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ABSTRACT

Similarity and Frequency in Phonology

Stefan Frisch

This thesis focuses upon parallels between phonology and phonological processing. I
study phonological speech errors and a phonotactic dissimilarity constraint, demonstrating they
have analogous similarity and frequency effects. In addition, I show that abstract phonological
constraints are influenced by the phonological encoding of lexical items.

The results of this thesis are based on a metric of similarity computed using the
representations of STRUCTURED SPECIFICATION (Broe 1993). This metric is quantitatively
superior to traditional metrics of similarity which are based on feature counting. I also employ a
probabilistic model of a gradient linguistic constraint which is based on categorical perception. In
this model, the acceptability of a form is gradient, and acceptability is correlated with frequency.
The most acceptable forms in a language are the most frequent ones. This constraint model
provides a better fit to gradient phonotactic data than traditional categorical linguistic constraints.
Together, the similarity metric and gradient constraint model demonstrate that statistical patterns
in language can be relevant, principled, and formally modeled in linguistic theory.

Using the gradient constraint model, I show that similarity effects in phonotactics are
stronger word initially than later in the word. A parallel pattern is experimentally demonstrated
for speech errors. I claim that the effect for speech errors follows from the fact that production of
segmental material in a lexical item is inherently temporal. I argue that segmental information in
lexical representations is sequentially accessed even for abstract phonological purposes, like
phonotactics. The effects of word position on similarity in both speech production and
phonotactics are accounted for in a connectionist model of lexical access, which does not
differentiate the storage of a representation from its use.

Structured specification is incompatible with UNDERSPECIFICATION (Kiparsky 1982,
Archangeli 1984). In underspecification, features are left blank in a linguistic representation to
capture redundancy relationships and phonological markedness. I demonstrate that models of
similarity in phonotactics and speech errors which use underspecification do not model the data
as well as the similarity metric based on structured specification.
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CHAPTER 1
Linguistic and Cognitive Theory

Linguistics is the scientific study of language as a system. The phonology, or sound
structure, of a language is one component of this system. Standard phonological theories treat
linguistic knowledge as a symbolic grammar (Chomsky & Halle 1968, Goldsmith 1979, Scobbie
1993, Prince & Smolensky 1993). Regularities within and between languages are described using
either symbolic strings subjected to rewrite rules, or structural constraints on formal
representations comprised of discrete linguistic elements. Traditionally, a symbol based
formalism is the only possible linguistic formalism. I argue that a discrete symbol system cannot
capture significant phonotactic regularities which are traditionally a component of phonological
theory. These regularities, originally subsumed as part of the Obligatory Contour Principle (OCP)
applied to place of articulation tiers (McCarthy 1986, 1988, 1994), are in fact based on similarity
(Pierrehumbert 1993), an inherently gradient property. The proper formulation of this constraint
requires a fuzzy or probabilistic phonology capable of modeling continuous data. In this thesis, I
adopt the STOCHASTIC CONSTRAINT MODEL, originally proposed in Frisch, Broe, & Pierrehumbert
(1995). In addition, I develop a model of gradient constraint combination which is equivalent to
fuzzy logic set intersection. Thus, I implement a phonological model which contains both
gradient constraints and gradient constraint combination.

The necessity for reanalyzing OCP-Place as a phonotactic constraint based on similarity
supports a model of linguistic competence where linguistic knowledge are grounded in the
general cognitive functions. In cognitive psychology and psycholinguistics, similarity is used as
an explanation for categorization (see Goldstone 1994a), reasoning by analogy (Gentner 1989),
and confusability in processing (e.g. in speech errors and perceptual confusability). I adopt the
model of similarity developed in Frisch, Broe, & Pierrehumbert (1995). Similarity is computed
based on the representation of segments in STRUCTURED SPECIFICATION (Broe 1993). Structured
specification is a hierarchical representation of feature dependencies which structurally encodes
the distinctiveness or redundancy of features. Structured specification explicitly encodes the
natural classes of a segment inventory. The Frisch, Broe, & Pierrehumbert (1995) similarity
model computes similarity as function of shared and non-shared natural classes. This model is an
extension of the contrast model of similarity (Tversky 1977, Tversky & Gati 1982) that also
incorporates a synergistic effect of feature matching on similarity (Hayes-Roth & Hayes-Roth
1977, Gluck & Bower 1988, Goldstone 1994b).

The representations in structured specification encode, rather than eliminate, redundancy.
Thus structured specification is incompatible with UNDERSPECIFICATION THEORY (Kiparsky
1982, Archangeli 1984). In underspecification theory, underspecified features are left out of the
representation, and thus they have no effect on similarity (Stemberger 1991b). In structured
specification, traditionally underspecified features have a reduced effect on similarity, due to the
natural class structure. I demonstrate that the model of similarity using structured specification is
empirically superior to a similarity model using underspecification theory.

In modeling gradient linguistic constraints using the stochastic constraint model of Frisch,
Broe, & Pierrehumbert (1995), frequency plays a crucial role. In this model, the goodness of a
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form is reflected directly in its frequency of occurrence: the best forms are the most frequent; the
worst forms are infrequent or non-occurring. Thus, this model makes a second connection with
general cognition by incorporating frequency effects within the phonology. Given the existence
of frequency effects in all other human cognitive functions this is clearly a natural and necessary
step (Pierrehumbert 1996, cf. Bod 1995).

A model of phonology which admits gradient generalizations grounded in continuous
variables like similarity and frequency is computationally very different from the traditional
symbolic approach. Consequently, the implementation of such a phonology in a natural language
system requires very different mechanisms from those of formal language theory. Similarity and
frequency are intrinsic aspects of connectionist models, which are inherently gradient and
quantitative in nature. Connectionism is a plausible basis for the computational implementation
of gradient constraints and gradient constraint satisfaction (Dell 1996). Thus, contra Pinker &
Prince (1988), connectionism may be preferable to a discrete symbol system for implementing
phonological theory.

In addition to being gradient and quantitative, connectionism differs from standard
symbolic approaches in incorporating the notion of time within the model. Connectionist models
have an inherent temporal component, as processing occurs via the spreading of activation
between nodes in the system. Dell (1986) and Sevald & Dell (1994) employ a connectionist
model of phonological encoding to account for temporal effects in speech production. I adopt this
model and present evidence that temporal effects of phonological encoding are observed not only
in phonological processing, but also in the phonotactic constraint, OCP-Place. I thus make a third
connection between phonology and general cognition by showing that the process of
phonological encoding impacts the abstract phonology.

Parallel to the case of phonological universals based on articulatory or auditory
constraints (Lindblom 1983, 1990; Browman & Goldstein 1986, 1990; Sagey 1986; Silverman
1995; Flemming 1995), I propose that language may be constrained by cognitive universals.
Further, the influence of cognitive processing constraints over time may result in the
grammaticization of soft cognitive constraints into language particular constraints. Language
particular patterns may thus be grounded in cognitive processes much like, for example,
assimilation is grounded in soft physical constraints like articulator overlap and minimization of
effort (Lindblom 1983, Browman & Goldstein 1986).

1.1 Rules versus Constraints in Linguistic Theory

Formal linguistic theory has undergone a major paradigm shift since the early conception
of a generative grammar (e.g. Chomsky 1957). The relatively recent adoption of Unification-
based Grammars (Gazdar, Klein, Pullum, & Sag 1985; Scobbie 1993; Pollard & Sag 1994), the
Minimalist program (Chomsky 1993), and Optimality Theory (Prince & Smolensky 1993) marks
a shift from derivational, rule-based approaches to non-derivational constraints. While these
frameworks contain residual pockets of derivationalism to different degrees, their common goal
is to maximize the relevance of the shape of the output in determining well-formedness. This is a
necessary first step in incorporating gradient phenomena within linguistic theory.
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 A related challenge to categorical models of language is the problem of principled1

versus accidental gaps. If statistical patterns are admitted as relevant, then a solution presents
itself. A gap is principled if the absence of forms of a particular type is statistically significant,
when the lexicon is considered as a sample of the combinatorial possibilities available in the
language.

1.1.1 Gradient constraints.

A major goal of this thesis is to implement a model of a gradient linguistic constraint and
gradient constraint combination in a rigorous manner. This thesis contributes to a growing body
of evidence which indicates that statistical patterns in the lexicon are relevant linguistic
generalizations (Greenberg 1950; Davis 1991; Pierrehumbert 1993; Berkley 1994a, b; Buckley
1995) to which native speakers are sensitive (McCarthy 1986; Pierrehumbert 1994; Beckman &
Edwards 1996; Kessler & Treiman 1996; Treiman, Kessler, Knewasser, & Tinkoff 1996).
Phonological theory should be able to model and explain this knowledge.

The model of a gradient linguistic constraint, called the stochastic constraint model
(Frisch, Broe, & Pierrehumbert 1995), is a fuzzy logic version of a categorical constraint. In a
categorical constraint, a form either violates the constraint or it does not; it is acceptable or it is
not. A fuzzy logic constraint can be violated to a degree. I assume, following Frisch, Broe, &
Pierrehumbert (1995), that the degree of acceptability of a form is correlated with its relative
frequency. Thus, the acceptability of a form is dependent on how frequent that form is in
comparison to the other forms in the language.

Traditional derivational phonology is wholly concerned with the mapping from
underlying form to surface form. The presence, absence, and distribution of other forms in the
language is irrelevant. Statistical patterns in the lexicon could be modeled in such a system by
applying constraints probabilistically. If a constraint applied only to a certain percentage of
underlying forms, then only a certain percentage of surface forms would obey the constraint.
However, this approach assumes that whether a probabilistic constraint applies or does not, the
resulting output is equally valid. In the stochastic constraint model, infrequent forms are less
acceptable than frequent ones, implying that infrequent forms are poorer examples of the words
of a language than frequent forms. Experimental evidence supports the stochastic constraint
model: native speakers rate words containing infrequent phonotactic patterns as less word-like
than words containing frequent phonotactic patterns (Pierrehumbert 1994, Kessler & Treiman
1996, Treiman et al. 1996).

Basing gradient acceptability on frequency is a fuzzy logic extension of the implicit
assumption that phonotactic patterns which never appear are unacceptable.  In standard linguistic1

analyses, language learners are assumed to be able to conclude that forms which would plausibly
exist, but appear to be absent from their linguistic input, are unacceptable. The fuzzy logic
extension assumes that language learners are able to conclude that forms which rarely appear, or
which appear much less frequently than expected, are poor instances of words and are not
representative of the words of their language.
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1.1.2 Underspecification.

Underspecification refers to the practice of leaving blanks in the representation of a
segment to indicate the default or redundant status of certain features (Kiparsky 1982, Archangeli
1984, Steriade 1987). Traditionally, underspecified features are left blank in underlying
representations and become filled in during the course of the phonological derivation. Thus,
underspecification is crucially dependent on the existence of abstract underlying forms and a
procedure where these forms are mapped into fully specified surface forms. Underspecification is
used to account for the transparency of certain segments containing default or redundant features
to phonological processes. Broe (1993) raises a number of logical objections to
underspecification theory. He offers structured specification as an alternative, and proposes that
the redundant or default status of features instead be encoded explicitly in a feature dependency
hierarchy and a markedness hierarchy. In order to capture transparency effects, phonological
constraints are sensitive to the redundancy and markedness relations in the hierarchies.

Stemberger (1991a, b) utilizes underspecification theory in the analysis of certain patterns
in both experimentally elicited and naturally occurring phonological speech errors. Stemberger’s
analysis provides indirect evidence against current constraint based models of phonology.
Stemberger (1991b) demonstrates that underspecified features influence error rate, but have less
of an effect than specified features. He claims that, since underspecified features are not present
underlyingly, they do not affect similarity at early stages in the derivation. At later stages, all
features are specified, and both specified and underspecified features influence error rate. This
model of phonological speech errors can be compared directly with one based on similarity using
structured specification (Frisch, Broe, & Pierrehumbert 1995). I show that the structured
specification model provides a far better description of the error data than underspecification
theory. In structured specification, default and redundant features have a lesser effect on
similarity due to the explicit use of natural classes in the computation of similarity. Thus,
structured specification captures Stemberger’s result without a derivational model of phonology
that employs underlying feature blanks.

1.2 Similarity

The use of similarity in cognitive psychology is quite widespread. Many theories of
categorization depend on similarity comparisons between objects and category prototypes (e.g.
Rosch & Mervis 1975) or individual category members (e.g. Medin & Schaffer 1978). These
theories of categorization contrast with standard categories in phonology, like natural classes,
which are defined absolutely by rule. For example, the class of coronal consonants are all and
only those segments with the feature [+coronal]. These are referred to as classic categories in
cognitive psychology.

In its original form (McCarthy 1988), the OCP-Place constraint bans roots with more than
one consonant that share place of articulation. In McCarthy’s formalization, consonants are
effectively divided into classic categories by place of articulation, and roots containing any two
homorganic consonants are unacceptable. Pierrehumbert (1993) showed that the effect is
gradient, and based on the perceived similarity of homorganic consonants within a root. Thus,
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while the prohibition against homorganic stops is nearly absolute, roots containing homorganic
stops and fricatives are more frequent, and roots containing homorganic obstruents and sonorants
are commonly found. The categories of homorganic consonants are not uniform, classical
categories. Rather, the degree to which two consonants are judged to be from the same category
depends on their similarity. The category of homorganic consonants, to which the OCP-Place
constraint applies, is non-uniform, suggesting instead that it is a prototype or exemplar based
category.

To appropriately formalize a gradient version of the OCP-Place constraint, a metric of
similarity between segments is required. A metric of similarity based on structured specification
has a number of advantages over more standard, feature counting metrics of similarity (e.g.
Shattuck-Hufnagel & Klatt 1979, van den Broeke & Goldstein 1980, Pierrehumbert 1993). First,
by computing similarity based on the natural classes, rather than the individual features,
similarity is influenced only by contrastive features. Non-contrastive features do not create
additional natural classes. Differences in the relative importance of contrastive and non-
contrastive features is found not only in Stemberger’s (1991b) speech error data, as mentioned
above, but is also found in OCP-Place effects (Pierrehumbert 1993). Second, when similarity is
based on natural classes, similarity is increased by both individual feature matches (since a single
feature defines a natural class) but also by conjunctions of features (which also define natural
classes). The influence of both simple and conjunctive feature matches on similarity has been
demonstrated in similarity judgement and categorization tasks (Hayes-Roth & Hayes-Roth 1977,
Gluck & Bower 1988, Goldstone 1994b). Note that there is an interaction between the
contrastiveness of a feature and conjunctive feature matching: Conjunctions of features only
contribute to increasing similarity to the extent that the conjunction of properties contrasts with
other conjunctions of properties.

The dependence of the similarity metric on contrast offers a principled solution to one of
the basic problems with similarity discussed in the cognitive psychology literature (e.g. Goodman
1972). Tversky (1977) argued that the influence of any particular feature (property) on similarity
is based in part on the classificatory significance of features, and that classificatory significance
is dependent on the particular object set under study. Similarity is often criticized as being too
flexible and unconstrained, in particular in determining the set of features which are considered
relevant to the similarity comparison  (Goodman 1972; see Goldstone 1994a). When the set of
natural classes containing two objects is used to determine their similarity, only a subset of the
objects’ features actually contribute to forming distinct shared and non-shared natural classes
between the two objects. Further, the effect of a particular feature is dependent on the item to
which it is compared. Similarity based on structured specification thus provides an objective
means of determining which features have classificatory significance.

1.3 Frequency and Connectionism

Accepting the notion of gradient constraints into phonology raises an immediate question:
What are the consequences to a form which violates a gradient constraint? In a categorical
phonology, violating a constraint results in an unacceptable form. Forms which do not violate a
constraint are acceptable. In the binary logic upon which categorical phonology is implicitly
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 Optimality Theory (Prince & Smolensky 1993) offers an alternative to constraint2

conjunction which allows categorical constraints with conflicting structural requirements to
coexist within a single grammar, by arranging constraints in a strict dominance hierarchy. I
discuss extending constraint ranking to gradient constraints in chapter 7.

based, these extremes can be represented as 0 (unacceptable) and 1 (acceptable). The phonology
of a language can be conceived of as a mapping from the space of possible phonological forms to
{0,1}. In the stochastic constraint model of a gradient constraint, forms can be more or less
acceptable. In a gradient phonology, the space between 0 and 1 is filled in. The phonology of a
language can be conceived of as a mapping from the space of possible phonological forms to the
interval [0,1]. This is a straightforward extension from the binary logic of a categorical
phonology to a gradient phonology based on fuzzy logic (Zadeh 1965). Our question becomes:
What does it mean for a form to have acceptability in (0,1)?

Frisch, Broe, & Pierrehumbert (1995) propose that the relevant scale in natural language
is frequency. In a categorical phonology, unacceptable items are non-occurring (frequency = 0)
and acceptable items are occurring (frequency > 0, modulo the accidental gaps, which can be
attributed to sampling as noted in footnote 1 above). In a gradient phonology, not all acceptable
forms are equivalent. Forms which are frequent, for example phonotactic patterns which are
found in many lexical items, have high acceptability. Infrequent forms have low acceptability.

With the introduction of a fuzzy logic version of acceptability, a formal mechanism for
simultaneous constraint combination is immediately available. In a categorical phonology, a form
must simultaneously satisfy all constraints in order to be acceptable.  Constraints apply2

conjunctively, which is equivalent to multiplication in the algebra of the binary set
{0,1}.Constraint conjunction as multiplication can straightforwardly be extended into the fuzzy
set [0,1] (Zadeh 1965, Kosko 1991). The acceptability of a form subject to two or more
constraints is equal to the product of the acceptability of the form with respect to each constraint
independently.

The approach advocated in this thesis shares fundamental conceptual ground with the
theory of connectionism. Connectionist models are inherently gradient, and sensitive to similarity
and frequency. In this thesis, I primarily present algebraic models of gradient linguistic behavior.
However, to the extent to which these gradient linguistic patterns can be captured by a
connectionist model, we need not posit that native speakers have implicit knowledge of algebraic
functions and their parameterizations. I present evidence that there is a regular relationship
between the algebraic similarity model and a connectionist similarity model, and thus that the
results in this thesis are amenable to connectionist modeling. Connectionism provides a
psycholinguistically plausible basis for a gradient phonological theory (Dell 1996).

Pinker & Prince (1988) argue against connectionist models of linguistic competence,
based on traditional categorical linguistic formalism. The results of this thesis undermine Pinker
& Prince’s arguments in two ways. First, I demonstrate predictable gradient effects which cannot
be captured in current categorical formalisms. Second, I demonstrate that processing constraints
on lexical access impacts the abstract phonology. This interaction undermines the traditional
competence/performance distinction and instead suggests that the phonology is constrained by
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limits on cognitive processing. Combined with the growing body of evidence that the phonology
is also constrained by limits on the articulatory and auditory systems (Lindblom 1983, 1990;
Browman & Goldstein 1986, 1990; Clements 1985; Silverman 1995; Flemming 1995) I
conclude, following many others, that the formal phonology is not an abstract, arbitrary system,
but is instead a reflection of the biological system which must store and manipulate it.

Finally, note that explaining phonological patterns with functional principles need not
result in a loss of formal rigor and precision. In this thesis, I apply models which are algebraically
well defined, and subject to statistical standards, much like the models of Lindblom (1983,
1990). Similarly, connectionist models of linguistic processing like Dell (1986) and
mathematical models of articulatory and acoustic behavior like Lindblom & Sundberg (1978),
Task Dynamics (Kelso, Saltzman, & Tuller 1986, Saltzman & Munhall 1989), Perturbation
theory (e.g. Mrayati, Carre, & Guerin 1988), and Quantal Theory (Stevens 1978, 1989) are
equally precise. The use of continuous variables does not imply imprecise reasoning and
untestable conclusions. Rather, models can be compared statistically and be judged by an
objective standard of goodness of fit.

1.4 Outline of the Thesis

The thesis is organized as follows. Chapter 2 presents structured specification (Broe
1993), the representation of the segment inventory which I adopt. Chapter 3 introduces the
similarity metric of Frisch, Broe, & Pierrehumbert (1995). In chapter 4, I model data from
phonological speech errors in English. I show that computing similarity using the representations
in structured specification provides the best model of the speech error data. I turn to the OCP-
Place constraint in chapter 5. I present the stochastic constraint model (Frisch, Broe, &
Pierrehumbert 1995) which is superior to traditional categorical models of OCP-Place effects.
Chapter 6 presents new evidence for the special status of word onsets in speech production. In
chapter 7, I show that the word onset has special status in the OCP-Place constraint as well.
Together, chapters 6 and 7 suggest that the temporal order of a lexical item is a factor in both
phonological processing and abstract phonological constraints. I present evidence against
underspecification models of speech errors in chapters 8 and 9, demonstrating that structured
specification provides a superior alternative. In addition, I suggest that cognitive factors
(specifically, frequency and lexical neighborhood density) account for some effects attributed to
underspecification. In chapter 10, I show that evidence for underspecification in phonotactics can
be given a more satisfactory account using frequency. I also discuss a number of additional
frequency effects in phonotactics, which provide evidence that the grammar is frequency
sensitive. Chapters 8 through 10 provide an alternative to underspecification that is cognitively
motivated and formally coherent. In chapter 11, I discuss the results of the thesis in light of
current phonological theories and sketch out an alternative based on connectionist formalism
(Dell 1996). Present theories are found wanting as they do not incorporate gradient data into the
phonology. The alternative presented in this thesis is a first step toward modeling and
formalizing a continuous phonology.



 Note that this position does not imply that people do not have specific knowledge about3

language. Rather, the way in which that linguistic knowledge is learned, organized, and applied is
consistent with knowledge of other categories. The localized storage of specific linguistic
knowledge in the brain can be damaged, leading to language deficits, even though the general
mechanism of categorization is unaffected.
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CHAPTER 2
Representation of the Phoneme Inventory

In this chapter, I present Broe’s (1993) theory of featural specification, STRUCTURED

SPECIFICATION, which explicitly represents the segment in the context of the set of natural classes
in the segment inventory. This representation depends on the use of distinctive features
(Jakobson, Fant, & Halle 1952). Like Halle’s BRANCHING DIAGRAMS (Halle 1959) or FEATURE

GEOMETRY (Clements 1985, Sagey 1986), structured specification invokes a hierarchy of
phonological features. Unlike previous proposals, the redundancy hierarchy in structured
specification is unambiguously determined by the set of segments and their feature specifications.
The hierarchy represents in a formally coherent way the language specific relations of
redundancy and contrast among features. In structured specification, redundancy and defaults are
structurally encoded, and the use of feature blanks to encode default or redundant features is
avoided. By avoiding underspecification, structured specification is fully compatible with non-
derivational, constraint based phonologies.

In the redundancy hierarchy, the segment inventory is represented as a hierarchy of
natural classes. A natural class is a set of segments which share a feature or a conjunction of
features. Natural classes are at the core of traditional phonological analysis, as phonological
processes are assumed to apply only to natural classes. The hierarchy among natural classes
arises from the partial ordering of natural classes based on set containment. The redundancy
hierarchy provides crucial structural information that reveals the distinctness or redundancy of
features. Unlike feature specifications which minimize the number of underlying specifications
in some way (Halle 1959, Kiparsky 1982, Archangeli 1984, Steriade 1987), structured
specification allows redundancy to be both context dependent and gradient. These are shown to
be desirable properties when similarity is calculated for segments in chapter 3.

In using this type of representation for the segment inventory, linguistic classification
need not be viewed as a special component of an autonomous linguistic mechanism. Rather,
linguistic knowledge of phonological categories is one example of the more general cognitive
ability to classify. The study of phonological classification in this thesis is therefore a case study
from the general cognitive perspective.  In addition, the study of general cognitive categories can3

be informed by the treatment of contrast and redundancy which is applied here in the
phonological domain.
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2.1 Features and Natural Classes

The segment is traditionally represented as a bundle of features (Jakobson, Fant, & Halle
1952; Chomsky & Halle 1968). The segments /a/, /i/, and /u/ for example, can be represented as
in (1).

(1)

The purpose of featural representations is to capture the NATURAL CLASS behavior of
segments (Chomsky & Halle 1968). It is often the case that /i/ and /u/ pattern together,
phonologically, but rarely the case that /i/ and /a/ do. The shared [+high] feature between /i/ and
/u/ formally captures their grouping as a natural class. The segments /i/ and /a/ share no feature,
and are thus not predicted to be a natural class. The purpose of the featural representation is to
describe the natural classes of a language as sets of segments having a certain feature or
conjunction of features. The natural class is represented here using set notation.

(2) {[+high]} = {i, u}

The natural classes represent both conjunctions of features and sets of segments. A
natural class can be a set containing only a single segment. The difference in the representation of
/i/ in (1) and (3) is merely notational. Structured specification explicitly encodes the dualism
between features and natural classes using a single representation.

(3) {[+high]&[-back]} = {i}

In addition to describing natural classes, features also encode CONTRAST between
segments. For example, /i/ and /u/ are distinct segments based on their contrasting values for the
feature [back]: /i/ is [-back] and /u/ is [+back]. Note that a feature in and of itself is not
contrastive. A feature is only contrastive if it makes a distinction between segments or classes of
segments. 

Finally, phonological features are traditionally grounded in phonetics. Features have been
proposed on acoustic (e.g. Jakobson, Fant, & Halle 1952; Stevens & Keyser 1989; Flemming
1995) and articulatory (e.g. Chomsky & Halle 1968, Sagey 1986) grounds. The properties by
which segments are grouped must be observable to be learned. Chomsky & Halle (1968) point
out that phonological representation must be grounded in phonetic reality given the “crucial fact
that items which have similar phonetic shapes are subject to many of the same rules” (p. 295). To
the extent that features are based on gross acoustic and articulatory generalizations, categories
can be formed based on articulatory and acoustic similarity. Many non-linguistic categories are
grounded in superficial similarity in an analogous manner (Goldstone 1994b).

The formal description of segment inventories using distinctive features raises a number
of issues. The discussion which follows makes many of the same points as Broe (1992, 1993:
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136-147), though the exposition has been rearranged somewhat. In addition, I adopt particular
assumptions about the nature of feature specifications and the classification of features in this
thesis which Broe leaves as open questions. In section 2.1.1, I discuss problems with the
traditional assumption of bivalent features reviewed in Broe (1992, 1993) and argue for a
classification scheme which uses only monovalent features. In section 2.1.2, I consider the notion
of a contrast more carefully, and introduce the use of second order feature classes, adopted for
classificatory purposes by Broe (1993). Additionally, I represent the notion of an articulatory or
acoustic dimension of contrast using feature classes. In section 2.1.3, I present Broe’s discussion
of the formal inadequacies of the previous generative approaches to redundancy.

2.1.1 Feature valency.

In The Sound Pattern of English (Chomsky & Halle 1968, henceforth SPE) the featural
representations of segments at the level in which they are input to the phonology are fully
specified feature matrices with binary feature values. For example, a typical three vowel
inventory {a, i, u} would be represented with the matrix in (4), which presents the same feature
specifications as used above in an abbreviated format.

(4) /a/ /i/ /u/
[high] - + +
[back] + - +

Each feature encodes a bivalent opposition: [+high] versus [-high]; [+back] versus
[-back]. In a binary feature system of this kind, there is an implicit assumption of
complementation (Broe 1993). The two specifications for [high] create complementary natural
classes: {[+high]} = {i, u}; {[-high]} = {a}. In addition, each feature is assumed to be specified
(to have a plus or minus value) for each segment.

The constraints of bivalency and full specification are in some cases problematic. For
example, consider the SPE classifications for the English places of articulation (p. 177). The four
way contrast in place is represented by a pair of binary features. 

(5) labial dental palato-alveolar velar
[coronal] - + + -
[anterior] + + - -

Fant (1969/1973) points out that these specifications depart from the original goal of the feature
description as a natural phonetic classification of phonemes. He writes:

I find the encoding of the class of labial consonants as [+anterior] and [-coronal]
to constitute a clear departure from the unifying principles. One single phonetic
dimension, ‘labiality’, which has distinctive function has here lost its identity on
the phonological level. (p. 173)
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 However, see Lombardi (1996) for recent arguments that [-coronal] is attested. This4

does not detract from the general point, as there is no reason to assume in advance that the
complement of every natural class is a natural class.

Yip (1989) notes that the natural classes defined by the SPE place of articulation features
have been a long standing problem for phonology. They are unattested in phonological
phenomena. One problem arises from the assumption that set {[-coronal]}, the complement of
the natural class {[+coronal]}, is necessarily a natural class. While phonological processes
frequently act on the natural class of  [+coronal] segments {dental, palato-alveolar}, the natural
class of {[-coronal]} = {labial, velar} is never found.  Sagey (1986) proposes instead that place4

of articulation be classified by a set of monovalent features, which have no minus value,
corresponding to the active articulators [labial], [coronal], and [dorsal].

It has long been known that the feature [anterior] also defines unattested natural classes.
Neither the class of [+anterior] consonants {labial, dental} nor the set of [-anterior] consonants
{palato-alveolar, velar} is a natural class. In this case, the problem arises because the feature
[anterior] properly sub-classifies the coronals, but does not cross classify all places of
articulation. Utilizing feature geometry, Sagey (1986) proposes that [anterior] be made a
structural dependent of [coronal], restricting the use of anterior specifications to the coronals.
The feature geometric representation of place of articulation features is shown in (6).

(6) labial dental palato-alveolar velar

[labial] [coronal] [coronal] [dorsal]
| |

[+anterior] [-anterior]

In section 2.1.2, I show that Sagey’s proposal introduces a confusion of orders into the feature
geometry formalism (Broe 1993). Following Broe, I assume that features can be defined over
sub-classes without requiring any feature geometric dominance relation between the features.
Anteriority is simply left undefined for labials and velars. Similarly, we can think of the
monovalent feature [coronal] as undefined for labials and velars.

From the preceding discussion, I conclude that the SPE system which used binary cross-
classificatory features is too constrained. First, automatic complementation, which is implicitly
present in bivalent classification, is an undesirable property of phonological feature matrices. The
use of monovalent features, which are either present or absent for any particular segment, avoids
this problem in the general case (assuming we cannot refer to the lack of a feature, which would
effectively increase the valency of the feature by one to bivalent (Stanley 1967)). Second, some
feature values are not defined for all segments. Once again, the general use of monovalent
features allows feature specifications to be naturally restricted to subclasses of segments.

In this thesis, therefore, I use all monovalent feature specifications. Note that, given
monovalent features, complementation and cross-classification is not necessarily lost. Consider,
for example, the following representation of the three vowel inventory {a, i, u} using monovalent
features.
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 Note that I adopt the total use of monovalent features only for consistency. The5

distinction between [+voice] and [-voice] as opposed to [voiced] and [voiceless], for purposes of
classification, is purely notational. Equivalently, [1 place], [2 place], and [3 place] are notational
variants to [labial], [coronal], and [dorsal]. Distinctions between these notations could be made
relevant if the phonological system is sensitized to them. For example, alpha-notation (x � [�
voice] / _ [� voice]) adds content to the notational distinction. Alpha-notation has been replaced
in generative phonology by feature geometry (see Clements 1985 for details), so the values of
feature specifications are no longer necessary to the formalism.

 (7) /a/ /i/ /u/
[high] + +
[low] +
[front] +
[back] + +

The two specifications for vowel height, [high] and [low], create complementary natural classes:
{[high]} = {i, u}, {[low]} = {a}; as do the specifications of [front] and [back]. Complementation
is still possible, but as seen in the case of monovalent place features, it is not a necessary
consequence of feature assignment. In addition, the pairs of monovalent features in the three
vowel inventory cross-classify the system. In effect, the binary system is reconstructed with a
monovalent system which is just a notational variant.

The use of monovalent features allows contrasts of any valency to be represented, without
introducing the spurious natural classes required by binary parsing. The three way laryngeal
contrast in the Thai stop consonants, for example {t, t , d}, can be represented with threeh

monovalent features. In a bivalent classification scheme (Halle & Stevens 1971), the pairs {t, t }h

and {t, d} are natural classes of [-voice] and [-spread glottis], respectively. Rules involving [-
spread glottis] are rare (Kenstowicz 1994). Also, neutralization of laryngeal contrasts tends to
leave a single option (e.g. only /t/ in Thai syllable codas) rather than neutralizing [±voice] and
[±spread glottis] separately (Lombardi 1991). Groupings of sets of segments along a multivalent
contrast can be made, for example {[coronal]} selects the same set of objects as the union of
{[interdental]}, {[alveolar]}, and {[palatal]} in English, but such groupings are not required by
the formalism. The monovalent system has more descriptive power than the SPE system, but the
use of the more general system is necessary, given the evidence presented above.5

Finally, the use of monovalent features allows all contrasts to be implemented in
computationally equivalent ways in the similarity metric introduced in chapter 3. Each feature in
common increases similarity and each difference decreases similarity. In a specification system
which mixes monovalent and bivalent features, a choice must be made as to whether a difference
between bivalent specifications, for example [+voice] and [-voice], is equivalent to a difference
in monovalent specifications, for example [labial] and [coronal] (Pierrehumbert 1993). If they are
not equivalent, then the notational difference is elevated to a substantive difference, which
should be empirically supported. The null hypothesis is that all differences are equivalent (Frisch,
Broe, & Pierrehumbert 1995). This hypothesis is adopted here by the use of all monovalent
specifications.
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2.1.2 Dimensions of phonological contrast.

What is implicit in the bivalent classification systems of Jakobson, Fant, & Halle (1952)
and Chomsky & Halle (1968) is that particular specifications lie along an articulatory or acoustic
dimension of contrast, like ‘vowel height’ and ‘place of articulation’. However, in cases where
the contrast involves a multivalent distinction, additional bivalent features are added and the
unidimensionality of the contrast is lost, as remarked by Fant (1969/1973) cited above. The use
of CLASS NODES in feature geometry (Clements 1985) or equivalently ATTRIBUTE-VALUE

MATRICES in unification grammar (see Broe 1992, 1993: 141-142) provide a formal
representation of the notion of a dimension of contrast. 

In feature geometry, features are grouped into classes or TIERS, and arranged
hierarchically. The grouping is motivated by a desire to capture the fact that certain phonological
processes typically act on intuitively well-defined subsets of features rather than arbitrary subsets
of features. The class nodes correspond to familiar descriptive groupings like ‘place of
articulation’ features and ‘manner’ features. Clements (1985) makes a careful distinction
between class nodes and feature nodes. Class nodes can dominate other class nodes or feature
nodes, but feature nodes are always terminals in the hierarchy. A partial feature hierarchy,
including the superordinate ROOT node, is shown in (8). Dominance can be interpreted as an IS-A
relationship. The features [coronal] and [anterior] are PLACE features, [nasal] is a MANNER

feature.

(8)

The feature geometry is a graph theoretic representation of an attribute-value matrix
(Broe 1992). In an attribute-value matrix, there are first-order features, the standard features of
phonological theory, and there are second-order or CATEGORY-VALUED features. While first-
order features are primes and cannot be decomposed, category valued features take a feature
matrix as a value. This feature matrix may include other category-valued features, parallel to the
organization of class nodes in feature geometry. The attribute-value matrix equivalent to (8) is
given in (9).

(9)
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The use of category-valued features allows monovalent feature specifications to represent
a multivalent dimension of contrast. The previously discussed examples of the three vowel
inventory and a three way laryngeal contrast are repeated here, with appropriate class
information. The features [high] and [low] are HEIGHT features. The features [front] and [back]
are FRONTING features. The features [voiced], [voiceless], and [spread glottis] are LARYNX

features. Note that the content features and category-valued features could equivalently be
acoustic properties and acoustic dimensions of contrast (cf. Flemming 1995). There is no part of
the formalism that specifies the nature of the contrasts as articulatory.

(10) /a/ /i/ /u/
HEIGHT: [high] + +

[low] +
FRONTING: [front] +

[back] + +

(11) /d/ /t/ /t /h

LARYNX : [voiced] +
[voiceless] +
[spread glot] +

Using category-valued features, we can refer to sets of featural primes, more recently
referred to as FEATURE CLASSES (Padgett 1995b, c). For example, Padgett uses the class COLOR to
account for harmony which determines both back and round specifications in Turkish. The OCP-
Place constraint, which is examined in detail in this thesis, makes reference to the similarity of
consonants which share place of articulation features. The use of classes replaces the problematic
use of so-called ‘alpha notation’ in SPE (Clements 1985). The elimination of alpha specifications
is compatible with the use of monovalent features adopted in this thesis.

In combination with the articulatory/acoustic definition of a class as a dimension of
contrast, harmony and neutralization have a natural interpretation as processes applying to
classes. Given the assumption of all monovalent features, and representations which do not
employ underspecification (see section 2.1.3), the formalization of these processes must also take
place at the level of the class. The spreading or neutralization of a single feature becomes an
incoherent notion.

Sagey (1986) removes the formal distinction between class nodes and feature nodes in
feature geometry, by proposing that [±anterior] be a dependent of the [coronal] node. Unlike the
original feature geometry model, or attribute-value matrices, a feature node dominates another
feature node. This is a confusion of the relative properties of classes and features (Broe 1993).
Broe writes:

A characterization like PLACE is fundamentally different in kind from a
characterization like [coronal]. [coronal] is an attribute of objects (segments);
PLACE is an attribute of features, not segments. This fact is respected in the
everyday speech of phonology, where we talk of ‘coronal segments’, but ‘place
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features’. Just as features like [coronal] allow us to refer to natural classes of
segments, terms like PLACE allow us to refer to ‘natural classes of features’
(Clements 1987), features which behave as a unit in phonological rules. (p. 142)
[formatting of feature names adjusted for consistency, SF]

In addition to a conceptual confusion, Sagey’s proposal introduces a formal confusion.
The relations ‘[coronal] is a PLACE feature’ and ‘the value of [anterior] is defined only for
[coronal] segments’ are both represented through immediate dominance in the feature geometric
hierarchy (Broe 1993). Broe notes that:

This distinction, a fundamental one concerning the domain of classification —
objects or features — is not reflected in the phonological formalism itself. In
current feature geometry, there is no way to tell from the representation what
‘type’ the relation between dominant and dominated features is. (p. 145)

I show in section 2.2 that the results of Sagey’s proposal can be achieved while the
distinction between features and classes is maintained, using structured specification (Broe
1993). Thus, Sagey’s problematic proposal can be avoided, as the classification of features, on
the one hand, and segments, on the other, are independent components of the phonology. The
classification of features is based on the category valued features. The classification of segments
is based on structured specification.

There is a second use of bivalent feature contrasts in early generative work, to denote
distinctness of representations. Roughly speaking, two representations are distinct if they contain
opposite values for at least one feature (see Stanley 1967 for the technical details adopted in
SPE). In the feature specifications I adopt, contrast is defined over feature classes and all features
are monovalent. Further, I adopt the hierarchical representation of structured specification. Under
these assumptions, two representations are distinct if they contain different monovalent features
within at least one class. Informally, two segments are different if they contrast along at least one
articulatory or acoustic dimension. I return to this point in the next section, where I discuss the
use of feature blanks in phonological theory.

2.1.3 Redundancy.

Traditional approaches to feature specification have distinguished distinctive features
from redundant features. Broe (1993, chapter 4) provides an extensive review of the evolution in
the treatment of redundancy in generative phonology. We can draw from his discussion the
following two conclusions. First, some phonological processes have been shown to be sensitive
to the status of a feature as distinctive or redundant. Thus, redundancy must be encoded in the
representation. Second, redundant features are traditionally encoded by omission of the feature
specifications in underlying representations (so-called UNDERSPECIFICATION). Broe accepts that
redundancy must be encoded in phonological representations, but rejects the method of encoding
redundancy using feature blanks. The use of feature blanks to encode redundancy creates a
number of formal problems for phonology (Broe 1993: 193-209). The problems I discuss here
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can be grossly characterized as the confusion of representational types.
The confusion of representational types emerges because feature blanks are commonly

used to denote other relations apart from redundancy. Blanks have been used in the
representations above to indicate that a segment is undefined for a particular feature. Monovalent
features, like place of articulation, which are either present or absent are blank for segments
where they are absent. Bivalent features which subclassify a set of segments are also blank for all
segments outside of that set. In both cases, the absence of a feature does not indicate the
redundant presence of a predictable property. If it did, we would generate the same unattested
natural classes which promoted the use of monovalent features and subclassification in the first
place. The use of blanks to encode ‘undefined for [F]’ is adopted in structured specification, and
thus is employed in this thesis.

A second use of blank is to indicate an ARCHISEGMENT, a segment which is yet to be
defined for a particular feature. Broe (1993) summarizes the problem succinctly.

[An archisegment is] a segment which, in underlying representation, has a choice
of completions; the particular choice is determined by context, and is in that sense
predictable. In the case of redundant blanks, however, the blank indicates a
segment which, in underlying representation has its specification for F ‘already
decided’, as it were. In the former case, involving an underdetermined
specification, the accompanying features are insufficient to determine what value
it should assume: that is why it is left blank. In the case of a predetermined
specification, on the other hand, the accompanying features are totally sufficient
to predict what value it will assume; and that is why it is left blank. (p. 196)

In the case of an archisegment, the representation is underdetermined, and in the case of the
redundant feature specification it is not. There is no principled way to distinguish between the
two based on the representation. Structured specification explicitly represents the difference,
through its use of natural classes (which correspond to archisegments) in the representation of the
segment inventory. In structured specification, the use of feature blanks to mean ‘undefined for
F’ is thus interpreted equivalently for segments and for natural classes. The use of a feature blank
maintains a consistent interpretation and does not conflate distinct relations.

A third use of blanks is introduced in the theory of RADICAL UNDERSPECIFICATION

(Archangeli 1984). In radical underspecification, default feature values are left blank, and filled
in by derivational rule. Given the assumption that there is a default for every features, there is one
default vowel in every language. This is the vowel which has the default value for every vocalic
feature. It is represented underlyingly as featureless. Consider a second featureless vowel, the
archi-vowel, whose surface form is entirely determined by context. The archi-vowel, too, must be
underlyingly featureless (Kisseberth 1971). Broe (1993: 198-202) reviews evidence that default
segments must be distinguished representationally from archi-segments, by showing that
Klamath and Basque treat the completely unspecified archi-vowel in a distinct manner from the
underspecified default vowel. In radical underspecification, both vowels are represented as
featureless. Broe instead proposes, parallel to the case of redundant specifications, that the
default status of features be encoded hierarchically, in a markedness hierarchy.
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I have more to say about radical underspecification in chapters 3, 8, 9 and 10. I would like
to note here that the idea of encoding a default segment with no feature specifications is
computationally problematic for a similarity metric based on features and natural classes. First
note that the only sensible interpretation of two segments being mutually undefined for a feature
is that this is neither a feature match nor a feature mismatch. If the fact that two segments are
mutually undefined for a feature is counted as a feature match, then we implicitly assume feature
complementation and the unattested natural classes which are generated by complements. The
default segment has no feature matches with any other segment, and thus is equally similar to
every other segment. In addition, it has no feature mismatches with itself, and its self similarity is
undefined. I show in chapter 8 that the default status of features is not directly relevant for
determining similarity, and that any effect attributed to the default status of a specification can
instead be attributed to the higher frequency of the default versus the non-default specifications.

There an additional formal and conceptual problem with omitting feature specifications
based on their predictability. This is the well known problem of reciprocal dependency. The
choice of which feature to omit as predictable is often arbitrary (Halle 1959, Stanley 1967, Broe
1993). Consider the matrix of the three vowel inventory with both backness and rounding
features.

(12) /a/ /i/ /u/
[high] + +
[low] +
[front] +
[back] + +
[round] +
[non-round] + +

In this case, every feature is predictable from other features or combination of features, so any
feature could in principle be eliminated. For example, [+back]&[+non-round] < [+low],
[+round] or [+low] < [+back]. Eliminating features due to their predictability requires an
arbitrary choice. Further note that the choice has consequences for the set of natural classes
which are available. Eliminating [+non-round] eliminates the natural class {a, i}. What is a
redundant feature from the perspective of individual segments is in fact not redundant in the
description of natural classes. In general, proposals concerning redundancy and
underspecification have been overly concerned with the description of individual segments and
less concerned with the consequences for natural classes. I now turn to the theory of structured
specification, which represents both the individual segments and the natural classes explicitly,
providing an elegant solution to the representation of redundancy and reciprocal dependencies.

2.2 Structured Specification

The problems introduced by multiple interpretations of representational blanks and
reciprocal dependencies is solved in the theory of structured specification. In structured
specification, feature blanks are used solely to represent ‘undefined for [F]’. Redundancy is
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encoded in the REDUNDANCY HIERARCHY. There is a second hierarchy of specification in Broe
(1993), the DEFAULT HIERARCHY, which indicates the marked and unmarked status of feature
specifications. Properties which were formerly encoded by blanks are differentiated formally. In
this thesis, I am concerned primarily with the redundancy hierarchy, as it is the representation of
the segment inventory upon which similarity is computed. For more information on the default
hierarchy, see Broe (1993).

Given a segment inventory and a set of features, the redundancy hierarchy for that set of
segments given that feature set can be unambiguously determined. The hierarchy is based on the
partial ordering of natural classes of segments given a featural representation. The natural classes
are ordered by set containment: larger natural classes contain smaller ones. I exemplify the
algorithm with a simple case, the three vowel inventory. The interested reader should consult
Broe (1993) for a more rigorous treatment of the set theoretic and graph theoretic ideas employed
here.

Recall the feature specifications for the three vowel inventory presented above.
(13) /a/ /i/ /u/

[high] + +
[low] +
[front] +
[back] + +

To construct a redundancy hierarchy for the three vowel inventory, we first consider the set of
natural classes which can be denoted by the feature matrix in (13). There are 4 feature values, so
there are 2  = 16 possible conjunctions of features. Each feature conjunction with its4

corresponding natural class is given in (14). The symbol L denotes the empty set, which is the
natural class created by an incompatible conjunction of features. 

(14) {[]} = {a, i, u} {[+low]&[+front]} = L
{[+high]} = {i, u} {[+low]&[+back]} = {a}
{[+low]} = {a} {[+front]&[+back]} = L
{[+front]} = {i} {[+high]&[+low]&[+front]} = L
{[+back]} = {a, u} {[+high]&[+low]&[+back]} = L
{[+high]&[+low]} = L {[+high]&[+front]&[+back]} = L
{[+high]&[+front]} = {i} {[+low]&[+front]&[+back]} = L
{[+high]&[+back]} = {u} {[+high]&[+low]&[+front]&[+back]} = L

Out of the 16 possible conjunctions of features, there are 7 distinct sets of segments. These are
the natural classes. They are {a, i, u}, {a, u}, {i, u}, {a}, {i}, {u}, L. These 7 sets are partially
ordered by the following set containment relationships.

(15) {a, i, u} J {a, u}, {i, u};
{a, u} J {a}, {u};
{i, u} J {i}, {u};
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{a}, {i}, {u} J L

Note that not all set containment relationships are given in (15). Relationships which can be
deduced by transitivity are omitted. For example, {a, i, u} J {u}, which can be deduced from {a,
i, u} J {a, u} and {a, u} J {u}.

A LATTICE is a partial ordering of the natural classes of segments which are possible
given a featural representation. Figure 2.1 shows the lattice of the three vowel inventory
graphically. Each node in the lattice is a natural class, and the set of features and segments which
the node denotes are shown above and below the node, respectively. Nodes are ordered from top
to bottom by size. The top node of the lattice represents the entire inventory, and the bottom node
is the empty set. The row of nodes just above the bottom are the natural classes containing the
individual segments. The features which denote these nodes are the features of the segments.
Lines connecting nodes indicate set containment. Note that, as in (15), not all set containment
relationships are indicated by lines, those which can be deduced by transitivity are excluded.

Figure 2.1: Lattice of the three vowel inventory.

There is a dualism between sets of segments (natural classes) and sets of features in the
lattice. The hierarchical set containment relationship between the natural classes corresponds to
an inheritance relation for the features that define those natural classes. For example, the natural
class {u} is {[+back]&[+high]}. It is contained by the natural class {i, u}, which is {[+high]} and
by the natural class {a, u} which is {[+back]}. The natural class {u} inherits the feature [+back]
from the natural class {a, u} and it inherits [+high] from {i, u}. Through set containment and
feature inheritance, the lattice represents redundancy structurally. For example, {[+front]} = {i}
is contained by {[+hi gh]} = {i, u}. Thus, every segment which is [+front] is a member of
{[+hi gh]}, in other words [+front] < [+high]. Featural redundancy can be ‘read off of’ the lattice. 

The redundancy hierarchy explicitl y represents the natural class structure of the segment
inventory, given the feature assignments. Naturally, given different feature assignments, different
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 To reduce visual clutter, inherited features have been removed from the display of the6

lattice. For example, the natural class {a} has features [+low], [+back], and [+non-round].
However, [+non-round] and [+back] are inherited from {a, i} and {a, u} respectively, and so are
not displayed at the {a} node, though they are present. In general, lattices will be displayed in the
thesis this way for clarity.

natural classes may result. For example, consider the effect of characterizing the three vowel
inventory using rounding in addition to backness. Adding the feature [+round] in this example
does not alter the hierarchy. In this case, {[+round]} = {u} is not a new natural class, so no
additional nodes or containment relations are created by the additional feature. However, if we
were to add the feature [+non-round], we would define a new natural class: {a, i}. In effect,
[+round]/[+non-round] adds a new dimension of contrast in the phonology. The lattice of the
three vowel inventory which includes [+non-round] is given in Figure 2.2.6

Figure 2.2: Lattice of the three vowel inventory, with [+non-round].

With addition of [+non-round], the redundancy hierarchy contains all of the logically
possible natural classes for {a, i, u}. There is thus an upper bound on the number of features
which can affect the natural class structure of the language, where adding additional features to
the lattice does not change it. This property of the redundancy hierarchy is desirable in the
creation of a similarity metric for segments, as it puts a limit on the number of features which are
relevant to similarity based on the segment inventory of the language. In the general case, not all
sets of segments are natural classes, so the set of features is further constrained.

The redundancy hierarchy represents the system of natural classes. The representation of a
segment in structured specification is the sub-lattice representing all natural classes which
contain that segment. Figure 2.3 shows the segment lattices for the three vowel inventory from
Figure 2.1. Note that the redundancy relationships are obvious when the segment lattices are
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examined: [+low] < [+back] and [+front] < [+high].

Figure 2.3: Segment lattices of the three vowel inventory.
 

The redundancy hierarchy also explicitl y represents the archisegments. The natural
classes which contain more than one segment are archisegments. They are nodes which are not
sufficiently specified to individuate a particular segment.

The redundancy hierarchy reveals a serious inadequacy of current proposals to use
monovalent feature assignments to represent the ‘inertness’ of certain features, so-called TRIVIAL

UNDERSPECIFICATION or INHERENT UNDERSPECIFICATION (e.g. Archangeli & Pulleyblank 1994,
Lombardi 1991, Steriade 1995). These proposals contrast from radical and contrastive
underspecification (Archangeli 1984, Steriade 1987) in that the inert features are never present in
the representation. In radical and contrastive underspecification, feature blanks are filled in by
rule, leading to fully specified surface forms.

Consider, for example, the use of privative [nasal] and [voiced] features, as in the feature
matrix in (16), to capture the lack of phonological processes which refer to [-nasal] and [-voice].
Such feature assignments fail to render all segments distinct (Broe 1995).

(16) /t/ /d/ /n/
[stop] + + +
[voiced] + +
[nasal] +

Figure 2.4 shows the lattice for the corresponding redundancy hierarchy. The lattice
reveals that there is no natural class containing /t/ distinct from /d/ or /n/, and similarly that /d/
has no natural classes distinct from /n/. There is no way based on these feature assignments to
distinguish /t/ from the archi-stop. The problem is that the set of features of /t/ are a proper subset
of the sets of features of /d/ and /n/, and their feature sets are thus non-distinct.
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Figure 2.4: Hierarchy of non-distinct segments.

The lack of a feature specification does not create a contrasting property, since I have
assumed monovalent features and cannot refer to blanks. In order to avoid confounding
completely specified segments with archisegments, the representation must contain a sufficient
number of contrastive features to INDIVIDUATE  all of the segments (Broe 1995; Frisch, Broe, &
Pierrehumbert 1995). I here define a segment to be individuated in a segment inventory by a
feature matrix if it is present as the sole member of a natural class in the redundancy hierarchy
generated by that feature matrix. Equivalently, given the dualism between features and natural
classes, a segment is individuated in a particular segment inventory by a feature matrix if the
features of that segment are not a subset of the features of any other segment.

In order to individuate /t/, /d/, and /n/, there must be a feature possessed by /t/ that is not
possessed by /d/ and /n/, and a feature possessed by /d/ that is not possessed by /n/. The simplest
solution, shown in (17), reconstructs the bivalent distinctions of traditional feature specifications,
using notationally equivalent monovalent features. Recall that in the general case the problem is
not equivalent to the use of bivalent oppositions. While any bivalent specification can be given
an equivalent monovalent specification, the reverse is not true. Note that many contrasts are
indeed bivalent, which is one reason why bivalent features were so attractive in the first place,
but that we do not want bivalency imposed on us by the representational system.

(17) t d n
[stop] + + +
[voiced] + +
[voiceless] +
[nasal] +
[oral] + +

The representation of the phonological inventory using features and natural classes does
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 The division of ‘place of articulation’ features into articulator features and features7

representing point of contact has not been proposed to my knowledge, though Keating (1991)
does note the difference between the passive and active articulatory status of [coronal] and
[anterior]. This is basically the classification system used by Ladefoged & Maddieson (1996).
Such a division might be useful in contrasting phonological assimilation processes, which cause
wholesale changes in both articulator and point of contact, with coarticulation processes, which
are gradiently influenced by points of contact but generally do not affect the active articulator.

not treat the knowledge required to classify phonological categories in a special way. Any
domain where objects can be defined on the basis of distinctive properties could also be
represented using the redundancy hierarchy and lattices. In general, work in cognitive psychology
has focussed on constructed feature sets which are orthogonal, so that there is no redundancy. It
is hoped that applying the formally coherent representation of redundancy using structured
specification to create a redundancy sensitive metric of similarity in this thesis will encourage
work which examines the effects of redundant versus distinctive information in general
cognition.

2.3 Representation of the English Consonant Inventory

The feature assignments I use for the English consonant segments are given in (18). As
discussed above, all features are monovalent features. The feature assignments were made with
three goals in mind. First, I attempted to represent the natural classes of English consonants.
Many of the features are thus familiar ones from SPE and Jakobson, Fant, & Halle (1952).
Second, the features are based on articulatory or acoustic properties. While articulatorily based
features have been the standard, Stevens & Keyser (1989) discuss a number of acoustic correlates
of many of the features used here. Third, all segments had to be individuated. The feature
inventory is thus rich enough to distinctively identify every segment. The classifications
presented in Ladefoged & Maddieson (1996) were used as an overall guide.

The features in (18) have been divided into dimensions of contrast. These are second
order features which classify the features into ARTICULATOR, PLACE, STRICTURE, MANNER, and
LARYNGEAL features. These classes could equally be represented hierarchically using feature
geometry, and the second order classes themselves can be grouped into SUPRALARYNGEAL and
ROOT classes. Within the classes, some features cross-classify the entire inventory and other
features sub-classify subsets of segments (Stevens & Keyser 1989). Many features adopted from
Stevens & Keyser (1989) are used over smaller subsets of segments than originally proposed,
taking advantage of the monovalent classification system which is not restricted to bivalency and
allows sub-classification.

The ARTICULATOR features correspond to the active (supralaryngeal) articulators for the
segment (Sagey 1986). The PLACE features are the points of contact for the active articulators.
They can be thought of either as sub-classifying the ARTICULATOR features or as independently
cross-classifying the entire inventory.  The STRICTURE features roughly characterize the degree of7

constriction of the vocal tract. The [obstruent] and [sonorant] features cross-classify the
inventory and are sub-classified by the [stop] and [continuant] features and [glide] and
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[consonantal] features, respectively. The MANNER features further sub-classify the stops,
continuants, and consonantal sonorants. Finally, the LARYNGEAL features contain the traditional
voicing contrast and the additional [spread glottis] feature for /h/ (Halle & Stevens 1971).
Interestingly, the [spread glottis] feature is necessary to individuate /h/, since /h/ has no
(supralaryngeal) ARTICULATOR or PLACE features.

(18)  a. ARTICULATOR features:
S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

labial + + + + + + +
coronal + + + + + + + + + + + + + +
dorsal + + +

b. PLACE features:
S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

bilabial + + + + +
dental + + + +

alveolar + + + + + + +
palatal + + + + +

velar + + +

c. STRICTURE features:
S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

obstruent + + + + + + + + + + + + + + + + +
sonorant + + + + + + +

stop + + + + + + + + + +
continuant + + + + + + + + +

glide + +
consonantal + + + + +

d. MANNER features:
S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

oral + + + + + +
affricate + +
strident + + + + + +

distributed + + + + +
lateral +
rhotic +
nasal + + +

e. LARYNGEAL features:
S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

voice + + + + + + + + + + + + + + +
voiceless + + + + + + + + +

spread glottis +

There is a well defined redundancy hierarchy for the English consonants. Displaying such
a hierarchy is impractical, however, as it is extremely large and complex. Instead, I present here
three separate lattices, one for each active articulator. Many of the redundancy relationships are
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present in the articulator lattices, so their examination is useful. These lattices provide the reader
with additional examples of redundancy hierarchies, which are at the core of the theory of
structured specification. Finally, lattices analogous to these are used in chapter 5 to compute the
similarity of homorganic consonants in Arabic for the OCP-Place constraint.

The simplest articulator sub-lattice for English is the dorsal lattice, shown in Figure 2.5.
Due to font limitations of the graphics routines, the velar nasal /1/ is ‘ng’ in the lattice. Recall
that inherited features are omitted from the display to reduce clutter, and that set containment
relationships which can be deduced from transitivity are also implicit. For example, the {g} node
is not featureless, it inherits the features [+obstruent] and [+oral] from the {g, k} node, the
feature [+voice] from the {g, ng} node, as well as the features [+dorsal], [+velar], and [+stop]
from the {g, k, ng} node.
Figure 2.5: Lattice of the English dorsal consonants.

The dorsal lattice reveals the well-known redundancy relationship [+sonorant] <
[+voice], and the equally valid but less often mentioned relationship [+voiceless] < [+obstruent].
This lattice shows there are also a number of predictable relationships given [+dorsal]. Given
[+dorsal], we can predict [+stop] and [+velar]. Also, given [+dorsal], [+sonorant] @
[+consonantal] @ [+nasal] and [+obstruent] @ [+oral]. Thus, the use of sub-lattices like the
dorsal lattice explicitl y represents that the contrastiveness of a feature is context dependent.
These relationships do not hold in the other articulator sub-lattices. Contrastive
underspecification (Steriade 1987) would omit some of these features under just these
circumstances. I show in chapter 5 that this facet of structured specification captures crucial
differences in similarity effects between place of articulation classes in the OCP-Place constraint
(Frisch, Broe, & Pierrehumbert 1995; cf. Pierrehumbert 1993).

The labial articulator sub-lattice is more complex than the dorsal lattice, due to the larger
inventory of labials in English. The labial lattice is shown in Figure 2.6, on the following page.
This lattice reveals a reciprocal dependency between PLACE features and both STRICTURE and
MANNER features among the labials: the stops are bilabial and the fricatives are labio-dental.
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Also, the [+sonorant] < [+voice] and [+voiceless] < [+obstruent] relationships are repeated here.
The lattice of coronal consonants is the most complex. This lattice is shown in Figure 2.7,

two pages below. The segments /7��'��6��=��W6��G=/ are shown as ‘th, dh, sh, zh, tsh, dzh’. In
addition, the segments corresponding to each natural class, except for the bottom most row, have
been left out. They can be deduced from the set containment relationship. Redundancy
relationships between features are still represented. Once again, [+sonorant] < [+voice] and
[+voiceless] < [+obstruent] can be found. The other redundancy relationships in the lattice
primarily reflect the sub-classification. In this lattice, as with the labials, [+distributed] @
[+dental], indicating that this particular feature pair represents a clear case where articulatory and
acoustic features have a one-to-one relationship.
Figure 2.6: Lattice of the English labial consonants.
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Figure 2.7: Lattice of the English coronal consonants.
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CHAPTER 3
Similarity of Phonological Segments

Features represent the degree of similarity between two segments. If two segments share a
feature, they pattern together for any phonological phenomena that depend on that feature.
Further, if features are grounded in articulatory or auditory contrast, then there is a degree of
‘superficial’ similarity between segments that share a feature. Psycholinguists typically use
simple feature counting in quantitative arguments for similarity effects (e.g. Shattuck-Hufnagel &
Klatt 1979) and have compared different feature representations by comparing their predictions
for similarity (e.g. van den Broeke & Goldstein 1980, Stemberger 1991b). In this chapter, I
present a model of similarity which has significant empirical and conceptual advantages over
feature counting models.

There is a large body of work on similarity in the cognitive psychology literature. One
very influential model which computes similarity based on features is the FEATURE-CONTRAST

MODEL (Tversky 1977, Tversky & Gati 1982). I adopt a variant of the feature-contrast model to
compute similarity in this thesis. The model I adopt computes similarity using the natural classes
of the redundancy hierarchy (Frisch, Broe, & Pierrehumbert 1995). Thus, features still play a role
in determining similarity, but relations between features influence similarity as well. Computing
similarity using the redundancy hierarchy takes into account the distinctive or redundant status of
a feature. Redundant features have less of an influence on similarity than distinctive ones (Frisch,
Broe, & Pierrehumbert 1995).

In computing similarity over the redundancy hierarchy, conjunctions of features in
addition to individual features contribute to the determination of similarity. Conjunctions of
features have been shown to influence similarity judgements (Hayes-Roth & Hayes-Roth 1977;
Gluck & Bower 1988; Goldstone, Medin, & Gentner 1991; see Goldstone 1994a). Connectionist
or spreading activation models of similarity can capture the influence of conjunctions of features
(Gluck & Bower 1988, Goldstone 1994a). The metric of similarity I adopt is a closed form
alternative to connectionist models for computing the similarity of segments.

Section 3.1 introduces the feature-contrast model (Tversky 1977, Tversky & Gati 1982)
and the model of similarity based on the natural classes of the redundancy hierarchy (Frisch,
Broe, & Pierrehumbert 1995), showing that they are closely related in general form. In section
3.2, I present some advantages of the natural classes model by demonstrating that it is sensitive to
the distinctive/redundant status of features, and that it models the effect that feature conjunctions
have on similarity. I also review some general arguments against the use of similarity as a basis
for categorization and show that the natural classes model handles these problems in a natural
and non-arbitrary way. In combination with the general applicability of the redundancy hierarchy
to broad cognitive categories, like natural kind classes, the natural classes model of similarity is a
genuine alternative for cognitive psychology. In section 3.3, I present the similarity of English
consonant pairs, based on the feature assignments from chapter 2. Section 3.4 compares
similarity in the natural classes model with the activation level of a spreading activation network
of segments and features, showing a close relationship between the two.
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3.1 The Feature-Contrast Model and Natural Classes Model

Intuitively, determining similarity between objects (segments) based on a set of properties
(features) involves comparing how many properties are shared by the objects and how many
properties are not. Computational models of similarity use analogous principles, computing
similarity as a function of shared and non-shared features. In this section, I present the Frisch,
Broe, & Pierrehumbert (1995) model of similarity between segments. This model is an
adaptation of the model of similarity used in Pierrehumbert (1993) that uses natural classes
instead of features. Before I proceed, I present a frequently used model of similarity in the
cognitive psychology literature. This model is more general than the model I adopt, and thus
highlights some of the assumptions in the natural classes model.

3.1.1 Modeling similarity using features.

Tversky (Tversky 1977, Tversky & Gati 1978) introduced a general feature counting
metric for similarity called the feature-contrast model. The feature-contrast model computes
similarity as a function of shared and non-shared features between two objects. The general
equation for the feature-contrast model is given in (19).

(19) similarity(X, Y) = F[� f(X � Y) - � f(X - Y) - � f(Y - X)], 
where F is an increasing function,
�, �, � are positive constants,
f is a measure function of the features,
X � Y denotes the features shared by X and Y, 
X - Y denotes the features in X but not in Y, and
Y - X denotes the features in Y but not in X.

The function F allows flexibility in the relationship of the model to the data (linear, exponential,
logarithmic, etc.). The constants �, �, � are used to model asymmetries in similarity data, and to
influence the relative weight of feature matches against feature mismatches. The function f
converts a set of features to a quantitative value. It is generally just the size of the set of features,
and so is merely a feature count.

Pierrehumbert (1993) computed the similarity of segments using a normalized feature
model. In her model similarity is defined to be:

(20)

This model shares many basic properties with the Frisch, Broe, & Pierrehumbert (1995) model.
The Pierrehumbert (1993) model is symmetric, and the self-similarity of all segments is 1. In
addition, the range of similarity values is [0,1]. The Pierrehumbert (1993) model is a special case
of the feature-contrast model which is discussed by Tversky (1977). We can derive the
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Pierrehumbert (1993) model by setting the weights to � = 1, � = � = 0, letting F(x) = x, and
dividing by a normalizing factor.

(21)

3.1.2 Similarity in the redundancy hierarchy.

In comparison to the feature-contrast model, the similarity model of Frisch, Broe, &
Pierrehumbert (1995) is relatively simple. This model computes similarity over the redundancy
hierarchy, and thus determines similarity based on natural classes rather than features. There is,
of course, a close relation between the two, as single features do pick out natural classes, and the
other natural classes are the result of conjunctions of features. The natural classes model is
identical to the similarity model of Pierrehumbert (1993), but it counts natural classes instead of
features. I show in section 3.2 that there are certain advantages of the natural classes model due
to the use of the redundancy hierarchy. The natural classes similarity model I employ is:

(22)

There are two properties of the feature-contrast model which the similarity model of
Frisch, Broe, & Pierrehumbert (1995) does not possess. First, the feature-contrast model allows
the ‘self-similarity’ of objects to be different. The feature-contrast model subtracts the measures
of feature mismatches from the measure of feature matches. The model is not normalized, and so
the size of the feature set can directly influence similarity. For example, Tversky (1977)
presented schematic-face stimuli to subjects for direct similarity judgements. He found that when
subjects were comparing identical faces, the more complex stimuli that had additional features
were given higher self-similarity. More complex schematic-faces had higher similarity to
themselves than simple schematic-faces did. In the natural classes model, the self-similarity of
every segment is one, by assumption, and similarity ranges over [0,1].

The second property of the feature-contrast model which is not possessed by the Frisch,
Broe, & Pierrehumbert (1995) model is that the feature-contrast model can account for
asymmetries in similarity. Asymmetries can be modeled by changing the weighting coefficients �
and �. If � > �, then the properties possessed by X but not by Y are weighted more heavily than
the properties possessed by Y but not by X. According to Tversky (1977), when people rate the
similarity of item X to item Y directly (e.g. by answering the question “How similar is X to Y?”),
item X serves as the subject of the comparison, and its properties become more salient. This
increased salience is modeled by weighting. Asymmetries of this kind were found in the
schematic-face stimuli (Tversky 1977). In some of the stimuli, subjects judged the similarity of
faces with many features (f(X) large) to analogous faces with fewer features (f(Y) small). Subjects
rated the complex faces as less similar to the simple faces than the reverse. With � > �,
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similarity(X, Y) is reduced more by f(X - Y) than similarity(Y, X). In an analogous task with more
natural stimuli, subjects rated the similarity of countries. Subjects rated less prominent countries
(e.g. North Korea) as more similar to prominent countries (e.g. China) than the reverse (Tversky
& Gati 1978).

In this thesis, I primarily analyze data from two sources: phonological speech errors
between consonants, and the OCP-Place constraint, which restricts the number of similar
homorganic consonants in a word. In the case of phonological speech errors, the question of self-
similarity is moot. If errors do occur between pairs of identical consonants, there is no clear
evidence for it in the phonemic output. Differences in self-similarity may be an issue in the OCP-
Place constraint, as the constraint is strongest for consonants which are maximally similar.
However, as we will see in chapter 5, since there are very few occurrences of identical consonant
pairs of any kind, the crucial data are sparse. Thus, I feel that the natural classes model, which is
normalized with respect to the total number of natural classes, is sufficient to model these data.

By contrast, there are almost certainly principled asymmetries in the speech error and
OCP-Place data which are not be captured by the natural classes model. In both cases, the
currently available data are not likely to reveal statistically significant asymmetries. The feature-
contrast model can be used as the basis for a natural classes model of similarity which can
capture asymmetries. We could count natural classes instead of features in the feature-contrast
model. In equation (19), let f(X � Y) be the natural classes shared by X and Y, let f(X - Y) be the
natural classes of X but not Y, and similarly for f(Y - X). Obviously, this metric could model
asymmetric similarity and differences in self-similarity. In this thesis, I do not argue for the exact
form of the metric. Rather, I argue for the use of the redundancy hierarchy as the basis of
similarity.

In order to analyze such asymmetries, controlled experiments are needed to generate
additional data. For example, Stemberger (1991a), discussed in chapter 9, found only two
significant asymmetries in speech error rates between consonants in his corpus. He presents a
series of experiments investigating asymmetries in speech error rates. In order to test for
asymmetries in OCP-Place effects, experimental work on implicit phonological knowledge such
as Pierrehumbert (1994) and Treiman et al. (1996) could be applied. A thorough investigation of
asymmetries in similarity effects is beyond the scope of this thesis. The data I analyze are
sufficiently symmetric that significant generalizations can be made based on a symmetric
similarity model. The study of a natural classes version of the feature contrast model is also left
as an open research topic. Such a study would require a larger data set than what is considered in
this thesis in order to estimate the additional parameters accurately.

I next compute sample similarity values for the three vowel inventory. The basic feature
matrix for the three vowel inventory used in chapter 2 is repeated in (23a). The additional
rounding features, also used in chapter 2, are given in (23b). The lattices based on the features
without and with rounding from chapter 2 are repeated in Figure 3.1. Note that the lattice without
rounding features displays all features, while the lattice with rounding features displays only non-
inherited features. Similarity values for the three vowels with and without rounding features for
the two lattices are given in Table 3.1. Since in this model, similarity is symmetric, only the
lower triangular half of the table is filled.
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(23) a. /a/ /i/ /u/
[high] + +
[low] +
[front] +
[back] + +
b.
[round] +
[non-round] + +

Figure 3.1: Lattices of the three vowel inventory, without and with rounding features.

Table 3.1: Similarity of {a, i, u} using natural classes, without and with rounding.

Without rounding With rounding

/a/ /i/ /u/ /a/ /i/ /u/

/a/ /a/
shared 3 shared 4

non-shared 0 non-shared 0

similarity 1 similarity 1

/i/ /i/
shared 1 3 shared 2 4

non-shared 4 0 non-shared 6 0

similarity 0.2 1 similarity 0.33 1

/u/ /u/
shared 2 2 3 shared 2 2 4

non-shared 3 3 0 non-shared 6 6 0

similarity 0.4 0.4 1 similarity 0.33 0.33 1
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We can compare these similarity values to what would be computed by the Pierrehumbert
(1993) model, and a simple parameterization of the feature-contrast model, given in (24). Values
are shown in Table 3.2.

(24) similarity(X,Y) = f(X � Y) - f(X - Y) - f(Y - X)

Table 3.2: Similarity of {a, i, u} using features, without and with rounding features.

Without rounding With rounding

Pierrehumbert
model

/a/ /i/ /u/ /a/ /i/ /u/

/a/ 1 /a/ 1

/i/ 0 1 /i/ 0.2 1

/u/ 0.33 0.33 1 /u/ 0.2 0.2 1

Feature-
contrast model

/a/ /i/ /u/ /a/ /i/ /u/

/a/ 2 /a/ 3

/i/ -4 2 /i/ -3 3

/u/ -1 -1 2 /u/ -3 -3 3

Comparing the tables, we find (apart from differences in magnitude) that the three metrics
of similarity make nearly identical predictions. In the case without rounding, the similarity of /a/
to /i/ is less than the similarity of /a/ to /u/ and /i/ to /u/. In the case with rounding, the similarity
of all non-identical pairs is the same. Comparing across rounding cases, we see that the similarity
of /a/ to /i/ with rounding is between the similarity of /a/ to /i/ without rounding and the similarity
of /a/ to /u/ and /i/ to /u/ without rounding for all three metrics. There is one difference. The
‘without rounding’ and ‘with rounding’ cases differ in the total number of features each segment
possesses. From Tversky’s (1977) perspective, the ‘with rounding’ vowels are more complex
than the ‘without rounding’ vowels, and have higher self-similarity. The Pierrehumbert (1993)
model and the natural classes model of Frisch, Broe, & Pierrehumbert (1995) have self-similarity
of 1 in all cases by assumption.

3.2 Advantages of the Natural Classes Model

A simple case, like the three vowel inventory, is not sufficient to highlight the differences
between the natural classes model and metrics of similarity based directly on features. In this
section, I present two advantages of the natural classes model. First, the natural classes model
incorporates the distinctive or redundant status of a feature into the similarity computation.
Redundant features influence similarity less than non-redundant features. The effect of
redundancy is also gradient and context dependent. Second, the natural classes model
incorporates a ‘synergistic’ effect of multiple feature matches into the similarity computation that
has been found in experiments involving similarity judgments and categorization.
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3.2.1 The problem of features and redundancy.

It has been argued that the cognitive notion of similarity is only well defined if the
computation of similarity can be based in a principled manner on a reasonable and relevant set of
features (Goodman 1972; Tversky 1977; Medin, Goldstone, & Gentner 1993; see Goldstone
1994b for a review). If the computation is only based on counting individual features, the type
and number of features used has a great deal of influence on the computation. This was evident
in the similarity computations for {a, i, u} using the feature-contrast model above. In the case
where rounding features are included, self-similarity is greater than when they are not. 

Recall that the system of natural classes is only altered by adding features which create
new natural classes, in other words features which are contrastive within the set of segments. The
set of relevant features is thus based on attributes across the entire inventory and not just for one
individual segment. There are, at most, 2  natural classes that can be created out of a set of nn

objects, so there is a strict upper bound on the number of features that can affect similarity in the
system. In phonological classification, as the number of features increases, the level of
redundancy in the feature matrix also increases.

Tversky (1977) demonstrates experimentally that ‘diagnostic factors’ influence the effect
a particular feature has on similarity. He writes:

The diagnostic factors are highly sensitive to the particular object set under study.
For example, the feature “real” has no diagnostic value in the set of actual
animals, since it is shared by all actual animals and hence cannot be used to
classify them. This feature, however, acquires considerable diagnostic value if the
object set is extended to include legendary animals, such as a centaur, a mermaid,
or a phoenix. (p. 342) 

Tversky’s diagnostic and non-diagnostic features are equivalent to the distinctive and redundant
features in linguistic theory. Computing similarity over the redundancy hierarchy gives
differential weight to features based on redundancy, providing a model of Tversky’s diagnostic
factors. Contrastive features have more weight than totally redundant ones.

By computing similarity over the natural class structure, three degrees of redundancy are
differentiated. The first case is a TOTALLY REDUNDANT feature. A totally redundant feature adds
no new natural classes to the redundancy hierarchy. The feature [+round] in the three vowel
inventory has this property. The addition of a totally redundant features does not affect similarity.
Totally redundant features are not independently contrastive. Another pair of totally redundant
features are the ARTICULATOR feature [+dorsal] and the PLACE feature [+velar] in English. In
English, all consonants articulated with the tongue dorsum make a constriction in the velar
region. The two features [+dorsal] and [+velar] influence similarity like a single feature. In other
words, the two features are a single contrastive unit, and they are present in the exact same
natural classes in the lattice. More formally, for features [x] and [y], let n([x]) be the set of
natural classes which are [+x]. Let n([+y]) be the set of natural classes which are [+y]. Then [x]
and [y] are totally redundant if and only if n([x]) = n([y]).

A feature can also be PARTIALLY REDUNDANT. A classic example of partial redundancy is



{}

{}

{}

{b}

{}

{f}

{son}

{m}

{}

{p}

{}

{v}

{}

{b, m}

{}

{b, p}

{}

{b, v}

{vless}

{f, p}

{cont}

{f, v}

{stop}

{b, m, p}

{voice}

{b, m, v}

{obs}

{b, f, p, v}

{}

{b, f, m, p, v}

35

found in the voicing of sonorants. Consider the feature specifications in (25). The feature
[+voice] is redundant for sonorants, but [+voice] is contrastive for obstruents. Similarly
[+obstruent] is redundant for voiceless consonants, but contrastive among voiced ones.

(25) /p/ /b/ /f/ /v/ /m/
[sonorant] +
[obstruent] + + + +
[stop] + + +
[continuant] + +
[voiced] + + +
[voiceless] + +

Partially redundant features have a reduced effect on similarity. Consider the redundancy
hierarchy in Figure 3.2. While /f/ is a member of five natural classes, /v/ is a member of six
natural classes. Since [+voiceless] consonants are always obstruents, the set {[+obstruent]}H
{[+voiceless]}. When determining similarity between voiceless obstruents, they will have a
shared natural class due to the [+voiceless] feature, and a shared natural class due to the
[+obstruent] feature. By contrast, when determining similarity between voiced obstruents, they
will have a shared natural class for [+voice] and a shared natural class for [+obstruent], as well as
a shared natural class for [+voice]&[+obstruent]. Thus, all other things being equal, the voiceless
obstruents are less similar to one another than the voiced obstruents. In chapter 4, I show that this
is the correct prediction based on speech error data, which are known to depend on similarity.
The features [+low] and [+front] in the three vowel inventory are another example of partially
redundant features. 

Figure 3.2: Redundancy hierarchy including partially redundant features.

For partially redundant features, the presence of one feature implies the other, so the set



{}

{}

{}

{a}

{}

{ae}

{}

{i}

{}

{u}

{low}

{a, ae}

{back}

{a, u}

{front}

{ae, i}

{high}

{i, u}

{}

{a, ae, i, u}

36

 Voiceless sonorants are very rare (Ladefoged & Maddieson 1996), and thus presumably8

highly marked. Recall that markedness is not encoded in the redundancy hierarchy, it is encoded
in a separate markedness hierarchy, and thus markedness has no direct effect on similarity as it is
computed in this thesis. However, see chapter 9 for some indirect effects of markedness via
frequency. I leave open the possibility that the markedness hierarchy is also a factor in
determining similarity.

of natural classes which contain one feature is a subset of the set of natural classes containing the
other. If features [x] and [y] are partially redundant with respect to one another, then either n([x])
G n([y]) or n([y]) G n([x]).

Features like [+voice] and [+obstruent] in the previous example, or [+high] and [+back]
in the three vowel inventory, are NON-REDUNDANT with respect to one another. Note that
redundancy can only be determined with respect to a particular segment inventory and feature
matrix. The form of the redundancy hierarchy, and consequently the similarity values, change on
a context dependent basis (see below). Some languages employ voiceless sonorants, and in those
languages, [+sonorant] is a non-redundant feature.  In a four vowel inventory {a, æ, i, u}, [+low]8

and [+front] are non-redundant. The lattice of the four vowel inventory is shown in Figure 3.3.

Figure 3.3: Redundancy hierarchy with no redundant features.

 Note that every feature in this lattice defines a natural class of two segments, and no
feature is ordered with respect to any other by set containment. Non-redundant features have no
hierarchical relationship with respect to one another. If features [x] and [y] are non-redundant
with respect to one another, then neither n([x]) I n([y]) or n([y])I n([x]). As we saw above, non-
redundant features have the greatest effect on similarity, as they contribute natural classes based
on their individual features, as well as conjunctions with other features.

Goodman (1972) remarks that the context dependence of similarity weakens the
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explanatory value of similarity so much that it is no longer needed. For example, when we say ‘X
is similar to Y with respect to Z’, he claims that the ‘with respect to Z’ has all of the explanatory
power. The natural classes model of similarity, along with the classification of features using
category-valued features, provides a principled basis upon which to reject Goodman’s argument.
For example, we can compute the similarity of consonants with respect to manner of articulation
by creating a sub-lattice of the inventory using the STRICTURE and MANNER features. The ‘with
respect to’ part fixes the relevant feature classes, and similarity within the sub-lattice is computed
normally. The contrastiveness and redundancy relationships between features is different in
different domains, but the means of computing similarity is independent of the domain. The
general notion of similarity still has explanatory power, even though it is context dependent.

3.2.2 Synergistic effects in similarity.

We saw above that non-redundant features increase similarity in a more than linear
manner. When segments share two non-redundant features, they share three natural classes.
When segments share three non-redundant features, they share seven natural classes: {[+F1]},
{[+F2]}, {[+F3]}, {[+F1]&[+F2]}, {[+F1]&[+F3]}, {[+F2]&[+F3]}, {[+F1]&[+F2]&[+F3]}.
When segments share n non-redundant features, they share 2 -1 natural classes. n

Synergistic effects of multiple feature matches on similarity have been found in
experiments on categorical cue learning (Hayes-Roth & Hayes-Roth 1977, Gluck & Bower 1988)
and in direct similarity judgments (Goldstone, Medin, & Gentner 1991). The synergy of multiple
feature matches has been modeled using a SIMPLE AND CONJUNCTIVE FEATURES MODEL (see
Goldstone 1994a). This model counts features and conjunctions of features toward similarity.
This is identical to the natural classes model in the case of non-redundant features. The natural
classes model has an advantage over the simple and conjunctive features model when
redundancy is encountered among the features.

This synergistic property has also been modeled using network of spreading activation
models of similarity (Gluck & Bower 1988, Goldstone 1994a). The lattice representation
provides a close match to the implementation of similarity by spreading activation. An explicit
comparison of similarities and differences between the natural classes similarity model and a
spreading activation model is made in section 3.4.

3.3 Similarity of English Consonants

In this section, I present computed similarity values based on the natural classes model
for the English consonants. These computations are based on the feature specifications given in
chapter 2. The first example, as it was in chapter 2, is the dorsal consonants. Note that the
similarity of the dorsal consonants computed over this sub-lattice is different from the similarity
of the dorsal consonants when the redundancy hierarchy for the entire inventory is used (see
below). Computing similarity using the natural classes model over sub-lattices is a context
dependent measure of similarity, as noted above. Some features which are totally redundant in
the dorsal sub-lattice are either partially redundant or non-redundant in the hierarchy of the entire
inventory. For example, the features [+oral], [+sonorant], and [+consonantal] are not contrastive
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within the dorsal inventory but are contrastive in the coronals. The similarity of consonants over
the dorsal sub-lattice is given in Table 3.3.

Table 3.3: Similarity over the dorsal sub-lattice.

k g 1

k 1

g 0.4 1

1 0.2 0.4 1

Analogous calculations can be made for the more complex labial and coronal sub-lattices.
Similarity for these sub-lattices is given in Tables 3.4 and 3.5. Once again, similarity over the
sub-lattice is not identical to similarity over the entire inventory.

Table 3.4: Similarity over the labial sub-lattice.

p b f v m r w

p 1

b 0.42 1

f 0.33 0.15 1

v 0.18 0.33 0.38 1

m 0.23 0.46 0.08 0.15 1

r 0.17 0.31 0.09 0.18 0.6 1

w 0.18 0.33 0.1 0.2 0.5 0.63 1
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Table 3.5: Similarity over the coronal sub-lattice.

W G 7 ' V ] 6 = W6 G= O U Q \

W 1

G 0.4 1

7 0.19 0.10 1

' 0.11 0.2 0.36 1

V 0.3 0.15 0.31 0.16 1

] 0.17 0.33 0.15 0.33 0.36 1

6 0.13 0.07 0.31 0.16 0.47 0.2 1

= 0.08 0.14 0.15 0.33 0.2 0.45 0.36 1

W6 0.32 0.16 0.18 0.11 0.23 0.12 0.42 0.21 1

G= 0.17 0.33 0.10 0.2 0.11 0.23 0.2 0.45 0.38 1

O 0.12 0.21 0.08 0.15 0.11 0.21 0.05 0.1 0.05 0.1 1

U 0.12 0.21 0.08 0.15 0.11 0.21 0.05 0.1 0.05 0.1 0.75 1

Q 0.21 0.42 0.06 0.12 0.09 0.17 0.04 0.08 0.09 0.17 0.5 0.5 1

\ 0.06 0.1 0.08 0.17 0.05 0.1 0.11 0.22 0.12 0.22 0.3 0.3 0.21 1

Computing similarity over place of articulation sub-lattices is relevant for modeling OCP-
Place effects (Frisch, Broe, & Pierrehumbert 1995). In the case of Arabic, which I discuss in
detail in chapter 5, the contrastiveness of features has a crucial effect (Pierrehumbert 1993). For
example, /f/ and /m/ have a very strong cooccurrence constraint, while /�/ and /n/ have a very
weak one. The labial inventory consists only of {b, f, m}, while the coronal inventory contains 14
consonants. Among the coronals, [+stop], [+continuant], [+dental], [+alveolar], [+voice], and
[+voiceless] are all non-redundant. Among the labials [+stop], [+bilabial] and [+voice], as well
as [+continuant], [+dental], and [+voiceless], are mutually redundant. In the case of the coronals,
the cross-classification creates a large number of non-shared natural classes which reduce the
similarity of /�/ to /n/ relative to the similarity of /f/ to /m/.

Using the redundancy hierarchy derived from the feature specifications given in chapter 2
(which was not displayed as a lattice due to its size and complexity) and the natural classes 
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p b f v m t d 7 ' s z 6 = W6 G= k g 1 l r n w y h

p 1

b 0.4 1

f 0.26 0.13 1

v 0.15 0.3 0.38 1

m 0.19 0.39 0.07 0.15 1

t 0.3 0.14 0.1 0.06 0.06 1

d 0.14 0.28 0.05 0.11 0.11 0.39 1

7 0.11 0.06 0.43 0.19 0.03 0.2 0.11 1

' 0.07 0.12 0.19 0.39 0.06 0.12 0.23 0.38 1

s 0.1 0.05 0.18 0.1 0.03 0.3 0.15 0.4 0.2 1

z 0.06 0.11 0.09 0.19 0.06 0.17 0.33 0.19 0.44 0.37 1

6 0.1 0.05 0.18 0.1 0.03 0.18 0.1 0.4 0.2 0.58 0.24 1

= 0.06 0.11 0.09 0.19 0.06 0.11 0.2 0.19 0.44 0.24 0.57 0.37 1

W6 0.21 0.11 0.1 0.06 0.06 0.44 0.22 0.21 0.13 0.27 0.14 0.41 0.21 1

G= 0.11 0.22 0.06 0.11 0.11 0.22 0.47 0.11 0.24 0.13 0.28 0.19 0.44 0.39 1

k 0.44 0.19 0.14 0.08 0.08 0.35 0.16 0.13 0.08 0.11 0.06 0.11 0.06 0.25 0.13 1

g 0.21 0.42 0.08 0.16 0.15 0.17 0.33 0.07 0.15 0.06 0.13 0.06 0.13 0.14 0.27 0.39 1

1 0.09 0.15 0.04 0.09 0.37 0.07 0.13 0.04 0.08 0.04 0.07 0.04 0.07 0.07 0.13 0.17 0.33 1

l 0.04 0.07 0.04 0.08 0.17 0.11 0.19 0.08 0.17 0.11 0.22 0.07 0.14 0.07 0.13 0.05 0.09 0.24 1

r 0.1 0.19 0.07 0.14 0.44 0.09 0.16 0.06 0.13 0.09 0.18 0.06 0.11 0.06 0.11 0.04 0.07 0.17 0.56 1

n 0.06 0.12 0.03 0.06 0.26 0.19 0.38 0.06 0.13 0.09 0.18 0.06 0.11 0.12 0.24 0.07 0.14 0.33 0.53 0.4 1

w 0.14 0.25 0.09 0.19 0.44 0.03 0.06 0.04 0.08 0.04 0.07 0.04 0.07 0.04 0.06 0.05 0.09 0.18 0.17 0.42 0.12 1

y 0.04 0.07 0.04 0.09 0.13 0.07 0.13 0.08 0.17 0.07 0.14 0.12 0.23 0.12 0.21 0.05 0.09 0.18 0.40 0.29 0.27 0.25 1

h 0.15 0.08 0.47 0.21 0.04 0.12 0.06 0.41 0.19 0.23 0.11 0.23 0.11 0.13 0.07 0.19 0.1 0.06 0.06 0.04 0.04 0.06 0.06 1

T
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 Of course, this could be considered a sub-lattice of the lattice of the entire English9

segment inventory, including the vowels. The degree to which the vowel sub-lattice and the
consonant sub-lattice are independent depends on whether or not the same features are used for
vowels and consonants. This is an issue beyond the scope of this thesis.

similarity model, I computed the similarity of all English consonant pairs. This is a ‘context free’
similarity with no restriction to a sub-lattice.  Table 3.6 presents the pairwise similarity of the9

segments of English that I will be using in the analysis of speech errors in chapter 4. I believe
that roughly comparable similarity values would result from different feature assignments, but I
present evidence in chapter 4 that these feature assignments make a very good prediction of
speech error rates, which are a function of similarity (Nooteboom 1969, MacKay 1970, Fromkin
1971).

3.4 The Natural Classes Model and Spreading Activation

One of the ways in which synergistic effects of multiple feature matches on similarity
have been modeled is by the simple and conjunctive features model (see Goldstone 1994a). This
model is derived from a model of exemplar classification called  the PROPERTY-SET MODEL

(Hayes-Roth & Hayes-Roth 1977). In the property set model, exemplars are encoded as the set of
component properties and combinations of properties of the exemplar. Thus, each match in a
single feature or in a conjunction of features increases the likelihood of classifying two
exemplars as belonging to the same category. Similarity provides a natural basis for classification
in this way (Goldstone 1994b). More recent models of similarity and classification have
employed spreading activation or connectionist methods (Gluck & Bower 1988, Goldstone
1994a). In these models, activation (and in some models, inhibition) spreads bidirectionally
between nodes representing objects and properties over time. The degree of mutual activation
between objects indicates the degree of similarity. Once again, synergistic effects of feature
matches are found, as properties which activate the same object reinforce one another indirectly
via that object. In this section, I compare the predictions of the simple and conjunctive features
model, a simple spreading activation model, and the natural classes model.

It is clear that there is at least one difference between the natural classes model and the
models of spreading activation and the simple and conjunctive features model. The natural
classes model constrains the influence of features based on their relative contrastiveness. As
discussed above, there is a natural limit to the number of features which affect similarity in the
natural classes model and not all features weigh equally. I present evidence in chapters 4 and 5
that the natural classes model makes the correct prediction.

Consider the five hypothetical inventories of objects and features given in (26), chosen to
test other possible differences between the models. Inventories a, b, c, and d have a gradual
progression from having one natural class of segments to the point where every combination of
segments is a natural class. Inventories a, b, and e show a development from one shared natural
class between objects A and B, to three shared natural classes between A and B. Inventories a, b,
and e have increasing numbers of contrastive features shared by A and B.
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(26) a. F0 F1 F2 F3
A + +
B + +
C + +

b. F0 F1 F2 F3 F4
A + + +
B + + +
C + +

c. F0 F1 F2 F3 F4
A + + +
B + + +
C + + +

d. F0 F1 F2 F3
A + + +
B + + +
C + + +

e. F0 F1 F2 F3 F4 F5 F6
A + + + +
B + + + +
C + + +
D + +

Lattices corresponding to the redundancy hierarchies for these five inventories are shown
in figure 3.4. The lattices clearly reflect the changes in natural class structure. Lattices for
Inventories a, b, c, and d reveal increasing cross-classification. The lattices for Inventories a, b,
and e contain progressively more shared classes between A and B.
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Figure 3.4: Lattices for the five hypothetical Inventories a-e.
a. b.

c. d.
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e.

The network of spreading activation models of these inventories are based on the Dell
(1986) spreading activation model of phonological encoding. Each network has a set of nodes for
the objects A-D, and a set of nodes for the features F0-F6. If an object possesses a feature, the
nodes for the object and feature are bidirectionally connected. A constant proportion of the
activation of each node spreads to every other node to which it is connected in each time step. In
addition, activation decays by a constant proportion in each time step. I introduce the Dell (1986)
model of phonological encoding in chapter 4, and I defer the details of the spreading activation
model until then. Figure 3.5 shows the activation network for Inventory c.

Figure 3.5: Network of activation model of Inventory c.

Similarity in the network model is determined by assigning an arbitrary amount of
activation to one object (e.g. to A) and then letting the system spread activation for a fixed
number of time units. The activation of the other objects (e.g. B, C, and D) is a measure of how
similar they are to the originally activated object. In my simulations, I use 100 units of initial
activation, and let activation spread for six time steps, following the general characteristics of the
Dell (1986) model.

In the simple and conjunctive features model, similarity is computed by the following
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 In the implementation of the simple and conjunctive features model in Goldstone10

(1994a), each level of feature matching was given a coefficient so that the model could be used in
a regression model of experimental data. Since I am comparing gross characteristics of the
model, I treat all levels of feature matching equivalently.

formula:10

(27) Similarity = (number of single feature matches) + (number of feature pair matches) +
(number of feature triplet matches) + (number of feature quadruplet
matches)

In Inventories a-e, there are never more than a quadruplet of feature matches, so no higher order
terms are given. For example, consider the similarity of A to B in Inventory e. A has features
[+F1], [+F2], [+F3], [+F4]. B has features [+F1], [+F2], [+F3], [+F5]. There are three single
feature matches: [+F1], [+F2], [+F3]. There are three feature pair matches: [+F1]&[+F2],
[+F1]&[+F3], [+F2]&[+F3]. There is one feature triplet match: [+F1]&[+F2]&[+F3]. The
similarity of A to B is 3 + 3 + 1 = 7.

Table 3.7 compares the similarity of A to A, B, C, and D in the natural classes model,
spreading activation model, and simple and conjunctive features model. Each column gives
values for a different inventory. Each row shows a different similarity model.
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Table 3.7: Comparison of similarity of Inventories a-e in three models.

Model Inventory

Lattice a b c d e

A to A 1.00 1.00 1.00 1.00 1.00

A to B 0.33 0.50 0.40 0.33 0.60

A to C 0.33 0.25 0.20 0.33 0.40

A to D 0.20

Activation a norm a b norm b c norm c d norm d e norm e

A to A 3.12 1.00 4.37 1.00 4.37 1.00 4.49 1.00 5.95 1.00

A to B 1.13 0.36 2.38 0.55 2.42 0.55 2.51 0.56 3.97 0.67

A to C 1.13 0.36 1.21 0.28 1.34 0.31 2.51 0.56 2.63 0.44

A to D 1.34 0.22

SCFM a norm a b norm b c norm c d norm d e norm e

A to A 3 1.00 7 1.00 7 1.00 7 1.00 15 1.00

A to B 1 0.33 3 0.43 3 0.43 3 0.43 7 0.47

A to C 1 0.33 1 0.14 1 0.14 3 0.43 3 0.20

A to D 1 0.07

 The upper row shows natural class similarity. The middle row shows the amount of
mutual activation in the left side of the columns, and a normalized activation on the right.
Activation was normalized for each series by dividing all values by the activation from A to A
for that inventory. The bottom row shows similarity and normalized similarity in the simple and
conjunctive features model.

Examining the Inventories a-d, where the structure of the inventory develops from no
natural classes to all possible natural classes, we see that all models predict the same relative
levels of similarity between objects for Inventories a and b. In Inventories c and d, which have a
greater amount of cross-classification, the natural classes model gives relatively lower similarity
of A to B and A to C (compared to the similarity of A to A) than the activation model. The
simple and conjunctive features model agrees better with the natural classes model for Inventory
c, but it agrees better with the activation model for Inventory d. The natural classes model
diverges from the other models in the case where there is a large amount of cross-classification in
the inventory. Examining Inventories a, b, and e reveals that the natural classes model and the
spreading activation model are in close agreement, and neither is too distant from the simple and
conjunctive features model.

Overall, the three models generally agree. The major difference arose in the case where
there was a great deal of cross-classification in the inventory. The difference arises because the
natural classes model, unlike the spreading activation model or the simple and conjunctive
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features model, takes into account the differences as well as the similarities. When there are
many cross-classifying features, there are many non-shared natural classes, which reduces
similarity. There is evidence in favor of the way the natural classes model handles cross-
classification, mentioned above. Pierrehumbert (1993) noted that the cooccurrence restriction in
Arabic, OCP-Place, is stronger for {b, f, m} than it is for {d, s, n}. Presumably all the features
involved in contrasting {b, f, m} and {d, s, n} are the same. The difference is that there are many
more coronals in the Arabic inventory, but {b, f, m} are the only labials. The existence of
additional cross-classification in the coronals reduces the similarity among {d, s, n}, and thus the
OCP-Place constraint is weaker among the coronals. I discuss the Arabic case in detail in chapter
5.

I present additional data from phonological speech errors in English in chapter 4 which
show that the effect of redundancy on the natural classes model of similarity is supported. The
spreading activation model and simple and conjunctive features model do not differentiate the
effect of features based on redundancy, and are thus unable to model these effects. To the extent
that the models in this thesis can be represented by a spreading activation network, we do not
need to posit that native speakers know the equations used in the mathematical models. Rather,
the models are closed form approximations of a connectionist model of competence. It is thus
desirable to find a connectionist model with behavior similar to the natural classes model.

I discuss in several places in this thesis how the quantitative models might be
implemented in a connectionist/spreading activation network. Here I address the differences
between the natural classes model and the spreading activation model found so far. We saw
above that the models diverged when there was a great deal of cross-classification. I believe that
a network which has inhibition, in addition to activation, will behave very much like the natural
classes model. In a model with inhibition, the excessive mutual activation that was found in the
network with a great deal of cross-classification is damped. If there is no cross-classification,
then inhibition only plays a small role, and the revised model behaves much as it did in the
simulation above.

Though I did not explicitly test it here, I am certain that the natural classes model and the
spreading activation model would also differ in their treatment of redundancy. The natural
classes model gives lesser weight to redundant features in determining similarity. There is no
differentiation between features in the spreading activation model which would reduce the effect
of redundant features.  I believe that the redundancy effects can be represented in a more
complex connectionist network. A true connectionist network, unlike a simple spreading
activation model, is sensitive to the frequency of individual features and the frequency of their
cooccurrence. To the extent that two features have a reciprocal dependency, such that they are
predictably found together in many cases, the two features behave more like a single property
than a conjunction of independent properties in the network. As a single property, they influence
activation less than two independent properties.

As a second test of the relatedness between activation in a Dell (1986) spreading
activation model of phonological encoding and the natural classes model, we can compare the
similarity of consonant pairs in English (from Table 3.6) with the activation in a larger spreading
activation model which includes nodes for all of the consonants in English, and all of the features
from chapter 2. The spreading activation models were implemented exactly as above, just with
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more segment and feature nodes. To get a representative sample of consonant types, I ran four
network simulations, one for each of the consonants {s, g, m, l}.

Figure 3.6 shows natural class similarity plotted against activation from the spreading
activation model for each pairing of the consonants {s, g, m, l} with every other consonant. In all
four cases, there is a clear logarithmic relationship between natural class similarity and
activation. For each of the four simulations, I fit a linear regression of the form:

(28) Activation = A + B log(Similarity)

The regression curves are shown in the figures. Results of the regression analysis are shown in
Table 3.8. The regression models predict similarity reasonably well. The best model, for /s/, fit
with R  = 0.82, and the worst model, for /g/, fit with R  = 0.64. The R  statistic shows what2 2 2

fraction of the variation in the data is accounted for by each model. Models with a higher R2

account for more of the variation in the data.

Table 3.8: Regression models of activation as a function of log(similarity).

/s/ /g/ /m/ /l/

R 0.82 0.64 0.76 0.772

A 20.3 15.9 16.2 15.2

B -9.4 -6.7 -7.2 -7.0



/s/

0

5

10

15

20

25

0 0.25 0.5 0.75 1

/g/

0

5

10

15

20

0 0.25 0.5 0.75 1

/m/

0

5

10

15

20

0 0.25 0.5 0.75 1

/l/

0

5

10

15

20

0 0.25 0.5 0.75 1

49

Figure 3.6: The relation between similarity and activation for four consonants.
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These simulations, based on a real redundancy hierarchy and spreading activation model
confirm that there is a close relationship between natural class similarity and activation. Thus,
keeping in mind the differences discussed above, I conclude that the natural classes model can
serve as a closed form approximation of the behavior of a connectionist network. Implementing a
complete connectionist model, which models effects of cross-classification and redundancy, is
left as an open research problem.
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CHAPTER 4
English Speech Errors as a Test of the Metric

 In this chapter, I analyze two confusion matrices of segmental speech errors between
consonants in English. I first present a measure of the relative degree of confusability of two
segments, based on the ratio of the number of occurrences of an error between two segments
divided by the number of occurrences which would be expected if errors were to occur between
segments at random. I then compare the ratio of observed versus expected errors (O/E) between
two segments to the similarity of the two segments, computed as in chapter 3. Similarity as
computed in the natural classes model is a good predictor of the speech error rate. More similar
segments show a greater error rate, and less similar segments show a reduced error rate.

I compare the natural class similarity model with feature based similarity models, and
show that the natural classes model provides a better prediction of error rate. Further, the natural
classes model predicts differences in error rate between segments which would be predicted to
have the same error rate in a feature similarity model.

Section 4.1 contains an introduction to phonological speech error data and presents the
relative measure of error rate I use in this thesis: the ratio of the number of observed errors to the
number expected at random (O/E). In section 4.2, I analyze the confusion matrix of errors from
Stemberger (1991a), and show that the natural classes similarity model is a very good predictor
of error rate between consonant pairs. In section 4.3, I replicate the results of section 4.2 with a
second corpus of phonological speech errors from the MIT-Arizona corpus. I present additional
evidence for the natural classes model by demonstrating that partially redundant features have a
lesser effect on similarity than non-redundant ones in section 4.4. In section 4.5, I describe the
Dell (1986) spreading activation model of phonological encoding, and show that, assuming there
is log-normally distributed variation in activation levels, the model predicts error rates much like
those found in the natural error corpus. I finish the chapter with a review of the results achieved
thus far, and a discussion of the relative merits of algebraic versus dynamic models of linguistic
behavior.

4.1 Data and Measure

A speech error is a spontaneous unintentional deviation from the intended utterance.
Phonological speech errors are errors which are based on phonological shape. Examples of
phonological speech errors are given in (29), the error is presented along with the intended target
in parentheses (errors taken from Fromkin (1971)).

(29) a. correcting (collecting)
b. a hunk of jeep (a heap of junk)
c. plan the seats (plant the seeds)

In this thesis I will be examining single segment errors between two consonants. The
example in (29a) is such an error. Each single segment error has a TARGET, the intended
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phoneme, and an INTRUSION, the erroneous phoneme which is actually produced. For example, in
(29a) the target is /l/, and the intrusion is /r/.

Stemberger (1991a) presents a confusion matrix of single segment consonant errors
caused by the interaction of one segment in the utterance plan with another. Examples in (30) are
from Stemberger (1991a). Interactions can involve the ANTICIPATION of one segment for another
(30a), the PERSEVERATION of a previously uttered segment (30b), or an EXCHANGE of positions
by two segments (30c). 

(30) a. setting ... getting such bad luck
b. about six seat (about six feet)
c. like box (bike locks)

The errors in (30) provide evidence that sentence production involves some degree of
advance planning in phonological production. For an anticipation error to occur, the intruding
segment must be accessible at the time of the error, even though that particular segment is not
due to be immediately produced. See Levelt (1989) for a review of error evidence in a model of
language production.

Table 4.1 shows the distribution of a total of 1273 single segment interaction errors
published in Stemberger (1991a). The target segment is indicated in the left column. The
intrusion segment is given across the top row. Informal inspection indicates that many errors
occur between similar segments, and few occur between dissimilar segments. However, the
absolute number of errors is deceiving, as some segments are much more frequent in speech, and
in speech errors, than others. A measure of error rate which factors out frequency effects is
needed.

Following Pierrehumbert (1993), I use a measure of error rate which compares the
number of errors which are observed to the number which would be expected if consonants were
to substitute for one another at random. Random chance is determined using the actual
frequencies of segments as targets and intrusions in the error corpus being studied. For example,
/p/ is a target in 84 errors, so the probability of /p/ as a target is 0.066 = 84/1273. Similarly, /f/ is
an intrusion in 69 errors, so the probability of /f/ as an intrusion is 0.054 = 69/1273. The relative
probability of a /p/-/f/ error is thus p(p,f) = 0.00358 = 0.066×0.054. The expected number of
errors for each pair is:

(31)

Note that  is less than one, as I assume that p(x,x) = 0. Errors between identical
segments, if they do occur, cannot be detected, so a certain amount of the marginal probability is
lost from the total. Expected errors are distributed by frequency over all non-identical pairs. In
other words, expected counts of consonants interacting with themselves are set to zero and the
other expected values are increased to insure that the total number of errors is correct. 
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S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K Total

S 5 25 0 4 22 0 1 0 3 0 0 0 0 0 21 0 0 0 0 0 0 0 3 84

E 9 3 4 7 2 11 0 0 1 0 0 0 0 1 1 10 0 5 2 1 6 0 1 64

I 8 1 1 1 3 0 5 0 22 0 1 0 3 0 4 0 0 0 0 1 1 0 9 60

Y 3 6 2 2 2 1 0 1 0 2 0 0 0 1 0 3 0 2 1 0 0 0 0 26

P 4 7 0 4 0 1 0 0 0 1 0 0 0 0 2 0 1 3 3 19 8 0 3 56

W 22 2 1 0 0 6 7 1 13 3 2 0 15 1 42 0 0 3 1 6 0 0 8 133

G 0 5 2 1 0 11 0 0 3 5 2 0 0 6 0 20 0 5 2 9 1 1 1 74

7 0 1 3 0 0 2 0 0 16 0 2 0 1 0 0 0 0 0 1 0 0 0 2 28

' 0 0 0 1 0 0 4 0 1 0 0 0 0 1 0 0 0 2 1 0 1 0 1 12

V 3 0 16 0 1 11 1 29 0 0 58 0 6 0 1 0 0 0 0 0 0 0 7 133

] 1 0 0 6 0 3 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 18

6 0 0 1 0 0 2 0 1 1 33 0 0 1 0 1 0 0 0 0 0 1 0 0 41

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W6 1 1 0 0 0 9 0 0 0 7 1 1 0 1 4 0 0 0 0 0 0 0 1 26

G= 1 1 1 0 0 1 9 0 0 3 1 0 0 0 0 0 0 0 1 0 0 0 0 18

N 21 1 7 1 0 28 1 2 0 11 0 0 0 9 0 8 1 1 1 0 0 0 5 97

J 0 8 1 0 0 1 2 0 0 1 2 0 0 0 2 5 1 1 0 0 0 0 0 24

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3

O 0 1 1 1 3 3 2 0 0 0 0 0 0 0 0 2 0 0 55 8 11 12 2 101

U 0 1 0 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 67 1 20 2 0 98

Q 0 1 0 0 23 5 7 0 0 1 1 0 0 0 1 5 0 1 16 4 0 0 4 69

Z 1 5 1 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 9 27 1 4 1 60

\ 0 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 11 2 0 1 0 18

K 0 0 5 1 0 2 1 1 0 6 0 1 0 1 0 10 1 0 0 0 1 0 0 30

Total 74 46 69 20 55 107 51 46 4 122 16 69 1 37 15 98 43 4 126 102 51 50 19 48 1273

T
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onfusion m
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berger (1991a).
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The ratio of the number of observed errors to the number of expected errors (O/E)
provides a measure of error rate which factors out the frequencies of targets and intrusions. The
measure of O/E is a measure of the error rate between consonants independent of their frequency.

(32)

4.2 Similarity and Interaction Errors

Table 4.2 presents aggregated total numbers of actual errors and expected errors for
different levels of similarity in Stemberger’s corpus of interaction errors. The data have been
aggregated to more clearly reflect the relation between natural class similarity and error rate. The
right-most column of Table 4.2 is the O/E measure of error rate based on the aggregate observed
and expected totals.

Table 4.2: Interaction errors aggregated by natural class similarity.

Similarity Actual Expected O/E

0-0.1 72 519.3 0.14

0.1-0.2 246 416.5 0.59

0.2-0.3 234 113.5 2.06

0.3-0.4 195 88.2 2.21

0.4-0.5 288 93.1 3.09

0.5-0.6 238 42.4 5.61

Figure 4.1 plots aggregate O/E against similarity. While the data have been aggregated,
the groupings used in the aggregated similarity measure are still more sensitive than similarity
measures previously used in speech error analyses. Most error analyses use three basic feature
categories: place, manner, and voicing. Similarity is computed by counting the number of these
basic features which are the same between two consonants (e.g. Nooteboom 1969, MacKay
1970, Shattuck-Hufnagel & Klatt 1979, van den Broeke & Goldstein 1980, Levitt & Healy
1985). For example, /p/ and /t/ share two features, manner and voicing, but differ by place. In this
measure, there are only four relevant levels of similarity (0, 1, 2, or 3 shared features). The
aggregated similarity in Table 4.2 differentiates seven levels of similarity, and the actual
similarity measure is potentially continuous. The fact that error rate increases monotonically with
the finer measure of similarity justifies the more precise measure of natural class similarity for
modeling speech errors.
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Figure 4.1: Interaction errors aggregated by similarity

The natural classes similarity metric provides a good prediction of error rate in
Stemberger’s corpus. However, the natural class model involves additional assumptions about
the representation of segments, the effect of redundant features on similarity, and the synergistic
effects of multiple feature matches. The natural classes model can be compared to three simpler
models of speech errors which we might prefer to use for parsimony. The first I call the
FREQUENCY MODEL, which assumes that similarity is not a factor in errors, and the predicted
number of errors is equal to the number expected as computed above. This model has been
shown to have a poor fit by many researchers, but it is included as a baseline to show how much
of the error rate is accounted for solely by frequency. The second model is the SIMPLE FEATURE

MODEL. In this model, similarity is based on simple place, manner, and voicing contrasts, as
mentioned in the previous paragraph. This model has only four distinct similarity values. The
third model is the COMPLEX FEATURE MODEL. This model is based on the same features used in
the computation of similarity over natural classes, but instead similarity is computed based on
shared and non-shared features (as in Pierrehumbert 1993, discussed in chapter 2). Each
successive model requires additional assumptions about the nature of speech errors and of
phonological representations: The similarity models assume that similarity is a factor in speech
errors. The complex feature model and the natural classes model assume that detailed feature
representations are needed. The natural classes model assumes that synergistic feature matching
and redundancy are also relevant to similarity.

The similarity models can be compared based on their ability to predict the data in
Stemberger’s confusion matrix. For these models, I used the following nonlinear regression
equation.

(33) Observed = Expected × (A + B × Similarity)

This equation is roughly equivalent to a linear regression on O/E. The regression was performed
on unaggregated data. The models attempt to predict the actual error rate for each consonant pair
as target and intrusion. Pairs which have high actual error rate or high expected error rate have
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 I would like to take this opportunity to express my thanks to Stefanie Shattuck-11

Hufnagel for providing me with this corpus of noncontextual errors.

the greatest influence on the model fit. Table 4.3 shows model fits and parameters for the
frequency model and the three similarity models.

Table 4.3: Four models of Stemberger’s (1991a) interaction errors.

Model R A B2

Frequency Model 0.17 - -

Simple Feature Model 0.57 -0.61 1.37

Complex Feature Model 0.57 -0.56 6.06

Natural Classes Model 0.72 -0.69 9.88

The frequency model has very poor fit. As was concluded by many others, similarity is a
factor in error rate. The simple feature model provides significant improvement in R .2

Surprisingly, the complex feature model does no better. This suggests that ‘primary features’
(Stevens & Keyser 1989) might be the only relevant features for determining similarity. But, the
model based on similarity computed with natural classes provides a much better fit to the data
than either feature model. Thus, it is not that the additional (secondary) features are not relevant,
but that feature similarity does not properly differentiate features by contrastiveness and
redundancy the way the natural classes model does. The additional assumptions of the natural
classes model are supported by the data.

4.3 Similarity and Noncontextual Errors

The natural class based model of similarity also makes a good prediction of error rate for
a second corpus of single segment consonant errors. The corpus consists of the so-called
noncontextual errors in the MIT-Arizona corpus of speech errors.   These errors differ from the11

interaction errors in that there was no apparent intrusion in the utterance, which makes these
errors rare. This corpus provides independent replication of the results in the previous section.

These errors are spontaneous errors from naturally occurring speech which were collected
opportunistically over the course of several years. The errors were recorded orthographically,
with phonemic transcription included where necessary. In addition, the error recorders indicated
the target word either by including the speaker’s own correction or by noting their impression
based on the discourse context. There are a total of 905 noncontextual errors in this corpus. Of
these, 517 are single segment consonant errors used in the analysis in this section. Table 4.4
shows the confusion matrix for this error corpus.

Table 4.5 presents aggregated total numbers of actual errors and expected errors for
different levels of similarity in the noncontextual error corpus, along with the aggregate O/E.
Expected error rates were computed in the same manner as for the interaction errors in the
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S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K Total

S 4 9 0 3 8 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 28

E 6 0 1 11 0 5 0 0 1 1 0 0 0 0 0 5 0 0 0 1 1 0 1 33

I 10 0 7 1 2 0 1 0 18 0 0 0 0 0 1 0 0 0 1 0 0 0 1 42

Y 1 6 5 3 1 1 0 1 2 10 0 0 0 1 0 1 0 0 0 1 0 0 0 33

P 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 12 3 0 0 21

W 8 0 0 0 0 2 0 0 4 0 0 0 4 0 5 0 0 0 1 0 0 0 0 24

G 0 3 0 5 0 5 0 0 0 2 0 0 1 11 0 3 0 0 1 0 1 0 0 32

7 0 0 3 0 0 2 0 0 11 1 0 0 0 0 0 0 0 0 0 1 0 0 0 18

' 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3

V 0 0 8 0 1 5 1 8 2 1 18 0 0 0 1 0 0 1 0 0 0 0 0 46

] 0 0 0 4 0 0 5 2 1 3 0 7 0 5 1 0 0 1 0 2 0 0 0 31

6 0 0 1 0 0 2 0 0 0 32 0 0 4 0 2 0 0 0 0 0 0 0 0 41

= 0 0 0 0 1 0 0 0 0 0 4 0 0 1 1 0 0 0 0 0 0 0 0 7

W6 0 0 0 0 0 10 0 1 0 4 0 4 0 1 3 0 0 0 0 0 0 0 0 23

G= 0 0 0 0 0 1 4 0 0 2 2 2 2 0 0 1 0 0 1 0 0 0 0 15

N 3 1 0 0 0 5 0 0 0 2 0 0 0 2 0 1 0 0 0 0 0 0 0 14

J 0 2 0 0 0 1 5 0 0 0 0 0 0 0 0 4 1 0 0 0 0 1 0 14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 1 1 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 13 1 2 8 0 32

U 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 6 0 0 13

Q 0 0 0 1 7 1 3 0 1 1 0 0 0 0 0 0 0 0 3 0 0 1 0 18

Z 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 15 0 0 0 21

\ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 2 1 0 0 7

K 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 3

Total 30 18 28 20 33 45 32 12 5 82 22 24 9 11 19 22 12 1 15 34 20 13 10 2 519
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previous section. These data show a very similar pattern to the interaction error  data. Figure 4.2
shows similarity against O/E for the noncontextual segmental errors. 

Table 4.5: Noncontextual errors aggregated by natural class similarity.

Similarity Actual Expected O/E

0-0.1 26 197.1 0.13

0.1-0.2 98 178.0 0.55

0.2-0.3 100 57.1 1.75

0.3-0.4 82 40.6 2.02

0.4-0.5 131 31.8 4.12

0.5-0.6 82 14.4 5.68

Figure 4.2: Noncontextual errors by similarity

Table 4.6 compares the same four models of speech errors as in the previous section on
the noncontextual error corpus. Once again, the evidence for a similarity effect is quite strong. In
addition, the similarity model based on natural classes provides the best fit to the data. The
noncontextual error data closely replicate the data from the previous section, providing additional
evidence in favor of the natural classes model of similarity.
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 Note that the nasals are sonorant stops, so this comparison cannot be extended12

straightforwardly to the voiced and voiceless stops. The voiced stops have additional natural
classes, like {[+stop]} and {[+stop]&[+voiced]} which contain both obstruents and sonorants.
The effect of these additional natural classes on similarity is unclear, though an informal survey
of the similarity of English stops in Table 3.6 shows that the natural classes model gives higher
similarity between voiceless stops (e.g. p-t) than between comparable voiced stops (e.g. b-d).
Presumably, additional cross-classification with the nasals provides a number of non-shared
natural classes, which reduces similarity.

Table 4.6: Four models of the noncontextual error corpus.

Model R A B2

Frequency Model 0.18 - -

Simple Feature Model 0.54 -0.71 1.36

Complex Feature Model 0.49 -0.54 5.32

Natural Classes Model 0.62 -0.57 8.96

4.4 Redundancy in Speech Errors

Recall from chapter 3 that the natural classes similarity model predicts that redundant
features have less of an effect on similarity than non-redundant features. Presumably, this fact
accounts in part for why the natural classes similarity model performs much better than the
complex feature model in predicting error rate. In this section, I present a specific case of
redundancy effects.

Isolating specific cases where there is a minimal contrast between redundant and non-
redundant features is difficult. For example, [+voice] is redundant in sonorants, but the inventory
of sonorants in English has a very different natural class structure than the  inventory of
obstruents. There is a converse implication, not often discussed, which is that [+obstruent] is
redundant in voiceless consonants. In order to compare a minimal difference based only on the
redundancy of [+obstruent], I compare error rates among the voiced and voiceless continuants in
English ({v, ', z, =} and {f, 7, s, 6}, respectively). The redundancy hierarchy for voiceless
continuants is comparable to the hierarchy for voiced continuants except for one difference: The
voiceless continuants have a shared natural class for [+voiceless] and a shared natural class for
[+obstruent], while the voiced continuants have a shared natural class for [+voiced] and a shared
natural class for [+obstruent], as well as a shared natural class for [+voiced]&[+obstruent].  The12

natural classes model thus predicts a higher similarity between voiceless continuants and voiced
continuants, and hence a higher error rate among voiced continuants than among voiceless
continuants.

Table 4.7 shows the aggregate error rates between continuants in the interaction error
corpus and the no-source error corpus. In both corpora, the error rate between voiced continuants
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 Note also that /s/ is by far the most frequent consonant among the continuants. Since /s/13

has special behavior elsewhere, for example in sonority reversals in clusters, it may be special in
speech errors in some way (cf. Newman, Sawusch, & Luce 1996). If /s/ is removed from the
analysis, the results are unaffected.

is higher than the error rate between voiceless continuants, as predicted. Note also that the error
rate between voiced and voiceless continuants is much lower, and that these error rates are
roughly equivalent regardless of whether the voiced obstruent is the target or the intrusion.

Table 4.7: Error rates among English continuants.

Interaction No source

Target-Intrusion Observed Expected O/E Observed Expected O/E

voiceless-voiceless 187 46.6 4.02 100 31.2 3.21

voiced-voiced 12 1.2 9.96 30 5.5 5.41

voiceless-voiced 2 9.0 0.22 11 16.8 0.66

voiced-voiceless 4 14.3 0.28 12 22.0 0.55

Total 205 153

It might be objected that the voiceless continuants {f, 7, s, 6} are much more frequent
than the voiced continuants {v, ', z, =}, and that is why the error rate is lower for voiceless
continuants. For example, it has been shown that high frequency words are produced with fewer
errors than low frequency words (Dell 1988). However, this does not appear to be the cause of
the difference in the error rates. Table 4.8 gives a breakdown of the error rate for each continuant
as a target and as an intrusion in each corpus. The segments are presented in descending order of
frequency. There is some indication that error rate is affected by frequency, but it is the higher
frequency segments which appear to have higher error rate. It cannot be the case that low
frequency predicts the high error rate between voiced continuants. Rather, it appears to be the
differential effect of redundancy on similarity that accounts for the difference.13
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Table 4.8: Error rate among continuants by consonant.

Interaction Noncontextual

Target Observed Expected O/E Observed Expected O/E

/s/ 103 25.0 4.12 37 11.2 3.29

/6/ 36 9.5 3.78 33 14.9 2.22

/f/ 29 13.9 2.08 26 14.9 1.75

/7/ 21 7.0 2.98 15 7.0 2.15

/z/ 9 5.0 1.81 17 11.4 1.50

/v/ 5 7.1 0.70 18 12.2 1.47

/'/ 2 3.4 0.58 3 1.2 2.49

/=/ 0 0 4 2.8 1.45

Total 205 153

Intrusion Observed Expected O/E Observed Expected O/E

/s/ 73 18.9 3.87 66 29.2 2.26

/6/ 61 16.0 3.82 18 8.8 2.05

/f/ 35 11.2 3.14 11 5.0 2.22

/7/ 22 14.9 1.48 17 10.2 1.67

/z/ 8 4.9 1.64 13 7.7 1.70

/v/ 2 4.0 0.50 17 8.5 2.00

/'/ 1 0.3 3.76 7 3.9 1.79

/=/ 3 1.0 2.93 4 2.2 1.80

Total 205 153

4.5 A Spreading Activation Model of Speech Errors

Dell (1986) proposes a processing model for phonological encoding using spreading
activation. This model is one of a number of models of speech production which use a network
of dynamically activated nodes to represent the lexicon, syllables, phonemes, and features (e.g.
Dell & Reich 1980, 1981; Dell, Juliano, & Govindjee 1993; Levelt 1989; MacKay 1982;
Stemberger 1982). The Dell (1986) model uses a slots-and-fillers design (Dell & Reich 1981;
Fromkin 1971; MacKay 1972, 1982; Sevald & Dell 1994; Shattuck-Hufnagel 1979; Stemberger
1982) which posits that a phonological skeleton is constructed and then filled in with segments.
The activation model determines which segments are selected to fill the slots in the skeleton. A
schematic of the architecture of the Dell (1986) model of phonological processing is shown in
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Figure 4.3.
The Dell (1986) model employs a number of phonological levels: morphemes, syllables,

rimes, clusters, phonemes, and features. Phonological encoding is modeled as follows. A
morpheme is marked to be encoded by allotting it a certain number of abstract activation units.
Activation then spreads throughout the model, activating syllables, rimes, phonemes, and
features associated with the morpheme. All connections are two-way, so that activation spreads
both upwards and downwards. The network activates the appropriate phonemes needed to
produce the morpheme, but other related morphemes, syllables, phonemes, and features are
indirectly activated as well, through connections which are once removed from the original
morpheme. The network could conceivably be extended to include semantic and syntactic
encoding, with two way connections between the additional nodes containing syntactic and
semantic units.

The system operates over discrete time units. The activation of a node j at time unit t ,i
denoted A(j, t ) is given by equation (34).i

(34) A(j, t ) = [A(j, t ) + � (p A(c , t )](1-q)i i-1 k=1 to n k k i-1

A(j, t ) is the activation level of node j at the previous time unit, t . The set {c , k = 1 to n} arei-1 i-1 k

all of the nodes which are directly connected to node j. The set {p , k = 1 to n} are weightsk

attached to the connections between node j and the other nodes. The value of q controls the rate
at which a node’s activation decays over time.

The pattern of activation is transformed into a representation by assigning initial
activation to a morpheme (theoretically due to higher level connections with semantic and
syntactic nodes), waiting for a certain number of time units to pass, and then selecting the highest
activated segments to fill the phonological frame for production. If a competing segment receives
more activation than the target segment, it is selected and encoded, resulting in an error.

The Dell (1986) model of speech errors can account for a number of regularities found in
speech error studies. In speech errors, there is a bias toward producing real word outcomes (Dell
& Reich 1981). This model predicts the word bias by the two way connections between
morpheme nodes and phonological content nodes. Combinations of phonemes which represent
actual morphemes receive reinforcing activation from the morpheme nodes. Dell (1986)
demonstrated that this bias is time dependent. Using an experimental technique to induce
phonological speech errors, Dell (1986) found that subjects who had to respond under a 500 ms
deadline had no tendency to produce word outcome errors in favor of non-word outcomes, but
subjects with a 1000 ms deadline had a strong lexical effect. This model also accounts for the
time bias. Interactive activation between morpheme nodes and phoneme nodes takes time units to
travel up and down the network. In a short time deadline, fewer time units pass, and reinforcing
activation does not have time to build up.

The model also has a bias toward producing phonotactically valid syllables, for the same
reason. This is desirable, since speech errors rarely violate phonotactic constraints (Fromkin
1971). Finally, Dell (1984) demonstrates that there are segmental context effects on error rates.
Syllables which share phonemes are more likely to slip with one another. This follows from the
model’s use of a single type node for each phonological unit. Two syllables which share vowels,
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for example /cæt/ and /sæk/ in Figure 4.3, are both connected to the same /æ/ node. Thus, when
one is activated, activation spreads to the vowel, to the syllable, and then to the other phonemes
within the syllable. As a result, a competing phoneme from a syllable with the same vowel
receives more activation than it otherwise might.

Figure 4.3: Architecture of the Dell (1986) model of phonological encoding.
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 The Dell (1986) model is comparable to the other network activation type models
mentioned above for the encoding of a segment. Segments are connected to all of the feature
nodes for the features of that segment. Since common feature nodes are shared, similar phonemes
receive activation from the common feature nodes. As a result, similar segments should be more
activated than dissimilar ones, and thus be more likely to be selected. In chapter 3, I implemented
a sub-part of the Dell (1986) model. This model utilized only phoneme and feature nodes. The
feature nodes are based on the same feature assignments used in the similarity computation,
given in chapter 2. I used the same parameters for equation (34) that Dell (1986) did: I used a
decay rate of q = 0.6, and  p = 0.3 for all node connection weights. I started the network by
assigning 100 units of abstract activation to a segment. Since this model has fewer interacting
levels to spread activation, I ran the simulation for six time steps to allow a fair amount of
interaction between the phonemes and features. Dell (1986) used three to five time units for his
simulations.

Figure 4.4 shows the amount of abstract activation of each node in the network as a
function of its similarity to /s/, repeated from chapter 3. As was noted in chapter 3, there is a
clear correlation between similarity as computed with the natural classes model and spreading
activation. Given the distribution of the points, the relation between similarity and activation is
clearly logarithmic. The curve in Figure 4.4 is the best fit curve parameterized by a linear
regression of log(Similarity) on activation (Activation = 20.3 + 9.4 log(Similarity), R  = 0.82). 2

Figure 4.4: Relation between natural class similarity and spreading activation for /s/.
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To determine the likelihood that one segment would be mis-selected for another in an
activation network like this, we can assume that such mis-selections are the result of variation in
the relative activation of nodes due to semantic, syntactic, and phonological context; physical
factors like fatigue or drunkenness; and psychological factors such as anxiety. These effects can
be abstractly modeled by applying a probability distribution to the activation model. Activation is
a strictly positive random variable in the Dell (1986) model. For strictly positive random
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variables, it is standard to assume that variation is a log-normally distributed random variable
(Devore 1977).

If an intrusion becomes more activated than the intended segment (/s/ in this case), an
error occurs. Since there is also random variation in the activation level of the target, the system
encounters a range of activation levels for the target segment. Suppose, for example, that
variation in activation level is log-normally distributed with mean of one and standard deviation
of one. The activation computed for /s/ by my mini-model after six time intervals was 18.6 units.
With log-normal variation in activation, about 75% of instances of /s/ would have activation over
19. Setting the lower bound of the critical activation of an intruding segment arbitrarily at 19
units, consider how likely it is for a log-normally distributed level of activation to exceed this
threshold. The probability that a segment of a particular base activation level is above this target
due to random noise can be determined from the cumulative log-normal distribution. 

Figure 4.5 shows the probability that random variation can increase the activation level of
a segment over the critical level, as a function of the base activation of that segment due to
featural similarity. If a segment’s activation is very high, then it might be more activated than the
intended /s/, and be produced instead. Thus, the function in Figure 4.5 should directly reflect the
error rate between segments. Since activation is a function of log(Similarity), we can
approximate the error rate of segments based on their relative activation via the error rate of
segments based on their similarity.

Figure 4.5: Probability of a segment achieving threshold activation.

Using the regression model for the activation of /s/ based on similarity, we can convert
between activation and similarity by the formula:

(35) Activation = 20.3 - 9.4 log(Similarity)

Table 4.9 shows mean similarity, log(Similarity), estimated activation from the regression model
for /s/, and error rate for the aggregated interaction errors from section 3.2. Figure 4.6 plots O/E
against activation for the data in Table 4.9. Figures 4.5 and 4.6 bear a striking resemblance,
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supporting the assumptions of the Dell (1986) model and log-normal variation in the system as
an account for phonological speech error rate.

Table 4.9: Similarity, estimated activation, and error rate for interaction errors.

Similarity Log(sim) Est. Activation O/E

0.07 -1.17 9.35 0.14

0.16 -0.80 12.77 0.59

0.26 -0.58 14.84 2.06

0.35 -0.45 16.04 2.21

0.43 -0.37 16.82 3.09

0.56 -0.25 17.96 5.61

Figure 4.6: Error rate as a function of estimated activation.

4.6 Summary: Similarity, Activation, and Speech Errors

The modeling here, in combination with the results of chapter 3, demonstrates that
similarity computed using natural classes has a close connection to similarity as a function of
activation in a connectionist network. They are related by a logarithmic transformation. The
similarity model used in this thesis can thus substitute as a closed form estimate of the degree of
interactive activation between segments. A static, closed form model has computational
advantages over a spreading activation simulation. It is possible, for example, to apply algebraic
techniques to a closed form equation, while an activation model can only be probed by repeated
runs of the simulation. 

Analogously, the spreading activation network provides a processing model for the
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similarity computed by the natural classes model. It thus can account for effects in speech errors,
as well as in the phonotactic constraint I present in the next chapter. I extend the connection
between similarity and activation further in chapters 6 and 7, where I argue that the effects of
interference created by processing in a spreading activation model are found in both speech
errors and in the phonotactic constraint OCP-Place. The computational model of similarity does
not need to propose that the cognitive system selects objects, compares their sets of natural
classes, and computes a ratio to determine similarity. Instead, similarity is emergent from the
activation levels in the network of nodes and connections.

Earlier in this chapter, I showed that the similarity model of Frisch, Broe, &
Pierrehumbert (1995), in which similarity is computed based on shared and non-shared natural
classes, provides a very good model of consonantal segment error rates for both interaction and
noncontextual speech errors. The examination of similarity effects in speech errors provides
insight into the notion of similarity in general. Unlike previous treatments of similarity in
cognitive psychology (e.g. Tversky 1977; Goldstone, Gentner, & Medin 1989; Nosofsky 1992)
which use artificial features within controlled experimental situations, the model of speech errors
presented here is based upon distinctive features which are physically based, naturalistic, and
represent thoroughly entrenched knowledge. The set of phonological features is non-orthogonal,
so redundancy relationships between features are relevant to the computation of similarity. The
natural classes model predicts that languages with different segment inventories will have
different error rates, due to differences in similarity over the redundancy hierarchy. This would
be possible even between segments which are shared by both languages. This is clearly a testable
hypothesis, and it is left here as a future research topic.

I found evidence for synergistic effects for multiple feature matches, and proposed that
the correct computation of similarity is based not on individual features, but on the contrastive
sets of objects that those features describe (the natural classes). This proposal incorporates
redundancy relationships in a natural way. Totally redundant features define no new natural
classes, and so do not contribute to increasing similarity. Partially redundant features increase
similarity to a lesser degree, and non-redundant features are the most influential. These findings
for similarity effects in phonology can also be applied in other cognitive domains, where
naturalistic, non-orthogonal features are presumably commonplace.
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CHAPTER 5
OCP-Place Effects in Arabic

In this chapter, I review the analysis of Arabic OCP-Place effects in Frisch, Broe, &
Pierrehumbert (1995), henceforth FBP. FBP present a quantitative analysis of Arabic which
shows a gradient dissimilarity constraint between homorganic consonants within the verbal roots.
The FBP analysis of OCP-Place introduces the STOCHASTIC CONSTRAINT model of a gradient
linguistic constraint. In the stochastic constraint model, ‘acceptability’ of a form is not an all-or-
nothing relationship, as in current categorical phonological formalism. Acceptability is gradient,
and reflected in the relative frequency of a form. 

The Arabic data are presented in section 5.1. I review the standard autosegmental account
of cooccurrence restrictions among the roots of Arabic in section 5.2. This account is based upon
the claim that the Obligatory Contour Principle (OCP) prohibits adjacent identical elements in
autosegmental representations (Leben 1973, Goldsmith 1979). The OCP has been applied to
Arabic in two distinct ways using linguistic representations formalized in autosegmental
phonology (Goldsmith 1979, 1994). It is applied as stated to mark as ill-formed any Arabic
verbal root which contains a sequence repeated identical consonants (McCarthy 1979, 1986). In
addition, it is applied within the feature geometric tier of place of articulation features (McCarthy
1988, 1994) to mark as ill-formed any root with adjacent identical place of articulation features. 

In section 5.3, I review the arguments in Pierrehumbert (1993) and FBP which show that
the standard categorical approach to OCP-Place effects in Arabic cannot account for the gradient
nature of the data. There are systematic cases of consonant cooccurrence which reveal the non-
categorical nature of OCP effects, and undermine the autosegmental model based on tier
separation.

Pierrehumbert (1993) presented quantitative evidence of the influence of distance upon
consonant cooccurrence, and pointed out that the autosegmental formulation is unable to account
for these facts. She also proposed that OCP effects were based upon perceived similarity. In the
similarity model, the OCP is seen as gradient rather than absolute. As such, it is capable of
accounting for the interaction of similarity and distance effects. Pierrehumbert’s model utilized
contrastive underspecification. When examined more closely, FBP found contrastive
underspecification to be both empirically and formally inadequate. FBP used the natural classes
similarity metric to capture the effect of feature contrastiveness on similarity. The similarity
model and the contrastive underspecification account are reviewed in detail in section 5.4.
Additional evidence against underspecification in OCP effects is presented in chapter 10.

While FBP adopt the similarity-based approach of Pierrehumbert (1993), they improve on
it by eliminating contrastive underspecification in favor of the similarity model based on natural
classes discussed above. FBP present the first complete quantitative model of the OCP effects,
called the stochastic constraint model, which predicts the rate of cooccurrence of different
consonant combinations as a function of distance and similarity. This model, based upon the
logistic function, provides a better fit to the Arabic data than the traditional account or the
Pierrehumbert (1993) similarity model. In addition, the FBP model can be taken as a universal,
grounded in the cognitive functions of similarity and categorization. The model can be
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parameterized as to the degree to which similarity and distance influence phonotactics. The
stochastic constraint model provides an account of OCP-Place effects which has a basis in
general cognitive functions, but allows for language specific variation on a limited set of
dimensions. I discuss the stochastic constraint model in detail in section 5.6.

5.1 The Pattern of Root Morphemes in Arabic

Arabic verbal root morphemes consist of a set of two to four consonants, with the
canonical root containing three. Vowels are inserted between the consonants to make word
forms, an example of a non-concatenative morphological system. For example, the verbal root
ktb has among its word forms katab ‘to write’ and kutib ‘to be written’. In addition to non-
concatenative vowel insertion, concatenative morphemes are used for many morphological
processes. For example, katab+a ‘he wrote’ and ma+katiib ‘letters’.

Greenberg (1950) originally studied the overall statistical patterning of the triconsonantal
verb root morphemes in Arabic, based on Lanes’s (1863) dictionary. The cooccurrence
restrictions he describes apply only to the roots themselves, and not to any derived forms. Thus,
the restrictions do not apply across concatenative morpheme boundaries. Greenberg begins his
analysis with the observation that there are no roots which repeat the same consonant in first and
second position. Thus, roots like *ddm do not occur. Many roots are found with identical
consonants in the second and third positions of the root. Examples include mdd  ‘to stretch’ and
frr  ‘to flee’.

Greenberg notes that, more generally, Arabic consonants divide into groups of
homorganic consonants that tend not to cooccur within the same root, apart from the pairs of
identical consonants in the second and third position just mentioned. Pairs of homorganic but not
identical consonants are not totally prohibited, but are found far less often than expected at
random. Analogous cooccurrence constraints have been found in a number of Semitic languages
(Bender & Fulass 1978, Buckley 1993, Greenberg 1950, Hayward & Hayward 1989, Koskinen
1964), as well as in English (Berkley 1994a, b), Javanese (Mester 1986), Ngbaka (Broe 1995),
Russian (Padgett 1991), and other languages (Yip 1988).

Greenberg shows that the restriction against homorganic consonants applies not only to
adjacent pairs of consonants, but also to nonadjacent consonants within the root. However, the
cooccurrence constraint against homorganic consonants weakens over distance. The consonants
of Arabic are shown in (36).

(36) Labial Coronal Emphatic Velar Uvular Pharyngeal Laryngeal
t T k q �

b d D g
f 7, s S ; Ò h

', z Z ´ ¸

6

l, r
m n
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The complete set of distinctive features used to describe the Arabic consonants is given in
section 5.3, where they are used to compute similarity. The particular features of the ‘guttural’
consonants (/;/, /́ /, /Ò/, /̧ /, /h/, /�/) are based on McCarthy’s (1994) extensive review.
McCarthy refers to these as the pharyngeal approximants. There is another set of consonants,
called the ‘emphatics’, which deserve special mention. These are the coronal obstruents /T/, /D/,
/S/, and /Z/. These consonants are similar to the familiar English consonants /t/, /d/, /s/, and /z/,
but they contain a second vocal tract constriction in addition to one near the alveolar ridge, at the
uvula (McCarthy 1994). Thus, these consonants have both [coronal] place of articulation and
[dorso-guttural] place of articulation. These consonants constitute a special class when
cooccurrence restrictions are discussed in detail, due to their two places of articulation.

The Arabic data in this thesis come from native and assimilated triliteral verbal roots
from Wehr’s 1979 dictionary of modern Arabic (Cowan 1979). This is the same dictionary used
in Pierrehumbert (1993) which is a later edition of the same dictionary used in McCarthy’s
(1986, 1988, 1994) statistical analyses. Table 5.1 shows the distribution of adjacent consonant
pairs in the Arabic triliteral roots (C C  and C C  consonant pairs). Table 5.2 shows the1 2 2 3

distribution of non-adjacent consonant pairs (C C  consonant pairs). There are 26761 3

triconsonantal roots, so there are 5352 adjacent pairs and 2676 non-adjacent pairs. Roots with
repeated second and third consonants are excluded from these tables, because they are
conceptually biliteral (McCarthy 1986), as discussed in section 5.2. In addition, roots with four
surface consonants are excluded. Virtually all four consonant verbs are either reduplicated
biliteral roots or conspicuously nonnative words (Pierrehumbert 1993). OCP-Place effects as
discussed below have been demonstrated for native quadriliteral roots in Tigrinya (Buckley
1993), so the restriction of the analysis of Arabic to triliteral roots is a language particular
idiosyncracy. 

Examining Tables 5.1 and 5.2, the most obvious effect of the cooccurrence restriction
divides the Arabic consonants into the following groups which have very low rates of
cooccurrence (Greenberg 1950):
(37) a. Labials = {b, f, m}

b. Coronal Obstruents = {t, d, T, D, 7, ', s, z, S, Z, 6}
c. Coronal Sonorants = {l, r, n}
d. Velars and Uvulars = {k, g, q, ;, ́ }
e. Guttural Approximants = {;, ́ , Ò, ̧ , h, �}
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b f m t d T D 7 ' s z S Z 6 k g q ; ´ Ò ¸ h � l r n w y

b 0 0 0 10 13 19 4 7 6 15 6 4 0 8 11 8 13 7 7 11 12 14 9 24 31 9 19 10
f 0 0 0 16 10 6 8 3 1 11 5 5 3 8 5 5 20 5 2 10 11 5 5 19 31 11 20 12
m 0 0 0 8 13 9 6 3 3 18 10 7 1 13 6 9 10 6 4 14 19 6 6 27 30 15 12 19
t 6 7 8 0 3 0 0 0 0 0 0 0 0 2 4 3 5 1 2 4 5 1 2 11 17 6 7 8
d 10 11 21 0 1 0 0 2 0 8 0 0 0 4 0 6 5 4 5 10 13 9 4 16 22 14 21 12
T 11 14 13 0 1 0 0 0 0 5 0 0 0 5 0 0 4 1 1 6 7 4 3 15 19 8 16 7
D 10 3 7 0 3 0 0 0 0 0 0 0 0 0 0 3 0 2 4 6 5 2 2 5 12 4 8 9
7 4 1 6 1 0 0 0 0 0 0 0 0 0 0 1 0 5 1 1 0 0 0 4 6 13 1 8 3

' 7 4 3 0 0 0 0 0 0 0 0 0 0 0 3 0 2 2 0 0 5 2 3 7 17 2 8 7

s 16 14 21 2 13 8 0 0 0 0 0 0 0 0 7 9 9 12 1 10 9 7 6 21 22 9 21 13
z 11 7 14 0 0 0 0 0 0 0 0 0 0 0 4 6 10 2 5 8 13 6 5 11 15 9 11 14
S 14 14 10 1 14 0 0 0 0 0 0 0 0 0 0 0 5 1 3 6 6 4 1 17 13 5 14 10
Z 1 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 3 3 0 1 3
6 11 11 16 4 9 9 0 0 2 0 1 0 2 0 8 7 9 5 4 10 11 5 4 6 23 9 17 18

k 13 11 13 8 10 0 1 4 1 15 5 1 1 6 0 0 0 0 0 2 5 5 5 14 22 11 10 11
g 12 4 15 0 10 0 0 2 6 10 12 0 0 3 1 0 0 0 0 7 12 8 6 21 24 18 19 4
q 18 10 19 5 12 12 5 0 6 6 2 14 2 9 0 0 0 0 0 8 13 4 2 17 21 11 15 18
; 11 7 16 4 6 10 7 1 5 5 9 8 0 5 0 1 0 0 0 0 1 0 0 13 22 8 11 9

´ 9 5 14 1 6 6 5 3 1 1 5 5 0 5 0 1 1 0 0 0 0 0 0 12 15 4 11 9

Ò 11 15 19 5 13 4 5 2 5 8 4 9 5 10 5 9 6 0 0 0 0 0 0 17 22 14 22 10

¸ 17 8 12 10 11 12 5 5 5 10 9 8 4 7 6 10 12 0 0 0 0 2 0 15 21 12 15 14

h 14 6 18 4 19 4 4 1 3 1 9 2 1 5 4 12 5 0 0 0 0 0 0 16 23 7 17 20
� 12 3 9 2 5 2 0 3 2 10 6 2 0 3 4 2 1 3 0 2 0 2 0 10 14 7 8 8

l 22 19 19 5 9 13 0 3 2 15 4 5 2 2 11 13 19 4 6 17 17 15 5 0 0 1 28 14
r 29 26 26 9 21 11 12 7 1 21 13 10 1 16 16 21 25 9 7 13 26 11 14 0 0 9 23 23
n 20 24 11 10 12 10 7 4 2 15 10 9 3 14 17 13 24 10 6 12 16 15 8 0 2 0 28 22
w 20 14 17 8 17 11 9 8 4 19 12 10 2 12 16 15 26 10 8 15 16 14 8 28 30 11 0 21
y 10 14 10 4 12 5 5 3 0 7 1 1 2 5 2 2 7 2 1 8 6 1 7 14 13 12 1 0

T
able 5.1: A

djacent consonant pairs in the A
rabic triliteral roots.
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b f m t d T D 7 ' s z S Z 6 k g q ; ´ Ò ¸ h � l r n w y

b 1 0 7 5 4 2 4 2 0 3 3 2 1 2 3 4 7 2 3 4 7 2 7 13 16 4 3 6
f 0 0 10 4 6 3 3 0 0 4 2 3 0 5 3 2 6 5 1 9 6 3 5 8 11 3 4 7
m 0 0 0 2 7 7 4 2 0 5 1 3 0 0 4 4 8 3 2 9 6 1 3 9 11 11 7 6
t 3 3 2 0 0 0 0 0 0 3 0 0 0 0 1 1 2 0 0 2 3 4 0 3 2 1 2 2
d 3 3 5 0 2 0 1 1 0 8 0 1 0 3 6 4 3 1 3 1 5 1 3 4 10 9 7 7
T 5 3 2 0 2 0 0 1 0 4 1 0 0 4 0 0 6 1 0 6 4 0 2 3 5 5 5 5
D 1 2 3 0 2 3 0 1 0 1 0 0 0 0 2 2 1 1 0 1 5 0 1 1 6 3 3 4
7 5 1 2 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 4 2 1 3

' 5 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 2 0 1 3 4 1 2 4

s 7 9 10 4 7 8 0 0 0 4 0 0 0 0 5 4 7 4 2 8 9 2 3 12 15 5 9 10
z 3 5 5 3 6 5 0 0 0 0 0 0 0 0 0 3 8 1 2 1 2 0 1 8 12 3 4 4
6 7 6 3 3 6 0 0 0 0 0 0 0 0 0 0 0 3 2 3 7 8 0 2 4 7 3 5 7

Z 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 1 0 0
S 9 6 5 3 3 7 0 2 1 3 0 1 0 2 3 1 7 4 0 5 7 6 2 9 15 6 8 7
k 7 7 8 5 6 1 0 1 0 7 2 0 0 5 0 0 0 2 0 7 3 2 1 7 7 6 4 6
g 7 8 7 0 9 1 2 0 0 5 3 0 1 5 0 0 0 1 0 5 6 1 4 9 12 1 5 6
q 6 9 11 2 6 7 4 0 0 8 2 5 2 4 0 0 2 0 0 6 10 1 3 10 14 5 8 9
; 7 7 8 3 3 4 2 2 0 5 2 3 0 2 0 3 5 1 0 0 8 0 5 10 13 6 5 6

´ 5 2 5 0 3 4 2 2 0 3 2 2 2 1 0 1 4 0 0 0 0 0 0 4 9 4 10 8

Ò 10 7 11 0 9 3 2 4 2 6 5 3 1 3 7 4 8 0 0 0 0 0 2 7 15 9 12 9

¸ 11 10 10 1 9 1 2 2 1 4 3 3 0 4 3 3 9 0 0 0 0 2 1 14 16 6 14 12

h 6 5 10 3 2 2 1 0 0 5 1 0 0 5 2 5 1 0 0 0 7 0 5 8 10 4 5 3
� 8 4 6 0 7 1 2 2 1 4 1 0 0 0 1 1 6 1 0 0 0 3 0 9 10 6 3 8

l 5 5 11 1 3 5 0 3 1 6 4 3 3 1 3 4 8 2 2 4 7 0 2 0 0 10 4 8
r 14 8 16 2 10 3 6 4 0 8 3 4 0 4 2 3 9 2 1 7 11 1 6 11 0 8 12 10
n 14 12 12 6 8 4 4 2 4 11 8 4 1 10 4 7 9 3 1 12 11 6 7 21 21 3 14 10
w 10 8 10 1 14 3 2 1 1 5 5 1 2 3 2 2 6 2 1 3 10 3 6 9 14 5 0 17
y 0 0 2 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 3 0 0 0 1 2 0 0

T
able 5.2: N

on-adjacent consonant pairs in the A
rabic triliteral roots.
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Notably, the uvular approximants /;/ and /́ / occur in both the class of velars and uvulars and the
class of guttural approximants. In addition to these major classes, Greenberg demonstrates that
the coronal obstruents form two subclasses, the coronal stops {t, d, T, D}, and the coronal
fricatives {7, ', s, z, S, Z, 6}. These two coronal sub-classes have stronger cooccurrence
restrictions within their classes than they do with each other.

Finally, McCarthy (1994) notes that the status of the glides {w, y} in Arabic is unclear.
They may have a cooccurrence restriction with each other, but they are to some extent in
complementary distribution as well. They do not have any clear cooccurrence restriction with any
other consonants. The glides are not included in the analysis of OCP-Place effects by McCarthy
or by FBP.

5.2 OCP Effects in Autosegmental Phonology

McCarthy (1986, 1988, 1994) and others (Mester 1986, Padgett 1995a, Yip 1988) have
attempted to formalize the cooccurrence restrictions in the Arabic verbal roots using the notation
of autosegmental phonology (Goldsmith 1979, 1994). In autosegmental phonology,
representations are split into separate levels, called tiers. McCarthy showed that the non-
concatenative morphology of Arabic can be represented by separating the vowels and consonants
of the word form onto separate tiers. Thus, a form like kutib ‘to be written’ is represented as in
(38).

(38) vocalic tier: u i
| |

skeletal tier: C V C V C
| | |

consonantal tier: k t b

In (38), there are three different tiers, each of which contributes to the meaning of the word form.
The consonants ktb ‘to write’, the vowels ui, which indicates the passive, and the skeletal pattern
CVCVC which indicates the infinitive. These three morphological components combine to make
the complete form. If one pattern is changed, the resulting word changes. For example, we can
change the consonants in (38) to f¸l, resulting in fu¸il  ‘to be done’; we can change the vowels to
aa, resulting in katab ‘to write’; or we can change the CV-skeleton to CVVCVC, resulting in
kuutib ‘to be corresponded with’.

The most interesting cases in Arabic morphology arise when there are mismatches
between elements on different tiers. For example, kuutib ‘to be corresponded with’ has a
CVVCVC skeleton, with a one-to-many association on the first vowel.
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 McCarthy (1986) formulates the rule derivationally, restricting multiple associations to14

apply in a left-to-right manner. I present a non-derivational alternative as I adopt this constraint
in a non-derivational framework.

(39) u i
| \ |

C VV C V C
| | |
k t b

Restricting the use of one-to-many mappings is crucial to the traditional analysis of consonant
cooccurrence restrictions in Arabic.

Recall that Arabic does not allow roots where the first two consonants are identical, like
*ddm, but does permit the second pair of consonants to be identical, as in mdd ‘to stretch’. 
McCarthy claimed that the asymmetry follows from two separate restrictions. The first is the
Obligatory Contour Principle or OCP (Goldsmith 1979, Leben 1973) stated in (40).

(40) Adjacent identical elements are prohibited.

The OCP was originally proposed as a naturalness condition on autosegmental
representations. If elements are represented on separate levels with the possibility of one-to
many-associations, there is no way, based on the surface phoneme string, to differentiate between
a representation with repeated vowels (41a) and one with a shared vowel (41b).

(41) a. V V b. VV
| | | /
a a a

If (40) is present as a universal, then the representation in (41b) will always result. The OCP has
since been extended to apply in other domains. Itô & Mester (1986) applied the OCP to laryngeal
features in Japanese, to explain patterns in consonant voicing. McCarthy (1986) applied the OCP
to the consonantal tier, to account for the lack of adjacent identical consonants in the first and
second position in the Arabic roots. 

In order for the autosegmental OCP to allow mdd but not *ddm, McCarthy (1986) also
applied a restriction on one-to-many association: Multiple associations are not allowed word
initially.  Together, the two constraints rule out *ddm but permit mdd as follows. The underlying14

form of the surface consonant sequence mdd, with a repeated consonant, is md with only two
consonants. When the consonants md are to be associated with a CVCVC tier, there are two
consonants and three C slots, so a one-to-many mapping results. Since multiple association is not
allowed word initially, the first consonant /m/ is associated with the first C slot, and the second
consonant /d/ is associated with the second slot, and also the third, to avoid leaving an empty
slot, as shown in (42).
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 Note that the structure of this form is problematic for McCarthy’s original  derivational15

approach to association. If association proceeds left-to-right we would expect katbab for the
word form. The non-derivational constraint, which avoids initial one-to-many associations, is
satisfied by kattab.

(42) C CC
| | /

m d

Vowels are inserted normally, giving surface forms where there appear to be two separate ds.
Given these two constraints, it is impossible to derive a surface form like *dadam. The
idiosyncratic triconsonantal verbs with repeated second and third consonants are thus seen to be
underlyingly biliteral roots. They do not violate the OCP.

Evidence for McCarthy’s account of mdd-type roots comes from an Arabic language
game (McCarthy 1994). In this game, the consonants of a verbal root are permuted. On a verb
form like kattab there are five possible outcomes.

(43) battak
kabbat
takkab
bakkat
tabbak

Notice that in all of these outcomes, the middle consonant pair is always repeated. This is
accounted for if kattab is represented as in (44), with a medial one-to-many association, and the
consonants on the consonantal tier are permuted in the word game.15

(44) skeletal tier: C V CC V C
| | / |

consonantal tier: k t b

When a form like maddad, based on the root md, is involved in the same language game, there is
only one outcome, dammam indicating that the final consonant must always be the same as the
second. This is expected if maddad has only two underlying consonants.

McCarthy (1988, 1994) extends the restriction against adjacent identical consonants
further, to attempt to account for the strong cooccurrence restriction between homorganic
consonants. McCarthy proposes that there is a second OCP based constraint, OCP-Place, where
the domain of the OCP is restricted to the place of articulation features. McCarthy separates this
restriction from the total OCP. He states OCP-Place is not an absolute effect like the total OCP,
but rather a strong tendency. He also claims that OCP-Place applies to consonants which are
separated by intervening consonants. Note that, as pointed out in Pierrehumbert (1993), his
treatment of the total OCP only applies to adjacent consonants; he fails to consider the possibility
of a cooccurrence restriction between non-adjacent identical consonants, as discussed below.
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Even though McCarthy admits that OCP-Place is not a categorical effect, it is formalized using
the same absolute OCP constraint, with the domain restricted to the place of articulation tier.

First, let us examine effects of OCP-Place on adjacent consonants. A root like ktb ‘to
write’ has the autosegmental representation as in (45), where irrelevant features and tiers are
omitted for the sake of clarity.

(45) skeletal tier: C C C
| | |

place tier: [dorsal] [coronal] [labial]

An ill formed root, like *dtb, would be represented as in (46).

(46) * C C C
| | |

[coronal] [coronal] [labial]

The adjacent identical coronal features on the place tier violate OCP-Place. In order for this
analysis to account for the cooccurrence restriction, a constraint against one-to-many mappings
of individual place features is required, so that a representation like (47) is disallowed.

(47) * C C C
\ / |

[coronal] [labial]

McCarthy (1994) proposes just such a constraint, claiming that one-to-many associations of place
features are not allowed. The prohibition against shared place features is crucial to McCarthy’s
account of OCP-Place effects. Without it, OCP-Place can be circumvented by multiple
associations. Thus, OCP-Place effects depend on two independent constraints.

The general approach of autosegmental phonology is to use tier separation, in
combination with the OCP, to account for cooccurrence restrictions. Tier separation makes
objects on a tier ‘adjacent’ at the level of the tier, and moves irrelevant material to other tiers.
This mechanism is extended to account for OCP-Place effects for non-adjacent consonants. Since
OCP-Place effects are also found for non-adjacent consonants, McCarthy concludes that each of
the different place features must be placed on its own tier. Intervening consonants with different
places of articulation do not block application of the OCP-Place constraint because of tier
separation. The root *ftb is represented as:



76

(48) [lab] [lab]
| |

* C C C
|

[cor]

In (48), the place specifications for /f/ and /b/ are adjacent on the labial tier, violating
OCP-Place. The [coronal] feature is transparent to the application of OCP-Place on the labial tier.
In the non-adjacent case, the constraint against one-to-many mappings for place features is still
required, to avoid associating a single labial feature with two separate segments.

One final modification to McCarthy’s analysis is required to account for the split of the
coronal consonants into two classes, sonorants and obstruents. Recall from section 5.1 that the
coronal obstruents and coronal sonorants are in different cooccurrence classes, even though they
share place of articulation. Padgett (1995a) has proposed that the domain of OCP-Place can be
restricted by features in addition to place, which join with the place features into an ‘articulator
group’. He proposes that the domain of OCP-Place for a particular place feature, like [coronal],
can be restricted by the other features in the articulator group, making the rule sensitive to
manner features for coronals. FBP point out that this is a stipulation, which offers no explanation
as to the cause of the coronal split.

Pierrehumbert (1993) claims that similarity is the basis for the Arabic cooccurrence
restrictions. If cooccurrence restrictions are based on similarity, then we would expect all classes
to show sub-regularities based on manner of articulation. The coronal class clearly has this
pattern. Below, I review evidence from FBP that the dorso-guttural class is a single place class
divided by manner features. In addition, voicing features as well as place and manner features are
relevant to OCP effects (FBP). Thus OCP effects are based on all the features of a segment. The
effect of additional features is to sub-classify and cross-classify the major classes.

5.3 Gradient Data and Patterns of Cross-Classification

The FBP account of the OCP-Place constraint in Arabic is based on similarity computed
over three place of articulation sub-lattices: [labial], [coronal], and [dorso-guttural]. Examples of
such sub-lattices were given in chapter 2 for English. Similarity for the Arabic consonants is
computed based on the features in (49).
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(49)  a. PLACE features:
b f m t d T D 7 ' s z S Z 6 k g q ; ´ Ò ¸ h � l r n

labial + + +
coronal + + + + + + + + + + + + + +

dors-gut + + + + + + + + + + + + +
interdent + +

dental + + + +
alveolar + + + +

palatal +
dorsal + + + + +

guttural + + + + + + + +
velar + +

hi-uvular + + +
lo-uvular + + + +
pharyng + +

laryng + +

b. MANNER features:
b f m t d T D 7 ' s z S Z 6 k g q ; ´ Ò ¸ h � l r n

obstruent + + + + + + + + + + + + + + + +
sonorant + + + +

approx + + + + + +
stop + + + + + + + + +

fricative + + + + + + + +
lateral +
rhotic +
nasal + +

c. LARYNGEAL features:
b f m t d T D 7 ' s z S Z 6 k g q ; ´ Ò ¸ h � l r n

voice + + + + + + + + + + + +
voiceless + + + + + + + + + + + +
con glott + +

Similarity for the Arabic consonants is given in Table 5.3. The similarity metric was
computed over sub-lattices since OCP-Place only restricts the cooccurrence of homorganic
consonant pairs. The emphatic coronals, which are found in both the coronal and dorso-guttural
lattices, were given the maximal similarity value from the two sub-lattices. Consonant pairs
which were not found on the same lattice, and thus do not share place of articulation, were given
similarity zero.

To measure the strength of OCP-Place effects in Arabic, Pierrehumbert (1993) used the
O/E measure, which was used in chapter 4 for speech errors. Expected cooccurrence is computed
based on the overall frequency of consonants in each position in the root. Table 5.4 shows actual
and expected counts along with O/E aggregated by similarity. This table reveals the gradience of
the OCP-Place constraint.
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b f m t d T D 7 ' s z S Z 6 k g q ; ´ Ò ¸ h � l r n

b 1

f 0.4 1

m 0.4 0.2 1

t 0 0 0 1

d 0 0 0 0.38 1

T 0 0 0 0.43 0.22 1

D 0 0 0 0.22 0.5 0.38 1

7 0 0 0 0.21 0.12 0.21 0.12 1

' 0 0 0 0.13 0.25 0.13 0.25 0.36 1

s 0 0 0 0.36 0.17 0.19 0.11 0.45 0.21 1

z 0 0 0 0.18 0.38 0.11 0.22 0.21 0.5 0.36 1

S 0 0 0 0.19 0.11 0.67 0.27 0.45 0.21 0.36 0.19 1

Z 0 0 0 0.11 0.22 0.27 0.64 0.21 0.45 0.19 0.38 0.36 1

6 0 0 0 0.23 0.13 0.23 0.13 0.63 0.27 0.5 0.23 0.5 0.23 1

k 0 0 0 0 0 0.33 0.15 0 0 0 0 0.25 0.12 0 1

g 0 0 0 0 0 0.15 0.38 0 0 0 0 0.12 0.29 0 0.35 1

q 0 0 0 0 0 0.32 0.14 0 0 0 0 0.24 0.11 0 0.67 0.26 1

; 0 0 0 0 0 0.10 0.05 0 0 0 0 0.13 0.06 0 0.22 0.11 0.35 1

´ 0 0 0 0 0 0.05 0.12 0 0 0 0 0.07 0.15 0 0.11 0.27 0.17 0.38 1

Ò 0 0 0 0 0 0.22 0.11 0 0 0 0 0.29 0.13 0 0.1 0.05 0.1 0.25 0.13 1

¸ 0 0 0 0 0 0.12 0.13 0 0 0 0 0.15 0.17 0 0.06 0.06 0.05 0.13 0.15 0.42 1

h 0 0 0 0 0 0.22 0.11 0 0 0 0 0.29 0.13 0 0.1 0.05 0.1 0.25 0.13 0.67 0.31 1

� 0 0 0 0 0 0.12 0.13 0 0 0 0 0.15 0.15 0 0.06 0.06 0.05 0.13 0.15 0.31 0.56 0.42 1

l 0 0 0 0.08 0.14 0.08 0.14 0.1 0.2 0.08 0.17 0.08 0.17 0.110 0 0 0 0 0 0 0 0 1

r 0 0 0 0.08 0.14 0.08 0.14 0.1 0.2 0.08 0.17 0.08 0.17 0.110 0 0 0 0 0 0 0 0 0.6 1

n 0 0 0 0.14 0.29 0.14 0.29 0.08 0.17 0.07 0.14 0.07 0.14 0.090 0 0 0 0 0 0 0 0 0.43 0.43 1

T
able 5.3: S

im
ilarity of A

rabic consonant pairs over place lattices.
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Table 5.4: Adjacent and non-adjacent consonant pairs in the Arabic verbal roots.

Adjacent consonants Non-adjacent consonants

Similarity Actual Expected O/E Actual Expected O/E

0 2978 2349.3 1.27 1411 1248.4 1.13

0-0.1 481 365.2 1.23 219 203.2 1.08

0.1-0.2 492 550.6 1.18 308 288.7 1.09

0.2-0.3 151 260.2 0.58 96 124.2 0.77

0.3-0.4 29 131.2 0.22 50 67.0 0.75

0.4-0.5 14 180.2 0.08 75 103.2 0.73

0.5-0.6 3 165.0 0.07 8 25.0 0.32

0.6-0.7 0 90.2 0.00 13 40.4 0.32

1 1 199.6 0.01 16 103.9 0.15

The autosegmental model has a number of problems accounting for the gradience of the
OCP-Place constraint (Pierrehumbert 1993, FBP). The autosegmental OCP-Place constraint
cannot for the weakening of OCP-Place over distance, sub-classification within the place of
articulation classes, and cross-classification between the major classes.

Comparing the adjacent to the non-adjacent O/E shows the weakening of the
cooccurrence constraint for non-adjacent consonants. There is an effect of distance on OCP-
Place. Pierrehumbert (1993) demonstrates the difficulties that the standard account has with the
distance effects in Arabic. The autosegmental model predicts that these two cases are equivalent,
since tier separation was used to make place features ‘adjacent’ for non-adjacent consonants. In
addition, no account based on autosegmental adjacency can account for the strong cooccurrence
restriction between identical non-adjacent consonants (Pierrehumbert 1993, 1994). Identical,
non-adjacent consonants are not adjacent on every feature tier as there are always be some feature
specifications present from the intervening consonant. Thus, in the autosegmental account, the
restriction against non-adjacent identical consonants is predicted to be only as strong as the
restriction between homorganic pairs. In fact, the restriction against non-adjacent identical pairs
is stronger than the restriction against non-adjacent homorganic pairs, but weaker than the
restriction against adjacent identical pairs.

Greenberg (1950) originally pointed out that the coronal obstruents actually break into
two classes, the coronal stops and coronal fricatives. This sub-classification has not been
accounted for in a non-arbitrary way in the autosegmental account. There are several other cases
of sub-classification which also defy explanation in the autosegmental account. Pierrehumbert
(1993) reports that the emphatic coronals /T/, /D/, /S/, and /Z/ have a stronger cooccurrence
restriction with each other than they do with the other coronals. She also reports that the labial
class does show some evidence of sub-classification by manner, parallel to the coronals. While
there are no observed pairs of labial consonants in adjacent position, there are 17 such pairs in
non-adjacent position. Of those, 16 involve /m/ with a labial obstruent (/b/ or /f/). There is only 1
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pair with two obstruents. Finally, she reports that /l/ and /r/ form a subclass of the coronal
sonorants, which have stronger cooccurrence restrictions with each other than they do with /n/.

FBP report additional regularities outside of the previously noted cooccurrence classes.
Given the strong cooccurrence restrictions within the major classes, other consonant
combinations outside of the major classes will necessarily be overrepresented (Pierrehumbert
1993). FBP show that there are clear patterns of cross-classification between the major classes.
The cooccurrence of the velar and uvular stops {k, g, q} and the guttural approximants {Ò��¸��K�

�} is less than the expected amount of overrepresentation for classes which are unrestricted.
While adjacent pairs of consonants in these two classes are not underrepresented (153 observed
and 147 expected, O/E = 1.04), they do show far less overrepresentation than they should: the
O/E for non-homorganic adjacent consonants is 1.27. FBP also demonstrate an effect of
secondary place on cooccurrence. This is a result of secondary [dorso-guttural] place for the
emphatic stops /T/ and /D/. The O/E for {k, g, q} with {T, D} is 0.53; while for {k, g, q} with {t,
d}, O/E is 1.00. There is a similar effect for /S/ and /Z/, which also have [dorso-guttural]
articulation. O/E for {k, g, q} with {S, Z} is 0.77; the O/E for {k, g, q} with the other coronal
fricatives is 1.25. Thus there is underrepresentation between the coronal emphatics and the velar
and uvular stops.

5.4 The Similarity Account and Contrastive Underspecification

To summarize the preceding discussion, the effects of OCP-Place in the Arabic verbal
roots are thoroughly gradient. Rather than attempting to fit a categorical statement of well-
formedness to the data, Pierrehumbert (1993), Berkley (1994a, b), and FBP adopt a gradient
constraint based on the continuous variable similarity. Pierrehumbert (1993) originally claimed
that there is a cooccurrence restriction on homorganic consonants in proportion to their perceived
similarity. Identical consonants are maximally similar, and thus have the strongest cooccurrence
constraint. Consonants which differ in major class features, but are still homorganic, like the
coronal obstruents and coronal sonorants, are subject to a weak cooccurrence restriction.
Temporal distance affects perceived similarity by creating interference and allowing memory to
decay, weakening the perception of similarity over distance.

To account for differences in OCP-Place effects within major classes, for example the
strong cooccurrence restriction between labial obstruents and sonorants versus the weak
restriction between coronal obstruents and sonorants, Pierrehumbert (1993) employed contrastive
underspecification. I show below, following FBP, that the natural classes similarity model
provides a better account of the differences within classes than the contrastive underspecification
similarity model.

5.4.1 The similarity model.

The OCP as a similarity effect is a universal, with languages differing on which features
the effect is based upon (e.g. place features in Arabic, laryngeal features for OCP effects in tone
languages). In addition, the degree to which similarity triggers an OCP effect can vary from
language to language. Arabic is one of the strongest cases, where a small degree of similarity can
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trigger some OCP effects between homorganic consonants. English is a weaker case (Berkley
1994a, b), which is discussed in chapter 10. Languages which show OCP effects only on
identical consonants have an OCP-Place effect which is subject to the highest similarity threshold
before there is a cooccurrence restriction. The similarity model does not rely on adjacency or tier
separation, and thus can apply to all features over any distance.

The similarity model accounts for the gradience of OCP effects, both between adjacent
consonants and over distance. All of the classes originally noted in Greenberg (1950), which
have strong cooccurrence restrictions, are highly similar. The sub-classification and cross-
classification shown in section 2.3 are accounted for by the similarity model. Within the major
classes there are sub-classes of more similar segments, like the coronal stops and coronal
fricatives. Between the major classes there are segments which share some features, like the
voiced coronal obstruents the coronal sonorant.

In addition to effects of sub and cross-classification, Pierrehumbert (1993) showed that
the similarity model properly accounts for the effects of distance. It is well known that the ability
to make comparisons is influenced by temporal distance and interference by intervening material.
The effects of temporal spacing in the relatively short time scale of speech, on the order of one to
two seconds, is found both in visual and auditory perception (Pisoni 1973, Eriksen & Shultze
1978). Massaro (1970) has shown that the ability to compare the first and third items in a three
item sequence is impaired by the second. The exact character of the medial item determines the
degree to which it masks the first. For non-adjacent consonants in first and third position, the
consonant in second position acts as interference. Thus, the perception of similarity or
dissimilarity between the first and third consonants is diminished by the intervening second
consonant. As distance and intervening material increases, the evaluation of similarity will
become increasingly unreliable. Consonants which are not perceived as similar or dissimilar tend
to cooccur at random, resulting in an O/E of one.

5.4.2 The role of contrastive underspecification.

Underspecification was employed by Pierrehumbert (1993) to account for the difference
in the effects of manner on the coronals and dorso-gutturals, in comparison to the labials. Unlike
the coronals and dorso-gutturals, the labials do not split into two major classes based on manner.
Pierrehumbert used the contrastively underspecified featural specifications as shown in (50),
where a smaller set of features are used to contrast /f/, /m/ than /s/, /n/. The additional features for
/s/ are included due to the larger number of coronal fricatives which must be contrasted with /s/.
These segments and features are also included in (50). In particular, contrasting values for
[voice], [anterior], and [dental] differentiate /s/ from /z/, /6/, and /7/, respectively. The feature
[nasal] is required to differentiate /n/ from the other coronal sonorants. There are no other labial
fricatives or labial sonorants, so no additional features are needed to differentiate the labials. 
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(50) f m s n z 6 7

lab + +
cor + + + + +
son - + - + - - -
cont + + + + +
nasal +
voice - + - -
ant + + +
dental - - - +

Under the feature assignments based on contrastive underspecification, /f/-/m/ differ on the two
features [sonorant] and [continuant] and share [labial]. The pair /s/-/n/ also differ on [sonorant]
and [continuant], plus [nasal], [voice], [ant], and [dental]. Using the Pierrehumbert (1993)
feature similarity model, presented in chapter 3, that computes similarity as the ratio of shared
features to the shared and non-shared features, /s/-/n/ have similarity of 1/7, while /f/-/m/ has
similarity 1/3. The greater similarity of /f/-/m/ under this approach accounts for the stronger OCP
effect between /f/-/m/ than /s/-/n/.

The natural classes similarity model produces the same result without underspecification.
Recall that since different natural classes are created by feature combinations only when those
features are contrastive, features which are partially or totally redundant contribute to fewer
distinct natural classes. For example, the similarity of /s/-/n/ is 0.07 in the natural classes model
(from Table 5.3), while the similarity of /f/-/m/ is 0.2. Given that underspecification has formal
difficulties (Broe 1993, discussed in chapter 2), FBP claim the natural classes model is superior.

FBP also found empirical evidence against underspecification. There is an effect of
voicing on the strength of OCP-Place between the coronal obstruents and coronal sonorants.
Sonorants are redundantly voiced, so the similarity model using contrastive underspecification
predicts that voicing should be irrelevant to the similarity of sonorants to obstruents. However,
the voiceless obstruents cooccur with the sonorants more than voiced obstruents do. The
aggregate O/E is 1.15 for coronal sonorants and voiced coronal obstruents (239 actual and 207
expected). The aggregate O/E is 1.31 for coronal sonorants with voiceless obstruents (245 actual
and 187 expected). The natural classes model does not eliminate redundant voicing, rather,
redundant voicing has a lesser effect on similarity than non-redundant features.

5.5 The Stochastic Constraint Model of OCP-Place

FBP go beyond previous similarity based analyses of OCP-Place by presenting an explicit
model of a gradient cooccurrence constraint. Figure 5.1a shows the aggregate O/E for adjacent
consonant pairs in Arabic, and Figure 5.1b shows the comparable data for non-adjacent pairs,
based on Table 5.4. Figure 5.1a shows an ogival pattern that is reminiscent of categorical
perception (see Repp 1984 for a review). The data in Figure 5.1b are more scattered, but an
ogival model does not appear at all unreasonable. The logistic function is often used to model
ogival data (Tukey 1977). The equation of the logistic function is given in (51). 



y 

1

1 � eK�Sx

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 0.2 0.4 0.6 0.8 1
Similarit y

O
/E

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.2 0.4 0.6 0.8 1
Similarit y

O
/E

83

(51)

Figure 5.1: a. Adjacent consonant pairs in the Arabic verbal roots.

b. Non-adjacent consonant pairs in the Arabic verbal roots.

FBP offer the logistic function as a model of a gradient linguistic constraint based on a
continuous variable like similarity. They call the model the STOCHASTIC CONSTRAINT model. The
interpretation of the logistic function as a stochastic constraint model is presented in Figure 5.2.
In the stochastic constraint model of a gradient linguistic constraint, the independent variable, x,
is the relevant parameter upon which the constraint is based. In our case, this is similarity. The
domain of the logistic is (-�,�). The dependent variable, y, is the acceptability of a form. The
range of the logistic is (0,1). The stochastic constraint model assumes that the statistical
frequency of a form is a measure of the relative acceptability of a form with respect to other
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forms. The most acceptable forms are the most frequent, and unacceptable forms are so
improbable that they are not expected to occur. Thus, in practice, the dependent variable is O/E.

Figure 5.2: The logistic function as a model of a gradient constraint.

The stochastic constraint is used by FBP to model the OCP-Place constraint in Arabic.
The basic model is shown in (52). The parameters of the stochastic constraint model; A, K, and S;
are used to fit the constraint to actual data. The A parameter controls the upper asymptote of the
logistic, and represents the assumption of a proportional relationship between acceptability and
relative frequency. The logistic has range (0,1), but O/E can, in theory, range over [0,�). The
parameters K and S control the shape of the curve. K is called the INTERCEPT, and K controls the
location of the midpoint (where y = A/2) of the curve, which is the informal ‘constraint
boundary’. S is called the SHARPNESS and it controls the steepness with which acceptability
changes in response to changes in the parameter upon which the constraint is based. In general,
stronger constraints have greater sharpness, and weaker constraints have lesser sharpness. 

(52)

Figures 5.3a and 5.3b exemplify two possible parameterizations of the stochastic
constraint model. Figure 5.3a shows a sharp constraint, which has a steep boundary between
highly acceptable and highly unacceptable forms (modeled by the parameter S = 20), with
constraint boundary x = 0.3 (K = -6). Figure 5.3b shows a weak constraint (S = 8.3) with
boundary x = 0.6 (K = - 5).
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Figure 5.3: a. Sharp stochastic constraint.

b. Weak stochastic constraint.

The stochastic constraint model has an advantage over traditional categorical constraints
in that it can model gradient data. The stochastic constraint can also model a categorical
constraint, as shown in Figure 5.4. The categorical constraint shown here has sharpness S =
10,000 and boundary at x = 0.5 (K = -5,000).
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Figure 5.4: Categorical constraint modeled with the stochastic constraint.

Since the size of the lexicon is finite, any two forms which are distinct with respect to
some relevant parameter, like similarity, must be separated by some minimal difference in the
parameter (the only way there can be no lowest bound on the distance between distinct parameter
values is if there are an infinite number of values). Since there is no upper bound on S, the
stochastic constraint model can always be made sharp enough to categorically differentiate any
two distinct parameter values. In other words, since the size of the lexicon is finite, it can always
be made sharp enough to categorically differentiate between any two distinct forms.

In order to account for the weakening of OCP-Place effects over distance, FBP modify
the basic stochastic constraint model in (52). The addition of a distance variable allows them to
simultaneously model adjacent and non-adjacent data. The modified model is shown in (53). FBP
measure distance in terms of surface segments (distance = 2 for adjacent consonants, 4 for non-
adjacent consonants).

(53)

The model in (53) is specifically designed for distance effects. As distance increases,
OCP-Place effects weaken. At the theoretical limit, predicted O/E is one for any value of
similarity (i.e. the mathematical limit as distance approaches infinity is one). Figure 5.5, shows
the predicted O/E against similarity for distances from 1 to 20 phonemes.
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Figure 5.5: Effects of distance on the stochastic constraint model of Arabic cooccurrence.

FBP quantitatively compare the logistic model in (53) to four other models of
cooccurrence for the Arabic verbal roots. The first model is the frequency model, which assumes
that there is no similarity effect in the Arabic roots. The predicted occurrences of a consonant
pair are equal to the expected number of occurrences at random. Two other models are based on
the traditional autosegmental approach. The categorical model is a strict interpretation of the
formal account of McCarthy (1988, 1994) which prohibits homorganic consonants from
cooccurring within a root. The soft model is the model intended by McCarthy (1994) which
cannot be properly formalized using autosegmental theory. In the soft model, adjacent identical
consonants are prohibited, and homorganic consonants are underrepresented at a constant rate.
The final model, the feature similarity model, is the model of Pierrehumbert (1993), which
computes similarity based on shared and non-shared features. I call the FBP model the natural
classes model since in this model similarity is computed based on shared and non-shared natural
classes. This model and the feature similarity model use the same features.

I compare models on R , as well as what I call the ‘relative’ R . The relative R  is based2 2 2

on the amount of reduction in the residual sum of squares of each model over a model which
predicts occurrence by frequency, in other words the frequency model. The frequency model
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underlies all of the models presented here and accounts for a considerable portion of the variation
in the Arabic data (see chapter 10 for more on the effects of frequency in phonotactics).

(54)  

Finally, I also compare the relative R  over just the homorganic consonant pairs, which are the2

crucial data for OCP-Place effects.
Table 5.5 compares the different models of the Arabic data, and shows best fit model

parameters. The similarity models provide a superior fit to the autosegmental models of
McCarthy (1994). The Natural Classes model provides the best fit among the similarity models,
providing additional evidence for the use of the natural classes similarity model to represent
similarity among segments.

Table 5.5: Comparison of models of OCP-Place in Arabic.

Model R Relative Homorganic Model Parameters2

R Relative R2 2

Frequency Model 0.55 - - O = E

Categorical Model 0.74 0.42 0.56 O/E = 0 for homorganic pairs
O/E = 1.20 otherwise

Soft Model 0.77 0.50 0.69 O/E = 0 for adjacent identical
O/E = 0.38 for homorganic
O/E = 1.20 otherwise

Feature Model 0.78 0.52 0.73 A = 0.48, S = 25.2, K = -10.1

Natural Classes Model 0.80 0.56 0.80 A = 0.56, S = 27.5, K = -7.5

5.6 The Stochastic Constraint Model of a Linguistic Constraint

The analysis of OCP-Place effects in FBP introduces the logistic function as a
quantitative model of a probabilistic or stochastic constraint. FBP note that the gradient nature of
the OCP-Place data is problematic for the standard model of a constraint in linguistic theory,
which is categorical. I review their discussion here.

The gradient nature of OCP effects are not captured in any current formalism. In
Declarative Phonology (Scobbie 1993), constraints are categorical statements of surface true
well-formedness. The actual forms in a language simultaneously satisfy all constraints. An
account of OCP effects based on current formulations of Declarative Phonology is quantitatively
equivalent to the categorical autosegmental model presented above. Declarative Phonology could
be extended to incorporate the stochastic constraint model. Instead of requiring absolute
satisfaction of all constraints, constraints could be combined stochastically, with forms which
violate many constraints becoming increasingly improbable, as suggested in Pierrehumbert &
Nair (1995). This model of gradient constraint combination is implemented in chapter 7.
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In Optimality Theory (Prince & Smolensky 1993), violable constraints are allowed, when
violation of a constraint occurs in order to satisfy the needs of another constraint which has
logical priority. The existence of violable constraints allows statistically variable data, since
many forms which are in violation of a constraint might be found. However, Optimality Theory
cannot account for the particular patterns of cooccurrence found in Arabic or English (Berkley
1994a, b). These cooccurrence constraints are based on statistical patterns over the lexicon. The
architecture of Optimality Theory is based on finding the optimal pairing of input and output
given the constraints. OCP-Place does not influence what the output is for any particular input,
but rather it constrains the space of possible inputs and outputs in a probabilistic manner.
Constraints like OCP-Place are not possible in the Optimality Theoretic architecture.

The stochastic constraint model shares many commonalities with so-called ‘phonetic
implementation’ rules. Phonetic implementation is often divorced from phonology proper (e.g.
Keating 1983, Pierrehumbert & Beckman 1988). This division is motivated by a desire to
separate the categorical, symbolic phonological system from the probabilistic and gradient nature
of real speech. Since phonotactics represent implicit linguistic knowledge about the possible
words in a language, the results of FBP show that gradient phenomena must be incorporated
within phonology proper, as argued for in Pierrehumbert (1994). Pierrehumbert (1994) found that
incorporating probabilistic knowledge into the grammar of English reduces the set of admissible
word medial clusters of three or more consonants from 8708 to 200 most likely combinations.
There are 50 actually occurring medial triconsonantal clusters, and nearly all of them are in the
most likely 200. I discuss Pierrehumbert (1994) in detail in chapter 10.

The rules of phonetic implementation are often language specific, which also undermines
the existence of a dividing line between phonology and phonetics (see the review in
Pierrehumbert 1990). Unification of phonological and phonetic knowledge in this way allows
similar effects within the two domains to be accounted for with similar mechanisms. Evidence
that native speakers are sensitive to gradient phonotactic patterns is presented in Treiman et al.
(1996). They found that nonsense monosyllabic words with more probable VC sequences were
judged as more wordlike than words with improbable, but possible VCs. 

FBP note that no special linguistic faculty is needed to model OCP effects. The OCP
based on perceived similarity is a cognitively grounded linguistic universal. The parameters
which determine the sharpness of the effect of similarity and the effects of distance are fixed on a
language particular basis. These changes in strength can be modeled directly with the stochastic
constraint model, repeated in (55). Arabic is one of the strongest cases of consonant cooccurrence
restrictions, the coefficient of sharpness S in FBP’s model is 27.5, creating a clear boundary
between highly restricted and highly unrestricted consonants in the adjacent data.

(55)

In the stochastic constraint model, acceptability is an abstract measure of the goodness of
a form. The best forms are maximally acceptable, but less acceptable forms may also be found.
The constraint is probabilistic: less acceptable forms are found less frequently than more
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acceptable forms. A form is considered unacceptable if it is so improbable that less than one such
form is expected to be found in the lexicon.

I showed above that different strengths of constraints can be modeled by altering the
intercept and sharpness parameters, K and S, and a categorical effect can be created by using
extremely large sharpness values, causing the logistic to become near vertical. The parameter K
determines the point where the ‘category boundary’ is located, the midpoint of the logistic (where
acceptability is 0.5) is found at x = -K/S. For a language with a cooccurrence restriction only on
identical consonants, a large negative K places the category boundary toward similarity one.

Figure 5.6: Effects of changes in the intercept (K) on the stochastic constraint boundary.

 Figure 5.6 shows logistics with identical sharpness (S= 20), with two different intercepts
(K = -4 and K = -16). The curve with K = -16 is right-shifted from the curve with K = -4. If these
were two models of two different similarity effects, all but the most similar values are acceptable
for the right-shifted curve. A model of this type is appropriate for languages which prohibit
identical consonant pairs, but otherwise allow any consonant combination.

FBP point out that constraints enforcing similarity, for example vowel harmony, can be
modeled via the stochastic constraint, by changing the signs on the parameters K and S. Figure
5.7 shows a stochastic dissimilarity constraint and a comparable stochastic similarity constraint.
The curve on the right is a dissimilarity constraint. It has high acceptability for low values of
similarity (K = -16 and S = 20). The curve on the left is a similarity constraint. It has high
acceptability for high degrees of similarity (K = 8 and S = -20).
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Figure 5.7: Stochastic similarity and dissimilarity constraints.

In the case of parasitic vowel harmony (e.g. Cole & Trigo 1989), discussed by FBP, there
is an optimal degree of similarity which is desired, intermediate between maximal and minimal
similarity. Such an effect can be modeled by invoking simultaneous stochastic constraints on
similarity and dissimilarity. Multiplying the acceptability values of two stochastic constraints
produces a simultaneous acceptability measure, shown in Figure 5.8. This has the desired result
for parasitic vowel harmony: intermediate similarity provides optimal acceptability. Multiplying
stochastic constraints is equivalent to the fuzzy set theory operation of set intersection. This
model of constraint combination is implemented for Arabic OCP-Place in chapter 7.

Figure 5.8: Simultaneous gradient constraint satisfaction.

Note that, when two constraints are combined, as in Figure 5.8, no form is perfectly
acceptable (acceptability = 1). Rather, some forms are relatively more acceptable than others. The
stochastic constraint model thus shares the same conception of relative acceptability as
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Optimality Theory (Prince & Smolensky 1993). Many occurring forms may be sub-optimal. In
the stochastic constraint model, the most acceptable forms are the most frequently occurring
forms. It is possible to have forms which violate a constraint to be of high frequency, if they are
the most acceptable forms possible.

FBP argue that the consideration of similarity provides crucial understanding of the
phenomena behind phonotactic constraints. Strong phonotactic constraints, which are often
categorical, are found within adjacent consonants in consonants clusters. Perceived similarity is
least diminished in these cases as the consonants are truly adjacent, and similarities and
differences between them are most salient. However, the acceptability of similar pairs is language
particular, with some languages allowing clusters of highly similar consonants, and other
languages banning clusters entirely. Languages which allow no clusters have the strongest
constraint against similarity between adjacent segments, such that adjacent phonemes must be
vowels and consonants, the most dissimilar segments (cf. Ohala 1990, Lamontagne 1993).
Gradient constraints like the OCP effects in Arabic are found over a greater distance, for example
over intervening vowels, which reduces the strength of such effects considerably.

In the discussion above, the stochastic constraints modeled acceptability (on the y-axis)
against similarity (on the x-axis). However, the logistic model as a stochastic constraint can be
applied to model acceptability of a form to any parameter x. The stochastic constraint model can
be applied in general in a phonological theory which utilizes gradient constraints. Incorporating
these constraints, for example, into a current constraint based phonological framework like
Declarative Phonology merely requires replacing the use of categorical constraints with
stochastic constraints. However, doing so requires adopting the Optimality Theoretic perspective
that occurring forms can violate constraints, and that the most acceptable forms may violate
many constraints. Categorical effects can still be captured, using stochastic constraints with a
near vertical category boundary, but smoothly gradient phenomena can also be accounted for. I
return to the implications of the stochastic constraint model and gradient data for phonological
theory in chapter 11.
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CHAPTER 6
The Special Status of Word Onsets in Speech Errors

In this chapter, I review research on the effects of syllable and word position on
production, by examining evidence from phonological segment errors. Errors between
consonants in structurally parallel positions are as much as ten times more likely than errors
between consonants in different structural positions (Dell 1984, Shattuck-Hufnagel 1992). I
present the results of a new experiment, which shows that errors between similar consonants in
word onset position are more likely than errors between similar consonants in other positions.
For dissimilar consonants, no effect of word position is found. This pattern is predicted by a
spreading activation or connectionist model of phonological encoding, as I discuss in section 6.3.
This result is significant for three reasons. First, word onset errors are by far the most frequent in
naturally occurring interaction errors. The higher error rate among similar word onsets than
among similar consonants in other positions accounts for their preponderance in error analyses.
Second, this demonstrates that there is differential behavior for consonants in different positions,
and thus that future research should be aware of possible positional idiosyncracies from
examining only word onset errors. Third, in the next chapter, I show that analogous effects of
word onset position on similarity are found in OCP-Place. I claim that finding parallel effects in
both speech production and phonotactics suggests that there is a deeper connection between
processing in the lexicon and abstract linguistic constraints.

6.1 Phonological Structure in Phonological Speech Errors

Recall that similar segments (e.g. p/f) are typically mis-selected for one another in both
naturally occurring errors and those elicited in experiments (e.g. Fromkin 1971, Levitt & Healy
1985, Nooteboom 1969, MacKay 1970, Motley & Baars 1975, Shattuck-Hufnagel & Klatt 1979).
While similarity is an important factor in speech errors, there are additional constraints on which
consonants in an utterance are likely to interact. Consonantal speech errors usually involve the
interaction of an onset with an onset or a coda with a coda (MacKay 1969). Examples are from
Fromkin (1971):

(56) Onset errors:
a. [al6o] share (also share)
b. reek long race (week long race)
Coda errors:
c. sub... such observation
d. great wrist (great risk)

There is additional evidence that other aspects of phonological structure are relevant for
speech errors. Shattuck-Hufnagel (1987) examined the frequency of errors in word initial
position and in stressed syllables in the MIT-Arizona corpus of naturally occurring errors. She
found that most errors occurred in word onsets, even though word onset positions are less
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frequent than other syllable onset positions in the corpus. In addition, stressed syllables were
disproportionately involved in errors.

Since many errors in natural error corpora occur in the onset of stressed monosyllabic
words, differences in the effects of word position and stress in error rates is not clear. Shattuck-
Hufnagel (1992) performed a series of experiments to determine whether there are word onset
effects or stress effects or both which influence error rates. She found both that shared word
onset position between two consonants increased their propensity to interact in an error, and that
shared stress between two syllables also increased error rates between the onsets of those
syllables. I review Shattuck-Hufnagel’s experiments in some detail, in part because I use her
paradigm in my own experiment on interaction between the effect of word position and similarity
on error rate.

Shattuck-Hufnagel recorded subjects reading and reciting tongue twisters containing
similar consonants which shared prosodic position to different degrees. All of the stimuli were
based on two bisyllabic words and two monosyllabic words. The stimuli were created in sets of
four, with the four stimuli in each set based around the same onset consonants. In the example
stimuli given below, the onset consonants are /p/, /f/, and /r/. Since /p/ and /f/ are similar, these
phonemes are the target pair for the four stimuli in the example set. The other onset /r/ was
chosen to be dissimilar from the target pair.

The first type of stimulus placed the target phonemes in stressed word onset position.
Shattuck-Hufnagel refers to these as the ‘Both Same’ stimuli (B), since the target phonemes have
both the same word position and the same stress position.

(57) Type 1: B(oth same)
peril fad foot parrot

Each stimulus in the set of 4 used the same monosyllabic words. The bisyllabic words
were varied, to vary the amount of prosodic parallelism between the onset of the monosyllable
(which is a stressed word onset) and a similar onset in the bisyllable. The second type of
stimulus, the ‘Word Same’ stimuli (W) have target phonemes which are both word onsets, but
with different stresses.

(58) Type 2: W(ord same)
parade fad foot parole

The third type of stimulus, called the ‘Stress Same’ stimuli (S) have target phonemes
which are both stressed, but which differ in word position.

(59) Type 3: S(tress same)
repeat fad foot repaid

The final type of stimulus, the ‘Neither Same’ stimuli (N) have target phonemes which
are both onsets, but which differ on word position and stress.
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(60) Type 4: N(either same)
ripple fad foot rapid

There were 24 sets of consonants, with 4 stimuli per set, for a total of 96 twisters. A total
of 20 subjects participated in the experiment. Each subject read half of the twisters for 20 of the
consonant sets, and all of the twisters for 2 of the sets. The twisters were presented individually
on index cards. The subjects read each twister out loud three times, and then recited the twister
from memory three times. Thus, each subject produced 1,152 words, for a total of 23,040 words
produced in the experiment.

Shattuck-Hufnagel (1992) tabulated errors between the target segments (e.g. p/f). Her
results, collapsed across speakers, are presented in Table 6.1. Phonemes in parallel prosodic
position are more likely to interact in speech errors. In the first row (B), p/f are both in stressed
word onset position, and many errors occurred. In the second row (W), /p/ is in unstressed word
onset position, while /f/ is a stressed word onset. In the third row (S), /p/ is stressed, but is not a
word onset. In the last row, the phonemes differ in both word and stress position. Clearly,
structural parallelism increases error rate.

Table 6.1: Results of Shattuck-Hufnagel (1992) Experiment 1.

Stimulus type (e.g. p/f) Prosodic positions shared Errors

parrot fad foot peril word onset, stressed (B) 182

parade fad foot parole word onset (W) 130

repeat fad foot repaid stressed (S) 55

ripple fad foot rapid none (N) 14

Shattuck-Hufnagel (1992) replicated this result in two other experimental conditions. In
Shattuck-Hufnagel (1992) Experiment 1a, the word lists were embedded in nonsense phrases.
The phrase condition was intended to test the results of Experiment 1 in a more natural speech
task. The examples above are shown here in their corresponding phrases.

(61) Type 1: B(oth same)
The parrot is a fad and the foot is in peril.

(62) Type 2: W(ord same)
The parade is a fad and the foot is on parole.

(63) Type 3: S(tress same)
To repeat is a fad and the foot is repaid.

(64) Type 4: N(either same)
The ripple is a fad and the foot is rapid.
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In Shattuck-Hufnagel (1992) Experiment 2, a partially different set of bisyllabic words
was used. These words were given in lists of the form ‘monosyllable bisyllable bisyllable
monosyllable’. Additionally, different monosyllables were used for each type of stimulus for a
particular phoneme pair. Sample stimuli are:

(65) Type 1: B(oth same)
pack fussy fossil pig

(66) Type 2: W(ord same)
pad forsake foresee pot

(67) Type 3: S(tress same)
pin suffuse suffice pet

(68) Type 4: N(either same)
pod sofa suffer peg

Experiments 1a and 2 from Shattuck-Hufnagel (1992) support the results of Experiment
1. In all three experiments, consonants with parallel phonological structure had more interaction
errors than consonants which had some structural mismatches. Results for all three experiments
are shown together in Table 6.2. Note that in all of the errors in this experiment, there was
interaction between a stressed word onset (e.g. /f/, the onset of the monosyllable) and another
onset, so all errors involved at least one word onset.

Table 6.2: Results of Shattuck-Hufnagel (1992) Experiments 1, 1a, and 2.

#Errors

Stimulus type (e.g. p/f) Prosodic positions shared Exp. 1 Exp. 1a Exp. 2

parrot fad foot peril word onset, stressed (B) 182 202 253

parade fad foot parole word onset (W) 130 134 132

repeat fad foot repaid stressed (S) 55 59 75

ripple fad foot rapid none (N) 14 15 26

In addition to tabulating errors between the similar target segments, Shattuck-Hufnagel
(1992) also tabulated errors between the dissimilar segments (e.g. /r/ with /f/ or /p/ in the sample
stimuli). The dissimilar segments are in the same set of structural relations as the similar ones. In
parrot fad foot peril (where p/f are in the B configuration), /r/ and /f/ share no prosodic structure
other than syllable onset. Thus, an error between /r/ and /f/ would be of type N. Table 6.3 shows
the complete set of corresponding error types.
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Table 6.3: Error types tabulated in Shattuck-Hufnagel (1992).

Stimulus type Similar error type (p/f) Dissimilar error type (r/f)

parrot fad foot peril word onset, stressed (B) none (N)

parade fad foot parole word onset (W) stressed (S)

repeat fad foot repaid stressed (S) word onset (W)

ripple fad foot rapid none (N) word onset, stressed (B)

Table 6.4 shows the number of errors for dissimilar phonemes in the three experiments.
The basic trend found above is preserved: stimuli where more prosodic structure is shared have
higher error rates. Note, however, that the dissimilar B and W cases are not as different from one
another as the similar B and W cases are. To summarize, Shattuck-Hufnagel (1992) demonstrated
that shared prosodic structure has a strong effect on error rate.

Table 6.4: Errors between dissimilar consonants in Shattuck-Hufnagel (1992) Expt. 1, 1a, and 2.

Stimulus type (e.g. r/f) Prosodic positions shared Expt.1 Expt.1a Expt.2

ripple fad foot rapid word onset, stressed (B) 24 45 58

repeat fad foot repaid word onset (W) 25 44 21

parade fad foot parole stressed (S) 11 14 4

parrot fad foot peril none (N) 0 0 1

Other aspects of structural parallelism have been shown to increase error rate as well.
Spontaneous error corpora show a tendency for phoneme exchanges (e.g. like box for bike locks)
to occur when the phoneme adjacent to the exchanging ones are identical (Nooteboom 1969,
MacKay 1970). In a series of experiments Dell (1984) explored what he terms the REPEATED

PHONEME EFFECT: the effect of repetition of the nuclei or the codas of two syllables on error rates
between the onsets of those syllables. Dell conducted experiments using the SLIPS paradigm
(Motley & Baars 1975).

In SLIPS, word pairs are presented to subjects at a rate of about one pair per second.
Immediately after the presentation of some pairs, a cue is given that the subject is to say the word
pair as quickly as possible. Certain cued pairs, called the critical cued pairs, are preceded by pairs
which bias the subject to produce an exchange error. These interference pairs prime the subject
say the word onset consonants of the critical pair in reverse order. For example, the subject could
see a sequence like the following:

(69) sad sack (primes correct nucleus and coda)
bid meek (interference pair)
bud meek (interference pair)
big men (interference pair)
mad back (critical pair)
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In addition to the interference and critical pairs, there are filler pairs between the stimulus blocks,
some of which are cued, that are used to prevent the subject from noticing the priming pattern.

Dell constructed SLIPS stimuli which controlled the vowels and coda consonants to
determine if shared vowels or shared codas increased error rate. He examined the effect of shared
vowels in Dell (1984) Experiment 1. He contrasted stimuli with repeated vowels in the two
words (e.g. mad back, made bake) and stimuli which did not repeat vowels (e.g. made back, mad
bake). There were twice as many errors between word onset consonants when vowels were
repeated. The error rate was 11.0% for onsets before repeated vowels, and 5.4% when the vowels
following the onsets were not repeated.

Dell (1984) Experiment 2 examined the effect of shared coda consonants. In this
experiment, cued pairs with repeated coda consonants (e.g. boot coat, boom comb) were
contrasted with cued pairs which did not have repeated coda consonants (e.g. boom coat, boot
comb). Error rates between word onsets were again higher when other phonemes were repeated.
The error rate between word onsets was 6.3% when final consonants were repeated and only
2.4% when they were not.

Together Dell (1984) and Shattuck-Hufnagel (1992) show that error rates are highly
dependent on structural parallelism. The presence of shared prosodic context or shared segmental
context influences error rates.

6.2 Experiment 1: Word Onsets in Phonological Speech Errors

Word onsets are disproportionately involved in speech error analyses as they are the most
frequent errors found in naturally occurring corpora (Dell & Reich 1981, Garrett 1980, Shattuck-
Hufnagel & Klatt 1979, Stemberger 1983), and word onset errors are easy to induce
experimentally (Levitt & Healy 1985, Motley & Baars 1975, Shattuck-Hufnagel 1987). We
might suspect that word onsets are inherently error prone. In the previous section, I reviewed
Shattuck-Hufnagel (1992), which showed that parallel prosodic position increases error rates. No
study, to my knowledge, has shown that stressed word onsets are inherently more likely to err
than other syllable onsets.

I have undertaken a follow-up to Shattuck-Hufnagel’s experiments in which all consonant
pairs are in fully parallel prosodic positions, but the prosodic position is varied across stimuli.
Thus, all stimuli shared prosodic structure equally, but vary as to the exact position under
examination. I have found that word onsets are inherently more susceptible to error when they
are similar, but not when they are dissimilar.

6.2.1 Materials.

Each stimulus in the experiment is based on a pair of similar consonants (e.g. b/p) and a
pair of dissimilar consonants (e.g. k/s) appearing in syllable onset position. There were twelve
quadruplets of consonants. Each quadruplet was used in a set of four tongue twisters, where the
pairs of similar and dissimilar consonants were placed in structural correspondence. Each twister
consisted of four bisyllables. The first type of tongue twister had the similar consonants in
stressed word onset position, and the dissimilar consonants in unstressed, second syllable onset
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position.

(70) Type 1: beacon possum piercing bookie
(b/p are stressed word onsets, k/s are unstressed second syllable onsets)

This stimulus roughly corresponds to the B stimulus from Shattuck-Hufnagel’s experiments. The
second type of tongue twister had the similar consonants in the unstressed word onset position,
and the dissimilar consonants in the stressed second syllable onset position.

(71) Type 2: became pursue percent bouquet
(b/p are unstressed word onsets, k/s are stressed second syllable onsets)

The third type of tongue twister had the similar consonants in the stressed second syllable onset
and the dissimilar consonants in the unstressed word onset.

(72) Type 3: caboose support suppose kebab
(b/p are stressed second syllable onsets, k/s are unstressed word onsets)

The fourth type of tongue twister had the similar consonants in the unstressed second syllable
onset and the dissimilar consonants in the stressed word onset.

(73) Type 4: cabin soapy supper cobble
(b/p are unstressed second syllable onsets, k/s are stressed word onsets)

I constructed 36 such twisters, one of each type for each quadruplet of consonants. These
36 twisters were reordered (e.g. beacon possum piercing bookie � possum beacon bookie
piercing) to create a second set of 36 twisters. Each tongue twister was printed on a three-by-five
index card in 18 point type with a laser printer. The complete set of stimuli is shown in section
6.4, at the end of the chapter.

6.2.2 Method.

The stimuli were given to subjects in two blocks of 36, each block contained one of the
two orderings for a particular set of words. Each block was randomized so that no adjacent
stimuli had the same similar phoneme pair or the same structural position for the similar
phonemes. All subjects read the stimuli in the same order.

Following the procedure of Shattuck-Hufnagel (1992), the subjects were instructed to
read each stimulus three times out loud, and then to repeat the stimulus from memory three
times. Shattuck-Hufnagel (1992) found the error rate to be higher during the repetition portion,
but that the overall pattern of errors was the same in both the reading portion and the repeating
portion. I do not differentiate errors while reading from errors while repeating in the analysis
below. To avoid outright memory errors, the subjects were allowed to look at the stimuli between
repetitions if they became uncertain about what the words were.
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 This method was chosen as subjects occasionally adopted an error as the correct word16

in the stimulus and repeated the error for the remaining repetitions of the stimulus. The repeated
errors which I did include do not significantly affect the results presented below. All results are
the same if they are left out of the analysis.

Subjects were recorded one at a time in a sound controlled booth on a Marantz cassette
recorder using a Sony electret lavaliere microphone. The equipment made a very high quality
recording, and the electret microphone was hopefully less obtrusive than a full-sized microphone,
resulting in more natural speech behavior. The subjects were instructed that the experiment was
concerned with the mistakes that they made, and thus that it was important for them to speak at a
normal to slightly fast rate. The subjects were given a five minute break and distracted with
ordinary conversation between stimulus groups. The entire recording procedure generally took
less than 45 minutes.

6.2.3 Tabulation.

The cassettes were later analyzed using Sony professional headphones. Errors that were
unambiguously on the target word onset consonants were tabulated. Errors on larger units, or that
were interrupted before a clear determination of the error unit could be made, were not counted. I
tabulated consonant exchange errors, e.g. peacon bossum for beacon possum, separately. Dell &
Reich (1981) present evidence that the first error in the exchange is the primary error, and the
second error is not an independent error. The exchange errors are thus presented below based on
the status of the first error in the pair. Multiple errors on the same word in different repetitions of
the stimulus were counted as separate errors long as a correct repetition of that word occurred
between the errors. Thus, it was possible for as many as three errors to be counted for a single
word on a single stimulus over the six repetitions.16

6.2.4 Subjects.

The subjects were 33 Northwestern undergraduates, primarily from introductory classes
in linguistics and cognitive science. The data from one subject were unusable due to technical
difficulties, and the data from a second subject were removed from the study as the subject had a
conspicuously non-native accent which was not detected during the pre-experimental screening.
The remaining 31 subjects were monolingual speakers of American English. Subjects were paid
for their participation in the experiment.

6.2.5 Results and discussion.

Table 6.5 presents the results of the experiment. The second row of data in the table is
shaded as it involves an extra complication which I discuss below. Setting the unstressed word
onsets aside, the error rate between similar stressed word onsets is higher than the error rate
between similar second syllable onsets is significant on an ANOVA with stimulus type and
subject as factors (F(2,30) = 3.05, p = 0.054).
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Table 6.5: Results of Experiment 1.

Stimulus type (e.g. b/p) Prosody shared #Similar #Dissimilar #S/#D

beacon possum piercing bookie word onset, stress 124 30 4.1

became pursue percent bouquet word onset, no stress 226 163 1.4

caboose support suppose kebab)  onset, stress 89 31 2.92

cabin soapy supper cobble )  onset, no stress 79 27 2.92

The difference in error rate between similar segments in different positions is not
significant with stimulus type and consonant pair as factor (F(2,8) = 0.96, ns). The lack of
significance with consonant pair as factor can be blamed on the small difference between the two
second syllable onset types. Additionally, there appear to be particular consonant pairs which do
not reflect the overall trend. Note first that nearly half of the errors between stressed second
syllable onsets involved the similar consonant pair l/r (in two different quadruplets of stimuli). If
this pair is set aside, the difference between stressed word onsets and stressed second syllable
onsets across stimuli is significant on a paired t-test (t = 2.2, p = 0.033). In the case of unstressed
second syllable onsets, the similar pair p/f do not behave like the rest of the group. This pair is
distinct from the rest as it is the only manner of articulation contrast among the similar consonant
pairs. If this consonant group is set aside, the difference between the remaining stressed word
onsets and unstressed second syllable onsets is significant on a paired t-test (t = 1.8, p = 0.056).
Whether the exceptional patterns just discussed are accidental or principled, and whether if
principled they can be given a satisfactory account, is left as an open question for future work.

The unstressed word onsets, which have a very high error rate in Experiment 1, involve
the added complication of the repeated phoneme effect (Dell 1984), discussed in section 6.1
above. In these stimuli, the consonants are word onsets of iambic words. As a result, all of these
syllables had reduced, /�/ vowels. Dell found that sharing a following vowels increased error
rates between word onsets by 150% to 200%. The repeated phoneme effect accounts for the
difference between similar stressed and unstressed word onset error rates. The 226 similar
unstressed word onset errors is between the predicted 186 to 248 errors based on the similar
stressed word onsets (150-200% of the stressed word onset error count). The extremely high
error rate for dissimilar unstressed word onsets cannot be accounted for so straightforwardly.
Another possible source of errors in these stimuli is whole syllable errors. Given the reduced
vowels in the unstressed word initial syllables, a syllable error is indistinguishable from an onset
consonant error. Thus, the error tabulation for this type of stimuli may include more than one
type of error.

The overall effect of word position on similarity in Experiment 1 is also found in the
MIT-Arizona corpus of naturally occurring no-source errors, which was presented in chapter 4.
The 521 single segment consonant errors in this corpus consist of 209 word initial errors and 312
word medial or word final errors. Using the similarity values for English consonant pairs
presented in chapter 3, the mean similarity for word initial errors in this corpus is 0.36 (with
variance 0.018), while the mean similarity for word medial and word final errors in this corpus is
0.33 (with variance 0.024). The mean similarity is significantly less in the non-initial case by a t-
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test (t = 2.01, p = 0.023). In addition, the difference in variance is significant (F-test, F = 1.36, p
= 0.009). The lower mean similarity and greater variance for the non-initial case indicates that
the non-initial no source errors cover a broader range of similarity values that is more evenly
distributed than the initial errors. The initial errors show greater mean similarity and less
variation in similarity.

In this section, I have shown that, while structural parallelism increases the error rate
between consonants, the word onset position has special status compared to the onset of the
second syllable in a bisyllable. Similar consonants in the word onset are inherently more likely to
interact than similar consonants elsewhere in the word. This result may account, in part, for the
large number of word onset errors in naturally occurring error corpora. Since most words have
onsets and interactions between word onsets are especially likely to happen, the large number of
word onset errors in natural corpora are accounted for.

6.3 Word Onsets in an Activation Model of Phonological Encoding

Current linguistic models of speech production are based on evidence from speech errors.
Any correct model of speech production must be able to account for the many regular patterns of
errors which have been established in the literature. In this section, I argue that the extra
sensitivity to similarity of word onset consonants in speech errors is the result of the sequential
access of segmental information within the word. Thus, I claim that the procedure for
phonological encoding for speech production accesses the segmental contents of words
sequentially from left-to-right. In this model, words which are phonologically similar to the target
word are also activated.

In the Dell (1986) model of phonological encoding presented in chapter 6, the phonemes
of a syllable are encoded all at once, based on which onset, nucleus, and coda are most highly
activated. Sevald & Dell (1994) found experimental evidence against the atemporal aspect of the
model. They propose a sequentially cued model, where segmental activation proceeds from left-
to-right within the word. I first review their evidence for sequential segmental encoding, then
present an account of the greater strength of similarity effects for word onsets based on the
Sevald & Dell (1994) model.

Sevald & Dell (1994) found evidence for sequential cueing by testing the effect of
repetition on production time. They counted the number of repetitions of sequences of four CVCs
subjects could make in eight seconds. Using C VC  sequences, they tested the effects of repeatingi f

C , V, C , C V, VC , and the entire C VC   sequence on production time. Stimuli that were fouri f i f i f

words each were constructed with four different patterns of repetition. ‘Immediate repetition’
involved repeating a unit in all four CVCs (AAAA pattern). ‘Near repetition’ followed an ABBA
pattern. ‘Far repetition’ used an ABAB pattern. ‘Nonrepetition’ (ABCD pattern) was only used
for levels of structure above the segment to constrain the size of the stimulus space. Examples of
each type of repetition on a C V sequence, in conjunction with a far repetition of C , are:i f

(74) Immediate repetition of C V (AAAA):i

pick pin pick pin
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(75) Near repetition of C V (ABBA):i

pick tin tick pin

(76) Far repetition of C V (ABAB):i

pick ton pick ton

(77) Nonrepetition of C V (ABCD):i

pick ton tick pun

The stimuli contained all possible combinations of repetition types over the segments (C , V, andi

C ) for two completely different sets of segments. When taken together, individual repetitionf

patterns for segments create the patterns of C V, VC , and C VC  repetition. The first examplei f i f

involves immediate repetition of C  and V, giving immediate repetition of C V. The secondi i

example has near repetition of C , and immediate repetition of V, resulting in near repetition ofi

C V. The third example has far repetition of C  and V, resulting in far repetition of C V. Thei i i

fourth example has near repetition of C  and far repetition of V, resulting in no repetition of C V.i i

Sevald & Dell (1994) found that repetition of the entire C VC  was the most significanti f

factor in reducing production time. The only other factor which significantly reduced production
time was C  repetition, in other words repeating the coda. By contrast, they found that repeated Cf i

and C V significantly increased production time. In general, the inhibitory or facilitative effectsi

of repetition were enhanced by the nearness of the repetition. They concluded that a production
model which employs simultaneous activation of onset, nucleus, and coda segments cannot
account for the fact that repeated C  facilitates production, while repeated C  inhibits production.f i

Sevald & Dell (1994) proposed instead that C  is activated first, and C  is activated later. Thei f

sequential activation of C  and C  means that there are different context effects for the selectioni f

of C  and the selection of C .i f

Recall that the Dell (1986) model involved spreading activation across nodes representing
morphemes, syllables, rimes, and cluster or singleton onsets, nuclei, and codas. Activation
spreads from the initially activated morpheme node, and the onset, nucleus, and coda of a
syllable is selected after an interval of time has passed. Since the time from activation of the
morpheme node to the selection of the segments is a fixed number of time units, this model
cannot be used to model differences in production times in its current form. Instead, Sevald &
Dell (1994) assume that competition between segments delays encoding and production.
Situations with greater competition between the intended segment and other segments are slower
to be produced than situations without competition. With sequentially cued segments, repetition
of C  creates competition between possible completions of the word. Other words which are sooni

to be produced, and also begin with C , become activated and compete with the target word. Thei

repetition of C  creates no competition, as C  is the last segment encoded in the word. Thus,f f

repetition of C  slows production through inhibition, while repetition of C  facilitates productioni f

because it receives additional activation that does not create competition.
To understand the effects of sequential activation on repeated forms, compare the

production of pick pun (with repeated C ) and pick tick (with repeated VC ). Figure 6.1 shows ai f

representation of the network including pick, pun, and tick. When producing pun in pick pun, the



104

nodes for /p/, /�/, and /n/ are activated in that order. Activation spreads from the node for pun to
the /p/ node. Activation from the /p/ spreads back to pun but also to all other words that start with
/p/. Since the node for pick was recently activated, it has some residual activation which is
enhanced by the new activation from the /p/ node. The reactivation of pick creates competition
between the proper encoding of the rest of pun and repeating pick. This competition delays
proper encoding, and slows production. By contrast, when producing tick in pick tick, the
activation spreads from the node for tuck to the /t/ node. Since the /t/ node does not spread
activation to pick, pick is not reactivated, and no extraordinary competition results. Finally,
consider the production of pick pick. In this case, activating the second pick spreads activation to
nodes which are already activated from the preceding production of pick. In this case, the result is
pure benefit, leading to the fastest encoding of all.

Figure 6.1: Network activation model of phonological encoding for pick, pun, and tick.

Sevald & Dell (1994) tested the prediction of sequential cueing in a second experiment.
They examined subject’s speed of production for pairs of CVC words with repeated initial or
final segment sequences. In this experiment, there were four types of stimuli:

(78) repeated C :i

cat cub
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(79) repeated C V:i

cat cab

(80) repeated VC :f

cat bat

(81) repeated C :f

cat but

Sequential cueing predicts that repeated final segments should facilitate production while
repeated initial segments should delay production. Also, repeating two segments should affect
production more than repeating one segment, since two repeated segments spread more
activation than one. The subject’s mean production times were consistent with these predictions.
To summarize, Sevald & Dell (1994) showed that segment repetition had different effects
depending on whether the segment was initial or final, and accounted for the difference through
sequential cueing.

An analogous difference was found for similarity influences on speech errors in
Experiment 1. Initial segment errors were more heavily influenced by similarity than later
segment errors. I claim that this is also a result of sequential cueing. The production of non-initial
consonants occurs after the activation of the previous segments. This leftward context spreads
activation to the entire cohort of words which begin with that leftward context. Thus, all of the
possible completions of the words compete with the intended completion. In this case, the
similarity of the competing segments to the intended one plays a lesser role, as all possible
completions are activated by the leftward context regardless of their similarity to the target. In the
case of word onsets, however, there are no such leftward context effects. In this case, the only
plausible candidates for competition are ones which are similar to the intended segment, which
would be activated by feature nodes which are shared between the target and the competing
segments. The effect of context is represented graphically in Figure 6.2. The solid line in Figure
6.2 shows the relative error rate (O/E) by similarity, based on the regression model presented in
chapter 4. This line can roughly represent the effect of the activation only by similarity, since the
majority of errors in naturally occurring corpora are word initial. The Xs represent the predicted
relative error rate by context. Since the likelihood of a consonant being one of the activated
completions is on average the consonant’s frequency, the predicted O/E is one for the context
effects. Assuming an intrusion is equally likely to occur because of activation due to frequency or
due to context the predicted non-initial error rate is the average of these two curves, shown as a
dashed line in Figure 6.2.
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Figure 6.2: Relative error rate by similarity, context, and their combination.

Consider, for example, the production of the word peril. In the Sevald & Dell (1994)
version of the Dell (1986) model, activation of the word node for peril activates the first syllable
node, which in turn activates the /p/ node. Activation in the /p/ node spreads downward to all of
the feature nodes connected to the /p/ node, and upward to all other syllables which begin with
/p/. Spreading activation back down from the other syllables does not cause competition for /p/,
since all of the syllables begin with /p/. Spreading activation back up from the feature nodes
activates all phoneme nodes which share features with /p/, and the nodes which share the most
features with /p/ receive the most activation. Thus, any potential competition with /p/ within the
first few cycles of activation is similar to /p/. Now suppose /p/ and /(/ have been encoded, and /r/
is next. The activation of the /p/ and /(/ nodes spreads activation to all words that begin with /p(/,
like peril, pelican, petrify, pebble, etc. Thus, the encoding and production of /r/ has to compete
with many segments from other possible completions of the word. Similar segments should still
be more competitive since they receive the extra activation of the shared feature nodes, but the
similarity effect should be weaker. This is exactly the pattern found in Experiment 1.

In conclusion, I have shown in this section that similarity effects on word onset errors can
be attributed to phonological competition in a model where segments are encoded sequentially
for production as in Sevald & Dell (1994). Word onsets have special status as they have no left
hand context within the word, and so are subject to intrusion only by segments which share a
number of features (i.e. which are similar). Other segments have some left hand context which
helps to promote dissimilar errors by activating other words in the target word’s cohort. The
organization and encoding of the lexicon for production is thus similar to the cohort model used
for perception (Marslen-Wilson 1984). In the next section, I show that sequential access of
segmental information has influences beyond production and perception.
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6.4 Stimuli Used in Experiment 1

Target pair: b,p Non-target pair: k,s
Type 1: beacon possum piercing bookie
Type 2: became pursue percent bouquet
Type 3: caboose support suppose kebab
Type 4: cabin soapy supper cobble

Target pair: b,d Non-target pair: k,s
Type 1: docile backer booking decent
Type 2: descend because becalm deceit
Type 3: sedate combine combust sedan
Type 4: sided cabbage carbon sadden

Target pair: f,p Non-target pair: s,l
Type 1: fossil pillow pilot facile
Type 2: facade polite police forsake
Type 3: suffuse lapel lampoon suffice
Type 4: siphon leper lipid sofa

Target pair: p,b Non-target pair: s,d
Type 1: passive bundle bedding person
Type 2: percent bedeck bedew pursue
Type 3: surpass debase debate superb
Type 4: super debit double sappy

Target pair: l,r Non-target pair: k,s
Type 1: Lisa wrinkle racket lasso
Type 2: LaSalle recant raccoon Lucille
Type 3: Celeste career corrupt saloon
Type 4: Sally carrot courage salad

Target pair: s,f Non-target pair: r,b
Type 1: sorry phobic feeble serum
Type 2: serene forbid forbode surround
Type 3: recite befoul before receipt
Type 4: racy barfing beefy wrestle

Target pair: p,k Non-target pair: r,d
Type 1: parent coddle kidding parish
Type 2: parole cadet condone Peru
Type 3: repeal discard decay riposte
Type 4: ripen decade decoy romper
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Target pair: l,r Non-target pair: k,m
Type 1: rumor lucky liquor roaming
Type 2: remain locale LaCoste remote
Type 3: maroon collapse collide morass
Type 4: mirror colon cooling marrow

Target pair: m,r Non-target pair: s,p
Type 1: massive ripple rapid messy
Type 2: myself repeat repulse masseuse
Type 3: cement parade peruse surmount
Type 4: summer porous purring salmon
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CHAPTER 7
Word Onsets in OCP-Place Effects

In standard generative phonology, there is no role for the mechanism of lexical access as
a part of linguistic competence. Lexical access is assumed to be relevant only to aspects of
linguistic performance such as speech production and perception. In fact, much of what is known
about lexical access comes from the study of errors in production and perception. Errors are
traditionally considered aspects of linguistic performance, as linguistic competence is assumed to
be error free. In this chapter, I present data from OCP-Place effects in Arabic which suggests that
the mechanism of lexical access does play a role in determining the phonotactic acceptability of a
form. In particular, I show that OCP-Place is more strictly enforced at the beginning of the word.
In the previous chapter, I demonstrated an analogous pattern in language production, in a speech
error elicitation experiment. As shown in chapters 4 and 5, both OCP-Place and phonological
speech errors share an underlying dependence on the similarity of the consonants involved. I
propose that the special status of word initial consonants in OCP-Place follows from evaluating
the similarity of consonants on a sequentially encoded representation of the word. In other words,
that access of the segmental content of the lexical item takes place in its natural temporal
sequence, rather than all-at-once, in both phonological processing and phonotactic constraint
evaluation.

This result calls into question the traditional competence/performance distinction. Since
lexical access is considered an aspect of performance, and access has an effect on the
phonotactics, there is a direct influence of performance on competence. This influence can
impact both the synchronic grammar, through the productivity of morphemes and the
assimilation of borrowed words, and the diachronic grammar, as the cumulative effects of the
influence of performance become grammaticized.

Recall from chapter 5 that OCP-Place is enforced to the degree to which homorganic
consonants are similar. In this chapter, I demonstrate that the OCP-Place constraint is more
sensitive to similarity for word onsets consonants. In Arabic, OCP-Place effects are stronger
word initially than later in the word. In modeling the Arabic data, I present a model of the Arabic
verbal root lexicon that employs stochastic constraint combination. The Arabic model I present is
a significant innovation in modeling using the stochastic constraint, as it is the first model that
predicts the occurrence of complete root forms instead of individual consonant pairs. The chapter
concludes with a discussion of the implications of sequential encoding of phonological material
for linguistic theory.

7.1 Word Onsets in Arabic

The Frisch, Broe, & Pierrehumbert (1995) analysis of OCP-Place in Arabic was presented
in chapter 5 for both adjacent (C C  and C C ) and non-adjacent (C C ) consonant pairs in Arabic1 2 2 3 1 3

C C C  roots. In this section, I consider differences between the adjacent C C  and C C1 2 3 1 2 2 3

consonant pairs, and the effects that simultaneous violations of OCP-Place by both C C  and1 2

C C  have on the acceptability of an entire root.2 3
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7.1.1 Data.

Tables 7.1 and 7.2 show observed and expected counts of verbal roots of Arabic
aggregated by similarity. Table 7.3 gives the relative rate of cooccurrence as measured by O/E.
Shading in these tables indicates cells off the main diagonal with sufficiently high expected
cooccurrence to be used in the statistical test for asymmetry discussed below. Data in these tables
are aggregated separately by the similarity of adjacent consonant pairs. Expected counts are
computed in the same way as those in chapter 5, by assuming that consonants should cooccur at
random, and are based on the consonant frequencies in first, second, and third position in the
root. The observed and expected counts clearly covary, showing that frequency predicts
occurrence to a large degree, a point to which I return below.

Table 7.1: Actual Arabic verbal roots with consonant pairs aggregated by similarity.

Similarity C C2 3

C C 0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 1 Total1 2

0 1694 146 196 45 9 4 0 0 0 2094

0-0.1 170 19 23 7 0 1 1 0 0 220

0.1-0.2 177 27 31 12 1 2 1 0 0 251

0.2-0.3 55 12 12 3 1 0 1 0 0 84

0.3-0.4 12 4 2 0 0 0 0 0 0 18

0.4-0.5 7 0 0 0 0 0 0 0 0 7

0.5-0.6 0 0 0 0 0 0 0 0 0 0

0.6-0.7 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 1

Total 2116 208 264 67 11 7 3 0 0 2676
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Table 7.2: Expected counts of Arabic roots aggregated by similarity.

Similarity C C2 3

C C 0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 1 Total1 2

0 1232 78.0 130.2 59.7 28.6 60.2 8.3 26.0 87.2 1711

0-0.1 97.5 21.1 22.0 7.6 4.9 6.2 1.7 5.3 8.1 174.4

0.1-0.2 166.2 24.7 57.9 19.8 11.5 7.0 3.5 7.3 11.6 309.3

0.2-0.3 80.6 10.2 23.7 14.1 5.6 3.1 1.5 2.0 4.2 145.0

0.3-0.4 41.3 6.9 11.4 4.5 4.0 0.9 0.7 0.8 2.0 72.4

0.4-0.5 57.0 6.0 7.6 2.5 0.8 6.4 0.2 3.2 5.7 90.3

0.5-0.6 12.4 2.3 4.4 1.7 0.7 0.2 0.8 0.2 0.7 23.4

0.6-0.7 23.7 3.6 5.3 1.5 1.0 1.4 0.1 2.3 2.2 41.0

1 73.4 6.9 10.0 3.9 1.9 4.7 0.7 2.3 5.7 109.4

Total 1788 160.0 272.5 115.2 58.9 90.0 17.5 49.3 127.2 2676

Table 7.3: Relative cooccurrence of Arabic roots aggregated by similarity.

Similarity C C2 3

C C 0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 1 Total1 2

0 1.37 1.87 1.51 0.75 0.31 0.07 0 0 0 1.22

0-0.1 1.73 0.90 1.04 0.92 0 0.16 0.60 0 0 1.26

0.1-0.2 1.06 1.09 0.54 0.61 0.09 0.29 0.29 0 0 0.81

0.2-0.3 0.68 1.18 0.51 0.21 0.19 0 0.66 0 0 0.58

0.3-0.4 0.29 0.58 0.17 0 0 0 0 0 0 0.25

0.4-0.5 0.12 0 0 0 0 0 0 0 0 0.08

0.5-0.6 0 0 0 0 0 0 0 0 0 0

0.6-0.7 0 0 0 0 0 0 0 0 0 0

1 0.01 0 0 0 0 0 0 0 0 0.01

Total 1.18 1.30 0.97 0.58 0.19 0.08 0.17 0 0 1

Table 7.3 reveals two factors which were not apparent in the presentation of the Arabic
data in Frisch, Broe, & Pierrehumbert (1995). While there is a clear influence of the similarity of
the consonant pair on cooccurrence, the effect seems to be stronger for C C  than C C . The1 2 2 3

difference becomes apparent when shaded cells across the main diagonal are compared. For
example, there are relatively fewer pairs with C C  similarity of 0.1-0.2 and C C  similarity of 01 2 2 3
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(O/E = 1.06) than pairs with C C  similarity of 0.1-0.2 and C C  similarity of 0 (O/E = 1.51).2 3 1 2

This asymmetry is significant, based on a chi-square test.
If the OCP-Place effects were symmetric, the observed number of pairs in cells across the

diagonal are expected to be evenly distributed based on the positional frequency of the consonant
pairs involved. For example, there are a total of 373 pairs in the two cells with C C  similarity of1 2

0.1-0.2 and C C  similarity of 0 and with C C  similarity of 0.1-0.2 and C C  similarity of 0.2 3 2 3 1 2

There are 296.4 expected pairs of this type, 166.2 with C C  similarity of 0.1-0.2 and C C1 2 2 3

similarity of 0 and 130.2 with C C  similarity of 0.1-0.2 and C C  similarity of 0. If the actually2 3 1 2

occurring pairs were divided between these two cells only by frequency, there should be 209.2 (=
373×166.2/296.4) pairs with C C  similarity of 0.1-0.2 and C C  similarity of 0 and 163.81 2 2 3

(= 373×130.2/296.4) pairs with C C  similarity of 0.1-0.2 and C C  similarity of 0. Shaded cells2 3 1 2

in the tables indicate where there are a sufficient number of occurrences for the chi-square test to
apply. There are a total of 8 such pairs (3 (7) = 13.4, p = 0.06).2

Table 7.3 also reveals a cumulative interaction of the similarity of the first and second
consonant with the similarity of the second and third consonant. This is apparently an effect of
multiple OCP-Place constraint violations in the Arabic verbal roots. Examining cells on the
diagonal we see, for example, that roots where the similarity of C C  and C C  of 0.1-0.2 (O/E =1 2 2 3

0.54) are far more underrepresented than roots where the similarity of either C C  or C C  are1 2 2 3

0.1-0.2 and the other pair is non-homorganic, in other words the similarity of the other pair is 0
(O/E = 1.06 and O/E = 1.51 respectively).

7.1.2 Model of gradient constraint combination.

Frisch, Broe, and Pierrehumbert (1995) modeled the cooccurrence restrictions of Arabic
by fitting a logistic model of the constraint to all of the adjacent consonant pairs aggregated
together. In other words, they fit a single stochastic constraint model to the first and second pairs
and the second and third pairs together, ignoring the fact that these pairs combine to form a
complete triconsonantal root. I present here an improved model of the Arabic data which
considers each root in its entirety. In so doing, I implement the model of stochastic constraint
combination suggested by Pierrehumbert & Nair (1995) and Frisch, Broe, & Pierrehumbert
(1995).

A complete model of the Arabic cooccurrence constraints simultaneously considers the
acceptability of a root by the similarity of the first and second consonants and the similarity of
the second and third consonants, as well as the similarity of the first and third consonants, to
which I return below. Combinations are allowed for each consonant pair as a function of their
similarity. A model of combined stochastic constraints for adjacent consonant pairs is given in
(82): 

(82)

Where similarity  is the similarity of C C , 12 1 2

and similarity  is the similarity of C C .23 2 3
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Each term in the denominator of (82) is a stochastic constraint model; one for each pair of
adjacent consonants in the triconsonantal root. Stochastic constraints are combined by
multiplication, which corresponds to fuzzy set intersection (Zadeh 1965, Kosko 1990). This
model of stochastic constraint combination is a gradient generalization of the categorical model
of constraint combination as simultaneous constraint satisfaction.

The model of constraint combination as multiplication of stochastic constraints is shown
graphically in Figure 7.1. The x and y axes are the similarity of C C  and C C  respectively, and1 2 2 3

the z axis is the relative acceptability of the combination. Figure 7.1 shows the effect of
cumulative interaction, as acceptability near either axis (where the similarity of one pair is near
zero) is much higher than acceptability near the diagonal, where both pairs have non-zero
similarity.

Figure 7.1: Model of constraint combination as a product of stochastic constraints.

Note that there are roots in Arabic in which both C C  and C C  are homorganic. In a root1 2 2 3

of this form, C  and C  are also, of course, homorganic. In chapter 5, I presented the Frisch, Broe,1 3

& Pierrehumbert (1995) model of OCP-Place for non-adjacent consonants. However, Frisch,
Broe, & Pierrehumbert (1995) did not consider the effects of simultaneous violations of OCP-
Place for C C  and C C . Since they looked only at initial and final consonants, without1 2 2 3

considering the intervening consonant in the root, it is likely that the C C  pattern they examined1 3

is affected by simultaneous C C  and C C  violations. Table 7.4 presents actual and expected1 2 2 3

C C  pairs, aggregated by similarity, for roots which have non-homorganic C C  and C C  pairs.1 3 1 2 2 3
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These are the data presented in the upper leftmost cell of Tables 7.1-7.3.

Table 7.4: Cooccurrence between homorganic non-adjacent consonants.

Similarity Actual Expected O/E

0 1108 713.6 1.55

0-0.1 169 97.7 1.73

0.1-0.2 244 146.8 1.66

0.2-0.3 69 62.5 1.10

0.3-0.4 31 35.2 0.88

0.4-0.5 50 66.1 0.76

0.5-0.6 4 13.1 0.31

0.6-0.7 10 23.2 0.43

1 9 74.6 0.12

Total 1694 1232.9

Table 7.4 clearly shows that there is an OCP-Place effect between non-adjacent
homorganic consonants independent of the simultaneous occurrence of C C  and C C  violations.1 2 2 3

The non-adjacent data (with no adjacent pair OCP-Place violations) that are aggregated in Table
7.4 can be fit with a stochastic constraint model. The data are shown in Figure 7.2. The best fit
stochastic constraint model has parameters A = 1.58, K = -4.06, and S = 8.89.

Figure 7.2: OCP-Place on non-adjacent consonants.

Given that there is an independent, non-adjacent C C  constraint, the complete model of1 3

the Arabic data has to combine three stochastic constraints, one for each pair of adjacent
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consonants, and one for the non-adjacent pair. The revised stochastic constraint model, based on
the original analysis of Frisch, Broe, & Pierrehumbert (1995) is shown in (83).

(83)

Following the analysis of Frisch, Broe, & Pierrehumbert (1995),  K  and S  are parameters of the1 1

stochastic constraint against adjacent consonant pairs, which applies twice: once to C C  and1 2

once to C C . K  and S  are parameters of the stochastic constraint against non-adjacent pairs,2 3 2 2

which applies to C C .1 3

In Frisch, Broe, & Pierrehumbert (1995), the stochasic constraint model was fit to
individual consonant pairs. This represents a form of aggregation, as consonant pairs occur in
different words in different positions. When modeling entire roots, it is not possible to achieve a
reasonable model fit to the actual consonant combinations (which is equivalent to modeling the
actual lexicon) as this amounts to predicting the pattern of accidental as well as systematic gaps.
For example, the non-occurrence of bleeg, as opposed to bleat, bleed, and bleak in English is not
a principled gap. To avoid this problem, the models in this chapter are fit to roots which are
aggregated by similarity. Data were aggregated by the 53 unique similarity values that were
computed, so there was less aggregation than shown in the table above. The majority of the
aggregation involved the non-homorganic consonant pairs, which all have similarity zero.

The revised stochastic constraint model with gradient constraint combination, which I
refer to as the ‘stochastic model’, provides a better fit of the Arabic data than the categorical
models of OCP-Place in Arabic which are not similarity based. Recall that the ‘categorical
model’ is a strict interpretation of OCP-Place where adjacent and non-adjacent homorganic
consonants are disallowed. The ‘soft model’ has a soft constraint against homorganic consonant
pairs. The soft model prohibits roots with adjacent identical consonants, and has roots with
homorganic consonants (whether adjacent or non-adjacent) underrepresented at a constant rate.
In implementing these two models in this chapter, I determined their model fit to the same
similarity aggregated data as the stochastic model. Consonants with similarity greater than zero
were considered homorganic and consonants with similarity one are identical. Note that these
models do not make special consideration for the obstruent/sonorant split in the coronals. In
addition, they treat the emphatics {T, D, S, Z} as homorganic to the coronals and dorso-gutterals.
Thus, these models do not employ the ad hoc stipulations added to the OCP-Place constraint in
McCarthy (1994).

These models are compared on the basis of the R  as well as the relative R , as in chapter2 2

5. The relative R  is based on the amount of reduction in the residual sum of squares of each2

model over the ‘frequency model’.

(84)  

To highlight differences in the models, relative R  values are computed twice, once for all root2

forms, and once for just the roots which contain at least one homorganic consonant pair, in other
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words roots which are expected to have some OCP-Place effect. Best fit model parameters and
relative R  values are presented in Table 7.5.2

Table 7.5: Model parameters and fits of the Arabic triconsonantal roots.

Model R Relative Homorganic Model Parameters2

R Relative R2 2

Frequency 0.85 - - O = E
model

Categorical 0.97 0.79 - O/E = 0 for homorganic
model O/E = 1.55 otherwise

Soft model 0.99 0.91 0.45 O/E = 0 for identical
O/E = 0.89 for homorganic
O/E = 1.58 otherwise

Stochastic 0.995 0.97 0.81 A = 1.63
model Adjacent: S  = 19.0, K  = -4.61 1

Non-adjacent: S  = 7.6, K  = -3.62 2

The categorical model does capture a great deal of variation in the data, when all roots are
considered, primarily by allowing overrepresentation of roots with non-homorganic consonants.
This model fairs much worse when just the homorganic roots are examined. In fact, over this
subset of the data, the categorical model fits worse than the frequency model, so no relative R  is2

given. The categorical model is significantly improved upon by both the soft model and the
stochastic model. Both of these models predict gradient acceptability of forms among
homorganic consonant pairs. The stochastic model is far superior to the soft model, especially
when variation only within roots that contain homorganic consonants is considered. The soft
model predicts that there is no variation within this class, apart from expected frequency. The
stochastic model predicts a great deal of variation, and that variation is cumulative across all
three consonant pairs. Notice that the parameters for the stochastic model reveal the effects of
distance on the dissimilarity constraint. The constraint for non-adjacent consonants (S  = 7.6) is2

much weaker than the constraint for adjacent consonants (S  = 19.0), a fact not captured by the1

categorical model or the soft model. The stochastic constraint for non-adjacent consonants in the
stochastic model, which uses constraint combination, is quite close in form to the one found
above when only non-adjacent violations were examined independently (K = -4.06, S = 8.89).

7.1.3 Modeling asymmetries in word position.

The stochastic model which I just presented is based on the original Frisch, Broe, &
Pierrehumbert (1995) model of Arabic cooccurrence. This model does not capture the significant
asymmetry in the OCP-Place effects found above. A minor modification to the symmetric
stochastic model is needed to model this asymmetry. The ‘asymmetric stochastic model’ allows
the two adjacent consonant constraints (for the first and second consonant pair and for the second
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and third consonant pair) to be parameterized separately. With independent parameterizations for
the word initial adjacent pair and the non-initial adjacent pair, the asymmetric stochastic model
reflects the relative strength of OCP-Place in each position.

(85)

In the asymmetric model, K  and S  are stochastic constraint parameters for C C . K  and S  are1 1 1 2 2 2

stochastic constraint parameters for C C . K  and S  are stochastic constraint parameters for C C .2 3 3 3 1 3

Table 7.6 compares the two stochastic constraint models of Arabic. The asymmetric stochastic
model has a relative R  = 0.87 over roots with homorganic consonant pairs. This is a 10%2

improvement in residual sum of squares over the symmetric stochastic model over the data set
for which they make different predictions. The improvement in model fit is expected, since the
asymmetric model has two extra degrees of freedom due to the two extra stochastic constraint
parameters, but I feel it is a significant improvement that warrants the additional model
complexity.

Table 7.6: Symmetric and asymmetric stochastic models of the Arabic roots.

Model R Relative Homorganic Model Parameters2

R Relative R2 2

Stochastic 0.995 0.97 0.80 A = 1.63
model Adjacent: S  = 19.0, K  = -4.61 1

Non-adjacent: S  = 7.6, K  = -3.62 2

Asymmetric 0.997 0.98 0.87 A = 1.80
stochastic C C : S  = 21.9, K  = -5.5
model C C : S  = 13.0, K  = -2.9

1 2 1 1

2 3 2 2

C C : S  = 5.2, K  = -2.51 3 3 3

In the asymmetric stochastic model, the stochastic constraint for the first and second
consonants is sharper (S  = 21.9, 95% confidence interval for S  is 18.3 � S  � 25.4) than the1 1 1

stochastic constraint for the second and third consonants (S  = 13.0, 95% confidence interval for2

S  is 11.3 � S  � 14.6). The difference in constraint parameters captures the asymmetry between2 2

the initial consonant pair and the final consonant pair. The sharpness of the stochastic constraint
parameters shows that the dissimilarity constraint is stronger word initially than later in the word.
This is the same effect that was found in the speech error data in Experiment 1.

7.1.4 Summary.

In this section, I have shown that OCP-Place effects are stronger word initially than
elsewhere in the word. The results presented above were effectively modeled using a stochastic
constraint, which models gradient data using two parameters that determine the overall shape of
the constraint. The variation in constraint sharpness by word position was modeled with different
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parameterizations for different word positions. The stronger word initial constraint had greater
constraint sharpness than the other constraints. These results presents a challenge to traditional
models of grammar which employ categorical constraints. Categorical constraints cannot model
the gradient nature of the data, nor the variation in gradient effects within and between languages
demonstrated in this section.

In addition, I presented a model of gradient constraint combination which models
cooccurrence in the Arabic verbal root lexicon. This model considered the triconsonantal root as
a whole and thus modeled patterns in the entire lexicon rather than particular patterns of
individual consonant pairs.

7.2 Accounting for Word Onset OCP-Place Effects Using Sequential Encoding

In chapter 6, I presented the model of phonological encoding in Sevald & Dell (1994)
which proposes sequential activation of segments in phonological encoding. Above, I presented
evidence that a phonotactic constraint involving similarity has stronger effects when word onsets
are involved than otherwise. The results for OCP-Place parallel the results for speech errors. The
account of word onset effects for speech errors can be extended to the effects of word position on
OCP-Place.

Recall that word onset consonants are accessed with a minimum of competing activation,
while later consonants compete with consonants from other possible words involving the initial
segmental context. The competition which is created by the access the initial segments of a word
serves as interference in the comparison of segments for purposes of determining similarity.
Thus, in the case of the first consonants in the word, there is very little interference and the
similarity comparison can sharply differentiate consonants. As more consonants are accessed, the
access of those consonants as well as the activation of consonants in similar words creates
proactive interference for the judgement of similarity. Proactive interference has been shown to
degrade performance in memory tasks (e.g. Watkins 1975). In the noisy context, extreme
similarity and extreme dissimilarity are more difficult to detect, as there is a background of
essentially random activation.

A similar account is given by Pierrehumbert (1993) and Berkley (1994a) for distance
effects on the OCP-Place constraint. The weakening of OCP-Place over distance was seen above
in the stochastic constraint model: the stochastic constraint model had a weaker constraint for
non-adjacent consonants (sharpness S = 7.6) than for adjacent consonants (sharpness S = 19.0).
Pierrehumbert (1993) analyzed the weakening of the effects of OCP-Place over distance
(between C C ) as an effect of interference of the intervening C . This interference is predicted by1 3 2

the sequential activation model, but not by a model of lexical access where all segments are
accessed simultaneously. Thus, sequential access of segmental material accounts for two
different weakening effects on OCP-Place. In fact, it is difficult to imagine any account for the
effects of distance if a completely atemporal representation of the word is assumed. If the entire
representation of the word is available for access all at once, there is no reason why intervening
consonants should have an effect on the comparison of distant ones, since the two distant
consonants could presumably be accessed just like two adjacent consonants.

The common finding of a word onset effect between speech production and phonotactics
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suggests that the same mechanisms are used for phonological encoding both in evaluating
phonotactic constraints and in production. Thus, I claim that linguistic constraints like OCP-
Place operate on an inherently temporal representation of phonological material. This is a radical
departure from the traditional conception, where an abstract representation of the word’s
segmental context is assumed to be accessible in an all-at-once fashion.

The constraints imposed by sequential encoding on the OCP are reminiscent of the
running window model of phonetic implementation of phrasal phonology (Pierrehumbert &
Beckman 1988, Pierrehumbert 1995). In this model, segments and tones are implemented in
temporal order, mimicking the production of speech in time. The temporal model provides a
more natural framework than an atemporal hierarchical model (e.g. Coleman 1992) for modeling
allophonic glottalization in English (Pierrehumbert & Frisch 1996). Thus, the architecture for
implementing word level and phrase level phonology both appear to be sensitive to real time
processing.

There is evidence for sequential access of segmental material and competition between
outcomes in speech perception as well. The cohort model of lexical access for recognition
(Marslen-Wilson & Welsch 1978; Marslen-Wilson 1984, 1987) involves a narrowing cohort of
possible words, based on the segmental information which has thus far been perceived. The
cohort is brought to a unique choice when enough of the segments have been identified. Other
models of perception share the assumption of competition between potential percepts (e.g.
logogen theory (Morton 1982), the neighborhood activation model (Luce 1986), TRACE
(McClelland & Elman 1986), see Goldinger, Pisoni, & Luce 1996 for a recent review). There is
thus evidence for sequential access of segmental information and competition in production,
perception, and more abstract phonological processes like linguistic constraint application. This
uniformity suggests a single mechanism for the storage and retrieval of segmental information.
The Sevald & Dell (1994) model of phonological encoding presented above is a valid model of
this mechanism for all three purposes.



 The preparation of this chapter benefitted from reading a review of Stemberger (1991b)17

written by Will Thompson for the introductory graduate phonology course at Northwestern in the
fall quarter of 1995-6. I refer to this uncirculated manuscript in the text and references as
Thompson (1995).
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CHAPTER 8
Underspecification in Speech Errors I: Similarity17

In this chapter, I demonstrate that the use of UNDERSPECIFICATION (Kiparsky 1982;
Archangeli 1984, 1988) in phonological feature matrices is not supported by the speech error
data examined in this thesis. Stemberger (1991b) proposed that underspecified features have less
influence on the similarity of consonants, and hence speech error rates, since underspecified
features are blanks during early portions of the derivation. However, he did not consider the
effect that underspecification would have on similarity outside of the small number of minimal
contrasts which he examined. I demonstrate that computing similarity over lattices provides a
more accurate prediction of error rate than measures of similarity based on underspecified feature
matrices, when the entire corpus of phonological segment errors are examined.

8.1 Introduction to Underspecification

Underspecification refers to the practice of leaving blanks in feature matrices which are
filled in during the course of the phonological derivation. There are two types of
underspecification which are generally practiced: CONTRASTIVE UNDERSPECIFICATION and
RADICAL UNDERSPECIFICATION. In contrastive underspecification (Steriade 1987), non-
contrastive features are left out of the feature matrix. As mentioned in chapter 2, the [+voice]
feature of sonorant consonants in English is predictable, since all sonorants are voiced. Thus, in
contrastive underspecification, stops and fricatives are marked as [±voice] but sonorants would
be underspecified. A redundancy rule [+son] � [+voice] applies during the phonological
derivation. Some phonological processes, such as devoicing coda consonants in German, are
proposed to apply before the redundant voicing feature is filled in, with the result that coda
sonorants do not devoice in German.

Radical underspecification (Archangeli 1988) proposes that one value for each feature is
considered the default and is always left blank in underlying representation. For example,
[-voice] is considered to be the unmarked value of voicing in obstruents, so voiceless obstruents
are underspecified for voicing. In radical underspecification, the [-voice] specification is inserted
by a default rule which marks any consonant without a voicing feature as [-voice]. As with
contrastive underspecification, predictable features are also left blank, so [+voice] in sonorants is
also underspecified and filled in by a redundancy rule.

Underspecification is motivated by phonological processes which treat some segments as
though they were transparent to the process and as a means of achieving minimal underlying
representations (see Steriade 1995 for a review). Underspecification is used in autosegmental
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phonology as a means of allowing feature spreading to apply across intervening segments. I do
not discuss the use of underspecification in phonological theory to account for assimilation or
cross-linguistic tendencies in epenthetic segments (see e.g. Archangeli 1988, Mohanan 1991, and
Paradis & Prunet 1991), but instead refer the interested reader to Broe (1993) and Steriade (1995)
for detailed discussions of underspecification and some alternative analyses. In this thesis, I
examine evidence against underspecification in the similarity based speech errors and OCP-Place
effects introduced in chapters 4 and 5.

Broe (1993) proposes that the transparency of phonological rules attributed to
underspecification can instead be captured by sensitizing rules or constraints to the redundant or
marked status of features, as encoded by the redundancy hierarchy and the markedness hierarchy.
Steriade (1995) concludes that the evidence for the eventual specification of underspecified
features is not compelling, and instead proposes that all cases of underspecification are INHERENT

UNDERSPECIFICATION or TRIVIAL UNDERSPECIFICATION in which the underspecified features are
never filled in. I showed in chapter 2, following Broe (1995), that inherent underspecification
leads to a loss of distinctness of underlying representations. For example, Lombardi (1991)
proposes that voicing is a privative feature and thus that [-voice] is never specified. Without
[-voice], though, /t/ and /d/, /s/ and /z/, and so on, cannot be individuated. Thus, I adopt
structured specification and reject all forms of underspecification.

Underspecification contrasts with full specification, shown in the feature matrix in (86).
Full specification of features underlies the redundancy hierarchy. In the fully specified feature
matrices in this chapter, I use the mixture of bivalent and monovalent features which is
traditionally used (e.g. Kenstowicz 1994). In this matrix, feature values are only left blank if they
are irrelevant or do not apply to a particular phoneme. For example, the feature [anterior] only
applies to coronals, and so is left blank for labials and velars (Sagey 1986, Yip 1989). Place
features, spelled with capital letters in this matrix, are monovalent, and are either present (%) or
absent. I have also used a privative feature [Affricate] for the affricates /t6/ and /d=/, since the
particular featural representation of these complex segments does not bear on the analysis of
underspecification.

(86) S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

sonorant - - - - + - - - - - - - - - - - - + + + + + + -
continuant - - + + - - - + + + + + + - - - - - - + - + + +

voice - + - + + - + - + - + - + - + - + + + + + + + -
Labial % % % % % % %
Velar % % %

Coronal % % % % % % % % % % % % % %
anterior + + - - + + - - - - + - + -

dental - - + + - - - - - - - - - -
Affricate % %

glide - - - - - + +
nasal + + - - + - -

lateral - - + - - - -

In (87), I show a feature matrix for the English consonants over the same features
assuming contrastive underspecification, as practiced for example in Pierrehumbert (1993).
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Major class features (cf. the primary features of Stevens & Keyser (1989)) are assigned first, and
features for smaller classes are included only if they are relevant and contrastive within the major
classes. For example, voicing is not contrastive for sonorants, and is not included. The feature
[anterior] is inapplicable for labials and so is left blank. Note that approaches using
underspecification confuse non-contrastive feature specifications with inapplicable ones (Broe
1993).

(87) S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

sonorant - - - - + - - - - - - - - - - - - + + + + + + -
continuant - - + + - - + + + + + + - - +

voice - + - + - + - + - + - + - + - + -
Labial % % % % % % %
Velar % % %

Coronal % % % % % % % % % % % % % %
anterior + + - - - - + - + -

dental + + - -
Affricate % %

glide + +
nasal + + +

lateral + -

In (88), I show a feature matrix for the same consonants assuming radical under-
specification, adapted from Stemberger (1991b). For all bivalent features except [anterior], the
minus value is underspecified. Place features are privative, and in radical underspecification,
coronal place is underspecified. Other defaults include [-continuant], [-sonorant],  [-voice], and
[+anterior].

(88) S E I Y P W G 7 ' V ] 6 = W6 G= N J 1 O U Q Z \ K

sonorant + + + +
continuant + + + + + + + + +

voice + + + + + + + +
Labial % % % % % % %
Velar % % %

Coronal % % % % % % % % %
anterior - - - - - + -

dental + +
Affricate % %

glide
nasal + + +

lateral

Stemberger (1991b) assumes, as is often practiced (see Paradis & Prunet 1991), that
[Coronal] cannot be underspecified when [anterior] is specified. This dependency is based on the
theory of feature geometry, discussed in chapter 2. Recall that Sagey (1986) proposed that
[anterior] is a hierarchical dependent of [Coronal] in the feature geometry. Proponents of
underspecification, in an attempt to incorporate Sagey’s proposal, have assumed that the
requirements of underspecification can be overridden in this case, and that [Coronal] is specified
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for the [-anterior] segments due to their hierarchical relationship.
As mentioned in chapter 2, structured specification solves a number of formal problems

with underspecification. Underspecification is incompatible with structured specification (Broe
1993), as underspecification leads to a loss of individuation. I adopt structured specification in
this thesis, and use it the basis of a similarity metric. Thus, Stemberger’s evidence for
underspecification in similarity phenomena must be reanalyzed. Stemberger’s analysis is
discussed in detail in section 8.2. In section 8.3, I compare similarity computed using natural
classes with similarity computed over the three feature matrices presented above, and show that
the natural classes model gives a superior model of speech error rates in Stemberger’s (1991a)
corpus, originally presented in chapter 4.

8.2 Review of Stemberger (1991b)

Stemberger (1991b) considers the effect which the assumption of radical
underspecification might have on similarity and hence on speech error rates. He hypothesizes
that, if speech errors can occur at a point in the phonological derivation where segments are still
underspecified for some features, then underspecified features should have no effect on the
similarity of consonants at that time. Thus, underspecified features should play no role in
determining error rates early in the derivation. If speech errors can occur at more than one point
in the derivation, underspecified features may only be relevant for some error opportunities and
thus have a reduced effect on error rate.

Consider, for example, the difference between the following fully specified and radically
underspecified representations of {p, f, t, s}.

(89) Fully specified feature matrix
p f t s

sonorant - - - -
continuant - + - +
voice - - - -
Labial % %
Coronal % %
anterior + +

(90) Radically underspecified feature matrix
p f t s

sonorant
continuant + +
voice
Labial % %
Coronal
anterior

In the radically underspecified feature matrix, [Labial] is specified, but [Coronal] is left blank,
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and filled in by a default rule in the course of the phonological derivation. Thus, Stemberger
observes, in the radically underspecified representation, /p/ and /f/ share a feature for which the
corresponding pair /t/ and /s/ are underspecified. Since shared features increase similarity
(Tversky 1977), the radically underspecified feature matrix predicts that /p/ and /f/ should be
more similar to one another than /t/ and /s/. Thus, /p/ and /f/ should have higher error rates with
one another than /t/ and /s/.

In support of his claims, Stemberger (1991b) considers quantitative evidence from his
corpus of naturally occurring speech errors, presented in the confusion matrix in chapter 4. To
quantify error rate, Stemberger presents three different methods for estimating random chance
and settles on a measure similar to O/E, used in chapter 4, though he does not find large
differences between the different measures of chance.

Stemberger’s estimate of chance is based on the total number of errors for a particular
contrast being examined. The chance error rate for each contrast is the proportion of the total
number of errors involving each group. Thus, his estimate of expected error rate is slightly
different from the estimate used in chapter 4 as he adjusts the estimates of chance based on the
total number of errors within the set of consonants being compared, rather than over the entire
inventory of consonants. As a result, the expected numbers of errors for any particular class
varies depending on what other class it is being compared with. For example, there are 158 errors
involving /p/ and 240 errors involving /t/ in the error corpus. There are a total of 30 errors
between /s/ and either /p/ or /t/. Stemberger’s estimate of chance would predict 12 errors
(30×158÷398) between /s/ and /p/ and 18 (30×240÷398) errors between /s/ and /t/. Consider a
second example. There are 34 errors in the corpus involving /z/, and a total of 25 errors between
/s/ and either /z/ or /t/. In this case, Stemberger’s estimate of chance would predict 3 errors
(25×34÷274) between /s/ and /z/ and 22 (25×240÷274) errors between /s/ and /t/. The number of
errors predicted between /s/ and /t/ varies depending on what other pair it is being compared to.

In my method of estimating chance (adopted from Pierrehumbert 1993) the expected
number of errors does not vary for any particular consonant pair. I believe my estimate of chance
better reflects the effect of similarity on error rate, as it reveals the overall error rate rather than a
relative comparison of error rate within a particular contrast. Stemberger’s method of predicting
chance has the advantage of allowing significance to be computed for each contrast with a chi-
square test to find differences in error rate. This was Stemberger’s motivation for using this
variable measure of chance.

Stemberger (1991b) first examines coronal place of articulation. Within the coronals he
only considers alveolars /t d s z n/, since they are the only coronals which are underspecified for
place. His results are presented in Table 8.1. Each row of Table 8.1 is one comparison, with
predicted errors computed as outlined above. Significance values are also presented for a chi-
square test with one degree of freedom. For example, the first row contrasts errors between
labials and labials with errors between labials and alveolars. Within this contrast, labial-labial
errors are more frequent than labial-alveolar errors, as expected on any similarity based account
of speech errors. Note though that comparing the actual error counts to the predicted counts
(using the O/E measure as in chapter 4) is not valid given Stemberger’s method of predicting
chance. The predicted values are relativized to the total number of errors. It is possible that both
groups in a particular contrast have O/E greater than or less than one.
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Table 8.1: Interaction errors across place of articulation from Stemberger (1991b).

contrast actual predicted 3 (1) p2

lab-lab lab-alv 96 175 59.22 211.78 28.45 0.001

alv-alv lab-alv 88 175 89.54 173.46 0.02 ns

alv-alv vel-alv 88 118 105.45 100.52 5.60 0.02

vel-vel vel-alv 15 118 8.97 124.21 3.97 0.05

Notice also that the ‘lab-alv’, ‘alv-alv’, and the ‘vel-alv’ groups appear more than once in the
table. Each time they appear, the predicted number of errors is different, because they are being
contrasted with a different group, resulting in a different total number of errors in the
comparison, as explained above.

Examining the first and fourth rows of the table, Stemberger (1991b) concludes that
errors within the labial and velar classes occur more frequently when place of articulation is
shared than when it is not. By contrast, the second and third rows do not show that sharing
alveolar place of articulation increases error rate relative to when place of articulation is not
shared. 

Stemberger notes, though, that not all contrasts between labials and alveolars are
equivalent to contrasts within the alveolars. For example, /p/-/t/ differ only by place of
articulation, and have a very high error rate. A more reasonable comparison would contrast /p/-/s/
and /t/-/f/ errors with /t/-/s/ errors, since /p/-/s/ and /t/-/f/ have the exact same contrast as /t/-/s/
with the addition of a difference in place of articulation. If all errors for consonants which differ
only on place are eliminated, an effect of coronal is found. This effect is shown in Table 8.2.

Table 8.2: Equivalent interaction errors from Stemberger (1991b).

contrast actual predicted 3 (1) p2

alv-alv lab-alv 88 27 46.07 68.93 62.16 0.001

alv-alv vel-alv 88 22 64.84 45.16 19.29 0.001

Stemberger concludes that shared alveolar does have an effect, though the results of Table
8.2 are equally compatible with the conclusion that it is the difference between the specified
labials and velars and the underspecified alveolars which reduces the error rate between alveolars
and labials or velars, rather than the shared (underspecified) alveolar which increases the error
rate between alveolars. In general, Stemberger’s data do not reveal the source of the deviation
from the predicted error rate, since his adjusted estimate of chance does not reveal the true error
rate of the consonants involved.

Stemberger next shows that the effect of underspecified coronal place on error rate is
weaker than shared labial or shared velar, based on direct comparisons between the error rates
within the different place classes, presented in Table 8.3.
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Table 8.3: Interaction errors within each place of articulation from Stemberger (1991b)

contrast actual predicted 3 (1) p2

lab-lab alv-alv 96 88 64.65 119.35 22.70 0.001

lab-lab vel-vel 96 15 98.71 12.29 0.45 ns

alv-alv vel-vel 88 15 96.49 6.51 10.47 0.005

The first and third rows of table 8.3 show that the relative error rate within the labials and
velars is higher than the error rate within the alveolars. The second row shows that the relative
error rates within the labials and velars are comparable. Thus, while shared alveolar place does
presumably have an effect, the effect is weaker than shared labial or velar. Stemberger (1991b)
attributes this weaker effect to underspecification of [Coronal] for the alveolar consonants.

Note that the difference in error rates cannot be explained by frequency. All other things
being equal, we might expect that since alveolars are high frequency consonants they might be
processed more accurately and thus be involved less frequently in errors (Stemberger &
MacWhinney 1986, Dell 1990). However, the estimate of chance is based on the frequency of
consonants in the error corpus. Any advantage for the high frequency alveolars is already
factored out by this intrinsic measure of chance (see Stemberger 1991b).

Stemberger (1991b) demonstrates analogous differences in error rate based on manner of
articulation contrasts and voicing contrasts. He shows that, while shared [-continuant] and [-
nasal] for stops does have some effect on error rate, the effect is weaker than shared
[+continuant] for fricatives or shared [+nasal] for nasal stops. Similarly, he shows shared [-voice]
does affect error rates among obstruents, but that shared [+voice] affects error rates more.

Stemberger also demonstrates that the presence of shared redundant features increases
error rate. These are features which are left blank in underlying form in both  radical
underspecification and contrastive underspecification. For example, he shows that the feature
[+voice] has an effect in the interaction of sonorants with obstruents, even though [+voice] is
predictable for sonorants. Stemberger takes the effects of predictable features on error rate as
additional evidence that at least some of the errors must occur late in the derivation, after
underspecified features are filled in.

Stemberger takes these differences in error rate as support for underspecified underlying
representations. He proposes that errors occur at more than one place in the phonological
derivation, and thus that specified features have a greater effect on error rate than underspecified
features, as they are present throughout the derivation. Specifically, Stemberger (1991b) proposes
a two stage model of speech errors in which errors can occur either before or after underspecified
features are filled in. In this model, the similarity of consonants at each stage is different because
at the early stage consonants are underspecified and at the later stage they are fully specified.
Error rates in the early stage are only influenced by specified features, while errors rates at the
second stage are influenced by all features. However, Stemberger (1991b) does not provide an
explicit similarity metric (Thompson 1995) or test his assumptions about underspecification and
similarity over any other sets of consonants.
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8.3 Underspecification and Similarity

Stemberger (1991b) bases his results on the claim that underspecified features have no
effect on similarity (and therefore speech error rates) early in the derivation. Recall that
underspecification raises a number of formal problems due to the use of feature blanks for
undefined features, contextually determined features, as well as default features. In addition,
underspecification is dependent upon derivational phonological theory and is thus incompatible
with current constraint based approaches. In this section, I show that Stemberger’s conclusions
cannot be supported when the speech error data are considered in greater detail.

First, recall that the natural classes similarity metric, introduced in chapter 3,
differentiates redundant features from contrastive ones for purposes of similarity. Thus, part of
Stemberger’s result can be captured using similarity computed over lattices, without the formally
problematic use of underspecification. Second, I demonstrate below that the degree to which
‘underspecification’ reduces the error rate between segments varies, and it is not always the case
that shared specified features affect similarity more than shared underspecified features. Third, I
show that the similarity of English consonants computed using the natural classes model
provides a far better fit to the speech error data in Stemberger’s consonant confusion matrix than
Stemberger’s two stage model where errors can apply either before features are specified or after.
This suggests that the method of feature assignment in structured specification introduced in
chapter 2, using monovalent features, specifying redundant features, and assuring individuation
of phonemes is a better representation for determining similarity than feature representations
based on underspecification.

8.3.1 Redundancy and underspecification.

Recall from chapter 4 that the natural classes model of similarity predicts that partially
and totally redundant features influence similarity less than fully contrastive features. In
particular, I showed that speech error rates among fricatives were sensitive to the reciprocal
dependency between [voiceless] and [obstruent]. Since [+voiceless] < [+obstruent], the
similarity between voiceless obstruents is less than the similarity between voiced obstruents. As
predicted, the error rate between voiceless fricatives is less than the error rate between voiced
fricatives. While radical underspecification and contrastive underspecifiation assume that
redundant features are left blank in the representation, and could thus potentially capture the
same result, there is no algorithm for reducing the representation to a minimal set of
specifications which produces a unique non-arbitrary result (Halle 1959, Stanley 1967, Broe
1993). As demonstrated in chapter 2, structured specification provides a unique redundancy
hierarchy for any feature matrix, and is therefore preferable.

8.3.2 The influence of specified and underspecified features.

Stemberger (1991b) presents his results from the perspective of the effect that
underspecification has on the similarity of the consonants involved. He claims that the effects of
specified features are stronger than the effects of underspecified features. Stemberger examined
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the major featural contrasts which are assumed in radical underspecification as well as a case of
redundant features. I have already shown how the natural classes similarity model accounts for
differential behavior in the case of redundant features. In the case of differences between
radically underspecified features, left blank as defaults, and specified features, the natural classes
similarity model as given makes no predictions as defaults are not encoded in the redundancy
hierarchy.

While Stemberger (1991b) examined minimal contrasts involving underspecification
within the major classes and found evidence that underspecified features affected similarity less
than specified ones, he did not examine any cases of [coronal] place of articulation which was
not underspecified. The interdentals, {7��'}, and the palatals {6��=��W6��G=} are assumed to be
specified for [Coronal] given the structural requirements of the feature geometry tree.

I examined the effect of specified [Coronal] on speech error rates, a case which
Stemberger (1991b) did not discuss. When contrasts involving specified [Coronal] are
considered, the results are difficult to interpret based on Stemberger’s claim that underspecified
features affect similarity less than specified features. I examined errors between all English
fricatives, as the [-anterior] coronals are all either fricatives or affricates, and affricates are not
found at any other place of articulation. The groups I examined are given in (91).

(91) lab-alv: errors between {f, v} and {s, z}
lab-cor: errors between {f, v} and {7��'��6��=}
alv-cor: errors between {s, z} and {7��'��6��=}

Table 8.4 compares each group using the method for the relative estimate of chance as in
Stemberger (1991b). In all cases, there is a significant difference in the error rate between the
contrasted groups.

Table 8.4: Error rates for labial, underspecified coronal, and specified coronal fricatives.

contrast actual predicted 3 (1) p2

lab-alv lab-cor 46 12 34.34 23.66 9.71 0.002

lab-alv alv-cor 46 139 83.18 101.82 30.19 0.001

lab-cor alv-cor 12 139 54.38 96.62 51.62 0.001

The first row shows that there is a significantly stronger interaction between labials and
alveolars than between labials and (specified) coronals. Both have an equal degree of mismatch
in terms of the place of articulation features: labial and underspecified or specified coronal
mismatch equally. Stemberger does not discuss cases of this kind. In addition, he presents no
explicit model of similarity (Thompson 1995, see below), so there is no way to determine if these
data support his hypothesis or not.

The second row of Table 8.4 shows that there is a relatively greater error rate between
alveolars and coronals than between labials and coronals. This contrast is expected in
Stemberger’s two stage model, as after the alveolars are specified for [coronal] they interact with
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the underlyingly specified coronals more than the labials. Stemberger predicts that the effect
should be a weak one, since it involves errors late in the derivation only. Finally, the third row
shows that there is a relatively greater error rate between alveolars and coronals than between
labials and coronals. This asymmetry might be predicted in two different ways by the two stage
model. First, labials and coronals mismatch underlyingly, and thus should have very low error
rate in the early stages of the derivation. Second, coronals and alveolars match after defaults are
specified, so they should have a higher error rate, but once again the effect should be weak. In the
case of the third row, it is impossible to tell, using Stemberger’s method of comparing relative
error rates, which is the stronger effect. We can see which is stronger if we consider the true error
rate, as reflected in the O/E measure, shown in Table 8.5.

Table 8.5: Error rates for labial, underspecified coronal, and specified coronal fricatives.

group actual expected O/E

lab-alv 46 22.2 2.07

alv-cor 139 27.2 5.10

lab-cor 12 15.3 0.78

Table 8.5  shows that the interaction between alveolars and specified coronals is very
strong, and the inhibition between labials and specified coronals caused by a mismatch in
underlying place of articulation has a weaker effect on the relative error rate. Thus, this is a case
where the underspecified feature, which is supposed to be filled in late in the derivation, has a
very strong effect on error rate. This is not predicted by Stemberger’s two stage model which
uses underspecification as a primary predictor of error rate. Further, the discrepancy between
error rates of labial consonants with the alveolar consonants and with the specified coronals is
not predicted straightforwardly. A null prediction is made by Stemberger (1991b) as he does not
give an explicit similarity model. For example, he does not indicate whether contrasts between
[Labial] and underspecified place reduces similarity less than contrast between [Labial] and
specified [Coronal].

Let us now turn to the case of redundant voicing in sonorants. Stemberger demonstrates
there is an effect of the underspecified [-voice] feature on error rate. Table 8.6 gives O/E for
interactions between sonorants {m, n, 1, l, r} and voiced obstruents {b, d, ', z, =, d=, g} or
voiceless obstruents {p, t, 7, s, 6, t6, k}.

Table 8.6: Error rate between sonorants and voiced or voiceless obstruents.

group actual expected O/E

son-vcd 77 104.1 0.74

son-vless 44 276.5 0.16

Comparing the interactions of sonorants with the voiced obstruents with interactions of
sonorants with the voiceless obstruents, we see the overall effect of default voicing increases the
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 Note that this situation does not arise for monovalent features. It can only occur with18

bivalent or multivalent features.

error rate by a factor of five. That is much stronger than the effect of shared [Labial] in section
8.2, for example, which only doubles the error rate. Since in Stemberger’s model specified
[Labial] is present throughout the entire derivation, it should affect error rate more than shared
redundant [+voice].

The magnitude of the difference in error rate cannot be observed using simple
comparisons of contrast of the type presented in Stemberger (1991b). Differences in error rate are
apparently not as simple as differences between the status of features as specified and
underspecified.

8.3.3 Similarity over the entire inventory.

As mentioned above, Stemberger (1991b) only considers minimal contrasts involving
underspecification and does not consider the effect that underspecification has on similarity, and
therefore error rate, across the entire inventory. Stemberger does not present an explicit similarity
metric, and opts instead to point out in general how the contrasts he examines could be predicted
by similarity and underspecification on a case by case basis. I next model the effects of under-
specification on similarity across the entire phoneme inventory, based on Stemberger’s
discussion.

In his analysis, Stemberger makes the following assumptions about similarity (Thompson
1996):

(92) 1. Shared specified, but not underspecified, features increase similarity.
2. Different specified, but not underspecified, features decrease similarity.18

3. For two consonants where one feature is specified and one is underspecified,
similarity is less than between two consonants which are both underspecified.

The similarity model which is closest to the natural classes model that satisfies these assumptions
is the metric of similarity in Pierrehumbert (1993), repeated in (93). I take this to be the implicit
model behind Stemberger’s discussion, since this model satisfies all of the assumptions in (92).

(93)

In attempting to implement an underspecified similarity model using this metric, a
number of problems were encountered. First, some discussion is needed of what is considered a
shared feature and what is considered a non-shared feature when feature matrices use a mix of
bivalent and monovalent features. Following Stemberger (1991b), I consider a feature to be
shared if it is specified and has the same value for both consonants, for example [+continuant]



131

for /s/ and /f/. I consider a feature to be non-shared under any other circumstance. Some decision
must be made as to whether a difference in specification for the same feature counts as one
difference or two (Frisch, Broe, & Pierrehumbert 1995). This is a decision as to whether there is
a difference between (92[2]) and (92[3]) above. For example, should the difference between
[+continuant] and [-continuant] count as just one non-shared feature or two? A similar decision
must be made for the difference in monovalent place specifications between, e.g. /p/ and /k/. I
count two differences in both cases, eliminating the difference between different specifications
for a binary feature and the use of two privative features. This is the only a priori coherent
position that can be taken on the issue, as implementing a quantitative difference between non-
matching bivalent feature specifications and monovalent feature specifications imparts a
computational distinction to a purely notational difference between feature specifications (see
chapter 2). Recall that any bivalent contrast can be represented by two monovalent features.
Bivalency is merely the special case of complementary features.

A second problem arises in comparing the underspecification model to the similarity
model for English speech errors in chapter 4. It would be desirable for the features used to be the
same, with the underspecification of some features the only difference. However,
underspecification is inherently incompatible with the principles of contrast and individuation
used the feature matrix in chapter 4. When those feature assignments are examined for
redundancies, it immediately becomes apparent that the usual sorts of feature matrices used when
assuming underspecification will not result by eliminating some of the features as redundant. For
example, Stemberger (1991b) presents the radically underspecified feature assignments in (94)
for the sonorants.

(94) m n 1 l r w y
sonorant + + + +
continuant
voice
nasal + + +
Labial % % %
Dorsal %
Coronal % %
anterior - -

Compare (94) with my choice of features, based on the principles of individuation and
contrast using only monovalent features, given in (95). There are a number of redundancies in
(95) which could be eliminated if a minimally contrastive feature matrix was desired. Clearly
voicing is predictable for all sonorants. The feature [sonorant] itself is predictable for each
consonant, and thus could be underspecified. The traditional specifications used in current
feature matrices are the result of gradual refinements in the SPE feature system which
accomodate the requirements of feature geometry and specific analyses of phonological
processes which employed underspecification.
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 Note that the similarity of /t/ to itself, which is not relevant for speech errors, is19

undefined based on the radically underspecified feature matrix. In radical underspecification, all
of the features of /t/ are either default or predictable. It thus has no shared or non-shared features
with itself, and division by zero occurs in the Pierrehumbert (1993) similarity metric.

(95) m n 1 l r w y
labial + + +
dorsal +
coronal + +
sonorant + + + + + + +
voice + + + + + + +
stop + + +
nasal + + +
alveolar + + +
palatal +
consonantal + + + + +
glide + +
lateral +
rhotic +

Stemberger’s feature matrix represents a more traditional position (see e.g. Archangeli &
Pulleyblank 1989, Kiparsky 1982, Lombardi 1991, Paradis & Prunet 1991), where [sonorant] is
considered predictable from [nasal] but is specified for the other sonorants. Stemberger leaves as
underspecified the manner features which differentiate the liquids and glides from the nasals
([glide], [lateral], and [rhotic] in my matrix), as they are predictable from the combination of
sonorant and the place features. There is no coherent algorithm for eliminating redundancy which
can produce this result from (95). For example, the feature sonorant is equally predictable from
[lateral] as it is from [nasal].

In addition, in the standard theory, the status of place nodes in the feature geometry tree
affects the underspecification of [Coronal], as mentioned above. The presence of a specified
coronal dependent like [-anterior] presumably forces the presence of [Coronal] for structural
reasons. Since structured specification abandons notions of universal articulator dependencies in
feature geometry in favor of describing dependencies between natural classes based on language
particular contrasts, feature dependencies of this type play no role in feature assignment. There is
thus no algorithm which can produce the correct pattern of underspecification for place features
out of (95), either.

Stemberger’s feature assignments are based on a survey of contemporary literature
involving underspecification as well as feature geometry. I simply adopt his feature assignment
as representative of the effect that the assumption of underspecification has on similarity.
Similarity was computed using Pierrehumbert’s metric for the radically underspecified,
contrastively underspecified, and fully specified feature matrices given in section 8.1.  Similarity
for each consonant pair using each feature matrix is given in Tables 8.7,  8.8, and 8.9.19
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p b f v m t d 7 ' s z 6 = W6 G= k g 1 l r n w y h

p 1

b 0.5 1

f 0.5 0.33 1

v 0.33 0.67 0.67 1

m 0.5 0.33 0.33 0.25 1

t 0 0 0 0 0 -

d 0 0.5 0 0.33 0 0 1

7 0 0 0.25 0.2 0 0 0 1

' 0 0.2 0.2 0.4 0 0 0.25 0.75 1

s 0 0 0.5 0.33 0 0 0 0.33 0.25 1

z 0 0.33 0.33 0.67 0 0 0.5 0.25 0.5 0.5 1

6 0 0 0.25 0.2 0 0 0 0.5 0.4 0.33 0.25 1

= 0 0.2 0.2 0.4 0 0 0.25 0.4 0.6 0.25 0.5 0.75 1

W6 0 0 0 0 0 0 0 0.2 0.17 0 0 0.5 0.4 1

G= 0 0.2 0 0.17 0 0 0.25 0.17 0.33 0 0.2 0.4 0.6 0.75 1

k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

g 0 0.33 0 0.25 0 0 0.5 0 0.2 0 0.33 0 0.2 0 0.2 0.5 1

1 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0.5 0.33 1

l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

r 0.25 0.2 0.2 0.17 0.2 0 0 0.17 0.14 0 0 0.4 0.33 0.4 0.33 0 0 0 0.25 1

n 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 1

w 0.5 0.33 0.33 0.25 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 1

y 0 0 0 0 0 0 0 0.2 0.17 0 0 0.5 0.4 0.5 0.4 0 0 0 0.33 0.75 0 0.25 1

h 0 0 0.33 0.25 0 0 0 0.25 0.2 0.5 0.33 0.25 0.2 0 0 0 0 0 0 0 0 0 0 1

T
able 8.7: S

im
ilarity based on radical underspecification.
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p b f v m t d 7 ' s z 6 = W6 G= k g 1 l r n w y h

p 1

b 0.6 1

f 0.6 0.33 1

v 0.33 0.6 0.6 1

m 0.17 0.17 0.17 0.17 1

t 0.6 0.33 0.33 0.14 0 1

d 0.33 0.6 0.14 0.33 0 0.6 1

7 0.29 0.13 0.5 0.29 0 0.5 0.29 1

' 0.13 0.29 0.29 0.5 0 0.29 0.5 0.67 1

s 0.25 0.11 0.43 0.25 0 0.43 0.25 0.57 0.38 1

z 0.11 0.25 0.25 0.43 0 0.25 0.43 0.38 0.57 0.71 1

6 0.29 0.13 0.5 0.29 0 0.5 0.29 0.67 0.43 0.57 0.38 1

= 0.13 0.29 0.29 0.5 0 0.29 0.5 0.43 0.67 0.38 0.57 0.67 1

W6 0.43 0.25 0.25 0.11 0 0.67 0.43 0.38 0.22 0.33 0.2 0.57 0.38 1

G= 0.25 0.43 0.11 0.25 0 0.43 0.67 0.22 0.38 0.2 0.33 0.38 0.57 0.71 1

k 0.6 0.33 0.33 0.14 0 0.6 0.33 0.29 0.13 0.25 0.11 0.29 0.13 0.43 0.25 1

g 0.33 0.6 0.14 0.33 0 0.33 0.6 0.13 0.29 0.11 0.25 0.13 0.29 0.25 0.43 0.6 1

1 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.17 0.17 1

l 0 0 0 0 0.17 0.14 0.14 0.13 0.13 0.25 0.25 0.13 0.13 0.11 0.11 0 0 0.17 1

r 0.13 0.13 0.13 0.13 0.33 0.13 0.13 0.11 0.11 0.1 0.1 0.25 0.25 0.22 0.22 0 0 0.14 0.29 1

n 0 0 0 0 0.4 0.14 0.14 0.13 0.13 0.25 0.25 0.13 0.13 0.11 0.11 0 0 0.4 0.6 0.29 1

w 0.17 0.17 0.17 0.17 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.17 0.33 0.17 1

y 0 0 0 0 0.17 0.14 0.14 0.13 0.13 0.11 0.11 0.29 0.29 0.25 0.25 0 0 0.17 0.33 0.5 0.33 0.4 1

h 0.2 0.2 0.2 0.2 0 0.2 0.2 0.17 0.17 0.14 0.14 0.17 0.17 0.14 0.14 0.2 0.2 0 0 0 0 0 0 1

T
able 8.8: S

im
ilarity based on contrastive underspecification.



135
p b f v m t d 7 ' s z 6 = W6 G= k g 1 l r n w y h

p 1

b 0.6 1

f 0.6 0.33 1

v 0.33 0.6 0.6 1

m 0.25 0.43 0.11 0.25 1

t 0.5 0.29 0.29 0.13 0.1 1

d 0.29 0.5 0.13 0.29 0.22 0.67 1

7 0.25 0.11 0.43 0.25 0 0.38 0.22 1

' 0.11 0.25 0.25 0.429 0.09 0.22 0.38 0.71 1

s 0.25 0.11 0.43 0.25 0 0.57 0.38 0.5 0.33 1

z 0.11 0.25 0.25 0.43 0.09 0.38 0.57 0.33 0.5 0.71 1

6 0.25 0.11 0.43 0.25 0 0.57 0.38 0.71 0.5 0.71 0.5 1

= 0.11 0.25 0.25 0.43 0.09 0.38 0.57 0.5 0.71 0.5 0.71 0.71 1

W6 0.38 0.22 0.22 0.1 0.08 0.71 0.5 0.44 0.3 0.44 0.3 0.63 0.44 1

G= 0.22 0.38 0.1 0.22 0.18 0.5 0.71 0.3 0.44 0.3 0.44 0.44 0.63 0.75 1

k 0.6 0.33 0.33 0.14 0.11 0.5 0.29 0.25 0.11 0.25 0.11 0.25 0.11 0.38 0.22 1

g 0.33 0.6 0.14 0.33 0.25 0.29 0.5 0.11 0.25 0.11 0.25 0.11 0.25 0.22 0.38 0.6 1

1 0.11 0.25 0 0.11 0.71 0.1 0.22 0 0.09 0 0.091 0 0.09 0.08 0.18 0.25 0.43 1

l 0.08 0.18 0 0.08 0.36 0.27 0.4 0.07 0.15 0.25 0.36 0.15 0.25 0.23 0.33 0.08 0.18 0.36 1

r 0.08 0.17 0.17 0.27 0.33 0.15 0.25 0.23 0.33 0.23 0.33 0.33 0.45 0.21 0.31 0 0.08 0.23 0.46 1

n 0.09 0.2 0 0.09 0.56 0.3 0.44 0.08 0.17 0.27 0.4 0.17 0.27 0.25 0.36 0.09 0.2 0.56 0.7 0.38 1

w 0.11 0.25 0.25 0.43 0.33 0 0.1 0.09 0.2 0.09 0.2 0.09 0.2 0 0.08 0 0.11 0.2 0.25 0.45 0.17 1

y 0 0.09 0.09 0.2 0.17 0.18 0.3 0.27 0.4 0.27 0.4 0.4 0.56 0.25 0.36 0 0.09 0.17 0.42 0.64 0.33 0.56 1

h 0.33 0.14 0.6 0.33 0 0.29 0.13 0.43 0.25 0.43 0.25 0.43 0.25 0.22 0.1 0.33 0.14 0 0 0.08 0 0.11 0.09 1

T
able 8.9: S

im
ilarity based on full specification.
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Stemberger (1991b) claims that specified features have the greatest effect on similarity,
and that underspecified features have a smaller influence. Stemberger’s model thus involves
errors at two stages, before and after specification. Other plausible models of similarity involve a
single stage using specified features under either radical underspecification or contrastive under-
specification, and a model based only on the fully specified similarity computed with analagous
features. Finally, all of these models can be compared to the natural classes similarity model.

The five models are compared by fitting them to Stemberger’s (1991a) consonant
confusion matrix. Each model is fit with a non-linear regression to predict the actual number of
errors for each pair, with the expected number of errors and similarity as predictor variables, as in
chapter 4. The regression equation is shown in (96).

(96) Observed = Expected × (A + B × Similarity)

In the case of Stemberger’s two stage model, the equation is:

(97) Observed = Expected × (A + B × Underspecified Sim + C × Specified Sim)

In Stemberger’s two stage model, both the specified and underspecified similarity can each
contribute to the error rate.

Table 8.10 shows the fit for each similarity model, along with the parameters for the
corresponding non-linear regression. Among the models based on the standard linguistic feature
matrix, the fully specified model has the best fit, followed by the contrastive underspecification
model, and then the radical underspecification model. Of course, the two stage model provides a
better fit than either the radical underspecification model or the specified feature model, since it
is equivalent to either of these models with an additional parameter. However, the natural classes
similarity model is far superior to the two stage model, even though it has one less free
parameter. The model based only on radical underspecification fared the poorest of all of the
models of the speech error data, indicating that Stemberger’s emphasis on underspecification,
and the primary role of specified features in determining error rate, does not account for the
majority of the speech error data. The fully specified feature model fit better, where no special
status was given to redundant or default features.

Table 8.10: Five models of Stemberger’s corpus of consonant speech errors.

Model R Parameters2

Radical Underspecification 0.35 A (constant) = 0.65, B (similarity) = 5.4

Contrastive Underspecification 0.44 A = -0.19, B = 5.1

Full Specification 0.49 A = 0.65, B =  5.8

Two-stage model 0.57 A = -0.57, B (underspec) = 3.8, C (spec) = 4.9

Natural classes model 0.72 A = -0.69, B = 9.88
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CHAPTER 9
Underspecification in Speech Errors II: Anti-Frequency Effects

In another paper, Stemberger (1991a) analyzed asymmetries in speech error rates.
Stemberger proposes that there is a general ADDITION BIAS in language production, in which
errors tend to add segments or features rather than deleting segments or features. In combination
with underspecification, the addition bias predicts that errors are more likely to produce specified
segments than underspecified segments. Stemberger (1991a) demonstrates that this asymmetry is
found using a SLIPS experiment. I performed a replication of Stemberger’s experiment using the
tongue twister task as in Experiment 1 (chapter 6). I found that the asymmetries in error rates
which Stemberger (1991a) attributed to radical underspecification are influenced by the status of
the error outcome as either a word or non-word outcome. Thus, these asymmetries are not due to
a property of the erring consonant alone, such as underspecification, and are instead process
dependent.

9.1 Review of Stemberger (1991a)

In this section, I review more of Stemberger’s arguments for the influence of radical
underspecification in adult speech errors. Stemberger (1991a) observes that, in general, high
frequency items are processed more accurately than low frequency items in both perception (e.g.
Treisman 1978) and production (e.g. Stemberger & MacWhinney 1986, Dell 1990). However, he
presents a number of cases of an apparent ‘anti-frequency’ effect in speech production, where
less frequent consonants replace more frequent ones, rather than the reverse. For example,
Shattuck-Hufnagel & Klatt (1979) originally noted that, in naturally occurring errors, the low
frequency palatal consonants are more often intrusions on target high frequency alveolars than
the reverse. Shattuck-Hufnagel & Klatt (1979) concluded that there is something special about
palatal consonants which leads to this error asymmetry, calling it the PALATAL BIAS . Stemberger
proposes that this asymmetry results from the combination of two more general principles. First,
following Stemberger & Treiman (1986), he proposes that there is an ADDITION BIAS in speech
production. Stemberger & Treiman (1986) found that errors which formed a cluster by adding a
consonant to a singleton were more common than errors which formed a singleton from a cluster
by deleting a consonant. Second, Stemberger proposes once again that speech errors can occur at
a point in the derivation where segments are underspecified. In the case of palatals versus
alveolars, alveolar consonants are underspecified for the feature [+anterior], while palatals are
specified [-anterior]. Thus, an error which replaces /s/ with /6/ would involve the addition of the
[-anterior] feature to /s/, while an error which replaces /6/ with /s/ would involve the deletion of
the [-anterior] feature (with [+anterior] to filled in later by a default rule as discussed in chapter
8). The combination of underspecification and the addition bias accounts for the palatal bias. 

Stemberger (1991a) replicated the palatal bias using the SLIPS error induction technique
(Motley & Baars 1975) to support his claim. Recall from chapter 6 that, in SLIPS, subjects are
primed to make consonant exchange errors on the word onsets of monosyllabic words. Subjects
look at word pairs displayed on a screen one at a time. After some word pairs, they are shown a
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cue which indicates they are to produce the immediately preceding pair. The word pairs of
interest are preceded by word pairs that prime the subjects to produce consonants in a certain
order. In the target pair, that order is reversed. A sample stimulus sequence for Stemberger’s
SLIPS experiment on palatals and alveolars is shown in (98). In this example, the target phoneme
pair is /s/-/6/.

(98) Priming pairs muck rift
sub shin
sum ship

Target pair shuck sift

In 103 errors produced by 24 subjects on 27 target pairs, Stemberger found 65 errors where a
palatal {6��W6��G=} replaced an alveolar {s, t, d}, and only 38 errors where an alveolar replaced a
palatal.

To demonstrate the addition bias and verify the results of Stemberger & Treiman (1986),
Stemberger (1991a) also used SLIPS to replicate the asymmetry in error rate between singleton
consonants and consonant clusters. Stemberger & Treiman (1986) found that consonants are
added to singletons to make clusters more frequently than consonants were deleted from clusters
to create singletons. Two sample stimuli, one priming for a deletion error, and a comparable one
priming for an addition error, are shown in (99). All of the addition and deletion errors were
primed to occur on a liquid or glide following an obstruent.

(99) Priming pairs spite bowl bowl spite
tile squirrel trout squirrel
type host trove host

Target pair trite toll toll trite

In 95 errors produced by 30 subjects on 44 stimuli, Stemberger found 72 errors where a cluster
was created by the addition of a liquid or glide, and 23 errors where a singleton onset was created
by the deletion of a liquid or glide.

The addition bias of Stemberger & Treiman (1986) was originally proposed to deal with
the preference for addition of an entire segment to create a cluster. Stemberger (1991a)
generalizes the addition bias to also include addition of a feature to an underspecified segment.
He tests this generalization by looking for asymmetries between consonants which are specified
and underspecified for place of articulation, manner of articulation, and voicing. The feature
contrasts Stemberger (1991a) examined using SLIPS experiments are:

(100) Contrast Specified Underspecified
a. Place of articulation I [Labial], e.g. /p/ [Coronal], e.g. /t/
b Place of articulation II [Dorsal], e.g. /k/ [Coronal], e.g. /t/
c. Manner I [+cont], e.g. /s/ [-cont], e.g. /t/
d Manner II [+nas], e.g. /n/ [-nas], e.g. /t/
e. Voicing [+voice], e.g. /d/ [-voice], e.g. /t/
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For each contrast between specified and underspecified features, Stemberger created SLIPS
stimuli over a variety of consonant pairs which minimally contrasted on the target features. The
results from Stemberger’s experiments are summarized in Table 9.1. For each category, the
specified and underspecified features are given, along with the consonant pairs Stemberger
examined. Total errors aggregated across subjects and consonant pairs are shown for errors
where the specified consonant replaced the underspecified one (an ‘addition’ of the specified
feature) and where the underspecified consonant replaced the specified one (a ‘deletion’ of the
specified feature).

Table 9.1: Results of SLIPS experiments in Stemberger (1991a).

Category Specified/ Consonant pairs ‘addition’ ‘deletion’
Underspecified (Specified/Underspecified) errors errors

Place (I) [Labial]/[Coronal] p/t, b/d, f/s, v/z, m/n 59 32

Place (II) [Velar]/[Coronal] k/t, g/d 4 2

Manner (I) [+cont]/[-cont] f/p, v/b, s/t, �/t, z/d 43 19

Manner (II) [+nas]/[-nas] m/p, n/t, m/b, n/d 29 14

Voicing [+voice]/[-voice] b/p, d/t, g/k, v/f, z/s, d=/t6 21 9

Every case is consistent with Stemberger’s hypothesis: there were more errors where a feature
specification was added to an underspecified consonant than errors where a specified feature was
lost, resulting in default specification.

Stemberger also examined his corpus of naturally occurring speech errors for evidence of
asymmetries. He found significant asymmetries only between the consonant pairs /p/-/f/ and /d/-
/g/. These asymmetries are consistent with his account of the experimental data, though we might
consider it surprising that no other asymmetries were clearly present. An account of Stemberger’s
asymmetries which can also explain why they were difficult to find in the naturally occurring
corpus has an additional advantage over the underspecification account. Such an account, which
does not employ underspecification, is presented in section 9.3.

9.2 Experiment 2: Asymmetries in Speech Errors

Stemberger’s results are compelling because some asymmetry was found in every
experiment, and only consistent asymmetries were found in the natural error corpus. In addition,
Stemberger’s account is theoretically appealing since he gives a unified account to the palatal
bias and asymmetries involving underspecification using only the addition bias, which is
independently needed to account for the pattern of errors between consonant clusters and
singletons. In the previous section, we saw that similarity based on underspecification is a poor
predictor of error rate. Therefore, before Stemberger’s results can be accepted, they must be
shown to be robust. In this section, I present the results of an experiment of my own which was
designed to replicate Stemberger’s findings. I found evidence for asymmetries only in some of
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 Using repeated vowels would actually increase the error rate (Dell 1984 and others), but20

different vowels were used for two reasons. First, using different vowels allows an error on the
word initial consonant to be unambiguously classified as a single C error and not a CV or entire
word error. Subjects often interrupt themselves when they make errors, and having distinct vowel
transitions for the different consonant pairs often clarifies whether the interrupted error is just a C
or whether it is a larger unit in these cases. Second, since asymmetries based on
underspecification are controlled only for consonants, confounding effects due to the entire word
or the following vowel were to be avoided.

the cases above, and I also found crucial evidence that the asymmetries cannot be attributed to
underspecification, as I discuss below.

9.2.1 Materials.

Closely following the design of Stemberger (1991a), I attempted to replicate the finding
of an addition bias between ‘specified’ and ‘underspecified’ consonant pairs. The materials were
designed to examine the same contrasts as Stemberger (1991a). These contrasts are presented
along with all of the consonant pairs I examined in (101). In most cases, these are the same pairs
as studied by Stemberger. The specified consonant is given first in each pair, and the
underspecified consonant is given second.

(101) Contrast Consonant pairs
a. Palatal vs. alveolar t6/t, d=/d, 6/s
b Labial/dorsal vs. coronal p/t, b/d, f/s, m/n, k/t, g/d
c. Fricative vs. stop f/p, v/b, s/t, z/d
d Nasal vs. stop m/p, m/b, n/t, n/d
e. Voiced vs. voiceless b/p, v/f, d/t, z/s, g/k

To test whether Stemberger’s asymmetries would generalize to a different error inducing
task, I followed the tongue twister paradigm of Shattuck-Hufnagel (1983, 1987, 1992), also used
in Experiment 1. A sample twister for the consonant pair /z/-/s/, which fall within the voicing
category, is shown in (102).
(102) sit zap zoo sip

All of the tongue twisters in this experiment consisted of four monosyllabic words with
the target pair as word onsets. In general, each word in the tongue twister had a different vowel,
but if a vowel was repeated it was never repeated on adjacent words.  Syllable codas were not20

strictly controlled, but were picked to be similar as much as possible in order to increase the
overall error rate (Dell 1984). The words in the tongue twisters were balanced for frequency,
which sometimes affected the choice of available vowels and coda consonants.

For each consonant pair, I constructed four tongue twisters. Two of these twisters formed
a complementary set, where the error outcomes for one twister were used to create the second
twister. The two word outcome twisters for /z/-/s/ are:
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(103) sit zap zoo sip
zit sap sue zip

The other two twisters for each consonant pair had error outcomes which were not words. The
two twisters of this type for /z/-/s/ are given in (104).

(104) sung zone Zeus seam
zig suck sank zilch

Each pair of twisters uses two balanced patterns of the word onsets, /s/-/z/-/z/-/s/ and /z/-/s/-/s/-
/z/. A complete list of the 88 stimuli for this experiment is given in section 9.4 at the end of the
chapter.

In the pair of stimuli where the error outcomes were words, the words and their
corresponding error outcome were also balanced for frequency. The other pair, with non-word
outcomes, represent a second test of the robustness of Stemberger’s asymmetry findings. In the
SLIPS experiments in Stemberger (1991a) the error outcomes were always words. The
presentation of the results below shows that this is a crucial difference, as the non-word outcome
twisters show little evidence of asymmetry, indicating that the presence of asymmetries in
Stemberger’s experiments are crucially dependent upon the particular task and stimuli used,
rather than inherent differences between the consonants. I present an alternative account below.

9.2.2 Method.

The method for this experiment is a four word tongue twister paradigm nearly identical to
Experiment 1. The randomization procedure was slightly different. The stimuli were broken into
two groups. Half of the stimuli for each consonant pair were placed in each group, one stimulus
for each consonant pair with word outcomes and one with non-word outcomes. Within each
category (palatal vs. alveolar, labial or dorsal vs. coronal, fricative vs. stop, nasal vs. stop, voiced
vs. voiceless) the stimuli were balanced for the order of specified and underspecified target
consonants. The stimuli were randomized within each group so that no target consonants were
repeated in adjacent stimuli. Half of the subjects read one group of stimuli first and half of the
subjects read the other group first.

9.2.3 Subjects.

The subjects were 21 Northwestern undergraduates, primarily from introductory classes
in linguistics and cognitive science. All of the subjects were monolingual speakers of English.
Subjects were paid for their participation in the experiment.

9.2.4 Tabulation.

Error tabulation followed the same procedure as Experiment 1.
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 The reader might first notice the overall greater number of errors in the word outcome21

case than in the non-word outcome case. This ‘lexical bias effect’ has been demonstrated in
naturally occurring error corpora (Dell & Reich 1981) and in the SLIPS paradigm (Motley &
Baars 1975). Given the results I present below, it would be ideal to examine both word outcomes
and non-word outcomes in speech error experiments to insure generality. I abstract away from
the differences in overall counts between the two outcome types below and focus only on the
presence and absence of asymmetries.

9.2.5 Results and discussion.

Table 9.2 shows error totals aggregated across consonants pairs and subjects for each
category based on the type of error outcome: word or non-word. Some of these totals are broken
down in more detail in the analysis below. In Table 9.2 and elsewhere, exchanges are marked as
being on the specified or underspecified consonant based on the first error in the exchange, as
was done in Experiment 1 (see chapter 6).

Table 9.2: Aggregate error counts for each category in word and non-word outcomes

Word outcome: Target

Category Specified Underspecified Total

Palatal 55 88 143

Place 41 47 88

Fricative 34 83 117

Nasal 36 51 87

Voicing 58 95 153

Total 224 364 588

Non-word outcome: Target

Category Specified Underspecified Total

Palatal 58 50 108

Place 22 30 52

Fricative 41 49 90

Nasal 31 41 72

Voicing 37 41 78

Total 189 211 400

In examining Table 9.2 for asymmetries, the contrast between the word outcome
condition and the non-word outcome condition is striking.  While the word outcome condition21
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does show apparent asymmetries in the palatal vs. coronal, fricative vs. stop, and voiced vs.
voiceless categories, there are no asymmetries for any category in the non-word outcome case.

 The data for each outcome were tested within each category for statistical significance
using two factor ANOVA with error type (specified target consonant or underspecified target
consonant) and subject as factor, and with error type and stimulus item as factors. The tests for
asymmetry were based on the combined substitution and exchange errors. If exchanges are not
included, comparable results are obtained. For word outcomes, the palatal asymmetry is
significant with subject (F(1,20) = 13.4, p = 0.002) and item (F(1,5) = 5.1, p = 0.07) as factors.
The fricative asymmetry is also significant with subject (F(1,20) = 30.6, p = 0.001) and item
(F(1,7) = 7.4, p = 0.03) as factors. The voicing asymmetry is significant with subject as factor
(F(1,20) = 25.2, p = 0.001), but surprisingly it was not significant with item as factor (F(1,9) =
2.7, p = 0.14). I return to this below. The nasal asymmetry was close to significant with subject
as factor (F(1,20) = 2.7, p = 0.10) and with item as factor (F(1,7) = 3.59, p = 0.11). However, the
nasal asymmetry is close only when exchanges are included (there were 10 exchanges where the
first error targeted a stop and only 2 where the first error targeted a nasal). If the exchanges are
not included, the asymmetry is far from significant.

The lack of significance for the voicing asymmetry with consonant pair as factor in the
word outcome case is explained when the voicing contrast data are examined in greater detail.
Table 9.3 shows error totals aggregated across subjects in the word outcome condition for each
consonant pair in the voicing category. Notice that nearly all of the asymmetry for the category
comes from the single consonant pair /z/-/s/. There were 50 substitution errors where /z/ replaced
/s/ in the word outcome condition, while there were only 9 errors where /s/ replaced /z/. Among
the remaining pairs there were 51 errors where the specified consonant replaced the
underspecified one, and 43 errors where the underspecified consonant replaced the specified one,
a nonsignificant asymmetry.

Table 9.3: Errors for each consonant pair in the word outcome voicing category

Target

Pair Specified Underspecified Total

p/b 14 14 28

f/v 7 15 22

t/d 8 13 21

s/z 9 50 59

k/g 14 9 23

Total 52 101 153

The disparity between the word and non-word outcome condition provides decisive
evidence against underspecification as the source of asymmetry in the palatal and fricative
categories, between /z/ and /s/, and in the results of Stemberger (1991a). If underspecification
were involved, the status of the error outcome as a word or non-word should be irrelevant, as



144

underspecification is a property of the individual segment and its prosodic position. In addition,
asymmetry was found in the word case only for palatals vs. alveolars, fricatives vs. stops, and /z/
vs. /s/. No support for an asymmetry was found for labial or dorsal vs. coronal place, for nasals
vs. stops, or for the other voiced vs. voiceless pairs. The contrast between my results and
Stemberger’s suggests that the asymmetries he found are at least dependent upon the error
inducing task and the particular stimulus words used. A similar result was found by Levitt &
Healy (1985), who tested the palatal bias using nonsense syllables in a SLIPS paradigm and were
unable to find an effect. Their finding agrees with the non-word outcome data in my experiment.

Since underspecification is not responsible for the asymmetries in error rate found by
Stemberger, what is? The status of the error outcome as a word or non-word is apparently crucial.
Stemberger (1991a) informally characterizes the effects as ‘anti-frequency’ effects, though that
cannot be the account given the lack of asymmetry in the non-word outcome case, and the fact
that frequency effects have been demonstrated and replicated (Motley, Baars & Camden 1975;
Levitt & Healy 1985). Note also that the fact that the error must be a word outcome accounts for
why Stemberger (1991a) found only a few significant asymmetries in his corpus of naturally
occurring errors. These errors would be a mix of word and non-word outcomes, and thus any
effect of asymmetry in the cases which were word outcomes would be diluted.

9.3 Similarity Neighborhoods in Speech Production

I propose that the ‘anti-frequency’ effects found by Stemberger (1991a) are the result of
the effects of the SIMILARITY NEIGHBORHOODS (Luce 1986) of the words involved in the error.
The similarity neighborhood of a word is the set of words which are phonologically similar to
that word. The similarity neighborhood of a word is typically determined by the SINGLE PHONEME

SUBSTITUTION RULE: any word which can be generated by substituting a single phoneme for a
phoneme in the word, or by adding or deleting a single phoneme to the word is a member of the
word’s neighborhood (Luce, Pisoni, & Goldinger 1990). The words in the similarity
neighborhood of a target word are presumably activated when the word is processed. Words
which have many neighbors are in ‘dense’ neighborhoods, while words which have few
neighbors are in ‘sparse’ neighborhoods. It has been shown in speech perception that words in
dense neighborhoods are harder to identify correctly in noise than words in sparse neighborhoods
(Luce 1986; Goldinger, Luce, & Pisoni 1989; Luce, Pisoni, & Goldinger 1990). Similarity
neighborhood effects have also been demonstrated in lexical decision tasks. Non-words that lie
within a dense neighborhood of words are more difficult to identify as non-words than non-
words in a sparse neighborhood of words (Luce 1986).

In the word outcome case of the tongue twister experiment, I suspect that the error rates
were affected by the relative similarity neighborhoods of the target word and the intruding word.
I assume that both the target word and the intruding word are activated by the tongue twister task,
along the lines of the Dell (1986) spreading activation model.  Let’s take /z/-/s/ as a concrete
example. Since /s/ is a very high frequency phoneme, it presumably has denser word
neighborhoods than /z/. There are many words that begin with /s/. There are relatively few words
that begin with /z/. Thus, in general, the similarity neighborhoods of words beginning with /s/ are
denser than the similarity neighborhoods of words beginning with /z/. If a word in a sparse
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neighborhood is easier to produce than a word in a dense neighborhood (parallel to the
perception case), then the outcome which begins with /z/ is at a distinct advantage, both due to its
own neighborhood characteristics and due to the neighborhood characteristics of its competitor,
/s/.

The neighborhood account of the asymmetry in speech errors is supported by a post-hoc
analysis of the stimuli used in Experiment 2. I retrieved the neighborhood densities for all words
in the experimental stimuli that could be found in the on-line Webster’s Pocket Dictionary used
in Luce (1986), known as the Hoosier Mental Lexicon (Nusbaum, Pisoni, & Davis 1984). Words
which were not found in the on-line dictionary are marked with an asterisk in the presentation of
the stimuli in section 9.4. The mean difference in neighborhood density between the words
containing ‘specified’ and ‘underspecified’ consonants in each of the categories is given in Table
9.4. Large differences in word density are found for all but the place of articulation contrasts.
This is consistent with the results of the experiment, as some evidence of asymmetry was found
in Experiment 2 in every category except place of articulation.

Table 9.4: Difference in neighborhood density between ‘specified’ and ‘underspecified’ stimuli
in experiment 2.

Category Mean �Density

Palatal 8.00

Place -2.43

Fricative 8.54

Nasal 5.62

Voice 6.54

The influence of similarity neighborhoods also accounts for the difference between word
and non-word outcome cases in Experiment 2. In the case of non-word outcomes, there is no
competing word which has been activated by the onset consonant pattern in the tongue twister
task. In that case, some neighborhood effects might still emerge, but they would be weaker than
the word outcome case, in which a double effect of neighborhood density exists. In fact, non-
significant asymmetries were found in the non-word outcome case in Experiment 2.

Conversely, the SLIPS task used by Stemberger (1991a) involves priming the error
outcome in advance of the stimulus. This priming may have enhanced the neighborhood effects
by activating other members of the neighborhood prior to the stimulus presentation. The priming
pairs presumably heightened the activation of the competing neighborhoods, and this may have
enhanced the asymmetries in his experimental results. Thus, the fact that Stemberger found more
asymmetries than I did in Experiment 2 are also explained under the neighborhood hypothesis,
but not with the underspecification hypothesis. Priming should have no effect on
underspecification.

Neighborhood effects in speech production have been the subject of two recent papers
(Vitevich 1996a, 1996b). In a study of a small corpus of naturally occurring errors, Vitevich
(1996a) found that the neighborhood density of words which contained targets of consonant
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exchange errors was greater than the neighborhood density of an equivalently sized sample of
control words taken randomly from the dictionary. Vitevich (1996b) found that phonological
whole word substitutions (so-called MALAPROPISMS) also occurred on target words with higher
neighborhood density than a set of randomly selected controls. Finally, Vitevich (1996a) also
presents the results of a SLIPS experiment which controlled for the neighborhood density of the
word pairs. In contrast to the above results, he found that stimuli which contained words in
sparse neighborhoods had a higher error rate than stimuli which contained words in dense
neighborhoods.

In Vitevich’s SLIPS experiments, both of the words in the stimulus pair were either high
or low density. By comparison, in Experiment 2 and in Stemberger’s SLIPS experiments, the
stimuli apparently contained a mix of high density and low density words, roughly corresponding
to the ‘underspecified’ and ‘specified’ status of the onset consonants. Thus, the results of
Vitevich’s SLIPS experiment do not contradict the analysis given above, as the stimuli are not
comparable. The results of his studies of naturally occurring errors support my analysis by
showing that words in dense neighborhoods have higher error rates. A complete analysis of
neighborhood effects in speech production is beyond the scope of this thesis, and is left here as
an outstanding research problem.

9.4 Stimuli from Experiment 2

Words which were not found in the Hoosier Mental Lexicon (Nusbaum, Pisoni, & Davis
1984) and thus were not included in the post hoc analysis of similarity neighborhoods in section
9.3 are marked with an asterisk.

Category Targets Outcome Stimulus
palatal s/6 N sulk shop shirk sink
palatal s/6 N shape soup soil shard
palatal s/6 W seat shack short sin
palatal s/6 W sheet sack* sort shin
palatal t/t6 N teach chat chirp temp*
palatal t/t6 N chimp tarp* toss chase
palatal t/t6 W tore* chin chuck tip
palatal t/t6 W chore tin tuck chip
palatal d/d= N dad judge jilt doll
palatal d/d= N jinx duck dial join
palatal d/d= W dunk jock* Jean* deaf
palatal d/d= W junk dock dean Jeff*

nasal t/n N Turk nuke niche tax
nasal t/n N nymph tough tooth net
nasal t/n W tape nap nick ton
nasal t/n W nape tap tick none
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nasal d/n N dove nerve neat death
nasal d/n N nurse dose dork* nod
nasal d/n W deck nice* knave done
nasal d/n W neck dice Dave* nun
nasal p/m N peach mush moot pert
nasal p/m N mob peep purse mask
nasal p/m W poll mill* mike peak
nasal p/m W mole pill pike meek
nasal b/m N bow mine mint band
nasal b/m N mist bus baste moose
nasal b/m W bake muck match bar
nasal b/m W make buck batch mar

fricative s/t N talc soak sift task
fricative s/t N sow* tare torn sum
fricative s/t W tight saint silt tag
fricative s/t W sight taint tilt sag
fricative z/d N dome zinc Zack* dusk
fricative z/d N zest dike dank zag*
fricative z/d W doom zing Zen deal
fricative z/d W zoom* ding* den zeal
fricative f/p N patch fudge fund perk
fricative f/p N fiend pint peck fake
fricative f/p W pat faint fawn* pin
fricative f/p W fat paint pawn fin
fricative v/b N beige vouch voice bush
fricative v/b N vague bog bump verb
fricative v/b W bane veer vow bat
fricative v/b W vein beer bough vat

voice t/d N tort date dump top
voice t/d N dance taut tint daze
voice t/d W till duel dart tote
voice t/d W dill tool tart dote
voice p/b N pot bean bum pant
voice p/b N bank pink pork bask
voice p/b W post beak bunt pounce
voice p/b W boast peek punt bounce
voice s/z N sung zone* Zeus* seam
voice s/z N zig* suck sank zilch*
voice s/z W sit zap* zoo* sip
voice s/z W zit sap sue zip*
voice f/v N foil* valve verse far
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voice f/v N vex fix farce vice
voice f/v W file* veil vole feign*
voice f/v W vile fail foal vain
voice k/g N court golf gear kin
voice k/g N goose kite cult gasp
voice k/g W coal gill gate* cap
voice k/g W goal kill Kate* gap

place p/t N taunt perch pitch tusk
place p/t N pinch tent tomb pal
place p/t W tack pipe pole tear
place p/t W pack type toll pear
place k/t N tire cast kiss touch
place k/t N keep time tinge case
place k/t W toast cook coil toad
place k/t W coast took toil code
place b/d N daft boost babe dive
place b/d N burp dorm ditch boot
place b/d W doubt belt bare dale
place b/d W bout dealt dare bail
place g/d N dunce geese good deed
place g/d N gold damp dead guise
place g/d W dune game gone door
place g/d W goon* dame dawn gore
place f/s N serve false faith soft
place f/s N fond silk sock fog
place f/s W soot feed fell sir
place f/s W foot seed* sell fur
place m/n N nudge mesh Max* nook
place m/n N mast naught north mouth
place m/n W nail might maim node
place m/n W mail night name mode
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CHAPTER 10
Frequency Effects and Underspecification in Phonotactics

In the analysis of OCP-Place in Arabic, the stochastic constraint model assumes that the
relative frequency of a form is a function of its acceptability. The stochastic constraint model of a
linguistic constraint provides a more accurate description of the OCP-Place data than traditional
categorical constraints. This model makes the necessary step of incorporating effects of
frequency into the phonology, making the phonological formalism more psycholinguistically
plausible. One goal of this chapter is to provide additional evidence for frequency effects in
phonotactics.

In the previous two chapters, I argued against analyses of phonological speech errors
using radical underspecification. Phonotactic constraints have also been provided as evidence
against underspecification theory (Yip 1989, Clements 1988, Mester & Itô 1989, see McCarthy
& Taub 1993 for a review). In a derivational phonological theory as in SPE, a phonotactic
constraint like OCP-Place places restrictions on the abstract, underlying form of a morpheme.
Thus, the constraint is applicable to forms before redundancy rules and default rules apply
(Stanley 1967,Yip 1989). As discussed in chapter 5, Pierrehumbert (1993) used contrastive
underspecification to account for differences in OCP-Place effects in Arabic at different places of
articulation. Frisch, Broe, & Pierrehumbert (1995) accounted for the same effects without
underspecification. Davis (1991) presents a case for radical underspecification of coronal place in
English, also based on the OCP-Place constraint. The second goal of this chapter is to
demonstrate that Davis’s evidence for underspecification of [Coronal] in English is, in fact, a
frequency effect. Thus, I conclude there is no evidence for underspecification in the OCP-Place
data.

10.1 The Role of Frequency in Phonotactics

There is a growing body of literature which demonstrates that statistical factors are
relevant in phonotactics. It is often assumed that a phonotactic constraint is valid, even if it has
one or two exceptions (e.g. Fudge 1969, 1987; Clements & Keyser 1983). When McCarthy
(1988) originally proposed the OCP-Place constraint, it was put forth as a statistical tendency,
rather than a categorical rule, though the difference was not made formally explicit at that time.
Pierrehumbert (1994), which I review in more detail below, demonstrated that the vast majority
of occurring word-internal triconsonantal clusters in English are those which are most likely to
occur based on frequency, and that native speakers are aware of these frequencies. Finally,
Kessler & Treiman (1996) and Treiman et al. (1996) show that English has syllable internal
statistical tendencies to which native speakers are sensitive. A frequency based approach to
phonotactics therefore has a number of advantages over the traditional model, which assumes
that statistical tendencies are irrelevant to the phonology.
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10.1.1 Review of Pierrehumbert (1994).

Pierrehumbert (1994) examines the extent to which constraints on consonant clusters in
English syllables can predict constraints on word medial clusters of three or more consonants.
There are two aspects of Pierrehumbert’s study which I highlight here. First, she found that
frequency was the single greatest factor in predicting the presence or absence of a cluster.
Second, she found a word medial OCP effect, which prohibits identical consonants from
occurring in first and third position in a triconsonantal cluster.

Pierrehumbert (1994) first considered consonant sequences at the beginnings and ends of
words, to get an independent estimate of the expected frequency of medial combinations. While
possible word onsets are the same as possible syllable onsets, word endings may contain coronal
appendices which are not considered part of the syllable. She assumes that the set of word
endings with coronal appendices removed represents the set of possible syllable codas (see
Pierrehumbert 1994: 170 for details on how she determined which sequences were appendices).
There is also a well known constraint against geminates morpheme internally in English. Taking
the cross product of the set of word onsets with the set of syllable codas and then removing all
instances which create geminates, there are a total of 8708 theoretically possible medial clusters
of three or more consonants. In a search of the on-line Collins English dictionary, Pierrehumbert
(1994) found that only 50 clusters actually occur morpheme internally.

Pierrehumbert (1994) found that the best predictor of a cluster’s occurrence was its
expected frequency: 45 of the 50 occurring clusters are among the 200 with highest expected
frequency. Figure 10.1, adapted from Pierrehumbert (1994), shows the very strong effect of
frequency on medial cluster occurrence. In Figure 10.1, categories on the x-axis are groups of 20
expected clusters, ranked by expected. In other words, clusters were grouped in order of their
expected frequency. The first group is the 20 clusters with the highest expected frequency, the
second group is the 20 clusters with the highest expected frequency among those remaining, and
so on. The y-axis shows the number of clusters found for each group. The rate of occurrence of
clusters decreases as expected frequency (represented by the probability ranking) decreases.

Pierrehumbert (1994) proposes five additional constraints to account for the set of 50
actually occurring clusters among the most frequent 200. Among these constraints, she proposes
a long distance OCP effect to rule out clusters with identical first and third consonants. The set of
clusters in the most frequent 200 which violate this constraint are shown in (105). The OCP as
formalized in autosegmental phonology cannot account for long distance identity constraints of
this kind (Pierrehumbert 1993, 1994).

(105) /lfl/ /lkl/ /lpl/ /lbl/ /lgl/ /lsl/
/tst/ /tstr/ /ntn/ /ndn/ /nsn/ /ksk/
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 This fact was originally noticed by Janet Pierrehumbert. My thanks to her for pointing22

it out to me, as the results in this chapter follow from investigating the same pattern in the Arabic
and English OCP-Place data.

Figure 10.1: Effect of expected frequency on medial cluster occurrence in English.

Pierrehumbert’s results demonstrate that both syllable structure constraints and word
structure constraints play a role in English phonotactics. In particular, the strong effect of syllable
onset frequency and syllable coda frequency in determining the occurrence of word medial
clusters shows that the syllable onset and syllable coda function as units in the phonotactics of
English. Pierrehumbert proposes that the syllable grammar is stochastic, so extremely low
expected frequency clusters do not have to be ruled out by linguistic constraints. Instead, they are
not found solely due to their low expected frequency. At the word level, the presence of an OCP
effect between the syllable coda and the following onset shows that some phonotactic constraints
apply across syllables.

A closer look at Pierrehumbert’s results reveal an effect of very low expected frequency
which was not discussed in the paper. The lack of any very low expected frequency combinations
is surprising, given that there are a large number of very low expected frequency clusters, some
of them would be expected to occur by chance. In other words, if all of the low expected
frequency consonants are considered together, the statistically expected number of such clusters
is large.  In order to demonstrate this fact, I have to make a few assumptions about the data22

which are not specified in Pierrehumbert (1994).
Recall that 45 of the 50 occurring clusters are found among the 200 possible clusters with

highest expected frequency. I call this group the ‘high frequency’ clusters. The remaining 8508
possible clusters are the ‘low frequency’ clusters. Pierrehumbert (1994:175) notes that the 40
cluster types with highest expected frequency have expected frequency above 1/2,000. The other
160 high frequency clusters have expected frequency above 1/10,000 (Pierrehumbert 1994:174).
For the 200 high frequency clusters then, the mean expected frequency of a cluster is at least
0.00018 = (40/2,000 + 160/10,000)/200. The low frequency clusters have expected frequency no
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 This estimate is crucially dependent on the assumed expected frequency of low23

frequency medial clusters. If this frequency is well below 1/100,000, then the result may not
stand. Note, however, that the O/E for high frequency clusters is actually higher than what is
shown, since the expected frequency of high frequency clusters was estimated conservatively and
the number of words containing high frequency clusters is well above 45 as many of the clusters
are found in more than one word.

greater than 1/10,000. I assume for the sake of discussion that the mean expected frequency of
low frequency clusters is 1/100,000. Let us also assume that the dictionary contains
approximately 10,000 monomorphemic words. We can determine the aggregate expected number
words containing high and low frequency clusters with the following formula:

(106) Expected = Cluster Frequency × Number of clusters × Number of monomorphs

Given this formula, there are 360 expected words containing high frequency clusters (0.00018 ×
200 × 10,000). There are 851 expected words containing low frequency clusters (1/100,000 ×
8508 × 10,000). Pierrehumbert (1994:177) gives the 15 words containing the low frequency
clusters in her dictionary. There are 45 occurring high frequency clusters, so there are at least 45
words containing high frequency clusters in the dictionary. The calculation above is summarized
in Table 10.1. The relative rate of occurrence for high frequency clusters (O/E) is at least six
times the rate of occurrence for low frequency clusters.23

Table 10.1: Relative frequency of medial clusters of high and low frequency.

Expected Observed Cluster Num × Num = Expected O/E
Frequency Frequency × clusters mono-

morphemes

High >45 ~0.00018 × 200 × ~10,000 = 360 >0.125

Low 15 ~0.00001 × 8508 × ~10,000 = 851 0.0176

Low frequency clusters are found far less often than aggregated expected frequency
predicts. This can be accounted for if we assume that very low expected frequencies do not
arbitrarily aggregate in the stochastic syllable grammar. For example, if we assume that clusters
which are too improbable to appear on their own do not contribute to aggregate expected
frequencies, then any cluster with an expected frequency of less than 1/20,000 is not expected to
appear in a lexicon of 10,000 monomorphemes (the expected number of words for a cluster of
that frequency is less than 0.5, which rounds to 0 expected words since words can only be found
in integer increments). In section 10.4, I replicate Pierrehumbert’s study by examining the
cooccurrence of complex onsets and codas in English syllables.

From a cognitive standpoint, we can interpret this effect as an influence of the set of
existing words on the creation of new words and maintenance of the use of old words. Once a
high expected frequency form exists, which is very likely to occur due to its expected frequency,
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it becomes an exemplar of an admissible word upon which other forms can be created by
analogy. By contrast, very low expected frequency combinations never ‘get their foot in the
door’, as even one occurrence of a low expected frequency combination is rare. Overall, then, the
actual number of tokens of a high expected frequency combination can become
disproportionately high (greater O/E), while lower frequency combinations are less likely to
become actually occurring exemplars (lower O/E) when all other factors are equivalent. The
overall result is a ‘rich get richer’ effect where high expected frequency combinations have lots
of occurring exemplars which reinforce their pattern, and contribute to additional words being
created following that pattern. This in turn increases their expected frequency further. Low
expected frequency forms have no such reinforcement and are thus less likely to serve as models
for new words, reducing their long term expected frequency further.

10.1.2 Frequency effects in OCP-Place in Arabic.

Pierrehumbert (1994) showed that employing a frequency sensitive grammar reduced the
set of possible medial clusters in English considerably, simplifying the set of phonotactic
constraints. Further analysis of her results found low expected frequency clusters to be
disproportionately underrepresented when all low expected frequency combinations are
aggregated together. In this section, I demonstrate analogous frequency effects in the verbal roots
of Arabic.

The stochastic constraint model of the Arabic verbal roots presented in chapter 7 predicts
the acceptability of a triliteral root based on the similarity of the consonant pairs in the root and
their expected frequency by random cooccurrence. Model fits were presented for data aggregated
by similarity, with extremely good fit  (R  > 0.99). However, the frequency model, which2

incorporated no OCP-Place effects whatsoever, accounted for the majority of the variation in the
data (R  = 0.85). Like Pierrehumbert’s analysis above, the assumption that the grammar of2

Arabic triliteral roots is stochastic predicts systematic gaps based on frequency. For example, /Z/
is rarely found in the verbal roots in combination with labial consonants (see Tables 5.1 and 5.2
in chapter 5). The extremely low frequency of /Z/ in Arabic accounts for the low cooccurrence of
/Z/ with labial consonants, which are not subject to an OCP-Place restriction. There is no need
for an independent constraint against the cooccurrence of /Z/ with a labial.

Within consonant pairs in Arabic that have roughly equivalent similarity, expected
frequency disproportionately influences which pairs are actually found. This is exactly parallel to
the effect in Pierrehumbert’s (1994) stochastic syllable grammar discussed above. Table 10.2
shows the cooccurrence of adjacent consonant pairs in Arabic, aggregated by similarity. In
addition, each aggregate similarity group is divided into a ‘high frequency’ category and a ‘low
frequency’ category. The high frequency consonant pairs for each similarity level are the
consonant pairs which have expected frequency above the mean expected frequency for that
similarity level. The low frequency consonant pairs have less than mean expected frequency. For
seven of the nine similarity groups, O/E is less for the low frequency group than the high
frequency group, with one tie. This asymmetry is significant on a binomial test (p = 0.036). This
asymmetry is surprising, given that the O/E measure factors out relative frequency by dividing
observed occurrences by expected frequency of cooccurrence.
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Table 10.2: Frequency effects in the Arabic OCP-Place constraint.

Similarity Expected Observed Expected O/E
Frequency

0 Low 1009 773.7 1.30

High 1969 1575.6 1.25

0-0.1 Low 129 110.1 1.17

High 322 255.1 1.26

0.1-0.2 Low 109 194.7 0.56

High 383 355.9 1.08

0.2-0.3 Low 20 78.1 0.26

High 131 182.1 0.72

0.3-0.4 Low 5 35.9 0.14

High 24 95.3 0.25

0.4-0.5 Low 2 38.7 0.05

High 12 141.5 0.08

0.5-0.6 Low 0 6.8 0

High 3 34.1 0.09

0.6-1 Low 0 37.1 0

High 0 53.1 0

1 Low 0 48.9 0

High 1 150.7 0.01

Frequency plays a role in determining exactly which consonant pairs occur among ones
which are equally acceptable under the gradient OCP-Place constraint. Recall from above that
extremely low expected frequency medial clusters are rarely found in English, even though such
clusters are expected to occur in large numbers when considered in aggregate. The difference in
O/E between low expected frequency and high expected frequency consonant pairs in Arabic
shows the same effect. If extremely low expected frequency pairs do not occur solely based on
frequency, and high expected frequency pairs occur disproportionately, regardless of the OCP-
Place constraint, then O/E for low expected frequency pairs will be lower than O/E for high
frequency pairs. This may be an effect of the existence of exemplars which violate OCP-Place, as
discussed above.

10.2 Radical Underspecification in OCP-Place in English

Overall, OCP effects provide evidence against underspecification, as OCP constraints are
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found, cross-linguistically, to refer to traditionally underspecified features. Davis (1991) presents
a case of an OCP-Place constraint in English which appears to treat the coronal place of
articulation as underspecified. In this section, I review evidence for the OCP-Place constraint in
English and Davis’s evidence for underspecification of coronal place. In the next section, I
present an alternative account of Davis’s data based on the frequency effects shown above. I
conclude that frequency, not underspecification, accounts for the exceptional behavior of coronal
place (cf. Newman et al. 1996).

10.2.1 OCP-Place effects in English.

Berkley (1994a, b) demonstrates that English has an OCP-Place effect analogous to
Arabic. Berkley (1994a) found statistical restrictions between onset and coda consonants in
English monomorphemic monosyllables. For example, while words like palm, fib, sit, dot, king,
skunk, leer and run are found, they are statistically underrepresented. Her corpus consisted of the
monomorphemic monosyllables of sufficient frequency to appear in the MRC Psycholinguistic
Database. Observed and expected frequency of words containing homorganic onset and coda
consonant pairs separated by a single segment are shown in Table 10.3 (adapted from Berkley
1994a: 60). Berkley computed expected frequency by considering the expected frequency of each
major place of articulation class in onset and coda.

Table 10.3: Cooccurrence of homorganic English onsets and codas in monosyllables.

Class Observed Expected O/E

Labial 26 64.9 0.40

Coronal Obstruent 67 91.8 0.73

Coronal Sonorant 94 163.0 0.58

Dorsal 10 23.3 0.42

Note that the English constraint appears to be dependent on natural class similarity, much
like Arabic. The coronal consonants split into two cooccurrence classes based on manner, which
Berkley concludes is a similarity effect. Cooccurrence between the major coronal classes is
greater than the cooccurrence within each class (Berkley 1994a). Note that, as in Arabic, the
effect of manner on similarity depends on the system of contrasts. Berkley found no evidence for
a major split within the small classes of labials or dorsals. The split between the labial obstruents
and sonorants in Arabic is quite subtle, as it can be seen only in the non-adjacent consonant pairs
(Pierrehumbert 1993).

Berkley (1994b) demonstrates that English OCP-Place effects weaken with distance,
parallel to the case of Arabic. Homorganic consonants in onset and coda separated by two
segments, for example vibe with a diphthong or cling with an initial cluster and short vowel, are
underrepresented, but less so than consonants separated by a single segment. Homorganic
consonant pairs separated by three segments, for example crusk, scald, trite, and spout, are only
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marginally underrepresented. Berkley (1994b) finds no evidence for an OCP-Place effect
between onset and coda among the few monomorphemic monosyllables with onset and coda
consonants separated by four segments. These distance effects provide additional evidence that
the OCP-Place constraint in English is also grounded in similarity (Pierrehumbert 1993, and
discussed in chapter 5).

10.2.2 Underspecification of coronal in OCP-Place.

Following Fudge (1969), Clements & Keyser (1983), and Davis (1984), Davis (1991)
discusses restrictions on the consonant that flanks the vowel in sCVC sequences. He states that
there are “virtually no monomorphemic forms in English that have the sequence sCVC where the
two C’s are either both labial or both velar” (Davis 1991: 57). Given the results discussed above,
this is not surprising, as Berkley (1994a, b) showed English has a general OCP-Place effect
between onset and coda, and Pierrehumbert (1994) has found a constraint against identical first
and third consonants in a three consonant sequence. We can account for these patterns with a
single OCP-Place constraint which can apply across intervening segments.

The sCVC data have received previous attention in the literature as the cooccurrence
restriction is nearly categorical. Davis presents skunk as the only example which contains
homorganic non-coronal C’s in an sCVC sequence that he found in the on-line Webster’s Pocket
Dictionary (Nusbaum, Pisoni, & Davis 1984). He presents spam, spumoni, spoof, and spiffy as
other exceptions which come to mind. Notably, there are no words like *spup or *skuk in English
with identical non-coronal consonants. Once again, these gaps are easily accounted for by a
similarity based OCP-Place constraint. Words like *spup or *skuk contain maximally similar
consonants, while spoof and spiffy have moderately similar stops and fricatives, and spam,
spumoni, and skunk have dissimilar obstruents and sonorants.

Davis points out that, while *spup and *skuk are non-occurring in English, there are
plenty of examples similar to *stut, including stout, state, stet, stoat, and stat. In addition, there
are many words with /st/ in the syllable onset and a non-identical coronal obstruent in the coda.
Examples include stud, stood, steed, stash, and stitch. If coronal place is underspecified, then
stout does not violate OCP-Place, as the onset and coda /t/ have no place of articulation, and are
thus transparent to the operation of the constraint.

Berkley (1994a, b) demonstrated OCP-Place effects between onset and coda in
C VC  monomorphemic monosyllables. There are two possible accounts of the[Coronal] [Coronal]

difference between stVC  and C VC . First, it might be that [Coronal] is only[Coronal] [Coronal] [Coronal]

underspecified in /s/-stop clusters. However, this formal maneuver has no explanatory value.
Second, it may be that underspecification is irrelevant in both cases, and something else is special
about /st/ onsets. I take the second approach, asserting below that stVC  words occur due to[Coronal]

their high expected frequency.
There are two other well known cooccurrence restrictions between the onset and coda

which do apply to coronal consonants (Fudge 1969, Clements & Keyser 1983, Davis 1984). First,
forms like *snun are not found. However, this constraint generalizes to /m/, and combinations of
/n/ with /m/, and /n/ or /m/ in onset with /1/ in coda as well. Forms like *smum, *snum, *smun,
*snung, and *smung are also absent. Davis (1991) thus assumes that this constraint applies to
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nasals in general, and does not refer to the underspecified coronal place of /n/. The fact that this
generalization appears to apply across place of articulation implies that it is not an OCP-Place
effect. I shall have more to say about this case below.

The second constraint restricts liquids in onset and coda, when the onset is a cluster.
Thus, it has been claimed that forms like *slul and *brur  are not found. Since this constraint
refers to the class of liquids, Davis again assumes that the constraint does not rely on the
presence of the [Coronal] feature. This constraint is not as strict as the nasal constraint, as it has
at some marginal exceptions; I found flail , drear, and crore in the CELEX dictionary.
Apparently, this constraint also does not apply as strictly between /l/ and /r/, for example braille,
broil, blur, floor, frail , and growl. I claim this constraint can be treated more parsimoniously as
special case of OCP-Place which requires reference to the underspecified [Coronal] feature.

To summarize the above discussion, English has OCP-Place effects between homorganic
consonants separated by another segment. These effects are found in medial clusters, in CVC
sequences, and most noticeably in sCVC sequences. English OCP-Place effects are apparently
based on similarity. Surprisingly, stVC  appear to be unaffected, and there is a second[Coronal]

constraint, apparently unrelated, against sNVN sequences where N is any nasal.

10.3 Frequency Effects in OCP-Place in English

In the previous sections I discussed a number of cooccurrence constraints between
English onsets and codas. In this section, I unify these constraints by showing that the
exceptional status of /t/ in sCVC sequences and the apparent constraint against any sNVN
sequence are due to frequency effects in phonotactics. Thus, the special status of stVC[Coronal]

sequences is not evidence for underspecification. Also, a second constraint against nasals in
sCVC sequences is not required, as such sequences are already expected to be rare by frequency
alone.

Berkley (1994a, b) established that there are OCP-Place effects in monomorphemic
monosyllables in English. Others (e.g. Sanchez 1990, Lamontagne 1993) have assumed that no
such constraint exists. Informally, it is easy to think of a seemingly endless list of counter
examples to a long distance OCP: peep, pip, pep, pap, pop, Pope, poop, pup, bib, babe, Bob,
boob, bub, etc. In fact, identical singleton onset and coda consonants are found in
monomorphemic monosyllables at near expected frequency. It is much more difficult to construct
such a list for maximally similar, but not identical segments. Broe (1995) discusses a similar
pattern of cooccurrence in Ngbaka. In Ngbaka, roots containing repeated identical consonants are
common, but roots which contain repeated consonants which are distinguished by a single feature
difference are not found. Because of the lack of restriction against identical consonant pairs,
which I present in detail below, OCP-Place effects in English were not easy to detect.

The OCP-Place constraint in English has a complicated pattern. I do not analyze all
aspects of the constraint in this thesis, but the following facts became apparent to me while
investigating Davis’s arguments for underspecification of [Coronal] in English. First, as
mentioned above, OCP-Place operates in English much as it does in Arabic. Berkely’s results
point to a similarity effect which weakens with distance. Second, identical consonant pairs
separated by a single segment are subject to a strong OCP effect. This effect is seen in
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triconsonantal clusters, in sCVC words, and in (C)lVl and (C)rVr words. Third, there is a
weakening of OCP-Place effects for identical singleton onset and coda consonants in stressed
syllables. This weaking is gradient and is conditioned by the sonority of the segments. Stops are
most strongly affected, and thus are able to cooccur as singleton onsets and codas in stressed
syllables most frequently. Fricatives and nasals cooccur in stressed syllables slightly less
frequently than stops. The liquids are affected least, and have minimal cooccurrence in stressed
syllables. This level of cooccurrence is comperable to their cooccurrence in unstressed syllables.
Fourth, and finally, cooccurrence in English OCP-Place effects is influenced by frequency much
like Arabic. Among onset and coda pairs with equivalent similarity, high frequency pairs occur
disproportionately more frequently than expected.

In the remainder of this section, I present a preliminary discussion of the particular details
of OCP-Place effects in English discussed above. I first review my data and methods of
tabulation. Then I present evidence for OCP-Place effects in English, replicating in part the
results of Berkley (1994a, b). Next, I demonstrate the effect of stress on identical singleton onset
and coda consonant cooccurence. Finally, I show that frequency accounts for the occurrence of
state, stoat, and so on, and the non-occurrence of *spup and *skuk.

10.3.1 Materials.

To generate detailed statistics of the English lexicon, I used the on-line CELEX
dictionary. The CELEX dictionary is a large dictionary of British English which contains
phonological, morphological, syntactic, and semantic information. The dictionary contains
phonemic transcriptions and has been syllabically parsed. In addition, it has been
morphologically parsed. Thus, it was possible to automatically extract onset and coda consonant
pairs from monomorphemic words for analysis of OCP-Place effects. The CELEX dictionary was
altered by me in only one respect. In order to obtain additional data on the high sonority liquids, I
inspected the transcriptions of every word with orthographic r and added coda /r/ where
appropriate according to my own Midwestern American English pronunciation.

10.3.2 Tabulation.

In chapter 7, I showed that word initially, the OCP-Place constraint in Arabic is stronger
than it is later in the word. In order to obtain the strongest possible OCP effects, I primarily
consider data from monosyllabic words, and from the first syllable of multisyllabic words. Actual
occurrences of onset and coda pairings are compared to expected rates of cooccurrence computed
as if onsets and codas combined to form syllables at random, based on the actual frequency of
onsets and codas in the first syllable of monomorphemic words. Data for unstressed syllable
cooccurrence were generated by examining unstressed syllables among the first three syllables of
monomorphemic words.

10.3.3 Methods 1: OCP-Place effects in English.

Support for Berkley’s results are found by examining maximally similar (but not
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identical) singleton onset and coda pairs in stressed syllables among the first three syllables of
monomorphemic words in the CELEX dictionary. For this table, I consider consonants to be
maximally similar if they differ by a single major feature. Thus, p/b, t/s, g/1 are maximally
similar, p/v, d/s, and k/1 are not. The coronal sonorants {l, r, n} were all considered to be
maximally similar. Table 10.4 shows aggregated observed, expected, and O/E in the major OCP-
Place classes.

Table 10.4: OCP-Place effects among maximally similar consonants in stressed syllables.

Syllable 1 Observed Expected O/E

Labial 16 71.8 0.22

Coronal Obstruent 42 86.1 0.49

Coronal Sonorant 70 151.8 0.46

Dorsal 10 38.2 0.26

Syllable 2 Observed Expected O/E

Labial 5 19.1 0.26

Coronal Obstruent 65 88.9 0.73

Coronal Sonorant 100 159.1 0.63

Velar 4 11.2 0.36

Syllable 3 Observed Expected O/E

Labial 3 3.1 0.98

Coronal Obstruent 20 26.7 0.75

Coronal Sonorant 32 47.9 0.67

Velar 1 0.9 1.08

Berkley’s results are clearly replicated: there is an OCP-Place effect in English. In
addition, it provides corroborating evidence for the word onset effect on OCP-Place in Arabic. In
English, the O/E in syllable one is much less than the O/E in syllable three. OCP-Place effects in
English weaken as the word is processed from left-to-right.

10.3.4 Methods II: Effects of stress on the OCP.

Identical consonant pairs behave differently in English than they do in Arabic. In Arabic,
identical consonant pairs are maximally restricted. In English, identical singleton onsets and
codas in stressed syllables are found more frequently than the minimally distinct consonant pairs
examined above. Half of the data in this section are monomorphemic words with identical onset
and coda consonants in initial stressed syllables. These syllables had the strongest effect for
minimally distinct onsets and codas shown above. The other half of the data are identical onset
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and coda consonants in unstressed syllables, in the first three syllables of monomorphemic
words.

Table 10.5 shows identical consonant cooccurrence for word initial stressed syllables.
The consonants are grouped by sonority classes, as the rate of cooccurrence (O/E) varies
significantly among classes. The hypothesis that all consonant pairs cooccur at the same constant
rate can be rejected by a chi-square test (cells with expected frequency below two are not
included, 3 (11) = 28.6, p = 0.002). A chi-square test within each sonority class cannot reject the2

hypothesis that consonants within each sonority class have the same rate of relative
cooccurrence.

In Table 10.5, the stops have the highest rate of cooccurrence, followed by the nasals and
fricatives. The liquids are the only group that appear to have a strong cooccurrence restriction.
The rate of cooccurrence of identical stops, fricatives, and nasals in word initial stressed syllables
is much higher than the rate of cooccurrence of maximally similar, but not identical, consonants
in the word initial stressed syllable in the previous section. Thus, it appears that for all but the
high sonority liquids, identical onsets and codas have only a weak cooccurrence restriction in
stressed syllables in English.

Table 10.5: Identical singleton onset and coda in word initial stressed syllables.

Stops Fricatives

Observed Expected O/E Observed Expected O/E

/p/ 11 8.8 1.25 /f/ 2 3.0 0.66

/b/ 6 3.6 1.68 /v/ 0 1.2 0

/t/ 13 13.8 0.94 /s/ 7 9.1 0.77

/d/ 4 6.0 0.67 /z/ 1 0.7 1.44

/k 11 17.0 0.65 /6/ 2 0.9 2.19

/g/ 3 2.3 1.32 /=/ 0 0.0 0

Total 48 51.3 0.93 Total 12 15.0 0.80

Nasals Liquids

Observed Expected O/E Observed Expected O/E

/m/ 15 15.2 0.99 /l/ 4 16.3 0.25

/n/ 9 16.0 0.56 /r/ 4 24.6 0.16

Total 24 31.2 0.77 Total 8 40.9 0.20

By contrast, identical singleton onsets and codas in unstressed syllables have a strong
cooccurrence restriction. Table 10.6 shows the relative cooccurrence of identical onsets and
codas for each sonority class in the unstressed syllables. Unlike the stressed syllables, O/E is low
for all sonority classes, and there is not a great deal of variation between classes. The relative rate



161

of cooccurrence here is slightly stronger than what was found between maximally similar onsets
and coda in stressed word initial syllables in the previous section.

Table 10.6: Cooccurrence by sonority classes in unstressed syllables.

Class Observed Expected O/E

Stop 10 31.4 0.32

Fricative 5 11.0 0.45

Nasal 10 30.3 0.33

Liquid 5 33.3 0.15

Total 30 105.9 0.28

The interaction of stress and sonority with OCP-Place effects provides more evidence for
the gradient nature of the OCP-Place constraint. The existence of this interaction also suggests a
possible account. There is evidence that, under stress, segments are hyper-articulated (de Jong
1995; cf. Linblom 1983, 1990). This hyperarticulation enhances differences between segments in
onset and coda position. For example, stops in particular are acoustically very different in onset
position versus coda position in stressed syllables. Stressed onset stops in English have
characteristic aspiration which is not found in unstressed syllables. In addition, the abrupt
amplitude increase in the release of a stresed onset stop is perceptually highly salient compared to
the amplitude decrease into a stop closure post-vocalically (see Silverman 1995 for reference and
discussion). For an unstressed onset, there are less dramatic differences between onset and coda
position. Thus, I propose that the perceived similarity of onset and coda consonants, particularly
those of low sonority, is reduced by the positionally dependent allophonic variation in stressed
syllables. Given this suggestive account, an articulatory and acoustic analysis of the differences
between consonants of different degrees of sonority in onset and coda position of stressed and
unstressed syllables is needed to verify or disprove the hypothesis. Such an analysis is beyond the
scope of this thesis, so the account is left here as merely suggestive. Additional evidence for this
account is discussed in the next section.

10.3.5 Methods III: Effects of frequency on OCP-Place in clusters.

The existence of the sCVC constraint, the studies of Berkley (1994a, b), and
Pierrehumbert’s (1994) constraint against identical first and third consonants in a medial cluster
all suggest that OCP-Place applies to consonants within a cluster in the onset or coda as well as
to singleton onset and coda consonants. In this section, I analyze the cooccurrence of identical
consonants separated by a vowel in clusters as well as singletons. 

The data for the singletons are the same as used above. The data for clusters come from
the stressed syllable in the first three syllables of monomorphemic words. The data for clusters in
unstressed syllables is extremely sparse. Apparently, stress aids in licensing complex syllable
onsets and codas in English. Expected rates of cooccurrence for clusters were computed by
treating the cluster as a single unit, with a single frequency, in other words just like the cluster
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was a singleton.
Data for identical consonant cooccurrence in stressed syllables, combined with the data

from above for singletons in stressed and unstressed syllables, is presented in Table 10.7. In this
table, singleton stops, fricatives, and nasals in onset and coda of stressed syllables are aggregated
together into the ‘stressed consonantal single-single’ category. Singletons in unstressed syllables
are aggregated together with stressed liquids into the ‘other single-single’ category. Clusters are
aggregated together by position. Cluster onsets with identical singleton codas, for example flail
and state, are the ‘cluster-single’ category. Singleton onsets with identical consonants in the coda
cluster, for example lilt , nonce, and coax, are the ‘single-cluster’ category. Finally words with
both onset and coda cluster with identical consonants, for example *spapt, *trark , and *shrarp,
are not found, but are listed with their expected frequency in the ‘cluster-cluster’ category.

Table 10.7: Cooccurrence of identical consonants in onset and coda separated by a vowel in
English monomorphemes.

onset-coda type actual expected O/E

stressed consonantal 84 97.6 0.86
single-single

other single-single 38 146.8 0.26

cluster-single 12 100.1 0.12

single-cluster 18 57.1 0.32

cluster-cluster 0 46.7 0

The rate of cooccurrence between identical consonants in the ‘cluster-single’ and ‘single-
cluster’ categories are reasonably comperable to the rate of cooccurrence in the ‘other single-
single’ case. There is a clear difference between these cases and the ‘cluster-cluster’ category.
There are no instances of identical consonants in onset and coda clusters separated by a vowel.
However, the expected frequency of any individual ‘cluster-cluster’ combination is extremely
low. The highest expected frequency in this category is 0.67, for words like *krart . The mean
expected frequency is 0.09 words per combination. Thus, the non-occurrence of any of these
clusters need not be attributed specifically to OCP-Place, but instead follows from the results of
Pierrehumbert (1994). Extremely low frequency combinations do not occur, even though some
are expected to occur when combinations are considered in aggregate.

While the ‘single-cluster’ and ‘cluster-single’ cases do not have cooccurrence rates which
are very different from the ‘other single-single’ case, the asymmetry in cooccurrence rates
between these two cases is statistically significant (3 (1) = 7.26, p = 0.008). The ‘cluster-single’2

case is much more restricted than the ‘single-cluster’ case. This asymmetry can be accounted for
in the same manner as the difference in cooccurrence rates between consonantal singletons in
stressed and unstressed syllables. As part of an onset cluster, for example the /t/ in state, acoustic
differences between onset and coda allophones are reduced compared to the stressed singleton
onset case. Once again, I hypothesize that perceived similarity is higher between identical onset
and coda when the onset is part of a cluster, due to the loss of allophonic contrasts, than it is in
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the stressed singleton case.
One might then suspect that the rate of cooccurrence in the ‘single-cluster’ case would be

higher that it is, comperable to the ‘stressed consonantal single-single’ case. However, there is
another factor to consider. Expected frequency also affects the strength of the OCP-Place
constraint. Words in the class ‘cluster-single’ have a much higher expected frequency than words
in the class ‘single-cluster’. The mean expected frequency for ‘single-cluster’ combinations is
low, 0.53 words per cluster. The maximum expected frequency is 3.94, for sVst, which actually
occurs in the word cyst. By contrast, the mean expected frequency for ‘cluster-single’
combinations is 3.16 words per cluster, with maximum expected frequency of 6.88, for words of
the form stVt. 

There are two interacting factors at work in the cooccurrence of identical consonants in
clusters. Onset clusters reduce allophonic variation, and thus increase perceived similarity, which
decreases cooccurrence (O/E). Clusters are of generally low frequency, which also decreases
cooccurrence. Thus, ‘cluster-single’ cases, which are otherwise comperable to ‘other single-
single’ cases, are disproportionately underrepresented due to somewhat low onset cluster
frequency. The ‘single-cluster’ cases, which are otherwise comperable to ‘stressed consonantal
single-single’ cases, have very low coda cluster frequency, and are even more strongly
underrepresented. Finally, the ‘cluster-cluster’ cases are affected by of these influences
simultaneously. They have such low frequency onsets and codas that even the most probable
combination, *krart , is only marginally likely to occur (0.67 expected). In addition, these
combinations have allophonically similar consonant pairs, which subjects them to a strong OCP-
Place constraint. As a result, no combinations of this type are found.

Note that, in the discussion above, I mentioned that the most likely combination in the
‘cluster-single’ class is stVt. I am now in a position to offer an alternative to Davis’s
underspecification account of the special status of stVC . The extremely high expected[Coronal]

frequency of stVt makes it the most likely violation of OCP-Place to be found among sCVC
words. The CELEX dictionary contains five examples: state, stet, Stetson, stoat, and stout.

Recall from the previous section that the OCP-Place constraint is affected by frequency.
For example, consider the cooccurrence of adjacent consonant pairs like /s-d/, /z-d/, /S-d/, /Z-d/,
and /6-d/ in Arabic. There are 13 roots which begin with sd, 12 roots that begin with Sd, and 9
roots that begin with 6d. No roots begin with zd or Zd. While {s, S, 6} are less similar to /d/ than
{z, Z}, the difference in similarity is not so great as to predict this much variation in
cooccurrence. It is also the case that {s, S, 6} are higher in frequency than {z, Z}. Thus, based on
the combined factors of higher frequency and lower similarity, at least one /s-d/, /S-d/, and /6-d/
consonant pair is likely to occur. Once one combination occurs, it is an exemplar of a valid
consonant combination that can be used in creating novel roots.

This argument generalizes to all data of the form stVC . The onset cluster /st/ is the[Coronal]

most frequent onset cluster in the CELEX dictionary. In general, coronal coda consonants are
also of high frequency. Labial and dorsal consonants occur with much lower frequency in coda
position. The relatively large number of words like stud, steed, stash, stain, and stare are due to
the high expected frequency of the /st/ onset and coronal coda combinations. The low frequency
of spVC   and skVC  words is a result of the relatively low expected frequency of the[Labial] [Dorsal]

combination. OCP-Place effects have a greater impact on the low frequency forms than the high
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frequency forms.
Finally, let me address the existence of a *sNVN constraint in English. Table 10.8 shows

relative cooccurrence for nasals in the the stressed first syllable of monomorphemes in the
CELEX dictionary. The left side of Table 10.8 shows sNVN combinations, and the right side
shows comperable NVN combinations. Rows for combinations which are subject to the OCP-
Place constraint are shaded.

Table 10.8: Cooccurrence of (s)NVN in English monomorphemes.

sNVN Observed Expected O/E NVN Observed Expected O/E

smVm 0 1.3 0 mVm 15 15.2 0.99

smVn 0 2.1 0 mVn 27 20.1 1.34

smV1 0 0.7 0 mV1 9 6.3 1.43

snVm 0 2.4 0 nVm 6 6.6 0.91

snVn 0 3.7 0 nVn 9 16.0 0.57

snV1 0 1.2 0 nV1 1 3.2 0.31

There is relatively high cooccurrence among non-homorganic pairs in stresses
NVN syllables on the right side of Table 10.8. The lowest O/E is for nV1 which has the lowest
expected frequency. Among sNVN forms on the left side of the table, all are of low expected
frequency. The form snVn, which has highest expected frequency, is presumably subject to the
strong OCP-Place constraint for ‘cluster-single’ consonant combinations discussed above. Thus,
finding no occurrences of this form is not surprising.

Whether or not we adopt a *sNVN constraint depends on whether the zero occurrences of
the other sNVN forms is significant or due to random variation in the data. The highest expected
frequency ‘cluster-single’ combination which is non-occurring in the CELEX dictionary is grVr,
which has expected frequency 6.17. However, this form violates OCP-Place. Among the 26 non-
occurring combinations with higher expected frequency than snVm or smVn, only 4 cannot be
attributed to some degree of an OCP-Place effect. OCP-Place once again appears to have a strong
effect on the cooccurrence of onset and coda consonants in English, eliminating a number of
otherwise possible clusters. The clusters which do not violate OCP-Place which are more likely
to occur than smVn or snVm are given in (107).

(107) tVv swVk t6V1 bVrt
Other combinations which do not occur, and contain no OCP-Place violations, but are more
frequent than snV1 are:

(108) gVt6 vV1 d=Vf krVf spVg 6Vb pVld pVsk nVmp kwVs
There are a number of consonant pairs which are as frequent as snVm and smVn which

also do not occur. These other pairs have no obvious pattern which suggests a parsimonious
constraint, or a connection to *sNVN. Since there is also no indication of a general NVN
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cooccurrence restriction, I conclude that the evidence for a *sNVN constraint is not sufficiently
compelling to consider the gap anything other than a frequency effect.

10.4 Frequency in English Syllable Phonotactics

In this section, I present a novel analysis of English syllable structure which is intended as
a replication of the results for the medial cluster study reviewed in section 10.1.1 (Pierrehumbert
1994). Pierrehumbert (1994) found frequency to be the primary predictor of medial consonant
cluster occurrence, and proposed that the syllable grammar is stochastic. In the analysis of OCP-
Place effects in clusters above, I showed that ‘cluster-cluster’ combinations which violate OCP-
Place, like *spapt, *trark , and *krart  are not found. The low frequency of such ‘cluster-cluster’
pairs suggests that the analysis of complex syllables in English monomorphemes may provide
additional evidence that the syllable grammar is stochastic.

I examined all word initial stressed syllables of the form (s)CCVCC, in other words with
both onset and coda clusters. In order to examine syllable structure and not word structure, I
removed coronal appendices found in word final position. Appendices were removed if there
were no other non-coronal clusters which followed an analagous pattern in the dictionary. For
example, post-vocalic /ld/ and /ls/ clusters were assumed to be codas, with no appendices, given
the existence of post-vocalic /lb/ and /lf/ clusters. However, post-vocalic /n/ could only be
followed by coronals, so these coronals were considered to be appendices and were not included.
There are a total of 37 unique onset clusters and 37 unique coda clusters in stressed word initial
syllables in monomorphemes in the CELEX on-line dictionary, so there are 1369 possible unique
complex syllables.

Among the 1369 possible complex syllables, only 100 actually occur, in 137 unique
words. As was found in Pierrehumbert (1994), the vast majority of these complex syllables were
among those with highest expected frequency. The 400 most frequent complex syllables contain
90% of the occurring words (87% of the occurring cluster combinations). Pierrehumbert (1994)
found that the most frequent 200 medial combinations out a possible 8708 combinations
contained 90% of the occurring clusters. The frequency effect between onset and coda, which are
separated by a vowel, is weaker than the frequency effect in a medial cluster, where no vowel
intervenes. 

Figure 10.2 graphically displays the effect of frequency on onset and coda cluster
occurrence, analagous to the figure from Pierrehumbert (1994) presented above. In this figure,
possible syllables are aggregated in frequency order in groups of 40. Probability rank one is the
40 most frequent syllable types, probability rank two is the next 40 most frequent, and so on. The
y-axis marks the number of occurring syllables types for each group.
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Figure 10.2: The effect of frequency on cooccurrence of onset and coda clusters.

There was some evidence in Pierrehumbert’s data that very low expected frequency
clusters were disproportionately underrepresented, an effect also found in the Arabic OCP-Place
effects and English OCP-Place effects examined above. Low expected frequency combinations
of clusters in the onset and coda of stressed syllables in monomorphemes are also
disproportionately underrepresented. Table 10.9 presents O/E for complex syllables, divided into
high and low expected frequency groups. Combinations among the 400 with highest expected
frequency are considered ‘high frequency’, and the remainder are considered ‘low frequency’.
This table replicates the tentative computation based on Pierrehumbert (1994) for medial
clusters, implying that the above result was not an artifact of the assumptions used in making that
computation. 

Table 10.9: Relative frequency of complex syllables of high and low expected frequency.

Expected Observed Expected O/E
Frequency

High 124 147.5 0.84

Low 13 32.2 0.40

In summary, I conclude that there is additional evidence that the syllable grammar in
English is stochastic, based on the predictive power of frequency on the occurrence of complex
syllables which have onset and coda clusters. We have also seen that the occurrence of verbal
roots in Arabic can, for the most part, be predicted by frequency. The addition of the OCP-Place
constraint to Arabic and to English accounts for the underrepresentation and non-occurrence of a
large number of combinations with moderate expected frequency (R  > 0.99 in chapter 7). For2

example, these two factors taken together account for nearly all of the variation in the Arabic
data. Finally, there is a disproportionate underrepresentation of low expected frequency
combinations and overrepresentation of high expected frequency combinations in English
complex syllables, medial clusters, and Arabic verbal roots. I claim that this is due to the status
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of existing words as exemplars which act as word templates. High expected frequency
combinations are likely to occur, and once they do they serve as models of acceptable words.
Additional phonotactically acceptable words can be created along the same pattern,
disproportionately increasing the frequency of high expected frequency combinations.  Low
expected frequency combinations are less likely to have that critical first exemplar, and thus have
a disproportionately reduced level of occurrence.

10.5 Conclusion: Frequency and Underspecification

In this chapter, I have shown that frequency plays a major role in the phonotactics of
English and Arabic. Following Pierrehumbert (1994), I account for the effects of frequency by
assuming that the grammar is frequency sensitive, and combinations of forms occur in proportion
to their expected frequency. Additional constraints, like OCP-Place, influence the relative
cooccurrence of forms. The stochastic constraint model of Frisch, Broe, & Pierrehumbert (1995)
complements the stochastic syllable grammar, as the stochastic constraint model makes the
connection between a linguistic parameter relevant to the constraint and the relative frequency of
a form as predicted by the stochastic syllable grammar. Forms which violate the stochastic
constraint are disproportionately underrepresented, and may be non-occurring if their predicted
rate of occurrence is very low.

The effect of frequency on cooccurrence accounts for the seemingly anomolous presence
of a large number of stVC  forms in English. The frequency account provides an alternative[Coronal]

to an underspecification analysis. Coronals, and /t/ in particular, are special due to their high
frequency, rather than an abstract formal property like underspecification. A similar conclusion
was reached in the previous chapter, where neighborhood effects, which are linked to frequency,
provided an alternative to an account of so-called anti-frequency effects in speech production.

There is also evidence for the special status of high frequency coronals in speech
perception. Newman et al. (1996) found that high frequency coronals did not display the same
sensitivity to lexical neighborhood effects that lower frequency consonants did in a phoneme
identification task. The sensitivity to neighborhood effects was not due to underspecification, as
low frequency coronals behaved like other low frequency consonants. Rather, high frequency /t/
and /s/ were the only phonemes examined which were not influenced by neighborhood effects.

In general, underspecified features are of higher frequency than specified features so that
frequency and underspecification are correlated properties (Stemberger & Stoel-Gammon 1991).
However, the predictions of underspecification are categorical, while frequency is a gradient and
context dependent property. The results of this thesis show that frequency provides a more
appropriate account of some effects of underspecification. In combination with the formal
difficulties inherent in the use of underspecification (Broe 1993), and the move toward constraint
based phonological theories, alternative accounts to underspecification phenomena are necessary.

Keating (1991) suggests that the variety of possible coronal articulations contributes to
their cross-linguistically high frequency. In addition, the corner of the alveolar ridge provides a
definitive landmark for coronal place of articulation targets, suggesting that coronal articulation
is articulatorily more robust. Such factors may also contribute to the high frequency of coronals
within a single language. If analagous factors exist for voicelessness of obstruents and stop
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manner of articulation, then the frequency of these features is also expected to be higher. Since
frequency provides one alternative to underspecification, factors which increase the frequency of
these features contribute to an alternative account for underspecification phenomena.

The three features [alveolar], [stop], and [voiceless] are each a particular contrast in a
larger range. Articulatorily, these features may all have advantages over the other features in their
respective contrasts. Among the places of articulation, there are additional anatomical reasons
why alveolars may be preferred (Zemlin 1988). First, alveolar articulations are made with the
tongue tip, which is perhaps the best articulator in the vocal tract. The forward two thirds of the
tongue is innervated by the 12th cranial nerve (the hypoglossal), and is the only articulator which
doesn’t share motor innervation with another articulator. The tongue has tactile sensation all
along its forward surface and also has proprioceptive feedback of overall position and stretch.
Second, the alveolar ridge has a particularly well developed membrane that presents a series of
wrinkles (the palatal rugae) as a landing site. Thus, the amount of feedback in an alveolar
articulation is perhaps greater than for any other articulation in the vocal tract.

Analogously, a stop articulation may have articulatory advantages over a continuant. A
stop closure is the discontinuity at the end of a continuous range of approximation. Thus, it is
impossible to ‘over articulate’ a stop, as a greater than the intended amount of closure still results
in a stop. In addition, a closure provides tactile feedback. Achieving frication is a relatively more
difficult task, requiring a constriction narrow enough to cause turbulence, but short of a stop
(Stevens 1972; Mrayati, Carre, & Guerin 1988). The same argument holds for the voicing
contrast. Voicelessness is relatively simple, and can be achieved by strong glottal abduction or
adduction (Pierrehumbert 1995), both endpoints on a continuum of possible articulations (cf.
Sawashima & Hirose 1983). Voicing requires close approximation of the vocal folds, so that the
cycle of pressure build up and elastic recoil is achieved.

In each case, articulation involving the underspecified feature is in some sense simpler or
more stable, and hence more robust. It is possible that the reduced demands on the production
system are in part responsible for the relatively reduced error rate within the unmarked categories
found by Stemberger (1991b) for underspecified consonants. These functional factors influence
language and may become grammaticized, resulting in the patterns of defaults and transparency
found in some languages which have been taken as evidence in support of underspecification.
Finally, these factors influence the cross-linguistic and within language robustness of segments,
and thus the frequency with which they are encountered.
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CHAPTER 11
Discussion and Conclusion

In this chapter, I compare the phonological frameworks of Optimality Theory and
Declarative Phonology along with the conception of the phonology as an emergent property from
a connectionist network. The linguistic frameworks each have some insight into the similarity
effects presented in this thesis, but no linguistic framework yet proposed can capture all of the
results presented here in a natural way. Assuming an underlying connectionist formalism
provides a psychologically plausible model of phonological theory which can accommodate the
gradient effects of frequency and similarity presented in this thesis (Dell 1996). 

11.1 Summary of Results

In chapter 2, I introduced structured specification (Broe 1993), which is a representation
of the segment inventory that explicitly represents natural classes and redundancy relations
between natural classes. In chapter 3, structured specification was incorporated into a metric of
segmental similarity which, as a result, is sensitive to contrast and redundancy relationships
among features. In chapter 4, I tested the similarity metric on two corpora of naturally occurring
consonantal segment errors. The natural classes similarity model was shown to be superior to
previously used measures of segmental similarity in predicting consonantal error rate. This
similarity metric, in combination with the stochastic constraint model of a gradient linguistic
constraint (Frisch, Broe, & Pierrehumbert 1995) was applied to the similarity based OCP-Place
effect in Arabic (Pierrehumbert 1993). The natural classes similarity model, in combination with
the stochastic constraint model, provided superior predictions to the original Pierrehumbert
(1993) similarity model and to the autosegmental formulation of the OCP-Place constraint
(McCarthy 1994).

In chapters 6 and 7, I showed that the word onset position was particularly sensitive to
similarity, in both speech errors and the OCP-Place constraint. In modeling the effect of word
position in OCP-Place, I implemented a model of stochastic constraint combination. The model
of gradient constraint combination used the product of stochastic constraints. It is a fuzzy logic
version of simultaneous categorical constraint satisfaction.
 In chapters 8 and 9, I presented alternative accounts of effects attributed to
underspecification in language production (Stemberger 1991a, b). I demonstrated that the
similarity metric based on structured specification gives a superior prediction of speech error
rates in comparison to a similarity metric based on underspecified representations. In addition, I
showed that asymmetries in speech error rates attributed to underspecification (Stemberger
1991a) are dependent on the status of a speech error outcome as a word or non-word, and thus
are not effects of underspecification. I propose instead that neighborhood density effects, which
are correlated with phoneme frequency and hence underspecification, provide an alternative
analysis of the asymmetries found. 

In chapter 10, I discuss the influence of frequency on phonotactics. Frequency is a strong
predictor of occurrence of medial clusters in English (Pierrehumbert 1994), and of cooccurrence
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of clusters in syllable onset and coda in English. In addition, frequency effects provide the
foundation for the stochastic constraint analysis of OCP-Place effects in Arabic. Frequency
accounts for a large portion of the variation in the Arabic data. Frequency also plays a role in
OCP-Place effects in English. Violations of OCP-Place are especially frequent among coronals.
However, coronals combinations have high expected frequency, and are thus more likely to occur
overall. Finally, I showed that low expected frequency combinations are disproportionately
underrepresented in medial clusters in English, in syllables with both onset clusters and coda
clusters, and among consonants which are predicted to be equally affected by violations of OCP-
Place in both English and Arabic. Conversely, high expected frequency combinations are
disproportionately found using the O/E measure, which factors out expected frequency. I account
for the difference between high and low expected frequency combinations by considering the
effect that the existence of an actual word has on the grammar. When a word of a particular form
exists, it serves as an exemplar of a phonotactically acceptable word. Other words following the
same pattern as the exemplar are acceptable as well, so productive use of existing forms will
overrepresent occurring combinations. Since high expected frequency items are more likely to
occur than low expected frequency items, high expected frequency items are more likely benefit
from the existence of exemplars. 

11.2 Similarity, Frequency, and Phonotactic Constraints in Phonology

The use of similarity, frequency, and the logistic function as a model of a gradient
linguistic constraint is a non-traditional approach to phonotactics. Traditional phonotactic
constraints are categorical statements of well-formedness. The stochastic constraint model takes
a continuous variable as input and produces a continuous acceptability value as output, and thus
can model gradient effects. The stochastic constraint model can also be parameterized to create
categorical effects. The use of the stochastic constraint is a necessary extension of formal
linguistic theory, which cannot model the frequency and similarity effects presented in this thesis.

The traditional conception of a categorical phonotactic constraint represents the extreme
on a much broader field of gradient phonotactics. Violations of the OCP-Place constraint do not
disqualify a form absolutely. Instead, violations by different forms occur to different degrees, and
forms which violate the constraint more seriously are found less frequently than forms which are
minor violations. The fundamental dimension in determining the degree of violation is similarity.
In combination with expected frequency, actual occurrence of forms can be predicted.

A phonotactic constraint can thus be seen as a function which takes as input a word form,
and produces as output a degree of acceptability. The domain of the constraint is the set of actual,
possible, and impossible word forms. The range of the function is acceptability, which is
reflected in frequency in the lexicon. Thus, the implicit knowledge of the native speaker in this
model of phonotactics includes the knowledge of the set of actual words and the frequency of
those words. The constraint is an abstraction or generalization of this knowledge which can be
applied to other cases. This model of phonotactics is no different from a model of categorization,
in which the category is the set of ‘good words’ (Frisch, Broe, & Pierrehumbert 1995). The
stochastic constraint model seems exceptionally appropriate as the logistic function upon which
it is based can be used as a model of the ogival curves characteristic of categorical perception
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(e.g. Kuhl & Miller 1978).
These results provide indirect evidence against a cognitive distinction between a

linguistic object and a linguistic constraint. Identifying forms which violate a constraint is
parallel to the categorical perception of linguistic objects. The additional effects of existing
exemplars on occurrence and cooccurrence provide additional evidence that linguistic constraints
are abstractions over the set of lexical items (Pierrehumbert 1994, Beckman & Edwards 1996).
No current formal phonological theory appropriately models this conception of grammar. The
theory which comes closest to this position is Declarative Phonology (Scobbie 1993). In this
framework, constraints are underspecified objects (or conversely, an object is a fully specified
constraint). Simple abstractions are combined via the formal mechanism of unification to create
complete complex objects.

The evidence presented in this thesis suggests that native speakers have specific linguistic
knowledge about both the individual lexical items of their language and the generalizations over
those items, the constraints. Recall that in structured specification (Broe 1993), the phoneme
inventory is represented as a multidimensional hierarchical structure. The phonemes themselves
appear at the lowest level of the hierarchy. Successively more general natural classes, which
contain the phonemes, are also explicitly represented. Thus, both the individual members of the
classes, as well as the generalizations, are explicitly learned and represented. A phonology which
is built along the same model, which thus encodes a great deal of redundant information, allows a
great deal of room for individual, dialectal, and cross-linguistic variation in the representation of
phonological patterns. Over and under generalization are natural phenomena where the domain
of a phonological process is mis-generalized. The lattice model of phonology also admits
explanatory cognitive factors for cross-linguistic tendencies. For example, most natural kind
classes have a privileged, or so-called ‘basic level’ which is acquired at an early age (Rosch
1975). Information about categories at the basic level is also easiest to access. Basic level
categories are at a moderate level of abstraction (e.g. ‘cat’), between very general superordinate
categories (e.g. ‘animal’) and very specific subordinate categories (e.g. ‘Manx’). The hierarchy of
phonological generalizations may also have a basic level in the middle of the range of possible
generalizations: at the segmental and the phrasal level phonology. Generalizations at lower levels
of phonetic detail, or higher levels of supra-phrasal structure are likely to more difficult to learn
and most susceptible to obliteration by individual and contextual variation.

The lattice model of phonology can account for language specific patterns. Universal
patterns will also emerge. It is commonly assumed that generalizations found in many languages
reflect some form of universal constraint (e.g. Lindblom 1983, 1990). I propose that physical and
cognitive universals constrain the space in which language particular phonology can operate.

11.3 Connectionism, Optimality, and Constraints

There are a number of existing formal phonological theories. They vary in the naturalness
with which they can incorporate the results of this thesis. I concentrate here on the two current
constraint based models of phonology which have been most influential to my work: Optimality
Theory and Declarative Phonology. Neither framework can account for the data in this thesis. I
suggest instead that a phonology grounded in connectionist formalism provides a psychologically
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plausible model of phonology which can account for frequency and similarity effects.
Optimality Theory is a notable exception to traditional linguistic theories in that

violations of constraints are permitted, when higher ranked constraints intervene. However,
Optimality Theory focusses on the mapping from input to output forms. Phonotactic patterns
among underlying forms are considered epiphenomenal and result from cases where the ranked
hierarchy of constraints produces a many-to-one mapping of underlying forms to surface forms
(Pierrehumbert 1996). In this situation, a mechanism of lexicon optimization (Prince &
Smolensky 1993) uses the most harmonic input to output mapping to determine the actually
occurring input. Thus, there are no patterns among underlying forms which are not based on the
constraint hierarchy.

Optimality Theory cannot account for statistical patterns of underrepresentation through
constraint ranking in a strict dominance hierarchy (Berkley 1994a, b). Any constraint ranking
which eliminates a phonotactic pattern in one form will eliminate that pattern in all equivalent
forms.

In addition, Optimality Theory cannot account for cumulative interactions of gradient
effects (Pierrehumbert & Nair 1995). In this thesis, the similarity effects of OCP-Place were
found to interact with word position, expected frequency, and stress. The degree of violation of
OCP-Place depends on the position of the combination with respect to the left edge of the word,
syllable stress, and on the expected frequency of the combination.

The effects of high versus low expected frequency, accounted for using occurring words
as exemplars of phonotactically acceptable existing words, is especially problematic for
Optimality Theory. The existence of underlying forms other than the particular input under
consideration is not relevant to the set of Optimality Theoretic constraints. A parallel to the
exemplar problem occurs on the output side of the Optimality Theoretic grammar. Paradigm
uniformity constraints (Kiparsky 1972, Flemming 1995, Steriade 1996) require reference to the
set of existing output forms to determine well-formedness. Specific information about individual
inputs and outputs are not part of the formalism and thus these data cannot be captured.

The constraints in Optimality Theory are proposed to be universal and not abstractions
over the lexicon. Regular patterns are the domain of Universal Grammar only. Exemplar effects
and paradigm conditions thus are doubly difficult to model in this system. Since the lexicon is
language particular, it plays no role in the Optimality Theoretic constraint hierarchy. Preliminary
experimental research has found evidence that exemplars do influence phonological judgement.
Cole, Dell, & Guest (1996) found that subjects who were trained on the stress pattern of
nonsense words were equally likely to predict the stress of novel forms by constraint satisfaction
(utilizing a deduced generalization about constraint interaction) as by template matching to
learned exemplars with the same number of syllables.

While Optimality Theory is overly restrictive in its architecture, a model of phonotactic
constraints based on connectionism is relatively under structured (see Dell et al. 1993).
Connectionist models are inherently quantitative, as activation levels of the nodes in a
connectionist network are typically gradient. Connectionist models are also strongly associative.
A connectionist model can, in principle, learn to associate any two nodes in the network. The
more frequently two nodes are activated together in the network, the stronger their association
becomes. Thus, connectionist models are inherently able to model effects of frequency of
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cooccurrence (Dell 1996). In chapter 3, I showed that the natural classes similarity model made
comparable predictions to an activation network model of similarity. Exemplar effects, like the
effect of expected frequency within similarity classes, are a natural part of connectionist models.
I also argued in chapters 6 and 7 that effects of interference caused by activation in a network
model can account for the extra sensitivity of word onsets to similarity. What is unclear, in a
connectionist model, is the status of representations and constraints. Since every level of
linguistic structure is an abstraction to some degree, deciding on the fundamental units from
which the generalizations are emergent is a challenging problem, and, according to Dell (1996), a
crucial one.

In Declarative Phonology there is a natural hierarchy of constraints, as in the lattice based
model of phonology sketched above. Constraints are partial descriptions of well-formed
structures, and can thus be hierarchically ordered by their specificity (Bird 1995). Constraints are
combined by enforcing their requirements simultaneously. In Declarative Phonology, constraints
are generally surface true. In cases of constraint conflict, constraints are ranked by the elsewhere
condition and the most specific constraint applies. The Declarative Phonology framework must
be extended to allow gradient constraint models and gradient constraint combination in order to
capture the OCP-Place effects in this thesis.

In Optimality Theory, constraints are universals, and are arbitrarily ranked. In Declarative
Phonology, constraints are type abstractions and are ranked only by the elsewhere condition. I
believe the true form of the grammar is somewhere in between. It is likely that universal
constraints, based on physiology and psychology, influence the form of language particular
constraints. In cases of conflicting universal constraints, the conflict may be resolved arbitrarily
in favor of one factor or another. This degree of arbitrariness is necessary if cross-linguistic
variation is to be permitted in the face of universal constraints. Universal constraints are
necessary if we are to ever truly explain patterns which are seen over and over cross-
linguistically.

The patterns in the OCP-Place constraint examined in this thesis show how a constraint
based on universal cognitive factors such as similarity and frequency can show language
particular variation. Differences were found between OCP-Place effects among identical
consonants in English and Arabic. In Arabic, identical consonant pairs are rarely found. In
stressed syllables in English, they are frequent. This language particular variation is connected to
differences between Arabic and English morphology. In the non-concatenative morphology of
Arabic, the abstract consonantal root is a morpheme. The consonant sequence can be found in
different prosodic positions. In English, however, there is less variation in the realization of the
segments of a morpheme in onset and coda position, and less variation in the stress of a particular
syllable in a morpheme. These prosodic factors consistently influence the perceived similarity of
segments, while the prosodic factors in Arabic are more easily abstracted away from as
contextual variation.

11.4 Conclusion

In this thesis, I have presented a case study for a phonology which is grounded in physical
and cognitive factors. In order to model the effects of frequency and similarity on the lexicon, I
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have presented a formal model of a gradient linguistic constraint and gradient constraint
combination. I propose that gradient linguistic constraints can be incorporated into a lattice
model of the phonology which encodes individual exemplars of occurring words as well as
generalizations across exemplars. This is a psycholinguistically plausible model of phonology
which has much in common with a connectionist approach to linguistic knowledge. My results
suggest that careful examination of the statistical patterns of language can reveal a great deal
about the mental representation of implicit linguistic knowledge.
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