Description: Early Algebra Ideas Involving Transcriber(s): Spang, Kathleen
Two Variables: Clip 16 of 18, Working on \quad Verifier(s): Yedman, Madeline
Problems 8 and 9
Date: 1993-10-01
Location: Harding Elementary School
Researcher: Robert B. Davis

Date Transcribed: Fall 2010
Page: 1 of 3

RBD You got another one, you got eight good heavens.

Student
Jeff
Jeff and
Michelle R
RBD
Jeff
RBD
Jeff
RBD
Ankur
RBD

Amy Lynn
RBD
Amy Lynn

RBD

Amy Lynn
RBD Yeah, I think so. OK, keep thinking about it because I think you can do more.
RBD OK, all four of you are coming to explain this right?
Jeff What number are you explaining?
Michelle I Number eight. Romina you have the best hand-writing.
RBD You need to show Roger which one you want him to be getting.
Michelle I This one right here.
Romina Oh, I have to talk. You can talk this time.
Michelle I Fine, I'll talk I don't care, we'll both talk it doesn't make a difference. OK, I don't know how to explain it.
Ankur You divide the triangle by the square, so you just divide the triangle by the square, then we wrote it like a code. So, six divided by three is two.

Description: Early Algebra Ideas Involving \quad Transcriber(s): Spang, Kathleen
Two Variables: Clip 16 of 18, Working on \quad Verifier(s): Yedman, Madeline
Problems 8 and 9
Date: 1993-10-01
Location: Harding Elementary School
Researcher: Robert B. Davis

Date Transcribed: Fall 2010
Page: 2 of 3

Michelle I Tone it down some?
Ankur
Oh, her ears are hurting. So you divide twenty by five and that's four, thirty by six that's five, twelve by four that's three.
Brian But do this, you multiply six times five plus zero because zero was the first number up in the triangle.
Ankur So on the board like its square times square it's square times, like when you divide twelve by four that number goes in the second place.
RBD Now why don't you take that triangle number and divide it by the box number what do I get? What do I get at that point?
Ankur You get the answer.
RBD What answer?
Brian You see that's...
RBD So here, I would take the six and divide it by three.
Brian Get two.
RBD What's the two?
Brian You see three goes into six two times, and if you set it up like this three times two plus zero, you get six and that's that number, I didn't put the triangle in.
RBD OK, that's an interesting idea.
Brian We have it, it's triangle divided by square. But then we have to put times something
RBD You tell me you get something, why don't you say equals and tell me what you get.
Brian Divided it's not plus.
RBD Let's see what we do here, let's try it. When I had here, zero divided by one is zero, and I had two divided by two that was one, and six divided by three that was two. Oh, I see something interesting is happening.
Brian It goes up, like one, two, three, four, five, and you multiply six times five plus zero and you get that number.
RBD OK, that's an interesting idea. I think that if you keep thinking about it you might find some other ways.
Brian Let's find out number nine and then go back to it.
RBD That's a very good idea.
RBD You want to come and tell the camera, no, OK.
Michelle I Could I go get a quick drink?
Jeff This is the one for nine.
RBD Who's doing the talking, you doing the talking?
Stephanie Michelle [referring to Michelle R] figured it out.

Description: Early Algebra Ideas Involving \quad Transcriber(s): Spang, Kathleen
Two Variables: Clip 16 of 18, Working on \quad Verifier(s): Yedman, Madeline
Problems 8 and 9
Date: 1993-10-01
Location: Harding Elementary School
Researcher: Robert B. Davis

Date Transcribed: Fall 2010
Page: 3 of 3

RBD OK, then Michelle should do the talking. Let's try and get it where Roger can see it.
Michelle R You multiply the one times one and then subtract a half of one. And then you multiply two times two and then subtract half of two times two and then you get your answer, which is triangle. Three times three is nine and minus four and a half and that's your answer four and a half. It keeps going on.
RBD OK, we do need to talk about some of these I think. Let me talk to everybody OK? Well, I think you know what you said is right. OK, I won't tell them.
RBD OK, there is one thing that I would like to talk to you about, can I get a place to sit here. Notice there are different kinds of secrets, different people are making up, but this kind of thing which is called a formula, it's what mathematicians call a formula, that formula let's you if I tell you the number in the box, that let's you find what the number in the triangle is. OK, now some of you have some very interesting secretssaying don't use it, but some of you use something that depends on knowing what the number in the triangle is, but you see what we've got here doesn't. [On board is $(\square \times \square)+1=\Delta]$
RBD OK, it only depends on the number in the box; if I tell you the number in the box then you can find the number in the triangle. So we're particularly looking for formulas like this where you don't need to know the number in the triangle, all you need is to put the number in the box and that will tell you the number in the triangle.

