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ABSTRACT OF THE DISSERTATION

Experiment-based Management of Data Centers

by Wei Zheng

Dissertation Director: Ricardo Bianchini

Our daily lives depend on data centers as they host poputankt services and critical
business applications. Managing these large and comptexcdaters is a challenging
endeavor. We have designed and implemented three systansatiplify the manage-
ment of data centers. The unifying characteristic of thgséems is that they all rely
on a limited number of experiments with real servers and loauks.

The first system, called JustRunlt, replaces analyticalefiogl in assessing the
performance, availability, and/or energy implicationspotential management deci-
sions or system configurations. The second system, callédefi@iently optimizes
configurations as services evolve, by detecting and leirggatgpendencies between
configuration parameters. The last system, called Mass@atdmatically configures
server software for new users by leveraging configuratitorimation from the existing
users of the software.

The evaluation shows that our systems significantly redueedsources and time
required to accomplish many management tasks. Given owriexgge and positive
results with these three systems, we conclude that expetibssed management has

the potential to be very useful in practice.
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Chapter 1

Introduction

1.1 Background

Data centers are part of our daily lives. Some data centestsgapular Internet ser-
vices, such as Google, Yahoo, and Amazon, while others supjmud computing
systems, such as Amazon EC2 and Microsoft Azure. These datars can easily
host thousands of computers and their supporting infretstre. Moreover, these ser-
vices usually comprise multiple tiers that interact in céempvays. A typical three-tier
service has a Web server tier, an application server tier,aattatabase tier. A client
request may pass through all tiers in one direction, wheteaeply flows through the
same tiers in the opposite direction.

The server software in each tier can also be complex. For pheamesigners in-
troduce a large number of configuration parameters intceseaftware to accommo-
date various end-user needs. Among many other examples, rtieey be parameters
specifying the number of threads to create, the timeoutrbeda idle network con-
nection is destroyed, and/or the amount of memory to usedohiog disk data. The
configuration parameters affect the functionality, perfance, availability, and energy
consumption of data centers. Thus, selecting proper véduesem is critical. Unfor-
tunately, doing so is often difficult.

Worse, configuration setting/tuning is only one of many dagater management
tasks. Other tasks include managing resources to satisfjcedevel agreements

(SLAs), adding or removing nodes, upgrading hardware arsdftware, and capacity



planning. The advent of virtualization simplified certaasks, but also added an extra
layer of software to be managed. Evaluating each possibhagemnent decision often
requires understanding its performance, availabilitg @anergy implications.

The complexity of the management tasks in large data cerdpresents a ma-
jor burden on their operators. Previous studies [48] fouvad bperator mistakes are
a common source of availability, performance, and secipritplems in Internet ser-
vices. Among the mistakes, misconfigurations were the mmsinton type. Another
study [84] also observed that misconfigurations are onesofltminant causes of sys-
tem issues through analysis of extensive real world misgardiion cases, including
commercial storage systems and other open source systems.

These studies suggest that, as much as possible, managesienshould be au-
tomated. The aim of this thesis is to create software thatlesautomated, accurate,

and efficient data center management.

1.2 State of the Art

Many researchers have realized the problem and proposedisapproaches to man-
age data centers: (1) [9, 19, 25, 27, 32, 64, 65, 71, 72, 75hnabytical modeling
to automate data center management; (2) [52, 53] leveragibéek control theory
for resource management; (3) [1, 78, 79] use coercion tdteshoot misconfigura-
tions; (4) [2, 3, 12] build infrastructures for automatiaéiguration management; and
(5) [41, 45, 46, 74] validate configuration changes or operattions in an isolated
environment before deployment.

Even though the previous works are useful in many cases, ltheg some im-
portant limitations. Out of the approaches listed abovalyital modeling is the only
one that can be used to automate all of the management tasiswieer. Specifically,

modeling can be used to predict the impact of the possibleagement decisions or



system configurations on performance, availability, andfergy consumption. Per-
formance models are often based on queuing theory, whevadakality models are
often based on Markovian formalisms. Energy models areafyi based on simple
(but potentially inaccurate) models of power consumptama function of CPU uti-
lization or CPU voltage/frequency. On the bright side, éhemdels are useful in data
center management as they provide insight into the systeeinsiviors, can be solved
quickly, and allow for large parameter space explorati@ssentially, the models pro-
vide an efficient way of answering “what-if” questions dgrimanagement tasks.

Unfortunately, modeling has a few serious shortcominggstFmodeling con-
sumes a very expensive resource: highly skilled human labproduce, calibrate,
and validate the models. The cost of this labor is built if® thanagement systems
and is always disregarded in their evaluations. Secondmibaels typically rely on
simplifying assumptions. For example, memoryless amsivala common assump-
tion of queuing models for Internet services [65]. Howeteis assumption is invalid
when requests come mostly from existing sessions with thecge Another common
simplifying assumption is the cubic relationship betwedPlUCfrequency and power
consumption [19]. With advances in CPU power managemenl as clock gating,
the exact power behavior of the CPU is becoming more compidxthus, more dif-
ficult to model accurately. Third, the models need to be fidn@ed and re-validated
as the systems evolve. For example, the addition of new mesho a service requires
gueuing models to be calibrated and validated for them.

The other approaches can only be applied to a limited humberamagement
tasks. Feedback control is useful for resource managerbehtannot be used for
tasks that do not involve repeated action adjustments. cggdanning and software
or hardware upgrades are obvious examples of the latterdiyfaesks. Coercion does
not prevent misconfigurations from occurring in the firstgland still leaves users try-
ing to tune performance clueless. Configuration managesystéms mainly provide

support for machine installation and startup configuratlastly, validation presumes



stable system behavior, while often management tasksdntechange the systems.

1.3 Challenges and Contributions

In the dissertation, we argue that the best approach to atitmmis one that is based on
experiments with the managed systems themselves. Exp#droan produce results
realistically and transparently, enabling automated rgameent systems to perform
their tasks effectively. Actual experiments exchange gmeasgive resource (human
labor) for much cheaper ones (the time and energy consumedféy machines in
running the experiments). Thus, actual experiments arapgre simpler, and more
accurate than models in their ability to answer “what-if'egtions. Moreover, experi-
ments can be easily integrated with many automated manajeasis.

Despite the advantages of experiment-based managensemyithallenges are to
produce accurate experiments and limit the amount of ressuaind/or time used in
the experimentation.

To address these challenges, we design and build threeimgmetbased man-
agement systems for data centers, namely JustRunlt, Atito@anfiguration Infras-
tructure (ACI), and MassConf. We apply our systems acrosrdnt management
tasks, including resource management, configuratiomgetierformance tuning, and
hardware upgrades. The evaluation shows that our systemaways automate man-
agement with a limited number of experiments (time). In sarages, we can also
restrict the number of machines used for the experimenssrees). In the next few

subsections, we overview our three systems.

1.3.1 JustRunlt

JustRunlt is a software infrastructure for experimenteldasanagement of virtualized
data centers, such as those of cloud computing providers.idda behind JustRunit

is to utilize a small fraction of the resources of the data@eto create a sandboxed



environment where experiments can be performed away fremprbduction system.
JustRunlt can be used by higher level automated managelysetrss or by the
operators themselves to answer "what-if” questions durimapagement tasks. To
demonstrate JustRunlt, we combine it with a system thabped server consolida-
tion/expansion and a system that evaluates the benefitsaiage upgrades.
Our evaluation demonstrates that JustRunlt can help at#omany tasks, and

produce accurate results despite using a very limited atrafuasources.

1.3.2 ACI

ACIl is a software infrastructure for experiment-based gantance tuning of Internet
services. Its goal is to select settings for the servicefgigaration parameters every
time it evolves, e.g. new machines are added or removed. iA@Ithe number of
experiments by creating and leveraging a dependency getplebn the configuration
parameters. The graph identifies the parameters that maynmesevalues as a result
of each possible change to the service. To select the vali#syses an optimization
algorithm that is driven by the dependency graph.

Our evaluation of ACl demonstrates that it is capable of pong high-performance
configurations while limiting the number of tuning experime Our results also show

that ACI prevents a large number of misconfigurations regbloly Nagarajat al. [41].

1.3.3 MassConf

Finally, MassConf simplifies the configuration process fewrusers of server soft-
ware, by leveraging the existing users’ configurations. $amf dynamically collects
and ranks users’ configurations. At each new user’s sitesMasf then evaluates the
ranked configurations, selecting the first one that prodtleesiesired behavior. The
two key observations behind the approach are that (1) a "gamdfiguration may work

well for many different users, and (2) multiple good confagions may work well for



each user.

To evaluate MassConf, we use it to configure the Apache Weleisty achieve a
response-time target. Our evaluation confirms our obsensaand shows that Mass-
Conf successfully reaches the new users’ performancetsangdewer experiments

than existing approaches.

1.4 Overview of the Dissertation

The dissertation comprises six chapters. Chapter 2 desctite design, implemen-
tation, and evaluation of JustRunlt. Chapter 3 details thecept of configuration
dependency and describes ACI. Chapter 4 introduces Ma$ésCbapter 5 discusses

related works. Finally, Chapter 6 concludes the dissertati



Chapter 2
JustRunlt

2.1 Introduction

Managing data centers is a challenging endeavor, espewibn done manually by
system administrators. One of the main challenges is th&npe&ing many manage-
ment tasks involves selecting a proper resource allocatigystem configuration out
of a potentially large number of possible alternatives. rEwerse, evaluating each
possible management decision often requires unders@uridirperformance, avail-
ability, and energy consumption implications. For exampleommon management
task is to partition the system’s resources across apjaitato optimize performance
and/or energy consumption, as is done in server consaitaind virtual machine
(VM) placement. Another example is the evaluation of sofen@ hardware upgrades,
which involves determining whether application or systezhdvior will benefit from
the candidate upgrades and by how much. Along the same Gapacity planning is
a common management task that involves selecting a propgmsyconfiguration for
a set of applications.

Previous efforts have automated resource-partitioniskstasing simple heuristics
and/or feedback control, e.g. [4, 15, 53, 60, 76, 83]. Thedieips repeatedly adjust
the resource allocation to a change in system behaviol,thetr performance and/or
energy goals are again met. Unfortunately, when this readtobserve approach is not
possible, e.g. when evaluating software or hardware uggrddese policies cannot be

applied.



In contrast, analytical modeling can be used to automatef dtlese management
tasks. For example, researchers have built resourceipairiy systems for hosting
centers that use models to predict throughput and respiomeged.g. [25, 75]. In addi-
tion, researchers have built systems that use models tammxenergy conservation
in data centers, e.g. [19, 32]. Finally, researchers haga bailding models that can
predict the performance of Internet applications on CPUR different characteristics
[64]; such models can be used in deciding whether to upgtesisdrver hardware.

However, as discussed in the previous chapter, models mmebd te-calibrated
and re-validated as the system evolves. Moreover, builthege models is expen-
sive, as it requires highly skilled human labor. Given th@sé#ations, in this chapter
we demonstrate that experiments are more effective at aimgywevhat-if” questions
and supporting the management tasks we consider. In partieee demonstrate that
it is possible to produce flexible, realistic, and transpaexperiments using current
virtualization technology.

To support our claims in a challenging environment, we RQliktRunlt, an infras-
tructure for experiment-based management of virtualiz¢d denters hosting multiple
Internet services. JustRunlt creates a sandboxed envenoirimwhich experiments can
be run on a small number of machines (e.g., one machine p&f@eservice) without
affecting the on-line system. JustRunlt clones a smalletutfisthe on-line VMs (e.g.,
one VM per tier of the service) and migrates them to the saxdindhe sandbox, Jus-
tRunlt precisely controls the resources allocated to thesVivhile offering the same
workload to them that is offered to similar VMs on-line. Wiwréd duplication is im-
plemented by JustRunlt’s server proxies. For flexibilihe administrator can specify
the resources (and the range of allocations) with which fmeament and how long
experiments should be run. If there is not enough time to Hymoasible experiments
(i.e., all combinations of acceptable resource allocalipfustRunlt uses interpolation
between actual experimental results to produce the misssgts but flags them as

potentially inaccurate.



Automated management systems or the system administeatarse the JustRunit
results to perform management tasks on the on-line systeany linterpolated results
are actually used by the system or administrator, JustRunk the corresponding
experiments in the background and warns the administraémryi experimental result
differs from the corresponding interpolated result by ntben a threshold amount.

To evaluate our infrastructure, we apply it to systems thdabraate two com-
mon management tasks: server consolidation/expansiom\aidation of hardware
upgrades. Modeling has been used in support of both task§$]9vhereas feedback
control is only applicable for some cases of the former [I8FtRunlt combines nicely
with both systems. Our evaluation demonstrates that JustRan produce results re-
alistically and transparently, enabling automated mamasgé systems to perform their
tasks effectively. In fact, JustRunlt can produce systenfigarations that are as good
as those resulting from idealized, perfectly accurate nspdéthe cost of the time and
energy dedicated to experiments.

The remainder of the chapter is organized as follows. Thée sention describes
JustRunlt in detail. Section 2.3 describes the automatethgeanent systems that we
designed for our two case studies. Section 2.4 presentyvaluagion of JustRunlt and
the results of our case studies. Finally, Section 2.5 sumesthis chapter, discusses

the limitations of JustRunlt, and mentions potential fatworks.

2.2 JustRunlt Design and Implementation
In this section, we describe the design and implementatidlustRunlt, and present

an overview of its use.

2.2.1 Target Environment

Our target environment is virtualized data centers that imostiple independent Inter-

net services. Each service comprises multiple tiers. Fsiante, a typical three-tier
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Figure 2.1: Overview of JustRunlt. “X” represents a restitained through experi-
mentation, whereas “I” represents an interpolated re$Tiltepresents an interpolated
result that has been used by the management entity.

Internet service has a Web tier, an application tier, andtabdae tier. Each tier may
be implemented by multiple instances of a software servgr, multiple instances of
Apache may implement the first tier of a service. Each setvasestrict response-time
requirements specified in SLAs (Service Level Agreemengg)ptiated between the
service provider and the data center.

In these data centers, all services are hosted in VMs foopagnce and fault
isolation, easy migration, and resource management fleéyibMoreover, each soft-
ware server of a service is run on a different VM. VMs hostiofjsare servers from
different services may co-locate on a physical machine (Ridwever, VMs host-
ing software servers from the same service tier are hostatifienent PMs for high
availability. All VMs have network-attached storage pietl by a storage server.

Our target environment presents many challenges for Ju#tRerirst, Internet
services exhibit dynamically varying workloads and loatkmsities, suggesting that
it is important to experiment with live workloads for greatealism. Second, Inter-

net services exhibit relatively lightweight units of workefvice requests), suggesting
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that any infrastructure overheads may have a significanaainpn observed perfor-
mance. Finally, Internet services have strict respomae-tequirements specified in
SLAs (Service Level Agreements) negotiated between thacseproviders and the

data center. SLAs again mean that overheads must be mimimize

2.2.2 System Infrastructure

Figure 2.1 shows an overview of the system infrastructutetRunlit. There are four
components: experimenter, driver, interpolator, and k&ecl heexperimentermple-
ments the VM cloning and workload duplication mechanisnmutoexperiments. Each
experiment tests a possible configuration change to a cleoiéaare server under the
current live workload. A configuration change may be a défgresource allocation
(e.q., alarger share of the CPU) or a different hardwarenggit.g., a higher CPU volt-
age/frequency). The results of each experiment are rapagéhe server throughput,
response time, and energy consumption observed understied onfiguration.

The experimentriver chooses which experiments to run in order to efficiently
explore the configuration parameter space. The drivertiesinimize the number of
experiments that must be run while ensuring that all the exy@nts complete within
a user-specified time bound. The driver and experimentek togrether to produce a
matrix of experimental results in the configuration paranepace. The coordinates
of the matrix are the configuration parameter values for égoh of resource, and the
values recorded at each point are the performance and emexgizs observed for the
corresponding resource assignments. When experimentsravath multiple service
tiers, a result matrix is generated for each of them.

Blank entries in the matrix are filled in by theterpolator, based on linear in-
terpolation from the experimental results in the matrix.eTiled matrix is provided
to the management entity—i.e., the system administratan@utomated management

system—for use in deciding resource allocations for theyeton system.
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Al
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Figure 2.2: Virtualized data center and JustRunlt sandBaxh box represents a VM,
whereas each group of boxes represents a PM. “W2”, “A2”, db&"“mean Web,
application, and database server of service 2, respectiV®lA2” means sandboxed
application server of service 2.

If the management entity uses any of the interpolated padace or energy val-
ues, thecheckerinvokes the experimenter to run experiments to validategh@lues.
If it turns out that the difference between the experimergsiilts and the interpolated
results exceeds a user-specified threshold value, themé#uoker notifies the manage-
ment entity.

We describe the design of each component of JustRunlt il dethe following.

Experimenter.

To run experiments, the experimenter component of JustRanisparently clones
a subset of the live production system into a sandbox andysphe live workload to
the sandbox system. VM cloning instantly brings the sandbdke same operational
state as the production system, complete with fully warmedypplication-level and

OS-level caches (e.g., file buffer cache). Thus, tests cacepd with low startup
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time on a faithful replica of the production system. By clupionly a subset of the
system, JustRunlt minimizes the physical resources that bridedicated to testing.
Workload replay to the sandbox is used to emulate the timmbfanctional behavior

of the non-duplicated portions of the system.

The use of JustRunlt in a typical virtualized data centeltustrated in Figure 2.2.
The figure shows VMs of multiple three-tier services shaeagh PM. Each service
tier has multiple identically configured VMs placed on diéiet PMs. (Note that VMs
of one tier do not share PMs with VMs of other tiers in the figukhough JustRunlt
is agnostic to VM placement, this restriction on VM placetrismften used in practice
to reduce software licensing costs [53].) For simpler managnt, the set of PMs in
each tier is often homogeneous.

The figure also shows one VM instance from each tier of ser2ibeing cloned
into the sandbox for testing. This is just an example use sfRlnlt; we can use
different numbers of PMs in the sandbox, as we discuss |&enfiguration changes
are applied to the clone server, and the effects of the clsamgetested by replaying
live traffic duplicated from the production system. The damdsystem is monitored
to determine the resulting throughput, response time, aedgg consumption. The
experimenter reports these results to the driver to inclaodbe matrix described in
Section 2.2.2. If experiments are run with multiple serviees, a different matrix will
be created for each tier.

Although it may not be immediately obvious, the experimemigsumes that the
virtual machine monitor (VMM) can provide performance &wbn across VMs and
includes non-work-conserving resource schedulers. Tfesdares are required be-
cause the experiments performed in the sandbox must bstieaépresentations of
what would happen to the tested VM in the production systeganmdless of any other
VMs that may be co-located with it. We can see this by goindkltad-igure 2.2. For
example, the clone VM from the application tier of service @strbehave the same in

the sandbox (where itis run alone on a PM) as it would in thepeton system (where
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it is run with A1, A3, or both), given the same configurationur@urrent implemen-
tation relies on the latest version of the Xen VMM (3.3), whirovides isolation for
the setups that we consider.

Importantly, both performance isolation and non-works®ming schedulers are
desirable characteristics in virtualized data centedat®n simplifies the VM place-
ment decisions involved in managing SLAs, whereas non-woriserving schedulers
allow more precise resource accounting and provide bettdation [53]. Most criti-
cally, both characteristics promote performance predilitg which is usually more
important than achieving the best possible performance éxeeeding the SLA re-
guirements) in hosting centers.

The experimenter can clone selected VMs of a productionae(e.g., a single app
server instance of a three-tier service) and use traffi@yefd emulate the functional
and timing behavior of the rest of the service. The infragtrte thus avoids replicating
the entire system and minimizes the resources needed forged he infrastructure
also enables multiple clones to operate concurrently toycaut multiple tests at a

time.

Cloning. Cloning is accomplished by minimally extending standard A migra-
tion technology [21, 44]. The Xen live migration mechanisapies dirty memory
pages of a running VM in the background until the number diyddages is reduced
below a predefined threshold. Then VM execution is paused &rort time (tens of
milliseconds) to copy the remaining dirty pages to the desion. Finally, execution
transfers to the new VM, and the original VM is destroyed. ©oning mechanism
changes live migration to resume execution on both the newavitiithe original VM.
Since cloning is transparent to the VM, the clone VM inhetiits same network
identity (e.g., IP/MAC addresses) as the production VM. Voi@ network address
conflicts, the cloning mechanism sets up network addresslation to transparently

give the clone VM a unique external identity exposed to thevaek while concealing
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the clone VM'’s internal addresses. We implemented this lgreing Xen’s back-
end network device driver (“netback”) to perform approf#iaddress translations and
protocol checksum corrections for all network traffic to dérmm the clone VM.

The disk storage used by the clone VMs must also be replic&tedng the short
pause of the production system VM at the end of state trarieecloning mechanism
creates a copy-on-write snapshot of the block storage wedwsed by the production
VM, and assigns them to the clone VM. We implemented thisgusiie Linux LVM
shapshot capability and by exporting volumes to VMs overrtévork using iSCSI
or ATA Over Ethernet. Snapshotting and exporting the s®ragjumes incurs only a
sub-second delay during cloning. Storage cloning is traresy to the VMs, which see
logical block devices and do not know that they are accessatgork storage.

JustRunlt may also be configuradtto perform VM cloning in the sandbox. This
configuration allows it to evaluate upgrades of the serviiwsoe (e.g., Apache), op-
erating system, and/or service application (as long aspghkcation upgrade does not
change the application’s messaging behavior). In thesesc#ise management entity
has to request experiments that are long enough to amonyzecdd-start caching ef-
fects in the sandbox execution. However, long experimemat a problem, since

software upgrades typically do not have stringent time ireguents.

Proxies. To carry out testing, the experimenter replays live worlloa the VMs in

the sandbox. Two low-overhead proxies, called in-proxy aatdproxy, are inserted
into communication paths in the production system to repdidraffic to the sand-
box. The proxies are application protocol-aware and caralmedst entirely) re-used
across services that utilize the same protocols, as wd deta. The in-proxy mim-

ics the behavior of all the previous tiers before the sandaos the out-proxy mimics
the behavior of all the following tiers. The local view of a VMs cloned sandbox
VM, and the proxies is shown in Figure 2.3. Proxies record @pdy requests and
replies at application protocol-level (e.g., HTTP regeestd replies). Thus, proxies

are protocol-dependent; they know when requests and sepkareceived and if a reply
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— In-Proxy Server Tier N ———0ut-Proxy——
Cloned VM
Req0| t0 ||RespO] t0’ ||[RespO| tsO’ Reg0| t00 ||Resp0| t00’
Regl| t1 |[Respl| t1’ ||Respl]| tsl’ Reqgl | t01 ||Respl| t01’
Req2| t2 |Resp2| t2’ ||Resp2| ts2’ Reg2| t02 ||Resp2| t02’
Reg3| t3 |Resp3| t3’ ||Resp3| ts3’ Reg3] t03 ||Resp3| t03’
1 1 | 1 1
1 1 | 1 1
1 1 | 1 1
[Regn! tn J[Respn| tn’ |[Respn| tsn’] [Regn[ tOn J[Respn[ tOn’]
Online & Sandbox Throughput
Online & Sandbox Mean response time

Figure 2.3: Cloned VM and proxy data structures.

is valid.

After cloning, the proxies create as many connections viéhcloned VM as they
have with the original VM. The connections that were opemien the proxies and
the original VM at the time it was cloned will timeout at theckd VM. In fact, no
requests that were active in the original VM at the time ohalg get successfully
processed at the cloned VM.

The in-proxy intercepts requests from previous tiers totdsted VM. When a
request arrives, the in-proxy records the requésty( in Figure 2.3) and its arrival
time (tn). The in-proxy forwards the request to the on-line produtgystem and also
sends a duplicate request to the sandbox for processingeVerg the sandbox system
from running ahead of the production system, the transongsi the duplicate request
is delayed by a fixed time interval (it is sufficient for the fikime shift to be set to any
value larger than the maximum response time of the servieetpk cloning overhead).
Both systems process the duplicated requests and evengealérate replies that are
intercepted by the in-proxy. For the reply from the prodorctsystem, the in-proxy
records its arrival time(n') and forwards the reply back to the previous tier. Later,

when the corresponding reply from the sandbox arrives rtipFoxy records its arrival
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time (tsn’). The arrival times are used to measure the response tintles pfoduction
and sandbox systems.

The production and sandbox VMs may need to send request toettt tier to
satisfy a request from the previous tier. These (dupliQatequests are intercepted
by the out-proxy. The out-proxy records the arrival timé®:§ and content of the
requests from the production system, and forwards thememéxt tier. The out-
proxy also records the arrival time&)(’) and content of the corresponding replies,
and forwards them to the production system. When the outypreceives a request
from the sandbox system, it uses hash table lookup to find #tehimg request that
was previously received from the production system. (Ré¢lcat the matching request
will certainly have been received because the replay to amellsox is time-shifted
by more than the maximum response time of the service.) Th@rouxy transmits
the recorded reply to the sandbox after a delay. The delayrisduced to accurately
mimic the delays of the subsequent tiers and is equal to tlag tleat was previously
experienced by the production systettv({ — tOn) for the same request-reply pair.

If a sandbox system operates faster than a production sy&ieexample if more
resources are assigned to a cloned VM, then a processestégue a sandbox system
may arrive earlier than the one from a production systemhé# tase the out-proxy
will not find a matching request. To avoid that, we use delaggdiay. An in-proxy
will hold all requests for some time and then replay with thene time fidelity. For
example, if a user specifies a time shift for the sandbox sys$tebe five seconds, a
request that arrives to an in-proxy at timill be duplicated and sent to the sandbox
at timet + 5. The rest of the system works the same.

At the end of an experiment, the in-proxy reports the thrqugland response time
results for the production and sandbox systems. The thputdior each system is
determined by the number of requests successfully sereedtte tiers following the
in-proxy. The response time for each system is defined asdlay @fter a request

arrives to the in-proxy until its reply is received. Sinca-puoxies enforce that the
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delays of subsequent tiers are equal for the production amdb®x system, the differ-
ence of throughput and response time between the produatibsandbox systems is
the performance difference between the original VM and etbviM.

The proxies can be installed dynamically anywhere in théesysdepending on
which VMs the management entity may want to study at the tiH@wvever, we have
only implemented in-proxies and out-proxies for Web andliappon servers so far.
Cross-tier interactions between proxies, i.e. the compaiitin between the out-proxy
of the Web tier and the in-proxy of the application tier, acguexactly the same way
as the communication between regular servers.

We could implement an in-proxy for database servers by bong code from
the Clustered-JDBC (C-JDBC) database middleware [13].eflri C-JDBC imple-
ments a software controller between a JDBC application aset af DBMSs. In its
full-replication mode, C-JDBC keeps the content of the asa replicated and con-
sistent across the DBMSs. During experimentation, ourrc«p would do the same
for the on-line and sandboxed DBMSs. Fortunately, C-JDB€aaly implements the
key functionality needed for cloning, namely the abilityitaegrate the sandboxed
DBMS and update its content for experimentation. To conegbet in-proxy, we would
modify C-JDBC to record the on-line requests and later gefflam to the sandboxed

DBMS. Others have modified C-JDBC in similar ways [46].

Non-determinism. A key challenge for workload replay is to tolerate non-deteistic
behavior in the production and sandbox systems. We addoesdeterminism in three
ways. First, to tolerate network layer non-determinisrg.(gacket drops) the proxies
replicate application-layer requests and replies instéadplicating network packets
directly.

Second, the replay is implemented so that the sandboxedrseranprocessre-

qguests and replies in a different order than their corredimgron-line servers; only the

timing of the messagarrivals at the sandboxed servers is guaranteed to reflect that of

the on-line servers. This ordering flexibility tolerateswaeterminism in the behavior
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of the software servers, e.g. due to multithreading. Howewae that this flexibility
is only acceptable for Web and application-tier proxiesgsirequests from different
sessions are independent of each other in those tiers. el wead to enforce or-
dering more strictly in the in-proxy for database serveosprevent the original and
cloned databases from diverging. Our in-proxy would do stbging each write (and
commit) to execute by itsetfuring experimentation onlfprcing a complete ordering
between all pairs of read-write and write-write operatjoc@ncurrent reads will be
allowed to execute in any order. Others have successfudigted this strict ordering
in C-JDBC before [46] and saw no noticeable performanceattsgion for one of the
services we study in this chapter.

Third, we tolerate application-layer non-determinism bgigning the proxies to be
application protocol-aware (e.g., the Web server in-gexinderstand HTTP message
formats). The proxies embody knowledge of the fields in retpiand replies that can
have non-deterministic values (e.g., timestamps, sesBieh When the out-proxy
sees a non-deterministic value in a message from the sanigoxessage is matched
against recorded messages from the production system wihcprds for the non-
deterministic fields.

Our study of two services (an auction and a bookstore) shloatsour proxies ef-
fectively tolerate their non-determinism. Even though sanessages in these services
have identical values except for a non-deterministic field,wildcard mechanism al-
lows JustRunlt to properly match replies in the productiod aandbox systems for
two reasons. First, all replies from the sandbox are drojydtie proxies, preventing
them from disrupting the on-line system. Second, usingebfiit replies due to wild-
card mismatch does not affect the JustRunlt results bed¢hageplies are equivalent
and all delays are still accounted for.

Despite our promising experience with the auction and bmoksservices, some
types of non-determinism may be hard for our proxies to hardlparticular, services

that non-deterministically change their messaging bemawiot just particular fields
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or the destination of the messages) or their load processhgvior (e.g., via non-
deterministic load-shedding) would be impossible to handior example, a service
in which servers may send an unpredictable number of messagesponse to each
request cannot be handled by our proxies. We have not corassaany such services,

though.

Experiment Driver.

Running experiments is not free. They cost time and energytHts reason, Jus-
tRunlt allows the management entity to configure the expemiiation using a simple
configuration file. The entity can specify the tier(s) withiathJustRunlt should ex-
periment, which experiment heuristics to apply (discusssgldw), which resources to
vary, the range of resource allocations to consider, howynegually separated allo-
cation points to consider in the range, how long each exparirshould take, and how
many experiments to run. These parameters can directly tivaitime and indirectly
limit the energy consumed by the experiments, when therea@mstraints on these
resources (as in Section 2.3.1). When experiment time aadygrare not relevant
constraints (as in Section 2.3.2), the settings for therpaters can be looser.

The management entity provides the experiment driver witlorafiguration file
that specifies experiment heuristics, configuration co@tai ranges and granularities,
and experiment time limits.

Based on the configuration information, the experimentedrdirects the experi-
menter to explore the parameter space within the time lifrhe driver starts by run-
ning experiments to fill in the entries at the corners of ttsailtematrix. For example,
if the experiments should vary the CPU allocation and the @Bguency, the matrix
will have two dimensions and four cornergnin CPU alloc, min CPU freq), (min CPU
alloc, max CPU freq), (max CPU alloc, min CPU fregnd(max CPU alloc, max CPU freq)
The management entity must configure JustRunlt so at lease ttorner experiments

can be performed. After filling in the corner coordinate® thmiver then proceeds to
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request experiments exactly in the middle of the unexplosiades defined by each re-
source dimension. After those are performed, it recurgiseb-divides the unexplored
ranges in turn. This process is repeated until the numbekmdéranents requested
by the management entity have been performed or there areor® erperiments to
perform.

It then proceeds to run experiments along each resourcendiore starting with
low allocation and increasing by increments of one-tenéhabordinate range (so that
in nine additional experiments the range would be covered).

We designed two heuristics for the driver to use to avoid mgnnecessary ex-
periments along each matrix dimension. The two observati@hind the heuristics
are that: 1) beyond some point, resource additions do naboweperformance; 2) the
performance gain for the same resource addition to difterers will not be the same,
and the gains drop consistently and continually (dimimgheturns).

Based on observation 1), the first heuristic cancels theirenggexperiments with
larger resource allocations along the current resourcemsion, if the performance
gain from a resource addition is less than a threshold amdgeed on observation
2), the second heuristic cancels the experiments with tleas do not produce the
largest gains from a resource addition. As we add more ressuo the current tier,
the performance gains decrease until some other tier bectimadier with the largest
gain from the same resource addition. For example, inargabe CPU allocation on
the bottleneck tier, say the application tier, will sigréfitly improve overall response
time. At some point, however, the bottleneck will shift tdet tiers, say the Web
tier, at which point the driver will experiment with the Wabrtand gain more overall
response time improvement with the same CPU addition. Bethistics cut down
the number of experiments required while still finding the@mum CPU addition that

provides the maximum performance gain.

Interpolator and Checker.

The interpolator predicts performance results for pointhe matrix that have not
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yet been determined through experiments. For simplicigyuse linear interpolation
to fill in these blanks, and we mark the values to indicatettiyt are just interpolated.
If the management entity uses any interpolated results;hibeker tries to verify
the interpolated results by invoking the experimenter tothe corresponding experi-
ments in the background. If one of these background expetaheesults differs from
the corresponding interpolated result by more than a ysesised threshold value, the
checker raises a flag to the management entity to decide hbantdie this mismatch.
The management entity can use this information in multipdgsv For example, it
may reconfigure the driver to run more experiments with threesponding resources
from now on. Another option would be to reconfigure the ranigalocations to con-

sider in the experiments from now on.

2.2.3 Discussion

Uses of JustRunlt.We expect that JustRunlt will be useful for many system manag
ment scenarios. For example, in this chapter we consideures management and
hardware upgrade case studies. In these and other scedastRunlit can be used by
the management entity to safely, efficiently, and reabdiyjanswer the same “what-if”
guestions that modeling can answer given the current wadkémd load intensity.
Moreover, like modeling, JustRunlt can benefit from loaénsity prediction tech-
niques to answer questions about future scenarios. Justtaumdo so because its re-
guest replay is shifted in time and can be done at any degi@eds (Request stream
acceleration needs to consider whether requests belomgexisting session or start a
new session. JustRunlt can properly accelerate requesiageit stores enough infor-
mation about them to differentiate between the two casesc)id@ 4.5 discusses how
the current version of JustRunlt can be modified to answeitvifti questions about

different workload mixes as well.
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Although our current implementation does not implemers thinctionality, Jus-
tRunlt could also be used to select the best values for softtuaables, e.g. the num-
ber of threads or the size of the memory cache in Web servesdelhg does not lend
itself directly to this type of management task. Anothergioe extension could be
enabling JustRunlt to evaluate the correctness of admatastactions, as in action-
validation systems [41, 46]. All the key infrastructure ueqd by these systems (i.e.,
proxies, cloning, sandboxing) is already part of the curkamsion of JustRunlt, so
adding the ability to validate administrator actions skidag a simple exercise. Inter-
estingly, this type of functionality cannot be provided maltic models or feedback
control.

Obviously, JustRunlt can answer questions and validatarastmator actions at
the cost of experiment time and energy. However, note thafptiysical resources
required by JustRunlt (i.e., enough computational ressmufar the proxies and for the
sandbox) can be a very small fraction of the data centeruress. For example, in
Figure 2.2, we show that just three PMs are enough to expetimih all tiers of a
service at the same time, regardless of how large the priodusgstem is. Even fewer
resources, e.g. one PM, can be used, as long as we have the taxygeriment with
VMs sequentially. Furthermore, the JustRunlt physicabueses can be borrowed
from the production system itself, e.g. during periods ef load.

In essence, JustRunlt poses an interesting tradeoff betiheeamount of physical
resources it uses, the experiment time that needs to elafseeldecisions can be
made, and the energy consumed by its resources. More physscairces translate
into shorter experiment times but higher energy consumptiBor this reason, we
allow the management entity to configure JustRunlt in wreatesay is appropriate for

the data center.

Engineering cost of JustRunlt. Building the JustRunlt proxies is the most time-
consuming part of its implementation. The proxies must tsgieed to properly han-

dle the communication protocols used by services. Our otm@Xxies understand the
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HTTP, modjk, and MySQL protocols. We have built our proxies startingni the
publicly available Tinyproxy HTTP proxy daemon [7]. Eaclopy required only be-
tween 800 and 1500 new lines of C code. (VM cloning requiredel® lines of Python
code in the xend control daemon and the xm management toeteab address trans-
lation required 244 new lines of C code in the netback div&he vast majority of
the difference between Web and application server proxaases from their different
communication protocols.

The engineering effort required by the proxies can be amwitfias they can be
reused for any service based on the same protocols. Howhbegoroxies may need
modifications to handle any non-determinism in the sernvibemselves. Fortunately,
our experience with the auction and bookstore servicesesigthat the effort involved
in handling service-level non-determinism may be smallecHcally, it took us less
than one day to adapt the proxies designed for the auctiometddokstore. This is
particularly promising in that he had no prior knowledgelt bookstore whatsoever.

One may argue that implementing JustRunlt may require a aceibfe amount of
effort to developing accurate models for a service. Howewernote that JustRunlt
is much more reusable than models, across different sexviwrdware and software
characteristics, and even as service behavior evolesch of these factors requires
model re-calibration and re-validation, which are typigd@bor-intensive. Further-
more, for models to become tractable, many simplifying aggions about system
behavior (e.g., memoryless request arrivals) may have tmdge. These assump-
tions may compromise the accuracy of the models. JustRoel dot require these

assumptions and produces accurate results.

2.3 Experiment-based Management

As mentioned in the previous section, our infrastructune lea used by automated

management systems or directly by the system administritodemonstrate its use
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in the former scenario, we have implemented simple autatmagnagement systems
for two common tasks in virtualized hosting centers: seogrsolidation/expansion
(i.e., partitioning resources across the services to usmnaactive servers as possible)
and evaluation of hardware upgrades. These tasks are tympenformed by most
administrators in a manual, labor-intensive, and ad-hotea

Both management systems seek to satisfy the services’ SAMASLA often spec-
ifies a percentage of requests to be serviced within some rnoduime. Another
possibility is for the SLA to specify an average responsetjover a period of several
minutes) for the corresponding service. For simplicity, automated systems assume
the latter type of SLA.

The next two subsections describe the management systemsver, before de-
scribing them, we note that they amet contributions of this work. Rather, they are
presented simply to demonstrate the automated use of JustRdore sophisticated

systems (or the administrator) would leverage JustRurdinmlar ways.

2.3.1 Case Study 1: Resource Management

Overview. The ultimate goal of our resource-management system istsotidate the
hosted services onto the smallest possible set of nodelg g4tisfying all SLAs. To
achieve this goal, the system constantly monitors the geerasponse time of each
service, comparing this average to the corresponding Sle&aBse workload condi-
tions change over time, the resources assigned to a seragedatome insufficient
and the service may start violating its SLA. Whenever sucho&tion occurs, our
system initiates experiments with JustRunlt to determihatws the minimum allo-
cation of resources that would be required for the serviseA to be satisfied again.
Changes in workload behavior often occur at the granulafitgns of minutes or even
hours, suggesting that the time spent performing expesrisrikely to be relatively
small. Nevertheless, to avoid having to perform adjustsard frequently, the system

assigns 20% more resources to a service than its minimunsndéuds slack allows
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1. Wile 1 do

2 Monitor QoS of all services

3 If any service needs npbre resources or

4. can use fewer resources

5. Run experinents with bottl eneck tier

6 Find m ni mumresource needs

7 If used any interpolated results

8. I nform JustRunlt about them

9. Assi gn resources using bin-packing heuristic

10. I f new nodes need to be added

11. Add new nodes and mgrate VMs to them

12. El se if nodes can be renoved

13. M grate VMs and renove nodes

14. Compl et e resource adjustnents and nigrations

Figure 2.4: Overview of resource-management system.

for transient increases in offered load without excessgeurce waste. Since the re-
sources required by the service have to be allocated tceithéfv resource allocation
may require VM migrations or even the use of extra nodes.

Conversely, when the SLA of any service is being satisfied bserthan a threshold
amount (i.e., the average response time is lower than treatifsgal by the SLA by
more than a threshold percentage), our system considepe$iseility of reducing the
amount of resources dedicated to the service. It does satiatiimg experiments with
JustRunlt to determine the minimum allocation of resoutbaswould still satisfy the
service’s SLA. Again, we give the service additional slatk$ resource allocation to
avoid frequent reallocations. Because resources can ba takay from this service,
the new combined resource needs of the services may noteeagiimany PMs. In
this case, the system determines the minimum number of PMs#n be used and

implements the required VM migrations.

Details. Figure 2.4 presents pseudo-code overviewing the operafionr manage-
ment system. The experiments with JustRunlt are performéide 5. The manage-
ment system only runs experiments with one software seifvigredbottleneck tier of

the service in question. The management system can detetharbottleneck tier by
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inspecting the resource utilization of the servers in eaah Experimenting with one
software server is typically enough for two reasons: (1yises typically balance the
load evenly across the servers of each tier; and (2) the VMal doftware servers
of the same tier and service are assigned the same amoursiooirces at their PMs.
(When at least one of these two properties does not hold, &amagement system needs
to request more experiments of JustRunlt.) However, if ghawodes can be used for
experiments in the sandbox, the system could run experswétit one software server
from each tier of the service at the same time.

The matrix of resource allocations vs. response times mexdily JustRunlt is
then used to find the minimum resource needs of the servitea®l Specifically, the
management system checks the results in the JustRunlikrfadm smallest to largest
resource allocation) to find the minimum allocation that dastill allow the SLA to
be satisfied. In lines 7 and 8, the system informs JustRumltitabny interpolated
results that it may have used in determining the minimumuesoneeds. JustRunlt
will inform the management system if the interpolated ressale different than the
actual experimental results by more than a configurablelimd amount.

In line 9, the system executes a resource assignment &ligottiat will determine
the VM to PM assignment for all VMs of all services. We modedaerce assignment
as a bin-packing problem. In bin-packing, the goal is to @lacnumber of objects
into bins, so that we minimize the number of bins. We model\fis (and their
resource requirements) as the objects and the PMs (andatlalable resources) as
the bins. If more than one VM to PM assignment leads to the mmim number of
PMs, we break the tie by selecting the optimal assignmentrétires the smallest
number of migrations. If more than one assignment requiresiallest number of
migrations, we pick the one of these assignments randomhfortlinately, the bin-
packing problem is NP-complete, so it can take an inordiaateunt of time to solve
it optimally, even for hosting centers of moderate size. Siiwe resort to a heuristic

approach, namely simulated annealing [38], to solve it.
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Simulated annealing works by trying to iteratively optimia “current solution”,
i.e. a particular assignment of VMs to PMs, starting fromrtal guess assignment.
Each assignment is generated as follows. We create an driistref VMs and an
ordered list of PMs. Starting from the front of the VM list, \wesign VMs to the first
PM until no more VMs can be added. (Note that fully packing aiBMot a problem
because each VM already includes 20% slack in the resouriseassigned.) At that
point, we move on to the next PM and fill it (again taking VMsrfrahe ordered list),
and so on. The only additional constraint to this placemppt@ach is the placement
restrictions we mentioned in Section 2.2.1.

The initial guess assignment is trivially created basedhencurrent VM to PM
assignment. Each other “candidate solution” is createdabgamly swapping two
VMs in the ordered VM list and placing the VMs on the PMs as dbsd above. A
candidate solution becomes the new current solution in &ge@s. when it produces a
smaller number of PMs than the current solution, or whenatipces the same number
of PMs but with a smaller number of migrations. If a candidst&ition does not fit
these two cases, it might still become the new current soiutiut with a decreasing
probability. Accepting a solution that is worse than therent solution allows the al-
gorithm to skip out of local minima. After evaluating eacindalate solution, a new
one is generated and the process is repeated. The numhberatibihs and the probabil-
ity of accepting a relatively poor candidate solution isedetined by a “temperature”
parameter to the annealing algorithm. More details abontilsited annealing can be
found in [38].

Finally, in lines 10-14, the resource-allocation systelustd the number of PMs
and the VM to PM assignment as determined by the best solatienseen by simu-

lated annealing.

Comparison. A model-based implementation for this management systeoidame

similar; it would simply replace lines 5-8 with a call to a fsgmance model solver.
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The solver would use information about the current statdefdystem (e.g., the of-
fered load, resource allocation, and the tier responsesjiara the analytical model to
estimate the minimal resource requirements for the semigaestion. Obviously, the
model would have to have been created, calibrated, andatadid priori.

A feedback-based implementation would replace lines 5-8 logll to the con-
troller to execute the experiments that will adjust the dfi@g service. However, note
that feedback control is only applicable when repeatedlying the allocation of a
resource or changing a hardware setting does not affectrthme behavior of the
co-located services. For example, we can use feedbaclottmtrary the CPU alloca-
tion of a service without affecting other services. In castrincreasing the amount of
memory allocated to a service may require decreasing theadibn of another service.
Similarly, varying the voltage setting for a service affeatl services running on the
same CPU chip, because the cores in current chips sharentieevedtage rail. Cross-
service interactions are clearly undesirable, especidign they may occur repeatedly
as in feedback control. The key problem is that feedbackrobexperiments with the
on-line system. With JustRunlt, bin-packing and node aaldfitemoval occur before
any resource changes are made on-line, so interferencescemntpletely avoided in
most cases. When interference is unavoidable, e.g. thadifg service cannot be
migrated to a node with enough available memory and no exides can be added,

changes to the service are made only once.

2.3.2 Case Study 2: Hardware Upgrades

Overview. For our second case study, we built a management systemlt@athard-

ware upgrades. The system assumes that at least one inefaheehardware being
considered is available for experimentation in the sandlot example, consider a
scenario in which the hosting center is considering puilidgasiachines of a model

that is faster or has more available resources than thas afiirent machines. After
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For each service do
For one software server of each tier

Run experinments with JustRunlt

Find m ni mumresource needs
If used any interpolated results

I nform Just Runlt about them

Assi gn resources using bin-packing heuristic
Esti mat e power consunption

©®NOOE N =

Figure 2.5: Overview of update-evaluation system.

performing experiments with a single machine of the cartdidaodel, our system de-
termines whether the upgrade would allow servers to be tioiased onto a smaller
number of machines and whether the overall power consumpfithe hosting center
would be smaller than it currently is. This information i®pided to the administrator,
who can make a final decision on whether or not to purchaseahwenmachines and

ultimately perform the upgrade.

Details. Figure 2.5 presents pseudo-code overviewing our updatiersion system.
The experiments with JustRunlt are started in line 3. Fa $lystem, the matrix that
JustRunlt produces must include information about theamesresponse time and the
average power consumption of each resource allocationeongfrade-candidate ma-
chine. In line 4, the system determines the resource aitot#tat achieves the same
average response time as on the current machine (thus ¢egiraythat the SLA would
be satisfied by the candidate machine as well). Again, therastmator configures the
system to properly drive JustRunlt and gets informed abaowtiaterpolated results
that are used in line 4.
By adding the extra 20% slack to these minimum requiremerdswnning the bin-

packing algorithm described above, the system determiaesnhany new machines
would be required to achieve the current performance andrhoeh power the entire

center would consume. Specifically, the center power carstimated by adding up
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the power consumption of each PM in the resource assignmedugped by the sim-
ulated annealing. The consumption of each PM can be estinhgtérst determining
the “base” power of the candidate machine, i.e. the poweswmption when the ma-
chine is on but no VM is running on it. This base power shouldldgracted from the
results in the JustRunlt matrix of each software server VNsBubtraction produces
the average dynamic power required by the VM. Estimatingptiveer of each PM then
involves adding up the dynamic power consumption of the Vivg would run on the

PM plus the base power.

Comparison. Modeling has been used for this management task [19]. A nraglel
based implementation for our management system wouldaeilaes 2—6 in Figure
2.5 with a call to a performance model solver to estimate tiremum resource re-
qguirements for each service. Based on these results andeaeghburce assignment
computed in line 7, an energy model would estimate the enewggumption in line
8. Again, both models would have to have been created, asdithr and validated

priori. In contrast, feedback control is not applicable to this agggment task.

2.4 Evaluation

In this section, we describe our evaluation methodologgiuate the overhead of Jus-

tRunlt, and illustrate its behavior in our two automatedaagement case studies.

2.4.1 Methodology

Our hardware comprises 15 HP Proliant C-class blades orieected by a Gigabit
Ethernet switch. Each server has 8 GBytes of DRAM, 2 hardsdiaikd 2 Intel dual-
core Xeon CPUs. Each CPU has two frequency points, 2 GHz antH8 Gwo
blades with direct-attached disks are used as networkkedthstorage servers. They
export Linux LVM logical volumes to the other blades usingAdver Ethernet. One

Gbit Ethernet port of every blade is used exclusively fommek storage traffic. We
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measure the energy consumed by a blade by querying its maeagprocessor, which
monitors the peak and average power usage of the entire.blade

Virtualization is provided by XenLinux kernel 2.6.18 withe Xen VMM [8], ver-
sion 3.3. For improving Xen'’s ability to provide performanisolation, we pin DomO
to one of the cores and isolate the service(s) from it. Nobveyaver, that JustRunlt
does not itself impose this organization. As JustRunlt aldgends on the VMM for
VM cloning, it can easily be ported to use VMMs that do not perf I/O in a separate
VM.

We populate the blade cluster with one or more independstdrnices of an on-line
auction service. To demonstrate the generality of our systee also experiment with
an on-line bookstore. Both services are organized inteethess of servers: Web, ap-
plication, and database tiers. The first tier is implemebtedpache Web servers (ver-
sion 2.0.54), the second tier uses Tomcat servlet serversi¢n 4.1.18), and the third
tier uses the MySQL relational database (version 5.0.Z2H9r performance reasons,
the database servers are not virtualized and run directlyirmmnx and the underlying
hardware.) We use LVS load balancers [85] in front of the Weth @pplication tiers.
The service requests are received by the Web servers andaneatpWards the second
and third tiers. The replies flow through the same path in¢lense direction.

We exercise each instance of the services using a clientagéonul The auction
workload consists of a “bidding mix” of requests (94% of thetabase requests are
reads) issued by a number of concurrent clients that reglgab@pen sessions with
the service. The bookstore workload comprises a “shopping, nvhere 20% of the
requests are read-write. Each client issues a requestyescand parses the reply,
“thinks” for a while, and follows a link contained in the rgplA user-defined Markov
model determines which link to follow. The code for the seeg, their workloads, and
the client emulator are from the DynaServer project [57] hade been used exten-

sively by other research groups.
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Figure 2.6: Throughput as a function of offered load.

2.4.2 JustRunlt Overhead

Our overhead evaluation seeks to answer two questions:qé$ e overhead of Jus-
tRunlt (proxies, VM cloning, workload duplication, and hgpnatching) degrade the
performance of the on-line services? and (2) How faithfdllyservers in the sandbox
represent on-line servers given the same resources?

To answer these questions, we use our auction service asrnrepted by one
Apache VM, one Tomcat VM, and MySQL. Using a larger instant¢he service
would hide some of the overhead of JustRunlt, since the psoanly instrument one
path through the service. Each of the VMs runs on a differttdo We use one blade
in the sandbox. The two proxies for the Web tier run on one efilades, whereas
those for the application tier run on another. The proxiesan their own blades to
promote performance isolation for the auction service lllow experiments, the time

shift used by JustRunlt is 10 seconds behind the on-linecgerv

Overhead on the on-line system7o isolate the overhead of JustRunlt on the on-line

service, we experiment with three scenarios: (1) Plain —noa@ips are installed; (2)
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Figure 2.7: Response time as a function of offered load.

Proxiesinstalled — proxies are installed around the Webagmdication servers, but
they only relay the network traffic; and (3) JustRunlt — pesxare installed around the
Web and application servers and perform all the JustRuntitfanality.

Figures 2.6 and 2.7 depict the average throughput and respione of the on-line
service, respectively, as a function of the offered load. Séethe CPU allocation of
all servers to 100% of one core. In this configuration, theisersaturates at 1940
requests/second. Each bar corresponds to a 200-secondierec

Figure 2.6 shows that JustRunlit has no effect on the thrautgbpthe on-line
service, even as it approaches saturation, despite hawngroxies for each tier co-
located on the same blade. In fact, the resource utilizatsuggest that the service
itself (its application server) would saturate well befdtestRunlt. Specifically, the
application server is more than twice as utilized as anyRlust proxy.

Figure 2.7 shows that the overhead of JustRunlt is consigtemall (< 5ms)
across load intensities. We could further optimizing thelementation to reduce the
JustRunlt overheads further. However, remember that theneads in Figure 2.7 are

exaggerated by the fact that, in these experimeaiktsgpplication server requests are
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Figure 2.8: On-line and sandboxed performance as a funofic®PU allocation at
offered load 500 requests/second.

exposed to the JustRunlt instrumentation. If we had usedvacsewith 4 application
servers, for example, only roughly 25% of those requestsidvbe exposed to the
instrumentation (since we only need proxies for 1 of the i@pfibn servers), thus

lowering the average overhead by 75%.

Performance in the sandbox? The results above isolate the overhead of JustRunlt
on the on-line system. However, another important conataer is how faithful the
sandbox execution is to the on-line execution given the sas@urces. Obviously, it
would be inaccurate to make management decisions basechdbosead experiments
that are not very similar to the behavior of the on-line syste

Figures 2.8 and 2.9 compare the performance of the on-lipkcagion server (la-
beled “Live”) to that of the sandboxed (labeled “SB”) applion server at 500 re-
guests/second and 1000 requests/second, respectivélgthriigures, response times
(labeled “RT”) and throughputs (labeled “T”) are measuretha application server’s
in-proxy. Again, each result represents the average pa#doce over 200 seconds.

As one would expect, the figures show that increasing the GIBdagion tends to
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Figure 2.9: On-line and sandboxed performance as a funofic®PU allocation at
offered load 1000 requests/second.

increase throughputs and reduce response times. Theediffetbetween the offered
load and the achieved throughput is the 20% of requestsithaeaved directly by the
Web server and, thus, do not reach the application servepsixy. More interestingly,
the figures clearly show that the sandboxed execution igte#darepresentation of the
on-line system, regardless of the offered load.

The results for the Web tier also show the sandboxed exectide accurate.
Like the application-tier results, we ran experiments vidtr different CPU alloca-
tions, under two offered loads. When the offered load is ®f34s, the average dif-
ference between the on-line and sandboxed results is 4segsecond for throughput
and 1 ms for response time, across all CPU allocations. Ewmderua load of 1000
requests/second, the average throughput and responsditiarences are only 6 re-
guests/second and 2 ms, respectively.

Our experiments with the bookstore service exhibit the shet@viors as in Fig-
ures 2.6 to 2.9. The throughput is not affected by JustRurdtthe overhead on the

response time is small. For example, under an offered lo&8D0frequests/second,
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Figure 2.10: Server expansion using JustRunlt.

JustRunlt increases the mean response time for the boekiston 18 ms to 22 ms.
For 900 requests/second, the increase is from 54 ms to 58inalyf-our worst result
shows that JustRunlt increases the mean response time @ons @ 100 ms at 1500

requests/second.

2.4.3 Case Study 1: Resource Management

As mentioned before, we built an automated resource maragarvirtualized host-
ing center that leverages JustRunlt. To demonstrate thavimof our manager, we
created four instances of our auction service on 9 bladekdeb for first-tier servers,
2 blades for second-tier servers, 2 blades for databaserseand 3 blades for storage
servers and LVS. Each first-tier (second-tier) blade rures\deb (application) server
from each service. Each server VM is allocated 50% of one asrégs CPU allo-
cation. We assume that the services’ SLAS require an aveemg®nse time lower
than 50 ms in every period of one minute. The manager reqlidstRunlt to run 3

CPUe-allocation experiments with any service that violate&LA, for no longer than
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Figure 2.11: Server expansion using accurate modeling.

3 minutes overall. A 10th blade is used for the JustRunlt Bardwhereas 2 extra
blades are used for its Web and application-server prokieslly, 2 more blades are
used to generate load.

Figure 2.10 shows the response time of each service duringxperiment; each
point represents the average response time during thespomding minute. We ini-
tially offered 1000 requests/second to each service. Tiésenl load results in an
average response time hovering around 40 ms. Two minutsiaé start of the exper-
iment, we increase the load offered to service 0 to 1500 mdgismcond. This caused
its response time to increase beyond 50 ms during the thindteaiof the experiment.
At that point, the manager started JustRunlit experimentetermine the CPU allo-
cation that would be required for the service’s applicaservers (the second tier is
the bottleneck tier) to bring response time back below 50 ndeuthe new offered
load. The set of JustRunlt experiments lasted 3 minutesyad CPU allocations of
60%, 80%, and 100% of a core to be tested. The values for 70%@¥dshares were
interpolated based on the experimental results.

Based on the response-time results of the experiments, #mager determined
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that the application server VMs of the offending servicewdtite given 72% of a core
(i.e., 60% of a core plus the 20% of 60% = 12% slack). Becausbeokextra CPU

allocation requirements, the manager decided that thersyshould be expanded to
include an additional PM (a 15th blade in our setup). To pajguthis machine, the
manager migrated 2 VMs to it (one from each PM hosting apfinaserver VMs).

Besides the 3 minutes spent with experiments, VM cloningutated annealing, and
VM migration took about 1 minute altogether. As a result, th@nager was able to
complete the resource reallocation 7 minutes into the @xjget. The experiment

ended with all services satisfying their SLAs.

Comparison against highly accurate modelingFigure 2.11 shows what the system
behavior would be if the resource manager made its decisiased on a highly ac-
curate response-time model of our 3-tier auction servicemimic such a model, we
performed the JustRunlt experiments with service 0 undersdme offered load of
Figure 2.10 for all CPU allocations off-line. These offdiresults were fed to the man-
ager during the experiment free of any overheads. We asstimaethe model-based
manager would require 1 minute of resource-usage mongaiter the SLA viola-
tion is detected, before the model could be solved. BasetedustRunlt results, the
manager made the same decisions as in Figure 2.10.

The figure shows that modeling would allow the system to ddjusinutes faster.
However, developing, calibrating, and validating such @usate model is a challeng-
ing and labor-intensive proposition. Furthermore, adagia would happen relatively
infrequently in practice, given that (1) it typically takasleast tens of minutes for load
intensities to increase significantly in real systems, &)di{e manager builds slack
into the resource allocation during each adaptation. Inmsary, the small delay in
decision making and the limited resources that JustRugltires are a small price to

pay for the benefits that it affords.
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2.4.4 Case Study 2: Hardware Upgrade

We also experimented with our automated system for evalgdtardware upgrades
in a virtualized hosting center. To demonstrate the belhaviour system, we ran
two instances of our auction service on the same number déblas in our resource
manager study above. However, we now configure the bladesuindhe services to
run at 2 GHz. The blade in the JustRunlt sandbox is set to r@Gitiz to mimic a
more powerful machine that we are considering for an upgohdee data center. We
offer 1000 requests/second to each service. We also campplibation server VM of
both services at 90% of one core; for simplicity, we do notezkpent with the Web
tier, but the same approach could be trivially taken for ivad.

During the experiment, the management system requesttRiunlsto run 4 CPU-
allocation experiments for no longer than 800 seconds dvéxote, though, that this
type of management task does not have real-time requirsmgnmtwe can afford to
run JustRunlt experiments for a much longer time.) Sincé sacver is initially allo-
cated 90% of one core, JustRunlt is told to experiment witkd @Rocations of 50%,
60%, 70%, and 80% of one core; there is no need for interpolaif he management
system’s main goal is to determine (using simulated anmgghow many of the new
machines would be needed to achieve the same response tthdhservices cur-
rently exhibit. With this information, the energy impligants of the upgrade can be
assessed.

Based on the results generated by JustRunlt, the managsystem decided that
the VMs of both services could each run at 72% CPU allocat{60%0 of one core
plus 12% slack) at 3 GHz. For a large data center with diveeseices, a similar
reduction in resource requirements may allow for serverset@onsolidated, which
would most likely conserve energy. Unfortunately, our expental system is too
small to demonstrate these effects here.

Again, an analytic model could have made the same decisiemeshut at the cost
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of greater complexity, worse accuracy, and intense huntzor.la

2.4.5 Discussion

The results above demonstrate that the JustRunlt overbeswall, even when all re-
guests are exposed to our instrumentation. In real deplotsnéhe observed overhead
will be even smaller, since there will certainly be more tlere path through each
service (at the very least to guarantee availability andt-falerance). Furthermore,
the results show that the sandboxed execution is faithftiéoon-line execution. Fi-
nally, the results demonstrate that JustRunlt can be afédgieveraged to implement
sophisticated automated management systems. Modelind kbave been applied to
the two systems, whereas feedback control is applicablesource management (in
the case of the CPU allocation), but not upgrade evaluafidve hardware resources
consumed by JustRunlt amount to one machine for the two gsmfieach tier, plus as
few as one sandbox machine. Most importarttiis overhead is fixed and independent

of the size of the production system

2.5 Summary

This chapter introduced a novel infrastructure for expentrbased management of
virtualized data centers, called JustRunlt. The infrattne enables an automated
management system or the system administrator to answext-Wiguestions exper-
imentally during management tasks and, based on the anssedest the best course
of action. The current version of JustRunlt can be appliedaoy management tasks,
including resource management, hardware upgrades, atbsefupgrades.
JustRunlt leverages virtualization technology, a smalbam of hardware placed
in asandbox, and real on-line workload duplication to penfexperiments. To demon-
strate JustRunlt, we evaluated it in the context of two systthat automate common

management tasks. Our results showed that JustRunlt caitddlg combined with
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automated management systems and produces resultsicalyisind transparently.

In fact, JustRunlt produces system configurations that sugoad as those resulting
from idealized, perfectly accurate models, at the costetithe and energy consumed
by the experiments. Furthermore, JustRunlt is more getteaalfeedback control and

machine learning in its ability to support many managemasks.

Limitations. There are three types of “what-if” questions that sophagéd models
can answer (by making simplifying assumptions and costiktgnsive human labor),
whereas JustRunlt currently cannot. First, service-wide@s can answer questions
about the effect of a service tier on other tiers. In the curversion of JustRunlt,
these cross-tier interactions are not visible, since tinellsaxed virtual machines do
not communicate with each other.

Second, models that represent request mixes at a low enexgithn answer ques-
tions about hypothetical mixes that have not been experteircpractice. Currently,
JustRunlt relies solely on real workload duplication ferekperiments, so it can only
answer guestions about request mixes that are offered teydtem. Nevertheless,
JustRunltcan currently answer questions about more or less intenseovexrsf real
workloads, which seems to be a more useful property.

Finally, models can sometimes be used to spot performarmmaalies, although
differences between model results and on-line behaviarféea due to inaccuracies of
the model. Because JustRunlt uses complete-state repfiocasline virtual machines
for greater realism in its experiments, anomalies due ttwsoé server or operating
system bugs cannot be detected.

Nevertheless, JustRunlit can be used to detect a range afpepor incorrect ad-
ministrator actions (performed first in the sandbox foritegt including those that
cause software servers to change message contents itigoresimilar approach has
been taken in [41, 46]. Modeling can only deal with these ades if they at the same

time affect performance by more than the expected modatiagcuracy.

Future work. JustRunlt could be extended to allow cross-tier commuinicditetween
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the sandboxed servers. This would allow the administrataonfigure sandboxing
with or without cross-tier interactions. We could also extdustRunlt to create infras-
tructure to allow experimentation with request mixes othan those observed on-line.
The idea here is to collect a trace of the on-line workloadreffl to one server of each
tier, as well as the state of these servers. Later, JustRauald install the states and
replay the trace to the sandboxed servers. During replayrauest mix could be
changed by eliminating or replicating some of the tracedisas. Finally, JustRunlt

could be extended to include an in-proxy for a database setagting with code from

the C-JDBC middleware.



44

Chapter 3

Automatic Configuration Infrastructure

3.1 Introduction

Recent research has found that operator mistakes are Acaghsource of availability,
performance, and security problems in cluster-basedneteservices [41, 48]. More-
over, these studies found that misconfigurations are thé¢ coosmon type of operator
mistake. For example, Oppenheimer and Patterson [48}etildiee commercial Inter-
net services and found that more than 50% of the operatoakeistthat led to service
unavailability were misconfigurations. As another examiiggarajeet al. [41] asked
21 volunteer operators to perform different managemeikistas a three-tier online
auction service. During 43 experiments with these volusteiney found that mis-
configurations were the most common type of operator mistageurring 24 times
out of a total of 42 mistakes. Even expert operators miscordjthe service in the
experiments.

Nagarajaet al. detailed the misconfigurations that they observed. For gl@m
some operators misconfigured first-tier servers when a neansetier server was
added to the service, misconfigured second-tier servess afigrading the database
machine, misconfigured an upgraded first-tier server, ardperly assigned root-
user passwords in database configuration files. Althougbpbkeators did not have ac-
cess to the supporting software that is available to theadpes of commercial services,
we believe that these types of misconfiguration also occcommercial services. The

reason is that, even in these services, software configaretioften done manually or
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semi-automatically for one or a few servers and then deplaydely to the remaining
servers [49], as in [14, 39, 47].

In essence, misconfigurations occur frequently for two measons. First, multi-
tier services and the servers that implement them are becpméreasingly complex.
For example, services consisting of Web, application, atdlzhse tiers require opera-
tors to master the operation of three different classesreése Mastering even one of
these classes may be a challenge, as illustrated by the Apaeh server. The main
configuration file for Apache has 240+ uncommented linesnggtarameters that re-
late to performance, support files, service structure, egdired modules, among other
things. Second, operators have to manually modify the s€rgenfiguration files of-
ten over the service’s lifetime. In particular, servicesstantly evolve through soft-
ware and hardware upgrades, as well as node additions ammyaitsn Again taking
Apache as an example, its configuration files have to be cllagxgry time there is a
node addition or removal in the second tier.

In this chapter, we propose a software infrastructure waetiminate a wide range
of misconfigurations by automating the configuration of tdudased Internet services.
In particular, we focus on the generation of configuratiogsfilor the servers that im-
plement the service. The infrastructure is motivated bgetkey observations we have
made in managing prototype services for our research: €lydhkt majority of the con-
figuration of each server does not change over the lifetinthetervice; (2) some of
the most tedious and mistake-prone operator activitiegwemreconfiguring the service
as a result of node additions and removals (or non-tranfadates); and (3) changes
made to a configuration parameter may affect the best vaiuafy a few of the other
parameters. Based on observation (1), we create configarfiieé templates that are
similar to the configuration files themselves and specify tooperform the small set of
changes that they require. Based on observation (2), wede@ network of member-
ship daemons that initiates reconfigurations. Based onredisen (3), we introduce

the explicit representation of relationships between gomfition parameters.
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More specifically, the infrastructure comprises a custonpsog language, config-
uration file templates, per-node communicating daemort hanristic algorithms to
detect dependencies between configuration parametergbautl isleal configurations.
Using the scripting language, the service designer car wsonfiguration scriptghat
procedurally specify how the templates should be modifiegetoerate each config-
uration file. The daemons collect information about the mersihip of the different
service tiers and can readily provide this information te tlonfiguration scripts. The
automatic configuration is started when the daemons ddtaages to the membership
(or when the operator requests it explicitly). The daemdss iaterpret the scripts to
effect the changes to the configuration files. Finally, onewfheuristic algorithms
defines gparameter dependency grajdr the service. During the automatic genera-
tion of files, this graph is used by another heuristic al¢ponito explore the space of
parameter values, seeking the best possible configurakftuitiple criteria, such as
performance, availability, or performability, can be usedetermine the best configu-
ration.

We have developed a prototype implementation of the imnasire, including con-
figuration scripts and templates for Apache, Tomcat, and Qly.SOur evaluation uses
the online auction service studied by Nagarejaal. in [41]. Using their operator
action logs and a previously proposed approach to quamgifyonfiguration complex-
ity [11], we find that our infrastructure can simplify the giee operation significantly
while eliminating 58% of the misconfigurations found in [4Elrthermore, our results
show that the infrastructure can efficiently determine thafiguration parameters that
lead to high performance, as the service evolves throughdwaae upgrade and the
scheduled maintenance (i.e., removal) of a few nodes, 3rdging the parameter
dependency graph.

Other infrastructures for automatic configuration havenbg®posed, e.g. [2, 3,
12]. However, they focus on configuring the operating systathinstalling the proper

user-level software on each node; the configuration of tlee-lesel server software
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Figure 3.1: Overview of each node.

itself is not addressed. Furthermore, none of the previofrastructures explicitly
represents or leverages the dependencies between cotiigyprarameters. Thus, our
infrastructure can be combined with these previous systerpsoduce services that
are manageable and efficient.

We conclude that our infrastructure can be useful for boiktiexg and new ser-
vices, as it reduces complexity, eliminates operator rkéstaand can express a range
of configuration parameter relationships and optimize theifig of good configura-
tions.

The remainder of this chapter is organized as follows. 8estB.2 and 3.3 describe
our infrastructure in detail. Section 3.4 describes oueexpental setup and discusses

our main results. Section 3.5 summarizes our findings.
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3.2 Our Infrastructure

Overview. The key goal of our infrastructure is to obviate the need lier aperator
to specify values for the configuration parameters that lshcliange dynamically. A
good example of such a parameter is the list of applicatiovese that a Web server
may contact to service requests for dynamic content. Amagltee maximum number
of worker threads that a Tomcat server should use, which rapgrtl on the hardware
configuration of the machine hosting the Tomcat server. Thgmum number of
worker threads is also an example of a tunable numeric paeaniather than forcing
the operator to manually maintain these parameters asivieesevolves, we have de-
signed a simple infrastructure for determining valuesliest parameters dynamically
and inserting them into the appropriate configuration fitdbeir appropriate places.

As shown in Figures 3.1 and 3.2, our infrastructure has faainroomponents: (1)
a set of configuration file templates, which are similar todbefiguration files them-
selves, but include place-holders for dynamic parameteiega(2) a simple language
that can be used to write configuration scripts (or simplipss) for accessing the run-
time information and formatting it for insertion into corndigation files, according to
the templates; (3) per-node daemons that monitor the seand regenerate config-
uration files as needed by interpreting the scripts; and @hrdiguration center that
directs the tuning of parameter values and disseminatassop the templates and
scripts to machines that are added to the service. The dmnlator exercises the
service during the tuning process.

To tune parameters without conflicting with actual user &aulir infrastructure
assumes that the service is provided by at least two indep¢nthta centers. (Note
that real services always comprise multiple independeshya@ographically distributed
data centers to guarantee high availability.) During pgiof light overall load, the
data center to be tuned can be dedicated to the tuning prbgesdirecting its load to

the other data center(s).
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Figure 3.2: Overview of the entire system. For simplicityg anly show one server
node per service tier.

The process of automatically configuring the service wosklows. At service-
installation time, the service designer creates the cordigun file templates and the
scripts for transforming the templates into the actual cumétion files. At run time,
each per-node daemon monitors the state of its node, imguahat service com-
ponent is running on that node, and periodically broaddémsssinformation so that
all daemons have a complete picture of the service. The attormonfiguration is
started when the daemons detect changes to the service msfiipbée. a node is
added/removed or fails, or the operator requests it exiliciscussed below). During
automatic configuration, the daemons interpret the scripgdfect the changes to the
configuration files. Because parameter tuning may take logrmplete, the daemons
continue using the current values for the tunable paramétar inform the configu-
ration center that the tuning process should be starteceatekt opportunity, i.e. the
next time the service enters a period of light load. When thdiguration files have
been generated, they are installed by each local daemoahwédstarts its local server.
When the opportunity arises to tune parameters, the coafigurcenter starts the ex-
ecution of the heuristic algorithms and eventually prositlee best values to the local

daemons. At that point, the local daemons again generatecthdiguration files and
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# File worker.properties.tnp

# Li st workers by nane
wor ker. list = [ WORKER LI ST] | oadbal ancer

# Descri be properties of each worker
[ WORKER _PROPERTI ES]

©®NOoO O WNE

9. # Describe properties of |oad bal ancer
10. worker. | oadbal ancer.type=Ilb
11. worker. | oadbal ancer. bal anced_wor ker s=[ WORKERS]

Figure 3.3: Template for worker.properties file.

restart their servers.

Thus, throughout the lifetime of the service, the partitgraof the service operator
can be dramatically reduced with our infrastructure. Hasvethe operator remains
responsible for physically changing the service, e.g. bla@ng broken disk drives or
adding more network bandwidth to the system, and startiagtitomatic configuration
explicitly as a result of application-level evolution, e.@ new database schema is
defined or new service features are added. Note that sucicaipph-level evolutions
are not detectable by an external, operating system-lewritoring infrastructure like

ours.

Templates and scripts.The generation of each configuration file requires two compo-
nents: (1) a template containing the values for the statifigoration parameters and
macro names in place of the values for the dynamic configurggarameters, and (2)
a script for generating the text that will be substitutedlacp of the appropriate macro
names.

To discuss these components concretely, consider figuBesn8l. 3.4. Figure 3.3

shows a very simple example template for the worker.pragsdite used by theod j k
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1. # dobal section

2.

3. $TEMPLATE = "worker. properties.tnp";

4. $COMMENT_CHAR = "#";

5.

6. # Program section

7.

8. # Generate list of tier-2 application servers
9. I TER($TI ER2. COUNT, $i ndex)
10. {
11. $namel = $nanel + "tonctat" + $index + ", ";
12. };
13. [WORKER LI ST] = "worker.list=" + $nanel;
14.

15. # Cenerate properties of each application server
16. | TER($TI ER2. COUNT, $i ndex)

17. {

18. $port = "worker.tonctat" + $index + ".port=8009\n";
19. $host = "worker.tontat" + $index + ".host=" +

20. $TI ER2. NAMELI ST. EACH + "\ n";

21. $Ib = "worker.tontat" + $index + ".|bfactor=1\n";

22. $wor ker _props = $worker _props + $port + $host + $l b;
23. };
24. [ WORKER_PROPERTI ES] = $wor ker _props;

26. # Cenerate properties of the | oad bal ancer
27. CHOP( $nanel);
28. [WORKERS] = $nanel;

Figure 3.4: Script for generating worker.properties.

module of the Apache Web server. Worker.properties desetitte names and proper-
ties of the servers responsible for generating dynamicecintn the template, [WOR-
KER_LIST], [WORKER _PROPERTIES] and [WORKERS] are macros to be defined
dynamically by the per-node daemons, as the service evolves

Figure 3.4 shows an example script for generating the asctoider.properties file.
Like all scripts, this example has two sections, a globdise@nd a program section.
The global section defines the name of the template, as wedlefal constants such as
the comment character. The program section contains at&ing for formatting the

information retrieved from the runtime system for the comfagion file.
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The programming language for this scripting is quite singoie has only a few
features: macros, strings, variables, control statem@hntisen and for loops), and
output to files. Macros are named by a string inside a pair aolsg brackets, e.g.
[WORKER_LIST]. Variables are named by a $ character followed by angtriAll
variables are of type string and are allocated and assidpeeaiull string on first refer-
ence. A few variables have pre-defined meanings, such astrable STEMPLATE
which should store the name of the template to use in gengrtite configuration file.
The macros and some pre-defined variables hide commumiaaitilo the local daemon
and the configuration center. In the example, the $TIER2dpfered variables con-
tain information about the tier of application servers. Speally, $TIER2.COUNT
contains the number of application servers in the tier andER2.NAMELIST con-
tains the names of nodes hosting these application serviataes for these macros
are received from the local daemon. The control statemeatalso illustrated in the
example: lines 9—13 show the iterative construction of istedf application servers,
whereas lines 16—24 show the iterative construction of tbpgrties of each of these
servers. Finally, lines 27-28 specify the properties ofltdael balancer. When the
script terminates, an interpreter (part of the local dagngemerates the configuration
file by replacing each occurrence of a macro name in the teéepligh the string that
the corresponding macro was last assigned.

Obviously, we could have simply used Perl or some other segdanguage to
write such scripts. The reason we opted for a new languadeaisme wanted to in-
vestigate whether we could effectively tailor the langutmgeonfiguration tasks and
integrate it tightly with the rest of the infrastructure gtlocal daemon and the con-
figuration center). These characteristics actually makengrscripts in the language
extremely easy and clean. Despite these benefits, we ayeafulire that some users
would possibly prefer a more familiar language. In fact, weyrhave made different
design decisions if we had been building a commercial prodiiber than a research

testbed.
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Network of per-node daemonsEach daemon tracks the service components that run
on its node. Periodically, it broadcasts information alibese service components to
its peers. For example, a daemon running on a node that hosigpdication server

would periodically broadcast the following record:

tier: ‘' AppServer’’
conponent: ‘‘Tontat'’
i p: the node’s | P address

host name: node’s host nane

The periodic broadcasts also serve as heartbeat messagesrgple membership
protocol. If a daemon does not receive a heartbeat from a\pitlein 3 heartbeat
periods, it assumes that the peer has crashed, removesd ith@service components
hosted on that node) from its list of active hosts, and regees its configuration files
accordingly. The daemon regenerates the configuratiorbfflearsing and interpreting

the corresponding scripts.

Configuration center. The configuration center controls the tuning of the numeric
parameters and provides their best values to the local daeffioo inclusion in the
configuration files. Note that, because the configurationecameeds to be involved
in the generation of the configuration files and the hearthesstsages are broadcast
to the entire cluster, we could have assigned the respdibhsibr generating the con-
figuration files to the configuration center. However, thisige could hide network
partitions between servers that do not affect the commtiaitaf the servers with the
configuration center. For this reason, we did not pursue it.

The next section details the parameter-tuning process.

3.3 Tuning Parameters

One of the main goals of our infrastructure is to generatdigoration files that op-

timize the service with respect to a pre-defined metric cériggt, e.g. performance,
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availability, performability [40], as the system evolvés particular, common changes
that are made to services over their lifetimes, such asasang the amount of mem-

ory per node, adding new nodes, or replacing a pair of expensitabase systems (a
primary and a hot backup) with multiple cheaper computeay tause the current

configuration settings to behave poorly with respect to tlerien Settings that are

tailored to the changed service may be more appropriate.

To see this more clearly, suppose that we have a three-tieiceaecomprising
Web, application, and database servers. Given throughgrtrmmance as the met-
ric, increasing the amount of memory per node may allow tineesg to create more
threads concurrently and, as a result, achieve higher ghpmut. Adding nodes at
the application-server tier may force a reduction in the imaxn number of concur-
rent threads per application server to avoid exceedingdhesponding number at the
database tier. The maximum number of concurrent threadsasmanon configuration
parameter of servers, like Apache, Tomcat, and MySQL. Gasailability or per-
formability as the metric, replacing expensive databasgesys with more numerous
cheaper ones may require a new setting for the failover titseat the application-
server tier.

It is difficult to know exactly what configuration parametéis/e to be changed as
the system evolves in different ways. It is even harder tectelew, efficient values
for the parameters to be changed, especially when thereegrendencies between
parameters. Both of these decisions are typically basedermperator’s intuition
and/or a few exploratory experiments. This is clearly netid

A better approach is to cast these decisions as an optimnzatoblem and have
the system automatically search the parameter spacaynethe parameter values, for
the operator. The traditional approaches to automateuthisg process are brute-force
and heuristic algorithms. The brute-force algorithm tradispossible combinations
of values for all possible parameters. Clearly, it only veovhen the total number

of parameters is extremely small. Heuristic algorithmslaeter in that they try to
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Run CART to determine importance
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Figure 3.5: Steps involved in tuning parameters.

approximate the optimal value settings or simply producg geod settings, without
actually going through all combinations. However, theg@athms are still inefficient
because, every time they are run, they still have to considespace formed by all
parameters in the system.

Our infrastructure proposes thiiie key to improving efficiency further is to con-
strain the search space to only the subset of parameterstbatffected by the change
to the servicelt is computationally intensive to define this subset, hig bverhead is
amortized over multiple parameter tunings in which only #éfffected parameters are
considered.

We represent the affected parameters pasameter dependency grapRor each
particular change made to the service, we can traverse &ipé ¢o find all the affected
parameters and tune them. Our approach to defining the graptuaing parameters

is experimental. More specifically, we accomplish theskshy exercising the service
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multiples times with a single representative trace buieddht parameter values. As

mentioned above, these tasks must be performed duringdsesfdight overall load.
Figure 3.5 lists the set of steps involved in defining the ddpeacy graph and

tuning parameters. In the next two subsections, we detaiheuristic algorithms to

define the graph and leverage it to limit the number of pararstening experiments.

3.3.1 Parameter Dependency Graph

As its name suggests, our parameter dependency grapheefzrdése dependencies
between parameters explicitly as a directed graph. Eacbxirthe graph represents
a parameter, whereas a directed edge represents a depgbeééneen two vertices.
Specifically, if a vertex B depends on another vertex A (thesn edge from A to B),
the value for the parameter that corresponds to B has to benaged every time the
value for the parameter that corresponds to A changes.

When the service evolves, the parameters correspondihg teet directly affected
by the change become “source” vertices in the graph. For pkani an application-
server node is added to the service, we would make all comtfigur parameters of
application servers source vertices. The parametersithaiff@cted by the change are
those reachable from the source vertices. The values feetleachable parameters
should be tuned experimentally for each possible value df saurce parameter.

The challenge at this point is to find the dependencies betywaeameters in an

efficient manner. Next, we describe the two steps we take sndo

First step: Finding important parameters. Our first step in determining the depen-
dencies between parameters reduces the search spacetteejtistportant” param-
eters of each service tier, i.e. those parameters that I@vgreatest effect on the
metric of interest. To accomplish this reduction, we apply Classification And Re-
gression Tree (CART) algorithm [10], which is particuladffective at determining

the importance of its input parameters, even when the bligian of their values is
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unknown. CART has three main components: an outcome var{aly., throughput or
performability), a set of predictor variables (e.g., confggion parameters or hardware
characteristics), and a learning dataset. Each data padin¢ilearning dataset must in-
clude the values for the predictor variables and the valuketorresponding outcome
variable. Using the learning dataset, CART constructs arlgiclassification tree by
recursively splitting the dataset into partitions defingds/alues of the predictor vari-
ables. The purpose of each partition splitis to reduce terslity of the classifications
in the partition. Partitions that become homogeneous arepib further. CART eval-
uates the importance of each predictor variable by its dmrtiton to reducing diversity,
i.e. the more important variables produce a larger redadtiaiversity.

In our evaluation (Section 3.4), we define service througlagithe outcome vari-
able. The set of configuration parameters defines our poediatiables. The learning
dataset is collected from a set of runs of the service, agrdated by the Simplex
algorithm [43], which we describe below. For our purposks,key output of CART

is the importance factor it assigns to each parameter.

Second step: Finding dependencies between important parasters. Knowing
which parameters are important, we now need to determinéhwhthere are depen-
dencies between them. However, the dependencies betweethey smaller set of pa-
rameters may be complex and difficult to isolate as a singlblpm. Thus, we break it
into pair-wise dependency tests between all pairs of ingmbiarameters. For a group
of N important parameters, the number of pairs of paramét&rs’ = N x (N —1)/2.
Our dependency test is as follows: a parameter A dependsrampter B, if and

only if different settings of B lead to different best values A. To understand our
definition, consider figures 3.6 and 3.7. Figure 3.6 showsviiees of a metric of
interest as a function of parameters A and B. It is clear frbim tigure that the best
value for A depends on the value of B, regardless of whethesee& to maximize or
minimize the metric of interest. For example, if B=1, theuabf A that minimizes the

metric is 3. If B=3, the same value is 1. The same effect doeappear in Figure 3.7.
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Figure 3.6: A depends on B.

In this figure, we can see that B does not depend on A accordiogrt dependency
test.

To restrict the set of dependencies to those that affect #tecrof interest more
substantially (and, thus, reduce parameter tuning ovdd)eae establish a “depen-
dency threshold” below which the metric is assumed not teehahanged. So, for
example, if the difference between the best values for A wBreh and B=3 in Fig-
ure 3.6 were smaller than the dependency threshold, we waye assumed that A
does not depend on B. Thus, the dependency threshold hasé&dated carefully; an
excessively high threshold may miss real dependenciesieabean excessively low
threshold may find false dependencies.

Unfortunately, experimentally determining the behavibthe metric of interest
with respect to all possible values for each pair of parareetes in these figures, is
not typically feasible. For this reason, our infrastruetugquires service designers or

operators to specify the range of reasonable va{ueis value, max valuefor each
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Figure 3.7: B does not depend on A.

numeric parameter. For designers and operators, doingaavisusly much simpler
than having to specify the actual dependencies betweereatity large number of
parameters. Our infrastructure experiments with all corations of min, medium (the
average between min and max), and max values for each paarafmeters. Thus, for
each pair-wise comparison, we nexe3 = 9 experiments.

Finally, the parameter dependencies may be affected byrtivésjponing of the ser-
vice tiers. For example, if throughput is the metric of ietdrand one tier is overpro-
visioned, it is likely that parameters from other tiers widit depend on the parameters
of the overprovisioned tier. However, these dependencesappear if the overprovi-
sioned tier eventually becomes a performance bottlensdkgeservice evolves. Thus,
we run dependency checking once per tier, each time forcdifjexent tier to become
the bottleneck by removing one or more of its nodes. To avbetking dependencies
between parameters in the same tier repeatedly, we onlgrpethose checks when

the tier is the bottleneck. The set of dependencies we erindte graph is the union
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of those found in the provisioning experiments.

Number of experiments.Overall, for a set of N important parameters, our dependency
finding algorithm translates int@ "%, C5" + 3", S0 -, Ny = N;) +9 experiments
for each tieri with N; important parameters and is the number of tiers, i.e0(N?)
experiments. Considering that the total number of possitebinations of parameter
values isO(RT), whereT is the total number of parameterg (> N) and R is the
number of possible values for each paramefer(> 3), our algorithm provides a dra-
matic reduction of the dependency space. However, becausdgorithm may fail to
find dependencies that do exist, we call it a heuristic. Needess, our understanding
of the servers we study in this thesis and their parameteygestis that our heuristic
dependency-finding algorithm works well in practice.

As we mentioned above, the only information that our al¢ponitrequires is the
range of possible values for each parameter. This infoomai@n be communicated to
our infrastructure using a simple interface. In fact, thmsanterface allows designers

or operators to specify the parameter dependencies mgnuall

3.3.2 Traversing the Graph

Tuning parameters involves traversing the dependencyhgaag using the dependen-
cies to limit the number of experiments. The traversal stattthe source vertices.
If there are cycles in the graph, all vertices that form eaaiecneed to be tuned at
the same time, i.e. we need to consider all combinations lakegdor all parameters
in the cycle. In acyclic dependency chains, parametersctirae earlier in the chain
are tuned before those that come later. In detail, the squacameter is tuned first
assuming the current values for all other parameters. Alfierstep, all parameters
reachable from the source in one edge traversal can be tadegendently, each of
them assuming the best value for the source and the curremsvior all parameters.

The next step involves the parameters that can be reachaa iadge traversals and
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so on. If a vertex cannot reach any other vertices, all we neetb is explore the
possible values for the corresponding parameter, keeflioghar parameters fixed at
their current best values. To explore the possible paramatees, we use Simplex. In

particular, Simplex considers values in train value, max valyerange.

Number of experiments. The key advantage of using the dependency graph to guide
the tuning of parameters is a major reduction in the numbexperiments. Recall
that the total number of possible combinations of paramedéres isO(R”). The
dependency graph transforms certain multiplicative figcto this large number into
additive factors. To see this more clearly, consider thepknfand very pessimistic)
scenario where all parameters are found to be important acid lealf of them form a
dependency cycle. The number of possible combinationssmstienario would only

be RT/2 + RT/?2 or O(R”/?), which represents a significant reduction of the tuning

space. In practice, reductions are even more substardialitthis case.

3.3.3 Simplex Algorithm

The Simplex algorithm, as extended by Nelder and Mead [43ni efficient method
for nonlinear, unconstrained optimization problems. Thyw@thm optimizes (maxi-
mizes or minimizes) unknown functiorfz) for z € IR". A simplexis a set ofn + 1
points in IR™, i.e. a triangle inlk?, a tetrahedron indRk?, and so on. The algorithm
starts by selecting a random simplex and evaluating thetifumat each vertex of the
simplex. Each iteration involves reflecting one of the \e&$i, but may also include
expanding and contracting the simplex. These three opesadire illustrated in Figure
3.8.

In more detail, each iteration involves the following stefs) Ordering — order-
ing the function values according to the optimization ge@af(, descending order if

the goal is to maximize the function); (2) Reflection — repl#tte vertex that leads to
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Figure 3.8: Main operations in the Simplex algorithm.

the worst function value (e.g., the smallest value when weenaaximizing the func-

tion) by its mirror image in the centroid of the remainingrertices. If the reflected
value is better than the old value but not better than the \mse currently, accept
the reflected vertex and terminate the iteration; (3) Exjgens if the reflected value is
better than the current best value, expand the reflectedxvaway from the centroid.
If the expanded value is better than the reflected value,ttekéormer and terminate
the iteration. Otherwise, take the latter and terminateC@htraction — if the reflected
value is worse than the next to worst value, perform a cotitmaof the worst vertex.

If the contracted value is better than the worst value, takddrmer and terminate the

iteration; and (5) Shrinking — shrink the simplex around¢katroid and start another

iteration.

Number of experiments. The number of experiments required by each Simplex ex-
ecution depends on the landscape being searched. In owatwal the parameter
tuning of a three-tier service using Simplex required 298eexnents. With the sup-

port of our dependency graph, only 73 experiments were redui
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3.4 Evaluation

In this section, we present our experimental setup andteeddk first evaluate our in-
frastructure’s ability to simplify service management afichinate misconfigurations.

Next, we evaluate our infrastructure’s ability to find goahfigurations efficiently.

3.4.1 Experimental Setup

For comparison purposes, we experiment with the same oaliogon service used
in [41]. The service is organized into three tiers of servéi&eb, application, and
database tiers. We use two machines in the first tier runmag\pache Web server
(version 2.0.54), three machines running the Tomcat sesdever (version 4.1.18)
in the second tier and, in the third tier, one machine runtiregMySQL relational
database (version 4.12). The service requests are redgnbe Web servers and may
flow towards the second and third tiers. The replies flow tghotlne same path in the
reverse direction.

We exercise the service using a client emulator. The wodktmmsists of a “bid-
ding mix” of requests (94% of the database requests are)ressied by a number of
concurrent clients that repeatedly open sessions witheghacge. Each client issues
a request, receives and parses the reply, “thinks” for aeyhihd follows a link con-
tained in the reply. A user-defined Markov model determinkgwlink to follow. The
code for the service, the workload, and the client emulaterflom the DynaServer
project [57].

The machines that run the service and the clients are Next¢ade Iservers with
512 MB of memory, 5400 rpm IDE disks, and 1.2 GHz Celeron CRWwming the
Linux kernel (version 2.4.27) connected by a Fast Ethenvitk.

We have implemented our infrastructure (6K lines of C and Pede) and the

generation scripts and configuration templates for Apatbecat, and MySQL.
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3.4.2 Complexity and Misconfigurations

Some of the central goals of our infrastructure are to geeamanfiguration files au-
tomatically, simplifying service management and elimimgumost misconfigurations.
To quantify management complexity with and without our astructure, we use the
measures recently proposed by Broetral. [11]. Although subjective in some cases,
their measures do provide insight into complexity and regmné the only comprehen-
sive set of complexity measures of which we know for serviemagement.

The measures define management complexity according te dspects of oper-
ator tasks: the actions that they need to execute (execcimplexity), the parame-
ters values that they need to select (parameter complexity) the requirements on
their minds (memory complexity). In more detail, teeecution complexitgf a task
measures the number of actions (NumActions) and the nunflfeootext switches”
(ContextSwitches) it involves. By their definition, a caxttewitch occurs between
any two consecutive actions that act upon two differentessror subsystems. The
parameter complexityneasures the number of parameters (ParamCount), the number
of times parameters are supplied (ParamUseCount), the eruofilimes parameters
are used in more than one context weighted by the distanegbatcontexts (Param-
CrossContext), the number of times parameters are usediffegedt syntactic form
(ParamAdaptCount), and the sum across all parameters afra om 0 to 6 based
on how hard (0 = easy, 6 = hard) it is to obtain the value of earhrpeter (Param-
SourceScore). Finally, thmemory complexitsneasures the number of parameters that
must be remembered (MemSize), the length of time they musgtheed in memory
(MemDepth), and how many intervening items are stored in orgrnetween uses of
a parameter (MemLatency). We consider the maximum and geeithese memory
complexity measures.

To demonstrate the complexity benefits of our infrastrigture study the operator
tasks and mistakes described in [41]. Table 3.1 lists thepbexity results with and

without our infrastructure for the four tasks that involhané@iguration: node addition
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Measure Node addition | Apache upgrade Apache diag DB upgrade

Without | With | Without | With | Without | With | Without | With

o NumActions 8 0 12 12 7 1 20 11
4i | ContextSwitchSum 6 0 16 16 2 0 44 22
ParamCount 7 0 6 6 0 0 4 2
% ParamUseCount 13 0 12 8 0 0 10 4
< | ParamCrossContext 24 0 8 6 0 0 18 2
Q | paramAdaptCount 0 0 4 4 0 0 0 0
ParamSourceScore 25 0 24 24 0 0 12 6
MemSizeMax 7 0 4 2 >1 0 4 2

> MemSizeAvg 2.4 0 2 1.2 NA 0 1.33 | 0.67
g MemDepthMax 7 0 3 2 >1 0 2 2

g MemDepthAvg 2.3 0 1.4 1.2 NA 0 1 0.67
MemLatMax 3 0 3 0 >1 0 1 1

MemLatAvg 0.5 0 0.6 0 NA 0 0.44 | 0.33

Table 3.1: Management complexity with and without our iafracture.

in the application-server tier, Apache upgrade, databade npgrade, and diagnosing
and fixing an Apache misconfiguration. Note that the resnltbe table underestimate
the benefits of our infrastructure, as they do not accounth®icomplexity of manual
parameter tuning after the first three tasks when our infregire is not used.

Despite this underestimation and the fact that our infuastire only helps with the
server configuration part of these tasks, the table showsttban still reduce com-
plexity significantly. The execution complexity is redudaetcause our infrastructure
automates most operator tasks related to the servers, edifying worker.properties
as a result of application server additions. With autonmatibe operator does not need
to perform most actions and, thus, does not context swittlvden actions. Along
the same lines, the automation brought about by our infrestre also reduces the
parameter and memory complexities, as it relieves the tgefram having to supply
or remember most parameters, e.g. the IP address of an adde@nthe hostname of
the node running the database server.

The exception to these general trends is the Apache upgaa#iefdr which our

infrastructure reduces the parameter and memory comigiesibmewhat, keeping the
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Eliminated Misconfigurations
Description Instances
Duplicated entry in Apache worker.properties 4
Unmodified last line of Apache worker.properties
Extra space in last line of Apache worker.properties
Non-existing Tomcat server in Apache worker.properties
Unmodified Apache worker.properties
Missing listen port in Apache httpd.conf
Wrong listen port in Tomcat configuration file
Unmodified Tomcat configuration file

Remaining Misconfigurations
Wrong Apache htdocs directory
Apache pointing to wrong heartbeat service
URLSs not mapped to servlets in Apache httpd.conf
MySQL access rights not given to Tomcat servers
No password for MySQL root
MySQL writes forbidden

PRRPRPREPND®

P FEPNEFEDN®

Table 3.2: Misconfigurations with our infrastructure.

execution complexity unaffected. The reason for this bedras that the Apache up-
grade task is dominated by non-configuration executionstaling the new version
in a different directory, copying content to the new diregisetting up the heartbeat
service, shutting down the old version, and starting the vension.

To evaluate the ability of our infrastructure to eliminatesconfigurations, we re-
peat the operator-emulation experiments from [41]. Inipaldr, we use the operator
action traces that they collected for the four tasks abowablelr3.2 shows the mis-
configurations that our infrastructure eliminates (leftylahose that it does not (right).
Overall, our infrastructure eliminates 14 out of a total df @served misconfigura-
tions, i.e. 58%.

Note that some misconfigurations remain because, for ngdsks, the operator is
required to change a few parameters in the configurationditetates. Specifically,
the operator needs to supply the htdocs directory (the roettdry of the content to
be served), set the correct translation between URLs ancdtdbservlets, and point

to the correct implementation of the membership protoda fieartbeat service) for
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Apache | Ti neQut , MaxKeepAl i veRequest s,
KeepAl i veTi nmeout

Start Servers,M nSpar eSer vers,
MaxSpar eServers,MaxCl i ent s,
MaxRequest sPer Chi | d

Tomcat | maxPr ocessors,M nProcessors,
accept Count

MySQL | key_buf f er,max_al | owed_packet,
t abl e_.cache,sort _buffer,
read_buf fer _size,record._buffer,
nyi samsort _buf f er _si ze,

t hread_cache,

query_cache.si ze,

t hread_concurrency,

i nnodb_buf f er pool _si ze,

i nnodb_addi ti onal -nmempool _si ze,
max_connecti ons

Table 3.3: Performance-relevant parameters.

the Apache upgrade task. These changes account for 6 ofrtteeniag misconfigu-
rations. The other 4 remaining misconfigurations do notlvezgonfiguration files, so
our infrastructure could not have eliminated them. Spedlficthey occurred during
the upgrade of the database node (3) and when diagnosingaidng an application

server hang (1).

3.4.3 Parameter Tuning

The other key goal of our infrastructure is to generate conditjon files with optimized
parameter values. In this section, we assume that the nodtimterest is throughput
performance, which we want to maximize. Because of our fecugerformance, we
consider only the 24 parameters that may impact it, whictistezl in Table 3.3. Each

performance experiment was run for 2 minutes with warm cache

Generating the parameter dependency graph.The first step in generating the de-

pendency graph for our auction service is to find the impopgarameters using CART.
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Tier Parameter Relative
Importance

Apache | MaxRequestsPerChild 100
MaxClients 44
StartServers 24

Tomcat | acceptCount 100
MinProcessors 38
maxProcessors 26

MySQL | innodh buffer_poolsize 100
max.connections a7
query.cachesize 32

Table 3.4: Parameters with relative importance greater #¥sas computed by CART.

To do so, we create a learning dataset for CART using Simpldtl good settings
for the above parameters for each tier independently. Wewsiid a random configu-
ration. The first Simplex run tries to find good parameter @slfor the database tier,
the throughput bottleneck. We then set the database sesvampters to the values
found by Simplex, make the application-server tier thelbo#ck (by decreasing the
number of nodes in this tier), and run Simplex again to finddyoarameter values for
the application servers. Finally, we set the parameteregai the application servers
and of the database server to those found by Simplex, maké/gheserver tier the
bottleneck (by bringing back the application server nodes$ i@moving Web server
nodes), and run Simplex again to find good parameter valuekddNeb servers. The
total number of experiments for these three Simplex runs4s 2

CART can use the results of these experiments to computeldie/e importance
of the parameters. Table 3.4 lists the 9 parameters withivelianportance greater than
20. We initially picked this threshold value based on ouuiitinte understanding of the
servers involved. Later, we realized that a threshold of 1385ocould have produced
the same results using many fewer experiments. Nevert)elesdecided to stay with
20 to study our approach in a more challenging scenario.

The second step in generating the graph involves findingrabpeeies between
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Apache.StartServers

Apache.MaxClients

MySQL.max_connections
MySQL.query_cache_size

MySQL.innodb_buffer_pool_size
Apache.MaxRequestsPerChild

Tomcat.acceptCoun

Figure 3.9: Parameter dependencies.

parameters. Following the procedure described in Secti®ri 3we performed 567
experiments. To determine the dependencies, we set thadkpey threshold to 10%,

leading to the relationships portrayed in Figure 3.9.

Performance tuning. We now evaluate the use of our parameter dependency graph
for automatic performance tuning as the service evolvese firkt evolution is the
migration of the bottleneck MySQL server to a more powerfalcimne, which has a
2.8 GHz Xeon CPU, 2 GB of memory, and a RAID-5 SCSI disk arragrtthg from
the upgraded service, the second evolution is the removal@fapplication-server
nodes to mimic a scheduled maintenance event or a brownout.

The tuning of the parameters after the evolutions can bepedd using several

methods:

e Exhaustive search: Explores all combinations of paramedkres. Overall,
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Evolution Tuning Approach Throughput| Number of
(regs/sec) | Experiments

DB node upgrade Best values prior to DB node upgrade 343 -

Simplex search 372 299
Dependency graph + Simplex 377 821+ 73
Removal of 2 | Best values prior to DB node upgrade 91 -
appl. servers Simplex search 114 220
Dependency graph + Simplex 110 0+35

Table 3.5: Comparing performance tuning approaches foserace evolutions.

O(RY) experiments, wher& = range andV = total number of parameters =

24. Obviously, exploring this entire space is infeasible.

e Simplex search: Uses the algorithm described in Sectior8 3dtune the 24
parameters. The number of experiments here depends chmethedandscape

being searched.

e Dependency graph + Exhaustive search: Explores all corbirsof values for
the groups of dependent parameters. For our service’s depepgraph (Figure
3.9), this means an exhaustive search of the combinatiomaloés for 7 im-
portant parameters and an exhaustive search of the othgydtent parameters

independently. Again, exploring this space is infeasible.

e Our approach = Dependency graph + Simplex search: Run Singplethe
groups of dependent parameters. For our service's depeydesph, this means
running Simplex on 7 important parameters and exhaustaeekdor the 2 re-

maining ones independently.

Table 3.5 compares the number of experiments and tunedghpow entailed by
the approaches that are feasible for each of the evolutitacsh number of experiments
in our approach is presented as the sum of the number of exgets for generating
the dependency graph and for performance tuning based ardpl. For the results

in the table, the Simplex searches were set to terminate Wieestandard deviation
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of the throughputs forming the simplex was lower than 3 &S/ The first row of
each group lists the throughput of the best parameter valisto the database node
upgrade when applied to the service after the evolutiong. |(¥éd these values as the
starting point of the Simplex searches.)

It is interesting to observe that our infrastructure ackgekiigh throughputs with
the smallest number of performance-tuning experimentsfadty its throughput is
about 10% (database node upgrade) and 21% (removal of tMioatpm-server nodes)
higher than that of the best parameter values prior to thieefidution. However, our
approach also involves a large number of experiments (2587+=5321) for generat-
ing the dependency graph. The effect of this extra overhg#uhat our infrastructure
needs a few evolutions to become cheaper than the Simpleraghp In particular,
after these two evolutions, our approach has executed 2A9483 + 35) experiments,
whereas the Simplex approach has involved 519 (299 + 22@riempnts. Thus, we
have been able to amortize 411 (299-73 + 220-35) experinfremisthe overhead over
the two evolutions. Assuming that this amortization rateuldgersist, it would only
take two more evolutions for our approach to break even wighSimplex approach.

Another interesting observation is that the actual valueshately chosen by the
tuning approaches are different for all tuned parameters, @esult of how Simplex
searches the space. The tuned parameter values are alsiamhsdifferent than the

best values prior to the DB node upgrade.

Amortizing the overhead of the dependency graph.A key remaining question is
whether the dependency graph can indeed be amortized oxegraus service evo-
lutions. To answer this question, we compared the depegdgnaphs generated by
our heuristic algorithm before and after service evolugidfinding the same (or a very
similar) graph after an evolution suggests that the grags dot have to be regenerated
as a result of the evolution.

We considered three types of evolutions: the database nugtade, the removal

of the two application-server nodes, and the upgrade of MyS&pver (version 4.12)
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to version 5. Our results show that the database node uplpadieto the same depen-
dency graph as with the slower node. We expect that systemvasef upgrades, e.g.
upgrades of the operating system, for improving perforraatmould lead to the same
results as this evolution.

Removing two application-server nodes also led to the samehgas before the
upgrade. Because of the way we generate the dependency, grvapdxpect other
membership evolutions, e.g. node additions, to behavéasimi

The MySQL upgrade was more interesting. We first had to vehify the perfor-
mance parameters in the new version of MySQL are the sametas iold version,
which is indeed the case. (In fact, the same is true of the mex&int versions of
Apache and Tomcat.) After generating the dependency grapthé upgraded ser-
vice, we found that it is a subset of the original dependemaply, suggesting that the
original graph would still be useful.

Despite our ability to amortize the overhead of generatirgdependency graph
over many types of evolutions, we may eventually need tonegee it. For exam-
ple, the dependency graph may become inaccurate afterearlargber of evolutions,
even if each evolution affects actual dependencies onhityi. To deal with these
situations, operators can periodically start the regeeraf the dependency graph;
the frequency of regenerations should depend on the owishieeolved and on the

frequency of evolutions.

3.5 Summary

In this chapter, we proposed a software infrastructuredtoraatically generating con-
figuration files for cluster-based Internet services. THeastructure introduces the
notion of a parameter dependency graph and algorithms &rgtnthe graph and opti-

mize the service with it. Our evaluation showed that theastitucture can simplify the
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service operation, eliminate operator mistakes, and géméigh-performance config-

urations efficiently.

Limitations and future work. Although our experience and results are clearly posi-
tive, we could extend the work presented here in a few diffenays. In particular, we
could study the sensitivity of our results to the parametgrertance threshold in more
detail. Our results for the first evolution above suggest #éhthreshold of 35 would
have been a better choice than 20, since it produces esbietiteasame throughput
but with many fewer experiments. We could extend our inftecttire to deal with
application-level evolutions. Furthermore, we would ext®ur infrastructure to au-
tomatically detect significant changes in workload chamastics, which should also
prompt parameter tuning. As a longer-term goal, we couldysperformability (per-
formance + availability), rather than performance aloseth@ metric to be optimized
by our infrastructure.

In closing, itis important to mention four limitations of owork. First, our current
infrastructure only works for numerical parameters; catiegl or symbolic parameters
are not handled. Second, our current experimental metbhgygas not very robust for
systems that are prone to experimental noise (e.g., pesfzendegradation due to
unstable hardware, non-deterministic software, or opeyaystem daemons that are
activated during experiments). For these systems, a mbrestanethodology could
be to run each experiment twice and use the best value of thécroéinterest, for
example. Although our system is indeed prone to noise, weddpt lower overheads.
Our positive results demonstrate our current methodologsked well in practice.
Third, our sample Internet service, the online auctionytssantially simpler than real
commercial services. Configuring these real services mag pballenges that we are
not addressing. For example, a real service may involvegedarumber of different
servers and configuration parameters. It is possible teagehrch space would have to
be reduced further to make automatic tuning practical fohguservice. Finally, we do

not have access to statistics on the frequency and type aftents that real services
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experience. Note however that these limitations plagueaise majority of academic
studies of Internet services, since real services rarelylgee information about their
internal structure and evolution. Despite these limitadiave believe that real services
can certainly leverage the principles and ideas introdiezd in their more complex

environments.
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Chapter 4

MassConf

4.1 Introduction

The previous chapter describes how ACI automatically twoesiguration parameters
as a system evolves. When the system is first configured@emare it starts evolving),
ACl relies on Simplex to initialize configuration parametatues. However, Simplex
often needs to run a large number of experiments. Thus, thees who deploy server
software for the first time cannot take advantage of ACI, aiidace great challenges
to tune configuration parameters for a specific performamanergy target. While
vendors often provide default configuration files that wokdIvior many users, con-
figurations need to be tuned in many other cases.

Unfortunately, as described in the previous chapter, canfig modern software
can be extremely difficult in those cases. The reason is tigabd configuration de-
pends (at least) on the hardware environment, the workliteed|oad intensity, and
the target behavior (e.g., some level of performance olahitity) the user wants to
achieve. Moreover, it is very hard (if not impossible) foetsto completely under-
stand the configuration-hardware-workload-intensitgéarelationship.

Due to the size and complexity of this configuration spaceyipus research has
focused on approaches and tools to detect misconfiguradimisr troubleshoot them
[1, 37, 41, 65, 78, 79, 81], to study the resilience of systantte face of configu-
ration errors [35], to automatically configure a large numiiemachines in a single

installation [2, 3, 12], and to automatically tune configimas for performance [73].
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Although these efforts have been useful, a user’s abilityotafigure her software
to achieve a certain target behavior is still far from ideapractice. For example, a
user who wants her server software to produce an averagensspme of 50 millisec-
onds is left clueless, when the default configuration reacimty 100 milliseconds. As
long as the parameters that affect performance are idehtthés user can run exist-
ing algorithms (e.g., [43]) to optimize the server’s pemi@nce by experimentation
with different configuration settings. However, tuningfoemance may involve a very
large number of time-consuming experiments [73]. For eXangach tuning experi-
ment with a database server may involve restoring a largddat and its indexes back
to a specific initial state.

We argue that vendors need to do more to help users configeirestitware. One
approach vendors could take is to create automatic confgytinat run locally at the
users’ sites and select the best values for the parametees,through experimentation
or modeling. A simpler and cheaper approach, the one we atlvdwere, is for the
vendor to collect configuration information from the exagtiuser community of its
software and use it in configuring the software for new users.

Our approach is based on two key observations. Frspnfiguration may actually
work well for many users.e. it may work well for many workloads, load intensities,
and target behaviors, especially when the users use sihdtdware platforms. For
example, the default configuration often produces accéptadhavior for many users.
This observation means that popular (i.e., frequently beeridting configurations may
work well for many new users of the software. Figure 4.1 tlates this observation
with a simple example. Configuratidry, is more popular thag’, andC)y, as it is used
by more users (2 instead of 1).

The second observation is thaultiple configurations may actually work well for
each useri.e. they may all meet the user’s target behavior. This lagi®n means
that there is flexibility in which existing configuration telect for each new user; even

configurations that are unpopular may work well for her. Bareple, a user seeking
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Configuration Space User Space

Figure 4.1: Many users may use the same configuration. Amdrom A to B means
that configuration A is used by user B. Solid arrows represdgatmation that Mass-
Conf has.

Configuration Space User Space

Figure 4.2: Many configurations may work for each user. Apwatfirom A to B means
that user A can use configuration B. Dashed arrows represgmtitht MassConf can-
not obtain.
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an average response time of 50 milliseconds for a light veadkimay be able to use
many different configurations, including the default oné anconfiguration that has
enabled a single user with a particularly heavy workloadctueve high performance.
Similarly, many other users may be able to use the latter goration. Figure 4.2

illustrates this observation, showing that uséssandU; could also use configuration
C, (besides’y and(C,, respectively).

These observations mean that any work that users may doddheir configura-
tions can benefit new users of the software as well. Thus,isnctrapter we propose
to leverage the existing users’ configurations to find a gadiguration for each new
user. To demonstrate this idea, we designed MassConf, ansythiat automatically
collects configuration and environment information fronlsérg users, clusters users
according to environment, produces an ordered (rankedaflEossible configurations,
and tests each configuration in turn at the new user’s sitethatarget behavior is met.
After the configuration of each new user is complete, Mas$@my change the rank-
ing of configurations. MassConf seeks to (1) reach the tdrgkavior for as many
new users as possible and (2) minimize the average numbewpefiments required
at the new users’ sites. Because users are sometimes n¢ltectiivulge information
about their systems, MassConf stores as little data aslpesdout them: only their
environment descriptions and the non-sensitive partsedf tonfigurations.

The most interesting technical aspect of MassConf is itkingnof configurations.
Faced with our first observation above, one would be temmedrik configurations
based on popularity; more popular configurations would ieel fiirst at the new users’
sites. The popularity information is readily availablerfrthe existing users’ deployed
configurations. In our example, the popularity informatmrresponds to the rela-
tionships depicted in Figure 4.1. However, as our expertmshall demonstrate, the
popularity-based ranking is not the best choice. The re@strat particularly effec-
tive but difficult-to-find configurations would tend to appdawards the end of the

list. Ranking them higher would allow more new users to befiganed with fewer
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experiments.

To account for this effect, MassConf would require inforioatabout how every
deployed configuration would do for every existing user. ur example, it would
need to know at least about the dashed arrows in Figure 4.2wkg this informa-
tion, MassConf would rank’, higher than any other configuration, sincecan satisfy
more users than any other configuration. Unfortunagelgh information is obviously
not obtainable Thus, MassConf adapts its behavior over time, by moving timéigu-
ration that is selected for each new user toward the front@fanked list, regardless
of its actual popularity. This adaptation increases thecbahat another new user will
also experiment with (and hopefully benefit from) the seddatonfiguration.

Our optimized version of MassConf, which we call MassCotnfproves ranking
further by cutting off the ranked list of configurations afta initial “learning” period.
Shortening the list rids MassConf+ of configurations thatuarlikely to satisfy a large
number of new users, thereby reducing the average numbgpefiments. (Hereafter,
we only refer to MassConf+ explicitly when discussing mialethat does not apply
to MassConf. When the context does not require such a distimave refer to both
systems simply as MassConf.)

To evaluate MassConf’s ranking of configurations in an iegéing (yet understand-
able) case study, we investigate its use for automaticalhfiguring the Apache Web
server to achieve a response-time target. Despite the gayuf Apache, evaluating
MassConf poses a challenge for academics, namely the Usdailiy of massive user
configuration datasets in the public domain for any piecetifvare. Instead of being
discouraged by this challenge, we decided to evaluate Mag3(ing a synthetic user
population. In this context, we study different speeds fovimg a selected configura-
tion to the front of the ranking, as well as the popularitséd ranking. As a baseline
for comparison, we use Simplex [43].

The results of our case study show that adaptive rankingnesjmany fewer ex-

periments than the popularity-based ranking to configureulation of new users.
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Existing
User 1

Existing
User 2

Existing
User N

9. Warn about
configuration

1. Inform environment
and configuration

2. Cluster environments
4. Rank configurations
7. Store selected configuration

3. Inform environment 8. Change ranked list

and target 5. Provide ranked

list of configurations

6. Try configurations in turn
(resort to Simplex, if needed)

Figure 4.3: MassConf overview.

Regarding adaptation speeds, we find that the faster we mesteeted configuration
to the front of the ranking, the better on average. In fae Jabst approach is to always
move such a configuration straight to the front of the rankstd IPopularity-based
ranking is only faster on average than the slowest movingtatian. We also find that
MassConf can configure many more new users than Simplex.ddereMassConf re-
guires many fewer experiments than Simplex, even when wsidenonly those new
users that both systems can configure. MassConf+ reducesetage number of ex-
periments per new user even further. Based on our expeneiticéhe case study, we
qualitatively extrapolate from it to identify the generalncitions under which Mass-
Conf is most effective.

Our experience and results illustrate that software cordigan can be significantly
simplified by having users contribute parts of their configians and use them to
configure the software for other users. Because of its saipknd effectiveness, we
conclude that MassConf and its adaptive ranking of configama have great potential

to work well in practice.
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The remainder of the chapter is organized as follows. Thée sention describes
MassConf in detail, including its configuration ranking@lighms and Simplex. Sec-
tion 4.3 introduces our Apache case study and experimgraafiluates MassConf.
Section 4.4 extrapolates from the Apache study. FinallgtiSe 4.5 summarizes the

chapter and discusses some opportunities for future work.

4.2 MassConf

In this section, we first detail the design of MassConf. Wenttescribe its ranking
approaches and discuss its bootstrapping. After that, weritbe Simplex. The last

subsection discusses some potential refinements to MassCon

4.2.1 Design

Figure 4.3 illustrates the MassConf design. The next fevagraphs detail each part

of the design in turn.

Data collection from existing users.MassConf is run by the software vendor. First
(step 1 in the figure), it collects configuration and enviremtinformation from each
existing user that is willing to participate. (Although semmsers may refuse to provide
this information, many would likely be willing to contribeito the community since
they can benefit from it as shall be clear below.) This infdirarais extracted by
instrumentation in the server software itself and sentéovémdor.

The configuration information describes the settings oheanfiguration parame-
ter of the software. The settings can be of any type, e.g.daogihumeric, or character
strings. When the configuration information may includessare data, only a few rel-
evant parameter values may be collected. (The vendor skaold which parameters
may include sensitive data.)

As part of the configuration information, MassConf must berimed about the

users’high-level goalsvhen they selected their configurations. For example, tlaé go
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may have been to improve performance, improve perforntalfgerformance + avail-
ability), or lower energy consumption.

MassConf stores the parameter settings it receives withodification, except in
the case of numeric parameters. For each numeric paranvdssConf breaks the
range of possible values into 10 evenly sized chunks. Twdiguorations are grouped
together if their values for each parameter fall in the sammk. For example, suppose
that each configuration has two parametersand p,, with possible values ranging
from 1 to 200 (chunks of size 20) and from 1 to 100 (chunks df 41@), respectively.
Further, suppose that the values of these parameters fgemtionsC, andC’ are:
Cy(p1) = 10 (first chunk),Cy(p2) = 18 (second chunk),'s(p;) = 16 (first chunk), and
C5(p2) = 12 (second chunk). Because the chunks match for each para@ieandCs
would be grouped together.

The configurations in each group are represented by a siag&dge” configura-
tion. In the average configuration, each parameter is giveraverage of the values
seen for that parameter in the corresponding group. For pbearthe average con-
figurationC,,, for the cluster formed by configuratiods andCjs above would have
Cavg(p1) = 13 andCy,4(p2) = 15.

The environment information is a description of the haraw@e.g., number of
cores, amount of memory) and possibly the low-level softarg., operating system,
settings for relevant environment variables) at the usgtes This information is nec-
essary since the behavior of the software to be configureddepgnd heavily on the

environment.

Clustering existing users according to environment.Using the environment infor-
mation, MassConf then clusters the existing users (step 2jga done in Mirage [22]
for software upgrade deployment. The idea is to clustersitbat have similar environ-
ments together, so that their configuration information lsamsed for new users with
similar environments. For example, the vendor of a mukislded server may want to

separate out user sites with vastly different numbers adsor threading libraries, as
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these aspects of the environment may have a significant effieithe ideal number of
threads with which to configure the server. Conversely, gges with similar num-
bers of cores and thread libraries should be clusteredtiegeA number of algorithms
can be used for clustering, but we prefer the Quality Thries{@T) algorithm [33].
QT starts with one site per cluster. It then iteratively asidiss to clusters (effectively
merging clusters) while trying to achieve the smallest agerinter-site distance and
not to exceed a pre-defined maximum cluster diameter. Thuitdg stops when no
more clusters can be merged together. Our distance metatves the aspects of
the environment that differ between clusters. Each asgestighted by the vendor,

according to its importance to the software configuration.

Collecting information from a new user. After clustering some existing users, Mass-
Conf is ready to configure a new user. It first deploys the sarwo the new user’s
site and collects its environment information (step 3). A,hierequests from the user
a description of the software’s target behavior (step 3 tHnget behavior reveals the
high-level goal for the configuration tuning. With the nevetis environment informa-

tion, MassConf can now identify the best cluster for it.

Ranking configurations. Using the configuration information from this cluster, Mass
Conf produces a ranked list (or ranking) of configurationbedried at the new user’s
site (step 4). The list is formed by the configurations of tkisteng users that had the
same goal as the new user. (For example, we do not want tofaseation about con-
figurations that were selected to lower energy consumptioanvwconfiguring servers
for maximum throughput.) The exact ordering of the list ifuanced by the order of
the users’ (both new and existing) arrivals, as describéaberhe list is transferred
to the new user’s site (step 5). At this point, MassConf cameaxperiments with each
configuration, until the desired behavior is met or it runs @uconfigurations to try

(step 6).

Testing configurations at the new user’s site.These experiments are run under the
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user’s actual workload and load intensity, so the user Harsgy have to provide a
realistic test harness to exercise the software. If all Brpnts are run and the desired
behavior is never achieved, the user is warned. MassCordhility to reach a target
may mean that the target is unrealistic for the workload aradi lintensity, or that
it still does not have enough information (i.e., enough taxgsusers) to produce a
large enough coverage of the possible configurations. (\&uds this bootstrapping
problem in a later subsection.) If the user confirms that #inget is achievable and
the parameter values are numeric, MassConf resorts to &ggparting from the best
configuration it has found so faHowever, we expect that MassConf would rarely have
to resort to other approaches in practice; in most casesiellveuser would relax the
target. In these cases, MassConf would most likely havadyréound an appropriate

configuration.

Storing the selected configuration.When a configuration is selected, MassConf in-
cludes information about it in its central database of exgstsers (step 7). At that
point, the new user becomes one of the existing users witleircorresponding clus-
ter. (As MassConf found the configuration for the new useaglri¢éady has all the
information required from an existing user.) Thus, after biootstrapping period, the
population of existing users should exhibit similar chéegstics (as a group) to the

new users (also taken as a group).

Adapting the ranking. Asitis impossible to predict the set of new users that wilhtva
to join the system, MassConf adjusts its ranking (step 8) bying the configurations
that have been selected for each new user towards the to eatiking. This ad-
justment enables very good configurations to be chosen nfitene. When MassConf
needs to resort to Simplex, the new configuration is addedecend of the ranking.

We discuss these decisions in detail in the next subsection.

Providing feedback to existing users.Finally, MassConf warns existing users when

their configurations seem suboptimal (i.e., new users Wwitsame goal have selected
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other configurations) with respect to the rest of the useteersame cluster (step 9).
This feedback to existing users is an incentive for them twigdle their configuration
and environment information, even when they had to confithe# software entirely
by hand or when the community was still small. Another imanttincentive may be
to help these users configure an upgraded version of theaeftwy leveraging infor-
mation from the users who benefited most from MassConf to gordithe existing

version.

Discussion.Previous systems have also relied on information from tiregrs [1, 66,
78, 79]. However, those systems seek to troubleshoot caafigns, not tune them as
MassConf does. In our context, the specific and diverse ctarstics of the users’
workloads and their behavior targets mean that configuratiormation is also di-
verse (i.e., coercion as in PeerPressure [78] does not)agptlyprior actions from a
user do not produce the same results for another userdical,éxperiments are neces-
sary). For these reasons, our main focus has been studyapg\agranking algorithms
and the number of tuning experiments to which they lead oregee Neither of these
issues was considered by these prior works.

Although we have focused on the use of MassConf to configuitevaie at the
users’ sites, our system can also be used for software tbeg deploy to Cloud Com-
puting services such as Amazon’s EC2. In this case, Mass@auifl require informa-
tion about thevirtual environment (and, possibly, the service) on which the sarkéw

will be run. Every other aspect of MassConf would remain axdbed above.

4.2.2 Configuration Ranking

Dynamically adapting the ranking. As we mentioned before, a popularity-based
ranking can be misleading. It is possible that unpopulafigarations can actually
satisfy many more new users than popular ones. The reassa linghly useful con-

figurations are not more popular may be that they are harderdpe.g. they are only
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Figure 4.4: Original ranking (a) and slow (b), fast (c), aadtést (d) adaptation ap-
proaches, after configurationg andC’; are selected by two consecutive new users.

needed for heavy workloads or hard-to-achieve target befsav

Instead of relying on popularity, MassConf dynamicallygtdats rankings to even-
tually concentrate configurations that can satisfy many usevs at the top. We study
three approaches for promoting the selected configuratiotien a ranking: slow,
fast andfastest The slow approach moves a selected configuration one sliot tine
ranking. The fast approach moves the configuration to thievagilpoint between its
current slot and the top of the ranking. The fastest approames the configuration
directly to the first slot of the ranking. Figure 4.4 shows &areple of how ranking (a)
is adjusted after configuratiofl; andC'5 are selected by two consecutive new users,
using the slow (b), fast (c), and fastest (d) adaptation@agres. For example, in the
fast approach;, is first moved from the 8th to the 4th slot in the ranking. Thisves
Cs, Cy, C1, andC one slot down the ranking. Then, whéh is selected by the next
new user, it moves from the 5th to the 3rd slot. This maveandC, one slot down.

Regardless of the speed of promotion, any new configurati@isare added to the

system are appended to the end of the corresponding rankimgreason is that we
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want to see more than one user benefit from a new configuragifmmeowe promote it
up the ranking.

Note that configurations coming from existing users aretéxbthe same as those
selected for the new users, despite the fact that the forsensiselect their configu-
rations by means other than MassConf (i.e., the ranked agafigns are not tested
in turn for these users). We also considered the possilaifityot altering the rank-
ing when an existing user joins with a configuration that hiaglaaly been seen. We
ultimately decided against this approach because it wousletglard the fact that the

configuration satisfied an additional user.

Cutting off the tail of the ranking (MassConf+). After a period of adaptive ranking
in MassConf, the configurations that satisfy the most ugargets will tend to rank
high and reduce the average number of experiments per newGmeversely, config-
urations that are not as widely useful will tend to be leftra tail of the ranking. This
means that the likelihood that a configuration will satistyeav user decreases rapidly
as we move past the first set of configurations. Beyond thj& seay actually be more
advantageous for MassConf to cut off the ranking and resc8irnplex right away,
instead of trying a large number (potentially all) of thesleseful configurations.

Based on this observation, we designed an optimized veddibrassConf (called
MassConf+) defining two thresholds: (1) the number of newsigesee before cutting
the ranking off; and (2) where the ranking should be cut ofassIConf+ uses heuristics
to select these thresholds. For (1), it waits until the ayersumber of experiments for
configuring each new user has gone down many times in a rowr(le3 toy default).
Another option would have been to wait for a period with a ktadverage number
of experiments per new user. We selected our current apprdmscause it allows
MassConf+ to cut the list faster (before the average hadiged). For (2), it cuts off
the ranking at the number of configurations that has satisfiadge percentage (80%
by default) of the new users seen so far.

Picking these thresholds properly is important, since aw oonfigurations that
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are added to the system amet added to the corresponding shortened ranking. The
reason is that adding these configurations to the shortemé&ihg could discard more
useful configurations. A more robust approach could be teatgully prune the rank-
ing, allow it to grow (which would happen ever more slowly) # period, and then
prune it again. Our simpler approach has worked well in opeerents, so we leave

the more sophisticated one for future work.

4.2.3 Bootstrapping the System

Any system that relies on other systems’ information to madesions faces a boot-
strapping problem. MassConf is no different. It starts @ering well when the exist-
ing users within each cluster become a good representditithe mew users to come
into the same cluster. Until that point, MassConf may be len&d meet the target
behavior requested by new users without resorting to (éxgert-intensive) Simplex.
Instead of resorting to Simplex, the new user may also decidptimize the configura-
tion manually until the target behavior is achieved. Foatety, these Simplex-derived
or manually generated configurations contribute to Mas$§{tighthe same as the con-

figurations of the existing users that join MassConf.

4.2.4 Simplex

The details of the Simplex algorithm appear in section 3.3tBthe context of this
chapter, each vertex of the simplex is a configuration. Theraipns done to each
vertex involve operating with the corresponding paransetéithe configuration. For
example, a reflection involves reflecting each configurgtemameter of the worst con-
figuration independently with respect to its value in thetic®d configuration.

In our experiments, we set Simplex to terminate when a taagetage response
time is reached or the standard deviation of the verticegaase times is smaller than

5 milliseconds [43]. Under these stopping criteria, Simpiequired between 7 and
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174 experiments.

4.2.5 Potential Refinements

We have considered many refinements to MassConf. We desnibe of them next.

Storing workload and load intensity information. We currently only collect config-
uration and environment information from users. Howeves,could also potentially
collect workload and load intensity data and use it to improur ranking of configu-
rations. The obvious difficulty is how to characterize theses data in a manner that
enables a meaningful comparison of different user sites.ekample, we could col-
lect resource utilization data summarizing behaviors eheser’s site. However, the
resource utilizations of two sites may be similar while tloéual workload and load
intensity are quite different (e.g., high CPU utilizatiomyrbe the result of a light load
that is computationally intensive or a high load that is retstack intensive). Config-
uration and environment information (including the uséuging goals) are sufficiently

well-defined that characterization is not a problem.

Storing the results of experiments. Right now, MassConf only stores the configu-
ration that is selected for each user; the exact behavigr, f@sponse time or energy
consumption) to which this configuration leads is not usestored. Another poten-
tial refinement would be to store all the configurations andaexperiment results
on the way to meeting targets. The experiment results frare#tisting users could
be compared to the new users’ targets to potentially impramking further. Specifi-
cally, the configurations leading to results that are clog@¢ targets could be ranked
higher than others. However, this would require more cormgdaking algorithms that
consider the experiment results. Furthermore, it is umdlest experiment results ob-
tained for the specific workload, load intensity, and taafeine user would be useful

in configuring the software for another user.

More aggressive re-ranking. Right now, MassConf does not change its ranking as
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a result of each experiment at a new user’s site. Changesgrenade after a good
configuration has actually been selected for the new usesth®n approach could be
to change the ranking as we observe the behaviors of diffeanfigurations at the
new site. For example, this more aggressive adaptatiord dmuktarted after finding
out that the configurations tested early on lead to very pebabior compared to the
target.

As Section 4.3.4 demonstrates, MassConf is very effedveje decided that these

refinements were not worth their additional complexity.

4.3 Case Study: Apache Configuration

To understand and validate MassConf and its adaptive rgnkie consider the Apache
Web server as a case study. In particular, we focus on confggépache to achieve
a target average response time. Because we lack real catitgudata, we create a
synthetic population of users. In this section, we first descour approach for gen-
erating the populations of existing and new users. Then,naé/ae the bootstrapping
behavior and the characteristics of the configurationsayeypl by our users. Finally,
we evaluate MassConf by comparing its adaptive rankingatj#the popularity-based

ranking, as well as comparing its results to those of Simplex

4.3.1 Methodology

Apache configuration and performance.As listed in Table 3.3, Apache has five main
configuration parameters that affect performance: Starggg MinSpareServers, MaxS-
pareServers, MaxClients, and MaxRequestsPerChild [7@rtServers specifies the
number of server processes that should be started, MinSpauers specifies the mini-
mum number of server processes that should be kept in a spalidMaxSpareServers
specifies the maximum number of server processes that sheukept in the spare

pool, MaxClients defines the maximum number of server pseEesallowed to start,
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and MaxRequestsPerChild defines the maximum number of sexjaeserver process
may serve (0 means infinite). The default configuration assiglues of 5, 5, 10, 150,

0, respectively, to each of these parameters.

Workloads, intensities, and targets.Each user in our synthetic population represents
a different combination of workload, load intensity, andpense-time target.

We define each workload by its fraction of requests for thypes of content: small
static files (average size 13KB with 20% cache miss rate)rgee latatic file (130KB
in size with 0% cache miss rate), and dynamic CGI scriptsheansuming 14ms of
CPU execution). Each of these types of requests stressterali part of the system:
the file system, networking, and the CPU, respectively. \ié&r te the fraction of CGI
requestsfog; as a fraction of the total number of requests. In contrastrefer to
the large-file component of the worklodd - as a fraction of the static requests. The
remaining percentage represents the requests to small Wesvary Fo;; and F.
from 0% to 100%.

To define load intensities for each workload that do not @atithe system, we
experimentally find the intensity that leads to saturatissuaing the default config-
uration. We call this the “maximum throughput” for the wartd. Then, we assign
load intensities for each workload from 50 requests/setotite maximum throughput
with a step of 50 requests/second. Since the maximum thpuidh,... is not always
a multiple of 50, the maximum load intensiky,,., is

. | Lmaz | 450 T}p00 %50 < 25,

For each workload, we select different targets along thehasle range. The
targets are evenly distributed between the performancéeofdefault configuration
Pye raur @and the best performance we can achieve with Simplgx,.... Specifically,
the targets ar€Puc rauits Pie fautt ¥ 0.95, - - -, Psimpiex)- If Psimpies 1S NOt €xactly a multi-

ple of 5% away fromP. s...:, the last target we use is the lowest such value that is still
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higher thanP;,,,,.... We choose 5% because it creates a good number of targets and

poses a non-trivial challenge for configuration tuning.

User populations. We synthetically generated an initial set of “existing gSehat

is evenly spread in the 3D space of workloads, load intessitand response-time
targets. We assigned workloads of the fafa,; € (0%, 20%, - - - , 100%) andFr €
(0%, 20%, - - - ,100%) to these users. We selected intensities and targets asbaekcr
above.

We define the existing users’ configurations by running Saxpln particular, we
set Simplex to start from the default Apache configuratiahstop trying new configu-
rations (new values for the different configuration parargtwhen the response-time
target is met. Only this last configuration is stored for eaxisting user.

The set of “new users” in our synthetic population is alsongvepread across the
parameter space, but is completely distinct from the sexistiag users. In particular,
the new users’ workloads are definedBs;; € (10%,30%, --- ,90%) and Fr €
(10%, 30%, - - - ,90%). The load intensities for these users are selected as bedcri
above. When setting targets for the new users, we seleéetsatupt are achievable by
either MassConf or Simplex alone. Our goals are to seledigumations for as many
of these new users as possible, while using the smallesbp@asmber of experiments
on average.

Overall, we create 219 existing users. We start with 31 diffeworkloads. Af-
ter selecting acceptable load intensities for each of tines&loads, we produce 91
combinations. By defining reachable targets for each warklove get to 219 com-
binations. We also create 195 new users, starting with 2Z8rdiit workloads. When
load intensities are considered, we reach 66 combinatkinglly, the addition of the
reachable targets brings us to 195 combinations.

As one would expect, our population of users is quite diveS& example, we
have a user witlt's - = 100% and a load intensity of 400 requests/second thatwdsser

a response time of 125 ms, assuming the default Apache coatiigro. A second user
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requestst; - = 100% at 87 requests/second for a response time of 278 mke ahi
third user requestBx; = 100% at 80 requests/second for a response time of 174 ms.

Note that our evenly spread and non-overlapping populstidrusers represent a
pessimistic scenario for MassConf. The reason is that angerdration of users in
specific parts of the workload-intensity-target space wantrease the likelihood that
(1) many users would deploy the same configuration; and (2)ynugers could be
satisfied by each configuration. These are the two basic pesrbiehind MassConf, as
mentioned in Section 4.1 and illustrated in Figures 4.1 a@d 4

Finally, note that, for simplicity, we assume that all udeage selected their config-
urations with the goal of lowering response time and belantp¢é same environment
cluster. (In fact, in our experiments, all users use the daamgware and low-level soft-
ware environment. Although it would have been interestongvestigate the effect of
slight environment variations, this assumption doetskew our results. The reason is
that, in the real world, there are many more users per envieoh than environments,
just like in our experiments.) Because MassConf operatedusters independently,

our results extrapolate trivially to scenarios with mubiplusters.

Running experiments. Our experiments are run on two Dell 2650 machines. Each
machine has one Intel Xeon CPU (2.80 GHz), 2 GB of memory, ar2ia rpm disk.
One machine hosts an HTTP client emulator and the other tlai#gWeb server
(version v2.0.4). The machines run Linux 2.6.18 and areeliny a 100-Mbit Ethernet
switch.

Using the client emulator, multiple clients concurrengynd requests to the server.
During each experiment, a pre-defined workload is sent tesénmeer at a fixed rate,
i.e. the pre-defined load intensity for that experiment. iflber-request time follows a
Poisson distribution. At the end of each experiment, thelatoureports the average

response time and throughput.
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Figure 4.5: Bootstrapping in MassConf.

4.3.2 Understanding Bootstrapping

MassConf becomes most useful when the population of egistsers has “stabilized”
as a good representation of the new users to come, i.e. thalghty that MassConf
will have to resort to Simplex has become relatively smalhisTpoint occurs only
when MassConf has gathered enough configurations.

Figure 4.5 illustrates the bootstrapping process. Thedigesumes that MassConf
is about to configure a new user, after a certain number dfilegigsers have joined the
system. The figure plots the probability that MassConf walvé to resort to Simplex
for the new user, as a function of the number of existing usrshave already joined.
We compute each probability by assessing the fraction ofnew users that would
require Simplex to run given the set of existing users. Stheestate of MassConf at
each point depends on exactly which existing users havedoiwe plot the average
fraction from 10 different (random) arrival orders.

As one would expect, the probability of needing Simplex ghhivhen the number

of existing users who have joined the system is small. Asrthimber increases, the
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Figure 4.6: Popularity of CGl-intensive, large-file-ingdre, small-file-intensive work-
loads, and all workloads.

probability falls sharply. Beyond roughly 37 existing usdhe probability of needing
Simplex falls below 20%. At that point, we can say that MasgGwad been boot-
strapped.

4.3.3 Understanding Ranking

Popularity. Popularity refers to how often an exact set of parameteregaappears
in a collection of configurations. For example, if the set afues{200, 17, 3,1000}
for four relevant parameters appears in 12 out of 20 configurs, we say that this
configuration has 60% popularity. Any configuration thategog a smaller percent-
age of times is considered less popular than this one. Pagdb@ased ranking ranks
configurations based solely on their popularity.

Figure 4.6 illustrates the popularity of the configuratitimst met the performance
targets for our existing users. The figure plots the popiyldar workloads domi-
nated by small files, large files, and CGI requests, as wehapopularity when all

workloads are considered together. We define a workload ©G®Gkintensive when
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Figure 4.7: Popularity ranking and number of new users thatle satisfied by each
configuration.

Fear > 50%. Aworkload is large-file-intensive whel, (1 — Fqr) > 50%, whereas
it is small-file-intensive wheil — Fx)(1 — Fogr) > 50%. On the X-axis, the figure
shows the index of the unique configurations in decreasidgrasf popularity (from
left to right). On the Y-axis, the figure shows the cumulapepularity of the configu-
rations on the X-axis. The leftmost point of each curve isdéfault configuration.
The figure confirms one of the basic premises of MassConf, lyatnat certain
configurations work well for many existing users, despiteessimistic assumptions
about the population of existing users. Specifically, we sa@ that the default con-
figuration indeed works well for a large fraction of users. alidition, the fact that
the curves are not straight lines shows that other configunst besides the default
one, are used by multiple users. Moreover, the figure shouaistlte configuration
popularity of the three types of loads is quite differentrdeafile-intensive workloads
show the least amount of popularity, whereas small-filerinive workloads show the
most. These observations suggest that it is harder to coafthe large-file-intensive

workloads than others. Nevertheless, MassConf has pakeéotgreatly benefit users
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with these types of workloads, as shown by the curve thatuatedor all workloads

together.

The other side of the coin.To fully understand ranking, we have to consider its impact
given a population of new users. As we have suggested, rqukinfigurations based
on popularity only may hide the fact that very good configiorad just happen to be
unpopular. Figure 4.7 illustrates this effect clearly. @a X-axis, the figure lists the
index of each existing configuration in popularity-basedeo(the most popular on the
left, the least popular on the right). Only the default comfagion (index #0) is not
listed. On the Y-axis, the figure lists the number of new usei@ur population that
could be satisfied by each configuration.

The default configuration can satisfy the performance targe66 new users. As
the figure shows, there is another configuration (#50) thatsedisfy even more new
users (70). Unfortunately, this configuration appears iagsy i.e. it is very unpopular.
This means that 49 other configurations would be tried befeaehing this very good
one. A similar observation can be made of configuration #20ckvcan satisfy 58 new
users. Moving either (or both) of these configurations updin&ing would allow many
new users to be configured with a smaller average number efiexents. In contrast,
the two most popular configurations can only satisfy 17 andchéd users. These
observations clearly suggest that the popularity-basekimg can cause a higher than

necessary number of experiments.

4.3.4 Experimental Evaluation

We now turn to evaluating the use of MassConf for configurieg miser installations.
We study two scenarios. In the first, we initialize MassCoithwonfigurations from
our 219 existing users and use it to configure our 195 new tsenset their response-
time targets. In the second scenario, we initialize Mas$@ath configurations from

1/3 of our existing user population chosen at random. Aties initialization phase,
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we use MassConf to configure our new users and integrateembf of our existing
users (again chosen randomly) at the same time. The ordéesé tuser arrivals is
also random. To mimic the fact that some users may decidenjoirt, the final 1/3 of
existing users are not used in this scenario.

To evaluate MassConf in these scenarios, we compare itswgaakaptation algo-
rithms to popularity-based ranking. In popularity-basaaking, the ranking changes
whenever the selection of an existing configuration causegopularity ordering to
change; more popular configurations appear first. New cariguns (found by Sim-
plex) are added to the end of the ranking, as they are thegdeastar.

To put the results in context, we also compare them againgpl8k (running on
its own and starting from the default configuration). In diddi, we present results for
the “optimal” static ranking, i.e. the static ranking thangrates the smallest possible
number of experiments in configuring our population of neerssThis ranking sorts
the configurations in decreasing order of number of (unigquasy users that they sat-
isfy; selecting a configuration for a new user does not altisrarder. Obviously, the
optimal ranking can only be determined because we know ttieeeset of new users
in advance, which is impossible in practice. We presentitefur the optimal ranking
simply as a lower bound on the number of experiments.

Next, we discuss each of the arrival scenarios in turn.

First Scenario.

We make several observations from our experiments with tbesitenario:

1. MassConf successfully reached the performance target$ @l new users.Out of
our 195 new users, 66 were able to meet their response-tigetsausing the default
configuration. MassConf was able to configalel29 new users that could not use the
default configuration. When MassConf is not allowed to resnSimplex (MassConf-
without-Simplex), it is able to configure 122 of these newrsselwo out of the 7

new users that MassConf-without-Simplex cannot configaxe ight workloads and
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Number of | Popularity| MassConf | MassConf| MassConf | Optimal
Experiments| Ranking | Adapt-slow | Adapt-fast| Adapt-fastest) Static

Total 1519 2383 1380 1272 873
Avg. 11.8 18.5 10.7 9.9 6.8
Max. 84 84 84 84 84

Table 4.1: MassConf vs. popularity for 129 new users.

Number of | Popularity | MassConf | MassConf | MassConf Optimal
Experiments| Ranking | wo Simplex| wo Simplex| wo Simplex Static
wo Simplex| Adapt-slow | Adapt-fast | Adapt-fastest wo Simplex
Total 1023 1887 884 776 377
Avg. 8.4 15.5 7.2 6.4 3.1
Max. 64 60 59 59 12

Table 4.2: MassConf-without-Simplex vs. popularity fo2lr#w users for which both
approaches reached the targets.

seek to achieve 5% better performance than the default ewafign can produce. The

other 5 new users had higher targets and missed them by kpgarantage points.

2 and 3. Adaptive ranking beats popularity-based ranking. The faster the adap-

tive algorithm promotes configurations, the better. Table 4.1 summarizes the statis
tics for our new users. Table 4.2 summarizes the statigiicthé case in which Mass-
Conf (with popularity-based or adaptive ranking) is nobakd to resort to Simplex.
For this latter table, we only show results for the 122 newsifeat MassConf-without-
Simplex can configure. Since the behavior of the adaptatgorithms depends on the
exact sequence in which new users join the system, for bbtesave generated 10
random sequences and averaged the results.

Both tables show that two adaptive ranking approaches (A@ap and Adapt-
fastest) require fewer experiments on average than thelgaytbased ranking. The
analysis of adaptive ranking from the previous section sstggl this result. The faster
selected configurations are promoted up the ranking, thdesntiae average number

of experiments per usefThe best adaptive ranking (Adapt-fastest) runs up to 24%
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fewer experiments per user than popularity-based rankingeerage. In contrast,
Adapt-slow actually requires up to 85% more experimentsuser than popularity-
based ranking on average. There are two effects at play {iBren the positive side,
moving a good configuration up enables it to satisfy moresyserd (2) on the negative
side, it may increase the number of experiments requireshalo®nfiguration that was
moved down is selected. When moving up one slot at a time, @aféyv extra users
can be satisfied by the promoted configuration, so the negeffect becomes more
prominent. When moving configurations up faster, the goadigarations can satisfy
many extra users, making the positive effect more prominent

The fact that Adapt-fastest is the best approach confirmsah@bservations that
motivated our MassConf design: one configuration works ¥eelmultiple users and
multiple configurations work well for each user. If only onenfiguration met each
user’s target, Adapt-fastest would make the worst decisisinthe other extreme, if
all configurations met all new users’ targets, all approaakieuld produce the same
number of experiments, i.e. 1.

When we compare MassConf Adapt-fastest to the optimal (brealistic) static
ranking, we find that our system is 31% slower (Table 4.1). éieless, as shall be
seen, MassConf+ actually performs better than this optiaming, because it shortens
the list of configurations to be tried. (We shall compare NGas¥+ to a different

optimal static ranking below.)

4. MassConf successfully reached the performance targetsrfmany more users
than Simplex. As mentioned above, MassConf was able to configure all 12usens
that could not use the default configuration. In contrastplex failed to configure 74
of these new user&ven when MassConf is not allowed to resort to Simplex, litcdin
configure 67 more new users than Simplex (122 vs. 55). The@mnedsnplex cannot
configure these new users is that it gets stuck at local miniryeng configurations
that lead to very similar performance.

The ability of MassConf and MassConf-without-Simplex taonfigure many more
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Number of | Simplex | Popularity| MassConf | MassConf| MassConf | Optimal
Experiments| Only Ranking | Adapt-slow | Adapt-fast| Adapt-fastest Static

Total 1023 818 978 762 730 639
Avg. 18.6 14.9 17.8 13.9 13.3 11.6
Max. 112 84 84 84 84 84

Table 4.3: MassConf vs. Simplex for the 55 new users for wBichplex reached the
targets.

new users than Simplex is particularly interesting sinaeesisting user configurations
were originally derived using Simplex. This result reirdes the point that Simplex has
to search a large space of configurations each time it is usid@ for any particular
search, it may miss some “good” configurations. MassConbispietely different in
that it is guided by the tuning efforts of existing users atsdaidaptive ranking algo-

rithms.

5. MassConf is faster than Simplex. To properly compare the number of exper-
iments required by MassConf and Simplex, we consider orgysthbset of 55 new
users for whichbhothMassConf and Simplex were able to achieve the performance ta
gets. Table 4.3 summarizes the statistics for these news.u8gain, these results are
the average over 10 random sequences. The table showsdlhlateh adaptive ranking
approaches require between 13.3 and 17.8 experiments greousiverage. The best
approach, Adapt-fastest, requires 13.3 experiments ormgeewhich is28% faster

than Simplex.

6. MassConf+ improves significantly on MassConf.MassConf runs a significant
number of experiments when the chosen configurations aneredtt the tail of the
ranking or not in the ranking at all. As an example of the tadtenario, MassConf un-
successfully tries all 64 configurations before resortm§implex for the 7 new users’
targets that were not met by MassConf-without-Simplex. $Caonf+ was designed

exactly to reduce the number of unsuccessful experimemassConf.
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Number of | Popularity| MassConf | MassConf+ | Optimal+
Experiments| Ranking | Adapt-fastest Adapt-fastest Static
Total 1529 1262 793 528
Avg. 11.9 9.8 6.1 4.1
Max. 84 84 37 34

Table 4.4: MassConf+ vs. MassConf for 129 new users. Thelpdpuand Mass-
Conf results here are different than in Table 4.1 becauseabie only considers one
sequence of arrivals.

Number of | Simplex | Popularity| MassConf | MassConf+ | Optimal+
Experiments| Only Ranking | Adapt-fastest] Adapt-fastestf Static
Total 1023 818 734 336 294
Avg. 18.6 14.9 13.3 6.1 5.3
Max. 112 84 84 34 34

Table 4.5: MassConf+ vs. Simplex for the 55 new users for twisonplex reached
the targets. The popularity and MassConf results here #iexetit than in Table 4.3
because this table only considers one sequence of arrivals.

To evaluate MassConf+, we investigated a number of seqeesfceew user ar-
rivals. The results we discuss next represent a randonmdggteel such sequence. For
that sequence, MassConf+ decided to cut off the tail of thking after having seen 28
new users. (Recall that MassConf+ selects this point ateinly seen 10 consecutive
decreases in average number of experiments per new ustar)tidd¢ 28th new user was
configured, MassConf+ also decided to cut the ranking ofhatlt4th configuration.
(Recall that the cut off point is the minimum size that wasuregf to satisfy 80% of
the 28 new users.) Starting with the 29th new user, MassConlf#tries a maximum
of 14 configurations for each new user before resorting tq&ir

Using these thresholds, MassConf+ is able to find configumatihat meet the
targets ofall the 129 new users that cannot use the default configuratiahle ®.4
summarizes the results of MassConf+, while comparing thgaimat popularity-based
ranking and MassConf. The Optimal+ system ranks configuratin the best possible

order and cuts the ranking off at the optimal point (12 comigjons). Again, Optimal+
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is unrealistic and is presented simply as a lower bound ondhgber of experiments.

The table shows that MassConf+ reduced the overall numbekmdriments by
469, compared to MassConf. As a result of this reductibessConf+ finds configura-
tions 37% and 48% faster than MassConf and popularity-baasking, respectively,
on average. In addition, it cuts the maximum number of experiments foy asw
user to less than half of those performed by MassConf andlanfysbased ranking.
Comparing these MassConf+ results with the optimal rankasglts of Table 4.1, we
can see that our system actually performs better. The raagbat MassConf+ pre-
vents a large number of experiments by cutting off the ragpk@ompared to Optimal+
ranking, MassConf+ incurs 33% more experiments.

Table 4.5 compares MassConf+, MassConf, and Simplex fob%heew users for
which Simplex reached the targets. The table showsMedsConf+ finds config-
urations 67% faster than Simpleagain while significantly reducing the maximum
number of experiments for any new user.

To understand the impact of its two thresholds, we performmedmber of sensi-
tivity experiments with MassConf+ Adapt-fastest, assughe entire set of 129 new
users and the same sequence of new user arrivals. For thiafeshold, we consid-
ered 5 and 15 continuous decreases of the average numbg@eoiregnts per new user,
besides the default setting of 10 continuous decreasesthEaecond threshold, we
considered cutting off the list at the size that would sgti@% and 90% of the new
users, besides the default setting of 80%.

When the first threshold is set to 5, the numbers of new useostieg to Simplex
are 88, 88, and 71, when the second threshold is set to 70%, &09©0%, respec-
tively. However, regardless of the setting of the seconesiwold, MassConf+ doemt
reach the targets of all new users. The reason is that théghkd not been trained
enough before it was cut off. In contrast, when the first tho&sis 15, MassConf+
always reaches the new users’ targets. For this first thigstiee total numbers of

experiments for the different settings of the second tholkeshre 604, 607, and 846,
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Number of | Popularity| MassConf | MassConf+ | Optimal+
Experiments| Ranking | Adapt-fastest Adapt-fastest Static

Total 1447 1250 717 528
Avg. 11.2 9.7 5.6 4.1
Max. 70 66 37 34

Table 4.6: MassConf+ vs. MassConf for 129 new users in therskscenario.

respectively. In this case, MassConf+ achieves low expartrotals for 70% and 80%
settings of the second threshold. Overall, these resudtgesi that it is most efficient to
select a relatively low value for the second threshold (@), as long as the ranking
is trained for long enough by picking a relatively high vataethe first threshold (e.g.,
10 or higher). In fact, note that picking a value of 15 for thistfthreshold would lead

to significantly better MassConf+ results than those indsldl.4 and 4.5.

Second Scenario.

One could argue that the results of our first scenario above ofimistic in the
sense that all existing users joined MassConf before anyusewhad to be configured.
To evaluate MassConf in more pessimistic circumstancesyometurn to our second
scenario. Recall that, in this scenario, we initialize Mamsf with configurations from
only a random 1/3 of our existing user population. After timisialization, the new
users start arriving concurrently with another random ¥/ghe existing users. The
final 1/3 of the existing users never joins.

From this scenario, we can make two observations:

7 and 8. The benefits of MassConf and MassConf+ remain signiint. The com-
parisons between systems exhibit the same trends as beforéable 4.6 compares
MassConf and MassConf+ with popularity-based ranking aptin@al+ ranking for
our population of 129 new users. These results confirm tmelsreve observed from
the first scenario. Specifically, (1) both MassConf and Masd€ can configure all
new users, even in the absence of a large fraction of exiesegs; (2) MassConf+ re-

duces the number of experiments by 42%, compared to Mass@)mlassConf and
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Experiments| Only Ranking | Adapt-fastest| Adapt-fastestf Static
Total 1023 747 702 365 294
Avg. 18.6 13.6 12.8 6.6 5.3
Max. 112 70 66 37 34
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Table 4.7: MassConf+ vs. Simplex for the 55 new users for WwBicnplex reached the
targets in the second scenatrio.

MassConf+ involve 14% and 50% fewer experiments than popyHaased ranking,
respectively; and (4) MassConf+ runs only 27% more experteihan the unrealistic
Optimal+ ranking algorithm.

Moreover, we can see that the MassConf, MassConf+, and aafydbased rank-
ing results are actually better in absolute terms than thosettierfirst scenariqTa-
ble 4.4). The reason is that some of the configurations tmatatdhelp many new users
are never tried, as the corresponding existing users gdimethe system too late or not
at all.

Table 4.7 compares MassConf and MassConf+ to Simplex fob¥hrew users
that the latter was able to configure. First, note that Mas$§@ond MassConf+ can
configure many more new users than Simplex, even under adeenslitions that have
no effect on Simplex. In addition, the table shows that osteays perform 31% and
65% fewer experiments than Simplex, respectively. Agdiesé results exhibit the

same trends as in the first scenario.

4.4 Extrapolating Beyond The Case Study

The results from the previous section are very positive,thay are specific to our
Apache case study. In this section, we qualitatively extiae from them byab-
stracting awaythe server software, the high-level tuning goal, the walkg the load

intensities, and the target behaviors.

The extrapolation is based on the observation that threscespf the user-configuration
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space matter most in determining the number of experimentsdequence of new user
arrivals: (1) the number of new users that can be satisfiecably eonfiguration; (2)
the number of configurations that can satisfy each new usdr(3 the number of new
users for which MassConf would have to resort to Simplex.

Adapt-fastest and Adapt-fast behave better than Adapt-ahal popularity-based
ranking when there is significant potential for re-use of toafigurations that are
promoted forward in the ranking. This potential increasé®nvaspects #1 and #2
above are skewed towards a subset of configurations and rexs; usspectively, and
the tails of the distributions are short. In other words, fii@ise potential increases
when (a) a significant fraction of configurations can satieBny new users and (b) a
significant fraction of new users can be satisfied by many gardtions. When the
amount of skew is limited or tails are long, Adapt-slow slibpérform best.

Compared to Simplex, MassConf can benefit from configuragemse to achieve a
lower average number of experiments per new user. MoreombBra small fraction of
new users should require MassConf to resort to Simplex 433, since the existing
and new user populations should have the same charac®e(stier bootstrapping).

In our Apache study, we saw significant skew, short tails, landed use of Sim-
plex by MassConf. Specifically, aspect #1 can be approxidnasea power-law func-
tion, in which the configuration that can satisfy the most ners satisfies 70 out of
129 such users. Aspect #2 of our Apache study can be apprtedraa an exponential
function, in which the new user that can be satisfied by thet cw¥igurations can be
satisfied by 52 out of 64 configurations. MassConf had to tes@implex for only 7
new users.

We expect real user populations to benefit from MassConf avere than in our
Apache study. The reason is that our synthetic populaticevénly spread across
the workload-intensity-target space; greater conceatrah part of the space would
increase the potential for configuration re-use. With higkeptial for re-use, either

Adapt-fastest or Adapt-fast would be a good choice; the oerdn select the best
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approach after configuring a number of new users.

4.5 Summary

In this chapter, we addressed the problem of configuringense software efficiently.
Specifically, we proposed MassConf, a system that usesrexisbnfigurations to au-
tomatically configure the software for new users. The coméitjon process relies on
dynamic adaptation of the order of configurations (rankitaghe tried. To evaluate
MassConf, we used it to configure Apache for performance faogulation of users.
Our results compared three ranking adaptation algoritierpspularity-based ranking.
The results showed that our fastest adaptation leads torthkbest number of experi-
ments. The results also showed that MassConf is able to ewafigore users in fewer
experiments than Simplex, an efficient optimization altyoni.

Note that the MassConf results we presented above werenebtfor systems that
use the same hardware and low-level software, i.e. a siogtédvel environment. Fur-
thermore, we made the assumption that, in practice, theuddwme many more users
per cluster than clusters. Unfortunately, it is difficultverify this assumption without
access to proprietary data from real software vendors. ditiad, it is difficult to pre-
dict the impact of our single-environment experiments anriative performance of
our ranking algorithms. Although we believe that our asstiompand results should
hold in practice, it is conceivable that they would have tcadgisted. We hope that

our study will encourage software vendors to repeat ouryshordtheir real user data.

Future work. Our future work could address the benefits of MassConf fortintier
services, rather than stand-alone servers. In partiowkaGould investigate whether
configurations exhibit strong popularity across thesessygstand what is the best rank-

ing approach for new service installations.
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Chapter 5
Related Work

Our work relates to previous efforts in using modeling, fesck control, machine
learning, and sandboxing; simulation and emulation of datders; and scaling down
data centers; all in the context of resource and energy neanegt of data centers.
We also make contributions related to configuration paranretationships; strate-
gies for configuration management; and performance turlgn the context of In-

ternet services. Next, we discuss the related works in turn.

5.1 Modeling and Other Approaches for Managing Data Centers

Modeling, simulation, emulation, feedback control, and mahine learning. State-
of-the-art management systems rely on analytical modeBirgulation, emulation,
feedback control, and/or machine learning to at leastgbrtautomate certain man-
agementtasks, e.g. [9, 19, 25, 27, 31, 32, 55, 64, 71, 75].

More specifically, many works have considered resource geanant in non-virtualized
hosting centers with such goals as service differentiatiocreasing revenue, or in-
creasing resource utilization [4, 15, 36, 60, 76]. Thesekwalid not benefit from the
flexibility, performance and fault isolation, and migraticapability that VMs enable.
JustRunlt relies on virtualization to enable resource rganeent through experimen-
tation.

In a virtualized hosting center, Pada&tgal. [52, 53] combined analytical modeling

and feedback control to adaptively assign resources to VM#e meeting all SLAS.
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As aforementioned, resource management using modelimjvew extensive human
labor, whereas feedback control has limitations regardiopal management of re-
sources and energy management in the face of multi-core CBUswork relies on
neither modeling nor feedback control.

Woodet al. [83] employ resource usage monitoring and/or applicalewe! SLA
monitoring to find resource “hot spots” in VMs. When a hot sigaletected, they es-
timate the peak resource needs of the corresponding VM,@ng@ute a new mapping
of VMs to physical machines using a greedy bin-packing aligor and the resource
information about all VMs. The estimation of peak resoureeds involves analytical
modeling and/or simplenline trial-and-error. In contrast to JustRunlt, they did not
consider energy management or local resource reassignimarnhermore, we evalu-
ate resource allocations offline (through experimentatgimer than modeling) to avoid
interfering with the applications unnecessarily.

CloudScale [61] uses online resource demand predictidmeoresource cap changes,
and VM migration to minimize SLA violations. When prediat®are inaccurate, ten-
tative remedial actions are taken again online. In contdasttRunlt's approach is to
evaluate resource allocations offline, without affecting production system, until a
more definitive allocation decision is made.

Many works have considered energy management in homogge@®B4, 54, 56]
and heterogeneous [32, 42, 58] non-virtualized Internetses. More related to our
work, Chaseet al. [15] and Chenet al. [18, 19] studied energy management for
hosting centers. In contrast with these works, our appriath assess the potential
energy savings of power management mechanisms and pdicimsgh sandboxed
experimentation, rather than using modeling or online lbae# control.

In summary, modeling has complexity and accuracy limitaioSimulation has
some of the same limitations as modeling, such as the neefealidation as the
system evolves, and high slow-down factors as comparedaerignents. Besides the

need for re-validation, emulation requires enough hardvtarrealistically represent
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the real data center. Our experiment-based approach togmaremt has none of these
limitations.

Feedback control is not applicable to many types of taskiiotigh machine learn-
ing is useful for certain management tasks, such as faughdsis, it also has applica-
bility limitations. The problem is that machine learninghaanly learn about system
scenarios and configurations that have been seen in thermhabaut which enough
data has been collected. For example, it applies to neifittaedasks we study in Jus-
tRunlt. Nevertheless, machine learning can be used to wegte interpolation done
by JustRunlt, when enough data exists for it to derive at¢eureodels. In summary,
this dissertation takes a fundamentally different apgndaenanagement; one in which

accurate experiments replace modeling, feedback coatrdimachine learning.

Scaling down data centers. Guptaet al. [29] proposed the DieCast approach for
scaling down a service. DieCast enables some managemkst sash as predicting
service performance as a function of workload, to be peréarion the scaled version.
Scaling is accomplished by creating one VM for each PM of #m@ise and running
the VMs on an offline cluster that is an order of magnitude &nahan the online
cluster. Because of the significant scaling in size, Die@kst uses time dilation [30]
to make guest OSes think that they are running on much fastenimes. For a 10-fold
scale down, time dilation extends execution time by 10-fold

Although DieCast executes the VMs natively, it only simetatlisks and emulates
switches. It also relies on application-specific workloatherators. DieCast and Jus-
tRunlt have fundamentally different goals and resourceireqents. First, JustRunlt
targets a subset of the management tasks that DieCast theesuliset that can be
accomplished with limited additional hardware resourse$tware infrastructure, and
costs. In particular, JustRunlt seeks to improve upon nioglddy leveraging native
execution. Because of time dilation, DieCast takes exeelysiong to perform each

experiment.
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Second, JustRunltincludes infrastructure for automdyieaperimenting with ser-
vices, as well as interpolating and checking the experialeasults. Third, JustRunit
minimizes the set of hardware resources that are requireshbly experiment with-
out affecting its running time. In contrast, to affect exton time by a small factor,
DieCast requires an additional hardware infrastructuaeithonly this same small fac-
tor smaller than the entire online service.

Finally, JustRunlt is simpler and more practical than DigtCas it does not require
additional emulators, simulators, or workload generatdhe large and complex hard-
ware and software infrastructures of DieCast pose many gemant challenges and

substantial extra (labor and energy) costs.

Sandboxing and duplication for managing data centers.A few efforts have pro-
posed related sandboxing and request-duplication imfretsires for managing data
centers. Specifically, [41, 45, 46] considered validatipgrator actions in an Inter-
net service by using request duplication to a sandboxecdhsixte of the service. For
each request, if the replies generated by the online envieoh and by the sandbox
ever differ during a validation period, a potential operatostake is flagged. Further,
Tjang [74] validated operator actions against predefinedetso Taret al. [69] consid-
ered a similar infrastructure for verifying file serversnBi[24] uses Splitter to detect
potential problems by comparing results generated fronptbduction and migrated
applications in the virtualized IT environments.

Our work differs from these previous efforts both in termgyotls and software
infrastructure. Instead of operator-action validatiaur, goal is to experimentally eval-
uate the effect of different resource allocations, paransgttings, and other potential
system changes (such as hardware upgrades) in data celrttass.our work is much
more broadly applicable than previous works.

As a result, our infrastructures are quite different thagvjmus systems. Without
workload duplication, ACI proposed to configure an Intersettvice backed by mul-

tiple data centers automatically, by isolating one centex aime (during periods of
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light load) and experimentally testing different valuestfte configuration parameters
of the (user-level) servers that implement the service. édwer, JustRunlt is the first
system that may explore a large number of scenarios that diffim the online system,
while extrapolating results from the experiments that ataally run, and verifying its

extrapolations if necessary. These differences also makt&unit more practical than

previous infrastructures.

5.2 Configuration Management and Performance Tuning

Configuration management.Most previous works in configuration management seek
to automatically detect and correct misconfigurations.iddion [41] detects many
classes of operator mistakes, including misconfigurationgnternet services. The
Chronus system [81] seeks to identify misconfigurationsand-alone computers that
go undetected for a period of time. Also targeting standw@lcomputers, the Glean
system [37] infers correctness constraints for configanagntries contained in the
Windows Registry. Along similar lines, the Strider system®] compares the reg-
istry of a misconfigured computer with a “healthy” registnapshot to detect potential
misconfigurations. Later, a database of known misconfiguratsupport the user in
correcting the misconfiguration. (Interestingly, [79] fnhat between 80% and 95%
of the configuration of desktop machines does not changetower which is along
the same lines as our observation about Internet servisesided in Section 3.1.) To
eliminate the need for manually selecting correct snagsiRgerPressure [78] com-
pares the registry of a misconfigured computer to those afye lsample of computers
and uses statistical techniques to correct misconfigursitio conform to the majority
of samples. ConfAid [5] uses dynamic information flow ana\yte identify the likely
root cause of misconfigurations.

ACI differs significantly from these previous systems asdherates the proper
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configuration files whenever necessary, obviating the neeltktect and correct mis-
configurations. Furthermore, these previous systems d@date the amount of work
required of operators to configure each machine. In cont&dt(almost) completely

eliminates operator involvement in many common configaratasks.

Furthermore, these previous works have focused on stame aystems, except
for validation, which like our work targets Internet seegc Finally, these systems
can detect misconfigurations in application and operatysgesn state, whereas ACI
focused solely on application configurations. Neverttelear work can benefit from
these previous systems in their ability to detect and perlsaprect misconfigurations
of the operating system state.

Like our infrastructure ACI, several other systems haveopsed to generate and
manage configurations automatically, e.g. [2, 3, 12]. Ciiem§L2] is perhaps the most
widely used configuration management tool. It provides Haylel language directives
that describe how classes of machines should be configuieethnge installation. An
agent on each machine contacts a central configurationitepo® collect the specific
directives for the machine. With similar goals and approa¢@FG [3] holds declar-
ative descriptions of the “aspects” of the installationsiguration. These aspects
are compiled into “profiles” for each machine. A script onleatachine creates the
configuration based on its profile.

A key difference between ACI and these systems is that theyotleiew the ma-
chines in a cluster as forming a single service. As a resdy, make it hard or impos-
sible to represent configuration changes that are promptedrbote components of
the service. Furthermore, these systems provide suppomdchine installation and
startup, whereas ACI assumes that machines are alreadyguie operating system
and focuses solely on service management and evolutiorhebetrespects, ACI is

more closely related to SmartFrog [2].
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Like Cfengine, LCFG, and ACI, SmartFrog also includes a@musinterpreted lan-
guage. The language is used to describe, in a declarativaenahe software com-
ponents that form the distributed application or servikeirtconfiguration parameters,
and how they should connect to each other. SmartFrog albadieg a runtime system
to activate and maintain the desired configuration, and goomnt model defining the
interfaces that each component should implement to alloar§rog to manage it.

A basic difference between SmartFrog and ACl is that we rebwily on templates
that are similar to the actual configuration files, using pohgal generation scripts
to modify these templates. This difference is largely pdolohical;, we feel that it
is easier to describe (changes to) configurations in a puvakthanner, as in regular
systems programming. More importantly, we quantitatiesgluate the manageability
benefits of our infrastructure for a realistic service. Werast aware of any quantitative
evaluation of SmartFrog. Furthermore, ACI generates cardigpns that maximize a
specific metric, relying on explicit configuration parameatationships. SmartFrog
does not represent or leverage such relationships.

Performance tuning. Several papers, e.g. [16, 20, 23, 26, 59, 65, 73, 82], hawaaon
ered performance tuning of Internet services. Daaal. [23] studied the performance
tuning of a Web server, using an agent-based feedback t@ystem. Chung and
Hollingsworth [20] considered a three-tiered service aathdnstrated that no single
assignment of machines to tiers performs well for all typewarkloads. Using the
Simplex algorithm [43], they find the ideal machine-tierigasment for each workload.
Also for a three-tier system, [59] proposed to use an evahatiy algorithm for tuning
server configurations. Thonangji al. [73] consider the problem of exploring a large
parameter space within a limited budget of experiments.idgansidering multi-tier
services, Stewart and Shen [63, 65] developed profile-basettls to predict service
throughput and response time. They also explored how tonggicsh typical system
management tasks, such as placing software componentgfopérformance, using

their models and offline Simulated Annealing [38]. Simyadeveral works studies
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performance tuning for database systems [6, 68, 80]. Bamig6 considered experi-
ments for database configuration tuning independent of ouk.w

Comparing to previous approaches for performance tunintptefnet services,
ACI has two key distinguishing features: it starts the tgnprocess as a result of
service changes that require the regeneration of configuaréltes, and it reduces the
search space by creating and leveraging a parameter dewgrgraph.

Some previous works have proposed sophisticated approfmheelecting the ex-
periments to run when benchmarking servers [62] or optimgizheir configuration
parameters [73]. Such approaches are largely complenyaiatarur work. Specifi-
cally, they can be used to improve experiment-based maregem two ways: (1)
automated management systems can use them to define/ootisgrparameter space
that JustRunlt should explore; or (2) they can be used as eewdtics in JustRunlt’s

driver to eliminate unnecessary experiments.

Leveraging existing data on configurations. Several previous works have investi-
gated how to leverage others’ configurations to diagnosdrantleshoot misconfigu-
rations [1, 66, 78, 79]. Strider [79] compares the Windovggstey of a misconfigured
computer with a known healthy registry state to diagnoseaomgurations. To elim-
inate the need for manually selecting correct states, Pesstre [78] compares the
registry of a misconfigured computer to those of a populatibather computers in
the same installation, and uses statistical techniquesothe configuration parame-
ters that may be the root-cause of the misconfiguration.APessure troubleshoots the
misconfiguration by coercing the culprit parameters to #lees used by the majority
of properly configured users. Along similar lines, NetRsifit] diagnoses misconfig-
urations in network applications by applying decisiorett®sed learning on the con-
figuration states of a population of users. Solutions to anfigurations are stored as
signatures and can be used by other users to troubleshaatyhEems. Autobash [66]

provides a set of interactive tools that help users and sysi@ministrators manage
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configurations. Specifically, Autobash leverages previmess’ experience by record-
ing their actions and replaying them on different systenesslatively. Su [67] further
automatically generates predicates for configurationaieahooting from user traces.

Even though MassConf also relies on configuration inforamatiom a population
of users, it focuses on a completely different problem: gumtion tuning; there are
no misconfigurations to troubleshoot. As detailed in Sect®, the impact of this
key difference is that our main focus has been on issues #vat ot been addressed
before, namely the study of adaptive ranking algorithms thredaverage number of
experiments to which they lead. In fact, the specific andrdeeharacteristics of the
users’ workloads and their behavior targets mean that amatfiign information is also
diverse (i.e., coercion as in [78] does not apply) and pradioas from a user do not
produce the same results for another user (i.e., local ewpats are necessary). For
these reasons, our main focus has been studying adaptkiegaaigorithms and the
number of tuning experiments to which they lead on averagathir of these issues
was considered by these prior works.

Similarly, Chenet al. [17, 16] proposed to obtain a Bayesian network as the
byproduct of the tuning process of a system and use this teqpe” to help con-
figuration tuning of the evolved system. Osogatal. [50, 51] focused on shortening
each experiment, rather than reducing the number of expetsn

MassConf differs from these works in four main ways: (1) glkseto produce con-
figurations that meet the users’ target behaviors, rathaar tb find the best possible
configuration; (2) it relies on configuration informatioin a population of systems,
rather than a single system; (3) it relies on adaptive rankigorithms to tune perfor-
mance efficiently; and (4) unless it needs to resort to Siméests existing config-
urations for new users, rather than trying to use experienckependencies to create

new configurations.
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Chapter 6

Conclusion

The dissertation addresses an important problem, namelp#imagement of data cen-
ters.Management includes a wide range of topics, inclugerfprmance tuning, sys-
tem configuration, resource and energy management, angdasefand hardware up-
grades.

The dissertation proposed the notion of experiment-basethgement, which lever-
ages real systems and workloads to help understand andipiteelisystem behavior.
The experimental results can be used for creating new caafigus (as in MassConf),
for tuning configurations (as in ACI), or for resource marmragat (as in JustRunlt).
The advantages of experiments are significant, comparedpolar approaches such
as modeling and feedback control.

We addressed the key challenges in experiment-based nmaaagenamely how
to produce accurate experiments and limit the amount oluress and/or time used in
the experimentation. In JustRunlt, we leveraged virtaaidan technology to clone vir-
tual machines and answer what-if questions about them wittimmal resource waste.
In ACI, we leveraged our proposed parameter dependency guagh optimization to
speed up reconfigurations, after systems evolve. In Mads@ernleveraged configu-
ration information from existing users of server softwaned aearch heuristics to meet
behavior targets. Our evaluations show that our systemaleays automate manage-
ment with a limited number of experiments. In some cases, ameatso restrict the

number of machines used for the experiments.
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As data centers become more complex and cloud computingriescmore pop-
ular, management will become an even greater challengeaciy &pproaches such
as modeling will likely become impractical due to the sheemplexity of the sys-
tems’ behaviors, the interactions between different paifrthe systems, and the in-
ability of cloud providers to "see” inside their customevgtual machines. We hope
that our systems and positive results will encourage rebegs to continue explor-
ing experiment-based management in these scenarios. &mpéx, sandboxing and
reconfiguration will become more challenging as servicesrporate an increasing
number of interacting tiers. The time spent running more glemexperiments may
also become a concern for cloud providers who want to mirerttiz duration of SLA

violations. Further research along these avenues (ed),Will certainly pay off.
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