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The thesis contains four separate chapters. Chapter 2 investigates a particular class

of impartial combinatorial games called subtraction–division games. These games start

with a total n, and two players take turns either subtracting a number a from the total

or dividing the total by b. The winner is the first player to get to number 1. We will

show that the Sprague–Grundy sequence {SG1,2d(n)}n=1, corresponding to the game

a = 1 and b = 2d, is 2d-automatic. We can also generalize these results to show that

the sequence {SGa,2d(an)}n=1 is 2d-automatic, if every prime factor of a also divides

2d.

Chapter 3 determines the cop number for a type of infinite Cayley Graphs, under

the assumption that the cops and robber move simultaneously in rounds rather than

alternating turns. Since it’s an infinite graph, we also require that the robber choses a

vertex first, and then the cops chose positions at distance at least N from the robber.

We prove the following: If C is a (connected) Cayley graph on group G with generating

set M , and x−1mx ∈ M for all x ∈ G, m ∈ M , then d(C) cops suffice to catch the

robber, regardless of how far back the cops must begin.

Chapter 4 proves a special case of a 2011 conjecture about colorful path colorings.

A colorful path coloring is a coloring of G with χ(G) colors, such that every vertex

is at the head of a colorful path: a path of length χ(G) that uses all the colors. The
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main result for graphs G on 2n vertices of the following form: a 2-factor on n vertices,

a distinct Cn, and a perfect matching connecting the two sets of n vertices, then there

exists a colorful path coloring of G.

The final chapter is joint work with Debbier Yuster. Our results generalize the

Goulden–Jackson cluster method for finding the generating function for words avoiding

a given set of forbidden words. The modifications allow for single letter, double letter

(pairwise), and triple letter probability distributions.
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Komlos and Endre Szemerédi. This grant made it possible for me to focus solely on

writing my dissertation, and I’m very grateful for their generosity.

The material on Subtraction–Division games (Chapter 2) was greatly improved by

Eric Rowland, who introduced me to the world of automatic sequences. His advice both

on the mathematical content and feedback on the writing has been incredibly helpful,

and any remaining flaws are entirely mine.

Colorful path colorings (Chapter 4) were introduced to me at the REGS program

in the summer of 2011. I’d like to thank Doug West for organizing the program, and

Hannah Kolb for some good discussions in the early stages of the project.

The work of Chapter 5 was joint with Debbie Yuster, and I really appreciate her

help both in developing the material and preparing it for publication. These results

iv



began as a final project in Dr. Zeilberger’s Experimental Mathematics course, and

Debbie and I are thankful for his advice throughout the project.

Emilie Hogan helped me by proofreading several chapters, some of them even mul-

tiple times. I owe a lot of my joy and mental health throughout grad school to her

continued friendship.

Daniel Cranston has generously spent his time over the past year listening, proof-

reading, and overall being a true partner to me during this process. Without his

technical help there would not be any figures or tables in this work, and without his

loving prodding I would have given up a long time ago.

Finally, I’d like to thank my parents and sister for their immense love and support

throughout my whole life, and in particular during the past 6 years.

“Trust in the Lord with all your heart and lean not on your own under-

standing; in all your ways acknowledge him, and he will make your paths

straight.” Proverbs 3:5-6.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Subtraction–Division Games . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Simultaneous Cops and Robbers . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Colorful Path Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Variations on the Goulden–Jackson Cluster Method . . . . . . . . . . . 4

2. Subtraction–Division Games . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Characterization of the Game Sequences . . . . . . . . . . . . . . . . . . 10

2.2.1. Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. Holding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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Chapter 1

Introduction

This thesis has four distinct parts: two chapters on results in combinatorial game

theory, one chapter on a problem in graph coloring, and one chapter with work on

generating functions. Combinatorial game theory, however, pulls results from many

different areas of combinatorics. Games are often played on graphs, and the underlying

graph structure can influence who will win. Moreover games create sequences of wins

and losses, and results from combinatorics on words can be used to help analyze and

predict these sequences. While the four results discussed are separate, they all tie in to

the study of graphs and sequences.

1.1 Subtraction–Division Games

Chapter 2 has to do with a class of combinatorial games that I call subtraction–division

games. These are two player impartial combinatorial games starting with a total n.

The players take turns to decrease the total by either subtracting a number s ∈ S from

the total, or dividing the total by a number d ∈ D (and rounding up, if necessary).

The winner of the game is the first player to get to 1. The main question is, given two

sets S and D, to determine which values of n are first player wins and which values of

n are second player wins.

The name subtraction–division games is new, but games falling into this framework

have been studied before. The first game of this type was for sets S = {1}, D = {2},

and was introduced as a puzzle in 2009 in [9]. Games of this type have also been

studied by Aviezri Fraenkel, under the names of Mark-t and UpMark-t [14, 15]. These

names refer specifically to sets S = {1, 2, . . . , t − 1}, D = {t}, and rounding down or

up, respectively.
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The main result in this chapter is a closed formula for the winning positions of sub-

traction division games under the following conditions: S = {a}, D = {2d}, and every

prime factor of a is also a prime factor of 2d. Moreover, under these conditions I prove

that the Sprague–Grundy sequence of the game (for all values of n) is 2d-automatic.

Normally the Sprague–Grundy values of a game are recursively defined, but showing

that the form an automatic sequence allows for fast (non-recursive) computation.

When a = 1, I construct a family of recurrences that completely determines the

behavior of the Sprague–Grundy sequences. For other values of a, their behavior is

characterized by a phenomenon that I call “holding”: the sequence eventually develops

large blocks with the same Sprague–Grundy value. Because of this, we are able to

understand the behavior of the whole sequence just by considering a subsequence that

picks out one value from each of the blocks. I show that this subsequence is related

to the sequence of a different game that has a smaller value of a but the same d. The

condition on the prime factors of a allows us to understand the behavior of the game

S = {a}, D = {2d} based on the game S = {1}, D = {2d}.

1.2 Simultaneous Cops and Robbers

The second chapter is a variation of cops and robbers problem. In the original version,

one cop selects an initial vertex of a finite graph, and then one robber selects a vertex.

They take turns moving along edges of the graph, the cop trying to land on the same

vertex of the graph as the robber and the robber trying to evade the cop indefinitely.

This was also generalized to the notion of the cop number of a graph: the minimum

number of cops needed to guarantee capture of the robber, assuming the cops are

allowed to coordinate their movements.

We play the following variation on an infinite graph: one robber selects a vertex to

begin on, and then several cops select starting positions various vertices at distance at

least N from the initial position of the robber. They move in rounds simultaneously,

with the cops trying to land on the same vertex as the robber and the robber is trying

to escape to infinity. We are interested in the minimum number of cops needed to
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guarantee capture of the robber as a function of N , and particularly in showing when

the minimum number of cops needed is a constant independent of N .

Suppose that the infinite graph is the Cayley graph of an infinite group G and set

of generators M (we assume that m ∈ M =⇒ m−1 ∈ M). If M is closed under

conjugation, then |M | cops suffice to capture the robber for all values of N , and with

some simple conditions on the placement of the cops within the graph. This is slightly

better than required, since there is no need for coordination between the cops during

the game play — each one acts independently. This is a similar to a result by Frankl for

finite Cayley graphs [16], but for infinite Cayley graphs this is actually best possible.

1.3 Colorful Path Colorings

The third chapter addressed the following graph coloring question: Given a graph G,

we would like to (properly) color it with χ(G) colors, in such a way that every vertex is

at the head of a path of length χ that uses each color exactly once. A coloring of this

form is called a colorful path coloring. It was conjectured that colorful path colorings

exist for any connected graph other than C7 in [3], but it is only known to be true in

certain special cases.

I prove that the conjecture holds for cycle permutation graphs: 2n vertices in the

form of two cycles of length n, connected by an arbitrary matching (i.e. a permutation

of the numbers 1 through n). The Petersen graph is a common example of such a

graph. I can also extend the proof to half–generalized cycle permutation graphs: graphs

on 2n vertices with one cycle of length n, one 2-factor (collection of smaller cycles) on

n vertices, and one perfect matching connecting the two sets.

To prove that such a coloring is possible I give an algorithm for coloring any half–

generalized cycle permutation graph. A half-generalized cycle permutation graph will

be 3-regular, and by Brook’s theorem it will have chromatic number at most 3. Since

the conjecture is trivially true for any bipartite graph, I will assume that χ(G) = 3.

The algorithm colors the 2-factor first, and tries to guarantee that as many vertices

as possible from both the cycle and the 2-factor are already at the head of a colorful
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path, just from the first half of the coloring. We then have to extend the coloring to the

cycle, in such a way that any vertex not yet at the head of a colorful path is satisfied.

Each vertex on the cycle will have a list of two colors available, and so by a standard

list coloring result we know that extending the coloring is possible: if every vertex in a

cycle has a list of two available colors, and there are at least two vertices with different

lists, then it is possible to properly color the cycle so that every vertex has a color from

its list. Much of the work is in showing that we can pick a good extension of the whole

coloring that will handle any leftover vertices not yet at the head of a colorful path.

1.4 Variations on the Goulden–Jackson Cluster Method

All of the work in the final chapter of the thesis was joint with Debbie Yuster. Suppose

we have an alphabet A, and set B of forbidden words in that alphabet. We are interested

counting the number of words of length n made up of characters in A that avoid

as factors all forbidden words in B. For our purposes, a factor will be a string of

consecutive letters starting anywhere in a word, and a word that avoids all the elements

of B as factors we will call a ‘good’ word. We will set an to be the number of good

words of length n, and are interested in the sequence {an}.

An efficient way of finding an is to use generating functions. We can think of a

generating function as assigning each good word a symbolic weight: weight(w) = t|w|,

where |w| is the length of the word w. If we already knew the complete set of good

words, and added up the weight of each of them, we would have
∑∞

n=0 antn. This is the

taylor expansion of some function F (t) called the generating function of the sequence

{an}. Of course, doing this computation directly is not feasible for large values of n.

The Goulden–Jackson cluster method, introduced in [18], is an algorithm for computing

F (t) directly.

We might be interested in a more detailed weight function, that can keep track of

more information about the good words. For example, if A = {a, b, c} we might use

a weight function that has one variable t for the length of the good word, and three

variables xa, xb, and xc for the number of times each letter appears in the good word.
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In this case, weight(abca) = t4xa
2xbxc. If we added up the weights of all the good

words, we would have F (t, xa, xb, xc) =
∑

an,p,q,rx
p
ax

q
bx

r
ct

n, where an,p,q,r is the number

of good words of length n with exactly p occurrences of a, q occurrences of b, and r

occurrences of c. Again, doing this computation directly is not feasible, and we would

like to find an algorithm that computes the weight enumeration function F (t, xa, xb, xc)

directly.

The main result of this chapter is to show that we can generalize the Goulden–

Jackson cluster method to efficiently compute the weight enumeration function for good

words, under various weight functions. We show that we can not only use a variation

of the method for a weight function that accounts for the number of occurrences of

single letters, as above, we can also generalize to account for the number of occurrences

of letter pairs, and letter triples. We can also introduce a third type of variable s,

that counts how many forbidden factors are contained in a word. This bridges the gap

between enumerating good words and words that contain many forbidden factors.
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Chapter 2

Subtraction–Division Games

2.1 Introduction

A combinatorial game is one where there is perfect information (i.e. all players have the

same, complete information about the state of the game) and no randomness. Perhaps

the quintessential combinatorial game is Nim, where given an initial setup of piles of

counters each player has the option to remove any number of counters from a single pile,

and the first player to clear the table wins. The only information the players need is

the current configuration of counters and piles, which is available to both players at all

times. More complicated but well known combinatorial games include chess, checkers,

and Go. On the other hand, poker has both randomness and hidden information (the

knowledge of each player’s cards are not available to the other players), so poker is not

a combinatorial game.

An impartial combinatorial game is one where both players have the same set of

moves available. Nim is an example of an impartial game, whereas chess is not: only

the white player can move the white pieces. For a full introduction to combinatorial

games, see the classic text [10].

As laid out in [10], two player combinatorial games that are impartial can be studied

by analyzing the Sprague–Grundy function. This function is recursively defined on the

states of the combinatorial game; it returns 0 if the first player has no winning strategy

from this state, and some value x > 0 if the first player has a winning strategy from

this state. Equivalently, the Sprague–Grundy function will return a non-zero value for

any N -position, and zero for any P -position. Usually the states can be indexed by a

single parameter n, and we write this function as SG(n).
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We define the Sprague–Grundy function based on the function mex. The mex of

a set, or the minimum excluded value, is the smallest non-negative integer that does

not appear in the set. We define the Sprague–Grundy function as follows. Winning

positions are given Sprague–Grundy value 0, and from there the value of any position

of the game is given by the mex of the set of Sprague–Grundy values of the positions

that can be reached in a single move.

Because the Sprague–Grundy function is recursively defined, computation of the

exact value for a given state can be difficult. Many games have been shown to have

periodic Sprague–Grundy functions, however, which greatly reduces the computational

work required. In particular, subtraction games fit this pattern. A subtraction game

starts at a value n and is a race to say the number 1. Each player, on his or her turn,

may subtract one number s from the current total, where s ∈ S, a prearranged set of

allowed values. As a consequence of the pigeonhole principle, for any finite set S it is

known that the Sprague–Grundy function of this game is periodic. Some further results

about periodicity can be found here: [10, 12].

Not all interesting combinatorial games are known to have periodic Sprague–Grundy

functions, and the most famous of these is Grundy’s game. In this game the two players

start with a single pile of n counters, and at each move the players take one of the piles

on the table and split it into two piles of unequal height. It’s not known if the SG

function for this game is periodic, or how to analyze it, although there has been some

work on this:

Grundy’s game sparked interest in a class of 2 player combinatorial games called

octal games, that are a hybrid between Nim, where counters are removed from an initial

configuration of various piles, and the Grundy’s game, where players break a pile into

two or more smaller piles. The rules of a particular octal game are defined by a decimal

number written in base 8. If the number is 0.d1d2d3d4 . . . , the value of dn indicates all

allowable moves that remove n counters. In particular, dn ∈ {0, . . . , 7} is the sum of

the following:

• 1 if a player can remove a pile of exactly n counters, 0 otherwise.
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• 2 if a player can remove n counters from a pile with more than n, 0 otherwise.

• 4 if a player can remove n counters from a pile with more than n and split the

remaining counters into 2 piles, 0 otherwise.

This framework incorporates many previously understood combinatorial games, for

example, Nim is the octal game with number 0.3333333 . . . (infinitely many repeating

threes) [10]. Collecting the games in this way allows for a more general survey of results.

While some of the octal games have periodic SG functions it is unclear if all of them

do. A full and dynamic survey of what is known can be found online [13].

Recently, there has been interest in looking at similar games where the SG values

are known to be aperiodic but still follow patterns. In an effort to shed some light on

the situation for octal games, Aviezri Fraenkel looked at a generalization of subtraction

games that he called MARK-t, deliberately constructed to have aperiodic SG values

[14, 15]. Like the regular subtraction games, in MARK-t the players can subtract any

number from 1 through t − 1. However they also have the option to divide the total

by t and round down. This was a generalization of a problem originally posed in [9],

where the players have the option to either subtract 1 or divide by 2. Fraenkel showed

in [15] that the winning positions of MARK-2 correspond to integers whose binary

representation ends in an even number of zeros. This work was carried further by Alan

Guo, who gave a nice characterization of the winning and losing positions for MARK-t

for general values of t, also based on the binary representation [21].

More generally, MARK-t is an example of what we will call a subtraction–division

game.

Definition 2.1. A subtraction–division game is an impartial, two player combinatorial

game with three parameters:

• a set S of numbers that are allowable to subtract,

• a set D of numbers that are allowable to divide,

• a starting total n.
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The players alternate turns reducing the total either by subtracting a number s ∈ S from

the current total, or dividing the current total by a number d ∈ D (we can consider

variations where we always round up or always round down)

This chapter analyzes the class of subtraction–division games where S = {a} and

D = {b}, and we round up. We will think of the parameters a and b as being fixed

while n varies, and we will denote the game by Ga,b(n), and the Sprague–Grundy value

of the game by SGa,b(n). We are interested in sets of parameters (a, b) for which we

can characterize {SGa,b(n)}n=1.

To characterize {SGa,b(n)}n=1 in general, we start by considering the special case

{SG1,2d(n)}n=1. We build up two types of results about {SG1,2d(n)}n=1. First, in

Section 2.2, we show when SG1,2d(n) will be zero and when it will be non-zero, based

on the value of n mod 4d, and in some cases more specifically the base-2d representation

of n.

Then from these basic results, we prove the following theorem in Section 2.3:

Theorem 2.1. If b is even, then the sequence {SG1,b(n)}n=1 is b-automatic.

Showing that this sequence is b-automatic is similar in feel to the relationship between

MARK-2 and the binary expansion of n, particularly in that it allows for faster (non-

recursive) computation of SG1,b(n). The automatic sequences ansatz, however, allows

for a more general relationship between the SG value and the base-b representation of

n than a simple closed formula.

We are also interested in generalizing the results about {SG1,b(n)}n=1 to games

where we subtract values other than 1. In Section 2.2.2, we discuss the special patterns

that appear in {SGa,2d(n)}n=1 that don’t show up in {SG1,2d(n)}n=1. Then in Section

2.2.3, we investigate how these patterns help us generalize some of the results about

{SG1,2d(n)}n=1 to {SGa,2d(n)}n=1. Ultimately, this lets us prove the following theorem

at the end of Section 2.3, which is an analog to Theorem 2.1:

Theorem 2.2. If all prime factors of a are also factors of 2d, then the sequence

{SGa,2d(an)}n=1 is 2d-automatic.
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2.2 Characterization of the Game Sequences

In this section we will characterize just the zeros of some SG sequences, rather than the

entire sequence. The two main theorems of this section are stated below. Theorem 2.3

is fairly straightforward to prove, but its proof introduces the Alternating Property : the

first main pattern we notice in {SG1,2d(n)}n=1. Theorem 2.4 is longer, and its proof

uses ideas from Sections 2.2.2 and 2.2.3. It is important primarily because it introduces

holding, the second type of pattern we see appearing.

Theorem 2.3. If a = 1 and b even, the following is a complete characterization for

when SGa,b(n) is zero. We will write down the base 2d representation in the following

special form: least significant digit first, and representing even digits with the symbol e

and odd digits with the symbol o.

• If n = e · · · , then SG1,2d(n) $= 0.

• If n = oeko · · · for some maximal k ≥ 0, then SG1,2d(n) = 0 if k is even, and

SG1,2d(n) $= 0 if k is odd.

We will prove Theorem 2.3 in Section 2.2.1 by building up a series of structural Lemmas.

Suppose that the largest prime divisor of a that is relatively prime to b is 1, and b

is even. Then we also have the following more general result:

Theorem 2.4. If the largest divisor of a that is relatively prime to b is 1, and b is

even, then the following is a complete characterization of when SGa,b(n) is zero.

• For an > aba, we will see holding of length a:

SGa,b(an) = SGa,b(an − 1) = · · · = SGa,b(an − a + 1)

We write down the base b representation of n with the least significant digit first,

representing even digits with e and odd digits with o.

• If n = e · · · and n ≥ ba+1, then SGa,b(n) $= 0.

• If n = oo · · · and n ≥ ba+2, then SGa,b(n) = 0.
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• If n = oek · · · for some maximal k > 0, then let n′ < n be the number formed by

successively removing the second digit from the base b expansion of n, until either

the entire first block of even digits has been removed, or n′ < aba+2.

– If SGa,b(n′) = 0 then SGa,b(n) = 0 if k even, and SGa,b(n) $= 0 if k odd.

– f SGa,b(n′) $= 0 then SGa,b(n) $= 0 if k even, and SGa,b(n) = 0 if k odd.

Experimental evidence suggests that the bounds in Theorem 2.4 are much larger than

needed. More specific values are computed in Sections 2.2.2 and 2.2.3, as the results

needed to prove Theorem 2.4 are developed.

2.2.1 Proof of Theorem 2.3

By definition, we have that SG1,2d(n) = mex{SG1,2d(n − 1), SG1,2d

(
& n

2d'
)
}. To refer

to this relationship easily, we will say that SG1,2d(n) depends on SG1,2d(n − 1), and

SG1,2d
(
& n

2d'
)
. If we want to specify which term in the definition we are referring to,

we may say that one value depends on another via subtraction or via division.

We begin by noting alternation in the sequence {SG1,2d(n)}n=1:

Alternating Property. For any k > 0,

SG1,2d(2dk) = SG1,2d(2dk − 2) = · · · = SG1,2d(2dk − 2d + 2), and

SG1,2d(2dk − 1) = SG1,2d(2dk − 3) = · · · = SG1,2d(2dk − 2d + 1).

Proof. Consider all of the SG values listed above: SG1,2d(2dk − 2d + 1) through

SG1,2d(2dk). These values all depend on SG1,2d(k). Whatever the value of SG1,2d(k)

is, none of the values above can be the same as it.

In our game, we have at most two moves available: subtract 1 or divide by 2d. As a

result, the SG sequence only ever takes one of three values: 0, 1 and 2. Since SG1,2d(k)

has one of those values, there is a set of only 2 available values for SG1,2d(2dk) through

SG1,2d(2dk − 2d + 1).

Since we know that SG1,2d(2dk) depends on SG1,2d(2dk − 1), they cannot have

the same SG value. Similarly, SG1,2d(2dk − 1) depends on SG1,2d(2dk − 2), so they
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cannot have the same SG value. Since there are only two possibilities, it must be that

SG1,2d(2dk) = SG1,2d(2dk−2), and all other equalities follow by a similar argument.

We will often want to represent a game with a digraph, where vertices correspond to

the current total of the game and directed edges are moves players are allowed to make

to change the current total. Figure 2.1 is a digraph representing the relevant portions

of the game for the discussion of the Alternating Property. The letters next to the

vertices are standing in for the SG values. While we cannot say if a given position has

value 0, 1 or 2, we have established the relationships represented above. Visualizing it

in this form shows the alternation more clearly.

2dk

2dk − 1

2dk − (2d − 2)

2dk − (2d − 1)

k

b

c

b

c

a

Figure 2.1: Digraph of G1,2d(n) exhibiting the Alternation Property.

Lemma 2.1. Let D = {2d}, and let n ≡ " mod 4d. If " is even, SG1,2d(n) $= 0. If

" ∈ {2d + 1, 2d + 3, . . . , 4d − 1}, then SG1,2d(n) = 0.

Proof. We will first show that if " is even, SG1,2d(n) $= 0 by induction on n.

Base Case: n = 2 is clearly a winning game for the first player: he simply subtracts

1 from the total, and wins. Therefore SG1,2d(2) $= 0.

Given the Alternating Property, it is enough to show that if SG1,2d(2kd − 2d) $= 0,

then SG1,2d(2kd) $= 0. The Alternating Property guarantees that the intervening values

will be non-zero as well.

We have SG1,2d(2kd) = mex(SG1,2d(2kd − 1), SG1,2d(k)). If SG1,2d(k) = 0, then it

must be that SG1,2d(2kd) $= 0, so we assume that SG1,2d(k) $= 0. We know the values

SG1,2d(2dk) through SG1,2d(2dk−2d+1) must alternate, and if SG1,2d(k) $= 0, it must

be that those values alternate between zero and non-zero values.
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2dk

2dk − 1

2dk − (2d − 2)

2dk − (2d − 1)

2dk − 2d

k

0 $=

0 $=

0 $=

0 $=

0 $=

= 0

2dk

2dk − 1

2dk − (2d − 2)

2dk − (2d − 1)

2dk − 2d

k

0 $=

0 =

0 $=

0 =

0 $=

$= 0

Figure 2.2: Visual representation of the proof of Lemma 2.1.

SG1,2d(2dk − 2d + 1) = mex(SG1,2d(2dk − 2d), SG1,2d(k)). Both terms in the mex

we have assumed are non-zero, so SG1,2d(2dk−2d+1) = 0. This means that the values

alternate starting with 0, and so SG1,2d(2dk) $= 0.

Lemma 2.2. If n ≡ " mod 4d and " ∈ {1, 3, 5, . . . , 2d−1}, the base 2d representation of

n indicates whether or not SG1,2d(n) = 0. Consider the block of even digits immediately

following the first (least significant) odd digit of n. If that block has even length then

SG1,2d(n) = 0, and if it has odd length then SG1,2d(n) $= 0.

Proof. First we notice that, given Lemma 2.1 above, SG1,2d(n − 1) $= 0. For these

values of n, whether or not SG1,2d(n) = 0 will depend entirely on SG1,2d(& n
2d'): from

the mex definition of SG1,2d(n) we have that if SG1,2d(& n
2d') = 0 then SG1,2d(n) $= 0,

and if SG1,2d(& n
2d') $= 0 then SG1,2d(n) = 0.

Every time we divide n by 2d and round up, it has the following effect on the base

2d expansion of n: if n = 1d2d3d4 · · · (we may assume that the first digit of n is 1, by

the Alternating Principle), then & n
2d' = (d2 + 1)d3d4 · · · . By the Alternating Principle,

we can further reduce this to & n
2d' = 1d3d4 · · · , and so the net effect of dividing by 2d

and rounding up is simply to remove the second digit.

As illustrated in Figure 2.3, we can carry this process on until we have removed the

entire block of even digits that immediately follows. At this point, we will either have

a smaller value that has its first two digits odd, and we know by Lemma 2.1 that this

has SG value zero, or we will have reduced it all the way to 1 which has SG value 0
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4k1 + 1

4k1 4k2 + 1

4k + 3

$= 0
4k2

4kn + 1

4kn

$= 0 = 0

$= 0

The SG values along the right side will alter-
nate between zero and non-zero, ending with
zero in the lower right.

Figure 2.3: The descending sequence of odd index terms.

by definition. Since we end with a zero, if we have taken an even number of steps we

must have started with a zero value, and if we have taken an odd number of steps we

must have a non-zero value. The number of steps we take is exactly the length of the

block of even digits.

Lemmas 2.1 and 2.2 together prove Theorem 2.3 by giving a complete characteriza-

tion of the zeros of SG1,2d(n).

The proof of Theorem 2.4, that develops similar results to Theorem 2.3 in the case of

subtracting numbers other than 1, depends on some more patterns that arise in the SG

sequence. In Section 2.2.2 we develop the concept of holding, which allows us to reduce

SGa,b(n) to SG1,2d(n) for sufficiently large values of n. In Section 2.2.3 we develop the

ideas which let us extend the results of Theorem 2.3, to prove that {SGa,2d(an)}n=1 is

2d-automatic.

2.2.2 Holding

When we subtract values other than 1, we often have the property that adjacent groups

of a certain length all (eventually) have the same SG value. For example, starting with

n = 1, we have that SG2,2(n) eventually forms pairs of equal SG values:

SG2,2(n) = 0, 2, 1, 0, 0, 2, 1, 1, 2, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, . . .

We call this phenomenon holding of length k, where k is the size of the groups. In the

example above, {SG2,2(n)}n=1 has holding of length 2.
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This section elaborates on the reasons behind the phenomenon of holding, and

proves that under certain conditions we will be able to guarantee that holding of a

particular length will eventually occur in the SG sequence. Once holding happens, we

are really only interested in the value of each group, rather than every single index.

In later sections, we will show conditions under which we can use the phenomenon of

holding and the results about SG1,2d(n) to predict the value of SGa,2d(n).

Theorem 2.5. Let a′ be the largest divisor of a that is relatively prime to b. Then

holding of length s = a
a′ will occur in SGa,b(n).

We will prove this by first showing the persistence of holding, once it occurs, and

then by showing that holding occurring once is inevitable. It is as if we are looking

at a proof by induction out of order, with the inductive step first. The reason for this

presentation is that, unlike a standard proof by induction, the proof of the ‘base case’

of the inevitability of holding is much more involved than the inductive step.

To do this, we develop the concept of subsequent blocks of indices.

Definition 2.2. A block of indices is a set of numbers S where every term SGa,b(s)

depends on the same value via division, for all s ∈ S.

Definition 2.3. Two blocks are subsequent if each value in one block depends on a

value in the other block, via subtraction.

The phenomenon of holding happens in sequences of subsequent blocks. It’s easy to

see that if all the SG values in one block are equal (assume they are all x), then every

SG value in the subsequent block will be equal as well. Every value in the subsequent

block depends on the same value under division (assume that is value y), and on a value

in the initial block via subtraction. Therefore, every value in that block will be given

by mex(x, y), and so they must all be equal. If we have a long sequence of subsequent

blocks, and the values in the first block are all equal, then that equality will persist

throughout the whole sequence of blocks.

Note that because the term ‘subsequent’ refers to the dependence under subtraction,

it does not imply adjacent. The first thing we must show is that we can cover all the
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indices with sequences of subsequent blocks, and so the persistence of holding does

occur.

Lemma 2.3. If holding of length g = gcd(a, b) occurs, it will persist.

Proof. Consider a set of terms with indices kg, kg − 1, . . . , kg − g + 1, for some integer

k. Because g divides b, this term is a block. Moreover, because g divides a, the set of

terms with indices kg−a, kg−a−1, . . . , kg−a−g+1 is also a block of length g. Every

set of terms is part of a sequence of subsequent blocks.

Suppose we have holding occur in a block, that is for some m, SG(mg) = SG(mg−

1) = · · · = SG(mg − g + 1). Consider the subsequent block, SG(mg + a), SG(mg + a−

1), . . . , SG(mg + a − g + 1). Each term is the mex of a set of size 2. One element in

the set is always identical across all terms, because they all depend on the same value

under division. In this case, the value that they depend on via subtraction is identical

as well, by assumption. Therefore it follows that SG(mg + a) = SG(mg + a − 1) =

· · · = SG(mg + a− g + 1), and by induction this will occur for every block of the form

SG(mg + ka), SG(mg + ka − 1), . . . , SG(mg + ka − g + 1).

In Lemma 2.4, we show that holding will eventually occur in any sequence of sub-

sequent blocks.

Lemma 2.4. Stuttering of length g = gcd(a, b) is inevitable.

Proof. We will create a digraph that models the behavior of subsequent blocks of length

of g. Each vertex in this digraph will be a triple of SG values: (x, y, z). x and y are

two values in the block, that we hope will eventually be equal. The block of course

may have length larger than 2, but we only need to consider two values: if we can show

that no matter what values x and y begin with that they will eventually end up equal,

it will follow that a block of any length will eventually have all of its values be equal.

The final term, z, is the SG value that the next block depends on via division.

For example, when a = 4 and b = 2, one triple could represent

(SG4,2(19), SG4,2(20), SG4,2(12)) .



17

The subsequent block, (23, 24), will depend on (19, 20) via subtraction, and on 12 via

division. So just from looking at one triple, we have all the information we need to tell

us the SG values in the next block.

To create the digraph, we will add directed edges as shown in Figure 2.4. These

represent what the values in the subsequent block must be, and allow for any possible

z to accompany them.

(x, y, z)

(mex({x, z}), mex({y, z}), 0)

(mex({x, z}), mex({y, z}), 1)

(mex({x, z}), mex({y, z}), 2)

Figure 2.4: The directed edges in the digraph

The values in any sequence of subsequent blocks will correspond to a walk on this

digraph. Fortunately, the digraph only has 27 vertices and 81 directed edges, so it is

small enough to analyze by hand.

Figure 2.5 is a schematic of the interesting portions of the digraph. I have omitted

vertices where x = y, because we know that once holding begins it will persist. Our

primary concern, therefore, is how the graph behaves on the vertices where x $= y,

which reduces the number of vertices to 18. I have also depicted the following six

vertices as sinks (and drawn them in gray): (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (0, 2, 0),

and (2, 0, 0). For each of these, all three out edges point to vertices where x = y. For

the first four x = y = 0, and for the last two x = y = 1. This further reduces the

number of directed edges to consider, from 54 to 36.

We should be worried, since there are directed cycles where the first two terms

are not zero, and an infinite walk around one of these cycles would correspond to an

infinite sequence of blocks where holding does not appear. This cannot happen in

practice, however.

Observe that in Figure 2.5, above the dotted line all the vertices (other than the

sinks) have z $= 0, and below the dotted line all the vertices (other than the sinks) have

z = 0. There are no arrows that go from below the dotted line to above the dotted line,
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(2, 0, 1) (0, 2, 1)

(2, 0, 2) (0, 2, 2)

(0, 2, 0) (2, 0, 0)

(0, 1, 1) (1, 0, 1)

(0, 1, 2) (1, 0, 2)

(0, 1, 0) (1, 0, 0)

(1, 2, 0) (2, 1, 0)

(1, 2, 1) (1, 2, 2) (2, 1, 1) (2, 1, 2)

Figure 2.5: Digraph representing possible SG values in a sequence of subsequent blocks.

so any directed cycle must stay either above or below the line. Therefore, an infinite

walk without holding will have an infinite stretch with z = 0, or an infinite stretch with

z $= 0.

We will show in the following lemma that z must vary between zero and non-zero

values. This guarantees that wherever we begin, we will eventually pass to a sink or

to a vertex below the dotted line. Moreover, once we are below the dotted line we

must eventually move to a sink. Therefore, modulo proving Lemma 2.5, holding is

inevitable.

Lemma 2.5. The value of z, above, cannot have an arbitrarily long sequence of zeros

or an arbitrarily long sequence of non-zero values.

Proof. Given a sequence of subsequent blocks, corresponding to a walk in the digraph,

we will make a sequence of z values where zi is the third term in the label of the ith

vertex in the walk.
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We see that this sequence depends on itself via subtraction: for every i, zi−a = zi−2d.

The block of length g that depends on zi via division is the block with indices {2dzi,

2dzi − 1, . . . , 2dzi − g + 1, and the values that depend on zi − a via division are the

block with indices {2dzi − 2da, 2dzi − 2da − 1, . . . , 2dzi − 2da − g + 1}. These two

blocks are in the same sequence of subsequent blocks, and the one occurs exactly 2d

steps before the other. Since we cannot have a zero value depending on another zero

value, it’s impossible to have an infinite stretch of zeros.

In theory, we could have an infinite stretch of non-zero values, but the only way this

would be possible is if the value that zi depended on under division was zero for all i.

That sequence will also depend on itself via subtraction, however: & zi
2d'−a = &zi−2da

2d ' =

&zi−2d

2d '. Because it depends on itself via subtraction this less sparse sequence cannot

be all zero, therefore the zi cannot be all zero or non-zero.

We have shown that holding will eventually occur in any sequence of subsequent

blocks of length g = gcd(a, b). Because g divides a, these subsequent blocks of length g

cover all of the indices. Therefore, holding of length g will occur throughout the entire

sequence. To prove Theorem 2.5, however, we must show that we will get even longer

blocks. Armed with Lemmas 2.3 and 2.4, we can now prove Theorem 2.5.

Proof of Theorem 2.5. Consider what happens in SGa,b(n), after holding of length g

has occurred. Far enough out in the sequence, the values in each block of length g will

be the same. It’s natural, then, to think of the sequence not in terms of individual

elements but in terms of the value of each block.

The number of blocks between two subsequent blocks is a
g − 1, so when we just look

at the blocks, they are essentially behaving as if the rule of the game is now subtract
a
g , rather than subtract a. The term that a block depends on under division, however,

hasn’t changed. Therefore, far enough out in the sequence, the blocks have the same

underlying digraph as the game Ga
g ,b(n).

The proof of the inevitability and persistence of holding tells us that if a
g and b

have any common factors, we would expect to see holding of length gcd(a
g , b). Since the

elements are blocks, now, this would correspond to holding of length g · gcd(a
g , b) in the
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whole sequence.

This process continues for as long as the amount we subtract by continues to have

common factors with b. This will end once we reach a′, the largest divisor of a that is

relatively prime to b. We will have holding of length a
a′ , and far out in the sequence,

the underlying digraph that determines the values of the blocks will be the same as the

digraph of Ga′,b(n).

It will be helpful to have a sense of how far out in the sequence we need to go before

holding will occur. We get, by analyzing Lemma 2.5, that we can have at most 2d

subsequent 0 values and at most 4d2 subsequent non-zero values in the sequence of z

values. This implies that we can take at most 4d2 + 2d + 2 steps before holding occurs.

Once holding of length g occurs, however, we must walk out another 2dg steps before

we have the potential for additional holding.

Suppose we first see holding occur of length g1, then additional holding of length

g1 · g2 occurs, etc., and let g1, g2, g3, . . . , gk be the whole sequence of successive lengths

of holding that we see. Note that gi = gcd
(

a
g1g2···gi−1

, b
)
, and so for all i, gi ≥ gi+1.

We obtain the following upper bound on the number of steps that occurs before we

experience holding of length g1g2 · · · gk:

N(a, b) =(4d2 + 2d + 2)

·
(
(2d)k · (g1g2 · · · gk) + (2dg)k−1 · (g1g2 · · · gk−1) + · · · + 2dg1 + 1

)

While for any pair a and 2d we could compute the specific upper bound N(a, b), as a

rough measure we can certainly take a(2d)a as an upper bound for the number of steps.

In general, however, even the more exact bound is much larger than what’s needed.

The same analysis yields a corresponding lower bound of a(2d)k, where k is the number

of times we see additional holding (this is assuming we immediately see holding, as soon

as it becomes possible). Experimental evidence suggests that in practice the real value

is closer to the lower bound than the upper.
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2.2.3 The Misére Game and Changed Initial Values

The results from Section 2.2.2 tell us that if all the prime factors of a also appear as

prime factors of 2d (i.e. a′ = 1), then the Ga,b(n) will eventually behave like G1,2d(n).

But it’s not immediately clear how the characterization of the first player losing posi-

tions in G1,2d(n) can be used to characterize the first player losing positions in Ga,2d(n).

It turns out that we will need a more involved understanding of the structure of the

simpler game, much of the details of which are postponed until Section 2.3. However

in this section we will discuss how the two games are related, what results from above

can be extended directly to SGa,b(n), and how the upcoming results can be used to

completely characterize SGa,b(n).

Since we are studying a sequence that has eventual holding of length a, we will

start by breaking the full sequence up into subsequences based on the residue classes

mod a. That is, one sequence will be the terms with indices a, 2a, 3a, etc., another

will be the terms with indices 1, a + 1, 2a + 1, 3a + 1, etc., and so on. Stuttering tells

us that there is a value N , such that these sequences are equal for all (subsequence)

indices greater than N , so it doesn’t matter which residue class we consider. For the

rest of this section, we will look at only one (unspecified) residue class, and will take

the view that our sequence of interest is made by taking N − 1 fixed and completely

arbitrary values from the set {0,1,2}, and then defining all subsequent terms by the

usual recursive definition for G1,2d(n):

xn = mex
(
xn−1, x$ n

2d %

)
.

In a slight abuse of notation, we will continue to denote this function SG1,2d(n).

We would like to prove an analog of Lemma 2.1 for SG1,2d(n) when the first N − 1

values have been set arbitrarily, that is, that even index terms will be non-zero, and

terms with indices in the range n ≡ 2d + 1, 2d + 3, . . . , 4d − 1 mod 4d will be zero. Of

course, we have no control over the first N − 1 terms, as they may be set arbitrarily

(and can perhaps be set in such a way that will influence subsequent terms), so the best

we can hope for is that the results of Lemma 2.1 will hold for all indices above some

threshold.
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Lemma 2.6. Let SG1,2d(n) denote the nth value of the SG sequence for the game

G1,2d(k) where the first N−1 terms have been set arbitrarily, and take ", such that n ≡ "

mod 4d. If " is even and n ≥ 2dN , then SG1,2d(n) $= 0. If " ∈ {2d+1, 2d+3, . . . , 4d−1}

and n ≥ 4d2N − 2d + 1, then SG1,2d(n) = 0.

Proof. As in the proof of Lemma 2.1, we have an inductive argument for a winning

strategy for even index terms. This essentially says that as long as SG1,2d(2dk + 2d)

through SG1,2d(2dk − 2d + 1) are all determined by a mex rather than fixed arbitrarily

(i.e. 2dk ≥ N+2d−1), and SG1,2d(2dk) $= 0, it must be that SG1,2d(2dk+2d) $= 0. From

the alternating property, we get the intermediate even index terms to have non-zero

SG values as well.

What we need to show is that the base case of the induction occurs at some point

after SG1,2d(N − 1) and no later than at SG1,2d(2dN). Suppose, then, that the SG

value is zero at all even indices from N − 1 through 2dN − 2. The value SG1,2d(2dN)

is determined by the mex over a set that includes SG1,2d(n), which we have assumed

to be zero. Since the mex of a set that includes zero cannot be zero, SG1,2d(2dN) must

be non-zero. This guarantees that the base case for the induction must occur at some

point after SG1,2d(N − 1) and no later than at SG1,2d(2dN), and the inductive step

above finishes the proof of the first part of the lemma.

The second part of the lemma depends on the first part. We know that for indices

where " ∈ {2d+1, 2d+3, . . . , 4d−1}, both of the SG values that SG1,2d(n) depends on

will have even index. For very large values of n, the first part of the lemma will apply

to both of those smaller SG values, and we will know that they are both non-zero. This

implies that for large values of n, SG1,2d(n) = 0. Based on the threshold in the first

part of the lemma, we find the smallest index where this is guaranteed to happen is

n = 4d2N − 2d + 1: &4d2N−2d+1
2d ' = 2dN .

We will now prove Theorem 2.4, by finishing the characterization of SG1,2d(n) for

the remaining indices: n ≡ " mod 4d, and " ∈ {1, 3, . . . , 2d − 1}:

Lemma 2.7. If n ≡ " mod 4d and " ∈ {1, 3, . . . , 2d − 1}, the least significant digit in

the base 2d representation of n is odd, and the second least significant digit is even. For
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n ≥ 4dN + 1, let n′ ≥ 2dN + 1 be smallest number possible to be formed from n by

successive removals of the second digit in the base 2d expansion, as long as the second

digit remains even and n′ ≥ 2dN + 1. Let k be the number of even digits removed from

n to form n′.

• If SG(n′) = 0, then SG(n) = 0 if k is even and SG(n) $= 0 if k is odd.

• If SG(n′) $= 0, then SG(n) $= 0 if k is even and SG(n) = 0 if k is odd.

Proof. If we write the base 2d representation of n with the least significant digit oc-

curring first, then we know (by the restrictions on ") that the first digit is odd and

the second digit is even. As in the proof of the analogous Lemma 2.2, we will use the

fact that every time we divide n by 2d and round up, it has the effect of removing the

second digit from the base 2d expansion of n. For sufficiently large n, SG1,2d(n − 1)

will be non-zero, and so whether or not SG1,2d(n) = 0 will depend on SG1,2d(& n
2d').

We would like to remove the entire first block of even digits from the base 2d

expansion of n, but unlike in the proof of Lemma 2.2 we need to worry about what

happens if in removing all the even digits leaves us with a number that is too small.

We form n′ by successively removing the second digit of n, until we either run out of

even digits in that first block or we get to an index n′ where 4d2N +1 > n′ ≥ 2dN +1. If

we drop below 2dN + 1, we are no longer guaranteed that SG1,2d(n′− 1) $= 0. Without

this, it may not be the case that if SG1,2d(& n
2d') = 0 then SG1,2d(n) $= 0, and vice

versa.

If n′ ≥ 4d2N + 1 it must be that we have stopped because we have removed the

entire first block of even digits, and so SG1,2d(n′) = 0. If 4dN + 1 > n′ ≥ 2dN + 1, we

must look up SG1,2d(n′) in a pre-computed table of the first 4d2N values. In either case,

we will have alternated between zero and non-zero SG values every time we removed

a digit, so knowing the value of SG1,2d(n′) and the number of digits we have removed

allows us to compute SG1,2d(n).

Proof of Theorem 2.4. We will analyze the sequence {SGa,2d(n)}n=1 when the largest

divisor of a that is relatively prime to b is 1, by first using holding to reduce it to the
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sequence {SGa,2d(an)}n=1. We have shown in Section 2.5 that for these values of a

and 2d we will see holding of length a after at most a(2d)a steps. Once this holding

occurs, we only need to consider the value of each block, which will be picked up by

the subsequence {SGa,2d(an)}n=1. The blocks will behave as if they are in G1,2d. This

means that we represent this sequence by the behavior of SG1,2d(n), with the first (2d)a

values set arbitrarily.

Lemmas 2.6 and 2.7 together give us a complete characterization of SG1,2d(n) after

the first (2d)a values have been set arbitrarily.

Note, however, that this is a somewhat less satisfying characterization than we have

for Theorem 2.3. If n ≡ " mod 4d and either " even or " ∈ {2d + 1, 2d + 3, . . . , 4d− 1},

the characterization merely gives a threshold, after which the zeroes of SG1,2d(n) follow

a simple pattern that doesn’t involve looking up values in a pre-computed table. But

if " ∈ {1, 3, . . . , 2d − 1}, there is no threshold above which we can avoid the table.

As an example, consider the misére version of G1,2(n), defined by keeping the same

allowable moves but switching the goal of the players; in this game, the player who says

1 loses. The SG sequence for any misére game is given by defining the SG values of

the final positions of the game to be 1 (rather than 0, as we do in the regular game),

and then defining all subsequent SG values recursively, as usual. The misére version of

G1,2(n) falls into this section naturally, as it has SG sequence {SG1,2(n)}n=1 with the

initial value changed from SG1,2(1) = 0 to SG1,2(n) = 1.

For the misére game, SG1,2(3) $= 0, but all other SG values when n ≡ 3 mod 4 are

zero (as is the case in the regular version of the game). However, this single aberration

at n = 3 causes an infinite number of other SG values with indices n ≡ 1 mod 4 to

change from zero to non-zero, or vice versa. All numbers that are one more than a

power of 2, or equivalently numbers n with binary representation 10i1 for some i ≥ 0

will have n′ = 3. We can only determine their correct SG value by looking up the value

SG1,2(3) in a pre-computed table that tells us that SG1,2(3) $= 0.
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2.3 Regularity of the Game Sequences

John Paul Allouche and Jeffry Shallit first introduced the concept of regular sequences

in a pair of 1992 articles: [6] and [7]. Regular sequences are a large and reasonably

well-behaved and well-understood class of sequences. Ultimately, we will show that

many of the games sequences we care about are regular, so we pause here to develop

some of the results we will need. This introduction draws from the book Automatic

Sequences by Allouche and Shallit [5], and the reader is directed there for more in depth

explanations of these concepts.

A sequence is said to be k-regular if all residue classes modulo large powers of k are

linear combinations of residue classes modulo smaller powers of k. More formally, we

have the following (Definition 16.1.2 in [5]):

Definition 2.4. A sequence an is k-regular if it can be completely defined by recurrences

of the following form:

akm+r =
L∑

i=1

ciakmi+ri ,

where m > mi, 0 ≤ r ≤ km − 1, and 0 ≤ ri ≤ kmi − 1, and the ci can be any constants.

Note that we do not require the smaller powers of k to be equal to each other, or

that we take the same linear combinations for different residue classes.

Example 2.1. We will show that the Thue–Morse sequence is 2-regular. For n ≥ 0,

let the nth term in the Thue-Morse sequence t(n) be the number of 1s in the binary

representation of n, modulo 2. The common recursive definition of t(n) is as follows:

t(0) = 0, t(2n) = t(n), and t(2n + 1) = 1 − t(n). This does not fit the framework of a

2-regular sequence, but we also have the following possible definition of t(n):

• t(2n) = t(n),

• t(4n + 1) = t(2n + 1),

• t(4n + 3) = t(n).
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Because the sequence can be entirely defined by equating residue classes modulo large

powers of 2 with residue classes modulo smaller powers of 2, this fits the definition of

a 2-regular sequence.

Since we are interested in generalizing the idea of a closed formula, we are interested

in the following concept as well (Definition 5.1.1 in [5]).

Definition 2.5. A k-automatic sequence is one for which there is a deterministic finite

automaton with output, or DFAO, that when given the digits of n in base k will return

the value of an.

While there may not be a closed form for the nth term in an automatic sequence, the

DFAO provides non-recursive (and hence generally much faster) way to compute the

nth digit much in the way that a closed formula would.

It turns out that regular and automatic sequences are deeply related. We are par-

ticularly interested in the following related result (Theorem 16.1.5 in [5]):

Theorem 2.6. If a sequence is k-regular and takes only a finite number of values, it

is k-automatic.

We refer the reader to to [5] for the proof.

Example 2.2. We have shown that the Thue–Morse sequence is 2-regular. Because it

only takes values 0 or 1, it follows that it must also be 2-automatic. The following DFAO

(based on Figure 5.1 in [5]) will compute t(n), when fed in the binary representation of

n. To see that this DFAO represents the Thus-Morse sequence, we will go back to the

original understanding of the sequence as representing the parity of the number of 1’s

in the binary representation of n.

State Zero State One

1

1

0 0

The binary representation of n is read in to the DFAO, starting at State Zero. With

each new digit, we follow the appropriately labeled arrow from that state. When there
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are no more digits in the binary representation of n, if we are in State Zero we return

t(n) = 0, and if we are in State One we return t(n) = 1.

We will show that the sequence {SG1,2d(n)}n=1 is 2d-regular by building up the fam-

ily of recurrences that defines it. From this, we can prove Theorem 2.1: {SG1,2d(n)}n=1

is 2d-automatic. Based on this result, and the results of Section 2.2.3, we will go fur-

ther and prove Theorem 2.2: if all prime factors of a are also prime factors of 2d, then

{SGa,2d(an)}n=1 is 2d-automatic.

2.3.1 Proof of Regularity

We start by showing the following:

Theorem 2.7. The sequence {SG1,2d(n)}n=1 is 2d-regular.

Throughout this section we will simply write SG(n), when we mean SG1,2d(n), since

the context is clear. Let n = R + 2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · , where all the

coefficients ci are integers in [0, 2d). This is equivalent to looking at the digits in the

base-2d representation of n, but we will write it as a polynomial so that when necessary

we can borrow between terms.

We’re looking for reductions, or equations of the form SG(n) = SG(r), for r < n.

Of course, there are only three possible SG values, so there are many equations we can

write of this form. But we would like to find large classes of these relations, where by

only looking at the first few terms in the polynomial of n (that is, the least significant

digits in base 2d) we can write down a formula for r in terms of n. These sets of

equations will lead us to recurrences of the form SG((2d)k + i) = SG((2d)m + j).

In particular, we’re interested in reductions where to write r we have to delete digits

from n, as this will give us equalities between residue classes modulo different powers

of 2d. We define the shift of an equation of the form SG((2d)k + i) = SG((2d)m + j) to

be k − m, which is equivalent to the number of digits we must delete from n to find r.

Looking at the shift will be useful to help keep track of what happens when we apply

multiple reductions, and helps verify that an equation of the form SG((2d)k + i) =
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SG((2d)m + j) is in fact a reduction. If the shift is greater than zero, it’s clear that

(2d)k + i > (2d)m + j. If the shift is zero, we must check that i > j.

To find these reductions, all we will use is Lemma 2.1, the mex definition of SG(n),

and the following basic facts about mex:

• If a ∈ {1, 2}, then mex(0, a) = 3 − a.

• mex(0,mex(0, 1)) = 1, and mex(0,mex(0, 2)) = 2.

To help readability, we adopt the convention that when we write out the definition

SG(n), the first term will always be the term corresponding to subtraction: SG(n−1),

and the second term will always be the term corresponding to division: SG
(
& n

2d'
)
. In

cases where we have to work with each of these terms independently, we will refer to

the first term as the Left-Hand Side (LHS) of definition, and the second term as the

Right-Hand Side (RHS).

To show the pattern of these proofs, we first work through the following example,

valid only for the sequence {SG1,2(n)}n=1:

Example 2.3. We will show that for all values of c4, c5, etc.,

SG1,2(0 + 16c4 + 32c5 + · · · ) = SG1,2(0 + 4c4 + 8c5 + · · · ):

SG1,2(0 + 16c4 + 32c5 + · · · ) =

= mex (SG1,2(−1 + 16c4 + 32c5 + · · · ), SG1,2(0 + 8c4 + 16c5 + · · · ))

= mex (0, SG1,2(0 + 8c4 + 16c5 + · · · ) Lemma 2.1

= mex (0,mex (SG1,2(−1 + 8c4 + 16c5 + . . .), SG1,2(0 + 4c4 + 8c5 + · · · )))

= mex (0,mex (0, SG1,2(0 + 4c4 + 8c5 + · · · ))) Lemma 2.1

Since SG1,2(0 + 4c4 + 8c5 + · · · ) $= 0, by Lemma 2.1, we can apply the 2nd principle of

mex, to see that mex (0,mex (0, SG1,2(0 + 4c4 + 8c5 + · · · ))) = SG1,2(0 + 4c4 + 8c5 +

· · · ). Therefore, SG1,2(0 + 16c4 + 32c5 + · · · ) = SG1,2(0 + 4c4 + 8c5 + · · · ).

The argument above holds for any values c4, c5, etc., which this tells us that the

subsequence {SG1,2(16n)}n=1 equals the subsequence {SG1,2(4n)}n=1, term for term.

Of course, if we add any other conditions on c4 or coefficients of higher terms, we will still
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have equality. So, for example, if we restrict to c4 = 0 we get that {SG1,2(32n)}n=1 =

{SG1,2(8n)}n=1, and if we restrict to c4 = 1 we get that {SG1,2(32n + 16)}n−1 =

{SG1,2(8n + 4)}n=1. Therefore this one argument creates many reductions, all with

shift 2.

We now address the general case, {SG1,2d(n)}n=1. The Alternating Property allows

us to reduce the amount of work we need to do: we will consider only cases where R = 0

and R = 1. Moreover, motivated by Lemma 2.1 and how important the value of n mod

4d appears to be, we will break up our discussion of n into the following 4 cases: R = 0

and c1 even, R = 1 and c1 even, R = 0 and c1 odd, and R = 0 and c1 even.

One case is trivial:

Case 1: R = 1 and c1 odd. In this case, SG(n) = 0, by Lemma 2.1.

Just showing that a sequence is uniformly zero is not, strictly speaking, a reduction.

In fact, the reduction will be that anything in Case 1 (or anything else that is uniformly

zero) will reduce to SG(1+2d+4d2n). Knowing that it is uniformly zero gives us more

information, however, particularly as we use this result in examining other cases.

For each of the remaining three cases, we will build up a family of reductions. We

start with the case where R = 1 and c1 even, and use those reductions to build up the

family for R = 0, c1 odd. Those, in turn, help with the final case: R = 0, c1 even.

2.3.2 Case 2: R = 1, c1 even

In this case, we have the following definition of SG(n):

SG(n) = mex
(
SG(2dc1 + 4d2c1 + · · · ), SG(1 + c1 + 2dc2 + 4d2c3 + · · · )

)

Since c1 is even (by assumption) we have that the second term in the definition is

equivalent to SG(1 + 2dc2 + 4d2c3 + · · · ), by the Alternating Property.

In the first part of this section, we will build up reductions by constraining c2, c3

and c4 to be even or odd. At each step, we hope to use the conditions on c2 through

c4 and Lemma 2.1 to determine whether or not particular terms in the mex are zero or

non-zero. As long as one of these coefficients is odd, this is possible, which gives us the

first four reductions in the table below.
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When c1 $= 0 and c2 through c4 are all even, however, we get some interesting

behavior, for which we define a new function: SG∗(n) = 3 − SG(n) mod 3. This new

function essentially keeps 0 values the same, but switches the values 1 and 2. The

second part of this section develops some more properties SG∗(n), and how it can be

used to prove reductions. By adding constraints on c5 and c6 and reapplying Reductions

1 through 4, we are able to get the complete set of results recorded in Table 2.3.2

Reductions for SG(1 + 2dc1 + 4d2c2 + 8d3c3 + · · · ) when c1 even:
R1 SG(c1 + 2dc2 + 4d2c3 + · · · ) c2 odd
R2 0 = SG(1 + 2d + · · · c2 even, c3 odd
R3 SG(c1 + 2dc2 + 4d2c3 + · · · ) c2, c3 even, c4 odd
R4 SG(1 + 2dc3 + 4d2c4 + · · · ) c1 = 0, c2, c3, c4 even

Table 2.1: The four reductions for Case 2 that can be proved directly.

We first prove Reductions 1 through 4, directly and constructively.

Reduction 1. When c1 is even and c2 is odd, SG(1 + 2kc1 + 4d2c2 + 8d3c3 + · · · ) =

SG(c1 + 2dc2 + · · · ).

Proof.

SG(1 + 2kc1 + 4d2c2 + 8d3c3 + · · · )

= mex
(
SG(2dc1 + 4d2c2 + · · · ), SG(1 + c1 + 2dc2 + 4d2c3 + · · · )

)

= mex
(
SG(2dc1 + 4d2c1 + · · · ), 0

)
Lemma 2.1

= mex
(
mex

(
SG(−1 + 2dc1 + 4d2c2 + · · · ), SG(c1 + 2dc2 + · · · )

)
, 0

)

= mex
(
mex

(
0, SG(c1 + 2dc2 + · · · )

)
, 0

)
Lemma 2.1

Since SG(c1+2dc2+ · · · ) is never zero, we have that SG(1+2dc1+4d2c2+8d3c3+ · · · ) =

SG(c1 + 2dc2 + · · · ).

Reduction 2. When c1 and c2 are even, c3 is odd, SG(1+2dc1 +4d2c2+8d3c3+ · · · ) =

0.
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Proof.

SG(1+2dc1 + 4d2c2 + 8d3c3 + · · · )

= mex
(
SG(2dc1 + 4d2c2 + · · · ), SG(1 + c1 + 2dc2 + 4d2c3 · · · )

)

= mex
(
mex

(
SG(−1 + 2dc1 + 4d2c2 + · · · ), SG(c1 + 2dc2 + · · · )

)
,

mex
(
SG(c1 + 2dc2 + · · · ), SG(1 + c1 + 2c2 + 4dc3 + · · · )

))

= mex
(
mex

(
0, SG(2c1 + 4dc2 + · · · )

)
,mex

(
SG(2c1 + 4dc2 + · · · ), 0

))

= 0

Since mex
(
0, SG(2c1 + 4dc2 + · · · )

)
$= 0 and mex

(
SG(2c1 + 4dc2 + · · · ), 0

)
$= 0, we

have that the original is the mex of two non-zero elements, and so must always be

zero.

Reduction 3. When c1, c2, c3 are even, c4 is odd, SG(1+2dc1 +4d2c2 +8d3c3 + · · · ) =

SG(c1 + 2dc2 + · · · ).

Proof.

SG(1+2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= mex
(
SG(2dc1 + 4d2c2 + · · · ), SG(1 + c1 + 2dc2 + · · · )

)

= mex
(
mex

(
SG(−1 + 2dc1 + 4d2c2 + · · · ), SG(c1 + 2dc2 + · · · )

)
,

SG(1 + c1 + 2dc2 + 4d2c3 + 8d3c4 + · · · )
)

= mex
(
mex

(
0, SG(c1 + 2dc2 + · · ·

)
, SG(1 + 2dc2 + 4d2c3 + 8d3c4 + · · · )

)
.

But by the Alternating Property and R2, we know that SG(1 + c1 + 2dc2 + 4d2c3 +

8d3c4 + · · · ) = 0, so

SG(1+2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= mex
(
mex

(
0, SG(c1 + 2dc2 + · · · )

)
, SG(1 + 2dc2 + 4d2c3 + 8d3c4 + · · · )

)

= mex
(
mex

(
0, SG(c1 + 2dc2 + · · · )

)
, 0

)
.

Since SG(c1 +2dc2 + · · · ) is never zero (by assumption, c1 even), we have that SG(1+

2dc1 + 4d2c2 + 8d3c3 + · · · ) = SG(c1 + 2dc2 + · · · ).
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Reduction 4. : If c1 = 0, c2, c3, c4 all even, SG(1+2dc1+4d2c2+8d3c3+16d4c4+ · · · ) =

SG(1 + 2dc3 + 4d2c4 + · · · ).

Proof.

SG(1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= mex
(
SG(4d2c2 + 8d3c3 + 16d4c4 + · · · ), SG(1 + 2dc2 + 4d2c3 + 8d3c4 + · · · )

)

= mex
(
mex

(
SG(−1 + 4d2c2 + 8d3c3 + · · · ), SG(2dc2 + 4d2c3 + 8d3c4 + · · · )

)
,

mex
(
SG(2dc2 + 4d2c3 + 8d3c4 + · · · ), SG(1 + 2dc3 + 4d2c4 + · · · )

))

= mex
(
mex

(
0, SG(2dc2 + 4d2c3 + 8d3c4 + · · · )

)
,

mex
(
SG(2dc2 + 4d2c3 + 8d3c4 + · · · ), SG(1 + 2dc3 + 4d2c4 + · · · )

))

Notice that the term SG(2dc2 + 4d2c3 + 8d3c4 + · · · ) shows up in both terms of the

outer mex, and can never be zero. Further notice that SG(2dc2 + 4d2c3 + 8d3c4 + · · · )

and SG(1 + +2dc3 + 4d2c4 + · · · ) both depend on SG(2dc3 + 4d2c4 + · · · ) $= 0.

We are using the fact that c1 = 0. If c1 $= 0, then instead of SG(2dc2 + 4d2c3 + · · · )

showing up in both terms of the mex we would have SG(c1 + 2dc2 +4d2c3 + · · · ). This

term would depend directly on SG(1 + 2dc3 + 4d2c4 + · · · ), rather than both of them

depending on a separate value.

We have two cases to consider: SG(1 + 2dc3 + 4d2c4 + · · · ) $= 0, and SG(1 + 2dc3 +

4d2c4 + · · · ) = 0. Below are diagrams of the underlying digraphs of the game, and what

we can determine about the rest of the SG values given SG(1 + 2dc3 + 4d2c4 + · · · ) is

zero or non-zero.

1 + 4d2c2 + 8d3c3 + · · ·

4d2c2 + 8d3c3 + · · · 1 + 2dc2 + 4d2c3 + · · ·

2dc2 + 4d2c3 + 8d3c4 + · · · 1 + 2dc3 + 4d2c4 + · · ·−1 + 4d2c2 + · · ·

2dc3 + 4d2c4 + · · ·

a $= 0

= 0b $= 0

a $= 0a $= 0= 0

b $= 0
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If SG(1 + 2dc3 + 4d2c4 + · · · ) = a $= 0, then SG(2dc2 + 4d2c3 + 8d3c4 + · · · ) = a,

and so SG(1 + 4d2c2 + · · · ) = mex
(
mex(0, a),mex(a, a)

)
= mex

(
mex(0, a), 0

)
= a.

1 + 4d2c2 + 8d3c3 + · · ·

4d2c2 + 8d3c3 + · · · 1 + 2dc2 + 4d2c3 + · · ·

2dc2 + 4d2c3 + 8d3c4 + · · · 1 + 2dc3 + 4d2c4 + · · ·−1 + 4d2c2 + · · ·

2dc3 + 4d2c4 + · · ·

= 0

b $= 0b $= 0

= 0a $= 0= 0

b $= 0

If SG(1 + 2dc3 + 4d2c4 + · · · ) = 0, then both terms of the outer mex are given by

mex
(
0, SG(2dc2 + 4d2c3 + 8d3c4 + · · · )

)
, and are non-zero. So the original value must

be zero as well.

In both cases, the value of the original is the same as SG(1+2dc3 +4d2c4 + · · · ), so

we have SG(1+2dc1 +4d2c2 +8d3c3 +16d4c4 + · · · ) = SG(1+2dc3 +4d2c4 + · · · ).

As we consider the single remaining case so far, that is, c1 $= 0, and c2, c3, c4 all

even, we start to notice some interesting behavior.

SG(1 + 2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= mex
(
SG(2dc1 + 4d2c2 + 8d3c3 + · · · ), SG(1 + c1 + 2dc2 + 4d2c3 + · · · )

)

= mex
(
mex

(
SG(−1 + 2dc1 + 4d2c2 + · · · ), SG(c1 + 2dc2 + 4d2c3 + · · · )

)
,

mex
(
SG(c1 + 2dc2 + 4d2c3 + · · · ), SG(1 + c2 + 2dc3 + · · · )

))

= mex
(
mex

(
0, SG(c1 + 2dc2 + 4d2c3 + · · · )

)
,

mex
(
SG(c1 + 2dc2 + 4d2c3 + · · · ), SG(1 + 2dc3 + · · · )

))

Note that the term SG(c1 + 2dc2 + 4d2c3 + · · · ) can never be zero, and shows up in

both terms of the outer mex. We also see that SG(c1 + 2dc2 + 4d2c3 + · · · ) depends on

the other term in the mex, SG(1 + 2dc3 + · · · ), rather than a third value. Here we are

using the fact that c1 $= 0.

There are two cases to consider: SG(1 + c2 + 2dc3 + · · · ) = 0, and SG(1 + c2 +



34

2dc3 + · · · ) $= 0. These determine the SG values for all of the other vertices in question.

Below are the digraphs of the game, with what we know about the SG values filled out.

1 + 2dc1 + 4d2c2 + 8d3c3 + · · ·

2dc1 + 4d2c2 + 8d3c3 + · · · 1 + c1 + 2dc2 + 4d2c3 + · · ·

c1 + 2dc2 + 4d2c3 + · · · 1 + c2 + 2dc3 + · · ·−1 + 2dc1 + 4d2c2 + · · ·

= 0

b $= 0b $= 0

= 0a $= 0= 0

When SG(1+c2+2dc3+4d2c4+ · · · ) = 0, SG(1+2dc1+4d2c2+8d3c3+16d4c4+ · · · )

is the mex over two non-zero elements, and so must be zero as well.

1 + 2dc1 + 4d2c2 + 8d3c3 + · · ·

2dc1 + 4d2c2 + 8d3c3 + · · · 1 + c1 + 2dc2 + 4d2c3 + · · ·

c1 + 2dc2 + 4d2c3 + · · · 1 + c2 + 2dc3 + · · ·−1 + 2dc1 + 4d2c2 + · · ·

b $= 0

= 0a $= 0

a $= 0b $= 0= 0

When SG(1 + c2 + 2dc3 + 4d2c4 + · · · ) = a $= 0, we must have that SG(c1 + 2dc2 +

4d2c3 + · · · ) = b $= 0.

We can see that there is a nice relationship between SG(1 + 2dc1 + 4d2c2 + 8d3c3 +

16d4c4 + · · · ) and SG(1 + c2 + 2dc3 + 4d2c4 · · · ). To describe this behavior, we create

a new function SG∗(n) by assigning SG∗(n) = (3 − SG(n)) mod 3. In this way,

SG∗(n) and SG(n) are either both zero, or both non-zero and not equal. Note that

SG∗∗(n) = SG(n). We call this new function the starred value of SG(n), or the opposite

value if we are looking at a class of values n where SG(n) $= 0. Using this new function,

we can summarize what we have learned with the following: If c1 $= 0, c1, . . . , c4 even,

SG(1 + 2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) = SG∗(1 + 2dc3 + 4d2c4 + · · · ). (2.1)

We will call Equation 2.1 “Rule 5”. We would like to make this Reduction 5, but

unfortunately it isn’t a reduction: we don’t get an equality with SG of some smaller

index, but SG∗. Notice, however, the similarity between Reduction 4 and Rule 5: they
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are both to the same index, but Reduction 4 is to the regular SG value at that index,

and Rule 5 is to the SG∗ value.

At various points in Cases 3 and 4 we will think of Reduction 4 and Rule 5 as going

together. We will leave unspecified whether or not c1 = 0, and just use the fact that

we can reduce to get either SG(1+ 2dc3 + 4d2c4 + · · · ) or SG∗(1+ 2dc3 + 4d2c4 + · · · ).

This is especially useful when we will first apply one of these reductions, and then apply

Reduction 2 or Lemma 2.1 to show that in fact the whole sequence is zero.

To finish Case 2, however, Rule 5 is not enough. We note that the smaller index

that we get after applying Rule 5 still satisfies the constraints Case 2, namely that

R = 1 and that c3, the coefficient of 2d, is even. So we may use the already established

Reductions 1 through 4 on the smaller index 1 + 2dc3 + 4d2c4 + · · · , in the hope of

finding further reductions.

To prove Reductions 5.2 and 5.3 we will not be able to work as directly as we

were with Reductions 1 through 4. We will reduce both the LHS and the RHS with

the relevant reductions from the set R1 through R4. Suppose we are able to show

that LHS = SG(r1) and RHS = SG(r2). Rather than making an argument from

the digraph directly, we will construct some other index r3, that by definition satisfies

SG(r3) = mex(SG(r1), SG(r2)). This is technique is also used extensively throughout

Cases 3 and 4.

One important example of the technique of reducing first and then building a slightly

large r3 value is how we can sometimes turn an equation relating an SG function to an

SG∗ function into an equation relating two SG functions. From our basic properties of

mex, we see that if SG∗(a) $= 0, then SG∗(a) = mex(0, SG(a)). Moreover, if SG(a) $= 0

(which follows if SG∗(a) $= 0), then SG(2da) = mex(0, SG(a)), by Lemma 2.1. Thus,

if SG∗(a) $= 0, SG∗(a) = SG(2da). We will use this in the proof of Reduction 5.2 and

at many points in Case 3.

Reduction 5.1. If c1 $= 0, c1, . . . , c4 are even, c5 is odd, SG(1+2dc1 +4d2c2 +8d3c3 +

16d4c4 + · · · ) = 0.
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Proof. After we apply Rule 5, we are in the case of Reduction 2.

SG(1 + 2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= SG∗(1 + 2dc3 + 4d2c4 + · · · ) R5

= 0 R2

Reduction 5.2. If c1 $= 0, c1, . . . , c5 are even, c6 odd, then SG(1 + 2dc1 + 4d2c2 +

8d3c3 + 16d4c4 + · · · ) = SG(2dc3 + 4d2c4 + · · · ).

Proof. After we apply Rule 5, we are in the case of Reduction 3:

SG(1 + 2dc1 + 4d2c2+8d3c3 + 16d4c4 + · · · )

= SG∗(1 + 2dc3 + 4d2c4 + · · · ) R5

= SG∗(c3 + 2dc4 + 4d2c5 + · · · ). R3

SG(c3 +2dc4 +4d2c5 + · · · ) is never zero (Lemma 2.1 applies since c3 even, by assump-

tion), so SG∗(c3 + 2dc4 + 4d2c5 + · · · ) = mex
(
0, SG(c3 + 2dc4 + 4d2c5 + · · · )

)
.

From this we see that SG(2dc3+4d2c4+ · · · ) also equals SG∗(c3+2dc4+4d2c5+ · · · ).

Therefore, it must be that SG(1 + 2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) = SG(2dc3 +

4d2c4 + · · · ).

Reduction 5.3. If c1 $= 0, c3 = 0, c1, c2, c4, c5, c6 all even, then SG(1+ 2dc1 + 4d2c2 +

8d3c3 + 16d4c4 + · · · ) = SG(1 + 2dc1 + 4d2c2 + 8d3c5 + 16d4c6 + · · · ).

Proof. After we apply Rule 5, we are in the case of Reduction 4:

SG(1 + 2dc1 + 4d2c2+8d3c3 + 16d4c4 + · · · )

= SG∗(1 + 2dc3 + 4d2c4 + · · · ) R5

= SG∗(1 + 2dc5 + 4d2c6 + · · · ) R4

We are looking for some other value that causes us to reduce in such a way that we

get equality with a starred value, and the values for c1 and c2 do just that. Consider

taking away coefficients c3 and c4 and pushing forward all the other coefficients to take

their place, so that we are left with SG(1 + 2dc1 + 4d2c2 + 8d3c5 + 16d4c6 + · · · ).
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Rule 5 applies (since by assumption c1 $= 0, c2, c5, c6 all even), and so we must get

SG(1 + 2dc1 + 4d2c2 + 8d3c5 + 16d4c6 + · · · ) = SG∗(1 + 2dc5 + 4d2c6 + · · · ).

This gives us that SG(1 + 2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) = SG(1 + 2dc1 +

4d2c2 + 8d3c5 + 16d4c6 + · · · ).

Reduction 5.4. If c1 $= 0, c3 $= 0, and c1 through c6 all even, then SG(1 + 2dc1 +

4d2c2 + 8d3c3 + 16d4c4 + · · · ) = SG(1 + 2dc5 + 4d2c6 + · · · )

Proof. After we apply Rule 5 once, we are back in the case of Rule 5:

SG(1 + 2dc1 + 4d2c2+8d3c3 + 16d4c4 + · · · )

= SG∗(1 + 2dc3 + 4d2c4 + · · · ) R5

= SG∗∗(1 + 2dc5 + 4d2c6 + · · · ) R5

= SG(1 + 2dc5 + 4d2c6 + · · · )

To aid with further reductions in the other cases, we again summarize the eight

reductions needed for Case 2 here. The final column is the shift, or how many powers

of 2d we lose in our reduction between the original index and the reduced index.

Reductions for SG(1 + 2dc1 + 4d2c2 + 8d3c3 + · · · ) when c1 even:
R1 SG(c1 + 2dc2 + 4d2c3 + · · · ) c2 odd 1
R2 0 = SG(1 + 2d + · · · c2 even, c3 odd NA
R3 SG(c1 + 2dc2 + 4d2c3 + · · · ) c2, c3 even, c4 odd 1
R4 SG(1 + 2dc3 + 4d2c4 + · · · ) c1 = 0, c2, c3, c4 even 2
R5.1 0 = SG(1 + 2d + · · · c1 $= 0, c2, c3, c4 even, c5 odd NA
R5.2 SG(2dc3 + 4d2c4 + · · · ) c1 $= 0, c2, . . . , c5 even, c6 odd 2
R5.3 SG(1 + 2dc1 + 4d2c2 + 8d3c5 + · · · ) c1 $= 0, c2, . . . , c6 even, c3 = 0 2
R5.4 SG(1 + 2dc5 + 4d2c6 + · · · ) c1, c3 $= 0, c2, . . . , c6 even 4

Table 2.2: The full set of reductions for Case 2.

2.3.3 Case 3: R = 0, c1 odd

SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= mex
(
SG(−1 + 2dc1 + 4d2c2 + 8d3c3 + · · · ), SG(c1 + 2dc2 + 4d2c3 + · · · )

)

= mex
(
SG(1 + 2d(c1 − 1) + 4d2c2 + 8d3c3 + · · · ), SG(1 + 2dc2 + 4d2c3 + · · · )

)
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Note that instead of subtracting 1 in the standard way, we have borrowed from

c1. This is possible because c1 odd, therefore c1 ≥ 1. Additionally, we have used the

Alternating Property in the second term of the mex definition, to go from constant

term c1 to constant term 1. The reason for both of these changes is to put these terms

into the framework of Case 2; we will use the eight reductions from Case 2 to reduce

both the LHS and the RHS.

In many cases, we find that after we apply one of the eight reductions from Case 2,

one of the sides of the definition is all zero. In fact, we can establish criteria for when

this occurs:

Proposition 2.1. Let c1 be odd, and assume there is at least one other odd coefficient.

Let ci be the first odd coefficient after c1. Iff i is odd then LHS = 0, and iff i is even

then RHS = 0.

Proof. Start by assuming i is odd, and i ≥ 3. We can reduce the LHS, either by

applying Reduction 2 directly (if i = 3), or by successive applications of Reduction

4 and/or Rule 5. At every step, we have shift 2. Eventually, we will get to a place

where either LHS = SG(1 + 2dci−2 + 4d2ci−1 + 8d3ci + · · · ) = 0 by Reduction 2, or

LHS = SG∗(1 + 2dci−2 + 4d2ci−1 + 8d3ci + · · · ) = 0 by Reduction 2.

Suppose on the other than that LHS = 0. We know some reduction from Case 2

applies to the LHS. It cannot be that Reductions 1 or 3 apply, as they reduce LHS to

a sequence with even indices (which can never by zero, by Lemma 2.1). These rule out

the case that c2 or c4 odd. If Reduction 2 applies directly, then it must be that c3 is

odd, which implies that i=3. If instead Reduction 4 or Rule 5 applies, it must be that

c2, c3 and c4 all even, so i ≥ 5.

We will keep applying Reduction 4 and/or Rule 5, until we have the following: either

LHS = SG(1 + 2dck + 4d2ck+1 + 8d3ck+2 + · · · ) or LHS = SG∗(1 + 2dck + 4d2ck+1 +

8d3ck+2 + · · · ), and one the set {ck, ck+1, ck+2} is odd. Note that k itself is even. If

Reductions 1 or 3 apply, then LHS $= 0, therefore ck must be even and ck+1 must be

odd. It follows that i = k + 1, and therefore i is odd.

The same arguments work for RHS, but since the indices in RHS are all shifted
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up by one, the parity of i will be exactly opposite.

With Proposition 2.1 we can prove the following general result:

Lemma 2.8. Let c1 odd, and let ci be the smallest odd coefficient after c1. If such a ci

exists, then there exists a reduction for SG(2dc1 + 4d2c2 + 8d3c3 + · · · ).

Proof. We know, by Proposition 2.1, that exactly one of the terms in the mex is zero.

Assume, without loss of generality, that the RHS = 0. We have that SG(2dc1 +4d2c2+

8d3c3 + · · · ) = mex(LHS, 0), where LHS = SG(1 + 2d(c1 − 1) + 4d2c2 + 8d3c3 + · · · ).

LHS fits into Case 2, and so we will apply some of the reductions from Case 2.

We don’t know which reductions we will apply, but we see that some of the reduc-

tions — namely R4, R5.3 and R5.4 — reduce LHS to SG(r), where r still fits into the

framework of Case 2. We will continue to apply reductions from Case 2 until we have

LHS = SG(r).

Suppose then, that we reduce LHS to SG(r), where r even. Then we have SG(2dc1+

4d2c2 + 8d3c3 + · · · ) = mex(0, SG(r)). If we consider 2dr, for r even, then SG(2dr) =

mex(SG(2dr − 1), SG(r)) = mex(0, SG(r)), and so it must be that SG(2dc1 + 4d2c2 +

8d3c3 + · · · ) = SG(2dr).

We would like this to be a reduction, but we still must show that 2dr < 2dc1+4d2c2+

8d3c3 + · · · . The only potential problem is if we apply Reduction 1 or Reduction 3

to the LHS: these have shift 1, and when we multiply back by 2d the net effect is

shift 0. Note that if we were working with RHS, this would never be a problem —

anything with shift at least 1 will give us a proper reduction. If we have applied either

Reduction 1 or Reduction 3 to LHS we get that r = c1 − 1 + 2dc2 + 4d2c3 + · · · ), and

so 2dr = 2d(c1 − 1) + 4d2c2 + 8d3c3 + · · · . This is strictly less than 2dc1 + 4d2c2 + · · · ,

so we do have a reduction.

Lemma 2.8 doesn’t tell us what the reductions actually are, but it does give a good

algorithm for finding them. We will go through some specific results at the end of this

subsection, as they will be needed for Case 4. The more important question at this

point is how to handle the case when all the coefficients are even.
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When all the coefficients are even, neither of the two terms in the mex go to zero,

so Lemma 2.8 does not apply. Instead, we will reduce each term in the mex as much as

possible, and try to construct a smaller index that by definition will equal the mex of

the two reduced values. For example if we have LHS = SG(r1) and RHS = SG(r2),

we’re looking for a value r3 so that by definition, SG(r3) = mex(SG(r1), SG(r2)). If

we can find such an r3, and in addition r3 < 2dc1 + 4d2c2 + 8d3c3 + · · · , then we have

found a reduction.

Since all the coefficients are even, we must either apply Reduction 4 or Rule 5 to the

LHS and to the RHS. In many way, these two are very similar rules: they both have

shift 2, and in fact they both yield an equation with the same reduced index. The only

difference is that Reduction 4 gives us equality with SG(r), whereas Rule 5 gives us

equality with SG∗(r). Which rule we use is determined by whether certain coefficients

are zero or non-zero.

We could keep reducing the index this way indefinitely on either side, but if we are

looking for a value r3 where by definition SG(r3) = mex(SG(r1), SG(r2)), we want to

stop at a pair of indices r1 and r2 where the net shift of all the reductions on the LHS

(relative to the original value 2dc1 +4d2c2 + · · · ) and the net shift for all the reductions

on the RHS (relative to the original value) have difference exactly one. However, while

the index of the LHS is always larger than the index of the RHS, either r1 or r2 may

be larger.

We will show in Lemmas 2.9 and 2.10 that if we can find a pair of indices r1 and

r2, and either both LHS = SG(r1) and RHS = SG(r2) or both LHS = SG∗(r1) and

RHS = SG∗(r2)), then we can construct an r3 where SG(r3) will be a reduction of

SG(2dc1 + 4d2c2 + · · · ).

Lemma 2.9. Suppose c1 is odd, all the other coefficients are even, and there are reduc-

tions of at least one of LHS and RHS so that the total difference between their shifts

is exactly 1. If the reductions are both to SG values (rather than SG∗ values), then

there is a reduction of SG(2dc1 + 4d2c2 + 8d3c3 + · · · ).

Proof. Since we know we will either apply Reduction 4 or Rule 5 to the LHS and
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the RHS, and we have assumed that the difference between the shifts is exactly one,

we know the forms r1 and r2 will take: for some i, one of the reduced indices will be

1 + 2dci + 4d2ci+1 + · · · , and the other one will be 1 + 2dci+1 + 4d2ci+2 + · · · . Since at

least one of the sides has been reduced, we know that i ≥ 2.

Consider SG(2d(ci + 1) + 4d2ci+1 + · · · ). By definition,

SG(2d(ci + 1) + 4d2ci+1 + · · · )

= mex
(
SG(−1 + 2d(ci + 1) + 4d2ci+1 + · · · ), SG(1 + 2dci+1 + 4d2ci+2 + · · · )

)

= mex
(
SG(1 + 2dci + 4d2ci+1 + · · · ), SG(1 + 2dci+1 + 4d2ci+2 + · · · )

)
.

We use the Alternating Property to move from the second to the third line. Since

SG(2d(ci + 1) + 4d2ci+1 + · · · ) and SG(2dc1 + 4d2c2 + 8d3c3 + · · · ) have the same

definition, they must be equal. Moreover, because i ≥ 2, the shift between them is

non-zero, and this must be a reduction.

Lemma 2.10. Suppose c1 is odd, c2 through c7 all even, and there are reductions of at

least one of LHS and RHS so that the total difference between their shifts is exactly

1. If the reductions are both to SG∗ values (rather than SG values), then there is a

reduction of SG(2dc1 + 4d2c2 + 8d3c3 + · · · ).

Proof. Since we know we will either apply Reduction 4 or Rule 5 to the LHS and

the RHS, and we have assumed that the difference between the shifts is exactly one,

we know the forms r1 and r2 will take: for some i, one of the reduced indices will be

1 + 2dci + 4d2ci+1 + · · · , and the other one will be 1 + 2dci+1 + 4d2ci+2 + · · · . Since

we have arrived at SG∗ values, we have applied Rule 5 at least once to both sides, and

so we know that i ≥ 3.

We are looking for a value r3, so that SG(r3) = mex(SG∗(1 + 2dci + 4d2ci+1 +

· · · ), SG∗(1 + 2dci+1 + 4d2ci+2 + · · · )). We must consider how taking the mex over

SG∗ values affects the value of the mex. In general this is not clear, but we are looking

at a special case, where for any index exactly one of SG∗(1 + 2dci + 4d2ci+1 + · · · )

and SG∗(1 + 2dci+1 + 4d2ci+2 + · · · ) are zero. This follows because we know that

SG(2dc1 + 4d2c2 + 8d3c3 + · · · ) is never zero by Lemma 2.1, which means that LHS
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and RHS are never both non-zero. Moreover, the larger of the two depends on the

smaller, so they can never both be zero. Thus, their non-zero SG values must occur at

on sets of indices that are exactly complementary.

Consider mex
(
SG∗(1 + 2dci + 4d2ci+1 + · · · ), SG∗(1 + 2dci+1 + 4d2ci+2 + · · · )

)
,

and how this relates to SG(2d(ci + 1) + 4d2ci+1 + · · · ), which is the mex of the same

two terms but without the ∗ in each. One of the two terms in the mex will always be

zero, the other will be opposite value of what we would get if we had equality with SG

instead of SG∗. So our result will always be opposite what we would have expected,

and overall we have

SG∗(2d(ci + 1) + 4d2ci+1 + · · · )

= mex
(
SG∗(1 + 2dci + 4d2ci+1 + · · · ), SG∗(1 + 2dci+1 + 4d2ci+2 + · · · )

)

This means we have that SG(2dc1+4d2c2+8d3c3+ · · · ) = SG∗(2d(ci+1)+4d2ci+1+

· · · ), but this is still not a reduction because it is a relation to an SG∗ value rather than

an SG value. To fix this, we will take advantage of the following fact: If SG∗(a) $= 0,

then SG∗(a) = mex(0, SG(a)).

Since SG∗(2d(ci +1)+4d2ci+1 + · · · ) $= 0, by Lemma 2.1, we have that SG∗(2d(ci +

1)+4d2ci+1+ · · · ) = mex(0, SG(2d(ci+1)+4d2ci+1+ · · · )). We can construct, however,

an index whose SG will equal mex(0, SG(2d(ci +1)+4d2ci+1 + · · · )): SG(4d2(ci +1)+

8d3ci+1 + 16d4ci+2 + · · · ).

Therefore, we have the equation SG(2dc1 +4d2c2 +8d3c3 + · · · ) = SG(4d2(ci +1)+

8d3ci+1 + · · · ).

Finally, we must check that this is, in fact, a reduction. We know that i ≥ 3,

however, and from this we see that the shift is greater than zero. Therefore, this is a

reduction.

We can only apply Lemmas 2.9 and 2.10 if we can find good values r1 and r2. Table

2.3 illustrates when this is possible (note that we are assuming c1 odd, and all other

coefficients are even). We see that in most cases, if we can find good values for r1 and

r2, we will be able to find them without doing too many reductions. However, there is

a case where this does not appear to be possible, shown in Table 2.4



43

c1 = 1 c1 $= 1, c2 $= 0 c1 $= 1, c2 = 0
c3 $= 0

c1 $= 1, c2 = 0
c3 = 0, c4 $= 0

Shift: LHS RHS LHS RHS LHS RHS RHS LHS RHS
0
1
2
3
4
5

SG
SG

SG

SG
SG

SG∗

SG∗

SG
SG

SG∗

SG
SG

SG
SG

SG∗

SG
SG∗

SG∗

Table 2.3: The cases where it is possible to apply one of Lemmas 2.9 or 2.10.

c1 $= 1, c2 = 0
c3 = 0, c4 = 0

Shift:
0
1
2
3
4
5

LHS RHS
SG

SG
SG∗

SG
SG∗

SG

Table 2.4: The case where we cannot apply either of Lemmas 2.9 or 2.10.

If c1 $= 1 and c2 = c3 = c4 = 0, then we cannot find a pair that are reduced, within

one order, and both SG values or both SG∗ values, so Lemmas 2.9 and 2.10 don’t help

us. Also note that this pattern could continue on arbitrarily long, if we have a long

stretch of coefficients that are all zero. For this final case, we will use the fact that the

5th and 6th rows of the chart are the same as the 3rd and 4th rows to construct a value

r3.

We apply two reduction to each side, to get the following:

LHS = SG(1 + 2d(c1 − 1) + 4d2c2 + 8d3c3 + 16d4c4 + 32d5c5 + 64d6c6 + · · · )

= SG∗(1 + 2dc3 + 4d2c4 + 8d3c5 + 16d4c6 + · · · ) R5

= SG∗(1 + 2dc5 + 4d2c6 + · · · ) R4
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RHS = SG(1 + 2dc2 + 4d2c3 + 8d3c4 + 16d4c5 + 32d5c6 + · · · )

= SG(1 + 2dc4 + 4d2c5 + 8d3c6 + · · · ) R4

= SG(1 + 2dc6 + · · · ) R4

We would like to find an index r3, that when we apply the reduction rules, we get

the same split into LHS term that is an SG∗ value, and a RHS term that is an SG

value. The first few coefficients of the original index gave us that exact split, so we will

use them again by taking r3 = 2dc1 + 4d2c2 + 8d3c5 + 16d4c6 + · · · .

SG(2dc1 + 4d2c2 + 8d3c5 + 16d4c6 + · · · )

= mex
(
SG(1 + 2d(c1 − 1) + 4d2c2 + 8d3c5 + 16d4c6 + · · · ) ,

SG(1 + 2dc2 + 4d2c5 + 8d3c6 + · · · )
)

= mex
(
SG∗(1 + 2dc5 + 4d2c6 + · · · ), SG(1 + 2dc6 + · · · )

)
R4, R5

So we have that

SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) = SG(2dc1 + 4d2c2 + 8d3c5 + 16d4c6 + · · · ).

This has shift 2, so it is a reduction.

Many of the results for Case 3 have been non-constructive — rather than get into

the specific details as we often had to in Case 2, we have been applying results from

Case 2 to show how one could construct reductions. However in Case 4, we will want

to apply specific results from Case 3. Therefore we end this case with Table 2.3.3, a

complete list of the reductions needed for Case 3. All of these were created using the

techniques described above.

2.3.4 Case 4: R = 0, c1 even

Having done so much work tabulating the results in Cases 2 and 3, Case 4 has pleasantly

few cases.

SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= mex
(
SG(−1 + 2dc1 + 4d2c2 + · · · ), SG(c1 + 2dc2 + 4d2c3 + · · · )

)



45

Reductions of SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) when c1 odd
SG(2d(c1 − 1) + 4d2c2 + · · · ) c2 odd 0
SG(2dc2 + 4d2c3 + 8d3c4 + · · · ) c2 even, c3 odd 1
SG(2d(c1 − 1) + 4d2c2 + · · · ) c2, c3 even, c4 odd 0
SG(2dc2 + 4d2c3 + 8d3c4 + · · · ) c2, c3, c4 even, c5 odd 1
SG(4d2c3 + 8d3c4 + · · · ) c1 $= 1, c2, . . . , c5 even, c6 odd 1
SG(2dc3 + 4d2c4 + · · · ) c1 = 1, c2, . . . , c5 even, c6 odd 2
SG(4d2c3 + 8d3c4 + 16d4c5 + · · · ) c2 $= 0, c3, . . . , c6 even, c7 odd 1
SG(2dc4 + 4d2c5 + 8d3c6 + · · · ) c2 = 0, c3, . . . , c6 even, c7 odd 3

c2, . . . , c7 all even, and:
SG(2d(c2 + 1) + 4d2c3 + · · · ) c1 = 1 1
SG(4d2(c3 + 1) + 8d3c4 + · · · ) c1 $= 1, c2 $= 0 1
SG(2d(c4 + 1) + 4d2c5 + · · · ) c1 $= 1, c2 = 0, c3 $= 0 3
SG(4d2(c5 + 1) + 8d3c6 + · · · ) c1 $= 1, c2 = c3 = 0, c4 $= 0 3
SG(2dc1 + 8d3c5 + 16d4c6 + · · · ) c1 $= 1, c2 = c3 = c4 = 0 2

Table 2.5: Full set of reductions for Case 3.

Assuming that there is some non-zero coefficient in the LHS (i.e. that the value is

at least as big as 2d), we can borrow from one of the terms and we will get by the

Alternating Property and Lemma 2.1 that the LHS is always zero. Therefore, we have

SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) = mex
(
0, SG(c1 + 2dc2 + 4d2c3 + · · · )

)

Because c1 is even, the RHS must either fall into Case 3, or back into Case 4. This

depends on the parity of c2, and whether or not c1 = 0. If c1 = 0, and c2 even, then

RHS is in Case 4, and if c1 = 0 but c2 odd RHS is in Case 3. If c1 $= 0, the Alternating

Principle tells us that RHS will be in the same case as SG(2d(c2 +1)+4d2c3 +8d3c4 +

· · · ). Thus if c1 $= 0 and c2 odd, RHS will be in Case 4, and if c1 $= 0 and c2 even RHS

will be in Case 3. We would like to address all the possibilities when RHS is in Case

3 or 4 in a unified manner, so we will change the notation of the coefficients slightly in

each case.

If RHS is in Case 4, we know that either c1 = 0, and c2 even, or c1 $= 0 and c2 odd. In

this second case, the principle of alternation tells us that RHS = SG(2d(c2+1)+4d2c3+

· · · ). It’s possible that c2 = 2d − 1, and so in order to keep all coefficients strictly less

than 2d we would have to change some of the larger coefficients. To be able to address

these two possibilities consistently, we will rewrite RHS as SG(2dc′2 + 4d2c′3 + · · · ),
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where c′2 is even.

Computing further, we see that

SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · )

= mex
(
0, SG(2dc′2 + 4d2c′3 + · · · )

)

= mex
(
0,mex

(
SG(−1 + 2dc′2 + 4d2c′3 + · · · ), SG(c′2 + 2dc′3 + 4d2c′4 + · · · )

))

= mex
(
0,mex

(
0, SG(c′2 + 2dc′3 + 4d2c′4 + · · · )

))

Since SG(c′2 + 2dc′3 + 4d2c′4 + · · · ) is never zero (by Lemma 2.1), we have that

SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) = SG(c′2 + 2dc′3 + 4d2c′4 + · · · ).

It’s possible that in moving from ci to c′i some of the coefficients have increased. How-

ever, because this has shift 2, we know that it is a reduction.

If instead RHS is in Case 3, we know that either c1 = 0 and c2 odd, or c1 > 0 and

c2 even. In the second case, using the principles of alternation we could write the RHS

as SG(2d(c2 +1)+4d2c3 + · · · ), and there is no danger of carrying since c2 even implies

that c2 < 2d − 1.

From here, we reduce RHS using one of the rules of Case 3. Suppose the reduced

index is r. The SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) = SG(2d · r).

The final to thing to verify is that 2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · > 2dr. If we

are in Case 3 because c1 = 0, the inequality must be true because we haven’t increased

the index of the RHS — it is exactly the original index divided by 2d. Because r is

strictly less than the index of the RHS, 2dr must be strictly less than the original

index, and we have a reduction.

If we are in Case 3 because c1 > 0, c2 odd, however, we used the Alternating

Principle to put the index into the standard form of Case 3, and this involved increasing

the coefficient of 2d. It’s possible that, since the index of the RHS is larger than the

original index divided by 2d, even though r is strictly less than the index of the RHS

2dr could still be greater than the original index.

Note that this can only happen if r comes from a reduction of the RHS with

shift zero. But in fact there are only two reductions with shift zero in Case 3, and



47

they both yield the same value of r: if RHS = SG(2d(c2 + 1) + 4d2c3 + · · · ), then

r = 2dc2 + 4d2c3 + · · · . From this we get that 2dr = 4d2c2 + 8d3c3 + · · · . This is

strictly less than 2dc1 +4d2c2 +8d3c3 +16d4c4 + · · · , since this problem can only occur

if c1 > 0. Therefore, this is a reduction.

Shown in Table 2.6 are all the reductions for Case 4. The first two are from the first

possibility, that the RHS will fall back into Case 4. The other reductions are from the

possibility that the RHS will fall into Case 3, and so that part of the table is similar

to Table 2.3.3.

Reductions of SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) when c1 even:
SG(c′2 + 2dc′3 + 4d2c′4 + · · · ) c1 $= 0, c2 odd 2
SG(c2 + 2dc3 + 4d2c4 + · · · ) c1 = 0, c2 even 2

Reductions of SG(2dc1 + 4d2c2 + 8d3c3 + 16d4c4 + · · · ) when c1 = 0, c′2 odd:
SG(4d2(c′2 − 1) + 8d3c3 + · · · ) c3 odd 0
SG(4d2c3 + 8d3c4 + 16d4c5 + · · · ) c3 even, c4 odd 1
SG(4d2(c′2 − 1) + 8d3c3 + · · · ) c3, c4 even, c5 odd 0
SG(4d2c3 + 8d3c4 + 16d4c5 + · · · ) c3, c4, c5 even, c6 odd 1
SG(8d3c4 + 16d4c5 + · · · ) c′2 $= 1, c3, . . . , c6 even, c7 odd 1
SG(4d2c4 + 8d3c5 + · · · ) c′2 = 1, c3, . . . , c6 even, c7 odd 2
SG(8d3c4 + 16d4c5 + 32d5c6 + · · · ) c3 $= 0, c4, . . . , c7 even, c8 odd 1
SG(4d2c5 + 8d3c6 + 16d4c7 + · · · ) c3 = 0, c4, . . . , c7 even, c8 odd 3

c1 = 0, c′2 odd, c3, . . . , c8 even:
SG(4d2(c3 + 1) + 8d3c4 + · · · ) c2 = 1 1
SG(8d3(c4 + 1) + 16d4c5 + · · · ) c2 $= 1, c3 $= 0 1
SG(4d2(c5 + 1) + 8d3c6 + · · · ) c2 $= 1, c3 = 0, c4 $= 0 3
SG(8d3(c6 + 1) + 16d4c7 + · · · ) c2 $= 1, c3 = c4 = 0, c5 $= 0 3
SG(4d2c′2 + 16d4c6 + 32d5c7 + · · · ) c2 $= 1, c3 = c4 = c5 = 0 2

Table 2.6: Reductions from Case 4.

Since Cases 1 through 4 cover all possible indices n, and w have found reductions

for each case, we have shown that the sequence {SG1,2d(n)}n=1 is 2d-regular. Theorem

2.1, that {SG1,2d(n)}n=1 is 2d-automatic, follows as a corollary of this theorem and

Theorem 2.6.

We will now generalize these results, to prove Theorem 2.2: all prime factors of a

are also factors of 2d, then the sequence {SGa,2d(an)}n=1 is 2d-automatic.
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Proof of Theorem 2.2. We will first show that any recurrence that {SG1,2d(n)}n=1 sat-

isfies will also be satisfied by {SGa,2d(an)}n=1 for large enough values of n. The proofs

for these recurrences only rely on the following: the mex definition of SG1,2d(n), Lemma

2.1, and some general facts about mex. For large enough values of n, we certainly have

that the mex definition of SGa,2d(an) applies. Lemma 2.1 tells us that for (even larger)

values of n certain residue classes of SGa,2d(an) will be zero or non-zero, and that

these residue classes are the same as the zero and non-zero residue classes of SG1,2d(n).

Therefore, for large enough values of n, every recurrence will hold for SGa,2d(an). This

tells us that {SGa,2d(n)}n=1 is in essence eventually 2d-regular.

We know that a k-regular sequence that takes only finitely many values is k-

automatic. While we have not shown that {SGa,2d(n)}n=1 is regular, we have shown

that it is regular after a certain value. Therefore, it follows that it differs in only finitely

many terms from a regular sequence we will call {S(n)}n=1. Note that while {S(n)}n=1

and {SG1,2d(n)}n=1 satisfy the same recurrences, they have different initial conditions

and so we would not expect them to be equal. Hence the need to introduce the separate

sequence {S(n)}n=1. Since {S(n)}n=1 is 2d-regular and takes only finitely many values,

it must be 2d-automatic.

Finally, we appeal to another known result about automatic sequences. Theorem

5.4.1 in [5] states that if a sequence differs from a k-automatic sequence in only finitely

many terms, then it must be k-automatic as well. Since {SGa,2d(n)}n=1 differs from

{S(n)}n=1 in finitely many terms, it follows that {SGa,2d(n)}n=1 is 2d-automatic.
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Chapter 3

Simultaneous Cops and Robbers

3.1 Introduction

The classic game of cops and robbers, introduced independently in [28] and [30], is

a game played on a finite graph. The cop selects a vertex to begin at, and then the

robber selects a vertex. They alternate turns moving along the edges, the goal of the

cop being to land on the same vertex as the robber and the goal of the robber to avoid

being caught be the cop. The graphs that admit a winning strategy for the cop were

characterized in [28], in terms of graph products and retracts.

A natural generalization of the problem is to increase the number of cops. All cops

move simultaneously, but still alternate moves with the robber. In this case, the inter-

esting question becomes the minimum number of cops needed on a given graph. This

is known as the cop number of a graph, introduced in [1], and is related to surprisingly

many structural aspects of the graph. It was shown to be related to forbidden minors

in [8], and to tree-width in [29].

The first person to look specifically at the cops and robbers game on Cayley Graphs

was Peter Frankl, in [16, 17]. A Cayley graph is a graph that represents a group G.

Every element of the group is represented by a vertex, and we put edges between two

vertices represented by group elements x1 and x2 if x1a = x2, for any element a in a

special subset of M ⊂ G. If M is a generating set of G, then the graph will be connected.

We will assume that M = M−1, so that traveling an edge in either direction always

corresponds to multiplication by an element of M .

Frankl makes the following definition, which we will find helpful:

Definition 3.1. A Cayley graph is said to be full if M is closed under conjugation, or
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equivalently, for all m ∈ M , g ∈ G, g−1mg ∈ M .

Frankl’s work in [17] establishes upper bounds on the cop number of full Cayley graphs.

This chapter is an extension of Frankl’s work, establishing exactly how many cops are

needed on a full Cayley graph, with two important distinctions: we consider infinite

Cayley graphs, and simultaneous (rather than alternating) movements of cops and

robbers.

When we move from a finite graph to an infinite graph, the initial placement of the

cop(s) and robber becomes slightly more problematic. In the finite version, the cops

place themselves on the graph first, then the robber choses a position, and then play

begins with the cops moving. On an infinite graph, this arrangement gives the robber

too much freedom.

Consider the case of the infinite 2-dimensional integer lattice, which is the Cayley

graph of the free abelian group on two generators a and b, with M = {a, b, a−1, b−1}.

Suppose we have a finite number of cops, placed so that the largest number of bs in their

position is y. The robber can simply chose to start at a position where the umber of bs

is strictly more than y, and always move from position p to position pb. Since the cops

and the robber move at the same speed, the robber can never be caught. Therefore,

with this initial method of placement, no finite number of cops will ever be able to

catch the robber.

To get around this difficulty we will instead place the robber first, and then let the

cops choose their positions. We will specify a value N , however, which is the minimum

distance that the cops are allowed to be from the robber. It’s clear in the case of the

two dimensional integer lattice that if at any point the cops are able to form a solid

rectangle around the robber, the robber will be caught. But to do this requires roughly

2N cops. We are interested in showing that, if the Cayley graph is full, a finite number

of cops have a strategy for catching the robber, independent of the value N that dictates

how far back they must begin.

Under the above conditions, the main result of the chapter is as follows:

Theorem 3.1. Let G be the a full Cayley graph with set M (including inverses), |M | =
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m. For all N there exist placements of m cops starting at least at distance N from the

robber, such that the cops can capture the robber.

3.2 Toy Example

We will start with a concrete example, to illustrate the main idea used in the winning

strategy. Some of the concepts we will use below, particularly the idea of assigning

directions to edges, do not have analogs for arbitrary graphs. How we expand these

ideas in the general result for Cayley Graphs is described in Section 3.3.

Imagine the game where one robber stands at a point on the two-dimensional integer

lattice with some number of cops at distance at least n away (for some fixed n > 0).

The cops and the robber can each move one step to any of the 8 nearest points. We

will think of each of these moves as corresponding to one of the 8 compass directions:

N, S, E, W, and NW, NE, SW, SE. These are shown on the integer lattice in Figure

3.1.

NW N NE

E

SESSW

W

Figure 3.1: The 8 possible movements in the toy example.

Note that this is the Cayley graph of the free abelian group on two generators a

and b, with M = {a, b, a−1, b−1, ab, a−1b, ab−1, a−1b−1}. Since the group is abelian M

is trivially closed under conjugation, and this fits the conditions of the theorem. The

theorem states that since |M | = 8, there should be ways of placing the 8 cops at any

distance back, so that they can still catch the robber. The goal in this section is not

to prove this particular case of the theorem, but to build up intuition for why the

argument makes sense.
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First we need to consider how the cops can capture the robber in this game. Without

knowledge of where the robber will move, their only option is to control all the spaces

at distance one from where the robber was at the end of the previous round. So the

essential elements of a guaranteed capture are as follows: if the robber is at a position

at the end of round k, the cops must occupy all the adjacent vertices at the end of

round k + 1. It follows that at the end of round k + 1 the robber must be at one of

the vertices occupied by a cop, and therefore captured. It’s clear from this that we will

need at least 8 (or in general |M |) cops, so the upper bound of the theorem in fact

matches the trivial lower bound.

End of round k:

R

End of round k + 1:

C

C

CC

CC

CC

Figure 3.2: Necessary conditions of a capture.

We cannot control or predict the moves of the robber, but we do know that each

move will belong to a particular direction. We will try to break down the whole game

into smaller, easier pieces, by making one cop responsible for each potential direction

the robber could move in. First we will show what that simpler game will look like, and

then we will show how we can put together all those smaller games to have a complete

strategy.

Consider a game played between one cop and a predictably moving target. In round

1 the cop takes one step (in a direction of his choosing). Then play proceeds in rounds

as follows: the target takes a step in one (fixed) direction, and then the cop takes a

step (in any direction of his choosing). The cop wins if he lands on the same point as

the target at the end of a round. It’s clear that whether or not the cop has a winning
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strategy depends only on the relative position between him and the target. Moreover,

we can say exactly which points on the lattice will be winners: all the points exactly

one step from the initial location of the target, all the points exactly two steps from

where the target is after one step, all the points exactly three steps from where the

target is after two steps, etc. Since the target’s moves are set in advance (the target

only moves in one, predetermined direction), this set of points is well-defined. We call

this game the sub-game for a particular direction.

We will think of the whole game as 8 copies of the moving target sub-game, each

with a different cop and a different fixed direction. The target for each game, however,

will not be the robber himself, but the point that is one step away from the robber in

that particular direction. For example, there will be one moving target game where

the target always moves north, and the cop will be placed so that he has a winning

strategy to land on the spot that is one step north of the robber. This shift between

the target being the robber to a neighboring square comes directly from our sense of

what a capture looks like.

In the moving target game we also had the cop and the robber alternate turns. To

put this into the context of simultaneous movement, we will have the cop’s response

and the robber’s next move happen simultaneously. This means that in every round

after the first, the cop will be moving in response to the robber’s move in the previous

round. It also means that when we refer to the relative position between the cop and

the robber, we are really interested in measuring this between the cop’s position at the

end of round k and the robber’s position at the beginning of round k.

3.2.1 Sample Game Play

To explain more fully how the sub-games fit together to form a winning strategy for the

cops, we will work through an example game. For our initial conditions, we require that

every cop is placed so that he has a winning strategy in the sub-game for his direction.

Note that this doesn’t put any limits on how far back the cops can be from the robber.

Below is an example of such an initial placement of cops in the case n = 4, with a

winning strategy for each of their games drawn out. Two of the arrows point toward
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the target (which is not the robber himself), corresponding to moves that the cops will

make. One points away from the target, corresponding to the one move that the robber

makes in each game.

R

C

C C

C

C

CC

C

T

T

T T T

T

TT

Figure 3.3: Initial positions, and the initial strategies of the cops.

Throughout the game, play for each cop proceeds as follows. In round 1, every cop

takes the first step in the winning strategy of his game. Simultaneously the robber

moves, but of course the cops don’t know where the robber has moved until the end of

the round. For all the subsequent rounds, the cops will be basing their moves on the

move that the robber made in the previous round. If in the previous round the robber

moved in the direction that their target moves in their game, they will take the next

step in their winning strategy. If in the previous round the robber moved in a different

direction, they will copy the move of the robber, and thus preserve the relative position

between their target at the beginning of the round and their position at the end of the

round.

Figure 3.4 is an example of what a sample game would look like, from the initial

placement in Figure 3.3.The first moves of each of the players are shown in bold arrows,

while the proposed moves of the cops are shown in dotted arrows.
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R

C

C C

C

C

CC

C

T

T

T T T

T

TT

Figure 3.4: Round 1

In the first round, all the cops take the first step in their respective winning strate-

gies. They have no information about where the robber will move, so their first step

must be predetermined or random. The robber moves arbitrarily, in this case one step

northeast. All the targets, which are relative to the robber, therefore also move one step

northeast. Since the target of the northeastern cop has moved northeast, his sub-game

has now been advanced, while the rest of the sub-games have not.

In round 2, the northeastern cop is able to take the final step of his winning strategy

and win his sub-game. Note, however, that this doesn’t correspond to immediately

capturing the robber. All other cops have not advanced in their games, and so instead

move to maintain their standing in their own sub-games. Their targets have moved,

along with the robber, and so their moves are to return to the same relative position

to their targets as they were in the previous round. This will let them preserve their

winning strategies for future rounds.

The robber moves arbitrarily and simultaneously, in this case one step west. In the

next round, the western cop will be able to advance (and in fact win) his sub-game.

For this game, it’s not clear that simply preserving the relative position and the
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R

C C C

C

C

CC

C T

T

T T T

T

TT

Figure 3.5: Round 2

existing winning strategies is the fastest way of winning. For example, the eastern cop

can also win his game at this round, and it would seem obvious that it would be better

to capitalize on this advantage now. In fact it will not hurt to take these opportunities

as they arise, but we cannot build a more general argument based on this. If you

consider the game on the integer lattice where no diagonal moves are allowed (for the

robber or the cops), in some cases the only way to ensure that the cops will recover

any winning strategy at all is to move so as to restore the relative position between

him and his target. Therefore, we do not build our general decomposition around these

potential improvements.

In this third and final round, the western cop is able to take the final step of his

winning strategy and win his game. The robber moves arbitrarily, in this case one step

in the northeast direction, where he is caught by the northeastern cop. In fact, once any

cop has won his sub-game, any further moves that the robber makes in that direction

will result in his capture.

It’s clear that this will be a winning strategy for the cops. Each cop begins with

a finite length strategy to win his sub-game, and every move that the robber makes
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Figure 3.6: Round 3

R

C

C C

C

C

CC

C

Figure 3.7: All movements of cops and robber throughout the sample game.
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advances the games of one of the cops. If the robber evades capture for long enough

then eventually, all cops will have won their sub-games and capture is guaranteed. For

general graphs, if we could consistently break down the steps of the robber and the

policemen into directions, we might be able find a wining strategy using these same

ideas. To formally examine winning strategies, we will move into the context of Cayley

Graphs, where the idea of direction can be made more precise.

3.3 Cayley Graphs

3.3.1 Free Abelian Groups

Let G be the free abelian group on k elements, and let C be a Cayley graph of G with

generating set M of size m (that includes inverses). We will show the following special

case of Theorem 3.1:

Theorem 3.2. For any natural number N , there is a placement of m cops on C (as

above) where each cop is at distance at least N from the robber, from which the cops

have a winning strategy to catch the robber.

Note that since G is abelian, the requirement of Theorem 3.1 that the Cayley graph

be full (i.e. that the generating set be closed under conjugation) is trivially satisfied.

We will develop that further when we examine non-abelian groups.

Proof. Fix an origin somewhere, so that the position of a cop after round k corresponds

to an element in the group pk, and the robber’s position after round k corresponds to

rk. The relative position between any two elements a and b is the following element of

the group: a−1b. We are most interested in measuring r−1
k pk+1, the relative position

between the robber’s position at the end of round k, and the cop’s position at the end

of round k + 1.

A winning word with respect to a ∈ M is a string of elements of M where strictly

more than half of the characters are a, and the total length of the string is odd (the

parity issue is discussed more in depth in Section 3.4). We say that a cop is in a winning

position relative to a if r−1
k pk+1 can be written as a winning word with respect to a.
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There may be multiple winning words that describe a winning relative position, but

based on the initial placement of the cops we will fix one particular winning word that

will correspond to the winning strategy of the cop. Note that this definition of winning

position does correspond to the sample game in Section 3.2, where the path is required

to be even length but the target is exactly one step in direction a from the robber.

We will show the following two lemmas:

Lemma 3.1. A cop in winning position with respect to x ∈ M at the end of round k

can maintain his winning position at the end of round k + 1, regardless of the move the

robber makes.

Lemma 3.2. If the robber takes a step in the direction x ∈ M in round k, a cop in

winning position with respect to x at the end of round k can move in round k + 1 to

decrease by two the length of the winning word describing the winning position between

him and the robber, while still maintaining a winning position with respect to x.

Once we have these lemmas, our winning strategy for the cops will be as follows.

We will select the initial placements of the cops so that after the first round there will

be one cop in a winning position relative to each element of the generating set (and

relative to the original position of the robber). It’s clear that winning positions exist,

regardless of how far back the cops must begin: one example of such a winning word

with respect to a generator a is aN if N odd and aN+1 if N even. These will correspond

to winning positions at distance at least N from the robber. However, there are many

possible winning positions and winning words.

For each cop’s initial winning position we will fix a corresponding winning word w.

By Lemmas 3.1 and 3.2, throughout the game, each cop will either maintain relative

position r−1
k pk+1 = w (and hence winning position) exactly, or move so that his new

relative position is a subword of w that is still a winning word itself. Because subsequent

positions of the cop will correspond to subwords of the fixed initial winning word,

this gives us a way to measure the progress of each cop towards catching the robber.

However, the subword of w may not be the minimal length winning word for any

particular winning position.
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Since the robber must move in some direction in every round, in every round one of

the cops will be able to decrease the length of his winning word by two. Suppose that

one cop has reduced the length of his winning word to one. If the robber ever takes a

step in that direction again, he will be captured. This is because for any generator a,

there is a single winning word of length 1 with respect to a: the word a. If the robber

was at position r at the end of round k, then at the end of round k + 1 the cop will

have moved to maintain his winning word of length 1, so he will be at position ra. If

the robber has also taken step a, he will be capture at position ra.

Since every cop begins the game with a finite length winning word, and at every

round (after the first one) some cop’s winning word reduces by two, the robber cannot

escape capture indefinitely. In fact, half the sum of the lengths of the winning words

of all the cops is a bound on the number of rounds that the robber can go before being

captured.

Proof of Lemma 3.1. If the robber takes step x, the cop can always counter by tak-

ing step x as well. Their relative position not only remains a winning position, by

commutativity it actually stays identical:

r−1
k pk+1 = (rk−1x)−1(pkx) =x−1r−1

k−1pkx = r−1
k−1pk.

Proof of Lemma 3.2. If the robber takes step x, and the cop was in a winning position

with respect to step x, then the cop has the ability to shorten the length of winning

word that describes their relative position (while maintaining it as a win) by exactly

two.

Suppose r−1
k−1pk = xnk1k2 · · · kn−1. Then

r−1
k pk+1 = (rk−1x)−1(pky) = x−1xnk1k2 · · · kn−1y = xn−1k1k2 · · · kn−1y

The cop choses his step y to be k−1
i , so that there are still at least n − 1 elements x

in the relative position. Since the number of characters is still odd, and strictly more

than half of the characters are still x, this is still a winning word.

Note that in the previous section, the grid we were looking at was Cayley graph of

the free abelian group on two generators a and b, with generating set {a, b, ab, ab−1}.
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As a corollary to Theorem 3.2, we have that 8 cops suffice. The result also holds for

the integer lattice in arbitrary dimensions.

3.3.2 Non-Abelian Groups

For a non-abelian group, we need a slightly more stringent definition of what constitutes

a winning word. We will say that a word on the elements of the generating set is a

winning word relative to an element a ∈ M if it has length length 2k + 1, and the first

k + 1 elements are a. As before, we are interested in r−1
k pk+1, the relative position

between the cop at element p and the robber at element r to be r−1p. The cop will be

in a winning position if r−1
k pk+1 can be described with a winning word.

Our goal is to show the same two general properties: regardless of the move that the

robber makes, all cops can maintain their winning positions and one cop can improve

his winning position. As Lemma 3.1 is worded currently, however it’s not clear that

we need commutativity. In general, all we need is to do is move to another winning

position with a winning word of the same length, but it doesn’t necessarily have to be

an identical winning position. However there is only one winning position with respect

to a of length 1, corresponding to the word a, so in that case we do require that the

new relative position is identical to the old one.

Suppose the relative position r−1
k−1pk = a. Suppose that the robber moves a step x

in round k, bringing him to position rx. To maintain the relative position a, the cop

will take some step y in round k + 1, bringing him to position ray. Their new relative

position will be (rx)−1ray = x−1r−1ray = x−1ay, and in order to show that the cop

can maintain a winning position of length 1, we need to show that there is a y in the

generating set, such that x−1ay = a for any x, a ∈ M .

Essentially, this is the same as showing that a−1xa ∈ M , for all x, a ∈ M . If we

assume this, then in fact we get the following for free: g−1xg ∈ M , for all g ∈ G,

x ∈ M . This is exactly the condition that the Cayley graph be full. If we assume that

the Cayley graph is full, we can prove the following non-abelian analogs of Lemma 3.1

and Lemma 3.2.
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Lemma 3.3. In a full Cayley graph, regardless of the move the robber makes a cop can

always maintain his relative position.

Proof. We will show that, regardless of the move the robber makes, the cop is able to

maintain the relative position r−1
k−1pk after round k+1. Assume the robber makes a move

x, and the cop makes a move y. Their new relative position is r−1
k pk+1 = x−1r−1

k−1pky.

We want to show that the cop can chose a direction y, so that x−1r−1
k−1pky = r−1

k−1pk.

This is equivalent to showing that (x−1r−1
k−1pk)−1r−1

k−1pk = y ∈ M .

(x−1r−1
k−1pk)−1r−1

k−1pk = p−1
k rk−1xrk−1pk

If we let q = p−1
k rk−1, then q−1 = rk−1pk, and y = qxq−1. Because of the assumption

that the Cayley graph is full, we know that qxq−1 ∈ M . Therefore, an appropriate

move will always be available to the cop.

Lemma 3.4. In a full Cayley graph, a cop can improve a winning relative position with

respect to element a, if the robber takes step a.

Proof. Suppose r−1
k−1pk = anb1b2 · · · bn−1. If the robber takes a step a in round k, the

cop will respond with a move b−1
n−1. Their new relative position is given by the following:

r−1
k pk+1 = (rk−1a)−1pkb

−1
n−1 = a−1(r−1

k−1pk)b−1
n−1

= a−1anb1b2 · · · bn−1b
−1
n−1 = an−1b1b2 · · · bn−2

Their new relative position becomes shorter by 2. Since the length of the winning

word is still odd, and n − 1 is still strictly greater than the length of their relative

position, the cop is still in a winning position.

We can now prove the main theorem of this chapter:

Theorem 3.1. Let G be a full Cayley graph with set M (including the inverses), |M | =

m. For all N there are placements of m cops starting at least at distance N from the

robber, such that the cops can capture the robber.
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Proof of Theorem 3.1. Lemmas 3.3 and 3.4 show that if we can find initial placements

for all the cops so that at the end of round 1 there is a cop in a winning position (with a

fixed winning word) with respect to each element of M , and the cops are all at distance

at least N from the robber, then at every round one cop will reduce the length of his

winning word by exactly two, and all other cops will maintain their winning words

exactly. Eventually, this leads to capture of the robber. Therefore, it only remains to

show that for any element of M , there exist winning positions distance at least N from

the robber.

If the generator a has infinite order, we can find at least one winning position relative

to a: aN if N odd, and aN+1 if N even. This must be at distance at least N from the

robber, as no relations can reduce this, and certainly has odd parity and satisfies that

at least the first half of the elements in the word are a.

Suppose we have a generator b of finite order n. For large enough values of N , it

appears that there can be no winning positions at distance N from the robber, because

the reduced form of the word describing their relative positions cannot have more than

n− 1 copies of b. In this case, however, we can take any position of distance at least N

from the robber, and pad the the relative position with copies of bn as an initial prefix

until it becomes a winning position. This isn’t necessarily the most efficient solution,

but it is the easiest way to fit this case directly into the decomposition framework

described above.

Since there are winning positions for all elements of M at distance at least N from

the robber for all values of N , there are initial placements of m cops that will catch the

robber regardless of how far back the cops must begin.

3.4 Parity Concerns

There is an underlying question of parity, that is somewhat bothersome. If the parity

of a winning word is not correct, it can happen that in one round a cop will move from

vertex p to vertex q, and in the same round the robber will move from q to p. Because

they haven’t ever landed on the same vertex, this doesn’t officially count as a capture
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under the original rules.

One way to overcome the parity issue is to give the cops the freedom not to move

in a given round. With this extension, if the cop and the robber are at distance exactly

1, the cop will chose not to move. This will either end the round in a capture, or have

the effect of switching the parity of their relative position and getting the cop back to

a winning position.

If we keep the game symmetric, and also grant the freedom not to move to the

robber, this causes an interesting change on the number of cops needed to capture him.

In this scenario, play goes as described above on the rounds where the robber moves.

If however, the robber chooses not to move in a given round, all the cops who have

not yet won their games will take the next step in their winning strategies. This will

eventually result in either the capture of the robber (by making too many moves of one

type), or it will result with all the cops having won their games and occupying all of the

vertices at distance one from the robber. If the robber moves in any direction, he will

be caught. However, if the robber choses not to move, the game ends with a stalemate:

the robber is surrounded and subdued, but not captured. Under these rules, an extra

cop is needed to end the stalemate.

Another way to overcome the parity issue is to extend the notion of capture beyond

simply landing on a vertex to either having a cop land on the same vertex or “bump

into” the robber. If the robber and a cop are on adjacent vertices at the end of one

round, and during the next round the robber moves to the vertex the cop was occupying

and the cop moves to the vertex the robber was occupying, we consider this bumping

into each other, and can count this as a capture. This eliminates the need for an extra

cop to end a stalemate game: if all cops are at distance one from the robber, on the next

round they all move to the robbers current position. Either the robber remains there

and is captured the traditional way, or the robber attempts to move but (necessarily)

bumps into one of the cops and so is captured.

Each of these ways of overcoming the parity concern have their advantages and dis-

advantages, but they are all compatible with the game decomposition method described

here. We will define an even length winning word relative to an element a ∈ M to be
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a word in M of length 2k, where the first k + 1 elements are a. A winning position

will still be an element that can be written as a winning word. There is also still no

restriction on the length of a winning position, so given any distance N behind which

the cops must begin we can always find a placement of the cops from which they will

be able to capture the robber.
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Chapter 4

Colorful Path Coloring

4.1 Introduction

Given a proper coloring of a graph with k colors, we define a colorful path to be a path

with k vertices where each vertex has been assigned a different color. A proper coloring

of a graph where every vertex is at the head of a colorful path is a colorful path coloring

of the graph. The following was conjectured in [2], and remains open:

Conjecture 4.1. Every connected graph G, except for C7, has a colorful path coloring

with χ(G) colors.

Finding a colorful path coloring of a graph is somewhat similar in feel to the well

known problem of finding an equitable coloring : a proper coloring where every pair of

color classes differ in size by at most one vertex. Both conditions are attempts to find

colorings where the colors are evenly distributed. In an equitable coloring the colors

are used evenly over the whole graph, however any particular vertex may be at a very

large distance from some of the color classes. A colorful path coloring may not be an

equitable coloring (in general it will not be), but every vertex will be at distance at

most χ(G) from each of the color classes.

If G is bipartite then χ(G) = 2, and every proper coloring is a colorful path coloring.

For the special case of graphs where the clique number ω(G) equals χ(G), Conjecture

4.1 was proven in [3]. In [4], Conjecture 4.1 was expanded to include graphs where the

circular chromatic number χc(G) equals χ(G). The main result of this chapter is that

Conjecture 4.1 is true in the special case of half–generalized cycle permutation graphs

(defined below).

Definition 4.1. A cycle permutation graph is a graph on 2n vertices made up of two
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distinct copies of Cn, and a perfect matching connecting vertices in one copy of Cn to

vertices in the other copy.

Definition 4.2. We define a half–generalized cycle permutation graph to be a graph on

2n vertices made of an arbitrary 2-factor (collection of cycles) on n vertices, a distinct

copy of Cn, and a perfect matching connecting the two sets of n vertices.

We will now briefly discus some of the properties of the circular chromatic number,

with the intent of showing that the main result of this chapter is not superseded by the

results of [4]. The circular chromatic number χc(G) of a graph G is defined as follows:

let F : V (G) → C be an embedding of the vertices of G onto a circle with circumference

1, and let d(x, y) be the Euclidean distance around the circle between two points on

the circle (we will always take the shorter path, and so we assume that d(x, y) ≤ 1
2).

χc(G) = inf
F

max
{x,y}∈E(G)

(
1

d(F (x), F (y))

)
.

We always have that χc(G) ≤ χ(G), and a graph for which they are not equal is C5:

χ(C5) = 3, but χc(C5) ≤ 2.5. We see this by considering the following embedding:

v1

v2

v3

v4

v5

F (v1)

F (v4)

F (v2)

F (v5)

F (v3)

In this case, the minimum distance between the endpoints of an edge is 2
5 . Therefore

χc(C5) ≤ 5
2 = 2.5. In fact this is the embedding that achieves the smallest value, and

we have χc(C5) = 2.5. The set of graphs where χc(G) = χ(G) includes all graphs where

χ(G) = ω(G), although a full characterization of which graphs satisfy χc(G) = χ(G)

remains a difficult open problem. See [32] for a more complete treatment of the circular

chromatic number.

While some half–generalized cycle permutation graphs satisfy χc(G) = χ(G), there

are infinite families that do not. An example of one such graph is shown in Figure 4.1.
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A
B

C

DE

F
G

H

IJ

A, J

D, H

B, F

E, IC, G

Figure 4.1: A cycle permutation graph Γ, and the embedding into a circle with circum-
ference 1 that shows χc(Γ) ≤ 2.5 < 3 = χ(Γ).

4.2 Cycle Permutation graphs, 0 mod 3

The general methods in this chapter are constructive. Since they can be somewhat

complicated, however, we start with what happens to be the easiest possible example:

a cycle permutation graph on 2n vertices, where n ≡ 0 mod 3. For this case we will

construct the first half of the coloring as follows: Starting at an arbitrary vertex on one

of the cycles (we will consider this the outer cycle), color the first vertex with color 1,

the second with color 2, the third with color 3, and the fourth with color 1, etc., around

the entire cycle of length n. Since 3 divides n, we will use each color exactly n
3 times

on the outer cycle.

Note that every vertex on the outer cycle is at the head of a colorful path on the

outer cycle. Furthermore, in every extension of this partial coloring to a proper coloring

of G, every vertex on the inner cycle will be at the head of a colorful path as well. This

path will start on the inner cycle with color a, and then step in to the outer cycle onto

a vertex of color b (necessarily a $= b, since this is a proper coloring of G). The two

vertices available to finish the path on the outer cycle are guaranteed to have distinct

colors, and (since it’s a proper coloring) to not be the same as color b. Therefore, no

matter what color a was we can find a third vertex of color c and complete the path.

All that remains to be shown is that there exists a way to extend this coloring to a

coloring of all of G. For the inner cycle, we know that at least two colors are available

at each vertex. Furthermore, while we have no information about how the inner cycle

is paired with the outer cycle, we do know that vertices of each color were used on the

outer cycle. This gives us that there are vertices on the inner cycle with distinct lists of



69

colors available. From the following simple argument, which is a standard part of the

folklore of list coloring, we will show that we can extend the coloring.

Theorem 4.1. Suppose there is an assignment of lists of size 2 to a cycle Cn, such

that not all the lists are identical. Then it is possible to properly color the vertices of

Cn, so that each vertex receives a color from its list.

Proof. Consider the list of colors available at each vertex. Since they are not all iden-

tical, there is some edge where the lists at the endpoints are not identical, say {a, b} at

one endpoint, and {b, c} at the other endpoint. Color the first endpoint with color a,

and then color greedily around the cycle, away from the edge and the second endpoint.

At every step there were initially two colors available in the list and at most one has

been used already. This is even true at the final vertex colored, by the special choice for

the color of the first vertex. Therefore, we can complete the coloring of the cycle.

The idea of first coloring one half of the graph, so that many of the vertices are

already guaranteed to be at the head of a colorful path, and then extending the coloring

to the other half, will generalize to arbitrary cycle permutation graphs. In fact, it also

can be generalized to graphs where an arbitrary 2-factor is connected to a large cycle

with a perfect matching. In both cases, however, the coloring of the first half leaves

a small number of vertices left over, that are not guaranteed to be at the head of a

colorful path. In the remaining sections, we examine how it is possible to both extend

the coloring to a valid coloring of the whole graph, and at the same time take care of

any leftover vertices.

4.3 More General Graphs

Motivated by the discussion of cycle permutation graphs where n ≡ 0 mod 3, we will

now work with half–generalized cycle permutation graphs, as defined in Definition 4.2.

We see that if the 2-factor in a half-generalized cycle permutation graph happens to be

a single Cn, then this will be a cycle permutation graph.

The general outline of the construction of the colorful path coloring is as follows.
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We start by coloring the 2-factor, in such a way that most (although not all) of the

vertices in the cycle and the 2-factor will be at the head of a colorful path. We will

then extend the coloring to the cycle, in such a way that satisfies any vertices not yet

at the head of a colorful path. Extending the coloring is always possible by Theorem

4.1, but showing that we can also satisfy the remaining vertices will require an in depth

examination of the types of problems that occur. A more detailed plan for how we can

do satisfy the remaining vertices is given at the end of this section.

The first step is to color the 2-factor. Each small cycle in the 2-factor will be colored

based on its length mod 3. If the length of the cycle is a multiple of 3, we color the

vertices 1, 2, 3, etc., and end with color 3. Every vertex in this cycle is at the head of a

colorful path. Moreover, every vertex connected to this in the large cycle will already

be at the head of a colorful path in any valid large coloring. This is the same as in the

case of a cycle permutation graph with length n ≡ 0 mod 3, above.

If the length of the cycle is equivalent to 1 mod 3, we begin by coloring the vertices

1, 2, 3 etc., but we end with a single vertex left over. We give this vertex color 2.

Note that this final vertex that is given color 2 is not at the head of a colorful path.

In addition, the two vertices on the large cycle that are matched to the neighbors of

the final vertex colored on the smaller cycle are not guaranteed to be at the head of a

colorful path.

If the length of the cycle is equivalent to 2 mod 3, we color groups of three vertices

with colors 1, 2, and 3, and we are left with 2 uncolored vertices. These receive colors

1 and 2. Every vertex in the cycle is at the head of a colorful path, however the two

vertices on the large cycle that are matched with the final two vertices colored are not

guaranteed to be at the head of a colorful path.

Figure 4.2 shows how small cycles with lengths 12, 10 and 8 respectively, would be

colored. Vertices represented with squares instead of circles are not guaranteed to be

at the head of a colorful path after the colors of the 2-factor have been assigned.

The goal is to extend the coloring to include the cycle, in such a way that every

vertex will be at the head of a colorful path. We know, by Theorem 4.1, that there

are many possible extensions to a proper coloring. Each vertex not yet at the head of
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Figure 4.2: Coloring of a 2-factor with cycles of length 12, 10, and 8, respectively.

a colorful path places a restriction on which extension we choose: the extension must

include a colorful path for that vertex. To aid in keeping track of when we can do this,

we will formally define two types of restrictions, that will both formally occur on the

2-factor (regardless of the location of the vertex is that is not yet guaranteed to be at

the head of a colorful path).

Definition 4.3. A vertex v in the 2-factor that is not already at the head of a colorful

path we will call an outer restriction.

Note that outer restrictions occur exactly when the vertices at distance 2 from v in

the 2-factor have the same color as v. We have chosen the coloring of the 2-factor so

that this only occurs when one of the cycles in the 2-factor has length 1 mod 3, and

that when this happens the vertex must have color 2. To emphasize that when we have

an outer restriction we know what color it must have, we will often refer to them as

2-outer restrictions.

Definition 4.4. A vertex w in the 2-factor whose corresponding vertex in the cycle is

not guaranteed to be at the head of a colorful path we will call an inner restriction.

Note that an inner restriction exists at a vertex w in the 2-factor, ever though it is

the neighbor of w in the cycle that is not guaranteed to be at the head of a colorful

path. An inner restriction happens exactly when the two neighbors of w in the 2-factor

have the same color. This can occur for vertices w of any color, and to distinguish we

will refer to them as 1-inner, 2-inner, and 3-inner restrictions as appropriate. Although
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we don’t have special notation for it, we will often also be interested in the color of the

neighbors of w in the 2-factor that cause the restriction.

We will often make distinctions between the neighbor(s) of a vertex that are in the

2-factor, and the neighbor(s) of a vertex that are on the cycle. To help distinguish, we

will define the following function π:

Definition 4.5. If v is a vertex in the 2-factor and x is the neighbor of v in the cycle,

then we define π(v) = x, and π−1(x) = v.

The choice of the symbol π is consistent with the idea that if the 2-factor is a single

cycle then, the graph is a representation of a permutation. Using this language, v is an

outer restriction if v is not guaranteed to be at the head of a colorful path, and v is an

inner restriction if π(v) is not guaranteed to be at the head of a colorful path. Note

that, given how we have colored the 2-factor, no vertex v is both an outer restriction

and an inner restriction.

Our method of extending the coloring will be similar to that of Theorem 4.1: we

will sweep around the large cycle, coloring as we go. Based on that direction we may

refer to vertices in the cycle as being a certain distance ‘downstream’ (i.e. in the same

direction that we will sweep around) or ‘upstream’ (i.e. in the opposite direction that

we will sweep around) of each other. In diagrams the direction of the coloring will

usually be marked, but will always be from left to right.

Since the extension of the coloring is affected by the restrictions (which occur on

the 2-factor) as well as the order of the vertices on the cycle, we are very interested in

the order that the cycle imposes on the vertices of the 2-factor. In particular, we define

the following special relationships between vertices of the 2-factor:

Definition 4.6. Let x and y be two vertices in the 2-factor.

• x and y are at imposed order distance k (we will write io-distance k) if π(x) and

π(y) are at distance k in the cycle.

• x and y are imposed order neighbors (we will write io-neighbors) if π(x) and π(y)

are neighbors in the cycle.
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If further specification is necessary, we may refer to x as an upstream or downstream

io-neighbor of v, depending on whether π(x) is upstream or downstream of π(v).

We can now further elaborate on the algorithm to construct a colorful path coloring.

We have colored the 2-factor so that there are only 4 types of restrictions. The next

step in the algorithm is to fix a direction along the cycle to be downstream. In Section

4.3.1 we will develop sufficient conditions to satisfy any individual restriction, and in

Section 4.3.2 we will develop sufficient conditions to mutually satisfy any group of

restrictions. Finally, we will show in Section 4.3.3 that there exist places to start the

coloring. Putting these together, we will be able to argue as in Theorem 4.1: we will be

able to extend the coloring by sweeping around the cycle, and satisfy every restriction

in the process.

4.3.1 Properties of Restrictions

The goal of this section is to show that any restriction v can be satisfied in an extension

of the coloring analogous to Theorem 4.1, as long as there are enough vertices down-

stream of π(v) that have not yet been colored. In this section, we will show sufficient

conditions to meet each restriction individually. In Section 4.3.2, we will investigate

combinations of restrictions, where the conditions to meet each restriction individually

are not met.

For consistency, in all of the diagrams we will represent a vertex with no restrictions

as a rectangular node, a 2-outer restriction with a circular node, and an inner restriction

with a diamond shaped node. We will also usually represent the vertices in the cycle

along the bottom, with the coloring sweeping from left to right. Above, and separated

with a dashed line, will be the vertices of the 2-factor, in the order that they appear

relative to the cycle.

We first note that under certain circumstances, inner and outer restrictions will be

trivially satisfied by any valid coloring.

Neighboring Colors Lemma. If we have a restriction at v, it will be trivially satisfied

unless the following is about the colors of the io-neighbors of v:
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• If v is a 1-inner restriction, its io-neighbors must both have color 2.

• If v is a 2-inner restriction, its io-neighbors must both have color 1.

• If v is a 3-inner restriction, its io-neighbors must both have color 2.

• If v is a 2-outer restriction, its io-neighbors must both have colors in the set {1, 3}.

Proof. We can prove the first three points from the following general argument about

inner restrictions.

c1 v

c3

x

c2 c2

c1 v {c1, c3} w

c2

x
{c1, c3}

y

c2 c2

We first note that if x = π(v) is assigned the color c3 we are already done: any path

beginning at x and then moving to the outer cycle will have colors c3, c1, c2.

Suppose then that x was assigned the color c2. If w has color c3 the only color

available at y = π(w) is c1, and if w has color c1 then the only color available at y is

c3. Either way, the path x, y,w is a colorful path.

Based on how we color the 2-factor, we know that for 1-inner restriction c1 = 1,

c2 = 2, and c3 = 3. Therefore the only allowed color for the io-neighbors of a 1-inner

restriction is color 2. Also based on the coloring of the 2-factor, we know that for a

2-inner restriction c1 = 2, c2 = 1, and c3 = 3. So the only available color for the

io-neighbors of a 2-inner restriction is color 1. Finally, we know that for a 3-inner

restriction c1 = 3, c2 = 2, and c3 = 1. So the only available color for the io-neighbors

of a 2-inner restriction is color 2.

The final point follows from a simple observation about 2-outer restrictions.

In any valid extension of the coloring, one of x = π(v) and y = π(w) will have color 1,

and the other will have color 3. In either case the path v, x, y will be a colorful path
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2 v 2 w

{1, 3}
x

{1, 3}
y

2-factor

Cycle

with v at the head, and so the restriction will be satisfied. Therefore, the allowable

colors for any io-neighbor of a 2-outer restriction are colors 1 and 3.

When restrictions will be met in any extension of the coloring because they do not

fall into the conditions of the Neighboring Colors Lemma, we will not consider them

restrictions at all. Therefore for the rest of the chapter when we refer to restrictions we

will refer back to this idea. This will be especially helpful in later sections when we look

at combinations of restrictions, and when we discuss valid starting points. For now, we

will use it to help analyze how we might be able to satisfy a single inner restriction and

a single outer restriction.

Example 4.1. Consider what can happen when we try to find an extension of the

coloring of the 2-factor while simultaneously satisfying an inner restriction.

1 v 2 w

2
x

{1, 3}
y

1

{2, 3}
z

2 2

If we assume that x has already been assigned color 2, then x is not the head of a

colorful path headed up into the 2-factor, and x may not be at the head of a colorful

path around the cycle headed upstream. To guarantee that x will be at the head of

a colorful path, we must guarantee that x, y, z is a colorful path. Naively, it appears

that we have a free choice between color 1 and color 3 for the color of y. But in fact

if we want to make x, y, z a colorful path we don’t have the option to give y color 3
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because color 1 is not available at z. Instead we have to look at the vertices y and z

together, and assign their colors as a unit.

This situation is typical for both inner and outer restrictions. We will call the

vertices that have to be chosen together the footprint of a restriction. In particular, we

will make the following two definitions:

• If v is an inner restriction, then the footprint of v is the set of the two vertices in

the cycle at distance 1 and 2 downstream of π(v).

• If v is an outer restriction, then the footprint of v is the set with π(v) and the

vertex in the cycle at distance 1 downstream of π(v).

Footprint of an
inner restriction.

Footprint of an
outer restriction.

Direction of Coloring

Figure 4.3: Footprints of inner restrictions and outer restrictions.

Note that while the restrictions occur in the 2-factor, the footprints occur in the cycle.

We say that we have control over the footprint of a restriction if none of the vertices

in the footprint are part of any other footprint, or are the first vertex to be colored.

The main result of this section is that having control over the footprint of a restriction

is a sufficient condition to satisfy that restriction.

Footprints Lemma. If we have control over the footprint of an inner restriction or

an outer restriction, we will be able to find an extension of the coloring of the 2-factor

that satisfies that restriction.

Proof. We start by considering inner restrictions. Let v be a c1-inner restriction with

neighbors in the 2-factor with color c2, let x = π(v), and let y and z be the vertices
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immediately downstream of x. The footprint of v is the set {y, z}. This is shown in

Figure 4.4.

The colors available at x are c2 and c3. Note that the statement of the lemma allows

for the color of x to already have been assigned, since x is not part of the footprint. If

x has been assigned color c3, however, then x will already be at the head of a colorful

path. Therefore we assume that x has been assigned color c2.

c1 v c2 w

c2

x
{c1, c3}

y

{c1, c2, c3}
z

c2 c2

2-factor

Cycle

Direction of Coloring

Figure 4.4: An inner restriction v and its footprint {y, z}.

We know by the Neighboring Colors Lemma that w = π−1(y) must have color c2,

otherwise v would not actually constitute an inner restriction, and so the colors available

at y are c1 and c3. Since x has been assigned color c2, both remain valid choices for y.

At least one color from the set {c1, c3} must be available at z. By looking ahead, we

can select one of those colors for z, and then take the other color for y. Therefore, we

can force x, y, z to be a colorful path.

We now consider 2-outer restrictions. Let v be a 2-outer restriction, let x = π(v), y

the vertex immediately downstream of x. The footprint of v is the set {x, y}, and since

we are assuming that we have control over the footprint we know that x is not the first

vertex colored. Let q be the vertex immediately upstream of x. This configuration is

shown in Figure 4.5. We may assume that q has been assigned a color since x is not

the starting point of the coloring. We will return to this idea and relax this condition

slightly when we discuss finding a good starting point, in Section 4.3.3.

First consider that if q has been given color 1 or color 3, the color of x is determined

and we have that v, x, q is a colorful path. Therefore, we assume that q has color 2.
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2 v

{1, 3}
x

{1, 2, 3}
y

2
q

2-factor

Cycle

Direction of Coloring

Figure 4.5: An outer restriction v and its footprint {x, y}.

If this is true, then the color for x is not determined. At least one color from the set

{1, 3} must be available to y, so by looking ahead we can pick the assignments of x and

y so that v, x, y is a colorful path.

In the following sections we will investigate what happens when we don’t have

control over the footprint of a restriction. In Section 4.3.2 we will consider what happens

when two (or more) restrictions have overlapping footprints, and so we don’t have

complete control over the footprint of either restriction. Later in Section 4.3.3 we

consider how to choose a good starting point for the coloring, so that even if we lose

control over the footprints of some restrictions we will still be able to satisfy them.

4.3.2 Combinations of Restrictions

In this section we will consider what happens when restrictions have intersecting or

overlapping footprints, and so we don’t have complete control over the footprint of

either restriction. In most cases we will be able to mutually satisfy all the restrictions.

There is one case, however, handled in Lemma 4.2, where we cannot do this and we

must make a separate argument to show that we can avoid this configuration.

The different types of footprints for inner and outer restrictions are shown in Figure

4.6. We will consider all possible pairs of restrictions, to determine when we could

have overlapping footprints. We break down the cases first by looking at whether

the restrictions are inner or outer restrictions, and then using the Neighboring Colors

Lemma to determine what colors are possible for the inner restrictions.
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Footprint of an
inner restriction.

Footprint of an
outer restriction.

Direction of Coloring

Figure 4.6: The footprints of inner and outer restrictions.

v w

Footprint of v. Footprint of w.

Two outer restrictions

v w

Footprint of v. Footprint of w.

Two inner restrictions

v w

Footprint of v. Footprint of w.

Mixed, outer restriction upstream

v w

Footprint of v and w.

v w

Footprint of v. Footprint of w.

Mixed, outer restriction downstream, io-distance 1 and 2

Figure 4.7: Placements of restrictions with possibly overlapping footprints.
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Two outer restrictions can only have overlapping footprints if they are io-neighbors.

But outer restrictions must have color 2, and we know by the Neighboring Colors

Lemma that a 2-outer restriction with a io-neighbor that has color 2 will be trivially

satisfied. Therefore we don’t have to do any extra work to check this case — while we

don’t have control over the footprints of the restrictions, they will always be satisfied.

Two inner restrictions can only have overlapping footprints if they are io-neighbors.

The Neighboring Colors Lemma restricts the colors of io-neighbors of inner restrictions.

From this lemma it follows that one of the inner restrictions must have color 1, and the

other must have color 2. In fact we have to consider more than just a pair that have

overlapping footprints: we have the potential to have a long string of inner restrictions

that are io-neighbors, and whose colors alternate between color 1 and color 2. We will

refer to a string of inner restrictions with overlapping footprints as an alternating block

orA-block. Lemma 4.3 shows that we can mutually satisfy all of the restrictions in an

A-block, but in doing so places an extra barrier on where we can start the coloring.

A mixed pair, with both an inner restriction and an outer restriction, cannot have

overlapping footprints if the outer restriction is upstream. If the outer restriction is

downstream, however, a mixed pair can have overlapping footprints in two ways: if

they are io-neighbors, or if they are at io-distance 2.

An outer restriction always has color 2. We can use the Neighboring Colors Lemma

to determine what colors are possible for the inner restrictions. If the inner restriction

and the outer restriction are io-neighbors, the Neighboring Colors Lemma requires

that it must be a 1-inner restriction or a 3-inner restriction. We will show that these

restrictions are mutually satisfiable in Lemma 4.1.

If the inner restriction and the outer restriction are at io-distance 2, then there is

another vertex that is an io-neighbor of both them. To be an io-neighbor of the outer

restriction it must have color 1 or color 3, which precludes the possibility of having

1-inner restriction or a 3-inner restriction at io-distance 2. However it could be a 2-

inner restriction, followed by a vertex with color 1, followed by a 2-outer restriction. It

turns out that a 2-outer restriction and a 2-inner restriction cannot always be mutually

satisfied. In Lemma 4.2 we will use Hall’s theorem to show that, by cycling the coloring
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on the small cycles in the 2-factor, we can avoid this case.

We have seen that we only have three possibilities to consider where we could have

overlapping footprints and the restrictions are not trivially satisfied:

• A 1- or 3-inner restriction with a 2-outer restriction as its downstream io-neighbor.

• A 2-inner restriction with a 2-outer restriction downstream at io-distance 2.

• An A-block.

We will work through the cases in this order.

We say that we have control over the union of a set of footprints if no vertex in the

union is the first vertex to be colored, or belongs to any footprint not in the union. Note

that this is not the same as having control over each of the footprints, individually.

Lemma 4.1. Let w be a 2-outer restriction, v a 1- or 3-inner restriction, and w the

downstream io-neighbor of v. If we have control over the union of the footprints of v

and w, we will be able to mutually satisfy both w and v.

Proof. If we assume that x = π(v) has color 3, then we can satisfy the 2-inner restriction

at w just by picking color 1 for y = π(w), and then both restrictions are satisfied (note

that this also works if v is 3-inner restriction, and we pick color 3 for y). So we will

assume that x has been assigned color 2.

2 w

{1, 3}
y

{1, 2, 3}
z

2
x

1 v

2 2

2-factor

Cycle

Direction of Coloring

We’re now in a situation where x and w both have color 2. Even if x is already

at the head of a colorful path pointed upstream, we will chose to put x at the head

of a colorful path headed downstream. In doing this, w will automatically also be at
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the head of a colorful path headed downstream, so these constraints can be mutually

satisfied.

In the case where we have a 2-inner restriction, and then at io-distance 2 downstream

of that a 2-outer restriction. First, we show that in certain conditions we cannot

mutually satisfy these restrictions.

Example 4.2. Let v be a 2-inner restriction, u its downstream io-neighbor, and w,

the downstream io-neighbor of u a 2-outer restriction. We know, by the Neighboring

Colors Lemma, that the color of u is 1. Assume that π(v) = x has been given color 1,

so that we are forced to look for a colorful path headed downstream for x.

2 v 1 u 2 w 1

1
x

2
y

3
z

2

1 1

Direction of Coloring

The only way to satisfy the restriction at v is to assign color 2 to y and color 3 to

z. If color 1 is not available at the downstream neighbor of z, then we may not be able

to satisfy the restriction at w.

Lemma 4.2. We can select the coloring of the 2-factor so that we never have an outer

restriction v and an inner restriction w, such that π(v) is at io-distance exactly two

downstream from π(w).

Proof. The main idea behind this lemma is that 2-outer restrictions can only come

from cycles in the 2-factor that have length 1 mod 3, and 2-inner restrictions can only

come from cycles in the 2-factor that have length 2 mod 3. By rotating the coloring

on each of these small cycles, we change which vertices on the cycle have the 2-inner

and/or the 2-outer restrictions as neighbors. Therefore any particular instance of a
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2-inner restriction and a 2-outer restriction with overlapping footprints can be avoided

by rotating the coloring on the small cycles.

Of course, the main problem is in showing that we can not only do this individually,

but that we can find colorings of the small cycles where we avoid all the instances

simultaneously. To do this, we will construct a special bipartite graph based on how

the 2-factor is paired with the cycle. A perfect matching in this bipartite graph will be

a good choice for where to start the coloring on each small cycle, so that we meet the

conditions of the lemma.

We are concerned about all possible places on the cycle where the overlapping foot-

prints of a 2-inner and a 2-outer restriction could occur. Formally, a site will be an

ordered pair of vertices on the cycle, where the first vertex in the pair is at distance

exactly two upstream from the second vertex. We are especially interested in sites

{v1, v2} where π−1(v1) is part of a cycle of length 2 mod 3 (and so π−1(v1) is a po-

tential 2-inner restriction), and π−1(v2) is part of a cycle of length 1 mod 3 (and so

π−1(v2) is a potential 2-outer restriction). We want to make sure that when we color

the cycles that contain π−1(v1) and π−1(v2), the restrictions don’t have neighbors in

the same site.

To quantify the situation more formally, we will construct a bipartite multi-graph.

The vertices V = A ∪ B will be of different types. The set A will have exactly one

vertex for every cycle in the 2-factor that has length either 1 mod 3 or 2 mod 3, i.e.

each cycle that contributes a 2-outer or 2-inner restriction.

It would easy if we could make B the set of all sites. The problem is that we haven’t

addressed the issue of cycles of length 4. These cycles actually contribute two 2-outer

restrictions, and so whenever we color them we create potential problems with two

different sites. To correct for this, we will identify two sites {v1, v2} and {x1, x2} if

π−1(v2) and π−1(x2) are at distance exactly 2 in a cycle of length 4. This way, if we

color the 4-cycle so that v2 is the neighbor of a 2-outer restriction, we will automatically

account for the fact that x2 must also be the neighbor of a 2-outer restriction.

Therefore the vertices of B will either be sites or pairs of sites, identified because of

a C4, as in the previous paragraph. Edges between elements A and B will be as follows.



84

For every site {v1, v2} that is (or is part of) a vertex of B, we will put an edge between

that element of B and the cycle that contains π−1(v1) if that cycle has length 2 mod

3, and an edge between that element of B and the cycle that contains π−1(v2) if that

cycle has length 1 mod 3. If we have identified a pair of sites to form an element of B,

we will put in multiple edges as needed.

Cycle 1
Cycle 2

v1 v2 v3 v4 v5

v6v7v8v9

A

Cycle 1

Cycle 2

B

v5, v7

v9, v2

v4, v6

v8, v1

v3, v5

v1, v3

v2, v4

v6, v8

v7, v9

Figure 4.8: Example of a graph, and the bipartite multi-graph constructed from it.

Selecting an edge from a ∈ A to b ∈ B will correspond to making a decision about

where to start the coloring of cycle a, so that the restriction (or restrictions) will fall on

the appropriate vertices of the sites in b. We will ultimately have to select a set of such

edges, one from each element of A. If each element of B is incident with at most one

selected edge, we have at most one restriction at any of the sites in an element of B,

and we have avoided the case where a 2-inner restriction and a 2-outer restriction have

overlapping footprints at that site. Thus, what we would like to show is that we can

always find an A-perfect matching in the bipartite multi-graph we have constructed.

We can prove that such a perfect matching exists by verifying Hall’s condition.

Each site has max degree 2. Because we never identify more than two sites to form

an element of B, we will have max degree 4 for all b ∈ B. However, every cycle in A

has min length 4, and since every vertex of the cycle contributes an edge, we have min

degree 4 for all a ∈ A. Therefore, the neighborhood of any subset of A must be at least

as large as the original subset, and so such a matching exists.

Lemma 4.3. Suppose we have an A-block made up of inner restrictions at vertices
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v1, v2, . . . , vk (k ≥ 2). We can mutually satisfy these restrictions as long as we have

control over the union of their footprints, and if in addition π(v1) is not the first vertex

colored.

Proof. We will assume that v1 is a 1-inner restriction. Ultimately we will color most of

the A-block in groups of three vertices, broken up based on which vertices receive color

3. This idea lets us break the proof into three parts: first will look at how we color the

middle of the A-block, in groups of three. Then we consider the beginning of the string

up to the first vertex to receive color 3 which could be a partial group, and finally we

consider the partial group of 3 vertices at the end of the A-block.

The easiest part of the proof, and so the part we will handle first, is to show that

vertices in the middle of the A-block in groups of three will always be at the head of

a colorful path. Fig 4.9 is a diagram showing two complete groups of three. The main

idea is that vertices will either be assigned the color 3 (which removes their constraint),

or they have been forced to use another color and we must guarantee that they are at

the head of a path along the cycle.

1 vi 2 vi+1 1 vi+2 2 vi+3 1 vi+4 2 vi+5 1 vi+6

3
xi

1
xi+1

2
xi+2

3
xi+3

2
xi+4

1
xi+5

3
xi+6

2 2 1 1 2 2 1 1 2 2 1 1 2 2

Direction of Coloring

Figure 4.9: Coloring of the middle of an A-block in groups of 3.

The first restriction vi is satisfied, but xi+1 is forced to take color 1. To satisfy

xi+1, we must color xi+2 and xi+3 both with colors from the set {2, 3}, and furthermore

it must be that xi+2 gets color 2 and xi+3 gets color 3 (based on what’s available at

xi+2). xi+3 is now also head of a colorful path (that heads into the 2-factor), so vi+4

ceases to be a restriction. Moreover, xi+2 is also at the head of a colorful path counting
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backwards: xi+2, xi+1, xi. This is one group of three, and in fact xi through xi+3 are

satisfied.

Looking at vi+3, we see that it is in the same condition as vi, except that now it is a

2-inner restriction instead of a 1-inner restriction. As with vertex xi+1, xi+4 cannot be

colored with color 3. In this case, xi+4 is forced to take color 2. We can only satisfy the

1-inner restriction at vi+4 by coloring xi+5 color 1 and xi+6 with color 3. Vertex xi+6

has color 3, so it is at the head of a colorful path .For xi+5 we can again find a colorful

path by moving upstream: xi+5, xi+4, xi+3. In this way the coloring proceeds in groups

of 3 vertices, broken up based on which vertices receive color 3, and any vertex that is

part of a block will be at the head of a colorful path.

We see that for long A-blocks, anything that is in a group of three will be at the

head of a colorful path if we continue with this coloring. All that remains to be seen

is what happens with the partial blocks of three at the beginning and the end of the

A-block.

To examine the first partial block we know that w, the upstream io-neighbor of v1,

has color 2 (this is guaranteed by the Neighboring Colors Lemma). The conditions of

this lemma require that the color of π(w) has been determined, and as a result we have

the following color possibilities:

• π(w) has color 1 and π(v1) has color 3,

• π(w) has color 1 and π(v1) has color 2, and

• π(w) has color 3 and π(v1) has color 2.

The first and third cases are easy to handle. If π(v1) has color 3, then there essen-

tially is no initial partial group. The restriction at v1 is satisfied, and because π(v1)

has color 3 we will begin a group of three with π(v1). In addition, if π(w) has color

3 and π(v1) has color 2, we will give π(v2) color 1, and the vertex immediately down-

stream from π(v2) color 3. We know that the io-neighbor of v2 has color 1, so 3 must

be available. This means that π(v2) is at the head of a colorful path headed upstream,

and π(v1) is at the head of a colorful path headed downstream. We are either finished,
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or we have started another block.

We will always choose to avoid the second case, if possible. If π(w) has color 1

then we are not immediately forced to give π(v1) color 2. If we are in the second case,

something particular must have happened to keep us from choosing the color of π(v1)

to be 3. We know that π(v1) cannot be the first vertex colored, so it must be that π(v1)

is part of the footprint of some other restriction. If so, the other restriction is either a

2-outer restriction at w, or a 1-inner or 3-inner restriction at the upstream io-neighbor

of w. In each of these cases, however, we see that to satisfy the initial restriction we

will always be forced into case 1, never case 2.

The following cases are illustrated in Figure 4.10. If w is a 2-outer restriction, then

to satisfy w, we will want to be in case 1, not case 2. If y, the upstream io-neighbor of

w, is a 1-inner restriction, then we will also want to be in case 1, not case 2. If y is a

3-inner restriction, we will want to be in case 1, not case 2.

Note that if v1 were a 2-inner restriction, rather than a 1-inner restriction, the only

possibility would be a 2-inner restriction at the upstream io-neighbor of w. This case

would force us into the analog of case 1, where π(w) would receive color 2 and π(v1)

would receive color 3. This is illustrated in Figure 4.11. Therefore, we will never be

forced into case 2, and so we will always be able to satisfy the restrictions that appear

before the first block.

Finally, we must also consider partial block at the end of the string. But if we end

on a vertex that has color 3, it’s clear that we’ve managed to simultaneously satisfy

all of our constraints. If we have one vertex left over, we simply use the fact that we

have control over its footprint to force it to be at the head of a (downstream) colorful

path. Since that is our only remaining constraint (all of the more upstream vertices are

already at the heads of colorful paths) it’s clearly possible to satisfy it.

We also have to consider the case where we have two vertices left over, shown in

Figure 4.12. Since we have lemmas restricting the color of the io-neighbors of inner

restrictions we know exactly what color z must have, based on the color of vk. We will

force xk−1 to be at the head of a colorful path headed downstream. If we do that, we

are forced to color xk with color 1, making xk already at the head of a colorful path:



88

2 w 1 v1 2 v2 1 v3 2 v4 1 v5

1 2
x1
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3 y 2 w 1 v1 2 v2 1 v3 2 v4 1 v5

2 1 3
x1

1
x2

2
x3

3
x4

2
x5

2 2 2 2 1 1 2 2 1 1 2 2

Figure 4.10: The three possibilities for restrictions that could influence the color of x1

when v1 has color 1.

2 1 2 v1 1 v2 2 v3 1 v4 2 v5

1 2 3
x1

2
x2

1
x3

3
x4

1
x5

1 1 1 1 2 2 1 1 2 2 1 1

Figure 4.11: The only possibility for a restriction that could influence the color of x1

when v1 has color 2.
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xk, xk−1, xk−2.

2 1 2 1 vk−1 2 vk 1 z

1 2 3 2
xk−1

{1, 3}
xk

{2, 3}
y

1 1 2 2 1 1 2 2 1 1

Figure 4.12: The coloring of a final partial group that has length 2.

We might worry about overlapping footprints with other restrictions at the end of the

string. It’s impossible to have an overlapping footprint with some other inner restriction:

if the final restriction in the A-block is vk, the only way to have an overlapping footprint

with an inner restriction would be if it occurs at the downstream io-neighbor of vk, at

which point this would really be a continuation of the A-block.

It is in theory possible to have a 2-outer restriction at z, the downstream io-neighbor

of vk if vk is a 1-inner restriction. This would mean that vk−1 is a 2-inner restriction,

however, and by Lemma 4.2 we have shown that we can avoid having any 2-inner

restrictions at io-distance 2 upstream of a 2-outer restriction. Similarly, by Lemma

4.2 we can also avoid the case where vk is a 2-inner restriction, and the downstream

io-neighbor of z is a 2-outer restriction.

We see even more from this proof than sufficient conditions to meet the restrictions

in an A-block. We also see that the coloring of the entire A-block is determined by the

color of the first restriction (1 or 2), and a residue class mod 3 that indicates which

vertices receive color 3. If the π(v1) receives color 3, we say that this corresponds to

indices 0 mod 3 (since the first restriction is not technically part of the union of the

footprints). If the π(v2) receives color 3 this corresponds to indices 1 mod 3, and if

π(v3) receives color 3, indices 2 mod 3. We will use the idea of the indices of the coloring

of an A-block in the following section as we try to find special cases where we can relax

the conditions of this lemma.
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4.3.3 Finding a Good Starting Point

In this section we are looking for a place where we can start the coloring of the cycle.

As in Theorem 4.1, if x is the first vertex in the cycle to be colored and y the last, the

colors of π−1(x) and π−1(y) must be different. Note that x will be assigned a particular

color, in fact the same color as π−1(y), to guarantee that the three neighbors of y will

use at most two colors among them. Therefore, there will be at least one color available

for y. Because we have assumed that the colors of π−1(x) and π−1(y) are different, this

color is available at x.

Unlike in Theorem 4.1, we are further limited in our choice of a first vertex to be

colored. Because the first vertex to be colored has its color assigned, we have defined

‘control over a footprint’ to exclude the case that any of the vertices in a footprint are

the first vertex colored. If we start the coloring at a vertex that is in the footprint of a

restriction, we may not be able to satisfy that restriction. Moreover we have an extra

restriction from Lemma 4.3: if we have an A-block starting with v1, we may not be able

to satisfy all of the restrictions in the A-block if π(v1) is the first vertex to be colored.

The condition that we have control over the footprint of a restriction in order to

be able to satisfy that restriction is sufficient but not necessary. In special cases, we

may be able to start the coloring at one of the vertices of the footprint and still meet

the restriction. In particular, throughout this section we will use the following two

propositions about satisfying a 2-outer restrictions and A-blocks even if the first vertex

to be colored makes it impossible to apply the Footprints Lemma or Lemma 4.3.

Proposition 4.1. If the colors of the upstream io-neighbor and the downstream io-

neighbor of a 2-outer restriction are the same, we can start the coloring directly upstream

of the 2-outer restriction.

Proof. This situation is shown in Figure 4.13. The Neighboring Colors Lemma guaran-

tees the first condition of being a good starting point: there are different colors available

at the first and last vertices to be colored. It remains to show that any restrictions whose

footprints might include x1 can be satisfied.

First we observe that the color of v0 determines what color x1 will take. As long as v0
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1 v0 2 v1 1 v2

2, 3 1
x1

2, 3
x2

3 v0 2 v1 3 v2

1, 2 3
x1

1, 2
x2

Direction of Coloring

Figure 4.13: Two possibilities for the upstream and downstream io-neighbors of a 2-
outer restriction

and v2 have the same color, we will have the right set of colors available at x2 to satisfy

the 2-outer restriction. Moreover, there cannot be any other restrictions downstream

of the split that include x1, so all the downstream footprints are satisfied.

Upstream, we actually have a limited set of possible restrictions whose footprints

could include x1. Another 2-outer would have to be distance two upstream (by the

Neighboring Colors Lemma it cannot be io-neighbors with another 2-outer restriction),

and if it is at io-distance upstream at least two it’s footprint is not long enough to

include x1. A 2-inner restriction would have to be at io-distance at least two upstream

as well, and Lemma 4.2 forbids it from being at distance exactly two, so its footprint

can’t contain x1 either.

The only potential problem would be if we had a 1-inner or 3-inner restriction at

v0. But in fact, in either case these will be trivially satisfied by not receiving color 2,

or they will receive color 2 and be at the head of a colorful path headed downstream

(over the split).

Proposition 4.2. Let v1 through vk be restrictions in an A-block. If the upstream

io-neighbor of v1 and the vertex that is upstream at io-distance 2 from v1 both have

the same color, then we can begin the coloring at π(v1) = x1 and still satisfy all the

restrictions in the A-block.

Proof. We work through the case where v1 has color 1 and the upstream io-nieghbor of

v1 has color 2, but a similar argument holds for when v1 has color 2 and the upstream
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io-neighbor has color 1. The Neighboring Colors Lemma guarantees that these are the

only two cases.

2 2 1 v1 2 v2 1 v3 2 v4 1 v5

1, 3
p

1, 3
q

2
x1

3
x2

2
x3

1
x4

3
x5

2 2 1 1 2 2 1 1 2 2

Direction of Coloring

If we start the coloring at x1, we’re forced to use color 2 at x1. Given that choice,

we cannot put both x1 and x2 at the heads of colorful paths headed downstream. If we

try to put x1 at the head of a colorful path headed downstream we would give color 1

to x2 and color 3 to x3. To finish the colorful path for x2 we would need to give color

2 to x4, which is a contradiction.

We need to pick at least one of these vertices to be at the head of a colorful path

headed upstream rather than down. Normally we couldn’t guarantee this without fixing

some colors upstream, which would invalidate the idea that we start the coloring at x1

and have free choice for the colors of p and q. However in this special case we know

that both p and q will take colors from the set {1, 3}, and that they must each take

different colors. Therefore, since x1 is already forced to have color 2, x1 will have to be

at the head of a colorful path headed upstream (no matter how the colors of p and q

are assigned). We will waive the restriction that x1 should be at the head of a colorful

path headed downstream, assign color 3 to x2, and from there we can color the rest of

the A-block.

Armed with these two propositions, we will make three separate arguments — one

fairly general and two special cases — where we find a good starting point explicitly.

Generally, these arguments require first narrowing down the situation by excluding cases

where it’s easy to find a good starting point. What’s left then has so much structure
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that we can hope to find additional special cases where we can relax the requirement

that no vertex in the footprint be the first vertex colored.

We start by making an argument for the case where the 2-factor contains at least

one cycle of length 1 mod 3, but the 2-factor is not entirely composed of 4-cycles. This

is the most general case, and in many ways the most difficult. If we have no 2-outer

restrictions (i.e. all cycles in the 2-factor have lengths either 0 or 2 mod 3), a much

simpler argument suffices to find a good starting point. On the other hand if we have all

4-cycles, the 2-factor has so much structure that we can make a very specific argument

to handle that case. Both of these are handled after the most general case.

Lemma 4.4. Suppose the 2-factor has at least one cycle of length 1 mod 3, and has at

least one cycle that is not a C4. Then there is a pair of vertices x1 and x2, adjacent on

the cycle with x1 upstream of x2, such that the following two conditions hold:

• π−1(x1) and π−1(x2) have different colors.

• any restrictions whose footprints contain x2 can be met, even if x2 is the first

vertex to be colored.

Proof. We will be able to find x1 and x2 by considering the vertices on the cycle whose

neighbors in the 2-factor have color 2. We will think of the neighbors of the 2-outer

restrictions as breaking the cycle into regions, and consider the neighbors of other

vertices with color 2 based on which region they fall into. In particular, it’s necessary

to place the above conditions on the cycles of the 2-factor so that we may assume that

the 2-factor contributes at least one 2-outer restriction, and at least one other 2. We see

that there will be at least as many unrestricted 2s in the 2-factor as 2-inner restrictions,

and in particular this means that there is (at least) one region with at least as many

unrestricted 2s as 2-inners (and at least one unrestricted 2). We will call such a region

non-empty.

We start by excluding several cases, which allow us to narrow down what a non-

empty region will look like. First we will show that if a non-empty region ever has

io-neighbors v and w (assume w is downstream of v in the imposed order) where both
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v and w have colors in the set {1, 3}, and if the downstream io-neighbor of w is not a

2-outer restriction, we can find a good starting place. The Neighboring Colors Lemma

guarantees that neither w nor v can be restrictions. If we start the coloring after w, no

restrictions from upstream can be a problem. The only restrictions from downstream

could be the start of an A-block.

In fact, though, if v and w both have color 1, Proposition 4.2 allows us to start the

coloring after w even if there is an A-block immediately after. We also see that if w has

color 3, then its downstream io-neighor cannot be an inner restriction (the Neighboring

Colors Lemma), so the only remaining case to consider is if the color of v is 3, the

color of w is 1, and the downstream io-neighbor of w is a 2-inner restriction that begins

an A-block. But if the color of v is 3, then we can’t have an inner restriction as the

upstream io-neighbor of v, either, and we can start the coloring at π(w) Even if we

have a 2-outer directly upstream of v, π(w) will not be in the footprint of a restriction

either upstream or downstream of w.

From this it follows that either we can find a good starting point in a non-empty

region, or after the first 2-outer restriction, the colors of the vertices in the 2-factor

must alternate between 2 and something from the set {1, 3} until all the 2s in that

region except for the final 2-outer restriction have appeared. But we can also eliminate

the case where we have a string of io-neighbors with colors 2, 3, 2, and show that in fact

the colors must alternate between 1 and 2 until all the 2s in that region have appeared.

If we ever have a string of three io-neighbors u, v and w whose colors are 2, 3,

2 respectively, we can find a good starting point either directly upstream or directly

downstream of v. By the Neighboring Colors Lemma, neither u nor w can be 2-inner

restrictions, and if v is an unrestricted 3 we can certainly start the coloring at π(w).

Therefore, we will only consider the case where v is a 3-inner restriction, shown in

Figure 4.14.

Let q be the upstream io-neighbor of u. If q is not an inner restriction (and of

course it cannot be a 2-outer restriction, by the Neighboring Colors Lemma), then we

can start directly upstream of the 3 and we’re fine. If q is an inner restriction, it could

either be a 1-inner or a 3-inner. But if q is a 3-inner restriction, it must also be between
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2 u 3 v 2 w

2 2

Figure 4.14: A 3-inner restriction inside a region.

two 2s (in the imposed order). So we will assume that v is the most upstream 3 in the

region, and therefore q must be a 1-inner restriction.

If q is not part of an A-block, we can win: we simply require that no matter what,

q is at the head of a colorful path headed downstream. We can do this, as we have

complete control over the footprint of q. This colorful path will end at π(v), and that

will satisfy the restriction at v.

If q is the last restriction of an A-block, we just need to check the three possible

cases for the indices of the coloring of the A-block.

Therefore we know that after the first 2-outer restriction, the colors in this region

must alternate between 1 and 2 until the final 2. Essentially, we will color the whole

thing like a giant A-block starting at the 2-outer restriction, even though not all of the

1s and 2s are necessarily inner restrictions. Every vertex that isn’t an inner restriction

can provide some freedom in our coloring.

The coloring of an A-block is completely determined by the indices of the coloring,

that is, which residue class mod 3 contains the vertices which receive color 3. We will

try to use the fact that, unlike an A-block, not all of our 1s and 2s are restrictions to

change that residue class, in the middle of the A-block. If there is a 3 that appears

immediately upstream of xi, but vi is not an inner restriction, we have the option to

change the indices of the coloring:

Thus every unrestricted element at io-distance k from the 2-outer restriction has the

ability to change the residue class of the coloring from k − 1 to k + 1 mod 3.

We will use some facts about the beginning of the region. We know that the color of

the downstream io-neighbor of the 2-outer restriction is 1. If the color of the upstream
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Figure 4.15: Possible colorings of an A-block, and how this interacts with a 3-inner
restriction at io-distance 2 downstream.

2 1 vi 2 1 2

3 2
xi

3 2 1

2 21111 1 1

Figure 4.16: Example of the change in the residue class of the coloring of an A-block
that an unrestricted vertex vi allows us to make.
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io-neighbor of the initial 2-outer restriction is also 1, we can find a good starting point,

by Lemma 4.1. Therefore, we assume that it has color 3. We will also show that the

downstream io-neighbor of the initial 2-outer restriction isn’t a 1-inner: even if it was,

its restriction will be trivially satisfied in any coloring that that satisfies the 2-outer

restriction.

Proposition 4.3. If a 2-outer restriction v is the upstream io-neighbor of a 1-inner

or 3-inner restriction w, then the restriction at w will be met by any extension of the

coloring that satisfies v.

{1, 3}

2 v

{1, 3}

1 w

2

22

Proof. Suppose that π(w) is forced to take color 2. This can only have happened if v

has been satisfied with a path upstream, that x and y have colors 1 and 3. Therefore,

π(w) is already at the head of a colorful path headed upstream.

Putting all this information together, we can assume we are in the following general

case:

3

x

2 v1

x1

1 v2

x2

2 v3

x3

1 v4

x4

1 1 2 2

If the 2-outer restriction at v1 is satisfied, we know that one of x, x1 and x2 has

color 3. Since it cannot be at x, we start out knowing that we have a 3 either at x1 or

x2, that is, we are in residue class 0 or 1, but not 2.
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If we have an unrestricted 2 at io-distance 2 mod 6 downstream from v1 and we are

in residue class 1, we can toggle so that we are in residue class 1 + 2 = 3 ≡ 0 mod 3.

This lets us start our coloring anywhere after that unrestricted 2, as long as we start

it consistent with coloring the entire A-block with residue class 0. No matter how we

begin the A-block, we can finish coloring the cycle consistently with residue class zero.

Additionally, if we have an unrestricted 2 at io-distance 0 mod 6 downstream (but

at least 6) from v1, we can first change residue class 0 to be residue class 2 (based on

the fact that the first 1 is not an inner restriction), and then at the unrestricted 2 we

can change residue class 2 to residue class 1. Therefore, whether we initially start with

residue class 1 or 0, we can guarantee that we will end the coloring of the A-block with

residue class 1. This lets us start our coloring anywhere after the unrestricted 2, as

long as we start the coloring consistent with coloring the entire A-block with residue

class 2.

Both of these results for when we have an unrestricted 2 at io-distance 0 or 2 mod

6, aren’t quite the same as finding a good starting point. In particular, the first vertex

to be colored is colored consistently with coloring the whole A-block according to a

particular residue class, instead of being colored to allow for two colors at the final

vertex. However, what we have shown guarantees that we will end in the same residue

class, so we will be able to meet all the restrictions of the A-block.

The only potential problem is if we have all our unrestricted 2s at io-distance 4 mod

6 from v1. Using the unrestricted 2 lets us change from residue class 0 to residue class 2

but doesn’t affect residue class 1, and so we cannot get down to a single residue class for

this A-block. For a large number of 2s, however, this cannot happen: in general, only

having unrestricted 2s at io-distance 4 mod 6 will take roughly twice as many 2-inner

restrictions as unrestricted 2s. We know that we have at least as many unrestricted 2s,

and so the only time this can happen is if we have exactly two 2s in a region - a 2-inner

at io-distance 2 from v1, and then an unrestricted 2 at io-distance 4.

If we only have two 2s, however, we know that after the unrestricted 2 we cannot

have an A-block. In that case, we can still start the coloring just after the unrestricted

2. In both residue class zero and residue class 1, the colorful path of the final 1-inner
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restriction does not extend past the unrestricted 2: it’s only in residue class 2 that we

would need to have control over the final vertex in the footprint of the A-block. This is

shown in more detail in Figure 4.17. Therefore, there are no problems upstream with

starting the coloring just after the final unrestricted 2.

3
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1
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3
x2

2 v3
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3
x5

1 1 2 2

Figure 4.17: The two possible residue classes for the A-block do not extend past x5.

Downstream, the only problem to starting the coloring here would be if the down-

stream io-neighbor of the unrestricted 2 was a 2-outer (which by the Neighboring Colors

Lemma is forbidden), or if it’s a 1-inner that is part of another A-block. By assumption

there are no more 2s in this region, however, so we cannot begin an A-block here.

There are a few remaining special cases to consider. In Lemma 4.4 we used the fact

that we started with a 2-outer restriction, and this allowed us to drop one of the inner

restrictions. So we must make a special argument for when we don’t have any 2-outer

restrictions. In fact, however, this case is much simpler.

Lemma 4.5. If the 2-factor has no cycles that have length 1 mod 3, then there is a

pair of vertices x1 and x2, adjacent on the inner cycle with x1 upstream of x2, such

that the following two conditions hold:

• π−1(x1) and π−1(x2) have different colors,
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• any restrictions whose footprints contain x2 can be met even if x2 is the first

vertex to be colored.

Proof. If we have no cycles that have length 1 mod 3 we have no 2-outer restrictions

or 3-inner restrictions anywhere in the graph. Consider a pair of vertices x1 and x2

adjacent in the cycle with x1 upstream, so that π−1(x1) has color 3 and π−1(x2) does

not have color 3. We will show that we can start the coloring at x2 without losing

control over any of the footprints of any of the restrictions.

By the Neighboring Colors Lemma, no io-neighbor of a vertex with color 3 can be

a 1-inner or a 2-inner restriction (and in this case, these are the only restrictions we

have). Therefore, π−1(x2) cannot be an inner restriction, and in particular it cannot

be the start of an A-block of 1-inner and 2-inner restrictions. Moreover, the upstream

io-neighbor of π−1(x1) cannot be an inner restriction either, and the footprints of any

restrictions further upstream would not include x2. Therefore, we may start the coloring

at x2.

Finally, we must consider what happens if we have entirely 4-cycles. We will not

necessarily have any unrestricted 2s or unrestricted 3s, so the arguments above don’t

generalize to this case. But our assumptions about the 2-factor provide so much struc-

ture that we can make a very specific argument to handle this case.

Lemma 4.6. If the 2-factor is entirely composed of 4-cycles, then there is a pair of

vertices x1 and x2, adjacent on the inner cycle such that the following two conditions

hold:

• π−1(x1) and π−1(x2) have different colors,

• any restrictions whose footprints contain x2 can be met even if x2 is the first

vertex to be colored.

Proof. We have no 2-inner restrictions, so if we ever have unrestricted 2s, we will be

able to find a good starting point. This could happen if two 2-outer restrictions are

adjacent (the constraint on both of them will be dropped). Therefore we will assume

that the 2-outer restrictions are never io-neighbors.
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Since each 4-cycle contributes two 2-outer restrictions, one 1-inner restriction and

one 3-inner restriction, exactly half of the vertices are 2-outer restrictions. To avoid hav-

ing any two 2-outer restrictions being io-neighbors, they must alternate strictly. This

means that every 1-inner restriction and every 3-inner restriction is immediately down-

stream of a 2-outer restriction. By Proposition 4.3, we can drop the inner restrictions:

they will automatically be satisfied if the 2-outer restrictions are satisfied.

However, every vertex in the cycle is in the footprint of a 2-outer restriction, so there

is no place to start the coloring that does not interfere with having control over some

footprint. If there is ever a case where the upstream io-neighbor and the downstream

io-neighbor of a 2-outer restriction have the same color, then Proposition 4.1 applies,

and we can start the coloring there.

If Proposition 4.1 does not apply, it follows that the graph is highly structured:

it must be of the following form: 2, 1, 2, 3, 2, 1, 2, 3, . . . etc., and it must have length a

multiple of 4. In this case, we may start the coloring with the first vertex of any 2-outer

restriction.

2 v1 1 v2 2 v3 3 2 1 2 3

3
x1

2
x2

3
x3

1
x4

3
x5

2
x6

3
x7

1
x8

3

1, 2
x

Figure 4.18: The highly structured case when the 2-factor is entirely made up of 4-
cycles.

The color at x1 is fixed, because the first vertex colored must leave two colors

available for the final vertex colored. Fixing color 3 at x1 determines color 2 at x2. To

meet the restriction at v3 we must give x3 color 3 and x4 color 1. This forces x5 to have

color 3, and we can see that the whole graph breaks down into groups of 4 where the

colors repeat in the order 3, 2, 3, 1. Because we have this repeating pattern, we know

that we will end with the final vertex x receiving color 1, and so the restrictions at v1
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and v2 will be satisfied.

We end this chapter with the full coloring algorithm:

Theorem 4.2. There exists a colorful path coloring for all generalized cycle permutation

graphs.

Proof. If the graph has chromatic number 2, then this is trivially true, so we assume

that the graph has chromatic number 3.

Step 1: Color the 2-factor with three colors, so that the only types of restrictions are

the four discussed: 2-outer, 1-inner, 2-inner, and 3-inner restrictions.

Step 2: Fix a direction around the cycle to be ‘downstream’ (this can be chosen

arbitrarily).

Step 3: Cycle the coloring of the 2-factor so that no 2-inner restriction and 2-outer

restriction have overlapping footprints (by Lemma 4.2).

Step 4: By the Lemmas 4.4, 4.5, and 4.6, find a good starting point for the coloring.

Step 5: Color the first vertex in such a way that the last vertex still has 2 colors

available.

Step 6: Sweep around the cycle, coloring footprints and groups of overlapping foot-

prints as needed to (mutually) satisfy their corresponding restrictions. At every

point we will have at least one color available.

Step 6 needs to be verified. We know that by the Footprint Lemma, we will always

be able to satisfy individual restrictions, and by Lemmas 4.1 and 4.3 we will be able to

satisfy any occurring groups of restrictions with overlapping footprints (we have already

excluded a 2-inner at io-distance exactly two upstream from a 2-outer, by Lemma 4.2).

When we chose a starting point for the coloring, we required that if we lost control over

the footprint of any restriction we would still be able to meet it. Therefore, we will in

fact be able to mutually satisfy all the restrictions.
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Chapter 5

Generalizations of the Goulden–Jackson Cluster Method

5.1 Introduction

Suppose we are given a finite alphabet, and a finite set of forbidden words in this al-

phabet.1 We would like to know how many n-letter words in our alphabet avoid the

forbidden words as subwords or factors, i.e. strings of consecutive letters. In order to do

this we will find the generating function for the number of such words. In Section 5.2

we describe a straightforward, recursive approach to solving this using ordinary gener-

ating functions. The remainder of this article deals with the Goulden–Jackson cluster

method, a powerful method that considers overlap between forbidden factors in com-

puting generating functions. The Goulden–Jackson cluster method was introduced in

[18] and [19] and described very clearly and concisely in [27]. For earlier work see [20],

and further extensions can be found in [25]. Applications of the Goulden–Jackson clus-

ter method to genomics can be found in [23, 31, 22, 24]. In Section 5.3 we review the

classical Goulden–Jackson cluster method. We then describe some modifications to the

original Goulden–Jackson problem as follows: In Section 5.4 we modify the Goulden–

Jackson cluster method to take single letter weights into account. In Section 5.5 we

include double letter (i.e. pairwise) weights, and in Section 5.6 we consider triple letter

weights. Further generalizations are described in Section 5.7.

All the methods discussed have been implemented in a Maple package. The Maple

package, which includes documentation, can be found at the website for these results 2.

1This entire chapter was joint work with Debbie Yuster.

2The website for these results is located at http://www.math.rutgers.edu/∼ekupin/GJ.html.
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5.2 The Straightforward Recursive Approach

Given a finite alphabet A and a set of forbidden or ‘bad’ words B, we would like to find

a(n), the number of n-letter words in the alphabet A that do not contain any members

of B as factors. Rather than find a(n) directly, we will find the generating function

f(t) =
∞∑

n=0

a(n)tn. (5.1)

In order to find this generating function, we need not use the Goulden–Jackson

cluster method, which will be described in Section 5.3. We can use a straightforward

recursive approach, though as we will demonstrate, this method will not be as efficient

as Goulden–Jackson. The approach contained in this section was described by Dr.

Doron Zeilberger in his Spring 2008 Experimental Math class at Rutgers University.

We first illustrate the approach with an example. Suppose A = {a, b} and B =

{abb, ba}. We will start by decomposing the set of allowed words according to their

first letter. Denote by [B, ai, {w1, ...wn}] the set of words avoiding members of B,

starting with ai, and avoiding any word in {w1, ...wn} as an initial subword. We can

express the allowable words with the decomposition

[B, ∗] ↔ {empty word} ∪ [B, a, {}] ∪ [B, b, {}], (5.2)

where [B, ∗, {}] denotes the set of all words in alphabet A avoiding the words in B

(with no additional restrictions). Consider the set of allowed words beginning with a.

Any such word is either a itself, or consists of a followed by a smaller word starting

with either a or b. What are the restrictions on the smaller word, following the initial

letter a? If it starts with a, it must still avoid abb and ba, but there are no additional

restrictions. However, if the word following the initial letter a begins with b, it must

avoid abb and ba, but in addition it must not begin with bb, so as to avoid the forbidden

word abb. This gives a correspondence among different sets of words. Translating the

above example into this notation, we have:

[B, a, {}] ↔ {a} ∪ [B, a, {}] ∪ [B, b, {bb}], (5.3)

where the latter two terms on the right hand side describe the allowable subwords

following the initial letter a.
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Now let us consider the set of allowable words beginning with b. Either the word is

b itself, or consists of b followed by a smaller word starting with either a or b. Of course

the letter following the initial b cannot be a, since this would form the forbidden word

ba, but rather than exclude this a priori, we will instead say that any word following

the initial b and starting with a must not begin with the word a. Of course no words

satisfy this condition so the corresponding set will be empty. Any word following the

initial b that starts with b must avoid the forbidden words in B but has no additional

restrictions. To summarize, we have

[B, b, {}] ↔ {b} ∪ [B, a, {a}] ∪ [B, b, {}]. (5.4)

Eventually we will turn these correspondence relations into equations, by taking a

weighted count of the set elements. First, in order to solve explicitly for the latter two

sets in the above relation, we must decompose the remaining sets on the right hand

sides of (5.3) and (5.4), as well as any new sets arising from those relations. This leads

to the following:

[B, b, {bb}] ↔ {b} ∪ [B, a, {a}] ∪ [B, b, {b}]

[B, a, {a}] ↔ ∅

[B, b, {b}] ↔ ∅.

If one simply wants to know the number of allowable n-letter words, a generating

function such as the one given in equation (5.1) can be found. However, it is possible

to find variant generating functions which give more information about the allowable

words. These variants will be described in later sections. In order to find the various

generating functions, we will make use of a weighted counting system, performing a

weighted count of the words in the sets above. Taking weights in (5.5) gives the desired

generating function. The particular ‘weight’ used varies based on the method (to be

described in the following sections) so we postpone further calculations. It is worth

pointing out, however, that one must be careful not to merely sum the weights of the

sets on the right hand sides of the correspondence relations. Rather, it is necessary to

account for the weights of the truncated initial letters, as well as any transition weights

that may arise. See Example 5.1 for further details.
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The Maple code for this recursive method can be found in our accompanying

Maple package under the function names RecursiveSingle, RecursiveDouble, and

RecursiveProbDouble. These functions implement the straightforward recursive ana-

logues of the cluster method generalizations to be described in Sections 5.4, 5.5, and

5.7.1, respectively.

5.3 Basic Goulden–Jackson Cluster Method

We borrow from [27] in briefly reviewing the basic Goulden–Jackson cluster method,

and encourage the reader to consult this source for a more detailed exposition.

In order to find the generating function given in equation (5.1), we will do a weighted

count of marked words. A marked word is a pair (w;S), where w is a word in the

alphabet A, and S is an arbitrary multiset whose entries are members of Bad(w), the

forbidden words of B contained as factors in w. We allow repetition in S since a word

may contain several copies of a given forbidden word. If no subset S is specified, we

assume it is the empty set. We define the weight of a marked word as weight(w;S) =

(−1)|S|t|w|, where |S| is the cardinality of S and |w| is the length of w. The weight of

a set of marked words is obtained by summing the weights of the marked words in the

set. The generating function from equation (5.1) now becomes

f(t) =
∑

w∈A∗

∑

S⊂Bad(w)

(−1)|S|t|w|, (5.5)

where A∗ is the set of all words in the alphabet A. In order to see why this is valid,

consider an arbitrary word w in our alphabet. This word will appear as the first

argument in 2k marked words, where k is the number of forbidden subwords contained

in w. In equation (5.5), we sum over all possible subsets of Bad(w). Thus if w contains

no forbidden subwords, it will be counted exactly once in the above sum. If w contains

k forbidden subwords, k > 0, the number of times it will be counted in the above sum

is:
k∑

i=0

(−1)i
(

k

i

)
= (1 + (−1))k = 0.

Thus every allowable word is counted once, while words containing forbidden words
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are not counted. We have verified the equivalence of equation (5.5) and our original

generating function, given in equation (5.1).

We call a marked word (w;S) a cluster if neighboring factors in S overlap (i.e. are

not disjoint) in w, and the forbidden words of S span all of w. For example, if our

alphabet A is {a, b, c} and the set of forbidden words B is {ba, aca}, then the marked

word (bacaca; {ba, aca, aca}) is a cluster. The marked word (bacaca; {aca, aca}) is not

a cluster because the factors in S do not span all of w (the first b is not part of a factor

in S), and the marked word (acaba; {aca, ba}) is not a cluster because the factors in S

do not overlap. We will denote the set of all (nonempty) clusters by C.

We now decompose M, the set of marked words, into three groups: the empty word,

marked words beginning with a letter that is not part of any cluster, and marked words

beginning with a cluster. We thus obtain the decomposition

M = {empty word} ∪ AM ∪ CM,

where an element of AM consists of a single letter of the alphabet A prepended to a

marked word and an element of CM consists of a cluster prepended to a marked word.

Let m be the number of letters in A. By taking weights on both sides of the preceding

equation, we obtain

weight(M) = 1 + mt · weight(M) + weight(C)weight(M).

But weight(M) equals f(t), as shown in equation (5.5), so by substituting and solving

for f(t) we get

f(t) =
1

1 − mt − weight(C)
(5.6)

and it remains to solve for weight(C), which we will call the cluster generating function.

In order to find weight(C), we partition the set of clusters C according to the first

forbidden word of the cluster. Let C[v] denote the set of clusters starting with forbidden

word v. Then C =
⋃

v∈B

C[v], and weight(C) =
∑

v∈B

weight(C[v]).

In order to find weight(C[v]), we will further decompose C[v] as follows: consider

a cluster in C[v]. Either it consists of v alone, or we can remove v from the list of

forbidden words in our marked cluster, and what remains will contain a smaller cluster,
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beginning with some bad word u such that some initial subword of u coincides with some

final subword of v. For example, consider the cluster (bacaca; {ba, aca, aca}), where the

alphabet and forbidden word set are as above. This cluster is in C[ba]. Removing the

initial forbidden word ba leaves a new cluster (acaca; {aca, aca}) in C[aca].

Let O(v, u) be the set of possible ‘overlaps’ of v and u, that is, all possible nonempty

intersections of final subwords of v with initial subwords of u. Each of these overlaps

corresponds to a way that our cluster can have its first two forbidden words be v and

u, respectively. To create the smaller cluster we will peel off exactly the part of v that

does not overlap with u. For any word v and a final subword r of v, v\r will denote

the word obtained by chopping r from the end of v. For example, abcb\cb = ab. This

leads to the decomposition

C[v] ↔ {(v; {v})} ∪
⋃

u∈B

⋃

r∈O(v,u)

(
{v\r} ·

)
,

where W1 · W2 is the concatenation of W1 with W2. Taking weights, we obtain the

following linear equations. Note that the sum over u ∈ B is negative (i.e. multiplied by

−1) in order to compensate for having reduced the number of bad words in our cluster

by one (because we are calculating weights of clusters containing one fewer bad word

than the clusters in C[v]).

weight(C[v]) = weight((v; {v})) −
∑

u∈B

(
weight(C[u]) ·

∑

r∈O(v,u)

weight(v\r)
)

We can explicitly calculate O(v, u), and so by writing this equation for C[v] for all

v ∈ B, we obtain a sparse system of |B| linear equations in |B| unknowns. Solving for

the weight(C[v]) and summing them gives us weight(C), which can then be substituted

into equation (5.6), giving the desired generating function.

Variations of the Basic Cluster Method

By changing how the weight of a word is defined, we can alter the interpretation of

the resulting generating function. In the following sections we present several such

variations. All the variations keep track of how many words of each length avoid the set
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of forbidden words. The first variation, described in Section 5.4, also takes into account

how many times each letter appears in any given ‘good’ word, by adding extra variables

into the weight function. One possible use of this is to substitute probabilities for these

variables, thus giving a generating function which takes into account a probability

distribution on the alphabet. Several other variations mentioned later also take into

account double letter, or pairwise weights. These are variables corresponding to each

ordered pair of letters in the alphabet. This allows tracking of which consecutive letter

combinations occur, and can also allow for double letter probabilities to be filled in.

Similarly, Section 5.6 has variables in the weight function corresponding to ordered

triples of letters. In the sections that follow, we describe these modifications to the

basic Goulden-Jackson cluster method in detail.

5.4 Single Letter Weights

In order to keep track not only of how many words of a certain length avoid certain

subwords, but also which letters these words contain, we will redo the basic cluster

method, using a different weight enumerator. The variation discussed in this section was

initially described in [27]. The weight of a marked word (w;S) (where w = w1w2 · · ·wk)

will be

(−1)|S|t|w|xw1xw2 . . . xwk .

For example, weight(abcab; {}) = t5(xa)2(xb)2xc.

As in the original application of the Goulden–Jackson method, we use the decompo-

sition M = {empty word} ∪ AM ∪ CM. This leads to the following recursive formula

for weight(M):

weight(M) = 1 + t
∑

a∈A

xaweight(M) + weight(C)weight(M).

Note that, since we are keeping track of letter weights, the second term records not just

how many letters are in A, but exactly which ones appear. Simplifying, we get

weight(M) =
1

1 − t
∑

a∈A

xa − weight(C)
. (5.7)
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All that remains is to solve for the cluster generating functions, weight(C). We

do this exactly as in the original Goulden–Jackson cluster method, with the same

decomposition: weight(C) =
∑

v∈B weight(C[v]). We will write the same system of

linear equations as before, except that the weight function is different. In particular,

we still have

weight(C[v]) = weight((v; {v})) −
∑

u∈B

(
weight(C[u]) ·

∑

r∈O(v,u)

weight(v\r)
)

for all v ∈ B, which becomes

weight(C[v]) = −t|v|xv1 . . . xv|v| −
∑

u∈B

(
weight(C[u]) ·

∑

r∈O(v,u)

t|v\r|xv1 . . . xv|v\r|

)
.

Solving for weight(C[v]) for each forbidden word v and substituting back into equa-

tion (5.7) yields the desired generating function.

Example 5.1. Find the generating function of all words in the alphabet {a, b} avoiding

the forbidden words abb and ba.

We will find the generating function in two ways: (1) using the cluster method described

in this section, and (2) using the straightforward recursive approach from Section 5.2.

1. We have:

weight(C[abb]) = −t3xax
2
b − weight(C[ba])t2xaxb

weight(C[ba]) = −t2xbxa − weight(C[abb])txb

from which

weight(C[abb]) =
−t3xax2

b + t4x2
ax

2
b

1 − t3xax2
b

weight(C[ba]) = −t2xbxa +
t4xax3

b − t5x2
ax

3
b

1 − t3xax2
b

,

and therefore weight(C) =
−t2xaxb − t3xax2

b + t4x2
ax

2
b + t4xax3

b

1 − t3xax2
b

. Substituting

this into equation (5.7) yields the desired generating function:

weight(M) =
1 − t3xax2

b

1 − txa − txb + t2xaxb
.
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Taking the first few terms of the Taylor expansion of this generating function

yields:

1 + (xa + xb)t+(xaxb + xa
2 + xb

2)t2 + (xa
2xb + xa

3 + xb
3)t3

+ (xa
3xb + xa

4 + xb
4)t4 + O(t5)

The constant term 1 corresponds to the empty word. The coefficients of powers of

t correspond to the allowable words. For example, the coefficient of t3 corresponds

to the permissible 3-letter words aab, aaa, and bbb.

2. Returning to the notation of Section 5.2, we need to take the weight of [B, ∗, {}] .

Recall the following set decompositions:

[B, ∗, {}] ↔ {empty word} ∪ [B, a, {}] ∪ [B, b, {}]

[B, a, {}] ↔ {a} ∪ [B, a, {}] ∪ [B, b, {bb}]

[B, b, {}] ↔ {b} ∪ [B, a, {a}] ∪ [B, b, {}]

[B, b, {bb}] ↔ {b} ∪ [B, a, {a}] ∪ [B, b, {b}]

[B, a, {a}] ↔ ∅

[B, b, {b}] ↔ ∅.

It remains to take weights of all the sets listed, from the bottom up, and solve

for the unknown weights. We must be careful, however, to distinguish between

identical sets on the left hand sides and right hand sides of the correspondence

relations. For example, consider the correspondence

[B, a, {}] ↔ {a} ∪ [B, a, {}] ∪ [B, b, {bb}].

The weight of the left hand side is simply weight([B, a, {}]), while the latter

two sets on the right hand side are assumed to have had their initial letter a

removed. Thus, the total weight of the right hand side is weight(a) + weight(a) ·

weight([B, a, {}]) + weight(a) · weight([B, b, {bb}]). Solving from the bottom up,
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we find:

weight([B, b, {b}]) = 0

weight([B, a, {a}]) = 0

weight([B, b, {bb}]) = weight(b)

weight([B, b, {}]) = weight(b) + weight(b)weight([B, b, {}])

weight([B, a, {}]) = weight(a) + weight(a)weight([B, a, {}])

+weight(a)weight([B, b, {bb}])

weight([B, ∗, {}]) = weight(empty word) + weight([B, a, {}])

+weight([B, b, {}])

Solving for each left hand side quantity and substituting into the last equation,

which is the equation for weight(M), we find:

weight(M) = 1 +
txa + t2xaxb

1 − txa
+

txb

1 − txb

=
1 − t3xax2

b

1 − txa − txb + t2xaxb
.

We have implemented this modification of the original Goulden–Jackson cluster

method, and the code is available in our accompanying Maple package under the func-

tion name SingleGJ.

5.5 Double Letter Weights

Sometimes we would like to keep track not just of how many times each letter appears

in a word, but also which consecutive letter pairs appear. This could be relevant, for

example, if studying English words, when the pair ‘QU’ is many times more likely to

appear than the pair ‘QB’. In order to keep track of such data, we introduce double

letter weights, that is, variables which represent the occurrence of consecutive letter

pairs.

To include double letter weights, the weight of a marked word (w;S), where w =

w1w2w3 · · ·wk, will now be



113

(−1)|S|tk(xw1 . . . xwk)(xw1,w2xw2,w3 . . . xwk−1,wk).

We will denote this new weight function W ((w;S)). For example, W ((cat; {})) =

t3(xcxaxt)(xc,axa,t). This new weight function does not have all of the nice properties

of weight functions we have seen in the earlier methods. In particular, concatenation

of words no longer corresponds to a simple multiplication of weights. To see why this

is true, consider the word abab as the result of concatenating ab with itself. In this

case, W ((uu; {})) does not equal W ((u; {}))2. W ((ab; {})) = t2(xaxb)(xa,b) and so

W ((ab; {}))2 = t4(xa)2(xb)2(xa,b)2, while W ((abab; {})) = t4(xa)2(xb)2(xa,b)2xb,a.

In general, whenever we concatenate two strings we need to account for the double

letter weight that crosses from one string to the next. We call this the extra factor the

transition weight. The original cluster method involves decomposing M, then using

the fact that a disjoint union of sets corresponds to addition of weight functions, and

concatenation corresponds to multiplication. We can still use this basic principle, but

we must be more careful with concatenation. In particular, whenever we concatenate

strings we will need to know the last letter of the first string and the first letter of the

second string, in order to be able to multiply by the appropriate transition weight. This

forces us to change how M is decomposed.

In the original method, we used the decomposition

M = {empty word} ∪ AM ∪ CM.

This involves concatenation in two places: in the second term we concatenate an arbi-

trary marked word to a single letter, and in the third term we concatenate an arbitrary

marked word to a cluster. To incorporate the transition weights we will need to know

the first letter of an arbitrary marked word, as well as the last letter of an arbitrary

cluster.

We start by splitting up the set of marked words according to their first letter. Let

Ma be the set of marked words that start with a, Mb be the set of marked words that
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start with b, and so on. We have

M = {empty word} ∪
(

⋃

a∈A

Ma

)
.

To find weight(Ma), we examine the different types of marked words that can begin

with the letter a. Such a word may be a itself, or we can peel off the initial a to get a

shorter marked word (assuming the initial a is not part of a cluster), or the word begins

with a cluster that begins with a. Let Ba be the set of forbidden words beginning with

a. We have the decomposition

Ma = a ∪
(

⋃

b∈A

aMb

)

∪
(

⋃

v∈Ba

C[v]M
)

.

Accounting for the fact that the entire marked word may be a cluster, we get

Ma = a ∪
(

⋃

b∈A

aMb

)

∪
(

⋃

v∈Ba

⋃

b∈A

C[v]Mb

)

∪
(

⋃

v∈Ba

C[v]

)

. (5.8)

In this manner we keep track of the first letter of each marked word. It remains to

address concatenation in the cluster generating functions.

Cluster Generating Functions

The decomposition of C[v] in the basic cluster method is based on the idea that if we

have a cluster beginning with a bad word v, the cluster is either just that word, or we

can peel the first word off and get a smaller cluster beginning with a bad word u that

has some non-trivial overlap with v. Thus we have

C[v] = v ∪




⋃

u∈B

⋃

r∈O(v,u)

(v\r)C[u]



 .

Since we are computing this for a specific v, we know what the last letter of v\r

will be. Moreover, we know what the first letter of u will be, so the transition weight

is easy to write down. Taking weights on both sides, we get

W (C[v]) = W ((v; {v})) −




∑

u∈B

∑

r∈O(v,u)

W (v\r) xv|v\r|,v|v\r|+1︸ ︷︷ ︸
transition weight

W (C[u])



 .
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The cluster method is based on computing weights of individual letters and clusters,

then computing weights of marked words in terms of the letters and clusters they

contain. However, computing weights of such concatenations requires the inclusion of

transition weights, since we are incorporating double letter weights into our weight-

enumerators. In order to do this, it becomes necessary to keep track of the last letter of

each cluster. When computing cluster weights, we successively remove leading forbidden

words from a cluster, until we are left with a cluster consisting of only one forbidden

word. By keeping track of its last letter, we are keeping track of the last letter of the

original cluster. Thus, it suffices to record the last letter of single-word clusters only.

We do this by adding a dummy variable to the end of each one-word cluster. This

dummy variable records the last letter of a one-word cluster:

W (C[v]) := W ((v; {v})) Endvk︸ ︷︷ ︸
dummy

−




∑

u∈B

∑

r∈O(v,u)

W (v\r)xv|v\r|,v|v\r|+1
W (C[u])



 .

Now we have a system of linear equations with variables W (C[v]), for v ∈ B, and

we can solve for each of these in terms of the dummy variables Enda, where a ∈ A.

However, we don’t want our final equation in terms of these variables. When we prepend

a cluster to an arbitrary word beginning with a, and wish to take the resulting weight,

we must first replace all occurrences of Endb (for any letter b) with the transition weight

xb,a. This gives us a way to calculate the transition weight directly from the cluster

generating function, allowing us to use equation (5.8). We cannot write down exactly

what the transition weight will be in general, since it will depend on which cluster we

are looking at, but if we let TC denote the transition weight calculated for a specific

cluster, we have

W (Ma) = txa +
∑

b∈A

txaxa,bW (Mb) +




∑

f∈Ba

∑

c∈A

W (C[f ])TC W (Mc)



 +
∑

f∈Ba

W (C[f ]).

Now that we can calculate the W (Ma), we can put them together to find W (M).

The Maple code for the cluster method, implementing the weight enumerator described



116

in this section, can be found in our accompanying Maple package under the function

name DoubleGJ.

Example 5.2. We return to the setup from Example 5.1, redoing the example with

double letter weights. Recall the problem: find the generating function of all words in

the alphabet {a, b} avoiding the forbidden words abb and ba.

Running DoubleGJ to get the generating function and doing a Taylor expansion, we

see the first several terms are:

1 + (xb + xa)t + (xaxa,bxb + x2
axa,a + xb,bx

2
b)t

2 + (x2
axa,axa,bxb + x3

ax
2
a,a + x2

b,bx
3
b)t

3

+ (x3
ax

2
a,axa,bxb + x4

ax
3
a,a + x3

b,bx
4
b)t

4 + (x4
ax

3
a,axa,bxb + x5

ax
4
a,a + x4

b,bx
5
b)t

5 + O(t6).

The coefficient of t4 has terms corresponding to the allowable four-letter words aaab,

aaaa, and bbbb.

Remark 5.1 (Comparison of straightforward recursive approach and Goulden–Jackson

cluster method). The straightforward recursive approach will usually require a system

of at least |A|+|B| equations and unknowns, often more (where A is the alphabet and B

is the set of forbidden words). The Goulden–Jackson method with double letter weights

first solves a system of size |B| (the cluster generating functions), and then a system

of size |A|. Even if the number of equations is roughly the same, by breaking things

apart a bit we would still expect the Goulden–Jackson method to be slightly faster. In

practice, however, the differences seem to be small for small examples. In general, the

best approach depends on the situation. If there are many forbidden words with a lot

of overlap, then Goulden–Jackson may take longer to compute the cluster generating

functions, making it slower. However, if there are fewer, but longer, forbidden words,

the straightforward recursive approach may require many more than |A|+ |B| equations

and therefore take longer.

5.6 Triple Letter Weights

As a further generalization of the original cluster method, in this section we will keep

track of the occurrences of each letter in a word, the occurrences of consecutive letter
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pairs, and the occurrences of consecutive letter triples. We will use a new weight

function, W ′, that accounts for all single letters, letter pairs and letter triples in a

word. For example,

W ′((abcabc; {})) = t6(x2
ax

2
bx

2
c)(x

2
a,bx

2
b,cxc,a)(x2

a,b,cxb,c,axc,a,b).

Note that, as in Section 5.5, we do not have W ′((uv; {})) = W ′((u; {})) · W ′((v; {})).

In fact in the example above we can see that W ′((abcabc; {})) has three extra terms

that do not appear in W ′((abc; {}))2. The term xc,a is from the double letter transi-

tion weight, as described in Section 5.5. The other two extra terms, xb,c,a and xc,a,b,

correspond to the triples that cross between the two factors. These are also considered

transition weights, and our main problem in this section will be modifying our methods

so that it is possible to figure out exactly what these transition weights will be.

For considering double letter weights but not triple letter weights, it is necessary

to know the last letter of the first string and the first letter of the second string when

concatenating, in order to write down the appropriate transition weight. Now that we

are also considering letter triples, we need to know the last two letters of the first string

and the first two letters of the last string in order to get both triple transition weights.

For example, to concatenate abcd and klmn, the transition weights will come from the

strings cdk, dkl, and dk, so in order to find these weights we need the final two letters

of abcd, as well as the first two letters of klmn.

Recall that in our original setup, we decomposed the set of marked words M as

follows:

M = {empty word} ∪ AM ∪ CM.

In this decomposition, we append marked words to individual letters, and marked words

to clusters. In order to include triple letter weights we will need to know the first two

letters of an arbitrary marked word. We will also need the last two letters of an arbitrary

cluster.

In order to keep track of the first two letters of an arbitrary marked word, let Mab
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be the set of marked words beginning ab, and decompose M as follows:

M = {empty word} ∪ S ∪




⋃

a,b∈A

Mab



 .

Here S is the set of one-letter marked words. Taking weights gives us

W ′(M) = 1 +
∑

a∈A

W ′((a; {})) +
∑

a∈A

∑

b∈A

W ′(Mab). (5.9)

To solve for W ′(Mab), we decompose Mab further. A marked word in Mab could

be the two-letter marked word (ab; {}), or the single letter a followed by an arbitrary

marked word beginning with b, or it could consist of a cluster beginning with ab, followed

by an arbitrary marked word. Let Bab ⊂ B be the set of all forbidden words that begin

with ab. We may assume that there are no one-letter forbidden words (in that case we

would simply remove that letter from the alphabet). Thus B is completely partitioned

into the Bab. We have

Mab = {ab} ∪
(

⋃

c∈A

aMbc

)

∪




⋃

v∈Bab

C[v]M



 .

By taking weights on both sides, using the substitution given in equation (5.9), and

adding in the appropriate transition weights when we can, we get

W ′(Mab) = W ′(ab) +
∑

c∈a

W ′(a)xa,bxa,b,c︸ ︷︷ ︸
transition

W ′(Mbc) +
∑

v∈Bab

W ′(C[v])

+
∑

v∈Bab

∑

c∈A

W ′(C[v])TC W ′(c) +
∑

v∈Bab

∑

c,d∈A

W ′(C[v])TC W ′(Mcd) (5.10)

We aren’t yet able to fill in the transition weights TC when they occur at the end

of a cluster. This is the same problem that occurs in the double letter case, and the

solution is the same. Into the cluster generating function we will put the dummy

variables Endab, for all a, b ∈ A. They will go in the same place Enda went, and record

the last two letters of a cluster. Then we can solve for the W ′(Mab) in terms of the

dummy variables and substitute for them when needed.
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We have implemented the cluster method incorporating triple letter weights in the

function TripleGJ. The code can be found in our accompanying Maple package.

Remark 5.2. While it is possible to further generalize this method to include weights

for four-letter strings or higher, we can see even from triple letter weights why this

might be problematic. For one thing, efficiency suffers greatly. Using only double letter

weights leads to a system of |A| linear equations, while including triple letter weights

requires |A|2 equations. In general, including weights of strings up to length k leads to

a system of |A|k−1 linear equations.

Moreover, small forbidden words become increasingly problematic. In the triple

letter case, we relied on the fact that having a one-letter forbidden word is equivalent

to looking at a smaller alphabet. If we wanted to weight four-letter strings, we would

partition the forbidden words based on their first three letters, so two-letter forbidden

words would be a problem. As we include longer and longer subwords in our weight

function, we get more and more short forbidden word exceptions.

5.7 Further Generalizations

In this section we introduce further variations of the original Goulden–Jackson cluster

method. These variations have been implemented in our accompanying Maple package,

and we refer to the variations according to their corresponding function names in our

software.

5.7.1 ProbDoubleGJ, ProbTripleGJ

ProbDoubleGJ and ProbTripleGJ are variants of DoubleGJ and TripleGJ (respec-

tively), that are specifically designed for applications with an underlying Markov chain

structure. We can think of the set of states in a Markov chain as an alphabet, and a

word in that alphabet will correspond to a history of steps in the Markov process. We

move to the next state (or equivalently, add the next letter to our word) with some

probability that depends only on the current state.



120

ProbDoubleGJ returns a generating function for subword avoidance in which each

word is weighted with all of the letter pairs it contains, as well as the single letter weight

for the initial single letter only. For example, weight((cat; {})) = t3(xc)(xc,axa,t). We

can interpret the double letter weight as a conditional probability: xa,b is the probability

we will move to state b, given that we are currently at state a. The initial single letter

probability represents the probability of starting in a given state.

ProbTripleGJ yields a generating function for subword avoidance where each word

is weighted according to the triple letter strings it contains, as well as its initial double

letter pair. The weight of a word of length one is the single letter weight. For example,

weight((abcabc; {})) = t6(xa,b)(x2
a,b,cxb,c,axc,a,b).

We can interpret the triple letter weight xa,b,c as the conditional probability of seeing

c given that the letters immediately preceding it are ab, and the initial double letter

weight as the probability of satisfying a two-state initial condition.

Note that these programs aren’t contained in the original double letter weight and

triple letter weight programs, in the sense that we can’t get all the results here by

a clever choice of the weights in those programs (described in Sections 5.5 and 5.6).

Our goal here is to selectively weight only the single or double letters that show up

at the beginning of a word, whereas in the other programs, we assigned a weight to

every letter in a word, regardless of where it appeared. Nevertheless, with some simple

modifications to the original programs, we can get the desired results.

In order to modify our original double letter weight method (implemented in the

function DoubleGJ), we need only change the weight enumerator used. The new weight

enumerator will consist of the initial single letter weight multiplied by V (w;S), which

we define to be the product of all consecutive letter pair weights. Define V (a; {}) = t

for all single letter words a. For example, V (abba; {}) = xa,bxb,bxb,a. We first solve for

the V (Ma) as in Section 5.5, yielding generating functions that enumerate all words

beginning with a, and weighted only by their double letter components. It remains to

multiply by initial letter weights and put things back together:

f(t) = 1 +
∑

a∈A

xaV (Ma).
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The situation is similar in adapting the triple letter weight method. We define

V ′(w,S), which counts triple letter weights, i.e. V ′(abab; {}) = xa,b,axb,a,b, V ′(ab; {}) =

t2, V ′(a; {}) = t. By solving for the V ′(Mab) as in Section 5.6, we get generating

functions for marked words, weighted only by their triple letter weights. Multiplying

by the initial double letter weight and putting everything together yields:

f(t) = 1 +
∑

a∈A

xat +
∑

a,b∈A

xa,bV
′(Mab).

Example 5.3. Suppose we are given all initial letter probabilities and pairwise tran-

sition probabilities. For example, let’s start with the alphabet {a, b}, initial letter

probabilities xa = 0.75, xb = 0.25, and double letter probabilities xa,a = 0.5, xa,b = 0.5,

xb,a = 0.7, xb,b = 0.3.

Suppose we would like to find the probability of avoiding the forbidden words bbb

and ab. Running ProbDoubleGJ produces the generating function

f(t) = − 1
100

· 100t + 200 + 3t3 + 25t2

t − 2
.

The first few terms of the Taylor expansion are

1 + t +
5
8
t2 +

131
400

t3 +
131
800

t4 + O(t5).

The coefficient of t2 is the probability of seeing one of the three allowable two letter

words (aa, ba, or bb). We can calculate this probability by subtracting the probability

of ab from 1. The probability of ab is the initial probability of a, 0.75, multiplied by

the digraph probability of ab, 0.5. Given a two letter word, we see that the probability

of seeing the forbidden word ab is 3/8, thus the probability of an allowable two letter

word is 5/8.

Example 5.4 (Modeling the English language). We will consider a passage of written

English as a long string over an alphabet of 27 characters: the 26 lowercase letters of the

alphabet, and a character SP that corresponds to a space. To keep things simple, we

ignore punctuation and capitalization. In this example we will use the words character

and string when referring to the model and including the character SP , and letter and

word when referring to English.



122

To use ProbDoubleGJ, we need to know information about the frequencies of single

characters and character pairs. Where this information comes from can have a huge ef-

fect on the accuracy of this model. For details on how we obtained the letter frequencies

used in this example, we refer the reader to Appendix A.

In addition to the table of frequencies, we will need a set of forbidden strings. For

this example, we will use the forbidden string “SP, t, h, e”. This corresponds to typing

a word beginning with “the”, a common word beginning.

Running ProbDoubleGJ outputs a rational function with degree 29 polynomials in

both the numerator and the denominator. We will call this function F (x), and we list

the first several terms of its Taylor expansion:

F (x) = 1 + x + x2 + x3 + 0.9992162308 · x4 + 0.9992162308 · x5 + 0.9991288963 · x6

+ 0.9990341113 · x7 + 0.9989403663 · x8 + 0.9988466147 · x9 + 0.9987529643 · x10

+ 0.9986592740 · x11 + 0.9985656098 · x12 + 0.9984719485 · x13 + 0.9983782981 · x14

+ 0.9982846557 · x15 + 0.9981910224 · x16 + 0.9980973977 · x17 + 0.9980037819 · x18

+ 0.9979101748 · x19 + 0.9978165765 · x20 + 0.9977229870 · x21 + 0.9976294063 · x22

+ 0.9975358344 · x23 + 0.9974422712 · x24 + 0.9973487168 · x25 + O(x26)

The coefficient of xn corresponds to the probability of avoiding “SP, t, h, e” in a length

n string, according to the probability distributions given. It makes sense that the

coefficients of x, x2, and x3 are all one, as the forbidden string is four characters long.

Looking forward in the series, the coefficient of x100 is 0.9903570875, the coefficient of

x200 is 0.9811110978, the coefficient of x300 is 0.9719514288, and the coefficient of x400

is 0.9628772746.

This means that if a monkey is banging keys on a typewriter according to the

probability distributions given, even after 100 keystrokes (including the spacebar) the

monkey only has a 1% chance of typing a word beginning “the...”. This probability

climbs to just under 4% after typing 400 keystrokes.

To compare, and to answer the age old question about monkeys being able to type

Hamlet, according to our model, the probability that a monkey could type “to be or
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not to be” after 300 keystrokes is 5.861724357 · 10−21. More examples are available on

the website, as well as some of the functions used to analyze these long strings of data,

and the dictionary used in this example.

5.7.2 DoubleGJIF

The program DoubleGJIF is a generalization of ProbDoubleGJ. This function returns

the generating function for subword avoidance where each word is weighted by all of its

digraph weights as well as the initial single letter and final single letter weights (the IF

stands for Initial-Final). The implementation allows for setting different values for the

weight of a single letter depending on whether it is the first or the last letter in a word.

If we set all of the final letter probabilities to 1, the program reduces to ProbDoubleGJ.

There is a way to modify ProbDoubleGJ to obtain DoubleGJIF - simply multiply

by the final letter weights as they occur. Of course, locating the end of a word in the

decomposition is a bit more complicated, but it turns out that there are only a few

places where we need to add terms.

Recall that in ProbDoubleGJ we have the equation

f(t) = 1 +
∑

a∈A

xaV (Ma),

and adapted from DoubleGJ we have

V (Ma) = t +
∑

b∈A

txa,bV (Mb) +




∑

f∈Ba

∑

c∈A

V (C[f ])TC V (Mc)



 +
∑

f∈Ba

V (C[f ]),

where V is the weight enumerator that weights words only with the letter pairs they

contain.

Suppose a marked word ends with a single letter (as opposed to a cluster). We

decompose the word by peeling off letters or clusters from the beginning of the word.

Once we arrive at the final letter it will seem as if we are looking at a marked word

consisting of a single letter. Therefore, if we multiply the term in the equation above

that corresponds to a single letter with the appropriate final letter weight, we will have

successfully modified the end of every marked word that ends in a single letter.
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Similarly, in dealing with the marked words that end in a cluster, we need only

change the term in the above sum that corresponds to a marked word made of one

single cluster. In order to implement DoubleGJ we had to locate the end of the clusters,

and so they are now flagged with the dummy variables Enda, a ∈ A. Normally, when we

concatenate the empty word to a cluster (effectively ending a word with a cluster), we

substitute 1 for the terms Enda, for all a ∈ A. Instead, we can substitute the final letter

probabilities for Enda, and we will have successfully modified all the marked words that

end in a cluster. Since every nonempty marked word must end with a single letter or

a cluster, we have added in the final letter probability to every marked word.

5.7.3 DoubleGJst

All of the programs we have discussed so far return a generating function in terms of

t, but in fact any of the programs can be modified so that they return a generating

function in two variables, s and t:

f(s, t) =
∞∑

n=0

n∑

i=0

a(i, n)sitn,

where a(i, n) is the number (or weight, depending on the application) of words of length

n that contain exactly i forbidden subwords (counted with multiplicity). For example,

if A = {a, b} and B = {abb, ba}, then three out of the sixteen four-letter words contain

no subwords in B: aaaa, aaab, and bbbb. Ten of the words contain exactly one forbidden

subword: aaba, aabb, abaa, abab, abbb, baab, baaa, bbaa, bbab, and bbba. Finally, three

of the words contain exactly two forbidden subwords each: baba, babb, abba. Therefore,

we have a(0, 4) = 3, a(1, 4) = 10, and a(2, 4) = 3. Since this accounts for all 16 of the

subwords of length 4, we must have that a(3, 4) = a(4, 4) = 0. Therefore, the coefficient

of t4 in f(s, t) will be 3 + 10s + 3s2. In more complicated programs, a(i, n) would give

the weight of these words, not just the number of them. Not surprisingly, we can get

this generatin! g function by modifying the weight enumerator in any of the above

programs.

Suppose we have a word w that contains k forbidden subwords. The word w will

be the first argument in 2k marked words – one for each subset of the k forbidden
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subwords. In the original Goulden–Jackson method, we multiplied the weight of the

letter in w by (−1)|S|, so that the number of times a word with k forbidden subwords

will be be counted is
k∑

i=0

(−1)i
(

k

i

)
= (1 + (−1))k = 0k,

which is 0 if k > 0 and 1 if k = 0. If we would like to keep track of the number of forbid-

den subwords a word contains, we can simply replace the (−1) in the weight function

with (s − 1). Thus the weight of a marked word (w;S), where w = w1w2w3 · · ·wk, will

be

(s − 1)|S|tk(xw1 . . . xwk)(xw1,w2xw2,w3 . . . xwk−1,wk).

Under this new weight function, the number of times a word containing k subwords will

be counted is
k∑

i=0

(s − 1)i
(

k

i

)
= (1 + (s − 1))k = sk,

as desired. The notion of including an extra variable to count the number of forbidden

word occurrences was introduced in [27]. The functions SingleGJst, DoubleGJst, and

ProbDoubleGJst in our accompanying Maple package are the respective analogues of

SingleGJ, DoubleGJ, and ProbDoubleGJ incorporating the variable s.
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Appendix A

Data for Example 5.4

In order to obtain frequencies for single letter occurrences as well as pairwise letter

frequencies, we analyzed a list of 20, 422 distinct English words that we will refer to

as the dictionary. We created a large transition probability matrix by taking the fre-

quency of a character pair and then dividing by the number of occurrences of the initial

character. For example, the Table A.1 corresponds to the probabilities that any of the

27 characters should follow a:

pr(a,a)=0.00037487, pr(a,b)= 0.044235, pr(a,c)= 0.059454,
pr(a,d)= 0.042885, pr(a,e)= 0.0030739, pr(a,f)= 0.010046
pr(a,g)= 0.033138, pr(a,h)= 0.0039736, pr(a,i)= 0.029090
pr(a,j)= 0.00067476, pr(a,k)= 0.011771, pr(a,l)= 0.11553
pr(a,m)= 0.039061, pr(a,n)=0.14342, pr(a,o)= 0.00074974
pr(a,p)= 0.034638, pr(a,q)= 0.00089969, pr(a,r)=0.12003
pr(a,s)= 0.052856, pr(a,t)=0.14530, pr(a,u)= 0.019793
pr(a,v)= 0.014020, pr(a,w)= 0.0099715, pr(a,x)= 0.0044235
pr(a,y)= 0.015070, pr(a,z)= 0.0044235, pr(a,SP)= 0.041086

Table A.1: The double letter probabilities for pairs beginning with a.

The last value, pr(a, SP ), was computed not from a letter pair in English, but from

the frequency of words in English that end with a. The overall sum is 1, since every

occurrence of the letter a is either followed by another letter, or occurs at the end of a

word.

Relatively speaking, the probabilities for the character a are fairly evenly dis-

tributed. To compare, the corresponding values for q are shown in Table A.2, and

look quite different.

Of the 342 occurrences of the letter q in our dictionary, 341 of them are followed

by the letter u, and exactly one of them is at the end of the word. Scrabble fanatics
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pr(q,a)=0.0, pr(q,b)= 0.0, pr(q,c)= 0.0
pr(q,d)= 0.0, pr(q,e)= 0.0, pr(q,f)= 0.0
pr(q,g)= 0.0, pr(q,h)= 0.0, pr(q,i)= 0.0
pr(q,j)= 0.0, pr(q,k)= 0.0, pr(q,l)= 0.0
pr(q,m)= 0.0, pr(q,n)=0.0, pr(q,o)= 0.0
pr(q,p)= 0.0, pr(q,q)= 0.0, pr(q,r)=0.0
pr(q,s)= 0.0, pr(q,t)=0.0, pr(q,u)= 0.99708
pr(q,v)= 0.0, pr(q,w)= 0.0, pr(q,x)= 0.0
pr(q,y)= 0.0, pr(q,z)= 0.0, pr(q,SP)= 0.0029240

Table A.2: The double letter probabilities for pairs beginning with q.

will no doubt appreciate that our dictionary is incomplete. We further remark that our

model ignores context, and the fact that some words are more common than others in

written English.

The last row of the probability matrix will be the probalities pr(SP, a), pr(SP, b),

etc. These are the initial letter probabilities, in other words, the probability a word

begins with a particular letter. As a default, we set pr(SP, SP ) = 0, ensuring that

between two words there will only be one space. Calculating the single character fre-

quencies is straightforward for the characters that are letters. We set the frequency of

SP according to the number of words in the dictionary, with the idea that between

each word there must be exactly one space.
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