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ABSTRACT OF THE DISSERTATION

Existence and Nonexistence of Solutions to Mixed

Nonlinear Boundary Value Problems

by Nicholas Trainor

Dissertation Director: Michael Vogelius

We consider solutions to the mixed boundary value problem
∆u = 0 in Ω

u = 0 on Γ0

∂u

∂ν
= cu+ λ |u|α−1 u on Γ

on the unit ball Ω ∈ RN , N ≥ 3, with boundary ∂Ω = Γ0∪Γ, where Γ0 and Γ are smooth

connected components with Γ0 ∩ Γ = ∅. Here λ > 0, c ∈ R, and α > 1. The question

is how the parameters c, λ, α affect existence and behavior of solutions. In particular,

we consider the cases when α + 1 is less than, greater than, or equal to the critical

exponent for the Sobolev trace embedding α∗ = 2(N−1)
N−2 . For certain arguments we will

need to assume that the Neumann boundary Γ is a subset of the upper hemisphere.
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Chapter 1

Introduction

Let Ω be an open, bounded set in RN , N ≥ 3 with smooth boundary ∂Ω = Γ0 ∪ Γ,

where Γ0 and Γ are smooth and connected with Γ0 ∩ Γ = ∅. Our problem is
∆u = 0 in Ω

u = 0 on Γ0

∂u

∂ν
= g(u) on Γ,

(1.1)

where g is of the form

g(u) = cu+ λ |u|α−1 u (1.2)

for λ > 0, c ∈ R, and α > 1. Certain calculations will require specific forms of Ω, Γ0,

and Γ, and so we will make additional assumptions as we need them.

Problem (1.1) arose from considering solutions of problems of the form
∆u = 0 in Ω

∂u

∂ν
= λ sinh(u) on ∂Ω.

(1.3)

This boundary value problem arises from the Butler-Volmer boundary condition used in

corrosion modeling (see the introduction in [20]). This problem was studied thoroughly

in two dimensions by Kavian and Vogelius in [13], along with Bryan and Vogelius in

[6] and Vogelius and Xu in [20]. However, showing the existence of solutions relied on

the compactness of the embedding of a Sobolev space into the Orlicz space associated

with the function et
2 − 1. This embedding holds in dimension two but not in higher

dimensions, and so a problem arises trying to carry out the argument for N ≥ 3 with

exponential boundary data. The analogous problem is to have boundary data of the

form (1.2), where α+ 1 is subcritical to the Sobolev embedding H1(Ω) into Lp(∂Ω).
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The argument for existence in two dimension for problem (1.3) presented in [13]

carries over quite well to (1.1) in three or more dimensions. This is carried out in

Chapter 2, and therein it is explained exactly how the critical exponent arises.

It is not immediately clear that there is not a separate argument to show existence

for (1.1) for larger α, or even for g(u) = λ sinh(u) (which is in a sense larger than uα

for any α). Certainly the methods we use in Chapter 2, finding critical points of energy

functionals, will fail when α is too large, but there could be other methods to construct

solutions. However, the work of Pohozaev in [18] indicates that (1.1) likely does not

have solutions if α is too large. Indeed, in [18] Pohozaev shows that the problem
∆u+ λ |u|p = 0 in Ω

u = 0 on ∂Ω

cannot have solutions when p is greater than a critical exponent (as long as Ω is star-

shaped). Brezis and Nirenberg ([4]) considered the modified problem
−∆u = cu+ up

∗
in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where p∗ is the critical exponent. Brezis and Nirenberg showed that existence is retained

for certain values of c, depending on the domain and the dimension. At a glance, (1.1)

is not much different when Γ0 = ∅, as we have only moved the data to the boundary.

The Pohozaev argument, however, becomes more complicated. Indeed, complications

with the Pohozaev argument required adding the linear cu term and having a nonempty

Dirichlet boundary Γ0. These details appear in Chapter 3.

In Chapter 4 we show some numerical plots which provide some evidence for the

existence and nonexistence results from Chapters 2 and 3.

There are still some open questions for the nonexistence result. In particular, we only

show nonexistence to (1.1) in the case when the exponent is supercritical, c < −N−2
2 ,

and the solutions are continuous and satisfy a certain growth condition. Our Pohozaev

identity (Theorem 9) is not shown to hold when c ≥ −N−2
2 , and even if it did, a
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meaningful result is not obtained. It is unclear whether such a result can be found,

though some numeric computations in Section 4.4 suggest solutions do not exist.

It is also unclear whether the nonexistence in the supercritical case carries over to

boundary data of the form g(u) = sinhu. Even though sinhu is “larger” than uα,

there is some justification to believing solutions may exist. For instance, Joseph and

Lundgreen show in [12] that the problem
∆u+ λeu = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

in the case when Ω is a ball, has solutions even in dimension higher than 2 (in fact, in

every dimension there is some range of λ for which solutions exist). However, this result

relies on the fact that solutions are radial and the boundary value problem reduces to

an ordinary differential equation. It isn’t difficult to see that problem (1.1) does not

have radial solutions, so it is unclear is there if a relationship between the two problems.

The question of existence to the problem (1.1) has been fairly well studied even when

Γ0 6= ∅. Our argument in Section 2.1 follows very similarly the arguments presented by

Kavian and Vogelius in [13]. The arguments in Section 2.1.1 and Section 2.2 can mostly

be found by Adimurthi and Yadava in [1] and [2], though we have in some cases made

the arguments simpler by making more restrictive assumptions. For purposes of making

this paper self-contained, all the relevant theorems and proofs have been included.

The material in Chapter 3, specifically the Pohozaev Identity in Theorem 9 and

corresponding nonexistence result in Corollary 2, is believed to be new. The idea

of breaking up the boundary conditions into a Neumann component and a Dirichlet

component was aided by [2] and [7]. In the latter paper, Chelbik, Fila, and Reichel

consider problem (1.1) where Ω is a half-ball, Γ is the flat component of the boundary,

and Γ0 is the curved component of the boundary. For this domain the authors derive

a Pohozaev identity.
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Chapter 2

Existence

Let Ω ⊂ RN be bounded with smooth boundary, N ≥ 3, and Γ0,Γ be any two smooth

connected subsets of ∂Ω with Γ0 ∪Γ = ∂Ω, Γ0 ∩Γ = ∅. We wish to show that (1.1) has

a (weak) solution u ∈ H1(Ω), defined by (2.3) below.

Define H ⊂ H1(Ω) by

H = {u ∈ H1(Ω) : u = 0 on Γ0}.

For u, v ∈ H, define

(u, v)H =

∫
Ω
∇u · ∇v dx+

∫
Γ
uv dσ (2.1)

and

‖u‖2H = (u, u)H . (2.2)

We say u ∈ H is a weak solution (or simply a solution) to (1.1) if∫
Ω
∇u · ∇v dx− c

∫
Γ
uv dσ − λ

∫
Γ
u |u|α−1 v dσ = 0 (2.3)

for every v ∈ H. Set

α∗ =
2(N − 1)

N − 2
,

which is the critical exponent for the embedding of H1(Ω) into Lp(∂Ω).

We wish to show that there exists a nontrivial u ∈ H satisfying (2.3). The solution

structure will depend on the exponent α. In Section 2.1, we show that (1.1) has a

nontrivial solution in H as long as 1 < α < α∗ − 1. In Subsection 2.1.1, we show that

there is a solution which may be taken to be nonnegative in Ω. The arguments here

rely on the compactness of the embedding of H1(Ω) into Lα+1(∂Ω). In Section 2.2,

we show that when α = α∗ − 1, nontrivial solutions are still obtained under certain

conditions on the constant c, even though compactness of the trace embedding is lost.
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The ideas in Section 2.1 follow [13] very closely. The main difference is that the

embedding H1(Ω) into the Orlicz space associated with et
2 − 1 in N = 2 dimensions is

replaced by the embedding H1(Ω) ↪→ Lp(∂Ω) in N ≥ 3 dimensions. We have presented

the proofs of all theorems even when there is little to no difference to the corresponding

theorems in [13]. The main result is Theorem 2, which states that problem (1.1) admits

infinitely many solutions in H.

The ideas in Section 2.1.1 are adapted from [1], [2] and [4]. These papers primarily

deal with constructing a solution in the critical case, but the argument works (and is

in fact easier) in the subcritical case. The difference between these arguments and the

argument presented in Section 2.1 is a different energy functional is used, and the result

is showing the existence of only one positive solution, instead of infinitely many solutions

with no positivity restriction. The arguments in Section 2.2 follow closely those found

in [2]. Due to computational complexity, we state and prove simpler versions of the

results, taking the domain Ω to be the unit ball.

2.1 Subcritical Case

Suppose 1 < α < α∗ − 1. We first verify that the integrals in (2.3) are defined for any

u ∈ H. Trace and Sobolev embedding tells us that we have

H ⊂ H1(Ω) ↪→ H1/2(Ω) ↪→ Lp(∂Ω)

for every 1 < p ≤ α∗, and that the embeddings are compact for 1 < p < α∗. Let

u, v ∈ H. As α∗ > 2, we have u, v ∈ L2(∂Ω), and so∫
Γ
uv dσ =

∫
∂Ω
uv dσ ≤

(∫
∂Ω
u2

) 1
2
(∫

∂Ω
v2

) 1
2

<∞.

Furthermore, α+ 1 < α∗, so u, v,∈ Lα+1(∂Ω), giving∫
Γ

∣∣∣u |u|α−1 v
∣∣∣ dσ =

∫
∂Ω
|u|α |v| dσ

≤
(∫

∂Ω
|u|α

α+1
α

) α
α+1

(∫
∂Ω
|v|α+1

) 1
α+1

<∞.
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This also shows that the inner product (2.1) is well-defined. Furthermore, the induced

norm (2.2) provides a norm on H which is equivalent to the standard norm from H1(Ω),

‖u‖2H1(Ω) =

∫
Ω
‖∇u‖2 dx+

∫
Ω
u2 dx. (2.4)

We first make the following observation. If u ∈ H is a nontrivial solution to (1.1),

we have ∫
Ω
‖∇u‖2 dx = c

∫
Γ
u2 dσ + λ

∫
Γ
|u|α+1 dσ.

Then we must have

0 < c

∫
Γ
u2 dσ + λ

∫
Γ
|u|α+1 dσ.

In particular, if c ≤ 0 we must have λ > 0. If c > 0, then having λ < 0 does not provide

a contradiction to this inequality, though we do not consider the λ < 0 case in this

paper.

To show the existence of a weak solution we employ a variational argument. For

v ∈ H, define

E(v) =
1

2

∫
Ω
‖∇v‖2 dx− c

2

∫
Γ
v2 dσ − λ

α+ 1

∫
Γ
|v|α+1 dσ. (2.5)

The embedding arguments show E is well-defined on H. For u 6= 0, set

J(u) = sup
t>0

E(tu). (2.6)

Proposition 1. The functional J satisfies the following properties.

(i) J(v) ≥ 0 for every v ∈ H.

(ii) J(v) = 0⇔ E(tv) ≤ 0 for every t > 0 and v ∈ H.

(ii) J(v) =∞⇔ v|Γ = 0 for every v ∈ H.

Proof. From (2.5), E(0) = 0, and so supt≥0E(tv) ≥ 0 for any v ∈ H. For every fixed

v ∈ H, E(·v) is a continuous function on R, and so we must have J(v) = supt>0E(tv) ≥

0 as well, showing (i). For (ii), let v ∈ H and suppose first that J(v) = 0. Then the

supremum of E(tv) over t > 0 is zero, and so we must have E(tv) ≤ 0 for every t > 0.

On the other hand, if E(tv) ≤ 0 for every t > 0, then J(v) ≤ 0, and then (i) implies

J(v) = 0.
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To prove (iii), note that

E(tv) =
t2

2

(∫
Ω
‖∇v‖2 dx− c

∫
Γ
v2 dσ

)
− λ

α+ 1
tα+1

∫
Γ
|v|α+1 dσ.

If v ∈ H is any function that vanishes on Γ, then clearly E(tv) increases without bound

as t increases, and supt>0E(tv) = ∞. Conversely, suppose J(v) = ∞ for some v ∈ H.

As α+ 1 > 2 and λ > 0, we have limt→∞E(tv) = −∞ as long as∫
Γ
|v|α+1 dσ

is nonzero. Then since E(tv) is bounded for every finite positive t, we cannot have

supt>0E(tv) =∞ unless
∫

Γ |v|
α+1 dσ = 0, which implies v = 0 on Γ.

By Proposition 1, J is a bounded functional away from functions vanishing identi-

cally on the boundary, whereas the functional E fails to be bounded. We will follow

the ideas in [13], constructing critical points for J and showing that such critical points

yield critical points for E, which are then weak solutions to (1.1). Our first theorem

relates the critical points of J and E, and is proved through a series of lemmas.

Theorem 1. Whenever 0 < J(u) <∞, there exists a unique number t = t(u) > 0 such

that

J(u) = E(t(u)u).

Furthermore, t(u) is given by

t(u)

[∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ

]
− λt(u)α

∫
Γ
|u|α+1 dσ = 0.

This mapping t 7→ t(u) is smooth on the set {u ∈ H, 0 < J(u) < ∞}, and so J is a

C∞ functional on {u ∈ H, 0 < J(u) < ∞} and continuous from H\{0} onto [0,∞].

Lastly, critical points for J on the unit sphere in H yield critical points for E in H by

the transformation u 7→ t(u)u.

The proof is broken up into three lemmas.

Lemma 1. For fixed u ∈ H\{0}, define

f(t) = E(tu) =
t2

2

[∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ

]
− λ

α+ 1
|t|α+1

∫
Γ
|u|α+1 dσ
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for t ∈ R. Then

(i) f is an even function of t and f ∈ C∞(0,∞).

(ii) If u is such that

0 < sup
t>0

f(t) <∞,

then there is a unique t(u) ∈ R satisfying

f(t(u)) = sup
t>0

f(t) = J(u).

(iii) The map w 7→ t(w) is well defined in an H neighborhood of u and is of class C∞.

Proof. (i) Since t2 and |t|α+1 describe even functions, f is even. Furthermore, restricted

to t ∈ (0,∞), f is a polynomial in t and is therefore smooth. We note that f is only

Cα on all of R.

(ii) Suppose 0 < supt>0 f(t) <∞. Then 0 < J(u) <∞, showing that the coefficient

of t2 must be positive and (by Proposition 1) u 6= 0 on Γ. Since α + 1 > 2 and the

coefficient of tα+1 is negative, we have

lim
t→∞

f(t) = −∞.

Now f has positive supremum, is bounded above, and approaches −∞ as t →

∞. This implies f is bounded above on some compact interval, so f must obtain its

supremum, which is assumed to be positive . Therefore, there exists t(u) > 0 such that

f(t(u)) = sup
t>0

f(t).

We compute for t > 0,

f ′(t) = t

∫
Ω
‖∇u‖2 dx− ct

∫
Γ
u2 dσ − λtα

∫
Γ
|u|α+1 dσ,

f ′′(t) =

∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ − λαtα−1

∫
Γ
|u|α+1 dσ,

f ′′′(t) = −λα(α− 1)tα−2

∫
Γ
|u|α+1 dσ.

Each of these expressions are defined on (0,∞), the integrals over Γ are nonzero, and

f ′ is defined for t = 0 with f ′(0) = 0. We also see, since α > 1, that f ′(t) → −∞ as

t→∞. As f(0) = 0 < supt>0 f(t), f ′ must take on some positive values on (0,∞).
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We then have that f ′ is a continuous function of t which takes on both positive and

negative values on (0,∞), so there is some t∗ > 0 so that f ′(t∗) = 0. Now since α > 1,

the coefficient of tα−2 in f ′′′(t) is negative, showing f ′′ is strictly decreasing on (0,∞).

Further, f ′′ is defined at t = 0 as well (again because α > 1), and since J(u) > 0, the

coefficient of t2 in f(t) must be positive, so f ′′(0) > 0. Then since f ′′(t) → −∞ as

t → ∞, f ′′ has a unique root in (0,∞). Therefore, f ′ has only one local extrema (a

positive maximum), and f ′ is increasing for positive t less than this point and decreasing

for every t beyond this point. This implies that f ′ can have only one positive root, and

so t∗ is the only positive critical point of f . Furthermore, f(0) = 0 and f ′ is increasing,

and therefore positive, on (0, t∗), showing f is increasing, and therefore positive, on

(0, t∗).

We have

0 = f ′(t∗) = t∗
(∫

Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ

)
− λt∗α

∫
Γ
|u|α+1 dσ,

so ∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ = λt∗α−1

∫
Γ
|u|α+1 dσ.

This gives

f ′′(t∗) =

∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ − λαt∗α−1

∫
Γ
|u|α+1 dσ

= λt∗α−1
∫

Γ
|u|α+1 dσ − λαt∗α−1

∫
Γ
|u|α+1 dσ

= −λ(α− 1)

∫
Γ
|u|α+1 dσ

< 0,

since λ > 0, α > 1, and t∗ > 0. Thus, f is concave down at t∗, which implies that t∗

is a local maximum of f . Furthermore, t∗ is the only critical point of f , and f(0) = 0,

f(t)→ −∞ as t→∞, so supremum of f must occur at this critical point. Therefore,

t(u) = t∗ is the unique point in (0,∞) where

f(t(u)) = sup
t>0

f(t) = J(u).

Moreover, f ′(t(u)) = 0 gives

t(u)

(∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ

)
− λt(u)α

∫
Γ
|u|α+1 dσ = 0.
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(iii) Noting that f ′′(t(u)) 6= 0, the equation f ′(t(u)) = 0 gives an implicit mapping

w → t(w) in an H neighborhood of u from the Implicit Function Theorem, and this

mapping is C∞.

Lemma 2. The functional J : H\{0} → [0,∞] is even and continuous, and J is finite

on H\H1
0 (Ω).

Proof. For any u ∈ H\{0},

J(u) = sup
t>0

f(t)

= sup
t>0

[
t2

2

(∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ

)
− λ

α+ 1
tα+1

∫
Γ
|u|α+1 dσ

]
,

so J(u) = J(−u). If u 6= 0 on ∂Ω, then u 6= 0 on Γ, and so from Proposition 1,

J(u) <∞.

We wish to show J is continuous on H\{0}. To this end, suppose {un} is a sequence

converging to some u0 ∈ H\{0}. We aim to show J(un)→ J(u0). There are three cases:

(i) J(u0) =∞, (ii) J(u0) = 0, and (iii) 0 < J(u0) <∞.

Case (i): Suppose J(u0) =∞. Fix a t > 0, so

J(un) = sup
s>0

E(sun) ≥ E(tun) ∀n ∈ N.

Now E is continuous on H, so E(tun)→ E(tu0) as n→∞. We then have

lim inf
n→∞

J(un) ≥ lim inf
n→∞

E(tun)

= lim
n→∞

E(tun)

= E(tu0)

Since t was arbitrary, we have

lim inf
n→∞

J(un) ≥ sup
s>0

E(su0) = J(u0) =∞.

This then gives

lim inf
n→∞

J(un) =∞ ≥ lim sup
n→∞

J(un),

whence

lim
n→∞

J(un) =∞ = J(u0).
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Case (ii): Suppose J(u0) = 0. By case (i), the set A = {u ∈ H\{0} : J(u) < ∞}

has closed complement, and therefore is open. Then as u0 ∈ A, there must exist an

H-ball about u0 contained in A. Since un → u0 in H, un must be contained in this ball

for all sufficiently large N , and hence J(un) <∞ for large n.

Consider the corresponding parameters t(un) (given by Lemma 1), and suppose

that {t(un)} fails to converge to 0 as n → ∞. Then there must be some subsequence

{t(unk)}k≥0 and a positive constant γ such that

0 < γ < t(unk)

for all k. Now, for every k, if 0 ≤ t ≤ t(unk), then by definition of t(unk),

E(tunk) = f(t) ≥ 0

for every 0 ≤ t ≤ t(unk). In particular, E(tunk) ≥ 0 for 0 < t ≤ γ, so

E(tu0) = lim
k→∞

E(tunk) ≥ 0

for 0 ≤ t ≤ γ. Now,

0 = J(u0) = sup
t>0

E(tu0),

so

sup
0<t≤γ

E(tu0) ≤ sup
t>0

E(tu0) = 0,

giving E(tu0) ≤ 0 for every t ∈ (0, γ]. Thus, E(tu0) = 0 identically on (0, γ]. We must

then have

d3

dt3
E(tu0) = 0

identically on (0,∞], which contradicts our previous calculation of

d3

dt3
E(tu0) = −λα(α− 1)tα−2

∫
Γ
|u0|α+1 dσ,

which is strictly negative for every t > 0. We must then have t(un) → 0 as n → ∞,

and so

J(un) = E(t(un)un)→ E(0) = 0 = J(u0).
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Case (iii): Suppose 0 < J(u0) < ∞. The set {u ∈ H\{0} : 0 < J(u) < ∞} has

closed complement by the previous two cases, and is thus open. Then using the same

argument as in case (ii), we have 0 < J(un) <∞ for all sufficiently large n.

From Lemma 1, the mapping u 7→ t(u) is C∞ on {0 < J(u) < ∞}, which implies

t(un)→ t(u0). Then by continuity of E,

J(un) = E(t(un)un)→ E(t(u0)u0) = J(u0).

Then in every case, J(un)→ J(u0), so J is continuous.

Lemma 3. For u ∈ H\{0} with supt>0E(tu) > 0, let t(u) be as defined in Lemma

1. The functional J is even and C∞ (in the sense of distributions) on the open set

{u ∈ H : 0 < J(u) <∞}. For 0 < J(u) <∞, we have

J ′(u) = t(u)E′(t(u)u)

in H ′, the dual space of H. Moreover, if u ∈ H is a critical point for J on the unit

sphere

Σ =

{
u ∈ H :

∫
Ω
‖∇u‖2 dx+

∫
Γ
|u|2 dσ = 1

}
for which 0 < J(u) < ∞, then v = t(u)u is a critical point for E in H with the same

critical value.

Proof. We have already shown J is even. As J(u) = E(t(u)u) when 0 < J(u) <∞ and

the functional E along with the mapping u 7→ t(u) are C∞, J is C∞ as well.

For any s > 0, we have

J(su) = sup
t>0

E(tsu) = sup
τ>0

E(τu) = J(u),

so J is constant on the rays {su : s > 0}. Let µ be the Lagrange multiplier for the

critical point u of J on Σ, so

J ′(u) = µq′(u)

in H ′, where

q(u) = (u, u)H =

∫
Ω
‖∇u‖2 dx+

∫
Γ
|u|2 dσ.
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Note that the equation J ′(u) = µq′(u) means 〈J ′(u), w〉 = 〈µq′(u), w〉 for all w ∈ H,

where 〈·, ·〉 is the pairing between an element in H ′ on the left and an element in H on

the right. We compute

〈q′(u), u〉 =
d

dε
q(u+ εu)

∣∣
ε=0

=
d

dε

[∫
Ω

(
1 + 2ε+ ε2

)
‖∇u‖2 dx+

∫
Γ
(1 + ε)2u2 dσ

] ∣∣∣∣
ε=0

=

[∫
Ω

(2 + 2ε) ‖∇u‖2 dx+

∫
Γ

2(1 + ε)u2 dσ

] ∣∣∣∣
ε=0

= 2

∫
Ω
‖∇u‖2 dx+ 2

∫
Γ
u2 dσ

= 2q(u).

For u ∈ Σ, q(u) = 1, so

2µ = 2µq(u) = µ〈q′(u), u〉 = 〈µq′(u), u〉 = 〈J ′(u), u〉.

Since J(su) is constant with respect to s, we have

0 =
d

ds
J(su) = 〈J ′(su), u〉 = s〈J(u), u〉,

so 〈J ′(u), u〉 = 0, giving µ = 0. This shows that if u is a critical point of J on Σ, then

J ′(u) = 0 in H ′, as the Lagrange multiplier is zero. Then u is a critical point of J on

all of H, and so is su for every s > 0. Further, the critical value γ = J(u) in Σ must

also be a critical value of J in H with

γ = J(u) = J(su)

for every s > 0. Thus, critical points on Σ give a ray of critical points in H with the

same critical value.

Suppose now that we have a critical point u of J on all of H, and suppose γ =

J(u) > 0. We wish to show u
‖u‖H

is a critical point for J on Σ with the same critical

value. Since u is a critical point of J in H, we have J ′(u) = 0, and so for any fixed
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k > 0,

0 = 〈J ′(u), w〉

=
d

dε
J(u+ εw)

∣∣
ε=0

=
d

dε
J(k(u+ εw))

∣∣
ε=0

=
d

dε
J(ku+ εkw)

∣∣
ε=0

= k
d

d(kε)
J(ku+ (kε)w)

∣∣
kε=0

= k〈J ′(ku), w〉.

We therefore have J ′(ku) = 0 in H ′ for any k > 0, so in particular,

J ′
(

u

‖u‖H

)
= 0

in H ′, so u
‖u‖H

∈ Σ is a critical value for J on Σ with Lagrange multiplier µ = 0.

Furthermore

J

(
u

‖u‖H

)
= J

(
1

‖u‖H
u

)
= J(u) = γ,

so this critical point gives rise to the same critical value.

Finally, for any w ∈ H, set uε = u+ εw, and note that t is a C∞ functional on H,

so

d

dε
t(uε)

∣∣
ε=0

=
d

dε
t(u+ εw)

∣∣
ε=0

= 〈t(u), w〉.

Set

h(u) = |u|α−1 u,

H(u) =
1

α+ 1
|u|α+1
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and compute for any w ∈ H, noting that uε|ε=0 = u,

〈J ′(u), w〉 =
d

dε
J(u+ εw)

∣∣
ε=0

=
d

dε
E(t(uε)uε)

∣∣
ε=0

=
d

dε

[
t(uε)

2

(∫
Ω
‖∇uε‖2 dx− c

∫
Γ
u2
ε dσ

)
− λt(uε)α+1

∫
γ
H(uε) dσ

]
ε=0

= 2t(u)
d

dε
t(uε)

∣∣
ε=0

(∫
Ω
‖∇u‖2 dx− c

∫
Γ
u2 dσ

)
− λ(α+ 1)t(u)α

d

dε
t(uε)

∣∣
ε=0

∫
Γ
H(u) dσ

+ t(u)2

(
2

∫
Ω
∇u · ∇w dx− 2c

∫
Γ
uw dσ

)
− λt(u)α+1

∫
Γ
h(u)w dσ

= 〈t′(u), w〉
[
2t(u)

∫
Ω
‖∇u‖2 dx− 2ct(u)

∫
Γ
u2 dσ

− λt(u)α
∫

Γ
h(u)u dσ

]
+ t(u)

[
2t(u)

∫
Ω
∇u · ∇w dx− 2ct(u)

∫
Γ
uw dσ

− λt(u)

∫
Γ
h(u)w dσ

]
= 〈t′(u), w〉〈E′(t(u)u), u〉+ t(u)〈E′(t(u)u), w〉.

For the function f defined in Lemma 1, 〈E′(t(u)u), u〉 = f ′(t(u)), which must be 0 by

definition of t(u) being a maximizer of f . Thus, we have

〈J ′(u), w〉 = t(u)〈E′(t(u)u), w〉

for every w ∈ H, and therefore J ′(u) = t(u)E′(t(u)u) in H ′. Thus, if 0 < J(u) < ∞,

t(u) > 0 so J ′(u) = 0 is equivalent to E′(v) = E′(t(u)u) = 0. Then if u is a critical

point for J in H, v = t(u)u is a critical point for E in H. But we have already shown

that a critical point u ∈ Σ for J is also a critical point for J in all of H with the same

critical value. Therefore, if u is a critical value for J on Σ with 0 < J(u) < ∞, then

v = t(u)u is a critical value for E in H, and as J(u) = E(t(u)u), the critical point v

yields the same critical value.
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Lemmas 1, 2 and 3 together prove Theorem 1. The next step is to construct the

critical points for J . We proceed by a fairly standard technique using a Palais-Smale

condition and the Mountain Pass Lemma. This method is attributed to Lyusternik and

Shnirelman and can be found in [13]. We start with some definitions.

Recall Σ is the unit sphere in H. If A is a closed subset of Σ, define the genus Φ(A)

to be the smallest integer k for which there exists a continuous odd mapping of A into

Rk\{0}. This generalizes the idea of dimension for a finite dimensional vector space;

the mappings into Rk\{0} are analogous to basis functions.

For k ≥ 1, define

Ak = {A ∈ Σ : A is closed, A = −A,Φ(A) ≥ k}.

Note that Ak+1 ⊂ Ak by construction. Now define the numbers

γk = γk(c, λ) = inf
A∈Ak

sup
u∈A

J(u).

As Ak+1 ⊂ Ak, we have γk ≤ γk+1. Furthermore, Ak is nonempty for any k ≥ 1. To

see this, consider the set

A =

u(x) =
k∑
j=1

αjFj(x) :

∥∥∥∥∥∥
k∑
j=1

αjFj

∥∥∥∥∥∥
H

= 1


for any choice of {Fj} ⊂ H such that the traces fj = Fj |∂Ω are linearly independent.

Then A ⊂ Σ, A is even, closed, and Φ(A) = k, so A ∈ Ak. Since Φ(A) = k for this set,

γk ≤ k, and so γk <∞ for all k ≥ 1. Thus, {γk} is a nondecreasing set of real numbers.

We will show that this set is unbounded and forms a set of critical values for J .

Lemma 4. Let {µk}k≥1 and {φk}k≥1 be the Steklov eigenvalues and (normalized) eigen-

functions defined by 
∆φk = 0 in Ω

φk = 0 on Γ0

∂φk
∂ν

= µkφk on Γ

(2.7)

with

(φj , φk)H =

∫
Ω
∇φj · ∇φk dx+

∫
Γ
φkφj = δj,k.
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Suppose c ∈ R is fixed. Then the following statements hold.

(i) If c < 0, there exists constants R > 0, a > 0 such that

E(v) ≥ a

for every v ∈ H with ‖v‖H = R.

(ii) If c ≥ 0, set µ0 = 0 and note that 0 is not an eigenvalue as long as Γ0 6= ∅, so

µ1 > 0. For k0 ≥ 0 such that µk0 ≤ c < µk0+1, set

H0 = span{φ1, φ2, . . . , φk0}

(set H0 = {0} if k0 = 0). Then there exists constants R > 0, a > 0 such that

E(v) ≥ a

for every v ∈ H⊥0 with ‖v‖H = R.

Proof. First, as α+ 1 < α∗, Sobolev embedding gives (for some constants)

‖v‖Lα+1(∂Ω) ≤ C ‖v‖W 1/2,2(∂Ω) ≤ C ‖v‖H1(Ω) ≤ C ‖v‖H .

Thus, ∫
Γ
|v|α+1 dσ =

∫
∂Ω
|v|α+1 dσ = ‖v‖α+1

Lα+1(Ω) ≤ C1 ‖v‖α+1
H

for some constant C1 > 0.

Case (i): Assume c < 0. Then

1

2

∫
Ω
‖∇v‖2 dx− c

2

∫
Γ
v2 dσ =

1

2

(
‖∇v‖2L2(Ω) + |c| ‖v‖2L2(∂Ω)

)
≥ min(1, |c|)

2

(
‖∇v‖2L2(Ω) + ‖v‖2L2(∂Ω)

)
= C2 ‖v‖2H

for a constant C2 > 0. Then we have

E(v) =
1

2

∫
Ω
‖∇v‖2 dx− c

2

∫
Γ
v2 dσ − λ

α+ 1

∫
Γ
|v|α+1 dσ

≥ C2 ‖v‖2H −
C1λ

α+ 1
‖v‖α+1

H
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Suppose ‖v‖H = R for some R > 0 to be chosen. Then

E(v) ≥ C2R
2 − C1λ

α+ 1
Rα+1 = R2

(
C2 −

C1λ

α+ 1
Rα−1

)
.

We may now choose R small enough (noting α− 1 > 0) so that

C2 −
C1λ

α+ 1
Rα−1 ≥ δ > 0

for some δ > 0. Thus,

E(v) ≥ R2δ,

which completes the proof in this case by setting a = R2δ.

Case (ii): Suppose µk0 ≤ c < µk0+1 for some k0 ≥ 0. The eigenvalues {µk} are

defined by the Rayleigh quotient

µk = inf
v∈{φ1,...,φk−1}⊥

∫
Ω ‖∇v‖

2 dx∫
∂Ω v

2 dσ
.

In particular,

µk0+1 = inf
v∈{H⊥0 }

∫
Ω ‖∇v‖

2 dx∫
∂Ω v

2 dσ
.

Thus, for any v ∈ H⊥0 , we have

µk0+1 ≤
∫

Ω ‖∇v‖
2 dx∫

∂Ω v
2 dσ

,

so ∫
Γ
v2 dσ ≤ 1

µk0+1
‖∇v‖2L2(Ω) .

Then as c ≥ 0, we have

− c
2

∫
Γ
v2 dσ ≥ − c

2µk0+1
‖∇v‖2L2(Ω) .

These two inequalities show

‖v‖2H = ‖∇v‖2L2(Ω) + ‖v‖2L2(Γ) ≤
(

1 +
1

µk0+1

)
‖∇v‖2L2(Ω)

and

1

2
‖∇v‖2L2(Ω) −

c

2
‖v‖2L2(∂Ω) ≥

1

2

(
1− c

µk0+1

)
‖∇v‖2L2(Ω) .
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Combining gives

1

2
‖∇v‖2L2(Ω) −

c

2

∫
Γ
v2 dσ ≥ 1

2

(
µk0+1 − c
µk0+1 + 1

)
‖v‖2H ,

and so

E(v) ≥ 1

2

(
µk0+1 − c
µk0+1 + 1

)
‖v‖2H −

C1λ

α+ 1
‖v‖α+1

H .

As c < µk0+1, the coefficient of ‖v‖2H is positive, and so by the same argument as in

case (i), there exists R > 0, a > 0 so that E(v) ≥ a when ‖v‖H = R.

Lemma 5. Let c ∈ R be fixed. If µk0 ≤ c < µk0+1 for some k0 ≥ 0, then 0 < γk0+1,

and so 0 < γk <∞ for every k ≥ k0 + 1. If c < 0, then 0 < γk <∞ for every k ≥ 1.

Proof. Suppose first that µk0 ≤ c ≤ µk0+1 for some k0 ≥ 0. Fix k ≥ k0 + 1 and

let A ∈ Ak be given. Now Φ(A) ≥ k > k0. Assume, by way of contradiction, that

A ∩ H⊥0 = ∅. Then the orthogonal projection of A onto H0 yields a continuous odd

mapping of A onto H0\{0}. But H0\{0} has exactly k0 linearly independent elements,

so this gives a continuous odd mapping onto Rk0\{0}, which implies Φ(A) ≤ k0. This

is a contradiction, so A ∩H⊥0 6= ∅.

Let u∗ ∈ A∩H⊥0 , and a > 0, R > 0 be as in Lemma 4. Since u∗ ∈ A ⊂ Σ, ‖u∗‖H = 1.

Then Ru∗ ∈ A and ‖Ru∗‖H = R, so E(Ru∗) ≥ a. Thus,

J(u∗) = sup
t>0

E(tu∗) ≥ E(Ru∗) ≥ a,

and therefore

sup
u∈A

J(u) ≥ J(u∗) ≥ a.

As A ∈ Ak was arbitrary, we have

γk0+1 = inf
A∈Ak

sup
u∈A

J(u) ≥ a > 0.

Lastly, the set {γk} is finite and nondecreasing, giving

0 < γk0+1 ≤ γk <∞

for every k ≥ k0 + 1.
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In the case that c < 0, Lemma 4 gives the existence of a > 0, R > 0 so that E(v) ≥ a

for every v ∈ H with ‖v‖H = R. Then for any A ∈ A1 and for every u ∈ A we have

J(u) ≥ E(Ru) ≥ a > 0,

giving

γ1 = inf
A∈A1

sup
u∈A

J(u) ≥ a > 0.

Therefore, 0 < γ1 ≤ γk <∞ for every k ≥ 1.

Note that when 0 = µ0 ≤ c < µ1, the number k0 is 0, so in this case 0 < γ1 ≤ γk <∞

as well. Thus, whenever c < µ1, {γk}k≥1 is a positive nondecreasing sequence of finite

numbers. When µk0 ≤ c < µk0+1 for k0 ≥ 1, {γk}k≥k0+1 is a positive nondecreasing

sequence of finite numbers.

Now to show the values γk are critical values for J we need to argue that J satisfies

the following Palais-Smale condition. Recall

q(u) = (u, u)H = ‖∇u‖2L2(Ω) +

∫
Γ
u2 dσ.

Lemma 6. (Palais-Smale Condition). Let 0 < γ <∞ be given. Let {un}n≥1 ⊂ Σ and

{βn}n≥1 ⊂ R be such that

J(un)→ γ

in R and

εn = J ′(un)− βnq′(un)→ 0

in H ′. Then βn → 0 and there is u ∈ Σ and a subsequence {unj} converging to u in H.

Proof. We will first show that the set {vn} defined by vn = t(un)un is bounded in H.

Since un is in Σ, ‖un‖H = 1, so {vn} being bounded in H is equivalent to {t(un)} being

bounded in R. From the definition of t(u),

t(u)2

(
‖∇u‖2L2(Ω) − c

∫
Γ
u2 dσ

)
= λt(u)α+1

∫
Γ
|u|α+1 dσ
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for any u with 0 < J(u) <∞. Now,

J(u) = E(t(u)u)

=
t(u)2

2

(
‖∇u‖2L2(Ω) − c

∫
Γ
u2 dσ

)
− λt(u)α+1

α+ 1

∫
Γ
|u|α+1 dσ

= t(u)2

(
1

2
− 1

α+ 1

)(
‖∇u‖2L2(Ω) − c

∫
Γ
u2 dσ

)
.

The sequence {J(un)} converges by assumption, and so {J(un)} is bounded, and there-

fore the sequence {
t(un)2

(
‖∇un‖2L2(Ω) − c

∫
Γ
u2
n dσ

)}
n≥1

is bounded as well. Again using the definition of t(u), the sequence{
t(un)α+1

∫
Γ
|un|α+1 dσ

}
n≥1

=

{∫
Γ
|vn|α+1 dσ

}
n≥1

is therefore bounded. There is then M > 0 so that

M ≥
∫

Γ
|vn|α+1 dσ =

∫
∂Ω
|vn|α+1 dσ.

By Holder, setting 1/q = 1− 2/(α+ 1) = (α− 1)/(α+ 1),

∥∥v2
n

∥∥
L1(∂Ω)

≤
∥∥v2

n

∥∥
L
α+1
2 (∂Ω)

‖1‖L1(∂Ω)

=

(∫
∂Ω
|vn|α+1 dσ

) 2
α+1

|∂Ω|
α−1
α+1

≤M
2

α+1 |∂Ω|
α−1
α+1 .

Then

‖vn‖L2(∂Ω) =
∥∥v2

n

∥∥ 1
2

L1(∂Ω)
≤M

1
α+1 |∂Ω|

α−1
2(α+1) ,

and so {vn} = {t(un)un} is bounded in L2(∂Ω). Then the sequence

{
t(un)2 ‖∇un‖2L2(Ω)

}
n≥1

is bounded. We further have ‖∇un‖2L2(Ω) ≤ ‖un‖
2
H = 1, so

{
‖∇un‖2L2(Ω)

}
is bounded,

implying {t(un)} is a bounded sequence in R, in turn implying that {vn} is bounded in

H-norm.



22

Now, J ′(w) = t(w)E′(t(w)w) for any w ∈ H with 0 < J(w) < ∞. Since J(un) →

γ > 0, we have 0 < J(un) <∞ for sufficiently large n, and using the definition of t(w)

gives

〈J ′(un), un〉 = t(un)〈E′(t(un)un), un〉 = t(un)f ′(t(un)) = 0.

Further, 〈q′(un), un〉 = 2q(un) = 2(1) = 2 since un ∈ Σ. We then have, for large enough

n,

−2βn = 〈J ′(un), un〉 − βn〈q′(un), un〉

= 〈J ′(un)− βn, un〉

= 〈εn, un〉

→ 0,

and so the sequence {βn} converges to 0 in R. For any w ∈ H,

〈J ′(un), w〉 = 〈t(un)E′(t(un)un), w〉

= t(un)〈E′(t(un)un, w〉

= t(un)

[ ∫
Ω
∇(t(un)u)n) · ∇w dx− c

∫
Γ
t(un)unw dσ

− λ
∫

Γ
t(un)un |t(un)un|α−1w dσ

]
= t(un)

[ ∫
Ω
∇vn · ∇w dx− c

∫
Γ
vnw dσ

− λ
∫

Γ
vn |vn|α−1w dσ

]
.

On the other hand,

〈J ′(un), w〉 = 〈εn + βnq
′(un), w〉

= 〈εn, w〉+ βn〈q′(un), w〉

= 〈εn, w〉+ βn

[
2

∫
Ω
∇un · ∇w dx+ 2

∫
Γ
unw dσ

]
= 〈εn, w〉+ 2βn(un, w)H .

We therefore have

t(un)

[∫
Ω
∇vn · ∇w dx− c

∫
Γ
vnw dσ − λ

∫
Γ
vn |vn|α−1w dσ

]
= 〈εn, w〉+ 2βn(un, w)H (2.8)
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for every w ∈ H. As {vn} is anH-norm bounded sequence, we can extract a subsequence

{vnj}j≥1 that converges weakly to some v ∈ H. Since H is compactly embedded in

L2(Ω), we may take (by further extraction of a subsequence and renaming) {vnj}j≥1 to

converge strongly to v in L2(Ω). The sequence {t(un)} is bounded in R, and so has a

subsequence converging to some t ≥ 0. Renaming the index gives a sequence {vnj}j≥1

such that

vnj ⇀ v weakly in H,

vnj → v strongly in L2(Ω),

t(unj )→ t in R.

We must actually have t > 0, for if t(unj )→ 0, then vnj → 0 in H, so E(vnj )→ 0. But

E(vnj ) = E(t(unj )unj )→ J(unj )→ γ > 0.

Define Rnj ∈ H ′ by

Rnj (w) =

∫
Ω
vnjw dx+ c

∫
Γ
vnjw dσ + λ

∫
Γ
vnj
∣∣vnj ∣∣α−1

w dσ

+
1

t(unj )

(
〈enj , w〉+ 2βnj (unj , w)H

)
for w ∈ H. Then by rearranging (2.8), we have∫

Ω
∇vnj · ∇w dx+

∫
Ω
vnjw dx = Rnj (w).

Now, vnj ⇀ v weakly in H, and as H ↪→ H1/2(∂Ω) ↪→ Lp(∂Ω) compactly for every

1 < p < α∗, we may take vnj → v strongly in L2(∂Ω) and in Lα+1(∂Ω). We have

already established vnj → v strongly in L2(Ω), and so we have that for every w ∈ H,∫
Ω
vnjw dx→

∫
Ω
vw dx,∫

Γ
vnjw dx→

∫
Γ
vw dx,

and ∫
Γ
vnj
∣∣vnj ∣∣α−1

w dx→
∫

Γ
v |v|α−1w dx.

Then as t(unj )→ t > 0, εnj → 0, and βnj → 0, we have

Rnj (w)→ R(w),
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where R(w) is defined by

R(w) =

∫
Ω
vw dx+ λ

∫
Γ
v |v|α−1w dσ + c

∫
Γ
vw dσ.

This convergence is actually uniform in w due to the strong convergence of the functions

vnj in the integrals and applying Holder’s inequality. Thus, Rnj → R in H ′ norm, given

by

‖R‖H′ = sup
w∈H,‖w‖H=1

|R(w)| .

Specifically, if ‖w‖H = 1, then∣∣∣∣∫
Ω

(vnj − v)w dx

∣∣∣∣ ≤ ∥∥vnj − v∥∥L2(Ω)
‖w‖L2(Ω)

≤ C
∥∥vnj − v∥∥L2(Ω)

‖w‖H

≤ C
∥∥vnj − v∥∥L2(Ω)

→ 0.

The convergence of the other integrals follows similarly.

Now, vnj ⇀ v weakly in H, so we have∫
Ω
∇vnj · ∇w dx→

∫
Ω
∇v · ∇w dx,

and so

Rnj (w)→
∫

Ω
∇v · ∇w dx+

∫
Ω
vw dx.

Thus, ∫
Ω
∇v · ∇w dx+

∫
Ω
vw dx =

∫
Ω
vw dx+ λ

∫
Γ
v |v|α−1w dσ + c

∫
Γ
vw dσ.

Then for every w ∈ H, we have∫
Ω
∇v · ∇w dx = λ

∫
γ
v |v|α−1w dσ + c

∫
Γ
vw dσ,

which shows v is an H solution to
∆v = 0 in Ω

v = 0 on Γ0

∂v

∂ν
= cv + λv |v|α−1 on Γ.
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It remains to show that vnj → v strongly in H. To this end, {Rnj}j is an H ′-norm

convergent sequence, and is thus a Cauchy sequence in H ′ norm, so

sup
w∈H,‖w‖=1

∣∣Rnj (w)−Rnk(w)
∣∣→ 0

as j, k → ∞. But Rnj (w) − Rnk(w) = (vnj − vnk , w)H1(Ω), for every w ∈ H, and the

convergence above is uniform in w. Thus, for ε > 0, there is a J so that for every

j, k > J , we have ∣∣(vnj − vnk , w)H1(Ω)

∣∣ < ε

for every w ∈ H. In particular, when w = vnj − vnk , we have

∥∥vnj − vnk∥∥2

H
≤ C

∥∥vnj − vnk∥∥2

H1(Ω)
= C

∣∣(vnj − vnk , vnj − vnk)H1(Ω)

∣∣ < Cε,

for a constant C depending only on Ω. Therefore, {vnj}j is Cauchy in H-norm, and

thus converges strongly in H. Then by weak limit uniqueness, we have vnj → v strongly

in H.

This leads us to our main existence result in the subcritical case.

Theorem 2. Let c > 0, λ > 0 be fixed, with µk0 ≤ c < µk0+1 for some k0 ≥ 1. Then

{γk}k≥k0+1 is a non-decreasing sequence of finite positive critical values for J , and

γk → ∞. In particular, problem (1.1) has infinitely many nontrivial solutions {vk}k,

with E(vk)→∞ and ‖vk‖H →∞.

If c ≤ 0, and λ > 0, then the same result holds with k0 = 0.

Proof. Lemma 3 guarantees that critical points for J on Σ give critical points for E

in H with the same critical value. Each critical point of E is a weak solution to the

boundary value problem (1.1). Now for every k > k0,

γk = inf
A∈Ak

sup
u∈A

J(u)

is positive and finite. We wish to show γk is a critical value of J ; that is, that there is

some u ∈ H with J ′(u) = 0 and J(u) = γk.

Fix k > k0, and set γ = γk. Assume γ is not a critical value of J , so there is no

u ∈ H with both J ′(u) = 0 and J(u) = γ. The idea is that we can start at a value of
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J that exceeds γ by a small amount and follow the gradient flow to points where the

value of J falls below γ. This will lead to a contradiction to the construction of γ as a

saddle point.

Define for a ∈ R the sets

Ka = {u ∈ H : J(u) ≤ a}.

We have from the Deformation Theorem ([19, Theorem 3.11], also repeated in Corollary

1 below) that if J satisfies the Palais-Smale condition, then for any sufficiently small

ε > 0, there exists a constant 0 < δ < ε and a continuous function η : H → H such

that η(Kγ+δ) ⊂ Kγ−δ. We may also take η to be an invariant functional on Ak, so that

η(Ak) ⊂ Ak.

Now, take ε > 0 small enough and choose δ, η from above. By the definition of γ,

we may find a set B ∈ Ak, depending on δ, so that

inf
A∈Ak

sup
u∈A

J(u) + δ > sup
u∈B

J(u),

or

sup
u∈B

J(u) < γ + δ.

Then for every u ∈ B, J(u) < γ + δ, so u ∈ Kγ+δ. That is, B ⊂ Kγ+δ. Then

η(B) ⊂ Kγ−δ. By the continuity of J , we have η(B) ⊂ Kγ−δ as well. By assumption,

we have η(B) ∈ Ak, and thus η(B) is one of the elements taken in the infimum, so

sup
u∈η(B)

J(u) ≥ inf
A∈Ak

sup
u∈A

J(u) = γ.

But if u ∈ η(B), then u ∈ Kγ−δ, so J(u) ≤ γ − δ for every u ∈ η(B). Then

sup
u∈η(B)

J(u) ≤ γ − δ,

which gives

γ ≤ sup
u∈η(B)

J(u) ≤ γ − δ,

which contradicts δ > 0. Thus, γ must be a critical value for J , so we must have some

u ∈ H with J ′(u) = 0 and J(u) = γ. By the preceding discussion, this critical point u

yields an H solution to (1.1).
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In closing, we provide the details of the deformation function η used above. The

idea will be that if γ is not a critical value of J , we can start at values slightly larger

than c and follow the gradient flow “downward” to values smaller than γ in a nice way

(without hitting a point where the derivative vanishes). The function η we find will be

a solution to a particular ordinary differential equation.

The proof of this theorem and the following corollary follow closely the standard

argument which can be found in Chapter 8.5 of Evans ([9]) or Theorem 3.11 in Struwe

([19]).

Recall

Ka = {u ∈ H : J(u) ≤ a}.

Theorem 3. (Deformation Theorem). Assume J is a C1 functional on H satisfying

the Palais-Smale condition from Lemma 6. Suppose γ ∈ R is not a critical value of

J . Then for every sufficiently small ε > 0, there exists a constant 0 < δ < ε and a

continuous function η : [0, 1]×H → H satisfying

(i) η(0, u) = u for u ∈ H,

(ii) η(1, u) = u for u /∈ J−1[γ − ε, γ + ε],

(iii) J(η(t, u)) ≤ J(u) for u ∈ H, 0 ≤ t ≤ 1,

(iv) η(1,Kγ+δ) ⊂ Kγ−δ.

Proof. First, we claim that there are constants 0 < σ < 1 and 0 < ε < 1 so that

∥∥J ′(u)
∥∥ ≥ σ

whenever u ∈ Kγ+ε\Kγ−ε. To see this, we proceed by contradiction. If we could not

find such constants, then for every n ∈ N, we could find an element

un ∈ Kγ+ 1
n
\Kγ− 1

n

such that ∥∥J ′(un)
∥∥ ≤ 1

n
.

But then

γ − 1

n
< J(un) ≤ γ +

1

n
,
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so {un} is a sequence with J(un)→ γ and J ′(un)→ 0. The Palais-Smale condition then

applies (with αn = 0 for every n), and so there is an element u ∈ H and a subsequence

unj converging to u in H. But since J is C1, this implies J(u) = γ and J ′(u) = 0,

whence γ is a critical value of J , a contradiction.

Choose δ so that

0 < δ < min
(
ε,
σ

2

)
.

Define

A = {u ∈ H : J(u) ≤ γ − ε or J(u) ≥ γ + ε},

B = {u ∈ H : γ − δ ≤ J(u) ≤ γ + δ}.

Define for u ∈ H.

g(u) =
dist (u,A)

dist (u,A) + dist (u,B)
.

Note that g is well defined on H, as one of dist (u,A) or dist (u,B) must be positive.

To see this, suppose u were in A, and note

dist (u,B) = inf
v∈B
‖u− v‖H .

For a fixed v ∈ B, we may find by the Mean Value Theorem some ζ ∈ H with

|J(u)− J(v)| = ‖J ′(ζ)‖ ‖u− v‖ But |J(u)− J(v)| ≥ ε− δ, and J ′ (being continuous) is

bounded on bounded subsets, so ‖u− v‖ is bounded below by a positive constant, and

so dist (u,B) > 0. A similar argument shows that if u ∈ B then dist (u,A) > 0, and if

u is not in A or B, then both distances are positive. It is clear from the definition of g

that

0 ≤ g ≤ 1, g = 0 on A, g = 1 on B.

Define h by h(t) = 1 for t ∈ [0, 1] and h(t) = 1/t for t ≥ 1. For u ∈ H, define the

mapping V : H → H by

V (u) = −g(u)h
(∥∥J ′(u)

∥∥) J ′(u).

Now, fix u ∈ H, and let η solve the ODE

d

dt
η(t, u) = V (η(t, u))
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for t > 0 with initial condition

η(0, u) = u.

As V is Lipschitz, continuous, there is a unique solution existing for every t ≥ 0. We

restrict the t dependence of η to [0, 1]. Clearly η(0, u) = u, so (i) is satisfied. Further, if

u /∈ J−1[γ− ε, γ+ ε], then u ∈ A, so g(u) = 0, and so V (u) = 0. Then η is the constant

function η(t, u) = t for all 0 ≤ t ≤ 1, so in particular η(1, u) = u, and therefore (ii) is

satisfied.

We compute for any u ∈ H and t ∈ [0, 1]

d

dt
J(η(t, u)) =

〈
J ′(η(t, u)), V (η(t, u))

〉
= −g(η(t, u))h

(∥∥J ′(η(t, u))
∥∥) ∥∥J ′(η(t, u))

∥∥2

≤ 0,

as g and h are always positive. Thus, J(η(t, u)) is decreasing with t, and so

J(u) = J(η(0, u)) ≥ J(η(t, u))

for every 0 ≤ t ≤ 1. This establishes (iii).

To establish (iv), we need to show that if u ∈ Kγ+δ, then η(1, u) ∈ Kγ−δ. Let

u ∈ Kγ+δ be arbitrary, so that J(u) ≤ γ + δ. We must show

J(η(1, u)) ≤ γ − δ.

First, note that J(η(1, u)) ≤ J(u) ≤ γ + δ, so η(1, u) /∈ B is equivalent to J(η(1, u)) <

γ − δ. We then only need to show that η(1, u) /∈ B. Now, in the case that η(t, u) /∈ B

for some 0 ≤ t ≤ 1, then J(η(1, u)) ≤ J(η(t, u)) < γ − δ, and we are done. Then we

only need to consider the case that η(t, u) ∈ B for every t ∈ [0, 1). Assume we are in

this case. Then

g(η(t, u)) = 1

for every t ∈ [0, 1], and

d

dt
J(η(t, u)) = −h

(∥∥J ′(η(t, u))
∥∥) ∥∥J ′(η(t, u))

∥∥2
.
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There are two cases: either ‖J ′(η(t, u))‖ < 1 or ‖J ′(η(t, u))‖ ≥ 1. If ‖J ′(η(t, u))‖ <

1, then

h
(∥∥J ′(η(t, u))

∥∥) = 1,

so

d

dt
J(η(t, u)) = −

∥∥J ′(η(t, u))
∥∥2
.

Now J(η(t, u)) ≤ γ + δ < γ + ε, so η(t, u) ∈ Kγ+ε. As η(t, u) ∈ B, J(η(t, u)) ≥ γ − δ >

γ − ε, so η(t, u) /∈ Kγ−ε. Thus, η(t, u) ∈ Kγ+ε\Kγ−ε, and so

‖J(η(t, u))‖ ≥ σ.

Thus,

d

dt
J(η(t, u)) ≤ −σ2.

In the case that ‖J ′(η(t, u))‖ ≥ 1, we have

h
(∥∥J ′(η(t, u))

∥∥) =
1

‖J ′(η(t, u))‖
,

and (as 0 < σ < 1),

d

dt
J(η(t, u)) = −

∥∥J ′(η(t, u))
∥∥ ≤ −σ ≤ −σ2.

Then in both cases we have

d

dt
J(η(t, u)) ≤ −σ2

for every 0 ≤ t < 1.

We may find ξ ∈ (0, 1) so that

J(η(1, u))− J(η(0, u)) =
d

dt
J(η(t, u))

∣∣∣∣
t=ξ

≤ −σ2,

so

J(η(1, u)) ≤ J(η(0, u))− σ2 = J(u)− σ2.

As J(u) ≤ γ + δ, we have

J(η(1, u)) ≤ γ + δ − σ2 < γ + δ − 2δ = γ − δ.

We have then shown η(1, u) ∈ Kγ−δ, which establishes (iv) and completes the

proof.
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Finally, we have the following corollary which gives us the mapping used in Theorem

2.

Corollary 1. Assume all the conditions of Theorem 3. If γ is not a critical value for

J , then for every sufficiently small ε > 0, there exists a number 0 < δ < ε and a C1

mapping η : H → H so that η(Kγ+δ) ⊂ Kγ−δ and η(A) ∈ Ak for every A ∈ Ak.

Proof. We define η : H → H by

η(u) =
η(1, u)

‖η(1, u)‖
,

where η(1, ·) is the mapping defined in Theorem 3. Since the map η(1, ·) is C1, η is C1

as well. From Theorem 3 (iv),

η(1,Kγ+δ) ⊂ Kγ−δ.

Let u ∈ Kγ+δ, so that J(u) ≤ γ + δ. Then J(η(1, u)) ≤ γ − δ, and so we have

J(η(u)) = J

(
η(1, u)

‖η(1, u)‖

)
= J(η(1, u)) ≤ γ − δ,

showing η(u) ⊂ Kγ−δ.

It remains to show that η(A) ∈ Ak whenever A ∈ Ak. To this end, recall

Ak = {A ∈ Σ : A is closed, A = −A, and Φ(A) ≥ k}.

First, by construction of η we have ‖η(u)‖ = 1, and so η(A) ∈ Σ for any A, and therefore

η(A) ∈ Σ as well. Clearly, η(A) is closed for any A. Now, J(−u) = J(u), and so for

any v ∈ H,

〈J ′(−u), w〉 =
d

dε
J(−u+ εv)

∣∣∣∣
ε=0

=
d

dε
J(−(u− εv))

∣∣∣∣
ε=0

=
d

dε
J((u− εv))

∣∣∣∣
ε=0

= − d

d(−ε)
J((u+ (−ε)v))

∣∣∣∣
−ε=0

= −〈J ′(u), v〉

= 〈−J ′(u), v〉,
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showing J ′(−u) = −J ′(u). Then the function V constructed in the proof of Theorem

3, being a multiple of J ′, is odd as well.

Fix a u ∈ H, and suppose χ = χ(t) solves

d

dt
χ(t) = V (χ(t))

with

χ(0) = u.

Then

d

dt
(χ(t)) = V (χ(t)) = −V (−χ(t)),

and so the function χ solves

d

dt
(−χ(t)) = V (−χ(t))

with −χ(0) = −u. That is, −χ is the solution when we change the initial condition from

u to −u. This shows that for any 0 ≤ t ≤ 1, the function η(t, ·) constructed in Theorem

3 is odd with respect to the initial condition u, and so in particular η(−u) = −η(u).

From the definition of the genus, if χ is any odd mapping, we have γ(χ(A)) ≥ Φ(A)

for any set A. Let A ∈ Ak, so Φ(η(A)) ≥ k. If u ∈ η(A), then there is some v ∈ A with

u = η(v), and so − u = −η(v) = η(−v) ∈ η(−A) as A = −A. Then η(A) = −η(A),

and thus η(A) = −η(A). We have already verified η(A) ∈ Σ and η(A) is closed, and we

have therefore shown that η(A) ∈ Ak, completing the proof.

2.1.1 Positive Solutions

Theorem 2 guarantees the existence of a nontrivial solution (in fact, infinitely many)

to (1.1). These solutions constructed are enumerated by the solutions of the linearized

problem. We know the first Steklov eigenfunction φ1 (corresponding to the smallest

eigenvalue µ1) does not change sign in Ω, and so we may take φ1 ≥ 0. One might expect

that if c < µ1 in (1.1), one of the solutions u for this value of c also does not change

sign. Indeed this is the case, though in order to show this we will need to construct the

solution in a different way. Our goal is to prove the following theorem.
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Theorem 4. Let µ1 ≥ 0 be the first Steklov eigenvalue and φ1 ∈ H satisfy ∆φ1 = 0 in

Ω, φ1 = 0 on Γ0, ∂φ1
∂ν = µ1φ1 on Γ, with φ1 ≥ 0. If c < µ1, then problem (1.1) admits

a (weak) solution u ∈ H\{0} with u ≥ 0 in Ω.

The idea of the argument will be similar to that of Section 2.1. We will construct a

functional Q on H that is bounded below, but instead of finding saddle points like we

did with the functional J given in (2.6), Q will have a true minimizer u ∈ H. Since u is

a minimizer and we will have Q(u) = Q(|u|), |u| will be a minimizer as well, and hence

the minimizer may be taken to be nonnegative. This argument fails to work for the

functional J , as we have no guarantee that the absolute value of a saddle point is still

a saddle point. The functional Q we construct will not be the unbounded functional

E given in (2.5), which is simply the first variation of (1.1), but nevertheless critical

points of the functional will give rise (by scaling) to weak solutions of (1.1).

We note that if Ω is the unit sphere and Γ0 is empty, then we have µ1 = 0, as any

constant would be in H and would solve the eigenvalue problem with zero eigenvalue.

If Γ0 is nonempty, then nonzero constants fail to be in H, and so µ1 > 0.

To define our functional, we first define a new norm on H. For c ∈ R, and u ∈ H1(Ω)

define

‖u‖2c =

∫
Ω
‖∇u‖2 dx− c

∫
∂Ω
|u|2 dσ = ‖∇u‖2L2(Ω) − c ‖u‖

2
L2(∂Ω) . (2.9)

Note that we have the standard inequalities from Sobolev embedding (for different

constants C, u ∈ H1(Ω), and 1 < α ≤ α∗ − 1):
‖u‖L2(Ω) ≤ C ‖u‖H1(Ω)

‖u‖L2(∂Ω) ≤ C ‖u‖H1(Ω)

‖u‖Lα+1(∂Ω) ≤ C ‖u‖H1(Ω) .

(2.10)

Recall that

‖u‖2H =

∫
Ω
‖∇u‖2 dx+

∫
∂Ω
u2 dσ.

This norm is equivalent to the standard norm ‖u‖H1(Ω) on H1(Ω), and so the right

hand side of (2.10) may be replaced by ‖u‖H . We first claim that ‖·‖c is equivalent to

these norms as well for certain values of c.
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Lemma 7. For c < µ1, ‖·‖c is an equivalent norm on H.

Proof. We will show that there are constants C1, C2 > 0 so that for any u ∈ H,

C1 ‖u‖2H ≤ ‖u‖
2
c ≤ C2 ‖u‖2H .

Let u ∈ H\{0} be arbitrary (if u = 0 there is nothing to show). We consider the

cases when c < 0 and when 0 ≤ c < µ1 separately (note that if µ1 = 0 this latter case

is vacuous).

Assume first that c < 0. Then using (2.10),

‖u‖2c = ‖∇u‖2L2(Ω) − c ‖u‖
2
L2(Γ)

= ‖∇u‖2L2(Ω) + |c| ‖u‖2L2(Γ)

≤ ‖u‖2H + |c|C ‖u‖2H

≤ C2 ‖u‖2H .

For the other direction,

‖u‖2c = ‖∇u‖2L2(Ω) + |c| ‖u‖2L2(Γ) ≥ min (1, |c|)
(
‖∇u‖2L2(Ω) + ‖u‖2L2(Γ)

)
= C1 ‖u‖2H ,

showing equivalence of the norms in the case when c < 0.

Now assume 0 ≤ c < µ1. Since c ≥ 0, we have

‖u‖2c = ‖∇u‖2L2(Ω) − c ‖u‖
2
L2(Γ) ≤ ‖∇u‖

2
L2(Ω) ≤ ‖u‖

2
H .

For the other direction, note first that

µ1 = inf
w∈H\{0}

‖∇w‖2L2(Ω)

‖w‖2L2(Γ)

,

and so

µ1 ≤
‖∇u‖2L2(Ω)

‖u‖2L2(Γ)

.

This then implies that

‖u‖2L2(Γ) ≤
1

µ1
‖∇u‖2L2(Ω)

and, as c ≥ 0,

−c ‖u‖2L2(Γ) ≥
−c
µ1
‖∇u‖2L2(Ω) .
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Then

‖u‖2H = ‖∇u‖2L2(Ω) + ‖u‖2L2(Γ) ≤
(
µ1 + 1

µ1

)
‖∇u‖2L2(Ω) ,

and, using c < µ1,

‖u‖2c = ‖∇u‖2L2(Ω) − c ‖u‖
2
L2(Γ) ≥

(
µ1 − c
µ1

)
‖∇u‖2L2(Ω) .

Combining these two gives

‖u‖2H ≤
µ1 + 1

µ1 − c
‖u‖2c = C1 ‖u‖2c ,

which completes the proof.

Now, define the function Q : H1(Ω)→ R by

Q(u) =
‖u‖2c

‖u‖2Lα+1(∂Ω)

=
‖∇u‖2L2(Ω) − c ‖u‖

2
L2(∂Ω)

‖u‖2Lα+1(∂Ω)

.

Set

S = inf
w∈H\{0}

Q(w).

Lemma 8. If ‖·‖c is an equivalent norm on H, then S > 0.

Proof. By definition of equivalence, there is C1 > 0 so that for any w ∈ H,

‖w‖c ≥ C1 ‖w‖H

and from (2.10) and the equivalence of ‖·‖H and ‖·‖H1(Ω),

‖w‖2Lα+1(∂Ω) ≤ C2 ‖w‖H .

for some positive constant C2. Together these imply that if w 6= 0,

S(w) ≥ C1

C2
,

so that

S = inf
w∈H\{0}

Q(w) ≥ C1

C2
> 0.
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The main point here is that Q is bounded below, unlike the first variation E that

we usually use. We then employ standard compactness arguments to find a minimizer

for Q in H\{0}. The drawback to using Q is that Q′(u) = 0 is not equivalent to (2.3)

whereas E′(u) = 0 is exactly (2.3). We then have an extra step of showing that a

minimizer of Q provides a weak solution of (1.1), which is shown in Lemma 2.11 below.

We first show that Q has a minimizer. This follows a fairly standard argument using

the compactness of the Sobolev embeddings and showing Q is lower semicontinuous.

Lemma 9. Let c be such that ‖·‖c is an equivalent norm on H, and suppose {un} is

a sequence in H1(Ω) with un ⇀ v weakly in H1(Ω). Then there exists a subsequence

{unk}k so that

Q(v) ≤ lim inf
k→∞

Q(unk).

Proof. As un ⇀ v weakly in H1(Ω), we may extract a subsequence {unk}k so that as

k →∞,

unk → v

strongly in L2(∂Ω) and Lα+1(∂Ω). By merit of lim inf, we may also assume (by further

extraction of a subsequence) that

lim inf
k→∞

Q(unk) = lim
k→∞

Q(unk).

From the homogeneity of Q, we see Q(tw) = Q(w) for any w ∈ H1(Ω) and t ∈ R,

so we may assume

‖unk‖Lα+1(∂Ω) = 1

for every k.

For v above and for any w ∈ H1(Ω), we have

0 ≤ ‖∇v −∇w‖2L2(Ω) = ‖∇v‖2L2(Ω) − 2(∇v,∇w)L2(Ω) + ‖∇w‖2L2(Ω) ,

so that

2(∇v,∇w)L2(Ω) − ‖∇v‖2L2(Ω) ≤ ‖∇w‖
2
L2(Ω) .
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Then

(2∇v,∇w −∇v)L2(Ω) = (2∇v,∇w)L2(Ω) − (2∇v,∇v)L2(Ω)

= 2(∇v,∇w)L2(Ω) − 2 ‖∇v‖2L2(Ω)

= 2(∇v,∇w)L2(Ω) − ‖∇v‖2L2(Ω) − ‖∇v‖
2
L2(Ω)

≤ ‖∇w‖2L2(Ω) − ‖∇v‖
2
L2(Ω) .

We therefore have

‖∇w‖2L2(Ω) ≥ ‖∇v‖
2
L2(Ω) + (2∇v,∇w −∇v)L2(Ω).

In particular, letting w = unk gives

‖∇unk‖
2
L2(Ω) ≥ ‖∇v‖

2
L2(Ω) + (2∇v,∇unk −∇v)L2(Ω)

for every k. Since unk ⇀ v weakly in H1(Ω), we have

(w,∇unk −∇v)H1(Ω) → 0

for each fixed w ∈ H1(Ω), which implies that

(2∇v,∇unk −∇v)L2(Ω) → 0

as k →∞. This gives

lim
k→∞

‖∇unk‖
2
L2(Ω) ≥ ‖∇v‖

2
L2(Ω) .

As unk → v strongly in L2(∂Ω), we have

lim
k→∞

‖unk‖
2
L2(∂Ω) = ‖v‖2L2(∂Ω) ,

giving

lim
k→∞

Q(unk) = lim
k→∞

(
‖∇unk‖

2
L2(Ω) − c ‖unk‖

2
L2(∂Ω)

)
≥ ‖∇v‖2L2(Ω) − c ‖v‖

2
L2(∂Ω) .

Furthermore, as unk → v in Lα+1(∂Ω),

1 = lim
k→∞

‖unk‖
2
Lα+1(∂Ω) = ‖v‖2Lα+1(∂Ω) .
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Thus

lim
k→∞

Q(unk) ≥ Q(v).

This finishes the proof as

Q(v) ≤ lim
k→∞

Q(unk) = lim inf
k→∞

Q(unk).

Lemma 10. Let c be such that ‖·‖c is an equivalent norm on H. Then there is v ∈

H\{0}, v ≥ 0 in Ω such that S = Q(v).

Proof. First, if S = ∞, then there is nothing to prove as every w ∈ H\{0} would be

a minimizer, and so in particular there is an element v = |w| ≥ 0 with S = Q(v). We

may thus assume S <∞.

By the definition of S, we may find a sequence {un} ⊂ H\{0} so that

lim
n→∞

Q(un) = S

with ∫
∂Ω
|un|α+1 dσ = 1.

The latter equality follows from Q(tw) = Q(w) for any t. As S is finite and Q(un) is

equivalent to ‖un‖H1(Ω), we may (extracting a subsequence if necessary) assume {un}n

is bounded in H1(Ω) norm. By extracting subsequences, we may assume un ⇀ v weakly

in H1(Ω) for some v ∈ H1(Ω). We may furthermore assume

un → v

strongly in Lα+1(∂Ω) and almost everywhere in ∂Ω. By merit of Lemma 9 we may also

assume that

Q(v) ≤ lim inf
n→∞

Q(un).

Since un = 0 on Γ0 and un → v almost everywhere on ∂Ω, we also have v = 0 on Γ0,

so that v ∈ H. We furthermore have v is not identically zero in H, as un → v strongly

in Lα+1(∂Ω), so ‖v‖Lα+1(∂Ω) = limn→∞ ‖un‖Lα+1(∂Ω) = 1.
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We have then that v ∈ H\{0}, which implies

Q(v) ≥ inf
w∈H\{0}

Q(w) = S.

But

Q(v) ≤ lim inf
n→∞

Q(un) ≤ lim
n→∞

Q(un) = S,

and so Q(v) = S. Finally, as Q(v) = Q(|v|), the function |v| ∈ H\{0} is also a

minimizer, so we may replace v by |v| and assume v ≥ 0.

We now show that a minimizer of Q will solve a particular variational identity.

Lemma 11. Suppose there is v ∈ H\{0} with Q(v) = S, 0 < S < ∞. Then for every

w ∈ H, v satisfies∫
Ω
∇v · ∇w dx− c

∫
∂Ω
vw dσ − S

∫
∂Ω
|v|α−1 vw dσ = 0. (2.11)

Proof. As v is a minimizer of Q, Q(v) ≤ Q(w) for every nonzero w ∈ H. This implies

d

dε
Q(v + εw)

∣∣∣∣
ε=0

= 0 (2.12)

for every w ∈ H. That is to say, Q′(v) = 0 in H1(Ω). Calculating,

Q(v + εw) =
‖∇v + ε∇w‖2L2(Ω) − c ‖v + εw‖2L2(∂Ω)

‖v + εw‖2Lα+1(∂Ω)

.
=
N(ε)

D(ε)
.

Then differentiating gives

d

dε
Q(v + εw)

∣∣∣∣
ε=0

=
N ′(0)D(0)−D′(0)N(0)

D(0)2
.

Now

N(0) = ‖∇v‖2L2(Ω) − c ‖v‖
2
L2(∂Ω) = ‖v‖c

N ′(0) = 2
(

(∇v,∇w)L2(Ω) − c (v, w)L2(∂Ω)

)
D(0) = ‖v‖2Lα+1(∂Ω)

D′(0) =
2

α+ 1

(∫
∂Ω
|v|α+1 dσ

) 2
α+1
−1

(α+ 1)

∫
∂Ω
|v|α−1 vw dσ

= 2 ‖v‖1−αLα+1(∂Ω) (|v|α−1 v, w)L2(∂Ω).
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Putting this into the expression for the derivative gives

d

dε
Q(v + εw)

∣∣∣∣
ε=0

=
2
(

(∇v,∇w)L2(Ω) − c (v, w)L2(∂Ω)

)
‖v‖2Lα+1(∂Ω)

‖v‖4Lα+1(∂Ω)

− 2 ‖v‖1−αLα+1(∂Ω) (|v|α−1 v, w)L2(∂Ω)
‖v‖c

‖v‖4Lα+1(∂Ω)

=
2

‖v‖2Lα+1(∂Ω)

A,

where

A = (∇v,∇w)L2(Ω) − c (v, w)L2(∂Ω) −
‖v‖c

‖v‖α+1
Lα+1(∂Ω)

(|v|α−1 v, w)L2(∂Ω)

= (∇v,∇w)L2(Ω) − c (v, w)L2(∂Ω) −Q(v)(|v|α−1 v, w)L2(∂Ω).

Then (2.12) and Q(v) = S imply∫
Ω
∇v · ∇w dx− c

∫
∂Ω
vw dσ − S

∫
∂Ω
|v|α−1 vw dσ = 0

for every w ∈ H.

Equation (2.11) suggests that an appropriate scaling of v will give a positive solution

u to (1.1), which leads us to the following lemma.

Lemma 12. Let c < µ1, 1 < α < α∗− 1, and λ > 0. Assume additionally that S <∞.

Then there exists an element u ∈ H\{0}, u ≥ 0 solving (1.1) in the weak sense.

Proof. Since c < µ1, Lemma 7 verifies the hypothesis of Lemma 10, so we may find

v ∈ H\{0}, v ≥ 0, with Q(v) = S. Set (noting that λ > 0 and S > 0)

u = βv,

for

β =

(
λ

S

)− 1
α−1

> 0.

Then u ∈ H, u ≥ 0, and since v is nonzero, u is nonzero as well. Let w ∈ H be

arbitrary. In light of Lemma 11, we have from (2.11)

β

(∫
Ω
∇v · ∇w dx− c

∫
∂Ω
vw dσ − S

∫
∂Ω
|v|α−1 vw dσ

)
= 0.
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Then as β1−α = λ/S,

0 =

∫
Ω
∇(βv) · ∇w dx− c

∫
∂Ω

(βv)w dσ − βS
∫
∂Ω
|v|α−1 vw dσ

=

∫
Ω
∇u · ∇w dx− c

∫
∂Ω
uw dσ − ββ−αS

∫
∂Ω
|u|α−1 uw dσ

=

∫
Ω
∇u · ∇w dx− c

∫
∂Ω
uw dσ − β1−αS

∫
∂Ω
|u|α−1 uw dσ

=

∫
Ω
∇u · ∇w dx− c

∫
∂Ω
uw dσ − λ

∫
∂Ω
|u|α−1 uw dσ.

As u = 0 on Γ0, this is merely (2.3). Thus, u is a positive H solution to (1.1).

Finally, the assumption S <∞ is not restrictive, as for every w ∈ H,

‖w‖c ≤ C ‖w‖H ,

and so choosing an element w ∈ H\0 with ‖w‖H <∞ and w not identically zero on Γ

guarantees

Q(w) ≤
C ‖w‖H
‖w‖2Lα+1(Γ)

<∞,

and so S ≤ Q(w) <∞. This completes the proof of Theorem 4.

2.2 Critical Case

In both arguments for existence in the subcritical case, the compactness of the Sobolev

embedding was necessary to construct a minimizer to the functional (see the proofs of

Lemma 6 and Lemma 9). Based upon the work by Brezis and Nirenberg in [4], we

expect that when α + 1 = α∗, we may still be able to construct solutions even though

we have lost compactness of the embedding H1(Ω) ↪→ Lα
∗
(∂Ω), as long as c is in a

particular range. We will use the same argument as in Chapter 2.1.1. However, this

will require knowing the specific form of the minimizing functions for the functional Q,

and so we will need Ω to be the unit sphere. The result holds for more general domains

and the arguments are not dissimilar. The argument in full generality can be found in

[2]. We will also need c to be in a particular interval, which depends on the domain.
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Assume Ω is the unit sphere in RN , N ≥ 3, λ > 0, −N−2
2 < c < µ1, and

α+ 1 = α∗ =
2(N − 1)

N − 2
.

We note that the bounds on c both depend on Ω. The lower bound −N−2
2 will in general

depend on the curvature of Ω (at some point) and the dimension (see [2]); this value is

constant in our case as the unit sphere has constant curvature. The upper bound µ1

obviously depends on Ω as well. We wish to prove the following.

Theorem 5. Let µ1 ≥ 0 be the first Steklov eigenvalue and φ1 ∈ H satisfy ∆φ1 = 0

in Ω, φ1 = 0 on Γ0, and ∂φ1
∂ν = µ1φ1 on Γ. Let −N−2

2 < c < µ1. Then problem (1.1)

admits a (weak) solution u ∈ H\{0} with u ≥ 0 in Ω.

This theorem is a simplified version of Theorem 2.1 in [2]. It is simpler because

we are only taking Ω to be the unit ball, whereas in [2], Adimurthi and Yadava show

existence for any domain with smooth enough boundary and which satisfies a convexity

condition. However, a number of calculations become more complicated and require

estimates which are readily available for the case of the ball, but must be modified for

a general domain (in particular, (2.18) below). The condition c > −N−2
2 is precisely

condition (1) of Theorem 2.1 in [2] in the case that Ω is a ball. The general condition

allows for c to be a function of x ∈ ∂Ω, and the lower bound −N−2
2 is replaced by

a function depending on the curvature of the boundary. They then require that the

function analogous to c compares correctly to the curvature at a particular point on

∂Ω where the convexity condition is satisfied. The upper bound c < µ1 is analogous to

the requirement that the expression (2.2) in [2] define an equivalent norm on H. We

take care of this in Lemma 7 in Section 2.1.1

A straightforward energy argument shows that when c ≥ µ1, no positive solution to

(1.1) can exist. When c < −N−2
2 , a Pohozaev type argument contradicts the existence

of any (sufficiently well-behaved) solution. Both these arguments are found in Chapter

3. The exceptional case c = −N−2
2 is not included in Chapter 3, though it is expected

that the results for c < −N−2
2 hold as well.

The difference between this case and the subcritical case is that we have lost com-

pactness of the embedding H1(Ω) ↪→ Lα
∗
(∂Ω) in (2.10). However, the compactness of
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embeddings H1(Ω) ↪→ L2(Ω) and H1(Ω) ↪→ L2(∂Ω) still hold. Recall

‖u‖2c =

∫
Ω
‖∇u‖2 dx− c

∫
∂Ω
|u|2 dσ = ‖∇u‖2L2(Ω) − c ‖u‖

2
L2(∂Ω) ,

Q(u) =
‖u‖2c

‖u‖2Lα∗ (∂Ω)

,

and

S = inf
w∈H\{0}

Q(w).

The proofs of Lemmas 7 and 8 used only the Sobolev inequalities and not the

compactness of the embedding, and so these results still hold in the critical case. In

order to proceed along the lines of Lemma 9, we need a preliminary lemma to replace

the compactness in Lα
∗
(∂Ω). In particular, we have the following lemma due to Brezis

and Lieb (see [3]).

Lemma 13. Let U be any domain and 0 < p <∞. Suppose fn → f almost everywhere

in U , and ‖fn‖Lp(U) ≤ C <∞ for every n. Then

lim
n→∞

(
‖fn‖pLp(U) − ‖fn − f‖

p
Lp(U)

)
= ‖f‖pLp(U) .

Proof. For brevity we will write ‖·‖p for ‖·‖Lp(U). First, Fatou’s Lemma gives

‖f‖pp ≤ lim inf
n→∞

‖fn‖pp ≤ C
p,

and so f ∈ Lp(U) for any p. The proof is easiest when 0 < p ≤ 1, so we will show this

case separately. When 0 < p ≤ 1, we have

|α+ β|p ≤ |α|p + |β|p (2.13)

for any real numbers α, β. This follows as the function χ(x) = xp is concave for x > 0

and 0 < p ≤ 1. Then χ(0) = 0 implies χ(x + y) ≤ χ(x) + χ(y), and as χ is increasing

this yields χ (|α+ β|) ≤ χ (|α|+ |β|) ≤ χ (|α|) + χ (|β|).

Using (2.13) first with α = fn(x) − f(x), β = fn(x) and then with α = fn(x), β =

−f(x) gives

|fn|p − |fn − f |p ≤ |f |p
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and

|fn − f |p − |fn|p ≤ |f |p ,

respectively. Thus, the function

gn = |fn|p − |fn − f |p

satisfies gn → |f |p a.e. and |gn| ≤ |f |p, and as |f |p ∈ L1(U), dominated convergence

implies that ∫
U
gn dx→

∫
U
|f |p dx,

or

‖fn‖pp − ‖fn − f‖
p
p → ‖f‖

p
p .

The proof when p > 1 uses the same idea, but the estimate (2.13) changes. Fix

1 < p <∞ and ε > 0. Then there is Cε so that for any α, β ∈ R, we have

|α+ β|p − |α|p ≤ ε |α|p + Cε |β|p . (2.14)

This may be shown by writing p = k + δ for k ∈ N, 0 ≤ δ < 1, applying (2.13) to

|α+ β|δ, expanding |α+ β|k, and then using Cauchy’s inequality with ε. Note that

when 0 < p ≤ 1, estimate (2.14) is trivially implied by (2.13), and the argument for

p > 1 will apply to 0 < p ≤ 1 as well. Now, we apply (2.14) with α = fn(x) − f(x),

β = f(x) to obtain

|fn|p − |fn − f |p ≤ ε |fn − f |p + Cε |f |p .

We also have, using α = fn and β = −f ,

|fn − f |p = ε |fn − f |p + (1− ε) |fn − f |p

≤ ε |fn − f |p + (1− ε) [ε |fn|p + Cε |f |p + |fn|p]

= ε |fn − f |p + (1− ε)Cε |f |p + |fn|p − ε2 |fn|p

≤ ε |fn − f |p + (1− ε)Cε |f |p + |fn|p ,

giving

|fn − f |p − |fn|p ≤ ε |fn − f |p + C ′ε |f |
p .
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We have therefore established

||fn|p − |fn − f |p| ≤ ε |fn − f |p + Cε |f |p . (2.15)

Set

Qε,n(x) = |(|fn(x)|p − |fn(x)− f(x)|p)− |f(x)|p| − ε |fn(x)− f(x)|p

and

Wε,n(x) = max (Qε,n(x), 0) .

Applying (2.15),

|(|fn|p − |fn − f |p)− |f |p| ≤ ||fn|p − |fn − f |p|+ |f |p

≤ ε |fn − f |p + (Cε + 1) |f |p ,

and so

Qn,ε = |(|fn|p − |fn − f |p)− |f |p| − ε |fn − f |p ≤ (Cε + 1) |f |p .

Then

|Wn,ε(x)| = Wn,ε(x) ≤ Qn,ε(x) ≤ (Cε + 1) |f(x)|p

and since Wn,ε(x)→ 0 a.e. and f ∈ Lp(U), dominated convergence implies that

lim
n→∞

∫
U
Wn,ε(x) dx = 0.

Finally, if

|(|fn(x)|p − |fn(x)− f(x)|p)− |f(x)|p| ≤ ε |fn(x)− f(x)|p ,

then Wn,ε(x) = 0. On the other hand, if

|(|fn(x)|p − |fn(x)− f(x)|p)− |f(x)|p| > ε |fn(x)− f(x)|p ,

then

Wn,ε(x) = |(|fn(x)|p − |fn(x)− f(x)|p)− |f(x)|p| − ε |fn(x)− f(x)|p ,

and so in both cases

|(|fn(x)|p − |fn(x)− f(x)|p)− |f(x)|p| ≤Wn,ε(x) + ε |fn(x)− f(x)|p . (2.16)
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Integrating (2.16) gives

In =

∫
U
|(|fn(x)|p − |fn(x)− f(x)|p)− |f(x)|p| dx

≤
∫
U
Wn,ε(x) dx+ ε

∫
|fn(x)− f(x)|p dx

≤
∫
U
Wn,ε(x) dx+ ε ‖fn − f‖p

≤
∫
U
Wn,ε(x) dx+ ε

(
‖fn‖p + ‖f‖p

)
≤
∫
U
Wn,ε(x) dx+ εC,

where C is independent of ε and n. Then

lim
n→∞

In = εC,

which implies that In → 0 as n→∞ by letting ε→ 0. Thus, we have∫
U
|(|fn(x)|p − |fn(x)− f(x)|p)− |f(x)|p| dx→ 0,

which establishes

lim
n→∞

(
‖fn‖pp − ‖fn − f‖

p
p

)
= ‖f‖pp .

For the remainder, we will assume that Ω is the unit ball in RN , N ≥ 3. Much of

the argument will work for any N ≥ 3, though one calculation we will only carry out

in the N = 3 case. It is worth pointing out that all the results hold in more general

settings, and the arguments will rely on transforming the domain locally to either the

ball or the half-space (which are conformally equivalent), and then using the arguments

presented here.

Let Ω be the unit ball in RN , N ≥ 3, and define

K0 = inf
w∈H1(Ω)\{0}

‖∇w‖2L2(Ω) + N−2
2 ‖w‖2L2(∂Ω)

‖w‖2Lα∗ (∂Ω)

= inf
w∈H1(Rn+)

‖∇w‖2L2(Rn+)

‖w‖2Lα∗ (∂Rn+)

=
N − 2

2
ω

1
N−1

N , (2.17)
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where ωN is the surface volume of the N − 1 sphere in RN . The fact that these

expressions are equivalent is due to Escobar in [8]. In this paper, Escobar also shows

the infimum is achieved by constants in the case of the ball, and we can readily see that

when w is any constant function, K0 has the value given in (2.17).

We note that from (2.17), we immediately have

‖u‖2Lα∗ (∂Ω) ≤
1

K0
‖∇u‖2L2(Ω) + C ‖u‖2L2(∂Ω) . (2.18)

for any u ∈ H1(Ω) and a constant C = N−2
2K0

. In the case of a general Ω, we have a

generalized result due to Cherrier (see [5]). For any ε > 0, there is a constant C(ε) so

that

‖u‖2Lα∗ (∂Ω) ≤
(

1

K0
+ ε

)
‖∇u‖2L2(Ω) + C(ε) ‖u‖2L2(Ω) .

for every u ∈ H1(Ω). This would be used in place of (2.18) for a general domain.

We are now ready to prove the main existence lemma for the case of the ball.

This lemma follows very similarly Lemma 3.2 in [1]. There are some modifications to

the argument, because in [1] they consider homogeneous Neumann data on the entire

boundary and nonlinear data for ∆u in the interior. The key to being able to prove

Lemma 14 in the critical case is the result from Brezis and Lieb, Lemma 13 above. This

allows us to get around the lack of compactness which was key in proving Lemma 10

in Section 2.1.1.

Lemma 14. If S < K0, then there is v ∈ H\{0}, v ≥ 0, with Q(v) = S.

Proof. Let {uk} ⊂ H\{0} be such that

Q(uk)→ S,

‖uk‖Lα∗ (∂Ω) = 1.

The sequence {uk} is then bounded in H1(Ω), and so by moving to subsequences, we

may assume uk ⇀ v weakly in H1(Ω), uk → v strongly in L2(∂Ω), and uk → v almost

everywhere in Ω for some v ∈ H1(Ω). We first show that v 6= 0.

Suppose that v is the zero function in H1(Ω). Then uk → 0 in L2(∂Ω), so

lim
k→∞

‖∇uk‖2L2(Ω) = lim
k→∞

‖uk‖2c = S.
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From 2.18, since uk ∈ H ⊂ H1(Ω), we have

1 ≤ 1

K0
‖∇uk‖2L2(Ω) + C ‖uk‖2L2(∂Ω) ,

and so letting k →∞ gives

1 ≤ S

K0
,

which is a contradiction to S < K0, and so we must have v 6= 0.

Define vk = uk − v. Then vk ⇀ 0 weakly in H1(Ω), vk → 0 strongly in L2(∂Ω), and

vk → 0 almost everywhere in Ω.

First note that for any w ∈ H, we may write

‖w‖2c = ‖∇w‖2L2(Ω) − c ‖w‖
2
L2(∂Ω)

= (∇w,∇w)L2(Ω) − c(w,w)L2(∂Ω)

= (w,w)c.

Then for any w,w′ ∈ H,

∥∥w + w′
∥∥2

c
= (w + w′, w + w′)c = ‖w‖2c +

∥∥w′∥∥2

c
+ 2(w,w′)c.

Therefore,

‖uk‖2c = ‖vk + v‖2c = ‖v‖2c + ‖vk‖2c + 2(vk, v)c.

Since vk ⇀ 0 weakly in H1(Ω) and strongly in L2(∂Ω), we have 2(vk, v)c → 0. We may

thus write

‖uk‖2c = ‖v‖2c + ‖vk‖2c + δ
(1)
k ,

where δ
(1)
k → 0. Since ‖uk‖2c → S, we have

S = ‖uk‖2c + (S − ‖uk‖2c)

= ‖v‖2c + ‖∇vk‖2L2(Ω) + (S − ‖uk‖2c) + δ
(1)
k ,

and so

S = ‖v‖2c + ‖∇vk‖2L2(Ω) + δ
(2)
k (2.19)

for δ
(2)
k → 0.
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From the Sobolev inequalities, {uk} is bounded in Lα+1(∂Ω), and so by Lemma 13,

‖uk‖α
∗

Lα∗ (∂Ω) = ‖v‖α
∗

Lα∗ (∂Ω) + ‖uk − v‖α
∗

Lα∗ (∂Ω) + δ
(3)
k

for δ
(3)
k → 0. We thus have

‖uk‖2Lα∗ (∂Ω) =
(
‖uk‖α

∗

Lα∗ (∂Ω)

) 2
α∗

≤
(
‖v‖α

∗

Lα∗ (∂Ω) + ‖uk − v‖α
∗

Lα∗ (∂Ω) + δ
(3)
k

) 2
α∗

≤ ‖v‖2Lα∗ (∂Ω) + ‖uk − v‖2Lα∗ (∂Ω) + δ
(4)
k

for δ
(4)
k → 0. Note that we’re using 0 < 2

α∗ < 1. We then have, again using Lemma

2.18 and noting ‖vk‖L2(∂Ω) → 0,

1 = ‖uk‖2Lα∗ (∂Ω)

≤ ‖v‖2Lα∗ (∂Ω) + ‖vk‖2Lα∗ (∂Ω) + δ
(4)
k

≤ ‖v‖2Lα∗ (∂Ω) +
1

K0
‖∇vk‖2L2(∂Ω) + δ

(5)
k

for δ
(5)
k → 0. Multiplying by S gives

S ≤ S ‖v‖2Lα∗ (∂Ω) +
S

K0
‖∇vk‖2L2(∂Ω) + Sδ

(5)
k

< S ‖v‖2Lα∗ (∂Ω) + ‖∇vk‖2L2(∂Ω) + δ
(6)
k

as S < K0.

Using (2.19),

‖v‖2c + ‖∇vk‖2L2(Ω) + δ
(2)
k ≤ S ‖v‖

2
Lα∗ (∂Ω) + ‖∇vk‖2L2(∂Ω) + δ

(6)
k ,

or

‖v‖2c ≤ S ‖v‖
2
Lα∗ (∂Ω) + δ

(7)
k .

Letting k →∞, and recalling v 6= 0, gives

Q(v) =
‖v‖2c

‖v‖2Lα∗ (∂Ω)

≤ S.
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It remains to show that v ∈ H. We know v ∈ H1(Ω), and as uk → v almost

everywhere on ∂Ω, uk = 0 on Γ0, we have v = 0 on Γ0 as well, so v ∈ H. Thus, v is

one of the elements taken in the infimum defining S, so

Q(v) ≥ S,

showing Q(v) = S. Lastly, we may replace v with |v| and assume that v ≥ 0.

The following lemma follows very similarly Lemma 3.3 of [2]. We will only prove

the lemma in the case when N = 3, though it remains true when N > 3. The difference

is the cases N = 3, N = 4, and N ≥ 5 need to be treated separately due to to the

integrands that arise when estimating S.

Lemma 15. Let K0 be given by (2.17). If −N−2
2 < c < µ1, then S < K0.

Proof. As our problem is invariant under shifts and rotation, we may assume that

Ω = {(x′, xN ) ∈ RN : x′2 + (xN − 1)2 < 1} and that 0 ∈ Γ. The idea is to evaluate

Q(u) for a specific u ∈ H that is in some sense close to the minimizing functions.

Choose a fixed R > 0 small enough so that B(R) ∩ Γ0 = ∅, where B(R) is the ball

of radius R centered at the origin. Let φ be a compactly supported C∞(R) function

with φ(ρ) = 1 for ρ < R/2, φ(ρ) = 0 for ρ > R. By the choice of R, φ(|x|) is identically

zero for points x ∈ Γ0.

We will proceed only in the case when N = 3. The argument for N > 3 is the same,

except the integrals become more complicated and the estimates differ slightly. For the

argument in full generality, see [2].

For any ε > 0, set

uε(x, y, z) =
φ(ρ)

(x2 + y2 + (z + ε)2)1/2
,

where ρ =
√
x2 + y2 + z2. For each fixed ε > 0, uε ∈ H. We wish to compute Q(uε)

and show that for sufficiently small ε > 0,

Q(uε) < K0 =
1

2
ω

1/2
2 =

√
π.

The first observation to make is that any integral of uε over a set away from the

origin will be O(1) as ε → 0. This is clear as uε and ∇uε only have a singularity at
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the origin as ε → 0. Indeed, suppose x2 + y2 + z2 ≥ a for some a > 0. Then as

x2 + y2 + (z + ε)2 is exactly the distance squared from (x, y, z) to (0, 0,−ε), we have

(x2 + y2 + (z + ε)2)k ≥ (x2 + y2 + z2)k ≥ ak

for any k > 0. It follows that if U is any set so that R3
+\U contains a compact set V

with 0 ∈ V , we have∫
U

1

(x2 + y2 + (z + ε)2)k
dx ≤ a−kvol(U) = O(1).

The same estimate applies to the corresponding surface integrals. This observation will

be used frequently in the computations to follow.

In order to estimate Q(uε), we need to compute (noting when N = 3, α∗ = 4),

‖∇uε‖2L2(Ω) =

∫
Ω

∥∥∥∥∥∇
(

φ(ρ)

(x2 + y2 + (z + ε)2)
1
2

)∥∥∥∥∥
2

dV,

‖uε‖2L2(∂Ω) =

∫
∂Ω

φ(ρ)2

x2 + y2 + (z + ε)2
dσ,

‖uε‖4L4(∂Ω) =

∫
∂Ω

φ(ρ)4

(x2 + y2 + (z + ε)2)2
dσ,

where ρ =
√
x2 + y2 + z2. We compute

∇φ(ρ) =
φ′(ρ)

ρ
〈x, y, z〉,

giving

‖∇φ(ρ)‖2 = φ′(ρ)2,

∇φ(ρ) · 〈x, y, z + ε〉 = φ′(ρ)
x2 + y2 + z(z + ε)

ρ
.

Both these terms are a multiple of φ′(ρ), which is supported only when 〈x, y, z〉 is

outside B(R). By the previous discussion, the integrals of these two terms over Ω will

be O(1).

Now

∇uε(x, y, z) =
∇φ(ρ)

(x2 + y2 + (z + ε)2)
1
2

− φ(ρ)〈x, y, z + ε〉
(x2 + y2 + (z + ε)2)

3
2

,

‖∇uε(x, y, z)‖2 =
‖∇φ(ρ)‖2

x2 + y2 + (z + ε)2
+

2φ(ρ)∇φ(ρ) · 〈x, y, z + ε〉
(x2 + y2 + (z + ε)2)2

+
φ(ρ)2

(x2 + y2 + (z + ε)2)2
.
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The integrals over Ω of the first two terms are O(1). Furthermore, φ(ρ)2−1 is supported

compactly away from the origin, and so

‖∇uε‖2L2(Ω) =

∫
Ω

φ(ρ)2

(x2 + y2 + (z + ε)2)2
dV +O(1)

=

∫
Ω
⋂
B(R)+

φ(ρ)2

(x2 + y2 + (z + ε)2)2
dV +O(1)

=

∫
Ω
⋂
B(R)+

1 + φ(ρ)2 − 1

(x2 + y2 + (z + ε)2)2
dV +O(1)

=

∫
Ω
⋂
B(R)+

1

(x2 + y2 + (z + ε)2)2
dV +O(1)

=

∫
B(R)+

1

(x2 + y2 + (z + ε)2)2
dV

−
∫

Σ

1

x2 + y2 + (z + ε)2)2
dV +O(1)

= I1 − I2 +O(1),

where

B(R)+ = {(x, y, z) : x2 + y2 + z2 < R2, z > 0},

Σ = B(R)+\Ω =
{

(x, y, z) ∈ B(R)+ : z ≤ 1−
√

1− x2 − y2
}
.

We compute I1 by replacing B(R)+ by the cylinder {(x, y, z) : x2 + y2 < R, 0 < z <

R}. This adds on an integral over the difference between the cylinder and B(R)+, but

as this region is away from the origin, the integral is O(1). Setting D(R) = {(x, y) :
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x2 + y2 < R2}, we have

I1 =

∫
B(R)+

1

(x2 + y2 + (z + ε)2)2
dV

=

∫ R

0

∫
D(R)

1

(r2 + (z + ε)2)2
dAdz +O(1)

= 2π

∫ R

0

∫ R

0

r

(r2 + (z + ε)2)2
drdz +O(1)

=
2π

ε

∫ R/ε

0

∫ R/ε

0

s

(s2 + (ξ + 1)2)2
dsdξ +O(1)

=
2π

ε

∫ ∞
0

∫ ∞
0

s

(s2 + (ξ + 1)2)2
dsdξ +O(1)

=
2π

ε

∫ ∞
0

∫ ∞
(1+ξ)2

1

2η2
dηdξ +O(1)

=
π

ε

∫ ∞
0

1

(1 + ξ)2
dξ +O(1)

=
π

ε
+O(1).

To compute I2, we set p(r) = 1−
√

1− r2 and again use cylindrical coordinates.

I2 =

∫
Σ

1

(x2 + y2 + (z + ε)2)2
dV

=

∫
D(R)

∫ p(r)

0

dz

(r2 + (z + ε)2)2
dA

= 2π

∫ R

0

∫ p(r)

0

r

(r2 + (z + ε)2)2
dzdr.
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We switch the order of integration to obtain

I2 = 2π

∫ p(R)

0

∫ R

(2z−z2)1/2

r

(r2 + (z + ε)2)2
drdz

= −2π

2

∫ p(R)

0

(
1

R2 + (z + ε)2
− 1

2z − z2 + (z + ε)2

)
dz

= O(1) + π

∫ p(R)

0

1

2z − z2 + (z + ε)2
dz

= π

∫ p(R)

0

1

2(1 + ε)z + ε2
dz +O(1)

=
π

2(1 + ε)

[
log(2(1 + ε)p(R) + ε2)− log(ε2)

]
+O(1)

=
π

2(1 + ε)
log

(
1

ε2

)
+O(1)

=
π

1 + ε
log

(
1

ε

)
+O(1)

= (π +O(ε)) log

(
1

ε

)
+O(1)

= π log

(
1

ε

)
+O

(
ε log

(
1

ε

))
+O(1).

We therefore have

‖∇uε‖2L2(Ω) =
π

ε
− π log

(
1

ε

)
+O

(
ε log

(
1

ε

))
+O(1). (2.20)

The next step is to compute ‖uε‖2L2(∂Ω) and ‖uε‖2L4(∂Ω). We parameterize the surface

∂Ω ∩ {z < 1} with polar coordinates:

〈x, y, z〉 =
〈
r cos θ, r sin θ, 1−

√
1− r2

〉
.

A parameterization of ∂Ω∩{z ≥ 1} is not needed as φ is only supported near the origin.

The normal vector for this parameterization is

n = −r
〈

r√
1− r2

cos θ,
r√

1− r2
cos θ,−1

〉
with magnitude

|n| = r√
1− r2

.
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Utilizing the same ideas preceding the calculation of ‖∇uε‖2L2(Ω), we compute

‖uε‖2L2(∂Ω) =

∫
∂Ω

φ(ρ)2

x2 + y2 + (z + ε)2
dσ

=

∫
B(R)+

1

x2 + y2 + (z + ε)2
dσ +

∫
B(R)+

φ(ρ)2 − 1

x2 + y2 + (z + ε)2
dσ

=

∫
B(R)+

1

x2 + y2 + (z + ε)2
dσ +O(1)

=

∫ 2π

0

∫ R

0

|n|
r2 + (z + ε)2

drdθ +O(1)

= 2π

∫ R

0

r/
√

1− r2

r2 + (1−
√

1− r2 + ε)2
dr +O(1)

= 2πI3 +O(1).

We compute

I3 =

∫ R

0

r/
√

1− r2

r2 + (1−
√

1− r2 + ε)2
dr

=

∫ R

0

r/
√

1− r2

r2 + (1 + ε)2 − 2(1 + ε)
√

1− r2 + 1− r2
dr

=

∫ R

0

r/
√

1− r2

1 + (1 + ε)2 − 2(1 + ε)
√

1− r2
dr

=
1

2(1 + ε)

∫ ηR

ε2

1

η
dη

=
1

2(1 + ε)

[
log(ηR)− log(ε2)

]
=

1

2(1 + ε)
2 log

(
1

ε

)
+

1

2(1 + ε)
log(ηR)

= log

(
1

ε

)
+O

(
ε log

(
1

ε

))
+

1

2(1 + ε)
log(ηR),

where we used the substitution

η = 1 + (1 + ε)2 − 2(1 + ε)
√

1− r2

and set

ηR = 1 + (1 + ε)2 − 2(1 + ε)
√

1−R2 = O(1),

noting that R is chosen sufficiently small so that ηR > 0. Thus,

I3 = log

(
1

ε

)
+O

(
ε log

(
1

ε

))
+O(1),
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and so

‖uε‖2L2(∂Ω) = 2π log

(
1

ε

)
+O

(
ε log

(
1

ε

))
+O(1) (2.21)

A very similar calculation applies to ‖uε‖2L4(∂Ω). First,

‖uε‖4L4(∂Ω) =

∫
∂Ω

φ(ρ)4

(x2 + y2 + (z + ε)2)2
dσ

=

∫
B(R)+

1

(x2 + y2 + (z + ε)2)2
dσ +

∫
B(R)+

φ(ρ)4 − 1

(x2 + y2 + (z + ε)2)2
dσ

=

∫
B(R)+

1

(x2 + y2 + (z + ε)2)2
dσ +O(1)

=

∫ 2π

0

∫ R

0

|n|
(r2 + (z + ε)2)2

drdθ +O(1)

= 2π

∫ R

0

r/
√

1− r2

(r2 + (1−
√

1− r2 + ε)2)2
dr +O(1)

=
2π

2(1 + ε)

∫ ηR

ε2

1

η2
dη +O(1)

=
2π

2(1 + ε)

(
1

ε2
− 1

ηR

)
+O(1)

=
π

1 + ε

1

ε2
+O(1)

=
π

ε2
− π

ε
+O(1),

utilizing

1

1 + ε
= 1− ε+O(ε2).

We thus have

‖uε‖4L4(∂Ω) =
π

ε2
− π

ε
+O(1). (2.22)

Finally, we put (2.20), (2.21), and (2.22) together to compute

Q(uε) =
‖∇uε‖2L2(Ω) − c ‖uε‖

2
L2(∂Ω)

‖uε‖2L4(∂Ω)

=
π
ε − π log

(
1
ε

)
+−c2π log

(
1
ε

)
+O

(
ε log

(
1
ε

))
+O(1)(

π
ε2
− π

ε +O(1)
)1/2

=
√
π

(
1− ε log

(
1
ε

)
− 2cε log

(
1
ε

)
+O

(
ε2 log

(
1
ε

))
+O(ε)

(1− ε+O(ε2))1/2

)

=
√
π

(
1− ε log

(
1
ε

)
(1 + 2c) +O

(
ε2 log

(
1
ε

))
+O(ε)

(1− ε+O(ε2))1/2

)
.
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Expanding the denominator gives

Q(uε) =
√
π

[
1− ε log

(
1

ε

)
(1 + 2c)

]
+O

(
ε3 log

(
1

ε

))
+O

(
ε2 log

(
1

ε

))
+O(ε).

Then if 1 + 2c > 0, we may take ε > 0 sufficiently small so that

1− ε log

(
1

ε

)
(1 + 2c) < 1

and

Q(uε) <
√
π.

Then we have

S ≤ Q(uε) <
√
π = K0.

The proof of Lemma 11 from Section 2.1.1 follows identically in the critical case,

and so as long as there is v ∈ H\{0} with Q(v) = S, 0 < S <∞, then v satisfies∫
Ω
∇v · ∇w dx− c

∫
∂Ω
vw dσ − S

∫
∂Ω
|v|α−1 vw dσ = 0

for every w ∈ H. Furthermore, the same scaling argument in Lemma 12 holds, and the

function

u =

(
λ

S

)− 1
α−1

v

solves (1.1) in the weak sense. Combining Lemmas 14, 15, and the above discussion

proves Theorem 5.

2.3 Behavior of Solutions

In this section we study the behavior of the solutions to (1.1) as λ > 0 varies. In

particular, we will show that for every fixed c ∈ R (for which (1.1) yields a solution),

there is a sense in which the solution blows up in H norm as λ → 0+. We prove the

following theorem.
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Theorem 6. Fix c ∈ R and α > 1. Suppose v ∈ H\{0} is a solution to
∆v = 0 in Ω

v = 0 on Γ0

∂v

∂ν
= cv + |v|α−1 v on Γ.

(2.23)

Then for any λ > 0, there exists a solution uλ ∈ H of (1.1) with

uλ(x) = λ
−1
α−1 v(x).

In particular, there exists a solution to (1.1) with arbitrarily large H norm. Moreover,

if uλ ∈ H\{0} is a solution to (1.1) for some λ > 0, then

v = λ
1

α−1uλ

is a solution to (2.23).

Proof. Suppose v ∈ H is any nontrivial solution to (2.23). For λ > 0, define

uλ = λ
−1
α−1 v.

Then clearly ∆uλ = 0 in Ω and uλ = 0 on Γ0. On Γ,

∂uλ
∂ν

= λ
−1
α−1

∂v

∂ν

= λ
−1
α−1

(
cv + |v|α−1 v

)
= cuλ + λ

−1
α−1

+ α
α−1 |uλ|α−1 uλ

= cuλ + λ |uλ|α−1 uλ,

and so uλ solves (1.1). Then as long as (2.23) has one solution, (1.1) has a solution for

any λ > 0 with

‖uλ‖H = λ
−1
α−1 ‖v‖H ,

and so (noting α > 1), ‖uλ‖H can be taken to be arbitrarily large for sufficiently small

λ > 0.

The completely analogous argument shows that v = λ−1/(α−1)uλ solves (2.23) when-

ever uλ solves (1.1).
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It is important to note that when α < α∗− 1 (or when α = α∗− 1 and −N−2
2 < c <

µ1), (2.23) is guaranteed to have a solution v ∈ H\{0}. However, this solution need

not be unique. In fact, we constructed infinitely many solutions in the subcritical case,

and even if we restrict ourselves to only positive solutions, we do not have a uniqueness

theorem. As such, Theorem 6 does not say explicitly that any solution to (1.1) blows

up as λ → 0+, because for each λ we can compare uλ to a solution v of (2.23), but as

this solution is not unique, we don’t know that we are comparing the same solution for

different λ. It is likely possible to show that we may follow a solution upon a particular

”branch” as λ→ 0+, and each such solution does indeed blow up. Figure 4.4 in Chapter

4.2 shows that solutions increase as λ→ 0+.
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Chapter 3

Nonexistence

We have seen that when c < µ1, there exists a positive solution to (1.1). It also holds

that when c ≥ µ1, there cannot exist a positive solution. This is a standard energy

argument, relying on the fact that φ1 ≥ 0.

Theorem 7. Let φ1 ≥ 0 be the first Steklov eigenfunction with eigenvalue µ1. Then if

c ≥ µ1, there can exist no positive solution to (1.1).

Proof. Fix c ≥ µ1, λ > 0, α > 1, and suppose u ∈ H\{0} solves (1.1) with u ≥ 0 in Ω.

Then using v = φ1 in (2.3), we have∫
Ω
∇u · ∇φ1 dx− c

∫
Γ
uφ1 dσ − λ

∫
Γ
uαφ1 dσ = 0.

On the other hand, by definition of φ1, we have∫
Ω
∇φ1 · ∇u dx = µ1

∫
Γ
φ1u dσ,

and so

µ1

∫
Γ
φ1u dσ − c

∫
Γ
uφ1 dσ − λ

∫
Γ
uαφ1 dσ = 0.

Rearranging gives

(µ1 − c)
∫

Γ
uφ1 dσ = λ

∫
Γ
uαφ1 dσ,

which implies ∫
Γ
uαφ1 dσ ≤ 0.

This integral must be strictly positive, however, as neither φ1 nor u can be identically

zero on Γ. Thus, we cannot have the existence of such a u.

Note that this argument did not depend on the criticality of the exponent. In the

subcritical case, we have existence for every c, and existence of a positive solution only
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when c < µ1. For the critical case, we have only proven existence of a positive solution

(when −N−2
2 < c < µ1). When c ≥ µ1, Theorem 7 in Chapter 3.1 shows there cannot

exist a positive solution. We may still expect, however, that other (sign-changing)

solutions may exist, though we do not show this. In fact, there is numerical evidence

for the existence of sign-changing solutions when c ≥ µ1 and the exponent is critical.

See Figure 4.6b in Chapter 4.3.

Corollary 2 in Chapter 3.1 shows that when c < −N−2
2 and the exponent is critical

or supercritical, no nontrivial solution to (1.1) that is continuous up to the boundary

and satisfies a growth constraint (condition (3.43) in Section 3.1) may exist.

3.1 Nonexistence in the Supercritical Case

In this section, we show that if (1.1) has a solution, it will have to satisfy a Pohozaev-

type identity, similar to those established in [18] and [7]. This will imply constraints

on the exponent α and the parameter c.

We wish to apply the following identity. For any smooth vector field h and any H2

function u, there holds

div

(
(h · ∇u)∇u− 1

2
‖∇u‖2 h

)
= (Dh∇u) · ∇u− 1

2
‖∇u‖2 divh+ (h · ∇u)∆u. (3.1)

This is a straightforward computation, and integrating (3.1) for u ∈ H2 solving (1.1)

and applying the divergence theorem is equivalent to multiplying (1.1) by h · ∇u and

integrating by parts.

The problem with applying (3.1) is that our solution u is only in H ⊂ H1(Ω).

Because we have a mixed boundary value problem, standard regularity arguments do

not apply and we can not guarantee u ∈ H2(Ω). In fact, the arguments in this section

will imply that a nontrivial solution to (1.1) for c > −N−2
2 must fail to be in H2(Ω).

As such, we cannot directly apply (3.1). Nevertheless, our solution will be H2 in a

subdomain Ω\U for any open set U containing the interface between Γ0 and Γ. Our

idea is then to apply (3.1) in a smaller domain with the boundary interface removed,

and then examine the contributions as the removed portion becomes smaller.
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We first consider the argument for full H2(Ω) solutions. This computation will

indicate why we consider a mixed boundary problem instead of a standard Neumann

problem (see the discussion following Proposition 2). We consider the specific case

when Ω is the unit ball in RN , {x ∈ RN , |x| < 1}. We make the following choice for the

field h. This field is very special to the geometry of the ball (h will be a contained in

the tangent plane of Ω at each boundary point), and if our domain were different, we

would have to attempt to construct a different h with analogous properties. In fact, the

field h was constructed by considering the conformal transformation of the unit ball to

the half-space RN+ .

Define

h(x) = xNx−
1

2

(
1 + |x|2

)
eN . (3.2)

Note that on ∂Ω, |x| = 1 and ν = x, so for x ∈ ∂Ω,

h(x) · ν(x) = xNx · x−
1

2

(
1 + |x|2

)
eN · x = xN − xN = 0.

Thus, h is tangent to Ω. A direct computation shows

divh = (N − 1)xN + 2xN − xN = Nxn, (3.3)

Dh = xNI +M,

where M is an anti-symmetric matrix. Then

(Dh∇u) · ∇u = xN ‖∇u‖2 . (3.4)

We begin by applying (3.1) to a potential solution u ∈ H2(Ω) to (1.1).

Proposition 2. Let Ω be the unit ball in RN , α > 1, λ > 0, and c ∈ R. If u ∈

H2(Ω) ∩ C(Ω) is a solution to (1.1), then(
N − 2

2
− N − 1

α+ 1

)
λ

∫
Γ
xN |u|α+1 dσ =

(
N − 2

4
+
c

2

)∫
Γ
xNu

2 dσ. (3.5)

Proof. Since u ∈ H2(Ω), we have ∆u = 0 (in the sense of distributions). Then using

(3.3) and (3.4), we have∫
Ω

[
(Dh∇u) · ∇u− 1

2
‖∇u‖2 divh+ (h · ∇u)∆u

]
dx =

∫
Ω

(
1− N

2

)
xN ‖∇u‖2 dx

=
2−N

2

∫
Ω
xN ‖∇u‖2 dx.
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We may integrate this expression by parts to obtain

2−N
2

∫
Ω
xN ‖∇u‖2 dx =

2−N
2

[∫
∂Ω
xNu

∂u

∂ν
dσ −

∫
Ω
udiv (xN∇u) dx

]
=

2−N
2

[∫
∂Ω
xNu

∂u

∂ν
dσ −

∫
Ω
u
∂u

∂xN
dx

]
=

2−N
2

[∫
∂Ω
xNu

∂u

∂ν
dσ − 1

2

∫
Ω

∂u2

∂xN
dx

]
=

2−N
2

[∫
∂Ω
xNu

∂u

∂ν
dσ − 1

2

∫
∂Ω
u2νN dσ

]
=

2−N
2

[∫
∂Ω
xNu

∂u

∂ν
dσ − 1

2

∫
∂Ω
xNu

2 dσ

]
.

Recall g(u) = cu+ λu |u|α−1, and set

G(u) =

∫ u

0
g(t) dt.

Since u = 0 on Γ0, the boundary integrals are only over Γ, so we have

2−N
2

∫
Ω
xN ‖∇u‖2 dx =

2−N
2

∫
Γ
xNug(u) dσ +

N − 2

4

∫
Γ
xNu

2 dσ.

Integrating the right-hand side of (3.1) gives∫
Ω

div

(
(h · ∇u)∇u− 1

2
‖∇u‖2 h

)
dx =

∫
∂Ω

(
(h · ∇u)∇u · ν − 1

2
‖∇u‖2 h · ν

)
dσ.

Now, h ·ν = 0 on ∂Ω. Furthermore, as u = 0 on Γ0, ∇u must be in the normal direction

on Γ0, and so h · ∇u = 0 on Γ0. Thus, the boundary integral is only over Γ, and we

have ∫
Ω

div

(
(h · ∇u)∇u− 1

2
‖∇u‖2 h

)
dx =

∫
Γ
h · ∇Gdσ,

where we have used (h · ∇u)g(u) = h · ∇G(u).

We express h · ∇G in polar coordinates and integrate by parts. Define ρ = |x|, and

xN = ρ cosφ1, xN−1 = ρ sinφ1 cosφ2, xN−2 = ρ sinφ1 sinφ2 cosφ3, . . . ,

where 0 ≤ φ1 ≤ π, 0 ≤ φk < 2π, k = 2 . . . N − 1. The chain rule gives

x · ∇G =

N∑
i=1

xi
∂G

∂xi
=

N∑
i=1

ρ
xi
ρ

∂G

∂xi
= ρ

N∑
i=1

∂xi
∂ρ

∂G

∂xi
= ρ

∂G

∂ρ
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and, since φ2 . . . φN−1 are independent of xN ,

∂G

∂xN
=
∂G

∂ρ

∂ρ

∂xN
+
∂G

∂φ1

∂φ1

∂xN

=
xN
ρ

∂G

∂ρ
− sinφ1

ρ

∂G

∂φ1

Then on ∂Ω, ρ = |x| = 1, and

h · ∇G = xNx · ∇G−
1

2

(
1 + |x|2

)
eN · ∇G

= xN
∂G

∂ρ
−
(
xN

∂G

∂ρ
− sinφ1

∂G

∂φ1

)
= sinφ1

∂G

∂φ1
.

Assume for simplicity that Γ is parameterized by ρ = 1, 0 ≤ φ1 < φ∗, φk ∈ [0, 2π)

for k ≥ 2, where φ∗ = φ∗(φ2, . . . , φN−1). Letting θ denote φ2φ3 . . . φN−1 and J(θ) =

sinN−3 φ2 . . . sinφN−2, we have∫
Γ
h · ∇Gdσ =

∫
[0,2π)N−1

∫ φ∗

0
sinφ1

∂G

∂φ1
sinN−2 φ1 |J(θ)| dφ1dθ

=

∫
[0,2π)N−1

∫ φ∗

0
sinN−1 φ1

∂G

∂φ1
dφ1 |J(θ)| dθ

= −(N − 1)

∫
[0,2π)N−1

∫ φ∗

0
cosφ1 sinN−2 φ1Gdφ1 |J(θ)| dθ

= −(N − 1)

∫
Γ
xNG(u) dσ.

Here we have used that u = 0 when φ1 = φ∗, and G(0) = 0. Combining our calculations,

(3.1) becomes

−(N − 1)

∫
Γ
xNG(u) dσ +

N − 2

2

∫
Γ
xNug(u) dσ =

N − 2

4

∫
Γ
xNu

2 dσ.

Now g(u) = cu+ λu |u|α−1 and

G(u) =
c

2
u2 +

λ

α+ 1
|u|α+1 .

This then gives(
N − 2

2
− N − 1

α+ 1

)
λ

∫
Γ
xN |u|α+1 dσ +

(
N − 2

2
− N − 1

2

)
c

∫
Γ
xNu

2 dσ

=
N − 2

4

∫
Γ
xNu

2 dσ,
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or (
N − 2

2
− N − 1

α+ 1

)
λ

∫
Γ
xN |u|α+1 dσ =

(
N − 2

4
+
c

2

)∫
Γ
xNu

2 dσ,

establishing (3.5).

First notice that if Γ0 = ∅, the boundary integrals are over all of ∂Ω and the term

xN changes sign. We cannot conclude that the integrals are positive. In fact, if we were

to take α = 1, c = 0 and N = 3, then we would have(
1

4
+
λ

2

)∫
∂Ω
x3u

2 dσ = 0,

implying that λ < 0 or
∫
∂Ω x3u

2 dσ = 0. As the eigenvalues of the linear problem

are nonnegative, we must have
∫
∂Ω x3u

2 dσ = 0. This does give a constraint on u (for

instance, this would be satisfied if u were symmetric), but it also implies that we cannot

expect the integrals appearing in (3.5) to be positive. We can not, therefore, expect to

get much meaning from (3.5) if Γ0 = ∅.

In order to conclude something meaningful from (3.5), we consider the case when

Γ is contained in the upper hemisphere, so xN > 0. Then the integrals are positive for

nontrivial solutions u. In the subcritical or critical case, when α ≤ α∗ − 1, we have

α+ 1 ≤ α∗ =
2(N − 1)

N − 2
,

giving

N − 2

2
− N − 1

α+ 1
≤ 0.

Then as λ > 0, the left hand side of (3.5) is nonpositive. But this is a contradiction

as long as c > −N−2
2 . We conclude that the solutions guaranteed by theorems 2 and

5 cannot be in H2 as long as c > −N−2
2 . We actually expect that the solutions will

not be H2 for any value of c, though this is not implied by this argument. The lack of

regularity of a solution under mixed boundary conditions is examined by Grisvard in

[11] and Mghazli in [16], and a similar result appears in Theorem 8 below.

Then the mixed boundary condition seems to give rise to a lack of regularity in the

solution, so the Pohozaev identity does not apply as is. If we consider a pure Neumann

problem, then the Pohozaev identity does not provide useful information. Some effort
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was made to choose a different vector field h in order to get some positive function

p(xN ) appearing in the integrals instead of xN . The field h from (3.2) arises from

considering the derivative of the conformal map between the unit ball and RN+ , and

we considered examining the second derivative instead, though no progress was made

along these lines.

Another option would be to consider Ω to be a half-ball instead of a ball, for then

xN would always be positive. Similar problems arise when taking Neumann data on

the entire boundary, or when taking Dirichlet data on the flat portion and Neumann

data on the curved portion. When the flat boundary has Neumann data and the

curved boundary has Dirichlet data, a Pohozaev identity can be derived, as was done

by Adimurthi and Yadava in [1].

Our approach is then to find a way to apply (3.1) when we have a mixed boundary

and our solution is only in H1. The idea is to remove a region surrounding the interface

between Γ0 and Γ. In the domain with this region removed, there is no jump in boundary

condition, and therefore no singularity and we may apply (3.1). Going through the

argument in Proposition 2 would then pick up integrals over the boundary of the region

removed. This calculation will include the results from Proposition 2 as a special case

where the extra contribution is zero. We then expect to obtain an identity like (3.5)

with an additional term arises from the singularity. The hope is that this term will have

a particular sign, which will imply nonexistence when α is supercritical and provide no

contradiction when α is subcritical.

In order to proceed, we will transform our domain to the half-space RN+ through

a conformal transformation. Then on RN+ we will remove a region surrounding the

interface between Neumann and Dirichlet boundary conditions and apply (3.1) to this

domain. Most of the argument will be done in a general case when Ω is conformally

equivalent to RN+ , though at some point we will need to again assume that Ω is the

unit ball in order to calculate with a specific conformal factor. The argument could be

done entirely in the ball, but moving to the half-space has the advantage of a simpler

geometry, and also indicates how we would proceed for a more general domain.

Let Ω be conformally equivalent to RN+ and Φ : Ω → RN+ be a conformal mapping.



67

As Φ is conformal, we know

DΦ = βU,

D
(
Φ−1

)
= β−1UT

for a unitary matrix U and conformal factor β. In the case when Ω is the unit ball, we

have

Φ(x) =
x+ eN

|x+ eN |2
− 1

2
eN , (3.6)

with inverse

Φ−1(y) =
y + 1

2eN∣∣y + 1
2eN

∣∣2 − eN (3.7)

and conformal factor

β =

∣∣∣∣y +
1

2
en

∣∣∣∣2 =
1

|x+ en|2
(3.8)

for x ∈ Ω and y = Φ(x) ∈ RN+ .

The idea is to take a solution to (1.1) on a domain Ω conformal to RN+ and construct

a solution to an analogous boundary value problem on RN+ . We have the following

proposition.

Proposition 3. Let Ω be conformally equivalent to RN+ . A function u ∈ H is a solution

to (1.1) if and only if the function v ∈ H1
loc(RN+ ) given by v(y) = u(Φ−1(y)) is a solution

to 
div (β2−N∇v) = 0 in RN+

v = 0 on Φ(Γ0)

∂v

∂ν
=

1

β
g(v) on Φ(Γ).

(3.9)

Proof. We simply change variables from x ∈ Ω to y ∈ RN+ and carry out the change of

variables in the integrals. Suppose first u ∈ H solves (1.1). Then for any φ ∈ H, we

have ∫
Ω
∇u · ∇φdx−

∫
Γ
φg(u) dσ = 0.

Set y = Φ(x), v(y) = u(Φ−1(y)). Let ψ ∈ H1
loc(RN+ ) be any function with ψ = 0

on Φ(Γ0). Define φ(x) = ψ(Φ(x)), so that φ ∈ H. Now, ∇x = DΦ∇y = βU∇y for
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some U with UUT = UTU = I. The Jacobian for the change of variables y = Φ(x) is

detDΦ = ±βN , and so |detDΦ| = βN , giving∫
Ω
∇u · ∇φdx =

∫
Ω

(∇φ)T ∇u dx

=

∫
RN+

(βU∇ψ)T βU∇v β−Ndy

=

∫
RN+

β2−N (∇ψ)T UTU∇v dy

=

∫
RN+

β2−N∇v · ∇ψ dy,

and ∫
Γ
φg(u) dσ(x) =

∫
Φ(Γ)

ψg(v)β−(N−1) dσ(y)

=

∫
Φ(Γ)

β−1ψβ2−Ng(v) dσ(y).

Then we have ∫
RN+

β2−N∇v · ∇ψ dy −
∫

Φ(Γ)
β−1ψβ2−Ng(v) dσ(y) = 0

for any ψ ∈ H1
loc(RN+ ) with ψ = 0 on Φ(Γ0). This is exactly the weak formulation of

problem (3.9) on the space {v ∈ H1
loc(RN+ ) : v = 0 on Φ(Γ0)}. The argument for the

converse is identical.

For ease of calculation, we transform problem (3.9) to a problem with no first order

derivative on the function v.

Proposition 4. A function v ∈ H1
loc(RN+ ) with v = 0 on Φ(Γ0) is a solution to (3.9) if

and only if the function w = β
2−N

2 v is a solution to

∆w =
2−N

4

(
2β∆β −N |∇β|2

β2

)
w in RN+

w = 0 on Φ(Γ0)

∂w

∂ν
=

2−N
2β

∂β

∂ν
w + β−

N
2 g
(
β
N−2

2 w
)

on Φ(Γ).

(3.10)

Proof. Suppose v solves (3.9) in the weak sense, and let ψ ∈ H1
loc(RN+ ), ψ = 0 on Φ(Γ0)

be arbitrary. For notational ease, set f = log
(
β2−N) and define w = ef/2v. Since v is



69

a weak solution to (3.9), using the test function e−f/2ψ and noting β2−N = ef ,∫
RN+

ef∇v · ∇(e−f/2ψ) dy =

∫
Φ(Γ)

ef

β
g(v)e−f/2ψ dσ.

Then as v = e−f/2w,

∫
RN+

ef
[
e−f∇w · ∇ψ

]
dy +

∫
RN+

ef
∣∣∣∇e−f/2∣∣∣2wψ dy

+

∫
RN+

ef
[
e−f/2w∇ψ · ∇e−f/2 + e−f/2ψ∇w · ∇e−f/2

]
dy

=

∫
Φ(Γ)

ef/2

β
g(e−f/2w)ψ dσ,

which simplifies to

∫
RN+
∇w · ∇ψ dy +

1

4

∫
RN+
|∇f |2 dy − 1

2

∫
RN+
∇(wψ) · ∇f dy

=

∫
Φ(Γ)

ef/2

β
g(e−f/2w)ψ dσ.

Applying the Divergence Theorem,

∫
RN+
∇w · ∇ψ dy +

1

4

∫
RN+
|∇f |2wψ dy − 1

2

∫
Φ(Γ)

wψ
∂f

∂ν
dσ

+
1

2

∫
RN+

wψ∆f dy =

∫
Φ(Γ)

ef/2

β
g(e−f/2w)ψ dσ.

Rearranging, we see that w satisfies

∫
RN+
∇w · ∇ψ dy +

∫
RN+

(
∆f

2
+
|∇f |2

4

)
wψ dy

=

∫
Φ(Γ)

(
1

2

∂f

∂ν
w +

ef/2

β
g(e−f/2w)

)
ψ dσ,

or, expressing in terms of β,

∫
RN+
∇w · ∇ψ dy +

∫
RN+

2−N
4

(
2β∆β −N |∇β|2

β2

)
wψ dy

=

∫
Φ(Γ)

(
2−N

2β

∂β

∂ν
w + β−

N
2 g
(
β

2−N
2 w

))
ψ dσ.

Therefore, w is a weak solution to (3.10). For the converse, suppose w ∈ H1
loc(RN+ ),

w = 0 on Φ(Γ0), and is a weak solution to (3.10). Let ψ be any function in H1
loc(RN+ )
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with ψ = 0 on Φ(Γ0), and define v = e−f/2w for the same f as before. Then by

definition of w being a weak solution to (3.10) with the test function ef/2ψ, we have

∫
RN+
∇w · ∇(ef/2ψ) dy +

∫
RN+

(
∆f

2
+
|∇f |2

4

)
wef/2ψ dy

=

∫
Φ(Γ)

[
1

2

∂f

∂ν
w +

ef/2

β
g
(
e−f/2w

)]
ef/2ψ dσ.

We now write w = ef/2v and expand to obtain

∫
RN+

ef∇v · ∇ψ dy +

∫
RN+

ef

2
∇f · ∇(vψ) dy +

∫
RN+

ef

4
|∇f |2 vψ dy

+

∫
RN+

ef

(
∆f

2
+
|∇f |2

4

)
vψ dy =

∫
Φ(Γ)

ef
[

1

2

∂f

∂ν
v +

1

β
g(v)

]
ψ dσ.

Integrating by parts gives

∫
RN+

ef

2
∇f · ∇(vψ) dy =

∫
Φ(Γ)

ef

2

∂f

∂ν
vψ dσ −

∫
RN+

ef

2
|∇f |2 vψ dy

−
∫
RN+

ef∆f

2
vψ dy,

and entering this into the previous equation, we have∫
RN+

ef∇v · ∇ψ dy =

∫
Φ(Γ)

ef
1

β
g(v)ψ dσ.

As ef = β2−N and ψ was arbitrary, we see v is a weak solution to (3.9).

In the case when Ω is the unit sphere and β is given by (3.8), problem (3.10)

simplifies to ∆w = 0 in RN+ . Indeed, we see that when β is given by (3.8),

∇β = 2y + eN (3.11)

and

|∇β|2 = 4

∣∣∣∣y +
1

2
en

∣∣∣∣2 = 4β,

∆β = div∇β = 2N.

Then

2β∆β −N |∇β|2

β2
=

2β(2N)−N(4β)

β2
= 0.
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Moreover, on the boundary ∂RN+ , we have yN = 0 and ν = −eN , giving

∇β · ν = (2y + eN ) · (−eN ) = −1.

We have thus shown the following proposition.

Proposition 5. Suppose Ω is the unit ball in RN . A function v ∈ H1
loc(RN+ ) with v = 0

on Φ(Γ0) is a solution to (3.9) if and only if the function w = β
2−N

2 v is a solution to
∆w = 0 in RN+

w = 0 on Φ(Γ0)

∂w

∂ν
=
N − 2

2
β−1w + β−

N
2 g
(
β
N−2

2 w
)

on Φ(Γ).

For g(u) = cu+ λ |u|α−1 u, this becomes
∆w = 0 in RN+

w = 0 on Φ(Γ0)

∂w

∂ν
= β−1

(
c+

N − 2

2

)
w + λβ

N−2
2
α−N

2 |w|α−1w on Φ(Γ).

(3.12)

To (3.12) we will make the Pohozaev argument (after removing a portion of the

domain around the boundary interface). Some of the calculation will still apply to

(3.10), though to obtain the full Pohozaev identity we will need to use the specific form

of β arising from the case when Ω is a ball.

Before we establish the Pohozaev identity, we need a couple of lemmas dealing

with the behavior of a (weak) solution to (3.12) near the boundary interface. As in

the discussion following Proposition 2, the solutions which exist in the subcritical case

cannot be in H2. The goal of these lemmas is to show that a solution still has some

amount of regularity (beyond H1) and can be expanded in local coordinates.

Lemma 16. For x ∈ RN define cylindrical coordinates (x′, r, θ) by

x′ = (x1, . . . , xN−2)

r cos θ = xN−1

r sin θ = xN .
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For any R > 0, let UR ⊂ RN be the domain UR = {(x′, r, θ) : |x′|2+r2 < R2, 0 < θ < π}.

Set Q0 = {x ∈ ∂UR : θ = 0}, Q = {x ∈ ∂UR : θ = π}, P = {x ∈ ∂UR :
∣∣x′2∣∣+ r2 = R2}.

Let f ∈ L2(P ), µ ∈ C∞(L) with µ ≤ M < 0. Let A be a symmetric positive definite

matrix with bounded eigenvalues. Assume further that A has the form

A =

 A′ 0

0 I2

 ,

where I2 is the 2× 2 identity, so div (A∇) = div ′(A′∇′) + ∆2, where ∂′ denotes deriva-

tives with respect to the N − 2 dimensional x′ and ∂2 denotes derivatives with respect

to xN−1 and xN . Let u ∈ H1(UR) solve

div (A∇u) = 0 in UR

u = 0 on Q0

A∇u · ν = µ(x)u on Q

u = f on P.

(3.13)

Then there is a smooth function C of x′ and some R0 > 0 so that the expansions

u(x′, r, θ) = C(x′)r1/2 sin(θ/2) +O(r3/4−ε)

ur(x
′, r, θ) =

1

2
C(x′)r−1/2 sin(θ/2) +O(r−1/4−ε)

uθ(x
′, r, θ) =

1

2
C(x′)r1/2 cos(θ/2) +O(r3/4−ε)

uxi(x
′, r, θ) = Cxi(x

′)r1/2 sin(θ/2) +O(r3/4−ε), 1 ≤ i ≤ N − 2

(3.14)

hold in UR0 for any ε > 0.

Proof. The idea here is that the singular structure will be two dimensional, and the

N − 2 dimensional variable x′ acts as a parameter for the problem. The reason for

this is that the jump between boundary conditions happens at r = 0, and there is no

break as we move in the x′ direction. We are thus motivated by the two dimensional

argument.

In the two dimensional case, our domain is the upper half-plane. The argument is

to first contract our domain 90 degrees to the first quadrant, so that we have Dirich-

let boundary conditions on the horizontal axis and Neumann boundary conditions on
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Figure 3.1: Rotation and reflection of Ω = RN+

the vertical axis. We then extend the solution oddly about the horizontal axis, to get

a problem defined on the entire right half-plane with Neumann boundary conditions.

Since this problem has no mixed boundary conditions, we will be able to apply elliptic

regularity results to get a certain amount of smoothness, and therefore a Taylor expan-

sion ([17]). Following back to our original domain will then provide (3.14). Figure 3.1

shows first the domain contraction given by (r, θ) 7→
(
r

1
2 , θ2

)
and then the reflection

about the x1 axis.

In order to make this argument work, we first need to establish that our problem is

regular in the x′ direction. We follow a usual argument of taking difference quotients

and estimating the H1 norm of the difference quotients. Fix any 1 ≤ l ≤ N − 2. Let

Dhζ = Dh
l ζ = ζ(x+hel)−ζ(x)

h , and ζh(x) = ζ(x+ hel).

Let η be smooth cutoff function where η = 1 on V = BR/2 ∩ RN+ , η = 0 on RN\V ,

0 ≤ η ≤ 1. We now take a weak solution u to (3.13) and take as a test function

v = −D−hη2Dhu. Set U = UR. We have

n∑
i,j=1

∫
U
aij

∂u

∂xi

∂v

∂xj
dx =

∫
∂U
A∇u · νv dσ.

Write this expression as

I1 = I2. (3.15)

For I1 we use the fact that we have a constant Λ > 0 with Λ |ξ|2 ≤
∑N

i,j=1 aijξjξi.

Then we can show

I1 ≥
Λ

2

∫
U
η2
∥∥∥∇Dhu

∥∥∥ dx− C ∫
U
‖∇u‖2 dx. (3.16)
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Establishing (3.16) is a fairly standard argument. We first have

I1 =

n∑
i,j=1

∫
U
aij

∂u

∂xi

∂v

∂xj
dx

=

n∑
i,j=1

∫
U
aij

∂u

∂xj

∂

∂xj

(
−D−hη2Dhu

)
dx

=
n∑

i,j=1

∫
U
Dh

(
aij

∂u

∂xi

)
∂

∂xj

(
η2Dhu

)
dx

=
n∑

i,j=1

∫
U
ahij

∂Dhu

∂xi

∂η2Dhu

∂xj
dx

+
n∑

i,j=1

∫
U
Dhaij

∂u

∂xi

∂η2Dhu

∂xj
dx

=

n∑
i,j=1

∫
U
η2ahij

∂Dhu

∂xi

∂Dhu

∂xj
dx

+

n∑
i,j=1

∫
U

(
Dhaij

∂u

∂xi

∂η2Dhu

∂xj
+ ahij

∂Dhu

∂xi
2η

∂η

∂xj
Dhu

)
dx

= I
(1)
1 + I

(2)
1 .

Uniform ellipticity implies

I
(1)
1 ≥ Λ

∫
U
η2
∥∥∥∇Dhu

∥∥∥2
dx. (3.17)

For I
(2)
1 , we have

I
(2)
1 =

n∑
i,j=1

∫
U

(
η2Dhaij

∂u

∂xi

∂Dhu

∂xj
+ 2η

∂η

∂xj

(
Dhaij

∂u

∂xi
Dhu+ ahij

∂Dhu

∂xi
Dhu

))
dx.

Then ∣∣∣I(2)
1

∣∣∣ ≤ C ∫
U

(
η |∇u|

∣∣∣∇Dhu
∣∣∣+ η |∇u|

∣∣∣Dhu
∣∣∣+ η

∣∣∣∇Dhu
∣∣∣ ∣∣∣Dhu

∣∣∣) dx
where C depends on A, η, U , V . We now use Cauchy’s inequality with ε to isolate the∣∣∇Dhu

∣∣ term. Then∣∣∣I(2)
1

∣∣∣ ≤ ε∫
U
η2
∣∣∣∇Dhu

∣∣∣2 dx+ C(ε)

∫
U
η2

(
|∇u|2 +

∣∣∣Dhu
∣∣∣2 + |∇u|

∣∣∣Dhu
∣∣∣) dx

≤ ε
∫
U
η2
∣∣∣∇Dhu

∣∣∣2 dx+ C(ε)

∫
U
|∇u|2 dx.

We now choose ε = Λ
2 and absorb the first term into I

(1)
1 to obtain (3.16).
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For I2, we first realize that v vanishes on the boundary portions P and Q0 (for

sufficiently small h), and so the boundary integral is only over Q. Then

I2 =

∫
Q
µ(x)uv dσ

=

∫
Q
µ(x)u

(
−D−hη2Dhu

)
dσ

=

∫
Q
Dh(µ(x)u)η2Dhu dσ

=

∫
Q
µh(x)η2

(
Dhu

)2
dσ +

∫
Q
Dhµ(x)η2uDhu dσ.

= I
(1)
2 + I

(2)
2 .

Note that by assumption µ(x) < 0 so that I
(1)
2 < 0. Keeping this in mind we

examine I
(2)
2 . Applying Holder and then Euler’s inequality gives∣∣∣I(2)

2

∣∣∣ ≤ (∫
Q

(
Dhµ(x)

)2
u2 dx

)1/2(∫
Q
η2
(
Dhu

)2
dσ

)1/2

≤ C(ε)

∫
Q

(
Dhµ(x)

)2
u2 dσ + ε

∫
Q
η2
(
Dhu

)2
dσ

≤ C ‖u‖2L2(∂U) + ε

∫
Q
η2
(
Dhu

)2
dσ.

The second term can be made arbitrarily small (the constant C in the first term growing

very large) and absorbed into I
(1)
2 . That is,

I2 ≤ C ‖u‖2L2(∂U) +

∫
Q

(
µh(x) + ε

)
η2
(
Dhu

)2
dσ,

and by taking ε sufficiently small we have

I2 < C ‖u‖2L2(∂U) . (3.18)

Combining (3.15), (3.16), and (3.18) gives

Λ

2

∫
U
η2
∥∥∥∇Dhu

∥∥∥ dx− C ∫
U
‖∇u‖2 dx < C ‖u‖2L2(∂U) ,

or ∥∥∥∇Dhu
∥∥∥2

L2(V )
≤ C

(
‖u‖2H1(U) + ‖u‖2L2(∂U)

)
. (3.19)

We therefore have ∂u
∂xl
∈ H1(V ) for 1 ≤ l ≤ N − 2. We may now repeat this

argument to uxl instead of u, picking up lower order terms in the estimate (3.19) and
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obtaining ∂ku
∂xkl
∈ H1(V ) for 1 ≤ l ≤ N − 2. Thus, u is smooth in the x′ variable (in

some smaller set).

We are now prepared to isolate the xN−1 and xN variables from the remaining

dimensions, carrying on the extra variables as a parameter. First, by replacing u with

ηu for a smooth cutoff function η, we may assume f = 0 (possibly shrinking R if

needed). We may then extend the solution u to the entire half-space RN+ , and so we

may assume u is compactly supported and solves
div ′(A′∇′u) + ∆2u = e in RN+

u = 0 on Q0

A∇u · ν = µ(x)u on Q,

(3.20)

where e ∈ L2(RN+ ). Note that ν is the vector −eN , and so by our assumption of A,

A∇u · ν is simply ∂2u
∂ν2

, where ν2 = 〈0,−1〉.

We now do the contraction of coordinates described Figure 3.1. Define

v(x′, r, θ) = u(x′, r2, 2θ), B(x′, r, θ) = A(x′, r2, 2θ).

Set V1 = {x ∈ RN : xN > 0, xN−1 > 0}, which is the contracted domain of RN+ through

θ = 90◦. Using ∂′ to denote derivatives in the x′ variable and ∂2 to denote derivatives

in the {r, θ} variables, we have

div ′(A∇′u)(r2, 2θ) + ∆2u(r2, 2θ) = div ′(B∇′v)(r, θ) +
1

4r2
∆2v(r, θ).

Then v satisfies
∆2v = 4r2e(x′, r2, 2θ) + 4r2div ′(B∇′v) in V1

v = 0 on Q0

∂2v

∂ν
= 2rµ(x′, r2, 2θ)v on {x ∈ ∂V1 : xN−1 = 0}.

Letting ṽ be the odd extension of v along xN = 0, B̃, µ̃ be even extensions, and

V2 = {x ∈ RN : xN−1 > 0}, we have
∆2ṽ = 4(x2

N−1 + x2
N )
(
ẽ(x′, r2, 2θ) + div ′(B̃∇′ṽ)

)
in V2

∂2v

∂ν
= 2 |xN | µ̃(x′, r2, 2θ)ṽ on ∂V2.
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Now, ṽ ∈ H1(V2) = H1(E × F ), where E = RN−2, F = R+ × R (here xN−1 ∈ R+

and xN ∈ R). We have already established that u, and therefore ṽ is smooth in the x′

variable, and so we may consider ṽ to be a function in H1(F ) with values in C∞(E).

The idea now is that we may perform a bootstrapping argument on the two dimensional

space F , and eventually we will be able to embed into a Holder continuous space as we

have L2 estimates and the dimension is two.

In the following we will say ṽ ∈ X to mean ṽ ∈ X with values in C∞(E). Trace

embedding gives ṽ ∈ H1/2(∂F ) ↪→ L2(∂F ). Then we have ∂ṽ/∂ν ∈ L2(∂F ) (recalling

ṽ has compact support so |xN | ṽ is still in L2(∂F )). Then using the elliptic regularity

of the operator ∆2, we have ṽ ∈ H3/2(F ). We may apply the argument once more to

obtain ṽ ∈ H1(∂F ), so |xN | ṽ ∈ H1(∂F ), giving ∂ṽ/∂ν ∈ H1(∂F ) and ṽ ∈ H5/2(F ). If

we attempt to go one step further, we would have ṽ ∈ H2(∂F ), but the absolute value

function is not in H2, so we cannot conclude ∂ṽ
∂ν ∈ H

2(∂F ). However, we can go as high

as H3/2−ε′(∂F ) for ε′ > 0, as the absolute value function in one dimension just misses

being in H3/2. We conclude then that ∂ṽ
∂ν ∈ H

3/2−ε′(∂F ) for any ε′ > 0 (noting that ṽ

is bounded on ∂F as ṽ ∈ H3/2(∂F )), and so ṽ ∈ H3−ε′(F ) for any ε′ > 0.

Because the dimension of F is two, we may embed into a Holder space. In particular

H3−ε′(F ) ↪→ C1,1−ε(F ) for any sufficiently small ε, ε′. We therefore conclude ṽ ∈

H3−ε(F ) with values in C∞(E). As such, ṽ has a fractional Taylor series expansion

(see [17]),

ṽ(x′, xN−1, xN ) = ṽ(x′, 0, 0) +
∂ṽ

∂xN−1
(x′, 0, 0)xN−1

+
∂ṽ

∂xN
(x′, 0, 0)xN +O

((
x2
N−1 + x2

N

)3/4−ε)
. (3.21)

As ṽ = 0 when xN = 0, ∂ṽ/∂xN−1 = 0 when xN = 0, and (3.21) reduces to

ṽ(x′, xN−1, xN ) = C(x′)xN +O
((
x2
N−1 + x2

N

)3/4−ε)
,

or

ṽ(x′, r, θ) = C(x′)r sin θ +O
(
r3/2−ε

)
,
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where C(x′) = ∂ṽ
∂xN

(x′, 0, 0) is smooth. This expansion holds in all of Ṽ , and in partic-

ular it holds in V where v = ṽ, and as u(x′, r, θ) = v
(
x′, r1/2, θ/2

)
, this implies

u(x′, r, θ) = C(x′)r1/2 sin(θ/2) +O
(
r3/4−ε

)
in UR0 for some sufficiently small R0.

In a similar manner we obtain the expansion for ur. We expand ṽxN−1 and ṽxN in

a fractional Taylor polynomial,

∂ṽ

∂xN−1
(x′, xN−1, xN ) =

∂ṽ

∂xN−1
(x′, 0, 0) +O

(
(x2
N + x2

N−1)1/4−ε
)
,

∂ṽ

∂xN
(x′, xN−1, xN ) =

∂ṽ

∂xN
(x′, 0, 0) +O

(
(x2
N + x2

N−1)1/4−ε
)
.

Again ∂ṽ
∂xN−1

(x′, 0, 0) = 0, and so we have

∂ṽ

∂r
(x′, xN−1, xN ) = cos θ

∂ṽ

∂xN−1
(x′, xN−1, xN ) + sin θ

∂ṽ

∂xN
(x, xN−1, xN )

= sin θ
∂ṽ

∂xN
(x′, 0, 0) +O(r1/2−ε)

= C(x′) sin θ +O(r1/2−ε),

using C(x′) = ∂ṽ
∂xN

(x′, 0, 0). Then v has the same expansion, and since vr(x
′, r, θ) =

2rur(x
′, r2, 2θ), this gives

2r
∂u

∂r
(x′, r2, 2θ) = C(x′) sin θ +O(r1/2−ε),

or

2r1/2∂u

∂r
(x′, r, θ) = C(x′) sin(θ/2) +O(r1/4−ε)

in UR0 . Expressing ṽθ in the same manner and returning to the function u and r, θ

provides

∂u

∂θ
(x′, r, θ) =

1

2
C(x′) cos(θ/2) +O(r1/4−ε)

Lastly, we expand for 1 ≤ i ≤ N − 2

∂ṽ

∂xi
(x′, xN−1, xN ) =

∂ṽ

∂xi
(x′, 0, 0) +

∂

∂xN−1

∂ṽ

∂xi
(x′, 0, 0)xN−1

+
∂

∂xN

∂ṽ

∂xi
(x′, 0, 0)xN +O

(
(x2
N + x2

N−1)3/4−ε
)
.
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Equating mixed partials (which are continuous) yields

∂ṽ

∂xi
(x′, xN−1, xN ) =

∂

∂xi
C(x′)xN +O

(
(x2
N + x2

N−1)3/4−ε
)
,

and returning to the function u and r, θ completes the proof.

We remark that the leading term r1/2 in (3.14) suggests that u ∈ H3/2−ε(Ω), as r is

two dimensional and u is smooth in the x′ variable. We therefore suspect that H3/2 is

the best Sobolev space we could hope to be in, so in particular we suspect the solutions

to the nonlinear problem (3.12) will not be H2.

We proceed in the following manner. Having established that the linearized problem

to (3.12) satisfies a particular expansion, we compare a solution w of (3.12) to the

linearized solution u. The idea is that if w is small then (3.12) is a small perturbation

of the linearized problem, and so the expansions should agree to leading order. For this

we need to assume w is continuous so that w = 0 on ∂Φ(Γ) and w is small close to the

boundary interface.

Lemma 17. Let w be a weak solution to (3.12) that is continuous up to the boundary,

and fix y0 ∈ ∂Φ(Γ). Let zN be the coordinate from y0 in the direction of ŷN , and let

zN−1 be in the direction of the outward normal to ∂Φ(Γ) at y0. Let z′ = (z1, . . . , zN−2)

be local coordinates about y0 in the manifold ∂Φ(Γ). Choose r, θ to be standard polar

coordinates with zN−1 = r cos θ, zN = r sin θ. Suppose c+ N−2
2 < 0. Then there exists

a function M of z′, a neighborhood U of y0 such that

∣∣w(z′, r, θ)
∣∣ ≤M(z′)r1/2 sin(θ/2) (3.22)

for {z′, r, θ} ∈ U .

Proof. We may assume without loss of generality that λ = 1. Let L0 = Φ(Γ0), L =

Φ(Γ), and

µ(z) =
1

β(z)

(
c+

N − 2

2

)
,

q =
N − 2

2
α− N

2
,
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where β is given by 3.8. Now β(z) > 0 and is bounded above and below in a neighbor-

hood of y0, and so µ(z) < 0 and µ is bounded above and below by a positive constant

(depending on c). Construct the function

χ(z′, r, θ) = w(z′, r, θ) +M(z′)r1/2 sin(θ/2),

where M is some positive number (depending on z′) to be chosen. Now, as w(y0) = 0

and w is continuous, we may find a sufficiently small neighborhood U ⊂ Ω of y0 so that

|w|α−1 < inf
∣∣β−qµ∣∣

in U . Let f = w|∂U , and parameterize ∂U by r = r(z′). Then χ satisfies

∆χ = M ′′(z′)r1/2 sin(θ/2) in U

χ = 0 on ∂U ∩ L0

∂χ

∂ν
= µ(z)w + βq(z) |w|α−1w on ∂U ∩ L

χ = f +M(z′)r(z′)1/2 sin(θ/2) on ∂U\(L0 ∪ L).

We now require M(z′) ≥ 0, M ′′(z′) ≤ 0 in U , and

f(z′, θ) +M(z′)r(z′)1/2 sin(θ/2) ≥ 0

on ∂U\(L0 ∪ L). With these conditions satisfied, ∆χ ≤ 0 in U , so χ must take on its

minimum on ∂U . If this minimum were negative and occurring on ∂U ∩ L, then there

would be a point ẑ where χ(ẑ) and ∂χ
∂ν (ẑ) are both negative. Since

∂χ

∂ν
= w

(
µ(z) + βq(z) |w|α−1

)
and βq(z) |w|α−1 < inf |µ|, this implies w(ẑ) > 0. But

χ(z) = w(z) +M(z′)r1/2

for any z ∈ L, and M(z′) ≥ 0 implies that χ(ẑ) > 0, a contradiction. Then the

minimum of χ must be nonnegative, which implies χ ≥ 0 in U . This gives

w(z′, r, θ) ≥ −M(z′)r1/2 sin(θ/2)
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in U . Repeating the argument with χ(z) replaced by χ−(z) = w(z)−M(z′)r1/2 sin(θ/2)

gives

w(z′, r, θ) ≤M(z′)r1/2 sin(θ/2)

in U , and so ∣∣w(z′, r, θ)
∣∣ ≤M(z′)r1/2 sin(θ/2).

It remains to show that we can find such a function M . Set D = diamU , so that∣∣z − y0
∣∣ < D for z ∈ U . Consider

m(z′) = eD
2 − e|z′|

2

.

Then m(z′) > 0 and m′′(z′) ≤ 0. Since w is bounded in U , f is bounded. Moreover, the

function r(z′)1/2 sin(θ/2) only vanishes when θ = 0, or when r(z′) vanishes. However,

θ = 0 corresponds to points in L0, where w, and hence f , vanishes. Similarly r vanishes

only along points in ∂L, where w vanishes as well. Thus, we may take M to be a

sufficiently large multiple of m to guarantee

f(z′, θ) +M(z′)r(z′)1/2 sin(θ/2) ≥ 0.

Lemma 18. Let w be a weak solution to (3.12), and fix y0 ∈ ∂Φ(Γ). Let (z′, r, θ) be

the coordinates described in Lemma 17, and suppose c+ N−2
2 < 0. Then there exists a

smooth function C of z′, a neighborhood U of y0 and a real number γ > 1/2 such that

the expansion

w(z′, r, θ) = C(z′)r1/2 sin(θ/2) +O (rγ) (3.23)

holds for {z′, r, θ} ∈ U .

Proof. The idea is to apply Lemma 16 to get an expansion in the form of (3.23) for a

solution u of the linearized problem, and then use a barrier argument to compare u and

w. Lemma 17 will guarantee the nonlinear component is small in comparison to the

linear term, and this will allow us to show that w has the same expansion to leading

order as u. Again we may assume λ = 1.
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From Lemma 17, we may find a neighborhood U of y0 in which

∣∣w(z′, r, θ)
∣∣α ≤M(z′)rα/2

holds for some smooth function M of z′. Now, in this neighborhood we perform a

straightening of the boundary. By choosing an appropriate open subset of U and

translating, we may assume that upon straightening we are in the domain UR with

Q0, Q, P described in Lemma 16, and R is some fixed value (depending on y0). Let

x be the coordinates in the straightened domain (so the curved coordinates z′ map

to straight coordinates x′ and r, θ remain the same). For sake of notation, let w also

denote the function defined on this new domain, so w solves

div (A∇w) = 0 in UR

w = 0 on Q0

A∇w · ν = µ(x)w + βq(x) |w|α−1w on Q

w = f on P,

where f is smooth, µ(x) = β(x)(c+(N−2)/2) < 0, and A is a smooth, positive definite

matrix with uniformly bounded eigenvalues. We can further assume that det(A) = 1

and that A leaves the derivatives in the xN−1 and xN direction unchanged, so that A

satisfies all the hypotheses of Lemma 16.

Construct the function u satisfying

div (A∇u) = 0 in UR

u = 0 on Q0

A∇u · ν = µ(x)u on Q

u = f on P.

Applying Lemma 16 (noting that β is bounded above and below on a small enough set,

so µ is negative and away from 0), we have the existence of a neighborhood UR0 of y0,

0 < R0 ≤ R, in which (3.14) holds, and so by shrinking R if necessary we may assume

(3.14) holds in UR.
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Define φ = w − u and ζ = |w|α−1w|L. Then φ satisfies

div (A∇φ) = 0 in UR

φ = 0 on Q0

A∇φ · ν = µ(x)φ+ ζ on Q

φ = 0 on P.

Now construct the function v ∈ H1(Ω) satisfying

div (A∇v) = 0 in UR

v = 0 on Q0

A∇v · ν − µ(x)v = 1 on Q

v = 0 on P.

Such a function exists because the eigenvalue problem A∇v · ν = µv on Q with zero

data everywhere else has positive eigenvalues (due to the positive definiteness of A),

and so when µ < 0 this problem has only the trivial solution. Set

M = sup
Q
|ζ| ,

and h± = φ±Mv. Then h± solves

div (A∇h±) = 0 in UR

h± = 0 on Q0

A∇h± · ν − µ(x)h± = ζ ±M on Q

h± = 0 on P.

Then the maximum principle implies h− ≤ 0 in UR, for if h− obtained a positive

maximum on Q, µ(x) < 0 implies ζ −M > 0, which contradicts the definition of M .

Similarly, a minimum principle applied to h+ implies h+ ≥ 0 in UR. We then have

|φ| ≤ |v|M

in UR. Finally, the same argument used in Lemma 16 that showed the solution u to

the linearized problem was bounded will imply that v ∈ L∞(UR), and so we have∣∣φ(x′, R, θ)
∣∣ ≤ ‖v‖L∞(UR) ≤ C sup

Q
|ζ| ≤ CRα/2,
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where the constant C depends on everything but R. Repeating this bound for any

r < R gives ∣∣φ(x′, r, θ)
∣∣ ≤ Crα/2

for (x′, r, θ) ∈ UR. Therefore

w(x′, r, θ) = u(x′, r, θ) + φ(x′, r, θ)

= C(x′)r1/2 sin(θ/2) +O(r3/4−ε) +O(rα/2)

= C(x′)r1/2 sin(θ/2) +O(rγ),

where γ = min(3/4 − ε, α/2) > 1/2. Returning to the original coordinates completes

the proof.

It remains to show that the derivatives of w (with respect to the appropriate coor-

dinates) follow the same expansion as those of the linear case. This is not immediately

implied by Lemma 3.23 as we only have a bound for w and we cannot simply differen-

tiate the expression. Such a bound would not be possible if w were to oscillate highly

as r → 0, and so we exclude this possibility. In particular, we assume |wr| ≤ Crδ−1 for

some δ > 0 as r → 0.

Theorem 8. Let w be a weak solution to (3.12), and fix y0 ∈ ∂Φ(Γ). Let (z′, r, θ) be

the coordinates described in Lemma 17, and let c < −N−2
2 . Assume w is continuous up

to the boundary and |rwr| ≤ C0r
δ for some δ > 0 and constant C0 (depending possibly

on z′ and θ). Then there exists a function C of z′ and a neighborhood U of y0 such

that the expansions

w(z′, r, θ) = C(z′)r1/2 sin(θ/2) +O (rγ)

wr(z
′, r, θ) =

1

2
C(z′)r−1/2 sin(θ/2) +O

(
rγ−1

)
wθ(z

′, r, θ) =
1

2
C(z′)r1/2 cos(θ/2) +O (rγ)

wzi(z
′, r, θ) = Czi(z

′)r1/2 sin(θ/2) +O (rγ)

(3.24)

hold for {z′, r, θ} ∈ U , 1 ≤ i ≤ N − 2 and some γ > 1/2.

Proof. The idea here is to form the same function φ = w− u as in Lemma 18 and then

consider the equation satisfied by φ̇ = ∂φ
∂xi

, 1 ≤ i ≤ N . The derivatives in the xN−1 and
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xN direction will have to be handled with more care, as xN−1 is in the normal direction

and the xN direction contains a change in boundary condition. The argument for each

will be similar to the barrier argument used in Lemma 18.

As in the previous proof, suppose we have straightened the boundary curve ∂Φ(Γ)

locally. Let UR = BR ∩ RN+ . Then w satisfies
div (A∇w) = e in RN+

w = 0 on Q0

∂2w

∂ν
= µ(x)w + βq(x) |w|α−1w on Q

where the support of w lies in UR and e is some function depending on w in at most first

order derivatives. Again because A is the identity matrix in the 2×2 block for the xN−1

and xN variables, the boundary term A∇w · ν simply becomes ∂2w
∂ν = − ∂w

∂xN
. Here we

have written Q0 = {x ∈ RN : xN = 0, xN−1 ≥ 0}, Q = {x ∈ RN : xN = 0, xN−1 < 0}.

Construct u solving 
div (A∇u) = e in RN+

u = 0 on Q0

∂2u

∂ν
= µ(x)u on Q

and define φ = w − u. Then φ satisfies
div (A∇φ) = 0 in RN+

φ = 0 on Q0

∂2φ

∂ν
= µ(x)φ+ βq(x) |w|α−1w on Q.

Set φ̇ = ∂φ
∂xi

for 1 ≤ i ≤ N − 2. Then φ̇ satisfies the boundary value problem
div (A∇φ̇) = −div (Ȧ∇φ) in RN+

φ̇ = 0 on Q0

∂2φ

∂ν
= µ̇φ+ µφ̇+ Ḃ |w|α−1w + αB |w|α−1 ẇ on Q,

where we have set B = βq. Writing ẇ = φ̇ + u̇ and rearranging, we may write the

boundary condition on Q as

∂2φ̇

∂ν
−
(
µ+ αB |w|α−1

)
φ̇ = µ̇φ+ |w|α−1

(
Ḃw + αBu̇

)
.
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From Lemma 17, and because µ is bounded above by a strictly negative constant, we

may select R small enough so that

µ+ αB |w|α−1 ≤ K < 0,

and so we can repeat the barrier argument from Lemma 18 to obtain∥∥∥φ̇∥∥∥
L∞(RN+ )

≤ C
∥∥∥µ̇φ+ |w|α−1 (Ḃw + αBu̇)

∥∥∥
L∞(Q)

.

We have from lemmas 16, 17, and 18 that |φ| ≤ Crγ , |w|α−1 ≤ Cr(α−1)/2, |w| ≤ Cr1/2,

and |u̇| ≤ Cr1/2 for some γ > 1/2. Combining all of this gives∥∥∥φ̇∥∥∥
L∞(UR)

≤ CRγ ,

for γ > 1/2, which completes the bound for ∂w
∂xi

, 1 ≤ i ≤ N − 2.

To bound ∂φ
∂xN

requires a different argument. This is in the normal direction to

the flat boundary, and so we cannot differentiate the boundary condition by passing

through the limits in difference quotients. However, we realize that

∂

∂ν

∣∣∣∣
Q

= − ∂

∂xN

∣∣∣∣
Q

,

and so we may write the boundary value problem for φ as
div (A∇φ) = 0 in RN+

φ = 0 on Q0

∂φ

∂xN
= −g on Q,

where g = µ(x)φ+ βq(x) |w|α−1w.

This can be viewed as a Dirichlet problem for ∂φ
∂xN

. However, along xN−1 = 0,

xN = r, and under our assumptions this derivative may blow up, and so the value of

∂φ
∂xN

may not be bounded on Q0 as xN−1 → 0. We therefore consider the function

χ = xNφ.

In R+
N , div (A∇χ) = e for some function e depending on first order derivatives of φ.

Then χ satisfies 
div (A∇χ) = e in RN+

χ = 0 on Q0

∂χ

∂xN
= −xNg + φ on Q,
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Set χ̇ = ∂χ
∂xN

. Then χ̇ satisfies (recalling A does not depend on xN ),
div (A∇χ̇) = ė in RN+

χ̇ = f on Q0

χ̇ = −xNg + φ on Q,

where we have set f = ∂χ
∂xN

on Q0.

Set M = max
(
supQ |−xNg + φ| , supQ0

|f |
)
> 0. We need to bound f = ∂χ

∂xN
on

Q0. Note first that on Q0, xN−1 > 0 and xN = 0. Then since χ = 0 on Q0,∣∣∣∣χ(x′, xN−1, h)− χ(x′, xN−1, 0)

h

∣∣∣∣ =

∣∣∣∣χ(x′, xN−1, h)

h

∣∣∣∣ =
∣∣φ(x′, xN−1, h)

∣∣ ≤ Rγ .
Therefore, |f | is bounded by Rγ , and |−xNg + φ| is bounded by Rγ as well, so M ≤

CRγ .

Construct v± satisfying
div (A∇v±) = ±ė/M in RN+

v± = 1 on Q0

v± = 1 on Q.

Set h± = χ̇ ±Mv∓. Then h− ≤ 0 on the boundary, and so χ̇ ≤ Mv in RN+ . Similarly

h+ ≥ 0, so φ̇ ≥ −Mv∓. Then as v∓ is bounded, we have |χ̇| ≤ CM , and M is bounded

by Rγ , and the same argument as before gives∣∣∣∣ ∂χ∂xN
∣∣∣∣ ≤ Crγ ,

yielding ∣∣∣∣xN ∂φ

∂xN

∣∣∣∣ ≤ Crγ .
Note that this argument of constructing a Dirichlet problem for the derivative could

also be applied to ∂φ
∂θ , as ∂φ

∂θ = ±r ∂φ
∂xN

on the boundary. This yields∣∣∣∣∂φ∂θ
∣∣∣∣ ≤ Crγ .

To bound ∂φ
∂xN−1

, we apply the same idea as the previous case. The difference now is

that we are differentiating in the tangent direction, so we will have a Neumann problem
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for ∂φ
∂xN−1

on Q. However, as before we expect this derivative to blow up on the order

of r−1/2. We therefore consider the function

χ = xN−1φ.

Set χ̇ = ∂χ
∂xN−1

. There are no issues differentiating inside, so div (A∇χ̇) = ė in RN+ .

Along Q0, φ is identically zero, and so is χ, and so χ̇ = 0 on Q0. Note that when

xN−1 = 0, we have

χ̇
∣∣
xN−1=0

= lim
h→0

χ(x′, h, 0)− χ(x′, 0, 0)

h
= lim

h→0

hφ(x′, h, 0)

h
= lim

h→0
φ(x′, h, 0) = 0,

where we have used the assumption that w, and therefore φ, is continuous from both

sides at xN−1 = 0. Therefore, χ̇ = 0 when xN−1 = 0. We need χ̇ to be continuous at

xN−1 = 0, and so we need limxN−1→0 χ̇(z′, xN−1, 0) = 0. The right-hand limit is zero

since χ̇ is identically zero for xN−1 > 0. To examine the left-hand limit, first realize

when xN−1 < 0 and xN = 0, we have xN−1 = −r. Then for xN−1 < 0 and xN = 0,

∣∣χ̇(x′, xN−1, 0)
∣∣ =

∣∣∣xN−1φ̇(x′, xN−1, 0) + φ(x′, xN−1, 0)
∣∣∣

=
∣∣∣−rφ̇(x′,−r, 0) + φ(x′,−r, 0)

∣∣∣
≤ r

∣∣∣φ̇(x′,−r, 0)
∣∣∣+
∣∣φ(x′,−r, 0)

∣∣
≤ C (r |wr|+ r |ur|+ rγ)

≤ C
(
rδ + r1/2 + rγ

)
,

which goes to 0 as r → 0. Therefore χ̇ is continuous as xN−1 → 0.
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Turning to the Neumann boundary condition, along Q we have

∂χ̇

∂ν
=

∂

∂xN−1

∂χ

∂ν

=
∂

∂xN−1

(
−∂xN−1φ

∂xN

)
=

∂

∂xN−1

(
xN−1

∂φ

∂ν

)
= xN−1

∂

∂xN−1

∂φ

∂ν
+
∂φ

∂ν

= xN−1

(
µ̇φ+ µφ̇+ Ḃ |w|α−1w + αB |w|α−1 ẇ

)
+ µφ+B |w|α−1w

= µ(xN−1φ̇+ φ) + αB |w|α−1 (xN−1φ̇+ φ)− αB |w|α−1 φ

+ xN−1

(
µ̇φ+ Ḃ |w|α−1w + αB |w|α−1 u̇

)
+B |w|α−1w

=
(
µ+ αB |w|α−1

)
χ̇+B |w|α−1 (w − αφ)

+ xN−1 |w|α−1
(
µ̇φ+ Ḃw + αBu̇

)
.

We rewrite this as

∂χ̇

∂ν
−
(
µ+ αB |w|α−1

)
χ̇ = B |w|α−1 (w − αφ) + xN−1 |w|α−1

(
µ̇φ+ Ḃw + αBu̇

)
.

(3.25)

Then we have χ̇ satisfies
div (A∇χ̇) = ė in RN+

χ̇ = 0 on Q0

∂χ̇

∂ν
−
(
µ+ αB |w|α−1

)
χ̇ = g, on Q

where g is the right-hand side of (3.25) and satisfies |g| ≤ |xN−1|γ . We then construct

v± satisfying 
div (A∇v±) = ± ė

M
in RN+

v± = 0 on Q0

∂v±
∂ν
−
(
µ+ αB |w|α−1

)
v± = 1, on Q,

and again consider h± = χ̇±Mv∓. The maximum principle argument gives

|χ̇| ≤ C |xN−1|γ ,

and so ∣∣∣xN−1φ̇+ φ
∣∣∣ ≤ C |xN−1|γ ,
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which yields ∣∣∣xN−1φ̇
∣∣∣ ≤ C |xN−1|γ ≤ Crγ .

Finally, we use the bounds for derivatives with respect to xN−1 and xN to obtain the

bound for φr. We may write

∂φ

∂r
=
xN−1

r

∂φ

∂xN−1
+
xN
r

∂φ

∂xN
,

giving ∣∣∣∣r∂φ∂r
∣∣∣∣ ≤ Crγ ,

which, along with the expansion we already have for ur, establishes the bound for

wr.

Having established an expansion of a potential solution to (3.12), we are prepared

to derive a Pohozaev identity.

Theorem 9. (A Pohozaev Identity). Suppose w ∈ H1
loc(RN+ ) is a weak solution to

(3.12) satisfying all the hypotheses of Theorem 8. Set L0 = Φ(Γ0), L = Φ(Γ) for Φ

given by (3.6). Suppose the function g is of the form

g(u) = cu+ λ |u|α−1 u

for λ > 0 and c < −N−2
2 . Then w satisfies(

N − 2

2
− N − 1

α+ 1

)
λ

∫
L

β
(N−2)α−N−2

2

(
1

2
− β

)
|w|α+1 dσ = −C2

+
1

2

(
c+

N − 2

2

)∫
L

β−2

(
1

2
− β

)
w2 dσ (3.26)

where β is given by (3.8) and C is a real number depending on w and all the parameters

of the problem.

Proof. Fix ε > 0, and let Tε be the neighborhood of ∂L

Tε = {y ∈ RN+ : dist (y, ∂L) = ε}.
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Set

Uε = RN+\Tε,

L0,ε = L0 ∩ ∂Uε,

Lε = L ∩ ∂Uε,

Rε = ∂Uε\ (L0,ε ∪ Lε) .

Suppose a solution w ∈ H1
loc(RN+ ) to (3.12) exists with w 6= 0. We now apply identity

(3.1) to w on the reduced domain Uε. Since the interface between the Neumann and

Dirichlet boundary has been removed, ∆w will exist on Uε in the sense of distributions,

and so (3.1) makes sense in the sense of distributions. We choose h = y, integrate (3.1)

over Uε and use the Divergence Theorem to obtain∫
∂Ωε

(
(y · ∇w)(∇w · ν)− 1

2
(y · ν) |∇w|2

)
dσ =

2−N
2

∫
Ωε

|∇w|2 dy. (3.27)

Now, the left hand side of (3.27) has three components: an integral over Lε, an integral

over L0,ε, and an integral over Rε. First, as u = 0 on L0,ε, ∇u is parallel to ν, and as

y · ν = 0 on L0,ε, the integral over L0,ε vanishes. We also have y · ν = 0 on Lε, and so

(3.27) becomes

A(ε) +

∫
Lε

(y · ∇w)
∂w

∂ν
dσ =

2−N
2

∫
Ωε

|∇w|2 dy, (3.28)

where

A(ε) =

∫
Rε

(
(y · ∇w)(∇w · ν)− 1

2
(y · ν) |∇w|2

)
dσ. (3.29)

Integrating by parts and using w = 0 on Γ0,ε, we have

2−N
2

∫
Ωε

|∇w|2 dy =
2−N

2

∫
∂Ωε

w
∂w

∂ν
dσ

=
2−N

2

∫
Lε

w
∂w

∂ν
dσ +B(ε)

=
2−N

2

(
N − 2

2
+ c

)∫
Lε

β−1w2 dσ

+
2−N

2
λ

∫
Lε

βq |w|α+1 dσ +B(ε),

(3.30)

where

B(ε) =
2−N

2

∫
Rε

w
∂w

∂ν
dσ (3.31)
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and we have set q = ((N − 2)α−N)/2.

Define

G1(w) =
w2

2
, G2(w) =

|w|α+1

α+ 1
.

Then on Lε, we have

(y · ∇w)
∂w

∂ν
= (y · ∇w)

[(
N − 2

2
+ c

)
β−1w + λβq |w|α−1w

]
=

(
N − 2

2
+ c

)
β−1(y · ∇w)w + λβq(y · ∇w) |w|α−1w

=

(
N − 2

2
+ c

)
β−1(y · ∇G1) + λβq(y · ∇G2).

The boundary component Lε is contained in the flat space RN−1, where yN = 0. Using

′ to denote the variables and operators in N −1 dimensions, we observe y ·∇η = y′ ·∇′η

for any function η. We then need to integrate∫
Lε

βp(y′ · ∇′η) dy′

for the pairs p = −1, η = G1 and p = q, η = G2, recalling that β = β(y′) and noting

dσ = dy′ on  Lε. Integrating by parts,∫
Lε

βp(y′ · ∇′η) dy′ =

∫
∂Lε

βp(y′ · ν)η dl −
∫
Lε

βpdiv ′y′η dy′ −
∫
Lε

∇′βp · y′η dy′

= C(ε)− (N − 1)

∫
Lε

βpη(w) dσ − p
∫
Lε

βp−1∇′β · y′η dy′.

When yN = 0, β = |y′|2 + 1/4, and so ∇′β = 2y′, giving

∇′β · y′ = 2
∣∣y′∣∣2 = 2(β − 1/4).

Then∫
Lε

βp(y′ · ∇′η) dy′ = C(ε)− (N − 1 + 2p)

∫
Lε

βpη(w) dσ +
p

2

∫
Lε

βp−1η(w) dσ. (3.32)

Applying (3.32) with p = −1 and η(w) = G1(w) = w2/2 gives(
N − 2

2
+ c

)∫
Lε

β−1(y · ∇G1) dσ = C1(ε)−
(
N − 2

2
+ c

)
N − 3

2

∫
Lε

β−1w2 dσ

−
(
N − 2

2
+ c

)
1

4

∫
Lε

β−2w2 dσ, (3.33)
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where

C1(ε) =

(
N − 2

2
+ c

)∫
∂Lε

β−1(y′ · ν ′)w
2

2
dl. (3.34)

Applying (3.32) with p = q and η(w) = G2(w) = |w|α+1 /(α+ 1) gives

λ

∫
Lε

βq(y · ∇G2) dσ = C2(ε)− N − 1 + 2q

α+ 1
λ

∫
Lε

βq |w|α+1 dσ

+
q

2(α+ 1)
λ

∫
Lε

βq−1 |w|α+1 dσ, (3.35)

where

C2(ε) =
λ

α+ 1

∫
∂Lε

βq(y′ · ν ′) |w|α+1 dl. (3.36)

Putting (3.30), (3.33), and (3.35) into (3.28),

A(ε) + C1(ε)−
(
N − 2

2
+ c

)
N − 3

2

∫
Lε

β−1w2 dσ −
(
N − 2

2
+ c

)
1

4

∫
Lε

β−2w2 dσ

+ C2(ε)− N − 1 + 2q

α+ 1
λ

∫
Lε

βq |w|α+1 dσ +
q

2(α+ 1)
λ

∫
Lε

βq−1 |w|α+1 dσ

=
2−N

2

(
N − 2

2
+ c

)∫
Lε

β−1w2 dσ +
2−N

2
λ

∫
Lε

βq |w|α+1 dσ +B(ε).

Combining all the like terms and recalling q = ((N − 2)α−N)/2, this simplifies to(
N − 2

2
− N − 1

α+ 1

)
λ

∫
Lε

βq−1

(
1

2
− β

)
|w|α+1 dσ

=
1

2

(
N − 2

2
+ c

)∫
Lε

β−2

(
1

2
− β

)
w2 dσ

−A(ε) +B(ε)− C1(ε)− C2(ε). (3.37)

Finally, we claim∫
Lε

βq−1

(
1

2
− β

)
|w|α+1 dσ =

∫
L
βq−1

(
1

2
− β

)
|w|α+1 dσ +O(ε), (3.38)

∫
Lε

β−2

(
1

2
− β

)
w2 dσ =

∫
L
β−2

(
1

2
− β

)
w2 dσ +O(ε) (3.39)

C1(ε) = O(ε), C2(ε) = O(ε). (3.40)

B(ε) = O(ε) (3.41)

A(ε) = C2 +O(ε) (3.42)
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Then (3.37) becomes(
N − 2

2
− N − 1

α+ 1

)
λ

∫
L

β
(N−2)α−N−2

2

(
1

2
− β

)
|w|α+1 dσ = −C2

+
1

2

(
c+

N − 2

2

)∫
L

β−2

(
1

2
− β

)
w2 dσ +O(ε),

and letting ε→ 0 gives (3.26). It remains only to show claims (3.38) through (3.42).

Claims (3.38) and (3.39) follow since w is continuous on L and the measure of L\Lε

is bounded by O(ε). The same argument applies to (3.40). To show (3.41) and (3.42),

we need to appeal to Theorem 8.

Estimate (3.41) follows directly from the expansion (3.24). Along Rε, ν is parallel

to the r direction vector, and so w ∂w
∂ν is O(1) in a neighborhood about each point on

R. As the size of Rε is bounded by O(ε), this gives that B(ε) is bounded by O(ε).

To establish (3.42), we use (3.24) and directly compute A(ε). About each point

y ∈ ∂L there is a neighborhood U(y) in which (3.23) holds. Choose U1, . . . , Uk to be a

finite subcover of the covering ∪y∈∂LU(y). Let {ρj} be a partition of unity subordinate

to the subcovering {Uj}, and set Ej = Rε ∩ Uj . For computational purposes, we will

make sure that for sufficiently small ε, Ej has the following geometry. Let Yj = ∂L∩Uj ,

and assume Ej = {y ∈ RN+ : dist (y, Yj) = ε, }, so that Ej is a portion of a tube whose

core is the manifold ∂L. This ensures that the parameterization of the integral is

natural in the coordinates {z′, r, θ} used in Lemma 18. We can assume such a form

for Ej because Rε was chosen to be equidistant from ∂L, and we may choose the

neighborhoods {Uj} to have tubular geometry.

Let

ι(w) = (y · ∇w)(∇w · ν)− 1

2
(y · ν) ‖∇w‖2
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denote the integrand for A(ε). We have

A(ε) =

∫
Rε

ι(w) dσ

=

∫
Rε

ι(w)
k∑
j=1

ρj dσ

=
k∑
j=1

∫
Rε∩Uj

ι(w)ρj dσ

=
k∑
j=1

∫
Ej

ι(w)ρj dσ.

In order to compute the integrals over Ej , we express ι(w) in terms of {z′, r, θ}. Fix

y0 ∈ Yj , and choose {z′, r, θ} as in Lemma 17 (these coordinates depend on y0 and

the shape of ∂L). Let eN be the unit vector in the yN direction (which is also the zN

direction, and choose n̂ to be the outward normal to ∂L at the point y0 (that is, n̂ is

the unit vector in the direction of zN−1). Recall z′ is a coordinate lying on the manifold

∂L.

For y ∈ Ej , the vector y − y0 lies in the n̂× eN plane and is parallel to the normal

vector ν. We express

y − y0 = ((y − y0) · n̂)n̂+ ((y − y0) · eN )eN

= zN−1n̂+ zNeN

= r cos θn̂+ r sin θeN .

By the definition of n̂, we have y0 =
∣∣y0
∣∣ n̂, so

y =
(
r cos θ +

∣∣y0
∣∣) n̂+ r sin θeN .

The normal vector ν is pointing outward to Ωε and therefore inward to Rε, and so ν is

a unit vector directed opposite of y − y0,

ν = − cos θn̂− sin θeN .

We similarly express ∇w

∇w = ∇′w +
∂w

∂zN−1
n̂+

∂w

∂zN
eN

= ∇′w +

(
cos θ

∂w

∂r
− sin θ

r

∂w

∂θ

)
n̂+

(
sin θ

∂w

∂r
+

cos θ

r

∂w

∂θ

)
eN ,
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where ∇′w is the vector proj T∇w where T is the tangent plane of ∂L at y0. This gives

‖∇w‖2 =

(
∂w

∂r

)2

+
1

r2

(
∂w

∂θ

)2

+
∥∥∇′w∥∥2

.

We then compute

y · ∇w =
(
r +

∣∣y0
∣∣ cos θ

) ∂w
∂r
−

sin θ
∣∣y0
∣∣

r

∂w

∂θ

∇w · ν = −∂w
∂r

y · ν = −r.

Then the integrand becomes

−
r +

∣∣y0
∣∣ cos θ

2

(
∂w

∂r

)2

+

∣∣y0
∣∣ sin θ
r

∂w

∂r

∂w

∂θ
+
r +

∣∣y0
∣∣ cos θ

2r2

(
∂w

∂θ

)2

−
−r +

∣∣y0
∣∣ cos θ

2

∥∥∇′w∥∥2
.

We then plug in the expansions for w. From (3.24),

w(z′, r, θ) = C(z′)r1/2 sin(θ/2) +O(rγ)

wr(z
′, r, θ) =

1

2
C(z′)r−1/2 sin(θ/2) +O(rγ−1)

wθ(z
′, r, θ) =

1

2
C(z′)r1/2 cos(θ/2) +O(rγ)

∇′w(z′, r, θ) = ∇′C(z′)r1/2 sin(θ/2) +O(rγ),

where γ > 1/2. The integrand will be evaluated at r = ε, and will be multiplied by

an additional factor of ε from the surface area element (rdθ). Therefore we are only

interested in the terms of order 1/r in the integrand. Putting in the expansions gives

C(z′)2
∣∣y0
∣∣

r

(
−1

8
cos θ sin2(θ/2) +

1

8
cos θ cos2(θ/2) +

1

4
sin(θ/2) cos(θ/2) sin θ

)
+O(1)

=
C(z′)2

∣∣y0
∣∣

r

(
1

8
cos θ cos θ +

1

8
sin θ sin θ

)
+O(1)

=
C(z′)2

∣∣y0
∣∣

8r
+O(1).
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Then ∫
Ej

=

∫
Yj

∫ π

0

(
C(z′)2

∣∣y0
∣∣

r
+O(1)

)
ρj εdθdz

′

=

∫
Yj

C(z′)2
∣∣y0
∣∣π

8
ρj dz

′ +O(ε)

= C2
j +O(ε).

Note that z′ depends on the point y0, but we do not need to know the nature of this

dependence since we only care about the sign of the integral. Note also that ρj ≥ 0.

Summing over j gives

A(ε) = C2 +O(ε)

for some C independent of ε, establishing (3.42) and completing the proof.

Theorem 9 implies our main nonexistence result. The Pohozaev Identity (3.26)

will contradict supercritical solutions to the problem (3.12), which by Proposition 3

contradicts supercritical solutions to (1.1). The details are in the following Corollary.

Recall that we only having a solution w ∈ H1
loc to (3.12) is not enough to establish

the Pohozaev identity, as we are not able to establish the expansions (3.24) only knowing

w ∈ H1
loc. We need to further assume, as in the hypotheses of Theorem 8,

w ∈ H1
loc(RN+ ) ∩ C

(
RN+
)

|wr| ≤ Crδ−1,

(3.43)

where δ > 0 and r is the two-dimensional coordinate used in Theorem 8.

Corollary 2. Suppose Ω is the unit ball in RN , and Γ is contained in the upper hemi-

sphere {x ∈ ∂Ω, xN > 0}. If α ≥ α∗ − 1 and c < −N−2
2 , then problem (1.1) has

no nontrivial solution u ∈ H whose transformation w described in Proposition 3 and

Proposition 5 satisfies (3.43).

Proof. We proceed by contradiction. Suppose there were a function u 6= 0 satisfying

(3.43) and solving (1.1). Then by Proposition (5) we have a function w ∈ H1
loc(RN+ )

solving (3.12). By Theorem 9, w satisfies (3.26). We observe

Φ
(
{x ∈ RN : |x| = 1, xN > 0}

)
=

{
y ∈ RN : yN = 0,

∣∣y′∣∣2 < 1

4

}
.
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Then L = Φ(Γ) is contained in {y ∈ RN : yN = 0, |y′|2 < 1/4}, and so we have

1

2
− β =

1

2
−
(∣∣y′∣∣2 +

1

4

)
=

1

4
−
∣∣y′∣∣2 > 0

on L. Since λ > 0 and α+ 1 ≥ α∗ = 2(N−1)
N−2 , the left-hand side of (3.26),(

N − 2

2
− N − 1

α+ 1

)
λ

∫
L

β
(N−2)α−N−2

2

(
1

2
− β

)
|w|α+1 dσ = −C2

+
1

2

(
c+

N − 2

2

)∫
L

β−2

(
1

2
− β

)
w2 dσ,

is nonnegative. As c < −N−2
2 , and w is nonzero, the right-hand side of (3.26) is strictly

negative, giving a contradiction.

We remark that we have only established (3.26) when c < −N−2
2 . It is still expected

that the identity holds for c ≥ −N−2
2 , though to show this one would have to establish

(3.41) and (3.42) without resorting to the expansions established in Theorem 8, or show

those expansions hold for c ≥ −N−2
2 .

We have also only contradicted the existence of solutions which are continuous up to

the boundary and whose derivative does not behave too poorly. It still remains to show

that there are solutions to (1.1) that satisfy conditions (3.43). We believe that this

is the case, though establishing regularity results for nonlinear mixed boundary value

problems is tricky. We do believe, however, that the solutions constructed in Chapter 2

do satisfy (3.43), though showing this is still an open question. The plots constructed

in Chapter 4 do suggest the solutions have the desired amount of regularity.
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Chapter 4

Numerical Results

In this section, we provide some plots of numerical approximations to solutions of (1.1)

in the case when Ω is the unit sphere in R3, Γ is the upper hemisphere (x3 > 0) and

Γ0 is the lower hemisphere. These approximations help to illustrate the dependence of

the solution structure of (1.1) on the parameters α, λ, c.

In order to generate an approximation to a solution of (1.1), we consider a spherical

harmonic expansion of a potential solution,

u(ρ, θ, φ) =

∞∑
k=0

k∑
m=−k

Ak,mρ
kPmk (cos θ)eimφ, (4.1)

where Pmk are the associated Legendre polynomials, and ρ, θ, φ are standard spherical

coordinates with azimuthal angle θ ∈ [0, π] and polar angle φ ∈ [0, 2π). In order to

construct a solution, we terminate the expansion (4.1) at some finite M ∈ N,

uM (ρ, θ, φ) =
M∑
k=0

k∑
m=−k

Ak,mρ
kPmk (cos θ)eimφ, (4.2)

and find the (M + 1)2 unknowns {Ak,m} such that uM = 0 on the lower hemisphere

and ∂uM/∂ν = cuM + λ |uM |α−1 uM on the upper hemisphere. As we have (M + 1)2

unknowns, we must construct (M+1)2 independent constraints based on the boundary

data. We construct these constraints through a collocation method: we select (M + 1)2

points along the unit sphere, and require the boundary conditions are satisfied at each

collocation point. We then have (M + 1)2 equations, which we solve using Newton’s

Method.

The collocation points were selected through the following rule. As the points lie on

the unit sphere, it is unwise to select evenly distributed points in [0, π]× [0, 2π), which

would cause bunching towards the poles. Instead we select points that are distributed
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fairly evenly with respect to surface area. To accomplish this, we selected θj by

θj = arccos(zj)

where {zj} are the (M + 1) roots of the (M + 1) order Legendre polynomial on the

interval [−1, 1]. We then select {φl} in a way to evenly distribute the collocation points

with respect to surface area (so more points are at the equator than the poles). For

each j, the circumference of the circle at constant angle θj is 2π sin(θj). The number

of points at the angle θj should then be the same proportion of the total number of

points as the ratio of the circumference at θj to the sum of all the circumferences (that

is, the discrete approximation of the surface area). This is given by

nj = (M + 1)2 sin(θj)∑M+1
l=1 sin(θl)

,

which must then be rounded and corrected for a total of (M+1)2 points. We choose nj

evenly spaced points in [0, 2π) offset by some irrational number (in our case, we chose

1/
√

1 + j) to avoid evaluating at points where the sine or cosine would vanish. Doing

this for all j provides (M + 1)2 points for {φl}. Finally, we repeat each θj nj times so

that {θj} contains (M + 1)2 points as well, and select the collocation points

{(θj , φj)}(M+1)2

j=1 . (4.3)

We define our constraining function Fα,λ,c,Mj as follows

Fα,λ,c,Mj (X) =



∑M
k=1

∑k
m=−k kAk,mP

m
k (cos θj)e

imφj − cuM (1, θj , φj)

−λ |uM (1, θj , φj)|α−1 uM (1, θj , φj) if 0 ≤ θj < π
2

uM (1, θj , φj) if π
2 ≤ θj ≤ π,

(4.4)

where uM is given by 4.2 andX represents the (M+1)2 component array {Ak,m}k=M,m=k
k=0,m=−k.

We then apply Newton’s Method to find a collection of coefficients X so that

Fα,λ,c,Mj (X) = 0, (4.5)

which is equivalent to uM satisfying the boundary conditions.
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In order to express the problem in such a way to apply Newton’s Method, we reindex

X1 = A0,0, X2 = A1,−1, X3 = A1,0, X4 = A1,1, . . . X(M+1)2 = AM,M . That is, we have a

new index s(k,m) = k(k + 1) + m + 1. The derivative matrix DFα,λ,c,M used in each

iteration of Newton’s Method is given by

[
DFα,λ,c,M

]
j,s

=
∂Fα,λ,c,Mj

∂Xs

=



(k(s)− c)Pm(s)
k(s) (cos θj)e

im(s)φj

−αλ |uM (1, θj , φj)|α−1 P
m(s)
k(s) (cos θj)e

im(s)φj

if 0 ≤ θj < π
2

P
m(s)
k(s) (cos θj)e

im(s)φj if π
2 ≤ θj ≤ π,

(4.6)

where k(s) = b
√
s− 1c and m(s) = s−k(s)(k(s)+1)−1. We then proceed by the stan-

dard multivariate Newton’s Method. We choose an initial guessX0 =
(
X0

1 , . . . , X
0
(M+1)2

)
and define

Xt = Xt−1 −
[
DFα,λ,c,M (Xt−1)

]−1
Fα,λ,c,M (Xt−1) (4.7)

for t ≥ 1. We terminate when either t exceeds some arbitrary maximum tmax (we

usually take tmax = 30), or when the value of the constraining function (4.4) falls below

some tolerance, usually taken to be 10−8. For many choices of initial guess the value

of (4.4) increases very rapidly and the algorithm diverges, so there is some manual

searching for a good choice of initial guess so that the value of (4.4) falls below the

tolerance within a few (less than 10) iterations.

We construct solutions using the approximation scheme described above, and plot

these solutions on the unit sphere ρ = 1. For simplicity in plotting, we only consider

the dependence on the azimuthal angle θ. Many of the solutions constructed are inde-

pendent of the polar angle φ anyway (mostly due to the choice of initial guess), and so

there is nothing lost by only considering such a cross-section. Every plot is plotting the

value of the function u(1, θ, 0) on the vertical axis against the azimuthal angle 0 ≤ θ ≤ π

on the horizontal axis.

This section is broken up into four subsections. First, we use this method to estimate

the first Steklov eigenvalue µ1. The following subsections consider the value of the
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exponent α: subcritical α (we expect solutions for all values of parameters), critical α

(we expect solutions for certain values of parameters), and supercritical α (we do not

expect solutions).

All computations were done using MATLAB and the plots were done in Maple.

4.1 Estimation of First Steklov Eigenvalue

Recall the Steklov eigenfunction φ1 and eigenvalue µ1 are defined by
∆φ1 = 0 in Ω

φ1 = 0 on Γ0

∂φ1

∂ν
= µ1φ1 on Γ.

If φ1 were a constant then φ1 would have to be identically zero, as Γ0 is nonempty.

Then µ1 > 0, but the value of µ1 is not immediately obvious. This value is of particular

interest because if c > µ1, then no positive solution to (1.1) may exist (Theorem 7).

We can use a similar numeric idea as in the prequel to estimate µ1. We express the

boundary condition ∂u
∂ν = µu on Γ, u = 0 on Γ0, as an eigenvalue problem

AX = µBX,

where A = (ars) and B = (brs) are given by

ars =


k(s)P

m(s)
k(s) (cos θj)e

im(s)φj if 0 ≤ θ ≤ π
2

P
m(s)
k(s) (cos θj)e

im(s)φj if π
2 < θ ≤ π

and

brs = P
m(s)
k(s) (cos θj)e

im(s)φj ,

and X = (Xs). The points (θj , φj) are the collocation points from (4.3). Then

the jth component of BX is exactly uM (1, θj , φj), and the jth component of AX is

∂uM
∂ν (1, θj , φj) if (θj , φj) lies in the upper hemisphere and uM (1, θj , φj) if (θj , φj) lies in

the lower hemisphere.

If µ 6= 1 satisfies AX = µBX for some X, then the vector X must give a solution

which vanishes on the lower hemisphere, because the AX = µBX implies uM = µuM
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at points in the lower hemisphere. We therefore find the eigenvalues for AX = µBX,

given by det(A − µB) = 0. The smallest nonzero eigenvalue, if it is not equal to 1,

will be an approximation of µ1. Using MATLAB to compute the eigenvalues, this gives

µ1 ≈ 0.67 (taking M = 14).

4.2 Numerical Results in the Subcritical Case

In Section 2.1, we showed that problem (1.1) admits nontrivial solutions for any 1 <

α < α∗ − 1 (α∗ = 4 in three dimensions), any c ∈ R, and any λ > 0. Using the method

described in the introduction, we construct approximate solutions to (1.1) for various

values of the parameters.

We first look at the solutions for the particular case α = 1.5, λ = 0.9, and c = 0.

We plot the solutions using the values M = 8, 10, 12, 16, 20 in (4.2). This corresponds

to 81, 121, 169, 289, and 400 terms in the spherical harmonic expansion, respectively.

Using M to be much larger proves to be problematic for two reasons. First, as the

number of terms in the expansion is (M + 1)2, the running time for the algorithm

becomes large fairly quickly. Secondly, we must use (M + 1)2 collocation points chosen

on the unit sphere according to (4.3). As this number gets larger, the derivative matrix

(4.6) becomes more rank deficient, presumably because the collocation points begin to

cluster. The plots are shown in Figure 4.1.

We do not perform a rigorous analysis of the convergence of algorithm, but rather

assuming heuristically that if Newton’s Method converges (in the sense of (4.4) falling

below the tolerance) for some initial guess X0 and some M , and if as M gets large and

the figures vary less and less, then the series {uM} is converging in H1(Ω). If we cannot

find an initial guess X0 for which Newton’s Method converges, or if Newton’s Method

does converge but as we increase M and the plots do not seem to converge, then we

take this to imply that the algorithm is not providing a spherical harmonic expansion

that converges in H1, and therefore does not give a solution to (1.1).

The plots in Figure 4.1 appear to converge to a solution which does not change

sign, the existence of which was shown in Section 2.1.1. This is primarily due to the
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(a) (b) (c)

(d) (e)

Figure 4.1: α = 1.5, λ = 0.9, c = 0, (a) : M = 8, (b) : M = 10, (c) : M = 12, (d) : M =
16, (e) : M = 20.
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(a) (b)

Figure 4.2: α = 1.5, λ = 0.9, c = 0, (a) : M = 8, (b) : M = 16.

choice of initial guess, as we have chosen the initial guess to have X3 = 1 and the

other components zero. This corresponds to the first nonconstant spherical harmonic,

which does not change sign. Moreover, as the positive solution constructed in Section

2.1.1 corresponds to the first Steklov eigenfunction (which does not change sign) with

smallest eigenvalue µ1, it seems reasonable that this solution is the most stable, and

thus would be found by the algorithm in most cases. We can, however, find other (sign-

changing) solutions with the same parameters by varying the choice of initial guess. We

select X7 = 1 instead of X3, which corresponds to the next spherical harmonic. These

are shown in Figure 4.2.

From Theorem 7 we know that when c > µ1, no positive solution should exist, and so

if our algorithm converges, the solution found should be sign-changing. Indeed this is the

case. We estimate µ1 ≈ 0.67, and plot solutions for different c: c = −1, c = 0.6, c = 5.

In the case when c = 5 > µ1, we are unable to find an initial guess for which our

algorithm converges to a solution which does not change sign. The algorithm does

converge to a sign-changing solution. When c = 0.6, c < µ1 but is close to µ1, and the

solution seems to be relatively small in size compared to the solution when c = 0. This

is reasonable, as when c = µ1 the only solution which does not change sign is the trivial

solution (Theorem 7), and so we may expect that as c → µ−1 the positive solution is

very small. These plots are shown in Figure 4.3

From Section 2.3, we see that the parameter λ > 0 is only a scaling factor, and as
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(a) (b) (c)

Figure 4.3: α = 1.5, λ = 0.9, M = 12, (a) : c = −1, (b) : c = 5, (c) : c = 0.6.

λ→ 0+, there is a solution which becomes larger and larger on the order of λ
1

1−α . The

following plots using values of λ decreasing to 0 exemplify the results of Theorem 6.

We see from the relative sizes of the solution that the scaling λ
1

1−α is consistent. In

particular, the solution when α = 1.5 and λ = 0.1 should be (0.1/0.9)1/−0.5 = 81 times

the solution when α = 1.5 and λ = 0.9. Indeed, the solution in Figure 4.4d appears to

be 81 times the size of that of Figure 4.1c.

Lastly, we examine what happens as α increases to the critical value 3 (that is, α+1

approaches α∗ = 4). The solutions appear to grow in value, which we may expect as

the boundary data is larger whenever |u| > 1. These are showin in Figure 4.5.

4.3 Numerical Results in the Critical Case

Here we take α = 3, so α+1 = 4 = α∗. According to Theorem 5, there is a (nonnegative)

solution to (1.1) whenever −1/2 < c < µ1, and λ > 0. As such we expect our algorithm

to converge to an apparent solution, and indeed this is the case. Note that we did not

prove the existence of sign-changing solutions, but there is no reason to believe these

do not exist (in fact, the construction in Section 2.2 could have provided a solution that

changes sign; no part of the argument excluded that possibility). Solutions are shown

for α = 3, λ = 0.9, c = 0.4, and M = 12 in Figure 4.6a.

When c > µ1, we have shown (1.1) cannot have positive solutions, though we have no

information regarding the existence of solutions which could change sign. Sign-changing
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(a) (b)

(c) (d)

Figure 4.4: α = 1.5, M = 12, c = 0 (a) : λ = 0.7, (b) : λ = 0.5, (c) : λ = 0.3, (d) : λ =
0.1.

(a) (b) (c)

Figure 4.5: M = 18, c = 0, λ = 0.9, (a): α 2, (b): α = 2.5, (c): α = 2.9.
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(a) (b)

Figure 4.6: α = 1.5, λ = 0.9, M = 12, (a) : c = 2, (b) : c = 0.4.

solutions appear to exist, and such a solution for c = 2 is Figure 4.6b.

When c < −1/2, Corollary 2 disallows the existence of any solution in the critical or

supercritical case, and so we expect our algorithm to fails to provide a solution. Taking

c = −1 (for α = 3, λ = 0.9) fails to find a solution for a number of choices of initial

guess and various M .

4.4 Numerical Results in the Supercritical Case

When α > 3, Corollary 2 disallows the existence of any solution when c < −1/2. Taking

α = 5, λ = 0.9, and c = −1 fails to give a solution for many choices of initial conditions

and various M .

When c > −1/2, Theorem 9 does not provide a contradiction to the existence of

a nontrivial solution. It is unclear whether there should be solutions or if there is

some separate argument for nonexistence. The possible existence of solutions may be

motivated by the fact that the problem

−∆u = λf(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω (4.8)

admits radial solutions for f(u) = (1 + u)p for large p and even for f(u) = eu, even in

dimensions higher than two, where λ is in some range (see [12]). This result may be
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unexpected as one may consider eu to be supercritical to the critical Sobolev Embedding

exponent. However, eu = 1 + u + O(u2), and so problem (4.8) could be seen as a

(subcritical) perturbation of the linear problem, and so the expectation of solutions is

not entirely unjustified. Or this phenomenon could be because when considering radial

solutions, (4.8) is in some sense a one-dimensional problem and as such any exponent

would be subcritical. The methods of [12] rely on analyzing the corresponding ordinary

differential equation coming from radial solutions to (4.8). These ideas do not carry

over to (1.1).

It is still unclear whether we should expect to be able to find supercritical solutions

to (1.1) when c > −1/2 or if we should expect to find a nonexistence result. We then

look to see what happens in our numerical method in this case.

There is a curious numeric behavior in the supercritical case when c > −1/2. Figure

4.7 shows plots for α = 5, λ = 0.9, c = 0 and M = 8, 10, 12, 14, 16. For M = 8 this

appears to be a solution, but as we increase M the solutions appears to increase (albeit

slowly), indicating possible divergence. The previous plots (Figure 4.1 for example)

decreased in size as more terms were added. Moreover, the derivative with respect to θ

at θ = 0 appears to be increasing as well, and if the spherical harmonic expansion con-

verged in H1, this derivative would have to be zero. This indicates that the expansion

(4.2) is diverging, and these are not H1 solutions to our problem.

We have not been able to find a choice of initial conditions or parameters (with

c > −1/2, α > 3) so that the plots constructed when the algorithm converges behave in

the same manner as those in Chapters 4.2 and 4.3. This is some justification for being

able to find a nonexistence result for c > −1/2, but is by no means definitive, especially

because our numerical method depends greatly on the initial guess.
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(a) (b) (c)

(d) (e)

Figure 4.7: α = 5, λ = 0.9, c = 0, (a) : M = 8, (b) : M = 10, (c) : M = 12, (d) : M =
14, (e) : M = 16.
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Chapter 5

Conclusions

We have seen the existence of solutions to (1.1) depends on the parameters α and c. The

behavior changes depending on whether α is subcritical, critical, or supercritical. We

note that the Pohozaev identity (3.26) has only been shown to be valid when c < −N−2
2

and for solutions satisfying (3.43). We suspect, however, that the identity remains true

for every c, though it is not clear how to remove this restriction from our proofs. The

difficulty arises in estimating the integral (3.29) by considering an expansion of the

solution in local coordinates. However, we only ever use the sign of this integral to

derive (3.26), and there may be a way to conclude this integral has the proper sign

without resorting to coordinates.

When α < α∗− 1 (the subcritical case), the left-hand side of (3.26) is negative, and

the right-hand side is negative as well when c < −N−2
2 . Thus there is no contradiction,

which is consistent as we have shown existence in Chapter 2.1. Note that (3.5) implies

the solutions for c ≥ −N−2
2 cannot be in H2(Ω).

When α = α∗ − 1 (the critical case), the left-hand side of (3.26) is zero. Then if

c < −N−2
2 there can be no nontrivial solutions. If c > −N−2

2 , we do not know that

(3.26) applies (and if it did, it would not provide a contradiction). In fact we have

shown in Chapter 2.2 that solutions do exist for −N−2
2 < c < µ1. For c ≥ µ1, positive

solutions cannot exist, though numerics suggest that sign-changing solutions still exist

(see Chapter 4.3). When c = −N−2
2 , (3.26) was not shown to be valid, though if it

were it would imply C = 0 in (3.26), and therefore if solutions do exist they have more

regularity (from expansion (3.24). The numerical algorithm described in Chapter 4

does not provide a solution when c = −1
2 (N=3) for various choices of M and initial

guesses, and this suggests that solutions do not exist when c = −N−2
2 as well.
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If α > α∗−1, then as the left-hand side of (3.26) is positive, there can be no solution

when c < −(N − 2)/2. For c ≥ −N−2
2 , there may exist solutions, though the numerics

in Chapter 4.4 suggest there are not.

Proving nonexistence for the region c ≥ −N−2
2 is still open, as is an analogous

nonexistence result if Γ0 = ∅, as well as the question of developing nonexistence results

when Ω is a more general domain (for instance, not conformal to RN+ ).

The condition (3.43) which we have to assume to prove nonexistence is expected

to not be restrictive. That is, we expect the solutions which we have shown to exist

actually satisfy (3.43), but we do not currently know how to show this.

We summarize the results below. These results hold for any λ > 0.

c\α α subcritical α critical α supercritical

c < −N−2
2 solutions exist,

and positive

solutions exist

no solutions satis-

fying (3.43) exist

no solutions satis-

fying (3.43) exist

c = −N−2
2 solutions exist,

and positive

solutions exist

unknown, but we

suspect no solu-

tions satisfying

(3.43) exist

unknown, but we

suspect no solu-

tions satisfying

(3.43) exist

−N−2
2 < c < µ1 solutions exist,

and positive

solutions exist

positive solutions

exist

solutions ex-

pected not to

exist from numer-

ics

c ≥ µ1 solutions exist;

positive solutions

cannot exist

positive solu-

tions cannot

exist; existence of

sign-changing so-

lutions expected

from numerics

positive solutions

cannot exist; so-

lutions suspected

not to exist from

numerics
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