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ABSTRACT OF THE DISSERTATION

The Efficiencies of the Spatial Median and Spatial Sign

Covariance Matrix for Elliptically Symmetric

Distributions

by Andrew F. Magyar

Dissertation Director: David E. Tyler

The spatial median and spatial sign covariance matrix (SSCM) are popularly used ro-

bust alternatives for estimating the location vector and scatter matrix when outliers

are present or it is believed the data arises from some distribution that is not multivari-

ate normal. When the underlying distribution is an elliptical distribution, it has been

observed that these estimators perform better under certain scatter structures. This dis-

sertation is a detailed study of the efficiencies of the spatial median and the SSCM under

the elliptical model, in particular the dependence of their efficiencies on the population

scatter matrix. For the spatial median, it is shown this estimator is asymptotically most

efficient compared to the MLE for the location vector when the population scatter ma-

trix is proportional to the identity matrix. Furthermore, it is possible to construct an

affinely equivariant version of the spatial median that is asymptotically more efficient

than the spatial median. Asymptotic relative efficiencies of these two estimators are

calculated to demonstrate how inefficient the spatial median can be as the underlying

scatter structure becomes more elliptical. A simulation experiment is carried out to

provide evidence of analogous result for finite samples. When the goal is estimating

ii



eigenprojection matrices, it is proven that under the elliptical model the eigenprojec-

tion estimates obtained from the Tyler matrix are asymptotically more efficient than

those corresponding to the SSCM. Calculations of asymptotic relative efficiencies are

presented to demonstrate the loss of efficiency in using eigenprojection estimates of the

SSCM as opposed to the Tyler matrix, particularly when the scatter structure of the

data is far from spherical. To assess the performance of these estimators in the finite

sample setting, the notion of principal angles is used to define a means to compare

eigenprojection estimators. Using this concept, simulations are implemented that sup-

port finite sample results similar to those for the asymptotic case. The implications of

the above results are discussed, particularly in the application of principal component

analysis. Future research directions are then proposed.
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Chapter 1

Preliminary Material

1.1 Introduction

Many procedures in multivariate statistics make the assumption that the data arises

as realizations from some multivariate normal distribution. A multivariate normal

distribution is entirely specified by two parameters, its population mean vector and

population covariance matrix, commonly symbolized by the Greek letters µ and Σ

respectively. Most multivariate methods involve inference on one or both of these

parameters with either one or both being assumed unknown. Thus it is often necessary

to obtain estimates of these parameters from the observed data. The most popularly

used estimators of µ and Σ are the sample mean vector and sample covariance matrix.

Unfortunately, when the data deviates from the assumption of multivariate normality

the reliability of these estimators, and any method that relies on them, is compromised.

For instance, the presence of outliers in the data could have a significant impact on these

estimates; extreme observations tend to pull the sample mean vector away from µ and

towards themselves. Their effect on the sample covariance matrix is double in that they

effect the sample mean vector used in calculating the sample covariance matrix as well

as possibly biasing the estimated variation in their particular direction thus not giving

an accurate estimate of Σ.

One attempt to address these short-comings is to implement methods from non-

parametric statistics. Non-parametric procedures make minimal or no assumptions

about the underlying distribution from which the data arises. Consequently, their

performance does not depend on the underlying distribution hence will still produces

reliable results. However, when the data does indeed come from a multivariate normal

distribution, procedures involving estimation of µ and or Σ with the sample mean and
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sample covariance matrix often drastically out-perform any non-parametric procedure.

Recall that in this situation, the sample mean vector and sample covariance matrix

are functions of the complete, sufficient statistics thus contain the most information

about the parameters µ and Σ. For this reason, alternative approaches have been

taken to develop reliable procedures without sacrificing performance; robust statistics

is one such instance. As opposed to assuming the data is from one particular distri-

bution or discarding distributional assumptions altogether, robust statistics considers

methods developed for a family of distributions. Because of this, these methods will

produce reliable results and perform well for all distributions within the class they were

developed for.

In robust multivariate statistics, considerable attention is given to the study of

procedures under the assumption the data comes from some elliptically symmetric dis-

tribution (or elliptical distribution). This family of distributions is one generalization

of the multivariate normal distribution. The characterization of an elliptical distribu-

tion involves specifying parameters that act as generalizations of µ and Σ; these are

the location vector and scatter matrix respectively and are represented with the same

symbols. Similar to before, one or both of these parameters is assumed unknown and

must be estimated from the data. Several estimators of location and scatter have been

proposed to estimate the location vector and scatter matrix. Perhaps the most natural

are the maximum likelihood estimators (MLE’s) for µ and Σ assuming the data comes

from a particular elliptical distribution. As a extension of these estimators, Maronna

[23] developed M-estimators of location and scatter. Independently, Huber [14] devel-

oped an even broader class of estimators using arguments based on the concept of affine

equivariance.

1.2 Spherically and Elliptically Symmetric Distributions

Elliptically symmetric distributions have played a central role in the development of

robust multivariate statistics by serving as alternatives to the multivariate normal dis-

tribution with which to study the robustness properties of multivariate methods. El-

liptical distributions arise by taking affine transformations of spherically symmetric
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distributions. A multivariate random vector, z ∈ Rd, is said to be spherically symmet-

ric (or spherical) about the origin, 0, if z ∼ Qz for any d × d orthogonal matrix Q.

The distribution of a spherically symmetric random variable will be denoted by G. If

the measure induced by G is absolutely continuous with respect to Lebesgue measure

in Rd, then there exists a probability density function for the random vector z of the

form

Cg,dg
(
‖z‖22

)
= Cg,dg

(
ztz
)

where g is a fixed Lebesgue integrable function in R and Cg,d is a constant depending

on both g and d that ensures that the expression is indeed a density (i.e. integrates to

1) in Rd; that is

Cg,d =

(∫
Rd
g
(
ztz
)
dz

)−1

In this form, the motivation of the name spherically symmetric is obvious in that the

contours of equal density are concentric hyper-spheres in Rd. The vector 0 serves not

only as the point of symmetry for the concentric hyper-spheres, but is also the mean

vector if the distribution has finite first moments. If in addition the distribution has

finite second moments, the covariance matrix of the distribution is proportional to the

d× d identity matrix Id.

If the random vector z ∈ Rd is spherically symmetric, then for any d × d non-

singular matrix, M, and vector µ ∈ Rd, the vector x = Mz+µ is said to be elliptically

distributed in d-dimensions with parameters µ and Σ = MMt. When a random vector

x ∈ Rd has an elliptical distribution it will be notated x ∼ Ed (µ,Σ;G); this distribution

will be referred to as F . If the measure induced by F is absolutely continuous with

respect to Lebesgue measure in Rd, then x has a density, denoted f , that is given by

f (x;µ,Σ, g) = Cg,ddet (Σ)−1/2 g
(
‖x− µ‖2Σ−1

)
= Cg,ddet (Σ)−1/2 g

(
(x− µ)t Σ−1 (x− µ)

)
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where ‖x‖A =
√

xtAx. Analogously, the name elliptically symmetric originates from

the fact the contours of equal density are concentric hyper-ellipsoids in Rd, namely

the hyper-ellipsoid given by the equation (x− µ)t Σ−1 (x− µ) = c. Similarly, the

parameter µ is the location vector and corresponds to the center of symmetry of the

hyper-ellipsoids and also the mean vector when the distribution has finite first moments.

The parameter Σ is referred to as the scatter matrix since it determines the spread and

orientation of the concentric hyper-ellipsoids. In general, the distribution need not have

finite second moments, but in cases where it does Σ is also referred to as the pseudo-

covariance matrix since the covariance matrix of the distribution is then proportional

to Σ. Note, in general the scatter matrix is not well-defined within the class of elliptical

distributions. For a given elliptical distribution, the function g (s) can be replaced with

the function gc (s) = cdg (cs). It is possible to impose restrictions on the function g (s)

to eliminate any ambiguities (such as take the constant c such that gc (s) has covariance

matrix given by Id), however, will not be necessary for aims of this dissertation.

Necessarily, a scatter matrix is symmetric and positive definite. Recall from linear al-

gebra that any symmetric, positive definite matrix has a spectral decomposition unique

up to multiplication of the eigenvectors by ±1. For the matrix Σ, let λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
d

denote its eigenvalues and p1, . . . ,pd denote an orthonormal set of eigenvectors with

pi belonging to the eigenspace corresponding to λ2
i . Let the eigenprojection associated

with the eigenvalue λ2
i be denoted Pi. Recall this is an projection matrix in to the

eigenspace corresponding to the eigenvalue λ2
i , denoted P i. For repeated eigenvalues

(i.e. an eigenvalue with algebraic multiplicity greater than 1), then the dimension of

the corresponding eigenspace (the geometric multiplicity) could also be greater than

1. Suppose λ2
j = λ2

j+1 = · · · = λ2
j+k−1 = λ2. In this is instance the notation Pλ2 and

Pλ2 will be used to denote the corresponding eigenprojection and eigenspace associated

with the eigenvalue λ2. Any pair of orthonormal vectors that span Pλ2 could be taken

for pj , . . . ,pj+k−1. If a given eigenvalue, say λ2
ι , has geometric multiplicity 1, then the

eigenvector pι is uniquely defined up to multiplication by ±1. Defining the matrices

P = [p1, . . . ,pd] and Λ = diag
(
λ2

1, . . . , λ
2
d

)
, then one can write Σ = PΛPt. Using the

spectral decomposition, it is possible to define the unique, symmetric, positive definite
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square root of Σ to be Σ1/2 = PΛ1/2Pt, where Λ1/2 = diag (|λ1| , . . . , |λd|). There is a

useful representation for any spherical distribution that will be utilized on several oc-

casions in the proceeding chapters. Every spherical distribution in Rd has a stochastic

representation of the form z ∼ RGud with RG and ud independent. RG is a non-

negative random variable referred to as the radial component of z and ud is a random

vector that is uniformly distributed on Sd, the unit hyper-sphere in Rd. This implies

that if x ∼ Ed (µ,Σ;G), then it has stochastic representation x ∼ RGMud + µ, where

M is any matrix such that MMt = Σ. One such choice is M = Σ1/2. If x1, . . . ,xn is

an i.i.d. sample from some elliptical distribution Ed (µ,Σ;G), this will be referred to as

the elliptical model.

1.3 Multivariate Estimation and Equivariance

Intimately connected with elliptical distributions is the concept of affine equivariance.

The location vector and scatter matrix for elliptical distributions are affinely equiv-

ariant; that is if x ∼ Ed (µ,Σ;G), then the random vector x∗ = Ax + b will also be

elliptically distributed with x∗ ∼ Ed (µ∗,Σ∗;G) where µ∗ = Aµ + b and Σ∗ = AΣAt

for any non-singular, d× d matrix A and b ∈ Rd. Because of this property, when it is

assumed that data arises from an elliptical distribution, it is natural to consider estima-

tors of µ and Σ that possess the property of affine equivariance. That is, if x1, . . . ,xn

yields estimates of the location vector and scatter matrix µ̂n and Σ̂n respectively, then

the estimators obtained for the transformed data x∗i = Axi + b, i = 1, . . . , n, will be

µ̂∗n = Aµ̂n + b and Σ̂
∗
n = AΣ̂nA

t.

M-estimators are examples of affinely equivariant estimators of location and scat-

ter. However, in [23] the author showed the breakdown points of affinely equivariant

M-estimators is at most 1/ (d+ 1). Consequently, much work has been on the devel-

opment of high breakdown affinely equivariant estimates such as the minimum volume

ellipsoid estimate (MVE) and minimum covariance determinant estimate (MCD) [31],

S-estimates ([9] & [18]), projection based estimates ([10], [25] & [37]), CM-estimates

[16], MM-estimates ([32] & [37]), τ -estimates [19], and one-step versions of these es-

timates [20]. Unfortunately, high breakdown affinely equivariant estimators tend to
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be computationally intensive, especially for large d and n; current algorithms are only

approximate and probabilistic in nature. Another pitfall of affinely equivariant esti-

mators is that when n < d, any affinely equivariant estimate of location and scatter

reduce to the sample mean vector and sample covariance matrix respectively, the latter

being singular in this situation [38]. Consequently, these short-comings have led to the

development of methods that discard the property of affine equivariance.

To the goal of the previous paragraph, one such approach has been to develop

estimators that are only orthogonally equivariant. Estimators of the location vector

and scatter matrix are said to be orthogonally equivariant if the data x1, . . . ,xn yield

estimates µ̂n and Σ̂n respectively, then the estimates obtained for the transformed data

x∗i = Qxi + b, i = 1, . . . , n will be µ̂∗n = Qµ̂n + b and Σ̂
∗
n = QΣ̂nQ

t for any d × d,

orthogonal matrix Q and b ∈ Rd. Orthogonal transformations are special cases of affine

transformations, thus an analogous result holds for the parameters µ and Σ under the

class of elliptical distributions.

When considering the class of elliptical distributions, a benefit of using affinely

equivariant estimators of location and scatter is that the form of the influence function

can be derived by just considering the spherical case. Furthermore, the efficiencies of

such estimators does not depend on either µ or Σ. These properties do not carry over

to estimators that lack the property of affine equivariance. On the contrary, under

elliptical models it has been observed that non-affinely equivariant estimators perform

better under certain scatter structure than for others. Unfortunately, this fact is usu-

ally ignored when deciding which estimator to use. Using these estimators is rather

Procrustean in that they are favoring certain scatter structures over others; to a degree

this is letting the method determine the model.

1.4 The Goal of this Dissertation

As mentioned in section 1.4, the performance of non-affinely equivariant estimators

under the elliptical model is dependent on Σ. One popular method for evaluating the

performance of as estimator is to study the variability with which the estimator measure
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the parameter of interest. While the nature of the parameter dictates the criterion of

interest, it usually involves the variances or variance-covariance matrix of the estimators

being studied. Naturally, the evaluation of the performance necessitates some sort of

benchmark or alternative method that achieves the same goal, thus usually estimators

are studied in reference to competing estimators. The evaluation of estimators via the

prior paradigm is the basis of a notion called efficiency. This dissertation will study the

efficiencies of two popularly used orthogonally equivariant estimators under elliptical

models and their dependencies on Σ. The two considered are the estimators of location

and scatter, the spatial median and the spatial sign covariance matrix (SSCM) respec-

tively. These will be addressed in separate parts; the spatial median being discussed

in Chapter II whereas the SSCM in Chapter III. The concept of efficiency for location

and scatter estimates will be defined more explicitly in the subsequent sections. The

efficiencies will be considered in both the asymptotic and finite sample cases. For both

estimators, under elliptical models it will be shown that these estimators are asymp-

totically most efficient when the underlying scatter structure of the data is spherically

symmetric. Simulation results will be presented in the finite sample case to support an

analogous hypothesis. Technical details of proofs omitted from the body of the disser-

tation will be presented in two separate appendices at the ends of chapters 2 and 3.

The first part of chapter 4 will discuss the implications of the above findings in robust

Principal Component Analysis (PCA), a commonly used dimension reduction technique

with broad applications ([7], [8], [12], [17] & [22]). The dissertation will conclude with

a discussion of future research directions.
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Chapter 2

The Spatial Median

2.1 Introduction

For estimating the location parameter of multivariate data, the spatial median is a

commonly used robust alternative to the sample mean vector when it is believed that the

data being analyzed either contains outlying observations or comes from a distribution

that is not multivariate normal. Since the estimation of the spatial median does not

require an estimate of the scatter matrix in its calculation, the spatial median has the

added benefit that it exists even when the sample size is less than dimension thus making

it a popular estimator of the location parameter for sparse data. However, unlike the

sample mean vector, the spatial median is not affinely equivariant but only equivariant

under translations, rescaling and orthogonal transformations. Because of this property,

the spatial median is commonly used in orthogonally equivariant multivariate methods

that require estimation of a location parameter as an intermediary such as principle

component analysis (PCA). The reason the spatial median lacks the property of affine

equivariance is that in its calculation it down-weighs observations in terms of their

Euclidean distances as opposed to their Mahalanobis distance from the estimated center

of the data. Thus in the the setting where the data is assumed to arise from some

elliptical distribution, one might conjecture that the spatial median is less efficient in

situations where the distribution is not spherical.

This chapter is broken down into the following sections. In section 2, the spatial

median is discussed and it is shown that the estimating equation for it is simply the

MLE for µ when the distribution for the elliptical model is a spherical Laplace (Double

Exponential) distribution. In section 3, the main theoretical results are presented. The

first subsection discusses the concept of relative efficiency and efficiency of a vector
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estimator, both for finite samples and asymptotically. It is then shown that for the

class of elliptically symmetric distributions, the spatial median is asymptotically most

efficient when Σ ∝ Id, that is the distribution is in fact spherically symmetric. In

addition, it is possible for one to construct an affinely equivariant version of the spatial

median that has the same asymptotic distribution as the spatial median at spherical

symmetry but is asymptotically more efficient than the spatial median for all non-

spherical elliptical distributions. Lastly, some calculations are presented to demonstrate

the severity of the asymptotic inefficiencies. Section 4 carries out a simulation study of

the efficiencies of the spatial median for finite samples. The first subsection contains

theoretical results needed to carry out the simulations and describes how they were

implemented. The second subsection contains the results and discussion.

2.2 The Spatial Median

Given a multivariate data set, x1, . . . ,xn, in Rd, the spatial median is the vector µ̃SM

that satisfies the following objective function

µ̃SM = argminη∈Rd

n∑
i=1

‖xi − η‖2 (2.2.1)

Recall in the univariate case, d = 1, above reduces to an expression whose solution

is given by the sample median of the dataset. Consequently, the spatial median can

be thought of as one possible generalization of the median to the multivariate case.

Perhaps the earliest reference of the spatial median was in [42]). In the literature,

the spatial median is also referred to as the median centre or L1 median since the

minimization of the objective function involves minimizing the sum of the L1 norms

to the observations [13]. Brown [5] studied the asymptotic efficiency of the spatial

median for the bivariate normal distribution as well as for standard multivariate normal

distributions in dimensions greater than 2. The objective function in (2.2.1) has no

explicit solution, however, it was shown to be uniquely defined when d > 2 ([15] & [27]).

The spatial median is a special case of a monotonic M-estimate of multivariate location

and thus can be computed via a simple re-iterated least squares (IRLS) algorithm [43].
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In [39], the authors proposed a useful modification to improve the prior algorithm. A

summary of the spatial median can be found in [28]. As mentioned in the introduction,

the spatial median is not affinely equivariant, but only equivariant under orthogonal

transformations, rescaling as well as translations. That is, for any b ∈ Rd, c ∈ R and

d×d orthogonal matrix Q, if the data is transformed as x∗i = cQxi+b for i = 1, . . . , n,

then the spatial median transforms as µ̃∗SM = cQµ̃SM + b.

Referring back to the theory of maximum likelihood estimation, the sample median

is the MLE of the location parameter when the data comes from a Laplace distribution.

Analogously, the spatial median arises as the MLE when the data comes from an ellip-

tical Laplace distribution with Σ ∝ Id. Recall the density function of the multivariate

Laplace distribution with location vector µ and scatter matrix Σ is given by

f (x;µ,Σ, gL) =
2πd/2Γ (d)

Γ (d/2)
det (Σ)−1/2 exp

(
−
√

(x− µ)t Σ−1 (x− µ)

)
Given n observations, the likelihood function is then given by

L (µ,Σ; X, gL) =
n∏
i=1

2πd/2Γ (d)

Γ (d/2)
det (Σ)−1/2 exp

(
−
√

(xi − µ)t Σ−1 (xi − µ)

)

=

(
2πd/2Γ (d)

Γ (d/2)

)n
det (Σ)−1/2 exp

(
−

n∑
i=1

√
(xi − µ)t Σ−1 (xi − µ)

)

If Σ were known a priori, then maximizing the above likelihood entails maximizing the

argument in the exponential, which is the same as minimizing the sum. Hence the the

MLE for µ is

µ̃Σ = argminη∈Rd

n∑
i=1

‖xi − η‖Σ−1

If Σ = σ2Id, then the estimating equation for µ̃σ2Id
would yield the same solution

as equation (2.2.1), that is µ̃σ2Id
= µ̃SM . This characterization will be utilized in

establishing the theoretical results to follow.
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2.3 Theoretical Results

2.3.1 Efficiency and Relative Efficiency of Location Estimators

When sampling from elliptical distributions, it was conjectured in the introduction that

the spatial median is asymptotically most efficient when Σ is proportional to the identity

matrix. The spatial median is intended to give an estimate of the location vector,

thus before proving the aforementioned result it is necessary to discuss the notions of

efficiency and relative efficiency for vector estimators both in the finite sample case and

asymptotically.

Let θ̂n and θ̃n be two different unbiased estimators of the vector parameter θ based

on samples of size n. Let V
θ̂n

= V ar
[
θ̂n

]
and V

θ̃n
= V ar

[
θ̃n

]
, assuming θ̂n and

θ̃n have finite second moments. In this situation, comparing the estimators θ̂n and

θ̃n reduces to a comparison of how they estimate linear combinations of the parameter

being estimated, that is atθ for some a ∈ Rd. The natural estimators for atθ are atθ̂n

and atθ̃n with variances given by V ar
[
atθ̂n

]
= atV

θ̂n
a and V ar

[
atθ̃n

]
= atV

θ̃n
a

respectively. Since atθ is a univariate parameter, convention is to focus on the ratio of

variances, atV
θ̂n

a/atV
θ̃n

a. Comparison of θ̂n to θ̃n involves locating the vector a such

that ratio atV
θ̂n

a/atV
θ̃n

a is maximal or minimal. Results from linear algebra gives

that the value of the ratio at its minimum/maximum is the same as the smallest/largest

eigenvalue of the matrix V−1

θ̃n
V

θ̂n
with the vector a giving the minimum/maximum

being the corresponding eigenvector of the aforementioned matrix.

Comparing efficiencies in the asymptotic sense is analogous to the finite sample case.

For the asymptotic case, assume θ̂n and θ̃n are
√
n consistent, that is

√
n
(
θ̂n − θ

)
→D Normd

(
0, AV

θ̂

)
,
√
n
(
θ̃n − θ

)
→D Normd

(
0, AV

θ̃

)
where AV

θ̂
and AV

θ̃
are the asymptotic variance-covariance matrix of the estimators

θ̂n and θ̃n respectively. For any a ∈ Rd, it follows that

√
n
(
atθ̂n − atθ

)
→D Norm

(
0,atAV

θ̂
a
)
,
√
n
(
atθ̃n − atθ

)
→D Norm

(
0,atAV

θ̃
a
)
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Again the focus will be on the ratio atAV
θ̂
a/atAV

θ̃
a for a ∈ Rd. This value of this

ratio at its minimum/maximum equals the smallest/largest eigenvalue of the matrix

AV −1

θ̃
AV

θ̂
with the vector a being the corresponding eigenvectors of the aforementioned

matrix.

Provided the distribution is such that the asymptotic version of the multivariate

information inequality holds, the MLE of θ is the best one can do, hence one is often

interested in the asymptotic efficiency of an estimator relative to the MLE. The asymp-

totic variance-covariance matrix of the MLE of θ is given by the inverse of the Fisher

information matrix, denoted I (θ). Thus one has AV
θ̂
≥ I−1 (θ) where ≥ refers to

the usual partial ordering of symmetric matrices. Recall for two symmetric matrices,

A and B, ≥ (>) is a partial ordering of these matrices such that A ≥ B (A > B) if

and only if A −B is positive semi-definite (definite). The asymptotic efficiency of an

estimator is defined to be

AE
(
θ̂
)

= maxa∈Rd
atI−1 (θ) a

atAV
θ̂
a

As mentioned above, the value of AE
(
θ̂
)

is given by the largest eigenvalue of the

matrix AV −1

θ̂
I−1 (θ) with a being the corresponding eigenvector.

2.3.2 The Asymptotic Efficiency of the Spatial Median

Let x ∼ Ed (µ,Σ;G) be a random vector that is absolutely continuous with respect to

Lebesgue measure. The Fisher information matrix for µ for a fixed Σ and G is given

by

I (µ; Σ, G) =
1

α (G)
Σ−1

where α (G) = dE
[
u2
(
R2
G

)]−1
is a scalar that depends only on G with u (s) =

−2sg′ (s) /g (s) [30]. Let µ̂ be any estimator of µ. By the asymptotic version of the

information inequality one has that AVµ̂ ≥ I−1 (µ; Σ, G) = α (G) Σ. It is shown in

section 2.5.2 of the appendix that the asymptotic variance-covariance matrix of the

spatial median under the elliptical model is given below as
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AVSM (Σ, G) = β (G) PV (Λ) Pt

where β (G) = 1/E2 [1/RG] and V (Λ) = diag
(
ν2

1 (Λ) , . . . , ν2
d (Λ)

)
with

ν2
i (Λ) =

E

[
λ2i u

2
d,i

‖Λ1/2ud‖22

]
E2

[
λ2i u

2
d,i

‖Λ1/2ud‖32
− 1

‖Λ1/2ud‖2
Id

]
and ud,i representing the ith component of the random unit vector ud.

For the family of elliptical distributions Ed (µ,Σ;G) with fixed G further suppose

that the following conditions are also satisfied

Conditions 3.2.1. (i) E [1/RG] > 0 and (ii) g is bounded.

The following theorem formally states that for any family of elliptical distributions

with fixed G that satisfies the condition given above, the asymptotic efficiency of the

spatial median is uniquely maximized at a spherically symmetric member of this family,

Theorem 3.3.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G) that

satisfies conditions 3.2.1. Then

AE
(
µ̃SM ;σ2Id, G

)
≥ AE (µ̃SM ; Σ, G)

with equality holding if and only if Σ ∝ Id.

Proof. See section 2.5.4 of the appendix.

2.3.3 The Oracle Spatial Median and Affine Spatial Median

As mentioned in the introduction to this chapter, the calculation of the spatial median

involves down-weighing observations in terms of their Euclidean distances as opposed

to their Mahalanobis distance from the estimated center of the data. Consequently,

under the elliptical model one might surmise that an estimator that does the latter



14

would work better in the case when Σ 6∝ Id. The following estimator does just the

above. Consider the situation that Σ is known and not proportional to Id, define,

µ̃OSM = µ̃Σ = argminη∈Rd

n∑
i=1

‖xi − η‖Σ−1

Note that this is the MLE for µ when sampling from an elliptical Laplace distribution

when Σ is known; this follows from the likelihood function computed in section 2.

Denote this estimator as the oracle spatial median since it requires knowing the scatter

matrix of the data a priori. It is shown in section 2.5.3 of the appendix that the

asymptotic variance-covariance matrix of the oracle spatial median is given by

AVµ̃OSM (Σ, G) =
d

(d− 1)2β (G) Σ

As alluded to, one might suspect that for elliptical distributions, this estimator for

µ is more efficient than the spatial median. This is stated in the following theorem,

Theorem 3.4.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G) that

satisfies conditions 3.2.1. Then AVµ̃OSM (Σ, G) < AVµ̃SM (Σ, G) unless Σ ∝ Id in

which case equality holds.

Proof. From the theory of maximum likelihood estimation, for the case when

the particular distribution is the elliptical Laplace distribution, i.e. G = GL, then

AVµ̃OSM (Σ, GL) < AVµ̃SM (Σ, GL) unless µ̃OSM and µ̃SM are asymptotically equiva-

lent. However in the proof of Theorem 3.3.1, when Σ 6∝ Id then AVµ̃SM (Σ, G) 6∝ Σ

whereas AVµ̃OSM (Σ, GL) is. Thus µ̃ASM and µ̃SM have different asymptotic variance-

covariance matrices in this instance, thus strict inequality holds when Σ 6∝ Id. It follows

that

AVµ̃OSM (Σ, GL) =
d

(d− 1)2β (GL) Σ < β (GL) PV (Λ) Pt = AVµ̃SM (Σ, GL)

Canceling β (GL) from both sides gives then multiplying by β (G) gives
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AVµ̃OSM (Σ, G) =
d

(d− 1)2β (G) Σ < β (G) PV (Λ) Pt = AVµ̃SM (Σ, G)

the desired result. When Σ ∝ Id, then µ̃OSM = µ̃SM , thus the two estimators will

have the same asymptotic variance-covariance matrix, hence equality holds. QED

In practice Σ is not known, however, can be estimated from the data. Let Σ̂n be

an affinely equivariant estimate of Σ based on a sample of size n. Replacing Σ with

Σ̂n in the definition of the oracle spatial median yields an affinely equivariant estimate

of the location parameter, that is

µ̃ASM = µ̃
Σ̂n

= argminη∈Rd

n∑
i=1

‖xi − η‖
Σ̂
−1
n

Refer to this estimator as an affinely equivariant spatial median based on the scatter

estimate Σ̂n, or simply an affine spatial median. If the elliptical distribution under

consideration is such that

Σ̂n = Σ +OP

(
n1/2

)
(2.3.1)

then it follows by theorem 3 of [29] that
√
n
(
µ̃

Σ̂n
− µ̃OSM

)
→P 0, thus

√
n
(
µ̃

Σ̂n
− µ

)
→D Normd

(
0, AVµ̃

Σ̂
(Σ, G)

)
where AVµ̃

Σ̂
(Σ, G) = AVµ̃OSM (Σ, G).

This leads to the following corollary to Theorem 3.4.1.

Corollary 3.4.1. Let x1, . . . ,xn be a random sample from Ed (µ,Σ;G) such that

conditions 3.2.1 are satisfied. For any affinely equivariant estimate of scatter Σ̂n, such

that Σ̂n = Σ+OP
(
n1/2

)
, it follows AVµ̃

Σ̂
(G) < AVµ̃SM (G,Σ) unless Σ ∝ Id in which

case equality holds.
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This corollary states that the spatial median is asymptotically inadmissible over the

class of elliptical distributions. Note however for a particular estimator of scatter, this

result holds true only when the conditions in equation (2.3.1) are met. For instance,

if Σ̂n is the sample covariance matrix, then this result holds only if the elliptical dis-

tribution has finite fourth moments. However, for a broad class of M-estimates of

multivariate scatter defined in [23], the condition in equation (2.3.1) holds without any

further assumptions on G.

2.3.4 Asymptotic Efficiency Calculations

In the previous section, it was mentioned that the oracle spatial median and affine

spatial median are asymptotically equivalent provided that Σ̂n = Σ +OP
(
n1/2

)
. Fur-

thermore, under the elliptical model it was shown that both of these were asymptotically

more efficient at estimating the µ than the spatial median. To understand more pre-

cisely how inefficient the spatial median can be compared to either of the aforementioned

estimators under the elliptical model, the asymptotic relative efficiency of the spatial

median relative to the oracle spatial median will be computed under various dimensions

and scatter structures. As will be seen, the values of the asymptotic efficiencies will not

depend on the particular elliptical distribution.

The results in section 3.2 and 3.3 give,

AVµ̃OSM (Σ, G) =
d

(d− 1)2β (G) Σ and AVµ̃SM (Σ, G) = β (G) PV (Λ) Pt

with V (Λ) = diag
(
ν2

1 (Λ) , . . . , ν2
d (Λ)

)
where

ν2
i (Λ) =

E

[
λ2i u

2
d,i

‖Λ1/2ud‖22

]
E2

[
λ2i u

2
d,i

‖Λ1/2ud‖32
− 1

‖Λ1/2ud‖2
Id

]
Since AVµ̃SM (Σ, G) has the same eigenvectors as Σ, the asymptotic relative efficiency

of µ̃SM to µ̃OSM reduces to a comparison of the eigenvalues of AVµ̃OSM (Σ, G) and

AVµ̃SM (Σ, G) corresponding to the same eigenvectors. Thus without loss of generality

one can reduce consideration to the simple case where P = Id. As a consequence of this
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simplification there is a convenient interpretation of the aforementioned comparison

of eigenvalues. For uncorrelated scatter structure, the eigenvalues of the asymptotic

variance-covariance matrix correspond to the variances of the estimated components.

Thus a comparison of the eigenvalues reduces to a comparison of the variability with

which each estimator estimates the components of µ, i.e. the asymptotic relative ef-

ficiency for the components of the spatial median to the oracle spatial median. The

asymptotic relative efficiency of each component can be computed and is equal to

AREi (µ̃SM , µ̃OSM ; Λ, G) =

[
AVµ̃Λ

(Λ, G)
]
i[

AVµ̃SM (Λ, G)
]
i

=
d

(d− 1)2

λ2
i

ν2
i (Λ)

Note that for the expression ν2
i (Λ), one has

ν2
i

(
c2Λ

)
=

E

[
c2λ2i u

2
d,i

‖cΛ1/2ud‖22

]
E2

[
c2λ2i u

2
d,i

‖cΛ1/2ud‖32
− 1

‖cΛ1/2ud‖2
Id

]

=

E

[
c2λ2i u

2
d,i

c2‖Λ1/2ud‖22

]
E2

[
c2λ2i u

2
d,i

c3‖Λ1/2ud‖32
− 1

c‖Λ1/2ud‖2
Id

]

=

E

[
λ2i u

2
d,i

‖Λ1/2ud‖22

]
E2

[
λ2i u

2
d,i

c‖Λ1/2ud‖32
− 1

c‖Λ1/2ud‖2
Id

]

=

E

[
λ2i u

2
d,i

‖Λ1/2ud‖22

]
1
c2
E2

[
λ2i u

2
d,i

‖Λ1/2ud‖32
− 1

‖Λ1/2ud‖2
Id

]
= c2ν2

i (Λ)

thus

AREi
(
c2Λ

)
=

d

(d− 1)2

c2λ2
i

c2ν2
i (Λ)

=
d

(d− 1)2

λ2
i

ν2
i (Λ)

= AREi (Λ)

this implies the size parameter does not matter in the calculation of the asymptotic

relative efficiency. Define ri = λi
λ1

, that is ri is the ratio of the scale of the largest
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Figure 2.1: Asymptotic Relative Efficiencies of the Spatial Median to the Oracle Spatial
Median in R2

component to the scale of the ith component. Consequently, when considering the

asymptotic efficiency of each component one can take the case when the scale of the

largest component is fixed; for simplicity assume it is equal to 1.

Consider the situation Σ = Λ0 = diag(λ2, . . . , λ2︸ ︷︷ ︸
d1

, r2λ2, . . . . . . , r2λ2︸ ︷︷ ︸
d−d1

) where 0 ≤ r ≤

1. Using the results in section 2.5.4 of the appendix, it follows from Lemma 5.2.3 that

the efficiency of the any of the first d1 components is given by

AREd1 (r) =
2F

2
1

(
1
2 ,

d−d1
2 ; d+2

2 ; 1− r2
)

2F1

(
1, d−d12 ; d+2

2 ; 1− r2
)

The efficiency of the last d− d1 components is given by

AREd−d1 (r) =
2F

2
1

(
1
2 ,

d1
2 ; d+2

2 ; 1− r−2
)

2F1

(
1, d12 ; d+2

2 ; 1− r−2
)

where 2F1 (a, b; c; k) = B−1 (b, c− b)
∫ 1

0 x
b−1 (1− x)c−b−1 (1− kx)−a dx is the Gauss hy-

pergeometric function. Starting with two dimensions, plotted in Figure 2.1 are the

efficiencies of each component as a function of r.

For the component associated with the higher scale, the spatial median does not do
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Figure 2.2: Asymptotic Relative Efficiencies of the Spatial Median to the Oracle Spatial
Median in R3: Λ0 = diag

(
1, 1, r2

)
much worse than the oracle spatial median in estimating this component, even in the

most extreme cases when Λ is nearly singular. However, for the component associated

with the smaller scale, the asymptotic relative efficiency of the spatial median to the

oracle spatial median is quite low when r is small indicating the drastic inferiority of

the precision with which the spatial median estimates this component compared to the

oracle spatial median.

For three dimensions, perhaps the most interesting scatter structures are those in

which two of the λ’s are equal, that is λ1 = λ2 or λ2 = λ3. The first case corresponds

to r2 = 1, the efficiency for each of the components as a function of r is given in Figure

2.2,

For the second case, r2 = r3 = r. Presented in Figure 2.3 are the asymptotic

efficiencies of the components as a function of r.

In both cases note that the efficiency for the larger components of the spatial median

relative to the oracle spatial median is still relatively high even for nearly singular

scatter structures. However for the smaller components as the scatter structure gets

more singular, the relative efficiencies diminish drastically. Of the two situations, the

scenario with which λ2 = λ3 is the most deleterious on the relative efficiencies of the
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Figure 2.3: Asymptotic Relative Efficiencies of the Spatial Median to the Oracle Spatial
Median in R3: Λ0 = diag

(
1, r2, r2

)
components.

As the dimension increases, the number of possible scatter structures to consider

greatly increases. The last dimension examined will be d = 10 under the following

scatter structures,

Λ1 = diag(1, r2, r2, r2, r2, r2, r2, r2, r2, r2)

Λ2 = diag(1, 1, r2, r2, r2, r2, r2, r2, r2, r2)

Λ3 = diag(1, 1, 1, 1, 1, r2, r2, r2, r2, r2)

Λ4 = diag(1, 1, 1, 1, 1, 1, 1, 1, r2, r2)

Λ5 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, r2)

In 2 and 3 dimensions, it was always that case the components associated with the

larger scale had higher efficiencies. However, this is not true in general. In fact it is

not only the scale that affects the efficiency of a given component, but also the number

of components that have scales of similar magnitudes. Presented in Figure 2.4 are the

efficiencies of the components for scatter structures given above.
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Figure 2.4: Asymptotic Relative Efficiencies of the Spatial Median to the Oracle Spatial
Median in R10

As the number of components with larger scales increases, the efficiencies of all the

components, not just the ones with the larger scales, improves. This was also the case

in three dimensions. Also of note, for scatter structures Λ1 and Λ2, there are values of

r in which the efficiencies are slightly higher for the components with the smaller scales,

whereas for the rest of the scatter structures Λ2 the efficiencies are always higher for

the components with the larger scales.

2.4 Finite Sample Performance

2.4.1 Finite Sample Theory

For elliptical distributions it was proven that asymptotically, one can always find a

more efficient estimator than the spatial median by using an affinely equivariant ver-

sion of it. In section 3.5, exactly how asymptotically inefficient the spatial median is

compared to the oracle spatial median (or affine spatial median) was considered under

various dimensions and scatter structures. However, for finite samples, working out the

exact distribution of the aforementioned estimators is intractable, thus one must resort

to simulations in order to ascertain the efficiencies. For finite samples, there are two

factors that must be considered when comparing the efficiency of the spatial median

to an affinely equivariant version. The first is how the efficiency is affected by the fact
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one is estimating Σ with an affinely equivariant estimator of it. Asymptotically, this

was shown not to matter provided the estimator of scatter converges in probability

to Σ, however, for finite samples how one estimates Σ will be of consequence. The

second consideration is how much efficiency is lost by sacrificing affine equivariance for

only orthogonal equivariance and does this depend on the particular affine equivariant

estimator of Σ. It will be shown that these two factors can be considered separately.

To this end the following theorem is needed. The proof is relegated to section 2.5.5. of

the appendix.

Theorem 4.1.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G). Let

λ2
〈1〉 > λ2

〈2〉 > · · · > λ2
〈m〉 be the distinct eigenvalues of Σ where m ≤ d is the number of

mutually orthogonal eigenspaces of Σ. For any orthogonally equivariant estimator of µ

based on a sample of size n, µ̂n, with variance-covariance matrix Vn (µ̂) = V ar [µ̂n],

the following are true,

1) Vn (µ̂) and Σ have the same eigenspaces; consequently they have the same eigen-

projections and/or eigenvectors.

2) Let λ2
1,n ≥ λ2

2,n ≥ · · · ≥ λ2
d,n, denote the eigenvalues of Vn (µ̂). It follows the

eigenspace associated with λ2
i,n is the same that is associated with λ2

i . Consequently,

λ2
i,n = λ2

j,n if and only if λ2
i = λ2

j .

Proof. See section 2.5.5 of the appendix.

The above theorem, coupled with affine equivariance arguments, implies that when

sampling from an elliptical distribution, the variance-covariance matrix of the oracle

spatial median, affine spatial median and spatial median have the following forms,

provided they exist,
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Vn (µ̃Σ) = αn (G) Σ, Vn

(
µ̃

Σ̂

)
= β

Σ̂n
(G) Σ, Vn (µ̃SM ) = PVn (Λ;G) Pt

with αn (G) being a positive scalar that depends only on n and G whereas β
Σ̂n

(G) de-

pends on n, G and the choice of scatter estimator, Σ̂n. The matrix Vn (Λ;G) is a diago-

nal and depends on n, G and Λ, that is Vn (Λ;G) = diag (ν1,n (Λ;G) , . . . , νd,n (Λ;G)).

As a consequence of the fact that the variance-covariance matrix of the oracle and

affine spatial median are both proportional to Σ, the finite sample relative efficiency

of µ̃
Σ̂n

to µ̃Σ reduces to a scalar quantity, namely REn
(
µ̃

Σ̂
, µ̃Σ

)
= αn (G) /β

Σ̂n
(G).

Furthermore, since the variance-covariance matrix of the spatial median has the same

eigenvectors as Σ, the finite sample relative efficiency of µ̃SM to either µ̃
Σ̂

to µ̃Σ reduces

to a comparison of eigenvalues of variance-covariance matrices corresponding to the

same eigenvectors. Thus without loss of generality one can reduce consideration to the

simple case where P = Id. This simplification yields the same convenient interpretation

as it did for comparing the asymptotic efficiencies in the previous section, namely the

comparison of the eigenvalues reduces to a comparison of the variability with which

each estimator estimates the components of µ, i.e. the finite sample relative efficiency

for the components of the spatial median to an affine spatial median. This can be

expressed as,

REi,n

(
µ̃SM , µ̃Σ̂n

)
=
β

Σ̂n
(G)λj

νj,n (Λ;G)
=

αn (G)λi
νi,n (Λ;G)

×
β

Σ̂n
(G)

αn (G)
=
REi,n (µ̃SM , µ̃Σ)

REn
(
µ̃

Σ̂
, µ̃Σ

)
for i = 1, . . . , d.

Note that REi,n (µ̃SM , µ̃Σ) only depends on n,Σ and G, but not the choice of

estimator used for Σ. For a fixed n and G, this reflects how the relative efficiency of

the jth components is effected by the fact Σ is not proportional to the identity matrix.

The term REn
(
µ̃

Σ̂
, µ̃Σ

)
depends only on n, Σ̂n and G, thus can be viewed as a measure

of how the relative efficiency of the components is affected by the choice of the scatter

estimate, Σ̂n.

For the simulations, four elliptical distributions will be considered: the normal,

Cauchy, t3 and slash distributions; the reader is referred to [41]. The dimensions being
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considered are d = 2, 3 and 10, with varying scatter structures for each. In two dimen-

sions, the scatter structures considered are (1, 2), (1, 4), (1, 8) and (1, 16). For three

dimensions the scatter structures considered are (3, 4, 5), (1, 4, 7), (1, 4, 4), (1, 8, 8),

(1, 1, 4) and (1, 1, 8). Lastly for ten dimensions, the following scatter matrices were

considered,

Λ1 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 16)

Λ2 = diag(1, 1, 1, 1, 1, 1, 1, 1, 16, 16)

Λ3 = diag(1, 16, 16, 16, 16, 16, 16, 16, 16, 16)

Λ4 = diag(1, 1, 16, 16, 16, 16, 16, 16, 16, 16)

Λ5 = diag(4, 4, 4, 4, 4, 8, 8, 8, 8, 8)

The choices of scatter estimates used for the affine spatial median were the sample

covariance matrix and Dümbgen’s scatter matrix, denoted Cn and Dn respectively.

Dümbgen’s matrix is defined to be the solution of the following estimating equation

Dn = d
∑
i 6=j

(xi − xj) (xi − xj)
t

(xi − xj)
t D−1

n (xi − xj)

For further details on Dümbgen’s scatter matrix, refer to [11].

To obtain an estimate of the value αn (G) associated with the oracle spatial median,

it is only necessary to consider the case Σ = Id since Vn (µ̃Σ) ∝ Σ. For each dimension

and distribution, 10,000 datasets of size n were generated under the spherical distribu-

tion Ed (0, Id;G) and the oracle spatial median was calculated for each dataset. Using

these 10,000 estimates, the variances of each component of the estimate were taken

and then averaged to get an estimate of αn (G). To get β
Σ̂n

, the same process can be

applied to the affine spatial median.

For the spatial median, it was necessary to run simulations for each dimension,

distribution and Σ, in order to obtain an estimate for Vn (Λ;G). Again, 10,000 datasets

of size n were generated from the distribution Ed (0,Σ;G) and the spatial median of the

dataset was calculated for each dataset. The variances of the components of the spatial
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median were calculated to obtain estimates of νi,n (Λ;G). Recall, in situations where

more than one of the diagonal elements of Λ were equal, the corresponding diagonal

elements of Vn (Λ;G) must be equal by Theorem 4.1.1. Hence to get a better estimate

of their common values, the average of the variances of the components for the repeated

elements was taken.

2.4.2 Results

Bivariate Distributions

Bivariate Normal Distributions. The first distribution considered will be the bivari-

ate normal distribution. Displayed in Figure 2.5 are the values of REn (µ̃C, µ̃Σ) and

REn (µ̃D, µ̃Σ). Note that these correspond to the relative efficiency of the affine spatial

medians to the spatial median under a spherical normal distribution, i.e. when Σ ∝ Id.

The values of REn
(
µ̃

Σ̂
, µ̃Σ

)
are displayed in the vertical axis whereas the sample size,

n, is displayed in the horizontal axis.

As can be seen from above, REn (µ̃C, µ̃Σ) is greater than 1 except for the case n = 4.

Contrary to intuition, this suggests that in the situations where the data comes from

a normal distribution in which Σ is known, it is better to estimate the location vector

with an affinely equivariant version of the spatial median using the sample covariance

matrix as an estimate of scatter rather than the known Σ. Note also that for n = 3,

RE3 (µ̃D, µ̃Σ) is greater than 1 as well, in fact it equals RE3 (µ̃C, µ̃Σ). This follows

from the fact that when the sample size is one greater than the dimension of the data

(d = 2 and n = 3 in this case) the only affinely equivariant estimator of the location

vector is in fact the sample mean vector [38]. For the normal, it is known that the

sample mean is the MLE, hence explaining why the relative efficiencies of either affine

spatial median to the oracle spatial median is greater than one when n = 3.

Presented in Figure 2.6 are the simulated values of REj,n (µ̃SM , µ̃Σ) for j = 1, 2,

that is the finite sample relative efficiencies of the spatial median to the oracle spatial

median for the two individual components when sampling from a bivariate normal

distribution with covariance matrices diag (1, 2), diag (1, 4), diag (1, 8) and diag (1, 16).
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Figure 2.5: Finite Sample Efficiencies of Affine Spatial Medians to the Oracle Spatial
Median for the Bivariate Spherical Normal
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Figure 2.6: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Bivariate Normal

Again, the horizontal axes represents the sample size and vertical axes is the relative

efficiency of each component.

As the spread between the scales of the components gets larger, the relative efficien-

cies decrease, particularly for the component corresponding to the smaller scale. Also

of note, for small sample sizes, the efficiencies for both components oscillates drastically

before leveling off. This oscillating behavior is not only present in the bivariate normal

case, but also for other distributions in differing dimensions and scatter structures and

is attributable to the tendency of the spatial median to be one of the data points for odd

sample sizes, see discussion [21]. In all cases as n→∞ the values of REj,n (µ̃SM , µ̃Σ)

tend towards the values of AREj (µ̃SM , µ̃OSM ; Λ, G).
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Figure 2.7: Finite Sample Efficiencies of Affine Spatial Medians to the Oracle Spatial
Median for the Bivariate Spherical t3

Bivariate elliptical t3 distributions. The next distributions being considered are

bivariate elliptical t3 distributions. Like normal distributions, these distribution possess

finite second moments, however, these distributions possess longer tails than normal

distributions. Figure 2.7 presents the values of REn
(
µ̃

Σ̂
, µ̃Σ

)
when using the sample

covariance matrix and Dümbgen’s matrix as estimates of scatter for the affine spatial

median.

Unlike the normal, for the t3 the relative efficiency of the affine spatial median to

the oracle spatial median is less than 1, whether using either the the sample covariance

matrix or Dümbgen’s matrix as estimates of scatter. This agrees with the intuition

that when constructing an affinely equivariant spatial median, it would be better to use

the true population scatter matrix if it were known rather than some estimate of it.

However, with the exception of the case when n = 3 which corresponds to the sample
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Figure 2.8: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Bivariate t3

mean as was previously mentioned, there is little loss in efficiency in estimating Σ.

Additionally, it is better to use an affinely equivariant version of the spatial median

using Dümbgen’s matrix as the estimate of scatter rather than the sample covariance

matrix.

Figure 2.8 presents the values of REj,n (µ̃SM , µ̃Σ) when sampling from a bivariate

elliptical t3 distribution. The same scatter matrices used for the normal cases are

considered.

The same observations that were made about the normal case apply also to the t3

distribution; namely, as the spread between the scales increases, the efficiencies decrease,

particularly for the smaller component. Also, for small sample sizes the efficiencies of

the components oscillate drastically before leveling off to the same asymptotic values
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Figure 2.9: Finite Sample Efficiencies of the Affine Spatial Median using Dümbgen’s
matrix to the Oracle Spatial Median for the Bivariate Spherical Cauchy and Slash

as in the bivariate normal. The only noticeable difference being the bivariate normal

has slightly higher efficiencies for smaller sample sizes.

Bivariate elliptical Cauchy and slash distributions. The last distributions considered

are the bivariate elliptical Cauchy and slash distributions. These serve as examples of

long-tailed distributions that do not possess finite first or second moments. Conse-

quently, it is known that the sample covariance matrix does not converge for these

distributions. Despite this fact, simulations were implemented to calculate the value

of REn (µ̃C, µ̃Σ) and as to be expected were quite unstable. Consequently, only the

values of REn (µ̃D, µ̃Σ) are presented. Figure 2.9 presents the results.

For both distributions, the relative efficiencies seem to approach the asymptotic

value of 1, but considerably slower than the normal or t3 distributions. Further note
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that the smallest sample size presented in Figure 5 is n = 5. Simulations were im-

plemented for the cases n = 3, 4, however the variances of the components for the

estimators were highly variable. For n = 3, the affine spatial median corresponds to the

sample mean, thus will not have have finite second moments if the underlying distribu-

tion of the data does not. The following theorem states when the spatial median, affine

spatial median and oracle spatial median will lack finite second moments, the proof of

which is relegated to the appendix.

Theorem 4.2.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G), with

G absolutely continuous with respect to Lebesgue measure and not possessing finite sec-

ond moments. For n = 3, the spatial median, oracle spatial median and any affinely

equivariant spatial median do not possess finite second moments. This also holds for

the case d = 2 and n = 4.

Proof. See section 2.5.5 of the appendix.

Depicted in Figure 2.10 are the simulated values of REj,n (µ̃SM , µ̃Σ) for j = 1, 2,

for a Cauchy distribution with same scatter matrices considered in the normal and t3

cases. The analogous plots for the slash distribution are almost identical to the Cauchy

case and thus were omitted.

Again, the same trends noted for the normal and t3 distributions are present; the

only difference being that finite sample efficiencies being slightly lower in the Cauchy

and slash distribution before leveling off to the same asymptotic values.

Trivariate Distributions

Like the bivariate case, there were similarities between the trivariate normal and t3 as

well as the trivariate Cauchy and slash. Consequently, only the results for the trivariate

normal and Cauchy will be presented. First presented in Figure 2.11 are the values of

REn
(
µ̃

Σ̂
, µ̃Σ

)
. For the normal, two versions of an affinely equivariant spatial median

were considered, one using the sample covariance matrix as an estimator of scatter
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Figure 2.10: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Bivariate Cauchy
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Figure 2.11: Finite Sample Efficiencies of Affine Spatial Medians to the Oracle Spatial
Median for the Trivariate Spherical Normal and Cauchy

matrix and one using Dümbgen’s matrix. For the Cauchy distribution only Dümbgen’s

matrix was considered since the sample covariance matrix does not converge as noted

in the bivariate case.

Like in the bivariate case, against intuition, the value of REn (µ̃C, µ̃Σ) is greater

than 1, but now for all sample sizes considered. Though the affine spatial median

using the sample covariance matrix has higher efficiency than the one using Dümbgen’s

matrix, in general not much is lost by estimating the population covariance matrix.

This is not the case for small sample sizes from the Cauchy distribution where the

efficiencies are quite low. Naturally the efficiency of the affine spatial median for the

Cauchy is 0 for the case n = 4 since in this case, being one more than the dimension,

the estimator reduces to the sample mean.
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Figure 2.12: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Trivariate Normal and Cauchy - I

Now considering the affect differing scatter structures have one the efficiencies, plot-

ted in Figure 2.12 are the simulated efficiencies for the normal and Cauchy distributions

with scatter structures diag(3, 4, 5) and diag(1, 4, 7).

For both cases, the relative efficiency corresponding to the component with the

smallest scale gets worse as the spread between the scales increases.

The other scatter structures of interest are the situations in which two of the scales

are equal. Plotted in Figure 2.13 and 2.14 are the simulated relative efficiencies for the

scatter matrices diag(1, 4, 4), diag(1, 8, 8), diag(1, 1, 4) and diag(1, 1, 8).

In both panels, as the spread between the scale of the components increases, the

relative efficiencies for the components with the smaller scale diminishes. For the later

two scatter structures, the relative efficiency corresponding to the larger component
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Figure 2.13: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Trivariate Normal and Cauchy - II
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Figure 2.14: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Trivariate Normal and Cauchy - III
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Figure 2.15: Finite Sample Efficiencies of Affine Spatial Medians to the Oracle Spatial
Median for the Spherical Normal and Cauchy in R10

also decreases as the spread between the scales of the components increases.

10 Dimensional Distributions

The last distributions considered will be elliptical distributions in 10 dimensions. Like

in the bivariate and trivariate cases, there were stark similarities between the normal

and t3 distributions as well as between the Cauchy and slash distributions, thus as

before only the results for the normal and Cauchy distribution will be considered.

First considered is REn
(
µ̃

Σ̂
, µ̃Σ

)
. Again two versions of an affinely equivariant spatial

median were considered, one using the sample covariance matrix as an estimator of

scatter matrix and one using Dümbgen’s matrix however, for the elliptical Cauchy

distribution only Dümbgen’s matrix was considered since the sample covariance matrix

does not converge. Presented in Figure 2.15 are the simulated efficiencies. The results
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are similar to the trivariate case, REn (µ̃C, µ̃Σ) > 1 for all sample sizes, however not

much is lost by estimating the scatter matrix with the exception of small sample size

for the Cauchy distribution.

In 10-dimensions there is a greater variety of scatter structures to consider when

determining how they affect the relative efficiency. The following were selected as a

representative collection of interesting scatter matrices.

Λ1 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 16)

Λ2 = diag(1, 1, 1, 1, 1, 1, 1, 1, 16, 16)

Λ3 = diag(1, 16, 16, 16, 16, 16, 16, 16, 16, 16)

Λ4 = diag(1, 1, 16, 16, 16, 16, 16, 16, 16, 16)

Λ5 = diag(4, 4, 4, 4, 4, 8, 8, 8, 8, 8)

Λ6 = diag(1, 1, 1, 4, 4, 4, 4, 8, 8, 8)

Figure 2.16 presents the relative efficiencies for the normal and Cauchy distributions

in 10 dimensions for scatter structures Λ1 and Λ2.

In three dimensions, the components with the smaller scales had the smaller rela-

tive efficiencies; in 10 dimensions this is no longer the case as indicated by the plots

corresponding to Λ1. The magnitudes of the relative efficiencies associated with the

components not only appears to be related to the magnitude of the scales of the com-

ponents, but also the number of components that have similar magnitudes. This is

demonstrated in the plots corresponding to Λ2 in which the relative efficiencies associ-

ated with the components with the larger scales are again the larger.

The other extreme is represented by scatter structures Λ3 and Λ4. The simulated

relative efficiencies for the normal and Cauchy distributions in 10 dimensions with these

scatter structures are presented below in Figure 2.17.

Note that in general the relative efficiencies for scatter structures Λ3 and Λ4 are

higher than for Λ1 and Λ2. The situation where a few of the components scales are
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Figure 2.16: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Normal and Cauchy in R10 - I
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Figure 2.17: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Normal and Cauchy in R10 - II
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Figure 2.18: Finite Sample Efficiencies of the Spatial Median to the Oracle Spatial
Median for the Normal and Cauchy in R10 - III

substantially larger than the rest is more detrimental to the relative efficiencies as

opposed to the situation where a few of the components scales are smaller.

Lastly, scatter structures Λ5 and Λ6 represent intermediate situations to the prior.

In Figure 2.17 are the relative efficiencies for these scatter structures,

In these situations, the components with the smallest relative efficiencies are again

the ones with the smallest scales. However, overall the relative efficiencies are not as

low as they are when a few of the components have larger scales.
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2.5 Appendix

2.5.1 The Influence Function and Asymptotic Variance-Covariance

Matrix of M-estimators of Location

The following is a review of material from chapter 10 of [24]. The general form of an

M-estimator for the parameter θ is given by

θ̂n = argminη∈Sθ

n∑
i=1

ρ (xi,η)

where Sθ is the parameter space. When the parameter corresponds to the location vec-

tor of some elliptical distribution the function ρ (x,η) is of the form ρ
(

(x− η)t Σ̂
−1

n (x− η)
)

,

where Σ̂n is some estimate of the scatter matrix. Additionally, the symbol µ will be

used instead of θ as well as in all analogous definitions. One then has

µ̂n = argminη∈Rd

n∑
i=1

ρ
(

(xi − η)t Σ̂
−1

n (xi − η)
)

If ρ (s) is differentiable, define ψ(s) = ρ′ (s). A necessary condition for the above

equation to hold is

n∑
i=1

ψ
(

(xi − µ̂n)t Σ̂
−1

n (xi − µ̂n)
)

Σ̂
−1

n (xi − µ̂n) = 0

Provided the estimator Σ̂n converges in probability to some nonsingular constant matrix

Σ̂∞ (F ), then the influence function of µ̂ at x for the distribution F is defined as

IFµ̂

(
x;F, Σ̂

)
= −B−1

ψ

(
F, Σ̂

)
ψ
(

(x− µ̂∞ (F ))t Σ̂
−1

∞ (F ) (x− µ̂∞ (F ))
)

(x− µ̂∞ (F ))

where

Bψ

(
F, Σ̂

)
=

∂

∂η
EF

[
ψ
(

(x− η)t Σ̂
−1

∞ (F ) (x− η)
)

(x− η)
]
|η=µ̂∞(F )

If the conditions that allow for the interchanging of the expectation and derivative are

satisfied then one has,
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Bψ

(
F, Σ̂

)
= EF

[
∂

∂η

{
ψ
(

(x− η)t Σ̂
−1

∞ (F ) (x− η)
)

(x− η)
}
|η=µ̂∞(F )

]
=

= EF [−2ψ′
(

(x− µ̂∞ (F ))t Σ̂
−1

∞ (F ) (x− µ̂∞ (F ))
)

Σ̂
−1

∞ (F ) (x− µ̂∞ (F )) (x− µ̂∞ (F ))t

−ψ
(

(x− µ̂∞ (F ))t Σ̂
−1

∞ (F ) (x− µ̂∞ (F ))
)

Id]

It follows the expression for the asymptotic covariance matrix of µ̂ as

AVµ̂

(
F, Σ̂

)
= EF

[
IFµ̂

(
µ̂∞ (F ) ;F, Σ̂

)
IF tµ̂

(
µ̂∞ (F ) ;F, Σ̂

)]
= −B−1

ψ

(
F, Σ̂

)−1
Aψ

(
F, Σ̂

)(
−B−1

ψ

(
F, Σ̂

)−1
)t

where

Aψ

(
F, Σ̂

)
= EF

[
ψ2
(

(x− µ̂∞ (F ))t Σ̂
−1

∞ (x− µ̂∞ (F ))
)

(x− µ̂∞ (F )) (x− µ̂∞ (F ))t
]

2.5.2 The Asymptotic Variance-Covariance of the Spatial Median

Instead of focusing on just the spatial median, this section will prove results for a more

general class of estimators for the location vector. Consider the family of elliptical

power distributions which have density function given by

fp (x;µ,Σ) = Cp,ddet (Σ)−1/2 exp
(
−
(
(x− µ)t Σ−1 (x− µ)

)p)
where p > 0 and Cp,d is a constant that ensures the above expression in indeed a density

(i.e. integrates to 1). Given n observations, the likelihood function is then given by
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L (µ,Σ; X) =
n∏
i=1

Cp,ddet (Σ)−1/2 exp
(
−
(
(xi − µ)t Σ−1 (xi − µ)

)p)
= Cnp,ddet (Σ)−n/2 exp

(
−

n∑
i=1

(
(xi − µ)t Σ−1 (xi − µ)

)p)

If Σ were known a priori, then maximizing the above likelihood entails maximizing the

argument in the exponential, which is the same as minimizing the sum. Hence the the

maximum likelihood estimator µ is

µ̃Σ,p = argminη∈Rd

n∑
i=1

‖xi − η‖2p
Σ−1 (2.5.2.1)

If Σ = σ2Id, then the estimating equation for µ̃σ2Id,p
would reduce to

µ̃σ2Id,p
= µ̃p = argminη∈Rd

n∑
i=1

‖xi − η‖2p2 (2.5.2.2)

For this estimator, Σ̂ is fixed as Id and ρp (x) = xp, thus giving ψp (x) = pxp−1.

Since it is understood that µ̃p is referring to the M-estimator of location with those

particular parameters, the redundancies in the notation utilized in the prior section will

be suppressed with the subscript p indicating that expressions of interest pertain to µ̃p.

We thus have

Ap (F ) = EF

[{
p
((

x− µ̃p,∞
)t

I−1
d

(
x− µ̃p,∞

))p−1
}2 (

x− µ̃p,∞
) (

x− µ̃p,∞
)t]

= EF

[
p2
∥∥x− µ̃p,∞

∥∥4(p−1)

2

(
x− µ̃p,∞

) (
x− µ̃p,∞

)t]

Bp (F ) =
d

dη
EF

[
p
(
(x− η)t I−1

d (x− η)
)p−1

(x− η)
]
|η=µ̃p,∞

=
d

dη
EF

[
p ‖x− η‖2(p−1)

2 (x− η)
]
|η=µ̃p,∞
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Provided the distribution F is well-behaved, one can swap the expectation and deriva-

tive in the expression to obtain,

Bp (F ) = EF

[
d

dη

{
p ‖x− η‖2(p−1)

2 (x− η)
}
|η=µ̃p,∞

]
=

= EF

[
−2p (p− 1)

∥∥x− µ̃p,∞
∥∥2(p−2)

2

(
x− µ̃p,∞

) (
x− µ̃p,∞

)t − p ∥∥x− µ̃p,∞
∥∥2(p−1)

2
Id

]
where obviously ψ′p (x) = p (p− 1)xp−2. Before proceeding, the following lemma per-

taining to orthogonally equivariant estimators of location for radially symmetric distri-

butions is needed. A random vector, x ∈ Rd, is said to be radially symmetric about µ

if (x− µ) ∼ − (x− µ).

Lemma 5.2.1. Let x1, . . . ,xn be a multivariate random sample from some mul-

tivariate distribution with location parameter µ and scatter matrix Σ that is radially

symmetric about µ. Let µ̂n be any orthogonally equivariant estimator based on the sam-

ple of size n of location that converges in probability to a constant vector as n→∞. It

follows that µ̂ is consistent for estimating µ, that is limn→∞µ̂n = µ.

Proof. First consider the case µ = 0 and the scatter structure is uncorrelated (i.e.

Σ = Λ), denote this radially symmetric random vector as y. Consider the orthogonal

matrix −Id; it follows that −Idy = −y ∼ y. For notational convenience, let µ̂∞ (y)

denote the asymptotic value of µ̂ when randomly sampling from the distribution of y.

Exploiting the fact that −Idy and y have the same distribution it follows µ̂∞(−Idy) =

µ̂∞(y). However, orthogonal equivariance implies µ̂∞(−Idy) = −Idµ̂∞(y) = −µ̂∞(y),

thus µ̂∞(y) = −µ̂∞(y) implying µ̂∞(y) = 0. For the general case one can write

x = Py + µ where P is an orthogonal matrix and y is distributed as before. It follows

by orthogonal equivariance of µ̂ that µ̂∞ (x) = µ̂∞ (Py + µ) = Pµ̂∞ (y) + µ̂∞ (µ) =

P0 + µ = µ. QED
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Elliptically symmetric distributions are radially symmetric about their location pa-

rameter and µ̃p is orthogonally equivariant so Lemma (5.2.1) applies. Hence for sim-

plicity one can take µ = 0. Using this gives,

Ap (F ) = EF
[
ψ2
p

(
xtx
)
xxt
]

= EF

[(
p‖x‖2(p−1)

2

)2
xxt
]

= p2EF

[
‖x‖4(p−1)

2 xxt
]

Bp (F ) = EF
[
−2ψ′p

(
xtx
)
xxt − ψp

(
xtx
)
Id
]

= EF

[
−2p (p− 1) ‖x‖2(p−2)

2 xxt − p ‖x‖2(p−1)
2 Id

]
= −pEF

[
2 (p− 1) ‖x‖2(p−2)

2 xxt + ‖x‖2(p−1)
2 Id

]
= −pEF

[
‖x‖2(p−1)

2

(
Id + 2 (p− 1) ‖x‖−2

2 xxt
)]

It is not difficult to see that Bt
p (F ) = Bp (F ). When the random vector x ∼ Ed (µ,Σ;G),

the expressions for AVp (F ) further simplifies. Using the stochastic representation

x ∼ RGΣ1/2ud, gives

EF

[
‖x‖4(p−1)

2 xxt
]

= EF

[∥∥∥RGΣ1/2ud

∥∥∥4(p−1)

2
RGΣ1/2ud

(
RGΣ1/2ud

)t]
= EF

[
R

2(2p−1)
G

∥∥∥Σ1/2ud

∥∥∥4(p−1)

2
Σ1/2ud

(
Σ1/2ud

)t]
= −pEF

[
2 (p− 1) ‖x‖2(p−2)

2 xxt + ‖x‖2(p−1)
2 Id

]
= E

[
R

2(2p−1)
G

]
E

[∥∥∥Σ1/2ud

∥∥∥4(p−1)

2
Σ1/2ud

(
Σ1/2ud

)t]

and

EF

[
‖x‖2(p−1)

2

(
Id + 2 (p− 1) ‖x‖−2

2 xxt
)]

=

= EF

[∥∥∥RGΣ1/2ud

∥∥∥2(p−1)

2

(
Id + 2 (p− 1)

∥∥∥RGΣ1/2ud

∥∥∥−2

2
RGΣ1/2ud

(
RGΣ1/2ud

)t)]
=
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= EF

[
R

2(p−1)
G

∥∥∥Σ1/2ud

∥∥∥2(p−1)

2

(
Id + 2 (p− 1)

∥∥∥Σ1/2ud

∥∥∥−2

2
Σ1/2ud

(
Σ1/2ud

)t)]
=

= E
[
R

2(p−1)
G

]
E

[∥∥∥Σ1/2ud

∥∥∥2(p−1)

2

(
Id + 2 (p− 1)

∥∥∥Σ1/2ud

∥∥∥−2

2
Σ1/2ud

(
Σ1/2ud

)t)]
Using the unique symmetric positive definite square root Σ1/2 = PΛ1/2Pt and the facts

Ptud ∼ ud and ‖Px‖2 = ‖x‖2 for any orthogonal matrix P, it is not difficult to see

that

E

[∥∥∥Σ1/2ud

∥∥∥4(p−1)

2
Σ1/2ud

(
Σ1/2ud

)t]
= PE

[∥∥∥Λ1/2ud

∥∥∥4(p−1)

2
Λ1/2ud

(
Λ1/2ud

)t]
Pt

and

E

[∥∥∥Σ1/2ud

∥∥∥2(p−1)

2

(
Id + 2 (p− 1)

∥∥∥Σ1/2ud

∥∥∥−2

2
Σ1/2ud

(
Σ1/2ud

)t)]
=

= PE

[∥∥∥Λ1/2ud

∥∥∥2(p−1)

2

(
Id + 2 (p− 1)

∥∥∥Λ1/2ud

∥∥∥−2

2
Λ1/2ud

(
Λ1/2ud

)t)]
Pt

Consequently, the asymptotic covariance matrix of µ̃p under elliptical distributions will

be denoted AVp (Σ, G) because it depends on them in the following manner

AVp (Σ, G) = βp (G) PVp (Λ) Pt

where βp (G) = E
[
R

2(2p−1)
G

]
/E2

[
R

2(p−1)
G

]
and Vp (Λ) = B−1

p (Λ)Ap (Λ)B−1
p (Λ) with

Ap (Λ) = E

[∥∥∥Λ1/2ud

∥∥∥4(p−1)

2
Λ1/2ud

(
Λ1/2ud

)t]
and

Bp (Λ) = E

[∥∥∥Λ1/2ud

∥∥∥2(p−1)

2

(
Id + 2 (p− 1)

∥∥∥Λ1/2ud

∥∥∥−2

2
Λ1/2ud

(
Λ1/2ud

)t)]
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2.5.3 The Asymptotic Variance-Covariance of the Oracle Spatial Me-

dian

While the same machinery that was introduced in the prior two sections could be uti-

lized to derive the asymptotic variance-covariance matrix of the oracle spatial median,

an alternative approach is presented here. Again a generalization of the oracle spa-

tial median will be considered, namely an oracle estimator of location obtained from

the family of elliptical power distributions introduced in section 2.5.2. Recall for this

distribution, the MLE for µ for the case when Σ is known is given by the equation

(2.5.2.1). Define the data matrix X = (x1, . . . ,xn)t where the rows come from some el-

liptical distribution Ed (µ,Σ;G). Consider the following transformation, zi = Σ−1/2xi

for i = 1, . . . , n. Since µ and Σ are affinely equivariant under the class of elliptical

distribution, it follows the row of the data matrix Z = (z1, . . . , zn)t come from the

elliptical distribution Ed
(
Σ−1/2µ, Id;G

)
. For µ̃Σ,p note that

µ̃Σ,p = argminη∈Rd

n∑
i=1

‖xi − η‖2p
Σ−1

= argminη∈Rd

n∑
i=1

(
(xi − η)t Σ−1 (xi − η)

)p
= argminη∈Rd

n∑
i=1

(
(xi − η)t Σ−1/2Σ1/2Σ−1Σ1/2Σ−1/2 (xi − η)

)p
= argminη∈Rd

n∑
i=1

((
Σ−1/2xi −Σ−1/2η

)t
Id

(
Σ−1/2xi −Σ−1/2η

))p
= argminη∈Rd

n∑
i=1

((
zi −Σ−1/2η

)t
Id

(
zi −Σ−1/2η

))p
= argminη∈Rd

n∑
i=1

∥∥∥zi −Σ−1/2η
∥∥∥2p

Σ−1

Define ζ = Σ−1/2η, thus η = Σ1/2ζ.

µ̃Σ,p = argminΣ1/2ζ∈Rd

n∑
i=1

‖zi − ζ‖2p2
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Since the matrix Σ1/2 is nonsingular, the transformation η → Σ1/2ζ is a bijection from

Rd to Rd. Thus minimizing over η is the same as minimizing over ζ = Σ−1/2η. This

gives,

µ̃Σ,p = Σ1/2argminζ∈Rd

n∑
i=1

‖zi − ζ‖2p2

Thus to ascertain µ̃Σ,p one uses the inverse of the square root of the known scatter

matrix to transform the data. One then finds µ̃p for the transformed data, and then

transforms it back using the square root of the known scatter matrix to arrive at µ̃Σ,p.

This method is sometimes referred to as the transform-retransform method.

Not only does the previous fact provide a convenient computational method for

finding µ̃Σ,p, but it also provides a quick way to ascertain both the finite sample and

asymptotic variance-covariance matrix of µ̃Σ,p under elliptical distributions. Let the

estimate of µ̃Σ,p based on the data matrix X be denoted µ̃Σ,p (X), it was shown above

that µ̃Σ,p (X) = Σ1/2µ̃p (Z), thus

V ar
[
µ̃Σ,p (X)

]
= V ar

[
Σ1/2µ̃p (Z)

]
= Σ1/2V ar

[
µ̃p (Z)

] (
Σ1/2

)t
This will also hold for the asymptotic covariance matrix,

AVµ̃Σ,p
(Σ, G) = Σ1/2AVµ̃p (Id, G)

(
Σ1/2

)t
This gives the following formula

AVµ̃Σ,p
(Σ, G) = Σ1/2βp (G)Vp (Id) Σ1/2

with V (Id) = B−1
p (Id)Ap (Id)B−1

p (Id) where

Ap (Id) = E

‖ud‖4(p−1)
2︸ ︷︷ ︸

=1

udu
t
d

 = E
[
udu

t
d

]
and
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Bp (Id) = E

‖ud‖2(p−1)
2︸ ︷︷ ︸

=1

Id + 2 (p− 1) ‖ud‖−2
2︸ ︷︷ ︸

=1

udu
t
d

 = E
[
Id + 2 (p− 1) udu

t
d

]
The above follow since ‖ud‖2 = 1. The matrices Ap (Id) and Bp (Id) are calcula-

ble. First it will be shown the matrix E
[
udu

t
d

]
is proportional to Id. Define uιd =

(ud,1, . . . ,−ud,ι, . . . , ud,d), where ud,i are the components of the unit random vector ud.

It follows uιd ∼ ud. Thus for the matrix E
[
udu

t
d

]
, the (ι, i)th component of this matrix

is E [ud,ιud,i]. uιd ∼ ud implies ud,ιud,i ∼ −ud,ιud,i, thus E
[
ud,ιu

t
d,i

]
= E [−ud,ιud,i] =

−E [ud,ιud,i]. Hence it must be the case E [ud,ιud,i] = 0. Since ι and i are arbi-

trary, it follows that every off-diagonal element of E [ud,ιud,i] is 0. Furthermore, since

ud,i ∼ ud,j is spherically symmetric, it follows E [ud,iud,i] = E [ud,jud,j ] for all i, j, thus

E
[
udu

t
d

]
∝ Id. Write E

[
udu

t
d

]
= ξId; it is desired to get at the value of ξ. Taking the

trace of E
[
ud (ud)

t] gives,

tr
(
E
[
udu

t
d

])
= E

[
tr
(
udu

t
d

)]
= E

[
tr
(
utdud

)]
= 1

but

1 = tr
(
E
[
udu

t
d

])
= tr (ξId) = ξ × d

thus ξ = 1/d. This implies that Ap (Id) = 1
dId and Bp (Id) = Id + 2p−1

d Id = d+2(p−1)
d Id.

It then follows

Vp (Id) =

(
d+ 2 (p− 1)

d
Id

)−1 1

d
Id

(
d+ 2 (p− 1)

d
Id

)−1

=
d

(d+ 2 (p− 1))2 Id
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2.5.4 Proof of Theorem 3.3.1

Presented in this section are details for the proof of Theorem 3.3.1. To this end, several

lemmas that are needed are first proved.

Lemma 5.2.2. Suppose x ∼ Ed (µ,Λ;G), let AEι (λ1, . . . , λd) denote the asymp-

totic efficiency associated with estimating the ιth component of the location vector with

µ̃p. It follows that that only place where this multivariate function can have a stationary

point is the when λi = λ for i 6= ι.

Proof. Without loss of generality one can consider the case µ = 0. The asymptotic

covariance matrix of the estimator µ̃p when the scatter matrix is diagonal is given by

AVp (Λ, G) = βp (G)Vp (Λ)

where βp (G) and Vp (Λ) are given in section 2.5.2. The only part of this expression

that depends on the scatter matrix is Vp (Λ), which is a diagonal matrix. An explicit

expression for the asymptotic efficiency of ιth component of µ̃p is given as

AEι (λ1, . . . , λd) =
α (G)

βp (G)

E2

[∥∥∥Λ1/2ud

∥∥∥2(p−1)

2
+ 2 (p− 1)

∥∥∥Λ1/2ud

∥∥∥2(p−2)

2
λ2
ιu

2
d,ι

]
E

[∥∥∥Λ1/2ud

∥∥∥4(p−1)

2
λ2
ιu

2
d,ι

] λ2
ι

For notational convenience, define the functions

C (λ1, . . . , λd) = E

[∥∥∥Λ1/2ud

∥∥∥2(p−1)

2

]
=

∫
Sd

Γ (d/2)

2πd/2
(
λ2

1u
2
d,1 + · · ·+ λ2

du
2
d,d

)p−1
dud

Nι (λ1, . . . , λd) = E

[∥∥∥Λ1/2ud

∥∥∥2(p−2)

2
λ2
ιu

2
d,ι

]
=

∫
Sd

Γ (d/2)

2πd/2
(
λ2

1u
2
d,1 + · · ·+ λ2

du
2
d,d

)p−2
λ2
ιu

2
d,ιdud
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Dι (λ1, . . . , λd) = E

[∥∥∥Λ1/2ud

∥∥∥4(p−1)

2
λ2
ιu

2
d,ι

]
=

∫
Sd

Γ (d/2)

2πd/2
(
λ2

1u
2
d,1 + · · ·+ λ2

du
2
d,d

)2(p−1)
λ2
ιu

2
d,ιdud

The function C (λ1, . . . , λd) is symmetric in all of its arguments, whereas the functions

Nι (λ1, . . . , λd) and Dι (λ1, . . . , λd) are symmetric in every argument with the exceptions

of λι. Using these expressions one has

AEι (λ1, . . . , λd) =
α (G)

βp (G)

(C (λ1, . . . , λd) + 2 (p− 1)Nι (λ1, . . . , λd))
2

Dι (λ1, . . . , λd)
λ2
ι

It follows that AEι (λ1, . . . , λd) is symmetric in every argument except λι. It is desired

to get the partial derivatives of AEι (λ1, . . . , λd); to this end the partial derivatives of

the functions Nι (λ1, . . . , λd), C (λ1, . . . , λd) and Dι (λ1, . . . , λd) are needed. One can

verify the conditions necessary in order to interchange the partial derivative and integral

are indeed satisfied with these functions. Suppressing the dependence on the λ’s one

has

∂C

∂λi
= 2 (p− 1)

∫
Sd

Γ (d/2)

2πd/2
(
λ2

1u
2
d,1 + · · ·+ λ2

du
2
d,d

)p−2
λiu

2
d,idud

= 2 (p− 1)λiE

[∥∥∥Λ1/2ud

∥∥∥2(p−2)

2
u2
d,i

]

∂Nι

∂λi
= 2 (p− 2)

∫
Sd

Γ (d/2)

2πd/2
(
λ2

1u
2
d,1 + · · ·+ λ2

du
2
d,d

)p−3
λiu

2
d,iλ

2
ιu

2
d,ιdud

= 2 (p− 2)λiE

[∥∥∥Λ1/2ud

∥∥∥2(p−3)

2
u2
d,iλ

2
ιu

2
d,ι

]
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∂Dι

∂λi
= 4 (p− 1)

∫
Sd

Γ (d/2)

2πd/2
(
λ2

1u
2
d,1 + · · ·+ λ2

du
2
d,d

)2p−3
λiu

2
d,iλ

2
ιu

2
d,ιdud

= 4 (p− 1)λiE

[∥∥∥Λ1/2ud

∥∥∥2(2p−3)

2
u2
d,iλ

2
ιu

2
d,ι

]

The partial ∂C
∂λi

is symmetric in every argument except λi whereas ∂Nι
∂λi

and ∂Dι
∂λi

are

symmetric in every argument except λi and λι. Using these gives

∂AEι
∂λi

=
α (G)

βp (G)

2Dι (C + 2 (p− 1)Nι)
(
∂C
∂λi

+ 2 (p− 1) ∂Nι∂λi

)
− (C + 2 (p− 1)Nι)

2 ∂Dι
∂λi

D2
ι

λ2
ι

=
α (G)

βp (G)
λ2
ι

(C + 2 (p− 1)Nι)

D2
ι

[
2Dι

(
∂C

∂λi
+ 2 (p− 1)

∂Nι

∂λi

)
− (C + 2 (p− 1)Nι)

∂Dι

∂λi

]

which is consequently symmetric in every argument except λi and λι. Write the brack-

eted terms as 4 (p− 1)λiFι,i (λ1, . . . , λd) where

Fι,i = E

[∥∥∥Λ1/2ud

∥∥∥4(p−1)

2
λ2
ιu

2
d,ι

](
E

[∥∥∥Λ1/2ud

∥∥∥2(p−2)

2
u2
d,i

]
+ 2 (p− 2)E

[∥∥∥Λ1/2ud

∥∥∥2(p−3)

2
u2
d,iλ

2
ιu

2
d,ι

])

−E
[∥∥∥Λ1/2ud

∥∥∥2(2p−3)

2
u2
d,iλ

2
ιu

2
d,ι

](
E

[∥∥∥Λ1/2ud

∥∥∥2(p−1)

2

]
+ 2 (p− 1)E

[∥∥∥Λ1/2ud

∥∥∥2(p−2)

2
λ2
ιu

2
d,ι

])
Without loss of generality, take the case ι = d. Then one has,

∂AEd
∂λi

= 4 (p− 1)
α (G)

βp (G)
λiλ

2
d

(C + 2 (p− 1)Nd)

D2
d

Fd,i

Let (1) , . . . , (d− 1) be a permutation of of the indices 1, . . . , d − 1. Because of the

symmetries of the function AEd, it follows for c 6= 0, if ∂
∂λi

AEd
(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

)
= c,

then ∂
∂λ(i)

AEd

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

)
= c. Canceling out the expression 4 (p− 1) α(G)

βp(G)

because it does not depend on the λ’s gives

λ∗iλ
∗2
d

(
C
(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

)
− 2 (p− 1)Nd

(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

))
D2
d

(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

) Fi
(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

)
= c
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and

λ∗(i)λ
∗2
d

(
C
(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

)
− 2 (p− 1)Dd

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

))
D2
d

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

) F(i)

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

)
= c

Note that

λ∗2d

(
C
(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

)
− 2 (p− 1)Dd

(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

))
D2
d

(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

)

= λ∗2d

(
C
(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

)
− 2 (p− 1)Dd

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

))
D2
d

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

)
and

Fd,i
(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

)
= Fd,(i)

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

)
The first equality follows since all the arguments are symmetric in every argument

except λd. For the second note that Fd,i is symmetric in every argument except

λi and λd. However Fd,i and Fd,(i) involve derivatives with respect to λi and λ(i)

respectively, thus the two terms are equal. Upon canceling terms, it follows that

∂
∂λi

AEd
(
λ∗1, . . . , λ

∗
d−1, λ

∗
d

)
= c = ∂

∂λ(i)
AEd

(
λ∗(1), . . . , λ

∗
(d−1), λ

∗
d

)
implies λi = λ(i).

The case for c = 0 needs more care since one cannot cancel the parts of the expression

that equal 0. However, a slight modification will give the desired result. Consider a

sequence λ∗i (n) such that limn→∞ = λ∗i (n) = λ∗i . We thus have

limn→∞
∂

∂λi
AEd

(
λ∗1, . . . , λ

∗
i (n) , . . . λ∗d−1, λ

∗
d

)
= 0

At each point along this sequence it was shown

∂

∂λi
AEd

(
λ∗1, . . . , λ

∗
i (n) , . . . λ∗d−1, λ

∗
d

)
=

∂

∂λ(i)
AEd

(
λ∗(1), . . . , λ

∗
(i) (n) , . . . λ∗(d−1), λ

∗
d

)
By the previous arguments we have λ∗i (n) = λ∗(i) (n) for every n. However the functions

λd, (C − 2 (p− 1)Nd) /D
2
d, λi and Fd,i are all continuous functions of the λ’s. Thus if
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limn→∞λ
∗
i (n) 6= limn→∞λ

∗
(i) (n), it would contradict the continuity of one of the above

functions. Hence it must be the case λ∗i = λ∗(i). The main result follows by repeating

the above arguments. QED

Lemma 5.2.3 Let x ∼ Ed (µ,Λ;G) where Λ = diag

κ2λ2, · · · , κ2λ2︸ ︷︷ ︸
d1

, λ2, · · · , λ2︸ ︷︷ ︸
d−d1

.

Under this scatter structure, the ARE’s of µ̃p to µ̃Λ,p for estimating the components of

µ is given by

AREd1 (κ) =
2F

2
1

(
− (p− 1) , d−d12 ; d+2

2 ; 1− κ−2
)

2F1

(
−2 (p− 1) , d−d12 ; d+2

2 ; 1− κ−2
)

for the first d1 components and

AREd−d1 (κ) =
2F

2
1

(
− (p− 1) , d12 ; d+2

2 ; 1− κ2
)

2F1

(
−2 (p− 1) , d12 ; d+2

2 ; 1− κ2
)

for the last d− d1 components where

2F1 (a, b; c; k) = B−1 (b, c− b)
∫ 1

0 x
b−1 (1− x)c−b−1 (1− kx)−a dx is the Gauss hyperge-

ometric function.

Proof. Recall the expression for the ARE of µ̃p to the µ̃Λ,p for estimating the ith

component of µ is given by

AREi
(
µ̃p, µ̃Λ,p; Λ, G

)
=

[
AVµ̃Λ,p

(G)
]
i[

AVµ̃p (G,Λ)
]
i

=
d

(d+ 2 (p− 1))2

λ2
i

ν2
p,i (Λ)

where

ν2
p,i (Λ) =

E

[∥∥∥Λ 1
2 ud

∥∥∥4(p−1)

2
λ2
iu

2
d,i

]
E2

[∥∥∥Λ 1
2 ud

∥∥∥2(p−1)

2

(
1 + 2 (p− 1)

∥∥∥Λ 1
2 ud

∥∥∥−2

2
λ2
iu

2
d,i

)]

=

E

[∥∥∥Λ 1
2 ud

∥∥∥4(p−1)

2
λ2
iu

2
d,i

]
E2

[∥∥∥Λ 1
2 ud

∥∥∥2(p−1)

2
+ 2 (p− 1)

∥∥∥Λ 1
2 ud

∥∥∥2(p−2)

2
λ2
iu

2
d,i

]
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Define U1 = u2
d,1 + · · ·+ u2

d,d1
, U2 = u2

d,d1+1 + · · ·+ u2
d,d and U = κ2U1 + U2. The ARE

of any of the last (d− d1) components of µ̃p to µ̃Λ,p can be written as

AREd−d1 (κ) =
d

(d+ 2 (p− 1))2

E2
[(
λ2U

)p−1
+ 2 (p− 1)

(
λ2U

)p−2
λ2u2

d,d

]
E
[
(λ2U)2(p−1) λ2u2

d,d

] λ2

=
d

(d+ 2 (p− 1))2

E2
[
Up−1 + 2 (p− 1)Up−2u2

d,d

]
E
[
U2(p−1)u2

d,d

]

Note that U2 = 1− U1. By exchangeability,

E
[
u2
d,dh (U)

]
=

1

d− d1

d∑
j=d1+1

E
[
u2
d,jh (U)

]
=

1

d− d1
E [U2h (U)] =

1

d− d1
E [(1− U1)h (U)]

Also U = 1− kU1 where k = 1− κ2. Substituting these identities above gives

AREd−d1 (κ) =
d

(d+ 2 (p− 1))2

E2
[
(1− kU1)p−1 + 2 p−1

d−d1 (1− U1) (1− kU1)p−2
]

1
d−d1E

[
(1− U1) (1− kU1)2(p−1)

]
Since the vector ud is uniformly distributed on Sd, it follows that

U1 ∼ Beta (d1/2, (d− d1) /2) and U2 ∼ Beta ((d− d1) /2, d1/2). Thus for the expecta-

tions one has

E
[
(1− U1)s (1− kU1)−t

]
=

1

B
(
d1
2 ,

d−d1
2

) ∫ 1

0
x
d1
2
−1 (1− x)

d−d1
2

+s−1 (1− kx)−t dx

=
1

B
(
d1
2 ,

d−d1
2

) ∫ 1

0
x
d1
2
−1 (1− x)

d+2s
2
− d1

2
−1 (1− kx)−t dx

=
B
(
d1
2 ,

d+2s
2 − d1

2

)
B
(
d1
2 ,

d−d1
2

) 2F1

(
t,
d1

2
;
d+ 2s

2
; k

)

where B (a, b) = Γ (a) Γ (b) /Γ (a+ b) is the Beta function. The integral representation

of the Gauss hypergeometric function is valid for < (c) > < (b) > 0 so the last equality

is justified. These facts then give
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E
[
(1− kU1)p−1

]
=2F1

(
− (p− 1) ,

d1

2
;
d

2
; k

)

E
[
(1− U1) (1− kU1)p−2

]
=

B
(
d1
2 ,

d+2
2 −

d1
2

)
B
(
d1
2 ,

d−d1
2

) 2F1

(
− (p− 2) ,

d1

2
;
d+ 2

2
; k

)

=
Γ
(
d1
2

)
Γ
(
d−d1+2

2

)
Γ
(
d
2

)
Γ
(
d+2

2

)
Γ
(
d1
2

)
Γ
(
d−d1

2

)2F1

(
− (p− 2) ,

d1

2
;
d+ 2

2
; k

)

=

d−d1
2 Γ

(
d−d1

2

)
Γ
(
d
2

)
d
2Γ
(
d
2

)
Γ
(
d−d1

2

) 2F1

(
− (p− 2) ,

d1

2
;
d+ 2

2
; k

)

=
d− d1

d
2F1

(
− (p− 2) ,

d1

2
;
d+ 2

2
; k

)

E
[
(1− U1) (1− kU1)2(p−1)

]
=

B
(
d1
2 ,

d+2
2 −

d1
2

)
B
(
d1
2 ,

d−d1
2

) 2F1

(
−2 (p− 1) ,

d1

2
;
d+ 2

2
; k

)

=
Γ
(
d1
2

)
Γ
(
d−d1+2

2

)
Γ
(
d
2

)
Γ
(
d+2

2

)
Γ
(
d1
2

)
Γ
(
d−d1

2

)2F1

(
−2 (p− 1) ,

d1

2
;
d+ 2

2
; k

)

=

d−d1
2 Γ

(
d−d1

2

)
Γ
(
d
2

)
d
2Γ
(
d
2

)
Γ
(
d−d1

2

) 2F1

(
−2 (p− 1) ,

d1

2
;
d+ 2

2
; k

)

=
d− d1

d
2F1

(
−2 (p− 1) ,

d1

2
;
d+ 2

2
; k

)

This then gives,

AREd−d1 (κ) =
d

(d+ 2 (p− 1))2

(
2F1

(
− (p− 1) , d12 ; d2 ; k

)
+ 2p−1

d 2F1

(
− (p− 2) , d12 ; d+2

2 ; k
))2

1
d2F1

(
−2 (p− 1) , d12 ; d+2

2 ; k
)

For the numerator, identity 15.2.17 from [1] 2F1 (a, b; c− 1; k)− a
c−12F1 (a+ 1, b; c; k) =

c−a−1
c−1 2F1 (a, b; c; k) with a = − (p− 1), b = d1

2 and c = d+2
2 yields,
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AREd−d1 (κ) =
d

(d+ 2 (p− 1))2

(
d+2(p−1)

d 2F1

(
− (p− 1) , d12 ; d+2

2 ; k
))2

1
d2F1

(
−2 (p− 1) , d12 ; d+2

2 ; k
)

=
2F

2
1

(
− (p− 1) , d12 ; d+2

2 ; k
)

2F1

(
−2 (p− 1) , d12 ; d+2

2 ; k
)

Substituting for k gives the desired result.

To get the expression for AREd1 (κ) note that the efficiencies of the components

would be the same whether the scatter matrix is Λ or Λ∗ = diag

λ2, · · · , λ2︸ ︷︷ ︸
d1

,
λ2

κ2
, · · · , λ

2

κ2︸ ︷︷ ︸
d−d1

.

Interchanging the roles of d1 and (d− d1), set d′1 = d − d1. Substituting κ−1 and d′1

into the expression above gives the desired expression.

AREd−d′1

(
κ−1

)
=

2F
2
1

(
− (p− 1) ,

d′1
2 ; d+2

2 ; 1− κ−2
)

2F1

(
−2 (p− 1) ,

d′1
2 ; d+2

2 ; 1− κ−2
)

=
2F

2
1

(
− (p− 1) , d−d12 ; d+2

2 ; 1− κ−2
)

2F1

(
−2 (p− 1) , d−d12 ; d+2

2 ; 1− κ−2
)

Lemma 5.2.4 For 1− d1
2 < p ≤ 1, the function

fp (x) =
2F

2
1

(
− (p− 1) , d−d12 ; d+2

2 ;x
)

2F1

(
−2 (p− 1) , d−d12 ; d+2

2 ;x
) =

2F
2
1

(
1− p, d−d12 ; d+2

2 ;x
)

2F1

(
2 (1− p) , d−d12 ; d+2

2 ;x
)

is uniquely maximized at x = 0.

Proof. Note that fp (0) = 1. Taking derivatives of fp (x), it can be shown that

f ′p (0) = 0 and f ′′p (0) < 0, thus x = 0 is indeed a local maximum, however, it is is

desired to prove it is a global max. Break this down into two cases, x ∈ [0, 1) and

x ≤ 0.
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Case i) x ∈ [0, 1) The Gauss hypergeometric function is the analytic continuation to

the whole complex plane of the Gauss hypergeometric series, thus the the value of the

function and the series correspond on the series’ radius of convergence in the complex

plane, which is |z| ≤ 1 when < (c− a− b) > 0 as is the case when 1− d1
2 < p ≤ 1. Thus

for x ∈ [0, 1), fp(x) can be written in terms of infinite series,

fp (x) =
2F

2
1

(
1− p, d−d12 ; d+2

2 ;x
)

2F1

(
2 (1− p) , d−d12 ; d+2

2 ;x
) =

(∑∞
n=0

(
d−d1

2

)
n

(1−p)n
( d+2

2 )
n
n!

xn

)2

∑∞
n=0

(
d−d1

2

)
n

(2(1−p))n
( d+2

2 )
n
n!

xn

where (x)n = x (x+ 1) (x+ 2) · · · (x+ n− 1) = Γ(x+n)
Γ(x) is the Pochhammer symbol.

If it can be shown that the coefficients of the terms of the power series in the denom-

inator are greater or equal to those in the numerator, than it follows that the function

fp (x) is monotonically decreasing as x goes from 0 to 1. However, the numerator is

problematic in that it is squared, thus to get at its power series expansion, it is necessary

to take the Cauchy product.

Within the radius of convergence, one is guaranteed that series obtained by taking

the Cauchy product in the numerator converges to the value of the original series being

squared. Recall the Cauchy product of two series is given by,

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

n∑
j=0

aibn−j

Doing this for the numerator gives

 ∞∑
n=0

(
d−d1

2

)
n

(1− p)n(
d+2

2

)
n
n!

xn

2

=
∞∑
n=0

n∑
j=0

(
d−d1

2

)
j

(1− p)j(
d+2

2

)
j
j!

xj

(
d−d1

2

)
n−j

(1− p)n−j(
d+2

2

)
n−j (n− j)!

xn−j

Thus for the coefficients it is desired to show

n∑
j=0

(
d−d1

2

)
j

(1− p)j(
d+2

2

)
j
j!

(
d−d1

2

)
n−j

(1− p)n−j(
d+2

2

)
n−j (n− j)!

≤

(
d−d1

2

)
n(

d+2
2

)
n

(2 (1− p))n
n!

For n = 0, 1, equality holds. Consider the function
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h (x) =
d−d1

2 + x
d+2

2 + x

Clearly limx→∞h (x) = 1. Computing its derivative gives

h′ (x) =

(
d+2

2 + x
)
−
(
d−d1

2 + x
)

(
d+2

2 + x
)2 =

d1+2
2(

d+2
2 + x

)2 > 0

for all x. First, it will be shown

(
d−d1

2

)
i(

d+2
2

)
i

(
d−d1

2

)
n−i(

d+2
2

)
n−i

≤

(
d−d1

2

)
n(

d+2
2

)
n

Note the on the left hand side, expressions with the subscript i or (n− i) is the product

of i or (n− i) terms, thus there are a total of n terms in both the numerator and

the denominator, the same is true for the right hand side. Obviously, when i = 0 or

i = n, there is equality. However, for all other i the inequality is strict. To see this first

consider the case i = 1. This gives,

d−d1
2
d+2

2

×

(
d−d1

2

)
n−1(

d+2
2

)
n−1

= h (0)

(
d−d1

2

)
n−1(

d+2
2

)
n−1

< h (n− 1)

(
d−d1

2

)
n−1(

d+2
2

)
n−1

=
d−d1

2 + n− 1
d−d1

2 + n− 1
×

(
d−d1

2

)
n−1(

d+2
2

)
n−1

=

(
d−d1

2

)
n(

d+2
2

)
n

The argument is similar for all other i, just continue to pull out terms. This leaves

n∑
j=0

(
d−d1

2

)
j

(1− p)j(
d+2

2

)
j
j!

(
d−d1

2

)
n−j

(1− p)n−j(
d+2

2

)
n−j (n− j)!

≤

(
d−d1

2

)
n(

d+2
2

)
n

n∑
j=0

(1− p)j
j!

(1− p)n−j
(n− j)!

Focus on the sum on the right hand side; rewrite it as
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n∑
j=0

(1− p)j
j!

(1− p)n−j
(n− j)!

=

n∑
j=0

n!

n!

Γ (1− p+ j)

Γ (1− p) j!
Γ (1− p+ n− j)
Γ (1− p) (n− j)!

=

=
n∑
j=0

nCj
1

n!

Γ (1− p+ j)

Γ (1− p)
Γ (1− p+ n− j)

Γ (1− p)
=

=
n∑
j=0

nCj
Γ (1)

Γ (n+ 1)

Γ (n+ 2− 2p)

Γ (n+ 2− 2p)

Γ (2− 2p)

Γ (2− 2p)

Γ (1− p+ j)

Γ (1− p)
Γ (1− p+ n− j)

Γ (1− p)
=

=
Γ (n+ 2− 2p)

n!Γ (2− 2p)

n∑
j=0

nCj
B (j + 1− p, n− j + 1− p)

B (1− p, 1− p)
=

Γ (n+ 2− 2p)

n!Γ (2− 2p)
=

(2 (1− p))n
n!

where nCj = n!
j!(n−j)! . The terms in the sum give the probability a Beta-Binomial

random variable with parameters a = 1− p and b = 1− p is equal to j. Thus summing

from 0 to n will give 1. We thus have

n∑
j=0

(
d−d1

2

)
j

(1− p)j(
d+2

2

)
j
j!

(
d−d1

2

)
n−j

(1− p)n−j(
d+2

2

)
n−j (n− j)!

≤

(
d−d1

2

)
n(

d+2
2

)
n

n∑
j=0

(1− p)j
j!

(1− p)n−j
(n− j)!

=

(
d−d1

2

)
n(

d+2
2

)
n

(2 (1− p))n
n!

The last inequality follows from the fact that when 0 < p ≤ 1
2 , 1 ≤ 2 (1− p) < 2, hence

(2(1−p))n
n! ≥ 1.

Case ii) x ≤ 0 Using the identity 2F1 (a, b; c;x) = (1− x)−a2F1

(
a, c− b; c; x

x−1

)
yields

2F
2
1

(
1− p, d−d12 ; d+2

2 ;x
)

2F1

(
2 (1− p) , d−d12 ; d+2

2 ;x
) =

(
(1− x)−(1−p)

2F1

(
1− p, d+2

2 −
d−d1

2 ; d+2
2 ; x

x−1

))2

(1− x)−2(1−p)
2F1

(
2 (1− p) , d+2

2 −
d−d1

2 ; d+2
2 ; x

x−1

)
=

2F
2
1

(
1− p, d1+2

2 ; d+2
2 ; x

x−1

)
2F1

(
2 (1− p) , d1+2

2 ; d+2
2 ; x

x−1

)
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Let y = x
x−1 , as x goes from −∞ to 0, y goes from 0 to 1. Define the function

f (y) =
2F

2
1

(
1− p, d1+2

2 ; d+2
2 ; y

)
2F1

(
2 (1− p) , d1+2

2 ; d+2
2 ; y

)
The fact this is maximized at y = 0 is shown in the same manner as case (i) with the

exception that for this case

h (y) =
d1+2

2 + y
d+2

2 + y

Clearly limy→∞h (y) = 1. Computing its derivative gives

h′ (y) =

(
d+2

2 + y
)
−
(
d1+2

2 + y
)

(
d+2

2 + y
)2 =

d−d1
2(

d−d1
2 + y

)2 > 0

for all y. QED

The necessary machinery has been established to prove Theorem 3.3.1, however, a

similar theorem will be proved for the estimator µ̃p in which the spatial median is a

special case
(
µ̃1/2 = µ̃SM

)
.

Theorem 5.2.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G) with

the conditions necessary for the information inequality to hold. Then

AE
(
µ̃p;σ

2Id, G
)
≥ AE

(
µ̃p; Σ, G

)
Furthermore, for 1− d1

2 < p ≤ 1, equality holds if and only if Σ ∝ Id.

Proof. Focus on the ratio

AE
(
µ̃p;σ

2Id, G
)

AE
(
µ̃p; Σ, G

) = mina∈Rd
α (G) atσ2Ida

βp (G) atVp (σ2Id) a
/mina∈Rd

α (G) atΣa

βp (G) atPVp (Λ) Pta

= mina∈Rd
atσ2Ida

atVp (σ2Id) a
/mina∈Rd

atΣa

atPVp (Λ) Pta
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since it does not depend on the particular radial distribution, one can consider a par-

ticular family of distribution. For convenience, pick the family of elliptical power distri-

butions mentioned in section 2.5.2. When Σ = σ2Id, µ̃p corresponds to the MLE of µ,

thus AE
(
µ̃p;σ

2Id, Gp
)

= 1 and the inequality is established since AE
(
µ̃p; Σ, Gp

)
≤ 1.

One than proceeds just as in the proof of theorem 3.4.1 to get the general case.

For uniqueness in the case 1− d1
2 < p ≤ 1, note that one can write,

AE
(
µ̃p; Σ, G

)
= mina∈Rd

atAVMLE (Σ;G) a

atAVµ̃p (Σ;G) a

Above corresponds to the largest eigenvalue of the matrix AV −1
µ̃p

(Σ;G)AVMLE (Σ;G).

Writing out these matrices explicitly, one has

AV −1
µ̃p

(Σ;G)AVMLE (Σ;G) =
(
βp (G) PVp (Λ) Pt

)−1 (
α (G) PΛPt

)
=

α (G)

βp (G)
PV−1

p (Λ) ΛPt

As in the previous paragraph, the scatter structure for which the asymptotic effi-

ciency is maximized does not depend on the particular elliptical distribution, G. For

reasons that will be apparent as the proof proceeds, multiply the expression on the

right by d
(d+2(p−1))2

/ d
(d+2(p−1))2

. This gives

AV −1
µ̃p

(Σ;G)AVMLE (Σ;G) =
α (G)

βp (G)

(d+ 2 (p− 1))2

d

{
d

(d+ 2 (p− 1))2 PV−1
p (Λ) ΛPt

}
The expression in the braces is the matrix AV −1

µ̃p
(Σ;Gp)AVµ̃Σ,p

(Σ;Gp), hence if it can

be shown that this expression is uniquely maximized under spherical symmetry, the

result will hold for the asymptotic efficiency as well. Furthermore, since the matrices

PV−1
p (Λ) ΛPt and V−1

p (Λ) Λ, have the same eigenvalues, one need only consider the

latter simplified case when P = Id. The matrix V−1
p (Λ) Λ is indeed a diagonal matrix,

hence its eigenvalues are simply the diagonal components. To this end focus on one

of the diagonal components, say the ιth diagonal component. This corresponds to the

asymptotic efficiency of the ιth component of the estimator µ̃p to µ̃Λ,p, it is given by,
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AEι
(
µ̃p, µ̃Λ,p; Λ, Gp

)
=

dE2

[∥∥∥Λ 1
2 ud

∥∥∥2(p−1)

2
+ 2 (p− 1)

∥∥∥Λ 1
2 ud

∥∥∥2(p−2)

2
λ2
ιu

2
d,ι

]
(d (p+ 2 (p− 1)))2E

[∥∥∥Λ 1
2 ud

∥∥∥4(p−1)

2
λ2
ιu

2
d,ι

] λ2
ι

In lemma 5.2.2 it is shown that as a multivariate function of λ1, . . . , λd, the only

place where the gradient of the function AEι
(
µ̃p, µ̃Λ,p; Λ, Gp

)
can be 0 is when λi = λ

for i 6= ι. This is a special case of situation considered in Lemma 5.2.3, where d1 = 1,

thus there is a closed form expression for the values of AEι
(
µ̃p, µ̃Λ,p; Λ, Gp

)
in terms

of Gauss hypergeometric functions in this case. Lemma 5.2.4 however shows that this

function is uniquely maximized when κ = 1, which corresponds to the case of spherical

symmetry, thus proving the results. QED

Note that one can also obtain similar results to Theorem 2.3.4.1 and Corollary 3.4.1

for oracle and affine versions of the estimator µ̃p.

2.5.5 Simulation Results

Below are the proofs of theorems states in section 2.4.1.

Theorem 4.1.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G). Let

λ2
〈1〉 > λ2

〈2〉 > · · · > λ2
〈m〉 be the distinct eigenvalues of Σ where m ≤ d is the number of

mutually orthogonal eigenspaces of Σ. For any orthogonally equivariant estimator of µ

based on a sample of size n, µ̂n, with variance-covariance matrix Vn (µ̂) = V ar [µ̂n],

the following are true,

1) Vn (µ̂) and Σ have the same eigenspaces; consequently they have the same eigen-

projections and/or eigenvectors.

2) Let λ2
1,n ≥ λ2

2,n ≥ · · · ≥ λ2
d,n, denote the eigenvalues of Vn (µ̂). It follows the

eigenspace associated with λ2
i,n is the same that is associated with λ2

i . Consequently,

λ2
i,n = λ2

j,n if and only if λ2
i = λ2

j .



65

Proof. Without loss of generality, assume µ = 0. Start with the case Σ = Λ. First

it will be shown that the Vn (µ̂) is a diagonal matrix. Partition Vn (µ̂) into

Vn (µ̂) =



v11 v12 · · · v1d

v21 v22
...

...
. . .

...

vd1 · · · · · · vdd


=


V11 v1 V12

vt1 vjj vt2

Vt
12 v2 V22


Consider the following diagonal orthogonal matrix

Qι =


Iι−1

−1

Id−ι


Because of orthogonal equivariance, if one uses the estimator, µ̂n, for the data

xi ∈ Rd, i = 1, · · · , n, then the corresponding estimator for the data Qιxi ∈ Rd, i =

1, · · · , n, would be Qιµ̂n. Additionally, V ar [Qιµ̂n] = QιV ar [µ̂n] Qt
ι = QιVn (µ̂) Qt

ι.

Since µ = 0 and the components of xi are uncorrelated it follows Qιxi ∼ xi, thus

Qιµ̂n ∼ µ̂n. This implies QιVn (µ̂) Qt
ι = Vn (µ̂). However,

QιVn (µ̂) Qt
ι =


V11 −v1 V12

−vt1 vjj −vt2

Vt
12 −v2 V22


Thus v1 = −v1 and v2 = −v2 or v1 = 0 and v2 = 0, i.e the ιth component of the

estimator µ̂n is uncorrelated with the rest of the components. Doing this for every

ι ∈ {1, . . . , d}, it can be shown that every off-diagonal component is 0. Hence Vn (µ̂)

is a diagonal matrix, thus the canonical unit vectors eι, ι ∈ {1, . . . , d} can be taken as

an eigenbasis.

To prove (2), suppose that diagonal elements of Λ (i.e. eigenvalues) λj and λk are

equal. Let Kj,k be the permutation matrix that swaps the jth and kth component of any

vector in Rd; Kj,k is an orthogonal matrix. It follows that Kj,kxi ∼ xi since the jth and

kth component of xi both have location parameter 0, are uncorrelated but have the same
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scale. Consequently, Kj,kµ̂n ∼ µ̂n and as in part (1) we have Kj,kVn (µ̂) Kt
j,k = Vn (µ̂).

Since, Vn (µ̂) is diagonal, pre-multiplying by Kj,k and post-multiplying by Kt
j,k simply

swaps the jth and kth diagonal elements. In order for equality to hold, it must be that

the jth and kth diagonal elements are equal, thus proving the eigenvalues are equal.

The fact that Vn (µ̂) and Λ can be represented by the same eigenbasis and have

repeated eigenvalues at the corresponding indices implies (1), i.e. that Vn (µ̂) and Λ

have the same eigenspaces, thus the same eigenprojections and/or eigenvectors.

For the general case, using the spectral decomposition, Σ = PΛPt, one can write

Λ = PtΣP. Suppose y1,y2, . . . ,yn ∼ Ed (0,Λ;G), it was shown the results of the

theorem hold for Vn (µ̂) where µ̂n is the estimator using the data yi, i = 1, . . . , n. Let

xi = Pyi, i = 1, . . . , n; it follows xi ∼ Ed (0,Σ;G). Λ and Σ not only have the same

eigenvalues, but also the structure of the eigenspaces of Σ can be obtained from Λ by

rotating the aforementioned eigenspaces by the orthogonal matrix P. By orthogonal

equivariance, the estimator using the transformed data is Pµ̂n. Thus, V ar [Pµ̂n] =

PV ar [µ̂n] Pt = PVn (µ̂) Pt, thus the covariance matrix has the same eigenvalues as

the matrix Vn (µ̂). Furthermore the structure of the eigenspaces of V ar [Pµ̂n] can be

obtained from Vn (µ̂) by rotating the aforementioned eigenspaces by the orthogonal

matrix P, thus implying the general result. QED

We have the following corollary.

Corollary 5.5.1 Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G). Let

λ2
〈1〉 > λ2

〈2〉 > · · · > λ2
〈m〉 be the distinct eigenvalues of Σ where m ≤ d is the number of

mutually orthogonal eigenspaces of Σ. For any orthogonally equivariant estimator of

µ, µ̂, with asymptotic variance-covariance matrix AVµ̂, the following are true,

1) AVµ̂ and Σ have the same eigenspaces; consequently they have the same eigen-

projections and/or eigenvectors.

2) Let λ2
1,n ≥ λ2

2,n ≥ · · · ≥ λ2
d,n, denote the eigenvalues of AVµ̂. It follows the

eigenspace associated with λ2
i,n is the same that is associated with λ2

i . Consequently,
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λ2
i,n = λ2

j,n if and only if λ2
i = λ2

j .

Proof. The proof follows the same way as that of theorem 4.1.1.

Theorem 4.2.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G), with

G absolutely continuous with respect to Lebesgue measure and not possessing finite sec-

ond moments. For n = 3, the spatial median, oracle spatial median and any affinely

equivariant spatial median do not possess finite second moments. This also holds for

the case d = 2 and n = 4.

Proof. First consider the case where the sample size is 3, denote the points x1,x2

and x3. Since it is assumed the underlying probability density function is absolutely

continuous with respect to Lebesgue measure, the probability they are collinear is 0.

Thus For any dimension greater than or equal to 2, the 3 points will always be coplanar.

Consequently, they will form a triangle in some 2-dimensional affine subspace. In this

instance the point that corresponds to the spatial median is a long solved problem in

geometry and is called the Fermat point of the triangle. The Fermat point of a triangle

is found as follows. If the largest angle in the triangle is less than 2π/3 radians, than

the Fermat point corresponds to the unique interior point, denoted x∗, such that if one

were to draw a line from this point to every vertex, the angle between each line is 2π/3.

If one of the angles of the triangle is larger than 2π/3, than the Fermat point is the

vertex of that angle.

Define the following events on the sample space.

E1 = the angle formed at vertex x1 ≥ 2π/3

E2 = the angle formed at vertex x2 ≥ 2π/3

E3 = the angle formed at vertex x3 ≥ 2π/3

E4 = the angle formed at every vertex is < 2π/3
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These four events form a partition of the sample space (excluding the case of co-linearity

which has probability 0). The spatial median is given by the following random vector,

µ̃SM = IE1x1 + IE2x2 + IE3x3 + IE4x
∗

where IA is the indicator function for the event A (i.e. equal to 1 if event A occurs and

0 else). The covariance matrix of this random vector if it existed, would be given by

the following expression

V3 (µ̃SM ) = V ar [IE1x1] + V ar [IE2x2] + V ar [IE3x3] + V ar [IE4x
∗] = 3Σ + Σ∗

The covariance matrices Cov
[
IEixi, IEjxj

]
and Cov [IEixi, IE4x

∗] reduce to the zero

matrix because the events Ei, i = 1, 2, 3, 4 are all mutually exclusive. Suppose V3 (µ̃SM )

had finite second moments. Then for every non-zero vector, a ∈ Rd, it must be the case

that

atV3 (µ̃SM ) a = at (3Σ + Σ∗) a = 3atΣa + atΣ∗a <∞

This would necessitate atΣa < ∞, contradicting the fact that x has finite second

moments.

Now take the case the dimension is 2 and there are 4 sample points, x1,x2,x3 and

x4. In this situation there are only two possible ways the points can be arranged (again

since the probability density function is continuous, the probability they are collinear

is 0), the four points could either form a quadrilateral, or one of the points could be in

the convex hull of the other three (which consequently form a triangle). The problem of

finding the spatial median for four coplanar points is a solved geometric problem. If the

four points form a quadrilateral, construct the two lines formed by connecting opposite

vertices. These two lines will meet at unique point in the interior of the quadrilateral

denoted x∗. This point is the spatial median of the four points. If one of the points

lies in the convex hull of the other three, the spatial median corresponds to this point

in the convex hull.

Define the following events on the sample space.
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E1 = x1 is in the convex hull formed by the other three points

E2 = x2 is in the convex hull formed by the other three points

E3 = x3 is in the convex hull formed by the other three points

E4 = x4 is in the convex hull formed by the other three points

E5 = the four points form a quadrilateral

These five events form a partition of the sample space (excluding the case of collinearity

which has probability 0). The spatial median is now given by the following random

vector,

µ̃SM = IE1x1 + IE2x2 + IE3x3 + IE4x4 + IE5x
∗

Arguing similarly, its covariance matrix, if it existed, is given by,

V4 (µ̃SM ) = 4Σ + Σ∗

Suppose V4 (µ̃SM ) had finite second moments, it would then follow that atΣa <∞, a

contradiction.

To get the result for the oracle spatial median or affine spatial median, recall that

one can calculate there via the transform-retransform method. Thus in both cases it

would reduce to first finding the spatial median for the data zi = Σ−
1
2 xi. Applying the

same arguments used above, one could show that the spatial median for the zi will not

have a finite second moments, thus nor will the oracle spatial median or affine spatial

median.
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Chapter 3

The Spatial Sign Covariance Matrix

3.1 Introduction

One reason multivariate procedures are implemented is to understand the relationships

between several quantitative variables of interest on the same experimental unit. For the

case the multivariate random vector arises from some elliptical distribution, the scatter

matrix, Σ, is the parameter that dictates the variability and relationships between the

components of the vector. Consequently, many methods involve obtaining estimates of

this parameter or characteristics of this parameter. Perhaps the most commonly used

estimator for Σ is the sample covariance matrix. Despite its popularity, its limitations

are just as infamous. In particular, the sample covariance matrix is sensitive to outliers;

a few non-typical observations can lead to an estimate that is in reality not close to

Σ. This fact is particularly problematic when the data arises from distributions that

have wider tails than the multivariate Gaussian distribution, a situation where extreme

observations are more likely. Consequently, much research has focused on developing

estimators that still provide suitable estimates of Σ despite the fact outliers are present.

One estimator proposed as an alternative to the sample covariance matrix is Tyler’s

scatter matrix [35]. Tyler’s matrix is an example of an affinely equivariant M-estimate

of scatter. While affinely equivariant M-estimators of scatter address the problem of not

being affected by outliers, i.e. are robust estimators of Σ, this does not hold for every

situation. As mentioned in the introduction, when n ≤ d+ 1, it can be shown that any

affinely equivariant estimator of scatter is indeed the sample covariance matrix [38]. To

handle the case when n ≤ d+1, scatter estimators that sacrifice affine equivariance have

been proposed; one such instance is the the spatial sign covariance matrix (SSCM). The
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SSCM possesses the more restrictive property of orthogonal equivariance. In its calcu-

lation, the SSCM down-weighs observations based on their Euclidean distance from the

estimated center of data. On the other hand, Tyler’s matrix down-weighs observations

based on their Mahalanobis distance from the estimated center of data. If the data

arises from some elliptical distribution, the previous fact implies the Tyler matrix is

down-weighing observations in accordance with the likelihood that observations will

occur. Thus one might conjecture that under the elliptical model with Σ 6∝ Id Tyler’s

scatter matrix outperforms the SSCM.

Many procedures are not interested in Σ but rather its eigenprojections and eigen-

vectors, PCA being an example, thus estimation of these is the primary goal. Under

the elliptical model, one might surmise that if Tyler’s matrix outperforms the SSCM in

terms of estimating Σ, then an eigenprojection/eigenvector of the Tyler matrix would

outperform the corresponding eigenprojection/eigenvector of the SSCM as an estimate

of the corresponding eigenprojection/eigenvector of Σ. This chapter of the dissertation

focuses on comparing Tyler’s matrix to the SSCM when the goal is estimating eigen-

projections and eigenvectors of Σ under the elliptical model. Section 2 discusses Tyler’s

matrix and its significance as the MLE for Σ when the data follows an angular central

Gaussian distribution. In section 3, the SSCM is reviewed in more detail. Section 4

presents the main theoretic results regarding Tyler’s matrix and SSCM under the ellip-

tical model, namely the superiority of the Tyler matrix to the SSCM when the goal is

estimation of eigenprojections or eigenvectors. In order to quantify exactly how supe-

rior Tyler’s matrix is compared to the SSCM under the elliptical model for estimating

eigenprojections a specific, yet informative, scatter structure is considered that admits

a non-arbitrary definition of asymptotic relative efficiencies for these estimators. Cal-

culation of these asymptotic relative efficiencies under this scenario are then presented.

This is all included in section 5. In section 6, simulations are implemented to compare

the performance of the eigenprojection matrices based on Tyler’s matrix and the SSCM

under the elliptical model. To do so, a measure of relative efficiency is defined based

on principal angles; the first part of section 6 reviews this concept. Discussion of how

the simulations were implemented and the results are then presented.
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3.2 Tyler’s Scatter Matrix

Let x1, . . . ,xn be a multivariate sample. In [35], the author proposed using the solution

to the following implicit equation as an estimate of the scatter matrix of the the data

T̂ µ̂n
=
d

n

n∑
i=1

(xi − µ̂n) (xi − µ̂n)t

(xi − µ̂n)t T̂
−1

µ̂n
(xi − µ̂n)

where µ̂n is some estimator of location. The proof of the existence of the estimate

involves showing it is the limiting point of a specific algorithm, thus providing a means

to obtain the estimate. For the case the data comes from some elliptical distribution

Ed (µ,Σ;G) and µ̂ is a consistent estimator of µ, the asymptotic distribution of the

estimator T̂ µ̂ does not depend on the particular elliptical distribution (i.e. it does not

depend on G). In addition, for the case that µ is known (i.e. µ̂n = µ) the finite sample

distribution of the Tyler matrix also does not depend on G. For this special case, the

notation will be T̂ n, where it is understood that the estimator of location is the known

location vector, µ. Tyler’s matrix is the most robust estimate of the scatter matrix for

elliptical distributions in that it minimizes the maximum asymptotic variance.

An important characterization of Tyler’s matrix is that it is the MLE for Σ when

the data comes from an angular central Gaussian distribution [36]. The probability

density function of the angular central Gaussian distribution is given by,

f (x;µ,Σ, δ1) =
Γ (d/2)

2πd/2
(x− µ)t Σ−1 (x− µ) I{‖x‖2=1}

where I{A} is the indicator function for the set A and µ̂n is some estimator of location.

Being a probability distribution on Sd, in its stochastic representation, the radial com-

ponent assigns all the mass to the value 1, this distribution is the Dirac delta measure

at x = 1. Thus for a random variable following an angular Gaussian distribution, one

will write x ∼ Ed (µ,Σ; δ1).
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3.3 Spatial Sign Covariance Matrix

Given a multivariate sample x1, . . . ,xn, the spatial sign covariance matrix, or SSCM,

is given by

Ŝµ̂n
=

1

n

n∑
i=1

(xi − µ̂n) (xi − µ̂n)t

(xi − µ̂n)t (xi − µ̂n)

where µ̂n is some estimator of location. Of note is that Tr
(
Ŝµ̂n

)
= 1. Similar to

Tyler’s matrix, under the elliptical model, the asymptotic distribution of the SSCM

does not depend on G provided µ̂ is a consistent estimate of µ. Additionally, if µ is

known, then the finite sample distribution also does not depend on G; for this situation

the notation Ŝn will be utilized. Unlike Tyler’s matrix, this estimate of scatter has a

closed form solution. This estimate of scatter was first introduced in [3], though the

name spatial sign covariance matrix was coined by Visuri in [40]. Since the asymptotic

distribution of the SSCM under the elliptical model does not depend on µ̂ provided µ̂

is a consistent estimate of µ, one can assume that µ is known. For this situation let

E
[
Ŝn

]
= Ξ, notice this is the same for all n. In general, Ξ 6∝ Σ, thus the SSCM is a

biased estimate of Σ both for finite samples and asymptotically. In particular, it can

be shown the eigenvalues of the SSCM are biased estimates of the eigenvalues of Σ.

These prior facts are all shown in the section 3.6.3 of the appendix.

3.4 Theoretical Results

3.4.1 Optimality of the Tyler Matrix under the Elliptical Model

As mentioned in the introduction, since the SSCM is only orthogonally equivariant, it

is speculated that for the elliptical model, Tyler’s matrix would be a better estimator

of Σ. For many multivariate statistical applications, the focus is not estimating Σ but

rather its eigenprojections/eigenvectors. As mentioned, the SSCM is a biased estimator

of Σ, however it is shown in section 3.6.3 the appendix that Ξ = P∆Pt where ∆ is a

diagonal matrix. Consequently, the eigenprojections of the SSCM have been proposed

in applications that require estimating the eigenprojections/eigenvectors of Σ. Most
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notably, [17] and [22] suggested its use in PCA. Since the Tyler matrix is a superior

estimator of Σ than the SSCM under the elliptical model, one might suspect that

eigenprojections and eigenvectors of the Tyler matrix would be better estimators than

the corresponding ones of the the SSCM.

Before stating this formally in a theorem, the following notation must be established.

Recall, for the scatter matrix Σ, the eigenprojection associated with the eigenvalue λ2
i

will be denoted Pi. For the matrix Ξ, let δ2
1 ≥ · · · ≥ δ2

d denote its eigenvalues. It

is shown in the Appendix that Pi will also be the eigenprojection associated with the

eigenvalue δ2
i . It is also shown, the eigenvalues λ2

i and δ2
i will have the same geometric

multiplicities, denote the geometric multiplicities as d1, . . . , dd. For any subset of indices

N = {h, h+ 1, . . . , h+ p− 1}, the total eigenprojection of either Σ or Ξ associated with

the eigenvalues associated with these indices is PN =
∑h+p−1

i=h
1
di

Pi. For the scatter

estimate T̂ µ̂, let T̂i be the eigenprojection associated with its ith largest eigenvalue.

For multivariate distributions absolutely continuous with respect to Lebesgue measure

in Rd, the eigenvalues of T̂ µ̂ will be distinct with probability 1. It follows that T̂N =∑h+p−1
i=h T̂i is an estimator of the eigenprojection PN . Similarly, for the scatter estimate

Ŝµ̂, let Ŝi be the eigenprojection associated with its ith largest eigenvalue. Again, for

multivariate distributions absolutely continuous with respect to Lebesgue measure in

Rd, the eigenvalues of Ŝµ̂ will be distinct with probability 1. It follows that ŜN =∑h+p−1
i=h Ŝi is an estimator of the eigenprojection PN .

Much literature has been devoted to the distributional properties of the eigenvalues

and eigenvectors of a scatter estimator. The results presented in this part utilize meth-

ods introduced in [33]. In his dissertation, perturbation methods were used to derive

Taylor series expansions of projection matrices into the eigenspaces of a matrix. In [34],

the author implements these methods to derive the asymptotic distributions of projec-

tion matrices into the eigenspaces of scatter estimates. A review of these methods is

relegated to section 3.6.1 of the appendix. These methods are used to prove subsequent

theorems pertaining to estimation of the eigenprojections and eigenvectors of a scatter

matrix estimate. The results of [34] imply
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√
n
(
vec

(
T̂N −PN

))
→D Normd2

(
0, AV

T̂N
(Σ)

)
and

√
n
(
vec

(
ŜN −PN

))
→D Normd2

(
0, AV

ŜN
(Σ)

)
where AV

T̂N
(Σ) and AV

ŜN
(Σ) are the asymptotic variance-covariance matrices of the

estimators T̂N and ŜN respectively. Note that these depend on the underlying scat-

ter matrix of the data, Σ. However, an important caveat is that the aforementioned

asymptotic variance-covariance matrices are not of full rank. The form of these matri-

ces is described in the Appendix. Before the main result is proven, the following lemma

is needed the proof of which is relegated to section 3.6.2 and 3.6.3 of the appendix.

Lemma 4.1.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G) and let

µ̂ be an asymptotically consistent estimator of µ. It then follows that AVŜµ̂

(
σ2Id

)
∝

AVT̂ µ̂

(
σ2Id

)
.

Proof. See section 3.6.3. of the appendix.

Theorem 4.1.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G) and

let µ̂ be an asymptotically consistent estimator of µ. For T̂N and ŜN , estimators of

PN , the total eigenprojection of Σ associated with the eigenvalues indexed by N , it

follows

AV
ŜN

(Σ) ≥ AV
T̂N

(Σ)

Furthermore, as Σ→ σ2Id, the above expression approaches equality.

Proof. Since the asymptotic distribution of either estimator does not depend on

G, one can choose a convenient elliptical family to work with. In particular choose

the family of angular central Gaussian distributions, i.e. G = δ1. Recall that in this
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situation, the Tyler matrix is the MLE, thus it attains the Cramer-Rao lower bound.

Further note that the eigenprojections of a matrix are attainable as functions of the

matrix of interest, i.e. Σ in our case. By the invariance properties of the MLE, it fol-

lows that T̂N is the MLE for PN under the angular central Gaussian model. Thus the

matrix AV
T̂N

(Σ) is less than or equal to the asymptotic variance-covariance matrix of

any other asymptotically unbiased estimator of PN . The eigenprojection matrices of

the SSCM are asymptotically unbiased estimators of PN , thus proving the inequality.

By Lemma 4.1.1., as Σ → σ2Id, it follows AVŜµ̂
(Σ) approaches a matrix that is pro-

portional to AVT̂ µ̂
(Σ). This implies the matrices AV

T̂N
(Σ) and AV

ŜN
(Σ) approach

equality (See section 3.6.3 of the appendix for details). QED

When sampling from elliptical distributions, the above theorem implies that asymp-

totically it is better to use Tyler’s matrix to obtain estimates of eigenprojections as

opposed to the SSCM. In the special case λ2
ι 6= λ2

i , for i 6= ι, the geometric multiplicity

associated with the eigenvalue λ2
ι is 1, thus there is a unique eigenvector (unique up to

multiplication by ±1) associated with the eigenvalue λ2
ι . In this paradigm, one is not

so interested in the eigenprojection associated with λ2
ι as they are the eigenvector itself.

To this end, let p1, . . . ,pd be a set of eigenvectors for Σ. Let t̂i and ŝi, i = 1, . . . , d, be

a set of eigenvectors for the scatter estimates T̂ µ̂ and Ŝµ̂ respectively. Again, utilizing

results from [34] one has

√
n
(
t̂ι − pι

)
→D Normd

(
0, AVt̂ι

(Σ)
)

and

√
n (ŝι − pι)→D Normd (0, AVŝι (Σ))

where AVt̂ι
(Σ) and AVŝι (Σ) are the asymptotic variance-covariance matrices of the

estimators t̂ι and ŝι respectively. Again note that these depend on the underlying scat-

ter matrix of the data, Σ. It can be shown the rank of the aforementioned asymptotic
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variance-covariance matrices is d − 1, thus the limiting distributions are in fact de-

generate distributions that lie in a d− 1 dimensional subspace. The following theorem

pertaining the the asymptotic distribution of eigenvector estimates based on the scatter

estimates T̂ µ̂ and Ŝµ̂ is presented.

Theorem 4.1.2. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G) and

let µ̂ be an asymptotically consistent estimator of µ. If λ2
ι 6= λ2

i , for i 6= ι it follows

AVŝι (Σ) ≥ AVt̂ι
(Σ)

Equality holds when the vector under consideration for the quadratic forms is pι. Fur-

thermore, as Σ → σ2Id, the above expression approaches equality for any vector con-

sidered in the quadratic forms.

Proof. This is proved in an analogous manner to Theorem 4.1.1. The modification

is the fact that the function of Σ being estimated is no longer the eigenprojection Pι,

but rather the eigenvector pι. QED

3.4.2 Asymptotic Calculations

The results of the previous section showed that under the elliptical model, when the

goal is estimating the eigenprojections/eigenvectors of Σ the corresponding eigenpro-

jections/eigenvectors of Tyler’s matrix have a smaller asymptotic variance than those

of the SSCM. Furthermore, it was shown that for a given eigenprojection/eigenvector

of interest, when the underlying elliptical distribution approaches spherical symmetry,

these two estimators tend to the same estimator. To get a better sense of how much bet-

ter the eigenprojection estimator T̂N is compared to ŜN , the matrices AV
T̂N

(Σ) and

AV
ŜN

(Σ) will be computed for specific scatter structures. Unfortunately, there is not

a general consensus as to how to compare scatter estimators or their eigenprojection

matrices and/or eigenvectors. Fortunately, the specific scatter structures considered

admit a non-arbitrary means to compare them. The scatter structures considered are
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of the form,

Σ = Λ0 = diag

λ2, . . . , λ2︸ ︷︷ ︸
d1

, r2λ2, . . . , r2λ2︸ ︷︷ ︸
d−d1


for 0 ≤ r ≤ 1. Note that this scatter structure has at most two eigenvalues; the

eigenvalue λ2 corresponds to the eigenspace ED1 =
∑d1

i=1 Ei and the eigenvalue r2λ2

corresponds to the eigenspace E⊥D1
= Id − ED1 =

∑d
i=d1+1 Ei where Ei = eie

t
i with

ei being the ith canonical unit vector . Small values of r correspond to the situation

where the majority of the variation of the data lies in a d1 dimensional subspace of Rd.

Let T̂N and ŜN be estimators of ED1 . Under this scatter structure, it is shown in the

appendix that

AV
T̂N

(Λ0) =

d1∑
i=1

d∑
j=d1+1

αT d,d1

(
eie

t
i ⊗ eje

t
j + eie

t
j ⊗ eje

t
i + eje

t
i ⊗ eie

t
i + eje

t
j ⊗ eie

t
i

)

AV
ŜN

(Λ0) =

d1∑
i=1

d∑
j=d1+1

αSd,d1

(
eie

t
i ⊗ eje

t
j + eie

t
j ⊗ eje

t
i + eje

t
i ⊗ eie

t
i + eje

t
j ⊗ eie

t
i

)
where

αT d,d1
=
d+ 2

d

r2

(1− r2)2

and

αSd,d1 =

d
d+2r

2
2F1

(
2, d1+2

2 ; d+4
2 ; 1− r2

)
(

2F1

(
1, d1+2

2 ; d+2
2 ; 1− r2

)
− r2

2F1

(
1, d12 ; d+2

2 ; 1− r2
))2

These above forms imply AV
T̂N

(Λ0) and AV
ŜN

(Λ0) only differ by a constant, thus a

natural method of comparing the two is to compare these constants. In particular, the

asymptotic relative efficiency of ŜN to T̂N will reduce to the ratio,
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Figure 3.1: Asymptotic Relative Efficiencies of the Eigenprojection Estimate of the
SSCM to the Corresponding Eigenprojection Estimate of the Tyler Matrix in R2

AREd,d1

(
ŜN , T̂N , r

)
=

d+2
d

r2

(1−r2)2

d
d+2

r2 2F1

(
2,
d1+2

2
; d+4

2
;1−r2

)
(
2F1

(
1,
d1+2

2
; d+2

2
;1−r2

)
−r2 2F1

(
1,
d1
2

; d+2
2

;1−r2
))2

=
2F

2
1

(
1, d1+2

2 ; d+4
2 ; 1− r2

)
2F1

(
2, d1+2

2 ; d+4
2 ; 1− r2

)

The last equality is shown in section 3.7 of the appendix.

As mentioned, T̂N and ŜN are estimators of ED1 ; it follows that
(
Id − T̂N

)
and(

Id − ŜN

)
are estimators of E⊥D1

. Consequently, since the estimators of ED1 and E⊥D1
,

only differ by the constant matrix Id, it will be that AV
T̂N

(Λ0) = AV
Id−T̂N

(Λ0) and

AV
ŜN

(Λ0) = AV
Id−ŜN

(Λ0), thus one need only consider the asymptotic efficiency for

one of the eigenprojections.

Plotted in Figure 3.1 is AREd,d1

(
ŜN , T̂N , r

)
in two dimensions. The asymptotic

relative efficiency is quite low when r is close to 0. This indicates the drastic inferiority of

the SSCM to the Tyler matrix in estimating ED1 for nearly singular scatter structures.

In three dimensions, the two situations to consider are λ1 = λ2 and λ2 = λ3, i.e.

d1 = 2 and d1 = 1 respectively. Presented in Figure 3.2 on the following page are the
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Figure 3.2: Asymptotic Relative Efficiencies of the Eigenprojection Estimate of the
SSCM to the Corresponding Eigenprojection Estimate of the Tyler Matrix in R3

asymptotic relative efficiencies under both scatter structures as a function of r. Just as

in two dimensions, the asymptotic relative efficiency of ED1 is low when r is close to 0.

Of the two scatter structures considered, the one that is more deleterious in terms of

asymptotic efficiencies is Λ0 = diag
(
1, r2, r2

)
.

In order to investigate how the dimension of the eigenspace of the eigenvalue of

interest affects the asymptotic relative efficiency, the following scatter structures will

be considered in 10 dimensions.

Λ1 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, r2)

Λ2 = diag(1, 1, 1, 1, 1, 1, 1, 1, r2, r2)

Λ3 = diag(1, 1, 1, 1, 1, r2, r2, r2, r2, r2)

Λ4 = diag(1, 1, r2, r2, r2, r2, r2, r2, r2, r2)

Λ5 = diag(1, r2, r2, r2, r2, r2, r2, r2, r2, r2)

Plotted in Figure 3.3 are the asymptotic relative efficiencies for the above scatter struc-

tures. The larger the dimension of the eigenspace associated with the larger eigenvalue,
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Figure 3.3: Asymptotic Relative Efficiencies of the Eigenprojection Estimate of the
SSCM to the Corresponding Eigenprojection Estimate of the Tyler Matrix in R10
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the higher the asymptotic relative efficiency. This indicates not much is lost by using

the corresponding eigenprojection estimate of the SSCM, even under nearly singular

scatter structures. However, as the dimension of the eigenspace associated with the

larger eigenvalue, the asymptotic relative efficiencies steadily decreases, in some in-

stances being quite poor for nearly singular scatter structures.

3.5 Finite Sample Performance

3.5.1 Finite Sample Theory

The results of the previous section showed that asymptotically, the inefficiency of the

SSCM compared to to the Tyler’s matrix for estimating the eigenprojections of the

scatter matrix Λ0 can be quite severe under the elliptical model when Λ0 is far from

singular. However, for practical purposes, it is desired to understand how severe the

inefficiency can be in the finite sample setting. Working out the finite sample dis-

tributions of the aforementioned scatter estimates, let alone the distribution of their

eigenprojections and eigenvectors, is quite formidable. Furthermore, in the finite sam-

ple setting, for a given distribution there are two factors to consider when studying

the relative efficiency of the SSCM to Tyler’s matrix: the first being the effect of the

scatter structure of the data and the second being the particular estimator used for the

location vector.

Fortunately, under the elliptical model in the situation where the location vector is

known a priori, the only factor one need consider is the scatter structure of the data.

As mentioned in the sections discussing these estimators, when the known location

vector is used in the construction of these estimators, the finite sample distributions of

these estimators does not depend on the particular elliptical distribution (i.e. does not

depend on G) hence nor will the finite sample distributions of their eigenprojections or

eigenvectors. Unfortunately, the exact form of these distributions is not known, so one

must still resort to simulations to ascertain their behavior. However the previous fact

dictates that one only need to implement simulations for one distribution. While it is

hardly ever the case that one will know the location vector a priori, considering this
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is beyond the scope of this dissertation. Consequently, only the effect of the scatter

structures of the data will be considered in these simulations, leaving the point of

estimating the location parameter as a future endeavor.

As mentioned in the last section, there is not a general consensus on how best to com-

pare scatter estimates, let alone eigenprojection estimates. Fortunately, by considering

a simplified (yet still informative) scatter structure, it was shown that the asymptotic

variance-covariance matrices of the eigenprojection estimators obtained from Tyler’s

matrix and the SSCM differed only by a constant under the elliptical model, thus re-

ducing the problem of comparing the two to a single number. This aforementioned

scatter structure was when there were only two principal component spaces associated

with Λ. Unfortunately, the finite sample variance-covariance matrices of these afore-

mentioned estimators do not possess the same form as their asymptotic counter-parts,

even when considering the same scatter structures under the elliptical model. While

the form of the finite sample variance-covariance matrices for both the aforementioned

estimators can be worked out under the elliptical model using symmetry and equivari-

ance arguments, a different means will used to compare them. The means to compare

them will be based on the idea of principal (canonical) angles, thus this concept will be

discussed.

The notation used in the proceeding paragraphs will be consistent with that utilized

in [26]. Principal angles can be used to describe how far apart one linear subspace is

from another. Let L and M be linear subspaces of Rn with dim (L) = l ≤ dim (M) = m.

The principal angles between L and M ,

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θl ≤
π

2

are given by

cosθi =
〈xi,yi〉
‖xi‖ ‖yi‖

= max

{
〈x,y〉
‖x‖ ‖y‖

: x ∈ L, x ⊥ xk, y ∈M, y ⊥ yk, k = 1, . . . , i− 1

}
(see [2]). It follows from the above definition, when the two subspaces coincide (i.e.

L = M) then the principal angles are necessarily 0. As a simple example; suppose
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it is desired to compare two linear subspaces of dimension 1. In Rd, linear subspaces

of dimension 1 can be visualized as lines through the origin, thus the principal angle

between the two linear subspaces is simply the minimal angle between these two vec-

tors. Applying this concept for the problem at hand, recall that an eigenprojections

and estimators of them simply are projection matrices into subspaces spanned by their

columns. Thus, the concept of principal angles can be used to describe how far an

eigenprojection estimate is from the eigenprojection it is meant to estimate by com-

paring the subspace they both project into respectively. In [4], the authors present a

means to compute the principal angles between two linear subspaces in the following

lemma,

Lemma 1 Let the columns of QL ∈ Rn×l and QM ∈ Rn×m be orthonormal basis

for L and M respectively, and let,

σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0

be the singular values of QTMQL, then

cos θi = σi i = 1, . . . , l,

and

σ1 = · · · = σk iff dim (L ∩M) = k.

Also useful is the following theorem from [26]

Theorem 3 The non-zero principal angles between L, M (are) equal to the non-

zero principal angles between L⊥, M⊥.

The above two results are helpful if one wishes to consider the same scatter structures

for finite sample simulations that were considered in the asymptotic calculations in

section 3.4.2, that is scatter structures where there are only two principal component
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spaces. The results imply that when the the dimension of the eigenspace being estimated

is 1 or d − 1, then there will only be 1 non-zero principal angle. (Note that when d

= 2 or 3, the subspace can only have dimensions, 1 or 1, 2 respectively.). For the

simulations, recall the finite sample distribution of the Tyler matrix and SSCM do

not depend on the underlying elliptical distribution provided µ is known, thus the

only parameters that must be considered are the sample size and the scatter structure

of the elliptical model. Simulations were undertaken in dimensions d = 2, 3 and 5.

In two dimensions, the scatter structures considered are diag (2, 1), diag (16, 1) and

diag (128, 1). In three dimensions, the scatter structures considered are diag (2, 1, 1),

diag (16, 1, 1), diag (128, 1, 1), diag (2, 2, 1), diag (16, 16, 1) and diag (128, 128, 1). For

five dimensions, the following scatter structures are considered,

Λ1 = diag(2, 1, 1, 1, 1) Λ7 = diag(2, 2, 2, 1, 1)

Λ2 = diag(16, 1, 1, 1, 1) Λ8 = diag(16, 16, 16, 1, 1)

Λ3 = diag(128, 1, 1, 1, 1) Λ9 = diag(128, 128, 128, 1, 1)

Λ4 = diag(2, 2, 1, 1, 1) Λ10 = diag(2, 2, 2, 2, 1)

Λ5 = diag(16, 16, 1, 1, 1) Λ11 = diag(16, 16, 16, 16, 1)

Λ6 = diag(128, 128, 1, 1, 1) Λ12 = diag(128, 128, 128, 128, 1)

For the Tyler matrix, because it is affinely equivariant it was only necessary to im-

plement simulations for the case Σ = Id. For a fixed sample size and dimension,

10,000 datasets were generated from an angular central Gaussian distribution. The

Tyler matrix was calculated for each dataset, denote this T̂ n. By affine equivariance,

the Tyler matrices for uncorrelated scatter structures other than spherical symmetry

were obtainable by transforming the matrices via Λ1/2T̂ nΛ
1/2. Once transformed, by

Lemma 1 in order to obtain the principal angles it is necessary to obtain an orthonor-

mal basis for the eigenspaces of interest. Recall the two eigenspaces of interest are

the subspace the matrix T̂D1 projects into and the subspace spanned by the canonical
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unit vector e1, . . . , ed1 , denote them T̂D1 , and ED1 respectively. The spectral decom-

position of the matrix Λ1/2T̂ nΛ
1/2 was obtained to get the eigenvectors t̂1, . . . , t̂d1 ,

which serve as an orthonormal basis of T̂D1 . An orthonormal basis for ED1 is simply

the canonical unit vector e1, . . . , ed1 . Define the matrices QT̂D1
=
(
t̂1, . . . , t̂d1

)
and

QED1
= (e1, . . . , ed1). Denote the principal angles between the subspaces T̂D1 and ED1

as τ1, . . . , τd1 . As described in Lemma 1, the singular values of the matrix Qt
T̂D1

QED1

will be cosτ1, . . . , cosτd1 . The arccosine of these singular values were then taken to

obtain the necessary principal angles.

For the SSCM, since it is only orthogonally equivariant, it was necessary to imple-

ment simulations for each sample size, dimension and scatter structure considered. For

fixed values of the prior mentioned parameters, 10,000 datasets were generated and the

SSCM was calculated for each, denoted as Ŝn. Similarly, the two eigenspaces of interest

are the subspace the matrix ŜD1 projects into, denoted ŜD1 , and ED1 . The spectral

decomposition of the matrix Ŝn was obtained to get the eigenvectors ŝ1, . . . , ŝd1 , which

serve as an orthonormal basis of ŜD1 . Define the matrices QŜD1
= (ŝ1, . . . , ŝd1) and

QED1
as before. Denote the principal angles between the subspaces ŜD1 and ED1 as

ς1, . . . , ςd1 . As described in Lemma 1, the singular values of the matrix Qt
ŜD1

QED1
will

be cosς1, . . . , cosςd1 . The arccosine of these singular values were then taken to obtain

the necessary principal angles.

Note that the principal angles will have expectation 0. This is artifact of the way

principal angles are defined, that is as positive angles; consequently, there expectation

will be positive. This fact motivates a method to compare the eigenprojection estimates

obtained via the Tyler matrix and SSCM. Intuitively, the smaller the expected values

of the principal angles, the closer the eigenprojection estimator is to estimating the true

eigenprojection. Consequently, the sum of the expected values of the principal angles

was used a measure to compare different eigenprojection estimates, the ratio of these

sums for the two different estimators being the value of interest. That is define

REn

[
ŜD1 , T̂D1 ; Λ

]
=
E [τ1 + · · ·+ τd1 ]

E [ς1 + · · ·+ ςd1 ]
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Figure 3.4: Finite Sample Relative Efficiencies of the Eigenprojection Estimate of the
SSCM to the Corresponding Eigenprojection Estimate of the Tyler Matrix in R2

3.5.2 Results

In two dimensions, the only possibility is d1 = 1, thus an exhaustive study of the relative

efficiency of the eigenprojection estimate obtained from the SSCM to that of the Tyler

matrix is possible. In this situation, τ1 and ς1 correspond to the angle between the

eigenvectors t̂1 and e1 or ŝ1 and e1 respectively (the convention for t̂1 and ŝ1 is that

their first component is positive). The values of the relative efficiencies for various

scatter structures are given in Figure 3.4.

When Λ = diag(2, 1), the relative efficiency of the principal angle estimates is nearly

1, indicating the the SSCM estimates the eigenprojection matrix associated with the

eigenvalue 2 almost as well as the Tyler matrix. However, for scatter structures that are

more elliptical, as sample size increases, the relative efficiency decreases before leveling

off. For the case Λ = diag(16, 1), the efficiency is around 0.85 for sample sizes as small

as 9. Interestingly, the sample size for which the relative efficiencies are the worst is

n = 2, however, this will not be the case for all elliptical distribution. Recall in this

case, the Tyler matrix turns out to be equal to the sample covariance matrix. Unlike

the Tyler matrix or SSCM, the sample covariance matrix does depend on the radial

component of the elliptical distribution (i.e. does depend on RG).

In three dimensions for scatter structures which have only two principal component

spaces, there are two situations to consider. The first situation is when the eigenspace

associated with the larger scale has dimension 1; the second being when the eigenspace
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Figure 3.5: Finite Sample Relative Efficiencies of the Eigenprojection Estimate of the
SSCM to the Corresponding Eigenprojection Estimate of the Tyler Matrix in R3

associated with the larger scale has dimension 2. In either situation, Lemma 1 im-

plies that there will be only one non-zero canonical angle. The values of the relative

efficiencies are presented in Figure 3.5.

For both cases, the relative efficiencies when the underlying scatter structure is

close to spherical symmetry (Λ = diag(2, 1, 1) and Λ = diag(2, 2, 1)) are close to 1

indicating the SSCM is performing nearly as well the Tyler matrix in estimating the

eigenprojection matrix associated with the eigenvalue 2. As the scatter structure move

away from spherical symmetry, the relative efficiencies decrease in both situations.

At n = 15, the relative efficiencies for the scatter structures Λ = diag(16, 1, 1) and

Λ = diag(16, 16, 1) are 0.86 and 0.9 respectively. Of the two situation, the one that is

more deleterious towards accurately estimating the eigenprojection matrices is when the

dimension of the eigenspace associated with the larger scale is 1. Like in two dimensions,

the case when the number of samples equals the dimension, n = 3, does not follow the

general trend. Similarly, this is attributable to the fact the Tyler matrix equals the
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sample covariance matrix in this case; since the later depends on the radial component

of the elliptical distribution, these values do not hold for all elliptical distributions.

The last dimension considered permits more interesting scatter structures to con-

sider, even when there are only two principal component spaces. In five dimensions, the

eigenspace associated with the larger scale can have dimension d1 = 1, 2, 3 or 4. Figure

3.6 displays the plots relative efficiencies in five dimensions for the scatter matrices in

consideration.

The same trends present in two and three dimensions are also present in five di-

mensions, namely as the scatter matrix becomes more elliptical the relative efficiencies

decrease. Fixing the values of the larger scale, the relative efficiency increases as the di-

mension of the eigenspace associated with the larger scale increases. Thus, like in three

dimensions, the situation where the relative efficiency is worst is when the eigenspace

associated with the largest scale is one dimensional. Also similar is the fact that for

n = 5, the relative efficiency does not follow the general trend, the reason being the

same as it was in two and three dimensions.

3.6 Appendix

3.6.1 Asymptotic Distribution of Eigenprojections and Eigenvectors

of a Scatter Estimate

Two theorems from [33] will be needed. For authenticity the notation is consistent with

that in the original presentation.

Let M be a p × p matrix which is symmetric in the metric of the positive definite

symmetric matrix Γ, i.e. ΓM is symmetric. Denote the eigenvalues of M by λ1 ≥ λ2 ≥

· · · ≥ λp. Define Mn be a sequence of estimates of M such that Mn is symmetric in

the metric of the positive definite symmetric matrix Γn. The following assumption are

needed

1) Γn → Γ in probability.

2) an(Mn −M) →d N where an is an increasing sequence of positive numbers
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Figure 3.6: Finite Sample Relative Efficiencies of the Eigenprojection Estimate of the
SSCM to the Corresponding Eigenprojection Estimate of the Tyler Matrix in R5
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such that an → ∞ as n → ∞, and vec(N) is multivariate Normal with mean 0

and covariance matrix Σ0.

In the original exposition, the author considers the following subset of eigenvalues

of M, {λi, λi+1, . . . , λi+m−1}. Note that, this includes situations where some, or all,

of the eigenvalues are equal. Consequently, define ω to be the distinct eigenvalues in

the set {λi, λi+1, . . . , λi+m−1}. One could use the corresponding eigenvalues of Mn as

estimates of the eigenvalues of M; thus define ω̂ =
{
λ̂i, λ̂i+1, . . . , λ̂i+m−1

}
. For the

eigenvalue λ of M, let Pλ be the eigenprojection of M associated with λ. Similarly, for

λ an eigenvalues of Mn (not necessarily equal to the one in the previous sentence), let

P̂λ be defined similarly. Lastly, define P0 =
∑

λ∈ω Pλ and P̂0 =
∑

λ∈ω̂ P̂λ the total

eigenprojections of M and Mn associated with the eigenvalues in ω and ω̂ respectively.

The first order Taylor approximation of P̂0 about P0 is given in the following lemma

from the paper.

Lemma 4.1.Let d0 = min {λi−1 − λi, λi+m−1 − λi+m}, and d1 = (λi − λi+m−1).

Also define the norm ‖B‖ =
[
max eigenvalue

(
Γ−1B′ΓB

)]1/2
. If ‖Bn −B‖ ≤ d0/2

then

P̂0 = P0 −
∑
λ∈ω

[
Pλ (Mn −M) (M− λId)

+ + (M− λId)
+ (Mn −M) Pλ

]
+ En

where ‖En‖ ≤ (1 + d1/d0) (2 ‖Mn −M‖ /d0)2 (1− 2 ‖Mn −M‖ /d0)−1

This lemma is useful in that it gives the asymptotic distribution of the eigenprojec-

tion P̂0, namely

anvec
(
P̂0 −P0

)
→d vec (N0) = −

∑
λ∈ω

[
(M− λId)

+ ⊗Pλ + P′λ ⊗ (M− λId)
+]vec (N)

where vec (N0) has a multivariate Normal distribution with mean 0 and covariance

matrix C′ωΣ0Cω with
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C′ω = −
∑
λ∈ω

[
(M− λId)

+ ⊗Pλ + P′λ ⊗ (M− λId)
+]

The above expression can be simplified. Since projection matrices are symmetric, the

transposes are superfluous and thus will be omitted. Recall one can write a symmetric

positive-definite matrix in terms of its eigenvalues and eigenprojections via the formula

M =
∑
µPµ. Thus one has

M− λId =
∑
µ6=λ

µPµ + λPλ − λId =
∑
µ6=λ

µPµ − λ (Id −Pλ)

Assuming M is of full rank, it follows

∑
µ

Pµ =
∑
µ 6=λ

Pµ + Pλ = Id

This then gives

M− λId =
∑
µ6=λ

µPµ − λ
∑
µ 6=λ

Pµ =
∑
µ6=λ

(µ− λ) Pµ

Note that the matrix (M− λId) has eigenvalues (µ− λ) where µ 6= λ. It can be easily

shown that a generalized inverse of (M− λId) is of the form

(M− λId)
+ =

∑
µ 6=λ

(µ− λ)−1 Pµ

Using this fact gives

C′ω = −
∑
λ∈ω

∑
µ 6=λ

(µ− λ)−1 Pµ

⊗Pλ + Pλ ⊗

∑
µ6=λ

(µ− λ)−1 Pµ



=
∑
λ∈ω

∑
µ6=λ

(λ− µ)−1 Pµ

⊗Pλ + Pλ ⊗

∑
µ6=λ

(λ− µ)−1 Pµ


For any λ, µ ∈ ω, the matrices (λ− µ)−1 [Pµ ⊗Pλ + Pλ ⊗Pµ] and

(µ− λ)−1 [Pλ ⊗Pµ + Pµ ⊗Pλ] will appear in the double sum. However, since (λ− µ)−1 =

− (µ− λ)−1, these terms will cancel with each other. Utilizing this fact yields
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C′ω =
∑
λ∈ω

∑
µ/∈ω

(λ− µ)−1 [Pµ ⊗Pλ + Pλ ⊗Pµ]

As an aside, note that the above matrix is symmetric, so the transpose may also be

disregarded. For the λi that are represented in ω, let N be the collection of these

indices (i.e. the subscripts). It will be shown that

Cω =
∑
i∈N

∑
j /∈N

(λi − λj)−1 [pjptj ⊗ pip
t
i + pip

t
i ⊗ pjp

t
j

]
where p1, . . . ,pd is an orthonormal set of eigenvectors for the matrix M. To see this,

suppose that the eigenvalues λm = · · · = λm+k−1 = λ. Let pm, . . . ,pm+k−1 be a set of

orthonormal eigenvectors corresponding to the eigenvalue λ. The eigenprojection ma-

trix associated with the eigenvalue λ, denoted Pλ, is Pλ = pmptm+· · ·+pm+k−1p
t
m+k−1.

Suppose for a different, mutually exclusive set of eigenvalues λn = · · · = λn+l−1 = µ.

The same result holds for eigenprojection matrix Pµ. Suppose that λ ∈ ω and µ /∈ ω,

thus the indices m, . . . , (m+ k − 1) are in N whereas n, . . . , (n+ l − 1) are not. The

claim is

(λ− µ)−1 [Pµ ⊗Pλ + Pλ ⊗Pµ] =
m+k−1∑
i=m

n+l−1∑
j=n

(λi − λj)−1 [pjptj ⊗ pip
t
i + pip

t
i ⊗ pjp

t
j

]
For the eigenvalues corresponding to the index of summation, one has λi = λ and

λj = µ, thus they can be factored out of the sums. Consequently, one need only focus

attention on showing the sum is equal to the sum of the two Kronecker products on the

left hand side. Since the Kronecker product is distributive, one has

m+k−1∑
i=m

n+l−1∑
j=n

[
pjp

t
j ⊗ pip

t
i + pip

t
i ⊗ pjp

t
j

]
=

m+k−1∑
i=m

n+l−1∑
j=n

pjp
t
j

⊗ pip
t
i + pip

t
i ⊗

n+l−1∑
j=n

pjp
t
j


The sums within the brackets equal Pµ. Applying this trick again gives
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m+k−1∑
i=m

[
Pµ ⊗ pip

t
i + pip

t
i ⊗Pµ

]
= Pµ ⊗

(
m+k−1∑
i=m

pip
t
i

)
+

(
m+k−1∑
i=m

pip
t
i

)
⊗Pµ

= Pµ ⊗Pλ + Pλ ⊗Pµ

thus showing the result.

Relating these theorems back to the problem at hand. The matrix M that is to

be estimated will be either the scatter matrix of the data, Σ or the matrix Ξ. The

estimators being used, Mn, for Σ or Ξ are either Tyler’s matrix or the SSCM respec-

tively, based on samples of size n; thus an =
√
n. The matrices, Γ and Γn with which

the aforementioned matrices are to be symmetric in the metric of is simply Id in both

cases. Consequently, Σ0 = AVT̂ (Σ) or Σ0 = AVŜ (Σ).

3.6.2 Tyler’s Scatter Matrix

Existence and uniqueness of T̂ µ̂n
as well as the its properties were discussed in [35]. Of

interest for this section is the asymptotic distribution of Tyler’s matrix. A technicality

that must be addressed proceeding is the issue that the Tyler matrix is only asymptot-

ically consistent for Σ up to proportionality. Hence to properly treat the asymptotic

distribution of the Tyler matrix, both the Tyler matrix and Σ must be standardized.

In [35], the author does so by standardizing both matrices so that each has trace equal

to d. To this end define M◦ = dM/Trace (M); it then follows the matrix M◦ will

have trace equal to d. Using this standardization it was shown that the asymptotic

distribution of the standardized Tyler matrix under the elliptical model is given by

√
n
(
vec

(
T̂
◦
µ̂n
−Σ◦

))
→D Normd2

(
0, AVT̂ ◦ (Σ◦)

)
where µ̂ is some consistent estimate of µ and
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AVT̂ ◦ (Σ◦) =
d+ 2

d
(Id2 + Kd,d) (Σ◦ ⊗Σ◦)− 2

d

d+ 2

d
vec (Σ◦) vect (Σ◦)

=

(
d

Trace (Σ)

)2 d+ 2

d

(
(Id2 + Kd,d) (Σ⊗Σ)− 2

d
vec (Σ) vect (Σ)

)

Using the spectral decomposition of Σ reduces the above to

AVT̂ ◦ (Σ◦) =

(
d

Trace (Σ)

)2 d+ 2

d
(P⊗P)

(
(Id2 + Kd,d) (Λ⊗Λ)− 2

d
vec (Λ) vect (Λ)

)(
Pt ⊗Pt

)
= (P⊗P)AVT̂ (Λ◦)

(
Pt ⊗Pt

)

Where the second inequality utilizes the fact Trace (Σ) = Trace (Λ). Furthermore, the

results of the previous section yield

√
n
(
vec

(
T̂N −PN

))
→D Normd2

(
0, AV

T̂N
(Σ)

)
where

AV
T̂N

(Σ) = Ct
N (Σ◦)AVT̂ (Σ◦) CN (Σ◦)

Note that

CN (Σ◦) =
∑
i∈N

∑
j /∈N

(
d

Trace (Σ)
λ2
i −

d

Trace (Σ)
λ2
j

)−1 [
pjp

t
j ⊗ pip

t
i + pip

t
i ⊗ pjp

t
j

]
=

Trace (Σ)

d

∑
i∈N

∑
j /∈N

(
λ2
i − λ2

j

)−1 [
pjp

t
j ⊗ pip

t
i + pip

t
i ⊗ pjp

t
j

]
=

Trace (Σ)

d
CN (Σ)

Thus in the expression for AV
T̂N

(Σ), the term Trace (Σ) /d cancels out indicating

that the asymptotic distribution of the eigenprojection estimate does not depend the
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scaling of Σ or the estimator T̂ . Thus the superscript ◦ is superfluous when discussing

eigenprojection and will be omitted in the exposition (as was purposely done above).

Recall one can write a symmetric positive-definite matrix in terms of its eigenvalues

and eigenvectors via the formula Σ =
∑d

i=1 λ
2
ipip

t
i. Thus for any d × d orthogonal

matrix Q, if the random vector x has scatter matrix Σ, then the random vector Qx

will have scatter matrix QΣQt. The transformed scatter matrix can be written as Σ =∑d
i=1 λ

2
iQpip

t
iQ

t. This implies that eigenvectors and consequently, the eigenprojection

matrices of scatter matrices are orthogonally equivariant (note that they are not affinely

equivariant). The same is true for the eigenprojection matrices of scatter matrices that

are estimates. In addition, for the transformed data one has the following

CN
(
QΣQt

)
=

∑
i∈N

∑
j /∈N

(
λ2
i − λ2

j

)−1 [
Qpjp

t
jQ

t ⊗Qpip
t
iQ

t + Qpip
t
iQ

t ⊗Qpjp
t
jQ

t
]

=
∑
i∈N

∑
j /∈N

(
λ2
i − λ2

j

)−1
(Q⊗Q)

[
pjp

t
j ⊗ pip

t
i + pip

t
i ⊗ pjp

t
j

] (
Qt ⊗Qt

)
= (Q⊗Q) CN (Σ)

(
Qt ⊗Qt

)

Specifically, above implies CN (Σ) = (P⊗P) CN (Λ)
(
Pt ⊗Pt

)
. Hence the asymptotic

variance-covariance matrix of the eigenprojection estimate T̂N is

AV
T̂N

(Σ) = (P⊗P) Ct
N (Λ)

(
Pt ⊗Pt

)
(P⊗P)AVT̂ (Λ)

(
Pt ⊗Pt

)
(P⊗P) CN (Λ)

(
Pt ⊗Pt

)
= (P⊗P) Ct

N (Λ)AVT̂ (Λ) CN (Λ)
(
Pt ⊗Pt

)
= (P⊗P)AVN (Λ)

(
Pt ⊗Pt

)

Consequently, one can examine a simplified case when considering the asymptotic dis-

tribution of an eigenprojection estimate based on a scatter estimate; in particular, take

the case P = Id. In this situation, the eigenprojection matrices can be written in

terms of the matrices Ei = eie
t
i; that is for a given eigenvalue of Λ, the corresponding

eigenprojection matrix can be written by summing the matrices Ei across the indices i
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corresponding to that eigenvalue. These facts imply

CN (Λ) =
∑
i∈N

∑
j /∈N

(
λ2
i − λ2

j

)−1 (
eie

t
i ⊗ eje

t
j + eje

t
j ⊗ eie

t
i

)
Note that matrices of the form eie

t
i ⊗ eje

t
j for i, j ∈ N or i, j /∈ N will not be rep-

resented in the double summation. Further note Ct
N (Λ) = CN (Λ). With the above

representation, one can readily describe the form of the matrix AV
T̂N

(Λ). One has

AV
T̂N

(Λ) = CN (Λ)

(
d+ 2

d
(Id2 + Kd,d) (Λ⊗Λ)− 2

d

d+ 2

d
vec (Λ) vect (Λ)

)
CN (Λ)

=
d+ 2

d
CN (Λ) (Id2 + Kd,d) (Λ⊗Λ) CN (Λ)−2

d

d+ 2

d
CN (Λ) vec (Λ) vect (Λ) CN (Λ)

=
d+ 2

d

(
CN (Λ) (Λ⊗Λ) CN (Λ) + CN (Λ) Kd,d (Λ⊗Λ) CN (Λ)− 2

d
CN (Λ) vec (Λ) vect (Λ) CN (Λ)

)
Consider the matrix products separately. Writing out CN (Λ) (Λ⊗Λ) CN (Λ) explic-

itly gives

∑
i∈N

∑
j /∈N

eie
t
i ⊗ eje

t
j + eje

t
j ⊗ eie

t
i(

λ2
i − λ2

j

)
 (Λ⊗Λ)

(∑
m∈N

∑
n/∈N

emetm ⊗ ene
t
n + ene

t
n ⊗ emetm

(λ2
m − λ2

n)

)

There will be four different cross-product terms to consider. One such pair will be of

the form

(
eie

t
i ⊗ eje

t
j

)
(Λ⊗Λ)

(
emetm ⊗ ene

t
n

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)
=

(
eie

t
iΛemetm

)
⊗
(
eje

t
jΛene

t
n

)
(
λ2
i − λ2

j

)
(λ2
m − λ2

n)

Since Λ is diagonal, this matrix will be a 0 matrix unless i = m and j = n, in which

case it reduces to
λ2i λ

2
j

(λ2i−λ2j)
2 eie

t
i⊗ eje

t
j . Thus the contributions from these cross-product

terms can be written as

∑
i∈N

∑
j /∈N

λ2
iλ

2
j(

λ2
i − λ2

j

)2 eie
t
i ⊗ eje

t
j

Corresponding to the cross-product terms,
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(
eje

t
j ⊗ eie

t
i

)
(Λ⊗Λ)

(
ene

t
n ⊗ emetm

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)

one can show similarly that the contributions from these cross-product terms can be

written as

∑
i∈N

∑
j /∈N

λ2
jλ

2
i(

λ2
i − λ2

j

)2 eje
t
j ⊗ eie

t
i =

∑
i∈N

∑
j /∈N

λ2
iλ

2
j(

λ2
i − λ2

j

)2 eje
t
j ⊗ eie

t
i

For the cross-product terms

(
eie

t
i ⊗ eje

t
j

)
(Λ⊗Λ)

(
ene

t
n ⊗ emetm

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)
=

(
eie

t
iΛene

t
n

)
⊗
(
eje

t
jΛemetm

)
(
λ2
i − λ2

j

)
(λ2
n − λ2

m)

Again, by the diagonal nature of Λ, these will reduce to a 0 matrix unless i = n and

j = m. This is impossible since i,m ∈ N but j, n /∈ N , thus the contributions from

these terms will be a 0 matrix. By the same argument, the contributions from the

terms

(
eje

t
j ⊗ eie

t
i

)
(Λ⊗Λ)

(
emetm ⊗ ene

t
n

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)
=

(
eje

t
jΛemetm

)
⊗
(
eie

t
iΛene

t
n

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)

will also be 0. This leaves

CN (Λ⊗Λ) CN =
∑
i∈N

∑
j /∈N

λ2
iλ

2
j(

λ2
i − λ2

j

)2

(
eie

t
i ⊗ eje

t
j + eje

t
j ⊗ eie

t
i

)
Next consider the matrix product CN (Λ) Kd,d (Λ⊗Λ) CN (Λ). Writing this out ex-

plicitely yields

∑
i∈N

∑
j /∈N

eie
t
i ⊗ eje

t
j + eje

t
j ⊗ eie

t
i(

λ2
i − λ2

j

) d∑
k=1

d∑
l=1

eke
t
l⊗ele

t
k (Λ⊗Λ)

∑
m∈N

∑
n/∈N

emetm ⊗ ene
t
n + ene

t
n ⊗ emetm

(λ2
m − λ2

n)

Again, there will be four different cross product terms to address. First consider
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(
eie

t
i ⊗ eje

t
j

) (
eke

t
l ⊗ ele

t
k

)
(Λ⊗Λ)

(
emetm ⊗ ene

t
n

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)
=

(
eie

t
ieke

t
lΛemetm

)
⊗
(
eje

t
jele

t
kΛene

t
n

)
(
λ2
i − λ2

j

)
(λ2
m − λ2

n)

Since Λ is diagonal, the matrix eie
t
ieke

t
lΛemetm will be a 0 matrix unless k = i, l = m.

Similarly, the matrix eje
t
jele

t
kΛene

t
n will be a 0 matrix unless l = j, k = n. These

two conditions holding concordantly imply k ∈ N , l ∈ N and k /∈ N , l /∈ N , which is

impossible. Thus the contributions from these cross-product terms will be a 0 matrix. A

similar argument can be applied to show that the contributions from the cross-product

terms

(
eje

t
j ⊗ eie

t
i

) (
eke

t
l ⊗ ele

t
k

)
(Λ⊗Λ)

(
ene

t
n ⊗ emetm

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)

will also result in a 0 matrix.

For cross-product terms of the form

(
eie

t
i ⊗ eje

t
j

) (
eke

t
l ⊗ ele

t
k

)
(Λ⊗Λ)

(
ene

t
n ⊗ emetm

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)
=

(
eie

t
ieke

t
lΛene

t
n

)
⊗
(
eje

t
jele

t
kΛemetm

)
(
λ2
i − λ2

j

)
(λ2
m − λ2

n)

The fact Λ is diagonal implies the matrix eie
t
ieke

t
lΛene

t
n will be a 0 matrix unless k =

i, l = n. Similarly, the matrix eje
t
jele

t
kΛemetm will be a 0 matrix unless l = j, k = m.

These two conditions holding concordantly imply k ∈ N , l /∈ N . The terms where the

previous conditions hold reduce to
λ2kλ

2
l

(λ2k−λ
2
l )

2 eke
t
l ⊗ ele

t
k, thus the contributions from

these terms can be written as

∑
k∈N

∑
l /∈N

λ2
kλ

2
l(

λ2
k − λ2

l

)2 eke
t
l ⊗ ele

t
k

Lastly, for the cross-product terms of the form

(
eje

t
j ⊗ eie

t
i

) (
eke

t
l ⊗ ele

t
k

)
(Λ⊗Λ)

(
emetm ⊗ ene

t
n

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)
=

(
eje

t
jeke

t
lΛemetm

)
⊗
(
eie

t
iele

t
kΛene

t
n

)(
λ2
i − λ2

j

)
(λ2
m − λ2

n)
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Since Λ is diagonal, it follows the matrix eje
t
jeke

t
lΛemetm will be a 0 matrix unless

k = j, l = m. Similarly, the matrix eie
t
iele

t
kΛene

t
n will be a 0 matrix unless l = i, k = n.

These two conditions holding concordantly imply k /∈ N , l ∈ N . The terms where the

previous conditions hold reduce to
λ2l λ

2
k

(λ2l−λ
2
k)

2 eke
t
l ⊗ ele

t
k, thus the contributions from

these terms can be written as

∑
k/∈N

∑
l∈N

λ2
l λ

2
k(

λ2
l − λ2

k

)2 eke
t
l ⊗ ele

t
k =

∑
l∈N

∑
k/∈N

λ2
l λ

2
k(

λ2
l − λ2

k

)2 eke
t
l ⊗ ele

t
k

=
∑
k′∈N

∑
l′ /∈N

λ2
k′λ

2
l′(

λ2
k′ − λ2

l′
)2 el′e

t
k′ ⊗ ek′e

t
l′

Where the last equality follows by defining the new indices, l′ = k and k′ = l. This

then leaves

CN (Λ) Kd,d (Λ⊗Λ) CN (Λ) =
∑
k∈N

∑
l /∈N

λ2
kλ

2
l(

λ2
k − λ2

l

)2 (eketl ⊗ ele
t
k + ele

t
k ⊗ eke

t
l

)
Finally consider the expression

CN (Λ) vec (Λ) =

∑
i∈N

∑
j /∈N

eie
t
i ⊗ eje

t
j + eje

t
j ⊗ eie

t
i

λ2
i − λ2

j

vec (Λ)

=
∑
i∈N

∑
j /∈N

vec
(
eje

t
jΛeie

t
i

)
+ vec

(
eie

t
iΛeje

t
j

)
λ2
i − λ2

j

Again, the fact that Λ is diagonal implies this expression will be a zero matrix unless

i = j; however, the latter never occurs since i and j are in separate indexing sets.

Consequently, Ct
N (Λ) vec (Λ) = 0. These facts imply that

AV
T̂N

(Λ) =
d+ 2

d

∑
i∈N

∑
j /∈N

λ2
iλ

2
j(

λ2
i − λ2

j

)2

(
eie

t
i ⊗ eje

t
j + eie

t
j ⊗ eje

t
i + eje

t
i ⊗ eie

t
j + eje

t
j ⊗ eie

t
i

)
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3.6.3 The Spatial Sign Covariance Matrix

Recall, the spatial sign covariance matrix (SSCM) is computed as follows

Ŝµ̂n
=

1

n

n∑
i=1

(xi − µ̂n) (xi − µ̂n)t

(xi − µ̂n)t (xi − µ̂n)

where µ̂n is some estimate of location. Under the elliptical model, provided that µ̂ is

a consistent estimate of µ, the asymptotic distribution of Ŝµ̂n
will not depend on µ̂.

Consequently, one can assume that that location parameter is known and for simplicity

can take it to be the origin.

For notational convenience define the following random matrix,

X =
xxt

xtx

Note that Ŝn is the average of n observations with the same distribution as X . Provided

the distribution of the random matrix X has finite second moments, the Strong Law

of Large Numbers implies

limn→∞Ŝn = E [X ] = Ξ

In general, Ξ 6= Σ. Furthermore, by the central limit theorem one has

√
nvec

(
Ŝn −Ξ

)
→D Normd2

(
0, AVŜ (X )

)
where

AVŜ (X ) = V ar [vec (X )] = E
[
vec (X −Ξ) vect (X −Ξ)

]
It is desired to get at the form of the matrices and Ξ andAVŜ (X ) when x ∼ Ed (0,Σ;G).

In this situation, the distribution of random matrix X is the same for all distributions

G; conveniently, this distribution has finite second moments (the entries of the matrix

are all bounded by 1) thus the above results hold. By orthogonal equivariance, one

need only consider the case y ∼ Ed (0,Λ;G) (thus x ∼ Py). To see this note that

X =
Py (Py)t

(Py)t Py
=

PyytPt

yPtPy
= P

yyt

yty
Pt = PYPt
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where

Y =
yyt

yty

It then follows

Ξ = E
[
PYPt

]
= PE [Y ] Pt = P∆Pt

where ∆ = E [Y ]. It will be shown that ∆ is a diagonal matrix. Recall y ∈ Rd,

hence it is of the form y = (y1, . . . , yd)
t (yi represent the d components of y, not the n

observations in the sample). Define

γij =
yiyj
yty

=
yiyj

y2
1 + · · ·+ y2

d

thus Y is a matrix where the (i, j)th entry is γij . One can write it as

Y =
d∑
i=1

d∑
j=1

γij
(
ei ⊗ etj

)
Hence ∆ = E

[
{γij}di,j=1

]
= {E [γij ]}di,j=1. It will now be shown that E [γij ] = 0 for

i 6= j. Define another random vector y′ = (y1, y2, . . . ,−yi, . . . , yd), since µ = 0 and Λ

is diagonal it follows y ∼ y′. Thus

γij =
yiyj
yty

∼ −γij =
−yiyj
yty

So

E [γij ] = E [−γij ] = E

[
−yiyj
yty

]
= −E

[
yiyj
yty

]
= −E [γij ]

Thus implying E [γij ] = 0 for i 6= j. This kind of argument will be used again, however

the details omitted.

Under the elliptical model, the asymptotic variance-covariance matrix for the SSCM

will only depend on the scatter structure, thus the notation AVŜ (Σ) is utilized. It

follows
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AVŜ (Σ) = E
[
vec

(
PYPt −P∆Pt

)
vect

(
PYPt −P∆Pt

)]
= E

[
vec

(
P (Y −∆) Pt

)
vect

(
P (Y −∆) Pt

)]
= E

[
(P⊗P) vec (Y −∆) ((P⊗P) vec (Y −∆))t

]
= (P⊗P)E

[
vec (Y −∆) vect (Y −∆)

] (
Pt ⊗Pt

)
= (P⊗P)H

(
Pt ⊗Pt

)

where

H = E
[
vec (Y −∆) vect (Y −∆)

]
= E

[
(vec (Y)− vec (∆)) (vec (Y)− vec (∆))t

]

= E
[
vec (Y) vect (Y)− vec (Y) vect (∆)− vec (∆) vect (Y) + vec (∆) vect (∆)

]
Since E [vec (Y)] = vec (∆), which is a vector of constants, above simplifies to

H = E
[
vec (Y) vect (Y)

]
− vec (∆) vect (∆)

Write

vec (Y) =
d∑
i=1

d∑
j=1

γijvec
(
ei ⊗ etj

)
=

d∑
i=1

d∑
j=1

γijvec
(
eie

t
j

)
thus

vec (Y) vect (Y) =

 d∑
i=1

d∑
j=1

γijvec
(
eie

t
j

)( d∑
k=1

d∑
l=1

γklvec
(
eke

t
l

))t

= =
d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

γijγklvec
(
eie

t
j

)
vect

(
eke

t
l

)

This gives
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E
[
vec (Y) vect (Y)

]
=

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

E [γijγkl] vec
(
eie

t
j

)
vect

(
eke

t
l

)
Repeating arguments similar to the one employed to show ∆ was diagonal, it can

be shown that the following terms are zero.

E [γijγii] , E [γijγjj ] , E [γijγkk] , E [γijγkl] , E [γijγjk]

E [γiiγij ] , E [γiiγji] , E [γiiγkl] , E [γijγki]

Thus, the only expectations that are nonnegative are

E [γiiγii] , E [γijγij ] , E [γiiγjj ] , E [γijγji]

which corresponding to i = j = k = l, i = k & j = l, i = j & k = l and i = l & j = k

respectively.

It can be shown that the matrixAVŜ (Σ) has a similar structure toAVT̂ (Σ); namely,

the elements of the matrices will be non-zero/zero in the same locations. First consider

the situation Σ = Λ. Recall the form of AVT̂ (Λ) in this situation is

AVT̂ (Λ) =
d+ 2

d
(Id2 + Kd,d) (Λ⊗Λ) +

2

d

d+ 2

d
vec (Λ) vect (Λ)

The matrix (Λ⊗Λ) has non-zero/zero elements at the same locations as the matrix

(Id ⊗ Id) = Id2 . Similarly, the matrices vec (Λ) vect (Λ) and vec (∆) vect (∆) have

non-zero/zero elements at the same locations as the matrix vec (Id) vect (Id). Hence

one can focus on the non-zero/zero terms of the matrices Id2 , Kd,d and vec (Id) vect (Id).

Writing these out in terms of the unit canonical vectors, one has

Id2 = Id ⊗ Id =

(
d∑
i=1

eie
t
i

)
⊗

 d∑
j=1

eje
t
j

 =
d∑
i=1

d∑
j=1

eie
t
i ⊗ eje

t
j =

=
d∑
i=1

d∑
j=1

(ei ⊗ ej)
(
eti ⊗ etj

)
=

d∑
i=1

d∑
j=1

(ei ⊗ ej) (ei ⊗ ej)
t =

d∑
i=1

d∑
j=1

vec
(
eje

t
i

)
vect

(
eje

t
i

)
Thus Id2 is non-zero at the locations corresponding to the terms E [γiiγii] and E [γijγij ].
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Kd,d =

d∑
i=1

d∑
j=1

eie
t
j ⊗ eje

t
i =

d∑
i=1

d∑
j=1

(ei ⊗ ej)
(
etj ⊗ eti

)
=

=

d∑
i=1

d∑
j=1

(ei ⊗ ej) (ej ⊗ ei)
t =

d∑
i=1

d∑
j=1

vec
(
eje

t
i

)
vect

(
eie

t
j

)
Thus Kd,d is non-zero at the locations corresponding to the terms E [γiiγii] and E [γijγji].

Lastly,

vec (Id) vect (Id) = vec

(
d∑
i=1

eie
t
i

)
vect

 d∑
j=1

eje
t
j

 =

=

(
d∑
i=1

vec
(
eie

t
i

)) d∑
j=1

vect
(
eje

t
j

) =
d∑
i=1

d∑
j=1

vec
(
eie

t
i

)
vect

(
eje

t
j

)
Thus vec (Id) vect (Id) is non-zero at the locations corresponding to the terms E [γiiγii],

E [γiiγjj ] and the contributions from the term −vec (∆) vect (∆). The general case

follows from the fact that the asymptotic variance-covariance matrices for both cases

are equal to AVT̂ (Σ) = (P⊗P)AVT̂ (Λ)
(
Pt ⊗Pt

)
and AVŜ (Σ) = (P⊗P)AVŜ (Λ)

(
Pt ⊗Pt

)
respectively. In fact, when Σ ∝ Id, it can

be shown that AVŜ
(
σ2Id

)
and AVT̂

(
σ2Id

)
are proportional. This is stated formerly in

the following lemma

Lemma 4.1.1. Let x1, . . . ,xn represent an i.i.d. sample from Ed (µ,Σ;G) and let

µ̂ be an asymptotically consistent estimator of µ. It then follows that AVŜµ̂

(
σ2Id

)
∝

AVT̂ µ̂

(
σ2Id

)
.

Proof. Under spherical symmetry, the results of [34] Theorem 1 dictate that the

form of the covariance matrix of any orthogonally equivariant estimate of scatter is

σ1 (Id2 + Kd,d) (Id ⊗ Id) + σ2vec (Σ) vect (Σ), where σ1 ≥ 0 and σ2 ≥ −2σ1/d. The

form of this matrix implies that the off-diagonal elements of the scatter estimate are

uncorrelated with each other as well as uncorrelated with the diagonal elements. Addi-

tionally, the off-diagonal elements each have variance σ1, whereas the diagonal elements
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have variances 2σ1 +σ2. The covariance between any two diagonal elements is σ2. Both

Tyler’s matrix and the SSCM are orthogonally equivariant, thus the prior results hold

for both estimates. Recall the values of these constants for the Tyler matrix are given

by

σT 1 =
d+ 2

d
and σT 2 = −d+ 2

d

2

d
= −σT 1

2

d

To show the desired result for the SSCM, one must show σS1 = c (d+ 2) /d and σS2 =

−cσT 1 (2/d) for some c > 0. This is equivalent to showing σS1/σS2 = −d/2. Without

loss of generality assume µ = 0, for z ∼ Ed
(
0, σ2Id;G

)
define

Z =
zzt

ztz

Define

ζij =
zizj
ztz

=
zizj

z2
1 + · · ·+ z2

d

that is ζij the ijth element of the random matrix Z. Since Id is diagonal it follows

that E[Z] will be as well. Further more, the fact ζii, i = 1, . . . , d, are identically

distributed implies that is proportional to the identity matrix. To find this constant

of proportionality, note that Trace (Z) = 1, thus it follows E[Z] = 1
dId. The previous

notation and fact give

σS1 = E
[
ζ2
ij

]
= E

[
z2
i z

2
j(

z2
1 + · · ·+ z2

d

)2
]

σS2 = E

[(
ζii −

1

d

)(
ζjj −

1

d

)]
= E [ζiiζjj ]−

1

d
E [ζii]−

1

d
E [ζjj ] +

1

d2
=

= E

[
z2
i z

2
j(

z2
1 + · · ·+ z2

d

)2
]
− 1

d2
= σS1 −

1

d2

To proceed further, the value σS1 must be calculated. Using the stochastic representa-

tion of the random vector z, it can be be shown that the distribution of

z2
i z

2
j /
(
z2

1 + · · ·+ z2
d

)2
will not depend on the radial component of the elliptical random

vector, that is it does not depend on G. This reduces to σS1 .
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σS1 = E

[
u2
iu

2
j(

u2
1 + · · ·+ u2

d

)2
]

= E
[
u2
iu

2
j

]
where u = (u1, . . . , ud)

t is a unit vector uniformly distributed on the unit sphere in Rd.

Define U1 = u2
i and U2 = 1− u2

i . By exchangeability it follows,

E
[
u2
iu

2
j

]
=

1

d− 1

∑
j 6=i

E
[
u2
iu

2
j

]
=

1

d− 1
E [U1U2] =

1

d− 1
E [U1 (1− U1)]

It is known that U1 ∼ Beta (1/2, (d− 1) /2), thus

E [U1 (1− U1)] = E
[
U1 − U2

1

]
= E [U1]− V ar [U1]− E2 [U1] =

=
1

d
− (d− 1) /4

(d/2)2 (d+ 2) /2
− 1

d2
=

1

d

d− 1

d+ 2

Therefore σS1 = 1/d (d+ 2) and σS2 = 1/d (d+ 2) − 1/d2 = −2/d2 (d+ 2). Hence

σS1/σS2 = −d/2, thus proving the result.QED

Just as with Tyler’s scatter matrix, it will be the case that

√
n
(
ŜN −PN

)
→D Normd2

(
0, AV

ŜN
(Σ)

)
where

AV
ŜN

(Σ) = Ct
N (Ξ)AVŜ (Σ) CN (Ξ)

The fact that AVŜ (Σ) will be zero/non-zero in the same locations as the matrix

AVT̂ (Σ) implies the same about the matrices AV
ŜN

(Σ) and AV
T̂N

(Σ). This fact

further implies AV
ŜN

(Σ) = (P⊗P)AV
ŜN

(Λ)
(
Pt ⊗Pt

)
, thus it is desired to get the

exact from of the matrix AV
ŜN

(Λ). In this situation it follows

AV
ŜN

(Λ) = Ct
N (∆)

(
E
[
vec (Y) vect (Y)

]
− vec (∆) vect (∆)

)
CN (∆)

However, there will be some simplification. Note that



108

Ct
N (∆) vec (∆) =

∑
i∈N

∑
j /∈N

eie
t
i ⊗ eje

t
j + eje

t
j ⊗ eie

t
i

δ2
i − δ2

j


t

vec (∆)

The expression above involves terms of the form

(
eie

t
i ⊗ eje

t
j

)
vec (∆) +

(
eje

t
j ⊗ eie

t
i

)
vec (∆) = vec

(
eje

t
j∆eie

t
i

)
+ vec

(
eie

t
i∆eje

t
j

)
The term etk∆el is the klth element of the matrix ∆ which is necessarily 0 since it is

diagonal. This implies Ct
N (∆) vec (∆) = 0. This leaves,

AV
ŜN

(Λ) = Ct
N (∆)E

[
vec (Y) vect (Y)

]
CN (∆)

= Ct
N (∆)


d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

E [γijγkl] vec
(
eie

t
j

)
vect

(
eke

t
l

)CN (∆)

The fact that AV
ŜN

(Σ) and AV
T̂N

(Σ) have non-zero/zero elements at the same loca-

tion necessitates that

AV
ŜN

(Λ) =
∑
i∈N

∑
j /∈N

E [γijγij ](
δ2
i − δ2

j

)2

(
eie

t
i ⊗ eje

t
j + eie

t
j ⊗ eje

t
i + eje

t
i ⊗ eie

t
j + eje

t
j ⊗ eie

t
i

)
Since, y ∼ Ed (0,Λ, G), the distribution of Y does not depend on G, consequently nor

will γij . Using the stochastic representation of the random vector Y, it can be shown,

δ2
ι = E [γιι] = E

[
λ2
ιu

2
ι∑d

i=1 λ
2
iu

2
i

]

E [γijγij ] = E

 λ2
iλ

2
ju

2
iu

2
j(∑d

k=1 λ
2
ku

2
k

)(∑d
l=1 λ

2
l u

2
l

)


3.6.4 Asymptotic Calculations

Results stated in section 3.4.1 without proof are presented in this section. First the

asymptotic covariance matrices of the estimators T̂N and ŜN will be calculated under

the elliptical model for the scatter matrix
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Λ0 = diag

λ2, . . . , λ2︸ ︷︷ ︸
d1

, r2λ2, . . . , r2λ2︸ ︷︷ ︸
d−d1


In this instance, PN =

∑d1
i=1 Ei = ED1 . For T̂N it easily follows,

AV
T̂N

(Λ0) =

d1∑
i=1

d∑
j=d1+1

d+ 2

d

r2λ2λ2

(λ2 − r2λ2)2

(
eie

t
i ⊗ eje

t
j + eie

t
j ⊗ eje

t
i + eje

t
i ⊗ eie

t
j + eje

t
j ⊗ eie

t
i

)
=

d1∑
i=1

d∑
j=d1+1

d+ 2

d

r2

(1− r2)2

(
eie

t
i ⊗ eje

t
j + eie

t
j ⊗ eje

t
i + eje

t
i ⊗ eie

t
j + eje

t
j ⊗ eie

t
i

)

For the SSCM, it was shown in the previous section that

AV
ŜN

(Λ) =

d1∑
i=1

d∑
j=d1+1

E [γijγij ](
δ2
i − δ2

j

)2

(
eie

t
i ⊗ eje

t
j + eie

t
j ⊗ eje

t
i + eje

t
i ⊗ eie

t
j + eje

t
j ⊗ eie

t
i

)
where

δ2
i = E

[
λ2u2

i

λ2u2
1 + · · ·+ λ2u2

d1
+ r2λ2u2

d1+1 + · · ·+ r2λ2u2
d

]

= E

[
u2
i

u2
1 + · · ·+ u2

d1
+ r2u2

d1+1 + · · ·+ r2u2
d

]

δ2
j = E

[
r2λ2u2

j

λ2u2
1 + · · ·+ λ2u2

d1
+ r2λ2u2

d1+1 + · · ·+ r2λ2u2
d

]

= r2E

[
u2
j

u2
1 + · · ·+ u2

d1
+ r2u2

d1+1 + · · ·+ r2u2
d

]
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E [γijγij ] = E

 λ2u2
i r

2λ2u2
j(

λ2u2
1 + · · ·+ λ2u2

d1
+ r2λ2u2

d1+1 + · · ·+ r2λ2u2
d

)2


= r2E

 u2
iu

2
j(

u2
1 + · · ·+ u2

d1
+ r2u2

d1+1 + · · ·+ r2u2
d

)2



for all i = 1, . . . , d1 and j = d1 + 1, . . . , d. Fortunately, for this scatter structure, the

values of δ2
ι and E [γijγij ] can be expressed in terms of Gauss hypergeometric functions.

Similar to the proof of Lemma 4.1.1, define the variables U1 = u2
1 + · · · + u2

d1
, U2 =

u2
d1+1 + · · ·+u2

d, consequently U1 = 1−U2. Further define and U = U1 +r2U2 = 1−kU2

where k = 1− r2. Exploiting this notation and exchangeability, one can write

δ2
i =

1

d1
E
[
U1 (1− kU2)−1

]
=

1

d1
E
[
(1− U2) (1− kU2)−1

]

δ2
j =

r2

d− d1
E
[
U2 (1− kU2)−1

]
=

1− k
d− d1

E
[
U2 (1− kU2)−1

]
Also, by exchangeability it follows

E [γijγij ] =
r2

d1 (d− d1)
E
[
U1U2 (1− kU2)−2

]
=

1− k
d1 (d− d1)

E
[
U2 (1− U2) (1− kU2)−2

]
Using the fact, U2 ∼ Beta

(
d−d1

2 , d12

)
one can write,

E
[
U r2 (1− U2)s (1− kU2)−t

]
=

1

B
(
d−d1

2 , d12

) ∫ 1

0
x
d−d1

2
+r−1 (1− x)

d1
2

+s−1 (1− kx)−t dx

=
1

B
(
d−d1

2 , d12

) ∫ 1

0
x
d−d1+2r

2
−1 (1− x)

d+2s+2r
2

− d−d1+2r
2

−1 (1− kx)−t dx

=
B
(
d−d1+2r

2 , d+2s+2r
2 − d−d1+2r

2

)
B
(
d−d1

2 , d12

) 2F1

(
t,
d− d1 + 2r

2
;
d+ 2s+ 2r

2
; k

)
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where B (a, b) = Γ (a) Γ (b) /Γ (a+ b) is the Beta function and

2F1 (a, b; c; k) = B−1 (b, c− b)
∫ 1

0 x
b−1 (1− x)c−b−1 (1− kx)−a dx is the Gauss hyperge-

ometric function. The integral representation of the Gauss hypergeometric function is

valid for < (c) > < (b) > 0. These facts then give

E
[
U2 (1− kU2)−1

]
=

B
(
d−d1+2

2 , d+2
2 −

d−d1+2
2

)
B
(
d−d1

2 , d12

) 2F1

(
1,
d− d1 + 2

2
;
d+ 2

2
; k

)

=
Γ
(
d−d1+2

2

)
Γ
(
d1
2

)
Γ
(
d+2

2

) Γ
(
d
2

)
Γ
(
d1
2

)
Γ
(
d−d1

2

)2F1

(
1,
d− d1 + 2

2
;
d+ 2

2
; k

)

=

d−d1
2 Γ

(
d−d1

2

)
Γ
(
d1
2

)
d
2Γ
(
d
2

) Γ
(
d
2

)
Γ
(
d1
2

)
Γ
(
d−d1

2

)2F1

(
1,
d− d1 + 2

2
;
d+ 2

2
; k

)

=
d− d1

d
2F1

(
1,
d− d1 + 2

2
;
d+ 2

2
; k

)

E
[
(1− U2) (1− kU2)−1

]
=

B
(
d−d1

2 , d+2
2 −

d−d1
2

)
B
(
d−d1

2 , d12

) 2F1

(
1,
d− d1

2
;
d+ 2

2
; k

)

=
Γ
(
d−d1

2

)
Γ
(
d1+2

2

)
Γ
(
d+2

2

) Γ
(
d
2

)
Γ
(
d−d1

2

)
Γ
(
d1
2

)2F1

(
1,
d− d1

2
;
d+ 2

2
; k

)

=
Γ
(
d−d1

2

)
d1
2 Γ
(
d1
2

)
d
2Γ
(
d
2

) Γ
(
d
2

)
Γ
(
d−d1

2

)
Γ
(
d1
2

)2F1

(
1,
d− d1

2
;
d+ 2

2
; k

)

=
d1

d
2F1

(
1,
d− d1

2
;
d+ 2

2
; k

)
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E
[
U2 (1− U2) (1− kU2)−2

]
=

B
(
d−d1+2

2 , d+2+2
2 − d−d1+2

2

)
B
(
d−d1

2 , d12

) 2F1

(
2,
d− d1 + 2

2
;
d+ 2 + 2

2
; k

)

=
Γ
(
d−d1+2

2

)
Γ
(
d1+2

2

)
Γ
(
d+4

2

) Γ
(
d
2

)
Γ
(
d−d1

2

)
Γ
(
d1
2

)2F1

(
2,
d− d1 + 2

2
;
d+ 4

2
; k

)

=

d−d1
2 Γ

(
d−d1

2

)
d1
2 Γ
(
d1
2

)
d+2

2
d
2Γ
(
d
2

) Γ
(
d
2

)
Γ
(
d−d1

2

)
Γ
(
d1
2

)2F1

(
2,
d− d1 + 2

2
;
d+ 4

2
; k

)

=
d1 (d− d1)

d (d+ 2)
2F1

(
2,
d− d1 + 2

2
;
d+ 4

2
; k

)

Using these gives,

δ2
i =

1

d1

d1

d
2F1

(
1,
d− d1

2
;
d+ 2

2
; k

)
=

1

d
2F1

(
1,
d− d1

2
;
d+ 2

2
; k

)

δ2
j =

1− k
d− d1

d− d1

d
2F1

(
1,
d− d1 + 2

2
;
d+ 2

2
; k

)
=

1− k
d

2F1

(
1,
d− d1 + 2

2
;
d+ 2

2
; k

)

E [γijγij ] =
1− k

d1 (d− d1)

d1 (d− d1)

d (d+ 2)
2F1

(
2,
d− d1 + 2

2
;
d+ 4

2
; k

)
=

1− k
d (d+ 2)

2F1

(
2,
d− d1 + 2

2
;
d+ 4

2
; k

)

Thus,

E [γijγij ](
δ2
i − δ2

j

)2 =

1−k
d(d+2)2F1

(
2, d−d1+2

2 ; d+4
2 ; k

)
(

1
d2F1

(
1, d−d12 ; d+2

2 ; k
)
− 1−k

d 2F1

(
1, d−d1+2

2 ; d+2
2 ; k

))2

=

d
d+2 2

F1 (1− k)
(

2, d−d1+2
2 ; d+4

2 ; k
)

(
2F1

(
1, d−d12 ; d+2

2 ; k
)
− (1− k)2F1

(
1, d−d1+2

2 ; d+2
2 ; k

))2

This then gives
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AREd,d1

(
ŜN , T̂N , r

)
=

d+2
d

r2

(1−r2)2

d
d+2

(1−k)2F1

(
2,
d−d1+2

2
; d+4

2
;k
)

(
2F1

(
1,
d−d1

2
; d+2

2
;k
)
−(1−k)2F1

(
1,
d−d1+2

2
; d+2

2
;k
))2

=

(
d+2
d

)2 1−k
k2

(1−k)2F1

(
2,
d−d1+2

2
; d+4

2
;k
)

(
2F1

(
1,
d−d1

2
; d+2

2
;k
)
−(1−k)2F1

(
1,
d−d1+2

2
; d+2

2
;k
))2

=

(
d+2
d

)2
2F1

(
2,
d−d1+2

2
; d+4

2
;k
)

(
1
k2
F1

(
1,
d−d1

2
; d+2

2
;k
)
− 1−k

k 2F1

(
1,
d−d1+2

2
; d+2

2
;k
))2

Expression in the denominator of the denominator, identity 15.2.20 from [1], 1−z
z 2F1 (a, b; c; z)−

1
z 2F1 (a− 1, b; c; z) + c−b

c 2F1 (a, b; c+ 1; z) = 0, where z = k, a = d−d1+2
2 , b = 1 and

c = d+2
2 , yields the final result

AREd,d1

(
ŜN , T̂N , r

)
=

(
d+2
d

)2
2F1

(
2,
d−d1+2

2
; d+4

2
;k
)

(
d
d+22

F1

(
1,
d1+2

2
; d+4

2
;k
))2

=
2F

2
1

(
1, d1+2

2 ; d+4
2 ; 1− r2

)
2F1

(
2, d1+2

2 ; d+4
2 ; 1− r2

)
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Chapter 4

Conclusion

4.1 Implications

As shown for both the spatial median and SSCM, when sampling from an elliptical

distribution, these estimators are at their best in terms of efficiency when the under-

lying scatter structure of the elliptical distribution is in fact spherical. This situation

is the least interesting scenario for multivariate problems. For example, PCA is most

useful is when the majority of the variation in the data lies in some d1 dimensional

subspace with d1 < d. If it is assumed that data arises from some elliptical model, then

this scenario implies that Σ is far from spherical. A popular approach to robust PCA

is to ascertain the eigendecomposition of some robust estimator of the scatter matrix,

the computation of which usually involves estimating the location vector, usually with

some robust estimator as well. As a procedure, PCA is orthogonally equivariant. Con-

sequently, the estimators used for the prior approach need only possess this property as

well. Being orthogonally equivariant, the spatial median and SSCM are commonly used

in robust versions of PCA. However, these estimators are at their best is when PCA

is least useful, spherical symmetric data admits nearly no reduction in dimensionality.

Where PCA yields the greatest amount of dimension reduction is when these estima-

tors are at their worst in terms of efficiency. Unfortunately, the fact the performance of

orthogonally equivariant estimators depends on the underlying scatter structure of the

data is hardly ever considered in practice. Utilizing an orthogonally equivariant estima-

tor without considering the underlying scatter structure is rather Procrustean in that

it does not take into account the scatter structure of the data, but rather down-weighs

observations based on Euclidean distances.
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4.2 Future Work

Based on the results for the spatial median and SSCM, one might hypothesize that

the efficiencies of other orthogonally equivariant estimators of location and scatter are

maximized under the elliptical model when the underlying scatter structure of the data

is spherically symmetric. Interestingly, this is not the case; a counter-example is with

Huber’s skipped mean for the bivariate Gaussian distribution. This fact motivates a

future research direction; a further exploration of which scatter structures are favorable

to other orthogonally equivariant estimators under the elliptical model. Included with

the direction is a study of the properties of the estimator that dictate what scatter

structures are favorable. This direction would provide insight to researchers in other

fields when deciding upon which orthogonally equivariant estimators to use for their

data.

A second research direction is the development and study of methods that are

improvements of orthogonally equivariant procedures in the sense their efficiencies are

not as sensitive to the underlying scatter structure of the data as the former estimators.

To this end the author proposes studying hybrid estimators of the form,

µ̂ = argminθ∈Rd

n∑
i=1

u1

(
(xi − θ)t Σ̂

−1

∗ (xi − θ)
)

(4.1)

Σ̂ = argminV∈Pd

n∑
i=1

u2

(
(xi − µ̂)t V−1

∗ (xi − µ̂)
)
− ln (det (V∗)) (4.2)

where Pd is the vector space of d × d symmetric positive definite matrices, V∗ = V +

λTrace (V) Id, λ > 0 and u1 (s) and u2 (s) satisfy assumptions similar to those defined

in Section 2 of [23]. A similar estimator of scatter to Equation 4.2 has been studied in

[6] where Tyler’s matrix was used instead of the identity matrix. This estimator can be

viewed as a shrinkage estimator of scatter, where the shrinkage is towards the identity

matrix. The parameter λ is a tuning constant that depends on both the sample size

and the underlying scatter structure of the data and controls how much the estimator is

shrunk to the identity. The form of the matrix Σ∗ dictates that it is nonsingular, hence

µ̂ will be defined and unique from the sample mean vector, even when n < d. This
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fact is an an obvious advantage over affinely equivariant estimators. However, because

these estimators incorporate an estimate of the underlying scatter structure into them,

it is speculated that they will have better efficiencies than orthogonally equivariant

estimators. The existence and uniqueness of these estimators still must be established

as well as their robustness properties and asymptotic behavior. In addition, these

estimators will not be as computationally intensive as high breakdown point affinely

equivariant estimators.

The motivation of this research direction is in the field of sparse high-dimensional

data analysis where n << d. As mentioned in section 2, any affinely equivariant esti-

mate of location and scatter reduce to the sample mean vector and sample covariance

matrix respectively [38]. Consequently, orthogonally equivariant estimators of the lo-

cation vector are often implemented in this setting because they are defined despite

the fact n < d; in addition they are unique from the former two estimators. How-

ever, using orthogonally equivariant estimators could be disadvantageous considering

their tendency to favor certain scatter structures. The hybrid estimators defined in

Equations 4.1 and 4.2 proposed would serve as alternatives to orthogonally equivariant

estimators since they do not favor any particular scatter structure.
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Technol., Birkhäuser, Basel, 2002, pp. 257–269.

[8] C. Croux and A. Ruiz-Gazen, High breakdown estimators for principal compo-
nents: the projection-pursuit approach revisited, J. Multivariate Anal., 95 (2005),
pp. 206–226.

[9] P. L. Davies, Asymptotic behaviour of S-estimates of multivariate location pa-
rameters and dispersion matrices, Ann. Statist., 15 (1987), pp. 1269–1292.

[10] D. L. Donoho and M. Gasko, Breakdown properties of location estimates based
on halfspace depth and projected outlyingness, Ann. Statist., 20 (1992), pp. 1803–
1827.
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