Description: Clip 1 of 9: Explaining that
$(\mathbf{a}+\mathbf{b})$ squared $=(\mathbf{a}$ squared $+\mathbf{2 a b}+\mathbf{b}$ squared), algebraically and geometrically
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

0:00	1	Stephanie	Alright, so it was like- I don't know- we did a plus b squared, and you asked me to explain what a squared was-
	2	R1	Mhm.
	3	Stephanie	With like, a square.
	4	R1	So tell me, help me remember what you did.
	5	Stephanie	Oh, so [reaches for pen, writes], and then you asked me what that was, and it was [more writing] it was a plus b times a plus b. And um, ahem, then you asked me what, like, to show a squared on a square [more writing] and that was like, confusing 'cause I didn't know like how you wanted me to show it-
	6	R1	Mhm.
	7	Stephanie	But, so, then we got into, like, if the square was three parts [writing] what this was- and that that was a unit, and that that was like one square unit.
	8	R1	Mhm.
	9	Stephanie	And um, that it would be nine, and because it was like three by three, three squared. And we did a couple of those. And then, um, [pause], we- you asked me if it was um, if one side was [writing] a plus b [writing]
	10	R1	Oh yes, I remember that one.
	11	Stephanie	Then what it would be.
	12	R1	Yeah.
	13	Stephanie	And um, if the small part's a and the big part's b [draws square divided into parts representing $\left.(a+b)^{2}\right]$
	14	R1	Mhm. [pause, Stephanie writes] did you figure out what all those pieces were?
	15	Stephanie	Yeah. It was a squared, $a b$, ahem, b squared, $a b$, and it would be a squared plus $2 a b$ plus b squared, and that's what we figured out then. [pause, writes] a plus b squared equals.
	16	R1	Oh, okay, right. And the original conjecture what a plus b squared equaled you were testing.
	17	Stephanie	Yes.
	18	R1	And originally, what did you conjecture?
	19	Stephanie	Um-

Description: Clip 1 of 9: Explaining that	Transcriber(s): Aboelnaga, Eman
(a+b) squared = (a squared + 2ab + b	Verifier(s): Yedman, Madeline
squared), algebraically and geometrically	Date Transcribed: Fall 2010
Parent Tape: Early Algebra Ideas About	Page: 2 of 2
Binomial Expansion, Stephanie's Interview	
Four of Seven	
Date: 1996-02-21	
Location: Harding Elementary School	
Researcher: Professor Carolyn Maher	

	20	R1	What most people-
	21	Stephanie	I think it was a squared plus b squared.
	22	R1	Yeah, lots of students
	23	Stephanie	And that was wrong.
	24	R1	conjecture that, right, so-
	25	Stephanie	Yeah.

