increase the potential for configuration re-use. With high potential for re-use, either

Adapt-fastest or Adapt-fast would be a good choice; the vendor can select the best

107

approach after configuring a number of new users.

4.5 Summary

In this chapter, we addressed the problem of configuring enterprise software efficiently.

Specifically, we proposed MassConf, a system that uses existing configurations to au-

tomatically configure the software for new users. The configuration process relies on

dynamic adaptation of the order of configurations (ranking)to be tried. To evaluate

MassConf, we used it to configure Apache for performance for apopulation of users.

Our results compared three ranking adaptation algorithms to popularity-based ranking.

The results showed that our fastest adaptation leads to the smallest number of experi-

ments. The results also showed that MassConf is able to configure more users in fewer

experiments than Simplex, an efficient optimization algorithm.

Note that the MassConf results we presented above were obtained for systems that

use the same hardware and low-level software, i.e. a single low-level environment. Fur-

thermore, we made the assumption that, in practice, there would be many more users

per cluster than clusters. Unfortunately, it is difficult toverify this assumption without

access to proprietary data from real software vendors. In addition, it is difficult to pre-

dict the impact of our single-environment experiments on the relative performance of

our ranking algorithms. Although we believe that our assumption and results should

hold in practice, it is conceivable that they would have to beadjusted. We hope that

our study will encourage software vendors to repeat our study for their real user data.

Future work. Our future work could address the benefits of MassConf for multi-tier

services, rather than stand-alone servers. In particular,we could investigate whether

configurations exhibit strong popularity across these systems and what is the best rank-

ing approach for new service installations.

108

Chapter 5

Related Work

Our work relates to previous efforts in using modeling, feedback control, machine

learning, and sandboxing; simulation and emulation of datacenters; and scaling down

data centers; all in the context of resource and energy management of data centers.

We also make contributions related to configuration parameter relationships; strate-

gies for configuration management; and performance tuning;all in the context of In-

ternet services. Next, we discuss the related works in turn.

5.1 Modeling and Other Approaches for Managing Data Centers

Modeling, simulation, emulation, feedback control, and machine learning. State-

of-the-art management systems rely on analytical modeling, simulation, emulation,

feedback control, and/or machine learning to at least partially automate certain man-

agement tasks, e.g. [9, 19, 25, 27, 31, 32, 55, 64, 71, 75].

More specifically, many works have considered resource management in non-virtualized

hosting centers with such goals as service differentiation, increasing revenue, or in-

creasing resource utilization [4, 15, 36, 60, 76]. These works did not benefit from the

flexibility, performance and fault isolation, and migration capability that VMs enable.

JustRunIt relies on virtualization to enable resource management through experimen-

tation.

In a virtualized hosting center, Padalaet al. [52, 53] combined analytical modeling

and feedback control to adaptively assign resources to VMs,while meeting all SLAs.

109

As aforementioned, resource management using modeling involves extensive human

labor, whereas feedback control has limitations regardingglobal management of re-

sources and energy management in the face of multi-core CPUs. Our work relies on

neither modeling nor feedback control.

Woodet al. [83] employ resource usage monitoring and/or application-level SLA

monitoring to find resource “hot spots” in VMs. When a hot spotis detected, they es-

timate the peak resource needs of the corresponding VM, and compute a new mapping

of VMs to physical machines using a greedy bin-packing algorithm and the resource

information about all VMs. The estimation of peak resource needs involves analytical

modeling and/or simpleonline trial-and-error. In contrast to JustRunIt, they did not

consider energy management or local resource reassignment. Furthermore, we evalu-

ate resource allocations offline (through experimentationrather than modeling) to avoid

interfering with the applications unnecessarily.

CloudScale [61] uses online resource demand prediction, online resource cap changes,

and VM migration to minimize SLA violations. When predictions are inaccurate, ten-

tative remedial actions are taken again online. In contrast, JustRunIt’s approach is to

evaluate resource allocations offline, without affecting the production system, until a

more definitive allocation decision is made.

Many works have considered energy management in homogeneous [28, 34, 54, 56]

and heterogeneous [32, 42, 58] non-virtualized Internet services. More related to our

work, Chaseet al. [15] and Chenet al. [18, 19] studied energy management for

hosting centers. In contrast with these works, our approachis to assess the potential

energy savings of power management mechanisms and policiesthrough sandboxed

experimentation, rather than using modeling or online feedback control.

In summary, modeling has complexity and accuracy limitations. Simulation has

some of the same limitations as modeling, such as the need forre-validation as the

system evolves, and high slow-down factors as compared to experiments. Besides the

need for re-validation, emulation requires enough hardware to realistically represent

110

the real data center. Our experiment-based approach to management has none of these

limitations.

Feedback control is not applicable to many types of tasks. Although machine learn-

ing is useful for certain management tasks, such as fault diagnosis, it also has applica-

bility limitations. The problem is that machine learning can only learn about system

scenarios and configurations that have been seen in the past and about which enough

data has been collected. For example, it applies to neither of the tasks we study in Jus-

tRunIt. Nevertheless, machine learning can be used to improve the interpolation done

by JustRunIt, when enough data exists for it to derive accurate models. In summary,

this dissertation takes a fundamentally different approach to management; one in which

accurate experiments replace modeling, feedback control,and machine learning.

Scaling down data centers. Guptaet al. [29] proposed the DieCast approach for

scaling down a service. DieCast enables some management tasks, such as predicting

service performance as a function of workload, to be performed on the scaled version.

Scaling is accomplished by creating one VM for each PM of the service and running

the VMs on an offline cluster that is an order of magnitude smaller than the online

cluster. Because of the significant scaling in size, DieCastalso uses time dilation [30]

to make guest OSes think that they are running on much faster machines. For a 10-fold

scale down, time dilation extends execution time by 10-fold.

Although DieCast executes the VMs natively, it only simulates disks and emulates

switches. It also relies on application-specific workload generators. DieCast and Jus-

tRunIt have fundamentally different goals and resource requirements. First, JustRunIt

targets a subset of the management tasks that DieCast does; the subset that can be

accomplished with limited additional hardware resources,software infrastructure, and

costs. In particular, JustRunIt seeks to improve upon modeling by leveraging native

execution. Because of time dilation, DieCast takes excessively long to perform each

experiment.

111

Second, JustRunIt includes infrastructure for automatically experimenting with ser-

vices, as well as interpolating and checking the experimental results. Third, JustRunIt

minimizes the set of hardware resources that are required byeach experiment with-

out affecting its running time. In contrast, to affect execution time by a small factor,

DieCast requires an additional hardware infrastructure that is only this same small fac-

tor smaller than the entire online service.

Finally, JustRunIt is simpler and more practical than DieCast, as it does not require

additional emulators, simulators, or workload generators. The large and complex hard-

ware and software infrastructures of DieCast pose many management challenges and

substantial extra (labor and energy) costs.

Sandboxing and duplication for managing data centers.A few efforts have pro-

posed related sandboxing and request-duplication infrastructures for managing data

centers. Specifically, [41, 45, 46] considered validating operator actions in an Inter-

net service by using request duplication to a sandboxed extension of the service. For

each request, if the replies generated by the online environment and by the sandbox

ever differ during a validation period, a potential operator mistake is flagged. Further,

Tjang [74] validated operator actions against predefined models. Tanet al. [69] consid-

ered a similar infrastructure for verifying file servers. Ding [24] uses Splitter to detect

potential problems by comparing results generated from theproduction and migrated

applications in the virtualized IT environments.

Our work differs from these previous efforts both in terms ofgoals and software

infrastructure. Instead of operator-action validation, our goal is to experimentally eval-

uate the effect of different resource allocations, parameter settings, and other potential

system changes (such as hardware upgrades) in data centers.Thus, our work is much

more broadly applicable than previous works.

As a result, our infrastructures are quite different than previous systems. Without

workload duplication, ACI proposed to configure an Internetservice backed by mul-

tiple data centers automatically, by isolating one center at a time (during periods of

112

light load) and experimentally testing different values for the configuration parameters

of the (user-level) servers that implement the service. Moreover, JustRunIt is the first

system that may explore a large number of scenarios that differ from the online system,

while extrapolating results from the experiments that are actually run, and verifying its

extrapolations if necessary. These differences also make JustRunIt more practical than

previous infrastructures.

5.2 Configuration Management and Performance Tuning

Configuration management.Most previous works in configuration management seek

to automatically detect and correct misconfigurations. Validation [41] detects many

classes of operator mistakes, including misconfigurations, in Internet services. The

Chronus system [81] seeks to identify misconfigurations in stand-alone computers that

go undetected for a period of time. Also targeting stand-alone computers, the Glean

system [37] infers correctness constraints for configuration entries contained in the

Windows Registry. Along similar lines, the Strider system [79] compares the reg-

istry of a misconfigured computer with a “healthy” registry snapshot to detect potential

misconfigurations. Later, a database of known misconfigurations support the user in

correcting the misconfiguration. (Interestingly, [79] finds that between 80% and 95%

of the configuration of desktop machines does not change overtime, which is along

the same lines as our observation about Internet services described in Section 3.1.) To

eliminate the need for manually selecting correct snapshots, PeerPressure [78] com-

pares the registry of a misconfigured computer to those of a large sample of computers

and uses statistical techniques to correct misconfigurations to conform to the majority

of samples. ConfAid [5] uses dynamic information flow analysis to identify the likely

root cause of misconfigurations.

ACI differs significantly from these previous systems as it generates the proper

113

configuration files whenever necessary, obviating the need to detect and correct mis-

configurations. Furthermore, these previous systems do notreduce the amount of work

required of operators to configure each machine. In contrast, ACI (almost) completely

eliminates operator involvement in many common configuration tasks.

Furthermore, these previous works have focused on stand-alone systems, except

for validation, which like our work targets Internet services. Finally, these systems

can detect misconfigurations in application and operating system state, whereas ACI

focused solely on application configurations. Nevertheless, our work can benefit from

these previous systems in their ability to detect and perhaps correct misconfigurations

of the operating system state.

Like our infrastructure ACI, several other systems have proposed to generate and

manage configurations automatically, e.g. [2, 3, 12]. Cfengine [12] is perhaps the most

widely used configuration management tool. It provides high-level language directives

that describe how classes of machines should be configured ina large installation. An

agent on each machine contacts a central configuration repository to collect the specific

directives for the machine. With similar goals and approach, LCFG [3] holds declar-

ative descriptions of the “aspects” of the installation’s configuration. These aspects

are compiled into “profiles” for each machine. A script on each machine creates the

configuration based on its profile.

A key difference between ACI and these systems is that they donot view the ma-

chines in a cluster as forming a single service. As a result, they make it hard or impos-

sible to represent configuration changes that are prompted by remote components of

the service. Furthermore, these systems provide support for machine installation and

startup, whereas ACI assumes that machines are already running the operating system

and focuses solely on service management and evolution. In these respects, ACI is

more closely related to SmartFrog [2].

114

Like Cfengine, LCFG, and ACI, SmartFrog also includes a custom interpreted lan-

guage. The language is used to describe, in a declarative manner, the software com-

ponents that form the distributed application or service, their configuration parameters,

and how they should connect to each other. SmartFrog also includes a runtime system

to activate and maintain the desired configuration, and a component model defining the

interfaces that each component should implement to allow SmartFrog to manage it.

A basic difference between SmartFrog and ACI is that we rely heavily on templates

that are similar to the actual configuration files, using procedural generation scripts

to modify these templates. This difference is largely philosophical; we feel that it

is easier to describe (changes to) configurations in a procedural manner, as in regular

systems programming. More importantly, we quantitativelyevaluate the manageability

benefits of our infrastructure for a realistic service. We are not aware of any quantitative

evaluation of SmartFrog. Furthermore, ACI generates configurations that maximize a

specific metric, relying on explicit configuration parameter relationships. SmartFrog

does not represent or leverage such relationships.

Performance tuning. Several papers, e.g. [16, 20, 23, 26, 59, 65, 73, 82], have consid-

ered performance tuning of Internet services. Diaoet al. [23] studied the performance

tuning of a Web server, using an agent-based feedback control system. Chung and

Hollingsworth [20] considered a three-tiered service and demonstrated that no single

assignment of machines to tiers performs well for all types of workloads. Using the

Simplex algorithm [43], they find the ideal machine-tier assignment for each workload.

Also for a three-tier system, [59] proposed to use an evolutionary algorithm for tuning

server configurations. Thonangiet al. [73] consider the problem of exploring a large

parameter space within a limited budget of experiments. Again considering multi-tier

services, Stewart and Shen [63, 65] developed profile-basedmodels to predict service

throughput and response time. They also explored how to accomplish typical system

management tasks, such as placing software components for high performance, using

their models and offline Simulated Annealing [38]. Similarly, several works studies

115

performance tuning for database systems [6, 68, 80]. Babu [6] also considered experi-

ments for database configuration tuning independent of our work.

Comparing to previous approaches for performance tuning ofInternet services,

ACI has two key distinguishing features: it starts the tuning process as a result of

service changes that require the regeneration of configuration files, and it reduces the

search space by creating and leveraging a parameter dependency graph.

Some previous works have proposed sophisticated approaches for selecting the ex-

periments to run when benchmarking servers [62] or optimizing their configuration

parameters [73]. Such approaches are largely complementary to our work. Specifi-

cally, they can be used to improve experiment-based management in two ways: (1)

automated management systems can use them to define/constrain the parameter space

that JustRunIt should explore; or (2) they can be used as new heuristics in JustRunIt’s

driver to eliminate unnecessary experiments.

Leveraging existing data on configurations. Several previous works have investi-

gated how to leverage others’ configurations to diagnose andtroubleshoot misconfigu-

rations [1, 66, 78, 79]. Strider [79] compares the Windows registry of a misconfigured

computer with a known healthy registry state to diagnose misconfigurations. To elim-

inate the need for manually selecting correct states, PeerPressure [78] compares the

registry of a misconfigured computer to those of a populationof other computers in

the same installation, and uses statistical techniques to rank the configuration parame-

ters that may be the root-cause of the misconfiguration. PeerPressure troubleshoots the

misconfiguration by coercing the culprit parameters to the values used by the majority

of properly configured users. Along similar lines, NetPrints [1] diagnoses misconfig-

urations in network applications by applying decision-tree-based learning on the con-

figuration states of a population of users. Solutions to misconfigurations are stored as

signatures and can be used by other users to troubleshoot their systems. Autobash [66]

provides a set of interactive tools that help users and system administrators manage

116

configurations. Specifically, Autobash leverages previoususers’ experience by record-

ing their actions and replaying them on different systems speculatively. Su [67] further

automatically generates predicates for configuration troubleshooting from user traces.

Even though MassConf also relies on configuration information from a population

of users, it focuses on a completely different problem: configuration tuning; there are

no misconfigurations to troubleshoot. As detailed in Section 4.2, the impact of this

key difference is that our main focus has been on issues that have not been addressed

before, namely the study of adaptive ranking algorithms andthe average number of

experiments to which they lead. In fact, the specific and diverse characteristics of the

users’ workloads and their behavior targets mean that configuration information is also

diverse (i.e., coercion as in [78] does not apply) and prior actions from a user do not

produce the same results for another user (i.e., local experiments are necessary). For

these reasons, our main focus has been studying adaptive ranking algorithms and the

number of tuning experiments to which they lead on average. Neither of these issues

was considered by these prior works.

Similarly, Chenet al. [17, 16] proposed to obtain a Bayesian network as the

byproduct of the tuning process of a system and use this ”experience” to help con-

figuration tuning of the evolved system. Osogamiet al. [50, 51] focused on shortening

each experiment, rather than reducing the number of experiments.

MassConf differs from these works in four main ways: (1) it seeks to produce con-

figurations that meet the users’ target behaviors, rather than to find the best possible

configuration; (2) it relies on configuration information from a population of systems,

rather than a single system; (3) it relies on adaptive ranking algorithms to tune perfor-

mance efficiently; and (4) unless it needs to resort to Simplex, it tests existing config-

urations for new users, rather than trying to use experienceor dependencies to create

new configurations.

117

Chapter 6

Conclusion

The dissertation addresses an important problem, namely the management of data cen-

ters.Management includes a wide range of topics, includingperformance tuning, sys-

tem configuration, resource and energy management, and software and hardware up-

grades.

The dissertation proposed the notion of experiment-based management, which lever-

ages real systems and workloads to help understand and predict the system behavior.

The experimental results can be used for creating new configurations (as in MassConf),

for tuning configurations (as in ACI), or for resource management (as in JustRunIt).

The advantages of experiments are significant, compared to popular approaches such

as modeling and feedback control.

We addressed the key challenges in experiment-based management, namely how

to produce accurate experiments and limit the amount of resources and/or time used in

the experimentation. In JustRunIt, we leveraged virtualization technology to clone vir-

tual machines and answer what-if questions about them with minimal resource waste.

In ACI, we leveraged our proposed parameter dependency graph and optimization to

speed up reconfigurations, after systems evolve. In MassConf, we leveraged configu-

ration information from existing users of server software and search heuristics to meet

behavior targets. Our evaluations show that our systems canalways automate manage-

ment with a limited number of experiments. In some cases, we can also restrict the

number of machines used for the experiments.

118

As data centers become more complex and cloud computing becomes more pop-

ular, management will become an even greater challenge. In fact, approaches such

as modeling will likely become impractical due to the sheer complexity of the sys-

tems’ behaviors, the interactions between different partsof the systems, and the in-

ability of cloud providers to ”see” inside their customers’virtual machines. We hope

that our systems and positive results will encourage researchers to continue explor-

ing experiment-based management in these scenarios. For example, sandboxing and

reconfiguration will become more challenging as services incorporate an increasing

number of interacting tiers. The time spent running more complex experiments may

also become a concern for cloud providers who want to minimize the duration of SLA

violations. Further research along these avenues (e.g., [77]) will certainly pay off.

119

Vita

Wei Zheng

1997 - 2001 Wuhan University, Wuhan, China.

1991 - 2004 Wuhan University, Wuhan, China.

2004 - 2011 Ph.D. program in Computer Science, Rutgers University, New
Brunswick, New Jersey.

2004 - 2006 Teaching Assistant.

2006 - 2011 Graduate Assistant.

Selected Publications

2007 “Automatic Configuration of Internet Services.”. Wei Zheng, Ri-
cardo Bianchini, and Thu Nguyen. Proceedings of EuroSys’2007,
March 2007.

2009 “JustRunIt: Experiment-Based Management of Virtualized Data Cen-
ters”. Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose
Renato Santos, and Yoshio Turner. Proceedings of the USENIX
Annual Technical Conference, June 2009.

2011 “MassConf: Automatic Configuration Tuning By Leveraging User
Community Information”. Wei Zheng, Ricardo Bianchini, andThu
D. Nguyen. Proceeding of the International Conference on Perfor-
mance Engineering, March 2011.

120

References

[1] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and G. M.
Voelker. NetPrints: Diagnosing Home Network Misconfigurations Using Shared
Knowledge. InProceedings of the Symposium on Networked Systems Design and
Implementation, 2009.

[2] P. Anderson, P. Goldsack, and J. Paterson. SmartFrog meets LCFG: Autonomous
Reconfiguration with Central Policy Control. InProceedings of the Systems Ad-
ministration Conference, 2003.

[3] P. Anderson and A. Scobie. LCFG: The Next Generation. InUKUUG Winter
Conference, 2002.

[4] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster Reserves: A Mechanism for
Resource Management in Cluster-Based Network Servers. InProceedings of the
International Conference on Measurement and Modeling of Computer Systems,
2000.

[5] M. Attariyan and J. Flinn. Automating configuration troubleshooting with dy-
namic information flow analysis. InProceedings of the Symposium on Operating
Systems Design and Implementation, 2010.

[6] S. Babu, N. Borisov, S. Duan, H. Herodotou, and V. Thummala. Automated
experiment-driven management of (database) systems. InProceedings of the
Workshop on Hot Topics in Operating Systems, 2009.

[7] Banu. Tinyproxy. http://www.banu.com/tinyproxy/, 2008.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In Proceedings of the
ACM Symposium on Operating Systems Principles, 2003.

[9] S. Bouchenak, N. D. Palma, D. Hagimont, S. Krakowiak, andC. Taton. Auto-
nomic management of internet services: Experience with self-optimization. In
Proceedings of the International Conference on Autonomic Computing, 2006.

[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.Classfication and
Regression Trees. 1984.

[11] A. B. Brown, A. Keller, and J. L. Hellerstein. A Model of Configuration Com-
plexity and its Application to a Change Management System. In Proceedings of
the International Symposium on Integrated Network Management, 2005.

121

[12] M. Burgess. Cfengine: A site configuration engine. 1995.

[13] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible Database Clus-
tering Middleware. InProceedings of the USENIX Annual Technical Conference,
2004.

[14] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. Lam. The Collective: A
Cache-Based System Management Architecture. InProceedings of the Sympo-
sium on Networked Systems Design and Implementation, 2005.

[15] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle. Managing Energy
and Server Resources in Hosting Centers. InProceedings of the ACM Symposium
on Operating Systems Principles, 2001.

[16] H. Chen, W. Zhang, and G. Jiang. Experience Transfer forthe Configuration
Tuning in Large Scale Computing Systems. InPoster Session of the International
Conference on Measurement and Modeling of Computer Systems, 2009.

[17] H. Chen, W. Zhang, and G. Jiang. Experience transfer forthe configuration tun-
ing in large-scale computing systems.IEEE Transactions on Knowledge and
Data Engineering, 2011.

[18] S. Chen, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and W. H. Sanders.
Cpu gradients: Performance-aware energy conservation in multitier systems. In
Proceedings of the International Conference on Green Computing, 2010.

[19] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, andN. Gautam. Man-
aging Server Energy and Operational Costs in Hosting Centers. In Proceedings
of the International Conference on Measurement and Modeling of Computer Sys-
tems, 2005.

[20] I. Chung and J. K. Hollingsworth. Automated Cluster-Based Web Service Per-
formance Tuning. InProceedings of IEEE International Symposium on High-
Performance Distributed Computing, 2004.

[21] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live Migration of Virtual Machines. InProceedings of the Interna-
tional Symposium on Networked Systems Design and Implementation, 2005.

[22] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W.Zwaenepoel. Staged
Deployment in Mirage, an Integrated Software Upgrade Testing and Distribution
System. InProceedings of the ACM Symposium on Operating Systems Princi-
ples, 2007.

[23] Y. Diao, J. Hellerstein, S. Parekh, and J. Bigus. Managing Web Server Perfor-
mance with AutoTune Agent.IBM Systems Journal, 42(1), 2003.

122

[24] X. Ding, H. Huang, Y. Ruan, A. Shaikh, B. Peterson, and X.Zhang. Splitter:
a proxy-based approach for post-migration testing of web applications. InPro-
ceedings of the European Conference on Computer Systems, 2010.

[25] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-Based Resource
Provisioning in a Web Service Utility. InProceedings of the USENIX Symposium
on Internet Technologies and Systems, 2003.

[26] S. Duan, V. Thummala, and S. Babu. Tuning Database Configuration Parameters
with iTuned. InProceedings of International Conference on Very Large Data
Bases, 2009.

[27] T. Dumitras, P. Narasimhan, and E. Tilevich. To upgradeor not to upgrade: im-
pact of online upgrades across multiple administrative domains. InProceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, 2010.

[28] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-Efficient Server Clusters.
In Proceedings of the Workshop on Power-Aware Computing Systems, 2002.

[29] D. Gupta, K. Vishwanath, and A. Vahdat. DieCast: Testing Distributed Systems
with an Accurate Scale Model. InProceedings of the International Symposium
on Networked Systems Design and Implementation, 2008.

[30] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, G. M. Voelker, and A. Vahdat.
To Infinity and Beyond: Time-Warped Network Emulation. InProceedings of
the International Symposium on Networked Systems Design and Implementation,
2006.

[31] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria,and R. Bianchini. Mer-
cury and Freon: Temperature Emulation and Management for Server Systems.
In Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2006.

[32] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini. Energy Conser-
vation in Heterogeneous Server Clusters. InProceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2005.

[33] L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring Expression Data: Identifi-
cation and Analysis of Coexpressed Genes.Genome Research, 9(11), 1999.

[34] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dynamic Voltage Scaling in
Multi-tier Web Servers with End-to-End Delay Control.IEEE Transactions on
Computers, 56(4), 2007.

[35] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A Tool for Assessing Re-
silience to Human Configuration Errors. InProceedings of the IEEE Interna-
tional Conference on Dependable Systems and Networks, 2008.

123

[36] B. Khargharia, H. Luo, Y. Al-Nashif, and S. Hariri. Appflow: Autonomic
performance-per-watt management of large-scale data centers. InProceedings
of the International Conference on Green Computing and Communications and
International Conference on Cyber, Physical and Social Computing, 2010.

[37] E. Kiciman and Y.-M. Wang. Discovering Correctness Constraints for Self-
Management of System Configuration. InProceedings of the International Con-
ference on Autonomic Computing, 2004.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated An-
nealing.Science, 1983.

[39] Levanta. http://www.levanta.com.

[40] K. Nagaraja, G. M. C. Gama, R. Bianchini, R. P. Martin, W.M. Jr., and T. D.
Nguyen. Quantifying the Performability of Cluster-Based Services.IEEE Trans-
actions on Parallel and Distributed Systems, 2005.

[41] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen. Under-
standing and Dealing with Operator Mistakes in Internet Services. InProceed-
ings of the Symposium on Operating Systems Design and Implementation, 2004.

[42] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting Platform Heterogeneity for
Power Efficient Data Centers. InProceedings of the International Conference
on Autonomic Computing, 2007.

[43] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization.Com-
puter Journal, 1965.

[44] M. Nelson, B.-H. Lim, and G. Hutchins. Fast TransparentMigration for Virtual
Machines. InProceedings of the USENIX Annual Technical Conference, 2005.

[45] F. Oliveira. Towards mistake-aware systems. PhD thesis, Rutgers University,
2010.

[46] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R.P. Martin, and T. D.
Nguyen. Understanding and Validating Database System Administration. In
Proceedings of the USENIX Annual Technical Conference, 2006.

[47] F. Oliveira, J. Patel, E. V. Hensbergen, A. Gheith, and R. Rajamony. Blutopia:
Cluster Life-Cycle Management. Technical Report RC23784,IBM Austin, 2005.

[48] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do Internet Services Fail,
and What Can Be Done About It? InProceedings of the USENIX Symposium on
Internet Technologies and Systems, 2003.

[49] D. Oppenheimer and D. Patterson. Architecture and Dependability of Large-
Scale Internet Services.IEEE Internet Computing, 2002.

124

[50] T. Osogami and T. Itoko. Finding Probably Better SystemConfigurations
Quickly. In Proceedings of the Joint International Conference on Measurement
and Modeling of Computer Systems, 2006.

[51] T. Osogami and S. Kato. Optimizing System Configurations Quickly by Guess-
ing at the Performance.SIGMETRICS Perform. Eval. Rev., 2007.

[52] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and
A. Merchant. Automated control of multiple virtualized resources. InProceed-
ings of the ACM European Conference on Computer Systems, 2009.

[53] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem. Adaptive Control of Virtualized Resources in Utility Computing
Environments. InProceedings of the ACM European Conference on Computer
Systems, 2007.

[54] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Dynamic Cluster Reconfigu-
ration for Power and Performance. InProceedings of the Workshop on Compilers
and Operating Systems for Low Power, 2003.

[55] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, andX. Zhu. No Power
Struggles: Coordinated Multi-level Power Management for the Data Center. In
Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2008.

[56] K. Rajamani and C. Lefurgy. On Evaluating Request-Distribution Schemes for
Saving Energy in Server Clusters. InProceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Software, 2003.

[57] Rice University. DynaServer Project. http://www.cs.rice.edu/CS/Systems/DynaServer,
2003.

[58] C. Rusu, A. Ferreira, C. Scordino, A. Watson, R. Melhem,and D. Mosse. Energy-
Efficient Real-Time Heterogeneous Server Clusters. InProceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium, 2006.

[59] A. Saboori, G. Jiang, and H. Chen. Autotuning Configurations in Distributed Sys-
tems for Performance Improvements Using Evolutionary Strategies. InProceed-
ings of the International Conference on Distributed Computing Systems, 2008.

[60] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource management for
cluster-based internet services. InProceedings of the Symposium on Operating
Systems Design and Implementation, 2002.

[61] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource scaling
for multi-tenant cloud systems. InProceedings of the ACM Symposium on Cloud
Computing, 2011.

125

[62] P. Shivam, V. Marupadi, J. Chase, and S. Babu. Cutting Corners: Workbench
Automation for Server Benchmarking. InProceedings of the USENIX Annual
Technical Conference, 2008.

[63] C. Stewart.Performance modeling and system management for Internet services.
PhD thesis, Rochester University, 2009.

[64] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A Dollar from15 Cents: Cross-
Platform Management for Internet Services. InProceedings of the USENIX An-
nual Technical Conference, 2008.

[65] C. Stewart and K. Shen. Performance Modeling and SystemManagement for
Multi-component Online Services. InProceedings of the International Sympo-
sium on Networked Systems Design and Implementation, 2005.

[66] Y. Su, M. Attariyan, and J. Flinn. AutoBash: Improving Configuration Man-
agement with Operating System Causality Analysis. InProceedings of the ACM
Symposium on Operating Systems Principles, 2007.

[67] Y. Su and J. Flinn. Automatically generating predicates and solutions for config-
uration troubleshooting. InProceedings of the USENIX Annual Technical Con-
ference, 2009.

[68] D. G. Sullivan. Using Probabilistic Reasoning to Automate Software Tuning.
PhD thesis, Harvard University, 2003.

[69] Y.-L. Tan, T. Wong, J. D. Strunk, and G. R. Ganger. Comparison-based File
Server Verification. InProceedings of the USENIX Annual Technical Conference,
2005.

[70] The Apache Software Foundation. Apache HTTP Server Version 2.0.
http://httpd.apache.org/docs/2.0/mod/prefork.html.

[71] E. Thereska.Enabling What-If Explorations in Systems. PhD thesis, Carnegie
Mellon University, 2007.

[72] E. Thereska and G. R. Ganger. Ironmodel: robust performance models in the
wild. In Proceedings of the International Conference on Measurement and Mod-
eling of Computer Systems, 2008.

[73] R. Thonangi, V. Thummala, and S. Babu. Finding Good Configurations in High-
Dimensional Spaces: Doing More with Less. InProceedings of the IEEE In-
ternational Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2008.

[74] A. Tjang, F. Oliveira, R. Bianchini, R. P. Martin, and T.D. Nguyen. Model-based
validation for internet services. InProceedings of the Symposium on Reliable and
Distributed Systems, 2009.

126

[75] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile Dynamic
Provisioning of Multi-tier Internet Applications.ACM Transactions on Adaptive
and Autonomous Systems, 2008.

[76] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking and Applica-
tion Profiling in Shared Hosting Platforms. InProceedings of the Symposium on
Operating Systems Design and Implementation, 2002.

[77] N. Vasic, D. Novakovic, S. Miucin, D. Kostic, and R. Bianchini. Dejavu: Ac-
celerating resource allocation in virtualized environments. InProceedings of the
International Conference on Architectural Support for Programming Languages
and Operating Systems, 2012.

[78] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.Automatic Miscon-
figuration Troubleshooting with PeerPressure. InProceedings of the Symposium
on Operating Systems Design and Implementation, 2004.

[79] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C.Yuan, and Z. Zhang.
STRIDER: A Black-box, State-based Approach to Change and Configuration
Management and Support. InProceedings of Large Installation Systems Admin-
istration Conference, 2003.

[80] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback. Self-tuning database
technology and information services: from wishful thinking to viable engineer-
ing. In Proceedings of the International Conference on Very Large Data Bases,
2002.

[81] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration Debugging as Search:
Finding the Needle in the Haystack. InProceedings of the Symposium on Oper-
ating Systems Design and Implementation, 2004.

[82] J. Wildstrom, P. Stone, E. Witchel, R. J. Mooney, and M. Dahlin. Towards Self-
Configuring Hardware for Distributed Computer Systems. InProceedings of the
International Conference on Autonomic Computing, 2005.

[83] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Black-box and Gray-
box Strategies for Virtual Machine Migration. InProceedings of the Symposium
on Networked Systems Design and Implementation, 2007.

[84] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasupathy. An
empirical study on configuration errors in commercial and open source systems.
In Proceedings of the ACM Symposium on Operating Systems Principles, 2011.

[85] W. Zhang. Linux Virtual Server for Scalable Network Services. InProceedings
of the Linux Symposium, 2000.

