Description: Clip 5 of 9: Building (a+b) cubed and identifying the pieces
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 1 of 6

0:00	1	R1	'Cause I'm thinking here, see, [replaces $a^{2} b$ piece horizontally in original model; adds new a squared b piece on top of a cubed piece vertically, then moves it vertically on top of $a^{2} b$ piece] can you make a cube with these pieces? Can you build a cube?
	2	Stephanie	That, like, all that length?
	3	R1	With this as a base [indicating model]? Just build it, without worrying about what they are. Can you just make it, can you put the puzzle together? [Stephanie attempts to put pieces together to create cube]
	4	Stephanie	I don't know if there's enough, like [hesitates], no. Not a - well [resumes rearranging pieces, succeeds at assembling cube]. Oh. There.
	5	R1	My goodness. That's pretty neat. Now.
	6	Stephanie	Oh boy...
	7	R1	What kind of question might you be asking? You've done a really nice job, saying what all those pieces are, and what it was coming up what, one layer of it, you know?
	8	Stephanie	Mhm.
	9	R1	You did all those components of the first layer, that's very lovely. And then you went up b, right?
	10	Stephanie	Mhm.
	11	R1	So I'm kind of interested in [pause] you know, you had- you ended up with an a squared b, and an a squared b.
	12	Stephanie	Yeah.
	13	R1	An $a b$ squared, but you ended up with this [pointing to paper with work from before] before that, with this [showing work from previous; work before simplifying; accidentally knocking over cube] whoops. What did I do, I destroyed it. I don't wanna put it together the way you didn't have it? Do you remember what you did? Was it like this? [reassembling cube]
	14	Stephanie	Yes.
	15	R1	I don't know if they belong in those places or not [reassembling cube] That's something we can think about, maybe they do, maybe they don't, I haven't thought about it. But, we know where the a cubed is.
	16	Stephanie	Yes.

Description: Clip 5 of 9: Building (a+b) cubed and identifying the pieces
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 2 of 6

	17	R1	That's this little piece.
	18	Stephanie	Yes.
	19	R1	I mean, are all of these pieces there? [Indicating terms on paper and pieces of cube]
	20	Stephanie	Probably.
	21	R1	This is a plus b, here [indicating cube]. Should we- How can we figure that out?
	22	Stephanie	Well, we already have, we have this piece [going to write on paper]
	23	R1	Let's get another piece of paper [gets another sheet of paper]. We already have the a cubed piece.
	24	Stephanie	We have a cubed [writes terms on paper], we have a cubedsquared b, we have $a b$ squared, and we have another a squared b. And I guess, on the base level [pulling apart a piece of the cube], does that count? [Drops some pieces, reassembles cube]
	25	R1	That was all those pieces- you-
	26	Stephanie	Yeah, so it doesn't. So like, we have these four [pointing to paper] pieces... With just this layer.
	27	R1	Hmm. Just the bottom layer.
	28	Stephanie	Yeah.
	29	R1	Mhm. And [returning to previous work on paper, before simplified], according to this thing we needed three a squared b, you only had one. You need $3 a b$ squared, you only had one. Right?
	30	Stephanie	Well we have two a squared b. [pause] Don't we?
	31	R1	Hmm. I guess we do. Right.
	32	R1	We have an a squared b, we have two a squared b. [places old and new work next to each other] I don't know, is this the right way to think about this? It's interesting. [pause] What's a b cubed?
	33	Stephanie	b cubed? Um... [deconstructs cube, picks up $a b^{2}$ piece from bottom layer] That's b squared [puts cube back together]. And that's gonna be... [pauses]
	34	R1	You said this was b squared? Over here, right? [removes piece, pointing to bottom layer of cube]
	35	Stephanie	Yeah, that was b squared.

Description: Clip 5 of 9: Building (a+b) cubed and identifying the pieces
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 3 of 6

	36	R1	What was b? Show me b. What was the length b?
	37	Stephanie	b is like this, [running finger along edge of ab ${ }^{2}$ piece] or this [running finger along b3 piece], so I guess it's going up another b, so... But it's already ab squared, but there's no ab cubed.
	38	R1	Well, [pulling out ab' piece, pointing to tracing on paper] this was b squared, right? And then when you went up one it became ab squared. That was this piece [replacing ab ${ }^{2}$ piece].
	39	Stephanie	Yes.

Description: Clip 5 of 9: Building (a+b) cubed and identifying the pieces
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 4 of 6

	59	Stephanie	Okay...			
	60	R1	I think you know enough. W- If you think about it, [picks up pieces from cube] you know, you can give names to some of these, right? Right?			
	61	Stephanie	Yes.			
	62	R1	K. So what did you call this one again [holding up ab"]?			
	63	Stephanie	b squared [pauses]. Didn't I? It was- yeah that was b squared.			
	64	R1	Which part is b squared? The whole piece?	$	$	65
:---						

Description: Clip 5 of 9: Building (a+b) cubed and identifying the pieces
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 5 of 6

	84	R1	And what's the blue one [picking up blue piece]
	85	Stephanie	Oh, so we have $3 a$ squared b [pointing to original paper with simplified work]
	86	R1	Oh.
	87	Stephanie	[Crosses out two $a^{2} b$ terms on newer paper, rewrites " $3 a^{2} b$ " instead] And we have a cubed [writes] and we have b cubed, and we have $a b$ cubed- squared- [looks at pieces] we have $3 a b$ squared [writes]
	88	R1	So, why are these $a b$ squared [picks up blue piece]
	89	Stephanie	Because, it's like, a up, b over [pointing to edges of piece]
	90	R1	Believe that, absolutely. Okay.
	91	Stephanie	So that's it, we have all the pieces.
	92	R1	So you believe...
	93	Stephanie	Yeah.
	94	R1	You're absolutely convinced?
	95	Stephanie	Yes.
	96	R1	You can explain that to your teacher?
	97	Stephanie	Yeah, kind of.
	98	R1	And to Melanie?
	99	Stephanie	Yes.
	100	R1	Kind of? Or- If you think about- this is really cool. This was a nice problem, Ethel. But you should've given us more pieces. To throw us off.
	101	R2	Should've made them all the same color, too.
	102	R1	Should've made them all the same color? That would have been very hard [laughs]. It's nicer to have them different colors, don't you think? So next time you can make them a little harder. Okay, so you believe that the quantity a plus b squared means a plus b three times [points at paper]. You'd have to think about this a lot until you have the a cubed piece, you have the a squared b piece three times-
	103	Stephanie	Mhm.
	104	R1	You have the $a b$ squared piece
	105	Together	three times.
	106	R1	And you have the b cubed piece three times.
	107	Stephanie	Yes.

Description: Clip 5 of 9: Building (a+b) cubed and identifying the pieces
Parent Tape: Early Algebra Ideas About
Binomial Expansion, Stephanie's Interview
Four of Seven
Date: 1996-02-21
Location: Harding Elementary School
Researcher: Professor Carolyn Maher

Transcriber(s): Aboelnaga, Eman
Verifier(s): Yedman, Madeline
Date Transcribed: Fall 2010
Page: 6 of 6

	108	R1	And when you build it all up, I'm going to ask you to do it one more time...
	109	Stephanie	Okay.
	110	R1	Okay [Stephanie builds]. You're gonna have a cube?
	111	Stephanie	Um, yeah.

